]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/breakpoint.c
use bound_minsym as result for lookup_minimal_symbol et al
[thirdparty/binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int breakpoint_address_match (struct address_space *aspace1,
169 CORE_ADDR addr1,
170 struct address_space *aspace2,
171 CORE_ADDR addr2);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void detach_single_step_breakpoints (void);
235
236 static int single_step_breakpoint_inserted_here_p (struct address_space *,
237 CORE_ADDR pc);
238
239 static void free_bp_location (struct bp_location *loc);
240 static void incref_bp_location (struct bp_location *loc);
241 static void decref_bp_location (struct bp_location **loc);
242
243 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
244
245 static void update_global_location_list (int);
246
247 static void update_global_location_list_nothrow (int);
248
249 static int is_hardware_watchpoint (const struct breakpoint *bpt);
250
251 static void insert_breakpoint_locations (void);
252
253 static int syscall_catchpoint_p (struct breakpoint *b);
254
255 static void tracepoints_info (char *, int);
256
257 static void delete_trace_command (char *, int);
258
259 static void enable_trace_command (char *, int);
260
261 static void disable_trace_command (char *, int);
262
263 static void trace_pass_command (char *, int);
264
265 static void set_tracepoint_count (int num);
266
267 static int is_masked_watchpoint (const struct breakpoint *b);
268
269 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
270
271 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
272 otherwise. */
273
274 static int strace_marker_p (struct breakpoint *b);
275
276 /* The abstract base class all breakpoint_ops structures inherit
277 from. */
278 struct breakpoint_ops base_breakpoint_ops;
279
280 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
281 that are implemented on top of software or hardware breakpoints
282 (user breakpoints, internal and momentary breakpoints, etc.). */
283 static struct breakpoint_ops bkpt_base_breakpoint_ops;
284
285 /* Internal breakpoints class type. */
286 static struct breakpoint_ops internal_breakpoint_ops;
287
288 /* Momentary breakpoints class type. */
289 static struct breakpoint_ops momentary_breakpoint_ops;
290
291 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
292 static struct breakpoint_ops longjmp_breakpoint_ops;
293
294 /* The breakpoint_ops structure to be used in regular user created
295 breakpoints. */
296 struct breakpoint_ops bkpt_breakpoint_ops;
297
298 /* Breakpoints set on probes. */
299 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
300
301 /* Dynamic printf class type. */
302 struct breakpoint_ops dprintf_breakpoint_ops;
303
304 /* The style in which to perform a dynamic printf. This is a user
305 option because different output options have different tradeoffs;
306 if GDB does the printing, there is better error handling if there
307 is a problem with any of the arguments, but using an inferior
308 function lets you have special-purpose printers and sending of
309 output to the same place as compiled-in print functions. */
310
311 static const char dprintf_style_gdb[] = "gdb";
312 static const char dprintf_style_call[] = "call";
313 static const char dprintf_style_agent[] = "agent";
314 static const char *const dprintf_style_enums[] = {
315 dprintf_style_gdb,
316 dprintf_style_call,
317 dprintf_style_agent,
318 NULL
319 };
320 static const char *dprintf_style = dprintf_style_gdb;
321
322 /* The function to use for dynamic printf if the preferred style is to
323 call into the inferior. The value is simply a string that is
324 copied into the command, so it can be anything that GDB can
325 evaluate to a callable address, not necessarily a function name. */
326
327 static char *dprintf_function = "";
328
329 /* The channel to use for dynamic printf if the preferred style is to
330 call into the inferior; if a nonempty string, it will be passed to
331 the call as the first argument, with the format string as the
332 second. As with the dprintf function, this can be anything that
333 GDB knows how to evaluate, so in addition to common choices like
334 "stderr", this could be an app-specific expression like
335 "mystreams[curlogger]". */
336
337 static char *dprintf_channel = "";
338
339 /* True if dprintf commands should continue to operate even if GDB
340 has disconnected. */
341 static int disconnected_dprintf = 1;
342
343 /* A reference-counted struct command_line. This lets multiple
344 breakpoints share a single command list. */
345 struct counted_command_line
346 {
347 /* The reference count. */
348 int refc;
349
350 /* The command list. */
351 struct command_line *commands;
352 };
353
354 struct command_line *
355 breakpoint_commands (struct breakpoint *b)
356 {
357 return b->commands ? b->commands->commands : NULL;
358 }
359
360 /* Flag indicating that a command has proceeded the inferior past the
361 current breakpoint. */
362
363 static int breakpoint_proceeded;
364
365 const char *
366 bpdisp_text (enum bpdisp disp)
367 {
368 /* NOTE: the following values are a part of MI protocol and
369 represent values of 'disp' field returned when inferior stops at
370 a breakpoint. */
371 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
372
373 return bpdisps[(int) disp];
374 }
375
376 /* Prototypes for exported functions. */
377 /* If FALSE, gdb will not use hardware support for watchpoints, even
378 if such is available. */
379 static int can_use_hw_watchpoints;
380
381 static void
382 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c,
384 const char *value)
385 {
386 fprintf_filtered (file,
387 _("Debugger's willingness to use "
388 "watchpoint hardware is %s.\n"),
389 value);
390 }
391
392 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
393 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
394 for unrecognized breakpoint locations.
395 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
396 static enum auto_boolean pending_break_support;
397 static void
398 show_pending_break_support (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c,
400 const char *value)
401 {
402 fprintf_filtered (file,
403 _("Debugger's behavior regarding "
404 "pending breakpoints is %s.\n"),
405 value);
406 }
407
408 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
409 set with "break" but falling in read-only memory.
410 If 0, gdb will warn about such breakpoints, but won't automatically
411 use hardware breakpoints. */
412 static int automatic_hardware_breakpoints;
413 static void
414 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c,
416 const char *value)
417 {
418 fprintf_filtered (file,
419 _("Automatic usage of hardware breakpoints is %s.\n"),
420 value);
421 }
422
423 /* If on, gdb will keep breakpoints inserted even as inferior is
424 stopped, and immediately insert any new breakpoints. If off, gdb
425 will insert breakpoints into inferior only when resuming it, and
426 will remove breakpoints upon stop. If auto, GDB will behave as ON
427 if in non-stop mode, and as OFF if all-stop mode.*/
428
429 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
430
431 static void
432 show_always_inserted_mode (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
436 fprintf_filtered (file,
437 _("Always inserted breakpoint "
438 "mode is %s (currently %s).\n"),
439 value,
440 breakpoints_always_inserted_mode () ? "on" : "off");
441 else
442 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
443 value);
444 }
445
446 int
447 breakpoints_always_inserted_mode (void)
448 {
449 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
450 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
451 }
452
453 static const char condition_evaluation_both[] = "host or target";
454
455 /* Modes for breakpoint condition evaluation. */
456 static const char condition_evaluation_auto[] = "auto";
457 static const char condition_evaluation_host[] = "host";
458 static const char condition_evaluation_target[] = "target";
459 static const char *const condition_evaluation_enums[] = {
460 condition_evaluation_auto,
461 condition_evaluation_host,
462 condition_evaluation_target,
463 NULL
464 };
465
466 /* Global that holds the current mode for breakpoint condition evaluation. */
467 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
468
469 /* Global that we use to display information to the user (gets its value from
470 condition_evaluation_mode_1. */
471 static const char *condition_evaluation_mode = condition_evaluation_auto;
472
473 /* Translate a condition evaluation mode MODE into either "host"
474 or "target". This is used mostly to translate from "auto" to the
475 real setting that is being used. It returns the translated
476 evaluation mode. */
477
478 static const char *
479 translate_condition_evaluation_mode (const char *mode)
480 {
481 if (mode == condition_evaluation_auto)
482 {
483 if (target_supports_evaluation_of_breakpoint_conditions ())
484 return condition_evaluation_target;
485 else
486 return condition_evaluation_host;
487 }
488 else
489 return mode;
490 }
491
492 /* Discovers what condition_evaluation_auto translates to. */
493
494 static const char *
495 breakpoint_condition_evaluation_mode (void)
496 {
497 return translate_condition_evaluation_mode (condition_evaluation_mode);
498 }
499
500 /* Return true if GDB should evaluate breakpoint conditions or false
501 otherwise. */
502
503 static int
504 gdb_evaluates_breakpoint_condition_p (void)
505 {
506 const char *mode = breakpoint_condition_evaluation_mode ();
507
508 return (mode == condition_evaluation_host);
509 }
510
511 void _initialize_breakpoint (void);
512
513 /* Are we executing breakpoint commands? */
514 static int executing_breakpoint_commands;
515
516 /* Are overlay event breakpoints enabled? */
517 static int overlay_events_enabled;
518
519 /* See description in breakpoint.h. */
520 int target_exact_watchpoints = 0;
521
522 /* Walk the following statement or block through all breakpoints.
523 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
524 current breakpoint. */
525
526 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
527
528 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
529 for (B = breakpoint_chain; \
530 B ? (TMP=B->next, 1): 0; \
531 B = TMP)
532
533 /* Similar iterator for the low-level breakpoints. SAFE variant is
534 not provided so update_global_location_list must not be called
535 while executing the block of ALL_BP_LOCATIONS. */
536
537 #define ALL_BP_LOCATIONS(B,BP_TMP) \
538 for (BP_TMP = bp_location; \
539 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
540 BP_TMP++)
541
542 /* Iterates through locations with address ADDRESS for the currently selected
543 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
544 to where the loop should start from.
545 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
546 appropriate location to start with. */
547
548 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
549 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
550 BP_LOCP_TMP = BP_LOCP_START; \
551 BP_LOCP_START \
552 && (BP_LOCP_TMP < bp_location + bp_location_count \
553 && (*BP_LOCP_TMP)->address == ADDRESS); \
554 BP_LOCP_TMP++)
555
556 /* Iterator for tracepoints only. */
557
558 #define ALL_TRACEPOINTS(B) \
559 for (B = breakpoint_chain; B; B = B->next) \
560 if (is_tracepoint (B))
561
562 /* Chains of all breakpoints defined. */
563
564 struct breakpoint *breakpoint_chain;
565
566 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
567
568 static struct bp_location **bp_location;
569
570 /* Number of elements of BP_LOCATION. */
571
572 static unsigned bp_location_count;
573
574 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
575 ADDRESS for the current elements of BP_LOCATION which get a valid
576 result from bp_location_has_shadow. You can use it for roughly
577 limiting the subrange of BP_LOCATION to scan for shadow bytes for
578 an address you need to read. */
579
580 static CORE_ADDR bp_location_placed_address_before_address_max;
581
582 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
583 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
584 BP_LOCATION which get a valid result from bp_location_has_shadow.
585 You can use it for roughly limiting the subrange of BP_LOCATION to
586 scan for shadow bytes for an address you need to read. */
587
588 static CORE_ADDR bp_location_shadow_len_after_address_max;
589
590 /* The locations that no longer correspond to any breakpoint, unlinked
591 from bp_location array, but for which a hit may still be reported
592 by a target. */
593 VEC(bp_location_p) *moribund_locations = NULL;
594
595 /* Number of last breakpoint made. */
596
597 static int breakpoint_count;
598
599 /* The value of `breakpoint_count' before the last command that
600 created breakpoints. If the last (break-like) command created more
601 than one breakpoint, then the difference between BREAKPOINT_COUNT
602 and PREV_BREAKPOINT_COUNT is more than one. */
603 static int prev_breakpoint_count;
604
605 /* Number of last tracepoint made. */
606
607 static int tracepoint_count;
608
609 static struct cmd_list_element *breakpoint_set_cmdlist;
610 static struct cmd_list_element *breakpoint_show_cmdlist;
611 struct cmd_list_element *save_cmdlist;
612
613 /* Return whether a breakpoint is an active enabled breakpoint. */
614 static int
615 breakpoint_enabled (struct breakpoint *b)
616 {
617 return (b->enable_state == bp_enabled);
618 }
619
620 /* Set breakpoint count to NUM. */
621
622 static void
623 set_breakpoint_count (int num)
624 {
625 prev_breakpoint_count = breakpoint_count;
626 breakpoint_count = num;
627 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
628 }
629
630 /* Used by `start_rbreak_breakpoints' below, to record the current
631 breakpoint count before "rbreak" creates any breakpoint. */
632 static int rbreak_start_breakpoint_count;
633
634 /* Called at the start an "rbreak" command to record the first
635 breakpoint made. */
636
637 void
638 start_rbreak_breakpoints (void)
639 {
640 rbreak_start_breakpoint_count = breakpoint_count;
641 }
642
643 /* Called at the end of an "rbreak" command to record the last
644 breakpoint made. */
645
646 void
647 end_rbreak_breakpoints (void)
648 {
649 prev_breakpoint_count = rbreak_start_breakpoint_count;
650 }
651
652 /* Used in run_command to zero the hit count when a new run starts. */
653
654 void
655 clear_breakpoint_hit_counts (void)
656 {
657 struct breakpoint *b;
658
659 ALL_BREAKPOINTS (b)
660 b->hit_count = 0;
661 }
662
663 /* Allocate a new counted_command_line with reference count of 1.
664 The new structure owns COMMANDS. */
665
666 static struct counted_command_line *
667 alloc_counted_command_line (struct command_line *commands)
668 {
669 struct counted_command_line *result
670 = xmalloc (sizeof (struct counted_command_line));
671
672 result->refc = 1;
673 result->commands = commands;
674 return result;
675 }
676
677 /* Increment reference count. This does nothing if CMD is NULL. */
678
679 static void
680 incref_counted_command_line (struct counted_command_line *cmd)
681 {
682 if (cmd)
683 ++cmd->refc;
684 }
685
686 /* Decrement reference count. If the reference count reaches 0,
687 destroy the counted_command_line. Sets *CMDP to NULL. This does
688 nothing if *CMDP is NULL. */
689
690 static void
691 decref_counted_command_line (struct counted_command_line **cmdp)
692 {
693 if (*cmdp)
694 {
695 if (--(*cmdp)->refc == 0)
696 {
697 free_command_lines (&(*cmdp)->commands);
698 xfree (*cmdp);
699 }
700 *cmdp = NULL;
701 }
702 }
703
704 /* A cleanup function that calls decref_counted_command_line. */
705
706 static void
707 do_cleanup_counted_command_line (void *arg)
708 {
709 decref_counted_command_line (arg);
710 }
711
712 /* Create a cleanup that calls decref_counted_command_line on the
713 argument. */
714
715 static struct cleanup *
716 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
717 {
718 return make_cleanup (do_cleanup_counted_command_line, cmdp);
719 }
720
721 \f
722 /* Return the breakpoint with the specified number, or NULL
723 if the number does not refer to an existing breakpoint. */
724
725 struct breakpoint *
726 get_breakpoint (int num)
727 {
728 struct breakpoint *b;
729
730 ALL_BREAKPOINTS (b)
731 if (b->number == num)
732 return b;
733
734 return NULL;
735 }
736
737 \f
738
739 /* Mark locations as "conditions have changed" in case the target supports
740 evaluating conditions on its side. */
741
742 static void
743 mark_breakpoint_modified (struct breakpoint *b)
744 {
745 struct bp_location *loc;
746
747 /* This is only meaningful if the target is
748 evaluating conditions and if the user has
749 opted for condition evaluation on the target's
750 side. */
751 if (gdb_evaluates_breakpoint_condition_p ()
752 || !target_supports_evaluation_of_breakpoint_conditions ())
753 return;
754
755 if (!is_breakpoint (b))
756 return;
757
758 for (loc = b->loc; loc; loc = loc->next)
759 loc->condition_changed = condition_modified;
760 }
761
762 /* Mark location as "conditions have changed" in case the target supports
763 evaluating conditions on its side. */
764
765 static void
766 mark_breakpoint_location_modified (struct bp_location *loc)
767 {
768 /* This is only meaningful if the target is
769 evaluating conditions and if the user has
770 opted for condition evaluation on the target's
771 side. */
772 if (gdb_evaluates_breakpoint_condition_p ()
773 || !target_supports_evaluation_of_breakpoint_conditions ())
774
775 return;
776
777 if (!is_breakpoint (loc->owner))
778 return;
779
780 loc->condition_changed = condition_modified;
781 }
782
783 /* Sets the condition-evaluation mode using the static global
784 condition_evaluation_mode. */
785
786 static void
787 set_condition_evaluation_mode (char *args, int from_tty,
788 struct cmd_list_element *c)
789 {
790 const char *old_mode, *new_mode;
791
792 if ((condition_evaluation_mode_1 == condition_evaluation_target)
793 && !target_supports_evaluation_of_breakpoint_conditions ())
794 {
795 condition_evaluation_mode_1 = condition_evaluation_mode;
796 warning (_("Target does not support breakpoint condition evaluation.\n"
797 "Using host evaluation mode instead."));
798 return;
799 }
800
801 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
802 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
803
804 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
805 settings was "auto". */
806 condition_evaluation_mode = condition_evaluation_mode_1;
807
808 /* Only update the mode if the user picked a different one. */
809 if (new_mode != old_mode)
810 {
811 struct bp_location *loc, **loc_tmp;
812 /* If the user switched to a different evaluation mode, we
813 need to synch the changes with the target as follows:
814
815 "host" -> "target": Send all (valid) conditions to the target.
816 "target" -> "host": Remove all the conditions from the target.
817 */
818
819 if (new_mode == condition_evaluation_target)
820 {
821 /* Mark everything modified and synch conditions with the
822 target. */
823 ALL_BP_LOCATIONS (loc, loc_tmp)
824 mark_breakpoint_location_modified (loc);
825 }
826 else
827 {
828 /* Manually mark non-duplicate locations to synch conditions
829 with the target. We do this to remove all the conditions the
830 target knows about. */
831 ALL_BP_LOCATIONS (loc, loc_tmp)
832 if (is_breakpoint (loc->owner) && loc->inserted)
833 loc->needs_update = 1;
834 }
835
836 /* Do the update. */
837 update_global_location_list (1);
838 }
839
840 return;
841 }
842
843 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
844 what "auto" is translating to. */
845
846 static void
847 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c, const char *value)
849 {
850 if (condition_evaluation_mode == condition_evaluation_auto)
851 fprintf_filtered (file,
852 _("Breakpoint condition evaluation "
853 "mode is %s (currently %s).\n"),
854 value,
855 breakpoint_condition_evaluation_mode ());
856 else
857 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
858 value);
859 }
860
861 /* A comparison function for bp_location AP and BP that is used by
862 bsearch. This comparison function only cares about addresses, unlike
863 the more general bp_location_compare function. */
864
865 static int
866 bp_location_compare_addrs (const void *ap, const void *bp)
867 {
868 struct bp_location *a = *(void **) ap;
869 struct bp_location *b = *(void **) bp;
870
871 if (a->address == b->address)
872 return 0;
873 else
874 return ((a->address > b->address) - (a->address < b->address));
875 }
876
877 /* Helper function to skip all bp_locations with addresses
878 less than ADDRESS. It returns the first bp_location that
879 is greater than or equal to ADDRESS. If none is found, just
880 return NULL. */
881
882 static struct bp_location **
883 get_first_locp_gte_addr (CORE_ADDR address)
884 {
885 struct bp_location dummy_loc;
886 struct bp_location *dummy_locp = &dummy_loc;
887 struct bp_location **locp_found = NULL;
888
889 /* Initialize the dummy location's address field. */
890 memset (&dummy_loc, 0, sizeof (struct bp_location));
891 dummy_loc.address = address;
892
893 /* Find a close match to the first location at ADDRESS. */
894 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
895 sizeof (struct bp_location **),
896 bp_location_compare_addrs);
897
898 /* Nothing was found, nothing left to do. */
899 if (locp_found == NULL)
900 return NULL;
901
902 /* We may have found a location that is at ADDRESS but is not the first in the
903 location's list. Go backwards (if possible) and locate the first one. */
904 while ((locp_found - 1) >= bp_location
905 && (*(locp_found - 1))->address == address)
906 locp_found--;
907
908 return locp_found;
909 }
910
911 void
912 set_breakpoint_condition (struct breakpoint *b, char *exp,
913 int from_tty)
914 {
915 xfree (b->cond_string);
916 b->cond_string = NULL;
917
918 if (is_watchpoint (b))
919 {
920 struct watchpoint *w = (struct watchpoint *) b;
921
922 xfree (w->cond_exp);
923 w->cond_exp = NULL;
924 }
925 else
926 {
927 struct bp_location *loc;
928
929 for (loc = b->loc; loc; loc = loc->next)
930 {
931 xfree (loc->cond);
932 loc->cond = NULL;
933
934 /* No need to free the condition agent expression
935 bytecode (if we have one). We will handle this
936 when we go through update_global_location_list. */
937 }
938 }
939
940 if (*exp == 0)
941 {
942 if (from_tty)
943 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
944 }
945 else
946 {
947 const char *arg = exp;
948
949 /* I don't know if it matters whether this is the string the user
950 typed in or the decompiled expression. */
951 b->cond_string = xstrdup (arg);
952 b->condition_not_parsed = 0;
953
954 if (is_watchpoint (b))
955 {
956 struct watchpoint *w = (struct watchpoint *) b;
957
958 innermost_block = NULL;
959 arg = exp;
960 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
961 if (*arg)
962 error (_("Junk at end of expression"));
963 w->cond_exp_valid_block = innermost_block;
964 }
965 else
966 {
967 struct bp_location *loc;
968
969 for (loc = b->loc; loc; loc = loc->next)
970 {
971 arg = exp;
972 loc->cond =
973 parse_exp_1 (&arg, loc->address,
974 block_for_pc (loc->address), 0);
975 if (*arg)
976 error (_("Junk at end of expression"));
977 }
978 }
979 }
980 mark_breakpoint_modified (b);
981
982 observer_notify_breakpoint_modified (b);
983 }
984
985 /* Completion for the "condition" command. */
986
987 static VEC (char_ptr) *
988 condition_completer (struct cmd_list_element *cmd,
989 const char *text, const char *word)
990 {
991 const char *space;
992
993 text = skip_spaces_const (text);
994 space = skip_to_space_const (text);
995 if (*space == '\0')
996 {
997 int len;
998 struct breakpoint *b;
999 VEC (char_ptr) *result = NULL;
1000
1001 if (text[0] == '$')
1002 {
1003 /* We don't support completion of history indices. */
1004 if (isdigit (text[1]))
1005 return NULL;
1006 return complete_internalvar (&text[1]);
1007 }
1008
1009 /* We're completing the breakpoint number. */
1010 len = strlen (text);
1011
1012 ALL_BREAKPOINTS (b)
1013 {
1014 char number[50];
1015
1016 xsnprintf (number, sizeof (number), "%d", b->number);
1017
1018 if (strncmp (number, text, len) == 0)
1019 VEC_safe_push (char_ptr, result, xstrdup (number));
1020 }
1021
1022 return result;
1023 }
1024
1025 /* We're completing the expression part. */
1026 text = skip_spaces_const (space);
1027 return expression_completer (cmd, text, word);
1028 }
1029
1030 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1031
1032 static void
1033 condition_command (char *arg, int from_tty)
1034 {
1035 struct breakpoint *b;
1036 char *p;
1037 int bnum;
1038
1039 if (arg == 0)
1040 error_no_arg (_("breakpoint number"));
1041
1042 p = arg;
1043 bnum = get_number (&p);
1044 if (bnum == 0)
1045 error (_("Bad breakpoint argument: '%s'"), arg);
1046
1047 ALL_BREAKPOINTS (b)
1048 if (b->number == bnum)
1049 {
1050 /* Check if this breakpoint has a "stop" method implemented in an
1051 extension language. This method and conditions entered into GDB
1052 from the CLI are mutually exclusive. */
1053 const struct extension_language_defn *extlang
1054 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1055
1056 if (extlang != NULL)
1057 {
1058 error (_("Only one stop condition allowed. There is currently"
1059 " a %s stop condition defined for this breakpoint."),
1060 ext_lang_capitalized_name (extlang));
1061 }
1062 set_breakpoint_condition (b, p, from_tty);
1063
1064 if (is_breakpoint (b))
1065 update_global_location_list (1);
1066
1067 return;
1068 }
1069
1070 error (_("No breakpoint number %d."), bnum);
1071 }
1072
1073 /* Check that COMMAND do not contain commands that are suitable
1074 only for tracepoints and not suitable for ordinary breakpoints.
1075 Throw if any such commands is found. */
1076
1077 static void
1078 check_no_tracepoint_commands (struct command_line *commands)
1079 {
1080 struct command_line *c;
1081
1082 for (c = commands; c; c = c->next)
1083 {
1084 int i;
1085
1086 if (c->control_type == while_stepping_control)
1087 error (_("The 'while-stepping' command can "
1088 "only be used for tracepoints"));
1089
1090 for (i = 0; i < c->body_count; ++i)
1091 check_no_tracepoint_commands ((c->body_list)[i]);
1092
1093 /* Not that command parsing removes leading whitespace and comment
1094 lines and also empty lines. So, we only need to check for
1095 command directly. */
1096 if (strstr (c->line, "collect ") == c->line)
1097 error (_("The 'collect' command can only be used for tracepoints"));
1098
1099 if (strstr (c->line, "teval ") == c->line)
1100 error (_("The 'teval' command can only be used for tracepoints"));
1101 }
1102 }
1103
1104 /* Encapsulate tests for different types of tracepoints. */
1105
1106 static int
1107 is_tracepoint_type (enum bptype type)
1108 {
1109 return (type == bp_tracepoint
1110 || type == bp_fast_tracepoint
1111 || type == bp_static_tracepoint);
1112 }
1113
1114 int
1115 is_tracepoint (const struct breakpoint *b)
1116 {
1117 return is_tracepoint_type (b->type);
1118 }
1119
1120 /* A helper function that validates that COMMANDS are valid for a
1121 breakpoint. This function will throw an exception if a problem is
1122 found. */
1123
1124 static void
1125 validate_commands_for_breakpoint (struct breakpoint *b,
1126 struct command_line *commands)
1127 {
1128 if (is_tracepoint (b))
1129 {
1130 struct tracepoint *t = (struct tracepoint *) b;
1131 struct command_line *c;
1132 struct command_line *while_stepping = 0;
1133
1134 /* Reset the while-stepping step count. The previous commands
1135 might have included a while-stepping action, while the new
1136 ones might not. */
1137 t->step_count = 0;
1138
1139 /* We need to verify that each top-level element of commands is
1140 valid for tracepoints, that there's at most one
1141 while-stepping element, and that the while-stepping's body
1142 has valid tracing commands excluding nested while-stepping.
1143 We also need to validate the tracepoint action line in the
1144 context of the tracepoint --- validate_actionline actually
1145 has side effects, like setting the tracepoint's
1146 while-stepping STEP_COUNT, in addition to checking if the
1147 collect/teval actions parse and make sense in the
1148 tracepoint's context. */
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166
1167 validate_actionline (c->line, b);
1168 }
1169 if (while_stepping)
1170 {
1171 struct command_line *c2;
1172
1173 gdb_assert (while_stepping->body_count == 1);
1174 c2 = while_stepping->body_list[0];
1175 for (; c2; c2 = c2->next)
1176 {
1177 if (c2->control_type == while_stepping_control)
1178 error (_("The 'while-stepping' command cannot be nested"));
1179 }
1180 }
1181 }
1182 else
1183 {
1184 check_no_tracepoint_commands (commands);
1185 }
1186 }
1187
1188 /* Return a vector of all the static tracepoints set at ADDR. The
1189 caller is responsible for releasing the vector. */
1190
1191 VEC(breakpoint_p) *
1192 static_tracepoints_here (CORE_ADDR addr)
1193 {
1194 struct breakpoint *b;
1195 VEC(breakpoint_p) *found = 0;
1196 struct bp_location *loc;
1197
1198 ALL_BREAKPOINTS (b)
1199 if (b->type == bp_static_tracepoint)
1200 {
1201 for (loc = b->loc; loc; loc = loc->next)
1202 if (loc->address == addr)
1203 VEC_safe_push(breakpoint_p, found, b);
1204 }
1205
1206 return found;
1207 }
1208
1209 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1210 validate that only allowed commands are included. */
1211
1212 void
1213 breakpoint_set_commands (struct breakpoint *b,
1214 struct command_line *commands)
1215 {
1216 validate_commands_for_breakpoint (b, commands);
1217
1218 decref_counted_command_line (&b->commands);
1219 b->commands = alloc_counted_command_line (commands);
1220 observer_notify_breakpoint_modified (b);
1221 }
1222
1223 /* Set the internal `silent' flag on the breakpoint. Note that this
1224 is not the same as the "silent" that may appear in the breakpoint's
1225 commands. */
1226
1227 void
1228 breakpoint_set_silent (struct breakpoint *b, int silent)
1229 {
1230 int old_silent = b->silent;
1231
1232 b->silent = silent;
1233 if (old_silent != silent)
1234 observer_notify_breakpoint_modified (b);
1235 }
1236
1237 /* Set the thread for this breakpoint. If THREAD is -1, make the
1238 breakpoint work for any thread. */
1239
1240 void
1241 breakpoint_set_thread (struct breakpoint *b, int thread)
1242 {
1243 int old_thread = b->thread;
1244
1245 b->thread = thread;
1246 if (old_thread != thread)
1247 observer_notify_breakpoint_modified (b);
1248 }
1249
1250 /* Set the task for this breakpoint. If TASK is 0, make the
1251 breakpoint work for any task. */
1252
1253 void
1254 breakpoint_set_task (struct breakpoint *b, int task)
1255 {
1256 int old_task = b->task;
1257
1258 b->task = task;
1259 if (old_task != task)
1260 observer_notify_breakpoint_modified (b);
1261 }
1262
1263 void
1264 check_tracepoint_command (char *line, void *closure)
1265 {
1266 struct breakpoint *b = closure;
1267
1268 validate_actionline (line, b);
1269 }
1270
1271 /* A structure used to pass information through
1272 map_breakpoint_numbers. */
1273
1274 struct commands_info
1275 {
1276 /* True if the command was typed at a tty. */
1277 int from_tty;
1278
1279 /* The breakpoint range spec. */
1280 char *arg;
1281
1282 /* Non-NULL if the body of the commands are being read from this
1283 already-parsed command. */
1284 struct command_line *control;
1285
1286 /* The command lines read from the user, or NULL if they have not
1287 yet been read. */
1288 struct counted_command_line *cmd;
1289 };
1290
1291 /* A callback for map_breakpoint_numbers that sets the commands for
1292 commands_command. */
1293
1294 static void
1295 do_map_commands_command (struct breakpoint *b, void *data)
1296 {
1297 struct commands_info *info = data;
1298
1299 if (info->cmd == NULL)
1300 {
1301 struct command_line *l;
1302
1303 if (info->control != NULL)
1304 l = copy_command_lines (info->control->body_list[0]);
1305 else
1306 {
1307 struct cleanup *old_chain;
1308 char *str;
1309
1310 str = xstrprintf (_("Type commands for breakpoint(s) "
1311 "%s, one per line."),
1312 info->arg);
1313
1314 old_chain = make_cleanup (xfree, str);
1315
1316 l = read_command_lines (str,
1317 info->from_tty, 1,
1318 (is_tracepoint (b)
1319 ? check_tracepoint_command : 0),
1320 b);
1321
1322 do_cleanups (old_chain);
1323 }
1324
1325 info->cmd = alloc_counted_command_line (l);
1326 }
1327
1328 /* If a breakpoint was on the list more than once, we don't need to
1329 do anything. */
1330 if (b->commands != info->cmd)
1331 {
1332 validate_commands_for_breakpoint (b, info->cmd->commands);
1333 incref_counted_command_line (info->cmd);
1334 decref_counted_command_line (&b->commands);
1335 b->commands = info->cmd;
1336 observer_notify_breakpoint_modified (b);
1337 }
1338 }
1339
1340 static void
1341 commands_command_1 (char *arg, int from_tty,
1342 struct command_line *control)
1343 {
1344 struct cleanup *cleanups;
1345 struct commands_info info;
1346
1347 info.from_tty = from_tty;
1348 info.control = control;
1349 info.cmd = NULL;
1350 /* If we read command lines from the user, then `info' will hold an
1351 extra reference to the commands that we must clean up. */
1352 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1353
1354 if (arg == NULL || !*arg)
1355 {
1356 if (breakpoint_count - prev_breakpoint_count > 1)
1357 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1358 breakpoint_count);
1359 else if (breakpoint_count > 0)
1360 arg = xstrprintf ("%d", breakpoint_count);
1361 else
1362 {
1363 /* So that we don't try to free the incoming non-NULL
1364 argument in the cleanup below. Mapping breakpoint
1365 numbers will fail in this case. */
1366 arg = NULL;
1367 }
1368 }
1369 else
1370 /* The command loop has some static state, so we need to preserve
1371 our argument. */
1372 arg = xstrdup (arg);
1373
1374 if (arg != NULL)
1375 make_cleanup (xfree, arg);
1376
1377 info.arg = arg;
1378
1379 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1380
1381 if (info.cmd == NULL)
1382 error (_("No breakpoints specified."));
1383
1384 do_cleanups (cleanups);
1385 }
1386
1387 static void
1388 commands_command (char *arg, int from_tty)
1389 {
1390 commands_command_1 (arg, from_tty, NULL);
1391 }
1392
1393 /* Like commands_command, but instead of reading the commands from
1394 input stream, takes them from an already parsed command structure.
1395
1396 This is used by cli-script.c to DTRT with breakpoint commands
1397 that are part of if and while bodies. */
1398 enum command_control_type
1399 commands_from_control_command (char *arg, struct command_line *cmd)
1400 {
1401 commands_command_1 (arg, 0, cmd);
1402 return simple_control;
1403 }
1404
1405 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1406
1407 static int
1408 bp_location_has_shadow (struct bp_location *bl)
1409 {
1410 if (bl->loc_type != bp_loc_software_breakpoint)
1411 return 0;
1412 if (!bl->inserted)
1413 return 0;
1414 if (bl->target_info.shadow_len == 0)
1415 /* BL isn't valid, or doesn't shadow memory. */
1416 return 0;
1417 return 1;
1418 }
1419
1420 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1421 by replacing any memory breakpoints with their shadowed contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with any of
1424 the breakpoint location's shadow_contents buffers. Otherwise,
1425 a failed assertion internal error will be raised.
1426
1427 The range of shadowed area by each bp_location is:
1428 bl->address - bp_location_placed_address_before_address_max
1429 up to bl->address + bp_location_shadow_len_after_address_max
1430 The range we were requested to resolve shadows for is:
1431 memaddr ... memaddr + len
1432 Thus the safe cutoff boundaries for performance optimization are
1433 memaddr + len <= (bl->address
1434 - bp_location_placed_address_before_address_max)
1435 and:
1436 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1437
1438 void
1439 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1440 const gdb_byte *writebuf_org,
1441 ULONGEST memaddr, LONGEST len)
1442 {
1443 /* Left boundary, right boundary and median element of our binary
1444 search. */
1445 unsigned bc_l, bc_r, bc;
1446
1447 /* Find BC_L which is a leftmost element which may affect BUF
1448 content. It is safe to report lower value but a failure to
1449 report higher one. */
1450
1451 bc_l = 0;
1452 bc_r = bp_location_count;
1453 while (bc_l + 1 < bc_r)
1454 {
1455 struct bp_location *bl;
1456
1457 bc = (bc_l + bc_r) / 2;
1458 bl = bp_location[bc];
1459
1460 /* Check first BL->ADDRESS will not overflow due to the added
1461 constant. Then advance the left boundary only if we are sure
1462 the BC element can in no way affect the BUF content (MEMADDR
1463 to MEMADDR + LEN range).
1464
1465 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1466 offset so that we cannot miss a breakpoint with its shadow
1467 range tail still reaching MEMADDR. */
1468
1469 if ((bl->address + bp_location_shadow_len_after_address_max
1470 >= bl->address)
1471 && (bl->address + bp_location_shadow_len_after_address_max
1472 <= memaddr))
1473 bc_l = bc;
1474 else
1475 bc_r = bc;
1476 }
1477
1478 /* Due to the binary search above, we need to make sure we pick the
1479 first location that's at BC_L's address. E.g., if there are
1480 multiple locations at the same address, BC_L may end up pointing
1481 at a duplicate location, and miss the "master"/"inserted"
1482 location. Say, given locations L1, L2 and L3 at addresses A and
1483 B:
1484
1485 L1@A, L2@A, L3@B, ...
1486
1487 BC_L could end up pointing at location L2, while the "master"
1488 location could be L1. Since the `loc->inserted' flag is only set
1489 on "master" locations, we'd forget to restore the shadow of L1
1490 and L2. */
1491 while (bc_l > 0
1492 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1493 bc_l--;
1494
1495 /* Now do full processing of the found relevant range of elements. */
1496
1497 for (bc = bc_l; bc < bp_location_count; bc++)
1498 {
1499 struct bp_location *bl = bp_location[bc];
1500 CORE_ADDR bp_addr = 0;
1501 int bp_size = 0;
1502 int bptoffset = 0;
1503
1504 /* bp_location array has BL->OWNER always non-NULL. */
1505 if (bl->owner->type == bp_none)
1506 warning (_("reading through apparently deleted breakpoint #%d?"),
1507 bl->owner->number);
1508
1509 /* Performance optimization: any further element can no longer affect BUF
1510 content. */
1511
1512 if (bl->address >= bp_location_placed_address_before_address_max
1513 && memaddr + len <= (bl->address
1514 - bp_location_placed_address_before_address_max))
1515 break;
1516
1517 if (!bp_location_has_shadow (bl))
1518 continue;
1519 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1520 current_program_space->aspace, 0))
1521 continue;
1522
1523 /* Addresses and length of the part of the breakpoint that
1524 we need to copy. */
1525 bp_addr = bl->target_info.placed_address;
1526 bp_size = bl->target_info.shadow_len;
1527
1528 if (bp_addr + bp_size <= memaddr)
1529 /* The breakpoint is entirely before the chunk of memory we
1530 are reading. */
1531 continue;
1532
1533 if (bp_addr >= memaddr + len)
1534 /* The breakpoint is entirely after the chunk of memory we are
1535 reading. */
1536 continue;
1537
1538 /* Offset within shadow_contents. */
1539 if (bp_addr < memaddr)
1540 {
1541 /* Only copy the second part of the breakpoint. */
1542 bp_size -= memaddr - bp_addr;
1543 bptoffset = memaddr - bp_addr;
1544 bp_addr = memaddr;
1545 }
1546
1547 if (bp_addr + bp_size > memaddr + len)
1548 {
1549 /* Only copy the first part of the breakpoint. */
1550 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1551 }
1552
1553 if (readbuf != NULL)
1554 {
1555 /* Verify that the readbuf buffer does not overlap with
1556 the shadow_contents buffer. */
1557 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1558 || readbuf >= (bl->target_info.shadow_contents
1559 + bl->target_info.shadow_len));
1560
1561 /* Update the read buffer with this inserted breakpoint's
1562 shadow. */
1563 memcpy (readbuf + bp_addr - memaddr,
1564 bl->target_info.shadow_contents + bptoffset, bp_size);
1565 }
1566 else
1567 {
1568 struct gdbarch *gdbarch = bl->gdbarch;
1569 const unsigned char *bp;
1570 CORE_ADDR placed_address = bl->target_info.placed_address;
1571 int placed_size = bl->target_info.placed_size;
1572
1573 /* Update the shadow with what we want to write to memory. */
1574 memcpy (bl->target_info.shadow_contents + bptoffset,
1575 writebuf_org + bp_addr - memaddr, bp_size);
1576
1577 /* Determine appropriate breakpoint contents and size for this
1578 address. */
1579 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1580
1581 /* Update the final write buffer with this inserted
1582 breakpoint's INSN. */
1583 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1584 }
1585 }
1586 }
1587 \f
1588
1589 /* Return true if BPT is either a software breakpoint or a hardware
1590 breakpoint. */
1591
1592 int
1593 is_breakpoint (const struct breakpoint *bpt)
1594 {
1595 return (bpt->type == bp_breakpoint
1596 || bpt->type == bp_hardware_breakpoint
1597 || bpt->type == bp_dprintf);
1598 }
1599
1600 /* Return true if BPT is of any hardware watchpoint kind. */
1601
1602 static int
1603 is_hardware_watchpoint (const struct breakpoint *bpt)
1604 {
1605 return (bpt->type == bp_hardware_watchpoint
1606 || bpt->type == bp_read_watchpoint
1607 || bpt->type == bp_access_watchpoint);
1608 }
1609
1610 /* Return true if BPT is of any watchpoint kind, hardware or
1611 software. */
1612
1613 int
1614 is_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (is_hardware_watchpoint (bpt)
1617 || bpt->type == bp_watchpoint);
1618 }
1619
1620 /* Returns true if the current thread and its running state are safe
1621 to evaluate or update watchpoint B. Watchpoints on local
1622 expressions need to be evaluated in the context of the thread that
1623 was current when the watchpoint was created, and, that thread needs
1624 to be stopped to be able to select the correct frame context.
1625 Watchpoints on global expressions can be evaluated on any thread,
1626 and in any state. It is presently left to the target allowing
1627 memory accesses when threads are running. */
1628
1629 static int
1630 watchpoint_in_thread_scope (struct watchpoint *b)
1631 {
1632 return (b->base.pspace == current_program_space
1633 && (ptid_equal (b->watchpoint_thread, null_ptid)
1634 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1635 && !is_executing (inferior_ptid))));
1636 }
1637
1638 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1639 associated bp_watchpoint_scope breakpoint. */
1640
1641 static void
1642 watchpoint_del_at_next_stop (struct watchpoint *w)
1643 {
1644 struct breakpoint *b = &w->base;
1645
1646 if (b->related_breakpoint != b)
1647 {
1648 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1649 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1650 b->related_breakpoint->disposition = disp_del_at_next_stop;
1651 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1652 b->related_breakpoint = b;
1653 }
1654 b->disposition = disp_del_at_next_stop;
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->base.disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're in a function epilogue, unwinding may not work
1737 properly, so do not attempt to recreate locations at this
1738 point. See similar comments in watchpoint_check. */
1739 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1740 return;
1741
1742 /* Save the current frame's ID so we can restore it after
1743 evaluating the watchpoint expression on its own frame. */
1744 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1745 took a frame parameter, so that we didn't have to change the
1746 selected frame. */
1747 frame_saved = 1;
1748 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1749
1750 fi = frame_find_by_id (b->watchpoint_frame);
1751 within_current_scope = (fi != NULL);
1752 if (within_current_scope)
1753 select_frame (fi);
1754 }
1755
1756 /* We don't free locations. They are stored in the bp_location array
1757 and update_global_location_list will eventually delete them and
1758 remove breakpoints if needed. */
1759 b->base.loc = NULL;
1760
1761 if (within_current_scope && reparse)
1762 {
1763 const char *s;
1764
1765 if (b->exp)
1766 {
1767 xfree (b->exp);
1768 b->exp = NULL;
1769 }
1770 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1771 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1772 /* If the meaning of expression itself changed, the old value is
1773 no longer relevant. We don't want to report a watchpoint hit
1774 to the user when the old value and the new value may actually
1775 be completely different objects. */
1776 value_free (b->val);
1777 b->val = NULL;
1778 b->val_valid = 0;
1779
1780 /* Note that unlike with breakpoints, the watchpoint's condition
1781 expression is stored in the breakpoint object, not in the
1782 locations (re)created below. */
1783 if (b->base.cond_string != NULL)
1784 {
1785 if (b->cond_exp != NULL)
1786 {
1787 xfree (b->cond_exp);
1788 b->cond_exp = NULL;
1789 }
1790
1791 s = b->base.cond_string;
1792 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1793 }
1794 }
1795
1796 /* If we failed to parse the expression, for example because
1797 it refers to a global variable in a not-yet-loaded shared library,
1798 don't try to insert watchpoint. We don't automatically delete
1799 such watchpoint, though, since failure to parse expression
1800 is different from out-of-scope watchpoint. */
1801 if (!target_has_execution)
1802 {
1803 /* Without execution, memory can't change. No use to try and
1804 set watchpoint locations. The watchpoint will be reset when
1805 the target gains execution, through breakpoint_re_set. */
1806 if (!can_use_hw_watchpoints)
1807 {
1808 if (b->base.ops->works_in_software_mode (&b->base))
1809 b->base.type = bp_watchpoint;
1810 else
1811 error (_("Can't set read/access watchpoint when "
1812 "hardware watchpoints are disabled."));
1813 }
1814 }
1815 else if (within_current_scope && b->exp)
1816 {
1817 int pc = 0;
1818 struct value *val_chain, *v, *result, *next;
1819 struct program_space *frame_pspace;
1820
1821 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1822
1823 /* Avoid setting b->val if it's already set. The meaning of
1824 b->val is 'the last value' user saw, and we should update
1825 it only if we reported that last value to user. As it
1826 happens, the code that reports it updates b->val directly.
1827 We don't keep track of the memory value for masked
1828 watchpoints. */
1829 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1830 {
1831 b->val = v;
1832 b->val_valid = 1;
1833 }
1834
1835 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1836
1837 /* Look at each value on the value chain. */
1838 for (v = val_chain; v; v = value_next (v))
1839 {
1840 /* If it's a memory location, and GDB actually needed
1841 its contents to evaluate the expression, then we
1842 must watch it. If the first value returned is
1843 still lazy, that means an error occurred reading it;
1844 watch it anyway in case it becomes readable. */
1845 if (VALUE_LVAL (v) == lval_memory
1846 && (v == val_chain || ! value_lazy (v)))
1847 {
1848 struct type *vtype = check_typedef (value_type (v));
1849
1850 /* We only watch structs and arrays if user asked
1851 for it explicitly, never if they just happen to
1852 appear in the middle of some value chain. */
1853 if (v == result
1854 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1855 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1856 {
1857 CORE_ADDR addr;
1858 int type;
1859 struct bp_location *loc, **tmp;
1860
1861 addr = value_address (v);
1862 type = hw_write;
1863 if (b->base.type == bp_read_watchpoint)
1864 type = hw_read;
1865 else if (b->base.type == bp_access_watchpoint)
1866 type = hw_access;
1867
1868 loc = allocate_bp_location (&b->base);
1869 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1870 ;
1871 *tmp = loc;
1872 loc->gdbarch = get_type_arch (value_type (v));
1873
1874 loc->pspace = frame_pspace;
1875 loc->address = addr;
1876 loc->length = TYPE_LENGTH (value_type (v));
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->base.type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (&b->base);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->base.type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->base.type = type;
1950 }
1951 }
1952 else if (!b->base.ops->works_in_software_mode (&b->base))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->base.type = bp_watchpoint;
1963
1964 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->base.loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1982 {
1983 struct breakpoint *base = &b->base;
1984 base->loc = allocate_bp_location (base);
1985 base->loc->pspace = frame_pspace;
1986 base->loc->address = -1;
1987 base->loc->length = -1;
1988 base->loc->watchpoint_type = -1;
1989 }
1990 }
1991 else if (!within_current_scope)
1992 {
1993 printf_filtered (_("\
1994 Watchpoint %d deleted because the program has left the block\n\
1995 in which its expression is valid.\n"),
1996 b->base.number);
1997 watchpoint_del_at_next_stop (b);
1998 }
1999
2000 /* Restore the selected frame. */
2001 if (frame_saved)
2002 select_frame (frame_find_by_id (saved_frame_id));
2003 }
2004
2005
2006 /* Returns 1 iff breakpoint location should be
2007 inserted in the inferior. We don't differentiate the type of BL's owner
2008 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2009 breakpoint_ops is not defined, because in insert_bp_location,
2010 tracepoint's insert_location will not be called. */
2011 static int
2012 should_be_inserted (struct bp_location *bl)
2013 {
2014 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2015 return 0;
2016
2017 if (bl->owner->disposition == disp_del_at_next_stop)
2018 return 0;
2019
2020 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2021 return 0;
2022
2023 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2024 return 0;
2025
2026 /* This is set for example, when we're attached to the parent of a
2027 vfork, and have detached from the child. The child is running
2028 free, and we expect it to do an exec or exit, at which point the
2029 OS makes the parent schedulable again (and the target reports
2030 that the vfork is done). Until the child is done with the shared
2031 memory region, do not insert breakpoints in the parent, otherwise
2032 the child could still trip on the parent's breakpoints. Since
2033 the parent is blocked anyway, it won't miss any breakpoint. */
2034 if (bl->pspace->breakpoints_not_allowed)
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 /* Same as should_be_inserted but does the check assuming
2041 that the location is not duplicated. */
2042
2043 static int
2044 unduplicated_should_be_inserted (struct bp_location *bl)
2045 {
2046 int result;
2047 const int save_duplicate = bl->duplicate;
2048
2049 bl->duplicate = 0;
2050 result = should_be_inserted (bl);
2051 bl->duplicate = save_duplicate;
2052 return result;
2053 }
2054
2055 /* Parses a conditional described by an expression COND into an
2056 agent expression bytecode suitable for evaluation
2057 by the bytecode interpreter. Return NULL if there was
2058 any error during parsing. */
2059
2060 static struct agent_expr *
2061 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2062 {
2063 struct agent_expr *aexpr = NULL;
2064 volatile struct gdb_exception ex;
2065
2066 if (!cond)
2067 return NULL;
2068
2069 /* We don't want to stop processing, so catch any errors
2070 that may show up. */
2071 TRY_CATCH (ex, RETURN_MASK_ERROR)
2072 {
2073 aexpr = gen_eval_for_expr (scope, cond);
2074 }
2075
2076 if (ex.reason < 0)
2077 {
2078 /* If we got here, it means the condition could not be parsed to a valid
2079 bytecode expression and thus can't be evaluated on the target's side.
2080 It's no use iterating through the conditions. */
2081 return NULL;
2082 }
2083
2084 /* We have a valid agent expression. */
2085 return aexpr;
2086 }
2087
2088 /* Based on location BL, create a list of breakpoint conditions to be
2089 passed on to the target. If we have duplicated locations with different
2090 conditions, we will add such conditions to the list. The idea is that the
2091 target will evaluate the list of conditions and will only notify GDB when
2092 one of them is true. */
2093
2094 static void
2095 build_target_condition_list (struct bp_location *bl)
2096 {
2097 struct bp_location **locp = NULL, **loc2p;
2098 int null_condition_or_parse_error = 0;
2099 int modified = bl->needs_update;
2100 struct bp_location *loc;
2101
2102 /* Release conditions left over from a previous insert. */
2103 VEC_free (agent_expr_p, bl->target_info.conditions);
2104
2105 /* This is only meaningful if the target is
2106 evaluating conditions and if the user has
2107 opted for condition evaluation on the target's
2108 side. */
2109 if (gdb_evaluates_breakpoint_condition_p ()
2110 || !target_supports_evaluation_of_breakpoint_conditions ())
2111 return;
2112
2113 /* Do a first pass to check for locations with no assigned
2114 conditions or conditions that fail to parse to a valid agent expression
2115 bytecode. If any of these happen, then it's no use to send conditions
2116 to the target since this location will always trigger and generate a
2117 response back to GDB. */
2118 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2119 {
2120 loc = (*loc2p);
2121 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2122 {
2123 if (modified)
2124 {
2125 struct agent_expr *aexpr;
2126
2127 /* Re-parse the conditions since something changed. In that
2128 case we already freed the condition bytecodes (see
2129 force_breakpoint_reinsertion). We just
2130 need to parse the condition to bytecodes again. */
2131 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2132 loc->cond_bytecode = aexpr;
2133
2134 /* Check if we managed to parse the conditional expression
2135 correctly. If not, we will not send this condition
2136 to the target. */
2137 if (aexpr)
2138 continue;
2139 }
2140
2141 /* If we have a NULL bytecode expression, it means something
2142 went wrong or we have a null condition expression. */
2143 if (!loc->cond_bytecode)
2144 {
2145 null_condition_or_parse_error = 1;
2146 break;
2147 }
2148 }
2149 }
2150
2151 /* If any of these happened, it means we will have to evaluate the conditions
2152 for the location's address on gdb's side. It is no use keeping bytecodes
2153 for all the other duplicate locations, thus we free all of them here.
2154
2155 This is so we have a finer control over which locations' conditions are
2156 being evaluated by GDB or the remote stub. */
2157 if (null_condition_or_parse_error)
2158 {
2159 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2160 {
2161 loc = (*loc2p);
2162 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2163 {
2164 /* Only go as far as the first NULL bytecode is
2165 located. */
2166 if (!loc->cond_bytecode)
2167 return;
2168
2169 free_agent_expr (loc->cond_bytecode);
2170 loc->cond_bytecode = NULL;
2171 }
2172 }
2173 }
2174
2175 /* No NULL conditions or failed bytecode generation. Build a condition list
2176 for this location's address. */
2177 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2178 {
2179 loc = (*loc2p);
2180 if (loc->cond
2181 && is_breakpoint (loc->owner)
2182 && loc->pspace->num == bl->pspace->num
2183 && loc->owner->enable_state == bp_enabled
2184 && loc->enabled)
2185 /* Add the condition to the vector. This will be used later to send the
2186 conditions to the target. */
2187 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2188 loc->cond_bytecode);
2189 }
2190
2191 return;
2192 }
2193
2194 /* Parses a command described by string CMD into an agent expression
2195 bytecode suitable for evaluation by the bytecode interpreter.
2196 Return NULL if there was any error during parsing. */
2197
2198 static struct agent_expr *
2199 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2200 {
2201 struct cleanup *old_cleanups = 0;
2202 struct expression *expr, **argvec;
2203 struct agent_expr *aexpr = NULL;
2204 volatile struct gdb_exception ex;
2205 const char *cmdrest;
2206 const char *format_start, *format_end;
2207 struct format_piece *fpieces;
2208 int nargs;
2209 struct gdbarch *gdbarch = get_current_arch ();
2210
2211 if (!cmd)
2212 return NULL;
2213
2214 cmdrest = cmd;
2215
2216 if (*cmdrest == ',')
2217 ++cmdrest;
2218 cmdrest = skip_spaces_const (cmdrest);
2219
2220 if (*cmdrest++ != '"')
2221 error (_("No format string following the location"));
2222
2223 format_start = cmdrest;
2224
2225 fpieces = parse_format_string (&cmdrest);
2226
2227 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2228
2229 format_end = cmdrest;
2230
2231 if (*cmdrest++ != '"')
2232 error (_("Bad format string, non-terminated '\"'."));
2233
2234 cmdrest = skip_spaces_const (cmdrest);
2235
2236 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2237 error (_("Invalid argument syntax"));
2238
2239 if (*cmdrest == ',')
2240 cmdrest++;
2241 cmdrest = skip_spaces_const (cmdrest);
2242
2243 /* For each argument, make an expression. */
2244
2245 argvec = (struct expression **) alloca (strlen (cmd)
2246 * sizeof (struct expression *));
2247
2248 nargs = 0;
2249 while (*cmdrest != '\0')
2250 {
2251 const char *cmd1;
2252
2253 cmd1 = cmdrest;
2254 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2255 argvec[nargs++] = expr;
2256 cmdrest = cmd1;
2257 if (*cmdrest == ',')
2258 ++cmdrest;
2259 }
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 TRY_CATCH (ex, RETURN_MASK_ERROR)
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 fpieces, nargs, argvec);
2268 }
2269
2270 do_cleanups (old_cleanups);
2271
2272 if (ex.reason < 0)
2273 {
2274 /* If we got here, it means the command could not be parsed to a valid
2275 bytecode expression and thus can't be evaluated on the target's side.
2276 It's no use iterating through the other commands. */
2277 return NULL;
2278 }
2279
2280 /* We have a valid agent expression, return it. */
2281 return aexpr;
2282 }
2283
2284 /* Based on location BL, create a list of breakpoint commands to be
2285 passed on to the target. If we have duplicated locations with
2286 different commands, we will add any such to the list. */
2287
2288 static void
2289 build_target_command_list (struct bp_location *bl)
2290 {
2291 struct bp_location **locp = NULL, **loc2p;
2292 int null_command_or_parse_error = 0;
2293 int modified = bl->needs_update;
2294 struct bp_location *loc;
2295
2296 /* Release commands left over from a previous insert. */
2297 VEC_free (agent_expr_p, bl->target_info.tcommands);
2298
2299 /* For now, limit to agent-style dprintf breakpoints. */
2300 if (bl->owner->type != bp_dprintf
2301 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2302 return;
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* Do a first pass to check for locations with no assigned
2308 conditions or conditions that fail to parse to a valid agent expression
2309 bytecode. If any of these happen, then it's no use to send conditions
2310 to the target since this location will always trigger and generate a
2311 response back to GDB. */
2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2313 {
2314 loc = (*loc2p);
2315 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2316 {
2317 if (modified)
2318 {
2319 struct agent_expr *aexpr;
2320
2321 /* Re-parse the commands since something changed. In that
2322 case we already freed the command bytecodes (see
2323 force_breakpoint_reinsertion). We just
2324 need to parse the command to bytecodes again. */
2325 aexpr = parse_cmd_to_aexpr (bl->address,
2326 loc->owner->extra_string);
2327 loc->cmd_bytecode = aexpr;
2328
2329 if (!aexpr)
2330 continue;
2331 }
2332
2333 /* If we have a NULL bytecode expression, it means something
2334 went wrong or we have a null command expression. */
2335 if (!loc->cmd_bytecode)
2336 {
2337 null_command_or_parse_error = 1;
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* If anything failed, then we're not doing target-side commands,
2344 and so clean up. */
2345 if (null_command_or_parse_error)
2346 {
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (is_breakpoint (loc->owner)
2351 && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (loc->cmd_bytecode == NULL)
2356 return;
2357
2358 free_agent_expr (loc->cmd_bytecode);
2359 loc->cmd_bytecode = NULL;
2360 }
2361 }
2362 }
2363
2364 /* No NULL commands or failed bytecode generation. Build a command list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->owner->extra_string
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 /* Add the command to the vector. This will be used later
2375 to send the commands to the target. */
2376 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2377 loc->cmd_bytecode);
2378 }
2379
2380 bl->target_info.persist = 0;
2381 /* Maybe flag this location as persistent. */
2382 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2383 bl->target_info.persist = 1;
2384 }
2385
2386 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2387 location. Any error messages are printed to TMP_ERROR_STREAM; and
2388 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2389 Returns 0 for success, 1 if the bp_location type is not supported or
2390 -1 for failure.
2391
2392 NOTE drow/2003-09-09: This routine could be broken down to an
2393 object-style method for each breakpoint or catchpoint type. */
2394 static int
2395 insert_bp_location (struct bp_location *bl,
2396 struct ui_file *tmp_error_stream,
2397 int *disabled_breaks,
2398 int *hw_breakpoint_error,
2399 int *hw_bp_error_explained_already)
2400 {
2401 enum errors bp_err = GDB_NO_ERROR;
2402 const char *bp_err_message = NULL;
2403 volatile struct gdb_exception e;
2404
2405 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2406 return 0;
2407
2408 /* Note we don't initialize bl->target_info, as that wipes out
2409 the breakpoint location's shadow_contents if the breakpoint
2410 is still inserted at that location. This in turn breaks
2411 target_read_memory which depends on these buffers when
2412 a memory read is requested at the breakpoint location:
2413 Once the target_info has been wiped, we fail to see that
2414 we have a breakpoint inserted at that address and thus
2415 read the breakpoint instead of returning the data saved in
2416 the breakpoint location's shadow contents. */
2417 bl->target_info.placed_address = bl->address;
2418 bl->target_info.placed_address_space = bl->pspace->aspace;
2419 bl->target_info.length = bl->length;
2420
2421 /* When working with target-side conditions, we must pass all the conditions
2422 for the same breakpoint address down to the target since GDB will not
2423 insert those locations. With a list of breakpoint conditions, the target
2424 can decide when to stop and notify GDB. */
2425
2426 if (is_breakpoint (bl->owner))
2427 {
2428 build_target_condition_list (bl);
2429 build_target_command_list (bl);
2430 /* Reset the modification marker. */
2431 bl->needs_update = 0;
2432 }
2433
2434 if (bl->loc_type == bp_loc_software_breakpoint
2435 || bl->loc_type == bp_loc_hardware_breakpoint)
2436 {
2437 if (bl->owner->type != bp_hardware_breakpoint)
2438 {
2439 /* If the explicitly specified breakpoint type
2440 is not hardware breakpoint, check the memory map to see
2441 if the breakpoint address is in read only memory or not.
2442
2443 Two important cases are:
2444 - location type is not hardware breakpoint, memory
2445 is readonly. We change the type of the location to
2446 hardware breakpoint.
2447 - location type is hardware breakpoint, memory is
2448 read-write. This means we've previously made the
2449 location hardware one, but then the memory map changed,
2450 so we undo.
2451
2452 When breakpoints are removed, remove_breakpoints will use
2453 location types we've just set here, the only possible
2454 problem is that memory map has changed during running
2455 program, but it's not going to work anyway with current
2456 gdb. */
2457 struct mem_region *mr
2458 = lookup_mem_region (bl->target_info.placed_address);
2459
2460 if (mr)
2461 {
2462 if (automatic_hardware_breakpoints)
2463 {
2464 enum bp_loc_type new_type;
2465
2466 if (mr->attrib.mode != MEM_RW)
2467 new_type = bp_loc_hardware_breakpoint;
2468 else
2469 new_type = bp_loc_software_breakpoint;
2470
2471 if (new_type != bl->loc_type)
2472 {
2473 static int said = 0;
2474
2475 bl->loc_type = new_type;
2476 if (!said)
2477 {
2478 fprintf_filtered (gdb_stdout,
2479 _("Note: automatically using "
2480 "hardware breakpoints for "
2481 "read-only addresses.\n"));
2482 said = 1;
2483 }
2484 }
2485 }
2486 else if (bl->loc_type == bp_loc_software_breakpoint
2487 && mr->attrib.mode != MEM_RW)
2488 warning (_("cannot set software breakpoint "
2489 "at readonly address %s"),
2490 paddress (bl->gdbarch, bl->address));
2491 }
2492 }
2493
2494 /* First check to see if we have to handle an overlay. */
2495 if (overlay_debugging == ovly_off
2496 || bl->section == NULL
2497 || !(section_is_overlay (bl->section)))
2498 {
2499 /* No overlay handling: just set the breakpoint. */
2500 TRY_CATCH (e, RETURN_MASK_ALL)
2501 {
2502 int val;
2503
2504 val = bl->owner->ops->insert_location (bl);
2505 if (val)
2506 bp_err = GENERIC_ERROR;
2507 }
2508 if (e.reason < 0)
2509 {
2510 bp_err = e.error;
2511 bp_err_message = e.message;
2512 }
2513 }
2514 else
2515 {
2516 /* This breakpoint is in an overlay section.
