]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/c-exp.y
Add _Complex type support to C parser
[thirdparty/binutils-gdb.git] / gdb / c-exp.y
1 /* YACC parser for C expressions, for GDB.
2 Copyright (C) 1986-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 /* Parse a C expression from text in a string,
20 and return the result as a struct expression pointer.
21 That structure contains arithmetic operations in reverse polish,
22 with constants represented by operations that are followed by special data.
23 See expression.h for the details of the format.
24 What is important here is that it can be built up sequentially
25 during the process of parsing; the lower levels of the tree always
26 come first in the result.
27
28 Note that malloc's and realloc's in this file are transformed to
29 xmalloc and xrealloc respectively by the same sed command in the
30 makefile that remaps any other malloc/realloc inserted by the parser
31 generator. Doing this with #defines and trying to control the interaction
32 with include files (<malloc.h> and <stdlib.h> for example) just became
33 too messy, particularly when such includes can be inserted at random
34 times by the parser generator. */
35
36 %{
37
38 #include "defs.h"
39 #include <ctype.h>
40 #include "expression.h"
41 #include "value.h"
42 #include "parser-defs.h"
43 #include "language.h"
44 #include "c-lang.h"
45 #include "c-support.h"
46 #include "bfd.h" /* Required by objfiles.h. */
47 #include "symfile.h" /* Required by objfiles.h. */
48 #include "objfiles.h" /* For have_full_symbols and have_partial_symbols */
49 #include "charset.h"
50 #include "block.h"
51 #include "cp-support.h"
52 #include "macroscope.h"
53 #include "objc-lang.h"
54 #include "typeprint.h"
55 #include "cp-abi.h"
56 #include "type-stack.h"
57 #include "target-float.h"
58
59 #define parse_type(ps) builtin_type (ps->gdbarch ())
60
61 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
62 etc). */
63 #define GDB_YY_REMAP_PREFIX c_
64 #include "yy-remap.h"
65
66 /* The state of the parser, used internally when we are parsing the
67 expression. */
68
69 static struct parser_state *pstate = NULL;
70
71 /* Data that must be held for the duration of a parse. */
72
73 struct c_parse_state
74 {
75 /* These are used to hold type lists and type stacks that are
76 allocated during the parse. */
77 std::vector<std::unique_ptr<std::vector<struct type *>>> type_lists;
78 std::vector<std::unique_ptr<struct type_stack>> type_stacks;
79
80 /* Storage for some strings allocated during the parse. */
81 std::vector<gdb::unique_xmalloc_ptr<char>> strings;
82
83 /* When we find that lexptr (the global var defined in parse.c) is
84 pointing at a macro invocation, we expand the invocation, and call
85 scan_macro_expansion to save the old lexptr here and point lexptr
86 into the expanded text. When we reach the end of that, we call
87 end_macro_expansion to pop back to the value we saved here. The
88 macro expansion code promises to return only fully-expanded text,
89 so we don't need to "push" more than one level.
90
91 This is disgusting, of course. It would be cleaner to do all macro
92 expansion beforehand, and then hand that to lexptr. But we don't
93 really know where the expression ends. Remember, in a command like
94
95 (gdb) break *ADDRESS if CONDITION
96
97 we evaluate ADDRESS in the scope of the current frame, but we
98 evaluate CONDITION in the scope of the breakpoint's location. So
99 it's simply wrong to try to macro-expand the whole thing at once. */
100 const char *macro_original_text = nullptr;
101
102 /* We save all intermediate macro expansions on this obstack for the
103 duration of a single parse. The expansion text may sometimes have
104 to live past the end of the expansion, due to yacc lookahead.
105 Rather than try to be clever about saving the data for a single
106 token, we simply keep it all and delete it after parsing has
107 completed. */
108 auto_obstack expansion_obstack;
109
110 /* The type stack. */
111 struct type_stack type_stack;
112 };
113
114 /* This is set and cleared in c_parse. */
115
116 static struct c_parse_state *cpstate;
117
118 int yyparse (void);
119
120 static int yylex (void);
121
122 static void yyerror (const char *);
123
124 static int type_aggregate_p (struct type *);
125
126 %}
127
128 /* Although the yacc "value" of an expression is not used,
129 since the result is stored in the structure being created,
130 other node types do have values. */
131
132 %union
133 {
134 LONGEST lval;
135 struct {
136 LONGEST val;
137 struct type *type;
138 } typed_val_int;
139 struct {
140 gdb_byte val[16];
141 struct type *type;
142 } typed_val_float;
143 struct type *tval;
144 struct stoken sval;
145 struct typed_stoken tsval;
146 struct ttype tsym;
147 struct symtoken ssym;
148 int voidval;
149 const struct block *bval;
150 enum exp_opcode opcode;
151
152 struct stoken_vector svec;
153 std::vector<struct type *> *tvec;
154
155 struct type_stack *type_stack;
156
157 struct objc_class_str theclass;
158 }
159
160 %{
161 /* YYSTYPE gets defined by %union */
162 static int parse_number (struct parser_state *par_state,
163 const char *, int, int, YYSTYPE *);
164 static struct stoken operator_stoken (const char *);
165 static struct stoken typename_stoken (const char *);
166 static void check_parameter_typelist (std::vector<struct type *> *);
167 static void write_destructor_name (struct parser_state *par_state,
168 struct stoken);
169
170 #ifdef YYBISON
171 static void c_print_token (FILE *file, int type, YYSTYPE value);
172 #define YYPRINT(FILE, TYPE, VALUE) c_print_token (FILE, TYPE, VALUE)
173 #endif
174 %}
175
176 %type <voidval> exp exp1 type_exp start variable qualified_name lcurly function_method
177 %type <lval> rcurly
178 %type <tval> type typebase scalar_type
179 %type <tvec> nonempty_typelist func_mod parameter_typelist
180 /* %type <bval> block */
181
182 /* Fancy type parsing. */
183 %type <tval> ptype
184 %type <lval> array_mod
185 %type <tval> conversion_type_id
186
187 %type <type_stack> ptr_operator_ts abs_decl direct_abs_decl
188
189 %token <typed_val_int> INT COMPLEX_INT
190 %token <typed_val_float> FLOAT COMPLEX_FLOAT
191
192 /* Both NAME and TYPENAME tokens represent symbols in the input,
193 and both convey their data as strings.
194 But a TYPENAME is a string that happens to be defined as a typedef
195 or builtin type name (such as int or char)
196 and a NAME is any other symbol.
197 Contexts where this distinction is not important can use the
198 nonterminal "name", which matches either NAME or TYPENAME. */
199
200 %token <tsval> STRING
201 %token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
202 %token SELECTOR /* ObjC "@selector" pseudo-operator */
203 %token <tsval> CHAR
204 %token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
205 %token <ssym> UNKNOWN_CPP_NAME
206 %token <voidval> COMPLETE
207 %token <tsym> TYPENAME
208 %token <theclass> CLASSNAME /* ObjC Class name */
209 %type <sval> name field_name
210 %type <svec> string_exp
211 %type <ssym> name_not_typename
212 %type <tsym> type_name
213
214 /* This is like a '[' token, but is only generated when parsing
215 Objective C. This lets us reuse the same parser without
216 erroneously parsing ObjC-specific expressions in C. */
217 %token OBJC_LBRAC
218
219 /* A NAME_OR_INT is a symbol which is not known in the symbol table,
220 but which would parse as a valid number in the current input radix.