2517 Shall we set a breakpoint at the LMA? */
2518 if (!overlay_events_enabled)
2519 {
2520 /* Yes -- overlay event support is not active,
2521 so we must try to set a breakpoint at the LMA.
2522 This will not work for a hardware breakpoint. */
2523 if (bl->loc_type == bp_loc_hardware_breakpoint)
2524 warning (_("hardware breakpoint %d not supported in overlay!"),
2525 bl->owner->number);
2526 else
2527 {
2528 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2529 bl->section);
2530 /* Set a software (trap) breakpoint at the LMA. */
2531 bl->overlay_target_info = bl->target_info;
2532 bl->overlay_target_info.placed_address = addr;
2533
2534 /* No overlay handling: just set the breakpoint. */
2535 TRY_CATCH (e, RETURN_MASK_ALL)
2536 {
2537 int val;
2538
2539 val = target_insert_breakpoint (bl->gdbarch,
2540 &bl->overlay_target_info);
2541 if (val)
2542 bp_err = GENERIC_ERROR;
2543 }
2544 if (e.reason < 0)
2545 {
2546 bp_err = e.error;
2547 bp_err_message = e.message;
2548 }
2549
2550 if (bp_err != GDB_NO_ERROR)
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Overlay breakpoint %d "
2553 "failed: in ROM?\n",
2554 bl->owner->number);
2555 }
2556 }
2557 /* Shall we set a breakpoint at the VMA? */
2558 if (section_is_mapped (bl->section))
2559 {
2560 /* Yes. This overlay section is mapped into memory. */
2561 TRY_CATCH (e, RETURN_MASK_ALL)
2562 {
2563 int val;
2564
2565 val = bl->owner->ops->insert_location (bl);
2566 if (val)
2567 bp_err = GENERIC_ERROR;
2568 }
2569 if (e.reason < 0)
2570 {
2571 bp_err = e.error;
2572 bp_err_message = e.message;
2573 }
2574 }
2575 else
2576 {
2577 /* No. This breakpoint will not be inserted.
2578 No error, but do not mark the bp as 'inserted'. */
2579 return 0;
2580 }
2581 }
2582
2583 if (bp_err != GDB_NO_ERROR)
2584 {
2585 /* Can't set the breakpoint. */
2586
2587 /* In some cases, we might not be able to insert a
2588 breakpoint in a shared library that has already been
2589 removed, but we have not yet processed the shlib unload
2590 event. Unfortunately, some targets that implement
2591 breakpoint insertion themselves (necessary if this is a
2592 HW breakpoint, but SW breakpoints likewise) can't tell
2593 why the breakpoint insertion failed (e.g., the remote
2594 target doesn't define error codes), so we must treat
2595 generic errors as memory errors. */
2596 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2597 && solib_name_from_address (bl->pspace, bl->address))
2598 {
2599 /* See also: disable_breakpoints_in_shlibs. */
2600 bl->shlib_disabled = 1;
2601 observer_notify_breakpoint_modified (bl->owner);
2602 if (!*disabled_breaks)
2603 {
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Cannot insert breakpoint %d.\n",
2606 bl->owner->number);
2607 fprintf_unfiltered (tmp_error_stream,
2608 "Temporarily disabling shared "
2609 "library breakpoints:\n");
2610 }
2611 *disabled_breaks = 1;
2612 fprintf_unfiltered (tmp_error_stream,
2613 "breakpoint #%d\n", bl->owner->number);
2614 return 0;
2615 }
2616 else
2617 {
2618 if (bl->loc_type == bp_loc_hardware_breakpoint)
2619 {
2620 *hw_breakpoint_error = 1;
2621 *hw_bp_error_explained_already = bp_err_message != NULL;
2622 fprintf_unfiltered (tmp_error_stream,
2623 "Cannot insert hardware breakpoint %d%s",
2624 bl->owner->number, bp_err_message ? ":" : ".\n");
2625 if (bp_err_message != NULL)
2626 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2627 }
2628 else
2629 {
2630 if (bp_err_message == NULL)
2631 {
2632 char *message
2633 = memory_error_message (TARGET_XFER_E_IO,
2634 bl->gdbarch, bl->address);
2635 struct cleanup *old_chain = make_cleanup (xfree, message);
2636
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Cannot insert breakpoint %d.\n"
2639 "%s\n",
2640 bl->owner->number, message);
2641 do_cleanups (old_chain);
2642 }
2643 else
2644 {
2645 fprintf_unfiltered (tmp_error_stream,
2646 "Cannot insert breakpoint %d: %s\n",
2647 bl->owner->number,
2648 bp_err_message);
2649 }
2650 }
2651 return 1;
2652
2653 }
2654 }
2655 else
2656 bl->inserted = 1;
2657
2658 return 0;
2659 }
2660
2661 else if (bl->loc_type == bp_loc_hardware_watchpoint
2662 /* NOTE drow/2003-09-08: This state only exists for removing
2663 watchpoints. It's not clear that it's necessary... */
2664 && bl->owner->disposition != disp_del_at_next_stop)
2665 {
2666 int val;
2667
2668 gdb_assert (bl->owner->ops != NULL
2669 && bl->owner->ops->insert_location != NULL);
2670
2671 val = bl->owner->ops->insert_location (bl);
2672
2673 /* If trying to set a read-watchpoint, and it turns out it's not
2674 supported, try emulating one with an access watchpoint. */
2675 if (val == 1 && bl->watchpoint_type == hw_read)
2676 {
2677 struct bp_location *loc, **loc_temp;
2678
2679 /* But don't try to insert it, if there's already another
2680 hw_access location that would be considered a duplicate
2681 of this one. */
2682 ALL_BP_LOCATIONS (loc, loc_temp)
2683 if (loc != bl
2684 && loc->watchpoint_type == hw_access
2685 && watchpoint_locations_match (bl, loc))
2686 {
2687 bl->duplicate = 1;
2688 bl->inserted = 1;
2689 bl->target_info = loc->target_info;
2690 bl->watchpoint_type = hw_access;
2691 val = 0;
2692 break;
2693 }
2694
2695 if (val == 1)
2696 {
2697 bl->watchpoint_type = hw_access;
2698 val = bl->owner->ops->insert_location (bl);
2699
2700 if (val)
2701 /* Back to the original value. */
2702 bl->watchpoint_type = hw_read;
2703 }
2704 }
2705
2706 bl->inserted = (val == 0);
2707 }
2708
2709 else if (bl->owner->type == bp_catchpoint)
2710 {
2711 int val;
2712
2713 gdb_assert (bl->owner->ops != NULL
2714 && bl->owner->ops->insert_location != NULL);
2715
2716 val = bl->owner->ops->insert_location (bl);
2717 if (val)
2718 {
2719 bl->owner->enable_state = bp_disabled;
2720
2721 if (val == 1)
2722 warning (_("\
2723 Error inserting catchpoint %d: Your system does not support this type\n\
2724 of catchpoint."), bl->owner->number);
2725 else
2726 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2727 }
2728
2729 bl->inserted = (val == 0);
2730
2731 /* We've already printed an error message if there was a problem
2732 inserting this catchpoint, and we've disabled the catchpoint,
2733 so just return success. */
2734 return 0;
2735 }
2736
2737 return 0;
2738 }
2739
2740 /* This function is called when program space PSPACE is about to be
2741 deleted. It takes care of updating breakpoints to not reference
2742 PSPACE anymore. */
2743
2744 void
2745 breakpoint_program_space_exit (struct program_space *pspace)
2746 {
2747 struct breakpoint *b, *b_temp;
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* Remove any breakpoint that was set through this program space. */
2751 ALL_BREAKPOINTS_SAFE (b, b_temp)
2752 {
2753 if (b->pspace == pspace)
2754 delete_breakpoint (b);
2755 }
2756
2757 /* Breakpoints set through other program spaces could have locations
2758 bound to PSPACE as well. Remove those. */
2759 ALL_BP_LOCATIONS (loc, loc_temp)
2760 {
2761 struct bp_location *tmp;
2762
2763 if (loc->pspace == pspace)
2764 {
2765 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2766 if (loc->owner->loc == loc)
2767 loc->owner->loc = loc->next;
2768 else
2769 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2770 if (tmp->next == loc)
2771 {
2772 tmp->next = loc->next;
2773 break;
2774 }
2775 }
2776 }
2777
2778 /* Now update the global location list to permanently delete the
2779 removed locations above. */
2780 update_global_location_list (0);
2781 }
2782
2783 /* Make sure all breakpoints are inserted in inferior.
2784 Throws exception on any error.
2785 A breakpoint that is already inserted won't be inserted
2786 again, so calling this function twice is safe. */
2787 void
2788 insert_breakpoints (void)
2789 {
2790 struct breakpoint *bpt;
2791
2792 ALL_BREAKPOINTS (bpt)
2793 if (is_hardware_watchpoint (bpt))
2794 {
2795 struct watchpoint *w = (struct watchpoint *) bpt;
2796
2797 update_watchpoint (w, 0 /* don't reparse. */);
2798 }
2799
2800 update_global_location_list (1);
2801
2802 /* update_global_location_list does not insert breakpoints when
2803 always_inserted_mode is not enabled. Explicitly insert them
2804 now. */
2805 if (!breakpoints_always_inserted_mode ())
2806 insert_breakpoint_locations ();
2807 }
2808
2809 /* Invoke CALLBACK for each of bp_location. */
2810
2811 void
2812 iterate_over_bp_locations (walk_bp_location_callback callback)
2813 {
2814 struct bp_location *loc, **loc_tmp;
2815
2816 ALL_BP_LOCATIONS (loc, loc_tmp)
2817 {
2818 callback (loc, NULL);
2819 }
2820 }
2821
2822 /* This is used when we need to synch breakpoint conditions between GDB and the
2823 target. It is the case with deleting and disabling of breakpoints when using
2824 always-inserted mode. */
2825
2826 static void
2827 update_inserted_breakpoint_locations (void)
2828 {
2829 struct bp_location *bl, **blp_tmp;
2830 int error_flag = 0;
2831 int val = 0;
2832 int disabled_breaks = 0;
2833 int hw_breakpoint_error = 0;
2834 int hw_bp_details_reported = 0;
2835
2836 struct ui_file *tmp_error_stream = mem_fileopen ();
2837 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2838
2839 /* Explicitly mark the warning -- this will only be printed if
2840 there was an error. */
2841 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2842
2843 save_current_space_and_thread ();
2844
2845 ALL_BP_LOCATIONS (bl, blp_tmp)
2846 {
2847 /* We only want to update software breakpoints and hardware
2848 breakpoints. */
2849 if (!is_breakpoint (bl->owner))
2850 continue;
2851
2852 /* We only want to update locations that are already inserted
2853 and need updating. This is to avoid unwanted insertion during
2854 deletion of breakpoints. */
2855 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_details_reported);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 if (error_flag)
2875 {
2876 target_terminal_ours_for_output ();
2877 error_stream (tmp_error_stream);
2878 }
2879
2880 do_cleanups (cleanups);
2881 }
2882
2883 /* Used when starting or continuing the program. */
2884
2885 static void
2886 insert_breakpoint_locations (void)
2887 {
2888 struct breakpoint *bpt;
2889 struct bp_location *bl, **blp_tmp;
2890 int error_flag = 0;
2891 int val = 0;
2892 int disabled_breaks = 0;
2893 int hw_breakpoint_error = 0;
2894 int hw_bp_error_explained_already = 0;
2895
2896 struct ui_file *tmp_error_stream = mem_fileopen ();
2897 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2898
2899 /* Explicitly mark the warning -- this will only be printed if
2900 there was an error. */
2901 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2902
2903 save_current_space_and_thread ();
2904
2905 ALL_BP_LOCATIONS (bl, blp_tmp)
2906 {
2907 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2908 continue;
2909
2910 /* There is no point inserting thread-specific breakpoints if
2911 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2912 has BL->OWNER always non-NULL. */
2913 if (bl->owner->thread != -1
2914 && !valid_thread_id (bl->owner->thread))
2915 continue;
2916
2917 switch_to_program_space_and_thread (bl->pspace);
2918
2919 /* For targets that support global breakpoints, there's no need
2920 to select an inferior to insert breakpoint to. In fact, even
2921 if we aren't attached to any process yet, we should still
2922 insert breakpoints. */
2923 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2924 && ptid_equal (inferior_ptid, null_ptid))
2925 continue;
2926
2927 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2928 &hw_breakpoint_error, &hw_bp_error_explained_already);
2929 if (val)
2930 error_flag = val;
2931 }
2932
2933 /* If we failed to insert all locations of a watchpoint, remove
2934 them, as half-inserted watchpoint is of limited use. */
2935 ALL_BREAKPOINTS (bpt)
2936 {
2937 int some_failed = 0;
2938 struct bp_location *loc;
2939
2940 if (!is_hardware_watchpoint (bpt))
2941 continue;
2942
2943 if (!breakpoint_enabled (bpt))
2944 continue;
2945
2946 if (bpt->disposition == disp_del_at_next_stop)
2947 continue;
2948
2949 for (loc = bpt->loc; loc; loc = loc->next)
2950 if (!loc->inserted && should_be_inserted (loc))
2951 {
2952 some_failed = 1;
2953 break;
2954 }
2955 if (some_failed)
2956 {
2957 for (loc = bpt->loc; loc; loc = loc->next)
2958 if (loc->inserted)
2959 remove_breakpoint (loc, mark_uninserted);
2960
2961 hw_breakpoint_error = 1;
2962 fprintf_unfiltered (tmp_error_stream,
2963 "Could not insert hardware watchpoint %d.\n",
2964 bpt->number);
2965 error_flag = -1;
2966 }
2967 }
2968
2969 if (error_flag)
2970 {
2971 /* If a hardware breakpoint or watchpoint was inserted, add a
2972 message about possibly exhausted resources. */
2973 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2974 {
2975 fprintf_unfiltered (tmp_error_stream,
2976 "Could not insert hardware breakpoints:\n\
2977 You may have requested too many hardware breakpoints/watchpoints.\n");
2978 }
2979 target_terminal_ours_for_output ();
2980 error_stream (tmp_error_stream);
2981 }
2982
2983 do_cleanups (cleanups);
2984 }
2985
2986 /* Used when the program stops.
2987 Returns zero if successful, or non-zero if there was a problem
2988 removing a breakpoint location. */
2989
2990 int
2991 remove_breakpoints (void)
2992 {
2993 struct bp_location *bl, **blp_tmp;
2994 int val = 0;
2995
2996 ALL_BP_LOCATIONS (bl, blp_tmp)
2997 {
2998 if (bl->inserted && !is_tracepoint (bl->owner))
2999 val |= remove_breakpoint (bl, mark_uninserted);
3000 }
3001 return val;
3002 }
3003
3004 /* When a thread exits, remove breakpoints that are related to
3005 that thread. */
3006
3007 static void
3008 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3009 {
3010 struct breakpoint *b, *b_tmp;
3011
3012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3013 {
3014 if (b->thread == tp->num && user_breakpoint_p (b))
3015 {
3016 b->disposition = disp_del_at_next_stop;
3017
3018 printf_filtered (_("\
3019 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3020 b->number, tp->num);
3021
3022 /* Hide it from the user. */
3023 b->number = 0;
3024 }
3025 }
3026 }
3027
3028 /* Remove breakpoints of process PID. */
3029
3030 int
3031 remove_breakpoints_pid (int pid)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val;
3035 struct inferior *inf = find_inferior_pid (pid);
3036
3037 ALL_BP_LOCATIONS (bl, blp_tmp)
3038 {
3039 if (bl->pspace != inf->pspace)
3040 continue;
3041
3042 if (bl->owner->type == bp_dprintf)
3043 continue;
3044
3045 if (bl->inserted)
3046 {
3047 val = remove_breakpoint (bl, mark_uninserted);
3048 if (val != 0)
3049 return val;
3050 }
3051 }
3052 return 0;
3053 }
3054
3055 int
3056 reattach_breakpoints (int pid)
3057 {
3058 struct cleanup *old_chain;
3059 struct bp_location *bl, **blp_tmp;
3060 int val;
3061 struct ui_file *tmp_error_stream;
3062 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3063 struct inferior *inf;
3064 struct thread_info *tp;
3065
3066 tp = any_live_thread_of_process (pid);
3067 if (tp == NULL)
3068 return 1;
3069
3070 inf = find_inferior_pid (pid);
3071 old_chain = save_inferior_ptid ();
3072
3073 inferior_ptid = tp->ptid;
3074
3075 tmp_error_stream = mem_fileopen ();
3076 make_cleanup_ui_file_delete (tmp_error_stream);
3077
3078 ALL_BP_LOCATIONS (bl, blp_tmp)
3079 {
3080 if (bl->pspace != inf->pspace)
3081 continue;
3082
3083 if (bl->inserted)
3084 {
3085 bl->inserted = 0;
3086 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3087 if (val != 0)
3088 {
3089 do_cleanups (old_chain);
3090 return val;
3091 }
3092 }
3093 }
3094 do_cleanups (old_chain);
3095 return 0;
3096 }
3097
3098 static int internal_breakpoint_number = -1;
3099
3100 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3101 If INTERNAL is non-zero, the breakpoint number will be populated
3102 from internal_breakpoint_number and that variable decremented.
3103 Otherwise the breakpoint number will be populated from
3104 breakpoint_count and that value incremented. Internal breakpoints
3105 do not set the internal var bpnum. */
3106 static void
3107 set_breakpoint_number (int internal, struct breakpoint *b)
3108 {
3109 if (internal)
3110 b->number = internal_breakpoint_number--;
3111 else
3112 {
3113 set_breakpoint_count (breakpoint_count + 1);
3114 b->number = breakpoint_count;
3115 }
3116 }
3117
3118 static struct breakpoint *
3119 create_internal_breakpoint (struct gdbarch *gdbarch,
3120 CORE_ADDR address, enum bptype type,
3121 const struct breakpoint_ops *ops)
3122 {
3123 struct symtab_and_line sal;
3124 struct breakpoint *b;
3125
3126 init_sal (&sal); /* Initialize to zeroes. */
3127
3128 sal.pc = address;
3129 sal.section = find_pc_overlay (sal.pc);
3130 sal.pspace = current_program_space;
3131
3132 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3133 b->number = internal_breakpoint_number--;
3134 b->disposition = disp_donttouch;
3135
3136 return b;
3137 }
3138
3139 static const char *const longjmp_names[] =
3140 {
3141 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3142 };
3143 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3144
3145 /* Per-objfile data private to breakpoint.c. */
3146 struct breakpoint_objfile_data
3147 {
3148 /* Minimal symbol for "_ovly_debug_event" (if any). */
3149 struct bound_minimal_symbol overlay_msym;
3150
3151 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3152 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3153
3154 /* True if we have looked for longjmp probes. */
3155 int longjmp_searched;
3156
3157 /* SystemTap probe points for longjmp (if any). */
3158 VEC (probe_p) *longjmp_probes;
3159
3160 /* Minimal symbol for "std::terminate()" (if any). */
3161 struct bound_minimal_symbol terminate_msym;
3162
3163 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3164 struct bound_minimal_symbol exception_msym;
3165
3166 /* True if we have looked for exception probes. */
3167 int exception_searched;
3168
3169 /* SystemTap probe points for unwinding (if any). */
3170 VEC (probe_p) *exception_probes;
3171 };
3172
3173 static const struct objfile_data *breakpoint_objfile_key;
3174
3175 /* Minimal symbol not found sentinel. */
3176 static struct minimal_symbol msym_not_found;
3177
3178 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3179
3180 static int
3181 msym_not_found_p (const struct minimal_symbol *msym)
3182 {
3183 return msym == &msym_not_found;
3184 }
3185
3186 /* Return per-objfile data needed by breakpoint.c.
3187 Allocate the data if necessary. */
3188
3189 static struct breakpoint_objfile_data *
3190 get_breakpoint_objfile_data (struct objfile *objfile)
3191 {
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3198 sizeof (*bp_objfile_data));
3199
3200 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3201 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3202 }
3203 return bp_objfile_data;
3204 }
3205
3206 static void
3207 free_breakpoint_probes (struct objfile *obj, void *data)
3208 {
3209 struct breakpoint_objfile_data *bp_objfile_data = data;
3210
3211 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3212 VEC_free (probe_p, bp_objfile_data->exception_probes);
3213 }
3214
3215 static void
3216 create_overlay_event_breakpoint (void)
3217 {
3218 struct objfile *objfile;
3219 const char *const func_name = "_ovly_debug_event";
3220
3221 ALL_OBJFILES (objfile)
3222 {
3223 struct breakpoint *b;
3224 struct breakpoint_objfile_data *bp_objfile_data;
3225 CORE_ADDR addr;
3226
3227 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3228
3229 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3230 continue;
3231
3232 if (bp_objfile_data->overlay_msym.minsym == NULL)
3233 {
3234 struct bound_minimal_symbol m;
3235
3236 m = lookup_minimal_symbol_text (func_name, objfile);
3237 if (m.minsym == NULL)
3238 {
3239 /* Avoid future lookups in this objfile. */
3240 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3241 continue;
3242 }
3243 bp_objfile_data->overlay_msym = m;
3244 }
3245
3246 addr = MSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym.minsym);
3247 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3248 bp_overlay_event,
3249 &internal_breakpoint_ops);
3250 b->addr_string = xstrdup (func_name);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 update_global_location_list (1);
3264 }
3265
3266 static void
3267 create_longjmp_master_breakpoint (void)
3268 {
3269 struct program_space *pspace;
3270 struct cleanup *old_chain;
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 int i;
3283 struct gdbarch *gdbarch;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 gdbarch = get_objfile_arch (objfile);
3287
3288 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3289
3290 if (!bp_objfile_data->longjmp_searched)
3291 {
3292 VEC (probe_p) *ret;
3293
3294 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3295 if (ret != NULL)
3296 {
3297 /* We are only interested in checking one element. */
3298 struct probe *p = VEC_index (probe_p, ret, 0);
3299
3300 if (!can_evaluate_probe_arguments (p))
3301 {
3302 /* We cannot use the probe interface here, because it does
3303 not know how to evaluate arguments. */
3304 VEC_free (probe_p, ret);
3305 ret = NULL;
3306 }
3307 }
3308 bp_objfile_data->longjmp_probes = ret;
3309 bp_objfile_data->longjmp_searched = 1;
3310 }
3311
3312 if (bp_objfile_data->longjmp_probes != NULL)
3313 {
3314 int i;
3315 struct probe *probe;
3316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3317
3318 for (i = 0;
3319 VEC_iterate (probe_p,
3320 bp_objfile_data->longjmp_probes,
3321 i, probe);
3322 ++i)
3323 {
3324 struct breakpoint *b;
3325
3326 b = create_internal_breakpoint (gdbarch, probe->address,
3327 bp_longjmp_master,
3328 &internal_breakpoint_ops);
3329 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3330 b->enable_state = bp_disabled;
3331 }
3332
3333 continue;
3334 }
3335
3336 if (!gdbarch_get_longjmp_target_p (gdbarch))
3337 continue;
3338
3339 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3340 {
3341 struct breakpoint *b;
3342 const char *func_name;
3343 CORE_ADDR addr;
3344
3345 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3346 continue;
3347
3348 func_name = longjmp_names[i];
3349 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3350 {
3351 struct bound_minimal_symbol m;
3352
3353 m = lookup_minimal_symbol_text (func_name, objfile);
3354 if (m.minsym == NULL)
3355 {
3356 /* Prevent future lookups in this objfile. */
3357 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3358 continue;
3359 }
3360 bp_objfile_data->longjmp_msym[i] = m;
3361 }
3362
3363 addr = MSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i].minsym);
3364 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3365 &internal_breakpoint_ops);
3366 b->addr_string = xstrdup (func_name);
3367 b->enable_state = bp_disabled;
3368 }
3369 }
3370 }
3371 update_global_location_list (1);
3372
3373 do_cleanups (old_chain);
3374 }
3375
3376 /* Create a master std::terminate breakpoint. */
3377 static void
3378 create_std_terminate_master_breakpoint (void)
3379 {
3380 struct program_space *pspace;
3381 struct cleanup *old_chain;
3382 const char *const func_name = "std::terminate()";
3383
3384 old_chain = save_current_program_space ();
3385
3386 ALL_PSPACES (pspace)
3387 {
3388 struct objfile *objfile;
3389 CORE_ADDR addr;
3390
3391 set_current_program_space (pspace);
3392
3393 ALL_OBJFILES (objfile)
3394 {
3395 struct breakpoint *b;
3396 struct breakpoint_objfile_data *bp_objfile_data;
3397
3398 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3399
3400 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3401 continue;
3402
3403 if (bp_objfile_data->terminate_msym.minsym == NULL)
3404 {
3405 struct bound_minimal_symbol m;
3406
3407 m = lookup_minimal_symbol (func_name, NULL, objfile);
3408 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3409 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3410 {
3411 /* Prevent future lookups in this objfile. */
3412 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3413 continue;
3414 }
3415 bp_objfile_data->terminate_msym = m;
3416 }
3417
3418 addr = MSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym.minsym);
3419 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3420 bp_std_terminate_master,
3421 &internal_breakpoint_ops);
3422 b->addr_string = xstrdup (func_name);
3423 b->enable_state = bp_disabled;
3424 }
3425 }
3426
3427 update_global_location_list (1);
3428
3429 do_cleanups (old_chain);
3430 }
3431
3432 /* Install a master breakpoint on the unwinder's debug hook. */
3433
3434 static void
3435 create_exception_master_breakpoint (void)
3436 {
3437 struct objfile *objfile;
3438 const char *const func_name = "_Unwind_DebugHook";
3439
3440 ALL_OBJFILES (objfile)
3441 {
3442 struct breakpoint *b;
3443 struct gdbarch *gdbarch;
3444 struct breakpoint_objfile_data *bp_objfile_data;
3445 CORE_ADDR addr;
3446
3447 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3448
3449 /* We prefer the SystemTap probe point if it exists. */
3450 if (!bp_objfile_data->exception_searched)
3451 {
3452 VEC (probe_p) *ret;
3453
3454 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3455
3456 if (ret != NULL)
3457 {
3458 /* We are only interested in checking one element. */
3459 struct probe *p = VEC_index (probe_p, ret, 0);
3460
3461 if (!can_evaluate_probe_arguments (p))
3462 {
3463 /* We cannot use the probe interface here, because it does
3464 not know how to evaluate arguments. */
3465 VEC_free (probe_p, ret);
3466 ret = NULL;
3467 }
3468 }
3469 bp_objfile_data->exception_probes = ret;
3470 bp_objfile_data->exception_searched = 1;
3471 }
3472
3473 if (bp_objfile_data->exception_probes != NULL)
3474 {
3475 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3476 int i;
3477 struct probe *probe;
3478
3479 for (i = 0;
3480 VEC_iterate (probe_p,
3481 bp_objfile_data->exception_probes,
3482 i, probe);
3483 ++i)
3484 {
3485 struct breakpoint *b;
3486
3487 b = create_internal_breakpoint (gdbarch, probe->address,
3488 bp_exception_master,
3489 &internal_breakpoint_ops);
3490 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3491 b->enable_state = bp_disabled;
3492 }
3493
3494 continue;
3495 }
3496
3497 /* Otherwise, try the hook function. */
3498
3499 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3500 continue;
3501
3502 gdbarch = get_objfile_arch (objfile);
3503
3504 if (bp_objfile_data->exception_msym.minsym == NULL)
3505 {
3506 struct bound_minimal_symbol debug_hook;
3507
3508 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3509 if (debug_hook.minsym == NULL)
3510 {
3511 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3512 continue;
3513 }
3514
3515 bp_objfile_data->exception_msym = debug_hook;
3516 }
3517
3518 addr = MSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym.minsym);
3519 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3520 &current_target);
3521 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3522 &internal_breakpoint_ops);
3523 b->addr_string = xstrdup (func_name);
3524 b->enable_state = bp_disabled;
3525 }
3526
3527 update_global_location_list (1);
3528 }
3529
3530 void
3531 update_breakpoints_after_exec (void)
3532 {
3533 struct breakpoint *b, *b_tmp;
3534 struct bp_location *bploc, **bplocp_tmp;
3535
3536 /* We're about to delete breakpoints from GDB's lists. If the
3537 INSERTED flag is true, GDB will try to lift the breakpoints by
3538 writing the breakpoints' "shadow contents" back into memory. The
3539 "shadow contents" are NOT valid after an exec, so GDB should not
3540 do that. Instead, the target is responsible from marking
3541 breakpoints out as soon as it detects an exec. We don't do that
3542 here instead, because there may be other attempts to delete
3543 breakpoints after detecting an exec and before reaching here. */
3544 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3545 if (bploc->pspace == current_program_space)
3546 gdb_assert (!bploc->inserted);
3547
3548 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3549 {
3550 if (b->pspace != current_program_space)
3551 continue;
3552
3553 /* Solib breakpoints must be explicitly reset after an exec(). */
3554 if (b->type == bp_shlib_event)
3555 {
3556 delete_breakpoint (b);
3557 continue;
3558 }
3559
3560 /* JIT breakpoints must be explicitly reset after an exec(). */
3561 if (b->type == bp_jit_event)
3562 {
3563 delete_breakpoint (b);
3564 continue;
3565 }
3566
3567 /* Thread event breakpoints must be set anew after an exec(),
3568 as must overlay event and longjmp master breakpoints. */
3569 if (b->type == bp_thread_event || b->type == bp_overlay_event
3570 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3571 || b->type == bp_exception_master)
3572 {
3573 delete_breakpoint (b);
3574 continue;
3575 }
3576
3577 /* Step-resume breakpoints are meaningless after an exec(). */
3578 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3579 {
3580 delete_breakpoint (b);
3581 continue;
3582 }
3583
3584 /* Longjmp and longjmp-resume breakpoints are also meaningless
3585 after an exec. */
3586 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3587 || b->type == bp_longjmp_call_dummy
3588 || b->type == bp_exception || b->type == bp_exception_resume)
3589 {
3590 delete_breakpoint (b);
3591 continue;
3592 }
3593
3594 if (b->type == bp_catchpoint)
3595 {
3596 /* For now, none of the bp_catchpoint breakpoints need to
3597 do anything at this point. In the future, if some of
3598 the catchpoints need to something, we will need to add
3599 a new method, and call this method from here. */
3600 continue;
3601 }
3602
3603 /* bp_finish is a special case. The only way we ought to be able
3604 to see one of these when an exec() has happened, is if the user
3605 caught a vfork, and then said "finish". Ordinarily a finish just
3606 carries them to the call-site of the current callee, by setting
3607 a temporary bp there and resuming. But in this case, the finish
3608 will carry them entirely through the vfork & exec.
3609
3610 We don't want to allow a bp_finish to remain inserted now. But
3611 we can't safely delete it, 'cause finish_command has a handle to
3612 the bp on a bpstat, and will later want to delete it. There's a
3613 chance (and I've seen it happen) that if we delete the bp_finish
3614 here, that its storage will get reused by the time finish_command
3615 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3616 We really must allow finish_command to delete a bp_finish.
3617
3618 In the absence of a general solution for the "how do we know
3619 it's safe to delete something others may have handles to?"
3620 problem, what we'll do here is just uninsert the bp_finish, and
3621 let finish_command delete it.
3622
3623 (We know the bp_finish is "doomed" in the sense that it's
3624 momentary, and will be deleted as soon as finish_command sees
3625 the inferior stopped. So it doesn't matter that the bp's
3626 address is probably bogus in the new a.out, unlike e.g., the
3627 solib breakpoints.) */
3628
3629 if (b->type == bp_finish)
3630 {
3631 continue;
3632 }
3633
3634 /* Without a symbolic address, we have little hope of the
3635 pre-exec() address meaning the same thing in the post-exec()
3636 a.out. */
3637 if (b->addr_string == NULL)
3638 {
3639 delete_breakpoint (b);
3640 continue;
3641 }
3642 }
3643 /* FIXME what about longjmp breakpoints? Re-create them here? */
3644 create_overlay_event_breakpoint ();
3645 create_longjmp_master_breakpoint ();
3646 create_std_terminate_master_breakpoint ();
3647 create_exception_master_breakpoint ();
3648 }
3649
3650 int
3651 detach_breakpoints (ptid_t ptid)
3652 {
3653 struct bp_location *bl, **blp_tmp;
3654 int val = 0;
3655 struct cleanup *old_chain = save_inferior_ptid ();
3656 struct inferior *inf = current_inferior ();
3657
3658 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3659 error (_("Cannot detach breakpoints of inferior_ptid"));
3660
3661 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3662 inferior_ptid = ptid;
3663 ALL_BP_LOCATIONS (bl, blp_tmp)
3664 {
3665 if (bl->pspace != inf->pspace)
3666 continue;
3667
3668 /* This function must physically remove breakpoints locations
3669 from the specified ptid, without modifying the breakpoint
3670 package's state. Locations of type bp_loc_other are only
3671 maintained at GDB side. So, there is no need to remove
3672 these bp_loc_other locations. Moreover, removing these
3673 would modify the breakpoint package's state. */
3674 if (bl->loc_type == bp_loc_other)
3675 continue;
3676
3677 if (bl->inserted)
3678 val |= remove_breakpoint_1 (bl, mark_inserted);
3679 }
3680
3681 /* Detach single-step breakpoints as well. */
3682 detach_single_step_breakpoints ();
3683
3684 do_cleanups (old_chain);
3685 return val;
3686 }
3687
3688 /* Remove the breakpoint location BL from the current address space.
3689 Note that this is used to detach breakpoints from a child fork.
3690 When we get here, the child isn't in the inferior list, and neither
3691 do we have objects to represent its address space --- we should
3692 *not* look at bl->pspace->aspace here. */
3693
3694 static int
3695 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3696 {
3697 int val;
3698
3699 /* BL is never in moribund_locations by our callers. */
3700 gdb_assert (bl->owner != NULL);
3701
3702 if (bl->owner->enable_state == bp_permanent)
3703 /* Permanent breakpoints cannot be inserted or removed. */
3704 return 0;
3705
3706 /* The type of none suggests that owner is actually deleted.
3707 This should not ever happen. */
3708 gdb_assert (bl->owner->type != bp_none);
3709
3710 if (bl->loc_type == bp_loc_software_breakpoint
3711 || bl->loc_type == bp_loc_hardware_breakpoint)
3712 {
3713 /* "Normal" instruction breakpoint: either the standard
3714 trap-instruction bp (bp_breakpoint), or a
3715 bp_hardware_breakpoint. */
3716
3717 /* First check to see if we have to handle an overlay. */
3718 if (overlay_debugging == ovly_off
3719 || bl->section == NULL
3720 || !(section_is_overlay (bl->section)))
3721 {
3722 /* No overlay handling: just remove the breakpoint. */
3723 val = bl->owner->ops->remove_location (bl);
3724 }
3725 else
3726 {
3727 /* This breakpoint is in an overlay section.
3728 Did we set a breakpoint at the LMA? */
3729 if (!overlay_events_enabled)
3730 {
3731 /* Yes -- overlay event support is not active, so we
3732 should have set a breakpoint at the LMA. Remove it.
3733 */
3734 /* Ignore any failures: if the LMA is in ROM, we will
3735 have already warned when we failed to insert it. */
3736 if (bl->loc_type == bp_loc_hardware_breakpoint)
3737 target_remove_hw_breakpoint (bl->gdbarch,
3738 &bl->overlay_target_info);
3739 else
3740 target_remove_breakpoint (bl->gdbarch,
3741 &bl->overlay_target_info);
3742 }
3743 /* Did we set a breakpoint at the VMA?
3744 If so, we will have marked the breakpoint 'inserted'. */
3745 if (bl->inserted)
3746 {
3747 /* Yes -- remove it. Previously we did not bother to
3748 remove the breakpoint if the section had been
3749 unmapped, but let's not rely on that being safe. We
3750 don't know what the overlay manager might do. */
3751
3752 /* However, we should remove *software* breakpoints only
3753 if the section is still mapped, or else we overwrite
3754 wrong code with the saved shadow contents. */
3755 if (bl->loc_type == bp_loc_hardware_breakpoint
3756 || section_is_mapped (bl->section))
3757 val = bl->owner->ops->remove_location (bl);
3758 else
3759 val = 0;
3760 }
3761 else
3762 {
3763 /* No -- not inserted, so no need to remove. No error. */
3764 val = 0;
3765 }
3766 }
3767
3768 /* In some cases, we might not be able to remove a breakpoint
3769 in a shared library that has already been removed, but we
3770 have not yet processed the shlib unload event. */
3771 if (val && solib_name_from_address (bl->pspace, bl->address))
3772 val = 0;
3773
3774 if (val)
3775 return val;
3776 bl->inserted = (is == mark_inserted);
3777 }
3778 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3779 {
3780 gdb_assert (bl->owner->ops != NULL
3781 && bl->owner->ops->remove_location != NULL);
3782
3783 bl->inserted = (is == mark_inserted);
3784 bl->owner->ops->remove_location (bl);
3785
3786 /* Failure to remove any of the hardware watchpoints comes here. */
3787 if ((is == mark_uninserted) && (bl->inserted))
3788 warning (_("Could not remove hardware watchpoint %d."),
3789 bl->owner->number);
3790 }
3791 else if (bl->owner->type == bp_catchpoint
3792 && breakpoint_enabled (bl->owner)
3793 && !bl->duplicate)
3794 {
3795 gdb_assert (bl->owner->ops != NULL
3796 && bl->owner->ops->remove_location != NULL);
3797
3798 val = bl->owner->ops->remove_location (bl);
3799 if (val)
3800 return val;
3801
3802 bl->inserted = (is == mark_inserted);
3803 }
3804
3805 return 0;
3806 }
3807
3808 static int
3809 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3810 {
3811 int ret;
3812 struct cleanup *old_chain;
3813
3814 /* BL is never in moribund_locations by our callers. */
3815 gdb_assert (bl->owner != NULL);
3816
3817 if (bl->owner->enable_state == bp_permanent)
3818 /* Permanent breakpoints cannot be inserted or removed. */
3819 return 0;
3820
3821 /* The type of none suggests that owner is actually deleted.
3822 This should not ever happen. */
3823 gdb_assert (bl->owner->type != bp_none);
3824
3825 old_chain = save_current_space_and_thread ();
3826
3827 switch_to_program_space_and_thread (bl->pspace);
3828
3829 ret = remove_breakpoint_1 (bl, is);
3830
3831 do_cleanups (old_chain);
3832 return ret;
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct bp_location *bl, **blp_tmp;
3864 int ix;
3865 struct program_space *pspace = current_program_space;
3866
3867 /* If breakpoint locations are shared across processes, then there's
3868 nothing to do. */
3869 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3870 return;
3871
3872 ALL_BP_LOCATIONS (bl, blp_tmp)
3873 {
3874 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3875 if (bl->pspace == pspace
3876 && bl->owner->enable_state != bp_permanent)
3877 bl->inserted = 0;
3878 }
3879
3880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3881 {
3882 if (b->loc && b->loc->pspace != pspace)
3883 continue;
3884
3885 switch (b->type)
3886 {
3887 case bp_call_dummy:
3888 case bp_longjmp_call_dummy:
3889
3890 /* If the call dummy breakpoint is at the entry point it will
3891 cause problems when the inferior is rerun, so we better get
3892 rid of it. */
3893
3894 case bp_watchpoint_scope:
3895
3896 /* Also get rid of scope breakpoints. */
3897
3898 case bp_shlib_event:
3899
3900 /* Also remove solib event breakpoints. Their addresses may
3901 have changed since the last time we ran the program.
3902 Actually we may now be debugging against different target;
3903 and so the solib backend that installed this breakpoint may
3904 not be used in by the target. E.g.,
3905
3906 (gdb) file prog-linux
3907 (gdb) run # native linux target
3908 ...
3909 (gdb) kill
3910 (gdb) file prog-win.exe
3911 (gdb) tar rem :9999 # remote Windows gdbserver.
3912 */
3913
3914 case bp_step_resume:
3915
3916 /* Also remove step-resume breakpoints. */
3917
3918 delete_breakpoint (b);
3919 break;
3920
3921 case bp_watchpoint:
3922 case bp_hardware_watchpoint:
3923 case bp_read_watchpoint:
3924 case bp_access_watchpoint:
3925 {
3926 struct watchpoint *w = (struct watchpoint *) b;
3927
3928 /* Likewise for watchpoints on local expressions. */
3929 if (w->exp_valid_block != NULL)
3930 delete_breakpoint (b);
3931 else if (context == inf_starting)
3932 {
3933 /* Reset val field to force reread of starting value in
3934 insert_breakpoints. */
3935 if (w->val)
3936 value_free (w->val);
3937 w->val = NULL;
3938 w->val_valid = 0;
3939 }
3940 }
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3947 /* Get rid of the moribund locations. */
3948 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3949 decref_bp_location (&bl);
3950 VEC_free (bp_location_p, moribund_locations);
3951 }
3952
3953 /* These functions concern about actual breakpoints inserted in the
3954 target --- to e.g. check if we need to do decr_pc adjustment or if
3955 we need to hop over the bkpt --- so we check for address space
3956 match, not program space. */
3957
3958 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3959 exists at PC. It returns ordinary_breakpoint_here if it's an
3960 ordinary breakpoint, or permanent_breakpoint_here if it's a
3961 permanent breakpoint.
3962 - When continuing from a location with an ordinary breakpoint, we
3963 actually single step once before calling insert_breakpoints.
3964 - When continuing from a location with a permanent breakpoint, we
3965 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3966 the target, to advance the PC past the breakpoint. */
3967
3968 enum breakpoint_here
3969 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3970 {
3971 struct bp_location *bl, **blp_tmp;
3972 int any_breakpoint_here = 0;
3973
3974 ALL_BP_LOCATIONS (bl, blp_tmp)
3975 {
3976 if (bl->loc_type != bp_loc_software_breakpoint
3977 && bl->loc_type != bp_loc_hardware_breakpoint)
3978 continue;
3979
3980 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3981 if ((breakpoint_enabled (bl->owner)
3982 || bl->owner->enable_state == bp_permanent)
3983 && breakpoint_location_address_match (bl, aspace, pc))
3984 {
3985 if (overlay_debugging
3986 && section_is_overlay (bl->section)
3987 && !section_is_mapped (bl->section))
3988 continue; /* unmapped overlay -- can't be a match */
3989 else if (bl->owner->enable_state == bp_permanent)
3990 return permanent_breakpoint_here;
3991 else
3992 any_breakpoint_here = 1;
3993 }
3994 }
3995
3996 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3997 }
3998
3999 /* Return true if there's a moribund breakpoint at PC. */
4000
4001 int
4002 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4003 {
4004 struct bp_location *loc;
4005 int ix;
4006
4007 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4008 if (breakpoint_location_address_match (loc, aspace, pc))
4009 return 1;
4010
4011 return 0;
4012 }
4013
4014 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4015 inserted using regular breakpoint_chain / bp_location array
4016 mechanism. This does not check for single-step breakpoints, which
4017 are inserted and removed using direct target manipulation. */
4018
4019 int
4020 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4021 CORE_ADDR pc)
4022 {
4023 struct bp_location *bl, **blp_tmp;
4024
4025 ALL_BP_LOCATIONS (bl, blp_tmp)
4026 {
4027 if (bl->loc_type != bp_loc_software_breakpoint
4028 && bl->loc_type != bp_loc_hardware_breakpoint)
4029 continue;
4030
4031 if (bl->inserted
4032 && breakpoint_location_address_match (bl, aspace, pc))
4033 {
4034 if (overlay_debugging
4035 && section_is_overlay (bl->section)
4036 && !section_is_mapped (bl->section))
4037 continue; /* unmapped overlay -- can't be a match */
4038 else
4039 return 1;
4040 }
4041 }
4042 return 0;
4043 }
4044
4045 /* Returns non-zero iff there's either regular breakpoint
4046 or a single step breakpoint inserted at PC. */
4047
4048 int
4049 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4050 {
4051 if (regular_breakpoint_inserted_here_p (aspace, pc))
4052 return 1;
4053
4054 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4055 return 1;
4056
4057 return 0;
4058 }
4059
4060 /* This function returns non-zero iff there is a software breakpoint
4061 inserted at PC. */
4062
4063 int
4064 software_breakpoint_inserted_here_p (struct address_space *aspace,
4065 CORE_ADDR pc)
4066 {
4067 struct bp_location *bl, **blp_tmp;
4068
4069 ALL_BP_LOCATIONS (bl, blp_tmp)
4070 {
4071 if (bl->loc_type != bp_loc_software_breakpoint)
4072 continue;
4073
4074 if (bl->inserted
4075 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4076 aspace, pc))
4077 {
4078 if (overlay_debugging
4079 && section_is_overlay (bl->section)
4080 && !section_is_mapped (bl->section))
4081 continue; /* unmapped overlay -- can't be a match */
4082 else
4083 return 1;
4084 }
4085 }
4086
4087 /* Also check for software single-step breakpoints. */
4088 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4089 return 1;
4090
4091 return 0;
4092 }
4093
4094 int
4095 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4096 CORE_ADDR addr, ULONGEST len)
4097 {
4098 struct breakpoint *bpt;
4099
4100 ALL_BREAKPOINTS (bpt)
4101 {
4102 struct bp_location *loc;
4103
4104 if (bpt->type != bp_hardware_watchpoint
4105 && bpt->type != bp_access_watchpoint)
4106 continue;
4107
4108 if (!breakpoint_enabled (bpt))
4109 continue;
4110
4111 for (loc = bpt->loc; loc; loc = loc->next)
4112 if (loc->pspace->aspace == aspace && loc->inserted)
4113 {
4114 CORE_ADDR l, h;
4115
4116 /* Check for intersection. */
4117 l = max (loc->address, addr);
4118 h = min (loc->address + loc->length, addr + len);
4119 if (l < h)
4120 return 1;
4121 }
4122 }
4123 return 0;
4124 }
4125
4126 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4127 PC is valid for process/thread PTID. */
4128
4129 int
4130 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4131 ptid_t ptid)
4132 {
4133 struct bp_location *bl, **blp_tmp;
4134 /* The thread and task IDs associated to PTID, computed lazily. */
4135 int thread = -1;
4136 int task = 0;
4137
4138 ALL_BP_LOCATIONS (bl, blp_tmp)
4139 {
4140 if (bl->loc_type != bp_loc_software_breakpoint
4141 && bl->loc_type != bp_loc_hardware_breakpoint)
4142 continue;
4143
4144 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4145 if (!breakpoint_enabled (bl->owner)
4146 && bl->owner->enable_state != bp_permanent)
4147 continue;
4148
4149 if (!breakpoint_location_address_match (bl, aspace, pc))
4150 continue;
4151
4152 if (bl->owner->thread != -1)
4153 {
4154 /* This is a thread-specific breakpoint. Check that ptid
4155 matches that thread. If thread hasn't been computed yet,
4156 it is now time to do so. */
4157 if (thread == -1)
4158 thread = pid_to_thread_id (ptid);
4159 if (bl->owner->thread != thread)
4160 continue;
4161 }
4162
4163 if (bl->owner->task != 0)
4164 {
4165 /* This is a task-specific breakpoint. Check that ptid
4166 matches that task. If task hasn't been computed yet,
4167 it is now time to do so. */
4168 if (task == 0)
4169 task = ada_get_task_number (ptid);
4170 if (bl->owner->task != task)
4171 continue;
4172 }
4173
4174 if (overlay_debugging
4175 && section_is_overlay (bl->section)
4176 && !section_is_mapped (bl->section))
4177 continue; /* unmapped overlay -- can't be a match */
4178
4179 return 1;
4180 }
4181
4182 return 0;
4183 }
4184 \f
4185
4186 /* bpstat stuff. External routines' interfaces are documented
4187 in breakpoint.h. */
4188
4189 int
4190 is_catchpoint (struct breakpoint *ep)
4191 {
4192 return (ep->type == bp_catchpoint);
4193 }
4194
4195 /* Frees any storage that is part of a bpstat. Does not walk the
4196 'next' chain. */
4197
4198 static void
4199 bpstat_free (bpstat bs)
4200 {
4201 if (bs->old_val != NULL)
4202 value_free (bs->old_val);
4203 decref_counted_command_line (&bs->commands);
4204 decref_bp_location (&bs->bp_location_at);
4205 xfree (bs);
4206 }
4207
4208 /* Clear a bpstat so that it says we are not at any breakpoint.
4209 Also free any storage that is part of a bpstat. */
4210
4211 void
4212 bpstat_clear (bpstat *bsp)
4213 {
4214 bpstat p;
4215 bpstat q;
4216
4217 if (bsp == 0)
4218 return;
4219 p = *bsp;
4220 while (p != NULL)
4221 {
4222 q = p->next;
4223 bpstat_free (p);
4224 p = q;
4225 }
4226 *bsp = NULL;
4227 }
4228
4229 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4230 is part of the bpstat is copied as well. */
4231
4232 bpstat
4233 bpstat_copy (bpstat bs)
4234 {
4235 bpstat p = NULL;
4236 bpstat tmp;
4237 bpstat retval = NULL;
4238
4239 if (bs == NULL)
4240 return bs;
4241
4242 for (; bs != NULL; bs = bs->next)
4243 {
4244 tmp = (bpstat) xmalloc (sizeof (*tmp));
4245 memcpy (tmp, bs, sizeof (*tmp));
4246 incref_counted_command_line (tmp->commands);
4247 incref_bp_location (tmp->bp_location_at);
4248 if (bs->old_val != NULL)
4249 {
4250 tmp->old_val = value_copy (bs->old_val);
4251 release_value (tmp->old_val);
4252 }
4253
4254 if (p == NULL)
4255 /* This is the first thing in the chain. */
4256 retval = tmp;
4257 else
4258 p->next = tmp;
4259 p = tmp;
4260 }
4261 p->next = NULL;
4262 return retval;
4263 }
4264
4265 /* Find the bpstat associated with this breakpoint. */
4266
4267 bpstat
4268 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4269 {
4270 if (bsp == NULL)
4271 return NULL;
4272
4273 for (; bsp != NULL; bsp = bsp->next)
4274 {
4275 if (bsp->breakpoint_at == breakpoint)
4276 return bsp;
4277 }
4278 return NULL;
4279 }
4280
4281 /* See breakpoint.h. */
4282
4283 int
4284 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4285 {
4286 for (; bsp != NULL; bsp = bsp->next)
4287 {
4288 if (bsp->breakpoint_at == NULL)
4289 {
4290 /* A moribund location can never explain a signal other than
4291 GDB_SIGNAL_TRAP. */
4292 if (sig == GDB_SIGNAL_TRAP)
4293 return 1;
4294 }
4295 else
4296 {
4297 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4298 sig))
4299 return 1;
4300 }
4301 }
4302
4303 return 0;
4304 }
4305
4306 /* Put in *NUM the breakpoint number of the first breakpoint we are
4307 stopped at. *BSP upon return is a bpstat which points to the
4308 remaining breakpoints stopped at (but which is not guaranteed to be
4309 good for anything but further calls to bpstat_num).
4310
4311 Return 0 if passed a bpstat which does not indicate any breakpoints.
4312 Return -1 if stopped at a breakpoint that has been deleted since
4313 we set it.
4314 Return 1 otherwise. */
4315
4316 int
4317 bpstat_num (bpstat *bsp, int *num)
4318 {
4319 struct breakpoint *b;
4320
4321 if ((*bsp) == NULL)
4322 return 0; /* No more breakpoint values */
4323
4324 /* We assume we'll never have several bpstats that correspond to a
4325 single breakpoint -- otherwise, this function might return the
4326 same number more than once and this will look ugly. */
4327 b = (*bsp)->breakpoint_at;
4328 *bsp = (*bsp)->next;
4329 if (b == NULL)
4330 return -1; /* breakpoint that's been deleted since */
4331
4332 *num = b->number; /* We have its number */
4333 return 1;
4334 }
4335
4336 /* See breakpoint.h. */
4337
4338 void
4339 bpstat_clear_actions (void)
4340 {
4341 struct thread_info *tp;
4342 bpstat bs;
4343
4344 if (ptid_equal (inferior_ptid, null_ptid))
4345 return;
4346
4347 tp = find_thread_ptid (inferior_ptid);
4348 if (tp == NULL)
4349 return;
4350
4351 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4352 {
4353 decref_counted_command_line (&bs->commands);
4354
4355 if (bs->old_val != NULL)
4356 {
4357 value_free (bs->old_val);
4358 bs->old_val = NULL;
4359 }
4360 }
4361 }
4362
4363 /* Called when a command is about to proceed the inferior. */
4364
4365 static void
4366 breakpoint_about_to_proceed (void)
4367 {
4368 if (!ptid_equal (inferior_ptid, null_ptid))
4369 {
4370 struct thread_info *tp = inferior_thread ();
4371
4372 /* Allow inferior function calls in breakpoint commands to not
4373 interrupt the command list. When the call finishes
4374 successfully, the inferior will be standing at the same
4375 breakpoint as if nothing happened. */
4376 if (tp->control.in_infcall)
4377 return;
4378 }
4379
4380 breakpoint_proceeded = 1;
4381 }
4382
4383 /* Stub for cleaning up our state if we error-out of a breakpoint
4384 command. */
4385 static void
4386 cleanup_executing_breakpoints (void *ignore)
4387 {
4388 executing_breakpoint_commands = 0;
4389 }
4390
4391 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4392 or its equivalent. */
4393
4394 static int
4395 command_line_is_silent (struct command_line *cmd)
4396 {
4397 return cmd && (strcmp ("silent", cmd->line) == 0
4398 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4399 }
4400
4401 /* Execute all the commands associated with all the breakpoints at
4402 this location. Any of these commands could cause the process to
4403 proceed beyond this point, etc. We look out for such changes by
4404 checking the global "breakpoint_proceeded" after each command.
4405
4406 Returns true if a breakpoint command resumed the inferior. In that
4407 case, it is the caller's responsibility to recall it again with the
4408 bpstat of the current thread. */
4409
4410 static int
4411 bpstat_do_actions_1 (bpstat *bsp)
4412 {
4413 bpstat bs;
4414 struct cleanup *old_chain;
4415 int again = 0;
4416
4417 /* Avoid endless recursion if a `source' command is contained
4418 in bs->commands. */
4419 if (executing_breakpoint_commands)
4420 return 0;
4421
4422 executing_breakpoint_commands = 1;
4423 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4424
4425 prevent_dont_repeat ();
4426
4427 /* This pointer will iterate over the list of bpstat's. */
4428 bs = *bsp;
4429
4430 breakpoint_proceeded = 0;
4431 for (; bs != NULL; bs = bs->next)
4432 {
4433 struct counted_command_line *ccmd;
4434 struct command_line *cmd;
4435 struct cleanup *this_cmd_tree_chain;
4436
4437 /* Take ownership of the BSP's command tree, if it has one.
4438
4439 The command tree could legitimately contain commands like
4440 'step' and 'next', which call clear_proceed_status, which
4441 frees stop_bpstat's command tree. To make sure this doesn't
4442 free the tree we're executing out from under us, we need to
4443 take ownership of the tree ourselves. Since a given bpstat's
4444 commands are only executed once, we don't need to copy it; we
4445 can clear the pointer in the bpstat, and make sure we free
4446 the tree when we're done. */
4447 ccmd = bs->commands;
4448 bs->commands = NULL;
4449 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4450 cmd = ccmd ? ccmd->commands : NULL;
4451 if (command_line_is_silent (cmd))
4452 {
4453 /* The action has been already done by bpstat_stop_status. */
4454 cmd = cmd->next;
4455 }
4456
4457 while (cmd != NULL)
4458 {
4459 execute_control_command (cmd);
4460
4461 if (breakpoint_proceeded)
4462 break;
4463 else
4464 cmd = cmd->next;
4465 }
4466
4467 /* We can free this command tree now. */
4468 do_cleanups (this_cmd_tree_chain);
4469
4470 if (breakpoint_proceeded)
4471 {
4472 if (target_can_async_p ())
4473 /* If we are in async mode, then the target might be still
4474 running, not stopped at any breakpoint, so nothing for
4475 us to do here -- just return to the event loop. */
4476 ;
4477 else
4478 /* In sync mode, when execute_control_command returns
4479 we're already standing on the next breakpoint.
4480 Breakpoint commands for that stop were not run, since
4481 execute_command does not run breakpoint commands --
4482 only command_line_handler does, but that one is not
4483 involved in execution of breakpoint commands. So, we
4484 can now execute breakpoint commands. It should be
4485 noted that making execute_command do bpstat actions is
4486 not an option -- in this case we'll have recursive
4487 invocation of bpstat for each breakpoint with a
4488 command, and can easily blow up GDB stack. Instead, we
4489 return true, which will trigger the caller to recall us
4490 with the new stop_bpstat. */
4491 again = 1;
4492 break;
4493 }
4494 }
4495 do_cleanups (old_chain);
4496 return again;
4497 }
4498
4499 void
4500 bpstat_do_actions (void)
4501 {
4502 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4503
4504 /* Do any commands attached to breakpoint we are stopped at. */
4505 while (!ptid_equal (inferior_ptid, null_ptid)
4506 && target_has_execution
4507 && !is_exited (inferior_ptid)
4508 && !is_executing (inferior_ptid))
4509 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4510 and only return when it is stopped at the next breakpoint, we
4511 keep doing breakpoint actions until it returns false to
4512 indicate the inferior was not resumed. */
4513 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4514 break;
4515
4516 discard_cleanups (cleanup_if_error);
4517 }
4518
4519 /* Print out the (old or new) value associated with a watchpoint. */
4520
4521 static void
4522 watchpoint_value_print (struct value *val, struct ui_file *stream)
4523 {
4524 if (val == NULL)
4525 fprintf_unfiltered (stream, _("<unreadable>"));
4526 else
4527 {
4528 struct value_print_options opts;
4529 get_user_print_options (&opts);
4530 value_print (val, stream, &opts);
4531 }
4532 }
4533
4534 /* Generic routine for printing messages indicating why we
4535 stopped. The behavior of this function depends on the value
4536 'print_it' in the bpstat structure. Under some circumstances we
4537 may decide not to print anything here and delegate the task to
4538 normal_stop(). */
4539
4540 static enum print_stop_action
4541 print_bp_stop_message (bpstat bs)
4542 {
4543 switch (bs->print_it)
4544 {
4545 case print_it_noop:
4546 /* Nothing should be printed for this bpstat entry. */
4547 return PRINT_UNKNOWN;
4548 break;
4549
4550 case print_it_done:
4551 /* We still want to print the frame, but we already printed the
4552 relevant messages. */
4553 return PRINT_SRC_AND_LOC;
4554 break;
4555
4556 case print_it_normal:
4557 {
4558 struct breakpoint *b = bs->breakpoint_at;
4559
4560 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4561 which has since been deleted. */
4562 if (b == NULL)
4563 return PRINT_UNKNOWN;
4564
4565 /* Normal case. Call the breakpoint's print_it method. */
4566 return b->ops->print_it (bs);
4567 }
4568 break;
4569
4570 default:
4571 internal_error (__FILE__, __LINE__,
4572 _("print_bp_stop_message: unrecognized enum value"));
4573 break;
4574 }
4575 }
4576
4577 /* A helper function that prints a shared library stopped event. */
4578
4579 static void
4580 print_solib_event (int is_catchpoint)
4581 {
4582 int any_deleted
4583 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4584 int any_added
4585 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4586
4587 if (!is_catchpoint)
4588 {
4589 if (any_added || any_deleted)
4590 ui_out_text (current_uiout,
4591 _("Stopped due to shared library event:\n"));
4592 else
4593 ui_out_text (current_uiout,
4594 _("Stopped due to shared library event (no "
4595 "libraries added or removed)\n"));
4596 }
4597
4598 if (ui_out_is_mi_like_p (current_uiout))
4599 ui_out_field_string (current_uiout, "reason",
4600 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4601
4602 if (any_deleted)
4603 {
4604 struct cleanup *cleanup;
4605 char *name;
4606 int ix;
4607
4608 ui_out_text (current_uiout, _(" Inferior unloaded "));
4609 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4610 "removed");
4611 for (ix = 0;
4612 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4613 ix, name);
4614 ++ix)
4615 {
4616 if (ix > 0)
4617 ui_out_text (current_uiout, " ");
4618 ui_out_field_string (current_uiout, "library", name);
4619 ui_out_text (current_uiout, "\n");
4620 }
4621
4622 do_cleanups (cleanup);
4623 }
4624
4625 if (any_added)
4626 {
4627 struct so_list *iter;
4628 int ix;
4629 struct cleanup *cleanup;
4630
4631 ui_out_text (current_uiout, _(" Inferior loaded "));
4632 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4633 "added");
4634 for (ix = 0;
4635 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4636 ix, iter);
4637 ++ix)
4638 {
4639 if (ix > 0)
4640 ui_out_text (current_uiout, " ");
4641 ui_out_field_string (current_uiout, "library", iter->so_name);
4642 ui_out_text (current_uiout, "\n");
4643 }
4644
4645 do_cleanups (cleanup);
4646 }
4647 }
4648
4649 /* Print a message indicating what happened. This is called from
4650 normal_stop(). The input to this routine is the head of the bpstat
4651 list - a list of the eventpoints that caused this stop. KIND is
4652 the target_waitkind for the stopping event. This
4653 routine calls the generic print routine for printing a message
4654 about reasons for stopping. This will print (for example) the
4655 "Breakpoint n," part of the output. The return value of this
4656 routine is one of:
4657
4658 PRINT_UNKNOWN: Means we printed nothing.
4659 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4660 code to print the location. An example is
4661 "Breakpoint 1, " which should be followed by
4662 the location.
4663 PRINT_SRC_ONLY: Means we printed something, but there is no need
4664 to also print the location part of the message.
4665 An example is the catch/throw messages, which
4666 don't require a location appended to the end.
4667 PRINT_NOTHING: We have done some printing and we don't need any
4668 further info to be printed. */
4669
4670 enum print_stop_action
4671 bpstat_print (bpstat bs, int kind)
4672 {
4673 int val;
4674
4675 /* Maybe another breakpoint in the chain caused us to stop.
4676 (Currently all watchpoints go on the bpstat whether hit or not.