221 E.g. "c" when input_radix==16. Depending on the parse, it will be
222 turned into a name or into a number. */
223
224 %token <ssym> NAME_OR_INT
225
226 %token OPERATOR
227 %token STRUCT CLASS UNION ENUM SIZEOF ALIGNOF UNSIGNED COLONCOLON
228 %token TEMPLATE
229 %token ERROR
230 %token NEW DELETE
231 %type <sval> oper
232 %token REINTERPRET_CAST DYNAMIC_CAST STATIC_CAST CONST_CAST
233 %token ENTRY
234 %token TYPEOF
235 %token DECLTYPE
236 %token TYPEID
237
238 /* Special type cases, put in to allow the parser to distinguish different
239 legal basetypes. */
240 %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
241 %token RESTRICT ATOMIC
242 %token FLOAT_KEYWORD COMPLEX
243
244 %token <sval> DOLLAR_VARIABLE
245
246 %token <opcode> ASSIGN_MODIFY
247
248 /* C++ */
249 %token TRUEKEYWORD
250 %token FALSEKEYWORD
251
252
253 %left ','
254 %left ABOVE_COMMA
255 %right '=' ASSIGN_MODIFY
256 %right '?'
257 %left OROR
258 %left ANDAND
259 %left '|'
260 %left '^'
261 %left '&'
262 %left EQUAL NOTEQUAL
263 %left '<' '>' LEQ GEQ
264 %left LSH RSH
265 %left '@'
266 %left '+' '-'
267 %left '*' '/' '%'
268 %right UNARY INCREMENT DECREMENT
269 %right ARROW ARROW_STAR '.' DOT_STAR '[' OBJC_LBRAC '('
270 %token <ssym> BLOCKNAME
271 %token <bval> FILENAME
272 %type <bval> block
273 %left COLONCOLON
274
275 %token DOTDOTDOT
276
277 \f
278 %%
279
280 start : exp1
281 | type_exp
282 ;
283
284 type_exp: type
285 { write_exp_elt_opcode(pstate, OP_TYPE);
286 write_exp_elt_type(pstate, $1);
287 write_exp_elt_opcode(pstate, OP_TYPE);}
288 | TYPEOF '(' exp ')'
289 {
290 write_exp_elt_opcode (pstate, OP_TYPEOF);
291 }
292 | TYPEOF '(' type ')'
293 {
294 write_exp_elt_opcode (pstate, OP_TYPE);
295 write_exp_elt_type (pstate, $3);
296 write_exp_elt_opcode (pstate, OP_TYPE);
297 }
298 | DECLTYPE '(' exp ')'
299 {
300 write_exp_elt_opcode (pstate, OP_DECLTYPE);
301 }
302 ;
303
304 /* Expressions, including the comma operator. */
305 exp1 : exp
306 | exp1 ',' exp
307 { write_exp_elt_opcode (pstate, BINOP_COMMA); }
308 ;
309
310 /* Expressions, not including the comma operator. */
311 exp : '*' exp %prec UNARY
312 { write_exp_elt_opcode (pstate, UNOP_IND); }
313 ;
314
315 exp : '&' exp %prec UNARY
316 { write_exp_elt_opcode (pstate, UNOP_ADDR); }
317 ;
318
319 exp : '-' exp %prec UNARY
320 { write_exp_elt_opcode (pstate, UNOP_NEG); }
321 ;
322
323 exp : '+' exp %prec UNARY
324 { write_exp_elt_opcode (pstate, UNOP_PLUS); }
325 ;
326
327 exp : '!' exp %prec UNARY
328 { write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
329 ;
330
331 exp : '~' exp %prec UNARY
332 { write_exp_elt_opcode (pstate, UNOP_COMPLEMENT); }
333 ;
334
335 exp : INCREMENT exp %prec UNARY
336 { write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
337 ;
338
339 exp : DECREMENT exp %prec UNARY
340 { write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
341 ;
342
343 exp : exp INCREMENT %prec UNARY
344 { write_exp_elt_opcode (pstate, UNOP_POSTINCREMENT); }
345 ;
346
347 exp : exp DECREMENT %prec UNARY
348 { write_exp_elt_opcode (pstate, UNOP_POSTDECREMENT); }
349 ;
350
351 exp : TYPEID '(' exp ')' %prec UNARY
352 { write_exp_elt_opcode (pstate, OP_TYPEID); }
353 ;
354
355 exp : TYPEID '(' type_exp ')' %prec UNARY
356 { write_exp_elt_opcode (pstate, OP_TYPEID); }
357 ;
358
359 exp : SIZEOF exp %prec UNARY
360 { write_exp_elt_opcode (pstate, UNOP_SIZEOF); }
361 ;
362
363 exp : ALIGNOF '(' type_exp ')' %prec UNARY
364 { write_exp_elt_opcode (pstate, UNOP_ALIGNOF); }
365 ;
366
367 exp : exp ARROW field_name
368 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
369 write_exp_string (pstate, $3);
370 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
371 ;
372
373 exp : exp ARROW field_name COMPLETE
374 { pstate->mark_struct_expression ();
375 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