4677 That probably could (should) be changed, provided care is taken
4678 with respect to bpstat_explains_signal). */
4679 for (; bs; bs = bs->next)
4680 {
4681 val = print_bp_stop_message (bs);
4682 if (val == PRINT_SRC_ONLY
4683 || val == PRINT_SRC_AND_LOC
4684 || val == PRINT_NOTHING)
4685 return val;
4686 }
4687
4688 /* If we had hit a shared library event breakpoint,
4689 print_bp_stop_message would print out this message. If we hit an
4690 OS-level shared library event, do the same thing. */
4691 if (kind == TARGET_WAITKIND_LOADED)
4692 {
4693 print_solib_event (0);
4694 return PRINT_NOTHING;
4695 }
4696
4697 /* We reached the end of the chain, or we got a null BS to start
4698 with and nothing was printed. */
4699 return PRINT_UNKNOWN;
4700 }
4701
4702 /* Evaluate the expression EXP and return 1 if value is zero.
4703 This returns the inverse of the condition because it is called
4704 from catch_errors which returns 0 if an exception happened, and if an
4705 exception happens we want execution to stop.
4706 The argument is a "struct expression *" that has been cast to a
4707 "void *" to make it pass through catch_errors. */
4708
4709 static int
4710 breakpoint_cond_eval (void *exp)
4711 {
4712 struct value *mark = value_mark ();
4713 int i = !value_true (evaluate_expression ((struct expression *) exp));
4714
4715 value_free_to_mark (mark);
4716 return i;
4717 }
4718
4719 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4720
4721 static bpstat
4722 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4723 {
4724 bpstat bs;
4725
4726 bs = (bpstat) xmalloc (sizeof (*bs));
4727 bs->next = NULL;
4728 **bs_link_pointer = bs;
4729 *bs_link_pointer = &bs->next;
4730 bs->breakpoint_at = bl->owner;
4731 bs->bp_location_at = bl;
4732 incref_bp_location (bl);
4733 /* If the condition is false, etc., don't do the commands. */
4734 bs->commands = NULL;
4735 bs->old_val = NULL;
4736 bs->print_it = print_it_normal;
4737 return bs;
4738 }
4739 \f
4740 /* The target has stopped with waitstatus WS. Check if any hardware
4741 watchpoints have triggered, according to the target. */
4742
4743 int
4744 watchpoints_triggered (struct target_waitstatus *ws)
4745 {
4746 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4747 CORE_ADDR addr;
4748 struct breakpoint *b;
4749
4750 if (!stopped_by_watchpoint)
4751 {
4752 /* We were not stopped by a watchpoint. Mark all watchpoints
4753 as not triggered. */
4754 ALL_BREAKPOINTS (b)
4755 if (is_hardware_watchpoint (b))
4756 {
4757 struct watchpoint *w = (struct watchpoint *) b;
4758
4759 w->watchpoint_triggered = watch_triggered_no;
4760 }
4761
4762 return 0;
4763 }
4764
4765 if (!target_stopped_data_address (&current_target, &addr))
4766 {
4767 /* We were stopped by a watchpoint, but we don't know where.
4768 Mark all watchpoints as unknown. */
4769 ALL_BREAKPOINTS (b)
4770 if (is_hardware_watchpoint (b))
4771 {
4772 struct watchpoint *w = (struct watchpoint *) b;
4773
4774 w->watchpoint_triggered = watch_triggered_unknown;
4775 }
4776
4777 return 1;
4778 }
4779
4780 /* The target could report the data address. Mark watchpoints
4781 affected by this data address as triggered, and all others as not
4782 triggered. */
4783
4784 ALL_BREAKPOINTS (b)
4785 if (is_hardware_watchpoint (b))
4786 {
4787 struct watchpoint *w = (struct watchpoint *) b;
4788 struct bp_location *loc;
4789
4790 w->watchpoint_triggered = watch_triggered_no;
4791 for (loc = b->loc; loc; loc = loc->next)
4792 {
4793 if (is_masked_watchpoint (b))
4794 {
4795 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4796 CORE_ADDR start = loc->address & w->hw_wp_mask;
4797
4798 if (newaddr == start)
4799 {
4800 w->watchpoint_triggered = watch_triggered_yes;
4801 break;
4802 }
4803 }
4804 /* Exact match not required. Within range is sufficient. */
4805 else if (target_watchpoint_addr_within_range (&current_target,
4806 addr, loc->address,
4807 loc->length))
4808 {
4809 w->watchpoint_triggered = watch_triggered_yes;
4810 break;
4811 }
4812 }
4813 }
4814
4815 return 1;
4816 }
4817
4818 /* Possible return values for watchpoint_check (this can't be an enum
4819 because of check_errors). */
4820 /* The watchpoint has been deleted. */
4821 #define WP_DELETED 1
4822 /* The value has changed. */
4823 #define WP_VALUE_CHANGED 2
4824 /* The value has not changed. */
4825 #define WP_VALUE_NOT_CHANGED 3
4826 /* Ignore this watchpoint, no matter if the value changed or not. */
4827 #define WP_IGNORE 4
4828
4829 #define BP_TEMPFLAG 1
4830 #define BP_HARDWAREFLAG 2
4831
4832 /* Evaluate watchpoint condition expression and check if its value
4833 changed.
4834
4835 P should be a pointer to struct bpstat, but is defined as a void *
4836 in order for this function to be usable with catch_errors. */
4837
4838 static int
4839 watchpoint_check (void *p)
4840 {
4841 bpstat bs = (bpstat) p;
4842 struct watchpoint *b;
4843 struct frame_info *fr;
4844 int within_current_scope;
4845
4846 /* BS is built from an existing struct breakpoint. */
4847 gdb_assert (bs->breakpoint_at != NULL);
4848 b = (struct watchpoint *) bs->breakpoint_at;
4849
4850 /* If this is a local watchpoint, we only want to check if the
4851 watchpoint frame is in scope if the current thread is the thread
4852 that was used to create the watchpoint. */
4853 if (!watchpoint_in_thread_scope (b))
4854 return WP_IGNORE;
4855
4856 if (b->exp_valid_block == NULL)
4857 within_current_scope = 1;
4858 else
4859 {
4860 struct frame_info *frame = get_current_frame ();
4861 struct gdbarch *frame_arch = get_frame_arch (frame);
4862 CORE_ADDR frame_pc = get_frame_pc (frame);
4863
4864 /* in_function_epilogue_p() returns a non-zero value if we're
4865 still in the function but the stack frame has already been
4866 invalidated. Since we can't rely on the values of local
4867 variables after the stack has been destroyed, we are treating
4868 the watchpoint in that state as `not changed' without further
4869 checking. Don't mark watchpoints as changed if the current
4870 frame is in an epilogue - even if they are in some other
4871 frame, our view of the stack is likely to be wrong and
4872 frame_find_by_id could error out. */
4873 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4874 return WP_IGNORE;
4875
4876 fr = frame_find_by_id (b->watchpoint_frame);
4877 within_current_scope = (fr != NULL);
4878
4879 /* If we've gotten confused in the unwinder, we might have
4880 returned a frame that can't describe this variable. */
4881 if (within_current_scope)
4882 {
4883 struct symbol *function;
4884
4885 function = get_frame_function (fr);
4886 if (function == NULL
4887 || !contained_in (b->exp_valid_block,
4888 SYMBOL_BLOCK_VALUE (function)))
4889 within_current_scope = 0;
4890 }
4891
4892 if (within_current_scope)
4893 /* If we end up stopping, the current frame will get selected
4894 in normal_stop. So this call to select_frame won't affect
4895 the user. */
4896 select_frame (fr);
4897 }
4898
4899 if (within_current_scope)
4900 {
4901 /* We use value_{,free_to_}mark because it could be a *long*
4902 time before we return to the command level and call
4903 free_all_values. We can't call free_all_values because we
4904 might be in the middle of evaluating a function call. */
4905
4906 int pc = 0;
4907 struct value *mark;
4908 struct value *new_val;
4909
4910 if (is_masked_watchpoint (&b->base))
4911 /* Since we don't know the exact trigger address (from
4912 stopped_data_address), just tell the user we've triggered
4913 a mask watchpoint. */
4914 return WP_VALUE_CHANGED;
4915
4916 mark = value_mark ();
4917 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4918
4919 /* We use value_equal_contents instead of value_equal because
4920 the latter coerces an array to a pointer, thus comparing just
4921 the address of the array instead of its contents. This is
4922 not what we want. */
4923 if ((b->val != NULL) != (new_val != NULL)
4924 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4925 {
4926 if (new_val != NULL)
4927 {
4928 release_value (new_val);
4929 value_free_to_mark (mark);
4930 }
4931 bs->old_val = b->val;
4932 b->val = new_val;
4933 b->val_valid = 1;
4934 return WP_VALUE_CHANGED;
4935 }
4936 else
4937 {
4938 /* Nothing changed. */
4939 value_free_to_mark (mark);
4940 return WP_VALUE_NOT_CHANGED;
4941 }
4942 }
4943 else
4944 {
4945 struct ui_out *uiout = current_uiout;
4946
4947 /* This seems like the only logical thing to do because
4948 if we temporarily ignored the watchpoint, then when
4949 we reenter the block in which it is valid it contains
4950 garbage (in the case of a function, it may have two
4951 garbage values, one before and one after the prologue).
4952 So we can't even detect the first assignment to it and
4953 watch after that (since the garbage may or may not equal
4954 the first value assigned). */
4955 /* We print all the stop information in
4956 breakpoint_ops->print_it, but in this case, by the time we
4957 call breakpoint_ops->print_it this bp will be deleted
4958 already. So we have no choice but print the information
4959 here. */
4960 if (ui_out_is_mi_like_p (uiout))
4961 ui_out_field_string
4962 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4963 ui_out_text (uiout, "\nWatchpoint ");
4964 ui_out_field_int (uiout, "wpnum", b->base.number);
4965 ui_out_text (uiout,
4966 " deleted because the program has left the block in\n\
4967 which its expression is valid.\n");
4968
4969 /* Make sure the watchpoint's commands aren't executed. */
4970 decref_counted_command_line (&b->base.commands);
4971 watchpoint_del_at_next_stop (b);
4972
4973 return WP_DELETED;
4974 }
4975 }
4976
4977 /* Return true if it looks like target has stopped due to hitting
4978 breakpoint location BL. This function does not check if we should
4979 stop, only if BL explains the stop. */
4980
4981 static int
4982 bpstat_check_location (const struct bp_location *bl,
4983 struct address_space *aspace, CORE_ADDR bp_addr,
4984 const struct target_waitstatus *ws)
4985 {
4986 struct breakpoint *b = bl->owner;
4987
4988 /* BL is from an existing breakpoint. */
4989 gdb_assert (b != NULL);
4990
4991 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4992 }
4993
4994 /* Determine if the watched values have actually changed, and we
4995 should stop. If not, set BS->stop to 0. */
4996
4997 static void
4998 bpstat_check_watchpoint (bpstat bs)
4999 {
5000 const struct bp_location *bl;
5001 struct watchpoint *b;
5002
5003 /* BS is built for existing struct breakpoint. */
5004 bl = bs->bp_location_at;
5005 gdb_assert (bl != NULL);
5006 b = (struct watchpoint *) bs->breakpoint_at;
5007 gdb_assert (b != NULL);
5008
5009 {
5010 int must_check_value = 0;
5011
5012 if (b->base.type == bp_watchpoint)
5013 /* For a software watchpoint, we must always check the
5014 watched value. */
5015 must_check_value = 1;
5016 else if (b->watchpoint_triggered == watch_triggered_yes)
5017 /* We have a hardware watchpoint (read, write, or access)
5018 and the target earlier reported an address watched by
5019 this watchpoint. */
5020 must_check_value = 1;
5021 else if (b->watchpoint_triggered == watch_triggered_unknown
5022 && b->base.type == bp_hardware_watchpoint)
5023 /* We were stopped by a hardware watchpoint, but the target could
5024 not report the data address. We must check the watchpoint's
5025 value. Access and read watchpoints are out of luck; without
5026 a data address, we can't figure it out. */
5027 must_check_value = 1;
5028
5029 if (must_check_value)
5030 {
5031 char *message
5032 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5033 b->base.number);
5034 struct cleanup *cleanups = make_cleanup (xfree, message);
5035 int e = catch_errors (watchpoint_check, bs, message,
5036 RETURN_MASK_ALL);
5037 do_cleanups (cleanups);
5038 switch (e)
5039 {
5040 case WP_DELETED:
5041 /* We've already printed what needs to be printed. */
5042 bs->print_it = print_it_done;
5043 /* Stop. */
5044 break;
5045 case WP_IGNORE:
5046 bs->print_it = print_it_noop;
5047 bs->stop = 0;
5048 break;
5049 case WP_VALUE_CHANGED:
5050 if (b->base.type == bp_read_watchpoint)
5051 {
5052 /* There are two cases to consider here:
5053
5054 1. We're watching the triggered memory for reads.
5055 In that case, trust the target, and always report
5056 the watchpoint hit to the user. Even though
5057 reads don't cause value changes, the value may
5058 have changed since the last time it was read, and
5059 since we're not trapping writes, we will not see
5060 those, and as such we should ignore our notion of
5061 old value.
5062
5063 2. We're watching the triggered memory for both
5064 reads and writes. There are two ways this may
5065 happen:
5066
5067 2.1. This is a target that can't break on data
5068 reads only, but can break on accesses (reads or
5069 writes), such as e.g., x86. We detect this case
5070 at the time we try to insert read watchpoints.
5071
5072 2.2. Otherwise, the target supports read
5073 watchpoints, but, the user set an access or write
5074 watchpoint watching the same memory as this read
5075 watchpoint.
5076
5077 If we're watching memory writes as well as reads,
5078 ignore watchpoint hits when we find that the
5079 value hasn't changed, as reads don't cause
5080 changes. This still gives false positives when
5081 the program writes the same value to memory as
5082 what there was already in memory (we will confuse
5083 it for a read), but it's much better than
5084 nothing. */
5085
5086 int other_write_watchpoint = 0;
5087
5088 if (bl->watchpoint_type == hw_read)
5089 {
5090 struct breakpoint *other_b;
5091
5092 ALL_BREAKPOINTS (other_b)
5093 if (other_b->type == bp_hardware_watchpoint
5094 || other_b->type == bp_access_watchpoint)
5095 {
5096 struct watchpoint *other_w =
5097 (struct watchpoint *) other_b;
5098
5099 if (other_w->watchpoint_triggered
5100 == watch_triggered_yes)
5101 {
5102 other_write_watchpoint = 1;
5103 break;
5104 }
5105 }
5106 }
5107
5108 if (other_write_watchpoint
5109 || bl->watchpoint_type == hw_access)
5110 {
5111 /* We're watching the same memory for writes,
5112 and the value changed since the last time we
5113 updated it, so this trap must be for a write.
5114 Ignore it. */
5115 bs->print_it = print_it_noop;
5116 bs->stop = 0;
5117 }
5118 }
5119 break;
5120 case WP_VALUE_NOT_CHANGED:
5121 if (b->base.type == bp_hardware_watchpoint
5122 || b->base.type == bp_watchpoint)
5123 {
5124 /* Don't stop: write watchpoints shouldn't fire if
5125 the value hasn't changed. */
5126 bs->print_it = print_it_noop;
5127 bs->stop = 0;
5128 }
5129 /* Stop. */
5130 break;
5131 default:
5132 /* Can't happen. */
5133 case 0:
5134 /* Error from catch_errors. */
5135 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5136 watchpoint_del_at_next_stop (b);
5137 /* We've already printed what needs to be printed. */
5138 bs->print_it = print_it_done;
5139 break;
5140 }
5141 }
5142 else /* must_check_value == 0 */
5143 {
5144 /* This is a case where some watchpoint(s) triggered, but
5145 not at the address of this watchpoint, or else no
5146 watchpoint triggered after all. So don't print
5147 anything for this watchpoint. */
5148 bs->print_it = print_it_noop;
5149 bs->stop = 0;
5150 }
5151 }
5152 }
5153
5154 /* For breakpoints that are currently marked as telling gdb to stop,
5155 check conditions (condition proper, frame, thread and ignore count)
5156 of breakpoint referred to by BS. If we should not stop for this
5157 breakpoint, set BS->stop to 0. */
5158
5159 static void
5160 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5161 {
5162 const struct bp_location *bl;
5163 struct breakpoint *b;
5164 int value_is_zero = 0;
5165 struct expression *cond;
5166
5167 gdb_assert (bs->stop);
5168
5169 /* BS is built for existing struct breakpoint. */
5170 bl = bs->bp_location_at;
5171 gdb_assert (bl != NULL);
5172 b = bs->breakpoint_at;
5173 gdb_assert (b != NULL);
5174
5175 /* Even if the target evaluated the condition on its end and notified GDB, we
5176 need to do so again since GDB does not know if we stopped due to a
5177 breakpoint or a single step breakpoint. */
5178
5179 if (frame_id_p (b->frame_id)
5180 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5181 {
5182 bs->stop = 0;
5183 return;
5184 }
5185
5186 /* If this is a thread/task-specific breakpoint, don't waste cpu
5187 evaluating the condition if this isn't the specified
5188 thread/task. */
5189 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5190 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5191
5192 {
5193 bs->stop = 0;
5194 return;
5195 }
5196
5197 /* Evaluate extension language breakpoints that have a "stop" method
5198 implemented. */
5199 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5200
5201 if (is_watchpoint (b))
5202 {
5203 struct watchpoint *w = (struct watchpoint *) b;
5204
5205 cond = w->cond_exp;
5206 }
5207 else
5208 cond = bl->cond;
5209
5210 if (cond && b->disposition != disp_del_at_next_stop)
5211 {
5212 int within_current_scope = 1;
5213 struct watchpoint * w;
5214
5215 /* We use value_mark and value_free_to_mark because it could
5216 be a long time before we return to the command level and
5217 call free_all_values. We can't call free_all_values
5218 because we might be in the middle of evaluating a
5219 function call. */
5220 struct value *mark = value_mark ();
5221
5222 if (is_watchpoint (b))
5223 w = (struct watchpoint *) b;
5224 else
5225 w = NULL;
5226
5227 /* Need to select the frame, with all that implies so that
5228 the conditions will have the right context. Because we
5229 use the frame, we will not see an inlined function's
5230 variables when we arrive at a breakpoint at the start
5231 of the inlined function; the current frame will be the
5232 call site. */
5233 if (w == NULL || w->cond_exp_valid_block == NULL)
5234 select_frame (get_current_frame ());
5235 else
5236 {
5237 struct frame_info *frame;
5238
5239 /* For local watchpoint expressions, which particular
5240 instance of a local is being watched matters, so we
5241 keep track of the frame to evaluate the expression
5242 in. To evaluate the condition however, it doesn't
5243 really matter which instantiation of the function
5244 where the condition makes sense triggers the
5245 watchpoint. This allows an expression like "watch
5246 global if q > 10" set in `func', catch writes to
5247 global on all threads that call `func', or catch
5248 writes on all recursive calls of `func' by a single
5249 thread. We simply always evaluate the condition in
5250 the innermost frame that's executing where it makes
5251 sense to evaluate the condition. It seems
5252 intuitive. */
5253 frame = block_innermost_frame (w->cond_exp_valid_block);
5254 if (frame != NULL)
5255 select_frame (frame);
5256 else
5257 within_current_scope = 0;
5258 }
5259 if (within_current_scope)
5260 value_is_zero
5261 = catch_errors (breakpoint_cond_eval, cond,
5262 "Error in testing breakpoint condition:\n",
5263 RETURN_MASK_ALL);
5264 else
5265 {
5266 warning (_("Watchpoint condition cannot be tested "
5267 "in the current scope"));
5268 /* If we failed to set the right context for this
5269 watchpoint, unconditionally report it. */
5270 value_is_zero = 0;
5271 }
5272 /* FIXME-someday, should give breakpoint #. */
5273 value_free_to_mark (mark);
5274 }
5275
5276 if (cond && value_is_zero)
5277 {
5278 bs->stop = 0;
5279 }
5280 else if (b->ignore_count > 0)
5281 {
5282 b->ignore_count--;
5283 bs->stop = 0;
5284 /* Increase the hit count even though we don't stop. */
5285 ++(b->hit_count);
5286 observer_notify_breakpoint_modified (b);
5287 }
5288 }
5289
5290
5291 /* Get a bpstat associated with having just stopped at address
5292 BP_ADDR in thread PTID.
5293
5294 Determine whether we stopped at a breakpoint, etc, or whether we
5295 don't understand this stop. Result is a chain of bpstat's such
5296 that:
5297
5298 if we don't understand the stop, the result is a null pointer.
5299
5300 if we understand why we stopped, the result is not null.
5301
5302 Each element of the chain refers to a particular breakpoint or
5303 watchpoint at which we have stopped. (We may have stopped for
5304 several reasons concurrently.)
5305
5306 Each element of the chain has valid next, breakpoint_at,
5307 commands, FIXME??? fields. */
5308
5309 bpstat
5310 bpstat_stop_status (struct address_space *aspace,
5311 CORE_ADDR bp_addr, ptid_t ptid,
5312 const struct target_waitstatus *ws)
5313 {
5314 struct breakpoint *b = NULL;
5315 struct bp_location *bl;
5316 struct bp_location *loc;
5317 /* First item of allocated bpstat's. */
5318 bpstat bs_head = NULL, *bs_link = &bs_head;
5319 /* Pointer to the last thing in the chain currently. */
5320 bpstat bs;
5321 int ix;
5322 int need_remove_insert;
5323 int removed_any;
5324
5325 /* First, build the bpstat chain with locations that explain a
5326 target stop, while being careful to not set the target running,
5327 as that may invalidate locations (in particular watchpoint
5328 locations are recreated). Resuming will happen here with
5329 breakpoint conditions or watchpoint expressions that include
5330 inferior function calls. */
5331
5332 ALL_BREAKPOINTS (b)
5333 {
5334 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5335 continue;
5336
5337 for (bl = b->loc; bl != NULL; bl = bl->next)
5338 {
5339 /* For hardware watchpoints, we look only at the first
5340 location. The watchpoint_check function will work on the
5341 entire expression, not the individual locations. For
5342 read watchpoints, the watchpoints_triggered function has
5343 checked all locations already. */
5344 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5345 break;
5346
5347 if (!bl->enabled || bl->shlib_disabled)
5348 continue;
5349
5350 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5351 continue;
5352
5353 /* Come here if it's a watchpoint, or if the break address
5354 matches. */
5355
5356 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5357 explain stop. */
5358
5359 /* Assume we stop. Should we find a watchpoint that is not
5360 actually triggered, or if the condition of the breakpoint
5361 evaluates as false, we'll reset 'stop' to 0. */
5362 bs->stop = 1;
5363 bs->print = 1;
5364
5365 /* If this is a scope breakpoint, mark the associated
5366 watchpoint as triggered so that we will handle the
5367 out-of-scope event. We'll get to the watchpoint next
5368 iteration. */
5369 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5370 {
5371 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5372
5373 w->watchpoint_triggered = watch_triggered_yes;
5374 }
5375 }
5376 }
5377
5378 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5379 {
5380 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5381 {
5382 bs = bpstat_alloc (loc, &bs_link);
5383 /* For hits of moribund locations, we should just proceed. */
5384 bs->stop = 0;
5385 bs->print = 0;
5386 bs->print_it = print_it_noop;
5387 }
5388 }
5389
5390 /* A bit of special processing for shlib breakpoints. We need to
5391 process solib loading here, so that the lists of loaded and
5392 unloaded libraries are correct before we handle "catch load" and
5393 "catch unload". */
5394 for (bs = bs_head; bs != NULL; bs = bs->next)
5395 {
5396 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5397 {
5398 handle_solib_event ();
5399 break;
5400 }
5401 }
5402
5403 /* Now go through the locations that caused the target to stop, and
5404 check whether we're interested in reporting this stop to higher
5405 layers, or whether we should resume the target transparently. */
5406
5407 removed_any = 0;
5408
5409 for (bs = bs_head; bs != NULL; bs = bs->next)
5410 {
5411 if (!bs->stop)
5412 continue;
5413
5414 b = bs->breakpoint_at;
5415 b->ops->check_status (bs);
5416 if (bs->stop)
5417 {
5418 bpstat_check_breakpoint_conditions (bs, ptid);
5419
5420 if (bs->stop)
5421 {
5422 ++(b->hit_count);
5423 observer_notify_breakpoint_modified (b);
5424
5425 /* We will stop here. */
5426 if (b->disposition == disp_disable)
5427 {
5428 --(b->enable_count);
5429 if (b->enable_count <= 0
5430 && b->enable_state != bp_permanent)
5431 b->enable_state = bp_disabled;
5432 removed_any = 1;
5433 }
5434 if (b->silent)
5435 bs->print = 0;
5436 bs->commands = b->commands;
5437 incref_counted_command_line (bs->commands);
5438 if (command_line_is_silent (bs->commands
5439 ? bs->commands->commands : NULL))
5440 bs->print = 0;
5441
5442 b->ops->after_condition_true (bs);
5443 }
5444
5445 }
5446
5447 /* Print nothing for this entry if we don't stop or don't
5448 print. */
5449 if (!bs->stop || !bs->print)
5450 bs->print_it = print_it_noop;
5451 }
5452
5453 /* If we aren't stopping, the value of some hardware watchpoint may
5454 not have changed, but the intermediate memory locations we are
5455 watching may have. Don't bother if we're stopping; this will get
5456 done later. */
5457 need_remove_insert = 0;
5458 if (! bpstat_causes_stop (bs_head))
5459 for (bs = bs_head; bs != NULL; bs = bs->next)
5460 if (!bs->stop
5461 && bs->breakpoint_at
5462 && is_hardware_watchpoint (bs->breakpoint_at))
5463 {
5464 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5465
5466 update_watchpoint (w, 0 /* don't reparse. */);
5467 need_remove_insert = 1;
5468 }
5469
5470 if (need_remove_insert)
5471 update_global_location_list (1);
5472 else if (removed_any)
5473 update_global_location_list (0);
5474
5475 return bs_head;
5476 }
5477
5478 static void
5479 handle_jit_event (void)
5480 {
5481 struct frame_info *frame;
5482 struct gdbarch *gdbarch;
5483
5484 /* Switch terminal for any messages produced by
5485 breakpoint_re_set. */
5486 target_terminal_ours_for_output ();
5487
5488 frame = get_current_frame ();
5489 gdbarch = get_frame_arch (frame);
5490
5491 jit_event_handler (gdbarch);
5492
5493 target_terminal_inferior ();
5494 }
5495
5496 /* Prepare WHAT final decision for infrun. */
5497
5498 /* Decide what infrun needs to do with this bpstat. */
5499
5500 struct bpstat_what
5501 bpstat_what (bpstat bs_head)
5502 {
5503 struct bpstat_what retval;
5504 int jit_event = 0;
5505 bpstat bs;
5506
5507 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5508 retval.call_dummy = STOP_NONE;
5509 retval.is_longjmp = 0;
5510
5511 for (bs = bs_head; bs != NULL; bs = bs->next)
5512 {
5513 /* Extract this BS's action. After processing each BS, we check
5514 if its action overrides all we've seem so far. */
5515 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5516 enum bptype bptype;
5517
5518 if (bs->breakpoint_at == NULL)
5519 {
5520 /* I suspect this can happen if it was a momentary
5521 breakpoint which has since been deleted. */
5522 bptype = bp_none;
5523 }
5524 else
5525 bptype = bs->breakpoint_at->type;
5526
5527 switch (bptype)
5528 {
5529 case bp_none:
5530 break;
5531 case bp_breakpoint:
5532 case bp_hardware_breakpoint:
5533 case bp_until:
5534 case bp_finish:
5535 case bp_shlib_event:
5536 if (bs->stop)
5537 {
5538 if (bs->print)
5539 this_action = BPSTAT_WHAT_STOP_NOISY;
5540 else
5541 this_action = BPSTAT_WHAT_STOP_SILENT;
5542 }
5543 else
5544 this_action = BPSTAT_WHAT_SINGLE;
5545 break;
5546 case bp_watchpoint:
5547 case bp_hardware_watchpoint:
5548 case bp_read_watchpoint:
5549 case bp_access_watchpoint:
5550 if (bs->stop)
5551 {
5552 if (bs->print)
5553 this_action = BPSTAT_WHAT_STOP_NOISY;
5554 else
5555 this_action = BPSTAT_WHAT_STOP_SILENT;
5556 }
5557 else
5558 {
5559 /* There was a watchpoint, but we're not stopping.
5560 This requires no further action. */
5561 }
5562 break;
5563 case bp_longjmp:
5564 case bp_longjmp_call_dummy:
5565 case bp_exception:
5566 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5567 retval.is_longjmp = bptype != bp_exception;
5568 break;
5569 case bp_longjmp_resume:
5570 case bp_exception_resume:
5571 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5572 retval.is_longjmp = bptype == bp_longjmp_resume;
5573 break;
5574 case bp_step_resume:
5575 if (bs->stop)
5576 this_action = BPSTAT_WHAT_STEP_RESUME;
5577 else
5578 {
5579 /* It is for the wrong frame. */
5580 this_action = BPSTAT_WHAT_SINGLE;
5581 }
5582 break;
5583 case bp_hp_step_resume:
5584 if (bs->stop)
5585 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5586 else
5587 {
5588 /* It is for the wrong frame. */
5589 this_action = BPSTAT_WHAT_SINGLE;
5590 }
5591 break;
5592 case bp_watchpoint_scope:
5593 case bp_thread_event:
5594 case bp_overlay_event:
5595 case bp_longjmp_master:
5596 case bp_std_terminate_master:
5597 case bp_exception_master:
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_catchpoint:
5601 if (bs->stop)
5602 {
5603 if (bs->print)
5604 this_action = BPSTAT_WHAT_STOP_NOISY;
5605 else
5606 this_action = BPSTAT_WHAT_STOP_SILENT;
5607 }
5608 else
5609 {
5610 /* There was a catchpoint, but we're not stopping.
5611 This requires no further action. */
5612 }
5613 break;
5614 case bp_jit_event:
5615 jit_event = 1;
5616 this_action = BPSTAT_WHAT_SINGLE;
5617 break;
5618 case bp_call_dummy:
5619 /* Make sure the action is stop (silent or noisy),
5620 so infrun.c pops the dummy frame. */
5621 retval.call_dummy = STOP_STACK_DUMMY;
5622 this_action = BPSTAT_WHAT_STOP_SILENT;
5623 break;
5624 case bp_std_terminate:
5625 /* Make sure the action is stop (silent or noisy),
5626 so infrun.c pops the dummy frame. */
5627 retval.call_dummy = STOP_STD_TERMINATE;
5628 this_action = BPSTAT_WHAT_STOP_SILENT;
5629 break;
5630 case bp_tracepoint:
5631 case bp_fast_tracepoint:
5632 case bp_static_tracepoint:
5633 /* Tracepoint hits should not be reported back to GDB, and
5634 if one got through somehow, it should have been filtered
5635 out already. */
5636 internal_error (__FILE__, __LINE__,
5637 _("bpstat_what: tracepoint encountered"));
5638 break;
5639 case bp_gnu_ifunc_resolver:
5640 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5641 this_action = BPSTAT_WHAT_SINGLE;
5642 break;
5643 case bp_gnu_ifunc_resolver_return:
5644 /* The breakpoint will be removed, execution will restart from the
5645 PC of the former breakpoint. */
5646 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5647 break;
5648
5649 case bp_dprintf:
5650 if (bs->stop)
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 else
5653 this_action = BPSTAT_WHAT_SINGLE;
5654 break;
5655
5656 default:
5657 internal_error (__FILE__, __LINE__,
5658 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5659 }
5660
5661 retval.main_action = max (retval.main_action, this_action);
5662 }
5663
5664 /* These operations may affect the bs->breakpoint_at state so they are
5665 delayed after MAIN_ACTION is decided above. */
5666
5667 if (jit_event)
5668 {
5669 if (debug_infrun)
5670 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5671
5672 handle_jit_event ();
5673 }
5674
5675 for (bs = bs_head; bs != NULL; bs = bs->next)
5676 {
5677 struct breakpoint *b = bs->breakpoint_at;
5678
5679 if (b == NULL)
5680 continue;
5681 switch (b->type)
5682 {
5683 case bp_gnu_ifunc_resolver:
5684 gnu_ifunc_resolver_stop (b);
5685 break;
5686 case bp_gnu_ifunc_resolver_return:
5687 gnu_ifunc_resolver_return_stop (b);
5688 break;
5689 }
5690 }
5691
5692 return retval;
5693 }
5694
5695 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5696 without hardware support). This isn't related to a specific bpstat,
5697 just to things like whether watchpoints are set. */
5698
5699 int
5700 bpstat_should_step (void)
5701 {
5702 struct breakpoint *b;
5703
5704 ALL_BREAKPOINTS (b)
5705 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5706 return 1;
5707 return 0;
5708 }
5709
5710 int
5711 bpstat_causes_stop (bpstat bs)
5712 {
5713 for (; bs != NULL; bs = bs->next)
5714 if (bs->stop)
5715 return 1;
5716
5717 return 0;
5718 }
5719
5720 \f
5721
5722 /* Compute a string of spaces suitable to indent the next line
5723 so it starts at the position corresponding to the table column
5724 named COL_NAME in the currently active table of UIOUT. */
5725
5726 static char *
5727 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5728 {
5729 static char wrap_indent[80];
5730 int i, total_width, width, align;
5731 char *text;
5732
5733 total_width = 0;
5734 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5735 {
5736 if (strcmp (text, col_name) == 0)
5737 {
5738 gdb_assert (total_width < sizeof wrap_indent);
5739 memset (wrap_indent, ' ', total_width);
5740 wrap_indent[total_width] = 0;
5741
5742 return wrap_indent;
5743 }
5744
5745 total_width += width + 1;
5746 }
5747
5748 return NULL;
5749 }
5750
5751 /* Determine if the locations of this breakpoint will have their conditions
5752 evaluated by the target, host or a mix of both. Returns the following:
5753
5754 "host": Host evals condition.
5755 "host or target": Host or Target evals condition.
5756 "target": Target evals condition.
5757 */
5758
5759 static const char *
5760 bp_condition_evaluator (struct breakpoint *b)
5761 {
5762 struct bp_location *bl;
5763 char host_evals = 0;
5764 char target_evals = 0;
5765
5766 if (!b)
5767 return NULL;
5768
5769 if (!is_breakpoint (b))
5770 return NULL;
5771
5772 if (gdb_evaluates_breakpoint_condition_p ()
5773 || !target_supports_evaluation_of_breakpoint_conditions ())
5774 return condition_evaluation_host;
5775
5776 for (bl = b->loc; bl; bl = bl->next)
5777 {
5778 if (bl->cond_bytecode)
5779 target_evals++;
5780 else
5781 host_evals++;
5782 }
5783
5784 if (host_evals && target_evals)
5785 return condition_evaluation_both;
5786 else if (target_evals)
5787 return condition_evaluation_target;
5788 else
5789 return condition_evaluation_host;
5790 }
5791
5792 /* Determine the breakpoint location's condition evaluator. This is
5793 similar to bp_condition_evaluator, but for locations. */
5794
5795 static const char *
5796 bp_location_condition_evaluator (struct bp_location *bl)
5797 {
5798 if (bl && !is_breakpoint (bl->owner))
5799 return NULL;
5800
5801 if (gdb_evaluates_breakpoint_condition_p ()
5802 || !target_supports_evaluation_of_breakpoint_conditions ())
5803 return condition_evaluation_host;
5804
5805 if (bl && bl->cond_bytecode)
5806 return condition_evaluation_target;
5807 else
5808 return condition_evaluation_host;
5809 }
5810
5811 /* Print the LOC location out of the list of B->LOC locations. */
5812
5813 static void
5814 print_breakpoint_location (struct breakpoint *b,
5815 struct bp_location *loc)
5816 {
5817 struct ui_out *uiout = current_uiout;
5818 struct cleanup *old_chain = save_current_program_space ();
5819
5820 if (loc != NULL && loc->shlib_disabled)
5821 loc = NULL;
5822
5823 if (loc != NULL)
5824 set_current_program_space (loc->pspace);
5825
5826 if (b->display_canonical)
5827 ui_out_field_string (uiout, "what", b->addr_string);
5828 else if (loc && loc->symtab)
5829 {
5830 struct symbol *sym
5831 = find_pc_sect_function (loc->address, loc->section);
5832 if (sym)
5833 {
5834 ui_out_text (uiout, "in ");
5835 ui_out_field_string (uiout, "func",
5836 SYMBOL_PRINT_NAME (sym));
5837 ui_out_text (uiout, " ");
5838 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5839 ui_out_text (uiout, "at ");
5840 }
5841 ui_out_field_string (uiout, "file",
5842 symtab_to_filename_for_display (loc->symtab));
5843 ui_out_text (uiout, ":");
5844
5845 if (ui_out_is_mi_like_p (uiout))
5846 ui_out_field_string (uiout, "fullname",
5847 symtab_to_fullname (loc->symtab));
5848
5849 ui_out_field_int (uiout, "line", loc->line_number);
5850 }
5851 else if (loc)
5852 {
5853 struct ui_file *stb = mem_fileopen ();
5854 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5855
5856 print_address_symbolic (loc->gdbarch, loc->address, stb,
5857 demangle, "");
5858 ui_out_field_stream (uiout, "at", stb);
5859
5860 do_cleanups (stb_chain);
5861 }
5862 else
5863 ui_out_field_string (uiout, "pending", b->addr_string);
5864
5865 if (loc && is_breakpoint (b)
5866 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5867 && bp_condition_evaluator (b) == condition_evaluation_both)
5868 {
5869 ui_out_text (uiout, " (");
5870 ui_out_field_string (uiout, "evaluated-by",
5871 bp_location_condition_evaluator (loc));
5872 ui_out_text (uiout, ")");
5873 }
5874
5875 do_cleanups (old_chain);
5876 }
5877
5878 static const char *
5879 bptype_string (enum bptype type)
5880 {
5881 struct ep_type_description
5882 {
5883 enum bptype type;
5884 char *description;
5885 };
5886 static struct ep_type_description bptypes[] =
5887 {
5888 {bp_none, "?deleted?"},
5889 {bp_breakpoint, "breakpoint"},
5890 {bp_hardware_breakpoint, "hw breakpoint"},
5891 {bp_until, "until"},
5892 {bp_finish, "finish"},
5893 {bp_watchpoint, "watchpoint"},
5894 {bp_hardware_watchpoint, "hw watchpoint"},
5895 {bp_read_watchpoint, "read watchpoint"},
5896 {bp_access_watchpoint, "acc watchpoint"},
5897 {bp_longjmp, "longjmp"},
5898 {bp_longjmp_resume, "longjmp resume"},
5899 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5900 {bp_exception, "exception"},
5901 {bp_exception_resume, "exception resume"},
5902 {bp_step_resume, "step resume"},
5903 {bp_hp_step_resume, "high-priority step resume"},
5904 {bp_watchpoint_scope, "watchpoint scope"},
5905 {bp_call_dummy, "call dummy"},
5906 {bp_std_terminate, "std::terminate"},
5907 {bp_shlib_event, "shlib events"},
5908 {bp_thread_event, "thread events"},
5909 {bp_overlay_event, "overlay events"},
5910 {bp_longjmp_master, "longjmp master"},
5911 {bp_std_terminate_master, "std::terminate master"},
5912 {bp_exception_master, "exception master"},
5913 {bp_catchpoint, "catchpoint"},
5914 {bp_tracepoint, "tracepoint"},
5915 {bp_fast_tracepoint, "fast tracepoint"},
5916 {bp_static_tracepoint, "static tracepoint"},
5917 {bp_dprintf, "dprintf"},
5918 {bp_jit_event, "jit events"},
5919 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5920 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5921 };
5922
5923 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5924 || ((int) type != bptypes[(int) type].type))
5925 internal_error (__FILE__, __LINE__,
5926 _("bptypes table does not describe type #%d."),
5927 (int) type);
5928
5929 return bptypes[(int) type].description;
5930 }
5931
5932 /* For MI, output a field named 'thread-groups' with a list as the value.
5933 For CLI, prefix the list with the string 'inf'. */
5934
5935 static void
5936 output_thread_groups (struct ui_out *uiout,
5937 const char *field_name,
5938 VEC(int) *inf_num,
5939 int mi_only)
5940 {
5941 struct cleanup *back_to;
5942 int is_mi = ui_out_is_mi_like_p (uiout);
5943 int inf;
5944 int i;
5945
5946 /* For backward compatibility, don't display inferiors in CLI unless
5947 there are several. Always display them for MI. */
5948 if (!is_mi && mi_only)
5949 return;
5950
5951 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5952
5953 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5954 {
5955 if (is_mi)
5956 {
5957 char mi_group[10];
5958
5959 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5960 ui_out_field_string (uiout, NULL, mi_group);
5961 }
5962 else
5963 {
5964 if (i == 0)
5965 ui_out_text (uiout, " inf ");
5966 else
5967 ui_out_text (uiout, ", ");
5968
5969 ui_out_text (uiout, plongest (inf));
5970 }
5971 }
5972
5973 do_cleanups (back_to);
5974 }
5975
5976 /* Print B to gdb_stdout. */
5977
5978 static void
5979 print_one_breakpoint_location (struct breakpoint *b,
5980 struct bp_location *loc,
5981 int loc_number,
5982 struct bp_location **last_loc,
5983 int allflag)
5984 {
5985 struct command_line *l;
5986 static char bpenables[] = "nynny";
5987
5988 struct ui_out *uiout = current_uiout;
5989 int header_of_multiple = 0;
5990 int part_of_multiple = (loc != NULL);
5991 struct value_print_options opts;
5992
5993 get_user_print_options (&opts);
5994
5995 gdb_assert (!loc || loc_number != 0);
5996 /* See comment in print_one_breakpoint concerning treatment of
5997 breakpoints with single disabled location. */
5998 if (loc == NULL
5999 && (b->loc != NULL
6000 && (b->loc->next != NULL || !b->loc->enabled)))
6001 header_of_multiple = 1;
6002 if (loc == NULL)
6003 loc = b->loc;
6004
6005 annotate_record ();
6006
6007 /* 1 */
6008 annotate_field (0);
6009 if (part_of_multiple)
6010 {
6011 char *formatted;
6012 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6013 ui_out_field_string (uiout, "number", formatted);
6014 xfree (formatted);
6015 }
6016 else
6017 {
6018 ui_out_field_int (uiout, "number", b->number);
6019 }
6020
6021 /* 2 */
6022 annotate_field (1);
6023 if (part_of_multiple)
6024 ui_out_field_skip (uiout, "type");
6025 else
6026 ui_out_field_string (uiout, "type", bptype_string (b->type));
6027
6028 /* 3 */
6029 annotate_field (2);
6030 if (part_of_multiple)
6031 ui_out_field_skip (uiout, "disp");
6032 else
6033 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6034
6035
6036 /* 4 */
6037 annotate_field (3);
6038 if (part_of_multiple)
6039 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6040 else
6041 ui_out_field_fmt (uiout, "enabled", "%c",
6042 bpenables[(int) b->enable_state]);
6043 ui_out_spaces (uiout, 2);
6044
6045
6046 /* 5 and 6 */
6047 if (b->ops != NULL && b->ops->print_one != NULL)
6048 {
6049 /* Although the print_one can possibly print all locations,
6050 calling it here is not likely to get any nice result. So,
6051 make sure there's just one location. */
6052 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6053 b->ops->print_one (b, last_loc);
6054 }
6055 else
6056 switch (b->type)
6057 {
6058 case bp_none:
6059 internal_error (__FILE__, __LINE__,
6060 _("print_one_breakpoint: bp_none encountered\n"));
6061 break;
6062
6063 case bp_watchpoint:
6064 case bp_hardware_watchpoint:
6065 case bp_read_watchpoint:
6066 case bp_access_watchpoint:
6067 {
6068 struct watchpoint *w = (struct watchpoint *) b;
6069
6070 /* Field 4, the address, is omitted (which makes the columns
6071 not line up too nicely with the headers, but the effect
6072 is relatively readable). */
6073 if (opts.addressprint)
6074 ui_out_field_skip (uiout, "addr");
6075 annotate_field (5);
6076 ui_out_field_string (uiout, "what", w->exp_string);
6077 }
6078 break;
6079
6080 case bp_breakpoint:
6081 case bp_hardware_breakpoint:
6082 case bp_until:
6083 case bp_finish:
6084 case bp_longjmp:
6085 case bp_longjmp_resume:
6086 case bp_longjmp_call_dummy:
6087 case bp_exception:
6088 case bp_exception_resume:
6089 case bp_step_resume:
6090 case bp_hp_step_resume:
6091 case bp_watchpoint_scope:
6092 case bp_call_dummy:
6093 case bp_std_terminate:
6094 case bp_shlib_event:
6095 case bp_thread_event:
6096 case bp_overlay_event:
6097 case bp_longjmp_master:
6098 case bp_std_terminate_master:
6099 case bp_exception_master:
6100 case bp_tracepoint:
6101 case bp_fast_tracepoint:
6102 case bp_static_tracepoint:
6103 case bp_dprintf:
6104 case bp_jit_event:
6105 case bp_gnu_ifunc_resolver:
6106 case bp_gnu_ifunc_resolver_return:
6107 if (opts.addressprint)
6108 {
6109 annotate_field (4);
6110 if (header_of_multiple)
6111 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6112 else if (b->loc == NULL || loc->shlib_disabled)
6113 ui_out_field_string (uiout, "addr", "<PENDING>");
6114 else
6115 ui_out_field_core_addr (uiout, "addr",
6116 loc->gdbarch, loc->address);
6117 }
6118 annotate_field (5);
6119 if (!header_of_multiple)
6120 print_breakpoint_location (b, loc);
6121 if (b->loc)
6122 *last_loc = b->loc;
6123 break;
6124 }
6125
6126
6127 if (loc != NULL && !header_of_multiple)
6128 {
6129 struct inferior *inf;
6130 VEC(int) *inf_num = NULL;
6131 int mi_only = 1;
6132
6133 ALL_INFERIORS (inf)
6134 {
6135 if (inf->pspace == loc->pspace)
6136 VEC_safe_push (int, inf_num, inf->num);
6137 }
6138
6139 /* For backward compatibility, don't display inferiors in CLI unless
6140 there are several. Always display for MI. */
6141 if (allflag
6142 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6143 && (number_of_program_spaces () > 1
6144 || number_of_inferiors () > 1)
6145 /* LOC is for existing B, it cannot be in
6146 moribund_locations and thus having NULL OWNER. */
6147 && loc->owner->type != bp_catchpoint))
6148 mi_only = 0;
6149 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6150 VEC_free (int, inf_num);
6151 }
6152
6153 if (!part_of_multiple)
6154 {
6155 if (b->thread != -1)
6156 {
6157 /* FIXME: This seems to be redundant and lost here; see the
6158 "stop only in" line a little further down. */
6159 ui_out_text (uiout, " thread ");
6160 ui_out_field_int (uiout, "thread", b->thread);
6161 }
6162 else if (b->task != 0)
6163 {
6164 ui_out_text (uiout, " task ");
6165 ui_out_field_int (uiout, "task", b->task);
6166 }
6167 }
6168
6169 ui_out_text (uiout, "\n");
6170
6171 if (!part_of_multiple)
6172 b->ops->print_one_detail (b, uiout);
6173
6174 if (part_of_multiple && frame_id_p (b->frame_id))
6175 {
6176 annotate_field (6);
6177 ui_out_text (uiout, "\tstop only in stack frame at ");
6178 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6179 the frame ID. */
6180 ui_out_field_core_addr (uiout, "frame",
6181 b->gdbarch, b->frame_id.stack_addr);
6182 ui_out_text (uiout, "\n");
6183 }
6184
6185 if (!part_of_multiple && b->cond_string)
6186 {
6187 annotate_field (7);
6188 if (is_tracepoint (b))
6189 ui_out_text (uiout, "\ttrace only if ");
6190 else
6191 ui_out_text (uiout, "\tstop only if ");
6192 ui_out_field_string (uiout, "cond", b->cond_string);
6193
6194 /* Print whether the target is doing the breakpoint's condition
6195 evaluation. If GDB is doing the evaluation, don't print anything. */
6196 if (is_breakpoint (b)
6197 && breakpoint_condition_evaluation_mode ()
6198 == condition_evaluation_target)
6199 {
6200 ui_out_text (uiout, " (");
6201 ui_out_field_string (uiout, "evaluated-by",
6202 bp_condition_evaluator (b));
6203 ui_out_text (uiout, " evals)");
6204 }
6205 ui_out_text (uiout, "\n");
6206 }
6207
6208 if (!part_of_multiple && b->thread != -1)
6209 {
6210 /* FIXME should make an annotation for this. */
6211 ui_out_text (uiout, "\tstop only in thread ");
6212 ui_out_field_int (uiout, "thread", b->thread);
6213 ui_out_text (uiout, "\n");
6214 }
6215
6216 if (!part_of_multiple)
6217 {
6218 if (b->hit_count)
6219 {
6220 /* FIXME should make an annotation for this. */
6221 if (is_catchpoint (b))
6222 ui_out_text (uiout, "\tcatchpoint");
6223 else if (is_tracepoint (b))
6224 ui_out_text (uiout, "\ttracepoint");
6225 else
6226 ui_out_text (uiout, "\tbreakpoint");
6227 ui_out_text (uiout, " already hit ");
6228 ui_out_field_int (uiout, "times", b->hit_count);
6229 if (b->hit_count == 1)
6230 ui_out_text (uiout, " time\n");
6231 else
6232 ui_out_text (uiout, " times\n");
6233 }
6234 else
6235 {
6236 /* Output the count also if it is zero, but only if this is mi. */
6237 if (ui_out_is_mi_like_p (uiout))
6238 ui_out_field_int (uiout, "times", b->hit_count);
6239 }
6240 }
6241
6242 if (!part_of_multiple && b->ignore_count)
6243 {
6244 annotate_field (8);
6245 ui_out_text (uiout, "\tignore next ");
6246 ui_out_field_int (uiout, "ignore", b->ignore_count);
6247 ui_out_text (uiout, " hits\n");
6248 }
6249
6250 /* Note that an enable count of 1 corresponds to "enable once"
6251 behavior, which is reported by the combination of enablement and
6252 disposition, so we don't need to mention it here. */
6253 if (!part_of_multiple && b->enable_count > 1)
6254 {
6255 annotate_field (8);
6256 ui_out_text (uiout, "\tdisable after ");
6257 /* Tweak the wording to clarify that ignore and enable counts
6258 are distinct, and have additive effect. */
6259 if (b->ignore_count)
6260 ui_out_text (uiout, "additional ");
6261 else
6262 ui_out_text (uiout, "next ");
6263 ui_out_field_int (uiout, "enable", b->enable_count);
6264 ui_out_text (uiout, " hits\n");
6265 }
6266
6267 if (!part_of_multiple && is_tracepoint (b))
6268 {
6269 struct tracepoint *tp = (struct tracepoint *) b;
6270
6271 if (tp->traceframe_usage)
6272 {
6273 ui_out_text (uiout, "\ttrace buffer usage ");
6274 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6275 ui_out_text (uiout, " bytes\n");
6276 }
6277 }
6278
6279 l = b->commands ? b->commands->commands : NULL;
6280 if (!part_of_multiple && l)
6281 {
6282 struct cleanup *script_chain;
6283
6284 annotate_field (9);
6285 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6286 print_command_lines (uiout, l, 4);
6287 do_cleanups (script_chain);
6288 }
6289
6290 if (is_tracepoint (b))
6291 {
6292 struct tracepoint *t = (struct tracepoint *) b;
6293
6294 if (!part_of_multiple && t->pass_count)
6295 {
6296 annotate_field (10);
6297 ui_out_text (uiout, "\tpass count ");
6298 ui_out_field_int (uiout, "pass", t->pass_count);
6299 ui_out_text (uiout, " \n");
6300 }
6301
6302 /* Don't display it when tracepoint or tracepoint location is
6303 pending. */
6304 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6305 {
6306 annotate_field (11);
6307
6308 if (ui_out_is_mi_like_p (uiout))
6309 ui_out_field_string (uiout, "installed",
6310 loc->inserted ? "y" : "n");
6311 else
6312 {
6313 if (loc->inserted)
6314 ui_out_text (uiout, "\t");
6315 else
6316 ui_out_text (uiout, "\tnot ");
6317 ui_out_text (uiout, "installed on target\n");
6318 }
6319 }
6320 }
6321
6322 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6323 {
6324 if (is_watchpoint (b))
6325 {
6326 struct watchpoint *w = (struct watchpoint *) b;
6327
6328 ui_out_field_string (uiout, "original-location", w->exp_string);
6329 }
6330 else if (b->addr_string)
6331 ui_out_field_string (uiout, "original-location", b->addr_string);
6332 }
6333 }
6334
6335 static void
6336 print_one_breakpoint (struct breakpoint *b,
6337 struct bp_location **last_loc,
6338 int allflag)
6339 {
6340 struct cleanup *bkpt_chain;
6341 struct ui_out *uiout = current_uiout;
6342
6343 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6344
6345 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6346 do_cleanups (bkpt_chain);
6347
6348 /* If this breakpoint has custom print function,
6349 it's already printed. Otherwise, print individual
6350 locations, if any. */
6351 if (b->ops == NULL || b->ops->print_one == NULL)
6352 {
6353 /* If breakpoint has a single location that is disabled, we
6354 print it as if it had several locations, since otherwise it's
6355 hard to represent "breakpoint enabled, location disabled"
6356 situation.
6357
6358 Note that while hardware watchpoints have several locations
6359 internally, that's not a property exposed to user. */
6360 if (b->loc
6361 && !is_hardware_watchpoint (b)
6362 && (b->loc->next || !b->loc->enabled))
6363 {
6364 struct bp_location *loc;
6365 int n = 1;
6366
6367 for (loc = b->loc; loc; loc = loc->next, ++n)
6368 {
6369 struct cleanup *inner2 =
6370 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6371 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6372 do_cleanups (inner2);
6373 }
6374 }
6375 }
6376 }
6377
6378 static int
6379 breakpoint_address_bits (struct breakpoint *b)
6380 {
6381 int print_address_bits = 0;
6382 struct bp_location *loc;
6383
6384 for (loc = b->loc; loc; loc = loc->next)
6385 {
6386 int addr_bit;
6387
6388 /* Software watchpoints that aren't watching memory don't have
6389 an address to print. */
6390 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6391 continue;
6392
6393 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6394 if (addr_bit > print_address_bits)
6395 print_address_bits = addr_bit;
6396 }
6397
6398 return print_address_bits;
6399 }
6400
6401 struct captured_breakpoint_query_args
6402 {
6403 int bnum;
6404 };
6405
6406 static int
6407 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6408 {
6409 struct captured_breakpoint_query_args *args = data;
6410 struct breakpoint *b;
6411 struct bp_location *dummy_loc = NULL;
6412
6413 ALL_BREAKPOINTS (b)
6414 {
6415 if (args->bnum == b->number)
6416 {
6417 print_one_breakpoint (b, &dummy_loc, 0);
6418 return GDB_RC_OK;
6419 }
6420 }
6421 return GDB_RC_NONE;
6422 }
6423
6424 enum gdb_rc
6425 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6426 char **error_message)
6427 {
6428 struct captured_breakpoint_query_args args;
6429
6430 args.bnum = bnum;
6431 /* For the moment we don't trust print_one_breakpoint() to not throw
6432 an error. */
6433 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6434 error_message, RETURN_MASK_ALL) < 0)
6435 return GDB_RC_FAIL;
6436 else
6437 return GDB_RC_OK;
6438 }
6439
6440 /* Return true if this breakpoint was set by the user, false if it is
6441 internal or momentary. */
6442
6443 int
6444 user_breakpoint_p (struct breakpoint *b)
6445 {
6446 return b->number > 0;
6447 }
6448
6449 /* Print information on user settable breakpoint (watchpoint, etc)
6450 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6451 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6452 FILTER is non-NULL, call it on each breakpoint and only include the
6453 ones for which it returns non-zero. Return the total number of
6454 breakpoints listed. */
6455
6456 static int
6457 breakpoint_1 (char *args, int allflag,
6458 int (*filter) (const struct breakpoint *))
6459 {
6460 struct breakpoint *b;
6461 struct bp_location *last_loc = NULL;
6462 int nr_printable_breakpoints;
6463 struct cleanup *bkpttbl_chain;
6464 struct value_print_options opts;
6465 int print_address_bits = 0;
6466 int print_type_col_width = 14;
6467 struct ui_out *uiout = current_uiout;
6468
6469 get_user_print_options (&opts);
6470
6471 /* Compute the number of rows in the table, as well as the size
6472 required for address fields. */
6473 nr_printable_breakpoints = 0;
6474 ALL_BREAKPOINTS (b)
6475 {
6476 /* If we have a filter, only list the breakpoints it accepts. */
6477 if (filter && !filter (b))
6478 continue;
6479
6480 /* If we have an "args" string, it is a list of breakpoints to
6481 accept. Skip the others. */
6482 if (args != NULL && *args != '\0')
6483 {
6484 if (allflag && parse_and_eval_long (args) != b->number)
6485 continue;
6486 if (!allflag && !number_is_in_list (args, b->number))
6487 continue;
6488 }
6489
6490 if (allflag || user_breakpoint_p (b))
6491 {
6492 int addr_bit, type_len;
6493
6494 addr_bit = breakpoint_address_bits (b);
6495 if (addr_bit > print_address_bits)
6496 print_address_bits = addr_bit;
6497
6498 type_len = strlen (bptype_string (b->type));
6499 if (type_len > print_type_col_width)
6500 print_type_col_width = type_len;
6501
6502 nr_printable_breakpoints++;
6503 }
6504 }
6505
6506 if (opts.addressprint)
6507 bkpttbl_chain
6508 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6509 nr_printable_breakpoints,
6510 "BreakpointTable");
6511 else
6512 bkpttbl_chain
6513 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6514 nr_printable_breakpoints,
6515 "BreakpointTable");
6516
6517 if (nr_printable_breakpoints > 0)
6518 annotate_breakpoints_headers ();
6519 if (nr_printable_breakpoints > 0)
6520 annotate_field (0);
6521 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6522 if (nr_printable_breakpoints > 0)
6523 annotate_field (1);
6524 ui_out_table_header (uiout, print_type_col_width, ui_left,
6525 "type", "Type"); /* 2 */
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (2);
6528 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6529 if (nr_printable_breakpoints > 0)
6530 annotate_field (3);
6531 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6532 if (opts.addressprint)
6533 {
6534 if (nr_printable_breakpoints > 0)
6535 annotate_field (4);
6536 if (print_address_bits <= 32)
6537 ui_out_table_header (uiout, 10, ui_left,
6538 "addr", "Address"); /* 5 */
6539 else
6540 ui_out_table_header (uiout, 18, ui_left,
6541 "addr", "Address"); /* 5 */
6542 }
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (5);
6545 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6546 ui_out_table_body (uiout);
6547 if (nr_printable_breakpoints > 0)
6548 annotate_breakpoints_table ();
6549
6550 ALL_BREAKPOINTS (b)
6551 {
6552 QUIT;
6553 /* If we have a filter, only list the breakpoints it accepts. */
6554 if (filter && !filter (b))
6555 continue;
6556
6557 /* If we have an "args" string, it is a list of breakpoints to
6558 accept. Skip the others. */
6559
6560 if (args != NULL && *args != '\0')
6561 {
6562 if (allflag) /* maintenance info breakpoint */
6563 {
6564 if (parse_and_eval_long (args) != b->number)
6565 continue;
6566 }
6567 else /* all others */
6568 {
6569 if (!number_is_in_list (args, b->number))
6570 continue;
6571 }
6572 }
6573 /* We only print out user settable breakpoints unless the
6574 allflag is set. */
6575 if (allflag || user_breakpoint_p (b))
6576 print_one_breakpoint (b, &last_loc, allflag);
6577 }
6578
6579 do_cleanups (bkpttbl_chain);
6580
6581 if (nr_printable_breakpoints == 0)
6582 {
6583 /* If there's a filter, let the caller decide how to report
6584 empty list. */
6585 if (!filter)
6586 {
6587 if (args == NULL || *args == '\0')
6588 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6589 else
6590 ui_out_message (uiout, 0,
6591 "No breakpoint or watchpoint matching '%s'.\n",
6592 args);
6593 }
6594 }
6595 else
6596 {
6597 if (last_loc && !server_command)
6598 set_next_address (last_loc->gdbarch, last_loc->address);
6599 }
6600
6601 /* FIXME? Should this be moved up so that it is only called when
6602 there have been breakpoints? */
6603 annotate_breakpoints_table_end ();
6604
6605 return nr_printable_breakpoints;
6606 }
6607
6608 /* Display the value of default-collect in a way that is generally
6609 compatible with the breakpoint list. */
6610
6611 static void
6612 default_collect_info (void)
6613 {
6614 struct ui_out *uiout = current_uiout;
6615
6616 /* If it has no value (which is frequently the case), say nothing; a
6617 message like "No default-collect." gets in user's face when it's
6618 not wanted. */
6619 if (!*default_collect)
6620 return;
6621
6622 /* The following phrase lines up nicely with per-tracepoint collect
6623 actions. */
6624 ui_out_text (uiout, "default collect ");
6625 ui_out_field_string (uiout, "default-collect", default_collect);
6626 ui_out_text (uiout, " \n");
6627 }
6628
6629 static void
6630 breakpoints_info (char *args, int from_tty)
6631 {
6632 breakpoint_1 (args, 0, NULL);
6633
6634 default_collect_info ();
6635 }
6636
6637 static void
6638 watchpoints_info (char *args, int from_tty)
6639 {
6640 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6641 struct ui_out *uiout = current_uiout;
6642
6643 if (num_printed == 0)
6644 {
6645 if (args == NULL || *args == '\0')
6646 ui_out_message (uiout, 0, "No watchpoints.\n");
6647 else
6648 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6649 }
6650 }
6651
6652 static void
6653 maintenance_info_breakpoints (char *args, int from_tty)
6654 {
6655 breakpoint_1 (args, 1, NULL);
6656
6657 default_collect_info ();
6658 }
6659
6660 static int
6661 breakpoint_has_pc (struct breakpoint *b,
6662 struct program_space *pspace,
6663 CORE_ADDR pc, struct obj_section *section)
6664 {
6665 struct bp_location *bl = b->loc;
6666
6667 for (; bl; bl = bl->next)
6668 {
6669 if (bl->pspace == pspace
6670 && bl->address == pc
6671 && (!overlay_debugging || bl->section == section))
6672 return 1;
6673 }
6674 return 0;
6675 }
6676
6677 /* Print a message describing any user-breakpoints set at PC. This
6678 concerns with logical breakpoints, so we match program spaces, not
6679 address spaces. */
6680
6681 static void
6682 describe_other_breakpoints (struct gdbarch *gdbarch,
6683 struct program_space *pspace, CORE_ADDR pc,
6684 struct obj_section *section, int thread)
6685 {
6686 int others = 0;
6687 struct breakpoint *b;
6688
6689 ALL_BREAKPOINTS (b)
6690 others += (user_breakpoint_p (b)
6691 && breakpoint_has_pc (b, pspace, pc, section));
6692 if (others > 0)
6693 {
6694 if (others == 1)
6695 printf_filtered (_("Note: breakpoint "));
6696 else /* if (others == ???) */
6697 printf_filtered (_("Note: breakpoints "));
6698 ALL_BREAKPOINTS (b)
6699 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6700 {
6701 others--;
6702 printf_filtered ("%d", b->number);
6703 if (b->thread == -1 && thread != -1)
6704 printf_filtered (" (all threads)");
6705 else if (b->thread != -1)
6706 printf_filtered (" (thread %d)", b->thread);
6707 printf_filtered ("%s%s ",
6708 ((b->enable_state == bp_disabled
6709 || b->enable_state == bp_call_disabled)
6710 ? " (disabled)"
6711 : b->enable_state == bp_permanent
6712 ? " (permanent)"
6713 : ""),
6714 (others > 1) ? ","
6715 : ((others == 1) ? " and" : ""));
6716 }
6717 printf_filtered (_("also set at pc "));
6718 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6719 printf_filtered (".\n");
6720 }
6721 }
6722 \f
6723
6724 /* Return true iff it is meaningful to use the address member of
6725 BPT. For some breakpoint types, the address member is irrelevant
6726 and it makes no sense to attempt to compare it to other addresses
6727 (or use it for any other purpose either).