376 write_exp_string (pstate, $3);
377 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
378 ;
379
380 exp : exp ARROW COMPLETE
381 { struct stoken s;
382 pstate->mark_struct_expression ();
383 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
384 s.ptr = "";
385 s.length = 0;
386 write_exp_string (pstate, s);
387 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
388 ;
389
390 exp : exp ARROW '~' name
391 { write_exp_elt_opcode (pstate, STRUCTOP_PTR);
392 write_destructor_name (pstate, $4);
393 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
394 ;
395
396 exp : exp ARROW '~' name COMPLETE
397 { pstate->mark_struct_expression ();
398 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
399 write_destructor_name (pstate, $4);
400 write_exp_elt_opcode (pstate, STRUCTOP_PTR); }
401 ;
402
403 exp : exp ARROW qualified_name
404 { /* exp->type::name becomes exp->*(&type::name) */
405 /* Note: this doesn't work if name is a
406 static member! FIXME */
407 write_exp_elt_opcode (pstate, UNOP_ADDR);
408 write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
409 ;
410
411 exp : exp ARROW_STAR exp
412 { write_exp_elt_opcode (pstate, STRUCTOP_MPTR); }
413 ;
414
415 exp : exp '.' field_name
416 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
417 write_exp_string (pstate, $3);
418 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
419 ;
420
421 exp : exp '.' field_name COMPLETE
422 { pstate->mark_struct_expression ();
423 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
424 write_exp_string (pstate, $3);
425 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
426 ;
427
428 exp : exp '.' COMPLETE
429 { struct stoken s;
430 pstate->mark_struct_expression ();
431 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
432 s.ptr = "";
433 s.length = 0;
434 write_exp_string (pstate, s);
435 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
436 ;
437
438 exp : exp '.' '~' name
439 { write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
440 write_destructor_name (pstate, $4);
441 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
442 ;
443
444 exp : exp '.' '~' name COMPLETE
445 { pstate->mark_struct_expression ();
446 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
447 write_destructor_name (pstate, $4);
448 write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
449 ;
450
451 exp : exp '.' qualified_name
452 { /* exp.type::name becomes exp.*(&type::name) */
453 /* Note: this doesn't work if name is a
454 static member! FIXME */
455 write_exp_elt_opcode (pstate, UNOP_ADDR);
456 write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
457 ;
458
459 exp : exp DOT_STAR exp
460 { write_exp_elt_opcode (pstate, STRUCTOP_MEMBER); }
461 ;
462
463 exp : exp '[' exp1 ']'
464 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
465 ;
466
467 exp : exp OBJC_LBRAC exp1 ']'
468 { write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT); }
469 ;
470
471 /*
472 * The rules below parse ObjC message calls of the form:
473 * '[' target selector {':' argument}* ']'
474 */
475
476 exp : OBJC_LBRAC TYPENAME
477 {
478 CORE_ADDR theclass;
479
480 std::string copy = copy_name ($2.stoken);
481 theclass = lookup_objc_class (pstate->gdbarch (),
482 copy.c_str ());
483 if (theclass == 0)
484 error (_("%s is not an ObjC Class"),
485 copy.c_str ());
486 write_exp_elt_opcode (pstate, OP_LONG);
487 write_exp_elt_type (pstate,
488 parse_type (pstate)->builtin_int);
489 write_exp_elt_longcst (pstate, (LONGEST) theclass);
490 write_exp_elt_opcode (pstate, OP_LONG);
491 start_msglist();
492 }
493 msglist ']'
494 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
495 end_msglist (pstate);
496 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
497 }
498 ;
499
500 exp : OBJC_LBRAC CLASSNAME
501 {
502 write_exp_elt_opcode (pstate, OP_LONG);
503 write_exp_elt_type (pstate,
504 parse_type (pstate)->builtin_int);
505 write_exp_elt_longcst (pstate, (LONGEST) $2.theclass);
506 write_exp_elt_opcode (pstate, OP_LONG);
507 start_msglist();
508 }
509 msglist ']'
510 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
511 end_msglist (pstate);
512 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
513 }
514 ;
515
516 exp : OBJC_LBRAC exp
517 { start_msglist(); }
518 msglist ']'
519 { write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
520 end_msglist (pstate);
521 write_exp_elt_opcode (pstate, OP_OBJC_MSGCALL);
522 }
523 ;
524
525 msglist : name
526 { add_msglist(&$1, 0); }
527 | msgarglist
528 ;
529
530 msgarglist : msgarg
531 | msgarglist msgarg
532 ;
533
534 msgarg : name ':' exp
535 { add_msglist(&$1, 1); }
536 | ':' exp /* Unnamed arg. */
537 { add_msglist(0, 1); }
538 | ',' exp /* Variable number of args. */
539 { add_msglist(0, 0); }
540 ;
541
542 exp : exp '('
543 /* This is to save the value of arglist_len
544 being accumulated by an outer function call. */
545 { pstate->start_arglist (); }
546 arglist ')' %prec ARROW
547 { write_exp_elt_opcode (pstate, OP_FUNCALL);
548 write_exp_elt_longcst (pstate,
549 pstate->end_arglist ());
550 write_exp_elt_opcode (pstate, OP_FUNCALL); }
551 ;
552
553 /* This is here to disambiguate with the production for
554 "func()::static_var" further below, which uses
555 function_method_void. */
556 exp : exp '(' ')' %prec ARROW
557 { pstate->start_arglist ();
558 write_exp_elt_opcode (pstate, OP_FUNCALL);
559 write_exp_elt_longcst (pstate,
560 pstate->end_arglist ());
561 write_exp_elt_opcode (pstate, OP_FUNCALL); }
562 ;
563
564
565 exp : UNKNOWN_CPP_NAME '('
566 {
567 /* This could potentially be a an argument defined
568 lookup function (Koenig). */
569 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
570 write_exp_elt_block
571 (pstate, pstate->expression_context_block);
572 write_exp_elt_sym (pstate,
573 NULL); /* Placeholder. */
574 write_exp_string (pstate, $1.stoken);
575 write_exp_elt_opcode (pstate, OP_ADL_FUNC);
576
577 /* This is to save the value of arglist_len
578 being accumulated by an outer function call. */
579
580 pstate->start_arglist ();
581 }
582 arglist ')' %prec ARROW
583 {
584 write_exp_elt_opcode (pstate, OP_FUNCALL);
585 write_exp_elt_longcst (pstate,
586 pstate->end_arglist ());
587 write_exp_elt_opcode (pstate, OP_FUNCALL);
588 }
589 ;
590
591 lcurly : '{'
592 { pstate->start_arglist (); }
593 ;
594
595 arglist :
596 ;
597
598 arglist : exp
599 { pstate->arglist_len = 1; }
600 ;
601
602 arglist : arglist ',' exp %prec ABOVE_COMMA
603 { pstate->arglist_len++; }
604 ;
605
606 function_method: exp '(' parameter_typelist ')' const_or_volatile
607 {
608 std::vector<struct type *> *type_list = $3;
609 LONGEST len = type_list->size ();
610
611 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
612 /* Save the const/volatile qualifiers as
613 recorded by the const_or_volatile
614 production's actions. */
615 write_exp_elt_longcst
616 (pstate,
617 (cpstate->type_stack
618 .follow_type_instance_flags ()));
619 write_exp_elt_longcst (pstate, len);
620 for (type *type_elt : *type_list)
621 write_exp_elt_type (pstate, type_elt);
622 write_exp_elt_longcst(pstate, len);
623 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
624 }
625 ;
626
627 function_method_void: exp '(' ')' const_or_volatile
628 { write_exp_elt_opcode (pstate, TYPE_INSTANCE);
629 /* See above. */
630 write_exp_elt_longcst
631 (pstate,
632 cpstate->type_stack.follow_type_instance_flags ());
633 write_exp_elt_longcst (pstate, 0);
634 write_exp_elt_longcst (pstate, 0);
635 write_exp_elt_opcode (pstate, TYPE_INSTANCE);
636 }
637 ;
638
639 exp : function_method
640 ;
641
642 /* Normally we must interpret "func()" as a function call, instead of
643 a type. The user needs to write func(void) to disambiguate.