6728
6729 More specifically, each of the following breakpoint types will
6730 always have a zero valued address and we don't want to mark
6731 breakpoints of any of these types to be a duplicate of an actual
6732 breakpoint at address zero:
6733
6734 bp_watchpoint
6735 bp_catchpoint
6736
6737 */
6738
6739 static int
6740 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6741 {
6742 enum bptype type = bpt->type;
6743
6744 return (type != bp_watchpoint && type != bp_catchpoint);
6745 }
6746
6747 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6748 true if LOC1 and LOC2 represent the same watchpoint location. */
6749
6750 static int
6751 watchpoint_locations_match (struct bp_location *loc1,
6752 struct bp_location *loc2)
6753 {
6754 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6755 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6756
6757 /* Both of them must exist. */
6758 gdb_assert (w1 != NULL);
6759 gdb_assert (w2 != NULL);
6760
6761 /* If the target can evaluate the condition expression in hardware,
6762 then we we need to insert both watchpoints even if they are at
6763 the same place. Otherwise the watchpoint will only trigger when
6764 the condition of whichever watchpoint was inserted evaluates to
6765 true, not giving a chance for GDB to check the condition of the
6766 other watchpoint. */
6767 if ((w1->cond_exp
6768 && target_can_accel_watchpoint_condition (loc1->address,
6769 loc1->length,
6770 loc1->watchpoint_type,
6771 w1->cond_exp))
6772 || (w2->cond_exp
6773 && target_can_accel_watchpoint_condition (loc2->address,
6774 loc2->length,
6775 loc2->watchpoint_type,
6776 w2->cond_exp)))
6777 return 0;
6778
6779 /* Note that this checks the owner's type, not the location's. In
6780 case the target does not support read watchpoints, but does
6781 support access watchpoints, we'll have bp_read_watchpoint
6782 watchpoints with hw_access locations. Those should be considered
6783 duplicates of hw_read locations. The hw_read locations will
6784 become hw_access locations later. */
6785 return (loc1->owner->type == loc2->owner->type
6786 && loc1->pspace->aspace == loc2->pspace->aspace
6787 && loc1->address == loc2->address
6788 && loc1->length == loc2->length);
6789 }
6790
6791 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6792 same breakpoint location. In most targets, this can only be true
6793 if ASPACE1 matches ASPACE2. On targets that have global
6794 breakpoints, the address space doesn't really matter. */
6795
6796 static int
6797 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6798 struct address_space *aspace2, CORE_ADDR addr2)
6799 {
6800 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6801 || aspace1 == aspace2)
6802 && addr1 == addr2);
6803 }
6804
6805 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6806 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6807 matches ASPACE2. On targets that have global breakpoints, the address
6808 space doesn't really matter. */
6809
6810 static int
6811 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6812 int len1, struct address_space *aspace2,
6813 CORE_ADDR addr2)
6814 {
6815 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6816 || aspace1 == aspace2)
6817 && addr2 >= addr1 && addr2 < addr1 + len1);
6818 }
6819
6820 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6821 a ranged breakpoint. In most targets, a match happens only if ASPACE
6822 matches the breakpoint's address space. On targets that have global
6823 breakpoints, the address space doesn't really matter. */
6824
6825 static int
6826 breakpoint_location_address_match (struct bp_location *bl,
6827 struct address_space *aspace,
6828 CORE_ADDR addr)
6829 {
6830 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6831 aspace, addr)
6832 || (bl->length
6833 && breakpoint_address_match_range (bl->pspace->aspace,
6834 bl->address, bl->length,
6835 aspace, addr)));
6836 }
6837
6838 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6839 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6840 true, otherwise returns false. */
6841
6842 static int
6843 tracepoint_locations_match (struct bp_location *loc1,
6844 struct bp_location *loc2)
6845 {
6846 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6847 /* Since tracepoint locations are never duplicated with others', tracepoint
6848 locations at the same address of different tracepoints are regarded as
6849 different locations. */
6850 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6851 else
6852 return 0;
6853 }
6854
6855 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6856 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6857 represent the same location. */
6858
6859 static int
6860 breakpoint_locations_match (struct bp_location *loc1,
6861 struct bp_location *loc2)
6862 {
6863 int hw_point1, hw_point2;
6864
6865 /* Both of them must not be in moribund_locations. */
6866 gdb_assert (loc1->owner != NULL);
6867 gdb_assert (loc2->owner != NULL);
6868
6869 hw_point1 = is_hardware_watchpoint (loc1->owner);
6870 hw_point2 = is_hardware_watchpoint (loc2->owner);
6871
6872 if (hw_point1 != hw_point2)
6873 return 0;
6874 else if (hw_point1)
6875 return watchpoint_locations_match (loc1, loc2);
6876 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6877 return tracepoint_locations_match (loc1, loc2);
6878 else
6879 /* We compare bp_location.length in order to cover ranged breakpoints. */
6880 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6881 loc2->pspace->aspace, loc2->address)
6882 && loc1->length == loc2->length);
6883 }
6884
6885 static void
6886 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6887 int bnum, int have_bnum)
6888 {
6889 /* The longest string possibly returned by hex_string_custom
6890 is 50 chars. These must be at least that big for safety. */
6891 char astr1[64];
6892 char astr2[64];
6893
6894 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6895 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6896 if (have_bnum)
6897 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6898 bnum, astr1, astr2);
6899 else
6900 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6901 }
6902
6903 /* Adjust a breakpoint's address to account for architectural
6904 constraints on breakpoint placement. Return the adjusted address.
6905 Note: Very few targets require this kind of adjustment. For most
6906 targets, this function is simply the identity function. */
6907
6908 static CORE_ADDR
6909 adjust_breakpoint_address (struct gdbarch *gdbarch,
6910 CORE_ADDR bpaddr, enum bptype bptype)
6911 {
6912 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6913 {
6914 /* Very few targets need any kind of breakpoint adjustment. */
6915 return bpaddr;
6916 }
6917 else if (bptype == bp_watchpoint
6918 || bptype == bp_hardware_watchpoint
6919 || bptype == bp_read_watchpoint
6920 || bptype == bp_access_watchpoint
6921 || bptype == bp_catchpoint)
6922 {
6923 /* Watchpoints and the various bp_catch_* eventpoints should not
6924 have their addresses modified. */
6925 return bpaddr;
6926 }
6927 else
6928 {
6929 CORE_ADDR adjusted_bpaddr;
6930
6931 /* Some targets have architectural constraints on the placement
6932 of breakpoint instructions. Obtain the adjusted address. */
6933 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6934
6935 /* An adjusted breakpoint address can significantly alter
6936 a user's expectations. Print a warning if an adjustment
6937 is required. */
6938 if (adjusted_bpaddr != bpaddr)
6939 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6940
6941 return adjusted_bpaddr;
6942 }
6943 }
6944
6945 void
6946 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6947 struct breakpoint *owner)
6948 {
6949 memset (loc, 0, sizeof (*loc));
6950
6951 gdb_assert (ops != NULL);
6952
6953 loc->ops = ops;
6954 loc->owner = owner;
6955 loc->cond = NULL;
6956 loc->cond_bytecode = NULL;
6957 loc->shlib_disabled = 0;
6958 loc->enabled = 1;
6959
6960 switch (owner->type)
6961 {
6962 case bp_breakpoint:
6963 case bp_until:
6964 case bp_finish:
6965 case bp_longjmp:
6966 case bp_longjmp_resume:
6967 case bp_longjmp_call_dummy:
6968 case bp_exception:
6969 case bp_exception_resume:
6970 case bp_step_resume:
6971 case bp_hp_step_resume:
6972 case bp_watchpoint_scope:
6973 case bp_call_dummy:
6974 case bp_std_terminate:
6975 case bp_shlib_event:
6976 case bp_thread_event:
6977 case bp_overlay_event:
6978 case bp_jit_event:
6979 case bp_longjmp_master:
6980 case bp_std_terminate_master:
6981 case bp_exception_master:
6982 case bp_gnu_ifunc_resolver:
6983 case bp_gnu_ifunc_resolver_return:
6984 case bp_dprintf:
6985 loc->loc_type = bp_loc_software_breakpoint;
6986 mark_breakpoint_location_modified (loc);
6987 break;
6988 case bp_hardware_breakpoint:
6989 loc->loc_type = bp_loc_hardware_breakpoint;
6990 mark_breakpoint_location_modified (loc);
6991 break;
6992 case bp_hardware_watchpoint:
6993 case bp_read_watchpoint:
6994 case bp_access_watchpoint:
6995 loc->loc_type = bp_loc_hardware_watchpoint;
6996 break;
6997 case bp_watchpoint:
6998 case bp_catchpoint:
6999 case bp_tracepoint:
7000 case bp_fast_tracepoint:
7001 case bp_static_tracepoint:
7002 loc->loc_type = bp_loc_other;
7003 break;
7004 default:
7005 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7006 }
7007
7008 loc->refc = 1;
7009 }
7010
7011 /* Allocate a struct bp_location. */
7012
7013 static struct bp_location *
7014 allocate_bp_location (struct breakpoint *bpt)
7015 {
7016 return bpt->ops->allocate_location (bpt);
7017 }
7018
7019 static void
7020 free_bp_location (struct bp_location *loc)
7021 {
7022 loc->ops->dtor (loc);
7023 xfree (loc);
7024 }
7025
7026 /* Increment reference count. */
7027
7028 static void
7029 incref_bp_location (struct bp_location *bl)
7030 {
7031 ++bl->refc;
7032 }
7033
7034 /* Decrement reference count. If the reference count reaches 0,
7035 destroy the bp_location. Sets *BLP to NULL. */
7036
7037 static void
7038 decref_bp_location (struct bp_location **blp)
7039 {
7040 gdb_assert ((*blp)->refc > 0);
7041
7042 if (--(*blp)->refc == 0)
7043 free_bp_location (*blp);
7044 *blp = NULL;
7045 }
7046
7047 /* Add breakpoint B at the end of the global breakpoint chain. */
7048
7049 static void
7050 add_to_breakpoint_chain (struct breakpoint *b)
7051 {
7052 struct breakpoint *b1;
7053
7054 /* Add this breakpoint to the end of the chain so that a list of
7055 breakpoints will come out in order of increasing numbers. */
7056
7057 b1 = breakpoint_chain;
7058 if (b1 == 0)
7059 breakpoint_chain = b;
7060 else
7061 {
7062 while (b1->next)
7063 b1 = b1->next;
7064 b1->next = b;
7065 }
7066 }
7067
7068 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7069
7070 static void
7071 init_raw_breakpoint_without_location (struct breakpoint *b,
7072 struct gdbarch *gdbarch,
7073 enum bptype bptype,
7074 const struct breakpoint_ops *ops)
7075 {
7076 memset (b, 0, sizeof (*b));
7077
7078 gdb_assert (ops != NULL);
7079
7080 b->ops = ops;
7081 b->type = bptype;
7082 b->gdbarch = gdbarch;
7083 b->language = current_language->la_language;
7084 b->input_radix = input_radix;
7085 b->thread = -1;
7086 b->enable_state = bp_enabled;
7087 b->next = 0;
7088 b->silent = 0;
7089 b->ignore_count = 0;
7090 b->commands = NULL;
7091 b->frame_id = null_frame_id;
7092 b->condition_not_parsed = 0;
7093 b->py_bp_object = NULL;
7094 b->related_breakpoint = b;
7095 }
7096
7097 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7098 that has type BPTYPE and has no locations as yet. */
7099
7100 static struct breakpoint *
7101 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7102 enum bptype bptype,
7103 const struct breakpoint_ops *ops)
7104 {
7105 struct breakpoint *b = XNEW (struct breakpoint);
7106
7107 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7108 add_to_breakpoint_chain (b);
7109 return b;
7110 }
7111
7112 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7113 resolutions should be made as the user specified the location explicitly
7114 enough. */
7115
7116 static void
7117 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7118 {
7119 gdb_assert (loc->owner != NULL);
7120
7121 if (loc->owner->type == bp_breakpoint
7122 || loc->owner->type == bp_hardware_breakpoint
7123 || is_tracepoint (loc->owner))
7124 {
7125 int is_gnu_ifunc;
7126 const char *function_name;
7127 CORE_ADDR func_addr;
7128
7129 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7130 &func_addr, NULL, &is_gnu_ifunc);
7131
7132 if (is_gnu_ifunc && !explicit_loc)
7133 {
7134 struct breakpoint *b = loc->owner;
7135
7136 gdb_assert (loc->pspace == current_program_space);
7137 if (gnu_ifunc_resolve_name (function_name,
7138 &loc->requested_address))
7139 {
7140 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7141 loc->address = adjust_breakpoint_address (loc->gdbarch,
7142 loc->requested_address,
7143 b->type);
7144 }
7145 else if (b->type == bp_breakpoint && b->loc == loc
7146 && loc->next == NULL && b->related_breakpoint == b)
7147 {
7148 /* Create only the whole new breakpoint of this type but do not
7149 mess more complicated breakpoints with multiple locations. */
7150 b->type = bp_gnu_ifunc_resolver;
7151 /* Remember the resolver's address for use by the return
7152 breakpoint. */
7153 loc->related_address = func_addr;
7154 }
7155 }
7156
7157 if (function_name)
7158 loc->function_name = xstrdup (function_name);
7159 }
7160 }
7161
7162 /* Attempt to determine architecture of location identified by SAL. */
7163 struct gdbarch *
7164 get_sal_arch (struct symtab_and_line sal)
7165 {
7166 if (sal.section)
7167 return get_objfile_arch (sal.section->objfile);
7168 if (sal.symtab)
7169 return get_objfile_arch (sal.symtab->objfile);
7170
7171 return NULL;
7172 }
7173
7174 /* Low level routine for partially initializing a breakpoint of type
7175 BPTYPE. The newly created breakpoint's address, section, source
7176 file name, and line number are provided by SAL.
7177
7178 It is expected that the caller will complete the initialization of
7179 the newly created breakpoint struct as well as output any status
7180 information regarding the creation of a new breakpoint. */
7181
7182 static void
7183 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7184 struct symtab_and_line sal, enum bptype bptype,
7185 const struct breakpoint_ops *ops)
7186 {
7187 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7188
7189 add_location_to_breakpoint (b, &sal);
7190
7191 if (bptype != bp_catchpoint)
7192 gdb_assert (sal.pspace != NULL);
7193
7194 /* Store the program space that was used to set the breakpoint,
7195 except for ordinary breakpoints, which are independent of the
7196 program space. */
7197 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7198 b->pspace = sal.pspace;
7199 }
7200
7201 /* set_raw_breakpoint is a low level routine for allocating and
7202 partially initializing a breakpoint of type BPTYPE. The newly
7203 created breakpoint's address, section, source file name, and line
7204 number are provided by SAL. The newly created and partially
7205 initialized breakpoint is added to the breakpoint chain and
7206 is also returned as the value of this function.
7207
7208 It is expected that the caller will complete the initialization of
7209 the newly created breakpoint struct as well as output any status
7210 information regarding the creation of a new breakpoint. In
7211 particular, set_raw_breakpoint does NOT set the breakpoint
7212 number! Care should be taken to not allow an error to occur
7213 prior to completing the initialization of the breakpoint. If this
7214 should happen, a bogus breakpoint will be left on the chain. */
7215
7216 struct breakpoint *
7217 set_raw_breakpoint (struct gdbarch *gdbarch,
7218 struct symtab_and_line sal, enum bptype bptype,
7219 const struct breakpoint_ops *ops)
7220 {
7221 struct breakpoint *b = XNEW (struct breakpoint);
7222
7223 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7224 add_to_breakpoint_chain (b);
7225 return b;
7226 }
7227
7228
7229 /* Note that the breakpoint object B describes a permanent breakpoint
7230 instruction, hard-wired into the inferior's code. */
7231 void
7232 make_breakpoint_permanent (struct breakpoint *b)
7233 {
7234 struct bp_location *bl;
7235
7236 b->enable_state = bp_permanent;
7237
7238 /* By definition, permanent breakpoints are already present in the
7239 code. Mark all locations as inserted. For now,
7240 make_breakpoint_permanent is called in just one place, so it's
7241 hard to say if it's reasonable to have permanent breakpoint with
7242 multiple locations or not, but it's easy to implement. */
7243 for (bl = b->loc; bl; bl = bl->next)
7244 bl->inserted = 1;
7245 }
7246
7247 /* Call this routine when stepping and nexting to enable a breakpoint
7248 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7249 initiated the operation. */
7250
7251 void
7252 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7253 {
7254 struct breakpoint *b, *b_tmp;
7255 int thread = tp->num;
7256
7257 /* To avoid having to rescan all objfile symbols at every step,
7258 we maintain a list of continually-inserted but always disabled
7259 longjmp "master" breakpoints. Here, we simply create momentary
7260 clones of those and enable them for the requested thread. */
7261 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7262 if (b->pspace == current_program_space
7263 && (b->type == bp_longjmp_master
7264 || b->type == bp_exception_master))
7265 {
7266 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7267 struct breakpoint *clone;
7268
7269 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7270 after their removal. */
7271 clone = momentary_breakpoint_from_master (b, type,
7272 &longjmp_breakpoint_ops);
7273 clone->thread = thread;
7274 }
7275
7276 tp->initiating_frame = frame;
7277 }
7278
7279 /* Delete all longjmp breakpoints from THREAD. */
7280 void
7281 delete_longjmp_breakpoint (int thread)
7282 {
7283 struct breakpoint *b, *b_tmp;
7284
7285 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7286 if (b->type == bp_longjmp || b->type == bp_exception)
7287 {
7288 if (b->thread == thread)
7289 delete_breakpoint (b);
7290 }
7291 }
7292
7293 void
7294 delete_longjmp_breakpoint_at_next_stop (int thread)
7295 {
7296 struct breakpoint *b, *b_tmp;
7297
7298 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7299 if (b->type == bp_longjmp || b->type == bp_exception)
7300 {
7301 if (b->thread == thread)
7302 b->disposition = disp_del_at_next_stop;
7303 }
7304 }
7305
7306 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7307 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7308 pointer to any of them. Return NULL if this system cannot place longjmp
7309 breakpoints. */
7310
7311 struct breakpoint *
7312 set_longjmp_breakpoint_for_call_dummy (void)
7313 {
7314 struct breakpoint *b, *retval = NULL;
7315
7316 ALL_BREAKPOINTS (b)
7317 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7318 {
7319 struct breakpoint *new_b;
7320
7321 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7322 &momentary_breakpoint_ops);
7323 new_b->thread = pid_to_thread_id (inferior_ptid);
7324
7325 /* Link NEW_B into the chain of RETVAL breakpoints. */
7326
7327 gdb_assert (new_b->related_breakpoint == new_b);
7328 if (retval == NULL)
7329 retval = new_b;
7330 new_b->related_breakpoint = retval;
7331 while (retval->related_breakpoint != new_b->related_breakpoint)
7332 retval = retval->related_breakpoint;
7333 retval->related_breakpoint = new_b;
7334 }
7335
7336 return retval;
7337 }
7338
7339 /* Verify all existing dummy frames and their associated breakpoints for
7340 THREAD. Remove those which can no longer be found in the current frame
7341 stack.
7342
7343 You should call this function only at places where it is safe to currently
7344 unwind the whole stack. Failed stack unwind would discard live dummy
7345 frames. */
7346
7347 void
7348 check_longjmp_breakpoint_for_call_dummy (int thread)
7349 {
7350 struct breakpoint *b, *b_tmp;
7351
7352 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7353 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7354 {
7355 struct breakpoint *dummy_b = b->related_breakpoint;
7356
7357 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7358 dummy_b = dummy_b->related_breakpoint;
7359 if (dummy_b->type != bp_call_dummy
7360 || frame_find_by_id (dummy_b->frame_id) != NULL)
7361 continue;
7362
7363 dummy_frame_discard (dummy_b->frame_id);
7364
7365 while (b->related_breakpoint != b)
7366 {
7367 if (b_tmp == b->related_breakpoint)
7368 b_tmp = b->related_breakpoint->next;
7369 delete_breakpoint (b->related_breakpoint);
7370 }
7371 delete_breakpoint (b);
7372 }
7373 }
7374
7375 void
7376 enable_overlay_breakpoints (void)
7377 {
7378 struct breakpoint *b;
7379
7380 ALL_BREAKPOINTS (b)
7381 if (b->type == bp_overlay_event)
7382 {
7383 b->enable_state = bp_enabled;
7384 update_global_location_list (1);
7385 overlay_events_enabled = 1;
7386 }
7387 }
7388
7389 void
7390 disable_overlay_breakpoints (void)
7391 {
7392 struct breakpoint *b;
7393
7394 ALL_BREAKPOINTS (b)
7395 if (b->type == bp_overlay_event)
7396 {
7397 b->enable_state = bp_disabled;
7398 update_global_location_list (0);
7399 overlay_events_enabled = 0;
7400 }
7401 }
7402
7403 /* Set an active std::terminate breakpoint for each std::terminate
7404 master breakpoint. */
7405 void
7406 set_std_terminate_breakpoint (void)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->pspace == current_program_space
7412 && b->type == bp_std_terminate_master)
7413 {
7414 momentary_breakpoint_from_master (b, bp_std_terminate,
7415 &momentary_breakpoint_ops);
7416 }
7417 }
7418
7419 /* Delete all the std::terminate breakpoints. */
7420 void
7421 delete_std_terminate_breakpoint (void)
7422 {
7423 struct breakpoint *b, *b_tmp;
7424
7425 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7426 if (b->type == bp_std_terminate)
7427 delete_breakpoint (b);
7428 }
7429
7430 struct breakpoint *
7431 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7432 {
7433 struct breakpoint *b;
7434
7435 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7436 &internal_breakpoint_ops);
7437
7438 b->enable_state = bp_enabled;
7439 /* addr_string has to be used or breakpoint_re_set will delete me. */
7440 b->addr_string
7441 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7442
7443 update_global_location_list_nothrow (1);
7444
7445 return b;
7446 }
7447
7448 void
7449 remove_thread_event_breakpoints (void)
7450 {
7451 struct breakpoint *b, *b_tmp;
7452
7453 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7454 if (b->type == bp_thread_event
7455 && b->loc->pspace == current_program_space)
7456 delete_breakpoint (b);
7457 }
7458
7459 struct lang_and_radix
7460 {
7461 enum language lang;
7462 int radix;
7463 };
7464
7465 /* Create a breakpoint for JIT code registration and unregistration. */
7466
7467 struct breakpoint *
7468 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7469 {
7470 struct breakpoint *b;
7471
7472 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7473 &internal_breakpoint_ops);
7474 update_global_location_list_nothrow (1);
7475 return b;
7476 }
7477
7478 /* Remove JIT code registration and unregistration breakpoint(s). */
7479
7480 void
7481 remove_jit_event_breakpoints (void)
7482 {
7483 struct breakpoint *b, *b_tmp;
7484
7485 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7486 if (b->type == bp_jit_event
7487 && b->loc->pspace == current_program_space)
7488 delete_breakpoint (b);
7489 }
7490
7491 void
7492 remove_solib_event_breakpoints (void)
7493 {
7494 struct breakpoint *b, *b_tmp;
7495
7496 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7497 if (b->type == bp_shlib_event
7498 && b->loc->pspace == current_program_space)
7499 delete_breakpoint (b);
7500 }
7501
7502 struct breakpoint *
7503 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7504 {
7505 struct breakpoint *b;
7506
7507 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7508 &internal_breakpoint_ops);
7509 update_global_location_list_nothrow (1);
7510 return b;
7511 }
7512
7513 /* Disable any breakpoints that are on code in shared libraries. Only
7514 apply to enabled breakpoints, disabled ones can just stay disabled. */
7515
7516 void
7517 disable_breakpoints_in_shlibs (void)
7518 {
7519 struct bp_location *loc, **locp_tmp;
7520
7521 ALL_BP_LOCATIONS (loc, locp_tmp)
7522 {
7523 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7524 struct breakpoint *b = loc->owner;
7525
7526 /* We apply the check to all breakpoints, including disabled for
7527 those with loc->duplicate set. This is so that when breakpoint
7528 becomes enabled, or the duplicate is removed, gdb will try to
7529 insert all breakpoints. If we don't set shlib_disabled here,
7530 we'll try to insert those breakpoints and fail. */
7531 if (((b->type == bp_breakpoint)
7532 || (b->type == bp_jit_event)
7533 || (b->type == bp_hardware_breakpoint)
7534 || (is_tracepoint (b)))
7535 && loc->pspace == current_program_space
7536 && !loc->shlib_disabled
7537 && solib_name_from_address (loc->pspace, loc->address)
7538 )
7539 {
7540 loc->shlib_disabled = 1;
7541 }
7542 }
7543 }
7544
7545 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7546 notification of unloaded_shlib. Only apply to enabled breakpoints,
7547 disabled ones can just stay disabled. */
7548
7549 static void
7550 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7551 {
7552 struct bp_location *loc, **locp_tmp;
7553 int disabled_shlib_breaks = 0;
7554
7555 /* SunOS a.out shared libraries are always mapped, so do not
7556 disable breakpoints; they will only be reported as unloaded
7557 through clear_solib when GDB discards its shared library
7558 list. See clear_solib for more information. */
7559 if (exec_bfd != NULL
7560 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7561 return;
7562
7563 ALL_BP_LOCATIONS (loc, locp_tmp)
7564 {
7565 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7566 struct breakpoint *b = loc->owner;
7567
7568 if (solib->pspace == loc->pspace
7569 && !loc->shlib_disabled
7570 && (((b->type == bp_breakpoint
7571 || b->type == bp_jit_event
7572 || b->type == bp_hardware_breakpoint)
7573 && (loc->loc_type == bp_loc_hardware_breakpoint
7574 || loc->loc_type == bp_loc_software_breakpoint))
7575 || is_tracepoint (b))
7576 && solib_contains_address_p (solib, loc->address))
7577 {
7578 loc->shlib_disabled = 1;
7579 /* At this point, we cannot rely on remove_breakpoint
7580 succeeding so we must mark the breakpoint as not inserted
7581 to prevent future errors occurring in remove_breakpoints. */
7582 loc->inserted = 0;
7583
7584 /* This may cause duplicate notifications for the same breakpoint. */
7585 observer_notify_breakpoint_modified (b);
7586
7587 if (!disabled_shlib_breaks)
7588 {
7589 target_terminal_ours_for_output ();
7590 warning (_("Temporarily disabling breakpoints "
7591 "for unloaded shared library \"%s\""),
7592 solib->so_name);
7593 }
7594 disabled_shlib_breaks = 1;
7595 }
7596 }
7597 }
7598
7599 /* Disable any breakpoints and tracepoints in OBJFILE upon
7600 notification of free_objfile. Only apply to enabled breakpoints,
7601 disabled ones can just stay disabled. */
7602
7603 static void
7604 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7605 {
7606 struct breakpoint *b;
7607
7608 if (objfile == NULL)
7609 return;
7610
7611 /* If the file is a shared library not loaded by the user then
7612 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7613 was called. In that case there is no need to take action again. */
7614 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7615 return;
7616
7617 ALL_BREAKPOINTS (b)
7618 {
7619 struct bp_location *loc;
7620 int bp_modified = 0;
7621
7622 if (!is_breakpoint (b) && !is_tracepoint (b))
7623 continue;
7624
7625 for (loc = b->loc; loc != NULL; loc = loc->next)
7626 {
7627 CORE_ADDR loc_addr = loc->address;
7628
7629 if (loc->loc_type != bp_loc_hardware_breakpoint
7630 && loc->loc_type != bp_loc_software_breakpoint)
7631 continue;
7632
7633 if (loc->shlib_disabled != 0)
7634 continue;
7635
7636 if (objfile->pspace != loc->pspace)
7637 continue;
7638
7639 if (loc->loc_type != bp_loc_hardware_breakpoint
7640 && loc->loc_type != bp_loc_software_breakpoint)
7641 continue;
7642
7643 if (is_addr_in_objfile (loc_addr, objfile))
7644 {
7645 loc->shlib_disabled = 1;
7646 loc->inserted = 0;
7647
7648 mark_breakpoint_location_modified (loc);
7649
7650 bp_modified = 1;
7651 }
7652 }
7653
7654 if (bp_modified)
7655 observer_notify_breakpoint_modified (b);
7656 }
7657 }
7658
7659 /* FORK & VFORK catchpoints. */
7660
7661 /* An instance of this type is used to represent a fork or vfork
7662 catchpoint. It includes a "struct breakpoint" as a kind of base
7663 class; users downcast to "struct breakpoint *" when needed. A
7664 breakpoint is really of this type iff its ops pointer points to
7665 CATCH_FORK_BREAKPOINT_OPS. */
7666
7667 struct fork_catchpoint
7668 {
7669 /* The base class. */
7670 struct breakpoint base;
7671
7672 /* Process id of a child process whose forking triggered this
7673 catchpoint. This field is only valid immediately after this
7674 catchpoint has triggered. */
7675 ptid_t forked_inferior_pid;
7676 };
7677
7678 /* Implement the "insert" breakpoint_ops method for fork
7679 catchpoints. */
7680
7681 static int
7682 insert_catch_fork (struct bp_location *bl)
7683 {
7684 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7685 }
7686
7687 /* Implement the "remove" breakpoint_ops method for fork
7688 catchpoints. */
7689
7690 static int
7691 remove_catch_fork (struct bp_location *bl)
7692 {
7693 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7694 }
7695
7696 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7697 catchpoints. */
7698
7699 static int
7700 breakpoint_hit_catch_fork (const struct bp_location *bl,
7701 struct address_space *aspace, CORE_ADDR bp_addr,
7702 const struct target_waitstatus *ws)
7703 {
7704 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7705
7706 if (ws->kind != TARGET_WAITKIND_FORKED)
7707 return 0;
7708
7709 c->forked_inferior_pid = ws->value.related_pid;
7710 return 1;
7711 }
7712
7713 /* Implement the "print_it" breakpoint_ops method for fork
7714 catchpoints. */
7715
7716 static enum print_stop_action
7717 print_it_catch_fork (bpstat bs)
7718 {
7719 struct ui_out *uiout = current_uiout;
7720 struct breakpoint *b = bs->breakpoint_at;
7721 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7722
7723 annotate_catchpoint (b->number);
7724 if (b->disposition == disp_del)
7725 ui_out_text (uiout, "\nTemporary catchpoint ");
7726 else
7727 ui_out_text (uiout, "\nCatchpoint ");
7728 if (ui_out_is_mi_like_p (uiout))
7729 {
7730 ui_out_field_string (uiout, "reason",
7731 async_reason_lookup (EXEC_ASYNC_FORK));
7732 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7733 }
7734 ui_out_field_int (uiout, "bkptno", b->number);
7735 ui_out_text (uiout, " (forked process ");
7736 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7737 ui_out_text (uiout, "), ");
7738 return PRINT_SRC_AND_LOC;
7739 }
7740
7741 /* Implement the "print_one" breakpoint_ops method for fork
7742 catchpoints. */
7743
7744 static void
7745 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7746 {
7747 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7748 struct value_print_options opts;
7749 struct ui_out *uiout = current_uiout;
7750
7751 get_user_print_options (&opts);
7752
7753 /* Field 4, the address, is omitted (which makes the columns not
7754 line up too nicely with the headers, but the effect is relatively
7755 readable). */
7756 if (opts.addressprint)
7757 ui_out_field_skip (uiout, "addr");
7758 annotate_field (5);
7759 ui_out_text (uiout, "fork");
7760 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7761 {
7762 ui_out_text (uiout, ", process ");
7763 ui_out_field_int (uiout, "what",
7764 ptid_get_pid (c->forked_inferior_pid));
7765 ui_out_spaces (uiout, 1);
7766 }
7767
7768 if (ui_out_is_mi_like_p (uiout))
7769 ui_out_field_string (uiout, "catch-type", "fork");
7770 }
7771
7772 /* Implement the "print_mention" breakpoint_ops method for fork
7773 catchpoints. */
7774
7775 static void
7776 print_mention_catch_fork (struct breakpoint *b)
7777 {
7778 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7779 }
7780
7781 /* Implement the "print_recreate" breakpoint_ops method for fork
7782 catchpoints. */
7783
7784 static void
7785 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7786 {
7787 fprintf_unfiltered (fp, "catch fork");
7788 print_recreate_thread (b, fp);
7789 }
7790
7791 /* The breakpoint_ops structure to be used in fork catchpoints. */
7792
7793 static struct breakpoint_ops catch_fork_breakpoint_ops;
7794
7795 /* Implement the "insert" breakpoint_ops method for vfork
7796 catchpoints. */
7797
7798 static int
7799 insert_catch_vfork (struct bp_location *bl)
7800 {
7801 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7802 }
7803
7804 /* Implement the "remove" breakpoint_ops method for vfork
7805 catchpoints. */
7806
7807 static int
7808 remove_catch_vfork (struct bp_location *bl)
7809 {
7810 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7811 }
7812
7813 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7814 catchpoints. */
7815
7816 static int
7817 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7818 struct address_space *aspace, CORE_ADDR bp_addr,
7819 const struct target_waitstatus *ws)
7820 {
7821 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7822
7823 if (ws->kind != TARGET_WAITKIND_VFORKED)
7824 return 0;
7825
7826 c->forked_inferior_pid = ws->value.related_pid;
7827 return 1;
7828 }
7829
7830 /* Implement the "print_it" breakpoint_ops method for vfork
7831 catchpoints. */
7832
7833 static enum print_stop_action
7834 print_it_catch_vfork (bpstat bs)
7835 {
7836 struct ui_out *uiout = current_uiout;
7837 struct breakpoint *b = bs->breakpoint_at;
7838 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7839
7840 annotate_catchpoint (b->number);
7841 if (b->disposition == disp_del)
7842 ui_out_text (uiout, "\nTemporary catchpoint ");
7843 else
7844 ui_out_text (uiout, "\nCatchpoint ");
7845 if (ui_out_is_mi_like_p (uiout))
7846 {
7847 ui_out_field_string (uiout, "reason",
7848 async_reason_lookup (EXEC_ASYNC_VFORK));
7849 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7850 }
7851 ui_out_field_int (uiout, "bkptno", b->number);
7852 ui_out_text (uiout, " (vforked process ");
7853 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7854 ui_out_text (uiout, "), ");
7855 return PRINT_SRC_AND_LOC;
7856 }
7857
7858 /* Implement the "print_one" breakpoint_ops method for vfork
7859 catchpoints. */
7860
7861 static void
7862 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7863 {
7864 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7865 struct value_print_options opts;
7866 struct ui_out *uiout = current_uiout;
7867
7868 get_user_print_options (&opts);
7869 /* Field 4, the address, is omitted (which makes the columns not
7870 line up too nicely with the headers, but the effect is relatively
7871 readable). */
7872 if (opts.addressprint)
7873 ui_out_field_skip (uiout, "addr");
7874 annotate_field (5);
7875 ui_out_text (uiout, "vfork");
7876 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7877 {
7878 ui_out_text (uiout, ", process ");
7879 ui_out_field_int (uiout, "what",
7880 ptid_get_pid (c->forked_inferior_pid));
7881 ui_out_spaces (uiout, 1);
7882 }
7883
7884 if (ui_out_is_mi_like_p (uiout))
7885 ui_out_field_string (uiout, "catch-type", "vfork");
7886 }
7887
7888 /* Implement the "print_mention" breakpoint_ops method for vfork
7889 catchpoints. */
7890
7891 static void
7892 print_mention_catch_vfork (struct breakpoint *b)
7893 {
7894 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7895 }
7896
7897 /* Implement the "print_recreate" breakpoint_ops method for vfork
7898 catchpoints. */
7899
7900 static void
7901 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7902 {
7903 fprintf_unfiltered (fp, "catch vfork");
7904 print_recreate_thread (b, fp);
7905 }
7906
7907 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7908
7909 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7910
7911 /* An instance of this type is used to represent an solib catchpoint.
7912 It includes a "struct breakpoint" as a kind of base class; users
7913 downcast to "struct breakpoint *" when needed. A breakpoint is
7914 really of this type iff its ops pointer points to
7915 CATCH_SOLIB_BREAKPOINT_OPS. */
7916
7917 struct solib_catchpoint
7918 {
7919 /* The base class. */
7920 struct breakpoint base;
7921
7922 /* True for "catch load", false for "catch unload". */
7923 unsigned char is_load;
7924
7925 /* Regular expression to match, if any. COMPILED is only valid when
7926 REGEX is non-NULL. */
7927 char *regex;
7928 regex_t compiled;
7929 };
7930
7931 static void
7932 dtor_catch_solib (struct breakpoint *b)
7933 {
7934 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7935
7936 if (self->regex)
7937 regfree (&self->compiled);
7938 xfree (self->regex);
7939
7940 base_breakpoint_ops.dtor (b);
7941 }
7942
7943 static int
7944 insert_catch_solib (struct bp_location *ignore)
7945 {
7946 return 0;
7947 }
7948
7949 static int
7950 remove_catch_solib (struct bp_location *ignore)
7951 {
7952 return 0;
7953 }
7954
7955 static int
7956 breakpoint_hit_catch_solib (const struct bp_location *bl,
7957 struct address_space *aspace,
7958 CORE_ADDR bp_addr,
7959 const struct target_waitstatus *ws)
7960 {
7961 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7962 struct breakpoint *other;
7963
7964 if (ws->kind == TARGET_WAITKIND_LOADED)
7965 return 1;
7966
7967 ALL_BREAKPOINTS (other)
7968 {
7969 struct bp_location *other_bl;
7970
7971 if (other == bl->owner)
7972 continue;
7973
7974 if (other->type != bp_shlib_event)
7975 continue;
7976
7977 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7978 continue;
7979
7980 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7981 {
7982 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7983 return 1;
7984 }
7985 }
7986
7987 return 0;
7988 }
7989
7990 static void
7991 check_status_catch_solib (struct bpstats *bs)
7992 {
7993 struct solib_catchpoint *self
7994 = (struct solib_catchpoint *) bs->breakpoint_at;
7995 int ix;
7996
7997 if (self->is_load)
7998 {
7999 struct so_list *iter;
8000
8001 for (ix = 0;
8002 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8003 ix, iter);
8004 ++ix)
8005 {
8006 if (!self->regex
8007 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8008 return;
8009 }
8010 }
8011 else
8012 {
8013 char *iter;
8014
8015 for (ix = 0;
8016 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8017 ix, iter);
8018 ++ix)
8019 {
8020 if (!self->regex
8021 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8022 return;
8023 }
8024 }
8025
8026 bs->stop = 0;
8027 bs->print_it = print_it_noop;
8028 }
8029
8030 static enum print_stop_action
8031 print_it_catch_solib (bpstat bs)
8032 {
8033 struct breakpoint *b = bs->breakpoint_at;
8034 struct ui_out *uiout = current_uiout;
8035
8036 annotate_catchpoint (b->number);
8037 if (b->disposition == disp_del)
8038 ui_out_text (uiout, "\nTemporary catchpoint ");
8039 else
8040 ui_out_text (uiout, "\nCatchpoint ");
8041 ui_out_field_int (uiout, "bkptno", b->number);
8042 ui_out_text (uiout, "\n");
8043 if (ui_out_is_mi_like_p (uiout))
8044 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8045 print_solib_event (1);
8046 return PRINT_SRC_AND_LOC;
8047 }
8048
8049 static void
8050 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8051 {
8052 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8053 struct value_print_options opts;
8054 struct ui_out *uiout = current_uiout;
8055 char *msg;
8056
8057 get_user_print_options (&opts);
8058 /* Field 4, the address, is omitted (which makes the columns not
8059 line up too nicely with the headers, but the effect is relatively
8060 readable). */
8061 if (opts.addressprint)
8062 {
8063 annotate_field (4);
8064 ui_out_field_skip (uiout, "addr");
8065 }
8066
8067 annotate_field (5);
8068 if (self->is_load)
8069 {
8070 if (self->regex)
8071 msg = xstrprintf (_("load of library matching %s"), self->regex);
8072 else
8073 msg = xstrdup (_("load of library"));
8074 }
8075 else
8076 {
8077 if (self->regex)
8078 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8079 else
8080 msg = xstrdup (_("unload of library"));
8081 }
8082 ui_out_field_string (uiout, "what", msg);
8083 xfree (msg);
8084
8085 if (ui_out_is_mi_like_p (uiout))
8086 ui_out_field_string (uiout, "catch-type",
8087 self->is_load ? "load" : "unload");
8088 }
8089
8090 static void
8091 print_mention_catch_solib (struct breakpoint *b)
8092 {
8093 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8094
8095 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8096 self->is_load ? "load" : "unload");
8097 }
8098
8099 static void
8100 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8101 {
8102 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8103
8104 fprintf_unfiltered (fp, "%s %s",
8105 b->disposition == disp_del ? "tcatch" : "catch",
8106 self->is_load ? "load" : "unload");
8107 if (self->regex)
8108 fprintf_unfiltered (fp, " %s", self->regex);
8109 fprintf_unfiltered (fp, "\n");
8110 }
8111
8112 static struct breakpoint_ops catch_solib_breakpoint_ops;
8113
8114 /* Shared helper function (MI and CLI) for creating and installing
8115 a shared object event catchpoint. If IS_LOAD is non-zero then
8116 the events to be caught are load events, otherwise they are
8117 unload events. If IS_TEMP is non-zero the catchpoint is a
8118 temporary one. If ENABLED is non-zero the catchpoint is
8119 created in an enabled state. */
8120
8121 void
8122 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8123 {
8124 struct solib_catchpoint *c;
8125 struct gdbarch *gdbarch = get_current_arch ();
8126 struct cleanup *cleanup;
8127
8128 if (!arg)
8129 arg = "";
8130 arg = skip_spaces (arg);
8131
8132 c = XCNEW (struct solib_catchpoint);
8133 cleanup = make_cleanup (xfree, c);
8134
8135 if (*arg != '\0')
8136 {
8137 int errcode;
8138
8139 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8140 if (errcode != 0)
8141 {
8142 char *err = get_regcomp_error (errcode, &c->compiled);
8143
8144 make_cleanup (xfree, err);
8145 error (_("Invalid regexp (%s): %s"), err, arg);
8146 }
8147 c->regex = xstrdup (arg);
8148 }
8149
8150 c->is_load = is_load;
8151 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8152 &catch_solib_breakpoint_ops);
8153
8154 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8155
8156 discard_cleanups (cleanup);
8157 install_breakpoint (0, &c->base, 1);
8158 }
8159
8160 /* A helper function that does all the work for "catch load" and
8161 "catch unload". */
8162
8163 static void
8164 catch_load_or_unload (char *arg, int from_tty, int is_load,
8165 struct cmd_list_element *command)
8166 {
8167 int tempflag;
8168 const int enabled = 1;
8169
8170 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8171
8172 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8173 }
8174
8175 static void
8176 catch_load_command_1 (char *arg, int from_tty,
8177 struct cmd_list_element *command)
8178 {
8179 catch_load_or_unload (arg, from_tty, 1, command);
8180 }
8181
8182 static void
8183 catch_unload_command_1 (char *arg, int from_tty,
8184 struct cmd_list_element *command)
8185 {
8186 catch_load_or_unload (arg, from_tty, 0, command);
8187 }
8188
8189 /* An instance of this type is used to represent a syscall catchpoint.
8190 It includes a "struct breakpoint" as a kind of base class; users
8191 downcast to "struct breakpoint *" when needed. A breakpoint is
8192 really of this type iff its ops pointer points to
8193 CATCH_SYSCALL_BREAKPOINT_OPS. */
8194
8195 struct syscall_catchpoint
8196 {
8197 /* The base class. */
8198 struct breakpoint base;
8199
8200 /* Syscall numbers used for the 'catch syscall' feature. If no
8201 syscall has been specified for filtering, its value is NULL.
8202 Otherwise, it holds a list of all syscalls to be caught. The
8203 list elements are allocated with xmalloc. */
8204 VEC(int) *syscalls_to_be_caught;
8205 };
8206
8207 /* Implement the "dtor" breakpoint_ops method for syscall
8208 catchpoints. */
8209
8210 static void
8211 dtor_catch_syscall (struct breakpoint *b)
8212 {
8213 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8214
8215 VEC_free (int, c->syscalls_to_be_caught);
8216
8217 base_breakpoint_ops.dtor (b);
8218 }
8219
8220 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8221
8222 struct catch_syscall_inferior_data
8223 {
8224 /* We keep a count of the number of times the user has requested a
8225 particular syscall to be tracked, and pass this information to the
8226 target. This lets capable targets implement filtering directly. */
8227
8228 /* Number of times that "any" syscall is requested. */
8229 int any_syscall_count;
8230
8231 /* Count of each system call. */
8232 VEC(int) *syscalls_counts;
8233
8234 /* This counts all syscall catch requests, so we can readily determine
8235 if any catching is necessary. */
8236 int total_syscalls_count;
8237 };
8238
8239 static struct catch_syscall_inferior_data*
8240 get_catch_syscall_inferior_data (struct inferior *inf)
8241 {
8242 struct catch_syscall_inferior_data *inf_data;
8243
8244 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8245 if (inf_data == NULL)
8246 {
8247 inf_data = XCNEW (struct catch_syscall_inferior_data);
8248 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8249 }
8250
8251 return inf_data;
8252 }
8253
8254 static void
8255 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8256 {
8257 xfree (arg);
8258 }
8259
8260
8261 /* Implement the "insert" breakpoint_ops method for syscall
8262 catchpoints. */
8263
8264 static int
8265 insert_catch_syscall (struct bp_location *bl)
8266 {
8267 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8268 struct inferior *inf = current_inferior ();
8269 struct catch_syscall_inferior_data *inf_data
8270 = get_catch_syscall_inferior_data (inf);
8271
8272 ++inf_data->total_syscalls_count;
8273 if (!c->syscalls_to_be_caught)
8274 ++inf_data->any_syscall_count;
8275 else
8276 {
8277 int i, iter;
8278
8279 for (i = 0;
8280 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8281 i++)
8282 {
8283 int elem;
8284
8285 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8286 {
8287 int old_size = VEC_length (int, inf_data->syscalls_counts);
8288 uintptr_t vec_addr_offset
8289 = old_size * ((uintptr_t) sizeof (int));
8290 uintptr_t vec_addr;
8291 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8292 vec_addr = ((uintptr_t) VEC_address (int,
8293 inf_data->syscalls_counts)
8294 + vec_addr_offset);
8295 memset ((void *) vec_addr, 0,
8296 (iter + 1 - old_size) * sizeof (int));
8297 }
8298 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8299 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8300 }
8301 }
8302
8303 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8304 inf_data->total_syscalls_count != 0,
8305 inf_data->any_syscall_count,
8306 VEC_length (int,
8307 inf_data->syscalls_counts),
8308 VEC_address (int,
8309 inf_data->syscalls_counts));
8310 }
8311
8312 /* Implement the "remove" breakpoint_ops method for syscall
8313 catchpoints. */
8314
8315 static int
8316 remove_catch_syscall (struct bp_location *bl)
8317 {
8318 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8319 struct inferior *inf = current_inferior ();
8320 struct catch_syscall_inferior_data *inf_data
8321 = get_catch_syscall_inferior_data (inf);
8322
8323 --inf_data->total_syscalls_count;
8324 if (!c->syscalls_to_be_caught)
8325 --inf_data->any_syscall_count;
8326 else
8327 {
8328 int i, iter;
8329
8330 for (i = 0;
8331 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8332 i++)
8333 {
8334 int elem;
8335 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8336 /* Shouldn't happen. */
8337 continue;
8338 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8339 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8340 }
8341 }
8342
8343 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8344 inf_data->total_syscalls_count != 0,
8345 inf_data->any_syscall_count,
8346 VEC_length (int,
8347 inf_data->syscalls_counts),
8348 VEC_address (int,
8349 inf_data->syscalls_counts));
8350 }
8351
8352 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8353 catchpoints. */
8354
8355 static int
8356 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8357 struct address_space *aspace, CORE_ADDR bp_addr,
8358 const struct target_waitstatus *ws)
8359 {
8360 /* We must check if we are catching specific syscalls in this
8361 breakpoint. If we are, then we must guarantee that the called
8362 syscall is the same syscall we are catching. */
8363 int syscall_number = 0;
8364 const struct syscall_catchpoint *c
8365 = (const struct syscall_catchpoint *) bl->owner;
8366
8367 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8368 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8369 return 0;
8370
8371 syscall_number = ws->value.syscall_number;
8372
8373 /* Now, checking if the syscall is the same. */
8374 if (c->syscalls_to_be_caught)
8375 {
8376 int i, iter;
8377
8378 for (i = 0;
8379 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8380 i++)
8381 if (syscall_number == iter)
8382 return 1;
8383
8384 return 0;
8385 }
8386
8387 return 1;
8388 }
8389
8390 /* Implement the "print_it" breakpoint_ops method for syscall
8391 catchpoints. */
8392
8393 static enum print_stop_action
8394 print_it_catch_syscall (bpstat bs)
8395 {
8396 struct ui_out *uiout = current_uiout;
8397 struct breakpoint *b = bs->breakpoint_at;
8398 /* These are needed because we want to know in which state a
8399 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8400 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8401 must print "called syscall" or "returned from syscall". */
8402 ptid_t ptid;
8403 struct target_waitstatus last;
8404 struct syscall s;
8405
8406 get_last_target_status (&ptid, &last);
8407
8408 get_syscall_by_number (last.value.syscall_number, &s);
8409
8410 annotate_catchpoint (b->number);
8411
8412 if (b->disposition == disp_del)
8413 ui_out_text (uiout, "\nTemporary catchpoint ");
8414 else
8415 ui_out_text (uiout, "\nCatchpoint ");
8416 if (ui_out_is_mi_like_p (uiout))
8417 {
8418 ui_out_field_string (uiout, "reason",
8419 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8420 ? EXEC_ASYNC_SYSCALL_ENTRY
8421 : EXEC_ASYNC_SYSCALL_RETURN));
8422 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8423 }
8424 ui_out_field_int (uiout, "bkptno", b->number);
8425
8426 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8427 ui_out_text (uiout, " (call to syscall ");
8428 else
8429 ui_out_text (uiout, " (returned from syscall ");
8430
8431 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8432 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8433 if (s.name != NULL)
8434 ui_out_field_string (uiout, "syscall-name", s.name);
8435
8436 ui_out_text (uiout, "), ");
8437
8438 return PRINT_SRC_AND_LOC;
8439 }
8440
8441 /* Implement the "print_one" breakpoint_ops method for syscall
8442 catchpoints. */
8443
8444 static void
8445 print_one_catch_syscall (struct breakpoint *b,
8446 struct bp_location **last_loc)
8447 {
8448 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8449 struct value_print_options opts;
8450 struct ui_out *uiout = current_uiout;
8451
8452 get_user_print_options (&opts);
8453 /* Field 4, the address, is omitted (which makes the columns not
8454 line up too nicely with the headers, but the effect is relatively
8455 readable). */
8456 if (opts.addressprint)
8457 ui_out_field_skip (uiout, "addr");
8458 annotate_field (5);
8459
8460 if (c->syscalls_to_be_caught
8461 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8462 ui_out_text (uiout, "syscalls \"");
8463 else
8464 ui_out_text (uiout, "syscall \"");
8465
8466 if (c->syscalls_to_be_caught)
8467 {
8468 int i, iter;
8469 char *text = xstrprintf ("%s", "");
8470
8471 for (i = 0;
8472 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8473 i++)
8474 {
8475 char *x = text;
8476 struct syscall s;
8477 get_syscall_by_number (iter, &s);
8478
8479 if (s.name != NULL)
8480 text = xstrprintf ("%s%s, ", text, s.name);
8481 else
8482 text = xstrprintf ("%s%d, ", text, iter);
8483
8484 /* We have to xfree the last 'text' (now stored at 'x')
8485 because xstrprintf dynamically allocates new space for it
8486 on every call. */
8487 xfree (x);
8488 }
8489 /* Remove the last comma. */
8490 text[strlen (text) - 2] = '\0';
8491 ui_out_field_string (uiout, "what", text);
8492 }
8493 else
8494 ui_out_field_string (uiout, "what", "<any syscall>");
8495 ui_out_text (uiout, "\" ");
8496
8497 if (ui_out_is_mi_like_p (uiout))
8498 ui_out_field_string (uiout, "catch-type", "syscall");
8499 }
8500
8501 /* Implement the "print_mention" breakpoint_ops method for syscall
8502 catchpoints. */
8503
8504 static void
8505 print_mention_catch_syscall (struct breakpoint *b)
8506 {
8507 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8508
8509 if (c->syscalls_to_be_caught)
8510 {
8511 int i, iter;
8512
8513 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8514 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8515 else
8516 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8517
8518 for (i = 0;
8519 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8520 i++)
8521 {
8522 struct syscall s;
8523 get_syscall_by_number (iter, &s);
8524
8525 if (s.name)
8526 printf_filtered (" '%s' [%d]", s.name, s.number);
8527 else
8528 printf_filtered (" %d", s.number);
8529 }
8530 printf_filtered (")");
8531 }
8532 else
8533 printf_filtered (_("Catchpoint %d (any syscall)"),
8534 b->number);
8535 }
8536
8537 /* Implement the "print_recreate" breakpoint_ops method for syscall
8538 catchpoints. */
8539
8540 static void
8541 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8542 {
8543 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8544
8545 fprintf_unfiltered (fp, "catch syscall");
8546
8547 if (c->syscalls_to_be_caught)
8548 {
8549 int i, iter;
8550
8551 for (i = 0;
8552 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8553 i++)
8554 {
8555 struct syscall s;
8556
8557 get_syscall_by_number (iter, &s);
8558 if (s.name)
8559 fprintf_unfiltered (fp, " %s", s.name);
8560 else
8561 fprintf_unfiltered (fp, " %d", s.number);
8562 }
8563 }
8564 print_recreate_thread (b, fp);
8565 }
8566
8567 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8568
8569 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8570
8571 /* Returns non-zero if 'b' is a syscall catchpoint. */
8572
8573 static int
8574 syscall_catchpoint_p (struct breakpoint *b)
8575 {
8576 return (b->ops == &catch_syscall_breakpoint_ops);
8577 }
8578
8579 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8580 is non-zero, then make the breakpoint temporary. If COND_STRING is
8581 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8582 the breakpoint_ops structure associated to the catchpoint. */
8583
8584 void
8585 init_catchpoint (struct breakpoint *b,
8586 struct gdbarch *gdbarch, int tempflag,
8587 char *cond_string,
8588 const struct breakpoint_ops *ops)
8589 {
8590 struct symtab_and_line sal;
8591
8592 init_sal (&sal);
8593 sal.pspace = current_program_space;
8594
8595 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8596
8597 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8598 b->disposition = tempflag ? disp_del : disp_donttouch;
8599 }
8600
8601 void
8602 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8603 {
8604 add_to_breakpoint_chain (b);
8605 set_breakpoint_number (internal, b);
8606 if (is_tracepoint (b))
8607 set_tracepoint_count (breakpoint_count);
8608 if (!internal)
8609 mention (b);
8610 observer_notify_breakpoint_created (b);
8611
8612 if (update_gll)
8613 update_global_location_list (1);
8614 }
8615
8616 static void
8617 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8618 int tempflag, char *cond_string,
8619 const struct breakpoint_ops *ops)
8620 {
8621 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8622
8623 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8624
8625 c->forked_inferior_pid = null_ptid;
8626
8627 install_breakpoint (0, &c->base, 1);
8628 }
8629
8630 /* Exec catchpoints. */
8631
8632 /* An instance of this type is used to represent an exec catchpoint.
8633 It includes a "struct breakpoint" as a kind of base class; users
8634 downcast to "struct breakpoint *" when needed. A breakpoint is
8635 really of this type iff its ops pointer points to
8636 CATCH_EXEC_BREAKPOINT_OPS. */
8637
8638 struct exec_catchpoint
8639 {
8640 /* The base class. */
8641 struct breakpoint base;
8642
8643 /* Filename of a program whose exec triggered this catchpoint.
8644 This field is only valid immediately after this catchpoint has
8645 triggered. */
8646 char *exec_pathname;
8647 };
8648
8649 /* Implement the "dtor" breakpoint_ops method for exec
8650 catchpoints. */
8651
8652 static void
8653 dtor_catch_exec (struct breakpoint *b)
8654 {
8655 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8656
8657 xfree (c->exec_pathname);
8658
8659 base_breakpoint_ops.dtor (b);
8660 }
8661
8662 static int
8663 insert_catch_exec (struct bp_location *bl)
8664 {
8665 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8666 }
8667
8668 static int
8669 remove_catch_exec (struct bp_location *bl)
8670 {
8671 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8672 }
8673
8674 static int
8675 breakpoint_hit_catch_exec (const struct bp_location *bl,
8676 struct address_space *aspace, CORE_ADDR bp_addr,
8677 const struct target_waitstatus *ws)
8678 {
8679 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8680
8681 if (ws->kind != TARGET_WAITKIND_EXECD)
8682 return 0;
8683
8684 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8685 return 1;
8686 }
8687
8688 static enum print_stop_action
8689 print_it_catch_exec (bpstat bs)
8690 {
8691 struct ui_out *uiout = current_uiout;
8692 struct breakpoint *b = bs->breakpoint_at;
8693 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8694
8695 annotate_catchpoint (b->number);
8696 if (b->disposition == disp_del)
8697 ui_out_text (uiout, "\nTemporary catchpoint ");
8698 else
8699 ui_out_text (uiout, "\nCatchpoint ");
8700 if (ui_out_is_mi_like_p (uiout))
8701 {
8702 ui_out_field_string (uiout, "reason",
8703 async_reason_lookup (EXEC_ASYNC_EXEC));
8704 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8705 }
8706 ui_out_field_int (uiout, "bkptno", b->number);
8707 ui_out_text (uiout, " (exec'd ");
8708 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8709 ui_out_text (uiout, "), ");
8710
8711 return PRINT_SRC_AND_LOC;
8712 }
8713
8714 static void
8715 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8716 {
8717 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8718 struct value_print_options opts;
8719 struct ui_out *uiout = current_uiout;
8720
8721 get_user_print_options (&opts);
8722
8723 /* Field 4, the address, is omitted (which makes the columns
8724 not line up too nicely with the headers, but the effect
8725 is relatively readable). */
8726 if (opts.addressprint)
8727 ui_out_field_skip (uiout, "addr");
8728 annotate_field (5);
8729 ui_out_text (uiout, "exec");
8730 if (c->exec_pathname != NULL)
8731 {
8732 ui_out_text (uiout, ", program \"");
8733 ui_out_field_string (uiout, "what", c->exec_pathname);
8734 ui_out_text (uiout, "\" ");
8735 }
8736
8737 if (ui_out_is_mi_like_p (uiout))
8738 ui_out_field_string (uiout, "catch-type", "exec");
8739 }
8740
8741 static void
8742 print_mention_catch_exec (struct breakpoint *b)
8743 {
8744 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8745 }
8746
8747 /* Implement the "print_recreate" breakpoint_ops method for exec
8748 catchpoints. */
8749
8750 static void
8751 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8752 {
8753 fprintf_unfiltered (fp, "catch exec");
8754 print_recreate_thread (b, fp);
8755 }
8756
8757 static struct breakpoint_ops catch_exec_breakpoint_ops;
8758
8759 static void
8760 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8761 const struct breakpoint_ops *ops)
8762 {
8763 struct syscall_catchpoint *c;
8764 struct gdbarch *gdbarch = get_current_arch ();
8765
8766 c = XNEW (struct syscall_catchpoint);
8767 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8768 c->syscalls_to_be_caught = filter;
8769
8770 install_breakpoint (0, &c->base, 1);
8771 }
8772
8773 static int
8774 hw_breakpoint_used_count (void)
8775 {
8776 int i = 0;
8777 struct breakpoint *b;
8778 struct bp_location *bl;
8779
8780 ALL_BREAKPOINTS (b)
8781 {
8782 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8783 for (bl = b->loc; bl; bl = bl->next)
8784 {
8785 /* Special types of hardware breakpoints may use more than
8786 one register. */
8787 i += b->ops->resources_needed (bl);
8788 }
8789 }
8790
8791 return i;
8792 }
8793
8794 /* Returns the resources B would use if it were a hardware
8795 watchpoint. */
8796
8797 static int
8798 hw_watchpoint_use_count (struct breakpoint *b)
8799 {
8800 int i = 0;
8801 struct bp_location *bl;
8802
8803 if (!breakpoint_enabled (b))
8804 return 0;
8805
8806 for (bl = b->loc; bl; bl = bl->next)
8807 {
8808 /* Special types of hardware watchpoints may use more than
8809 one register. */
8810 i += b->ops->resources_needed (bl);
8811 }
8812
8813 return i;
8814 }
8815
8816 /* Returns the sum the used resources of all hardware watchpoints of
8817 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8818 the sum of the used resources of all hardware watchpoints of other
8819 types _not_ TYPE. */
8820
8821 static int
8822 hw_watchpoint_used_count_others (struct breakpoint *except,
8823 enum bptype type, int *other_type_used)
8824 {
8825 int i = 0;
8826 struct breakpoint *b;
8827
8828 *other_type_used = 0;
8829 ALL_BREAKPOINTS (b)
8830 {
8831 if (b == except)
8832 continue;
8833 if (!breakpoint_enabled (b))
8834 continue;
8835
8836 if (b->type == type)
8837 i += hw_watchpoint_use_count (b);
8838 else if (is_hardware_watchpoint (b))
8839 *other_type_used = 1;
8840 }
8841
8842 return i;
8843 }
8844
8845 void
8846 disable_watchpoints_before_interactive_call_start (void)
8847 {
8848 struct breakpoint *b;
8849
8850 ALL_BREAKPOINTS (b)
8851 {
8852 if (is_watchpoint (b) && breakpoint_enabled (b))
8853 {
8854 b->enable_state = bp_call_disabled;
8855 update_global_location_list (0);
8856 }
8857 }
8858 }
8859
8860 void
8861 enable_watchpoints_after_interactive_call_stop (void)
8862 {
8863 struct breakpoint *b;
8864
8865 ALL_BREAKPOINTS (b)
8866 {
8867 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8868 {
8869 b->enable_state = bp_enabled;
8870 update_global_location_list (1);
8871 }
8872 }
8873 }
8874
8875 void
8876 disable_breakpoints_before_startup (void)
8877 {
8878 current_program_space->executing_startup = 1;
8879 update_global_location_list (0);
8880 }
8881
8882 void
8883 enable_breakpoints_after_startup (void)
8884 {
8885 current_program_space->executing_startup = 0;
8886 breakpoint_re_set ();
8887 }
8888
8889
8890 /* Set a breakpoint that will evaporate an end of command
8891 at address specified by SAL.
8892 Restrict it to frame FRAME if FRAME is nonzero. */
8893
8894 struct breakpoint *
8895 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8896 struct frame_id frame_id, enum bptype type)
8897 {
8898 struct breakpoint *b;
8899
8900 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8901 tail-called one. */
8902 gdb_assert (!frame_id_artificial_p (frame_id));
8903
8904 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8905 b->enable_state = bp_enabled;
8906 b->disposition = disp_donttouch;
8907 b->frame_id = frame_id;
8908
8909 /* If we're debugging a multi-threaded program, then we want
8910 momentary breakpoints to be active in only a single thread of
8911 control. */
8912 if (in_thread_list (inferior_ptid))
8913 b->thread = pid_to_thread_id (inferior_ptid);
8914
8915 update_global_location_list_nothrow (1);
8916
8917 return b;
8918 }
8919
8920 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8921 The new breakpoint will have type TYPE, and use OPS as it
8922 breakpoint_ops. */
8923
8924 static struct breakpoint *
8925 momentary_breakpoint_from_master (struct breakpoint *orig,
8926 enum bptype type,
8927 const struct breakpoint_ops *ops)
8928 {
8929 struct breakpoint *copy;
8930
8931 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8932 copy->loc = allocate_bp_location (copy);
8933 set_breakpoint_location_function (copy->loc, 1);
8934
8935 copy->loc->gdbarch = orig->loc->gdbarch;
8936 copy->loc->requested_address = orig->loc->requested_address;
8937 copy->loc->address = orig->loc->address;
8938 copy->loc->section = orig->loc->section;
8939 copy->loc->pspace = orig->loc->pspace;
8940 copy->loc->probe = orig->loc->probe;
8941 copy->loc->line_number = orig->loc->line_number;
8942 copy->loc->symtab = orig->loc->symtab;
8943 copy->frame_id = orig->frame_id;
8944 copy->thread = orig->thread;
8945 copy->pspace = orig->pspace;
8946
8947 copy->enable_state = bp_enabled;
8948 copy->disposition = disp_donttouch;
8949 copy->number = internal_breakpoint_number--;
8950
8951 update_global_location_list_nothrow (0);
8952 return copy;
8953 }
8954
8955 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8956 ORIG is NULL. */
8957
8958 struct breakpoint *
8959 clone_momentary_breakpoint (struct breakpoint *orig)
8960 {
8961 /* If there's nothing to clone, then return nothing. */
8962 if (orig == NULL)
8963 return NULL;
8964
8965 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8966 }
8967
8968 struct breakpoint *
8969 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8970 enum bptype type)
8971 {
8972 struct symtab_and_line sal;
8973
8974 sal = find_pc_line (pc, 0);
8975 sal.pc = pc;
8976 sal.section = find_pc_overlay (pc);
8977 sal.explicit_pc = 1;
8978
8979 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8980 }
8981 \f
8982
8983 /* Tell the user we have just set a breakpoint B. */
8984
8985 static void
8986 mention (struct breakpoint *b)
8987 {
8988 b->ops->print_mention (b);
8989 if (ui_out_is_mi_like_p (current_uiout))
8990 return;
8991 printf_filtered ("\n");
8992 }
8993 \f
8994
8995 static struct bp_location *
8996 add_location_to_breakpoint (struct breakpoint *b,
8997 const struct symtab_and_line *sal)
8998 {
8999 struct bp_location *loc, **tmp;
9000 CORE_ADDR adjusted_address;
9001 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9002
9003 if (loc_gdbarch == NULL)
9004 loc_gdbarch = b->gdbarch;
9005
9006 /* Adjust the breakpoint's address prior to allocating a location.
9007 Once we call allocate_bp_location(), that mostly uninitialized
9008 location will be placed on the location chain. Adjustment of the
9009 breakpoint may cause target_read_memory() to be called and we do
9010 not want its scan of the location chain to find a breakpoint and
9011 location that's only been partially initialized. */
9012 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9013 sal->pc, b->type);
9014
9015 /* Sort the locations by their ADDRESS. */
9016 loc = allocate_bp_location (b);
9017 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9018 tmp = &((*tmp)->next))
9019 ;
9020 loc->next = *tmp;
9021 *tmp = loc;
9022
9023 loc->requested_address = sal->pc;
9024 loc->address = adjusted_address;
9025 loc->pspace = sal->pspace;
9026 loc->probe = sal->probe;
9027 gdb_assert (loc->pspace != NULL);
9028 loc->section = sal->section;
9029 loc->gdbarch = loc_gdbarch;
9030 loc->line_number = sal->line;
9031 loc->symtab = sal->symtab;
9032
9033 set_breakpoint_location_function (loc,
9034 sal->explicit_pc || sal->explicit_line);
9035 return loc;
9036 }
9037 \f
9038
9039 /* Return 1 if LOC is pointing to a permanent breakpoint,
9040 return 0 otherwise. */
9041
9042 static int
9043 bp_loc_is_permanent (struct bp_location *loc)
9044 {
9045 int len;
9046 CORE_ADDR addr;
9047 const gdb_byte *bpoint;
9048 gdb_byte *target_mem;
9049 struct cleanup *cleanup;
9050 int retval = 0;
9051
9052 gdb_assert (loc != NULL);
9053
9054 addr = loc->address;
9055 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9056
9057 /* Software breakpoints unsupported? */
9058 if (bpoint == NULL)
9059 return 0;
9060
9061 target_mem = alloca (len);
9062
9063 /* Enable the automatic memory restoration from breakpoints while
9064 we read the memory. Otherwise we could say about our temporary
9065 breakpoints they are permanent. */
9066 cleanup = save_current_space_and_thread ();
9067
9068 switch_to_program_space_and_thread (loc->pspace);
9069 make_show_memory_breakpoints_cleanup (0);
9070
9071 if (target_read_memory (loc->address, target_mem, len) == 0
9072 && memcmp (target_mem, bpoint, len) == 0)
9073 retval = 1;
9074
9075 do_cleanups (cleanup);
9076
9077 return retval;
9078 }
9079
9080 /* Build a command list for the dprintf corresponding to the current
9081 settings of the dprintf style options. */
9082
9083 static void
9084 update_dprintf_command_list (struct breakpoint *b)
9085 {
9086 char *dprintf_args = b->extra_string;
9087 char *printf_line = NULL;
9088
9089 if (!dprintf_args)
9090 return;
9091
9092 dprintf_args = skip_spaces (dprintf_args);
9093
9094 /* Allow a comma, as it may have terminated a location, but don't
9095 insist on it. */
9096 if (*dprintf_args == ',')
9097 ++dprintf_args;
9098 dprintf_args = skip_spaces (dprintf_args);
9099
9100 if (*dprintf_args != '"')
9101 error (_("Bad format string, missing '\"'."));
9102
9103 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9104 printf_line = xstrprintf ("printf %s", dprintf_args);
9105 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9106 {
9107 if (!dprintf_function)
9108 error (_("No function supplied for dprintf call"));
9109
9110 if (dprintf_channel && strlen (dprintf_channel) > 0)
9111 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9112 dprintf_function,
9113 dprintf_channel,
9114 dprintf_args);
9115 else
9116 printf_line = xstrprintf ("call (void) %s (%s)",
9117 dprintf_function,
9118 dprintf_args);
9119 }
9120 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9121 {
9122 if (target_can_run_breakpoint_commands ())
9123 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9124 else
9125 {
9126 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9127 printf_line = xstrprintf ("printf %s", dprintf_args);
9128 }
9129 }
9130 else
9131 internal_error (__FILE__, __LINE__,
9132 _("Invalid dprintf style."));
9133
9134 gdb_assert (printf_line != NULL);
9135 /* Manufacture a printf sequence. */
9136 {
9137 struct command_line *printf_cmd_line
9138 = xmalloc (sizeof (struct command_line));
9139
9140 printf_cmd_line = xmalloc (sizeof (struct command_line));
9141 printf_cmd_line->control_type = simple_control;
9142 printf_cmd_line->body_count = 0;
9143 printf_cmd_line->body_list = NULL;
9144 printf_cmd_line->next = NULL;
9145 printf_cmd_line->line = printf_line;
9146
9147 breakpoint_set_commands (b, printf_cmd_line);
9148 }
9149 }
9150
9151 /* Update all dprintf commands, making their command lists reflect
9152 current style settings. */
9153
9154 static void
9155 update_dprintf_commands (char *args, int from_tty,
9156 struct cmd_list_element *c)
9157 {
9158 struct breakpoint *b;
9159
9160 ALL_BREAKPOINTS (b)
9161 {
9162 if (b->type == bp_dprintf)
9163 update_dprintf_command_list (b);
9164 }
9165 }
9166
9167 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9168 as textual description of the location, and COND_STRING
9169 as condition expression. */
9170
9171 static void
9172 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9173 struct symtabs_and_lines sals, char *addr_string,
9174 char *filter, char *cond_string,
9175 char *extra_string,
9176 enum bptype type, enum bpdisp disposition,
9177 int thread, int task, int ignore_count,
9178 const struct breakpoint_ops *ops, int from_tty,
9179 int enabled, int internal, unsigned flags,
9180 int display_canonical)
9181 {
9182 int i;
9183
9184 if (type == bp_hardware_breakpoint)
9185 {
9186 int target_resources_ok;
9187
9188 i = hw_breakpoint_used_count ();
9189 target_resources_ok =
9190 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9191 i + 1, 0);
9192 if (target_resources_ok == 0)
9193 error (_("No hardware breakpoint support in the target."));
9194 else if (target_resources_ok < 0)
9195 error (_("Hardware breakpoints used exceeds limit."));
9196 }
9197
9198 gdb_assert (sals.nelts > 0);
9199
9200 for (i = 0; i < sals.nelts; ++i)
9201 {
9202 struct symtab_and_line sal = sals.sals[i];
9203 struct bp_location *loc;
9204
9205 if (from_tty)
9206 {
9207 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9208 if (!loc_gdbarch)
9209 loc_gdbarch = gdbarch;
9210
9211 describe_other_breakpoints (loc_gdbarch,
9212 sal.pspace, sal.pc, sal.section, thread);
9213 }
9214
9215 if (i == 0)
9216 {
9217 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9218 b->thread = thread;
9219 b->task = task;
9220
9221 b->cond_string = cond_string;
9222 b->extra_string = extra_string;
9223 b->ignore_count = ignore_count;
9224 b->enable_state = enabled ? bp_enabled : bp_disabled;
9225 b->disposition = disposition;
9226
9227 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9228 b->loc->inserted = 1;
9229
9230 if (type == bp_static_tracepoint)
9231 {
9232 struct tracepoint *t = (struct tracepoint *) b;
9233 struct static_tracepoint_marker marker;
9234
9235 if (strace_marker_p (b))
9236 {
9237 /* We already know the marker exists, otherwise, we
9238 wouldn't see a sal for it. */
9239 char *p = &addr_string[3];
9240 char *endp;
9241 char *marker_str;
9242
9243 p = skip_spaces (p);
9244
9245 endp = skip_to_space (p);
9246
9247 marker_str = savestring (p, endp - p);
9248 t->static_trace_marker_id = marker_str;
9249
9250 printf_filtered (_("Probed static tracepoint "
9251 "marker \"%s\"\n"),
9252 t->static_trace_marker_id);
9253 }
9254 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9255 {
9256 t->static_trace_marker_id = xstrdup (marker.str_id);
9257 release_static_tracepoint_marker (&marker);
9258
9259 printf_filtered (_("Probed static tracepoint "
9260 "marker \"%s\"\n"),
9261 t->static_trace_marker_id);
9262 }
9263 else
9264 warning (_("Couldn't determine the static "
9265 "tracepoint marker to probe"));
9266 }
9267
9268 loc = b->loc;
9269 }
9270 else
9271 {
9272 loc = add_location_to_breakpoint (b, &sal);
9273 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9274 loc->inserted = 1;
9275 }
9276
9277 if (bp_loc_is_permanent (loc))
9278 make_breakpoint_permanent (b);
9279
9280 if (b->cond_string)
9281 {
9282 const char *arg = b->cond_string;
9283
9284 loc->cond = parse_exp_1 (&arg, loc->address,
9285 block_for_pc (loc->address), 0);
9286 if (*arg)
9287 error (_("Garbage '%s' follows condition"), arg);
9288 }
9289
9290 /* Dynamic printf requires and uses additional arguments on the
9291 command line, otherwise it's an error. */
9292 if (type == bp_dprintf)
9293 {
9294 if (b->extra_string)
9295 update_dprintf_command_list (b);
9296 else
9297 error (_("Format string required"));
9298 }
9299 else if (b->extra_string)
9300 error (_("Garbage '%s' at end of command"), b->extra_string);
9301 }
9302
9303 b->display_canonical = display_canonical;
9304 if (addr_string)
9305 b->addr_string = addr_string;
9306 else
9307 /* addr_string has to be used or breakpoint_re_set will delete
9308 me. */
9309 b->addr_string
9310 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9311 b->filter = filter;
9312 }
9313
9314 static void
9315 create_breakpoint_sal (struct gdbarch *gdbarch,
9316 struct symtabs_and_lines sals, char *addr_string,
9317 char *filter, char *cond_string,
9318 char *extra_string,
9319 enum bptype type, enum bpdisp disposition,
9320 int thread, int task, int ignore_count,
9321 const struct breakpoint_ops *ops, int from_tty,
9322 int enabled, int internal, unsigned flags,
9323 int display_canonical)
9324 {
9325 struct breakpoint *b;
9326 struct cleanup *old_chain;
9327
9328 if (is_tracepoint_type (type))
9329 {
9330 struct tracepoint *t;
9331
9332 t = XCNEW (struct tracepoint);
9333 b = &t->base;
9334 }
9335 else
9336 b = XNEW (struct breakpoint);
9337
9338 old_chain = make_cleanup (xfree, b);
9339
9340 init_breakpoint_sal (b, gdbarch,
9341 sals, addr_string,
9342 filter, cond_string, extra_string,
9343 type, disposition,
9344 thread, task, ignore_count,
9345 ops, from_tty,
9346 enabled, internal, flags,
9347 display_canonical);
9348 discard_cleanups (old_chain);
9349
9350 install_breakpoint (internal, b, 0);
9351 }
9352
9353 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9354 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9355 value. COND_STRING, if not NULL, specified the condition to be
9356 used for all breakpoints. Essentially the only case where
9357 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9358 function. In that case, it's still not possible to specify
9359 separate conditions for different overloaded functions, so
9360 we take just a single condition string.
9361
9362 NOTE: If the function succeeds, the caller is expected to cleanup
9363 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9364 array contents). If the function fails (error() is called), the
9365 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9366 COND and SALS arrays and each of those arrays contents. */
9367
9368 static void
9369 create_breakpoints_sal (struct gdbarch *gdbarch,
9370 struct linespec_result *canonical,
9371 char *cond_string, char *extra_string,
9372 enum bptype type, enum bpdisp disposition,
9373 int thread, int task, int ignore_count,
9374 const struct breakpoint_ops *ops, int from_tty,
9375 int enabled, int internal, unsigned flags)
9376 {
9377 int i;
9378 struct linespec_sals *lsal;
9379
9380 if (canonical->pre_expanded)
9381 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9382
9383 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9384 {
9385 /* Note that 'addr_string' can be NULL in the case of a plain
9386 'break', without arguments. */
9387 char *addr_string = (canonical->addr_string
9388 ? xstrdup (canonical->addr_string)
9389 : NULL);
9390 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9391 struct cleanup *inner = make_cleanup (xfree, addr_string);
9392
9393 make_cleanup (xfree, filter_string);
9394 create_breakpoint_sal (gdbarch, lsal->sals,
9395 addr_string,
9396 filter_string,
9397 cond_string, extra_string,
9398 type, disposition,
9399 thread, task, ignore_count, ops,
9400 from_tty, enabled, internal, flags,
9401 canonical->special_display);
9402 discard_cleanups (inner);
9403 }
9404 }
9405
9406 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9407 followed by conditionals. On return, SALS contains an array of SAL
9408 addresses found. ADDR_STRING contains a vector of (canonical)
9409 address strings. ADDRESS points to the end of the SAL.
9410
9411 The array and the line spec strings are allocated on the heap, it is
9412 the caller's responsibility to free them. */
9413
9414 static void
9415 parse_breakpoint_sals (char **address,
9416 struct linespec_result *canonical)
9417 {
9418 /* If no arg given, or if first arg is 'if ', use the default
9419 breakpoint. */
9420 if ((*address) == NULL
9421 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9422 {
9423 /* The last displayed codepoint, if it's valid, is our default breakpoint
9424 address. */
9425 if (last_displayed_sal_is_valid ())
9426 {
9427 struct linespec_sals lsal;
9428 struct symtab_and_line sal;
9429 CORE_ADDR pc;
9430
9431 init_sal (&sal); /* Initialize to zeroes. */
9432 lsal.sals.sals = (struct symtab_and_line *)
9433 xmalloc (sizeof (struct symtab_and_line));
9434
9435 /* Set sal's pspace, pc, symtab, and line to the values
9436 corresponding to the last call to print_frame_info.
9437 Be sure to reinitialize LINE with NOTCURRENT == 0
9438 as the breakpoint line number is inappropriate otherwise.
9439 find_pc_line would adjust PC, re-set it back. */
9440 get_last_displayed_sal (&sal);
9441 pc = sal.pc;
9442 sal = find_pc_line (pc, 0);
9443
9444 /* "break" without arguments is equivalent to "break *PC"
9445 where PC is the last displayed codepoint's address. So
9446 make sure to set sal.explicit_pc to prevent GDB from
9447 trying to expand the list of sals to include all other
9448 instances with the same symtab and line. */
9449 sal.pc = pc;
9450 sal.explicit_pc = 1;
9451
9452 lsal.sals.sals[0] = sal;
9453 lsal.sals.nelts = 1;
9454 lsal.canonical = NULL;
9455
9456 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9457 }
9458 else
9459 error (_("No default breakpoint address now."));
9460 }
9461 else
9462 {
9463 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9464
9465 /* Force almost all breakpoints to be in terms of the
9466 current_source_symtab (which is decode_line_1's default).
9467 This should produce the results we want almost all of the
9468 time while leaving default_breakpoint_* alone.
9469
9470 ObjC: However, don't match an Objective-C method name which
9471 may have a '+' or '-' succeeded by a '['. */
9472 if (last_displayed_sal_is_valid ()
9473 && (!cursal.symtab
9474 || ((strchr ("+-", (*address)[0]) != NULL)
9475 && ((*address)[1] != '['))))
9476 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9477 get_last_displayed_symtab (),
9478 get_last_displayed_line (),
9479 canonical, NULL, NULL);
9480 else
9481 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9482 cursal.symtab, cursal.line, canonical, NULL, NULL);
9483 }
9484 }
9485
9486
9487 /* Convert each SAL into a real PC. Verify that the PC can be
9488 inserted as a breakpoint. If it can't throw an error. */
9489
9490 static void
9491 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9492 {
9493 int i;
9494
9495 for (i = 0; i < sals->nelts; i++)
9496 resolve_sal_pc (&sals->sals[i]);
9497 }
9498
9499 /* Fast tracepoints may have restrictions on valid locations. For
9500 instance, a fast tracepoint using a jump instead of a trap will
9501 likely have to overwrite more bytes than a trap would, and so can
9502 only be placed where the instruction is longer than the jump, or a
9503 multi-instruction sequence does not have a jump into the middle of
9504 it, etc. */
9505
9506 static void
9507 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9508 struct symtabs_and_lines *sals)
9509 {
9510 int i, rslt;
9511 struct symtab_and_line *sal;
9512 char *msg;
9513 struct cleanup *old_chain;
9514
9515 for (i = 0; i < sals->nelts; i++)
9516 {
9517 struct gdbarch *sarch;
9518
9519 sal = &sals->sals[i];
9520
9521 sarch = get_sal_arch (*sal);
9522 /* We fall back to GDBARCH if there is no architecture
9523 associated with SAL. */
9524 if (sarch == NULL)
9525 sarch = gdbarch;
9526 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9527 NULL, &msg);
9528 old_chain = make_cleanup (xfree, msg);
9529
9530 if (!rslt)
9531 error (_("May not have a fast tracepoint at 0x%s%s"),
9532 paddress (sarch, sal->pc), (msg ? msg : ""));
9533
9534 do_cleanups (old_chain);
9535 }
9536 }
9537
9538 /* Issue an invalid thread ID error. */
9539
9540 static void ATTRIBUTE_NORETURN
9541 invalid_thread_id_error (int id)
9542 {
9543 error (_("Unknown thread %d."), id);
9544 }
9545
9546 /* Given TOK, a string specification of condition and thread, as
9547 accepted by the 'break' command, extract the condition
9548 string and thread number and set *COND_STRING and *THREAD.
9549 PC identifies the context at which the condition should be parsed.
9550 If no condition is found, *COND_STRING is set to NULL.
9551 If no thread is found, *THREAD is set to -1. */
9552
9553 static void
9554 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9555 char **cond_string, int *thread, int *task,
9556 char **rest)
9557 {
9558 *cond_string = NULL;
9559 *thread = -1;
9560 *task = 0;
9561 *rest = NULL;
9562
9563 while (tok && *tok)
9564 {
9565 const char *end_tok;
9566 int toklen;
9567 const char *cond_start = NULL;
9568 const char *cond_end = NULL;
9569
9570 tok = skip_spaces_const (tok);
9571
9572 if ((*tok == '"' || *tok == ',') && rest)
9573 {
9574 *rest = savestring (tok, strlen (tok));
9575 return;
9576 }
9577
9578 end_tok = skip_to_space_const (tok);
9579
9580 toklen = end_tok - tok;
9581
9582 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9583 {
9584 struct expression *expr;
9585
9586 tok = cond_start = end_tok + 1;
9587 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9588 xfree (expr);
9589 cond_end = tok;
9590 *cond_string = savestring (cond_start, cond_end - cond_start);
9591 }
9592 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9593 {
9594 char *tmptok;
9595
9596 tok = end_tok + 1;
9597 *thread = strtol (tok, &tmptok, 0);
9598 if (tok == tmptok)
9599 error (_("Junk after thread keyword."));
9600 if (!valid_thread_id (*thread))
9601 invalid_thread_id_error (*thread);
9602 tok = tmptok;
9603 }
9604 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9605 {
9606 char *tmptok;
9607
9608 tok = end_tok + 1;
9609 *task = strtol (tok, &tmptok, 0);
9610 if (tok == tmptok)
9611 error (_("Junk after task keyword."));
9612 if (!valid_task_id (*task))
9613 error (_("Unknown task %d."), *task);
9614 tok = tmptok;
9615 }
9616 else if (rest)
9617 {
9618 *rest = savestring (tok, strlen (tok));
9619 return;
9620 }
9621 else
9622 error (_("Junk at end of arguments."));
9623 }
9624 }
9625
9626 /* Decode a static tracepoint marker spec. */
9627
9628 static struct symtabs_and_lines
9629 decode_static_tracepoint_spec (char **arg_p)
9630 {
9631 VEC(static_tracepoint_marker_p) *markers = NULL;
9632 struct symtabs_and_lines sals;
9633 struct cleanup *old_chain;
9634 char *p = &(*arg_p)[3];
9635 char *endp;
9636 char *marker_str;
9637 int i;
9638
9639 p = skip_spaces (p);
9640
9641 endp = skip_to_space (p);
9642
9643 marker_str = savestring (p, endp - p);
9644 old_chain = make_cleanup (xfree, marker_str);
9645
9646 markers = target_static_tracepoint_markers_by_strid (marker_str);
9647 if (VEC_empty(static_tracepoint_marker_p, markers))
9648 error (_("No known static tracepoint marker named %s"), marker_str);
9649
9650 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9651 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9652
9653 for (i = 0; i < sals.nelts; i++)
9654 {
9655 struct static_tracepoint_marker *marker;
9656
9657 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9658
9659 init_sal (&sals.sals[i]);
9660
9661 sals.sals[i] = find_pc_line (marker->address, 0);
9662 sals.sals[i].pc = marker->address;
9663
9664 release_static_tracepoint_marker (marker);
9665 }
9666
9667 do_cleanups (old_chain);
9668
9669 *arg_p = endp;
9670 return sals;
9671 }
9672
9673 /* Set a breakpoint. This function is shared between CLI and MI
9674 functions for setting a breakpoint. This function has two major
9675 modes of operations, selected by the PARSE_ARG parameter. If
9676 non-zero, the function will parse ARG, extracting location,
9677 condition, thread and extra string. Otherwise, ARG is just the
9678 breakpoint's location, with condition, thread, and extra string
9679 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9680 If INTERNAL is non-zero, the breakpoint number will be allocated
9681 from the internal breakpoint count. Returns true if any breakpoint
9682 was created; false otherwise. */
9683
9684 int
9685 create_breakpoint (struct gdbarch *gdbarch,
9686 char *arg, char *cond_string,
9687 int thread, char *extra_string,
9688 int parse_arg,
9689 int tempflag, enum bptype type_wanted,
9690 int ignore_count,
9691 enum auto_boolean pending_break_support,
9692 const struct breakpoint_ops *ops,
9693 int from_tty, int enabled, int internal,
9694 unsigned flags)
9695 {
9696 volatile struct gdb_exception e;
9697 char *copy_arg = NULL;
9698 char *addr_start = arg;
9699 struct linespec_result canonical;
9700 struct cleanup *old_chain;
9701 struct cleanup *bkpt_chain = NULL;
9702 int pending = 0;
9703 int task = 0;
9704 int prev_bkpt_count = breakpoint_count;
9705
9706 gdb_assert (ops != NULL);
9707
9708 init_linespec_result (&canonical);
9709
9710 TRY_CATCH (e, RETURN_MASK_ALL)
9711 {
9712 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9713 addr_start, &copy_arg);
9714 }
9715
9716 /* If caller is interested in rc value from parse, set value. */
9717 switch (e.reason)
9718 {
9719 case GDB_NO_ERROR:
9720 if (VEC_empty (linespec_sals, canonical.sals))
9721 return 0;
9722 break;
9723 case RETURN_ERROR:
9724 switch (e.error)
9725 {
9726 case NOT_FOUND_ERROR:
9727
9728 /* If pending breakpoint support is turned off, throw
9729 error. */
9730
9731 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9732 throw_exception (e);
9733
9734 exception_print (gdb_stderr, e);
9735
9736 /* If pending breakpoint support is auto query and the user
9737 selects no, then simply return the error code. */
9738 if (pending_break_support == AUTO_BOOLEAN_AUTO
9739 && !nquery (_("Make %s pending on future shared library load? "),
9740 bptype_string (type_wanted)))
9741 return 0;
9742
9743 /* At this point, either the user was queried about setting
9744 a pending breakpoint and selected yes, or pending
9745 breakpoint behavior is on and thus a pending breakpoint
9746 is defaulted on behalf of the user. */
9747 {
9748 struct linespec_sals lsal;
9749
9750 copy_arg = xstrdup (addr_start);
9751 lsal.canonical = xstrdup (copy_arg);
9752 lsal.sals.nelts = 1;
9753 lsal.sals.sals = XNEW (struct symtab_and_line);
9754 init_sal (&lsal.sals.sals[0]);
9755 pending = 1;
9756 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9757 }
9758 break;
9759 default:
9760 throw_exception (e);
9761 }
9762 break;
9763 default:
9764 throw_exception (e);
9765 }
9766
9767 /* Create a chain of things that always need to be cleaned up. */
9768 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9769
9770 /* ----------------------------- SNIP -----------------------------
9771 Anything added to the cleanup chain beyond this point is assumed
9772 to be part of a breakpoint. If the breakpoint create succeeds
9773 then the memory is not reclaimed. */
9774 bkpt_chain = make_cleanup (null_cleanup, 0);
9775
9776 /* Resolve all line numbers to PC's and verify that the addresses
9777 are ok for the target. */
9778 if (!pending)
9779 {
9780 int ix;
9781 struct linespec_sals *iter;
9782
9783 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9784 breakpoint_sals_to_pc (&iter->sals);
9785 }
9786
9787 /* Fast tracepoints may have additional restrictions on location. */
9788 if (!pending && type_wanted == bp_fast_tracepoint)
9789 {
9790 int ix;
9791 struct linespec_sals *iter;
9792
9793 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9794 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9795 }
9796
9797 /* Verify that condition can be parsed, before setting any
9798 breakpoints. Allocate a separate condition expression for each
9799 breakpoint. */
9800 if (!pending)
9801 {
9802 if (parse_arg)
9803 {
9804 char *rest;
9805 struct linespec_sals *lsal;
9806
9807 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9808
9809 /* Here we only parse 'arg' to separate condition
9810 from thread number, so parsing in context of first
9811 sal is OK. When setting the breakpoint we'll
9812 re-parse it in context of each sal. */
9813
9814 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9815 &thread, &task, &rest);
9816 if (cond_string)
9817 make_cleanup (xfree, cond_string);
9818 if (rest)
9819 make_cleanup (xfree, rest);
9820 if (rest)
9821 extra_string = rest;
9822 }
9823 else
9824 {
9825 if (*arg != '\0')
9826 error (_("Garbage '%s' at end of location"), arg);
9827
9828 /* Create a private copy of condition string. */
9829 if (cond_string)
9830 {
9831 cond_string = xstrdup (cond_string);
9832 make_cleanup (xfree, cond_string);
9833 }
9834 /* Create a private copy of any extra string. */
9835 if (extra_string)
9836 {
9837 extra_string = xstrdup (extra_string);
9838 make_cleanup (xfree, extra_string);
9839 }
9840 }
9841
9842 ops->create_breakpoints_sal (gdbarch, &canonical,
9843 cond_string, extra_string, type_wanted,
9844 tempflag ? disp_del : disp_donttouch,
9845 thread, task, ignore_count, ops,
9846 from_tty, enabled, internal, flags);
9847 }
9848 else
9849 {
9850 struct breakpoint *b;
9851
9852 make_cleanup (xfree, copy_arg);
9853
9854 if (is_tracepoint_type (type_wanted))
9855 {
9856 struct tracepoint *t;
9857
9858 t = XCNEW (struct tracepoint);
9859 b = &t->base;
9860 }
9861 else
9862 b = XNEW (struct breakpoint);
9863
9864 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9865
9866 b->addr_string = copy_arg;
9867 if (parse_arg)
9868 b->cond_string = NULL;
9869 else
9870 {
9871 /* Create a private copy of condition string. */
9872 if (cond_string)
9873 {
9874 cond_string = xstrdup (cond_string);
9875 make_cleanup (xfree, cond_string);
9876 }
9877 b->cond_string = cond_string;
9878 }
9879 b->extra_string = NULL;
9880 b->ignore_count = ignore_count;
9881 b->disposition = tempflag ? disp_del : disp_donttouch;
9882 b->condition_not_parsed = 1;
9883 b->enable_state = enabled ? bp_enabled : bp_disabled;
9884 if ((type_wanted != bp_breakpoint
9885 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9886 b->pspace = current_program_space;
9887
9888 install_breakpoint (internal, b, 0);
9889 }
9890
9891 if (VEC_length (linespec_sals, canonical.sals) > 1)
9892 {
9893 warning (_("Multiple breakpoints were set.\nUse the "
9894 "\"delete\" command to delete unwanted breakpoints."));
9895 prev_breakpoint_count = prev_bkpt_count;
9896 }
9897
9898 /* That's it. Discard the cleanups for data inserted into the
9899 breakpoint. */
9900 discard_cleanups (bkpt_chain);
9901 /* But cleanup everything else. */
9902 do_cleanups (old_chain);
9903
9904 /* error call may happen here - have BKPT_CHAIN already discarded. */
9905 update_global_location_list (1);
9906
9907 return 1;
9908 }
9909
9910 /* Set a breakpoint.
9911 ARG is a string describing breakpoint address,
9912 condition, and thread.
9913 FLAG specifies if a breakpoint is hardware on,
9914 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9915 and BP_TEMPFLAG. */
9916
9917 static void
9918 break_command_1 (char *arg, int flag, int from_tty)
9919 {
9920 int tempflag = flag & BP_TEMPFLAG;
9921 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9922 ? bp_hardware_breakpoint
9923 : bp_breakpoint);
9924 struct breakpoint_ops *ops;
9925 const char *arg_cp = arg;
9926
9927 /* Matching breakpoints on probes. */
9928 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9929 ops = &bkpt_probe_breakpoint_ops;
9930 else
9931 ops = &bkpt_breakpoint_ops;
9932
9933 create_breakpoint (get_current_arch (),
9934 arg,
9935 NULL, 0, NULL, 1 /* parse arg */,
9936 tempflag, type_wanted,
9937 0 /* Ignore count */,
9938 pending_break_support,
9939 ops,
9940 from_tty,
9941 1 /* enabled */,
9942 0 /* internal */,
9943 0);
9944 }
9945
9946 /* Helper function for break_command_1 and disassemble_command. */
9947
9948 void
9949 resolve_sal_pc (struct symtab_and_line *sal)
9950 {
9951 CORE_ADDR pc;
9952
9953 if (sal->pc == 0 && sal->symtab != NULL)
9954 {
9955 if (!find_line_pc (sal->symtab, sal->line, &pc))
9956 error (_("No line %d in file \"%s\"."),
9957 sal->line, symtab_to_filename_for_display (sal->symtab));
9958 sal->pc = pc;
9959
9960 /* If this SAL corresponds to a breakpoint inserted using a line
9961 number, then skip the function prologue if necessary. */
9962 if (sal->explicit_line)
9963 skip_prologue_sal (sal);
9964 }
9965
9966 if (sal->section == 0 && sal->symtab != NULL)
9967 {
9968 struct blockvector *bv;
9969 struct block *b;
9970 struct symbol *sym;
9971
9972 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9973 if (bv != NULL)
9974 {
9975 sym = block_linkage_function (b);
9976 if (sym != NULL)
9977 {
9978 fixup_symbol_section (sym, sal->symtab->objfile);
9979 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9980 }
9981 else
9982 {
9983 /* It really is worthwhile to have the section, so we'll
9984 just have to look harder. This case can be executed
9985 if we have line numbers but no functions (as can
9986 happen in assembly source). */
9987
9988 struct bound_minimal_symbol msym;
9989 struct cleanup *old_chain = save_current_space_and_thread ();
9990
9991 switch_to_program_space_and_thread (sal->pspace);
9992
9993 msym = lookup_minimal_symbol_by_pc (sal->pc);
9994 if (msym.minsym)
9995 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9996
9997 do_cleanups (old_chain);
9998 }
9999 }
10000 }
10001 }
10002
10003 void
10004 break_command (char *arg, int from_tty)
10005 {
10006 break_command_1 (arg, 0, from_tty);
10007 }
10008
10009 void
10010 tbreak_command (char *arg, int from_tty)
10011 {
10012 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10013 }
10014
10015 static void
10016 hbreak_command (char *arg, int from_tty)
10017 {
10018 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10019 }
10020
10021 static void
10022 thbreak_command (char *arg, int from_tty)
10023 {
10024 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10025 }
10026
10027 static void
10028 stop_command (char *arg, int from_tty)
10029 {
10030 printf_filtered (_("Specify the type of breakpoint to set.\n\
10031 Usage: stop in <function | address>\n\
10032 stop at <line>\n"));
10033 }
10034
10035 static void
10036 stopin_command (char *arg, int from_tty)
10037 {
10038 int badInput = 0;
10039
10040 if (arg == (char *) NULL)
10041 badInput = 1;
10042 else if (*arg != '*')
10043 {
10044 char *argptr = arg;
10045 int hasColon = 0;
10046
10047 /* Look for a ':'. If this is a line number specification, then
10048 say it is bad, otherwise, it should be an address or
10049 function/method name. */
10050 while (*argptr && !hasColon)
10051 {
10052 hasColon = (*argptr == ':');
10053 argptr++;
10054 }
10055
10056 if (hasColon)
10057 badInput = (*argptr != ':'); /* Not a class::method */
10058 else
10059 badInput = isdigit (*arg); /* a simple line number */
10060 }
10061
10062 if (badInput)
10063 printf_filtered (_("Usage: stop in <function | address>\n"));
10064 else
10065 break_command_1 (arg, 0, from_tty);
10066 }
10067
10068 static void
10069 stopat_command (char *arg, int from_tty)
10070 {
10071 int badInput = 0;
10072
10073 if (arg == (char *) NULL || *arg == '*') /* no line number */
10074 badInput = 1;
10075 else
10076 {
10077 char *argptr = arg;
10078 int hasColon = 0;
10079
10080 /* Look for a ':'. If there is a '::' then get out, otherwise
10081 it is probably a line number. */
10082 while (*argptr && !hasColon)
10083 {
10084 hasColon = (*argptr == ':');
10085 argptr++;
10086 }
10087
10088 if (hasColon)
10089 badInput = (*argptr == ':'); /* we have class::method */
10090 else
10091 badInput = !isdigit (*arg); /* not a line number */
10092 }
10093
10094 if (badInput)
10095 printf_filtered (_("Usage: stop at <line>\n"));
10096 else
10097 break_command_1 (arg, 0, from_tty);
10098 }
10099
10100 /* The dynamic printf command is mostly like a regular breakpoint, but
10101 with a prewired command list consisting of a single output command,
10102 built from extra arguments supplied on the dprintf command
10103 line. */
10104
10105 static void
10106 dprintf_command (char *arg, int from_tty)
10107 {
10108 create_breakpoint (get_current_arch (),
10109 arg,
10110 NULL, 0, NULL, 1 /* parse arg */,
10111 0, bp_dprintf,
10112 0 /* Ignore count */,
10113 pending_break_support,
10114 &dprintf_breakpoint_ops,
10115 from_tty,
10116 1 /* enabled */,
10117 0 /* internal */,
10118 0);
10119 }
10120
10121 static void
10122 agent_printf_command (char *arg, int from_tty)
10123 {
10124 error (_("May only run agent-printf on the target"));
10125 }
10126
10127 /* Implement the "breakpoint_hit" breakpoint_ops method for
10128 ranged breakpoints. */
10129
10130 static int
10131 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10132 struct address_space *aspace,
10133 CORE_ADDR bp_addr,
10134 const struct target_waitstatus *ws)
10135 {
10136 if (ws->kind != TARGET_WAITKIND_STOPPED
10137 || ws->value.sig != GDB_SIGNAL_TRAP)
10138 return 0;
10139
10140 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10141 bl->length, aspace, bp_addr);
10142 }
10143
10144 /* Implement the "resources_needed" breakpoint_ops method for
10145 ranged breakpoints. */
10146
10147 static int
10148 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10149 {
10150 return target_ranged_break_num_registers ();
10151 }
10152
10153 /* Implement the "print_it" breakpoint_ops method for
10154 ranged breakpoints. */
10155
10156 static enum print_stop_action
10157 print_it_ranged_breakpoint (bpstat bs)
10158 {
10159 struct breakpoint *b = bs->breakpoint_at;
10160 struct bp_location *bl = b->loc;
10161 struct ui_out *uiout = current_uiout;
10162
10163 gdb_assert (b->type == bp_hardware_breakpoint);
10164
10165 /* Ranged breakpoints have only one location. */
10166 gdb_assert (bl && bl->next == NULL);
10167
10168 annotate_breakpoint (b->number);
10169 if (b->disposition == disp_del)
10170 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10171 else
10172 ui_out_text (uiout, "\nRanged breakpoint ");
10173 if (ui_out_is_mi_like_p (uiout))
10174 {
10175 ui_out_field_string (uiout, "reason",
10176 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10177 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10178 }
10179 ui_out_field_int (uiout, "bkptno", b->number);
10180 ui_out_text (uiout, ", ");
10181
10182 return PRINT_SRC_AND_LOC;
10183 }
10184
10185 /* Implement the "print_one" breakpoint_ops method for
10186 ranged breakpoints. */
10187
10188 static void
10189 print_one_ranged_breakpoint (struct breakpoint *b,
10190 struct bp_location **last_loc)
10191 {
10192 struct bp_location *bl = b->loc;
10193 struct value_print_options opts;
10194 struct ui_out *uiout = current_uiout;
10195
10196 /* Ranged breakpoints have only one location. */
10197 gdb_assert (bl && bl->next == NULL);
10198
10199 get_user_print_options (&opts);
10200
10201 if (opts.addressprint)
10202 /* We don't print the address range here, it will be printed later
10203 by print_one_detail_ranged_breakpoint. */
10204 ui_out_field_skip (uiout, "addr");
10205 annotate_field (5);
10206 print_breakpoint_location (b, bl);
10207 *last_loc = bl;
10208 }
10209
10210 /* Implement the "print_one_detail" breakpoint_ops method for
10211 ranged breakpoints. */
10212
10213 static void
10214 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10215 struct ui_out *uiout)
10216 {
10217 CORE_ADDR address_start, address_end;
10218 struct bp_location *bl = b->loc;
10219 struct ui_file *stb = mem_fileopen ();
10220 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10221
10222 gdb_assert (bl);
10223
10224 address_start = bl->address;
10225 address_end = address_start + bl->length - 1;
10226
10227 ui_out_text (uiout, "\taddress range: ");
10228 fprintf_unfiltered (stb, "[%s, %s]",
10229 print_core_address (bl->gdbarch, address_start),
10230 print_core_address (bl->gdbarch, address_end));
10231 ui_out_field_stream (uiout, "addr", stb);
10232 ui_out_text (uiout, "\n");
10233
10234 do_cleanups (cleanup);
10235 }
10236
10237 /* Implement the "print_mention" breakpoint_ops method for
10238 ranged breakpoints. */
10239
10240 static void
10241 print_mention_ranged_breakpoint (struct breakpoint *b)
10242 {
10243 struct bp_location *bl = b->loc;
10244 struct ui_out *uiout = current_uiout;
10245
10246 gdb_assert (bl);
10247 gdb_assert (b->type == bp_hardware_breakpoint);
10248
10249 if (ui_out_is_mi_like_p (uiout))
10250 return;
10251
10252 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10253 b->number, paddress (bl->gdbarch, bl->address),
10254 paddress (bl->gdbarch, bl->address + bl->length - 1));
10255 }
10256
10257 /* Implement the "print_recreate" breakpoint_ops method for
10258 ranged breakpoints. */
10259
10260 static void
10261 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10262 {
10263 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10264 b->addr_string_range_end);
10265 print_recreate_thread (b, fp);
10266 }
10267
10268 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10269
10270 static struct breakpoint_ops ranged_breakpoint_ops;
10271
10272 /* Find the address where the end of the breakpoint range should be
10273 placed, given the SAL of the end of the range. This is so that if
10274 the user provides a line number, the end of the range is set to the
10275 last instruction of the given line. */
10276
10277 static CORE_ADDR
10278 find_breakpoint_range_end (struct symtab_and_line sal)
10279 {
10280 CORE_ADDR end;
10281
10282 /* If the user provided a PC value, use it. Otherwise,
10283 find the address of the end of the given location. */
10284 if (sal.explicit_pc)
10285 end = sal.pc;
10286 else
10287 {
10288 int ret;
10289 CORE_ADDR start;
10290
10291 ret = find_line_pc_range (sal, &start, &end);
10292 if (!ret)
10293 error (_("Could not find location of the end of the range."));
10294
10295 /* find_line_pc_range returns the start of the next line. */
10296 end--;
10297 }
10298
10299 return end;
10300 }
10301
10302 /* Implement the "break-range" CLI command. */
10303
10304 static void
10305 break_range_command (char *arg, int from_tty)
10306 {
10307 char *arg_start, *addr_string_start, *addr_string_end;
10308 struct linespec_result canonical_start, canonical_end;
10309 int bp_count, can_use_bp, length;
10310 CORE_ADDR end;
10311 struct breakpoint *b;
10312 struct symtab_and_line sal_start, sal_end;
10313 struct cleanup *cleanup_bkpt;
10314 struct linespec_sals *lsal_start, *lsal_end;
10315
10316 /* We don't support software ranged breakpoints. */
10317 if (target_ranged_break_num_registers () < 0)
10318 error (_("This target does not support hardware ranged breakpoints."));
10319
10320 bp_count = hw_breakpoint_used_count ();
10321 bp_count += target_ranged_break_num_registers ();
10322 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10323 bp_count, 0);
10324 if (can_use_bp < 0)
10325 error (_("Hardware breakpoints used exceeds limit."));
10326
10327 arg = skip_spaces (arg);
10328 if (arg == NULL || arg[0] == '\0')
10329 error(_("No address range specified."));
10330
10331 init_linespec_result (&canonical_start);
10332
10333 arg_start = arg;
10334 parse_breakpoint_sals (&arg, &canonical_start);
10335
10336 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10337
10338 if (arg[0] != ',')
10339 error (_("Too few arguments."));
10340 else if (VEC_empty (linespec_sals, canonical_start.sals))
10341 error (_("Could not find location of the beginning of the range."));
10342
10343 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10344
10345 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10346 || lsal_start->sals.nelts != 1)
10347 error (_("Cannot create a ranged breakpoint with multiple locations."));
10348
10349 sal_start = lsal_start->sals.sals[0];
10350 addr_string_start = savestring (arg_start, arg - arg_start);
10351 make_cleanup (xfree, addr_string_start);
10352
10353 arg++; /* Skip the comma. */
10354 arg = skip_spaces (arg);
10355
10356 /* Parse the end location. */
10357
10358 init_linespec_result (&canonical_end);
10359 arg_start = arg;
10360
10361 /* We call decode_line_full directly here instead of using
10362 parse_breakpoint_sals because we need to specify the start location's
10363 symtab and line as the default symtab and line for the end of the
10364 range. This makes it possible to have ranges like "foo.c:27, +14",
10365 where +14 means 14 lines from the start location. */
10366 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10367 sal_start.symtab, sal_start.line,
10368 &canonical_end, NULL, NULL);
10369
10370 make_cleanup_destroy_linespec_result (&canonical_end);
10371
10372 if (VEC_empty (linespec_sals, canonical_end.sals))
10373 error (_("Could not find location of the end of the range."));
10374
10375 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10376 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10377 || lsal_end->sals.nelts != 1)
10378 error (_("Cannot create a ranged breakpoint with multiple locations."));
10379
10380 sal_end = lsal_end->sals.sals[0];
10381 addr_string_end = savestring (arg_start, arg - arg_start);
10382 make_cleanup (xfree, addr_string_end);
10383
10384 end = find_breakpoint_range_end (sal_end);
10385 if (sal_start.pc > end)
10386 error (_("Invalid address range, end precedes start."));
10387
10388 length = end - sal_start.pc + 1;
10389 if (length < 0)
10390 /* Length overflowed. */
10391 error (_("Address range too large."));
10392 else if (length == 1)
10393 {
10394 /* This range is simple enough to be handled by
10395 the `hbreak' command. */
10396 hbreak_command (addr_string_start, 1);
10397
10398 do_cleanups (cleanup_bkpt);
10399
10400 return;
10401 }
10402
10403 /* Now set up the breakpoint. */
10404 b = set_raw_breakpoint (get_current_arch (), sal_start,
10405 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10406 set_breakpoint_count (breakpoint_count + 1);
10407 b->number = breakpoint_count;
10408 b->disposition = disp_donttouch;
10409 b->addr_string = xstrdup (addr_string_start);
10410 b->addr_string_range_end = xstrdup (addr_string_end);
10411 b->loc->length = length;
10412
10413 do_cleanups (cleanup_bkpt);
10414
10415 mention (b);
10416 observer_notify_breakpoint_created (b);
10417 update_global_location_list (1);
10418 }
10419
10420 /* Return non-zero if EXP is verified as constant. Returned zero
10421 means EXP is variable. Also the constant detection may fail for
10422 some constant expressions and in such case still falsely return
10423 zero. */
10424
10425 static int
10426 watchpoint_exp_is_const (const struct expression *exp)
10427 {
10428 int i = exp->nelts;
10429
10430 while (i > 0)
10431 {
10432 int oplenp, argsp;
10433
10434 /* We are only interested in the descriptor of each element. */
10435 operator_length (exp, i, &oplenp, &argsp);
10436 i -= oplenp;
10437
10438 switch (exp->elts[i].opcode)
10439 {
10440 case BINOP_ADD:
10441 case BINOP_SUB:
10442 case BINOP_MUL:
10443 case BINOP_DIV:
10444 case BINOP_REM:
10445 case BINOP_MOD:
10446 case BINOP_LSH:
10447 case BINOP_RSH:
10448 case BINOP_LOGICAL_AND:
10449 case BINOP_LOGICAL_OR:
10450 case BINOP_BITWISE_AND:
10451 case BINOP_BITWISE_IOR:
10452 case BINOP_BITWISE_XOR:
10453 case BINOP_EQUAL:
10454 case BINOP_NOTEQUAL:
10455 case BINOP_LESS:
10456 case BINOP_GTR:
10457 case BINOP_LEQ:
10458 case BINOP_GEQ:
10459 case BINOP_REPEAT:
10460 case BINOP_COMMA:
10461 case BINOP_EXP:
10462 case BINOP_MIN:
10463 case BINOP_MAX:
10464 case BINOP_INTDIV:
10465 case BINOP_CONCAT:
10466 case BINOP_IN:
10467 case BINOP_RANGE:
10468 case TERNOP_COND:
10469 case TERNOP_SLICE:
10470
10471 case OP_LONG:
10472 case OP_DOUBLE:
10473 case OP_DECFLOAT:
10474 case OP_LAST:
10475 case OP_COMPLEX:
10476 case OP_STRING:
10477 case OP_ARRAY:
10478 case OP_TYPE:
10479 case OP_TYPEOF:
10480 case OP_DECLTYPE:
10481 case OP_TYPEID:
10482 case OP_NAME:
10483 case OP_OBJC_NSSTRING:
10484
10485 case UNOP_NEG:
10486 case UNOP_LOGICAL_NOT:
10487 case UNOP_COMPLEMENT:
10488 case UNOP_ADDR:
10489 case UNOP_HIGH:
10490 case UNOP_CAST:
10491
10492 case UNOP_CAST_TYPE:
10493 case UNOP_REINTERPRET_CAST:
10494 case UNOP_DYNAMIC_CAST:
10495 /* Unary, binary and ternary operators: We have to check
10496 their operands. If they are constant, then so is the
10497 result of that operation. For instance, if A and B are
10498 determined to be constants, then so is "A + B".
10499
10500 UNOP_IND is one exception to the rule above, because the
10501 value of *ADDR is not necessarily a constant, even when
10502 ADDR is. */
10503 break;
10504
10505 case OP_VAR_VALUE:
10506 /* Check whether the associated symbol is a constant.
10507
10508 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10509 possible that a buggy compiler could mark a variable as
10510 constant even when it is not, and TYPE_CONST would return
10511 true in this case, while SYMBOL_CLASS wouldn't.
10512
10513 We also have to check for function symbols because they
10514 are always constant. */
10515 {
10516 struct symbol *s = exp->elts[i + 2].symbol;
10517
10518 if (SYMBOL_CLASS (s) != LOC_BLOCK
10519 && SYMBOL_CLASS (s) != LOC_CONST
10520 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10521 return 0;
10522 break;
10523 }
10524
10525 /* The default action is to return 0 because we are using
10526 the optimistic approach here: If we don't know something,
10527 then it is not a constant. */
10528 default:
10529 return 0;
10530 }
10531 }
10532
10533 return 1;
10534 }
10535
10536 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10537
10538 static void
10539 dtor_watchpoint (struct breakpoint *self)
10540 {
10541 struct watchpoint *w = (struct watchpoint *) self;
10542
10543 xfree (w->cond_exp);
10544 xfree (w->exp);
10545 xfree (w->exp_string);
10546 xfree (w->exp_string_reparse);
10547 value_free (w->val);
10548
10549 base_breakpoint_ops.dtor (self);
10550 }
10551
10552 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10553
10554 static void
10555 re_set_watchpoint (struct breakpoint *b)
10556 {
10557 struct watchpoint *w = (struct watchpoint *) b;
10558
10559 /* Watchpoint can be either on expression using entirely global
10560 variables, or it can be on local variables.
10561
10562 Watchpoints of the first kind are never auto-deleted, and even
10563 persist across program restarts. Since they can use variables
10564 from shared libraries, we need to reparse expression as libraries
10565 are loaded and unloaded.
10566
10567 Watchpoints on local variables can also change meaning as result
10568 of solib event. For example, if a watchpoint uses both a local
10569 and a global variables in expression, it's a local watchpoint,
10570 but unloading of a shared library will make the expression
10571 invalid. This is not a very common use case, but we still
10572 re-evaluate expression, to avoid surprises to the user.
10573
10574 Note that for local watchpoints, we re-evaluate it only if
10575 watchpoints frame id is still valid. If it's not, it means the
10576 watchpoint is out of scope and will be deleted soon. In fact,
10577 I'm not sure we'll ever be called in this case.
10578
10579 If a local watchpoint's frame id is still valid, then
10580 w->exp_valid_block is likewise valid, and we can safely use it.
10581
10582 Don't do anything about disabled watchpoints, since they will be
10583 reevaluated again when enabled. */
10584 update_watchpoint (w, 1 /* reparse */);
10585 }
10586
10587 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10588
10589 static int
10590 insert_watchpoint (struct bp_location *bl)
10591 {
10592 struct watchpoint *w = (struct watchpoint *) bl->owner;
10593 int length = w->exact ? 1 : bl->length;
10594
10595 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10596 w->cond_exp);
10597 }
10598
10599 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10600
10601 static int
10602 remove_watchpoint (struct bp_location *bl)
10603 {
10604 struct watchpoint *w = (struct watchpoint *) bl->owner;
10605 int length = w->exact ? 1 : bl->length;
10606
10607 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10608 w->cond_exp);
10609 }
10610
10611 static int
10612 breakpoint_hit_watchpoint (const struct bp_location *bl,
10613 struct address_space *aspace, CORE_ADDR bp_addr,
10614 const struct target_waitstatus *ws)
10615 {
10616 struct breakpoint *b = bl->owner;
10617 struct watchpoint *w = (struct watchpoint *) b;
10618
10619 /* Continuable hardware watchpoints are treated as non-existent if the
10620 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10621 some data address). Otherwise gdb won't stop on a break instruction
10622 in the code (not from a breakpoint) when a hardware watchpoint has
10623 been defined. Also skip watchpoints which we know did not trigger
10624 (did not match the data address). */
10625 if (is_hardware_watchpoint (b)
10626 && w->watchpoint_triggered == watch_triggered_no)
10627 return 0;
10628
10629 return 1;
10630 }
10631
10632 static void
10633 check_status_watchpoint (bpstat bs)
10634 {
10635 gdb_assert (is_watchpoint (bs->breakpoint_at));
10636
10637 bpstat_check_watchpoint (bs);
10638 }
10639
10640 /* Implement the "resources_needed" breakpoint_ops method for
10641 hardware watchpoints. */
10642
10643 static int
10644 resources_needed_watchpoint (const struct bp_location *bl)
10645 {
10646 struct watchpoint *w = (struct watchpoint *) bl->owner;
10647 int length = w->exact? 1 : bl->length;
10648
10649 return target_region_ok_for_hw_watchpoint (bl->address, length);
10650 }
10651
10652 /* Implement the "works_in_software_mode" breakpoint_ops method for
10653 hardware watchpoints. */
10654
10655 static int
10656 works_in_software_mode_watchpoint (const struct breakpoint *b)
10657 {
10658 /* Read and access watchpoints only work with hardware support. */
10659 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10660 }
10661
10662 static enum print_stop_action
10663 print_it_watchpoint (bpstat bs)
10664 {
10665 struct cleanup *old_chain;
10666 struct breakpoint *b;
10667 struct ui_file *stb;
10668 enum print_stop_action result;
10669 struct watchpoint *w;
10670 struct ui_out *uiout = current_uiout;
10671
10672 gdb_assert (bs->bp_location_at != NULL);
10673
10674 b = bs->breakpoint_at;
10675 w = (struct watchpoint *) b;
10676
10677 stb = mem_fileopen ();
10678 old_chain = make_cleanup_ui_file_delete (stb);
10679
10680 switch (b->type)
10681 {
10682 case bp_watchpoint:
10683 case bp_hardware_watchpoint:
10684 annotate_watchpoint (b->number);
10685 if (ui_out_is_mi_like_p (uiout))
10686 ui_out_field_string
10687 (uiout, "reason",
10688 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10689 mention (b);
10690 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10691 ui_out_text (uiout, "\nOld value = ");
10692 watchpoint_value_print (bs->old_val, stb);
10693 ui_out_field_stream (uiout, "old", stb);
10694 ui_out_text (uiout, "\nNew value = ");
10695 watchpoint_value_print (w->val, stb);
10696 ui_out_field_stream (uiout, "new", stb);
10697 ui_out_text (uiout, "\n");
10698 /* More than one watchpoint may have been triggered. */
10699 result = PRINT_UNKNOWN;
10700 break;
10701
10702 case bp_read_watchpoint:
10703 if (ui_out_is_mi_like_p (uiout))
10704 ui_out_field_string
10705 (uiout, "reason",
10706 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10707 mention (b);
10708 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10709 ui_out_text (uiout, "\nValue = ");
10710 watchpoint_value_print (w->val, stb);
10711 ui_out_field_stream (uiout, "value", stb);
10712 ui_out_text (uiout, "\n");
10713 result = PRINT_UNKNOWN;
10714 break;
10715
10716 case bp_access_watchpoint:
10717 if (bs->old_val != NULL)
10718 {
10719 annotate_watchpoint (b->number);
10720 if (ui_out_is_mi_like_p (uiout))
10721 ui_out_field_string
10722 (uiout, "reason",
10723 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10724 mention (b);
10725 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10726 ui_out_text (uiout, "\nOld value = ");
10727 watchpoint_value_print (bs->old_val, stb);
10728 ui_out_field_stream (uiout, "old", stb);
10729 ui_out_text (uiout, "\nNew value = ");
10730 }
10731 else
10732 {
10733 mention (b);
10734 if (ui_out_is_mi_like_p (uiout))
10735 ui_out_field_string
10736 (uiout, "reason",
10737 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10738 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10739 ui_out_text (uiout, "\nValue = ");
10740 }
10741 watchpoint_value_print (w->val, stb);
10742 ui_out_field_stream (uiout, "new", stb);
10743 ui_out_text (uiout, "\n");
10744 result = PRINT_UNKNOWN;
10745 break;
10746 default:
10747 result = PRINT_UNKNOWN;
10748 }
10749
10750 do_cleanups (old_chain);
10751 return result;
10752 }
10753
10754 /* Implement the "print_mention" breakpoint_ops method for hardware
10755 watchpoints. */
10756
10757 static void
10758 print_mention_watchpoint (struct breakpoint *b)
10759 {
10760 struct cleanup *ui_out_chain;
10761 struct watchpoint *w = (struct watchpoint *) b;
10762 struct ui_out *uiout = current_uiout;
10763
10764 switch (b->type)
10765 {
10766 case bp_watchpoint:
10767 ui_out_text (uiout, "Watchpoint ");
10768 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10769 break;
10770 case bp_hardware_watchpoint:
10771 ui_out_text (uiout, "Hardware watchpoint ");
10772 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10773 break;
10774 case bp_read_watchpoint:
10775 ui_out_text (uiout, "Hardware read watchpoint ");
10776 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10777 break;
10778 case bp_access_watchpoint:
10779 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10780 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10781 break;
10782 default:
10783 internal_error (__FILE__, __LINE__,
10784 _("Invalid hardware watchpoint type."));
10785 }
10786
10787 ui_out_field_int (uiout, "number", b->number);
10788 ui_out_text (uiout, ": ");
10789 ui_out_field_string (uiout, "exp", w->exp_string);
10790 do_cleanups (ui_out_chain);
10791 }
10792
10793 /* Implement the "print_recreate" breakpoint_ops method for
10794 watchpoints. */
10795
10796 static void
10797 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10798 {
10799 struct watchpoint *w = (struct watchpoint *) b;
10800
10801 switch (b->type)
10802 {
10803 case bp_watchpoint:
10804 case bp_hardware_watchpoint:
10805 fprintf_unfiltered (fp, "watch");
10806 break;
10807 case bp_read_watchpoint:
10808 fprintf_unfiltered (fp, "rwatch");
10809 break;
10810 case bp_access_watchpoint:
10811 fprintf_unfiltered (fp, "awatch");
10812 break;
10813 default:
10814 internal_error (__FILE__, __LINE__,
10815 _("Invalid watchpoint type."));
10816 }
10817
10818 fprintf_unfiltered (fp, " %s", w->exp_string);
10819 print_recreate_thread (b, fp);
10820 }
10821
10822 /* Implement the "explains_signal" breakpoint_ops method for
10823 watchpoints. */
10824
10825 static int
10826 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10827 {
10828 /* A software watchpoint cannot cause a signal other than
10829 GDB_SIGNAL_TRAP. */
10830 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10831 return 0;
10832
10833 return 1;
10834 }
10835
10836 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10837
10838 static struct breakpoint_ops watchpoint_breakpoint_ops;
10839
10840 /* Implement the "insert" breakpoint_ops method for
10841 masked hardware watchpoints. */
10842
10843 static int
10844 insert_masked_watchpoint (struct bp_location *bl)
10845 {
10846 struct watchpoint *w = (struct watchpoint *) bl->owner;
10847
10848 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10849 bl->watchpoint_type);
10850 }
10851
10852 /* Implement the "remove" breakpoint_ops method for
10853 masked hardware watchpoints. */
10854
10855 static int
10856 remove_masked_watchpoint (struct bp_location *bl)
10857 {
10858 struct watchpoint *w = (struct watchpoint *) bl->owner;
10859
10860 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10861 bl->watchpoint_type);
10862 }
10863
10864 /* Implement the "resources_needed" breakpoint_ops method for
10865 masked hardware watchpoints. */
10866
10867 static int
10868 resources_needed_masked_watchpoint (const struct bp_location *bl)
10869 {
10870 struct watchpoint *w = (struct watchpoint *) bl->owner;
10871
10872 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10873 }
10874
10875 /* Implement the "works_in_software_mode" breakpoint_ops method for
10876 masked hardware watchpoints. */
10877
10878 static int
10879 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10880 {
10881 return 0;
10882 }
10883
10884 /* Implement the "print_it" breakpoint_ops method for
10885 masked hardware watchpoints. */
10886
10887 static enum print_stop_action
10888 print_it_masked_watchpoint (bpstat bs)
10889 {
10890 struct breakpoint *b = bs->breakpoint_at;
10891 struct ui_out *uiout = current_uiout;
10892
10893 /* Masked watchpoints have only one location. */
10894 gdb_assert (b->loc && b->loc->next == NULL);
10895
10896 switch (b->type)
10897 {
10898 case bp_hardware_watchpoint:
10899 annotate_watchpoint (b->number);
10900 if (ui_out_is_mi_like_p (uiout))
10901 ui_out_field_string
10902 (uiout, "reason",
10903 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10904 break;
10905
10906 case bp_read_watchpoint:
10907 if (ui_out_is_mi_like_p (uiout))
10908 ui_out_field_string
10909 (uiout, "reason",
10910 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10911 break;
10912
10913 case bp_access_watchpoint:
10914 if (ui_out_is_mi_like_p (uiout))
10915 ui_out_field_string
10916 (uiout, "reason",
10917 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10918 break;
10919 default:
10920 internal_error (__FILE__, __LINE__,
10921 _("Invalid hardware watchpoint type."));
10922 }
10923
10924 mention (b);
10925 ui_out_text (uiout, _("\n\
10926 Check the underlying instruction at PC for the memory\n\
10927 address and value which triggered this watchpoint.\n"));
10928 ui_out_text (uiout, "\n");
10929
10930 /* More than one watchpoint may have been triggered. */
10931 return PRINT_UNKNOWN;
10932 }
10933
10934 /* Implement the "print_one_detail" breakpoint_ops method for
10935 masked hardware watchpoints. */
10936
10937 static void
10938 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10939 struct ui_out *uiout)
10940 {
10941 struct watchpoint *w = (struct watchpoint *) b;
10942
10943 /* Masked watchpoints have only one location. */
10944 gdb_assert (b->loc && b->loc->next == NULL);
10945
10946 ui_out_text (uiout, "\tmask ");
10947 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10948 ui_out_text (uiout, "\n");
10949 }
10950
10951 /* Implement the "print_mention" breakpoint_ops method for
10952 masked hardware watchpoints. */
10953
10954 static void
10955 print_mention_masked_watchpoint (struct breakpoint *b)
10956 {
10957 struct watchpoint *w = (struct watchpoint *) b;
10958 struct ui_out *uiout = current_uiout;
10959 struct cleanup *ui_out_chain;
10960
10961 switch (b->type)
10962 {
10963 case bp_hardware_watchpoint:
10964 ui_out_text (uiout, "Masked hardware watchpoint ");
10965 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10966 break;
10967 case bp_read_watchpoint:
10968 ui_out_text (uiout, "Masked hardware read watchpoint ");
10969 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10970 break;
10971 case bp_access_watchpoint:
10972 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10973 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10974 break;
10975 default:
10976 internal_error (__FILE__, __LINE__,
10977 _("Invalid hardware watchpoint type."));
10978 }
10979
10980 ui_out_field_int (uiout, "number", b->number);
10981 ui_out_text (uiout, ": ");
10982 ui_out_field_string (uiout, "exp", w->exp_string);
10983 do_cleanups (ui_out_chain);
10984 }
10985
10986 /* Implement the "print_recreate" breakpoint_ops method for
10987 masked hardware watchpoints. */
10988
10989 static void
10990 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10991 {
10992 struct watchpoint *w = (struct watchpoint *) b;
10993 char tmp[40];
10994
10995 switch (b->type)
10996 {
10997 case bp_hardware_watchpoint:
10998 fprintf_unfiltered (fp, "watch");
10999 break;
11000 case bp_read_watchpoint:
11001 fprintf_unfiltered (fp, "rwatch");
11002 break;
11003 case bp_access_watchpoint:
11004 fprintf_unfiltered (fp, "awatch");
11005 break;
11006 default:
11007 internal_error (__FILE__, __LINE__,
11008 _("Invalid hardware watchpoint type."));
11009 }
11010
11011 sprintf_vma (tmp, w->hw_wp_mask);
11012 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11013 print_recreate_thread (b, fp);
11014 }
11015
11016 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11017
11018 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11019
11020 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11021
11022 static int
11023 is_masked_watchpoint (const struct breakpoint *b)
11024 {
11025 return b->ops == &masked_watchpoint_breakpoint_ops;
11026 }
11027
11028 /* accessflag: hw_write: watch write,
11029 hw_read: watch read,
11030 hw_access: watch access (read or write) */
11031 static void
11032 watch_command_1 (const char *arg, int accessflag, int from_tty,
11033 int just_location, int internal)
11034 {
11035 volatile struct gdb_exception e;
11036 struct breakpoint *b, *scope_breakpoint = NULL;
11037 struct expression *exp;
11038 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11039 struct value *val, *mark, *result;
11040 struct frame_info *frame;
11041 const char *exp_start = NULL;
11042 const char *exp_end = NULL;
11043 const char *tok, *end_tok;
11044 int toklen = -1;
11045 const char *cond_start = NULL;
11046 const char *cond_end = NULL;
11047 enum bptype bp_type;
11048 int thread = -1;
11049 int pc = 0;
11050 /* Flag to indicate whether we are going to use masks for
11051 the hardware watchpoint. */
11052 int use_mask = 0;
11053 CORE_ADDR mask = 0;
11054 struct watchpoint *w;
11055 char *expression;
11056 struct cleanup *back_to;
11057
11058 /* Make sure that we actually have parameters to parse. */
11059 if (arg != NULL && arg[0] != '\0')
11060 {
11061 const char *value_start;
11062
11063 exp_end = arg + strlen (arg);
11064
11065 /* Look for "parameter value" pairs at the end
11066 of the arguments string. */
11067 for (tok = exp_end - 1; tok > arg; tok--)
11068 {
11069 /* Skip whitespace at the end of the argument list. */
11070 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11071 tok--;
11072
11073 /* Find the beginning of the last token.