644 However, in the "func()::static_var" case, there's no
645 ambiguity. */
646 function_method_void_or_typelist: function_method
647 | function_method_void
648 ;
649
650 exp : function_method_void_or_typelist COLONCOLON name
651 {
652 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
653 write_exp_string (pstate, $3);
654 write_exp_elt_opcode (pstate, OP_FUNC_STATIC_VAR);
655 }
656 ;
657
658 rcurly : '}'
659 { $$ = pstate->end_arglist () - 1; }
660 ;
661 exp : lcurly arglist rcurly %prec ARROW
662 { write_exp_elt_opcode (pstate, OP_ARRAY);
663 write_exp_elt_longcst (pstate, (LONGEST) 0);
664 write_exp_elt_longcst (pstate, (LONGEST) $3);
665 write_exp_elt_opcode (pstate, OP_ARRAY); }
666 ;
667
668 exp : lcurly type_exp rcurly exp %prec UNARY
669 { write_exp_elt_opcode (pstate, UNOP_MEMVAL_TYPE); }
670 ;
671
672 exp : '(' type_exp ')' exp %prec UNARY
673 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
674 ;
675
676 exp : '(' exp1 ')'
677 { }
678 ;
679
680 /* Binary operators in order of decreasing precedence. */
681
682 exp : exp '@' exp
683 { write_exp_elt_opcode (pstate, BINOP_REPEAT); }
684 ;
685
686 exp : exp '*' exp
687 { write_exp_elt_opcode (pstate, BINOP_MUL); }
688 ;
689
690 exp : exp '/' exp
691 { write_exp_elt_opcode (pstate, BINOP_DIV); }
692 ;
693
694 exp : exp '%' exp
695 { write_exp_elt_opcode (pstate, BINOP_REM); }
696 ;
697
698 exp : exp '+' exp
699 { write_exp_elt_opcode (pstate, BINOP_ADD); }
700 ;
701
702 exp : exp '-' exp
703 { write_exp_elt_opcode (pstate, BINOP_SUB); }
704 ;
705
706 exp : exp LSH exp
707 { write_exp_elt_opcode (pstate, BINOP_LSH); }
708 ;
709
710 exp : exp RSH exp
711 { write_exp_elt_opcode (pstate, BINOP_RSH); }
712 ;
713
714 exp : exp EQUAL exp
715 { write_exp_elt_opcode (pstate, BINOP_EQUAL); }
716 ;
717
718 exp : exp NOTEQUAL exp
719 { write_exp_elt_opcode (pstate, BINOP_NOTEQUAL); }
720 ;
721
722 exp : exp LEQ exp
723 { write_exp_elt_opcode (pstate, BINOP_LEQ); }
724 ;
725
726 exp : exp GEQ exp
727 { write_exp_elt_opcode (pstate, BINOP_GEQ); }
728 ;
729
730 exp : exp '<' exp
731 { write_exp_elt_opcode (pstate, BINOP_LESS); }
732 ;
733
734 exp : exp '>' exp
735 { write_exp_elt_opcode (pstate, BINOP_GTR); }
736 ;
737
738 exp : exp '&' exp
739 { write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
740 ;
741
742 exp : exp '^' exp
743 { write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
744 ;
745
746 exp : exp '|' exp
747 { write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
748 ;
749
750 exp : exp ANDAND exp
751 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_AND); }
752 ;
753
754 exp : exp OROR exp
755 { write_exp_elt_opcode (pstate, BINOP_LOGICAL_OR); }
756 ;
757
758 exp : exp '?' exp ':' exp %prec '?'