11074 This is the value of the parameter. */
11075 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11076 tok--;
11077 value_start = tok + 1;
11078
11079 /* Skip whitespace. */
11080 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11081 tok--;
11082
11083 end_tok = tok;
11084
11085 /* Find the beginning of the second to last token.
11086 This is the parameter itself. */
11087 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11088 tok--;
11089 tok++;
11090 toklen = end_tok - tok + 1;
11091
11092 if (toklen == 6 && !strncmp (tok, "thread", 6))
11093 {
11094 /* At this point we've found a "thread" token, which means
11095 the user is trying to set a watchpoint that triggers
11096 only in a specific thread. */
11097 char *endp;
11098
11099 if (thread != -1)
11100 error(_("You can specify only one thread."));
11101
11102 /* Extract the thread ID from the next token. */
11103 thread = strtol (value_start, &endp, 0);
11104
11105 /* Check if the user provided a valid numeric value for the
11106 thread ID. */
11107 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11108 error (_("Invalid thread ID specification %s."), value_start);
11109
11110 /* Check if the thread actually exists. */
11111 if (!valid_thread_id (thread))
11112 invalid_thread_id_error (thread);
11113 }
11114 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11115 {
11116 /* We've found a "mask" token, which means the user wants to
11117 create a hardware watchpoint that is going to have the mask
11118 facility. */
11119 struct value *mask_value, *mark;
11120
11121 if (use_mask)
11122 error(_("You can specify only one mask."));
11123
11124 use_mask = just_location = 1;
11125
11126 mark = value_mark ();
11127 mask_value = parse_to_comma_and_eval (&value_start);
11128 mask = value_as_address (mask_value);
11129 value_free_to_mark (mark);
11130 }
11131 else
11132 /* We didn't recognize what we found. We should stop here. */
11133 break;
11134
11135 /* Truncate the string and get rid of the "parameter value" pair before
11136 the arguments string is parsed by the parse_exp_1 function. */
11137 exp_end = tok;
11138 }
11139 }
11140 else
11141 exp_end = arg;
11142
11143 /* Parse the rest of the arguments. From here on out, everything
11144 is in terms of a newly allocated string instead of the original
11145 ARG. */
11146 innermost_block = NULL;
11147 expression = savestring (arg, exp_end - arg);
11148 back_to = make_cleanup (xfree, expression);
11149 exp_start = arg = expression;
11150 exp = parse_exp_1 (&arg, 0, 0, 0);
11151 exp_end = arg;
11152 /* Remove trailing whitespace from the expression before saving it.
11153 This makes the eventual display of the expression string a bit
11154 prettier. */
11155 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11156 --exp_end;
11157
11158 /* Checking if the expression is not constant. */
11159 if (watchpoint_exp_is_const (exp))
11160 {
11161 int len;
11162
11163 len = exp_end - exp_start;
11164 while (len > 0 && isspace (exp_start[len - 1]))
11165 len--;
11166 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11167 }
11168
11169 exp_valid_block = innermost_block;
11170 mark = value_mark ();
11171 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11172
11173 if (just_location)
11174 {
11175 int ret;
11176
11177 exp_valid_block = NULL;
11178 val = value_addr (result);
11179 release_value (val);
11180 value_free_to_mark (mark);
11181
11182 if (use_mask)
11183 {
11184 ret = target_masked_watch_num_registers (value_as_address (val),
11185 mask);
11186 if (ret == -1)
11187 error (_("This target does not support masked watchpoints."));
11188 else if (ret == -2)
11189 error (_("Invalid mask or memory region."));
11190 }
11191 }
11192 else if (val != NULL)
11193 release_value (val);
11194
11195 tok = skip_spaces_const (arg);
11196 end_tok = skip_to_space_const (tok);
11197
11198 toklen = end_tok - tok;
11199 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11200 {
11201 struct expression *cond;
11202
11203 innermost_block = NULL;
11204 tok = cond_start = end_tok + 1;
11205 cond = parse_exp_1 (&tok, 0, 0, 0);
11206
11207 /* The watchpoint expression may not be local, but the condition
11208 may still be. E.g.: `watch global if local > 0'. */
11209 cond_exp_valid_block = innermost_block;
11210
11211 xfree (cond);
11212 cond_end = tok;
11213 }
11214 if (*tok)
11215 error (_("Junk at end of command."));
11216
11217 frame = block_innermost_frame (exp_valid_block);
11218
11219 /* If the expression is "local", then set up a "watchpoint scope"
11220 breakpoint at the point where we've left the scope of the watchpoint
11221 expression. Create the scope breakpoint before the watchpoint, so
11222 that we will encounter it first in bpstat_stop_status. */
11223 if (exp_valid_block && frame)
11224 {
11225 if (frame_id_p (frame_unwind_caller_id (frame)))
11226 {
11227 scope_breakpoint
11228 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11229 frame_unwind_caller_pc (frame),
11230 bp_watchpoint_scope,
11231 &momentary_breakpoint_ops);
11232
11233 scope_breakpoint->enable_state = bp_enabled;
11234
11235 /* Automatically delete the breakpoint when it hits. */
11236 scope_breakpoint->disposition = disp_del;
11237
11238 /* Only break in the proper frame (help with recursion). */
11239 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11240
11241 /* Set the address at which we will stop. */
11242 scope_breakpoint->loc->gdbarch
11243 = frame_unwind_caller_arch (frame);
11244 scope_breakpoint->loc->requested_address
11245 = frame_unwind_caller_pc (frame);
11246 scope_breakpoint->loc->address
11247 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11248 scope_breakpoint->loc->requested_address,
11249 scope_breakpoint->type);
11250 }
11251 }
11252
11253 /* Now set up the breakpoint. We create all watchpoints as hardware
11254 watchpoints here even if hardware watchpoints are turned off, a call
11255 to update_watchpoint later in this function will cause the type to
11256 drop back to bp_watchpoint (software watchpoint) if required. */
11257
11258 if (accessflag == hw_read)
11259 bp_type = bp_read_watchpoint;
11260 else if (accessflag == hw_access)
11261 bp_type = bp_access_watchpoint;
11262 else
11263 bp_type = bp_hardware_watchpoint;
11264
11265 w = XCNEW (struct watchpoint);
11266 b = &w->base;
11267 if (use_mask)
11268 init_raw_breakpoint_without_location (b, NULL, bp_type,
11269 &masked_watchpoint_breakpoint_ops);
11270 else
11271 init_raw_breakpoint_without_location (b, NULL, bp_type,
11272 &watchpoint_breakpoint_ops);
11273 b->thread = thread;
11274 b->disposition = disp_donttouch;
11275 b->pspace = current_program_space;
11276 w->exp = exp;
11277 w->exp_valid_block = exp_valid_block;
11278 w->cond_exp_valid_block = cond_exp_valid_block;
11279 if (just_location)
11280 {
11281 struct type *t = value_type (val);
11282 CORE_ADDR addr = value_as_address (val);
11283 char *name;
11284
11285 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11286 name = type_to_string (t);
11287
11288 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11289 core_addr_to_string (addr));
11290 xfree (name);
11291
11292 w->exp_string = xstrprintf ("-location %.*s",
11293 (int) (exp_end - exp_start), exp_start);
11294
11295 /* The above expression is in C. */
11296 b->language = language_c;
11297 }
11298 else
11299 w->exp_string = savestring (exp_start, exp_end - exp_start);
11300
11301 if (use_mask)
11302 {
11303 w->hw_wp_mask = mask;
11304 }
11305 else
11306 {
11307 w->val = val;
11308 w->val_valid = 1;
11309 }
11310
11311 if (cond_start)
11312 b->cond_string = savestring (cond_start, cond_end - cond_start);
11313 else
11314 b->cond_string = 0;
11315
11316 if (frame)
11317 {
11318 w->watchpoint_frame = get_frame_id (frame);
11319 w->watchpoint_thread = inferior_ptid;
11320 }
11321 else
11322 {
11323 w->watchpoint_frame = null_frame_id;
11324 w->watchpoint_thread = null_ptid;
11325 }
11326
11327 if (scope_breakpoint != NULL)
11328 {
11329 /* The scope breakpoint is related to the watchpoint. We will
11330 need to act on them together. */
11331 b->related_breakpoint = scope_breakpoint;
11332 scope_breakpoint->related_breakpoint = b;
11333 }
11334
11335 if (!just_location)
11336 value_free_to_mark (mark);
11337
11338 TRY_CATCH (e, RETURN_MASK_ALL)
11339 {
11340 /* Finally update the new watchpoint. This creates the locations
11341 that should be inserted. */
11342 update_watchpoint (w, 1);
11343 }
11344 if (e.reason < 0)
11345 {
11346 delete_breakpoint (b);
11347 throw_exception (e);
11348 }
11349
11350 install_breakpoint (internal, b, 1);
11351 do_cleanups (back_to);
11352 }
11353
11354 /* Return count of debug registers needed to watch the given expression.
11355 If the watchpoint cannot be handled in hardware return zero. */
11356
11357 static int
11358 can_use_hardware_watchpoint (struct value *v)
11359 {
11360 int found_memory_cnt = 0;
11361 struct value *head = v;
11362
11363 /* Did the user specifically forbid us to use hardware watchpoints? */
11364 if (!can_use_hw_watchpoints)
11365 return 0;
11366
11367 /* Make sure that the value of the expression depends only upon
11368 memory contents, and values computed from them within GDB. If we
11369 find any register references or function calls, we can't use a
11370 hardware watchpoint.
11371
11372 The idea here is that evaluating an expression generates a series
11373 of values, one holding the value of every subexpression. (The
11374 expression a*b+c has five subexpressions: a, b, a*b, c, and
11375 a*b+c.) GDB's values hold almost enough information to establish
11376 the criteria given above --- they identify memory lvalues,
11377 register lvalues, computed values, etcetera. So we can evaluate
11378 the expression, and then scan the chain of values that leaves
11379 behind to decide whether we can detect any possible change to the
11380 expression's final value using only hardware watchpoints.
11381
11382 However, I don't think that the values returned by inferior
11383 function calls are special in any way. So this function may not
11384 notice that an expression involving an inferior function call
11385 can't be watched with hardware watchpoints. FIXME. */
11386 for (; v; v = value_next (v))
11387 {
11388 if (VALUE_LVAL (v) == lval_memory)
11389 {
11390 if (v != head && value_lazy (v))
11391 /* A lazy memory lvalue in the chain is one that GDB never
11392 needed to fetch; we either just used its address (e.g.,
11393 `a' in `a.b') or we never needed it at all (e.g., `a'
11394 in `a,b'). This doesn't apply to HEAD; if that is
11395 lazy then it was not readable, but watch it anyway. */
11396 ;
11397 else
11398 {
11399 /* Ahh, memory we actually used! Check if we can cover
11400 it with hardware watchpoints. */
11401 struct type *vtype = check_typedef (value_type (v));
11402
11403 /* We only watch structs and arrays if user asked for it
11404 explicitly, never if they just happen to appear in a
11405 middle of some value chain. */
11406 if (v == head
11407 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11408 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11409 {
11410 CORE_ADDR vaddr = value_address (v);
11411 int len;
11412 int num_regs;
11413
11414 len = (target_exact_watchpoints
11415 && is_scalar_type_recursive (vtype))?
11416 1 : TYPE_LENGTH (value_type (v));
11417
11418 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11419 if (!num_regs)
11420 return 0;
11421 else
11422 found_memory_cnt += num_regs;
11423 }
11424 }
11425 }
11426 else if (VALUE_LVAL (v) != not_lval
11427 && deprecated_value_modifiable (v) == 0)
11428 return 0; /* These are values from the history (e.g., $1). */
11429 else if (VALUE_LVAL (v) == lval_register)
11430 return 0; /* Cannot watch a register with a HW watchpoint. */
11431 }
11432
11433 /* The expression itself looks suitable for using a hardware
11434 watchpoint, but give the target machine a chance to reject it. */
11435 return found_memory_cnt;
11436 }
11437
11438 void
11439 watch_command_wrapper (char *arg, int from_tty, int internal)
11440 {
11441 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11442 }
11443
11444 /* A helper function that looks for the "-location" argument and then
11445 calls watch_command_1. */
11446
11447 static void
11448 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11449 {
11450 int just_location = 0;
11451
11452 if (arg
11453 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11454 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11455 {
11456 arg = skip_spaces (arg);
11457 just_location = 1;
11458 }
11459
11460 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11461 }
11462
11463 static void
11464 watch_command (char *arg, int from_tty)
11465 {
11466 watch_maybe_just_location (arg, hw_write, from_tty);
11467 }
11468
11469 void
11470 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11471 {
11472 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11473 }
11474
11475 static void
11476 rwatch_command (char *arg, int from_tty)
11477 {
11478 watch_maybe_just_location (arg, hw_read, from_tty);
11479 }
11480
11481 void
11482 awatch_command_wrapper (char *arg, int from_tty, int internal)
11483 {
11484 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11485 }
11486
11487 static void
11488 awatch_command (char *arg, int from_tty)
11489 {
11490 watch_maybe_just_location (arg, hw_access, from_tty);
11491 }
11492 \f
11493
11494 /* Helper routines for the until_command routine in infcmd.c. Here
11495 because it uses the mechanisms of breakpoints. */
11496
11497 struct until_break_command_continuation_args
11498 {
11499 struct breakpoint *breakpoint;
11500 struct breakpoint *breakpoint2;
11501 int thread_num;
11502 };
11503
11504 /* This function is called by fetch_inferior_event via the
11505 cmd_continuation pointer, to complete the until command. It takes
11506 care of cleaning up the temporary breakpoints set up by the until
11507 command. */
11508 static void
11509 until_break_command_continuation (void *arg, int err)
11510 {
11511 struct until_break_command_continuation_args *a = arg;
11512
11513 delete_breakpoint (a->breakpoint);
11514 if (a->breakpoint2)
11515 delete_breakpoint (a->breakpoint2);
11516 delete_longjmp_breakpoint (a->thread_num);
11517 }
11518
11519 void
11520 until_break_command (char *arg, int from_tty, int anywhere)
11521 {
11522 struct symtabs_and_lines sals;
11523 struct symtab_and_line sal;
11524 struct frame_info *frame;
11525 struct gdbarch *frame_gdbarch;
11526 struct frame_id stack_frame_id;
11527 struct frame_id caller_frame_id;
11528 struct breakpoint *breakpoint;
11529 struct breakpoint *breakpoint2 = NULL;
11530 struct cleanup *old_chain;
11531 int thread;
11532 struct thread_info *tp;
11533
11534 clear_proceed_status ();
11535
11536 /* Set a breakpoint where the user wants it and at return from
11537 this function. */
11538
11539 if (last_displayed_sal_is_valid ())
11540 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11541 get_last_displayed_symtab (),
11542 get_last_displayed_line ());
11543 else
11544 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11545 (struct symtab *) NULL, 0);
11546
11547 if (sals.nelts != 1)
11548 error (_("Couldn't get information on specified line."));
11549
11550 sal = sals.sals[0];
11551 xfree (sals.sals); /* malloc'd, so freed. */
11552
11553 if (*arg)
11554 error (_("Junk at end of arguments."));
11555
11556 resolve_sal_pc (&sal);
11557
11558 tp = inferior_thread ();
11559 thread = tp->num;
11560
11561 old_chain = make_cleanup (null_cleanup, NULL);
11562
11563 /* Note linespec handling above invalidates the frame chain.
11564 Installing a breakpoint also invalidates the frame chain (as it
11565 may need to switch threads), so do any frame handling before
11566 that. */
11567
11568 frame = get_selected_frame (NULL);
11569 frame_gdbarch = get_frame_arch (frame);
11570 stack_frame_id = get_stack_frame_id (frame);
11571 caller_frame_id = frame_unwind_caller_id (frame);
11572
11573 /* Keep within the current frame, or in frames called by the current
11574 one. */
11575
11576 if (frame_id_p (caller_frame_id))
11577 {
11578 struct symtab_and_line sal2;
11579
11580 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11581 sal2.pc = frame_unwind_caller_pc (frame);
11582 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11583 sal2,
11584 caller_frame_id,
11585 bp_until);
11586 make_cleanup_delete_breakpoint (breakpoint2);
11587
11588 set_longjmp_breakpoint (tp, caller_frame_id);
11589 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11590 }
11591
11592 /* set_momentary_breakpoint could invalidate FRAME. */
11593 frame = NULL;
11594
11595 if (anywhere)
11596 /* If the user told us to continue until a specified location,
11597 we don't specify a frame at which we need to stop. */
11598 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11599 null_frame_id, bp_until);
11600 else
11601 /* Otherwise, specify the selected frame, because we want to stop
11602 only at the very same frame. */
11603 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11604 stack_frame_id, bp_until);
11605 make_cleanup_delete_breakpoint (breakpoint);
11606
11607 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11608
11609 /* If we are running asynchronously, and proceed call above has
11610 actually managed to start the target, arrange for breakpoints to
11611 be deleted when the target stops. Otherwise, we're already
11612 stopped and delete breakpoints via cleanup chain. */
11613
11614 if (target_can_async_p () && is_running (inferior_ptid))
11615 {
11616 struct until_break_command_continuation_args *args;
11617 args = xmalloc (sizeof (*args));
11618
11619 args->breakpoint = breakpoint;
11620 args->breakpoint2 = breakpoint2;
11621 args->thread_num = thread;
11622
11623 discard_cleanups (old_chain);
11624 add_continuation (inferior_thread (),
11625 until_break_command_continuation, args,
11626 xfree);
11627 }
11628 else
11629 do_cleanups (old_chain);
11630 }
11631
11632 /* This function attempts to parse an optional "if <cond>" clause
11633 from the arg string. If one is not found, it returns NULL.
11634
11635 Else, it returns a pointer to the condition string. (It does not
11636 attempt to evaluate the string against a particular block.) And,
11637 it updates arg to point to the first character following the parsed
11638 if clause in the arg string. */
11639
11640 char *
11641 ep_parse_optional_if_clause (char **arg)
11642 {
11643 char *cond_string;
11644
11645 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11646 return NULL;
11647
11648 /* Skip the "if" keyword. */
11649 (*arg) += 2;
11650
11651 /* Skip any extra leading whitespace, and record the start of the
11652 condition string. */
11653 *arg = skip_spaces (*arg);
11654 cond_string = *arg;
11655
11656 /* Assume that the condition occupies the remainder of the arg
11657 string. */
11658 (*arg) += strlen (cond_string);
11659
11660 return cond_string;
11661 }
11662
11663 /* Commands to deal with catching events, such as signals, exceptions,
11664 process start/exit, etc. */
11665
11666 typedef enum
11667 {
11668 catch_fork_temporary, catch_vfork_temporary,
11669 catch_fork_permanent, catch_vfork_permanent
11670 }
11671 catch_fork_kind;
11672
11673 static void
11674 catch_fork_command_1 (char *arg, int from_tty,
11675 struct cmd_list_element *command)
11676 {
11677 struct gdbarch *gdbarch = get_current_arch ();
11678 char *cond_string = NULL;
11679 catch_fork_kind fork_kind;
11680 int tempflag;
11681
11682 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11683 tempflag = (fork_kind == catch_fork_temporary
11684 || fork_kind == catch_vfork_temporary);
11685
11686 if (!arg)
11687 arg = "";
11688 arg = skip_spaces (arg);
11689
11690 /* The allowed syntax is:
11691 catch [v]fork
11692 catch [v]fork if <cond>
11693
11694 First, check if there's an if clause. */
11695 cond_string = ep_parse_optional_if_clause (&arg);
11696
11697 if ((*arg != '\0') && !isspace (*arg))
11698 error (_("Junk at end of arguments."));
11699
11700 /* If this target supports it, create a fork or vfork catchpoint
11701 and enable reporting of such events. */
11702 switch (fork_kind)
11703 {
11704 case catch_fork_temporary:
11705 case catch_fork_permanent:
11706 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11707 &catch_fork_breakpoint_ops);
11708 break;
11709 case catch_vfork_temporary:
11710 case catch_vfork_permanent:
11711 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11712 &catch_vfork_breakpoint_ops);
11713 break;
11714 default:
11715 error (_("unsupported or unknown fork kind; cannot catch it"));
11716 break;
11717 }
11718 }
11719
11720 static void
11721 catch_exec_command_1 (char *arg, int from_tty,
11722 struct cmd_list_element *command)
11723 {
11724 struct exec_catchpoint *c;
11725 struct gdbarch *gdbarch = get_current_arch ();
11726 int tempflag;
11727 char *cond_string = NULL;
11728
11729 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11730
11731 if (!arg)
11732 arg = "";
11733 arg = skip_spaces (arg);
11734
11735 /* The allowed syntax is:
11736 catch exec
11737 catch exec if <cond>
11738
11739 First, check if there's an if clause. */
11740 cond_string = ep_parse_optional_if_clause (&arg);
11741
11742 if ((*arg != '\0') && !isspace (*arg))
11743 error (_("Junk at end of arguments."));
11744
11745 c = XNEW (struct exec_catchpoint);
11746 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11747 &catch_exec_breakpoint_ops);
11748 c->exec_pathname = NULL;
11749
11750 install_breakpoint (0, &c->base, 1);
11751 }
11752
11753 void
11754 init_ada_exception_breakpoint (struct breakpoint *b,
11755 struct gdbarch *gdbarch,
11756 struct symtab_and_line sal,
11757 char *addr_string,
11758 const struct breakpoint_ops *ops,
11759 int tempflag,
11760 int enabled,
11761 int from_tty)
11762 {
11763 if (from_tty)
11764 {
11765 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11766 if (!loc_gdbarch)
11767 loc_gdbarch = gdbarch;
11768
11769 describe_other_breakpoints (loc_gdbarch,
11770 sal.pspace, sal.pc, sal.section, -1);
11771 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11772 version for exception catchpoints, because two catchpoints
11773 used for different exception names will use the same address.
11774 In this case, a "breakpoint ... also set at..." warning is
11775 unproductive. Besides, the warning phrasing is also a bit
11776 inappropriate, we should use the word catchpoint, and tell
11777 the user what type of catchpoint it is. The above is good
11778 enough for now, though. */
11779 }
11780
11781 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11782
11783 b->enable_state = enabled ? bp_enabled : bp_disabled;
11784 b->disposition = tempflag ? disp_del : disp_donttouch;
11785 b->addr_string = addr_string;
11786 b->language = language_ada;
11787 }
11788
11789 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11790 filter list, or NULL if no filtering is required. */
11791 static VEC(int) *
11792 catch_syscall_split_args (char *arg)
11793 {
11794 VEC(int) *result = NULL;
11795 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11796
11797 while (*arg != '\0')
11798 {
11799 int i, syscall_number;
11800 char *endptr;
11801 char cur_name[128];
11802 struct syscall s;
11803
11804 /* Skip whitespace. */
11805 arg = skip_spaces (arg);
11806
11807 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11808 cur_name[i] = arg[i];
11809 cur_name[i] = '\0';
11810 arg += i;
11811
11812 /* Check if the user provided a syscall name or a number. */
11813 syscall_number = (int) strtol (cur_name, &endptr, 0);
11814 if (*endptr == '\0')
11815 get_syscall_by_number (syscall_number, &s);
11816 else
11817 {
11818 /* We have a name. Let's check if it's valid and convert it
11819 to a number. */
11820 get_syscall_by_name (cur_name, &s);
11821
11822 if (s.number == UNKNOWN_SYSCALL)
11823 /* Here we have to issue an error instead of a warning,
11824 because GDB cannot do anything useful if there's no
11825 syscall number to be caught. */
11826 error (_("Unknown syscall name '%s'."), cur_name);
11827 }
11828
11829 /* Ok, it's valid. */
11830 VEC_safe_push (int, result, s.number);
11831 }
11832
11833 discard_cleanups (cleanup);
11834 return result;
11835 }
11836
11837 /* Implement the "catch syscall" command. */
11838
11839 static void
11840 catch_syscall_command_1 (char *arg, int from_tty,
11841 struct cmd_list_element *command)
11842 {
11843 int tempflag;
11844 VEC(int) *filter;
11845 struct syscall s;
11846 struct gdbarch *gdbarch = get_current_arch ();
11847
11848 /* Checking if the feature if supported. */
11849 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11850 error (_("The feature 'catch syscall' is not supported on \
11851 this architecture yet."));
11852
11853 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11854
11855 arg = skip_spaces (arg);
11856
11857 /* We need to do this first "dummy" translation in order
11858 to get the syscall XML file loaded or, most important,
11859 to display a warning to the user if there's no XML file
11860 for his/her architecture. */
11861 get_syscall_by_number (0, &s);
11862
11863 /* The allowed syntax is:
11864 catch syscall
11865 catch syscall <name | number> [<name | number> ... <name | number>]
11866
11867 Let's check if there's a syscall name. */
11868
11869 if (arg != NULL)
11870 filter = catch_syscall_split_args (arg);
11871 else
11872 filter = NULL;
11873
11874 create_syscall_event_catchpoint (tempflag, filter,
11875 &catch_syscall_breakpoint_ops);
11876 }
11877
11878 static void
11879 catch_command (char *arg, int from_tty)
11880 {
11881 error (_("Catch requires an event name."));
11882 }
11883 \f
11884
11885 static void
11886 tcatch_command (char *arg, int from_tty)
11887 {
11888 error (_("Catch requires an event name."));
11889 }
11890
11891 /* A qsort comparison function that sorts breakpoints in order. */
11892
11893 static int
11894 compare_breakpoints (const void *a, const void *b)
11895 {
11896 const breakpoint_p *ba = a;
11897 uintptr_t ua = (uintptr_t) *ba;
11898 const breakpoint_p *bb = b;
11899 uintptr_t ub = (uintptr_t) *bb;
11900
11901 if ((*ba)->number < (*bb)->number)
11902 return -1;
11903 else if ((*ba)->number > (*bb)->number)
11904 return 1;
11905
11906 /* Now sort by address, in case we see, e..g, two breakpoints with
11907 the number 0. */
11908 if (ua < ub)
11909 return -1;
11910 return ua > ub ? 1 : 0;
11911 }
11912
11913 /* Delete breakpoints by address or line. */
11914
11915 static void
11916 clear_command (char *arg, int from_tty)
11917 {
11918 struct breakpoint *b, *prev;
11919 VEC(breakpoint_p) *found = 0;
11920 int ix;
11921 int default_match;
11922 struct symtabs_and_lines sals;
11923 struct symtab_and_line sal;
11924 int i;
11925 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11926
11927 if (arg)
11928 {
11929 sals = decode_line_with_current_source (arg,
11930 (DECODE_LINE_FUNFIRSTLINE
11931 | DECODE_LINE_LIST_MODE));
11932 make_cleanup (xfree, sals.sals);
11933 default_match = 0;
11934 }
11935 else
11936 {
11937 sals.sals = (struct symtab_and_line *)
11938 xmalloc (sizeof (struct symtab_and_line));
11939 make_cleanup (xfree, sals.sals);
11940 init_sal (&sal); /* Initialize to zeroes. */
11941
11942 /* Set sal's line, symtab, pc, and pspace to the values
11943 corresponding to the last call to print_frame_info. If the
11944 codepoint is not valid, this will set all the fields to 0. */
11945 get_last_displayed_sal (&sal);
11946 if (sal.symtab == 0)
11947 error (_("No source file specified."));
11948
11949 sals.sals[0] = sal;
11950 sals.nelts = 1;
11951
11952 default_match = 1;
11953 }
11954
11955 /* We don't call resolve_sal_pc here. That's not as bad as it
11956 seems, because all existing breakpoints typically have both
11957 file/line and pc set. So, if clear is given file/line, we can
11958 match this to existing breakpoint without obtaining pc at all.
11959
11960 We only support clearing given the address explicitly
11961 present in breakpoint table. Say, we've set breakpoint
11962 at file:line. There were several PC values for that file:line,
11963 due to optimization, all in one block.
11964
11965 We've picked one PC value. If "clear" is issued with another
11966 PC corresponding to the same file:line, the breakpoint won't
11967 be cleared. We probably can still clear the breakpoint, but
11968 since the other PC value is never presented to user, user
11969 can only find it by guessing, and it does not seem important
11970 to support that. */
11971
11972 /* For each line spec given, delete bps which correspond to it. Do
11973 it in two passes, solely to preserve the current behavior that
11974 from_tty is forced true if we delete more than one
11975 breakpoint. */
11976
11977 found = NULL;
11978 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11979 for (i = 0; i < sals.nelts; i++)
11980 {
11981 const char *sal_fullname;
11982
11983 /* If exact pc given, clear bpts at that pc.
11984 If line given (pc == 0), clear all bpts on specified line.
11985 If defaulting, clear all bpts on default line
11986 or at default pc.
11987
11988 defaulting sal.pc != 0 tests to do
11989
11990 0 1 pc
11991 1 1 pc _and_ line
11992 0 0 line
11993 1 0 <can't happen> */
11994
11995 sal = sals.sals[i];
11996 sal_fullname = (sal.symtab == NULL
11997 ? NULL : symtab_to_fullname (sal.symtab));
11998
11999 /* Find all matching breakpoints and add them to 'found'. */
12000 ALL_BREAKPOINTS (b)
12001 {
12002 int match = 0;
12003 /* Are we going to delete b? */
12004 if (b->type != bp_none && !is_watchpoint (b))
12005 {
12006 struct bp_location *loc = b->loc;
12007 for (; loc; loc = loc->next)
12008 {
12009 /* If the user specified file:line, don't allow a PC
12010 match. This matches historical gdb behavior. */
12011 int pc_match = (!sal.explicit_line
12012 && sal.pc
12013 && (loc->pspace == sal.pspace)
12014 && (loc->address == sal.pc)
12015 && (!section_is_overlay (loc->section)
12016 || loc->section == sal.section));
12017 int line_match = 0;
12018
12019 if ((default_match || sal.explicit_line)
12020 && loc->symtab != NULL
12021 && sal_fullname != NULL
12022 && sal.pspace == loc->pspace
12023 && loc->line_number == sal.line
12024 && filename_cmp (symtab_to_fullname (loc->symtab),
12025 sal_fullname) == 0)
12026 line_match = 1;
12027
12028 if (pc_match || line_match)
12029 {
12030 match = 1;
12031 break;
12032 }
12033 }
12034 }
12035
12036 if (match)
12037 VEC_safe_push(breakpoint_p, found, b);
12038 }
12039 }
12040
12041 /* Now go thru the 'found' chain and delete them. */
12042 if (VEC_empty(breakpoint_p, found))
12043 {
12044 if (arg)
12045 error (_("No breakpoint at %s."), arg);
12046 else
12047 error (_("No breakpoint at this line."));
12048 }
12049
12050 /* Remove duplicates from the vec. */
12051 qsort (VEC_address (breakpoint_p, found),
12052 VEC_length (breakpoint_p, found),
12053 sizeof (breakpoint_p),
12054 compare_breakpoints);
12055 prev = VEC_index (breakpoint_p, found, 0);
12056 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12057 {
12058 if (b == prev)
12059 {
12060 VEC_ordered_remove (breakpoint_p, found, ix);
12061 --ix;
12062 }
12063 }
12064
12065 if (VEC_length(breakpoint_p, found) > 1)
12066 from_tty = 1; /* Always report if deleted more than one. */
12067 if (from_tty)
12068 {
12069 if (VEC_length(breakpoint_p, found) == 1)
12070 printf_unfiltered (_("Deleted breakpoint "));
12071 else
12072 printf_unfiltered (_("Deleted breakpoints "));
12073 }
12074
12075 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12076 {
12077 if (from_tty)
12078 printf_unfiltered ("%d ", b->number);
12079 delete_breakpoint (b);
12080 }
12081 if (from_tty)
12082 putchar_unfiltered ('\n');
12083
12084 do_cleanups (cleanups);
12085 }
12086 \f
12087 /* Delete breakpoint in BS if they are `delete' breakpoints and
12088 all breakpoints that are marked for deletion, whether hit or not.
12089 This is called after any breakpoint is hit, or after errors. */
12090
12091 void
12092 breakpoint_auto_delete (bpstat bs)
12093 {
12094 struct breakpoint *b, *b_tmp;
12095
12096 for (; bs; bs = bs->next)
12097 if (bs->breakpoint_at
12098 && bs->breakpoint_at->disposition == disp_del
12099 && bs->stop)
12100 delete_breakpoint (bs->breakpoint_at);
12101
12102 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12103 {
12104 if (b->disposition == disp_del_at_next_stop)
12105 delete_breakpoint (b);
12106 }
12107 }
12108
12109 /* A comparison function for bp_location AP and BP being interfaced to
12110 qsort. Sort elements primarily by their ADDRESS (no matter what
12111 does breakpoint_address_is_meaningful say for its OWNER),
12112 secondarily by ordering first bp_permanent OWNERed elements and
12113 terciarily just ensuring the array is sorted stable way despite
12114 qsort being an unstable algorithm. */
12115
12116 static int
12117 bp_location_compare (const void *ap, const void *bp)
12118 {
12119 struct bp_location *a = *(void **) ap;
12120 struct bp_location *b = *(void **) bp;
12121 /* A and B come from existing breakpoints having non-NULL OWNER. */
12122 int a_perm = a->owner->enable_state == bp_permanent;
12123 int b_perm = b->owner->enable_state == bp_permanent;
12124
12125 if (a->address != b->address)
12126 return (a->address > b->address) - (a->address < b->address);
12127
12128 /* Sort locations at the same address by their pspace number, keeping
12129 locations of the same inferior (in a multi-inferior environment)
12130 grouped. */
12131
12132 if (a->pspace->num != b->pspace->num)
12133 return ((a->pspace->num > b->pspace->num)
12134 - (a->pspace->num < b->pspace->num));
12135
12136 /* Sort permanent breakpoints first. */
12137 if (a_perm != b_perm)
12138 return (a_perm < b_perm) - (a_perm > b_perm);
12139
12140 /* Make the internal GDB representation stable across GDB runs
12141 where A and B memory inside GDB can differ. Breakpoint locations of
12142 the same type at the same address can be sorted in arbitrary order. */
12143
12144 if (a->owner->number != b->owner->number)
12145 return ((a->owner->number > b->owner->number)
12146 - (a->owner->number < b->owner->number));
12147
12148 return (a > b) - (a < b);
12149 }
12150
12151 /* Set bp_location_placed_address_before_address_max and
12152 bp_location_shadow_len_after_address_max according to the current
12153 content of the bp_location array. */
12154
12155 static void
12156 bp_location_target_extensions_update (void)
12157 {
12158 struct bp_location *bl, **blp_tmp;
12159
12160 bp_location_placed_address_before_address_max = 0;
12161 bp_location_shadow_len_after_address_max = 0;
12162
12163 ALL_BP_LOCATIONS (bl, blp_tmp)
12164 {
12165 CORE_ADDR start, end, addr;
12166
12167 if (!bp_location_has_shadow (bl))
12168 continue;
12169
12170 start = bl->target_info.placed_address;
12171 end = start + bl->target_info.shadow_len;
12172
12173 gdb_assert (bl->address >= start);
12174 addr = bl->address - start;
12175 if (addr > bp_location_placed_address_before_address_max)
12176 bp_location_placed_address_before_address_max = addr;
12177
12178 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12179
12180 gdb_assert (bl->address < end);
12181 addr = end - bl->address;
12182 if (addr > bp_location_shadow_len_after_address_max)
12183 bp_location_shadow_len_after_address_max = addr;
12184 }
12185 }
12186
12187 /* Download tracepoint locations if they haven't been. */
12188
12189 static void
12190 download_tracepoint_locations (void)
12191 {
12192 struct breakpoint *b;
12193 struct cleanup *old_chain;
12194
12195 if (!target_can_download_tracepoint ())
12196 return;
12197
12198 old_chain = save_current_space_and_thread ();
12199
12200 ALL_TRACEPOINTS (b)
12201 {
12202 struct bp_location *bl;
12203 struct tracepoint *t;
12204 int bp_location_downloaded = 0;
12205
12206 if ((b->type == bp_fast_tracepoint
12207 ? !may_insert_fast_tracepoints
12208 : !may_insert_tracepoints))
12209 continue;
12210
12211 for (bl = b->loc; bl; bl = bl->next)
12212 {
12213 /* In tracepoint, locations are _never_ duplicated, so
12214 should_be_inserted is equivalent to
12215 unduplicated_should_be_inserted. */
12216 if (!should_be_inserted (bl) || bl->inserted)
12217 continue;
12218
12219 switch_to_program_space_and_thread (bl->pspace);
12220
12221 target_download_tracepoint (bl);
12222
12223 bl->inserted = 1;
12224 bp_location_downloaded = 1;
12225 }
12226 t = (struct tracepoint *) b;
12227 t->number_on_target = b->number;
12228 if (bp_location_downloaded)
12229 observer_notify_breakpoint_modified (b);
12230 }
12231
12232 do_cleanups (old_chain);
12233 }
12234
12235 /* Swap the insertion/duplication state between two locations. */
12236
12237 static void
12238 swap_insertion (struct bp_location *left, struct bp_location *right)
12239 {
12240 const int left_inserted = left->inserted;
12241 const int left_duplicate = left->duplicate;
12242 const int left_needs_update = left->needs_update;
12243 const struct bp_target_info left_target_info = left->target_info;
12244
12245 /* Locations of tracepoints can never be duplicated. */
12246 if (is_tracepoint (left->owner))
12247 gdb_assert (!left->duplicate);
12248 if (is_tracepoint (right->owner))
12249 gdb_assert (!right->duplicate);
12250
12251 left->inserted = right->inserted;
12252 left->duplicate = right->duplicate;
12253 left->needs_update = right->needs_update;
12254 left->target_info = right->target_info;
12255 right->inserted = left_inserted;
12256 right->duplicate = left_duplicate;
12257 right->needs_update = left_needs_update;
12258 right->target_info = left_target_info;
12259 }
12260
12261 /* Force the re-insertion of the locations at ADDRESS. This is called
12262 once a new/deleted/modified duplicate location is found and we are evaluating
12263 conditions on the target's side. Such conditions need to be updated on
12264 the target. */
12265
12266 static void
12267 force_breakpoint_reinsertion (struct bp_location *bl)
12268 {
12269 struct bp_location **locp = NULL, **loc2p;
12270 struct bp_location *loc;
12271 CORE_ADDR address = 0;
12272 int pspace_num;
12273
12274 address = bl->address;
12275 pspace_num = bl->pspace->num;
12276
12277 /* This is only meaningful if the target is
12278 evaluating conditions and if the user has
12279 opted for condition evaluation on the target's
12280 side. */
12281 if (gdb_evaluates_breakpoint_condition_p ()
12282 || !target_supports_evaluation_of_breakpoint_conditions ())
12283 return;
12284
12285 /* Flag all breakpoint locations with this address and
12286 the same program space as the location
12287 as "its condition has changed". We need to
12288 update the conditions on the target's side. */
12289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12290 {
12291 loc = *loc2p;
12292
12293 if (!is_breakpoint (loc->owner)
12294 || pspace_num != loc->pspace->num)
12295 continue;
12296
12297 /* Flag the location appropriately. We use a different state to
12298 let everyone know that we already updated the set of locations
12299 with addr bl->address and program space bl->pspace. This is so
12300 we don't have to keep calling these functions just to mark locations
12301 that have already been marked. */
12302 loc->condition_changed = condition_updated;
12303
12304 /* Free the agent expression bytecode as well. We will compute
12305 it later on. */
12306 if (loc->cond_bytecode)
12307 {
12308 free_agent_expr (loc->cond_bytecode);
12309 loc->cond_bytecode = NULL;
12310 }
12311 }
12312 }
12313
12314 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12315 into the inferior, only remove already-inserted locations that no
12316 longer should be inserted. Functions that delete a breakpoint or
12317 breakpoints should pass false, so that deleting a breakpoint
12318 doesn't have the side effect of inserting the locations of other
12319 breakpoints that are marked not-inserted, but should_be_inserted
12320 returns true on them.
12321
12322 This behaviour is useful is situations close to tear-down -- e.g.,
12323 after an exec, while the target still has execution, but breakpoint
12324 shadows of the previous executable image should *NOT* be restored
12325 to the new image; or before detaching, where the target still has
12326 execution and wants to delete breakpoints from GDB's lists, and all
12327 breakpoints had already been removed from the inferior. */
12328
12329 static void
12330 update_global_location_list (int should_insert)
12331 {
12332 struct breakpoint *b;
12333 struct bp_location **locp, *loc;
12334 struct cleanup *cleanups;
12335 /* Last breakpoint location address that was marked for update. */
12336 CORE_ADDR last_addr = 0;
12337 /* Last breakpoint location program space that was marked for update. */
12338 int last_pspace_num = -1;
12339
12340 /* Used in the duplicates detection below. When iterating over all
12341 bp_locations, points to the first bp_location of a given address.
12342 Breakpoints and watchpoints of different types are never
12343 duplicates of each other. Keep one pointer for each type of
12344 breakpoint/watchpoint, so we only need to loop over all locations
12345 once. */
12346 struct bp_location *bp_loc_first; /* breakpoint */
12347 struct bp_location *wp_loc_first; /* hardware watchpoint */
12348 struct bp_location *awp_loc_first; /* access watchpoint */
12349 struct bp_location *rwp_loc_first; /* read watchpoint */
12350
12351 /* Saved former bp_location array which we compare against the newly
12352 built bp_location from the current state of ALL_BREAKPOINTS. */
12353 struct bp_location **old_location, **old_locp;
12354 unsigned old_location_count;
12355
12356 old_location = bp_location;
12357 old_location_count = bp_location_count;
12358 bp_location = NULL;
12359 bp_location_count = 0;
12360 cleanups = make_cleanup (xfree, old_location);
12361
12362 ALL_BREAKPOINTS (b)
12363 for (loc = b->loc; loc; loc = loc->next)
12364 bp_location_count++;
12365
12366 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12367 locp = bp_location;
12368 ALL_BREAKPOINTS (b)
12369 for (loc = b->loc; loc; loc = loc->next)
12370 *locp++ = loc;
12371 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12372 bp_location_compare);
12373
12374 bp_location_target_extensions_update ();
12375
12376 /* Identify bp_location instances that are no longer present in the
12377 new list, and therefore should be freed. Note that it's not
12378 necessary that those locations should be removed from inferior --
12379 if there's another location at the same address (previously
12380 marked as duplicate), we don't need to remove/insert the
12381 location.
12382
12383 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12384 and former bp_location array state respectively. */
12385
12386 locp = bp_location;
12387 for (old_locp = old_location; old_locp < old_location + old_location_count;
12388 old_locp++)
12389 {
12390 struct bp_location *old_loc = *old_locp;
12391 struct bp_location **loc2p;
12392
12393 /* Tells if 'old_loc' is found among the new locations. If
12394 not, we have to free it. */
12395 int found_object = 0;
12396 /* Tells if the location should remain inserted in the target. */
12397 int keep_in_target = 0;
12398 int removed = 0;
12399
12400 /* Skip LOCP entries which will definitely never be needed.
12401 Stop either at or being the one matching OLD_LOC. */
12402 while (locp < bp_location + bp_location_count
12403 && (*locp)->address < old_loc->address)
12404 locp++;
12405
12406 for (loc2p = locp;
12407 (loc2p < bp_location + bp_location_count
12408 && (*loc2p)->address == old_loc->address);
12409 loc2p++)
12410 {
12411 /* Check if this is a new/duplicated location or a duplicated
12412 location that had its condition modified. If so, we want to send
12413 its condition to the target if evaluation of conditions is taking
12414 place there. */
12415 if ((*loc2p)->condition_changed == condition_modified
12416 && (last_addr != old_loc->address
12417 || last_pspace_num != old_loc->pspace->num))
12418 {
12419 force_breakpoint_reinsertion (*loc2p);
12420 last_pspace_num = old_loc->pspace->num;
12421 }
12422
12423 if (*loc2p == old_loc)
12424 found_object = 1;
12425 }
12426
12427 /* We have already handled this address, update it so that we don't
12428 have to go through updates again. */
12429 last_addr = old_loc->address;
12430
12431 /* Target-side condition evaluation: Handle deleted locations. */
12432 if (!found_object)
12433 force_breakpoint_reinsertion (old_loc);
12434
12435 /* If this location is no longer present, and inserted, look if
12436 there's maybe a new location at the same address. If so,
12437 mark that one inserted, and don't remove this one. This is
12438 needed so that we don't have a time window where a breakpoint
12439 at certain location is not inserted. */
12440
12441 if (old_loc->inserted)
12442 {
12443 /* If the location is inserted now, we might have to remove
12444 it. */
12445
12446 if (found_object && should_be_inserted (old_loc))
12447 {
12448 /* The location is still present in the location list,
12449 and still should be inserted. Don't do anything. */
12450 keep_in_target = 1;
12451 }
12452 else
12453 {
12454 /* This location still exists, but it won't be kept in the
12455 target since it may have been disabled. We proceed to
12456 remove its target-side condition. */
12457
12458 /* The location is either no longer present, or got
12459 disabled. See if there's another location at the
12460 same address, in which case we don't need to remove
12461 this one from the target. */
12462
12463 /* OLD_LOC comes from existing struct breakpoint. */
12464 if (breakpoint_address_is_meaningful (old_loc->owner))
12465 {
12466 for (loc2p = locp;
12467 (loc2p < bp_location + bp_location_count
12468 && (*loc2p)->address == old_loc->address);
12469 loc2p++)
12470 {
12471 struct bp_location *loc2 = *loc2p;
12472
12473 if (breakpoint_locations_match (loc2, old_loc))
12474 {
12475 /* Read watchpoint locations are switched to
12476 access watchpoints, if the former are not
12477 supported, but the latter are. */
12478 if (is_hardware_watchpoint (old_loc->owner))
12479 {
12480 gdb_assert (is_hardware_watchpoint (loc2->owner));
12481 loc2->watchpoint_type = old_loc->watchpoint_type;
12482 }
12483
12484 /* loc2 is a duplicated location. We need to check
12485 if it should be inserted in case it will be
12486 unduplicated. */
12487 if (loc2 != old_loc
12488 && unduplicated_should_be_inserted (loc2))
12489 {
12490 swap_insertion (old_loc, loc2);
12491 keep_in_target = 1;
12492 break;
12493 }
12494 }
12495 }
12496 }
12497 }
12498
12499 if (!keep_in_target)
12500 {
12501 if (remove_breakpoint (old_loc, mark_uninserted))
12502 {
12503 /* This is just about all we can do. We could keep
12504 this location on the global list, and try to
12505 remove it next time, but there's no particular
12506 reason why we will succeed next time.
12507
12508 Note that at this point, old_loc->owner is still
12509 valid, as delete_breakpoint frees the breakpoint
12510 only after calling us. */
12511 printf_filtered (_("warning: Error removing "
12512 "breakpoint %d\n"),
12513 old_loc->owner->number);
12514 }
12515 removed = 1;
12516 }
12517 }
12518
12519 if (!found_object)
12520 {
12521 if (removed && non_stop
12522 && breakpoint_address_is_meaningful (old_loc->owner)
12523 && !is_hardware_watchpoint (old_loc->owner))
12524 {
12525 /* This location was removed from the target. In
12526 non-stop mode, a race condition is possible where
12527 we've removed a breakpoint, but stop events for that
12528 breakpoint are already queued and will arrive later.
12529 We apply an heuristic to be able to distinguish such
12530 SIGTRAPs from other random SIGTRAPs: we keep this
12531 breakpoint location for a bit, and will retire it
12532 after we see some number of events. The theory here
12533 is that reporting of events should, "on the average",
12534 be fair, so after a while we'll see events from all
12535 threads that have anything of interest, and no longer
12536 need to keep this breakpoint location around. We
12537 don't hold locations forever so to reduce chances of
12538 mistaking a non-breakpoint SIGTRAP for a breakpoint
12539 SIGTRAP.
12540
12541 The heuristic failing can be disastrous on
12542 decr_pc_after_break targets.
12543
12544 On decr_pc_after_break targets, like e.g., x86-linux,
12545 if we fail to recognize a late breakpoint SIGTRAP,
12546 because events_till_retirement has reached 0 too
12547 soon, we'll fail to do the PC adjustment, and report
12548 a random SIGTRAP to the user. When the user resumes
12549 the inferior, it will most likely immediately crash
12550 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12551 corrupted, because of being resumed e.g., in the
12552 middle of a multi-byte instruction, or skipped a
12553 one-byte instruction. This was actually seen happen
12554 on native x86-linux, and should be less rare on
12555 targets that do not support new thread events, like
12556 remote, due to the heuristic depending on
12557 thread_count.
12558
12559 Mistaking a random SIGTRAP for a breakpoint trap
12560 causes similar symptoms (PC adjustment applied when
12561 it shouldn't), but then again, playing with SIGTRAPs
12562 behind the debugger's back is asking for trouble.
12563
12564 Since hardware watchpoint traps are always
12565 distinguishable from other traps, so we don't need to
12566 apply keep hardware watchpoint moribund locations
12567 around. We simply always ignore hardware watchpoint
12568 traps we can no longer explain. */
12569
12570 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12571 old_loc->owner = NULL;
12572
12573 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12574 }
12575 else
12576 {
12577 old_loc->owner = NULL;
12578 decref_bp_location (&old_loc);
12579 }
12580 }
12581 }
12582
12583 /* Rescan breakpoints at the same address and section, marking the
12584 first one as "first" and any others as "duplicates". This is so
12585 that the bpt instruction is only inserted once. If we have a
12586 permanent breakpoint at the same place as BPT, make that one the
12587 official one, and the rest as duplicates. Permanent breakpoints
12588 are sorted first for the same address.
12589
12590 Do the same for hardware watchpoints, but also considering the
12591 watchpoint's type (regular/access/read) and length. */
12592
12593 bp_loc_first = NULL;
12594 wp_loc_first = NULL;
12595 awp_loc_first = NULL;
12596 rwp_loc_first = NULL;
12597 ALL_BP_LOCATIONS (loc, locp)
12598 {
12599 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12600 non-NULL. */
12601 struct bp_location **loc_first_p;
12602 b = loc->owner;
12603
12604 if (!unduplicated_should_be_inserted (loc)
12605 || !breakpoint_address_is_meaningful (b)
12606 /* Don't detect duplicate for tracepoint locations because they are
12607 never duplicated. See the comments in field `duplicate' of
12608 `struct bp_location'. */
12609 || is_tracepoint (b))
12610 {
12611 /* Clear the condition modification flag. */
12612 loc->condition_changed = condition_unchanged;
12613 continue;
12614 }
12615
12616 /* Permanent breakpoint should always be inserted. */
12617 if (b->enable_state == bp_permanent && ! loc->inserted)
12618 internal_error (__FILE__, __LINE__,
12619 _("allegedly permanent breakpoint is not "
12620 "actually inserted"));
12621
12622 if (b->type == bp_hardware_watchpoint)
12623 loc_first_p = &wp_loc_first;
12624 else if (b->type == bp_read_watchpoint)
12625 loc_first_p = &rwp_loc_first;
12626 else if (b->type == bp_access_watchpoint)
12627 loc_first_p = &awp_loc_first;
12628 else
12629 loc_first_p = &bp_loc_first;
12630
12631 if (*loc_first_p == NULL
12632 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12633 || !breakpoint_locations_match (loc, *loc_first_p))
12634 {
12635 *loc_first_p = loc;
12636 loc->duplicate = 0;
12637
12638 if (is_breakpoint (loc->owner) && loc->condition_changed)
12639 {
12640 loc->needs_update = 1;
12641 /* Clear the condition modification flag. */
12642 loc->condition_changed = condition_unchanged;
12643 }
12644 continue;
12645 }
12646
12647
12648 /* This and the above ensure the invariant that the first location
12649 is not duplicated, and is the inserted one.