759 { write_exp_elt_opcode (pstate, TERNOP_COND); }
760 ;
761
762 exp : exp '=' exp
763 { write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
764 ;
765
766 exp : exp ASSIGN_MODIFY exp
767 { write_exp_elt_opcode (pstate, BINOP_ASSIGN_MODIFY);
768 write_exp_elt_opcode (pstate, $2);
769 write_exp_elt_opcode (pstate,
770 BINOP_ASSIGN_MODIFY); }
771 ;
772
773 exp : INT
774 { write_exp_elt_opcode (pstate, OP_LONG);
775 write_exp_elt_type (pstate, $1.type);
776 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
777 write_exp_elt_opcode (pstate, OP_LONG); }
778 ;
779
780 exp : COMPLEX_INT
781 {
782 write_exp_elt_opcode (pstate, OP_LONG);
783 write_exp_elt_type (pstate, TYPE_TARGET_TYPE ($1.type));
784 write_exp_elt_longcst (pstate, 0);
785 write_exp_elt_opcode (pstate, OP_LONG);
786 write_exp_elt_opcode (pstate, OP_LONG);
787 write_exp_elt_type (pstate, TYPE_TARGET_TYPE ($1.type));
788 write_exp_elt_longcst (pstate, (LONGEST) ($1.val));
789 write_exp_elt_opcode (pstate, OP_LONG);
790 write_exp_elt_opcode (pstate, OP_COMPLEX);
791 write_exp_elt_type (pstate, $1.type);
792 write_exp_elt_opcode (pstate, OP_COMPLEX);
793 }
794 ;
795
796 exp : CHAR
797 {
798 struct stoken_vector vec;
799 vec.len = 1;
800 vec.tokens = &$1;
801 write_exp_string_vector (pstate, $1.type, &vec);
802 }
803 ;
804
805 exp : NAME_OR_INT
806 { YYSTYPE val;
807 parse_number (pstate, $1.stoken.ptr,
808 $1.stoken.length, 0, &val);
809 write_exp_elt_opcode (pstate, OP_LONG);
810 write_exp_elt_type (pstate, val.typed_val_int.type);
811 write_exp_elt_longcst (pstate,
812 (LONGEST) val.typed_val_int.val);
813 write_exp_elt_opcode (pstate, OP_LONG);
814 }
815 ;
816
817
818 exp : FLOAT
819 { write_exp_elt_opcode (pstate, OP_FLOAT);
820 write_exp_elt_type (pstate, $1.type);
821 write_exp_elt_floatcst (pstate, $1.val);
822 write_exp_elt_opcode (pstate, OP_FLOAT); }
823 ;
824
825 exp : COMPLEX_FLOAT
826 {
827 struct type *underlying
828 = TYPE_TARGET_TYPE ($1.type);
829
830 write_exp_elt_opcode (pstate, OP_FLOAT);
831 write_exp_elt_type (pstate, underlying);
832 gdb_byte val[16];
833 target_float_from_host_double (val, underlying, 0);
834 write_exp_elt_floatcst (pstate, val);
835 write_exp_elt_opcode (pstate, OP_FLOAT);
836 write_exp_elt_opcode (pstate, OP_FLOAT);
837 write_exp_elt_type (pstate, underlying);
838 write_exp_elt_floatcst (pstate, $1.val);
839 write_exp_elt_opcode (pstate, OP_FLOAT);
840 write_exp_elt_opcode (pstate, OP_COMPLEX);
841 write_exp_elt_type (pstate, $1.type);
842 write_exp_elt_opcode (pstate, OP_COMPLEX);
843 }
844 ;
845
846 exp : variable
847 ;
848
849 exp : DOLLAR_VARIABLE
850 {
851 write_dollar_variable (pstate, $1);
852 }
853 ;
854
855 exp : SELECTOR '(' name ')'
856 {
857 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR);
858 write_exp_string (pstate, $3);
859 write_exp_elt_opcode (pstate, OP_OBJC_SELECTOR); }
860 ;
861
862 exp : SIZEOF '(' type ')' %prec UNARY
863 { struct type *type = $3;
864 write_exp_elt_opcode (pstate, OP_LONG);
865 write_exp_elt_type (pstate, lookup_signed_typename