12650 All following are marked as duplicated, and are not inserted. */
12651 if (loc->inserted)
12652 swap_insertion (loc, *loc_first_p);
12653 loc->duplicate = 1;
12654
12655 /* Clear the condition modification flag. */
12656 loc->condition_changed = condition_unchanged;
12657
12658 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12659 && b->enable_state != bp_permanent)
12660 internal_error (__FILE__, __LINE__,
12661 _("another breakpoint was inserted on top of "
12662 "a permanent breakpoint"));
12663 }
12664
12665 if (breakpoints_always_inserted_mode ()
12666 && (have_live_inferiors ()
12667 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12668 {
12669 if (should_insert)
12670 insert_breakpoint_locations ();
12671 else
12672 {
12673 /* Though should_insert is false, we may need to update conditions
12674 on the target's side if it is evaluating such conditions. We
12675 only update conditions for locations that are marked
12676 "needs_update". */
12677 update_inserted_breakpoint_locations ();
12678 }
12679 }
12680
12681 if (should_insert)
12682 download_tracepoint_locations ();
12683
12684 do_cleanups (cleanups);
12685 }
12686
12687 void
12688 breakpoint_retire_moribund (void)
12689 {
12690 struct bp_location *loc;
12691 int ix;
12692
12693 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12694 if (--(loc->events_till_retirement) == 0)
12695 {
12696 decref_bp_location (&loc);
12697 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12698 --ix;
12699 }
12700 }
12701
12702 static void
12703 update_global_location_list_nothrow (int inserting)
12704 {
12705 volatile struct gdb_exception e;
12706
12707 TRY_CATCH (e, RETURN_MASK_ERROR)
12708 update_global_location_list (inserting);
12709 }
12710
12711 /* Clear BKP from a BPS. */
12712
12713 static void
12714 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12715 {
12716 bpstat bs;
12717
12718 for (bs = bps; bs; bs = bs->next)
12719 if (bs->breakpoint_at == bpt)
12720 {
12721 bs->breakpoint_at = NULL;
12722 bs->old_val = NULL;
12723 /* bs->commands will be freed later. */
12724 }
12725 }
12726
12727 /* Callback for iterate_over_threads. */
12728 static int
12729 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12730 {
12731 struct breakpoint *bpt = data;
12732
12733 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12734 return 0;
12735 }
12736
12737 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12738 callbacks. */
12739
12740 static void
12741 say_where (struct breakpoint *b)
12742 {
12743 struct value_print_options opts;
12744
12745 get_user_print_options (&opts);
12746
12747 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12748 single string. */
12749 if (b->loc == NULL)
12750 {
12751 printf_filtered (_(" (%s) pending."), b->addr_string);
12752 }
12753 else
12754 {
12755 if (opts.addressprint || b->loc->symtab == NULL)
12756 {
12757 printf_filtered (" at ");
12758 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12759 gdb_stdout);
12760 }
12761 if (b->loc->symtab != NULL)
12762 {
12763 /* If there is a single location, we can print the location
12764 more nicely. */
12765 if (b->loc->next == NULL)
12766 printf_filtered (": file %s, line %d.",
12767 symtab_to_filename_for_display (b->loc->symtab),
12768 b->loc->line_number);
12769 else
12770 /* This is not ideal, but each location may have a
12771 different file name, and this at least reflects the
12772 real situation somewhat. */
12773 printf_filtered (": %s.", b->addr_string);
12774 }
12775
12776 if (b->loc->next)
12777 {
12778 struct bp_location *loc = b->loc;
12779 int n = 0;
12780 for (; loc; loc = loc->next)
12781 ++n;
12782 printf_filtered (" (%d locations)", n);
12783 }
12784 }
12785 }
12786
12787 /* Default bp_location_ops methods. */
12788
12789 static void
12790 bp_location_dtor (struct bp_location *self)
12791 {
12792 xfree (self->cond);
12793 if (self->cond_bytecode)
12794 free_agent_expr (self->cond_bytecode);
12795 xfree (self->function_name);
12796
12797 VEC_free (agent_expr_p, self->target_info.conditions);
12798 VEC_free (agent_expr_p, self->target_info.tcommands);
12799 }
12800
12801 static const struct bp_location_ops bp_location_ops =
12802 {
12803 bp_location_dtor
12804 };
12805
12806 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12807 inherit from. */
12808
12809 static void
12810 base_breakpoint_dtor (struct breakpoint *self)
12811 {
12812 decref_counted_command_line (&self->commands);
12813 xfree (self->cond_string);
12814 xfree (self->extra_string);
12815 xfree (self->addr_string);
12816 xfree (self->filter);
12817 xfree (self->addr_string_range_end);
12818 }
12819
12820 static struct bp_location *
12821 base_breakpoint_allocate_location (struct breakpoint *self)
12822 {
12823 struct bp_location *loc;
12824
12825 loc = XNEW (struct bp_location);
12826 init_bp_location (loc, &bp_location_ops, self);
12827 return loc;
12828 }
12829
12830 static void
12831 base_breakpoint_re_set (struct breakpoint *b)
12832 {
12833 /* Nothing to re-set. */
12834 }
12835
12836 #define internal_error_pure_virtual_called() \
12837 gdb_assert_not_reached ("pure virtual function called")
12838
12839 static int
12840 base_breakpoint_insert_location (struct bp_location *bl)
12841 {
12842 internal_error_pure_virtual_called ();
12843 }
12844
12845 static int
12846 base_breakpoint_remove_location (struct bp_location *bl)
12847 {
12848 internal_error_pure_virtual_called ();
12849 }
12850
12851 static int
12852 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12853 struct address_space *aspace,
12854 CORE_ADDR bp_addr,
12855 const struct target_waitstatus *ws)
12856 {
12857 internal_error_pure_virtual_called ();
12858 }
12859
12860 static void
12861 base_breakpoint_check_status (bpstat bs)
12862 {
12863 /* Always stop. */
12864 }
12865
12866 /* A "works_in_software_mode" breakpoint_ops method that just internal
12867 errors. */
12868
12869 static int
12870 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12871 {
12872 internal_error_pure_virtual_called ();
12873 }
12874
12875 /* A "resources_needed" breakpoint_ops method that just internal
12876 errors. */
12877
12878 static int
12879 base_breakpoint_resources_needed (const struct bp_location *bl)
12880 {
12881 internal_error_pure_virtual_called ();
12882 }
12883
12884 static enum print_stop_action
12885 base_breakpoint_print_it (bpstat bs)
12886 {
12887 internal_error_pure_virtual_called ();
12888 }
12889
12890 static void
12891 base_breakpoint_print_one_detail (const struct breakpoint *self,
12892 struct ui_out *uiout)
12893 {
12894 /* nothing */
12895 }
12896
12897 static void
12898 base_breakpoint_print_mention (struct breakpoint *b)
12899 {
12900 internal_error_pure_virtual_called ();
12901 }
12902
12903 static void
12904 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12905 {
12906 internal_error_pure_virtual_called ();
12907 }
12908
12909 static void
12910 base_breakpoint_create_sals_from_address (char **arg,
12911 struct linespec_result *canonical,
12912 enum bptype type_wanted,
12913 char *addr_start,
12914 char **copy_arg)
12915 {
12916 internal_error_pure_virtual_called ();
12917 }
12918
12919 static void
12920 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12921 struct linespec_result *c,
12922 char *cond_string,
12923 char *extra_string,
12924 enum bptype type_wanted,
12925 enum bpdisp disposition,
12926 int thread,
12927 int task, int ignore_count,
12928 const struct breakpoint_ops *o,
12929 int from_tty, int enabled,
12930 int internal, unsigned flags)
12931 {
12932 internal_error_pure_virtual_called ();
12933 }
12934
12935 static void
12936 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12937 struct symtabs_and_lines *sals)
12938 {
12939 internal_error_pure_virtual_called ();
12940 }
12941
12942 /* The default 'explains_signal' method. */
12943
12944 static int
12945 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12946 {
12947 return 1;
12948 }
12949
12950 /* The default "after_condition_true" method. */
12951
12952 static void
12953 base_breakpoint_after_condition_true (struct bpstats *bs)
12954 {
12955 /* Nothing to do. */
12956 }
12957
12958 struct breakpoint_ops base_breakpoint_ops =
12959 {
12960 base_breakpoint_dtor,
12961 base_breakpoint_allocate_location,
12962 base_breakpoint_re_set,
12963 base_breakpoint_insert_location,
12964 base_breakpoint_remove_location,
12965 base_breakpoint_breakpoint_hit,
12966 base_breakpoint_check_status,
12967 base_breakpoint_resources_needed,
12968 base_breakpoint_works_in_software_mode,
12969 base_breakpoint_print_it,
12970 NULL,
12971 base_breakpoint_print_one_detail,
12972 base_breakpoint_print_mention,
12973 base_breakpoint_print_recreate,
12974 base_breakpoint_create_sals_from_address,
12975 base_breakpoint_create_breakpoints_sal,
12976 base_breakpoint_decode_linespec,
12977 base_breakpoint_explains_signal,
12978 base_breakpoint_after_condition_true,
12979 };
12980
12981 /* Default breakpoint_ops methods. */
12982
12983 static void
12984 bkpt_re_set (struct breakpoint *b)
12985 {
12986 /* FIXME: is this still reachable? */
12987 if (b->addr_string == NULL)
12988 {
12989 /* Anything without a string can't be re-set. */
12990 delete_breakpoint (b);
12991 return;
12992 }
12993
12994 breakpoint_re_set_default (b);
12995 }
12996
12997 static int
12998 bkpt_insert_location (struct bp_location *bl)
12999 {
13000 if (bl->loc_type == bp_loc_hardware_breakpoint)
13001 return target_insert_hw_breakpoint (bl->gdbarch,
13002 &bl->target_info);
13003 else
13004 return target_insert_breakpoint (bl->gdbarch,
13005 &bl->target_info);
13006 }
13007
13008 static int
13009 bkpt_remove_location (struct bp_location *bl)
13010 {
13011 if (bl->loc_type == bp_loc_hardware_breakpoint)
13012 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13013 else
13014 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13015 }
13016
13017 static int
13018 bkpt_breakpoint_hit (const struct bp_location *bl,
13019 struct address_space *aspace, CORE_ADDR bp_addr,
13020 const struct target_waitstatus *ws)
13021 {
13022 if (ws->kind != TARGET_WAITKIND_STOPPED
13023 || ws->value.sig != GDB_SIGNAL_TRAP)
13024 return 0;
13025
13026 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13027 aspace, bp_addr))
13028 return 0;
13029
13030 if (overlay_debugging /* unmapped overlay section */
13031 && section_is_overlay (bl->section)
13032 && !section_is_mapped (bl->section))
13033 return 0;
13034
13035 return 1;
13036 }
13037
13038 static int
13039 bkpt_resources_needed (const struct bp_location *bl)
13040 {
13041 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13042
13043 return 1;
13044 }
13045
13046 static enum print_stop_action
13047 bkpt_print_it (bpstat bs)
13048 {
13049 struct breakpoint *b;
13050 const struct bp_location *bl;
13051 int bp_temp;
13052 struct ui_out *uiout = current_uiout;
13053
13054 gdb_assert (bs->bp_location_at != NULL);
13055
13056 bl = bs->bp_location_at;
13057 b = bs->breakpoint_at;
13058
13059 bp_temp = b->disposition == disp_del;
13060 if (bl->address != bl->requested_address)
13061 breakpoint_adjustment_warning (bl->requested_address,
13062 bl->address,
13063 b->number, 1);
13064 annotate_breakpoint (b->number);
13065 if (bp_temp)
13066 ui_out_text (uiout, "\nTemporary breakpoint ");
13067 else
13068 ui_out_text (uiout, "\nBreakpoint ");
13069 if (ui_out_is_mi_like_p (uiout))
13070 {
13071 ui_out_field_string (uiout, "reason",
13072 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13073 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13074 }
13075 ui_out_field_int (uiout, "bkptno", b->number);
13076 ui_out_text (uiout, ", ");
13077
13078 return PRINT_SRC_AND_LOC;
13079 }
13080
13081 static void
13082 bkpt_print_mention (struct breakpoint *b)
13083 {
13084 if (ui_out_is_mi_like_p (current_uiout))
13085 return;
13086
13087 switch (b->type)
13088 {
13089 case bp_breakpoint:
13090 case bp_gnu_ifunc_resolver:
13091 if (b->disposition == disp_del)
13092 printf_filtered (_("Temporary breakpoint"));
13093 else
13094 printf_filtered (_("Breakpoint"));
13095 printf_filtered (_(" %d"), b->number);
13096 if (b->type == bp_gnu_ifunc_resolver)
13097 printf_filtered (_(" at gnu-indirect-function resolver"));
13098 break;
13099 case bp_hardware_breakpoint:
13100 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13101 break;
13102 case bp_dprintf:
13103 printf_filtered (_("Dprintf %d"), b->number);
13104 break;
13105 }
13106
13107 say_where (b);
13108 }
13109
13110 static void
13111 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13112 {
13113 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13114 fprintf_unfiltered (fp, "tbreak");
13115 else if (tp->type == bp_breakpoint)
13116 fprintf_unfiltered (fp, "break");
13117 else if (tp->type == bp_hardware_breakpoint
13118 && tp->disposition == disp_del)
13119 fprintf_unfiltered (fp, "thbreak");
13120 else if (tp->type == bp_hardware_breakpoint)
13121 fprintf_unfiltered (fp, "hbreak");
13122 else
13123 internal_error (__FILE__, __LINE__,
13124 _("unhandled breakpoint type %d"), (int) tp->type);
13125
13126 fprintf_unfiltered (fp, " %s", tp->addr_string);
13127 print_recreate_thread (tp, fp);
13128 }
13129
13130 static void
13131 bkpt_create_sals_from_address (char **arg,
13132 struct linespec_result *canonical,
13133 enum bptype type_wanted,
13134 char *addr_start, char **copy_arg)
13135 {
13136 create_sals_from_address_default (arg, canonical, type_wanted,
13137 addr_start, copy_arg);
13138 }
13139
13140 static void
13141 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13142 struct linespec_result *canonical,
13143 char *cond_string,
13144 char *extra_string,
13145 enum bptype type_wanted,
13146 enum bpdisp disposition,
13147 int thread,
13148 int task, int ignore_count,
13149 const struct breakpoint_ops *ops,
13150 int from_tty, int enabled,
13151 int internal, unsigned flags)
13152 {
13153 create_breakpoints_sal_default (gdbarch, canonical,
13154 cond_string, extra_string,
13155 type_wanted,
13156 disposition, thread, task,
13157 ignore_count, ops, from_tty,
13158 enabled, internal, flags);
13159 }
13160
13161 static void
13162 bkpt_decode_linespec (struct breakpoint *b, char **s,
13163 struct symtabs_and_lines *sals)
13164 {
13165 decode_linespec_default (b, s, sals);
13166 }
13167
13168 /* Virtual table for internal breakpoints. */
13169
13170 static void
13171 internal_bkpt_re_set (struct breakpoint *b)
13172 {
13173 switch (b->type)
13174 {
13175 /* Delete overlay event and longjmp master breakpoints; they
13176 will be reset later by breakpoint_re_set. */
13177 case bp_overlay_event:
13178 case bp_longjmp_master:
13179 case bp_std_terminate_master:
13180 case bp_exception_master:
13181 delete_breakpoint (b);
13182 break;
13183
13184 /* This breakpoint is special, it's set up when the inferior
13185 starts and we really don't want to touch it. */
13186 case bp_shlib_event:
13187
13188 /* Like bp_shlib_event, this breakpoint type is special. Once
13189 it is set up, we do not want to touch it. */
13190 case bp_thread_event:
13191 break;
13192 }
13193 }
13194
13195 static void
13196 internal_bkpt_check_status (bpstat bs)
13197 {
13198 if (bs->breakpoint_at->type == bp_shlib_event)
13199 {
13200 /* If requested, stop when the dynamic linker notifies GDB of
13201 events. This allows the user to get control and place
13202 breakpoints in initializer routines for dynamically loaded
13203 objects (among other things). */
13204 bs->stop = stop_on_solib_events;
13205 bs->print = stop_on_solib_events;
13206 }
13207 else
13208 bs->stop = 0;
13209 }
13210
13211 static enum print_stop_action
13212 internal_bkpt_print_it (bpstat bs)
13213 {
13214 struct breakpoint *b;
13215
13216 b = bs->breakpoint_at;
13217
13218 switch (b->type)
13219 {
13220 case bp_shlib_event:
13221 /* Did we stop because the user set the stop_on_solib_events
13222 variable? (If so, we report this as a generic, "Stopped due
13223 to shlib event" message.) */
13224 print_solib_event (0);
13225 break;
13226
13227 case bp_thread_event:
13228 /* Not sure how we will get here.
13229 GDB should not stop for these breakpoints. */
13230 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13231 break;
13232
13233 case bp_overlay_event:
13234 /* By analogy with the thread event, GDB should not stop for these. */
13235 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13236 break;
13237
13238 case bp_longjmp_master:
13239 /* These should never be enabled. */
13240 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13241 break;
13242
13243 case bp_std_terminate_master:
13244 /* These should never be enabled. */
13245 printf_filtered (_("std::terminate Master Breakpoint: "
13246 "gdb should not stop!\n"));
13247 break;
13248
13249 case bp_exception_master:
13250 /* These should never be enabled. */
13251 printf_filtered (_("Exception Master Breakpoint: "
13252 "gdb should not stop!\n"));
13253 break;
13254 }
13255
13256 return PRINT_NOTHING;
13257 }
13258
13259 static void
13260 internal_bkpt_print_mention (struct breakpoint *b)
13261 {
13262 /* Nothing to mention. These breakpoints are internal. */
13263 }
13264
13265 /* Virtual table for momentary breakpoints */
13266
13267 static void
13268 momentary_bkpt_re_set (struct breakpoint *b)
13269 {
13270 /* Keep temporary breakpoints, which can be encountered when we step
13271 over a dlopen call and solib_add is resetting the breakpoints.
13272 Otherwise these should have been blown away via the cleanup chain
13273 or by breakpoint_init_inferior when we rerun the executable. */
13274 }
13275
13276 static void
13277 momentary_bkpt_check_status (bpstat bs)
13278 {
13279 /* Nothing. The point of these breakpoints is causing a stop. */
13280 }
13281
13282 static enum print_stop_action
13283 momentary_bkpt_print_it (bpstat bs)
13284 {
13285 struct ui_out *uiout = current_uiout;
13286
13287 if (ui_out_is_mi_like_p (uiout))
13288 {
13289 struct breakpoint *b = bs->breakpoint_at;
13290
13291 switch (b->type)
13292 {
13293 case bp_finish:
13294 ui_out_field_string
13295 (uiout, "reason",
13296 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13297 break;
13298
13299 case bp_until:
13300 ui_out_field_string
13301 (uiout, "reason",
13302 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13303 break;
13304 }
13305 }
13306
13307 return PRINT_UNKNOWN;
13308 }
13309
13310 static void
13311 momentary_bkpt_print_mention (struct breakpoint *b)
13312 {
13313 /* Nothing to mention. These breakpoints are internal. */
13314 }
13315
13316 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13317
13318 It gets cleared already on the removal of the first one of such placed
13319 breakpoints. This is OK as they get all removed altogether. */
13320
13321 static void
13322 longjmp_bkpt_dtor (struct breakpoint *self)
13323 {
13324 struct thread_info *tp = find_thread_id (self->thread);
13325
13326 if (tp)
13327 tp->initiating_frame = null_frame_id;
13328
13329 momentary_breakpoint_ops.dtor (self);
13330 }
13331
13332 /* Specific methods for probe breakpoints. */
13333
13334 static int
13335 bkpt_probe_insert_location (struct bp_location *bl)
13336 {
13337 int v = bkpt_insert_location (bl);
13338
13339 if (v == 0)
13340 {
13341 /* The insertion was successful, now let's set the probe's semaphore
13342 if needed. */
13343 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13344 }
13345
13346 return v;
13347 }
13348
13349 static int
13350 bkpt_probe_remove_location (struct bp_location *bl)
13351 {
13352 /* Let's clear the semaphore before removing the location. */
13353 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13354
13355 return bkpt_remove_location (bl);
13356 }
13357
13358 static void
13359 bkpt_probe_create_sals_from_address (char **arg,
13360 struct linespec_result *canonical,
13361 enum bptype type_wanted,
13362 char *addr_start, char **copy_arg)
13363 {
13364 struct linespec_sals lsal;
13365
13366 lsal.sals = parse_probes (arg, canonical);
13367
13368 *copy_arg = xstrdup (canonical->addr_string);
13369 lsal.canonical = xstrdup (*copy_arg);
13370
13371 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13372 }
13373
13374 static void
13375 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13376 struct symtabs_and_lines *sals)
13377 {
13378 *sals = parse_probes (s, NULL);
13379 if (!sals->sals)
13380 error (_("probe not found"));
13381 }
13382
13383 /* The breakpoint_ops structure to be used in tracepoints. */
13384
13385 static void
13386 tracepoint_re_set (struct breakpoint *b)
13387 {
13388 breakpoint_re_set_default (b);
13389 }
13390
13391 static int
13392 tracepoint_breakpoint_hit (const struct bp_location *bl,
13393 struct address_space *aspace, CORE_ADDR bp_addr,
13394 const struct target_waitstatus *ws)
13395 {
13396 /* By definition, the inferior does not report stops at
13397 tracepoints. */
13398 return 0;
13399 }
13400
13401 static void
13402 tracepoint_print_one_detail (const struct breakpoint *self,
13403 struct ui_out *uiout)
13404 {
13405 struct tracepoint *tp = (struct tracepoint *) self;
13406 if (tp->static_trace_marker_id)
13407 {
13408 gdb_assert (self->type == bp_static_tracepoint);
13409
13410 ui_out_text (uiout, "\tmarker id is ");
13411 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13412 tp->static_trace_marker_id);
13413 ui_out_text (uiout, "\n");
13414 }
13415 }
13416
13417 static void
13418 tracepoint_print_mention (struct breakpoint *b)
13419 {
13420 if (ui_out_is_mi_like_p (current_uiout))
13421 return;
13422
13423 switch (b->type)
13424 {
13425 case bp_tracepoint:
13426 printf_filtered (_("Tracepoint"));
13427 printf_filtered (_(" %d"), b->number);
13428 break;
13429 case bp_fast_tracepoint:
13430 printf_filtered (_("Fast tracepoint"));
13431 printf_filtered (_(" %d"), b->number);
13432 break;
13433 case bp_static_tracepoint:
13434 printf_filtered (_("Static tracepoint"));
13435 printf_filtered (_(" %d"), b->number);
13436 break;
13437 default:
13438 internal_error (__FILE__, __LINE__,
13439 _("unhandled tracepoint type %d"), (int) b->type);
13440 }
13441
13442 say_where (b);
13443 }
13444
13445 static void
13446 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13447 {
13448 struct tracepoint *tp = (struct tracepoint *) self;
13449
13450 if (self->type == bp_fast_tracepoint)
13451 fprintf_unfiltered (fp, "ftrace");
13452 if (self->type == bp_static_tracepoint)
13453 fprintf_unfiltered (fp, "strace");
13454 else if (self->type == bp_tracepoint)
13455 fprintf_unfiltered (fp, "trace");
13456 else
13457 internal_error (__FILE__, __LINE__,
13458 _("unhandled tracepoint type %d"), (int) self->type);
13459
13460 fprintf_unfiltered (fp, " %s", self->addr_string);
13461 print_recreate_thread (self, fp);
13462
13463 if (tp->pass_count)
13464 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13465 }
13466
13467 static void
13468 tracepoint_create_sals_from_address (char **arg,
13469 struct linespec_result *canonical,
13470 enum bptype type_wanted,
13471 char *addr_start, char **copy_arg)
13472 {
13473 create_sals_from_address_default (arg, canonical, type_wanted,
13474 addr_start, copy_arg);
13475 }
13476
13477 static void
13478 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13479 struct linespec_result *canonical,
13480 char *cond_string,
13481 char *extra_string,
13482 enum bptype type_wanted,
13483 enum bpdisp disposition,
13484 int thread,
13485 int task, int ignore_count,
13486 const struct breakpoint_ops *ops,
13487 int from_tty, int enabled,
13488 int internal, unsigned flags)
13489 {
13490 create_breakpoints_sal_default (gdbarch, canonical,
13491 cond_string, extra_string,
13492 type_wanted,
13493 disposition, thread, task,
13494 ignore_count, ops, from_tty,
13495 enabled, internal, flags);
13496 }
13497
13498 static void
13499 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13500 struct symtabs_and_lines *sals)
13501 {
13502 decode_linespec_default (b, s, sals);
13503 }
13504
13505 struct breakpoint_ops tracepoint_breakpoint_ops;
13506
13507 /* The breakpoint_ops structure to be use on tracepoints placed in a
13508 static probe. */
13509
13510 static void
13511 tracepoint_probe_create_sals_from_address (char **arg,
13512 struct linespec_result *canonical,
13513 enum bptype type_wanted,
13514 char *addr_start, char **copy_arg)
13515 {
13516 /* We use the same method for breakpoint on probes. */
13517 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13518 addr_start, copy_arg);
13519 }
13520
13521 static void
13522 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13523 struct symtabs_and_lines *sals)
13524 {
13525 /* We use the same method for breakpoint on probes. */
13526 bkpt_probe_decode_linespec (b, s, sals);
13527 }
13528
13529 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13530
13531 /* Dprintf breakpoint_ops methods. */
13532
13533 static void
13534 dprintf_re_set (struct breakpoint *b)
13535 {
13536 breakpoint_re_set_default (b);
13537
13538 /* This breakpoint could have been pending, and be resolved now, and
13539 if so, we should now have the extra string. If we don't, the
13540 dprintf was malformed when created, but we couldn't tell because
13541 we can't extract the extra string until the location is
13542 resolved. */
13543 if (b->loc != NULL && b->extra_string == NULL)
13544 error (_("Format string required"));
13545
13546 /* 1 - connect to target 1, that can run breakpoint commands.
13547 2 - create a dprintf, which resolves fine.
13548 3 - disconnect from target 1
13549 4 - connect to target 2, that can NOT run breakpoint commands.
13550
13551 After steps #3/#4, you'll want the dprintf command list to
13552 be updated, because target 1 and 2 may well return different
13553 answers for target_can_run_breakpoint_commands().
13554 Given absence of finer grained resetting, we get to do
13555 it all the time. */
13556 if (b->extra_string != NULL)
13557 update_dprintf_command_list (b);
13558 }
13559
13560 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13561
13562 static void
13563 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13564 {
13565 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13566 tp->extra_string);
13567 print_recreate_thread (tp, fp);
13568 }
13569
13570 /* Implement the "after_condition_true" breakpoint_ops method for
13571 dprintf.
13572
13573 dprintf's are implemented with regular commands in their command
13574 list, but we run the commands here instead of before presenting the
13575 stop to the user, as dprintf's don't actually cause a stop. This
13576 also makes it so that the commands of multiple dprintfs at the same
13577 address are all handled. */
13578
13579 static void
13580 dprintf_after_condition_true (struct bpstats *bs)
13581 {
13582 struct cleanup *old_chain;
13583 struct bpstats tmp_bs = { NULL };
13584 struct bpstats *tmp_bs_p = &tmp_bs;
13585
13586 /* dprintf's never cause a stop. This wasn't set in the
13587 check_status hook instead because that would make the dprintf's
13588 condition not be evaluated. */
13589 bs->stop = 0;
13590
13591 /* Run the command list here. Take ownership of it instead of
13592 copying. We never want these commands to run later in
13593 bpstat_do_actions, if a breakpoint that causes a stop happens to
13594 be set at same address as this dprintf, or even if running the
13595 commands here throws. */
13596 tmp_bs.commands = bs->commands;
13597 bs->commands = NULL;
13598 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13599
13600 bpstat_do_actions_1 (&tmp_bs_p);
13601
13602 /* 'tmp_bs.commands' will usually be NULL by now, but
13603 bpstat_do_actions_1 may return early without processing the whole
13604 list. */
13605 do_cleanups (old_chain);
13606 }
13607
13608 /* The breakpoint_ops structure to be used on static tracepoints with
13609 markers (`-m'). */
13610
13611 static void
13612 strace_marker_create_sals_from_address (char **arg,
13613 struct linespec_result *canonical,
13614 enum bptype type_wanted,
13615 char *addr_start, char **copy_arg)
13616 {
13617 struct linespec_sals lsal;
13618
13619 lsal.sals = decode_static_tracepoint_spec (arg);
13620
13621 *copy_arg = savestring (addr_start, *arg - addr_start);
13622
13623 canonical->addr_string = xstrdup (*copy_arg);
13624 lsal.canonical = xstrdup (*copy_arg);
13625 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13626 }
13627
13628 static void
13629 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13630 struct linespec_result *canonical,
13631 char *cond_string,
13632 char *extra_string,
13633 enum bptype type_wanted,
13634 enum bpdisp disposition,
13635 int thread,
13636 int task, int ignore_count,
13637 const struct breakpoint_ops *ops,
13638 int from_tty, int enabled,
13639 int internal, unsigned flags)
13640 {
13641 int i;
13642 struct linespec_sals *lsal = VEC_index (linespec_sals,
13643 canonical->sals, 0);
13644
13645 /* If the user is creating a static tracepoint by marker id
13646 (strace -m MARKER_ID), then store the sals index, so that
13647 breakpoint_re_set can try to match up which of the newly
13648 found markers corresponds to this one, and, don't try to
13649 expand multiple locations for each sal, given than SALS
13650 already should contain all sals for MARKER_ID. */
13651
13652 for (i = 0; i < lsal->sals.nelts; ++i)
13653 {
13654 struct symtabs_and_lines expanded;
13655 struct tracepoint *tp;
13656 struct cleanup *old_chain;
13657 char *addr_string;
13658
13659 expanded.nelts = 1;
13660 expanded.sals = &lsal->sals.sals[i];
13661
13662 addr_string = xstrdup (canonical->addr_string);
13663 old_chain = make_cleanup (xfree, addr_string);
13664
13665 tp = XCNEW (struct tracepoint);
13666 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13667 addr_string, NULL,
13668 cond_string, extra_string,
13669 type_wanted, disposition,
13670 thread, task, ignore_count, ops,
13671 from_tty, enabled, internal, flags,
13672 canonical->special_display);
13673 /* Given that its possible to have multiple markers with
13674 the same string id, if the user is creating a static
13675 tracepoint by marker id ("strace -m MARKER_ID"), then
13676 store the sals index, so that breakpoint_re_set can
13677 try to match up which of the newly found markers
13678 corresponds to this one */
13679 tp->static_trace_marker_id_idx = i;
13680
13681 install_breakpoint (internal, &tp->base, 0);
13682
13683 discard_cleanups (old_chain);
13684 }
13685 }
13686
13687 static void
13688 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13689 struct symtabs_and_lines *sals)
13690 {
13691 struct tracepoint *tp = (struct tracepoint *) b;
13692
13693 *sals = decode_static_tracepoint_spec (s);
13694 if (sals->nelts > tp->static_trace_marker_id_idx)
13695 {
13696 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13697 sals->nelts = 1;
13698 }
13699 else
13700 error (_("marker %s not found"), tp->static_trace_marker_id);
13701 }
13702
13703 static struct breakpoint_ops strace_marker_breakpoint_ops;
13704
13705 static int
13706 strace_marker_p (struct breakpoint *b)
13707 {
13708 return b->ops == &strace_marker_breakpoint_ops;
13709 }
13710
13711 /* Delete a breakpoint and clean up all traces of it in the data
13712 structures. */
13713
13714 void
13715 delete_breakpoint (struct breakpoint *bpt)
13716 {
13717 struct breakpoint *b;
13718
13719 gdb_assert (bpt != NULL);
13720
13721 /* Has this bp already been deleted? This can happen because
13722 multiple lists can hold pointers to bp's. bpstat lists are
13723 especial culprits.
13724
13725 One example of this happening is a watchpoint's scope bp. When
13726 the scope bp triggers, we notice that the watchpoint is out of
13727 scope, and delete it. We also delete its scope bp. But the
13728 scope bp is marked "auto-deleting", and is already on a bpstat.
13729 That bpstat is then checked for auto-deleting bp's, which are
13730 deleted.
13731
13732 A real solution to this problem might involve reference counts in
13733 bp's, and/or giving them pointers back to their referencing
13734 bpstat's, and teaching delete_breakpoint to only free a bp's
13735 storage when no more references were extent. A cheaper bandaid
13736 was chosen. */
13737 if (bpt->type == bp_none)
13738 return;
13739
13740 /* At least avoid this stale reference until the reference counting
13741 of breakpoints gets resolved. */
13742 if (bpt->related_breakpoint != bpt)
13743 {
13744 struct breakpoint *related;
13745 struct watchpoint *w;
13746
13747 if (bpt->type == bp_watchpoint_scope)
13748 w = (struct watchpoint *) bpt->related_breakpoint;
13749 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13750 w = (struct watchpoint *) bpt;
13751 else
13752 w = NULL;
13753 if (w != NULL)
13754 watchpoint_del_at_next_stop (w);
13755
13756 /* Unlink bpt from the bpt->related_breakpoint ring. */
13757 for (related = bpt; related->related_breakpoint != bpt;
13758 related = related->related_breakpoint);
13759 related->related_breakpoint = bpt->related_breakpoint;
13760 bpt->related_breakpoint = bpt;
13761 }
13762
13763 /* watch_command_1 creates a watchpoint but only sets its number if
13764 update_watchpoint succeeds in creating its bp_locations. If there's
13765 a problem in that process, we'll be asked to delete the half-created
13766 watchpoint. In that case, don't announce the deletion. */
13767 if (bpt->number)
13768 observer_notify_breakpoint_deleted (bpt);
13769
13770 if (breakpoint_chain == bpt)
13771 breakpoint_chain = bpt->next;
13772
13773 ALL_BREAKPOINTS (b)
13774 if (b->next == bpt)
13775 {
13776 b->next = bpt->next;
13777 break;
13778 }
13779
13780 /* Be sure no bpstat's are pointing at the breakpoint after it's
13781 been freed. */
13782 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13783 in all threads for now. Note that we cannot just remove bpstats
13784 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13785 commands are associated with the bpstat; if we remove it here,
13786 then the later call to bpstat_do_actions (&stop_bpstat); in
13787 event-top.c won't do anything, and temporary breakpoints with
13788 commands won't work. */
13789
13790 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13791
13792 /* Now that breakpoint is removed from breakpoint list, update the
13793 global location list. This will remove locations that used to
13794 belong to this breakpoint. Do this before freeing the breakpoint
13795 itself, since remove_breakpoint looks at location's owner. It
13796 might be better design to have location completely
13797 self-contained, but it's not the case now. */
13798 update_global_location_list (0);
13799
13800 bpt->ops->dtor (bpt);
13801 /* On the chance that someone will soon try again to delete this
13802 same bp, we mark it as deleted before freeing its storage. */
13803 bpt->type = bp_none;
13804 xfree (bpt);
13805 }
13806
13807 static void
13808 do_delete_breakpoint_cleanup (void *b)
13809 {
13810 delete_breakpoint (b);
13811 }
13812
13813 struct cleanup *
13814 make_cleanup_delete_breakpoint (struct breakpoint *b)
13815 {
13816 return make_cleanup (do_delete_breakpoint_cleanup, b);
13817 }
13818
13819 /* Iterator function to call a user-provided callback function once
13820 for each of B and its related breakpoints. */
13821
13822 static void
13823 iterate_over_related_breakpoints (struct breakpoint *b,
13824 void (*function) (struct breakpoint *,
13825 void *),
13826 void *data)
13827 {
13828 struct breakpoint *related;
13829
13830 related = b;
13831 do
13832 {
13833 struct breakpoint *next;
13834
13835 /* FUNCTION may delete RELATED. */
13836 next = related->related_breakpoint;
13837
13838 if (next == related)
13839 {
13840 /* RELATED is the last ring entry. */
13841 function (related, data);
13842
13843 /* FUNCTION may have deleted it, so we'd never reach back to
13844 B. There's nothing left to do anyway, so just break
13845 out. */
13846 break;
13847 }
13848 else
13849 function (related, data);
13850
13851 related = next;
13852 }
13853 while (related != b);
13854 }
13855
13856 static void
13857 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13858 {
13859 delete_breakpoint (b);
13860 }
13861
13862 /* A callback for map_breakpoint_numbers that calls
13863 delete_breakpoint. */
13864
13865 static void
13866 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13867 {
13868 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13869 }
13870
13871 void
13872 delete_command (char *arg, int from_tty)
13873 {
13874 struct breakpoint *b, *b_tmp;
13875
13876 dont_repeat ();
13877
13878 if (arg == 0)
13879 {
13880 int breaks_to_delete = 0;
13881
13882 /* Delete all breakpoints if no argument. Do not delete
13883 internal breakpoints, these have to be deleted with an
13884 explicit breakpoint number argument. */
13885 ALL_BREAKPOINTS (b)
13886 if (user_breakpoint_p (b))
13887 {
13888 breaks_to_delete = 1;
13889 break;
13890 }
13891
13892 /* Ask user only if there are some breakpoints to delete. */
13893 if (!from_tty
13894 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13895 {
13896 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13897 if (user_breakpoint_p (b))
13898 delete_breakpoint (b);
13899 }
13900 }
13901 else
13902 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13903 }
13904
13905 static int
13906 all_locations_are_pending (struct bp_location *loc)
13907 {
13908 for (; loc; loc = loc->next)
13909 if (!loc->shlib_disabled
13910 && !loc->pspace->executing_startup)
13911 return 0;
13912 return 1;
13913 }
13914
13915 /* Subroutine of update_breakpoint_locations to simplify it.
13916 Return non-zero if multiple fns in list LOC have the same name.
13917 Null names are ignored. */
13918
13919 static int
13920 ambiguous_names_p (struct bp_location *loc)
13921 {
13922 struct bp_location *l;
13923 htab_t htab = htab_create_alloc (13, htab_hash_string,
13924 (int (*) (const void *,
13925 const void *)) streq,
13926 NULL, xcalloc, xfree);
13927
13928 for (l = loc; l != NULL; l = l->next)
13929 {
13930 const char **slot;
13931 const char *name = l->function_name;
13932
13933 /* Allow for some names to be NULL, ignore them. */
13934 if (name == NULL)
13935 continue;
13936
13937 slot = (const char **) htab_find_slot (htab, (const void *) name,
13938 INSERT);
13939 /* NOTE: We can assume slot != NULL here because xcalloc never
13940 returns NULL. */
13941 if (*slot != NULL)
13942 {
13943 htab_delete (htab);
13944 return 1;
13945 }
13946 *slot = name;
13947 }
13948
13949 htab_delete (htab);
13950 return 0;
13951 }
13952
13953 /* When symbols change, it probably means the sources changed as well,
13954 and it might mean the static tracepoint markers are no longer at
13955 the same address or line numbers they used to be at last we
13956 checked. Losing your static tracepoints whenever you rebuild is
13957 undesirable. This function tries to resync/rematch gdb static
13958 tracepoints with the markers on the target, for static tracepoints
13959 that have not been set by marker id. Static tracepoint that have
13960 been set by marker id are reset by marker id in breakpoint_re_set.
13961 The heuristic is:
13962
13963 1) For a tracepoint set at a specific address, look for a marker at
13964 the old PC. If one is found there, assume to be the same marker.
13965 If the name / string id of the marker found is different from the
13966 previous known name, assume that means the user renamed the marker
13967 in the sources, and output a warning.
13968
13969 2) For a tracepoint set at a given line number, look for a marker
13970 at the new address of the old line number. If one is found there,
13971 assume to be the same marker. If the name / string id of the
13972 marker found is different from the previous known name, assume that
13973 means the user renamed the marker in the sources, and output a
13974 warning.
13975
13976 3) If a marker is no longer found at the same address or line, it
13977 may mean the marker no longer exists. But it may also just mean
13978 the code changed a bit. Maybe the user added a few lines of code
13979 that made the marker move up or down (in line number terms). Ask
13980 the target for info about the marker with the string id as we knew
13981 it. If found, update line number and address in the matching
13982 static tracepoint. This will get confused if there's more than one
13983 marker with the same ID (possible in UST, although unadvised
13984 precisely because it confuses tools). */
13985
13986 static struct symtab_and_line
13987 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13988 {
13989 struct tracepoint *tp = (struct tracepoint *) b;
13990 struct static_tracepoint_marker marker;
13991 CORE_ADDR pc;
13992
13993 pc = sal.pc;
13994 if (sal.line)
13995 find_line_pc (sal.symtab, sal.line, &pc);
13996
13997 if (target_static_tracepoint_marker_at (pc, &marker))
13998 {
13999 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14000 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14001 b->number,
14002 tp->static_trace_marker_id, marker.str_id);
14003
14004 xfree (tp->static_trace_marker_id);
14005 tp->static_trace_marker_id = xstrdup (marker.str_id);
14006 release_static_tracepoint_marker (&marker);
14007
14008 return sal;
14009 }
14010
14011 /* Old marker wasn't found on target at lineno. Try looking it up
14012 by string ID. */
14013 if (!sal.explicit_pc
14014 && sal.line != 0
14015 && sal.symtab != NULL
14016 && tp->static_trace_marker_id != NULL)
14017 {
14018 VEC(static_tracepoint_marker_p) *markers;
14019
14020 markers
14021 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14022
14023 if (!VEC_empty(static_tracepoint_marker_p, markers))
14024 {
14025 struct symtab_and_line sal2;
14026 struct symbol *sym;
14027 struct static_tracepoint_marker *tpmarker;
14028 struct ui_out *uiout = current_uiout;
14029
14030 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14031
14032 xfree (tp->static_trace_marker_id);
14033 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14034
14035 warning (_("marker for static tracepoint %d (%s) not "
14036 "found at previous line number"),
14037 b->number, tp->static_trace_marker_id);
14038
14039 init_sal (&sal2);
14040
14041 sal2.pc = tpmarker->address;
14042
14043 sal2 = find_pc_line (tpmarker->address, 0);
14044 sym = find_pc_sect_function (tpmarker->address, NULL);
14045 ui_out_text (uiout, "Now in ");
14046 if (sym)
14047 {
14048 ui_out_field_string (uiout, "func",
14049 SYMBOL_PRINT_NAME (sym));
14050 ui_out_text (uiout, " at ");
14051 }
14052 ui_out_field_string (uiout, "file",
14053 symtab_to_filename_for_display (sal2.symtab));
14054 ui_out_text (uiout, ":");
14055
14056 if (ui_out_is_mi_like_p (uiout))
14057 {
14058 const char *fullname = symtab_to_fullname (sal2.symtab);
14059
14060 ui_out_field_string (uiout, "fullname", fullname);
14061 }
14062
14063 ui_out_field_int (uiout, "line", sal2.line);
14064 ui_out_text (uiout, "\n");
14065
14066 b->loc->line_number = sal2.line;
14067 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14068
14069 xfree (b->addr_string);
14070 b->addr_string = xstrprintf ("%s:%d",
14071 symtab_to_filename_for_display (sal2.symtab),
14072 b->loc->line_number);
14073
14074 /* Might be nice to check if function changed, and warn if
14075 so. */
14076
14077 release_static_tracepoint_marker (tpmarker);
14078 }
14079 }
14080 return sal;
14081 }
14082
14083 /* Returns 1 iff locations A and B are sufficiently same that
14084 we don't need to report breakpoint as changed. */
14085
14086 static int
14087 locations_are_equal (struct bp_location *a, struct bp_location *b)
14088 {
14089 while (a && b)
14090 {
14091 if (a->address != b->address)
14092 return 0;
14093
14094 if (a->shlib_disabled != b->shlib_disabled)
14095 return 0;
14096
14097 if (a->enabled != b->enabled)
14098 return 0;
14099
14100 a = a->next;
14101 b = b->next;
14102 }
14103
14104 if ((a == NULL) != (b == NULL))
14105 return 0;
14106
14107 return 1;
14108 }
14109
14110 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14111 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14112 a ranged breakpoint. */
14113
14114 void
14115 update_breakpoint_locations (struct breakpoint *b,
14116 struct symtabs_and_lines sals,
14117 struct symtabs_and_lines sals_end)
14118 {
14119 int i;
14120 struct bp_location *existing_locations = b->loc;
14121
14122 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14123 {
14124 /* Ranged breakpoints have only one start location and one end
14125 location. */
14126 b->enable_state = bp_disabled;
14127 update_global_location_list (1);
14128 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14129 "multiple locations found\n"),
14130 b->number);
14131 return;
14132 }
14133
14134 /* If there's no new locations, and all existing locations are
14135 pending, don't do anything. This optimizes the common case where
14136 all locations are in the same shared library, that was unloaded.
14137 We'd like to retain the location, so that when the library is
14138 loaded again, we don't loose the enabled/disabled status of the
14139 individual locations. */
14140 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14141 return;
14142
14143 b->loc = NULL;
14144
14145 for (i = 0; i < sals.nelts; ++i)
14146 {
14147 struct bp_location *new_loc;
14148
14149 switch_to_program_space_and_thread (sals.sals[i].pspace);
14150
14151 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14152
14153 /* Reparse conditions, they might contain references to the
14154 old symtab. */
14155 if (b->cond_string != NULL)
14156 {
14157 const char *s;
14158 volatile struct gdb_exception e;
14159
14160 s = b->cond_string;
14161 TRY_CATCH (e, RETURN_MASK_ERROR)
14162 {
14163 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14164 block_for_pc (sals.sals[i].pc),
14165 0);
14166 }
14167 if (e.reason < 0)
14168 {
14169 warning (_("failed to reevaluate condition "
14170 "for breakpoint %d: %s"),
14171 b->number, e.message);
14172 new_loc->enabled = 0;
14173 }
14174 }
14175
14176 if (sals_end.nelts)
14177 {
14178 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14179
14180 new_loc->length = end - sals.sals[0].pc + 1;
14181 }
14182 }
14183
14184 /* Update locations of permanent breakpoints. */
14185 if (b->enable_state == bp_permanent)
14186 make_breakpoint_permanent (b);
14187
14188 /* If possible, carry over 'disable' status from existing
14189 breakpoints. */
14190 {
14191 struct bp_location *e = existing_locations;
14192 /* If there are multiple breakpoints with the same function name,
14193 e.g. for inline functions, comparing function names won't work.
14194 Instead compare pc addresses; this is just a heuristic as things
14195 may have moved, but in practice it gives the correct answer
14196 often enough until a better solution is found. */
14197 int have_ambiguous_names = ambiguous_names_p (b->loc);
14198
14199 for (; e; e = e->next)
14200 {
14201 if (!e->enabled && e->function_name)
14202 {
14203 struct bp_location *l = b->loc;
14204 if (have_ambiguous_names)
14205 {
14206 for (; l; l = l->next)
14207 if (breakpoint_locations_match (e, l))
14208 {
14209 l->enabled = 0;
14210 break;
14211 }
14212 }
14213 else
14214 {
14215 for (; l; l = l->next)
14216 if (l->function_name
14217 && strcmp (e->function_name, l->function_name) == 0)
14218 {
14219 l->enabled = 0;
14220 break;
14221 }
14222 }
14223 }
14224 }
14225 }
14226
14227 if (!locations_are_equal (existing_locations, b->loc))
14228 observer_notify_breakpoint_modified (b);
14229
14230 update_global_location_list (1);
14231 }
14232
14233 /* Find the SaL locations corresponding to the given ADDR_STRING.
14234 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14235
14236 static struct symtabs_and_lines
14237 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14238 {
14239 char *s;
14240 struct symtabs_and_lines sals = {0};
14241 volatile struct gdb_exception e;
14242
14243 gdb_assert (b->ops != NULL);
14244 s = addr_string;
14245
14246 TRY_CATCH (e, RETURN_MASK_ERROR)
14247 {
14248 b->ops->decode_linespec (b, &s, &sals);
14249 }
14250 if (e.reason < 0)
14251 {
14252 int not_found_and_ok = 0;
14253 /* For pending breakpoints, it's expected that parsing will
14254 fail until the right shared library is loaded. User has
14255 already told to create pending breakpoints and don't need
14256 extra messages. If breakpoint is in bp_shlib_disabled
14257 state, then user already saw the message about that
14258 breakpoint being disabled, and don't want to see more
14259 errors. */
14260 if (e.error == NOT_FOUND_ERROR
14261 && (b->condition_not_parsed
14262 || (b->loc && b->loc->shlib_disabled)
14263 || (b->loc && b->loc->pspace->executing_startup)
14264 || b->enable_state == bp_disabled))
14265 not_found_and_ok = 1;
14266
14267 if (!not_found_and_ok)
14268 {
14269 /* We surely don't want to warn about the same breakpoint
14270 10 times. One solution, implemented here, is disable
14271 the breakpoint on error. Another solution would be to
14272 have separate 'warning emitted' flag. Since this
14273 happens only when a binary has changed, I don't know
14274 which approach is better. */
14275 b->enable_state = bp_disabled;
14276 throw_exception (e);
14277 }
14278 }
14279
14280 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14281 {
14282 int i;
14283
14284 for (i = 0; i < sals.nelts; ++i)
14285 resolve_sal_pc (&sals.sals[i]);
14286 if (b->condition_not_parsed && s && s[0])
14287 {
14288 char *cond_string, *extra_string;
14289 int thread, task;
14290
14291 find_condition_and_thread (s, sals.sals[0].pc,
14292 &cond_string, &thread, &task,
14293 &extra_string);
14294 if (cond_string)
14295 b->cond_string = cond_string;
14296 b->thread = thread;
14297 b->task = task;
14298 if (extra_string)
14299 b->extra_string = extra_string;
14300 b->condition_not_parsed = 0;
14301 }
14302
14303 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14304 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14305
14306 *found = 1;
14307 }
14308 else
14309 *found = 0;
14310
14311 return sals;
14312 }
14313
14314 /* The default re_set method, for typical hardware or software
14315 breakpoints. Reevaluate the breakpoint and recreate its
14316 locations. */
14317
14318 static void
14319 breakpoint_re_set_default (struct breakpoint *b)
14320 {
14321 int found;
14322 struct symtabs_and_lines sals, sals_end;
14323 struct symtabs_and_lines expanded = {0};
14324 struct symtabs_and_lines expanded_end = {0};
14325
14326 sals = addr_string_to_sals (b, b->addr_string, &found);
14327 if (found)
14328 {
14329 make_cleanup (xfree, sals.sals);
14330 expanded = sals;
14331 }
14332
14333 if (b->addr_string_range_end)
14334 {
14335 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14336 if (found)
14337 {
14338 make_cleanup (xfree, sals_end.sals);
14339 expanded_end = sals_end;
14340 }
14341 }
14342
14343 update_breakpoint_locations (b, expanded, expanded_end);
14344 }
14345
14346 /* Default method for creating SALs from an address string. It basically
14347 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14348
14349 static void
14350 create_sals_from_address_default (char **arg,
14351 struct linespec_result *canonical,
14352 enum bptype type_wanted,
14353 char *addr_start, char **copy_arg)
14354 {
14355 parse_breakpoint_sals (arg, canonical);
14356 }
14357
14358 /* Call create_breakpoints_sal for the given arguments. This is the default
14359 function for the `create_breakpoints_sal' method of
14360 breakpoint_ops. */
14361
14362 static void
14363 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14364 struct linespec_result *canonical,
14365 char *cond_string,
14366 char *extra_string,
14367 enum bptype type_wanted,
14368 enum bpdisp disposition,
14369 int thread,
14370 int task, int ignore_count,
14371 const struct breakpoint_ops *ops,
14372 int from_tty, int enabled,
14373 int internal, unsigned flags)
14374 {
14375 create_breakpoints_sal (gdbarch, canonical, cond_string,
14376 extra_string,
14377 type_wanted, disposition,
14378 thread, task, ignore_count, ops, from_tty,
14379 enabled, internal, flags);
14380 }
14381
14382 /* Decode the line represented by S by calling decode_line_full. This is the
14383 default function for the `decode_linespec' method of breakpoint_ops. */
14384
14385 static void
14386 decode_linespec_default (struct breakpoint *b, char **s,
14387 struct symtabs_and_lines *sals)
14388 {
14389 struct linespec_result canonical;
14390
14391 init_linespec_result (&canonical);
14392 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14393 (struct symtab *) NULL, 0,
14394 &canonical, multiple_symbols_all,
14395 b->filter);
14396
14397 /* We should get 0 or 1 resulting SALs. */
14398 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14399
14400 if (VEC_length (linespec_sals, canonical.sals) > 0)
14401 {
14402 struct linespec_sals *lsal;
14403
14404 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14405 *sals = lsal->sals;
14406 /* Arrange it so the destructor does not free the
14407 contents. */
14408 lsal->sals.sals = NULL;
14409 }
14410
14411 destroy_linespec_result (&canonical);
14412 }
14413
14414 /* Prepare the global context for a re-set of breakpoint B. */
14415
14416 static struct cleanup *
14417 prepare_re_set_context (struct breakpoint *b)
14418 {
14419 struct cleanup *cleanups;
14420
14421 input_radix = b->input_radix;
14422 cleanups = save_current_space_and_thread ();
14423 if (b->pspace != NULL)
14424 switch_to_program_space_and_thread (b->pspace);
14425 set_language (b->language);
14426
14427 return cleanups;
14428 }
14429
14430 /* Reset a breakpoint given it's struct breakpoint * BINT.
14431 The value we return ends up being the return value from catch_errors.
14432 Unused in this case. */
14433
14434 static int
14435 breakpoint_re_set_one (void *bint)
14436 {
14437 /* Get past catch_errs. */
14438 struct breakpoint *b = (struct breakpoint *) bint;
14439 struct cleanup *cleanups;
14440
14441 cleanups = prepare_re_set_context (b);
14442 b->ops->re_set (b);
14443 do_cleanups (cleanups);
14444 return 0;
14445 }
14446
14447 /* Re-set all breakpoints after symbols have been re-loaded. */
14448 void
14449 breakpoint_re_set (void)
14450 {
14451 struct breakpoint *b, *b_tmp;
14452 enum language save_language;
14453 int save_input_radix;
14454 struct cleanup *old_chain;
14455
14456 save_language = current_language->la_language;
14457 save_input_radix = input_radix;
14458 old_chain = save_current_program_space ();
14459
14460 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14461 {
14462 /* Format possible error msg. */
14463 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14464 b->number);
14465 struct cleanup *cleanups = make_cleanup (xfree, message);
14466 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14467 do_cleanups (cleanups);
14468 }
14469 set_language (save_language);
14470 input_radix = save_input_radix;
14471
14472 jit_breakpoint_re_set ();
14473
14474 do_cleanups (old_chain);
14475
14476 create_overlay_event_breakpoint ();
14477 create_longjmp_master_breakpoint ();
14478 create_std_terminate_master_breakpoint ();
14479 create_exception_master_breakpoint ();
14480 }
14481 \f
14482 /* Reset the thread number of this breakpoint:
14483
14484 - If the breakpoint is for all threads, leave it as-is.
14485 - Else, reset it to the current thread for inferior_ptid. */
14486 void
14487 breakpoint_re_set_thread (struct breakpoint *b)
14488 {
14489 if (b->thread != -1)
14490 {
14491 if (in_thread_list (inferior_ptid))
14492 b->thread = pid_to_thread_id (inferior_ptid);
14493
14494 /* We're being called after following a fork. The new fork is
14495 selected as current, and unless this was a vfork will have a
14496 different program space from the original thread. Reset that
14497 as well. */
14498 b->loc->pspace = current_program_space;
14499 }
14500 }
14501
14502 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14503 If from_tty is nonzero, it prints a message to that effect,
14504 which ends with a period (no newline). */
14505
14506 void
14507 set_ignore_count (int bptnum, int count, int from_tty)
14508 {
14509 struct breakpoint *b;
14510
14511 if (count < 0)
14512 count = 0;
14513
14514 ALL_BREAKPOINTS (b)
14515 if (b->number == bptnum)
14516 {
14517 if (is_tracepoint (b))
14518 {
14519 if (from_tty && count != 0)
14520 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14521 bptnum);
14522 return;
14523 }
14524
14525 b->ignore_count = count;
14526 if (from_tty)
14527 {
14528 if (count == 0)
14529 printf_filtered (_("Will stop next time "
14530 "breakpoint %d is reached."),
14531 bptnum);
14532 else if (count == 1)
14533 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14534 bptnum);
14535 else
14536 printf_filtered (_("Will ignore next %d "
14537 "crossings of breakpoint %d."),
14538 count, bptnum);
14539 }
14540 observer_notify_breakpoint_modified (b);
14541 return;
14542 }
14543
14544 error (_("No breakpoint number %d."), bptnum);
14545 }
14546
14547 /* Command to set ignore-count of breakpoint N to COUNT. */
14548
14549 static void
14550 ignore_command (char *args, int from_tty)
14551 {
14552 char *p = args;
14553 int num;
14554
14555 if (p == 0)
14556 error_no_arg (_("a breakpoint number"));
14557
14558 num = get_number (&p);
14559 if (num == 0)
14560 error (_("bad breakpoint number: '%s'"), args);
14561 if (*p == 0)
14562 error (_("Second argument (specified ignore-count) is missing."));
14563
14564 set_ignore_count (num,
14565 longest_to_int (value_as_long (parse_and_eval (p))),
14566 from_tty);
14567 if (from_tty)
14568 printf_filtered ("\n");
14569 }
14570 \f
14571 /* Call FUNCTION on each of the breakpoints
14572 whose numbers are given in ARGS. */
14573
14574 static void
14575 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14576 void *),
14577 void *data)
14578 {
14579 int num;
14580 struct breakpoint *b, *tmp;
14581 int match;
14582 struct get_number_or_range_state state;
14583
14584 if (args == 0)
14585 error_no_arg (_("one or more breakpoint numbers"));
14586
14587 init_number_or_range (&state, args);
14588
14589 while (!state.finished)
14590 {
14591 char *p = state.string;
14592
14593 match = 0;
14594
14595 num = get_number_or_range (&state);
14596 if (num == 0)
14597 {
14598 warning (_("bad breakpoint number at or near '%s'"), p);
14599 }
14600 else
14601 {
14602 ALL_BREAKPOINTS_SAFE (b, tmp)
14603 if (b->number == num)
14604 {
14605 match = 1;
14606 function (b, data);
14607 break;
14608 }
14609 if (match == 0)
14610 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14611 }
14612 }
14613 }
14614
14615 static struct bp_location *
14616 find_location_by_number (char *number)
14617 {
14618 char *dot = strchr (number, '.');
14619 char *p1;
14620 int bp_num;
14621 int loc_num;
14622 struct breakpoint *b;
14623 struct bp_location *loc;
14624
14625 *dot = '\0';
14626
14627 p1 = number;
14628 bp_num = get_number (&p1);
14629 if (bp_num == 0)
14630 error (_("Bad breakpoint number '%s'"), number);
14631
14632 ALL_BREAKPOINTS (b)
14633 if (b->number == bp_num)
14634 {
14635 break;
14636 }
14637
14638 if (!b || b->number != bp_num)
14639 error (_("Bad breakpoint number '%s'"), number);
14640
14641 p1 = dot+1;
14642 loc_num = get_number (&p1);
14643 if (loc_num == 0)
14644 error (_("Bad breakpoint location number '%s'"), number);
14645
14646 --loc_num;
14647 loc = b->loc;
14648 for (;loc_num && loc; --loc_num, loc = loc->next)
14649 ;
14650 if (!loc)
14651 error (_("Bad breakpoint location number '%s'"), dot+1);
14652
14653 return loc;
14654 }
14655
14656
14657 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14658 If from_tty is nonzero, it prints a message to that effect,
14659 which ends with a period (no newline). */
14660
14661 void
14662 disable_breakpoint (struct breakpoint *bpt)
14663 {
14664 /* Never disable a watchpoint scope breakpoint; we want to
14665 hit them when we leave scope so we can delete both the
14666 watchpoint and its scope breakpoint at that time. */
14667 if (bpt->type == bp_watchpoint_scope)
14668 return;
14669
14670 /* You can't disable permanent breakpoints. */
14671 if (bpt->enable_state == bp_permanent)
14672 return;
14673
14674 bpt->enable_state = bp_disabled;
14675
14676 /* Mark breakpoint locations modified. */
14677 mark_breakpoint_modified (bpt);
14678
14679 if (target_supports_enable_disable_tracepoint ()
14680 && current_trace_status ()->running && is_tracepoint (bpt))
14681 {
14682 struct bp_location *location;
14683
14684 for (location = bpt->loc; location; location = location->next)
14685 target_disable_tracepoint (location);
14686 }
14687
14688 update_global_location_list (0);
14689
14690 observer_notify_breakpoint_modified (bpt);
14691 }
14692
14693 /* A callback for iterate_over_related_breakpoints. */
14694
14695 static void
14696 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14697 {
14698 disable_breakpoint (b);
14699 }
14700
14701 /* A callback for map_breakpoint_numbers that calls
14702 disable_breakpoint. */
14703
14704 static void
14705 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14706 {
14707 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14708 }
14709
14710 static void
14711 disable_command (char *args, int from_tty)
14712 {
14713 if (args == 0)
14714 {
14715 struct breakpoint *bpt;
14716
14717 ALL_BREAKPOINTS (bpt)
14718 if (user_breakpoint_p (bpt))
14719 disable_breakpoint (bpt);
14720 }
14721 else
14722 {
14723 char *num = extract_arg (&args);
14724
14725 while (num)
14726 {
14727 if (strchr (num, '.'))
14728 {
14729 struct bp_location *loc = find_location_by_number (num);
14730
14731 if (loc)
14732 {
14733 if (loc->enabled)
14734 {
14735 loc->enabled = 0;
14736 mark_breakpoint_location_modified (loc);
14737 }
14738 if (target_supports_enable_disable_tracepoint ()
14739 && current_trace_status ()->running && loc->owner
14740 && is_tracepoint (loc->owner))
14741 target_disable_tracepoint (loc);
14742 }
14743 update_global_location_list (0);
14744 }
14745 else
14746 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14747 num = extract_arg (&args);
14748 }
14749 }
14750 }
14751
14752 static void
14753 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14754 int count)
14755 {
14756 int target_resources_ok;
14757
14758 if (bpt->type == bp_hardware_breakpoint)
14759 {
14760 int i;
14761 i = hw_breakpoint_used_count ();
14762 target_resources_ok =
14763 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14764 i + 1, 0);
14765 if (target_resources_ok == 0)
14766 error (_("No hardware breakpoint support in the target."));
14767 else if (target_resources_ok < 0)
14768 error (_("Hardware breakpoints used exceeds limit."));
14769 }
14770
14771 if (is_watchpoint (bpt))
14772 {
14773 /* Initialize it just to avoid a GCC false warning. */
14774 enum enable_state orig_enable_state = 0;
14775 volatile struct gdb_exception e;
14776
14777 TRY_CATCH (e, RETURN_MASK_ALL)
14778 {
14779 struct watchpoint *w = (struct watchpoint *) bpt;
14780
14781 orig_enable_state = bpt->enable_state;
14782 bpt->enable_state = bp_enabled;
14783 update_watchpoint (w, 1 /* reparse */);
14784 }
14785 if (e.reason < 0)
14786 {
14787 bpt->enable_state = orig_enable_state;
14788 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14789 bpt->number);
14790 return;
14791 }
14792 }
14793
14794 if (bpt->enable_state != bp_permanent)
14795 bpt->enable_state = bp_enabled;
14796
14797 bpt->enable_state = bp_enabled;
14798
14799 /* Mark breakpoint locations modified. */
14800 mark_breakpoint_modified (bpt);
14801
14802 if (target_supports_enable_disable_tracepoint ()
14803 && current_trace_status ()->running && is_tracepoint (bpt))
14804 {
14805 struct bp_location *location;
14806
14807 for (location = bpt->loc; location; location = location->next)
14808 target_enable_tracepoint (location);
14809 }
14810
14811 bpt->disposition = disposition;
14812 bpt->enable_count = count;
14813 update_global_location_list (1);
14814
14815 observer_notify_breakpoint_modified (bpt);
14816 }
14817
14818
14819 void
14820 enable_breakpoint (struct breakpoint *bpt)
14821 {
14822 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14823 }
14824
14825 static void
14826 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14827 {
14828 enable_breakpoint (bpt);
14829 }
14830
14831 /* A callback for map_breakpoint_numbers that calls
14832 enable_breakpoint. */
14833
14834 static void
14835 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14836 {
14837 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14838 }
14839
14840 /* The enable command enables the specified breakpoints (or all defined
14841 breakpoints) so they once again become (or continue to be) effective
14842 in stopping the inferior. */
14843
14844 static void
14845 enable_command (char *args, int from_tty)
14846 {
14847 if (args == 0)
14848 {
14849 struct breakpoint *bpt;
14850
14851 ALL_BREAKPOINTS (bpt)
14852 if (user_breakpoint_p (bpt))
14853 enable_breakpoint (bpt);
14854 }
14855 else
14856 {
14857 char *num = extract_arg (&args);
14858
14859 while (num)
14860 {
14861 if (strchr (num, '.'))
14862 {
14863 struct bp_location *loc = find_location_by_number (num);
14864
14865 if (loc)
14866 {
14867 if (!loc->enabled)
14868 {
14869 loc->enabled = 1;
14870 mark_breakpoint_location_modified (loc);
14871 }
14872 if (target_supports_enable_disable_tracepoint ()
14873 && current_trace_status ()->running && loc->owner
14874 && is_tracepoint (loc->owner))
14875 target_enable_tracepoint (loc);
14876 }
14877 update_global_location_list (1);
14878 }
14879 else
14880 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14881 num = extract_arg (&args);
14882 }
14883 }
14884 }
14885
14886 /* This struct packages up disposition data for application to multiple
14887 breakpoints. */
14888
14889 struct disp_data
14890 {
14891 enum bpdisp disp;
14892 int count;
14893 };
14894
14895 static void
14896 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14897 {
14898 struct disp_data disp_data = *(struct disp_data *) arg;
14899
14900 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14901 }
14902
14903 static void
14904 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14905 {
14906 struct disp_data disp = { disp_disable, 1 };
14907
14908 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14909 }
14910
14911 static void
14912 enable_once_command (char *args, int from_tty)
14913 {
14914 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14915 }
14916
14917 static void
14918 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14919 {
14920 struct disp_data disp = { disp_disable, *(int *) countptr };
14921
14922 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14923 }
14924
14925 static void
14926 enable_count_command (char *args, int from_tty)
14927 {
14928 int count = get_number (&args);
14929
14930 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14931 }
14932
14933 static void
14934 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14935 {
14936 struct disp_data disp = { disp_del, 1 };
14937
14938 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14939 }
14940
14941 static void
14942 enable_delete_command (char *args, int from_tty)
14943 {
14944 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14945 }
14946 \f
14947 static void
14948 set_breakpoint_cmd (char *args, int from_tty)
14949 {
14950 }
14951
14952 static void
14953 show_breakpoint_cmd (char *args, int from_tty)
14954 {
14955 }
14956
14957 /* Invalidate last known value of any hardware watchpoint if
14958 the memory which that value represents has been written to by
14959 GDB itself. */
14960
14961 static void
14962 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14963 CORE_ADDR addr, ssize_t len,
14964 const bfd_byte *data)
14965 {
14966 struct breakpoint *bp;
14967
14968 ALL_BREAKPOINTS (bp)
14969 if (bp->enable_state == bp_enabled
14970 && bp->type == bp_hardware_watchpoint)
14971 {
14972 struct watchpoint *wp = (struct watchpoint *) bp;
14973
14974 if (wp->val_valid && wp->val)
14975 {
14976 struct bp_location *loc;
14977
14978 for (loc = bp->loc; loc != NULL; loc = loc->next)
14979 if (loc->loc_type == bp_loc_hardware_watchpoint
14980 && loc->address + loc->length > addr
14981 && addr + len > loc->address)
14982 {
14983 value_free (wp->val);
14984 wp->val = NULL;
14985 wp->val_valid = 0;
14986 }
14987 }
14988 }
14989 }
14990
14991 /* Create and insert a raw software breakpoint at PC. Return an
14992 identifier, which should be used to remove the breakpoint later.
14993 In general, places which call this should be using something on the
14994 breakpoint chain instead; this function should be eliminated
14995 someday. */
14996
14997 void *
14998 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14999 struct address_space *aspace, CORE_ADDR pc)
15000 {
15001 struct bp_target_info *bp_tgt;
15002
15003 bp_tgt = XCNEW (struct bp_target_info);
15004
15005 bp_tgt->placed_address_space = aspace;
15006 bp_tgt->placed_address = pc;
15007
15008 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15009 {
15010 /* Could not insert the breakpoint. */
15011 xfree (bp_tgt);
15012 return NULL;
15013 }
15014
15015 return bp_tgt;
15016 }
15017
15018 /* Remove a breakpoint BP inserted by
15019 deprecated_insert_raw_breakpoint. */
15020
15021 int
15022 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15023 {
15024 struct bp_target_info *bp_tgt = bp;
15025 int ret;
15026
15027 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15028 xfree (bp_tgt);
15029
15030 return ret;
15031 }
15032
15033 /* One (or perhaps two) breakpoints used for software single
15034 stepping. */
15035
15036 static void *single_step_breakpoints[2];
15037 static struct gdbarch *single_step_gdbarch[2];
15038
15039 /* Create and insert a breakpoint for software single step. */
15040
15041 void
15042 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15043 struct address_space *aspace,
15044 CORE_ADDR next_pc)
15045 {
15046 void **bpt_p;
15047
15048 if (single_step_breakpoints[0] == NULL)
15049 {
15050 bpt_p = &single_step_breakpoints[0];
15051 single_step_gdbarch[0] = gdbarch;
15052 }
15053 else
15054 {
15055 gdb_assert (single_step_breakpoints[1] == NULL);
15056 bpt_p = &single_step_breakpoints[1];
15057 single_step_gdbarch[1] = gdbarch;
15058 }
15059
15060 /* NOTE drow/2006-04-11: A future improvement to this function would
15061 be to only create the breakpoints once, and actually put them on
15062 the breakpoint chain. That would let us use set_raw_breakpoint.
15063 We could adjust the addresses each time they were needed. Doing
15064 this requires corresponding changes elsewhere where single step
15065 breakpoints are handled, however. So, for now, we use this. */
15066
15067 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15068 if (*bpt_p == NULL)
15069 error (_("Could not insert single-step breakpoint at %s"),
15070 paddress (gdbarch, next_pc));
15071 }
15072
15073 /* Check if the breakpoints used for software single stepping
15074 were inserted or not. */
15075
15076 int
15077 single_step_breakpoints_inserted (void)
15078 {
15079 return (single_step_breakpoints[0] != NULL
15080 || single_step_breakpoints[1] != NULL);
15081 }
15082
15083 /* Remove and delete any breakpoints used for software single step. */
15084
15085 void
15086 remove_single_step_breakpoints (void)
15087 {
15088 gdb_assert (single_step_breakpoints[0] != NULL);
15089
15090 /* See insert_single_step_breakpoint for more about this deprecated
15091 call. */
15092 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15093 single_step_breakpoints[0]);
15094 single_step_gdbarch[0] = NULL;
15095 single_step_breakpoints[0] = NULL;
15096
15097 if (single_step_breakpoints[1] != NULL)
15098 {
15099 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15100 single_step_breakpoints[1]);
15101 single_step_gdbarch[1] = NULL;
15102 single_step_breakpoints[1] = NULL;
15103 }
15104 }
15105
15106 /* Delete software single step breakpoints without removing them from
15107 the inferior. This is intended to be used if the inferior's address
15108 space where they were inserted is already gone, e.g. after exit or
15109 exec. */
15110
15111 void
15112 cancel_single_step_breakpoints (void)
15113 {
15114 int i;
15115
15116 for (i = 0; i < 2; i++)
15117 if (single_step_breakpoints[i])
15118 {
15119 xfree (single_step_breakpoints[i]);
15120 single_step_breakpoints[i] = NULL;
15121 single_step_gdbarch[i] = NULL;
15122 }
15123 }
15124
15125 /* Detach software single-step breakpoints from INFERIOR_PTID without
15126 removing them. */
15127
15128 static void
15129 detach_single_step_breakpoints (void)
15130 {
15131 int i;
15132
15133 for (i = 0; i < 2; i++)
15134 if (single_step_breakpoints[i])
15135 target_remove_breakpoint (single_step_gdbarch[i],
15136 single_step_breakpoints[i]);
15137 }
15138
15139 /* Check whether a software single-step breakpoint is inserted at
15140 PC. */
15141
15142 static int
15143 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15144 CORE_ADDR pc)
15145 {
15146 int i;
15147
15148 for (i = 0; i < 2; i++)
15149 {
15150 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15151 if (bp_tgt
15152 && breakpoint_address_match (bp_tgt->placed_address_space,
15153 bp_tgt->placed_address,
15154 aspace, pc))
15155 return 1;
15156 }
15157
15158 return 0;
15159 }
15160
15161 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15162 non-zero otherwise. */
15163 static int
15164 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15165 {
15166 if (syscall_catchpoint_p (bp)
15167 && bp->enable_state != bp_disabled
15168 && bp->enable_state != bp_call_disabled)
15169 return 1;
15170 else
15171 return 0;
15172 }
15173
15174 int
15175 catch_syscall_enabled (void)
15176 {
15177 struct catch_syscall_inferior_data *inf_data
15178 = get_catch_syscall_inferior_data (current_inferior ());
15179
15180 return inf_data->total_syscalls_count != 0;
15181 }
15182
15183 int
15184 catching_syscall_number (int syscall_number)
15185 {
15186 struct breakpoint *bp;
15187
15188 ALL_BREAKPOINTS (bp)
15189 if (is_syscall_catchpoint_enabled (bp))
15190 {
15191 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15192
15193 if (c->syscalls_to_be_caught)
15194 {
15195 int i, iter;
15196 for (i = 0;
15197 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15198 i++)
15199 if (syscall_number == iter)
15200 return 1;
15201 }
15202 else
15203 return 1;
15204 }
15205
15206 return 0;
15207 }
15208
15209 /* Complete syscall names. Used by "catch syscall". */
15210 static VEC (char_ptr) *
15211 catch_syscall_completer (struct cmd_list_element *cmd,
15212 const char *text, const char *word)
15213 {
15214 const char **list = get_syscall_names ();
15215 VEC (char_ptr) *retlist
15216 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15217
15218 xfree (list);
15219 return retlist;
15220 }
15221
15222 /* Tracepoint-specific operations. */
15223
15224 /* Set tracepoint count to NUM. */
15225 static void
15226 set_tracepoint_count (int num)
15227 {
15228 tracepoint_count = num;
15229 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15230 }
15231
15232 static void
15233 trace_command (char *arg, int from_tty)
15234 {
15235 struct breakpoint_ops *ops;
15236 const char *arg_cp = arg;
15237
15238 if (arg && probe_linespec_to_ops (&arg_cp))
15239 ops = &tracepoint_probe_breakpoint_ops;
15240 else
15241 ops = &tracepoint_breakpoint_ops;
15242
15243 create_breakpoint (get_current_arch (),
15244 arg,
15245 NULL, 0, NULL, 1 /* parse arg */,
15246 0 /* tempflag */,
15247 bp_tracepoint /* type_wanted */,
15248 0 /* Ignore count */,
15249 pending_break_support,
15250 ops,
15251 from_tty,
15252 1 /* enabled */,
15253 0 /* internal */, 0);
15254 }
15255
15256 static void
15257 ftrace_command (char *arg, int from_tty)
15258 {
15259 create_breakpoint (get_current_arch (),
15260 arg,
15261 NULL, 0, NULL, 1 /* parse arg */,
15262 0 /* tempflag */,
15263 bp_fast_tracepoint /* type_wanted */,
15264 0 /* Ignore count */,
15265 pending_break_support,
15266 &tracepoint_breakpoint_ops,
15267 from_tty,
15268 1 /* enabled */,
15269 0 /* internal */, 0);
15270 }
15271
15272 /* strace command implementation. Creates a static tracepoint. */
15273
15274 static void
15275 strace_command (char *arg, int from_tty)
15276 {
15277 struct breakpoint_ops *ops;
15278
15279 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15280 or with a normal static tracepoint. */
15281 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15282 ops = &strace_marker_breakpoint_ops;
15283 else
15284 ops = &tracepoint_breakpoint_ops;
15285
15286 create_breakpoint (get_current_arch (),
15287 arg,
15288 NULL, 0, NULL, 1 /* parse arg */,
15289 0 /* tempflag */,
15290 bp_static_tracepoint /* type_wanted */,
15291 0 /* Ignore count */,
15292 pending_break_support,
15293 ops,
15294 from_tty,
15295 1 /* enabled */,
15296 0 /* internal */, 0);
15297 }
15298
15299 /* Set up a fake reader function that gets command lines from a linked
15300 list that was acquired during tracepoint uploading. */
15301
15302 static struct uploaded_tp *this_utp;
15303 static int next_cmd;
15304
15305 static char *
15306 read_uploaded_action (void)
15307 {
15308 char *rslt;
15309
15310 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15311
15312 next_cmd++;
15313
15314 return rslt;
15315 }
15316
15317 /* Given information about a tracepoint as recorded on a target (which
15318 can be either a live system or a trace file), attempt to create an
15319 equivalent GDB tracepoint. This is not a reliable process, since
15320 the target does not necessarily have all the information used when
15321 the tracepoint was originally defined. */
15322
15323 struct tracepoint *
15324 create_tracepoint_from_upload (struct uploaded_tp *utp)
15325 {
15326 char *addr_str, small_buf[100];
15327 struct tracepoint *tp;
15328
15329 if (utp->at_string)
15330 addr_str = utp->at_string;
15331 else
15332 {
15333 /* In the absence of a source location, fall back to raw
15334 address. Since there is no way to confirm that the address
15335 means the same thing as when the trace was started, warn the
15336 user. */
15337 warning (_("Uploaded tracepoint %d has no "
15338 "source location, using raw address"),
15339 utp->number);
15340 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15341 addr_str = small_buf;
15342 }
15343
15344 /* There's not much we can do with a sequence of bytecodes. */
15345 if (utp->cond && !utp->cond_string)
15346 warning (_("Uploaded tracepoint %d condition "
15347 "has no source form, ignoring it"),
15348 utp->number);
15349
15350 if (!create_breakpoint (get_current_arch (),
15351 addr_str,
15352 utp->cond_string, -1, NULL,
15353 0 /* parse cond/thread */,
15354 0 /* tempflag */,
15355 utp->type /* type_wanted */,
15356 0 /* Ignore count */,
15357 pending_break_support,
15358 &tracepoint_breakpoint_ops,
15359 0 /* from_tty */,
15360 utp->enabled /* enabled */,
15361 0 /* internal */,
15362 CREATE_BREAKPOINT_FLAGS_INSERTED))
15363 return NULL;
15364
15365 /* Get the tracepoint we just created. */
15366 tp = get_tracepoint (tracepoint_count);
15367 gdb_assert (tp != NULL);
15368
15369 if (utp->pass > 0)
15370 {
15371 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15372 tp->base.number);
15373
15374 trace_pass_command (small_buf, 0);
15375 }
15376
15377 /* If we have uploaded versions of the original commands, set up a
15378 special-purpose "reader" function and call the usual command line
15379 reader, then pass the result to the breakpoint command-setting
15380 function. */
15381 if (!VEC_empty (char_ptr, utp->cmd_strings))
15382 {
15383 struct command_line *cmd_list;
15384
15385 this_utp = utp;
15386 next_cmd = 0;
15387
15388 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15389
15390 breakpoint_set_commands (&tp->base, cmd_list);
15391 }
15392 else if (!VEC_empty (char_ptr, utp->actions)
15393 || !VEC_empty (char_ptr, utp->step_actions))
15394 warning (_("Uploaded tracepoint %d actions "
15395 "have no source form, ignoring them"),
15396 utp->number);
15397
15398 /* Copy any status information that might be available. */
15399 tp->base.hit_count = utp->hit_count;
15400 tp->traceframe_usage = utp->traceframe_usage;
15401
15402 return tp;
15403 }
15404
15405 /* Print information on tracepoint number TPNUM_EXP, or all if
15406 omitted. */
15407
15408 static void
15409 tracepoints_info (char *args, int from_tty)
15410 {
15411 struct ui_out *uiout = current_uiout;
15412 int num_printed;
15413
15414 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15415
15416 if (num_printed == 0)
15417 {
15418 if (args == NULL || *args == '\0')
15419 ui_out_message (uiout, 0, "No tracepoints.\n");
15420 else
15421 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15422 }
15423
15424 default_collect_info ();
15425 }
15426
15427 /* The 'enable trace' command enables tracepoints.
15428 Not supported by all targets. */
15429 static void
15430 enable_trace_command (char *args, int from_tty)
15431 {
15432 enable_command (args, from_tty);
15433 }
15434
15435 /* The 'disable trace' command disables tracepoints.
15436 Not supported by all targets. */
15437 static void
15438 disable_trace_command (char *args, int from_tty)
15439 {
15440 disable_command (args, from_tty);
15441 }
15442
15443 /* Remove a tracepoint (or all if no argument). */
15444 static void
15445 delete_trace_command (char *arg, int from_tty)
15446 {
15447 struct breakpoint *b, *b_tmp;
15448
15449 dont_repeat ();
15450
15451 if (arg == 0)
15452 {
15453 int breaks_to_delete = 0;
15454
15455 /* Delete all breakpoints if no argument.
15456 Do not delete internal or call-dummy breakpoints, these
15457 have to be deleted with an explicit breakpoint number
15458 argument. */
15459 ALL_TRACEPOINTS (b)
15460 if (is_tracepoint (b) && user_breakpoint_p (b))
15461 {
15462 breaks_to_delete = 1;
15463 break;
15464 }
15465
15466 /* Ask user only if there are some breakpoints to delete. */
15467 if (!from_tty
15468 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15469 {
15470 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15471 if (is_tracepoint (b) && user_breakpoint_p (b))
15472 delete_breakpoint (b);
15473 }
15474 }
15475 else
15476 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15477 }
15478
15479 /* Helper function for trace_pass_command. */
15480
15481 static void
15482 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15483 {
15484 tp->pass_count = count;
15485 observer_notify_breakpoint_modified (&tp->base);
15486 if (from_tty)
15487 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15488 tp->base.number, count);
15489 }
15490
15491 /* Set passcount for tracepoint.
15492
15493 First command argument is passcount, second is tracepoint number.
15494 If tracepoint number omitted, apply to most recently defined.
15495 Also accepts special argument "all". */
15496
15497 static void
15498 trace_pass_command (char *args, int from_tty)
15499 {
15500 struct tracepoint *t1;
15501 unsigned int count;
15502
15503 if (args == 0 || *args == 0)
15504 error (_("passcount command requires an "
15505 "argument (count + optional TP num)"));
15506
15507 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15508
15509 args = skip_spaces (args);
15510 if (*args && strncasecmp (args, "all", 3) == 0)
15511 {
15512 struct breakpoint *b;
15513
15514 args += 3; /* Skip special argument "all". */
15515 if (*args)
15516 error (_("Junk at end of arguments."));
15517
15518 ALL_TRACEPOINTS (b)
15519 {
15520 t1 = (struct tracepoint *) b;
15521 trace_pass_set_count (t1, count, from_tty);
15522 }
15523 }
15524 else if (*args == '\0')
15525 {
15526 t1 = get_tracepoint_by_number (&args, NULL, 1);
15527 if (t1)
15528 trace_pass_set_count (t1, count, from_tty);
15529 }
15530 else
15531 {
15532 struct get_number_or_range_state state;
15533
15534 init_number_or_range (&state, args);
15535 while (!state.finished)
15536 {
15537 t1 = get_tracepoint_by_number (&args, &state, 1);
15538 if (t1)
15539 trace_pass_set_count (t1, count, from_tty);
15540 }
15541 }
15542 }
15543
15544 struct tracepoint *
15545 get_tracepoint (int num)
15546 {
15547 struct breakpoint *t;
15548
15549 ALL_TRACEPOINTS (t)
15550 if (t->number == num)
15551 return (struct tracepoint *) t;
15552
15553 return NULL;
15554 }
15555
15556 /* Find the tracepoint with the given target-side number (which may be
15557 different from the tracepoint number after disconnecting and
15558 reconnecting). */
15559
15560 struct tracepoint *
15561 get_tracepoint_by_number_on_target (int num)
15562 {
15563 struct breakpoint *b;
15564
15565 ALL_TRACEPOINTS (b)
15566 {
15567 struct tracepoint *t = (struct tracepoint *) b;
15568
15569 if (t->number_on_target == num)
15570 return t;
15571 }
15572
15573 return NULL;
15574 }
15575
15576 /* Utility: parse a tracepoint number and look it up in the list.
15577 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15578 If OPTIONAL_P is true, then if the argument is missing, the most
15579 recent tracepoint (tracepoint_count) is returned. */
15580 struct tracepoint *
15581 get_tracepoint_by_number (char **arg,
15582 struct get_number_or_range_state *state,
15583 int optional_p)
15584 {
15585 struct breakpoint *t;
15586 int tpnum;
15587 char *instring = arg == NULL ? NULL : *arg;
15588
15589 if (state)
15590 {
15591 gdb_assert (!state->finished);
15592 tpnum = get_number_or_range (state);
15593 }
15594 else if (arg == NULL || *arg == NULL || ! **arg)
15595 {
15596 if (optional_p)
15597 tpnum = tracepoint_count;
15598 else
15599 error_no_arg (_("tracepoint number"));
15600 }
15601 else
15602 tpnum = get_number (arg);
15603
15604 if (tpnum <= 0)
15605 {
15606 if (instring && *instring)
15607 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15608 instring);
15609 else
15610 printf_filtered (_("Tracepoint argument missing "
15611 "and no previous tracepoint\n"));
15612 return NULL;
15613 }
15614
15615 ALL_TRACEPOINTS (t)
15616 if (t->number == tpnum)
15617 {
15618 return (struct tracepoint *) t;
15619 }
15620
15621 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15622 return NULL;
15623 }
15624
15625 void
15626 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15627 {
15628 if (b->thread != -1)
15629 fprintf_unfiltered (fp, " thread %d", b->thread);
15630
15631 if (b->task != 0)
15632 fprintf_unfiltered (fp, " task %d", b->task);
15633
15634 fprintf_unfiltered (fp, "\n");
15635 }
15636
15637 /* Save information on user settable breakpoints (watchpoints, etc) to
15638 a new script file named FILENAME. If FILTER is non-NULL, call it
15639 on each breakpoint and only include the ones for which it returns
15640 non-zero. */
15641
15642 static void
15643 save_breakpoints (char *filename, int from_tty,
15644 int (*filter) (const struct breakpoint *))
15645 {
15646 struct breakpoint *tp;
15647 int any = 0;
15648 struct cleanup *cleanup;
15649 struct ui_file *fp;
15650 int extra_trace_bits = 0;
15651
15652 if (filename == 0 || *filename == 0)
15653 error (_("Argument required (file name in which to save)"));
15654
15655 /* See if we have anything to save. */
15656 ALL_BREAKPOINTS (tp)
15657 {
15658 /* Skip internal and momentary breakpoints. */
15659 if (!user_breakpoint_p (tp))
15660 continue;
15661
15662 /* If we have a filter, only save the breakpoints it accepts. */
15663 if (filter && !filter (tp))
15664 continue;
15665
15666 any = 1;
15667
15668 if (is_tracepoint (tp))
15669 {
15670 extra_trace_bits = 1;
15671
15672 /* We can stop searching. */
15673 break;
15674 }
15675 }
15676
15677 if (!any)
15678 {
15679 warning (_("Nothing to save."));
15680 return;
15681 }
15682
15683 filename = tilde_expand (filename);
15684 cleanup = make_cleanup (xfree, filename);
15685 fp = gdb_fopen (filename, "w");
15686 if (!fp)
15687 error (_("Unable to open file '%s' for saving (%s)"),
15688 filename, safe_strerror (errno));
15689 make_cleanup_ui_file_delete (fp);
15690
15691 if (extra_trace_bits)
15692 save_trace_state_variables (fp);
15693
15694 ALL_BREAKPOINTS (tp)
15695 {
15696 /* Skip internal and momentary breakpoints. */
15697 if (!user_breakpoint_p (tp))
15698 continue;
15699
15700 /* If we have a filter, only save the breakpoints it accepts. */
15701 if (filter && !filter (tp))
15702 continue;
15703
15704 tp->ops->print_recreate (tp, fp);
15705
15706 /* Note, we can't rely on tp->number for anything, as we can't
15707 assume the recreated breakpoint numbers will match. Use $bpnum
15708 instead. */
15709
15710 if (tp->cond_string)
15711 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15712
15713 if (tp->ignore_count)
15714 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15715
15716 if (tp->type != bp_dprintf && tp->commands)
15717 {
15718 volatile struct gdb_exception ex;
15719
15720 fprintf_unfiltered (fp, " commands\n");
15721
15722 ui_out_redirect (current_uiout, fp);
15723 TRY_CATCH (ex, RETURN_MASK_ALL)
15724 {
15725 print_command_lines (current_uiout, tp->commands->commands, 2);
15726 }
15727 ui_out_redirect (current_uiout, NULL);
15728
15729 if (ex.reason < 0)
15730 throw_exception (ex);
15731
15732 fprintf_unfiltered (fp, " end\n");
15733 }
15734
15735 if (tp->enable_state == bp_disabled)
15736 fprintf_unfiltered (fp, "disable\n");
15737
15738 /* If this is a multi-location breakpoint, check if the locations
15739 should be individually disabled. Watchpoint locations are
15740 special, and not user visible. */
15741 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15742 {
15743 struct bp_location *loc;
15744 int n = 1;
15745
15746 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15747 if (!loc->enabled)
15748 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15749 }
15750 }
15751
15752 if (extra_trace_bits && *default_collect)
15753 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15754
15755 if (from_tty)
15756 printf_filtered (_("Saved to file '%s'.\n"), filename);
15757 do_cleanups (cleanup);
15758 }
15759
15760 /* The `save breakpoints' command. */
15761
15762 static void
15763 save_breakpoints_command (char *args, int from_tty)
15764 {
15765 save_breakpoints (args, from_tty, NULL);
15766 }
15767
15768 /* The `save tracepoints' command. */
15769
15770 static void
15771 save_tracepoints_command (char *args, int from_tty)
15772 {
15773 save_breakpoints (args, from_tty, is_tracepoint);
15774 }
15775
15776 /* Create a vector of all tracepoints. */
15777
15778 VEC(breakpoint_p) *
15779 all_tracepoints (void)
15780 {
15781 VEC(breakpoint_p) *tp_vec = 0;
15782 struct breakpoint *tp;
15783
15784 ALL_TRACEPOINTS (tp)
15785 {
15786 VEC_safe_push (breakpoint_p, tp_vec, tp);
15787 }
15788
15789 return tp_vec;
15790 }
15791
15792 \f
15793 /* This help string is used for the break, hbreak, tbreak and thbreak
15794 commands. It is defined as a macro to prevent duplication.
15795 COMMAND should be a string constant containing the name of the
15796 command. */
15797 #define BREAK_ARGS_HELP(command) \
15798 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15799 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15800 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15801 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15802 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15803 If a line number is specified, break at start of code for that line.\n\
15804 If a function is specified, break at start of code for that function.\n\
15805 If an address is specified, break at that exact address.\n\
15806 With no LOCATION, uses current execution address of the selected\n\
15807 stack frame. This is useful for breaking on return to a stack frame.\n\
15808 \n\
15809 THREADNUM is the number from \"info threads\".\n\
15810 CONDITION is a boolean expression.\n\
15811 \n\
15812 Multiple breakpoints at one place are permitted, and useful if their\n\
15813 conditions are different.\n\
15814 \n\
15815 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15816
15817 /* List of subcommands for "catch". */
15818 static struct cmd_list_element *catch_cmdlist;
15819
15820 /* List of subcommands for "tcatch". */
15821 static struct cmd_list_element *tcatch_cmdlist;
15822
15823 void
15824 add_catch_command (char *name, char *docstring,
15825 void (*sfunc) (char *args, int from_tty,
15826 struct cmd_list_element *command),
15827 completer_ftype *completer,
15828 void *user_data_catch,
15829 void *user_data_tcatch)
15830 {
15831 struct cmd_list_element *command;
15832
15833 command = add_cmd (name, class_breakpoint, NULL, docstring,
15834 &catch_cmdlist);
15835 set_cmd_sfunc (command, sfunc);
15836 set_cmd_context (command, user_data_catch);
15837 set_cmd_completer (command, completer);
15838
15839 command = add_cmd (name, class_breakpoint, NULL, docstring,
15840 &tcatch_cmdlist);
15841 set_cmd_sfunc (command, sfunc);
15842 set_cmd_context (command, user_data_tcatch);
15843 set_cmd_completer (command, completer);
15844 }
15845
15846 static void
15847 clear_syscall_counts (struct inferior *inf)
15848 {
15849 struct catch_syscall_inferior_data *inf_data
15850 = get_catch_syscall_inferior_data (inf);
15851
15852 inf_data->total_syscalls_count = 0;
15853 inf_data->any_syscall_count = 0;
15854 VEC_free (int, inf_data->syscalls_counts);
15855 }
15856
15857 static void
15858 save_command (char *arg, int from_tty)
15859 {
15860 printf_unfiltered (_("\"save\" must be followed by "
15861 "the name of a save subcommand.\n"));
15862 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15863 }
15864
15865 struct breakpoint *
15866 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15867 void *data)
15868 {
15869 struct breakpoint *b, *b_tmp;
15870
15871 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15872 {
15873 if ((*callback) (b, data))
15874 return b;
15875 }
15876
15877 return NULL;
15878 }
15879
15880 /* Zero if any of the breakpoint's locations could be a location where
15881 functions have been inlined, nonzero otherwise. */
15882
15883 static int
15884 is_non_inline_function (struct breakpoint *b)
15885 {
15886 /* The shared library event breakpoint is set on the address of a
15887 non-inline function. */
15888 if (b->type == bp_shlib_event)
15889 return 1;
15890
15891 return 0;
15892 }
15893
15894 /* Nonzero if the specified PC cannot be a location where functions
15895 have been inlined. */
15896
15897 int
15898 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15899 const struct target_waitstatus *ws)
15900 {
15901 struct breakpoint *b;
15902 struct bp_location *bl;
15903
15904 ALL_BREAKPOINTS (b)
15905 {
15906 if (!is_non_inline_function (b))
15907 continue;
15908
15909 for (bl = b->loc; bl != NULL; bl = bl->next)
15910 {
15911 if (!bl->shlib_disabled
15912 && bpstat_check_location (bl, aspace, pc, ws))
15913 return 1;
15914 }
15915 }
15916
15917 return 0;
15918 }
15919
15920 /* Remove any references to OBJFILE which is going to be freed. */
15921
15922 void
15923 breakpoint_free_objfile (struct objfile *objfile)
15924 {
15925 struct bp_location **locp, *loc;
15926
15927 ALL_BP_LOCATIONS (loc, locp)
15928 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15929 loc->symtab = NULL;
15930 }
15931
15932 void
15933 initialize_breakpoint_ops (void)
15934 {
15935 static int initialized = 0;
15936
15937 struct breakpoint_ops *ops;
15938
15939 if (initialized)
15940 return;
15941 initialized = 1;
15942
15943 /* The breakpoint_ops structure to be inherit by all kinds of
15944 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15945 internal and momentary breakpoints, etc.). */
15946 ops = &bkpt_base_breakpoint_ops;
15947 *ops = base_breakpoint_ops;
15948 ops->re_set = bkpt_re_set;
15949 ops->insert_location = bkpt_insert_location;
15950 ops->remove_location = bkpt_remove_location;
15951 ops->breakpoint_hit = bkpt_breakpoint_hit;
15952 ops->create_sals_from_address = bkpt_create_sals_from_address;
15953 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15954 ops->decode_linespec = bkpt_decode_linespec;
15955
15956 /* The breakpoint_ops structure to be used in regular breakpoints. */
15957 ops = &bkpt_breakpoint_ops;
15958 *ops = bkpt_base_breakpoint_ops;
15959 ops->re_set = bkpt_re_set;
15960 ops->resources_needed = bkpt_resources_needed;
15961 ops->print_it = bkpt_print_it;
15962 ops->print_mention = bkpt_print_mention;
15963 ops->print_recreate = bkpt_print_recreate;
15964
15965 /* Ranged breakpoints. */
15966 ops = &ranged_breakpoint_ops;
15967 *ops = bkpt_breakpoint_ops;
15968 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15969 ops->resources_needed = resources_needed_ranged_breakpoint;
15970 ops->print_it = print_it_ranged_breakpoint;
15971 ops->print_one = print_one_ranged_breakpoint;
15972 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15973 ops->print_mention = print_mention_ranged_breakpoint;
15974 ops->print_recreate = print_recreate_ranged_breakpoint;
15975
15976 /* Internal breakpoints. */
15977 ops = &internal_breakpoint_ops;
15978 *ops = bkpt_base_breakpoint_ops;
15979 ops->re_set = internal_bkpt_re_set;
15980 ops->check_status = internal_bkpt_check_status;
15981 ops->print_it = internal_bkpt_print_it;
15982 ops->print_mention = internal_bkpt_print_mention;
15983
15984 /* Momentary breakpoints. */
15985 ops = &momentary_breakpoint_ops;
15986 *ops = bkpt_base_breakpoint_ops;
15987 ops->re_set = momentary_bkpt_re_set;
15988 ops->check_status = momentary_bkpt_check_status;
15989 ops->print_it = momentary_bkpt_print_it;
15990 ops->print_mention = momentary_bkpt_print_mention;
15991
15992 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15993 ops = &longjmp_breakpoint_ops;
15994 *ops = momentary_breakpoint_ops;
15995 ops->dtor = longjmp_bkpt_dtor;
15996
15997 /* Probe breakpoints. */
15998 ops = &bkpt_probe_breakpoint_ops;
15999 *ops = bkpt_breakpoint_ops;
16000 ops->insert_location = bkpt_probe_insert_location;
16001 ops->remove_location = bkpt_probe_remove_location;
16002 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16003 ops->decode_linespec = bkpt_probe_decode_linespec;
16004
16005 /* Watchpoints. */
16006 ops = &watchpoint_breakpoint_ops;
16007 *ops = base_breakpoint_ops;
16008 ops->dtor = dtor_watchpoint;
16009 ops->re_set = re_set_watchpoint;
16010 ops->insert_location = insert_watchpoint;
16011 ops->remove_location = remove_watchpoint;
16012 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16013 ops->check_status = check_status_watchpoint;
16014 ops->resources_needed = resources_needed_watchpoint;
16015 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16016 ops->print_it = print_it_watchpoint;
16017 ops->print_mention = print_mention_watchpoint;
16018 ops->print_recreate = print_recreate_watchpoint;
16019 ops->explains_signal = explains_signal_watchpoint;
16020
16021 /* Masked watchpoints. */
16022 ops = &masked_watchpoint_breakpoint_ops;
16023 *ops = watchpoint_breakpoint_ops;
16024 ops->insert_location = insert_masked_watchpoint;
16025 ops->remove_location = remove_masked_watchpoint;
16026 ops->resources_needed = resources_needed_masked_watchpoint;
16027 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16028 ops->print_it = print_it_masked_watchpoint;
16029 ops->print_one_detail = print_one_detail_masked_watchpoint;
16030 ops->print_mention = print_mention_masked_watchpoint;
16031 ops->print_recreate = print_recreate_masked_watchpoint;
16032
16033 /* Tracepoints. */
16034 ops = &tracepoint_breakpoint_ops;
16035 *ops = base_breakpoint_ops;
16036 ops->re_set = tracepoint_re_set;
16037 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16038 ops->print_one_detail = tracepoint_print_one_detail;
16039 ops->print_mention = tracepoint_print_mention;
16040 ops->print_recreate = tracepoint_print_recreate;
16041 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16042 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16043 ops->decode_linespec = tracepoint_decode_linespec;
16044
16045 /* Probe tracepoints. */
16046 ops = &tracepoint_probe_breakpoint_ops;
16047 *ops = tracepoint_breakpoint_ops;
16048 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16049 ops->decode_linespec = tracepoint_probe_decode_linespec;
16050
16051 /* Static tracepoints with marker (`-m'). */
16052 ops = &strace_marker_breakpoint_ops;
16053 *ops = tracepoint_breakpoint_ops;
16054 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16055 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16056 ops->decode_linespec = strace_marker_decode_linespec;
16057
16058 /* Fork catchpoints. */
16059 ops = &catch_fork_breakpoint_ops;
16060 *ops = base_breakpoint_ops;
16061 ops->insert_location = insert_catch_fork;
16062 ops->remove_location = remove_catch_fork;
16063 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16064 ops->print_it = print_it_catch_fork;
16065 ops->print_one = print_one_catch_fork;
16066 ops->print_mention = print_mention_catch_fork;
16067 ops->print_recreate = print_recreate_catch_fork;
16068
16069 /* Vfork catchpoints. */
16070 ops = &catch_vfork_breakpoint_ops;
16071 *ops = base_breakpoint_ops;
16072 ops->insert_location = insert_catch_vfork;
16073 ops->remove_location = remove_catch_vfork;
16074 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16075 ops->print_it = print_it_catch_vfork;
16076 ops->print_one = print_one_catch_vfork;
16077 ops->print_mention = print_mention_catch_vfork;
16078 ops->print_recreate = print_recreate_catch_vfork;
16079
16080 /* Exec catchpoints. */
16081 ops = &catch_exec_breakpoint_ops;
16082 *ops = base_breakpoint_ops;
16083 ops->dtor = dtor_catch_exec;
16084 ops->insert_location = insert_catch_exec;
16085 ops->remove_location = remove_catch_exec;
16086 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16087 ops->print_it = print_it_catch_exec;
16088 ops->print_one = print_one_catch_exec;
16089 ops->print_mention = print_mention_catch_exec;
16090 ops->print_recreate = print_recreate_catch_exec;
16091
16092 /* Syscall catchpoints. */
16093 ops = &catch_syscall_breakpoint_ops;
16094 *ops = base_breakpoint_ops;
16095 ops->dtor = dtor_catch_syscall;
16096 ops->insert_location = insert_catch_syscall;
16097 ops->remove_location = remove_catch_syscall;
16098 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16099 ops->print_it = print_it_catch_syscall;
16100 ops->print_one = print_one_catch_syscall;
16101 ops->print_mention = print_mention_catch_syscall;
16102 ops->print_recreate = print_recreate_catch_syscall;
16103
16104 /* Solib-related catchpoints. */
16105 ops = &catch_solib_breakpoint_ops;
16106 *ops = base_breakpoint_ops;
16107 ops->dtor = dtor_catch_solib;
16108 ops->insert_location = insert_catch_solib;
16109 ops->remove_location = remove_catch_solib;
16110 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16111 ops->check_status = check_status_catch_solib;
16112 ops->print_it = print_it_catch_solib;
16113 ops->print_one = print_one_catch_solib;
16114 ops->print_mention = print_mention_catch_solib;
16115 ops->print_recreate = print_recreate_catch_solib;
16116
16117 ops = &dprintf_breakpoint_ops;
16118 *ops = bkpt_base_breakpoint_ops;
16119 ops->re_set = dprintf_re_set;
16120 ops->resources_needed = bkpt_resources_needed;
16121 ops->print_it = bkpt_print_it;
16122 ops->print_mention = bkpt_print_mention;
16123 ops->print_recreate = dprintf_print_recreate;
16124 ops->after_condition_true = dprintf_after_condition_true;
16125 }
16126
16127 /* Chain containing all defined "enable breakpoint" subcommands. */
16128
16129 static struct cmd_list_element *enablebreaklist = NULL;
16130
16131 void
16132 _initialize_breakpoint (void)
16133 {
16134 struct cmd_list_element *c;
16135
16136 initialize_breakpoint_ops ();
16137
16138 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16139 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16140 observer_attach_inferior_exit (clear_syscall_counts);
16141 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16142
16143 breakpoint_objfile_key
16144 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16145
16146 catch_syscall_inferior_data
16147 = register_inferior_data_with_cleanup (NULL,
16148 catch_syscall_inferior_data_cleanup);
16149
16150 breakpoint_chain = 0;
16151 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16152 before a breakpoint is set. */
16153 breakpoint_count = 0;
16154
16155 tracepoint_count = 0;
16156
16157 add_com ("ignore", class_breakpoint, ignore_command, _("\
16158 Set ignore-count of breakpoint number N to COUNT.\n\
16159 Usage is `ignore N COUNT'."));
16160 if (xdb_commands)
16161 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16162
16163 add_com ("commands", class_breakpoint, commands_command, _("\
16164 Set commands to be executed when a breakpoint is hit.\n\
16165 Give breakpoint number as argument after \"commands\".\n\
16166 With no argument, the targeted breakpoint is the last one set.\n\
16167 The commands themselves follow starting on the next line.\n\
16168 Type a line containing \"end\" to indicate the end of them.\n\
16169 Give \"silent\" as the first line to make the breakpoint silent;\n\
16170 then no output is printed when it is hit, except what the commands print."));
16171
16172 c = add_com ("condition", class_breakpoint, condition_command, _("\
16173 Specify breakpoint number N to break only if COND is true.\n\
16174 Usage is `condition N COND', where N is an integer and COND is an\n\
16175 expression to be evaluated whenever breakpoint N is reached."));
16176 set_cmd_completer (c, condition_completer);
16177
16178 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16179 Set a temporary breakpoint.\n\
16180 Like \"break\" except the breakpoint is only temporary,\n\
16181 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16182 by using \"enable delete\" on the breakpoint number.\n\
16183 \n"
16184 BREAK_ARGS_HELP ("tbreak")));
16185 set_cmd_completer (c, location_completer);
16186
16187 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16188 Set a hardware assisted breakpoint.\n\
16189 Like \"break\" except the breakpoint requires hardware support,\n\
16190 some target hardware may not have this support.\n\
16191 \n"
16192 BREAK_ARGS_HELP ("hbreak")));
16193 set_cmd_completer (c, location_completer);
16194
16195 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16196 Set a temporary hardware assisted breakpoint.\n\
16197 Like \"hbreak\" except the breakpoint is only temporary,\n\
16198 so it will be deleted when hit.\n\
16199 \n"
16200 BREAK_ARGS_HELP ("thbreak")));
16201 set_cmd_completer (c, location_completer);
16202
16203 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16204 Enable some breakpoints.\n\
16205 Give breakpoint numbers (separated by spaces) as arguments.\n\
16206 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16207 This is used to cancel the effect of the \"disable\" command.\n\
16208 With a subcommand you can enable temporarily."),
16209 &enablelist, "enable ", 1, &cmdlist);
16210 if (xdb_commands)
16211 add_com ("ab", class_breakpoint, enable_command, _("\
16212 Enable some breakpoints.\n\
16213 Give breakpoint numbers (separated by spaces) as arguments.\n\
16214 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16215 This is used to cancel the effect of the \"disable\" command.\n\
16216 With a subcommand you can enable temporarily."));
16217
16218 add_com_alias ("en", "enable", class_breakpoint, 1);
16219
16220 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16221 Enable some breakpoints.\n\
16222 Give breakpoint numbers (separated by spaces) as arguments.\n\
16223 This is used to cancel the effect of the \"disable\" command.\n\
16224 May be abbreviated to simply \"enable\".\n"),
16225 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16226
16227 add_cmd ("once", no_class, enable_once_command, _("\
16228 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16229 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16230 &enablebreaklist);
16231
16232 add_cmd ("delete", no_class, enable_delete_command, _("\
16233 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16234 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16235 &enablebreaklist);
16236
16237 add_cmd ("count", no_class, enable_count_command, _("\
16238 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16239 If a breakpoint is hit while enabled in this fashion,\n\
16240 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16241 &enablebreaklist);
16242
16243 add_cmd ("delete", no_class, enable_delete_command, _("\
16244 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16245 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16246 &enablelist);
16247
16248 add_cmd ("once", no_class, enable_once_command, _("\
16249 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16250 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16251 &enablelist);
16252
16253 add_cmd ("count", no_class, enable_count_command, _("\
16254 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16255 If a breakpoint is hit while enabled in this fashion,\n\
16256 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16257 &enablelist);
16258
16259 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16260 Disable some breakpoints.\n\
16261 Arguments are breakpoint numbers with spaces in between.\n\
16262 To disable all breakpoints, give no argument.\n\
16263 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16264 &disablelist, "disable ", 1, &cmdlist);
16265 add_com_alias ("dis", "disable", class_breakpoint, 1);
16266 add_com_alias ("disa", "disable", class_breakpoint, 1);
16267 if (xdb_commands)
16268 add_com ("sb", class_breakpoint, disable_command, _("\
16269 Disable some breakpoints.\n\
16270 Arguments are breakpoint numbers with spaces in between.\n\
16271 To disable all breakpoints, give no argument.\n\
16272 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16273
16274 add_cmd ("breakpoints", class_alias, disable_command, _("\
16275 Disable some breakpoints.\n\
16276 Arguments are breakpoint numbers with spaces in between.\n\
16277 To disable all breakpoints, give no argument.\n\
16278 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16279 This command may be abbreviated \"disable\"."),
16280 &disablelist);
16281
16282 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16283 Delete some breakpoints or auto-display expressions.\n\
16284 Arguments are breakpoint numbers with spaces in between.\n\
16285 To delete all breakpoints, give no argument.\n\
16286 \n\
16287 Also a prefix command for deletion of other GDB objects.\n\
16288 The \"unset\" command is also an alias for \"delete\"."),
16289 &deletelist, "delete ", 1, &cmdlist);
16290 add_com_alias ("d", "delete", class_breakpoint, 1);
16291 add_com_alias ("del", "delete", class_breakpoint, 1);
16292 if (xdb_commands)
16293 add_com ("db", class_breakpoint, delete_command, _("\
16294 Delete some breakpoints.\n\
16295 Arguments are breakpoint numbers with spaces in between.\n\
16296 To delete all breakpoints, give no argument.\n"));
16297
16298 add_cmd ("breakpoints", class_alias, delete_command, _("\
16299 Delete some breakpoints or auto-display expressions.\n\
16300 Arguments are breakpoint numbers with spaces in between.\n\
16301 To delete all breakpoints, give no argument.\n\
16302 This command may be abbreviated \"delete\"."),
16303 &deletelist);
16304
16305 add_com ("clear", class_breakpoint, clear_command, _("\
16306 Clear breakpoint at specified line or function.\n\
16307 Argument may be line number, function name, or \"*\" and an address.\n\
16308 If line number is specified, all breakpoints in that line are cleared.\n\
16309 If function is specified, breakpoints at beginning of function are cleared.\n\
16310 If an address is specified, breakpoints at that address are cleared.\n\
16311 \n\
16312 With no argument, clears all breakpoints in the line that the selected frame\n\
16313 is executing in.\n\
16314 \n\
16315 See also the \"delete\" command which clears breakpoints by number."));
16316 add_com_alias ("cl", "clear", class_breakpoint, 1);
16317
16318 c = add_com ("break", class_breakpoint, break_command, _("\
16319 Set breakpoint at specified line or function.\n"
16320 BREAK_ARGS_HELP ("break")));
16321 set_cmd_completer (c, location_completer);
16322
16323 add_com_alias ("b", "break", class_run, 1);
16324 add_com_alias ("br", "break", class_run, 1);
16325 add_com_alias ("bre", "break", class_run, 1);
16326 add_com_alias ("brea", "break", class_run, 1);
16327
16328 if (xdb_commands)
16329 add_com_alias ("ba", "break", class_breakpoint, 1);
16330
16331 if (dbx_commands)
16332 {
16333 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16334 Break in function/address or break at a line in the current file."),
16335 &stoplist, "stop ", 1, &cmdlist);
16336 add_cmd ("in", class_breakpoint, stopin_command,
16337 _("Break in function or address."), &stoplist);
16338 add_cmd ("at", class_breakpoint, stopat_command,
16339 _("Break at a line in the current file."), &stoplist);
16340 add_com ("status", class_info, breakpoints_info, _("\
16341 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16342 The \"Type\" column indicates one of:\n\
16343 \tbreakpoint - normal breakpoint\n\
16344 \twatchpoint - watchpoint\n\
16345 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16346 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16347 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16348 address and file/line number respectively.\n\
16349 \n\
16350 Convenience variable \"$_\" and default examine address for \"x\"\n\
16351 are set to the address of the last breakpoint listed unless the command\n\
16352 is prefixed with \"server \".\n\n\
16353 Convenience variable \"$bpnum\" contains the number of the last\n\
16354 breakpoint set."));
16355 }
16356
16357 add_info ("breakpoints", breakpoints_info, _("\
16358 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16359 The \"Type\" column indicates one of:\n\
16360 \tbreakpoint - normal breakpoint\n\
16361 \twatchpoint - watchpoint\n\
16362 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16363 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16364 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16365 address and file/line number respectively.\n\
16366 \n\
16367 Convenience variable \"$_\" and default examine address for \"x\"\n\
16368 are set to the address of the last breakpoint listed unless the command\n\
16369 is prefixed with \"server \".\n\n\
16370 Convenience variable \"$bpnum\" contains the number of the last\n\
16371 breakpoint set."));
16372
16373 add_info_alias ("b", "breakpoints", 1);
16374
16375 if (xdb_commands)
16376 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16377 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16378 The \"Type\" column indicates one of:\n\
16379 \tbreakpoint - normal breakpoint\n\
16380 \twatchpoint - watchpoint\n\
16381 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16382 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16383 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16384 address and file/line number respectively.\n\
16385 \n\
16386 Convenience variable \"$_\" and default examine address for \"x\"\n\
16387 are set to the address of the last breakpoint listed unless the command\n\
16388 is prefixed with \"server \".\n\n\
16389 Convenience variable \"$bpnum\" contains the number of the last\n\
16390 breakpoint set."));
16391
16392 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16393 Status of all breakpoints, or breakpoint number NUMBER.\n\
16394 The \"Type\" column indicates one of:\n\
16395 \tbreakpoint - normal breakpoint\n\
16396 \twatchpoint - watchpoint\n\
16397 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16398 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16399 \tuntil - internal breakpoint used by the \"until\" command\n\
16400 \tfinish - internal breakpoint used by the \"finish\" command\n\
16401 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16402 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16403 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16404 address and file/line number respectively.\n\
16405 \n\
16406 Convenience variable \"$_\" and default examine address for \"x\"\n\
16407 are set to the address of the last breakpoint listed unless the command\n\
16408 is prefixed with \"server \".\n\n\
16409 Convenience variable \"$bpnum\" contains the number of the last\n\
16410 breakpoint set."),
16411 &maintenanceinfolist);
16412
16413 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16414 Set catchpoints to catch events."),
16415 &catch_cmdlist, "catch ",
16416 0/*allow-unknown*/, &cmdlist);
16417
16418 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16419 Set temporary catchpoints to catch events."),
16420 &tcatch_cmdlist, "tcatch ",
16421 0/*allow-unknown*/, &cmdlist);
16422
16423 add_catch_command ("fork", _("Catch calls to fork."),
16424 catch_fork_command_1,
16425 NULL,
16426 (void *) (uintptr_t) catch_fork_permanent,
16427 (void *) (uintptr_t) catch_fork_temporary);
16428 add_catch_command ("vfork", _("Catch calls to vfork."),
16429 catch_fork_command_1,
16430 NULL,
16431 (void *) (uintptr_t) catch_vfork_permanent,
16432 (void *) (uintptr_t) catch_vfork_temporary);
16433 add_catch_command ("exec", _("Catch calls to exec."),
16434 catch_exec_command_1,
16435 NULL,
16436 CATCH_PERMANENT,
16437 CATCH_TEMPORARY);
16438 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16439 Usage: catch load [REGEX]\n\
16440 If REGEX is given, only stop for libraries matching the regular expression."),
16441 catch_load_command_1,
16442 NULL,
16443 CATCH_PERMANENT,
16444 CATCH_TEMPORARY);
16445 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16446 Usage: catch unload [REGEX]\n\
16447 If REGEX is given, only stop for libraries matching the regular expression."),
16448 catch_unload_command_1,
16449 NULL,
16450 CATCH_PERMANENT,
16451 CATCH_TEMPORARY);
16452 add_catch_command ("syscall", _("\
16453 Catch system calls by their names and/or numbers.\n\
16454 Arguments say which system calls to catch. If no arguments\n\
16455 are given, every system call will be caught.\n\
16456 Arguments, if given, should be one or more system call names\n\
16457 (if your system supports that), or system call numbers."),
16458 catch_syscall_command_1,
16459 catch_syscall_completer,
16460 CATCH_PERMANENT,
16461 CATCH_TEMPORARY);
16462
16463 c = add_com ("watch", class_breakpoint, watch_command, _("\
16464 Set a watchpoint for an expression.\n\
16465 Usage: watch [-l|-location] EXPRESSION\n\
16466 A watchpoint stops execution of your program whenever the value of\n\
16467 an expression changes.\n\
16468 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16469 the memory to which it refers."));
16470 set_cmd_completer (c, expression_completer);
16471
16472 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16473 Set a read watchpoint for an expression.\n\
16474 Usage: rwatch [-l|-location] EXPRESSION\n\
16475 A watchpoint stops execution of your program whenever the value of\n\
16476 an expression is read.\n\
16477 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16478 the memory to which it refers."));
16479 set_cmd_completer (c, expression_completer);
16480
16481 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16482 Set a watchpoint for an expression.\n\
16483 Usage: awatch [-l|-location] EXPRESSION\n\
16484 A watchpoint stops execution of your program whenever the value of\n\
16485 an expression is either read or written.\n\
16486 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16487 the memory to which it refers."));
16488 set_cmd_completer (c, expression_completer);
16489
16490 add_info ("watchpoints", watchpoints_info, _("\
16491 Status of specified watchpoints (all watchpoints if no argument)."));
16492
16493 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16494 respond to changes - contrary to the description. */
16495 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16496 &can_use_hw_watchpoints, _("\
16497 Set debugger's willingness to use watchpoint hardware."), _("\
16498 Show debugger's willingness to use watchpoint hardware."), _("\
16499 If zero, gdb will not use hardware for new watchpoints, even if\n\
16500 such is available. (However, any hardware watchpoints that were\n\
16501 created before setting this to nonzero, will continue to use watchpoint\n\
16502 hardware.)"),
16503 NULL,
16504 show_can_use_hw_watchpoints,
16505 &setlist, &showlist);
16506
16507 can_use_hw_watchpoints = 1;
16508
16509 /* Tracepoint manipulation commands. */
16510
16511 c = add_com ("trace", class_breakpoint, trace_command, _("\
16512 Set a tracepoint at specified line or function.\n\
16513 \n"
16514 BREAK_ARGS_HELP ("trace") "\n\
16515 Do \"help tracepoints\" for info on other tracepoint commands."));
16516 set_cmd_completer (c, location_completer);
16517
16518 add_com_alias ("tp", "trace", class_alias, 0);
16519 add_com_alias ("tr", "trace", class_alias, 1);
16520 add_com_alias ("tra", "trace", class_alias, 1);
16521 add_com_alias ("trac", "trace", class_alias, 1);
16522
16523 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16524 Set a fast tracepoint at specified line or function.\n\
16525 \n"
16526 BREAK_ARGS_HELP ("ftrace") "\n\
16527 Do \"help tracepoints\" for info on other tracepoint commands."));
16528 set_cmd_completer (c, location_completer);
16529
16530 c = add_com ("strace", class_breakpoint, strace_command, _("\
16531 Set a static tracepoint at specified line, function or marker.\n\
16532 \n\
16533 strace [LOCATION] [if CONDITION]\n\
16534 LOCATION may be a line number, function name, \"*\" and an address,\n\
16535 or -m MARKER_ID.\n\
16536 If a line number is specified, probe the marker at start of code\n\
16537 for that line. If a function is specified, probe the marker at start\n\
16538 of code for that function. If an address is specified, probe the marker\n\
16539 at that exact address. If a marker id is specified, probe the marker\n\
16540 with that name. With no LOCATION, uses current execution address of\n\
16541 the selected stack frame.\n\
16542 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16543 This collects arbitrary user data passed in the probe point call to the\n\
16544 tracing library. You can inspect it when analyzing the trace buffer,\n\
16545 by printing the $_sdata variable like any other convenience variable.\n\
16546 \n\
16547 CONDITION is a boolean expression.\n\
16548 \n\
16549 Multiple tracepoints at one place are permitted, and useful if their\n\
16550 conditions are different.\n\
16551 \n\
16552 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16553 Do \"help tracepoints\" for info on other tracepoint commands."));
16554 set_cmd_completer (c, location_completer);
16555
16556 add_info ("tracepoints", tracepoints_info, _("\
16557 Status of specified tracepoints (all tracepoints if no argument).\n\
16558 Convenience variable \"$tpnum\" contains the number of the\n\
16559 last tracepoint set."));
16560
16561 add_info_alias ("tp", "tracepoints", 1);
16562
16563 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16564 Delete specified tracepoints.\n\
16565 Arguments are tracepoint numbers, separated by spaces.\n\
16566 No argument means delete all tracepoints."),
16567 &deletelist);
16568 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16569
16570 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16571 Disable specified tracepoints.\n\
16572 Arguments are tracepoint numbers, separated by spaces.\n\
16573 No argument means disable all tracepoints."),
16574 &disablelist);
16575 deprecate_cmd (c, "disable");
16576
16577 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16578 Enable specified tracepoints.\n\
16579 Arguments are tracepoint numbers, separated by spaces.\n\
16580 No argument means enable all tracepoints."),
16581 &enablelist);
16582 deprecate_cmd (c, "enable");
16583
16584 add_com ("passcount", class_trace, trace_pass_command, _("\
16585 Set the passcount for a tracepoint.\n\
16586 The trace will end when the tracepoint has been passed 'count' times.\n\
16587 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16588 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16589
16590 add_prefix_cmd ("save", class_breakpoint, save_command,
16591 _("Save breakpoint definitions as a script."),
16592 &save_cmdlist, "save ",
16593 0/*allow-unknown*/, &cmdlist);
16594
16595 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16596 Save current breakpoint definitions as a script.\n\
16597 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16598 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16599 session to restore them."),
16600 &save_cmdlist);
16601 set_cmd_completer (c, filename_completer);
16602
16603 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16604 Save current tracepoint definitions as a script.\n\
16605 Use the 'source' command in another debug session to restore them."),
16606 &save_cmdlist);
16607 set_cmd_completer (c, filename_completer);
16608
16609 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16610 deprecate_cmd (c, "save tracepoints");
16611
16612 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16613 Breakpoint specific settings\n\
16614 Configure various breakpoint-specific variables such as\n\
16615 pending breakpoint behavior"),
16616 &breakpoint_set_cmdlist, "set breakpoint ",
16617 0/*allow-unknown*/, &setlist);
16618 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16619 Breakpoint specific settings\n\
16620 Configure various breakpoint-specific variables such as\n\
16621 pending breakpoint behavior"),
16622 &breakpoint_show_cmdlist, "show breakpoint ",
16623 0/*allow-unknown*/, &showlist);
16624
16625 add_setshow_auto_boolean_cmd ("pending", no_class,
16626 &pending_break_support, _("\
16627 Set debugger's behavior regarding pending breakpoints."), _("\
16628 Show debugger's behavior regarding pending breakpoints."), _("\
16629 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16630 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16631 an error. If auto, an unrecognized breakpoint location results in a\n\
16632 user-query to see if a pending breakpoint should be created."),
16633 NULL,
16634 show_pending_break_support,
16635 &breakpoint_set_cmdlist,
16636 &breakpoint_show_cmdlist);
16637
16638 pending_break_support = AUTO_BOOLEAN_AUTO;
16639
16640 add_setshow_boolean_cmd ("auto-hw", no_class,
16641 &automatic_hardware_breakpoints, _("\
16642 Set automatic usage of hardware breakpoints."), _("\
16643 Show automatic usage of hardware breakpoints."), _("\
16644 If set, the debugger will automatically use hardware breakpoints for\n\
16645 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16646 a warning will be emitted for such breakpoints."),
16647 NULL,
16648 show_automatic_hardware_breakpoints,
16649 &breakpoint_set_cmdlist,
16650 &breakpoint_show_cmdlist);
16651
16652 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16653 &always_inserted_mode, _("\
16654 Set mode for inserting breakpoints."), _("\
16655 Show mode for inserting breakpoints."), _("\
16656 When this mode is off, breakpoints are inserted in inferior when it is\n\
16657 resumed, and removed when execution stops. When this mode is on,\n\
16658 breakpoints are inserted immediately and removed only when the user\n\
16659 deletes the breakpoint. When this mode is auto (which is the default),\n\
16660 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16661 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16662 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16663 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16664 NULL,
16665 &show_always_inserted_mode,
16666 &breakpoint_set_cmdlist,
16667 &breakpoint_show_cmdlist);
16668
16669 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16670 condition_evaluation_enums,
16671 &condition_evaluation_mode_1, _("\
16672 Set mode of breakpoint condition evaluation."), _("\
16673 Show mode of breakpoint condition evaluation."), _("\
16674 When this is set to \"host\", breakpoint conditions will be\n\
16675 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16676 breakpoint conditions will be downloaded to the target (if the target\n\
16677 supports such feature) and conditions will be evaluated on the target's side.\n\
16678 If this is set to \"auto\" (default), this will be automatically set to\n\
16679 \"target\" if it supports condition evaluation, otherwise it will\n\
16680 be set to \"gdb\""),
16681 &set_condition_evaluation_mode,
16682 &show_condition_evaluation_mode,
16683 &breakpoint_set_cmdlist,
16684 &breakpoint_show_cmdlist);
16685
16686 add_com ("break-range", class_breakpoint, break_range_command, _("\
16687 Set a breakpoint for an address range.\n\
16688 break-range START-LOCATION, END-LOCATION\n\
16689 where START-LOCATION and END-LOCATION can be one of the following:\n\
16690 LINENUM, for that line in the current file,\n\
16691 FILE:LINENUM, for that line in that file,\n\
16692 +OFFSET, for that number of lines after the current line\n\
16693 or the start of the range\n\
16694 FUNCTION, for the first line in that function,\n\
16695 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16696 *ADDRESS, for the instruction at that address.\n\
16697 \n\
16698 The breakpoint will stop execution of the inferior whenever it executes\n\
16699 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16700 range (including START-LOCATION and END-LOCATION)."));
16701
16702 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16703 Set a dynamic printf at specified line or function.\n\
16704 dprintf location,format string,arg1,arg2,...\n\
16705 location may be a line number, function name, or \"*\" and an address.\n\
16706 If a line number is specified, break at start of code for that line.\n\
16707 If a function is specified, break at start of code for that function."));
16708 set_cmd_completer (c, location_completer);
16709
16710 add_setshow_enum_cmd ("dprintf-style", class_support,
16711 dprintf_style_enums, &dprintf_style, _("\
16712 Set the style of usage for dynamic printf."), _("\
16713 Show the style of usage for dynamic printf."), _("\
16714 This setting chooses how GDB will do a dynamic printf.\n\
16715 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16716 console, as with the \"printf\" command.\n\
16717 If the value is \"call\", the print is done by calling a function in your\n\
16718 program; by default printf(), but you can choose a different function or\n\
16719 output stream by setting dprintf-function and dprintf-channel."),
16720 update_dprintf_commands, NULL,
16721 &setlist, &showlist);
16722
16723 dprintf_function = xstrdup ("printf");
16724 add_setshow_string_cmd ("dprintf-function", class_support,
16725 &dprintf_function, _("\
16726 Set the function to use for dynamic printf"), _("\
16727 Show the function to use for dynamic printf"), NULL,
16728 update_dprintf_commands, NULL,
16729 &setlist, &showlist);
16730
16731 dprintf_channel = xstrdup ("");
16732 add_setshow_string_cmd ("dprintf-channel", class_support,
16733 &dprintf_channel, _("\
16734 Set the channel to use for dynamic printf"), _("\
16735 Show the channel to use for dynamic printf"), NULL,
16736 update_dprintf_commands, NULL,
16737 &setlist, &showlist);
16738
16739 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16740 &disconnected_dprintf, _("\
16741 Set whether dprintf continues after GDB disconnects."), _("\
16742 Show whether dprintf continues after GDB disconnects."), _("\
16743 Use this to let dprintf commands continue to hit and produce output\n\
16744 even if GDB disconnects or detaches from the target."),
16745 NULL,
16746 NULL,
16747 &setlist, &showlist);
16748
16749 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16750 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16751 (target agent only) This is useful for formatted output in user-defined commands."));
16752
16753 automatic_hardware_breakpoints = 1;
16754
16755 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16756 observer_attach_thread_exit (remove_threaded_breakpoints);
16757 }