866 (pstate->language (),
867 "int"));
868 type = check_typedef (type);
869
870 /* $5.3.3/2 of the C++ Standard (n3290 draft)
871 says of sizeof: "When applied to a reference
872 or a reference type, the result is the size of
873 the referenced type." */
874 if (TYPE_IS_REFERENCE (type))
875 type = check_typedef (TYPE_TARGET_TYPE (type));
876 write_exp_elt_longcst (pstate,
877 (LONGEST) TYPE_LENGTH (type));
878 write_exp_elt_opcode (pstate, OP_LONG); }
879 ;
880
881 exp : REINTERPRET_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
882 { write_exp_elt_opcode (pstate,
883 UNOP_REINTERPRET_CAST); }
884 ;
885
886 exp : STATIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
887 { write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
888 ;
889
890 exp : DYNAMIC_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
891 { write_exp_elt_opcode (pstate, UNOP_DYNAMIC_CAST); }
892 ;
893
894 exp : CONST_CAST '<' type_exp '>' '(' exp ')' %prec UNARY
895 { /* We could do more error checking here, but
896 it doesn't seem worthwhile. */
897 write_exp_elt_opcode (pstate, UNOP_CAST_TYPE); }
898 ;
899
900 string_exp:
901 STRING
902 {
903 /* We copy the string here, and not in the
904 lexer, to guarantee that we do not leak a
905 string. Note that we follow the
906 NUL-termination convention of the
907 lexer. */
908 struct typed_stoken *vec = XNEW (struct typed_stoken);
909 $$.len = 1;
910 $$.tokens = vec;
911
912 vec->type = $1.type;
913 vec->length = $1.length;
914 vec->ptr = (char *) malloc ($1.length + 1);
915 memcpy (vec->ptr, $1.ptr, $1.length + 1);
916 }
917
918 | string_exp STRING
919 {
920 /* Note that we NUL-terminate here, but just
921 for convenience. */
922 char *p;
923 ++$$.len;
924 $$.tokens = XRESIZEVEC (struct typed_stoken,
925 $$.tokens, $$.len);
926
927 p = (char *) malloc ($2.length + 1);
928 memcpy (p, $2.ptr, $2.length + 1);
929
930 $$.tokens[$$.len - 1].type = $2.type;
931 $$.tokens[$$.len - 1].length = $2.length;
932 $$.tokens[$$.len - 1].ptr = p;
933 }
934 ;
935
936 exp : string_exp
937 {
938 int i;
939 c_string_type type = C_STRING;
940
941 for (i = 0; i < $1.len; ++i)
942 {
943 switch ($1.tokens[i].type)
944 {
945 case C_STRING:
946 break;
947 case C_WIDE_STRING:
948 case C_STRING_16:
949 case C_STRING_32:
950 if (type != C_STRING
951 && type != $1.tokens[i].type)
952 error (_("Undefined string concatenation."));
953 type = (enum c_string_type_values) $1.tokens[i].type;
954 break;
955 default:
956 /* internal error */
957 internal_error (__FILE__, __LINE__,
958 "unrecognized type in string concatenation");
959 }
960 }
961
962 write_exp_string_vector (pstate, type, &$1);
963 for (i = 0; i < $1.len; ++i)
964 free ($1.tokens[i].ptr);
965 free ($1.tokens);
966 }
967 ;
968
969 exp : NSSTRING /* ObjC NextStep NSString constant
970 * of the form '@' '"' string '"'.
971 */
972 { write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING);
973 write_exp_string (pstate, $1);
974 write_exp_elt_opcode (pstate, OP_OBJC_NSSTRING); }
975 ;
976
977 /* C++. */
978 exp : TRUEKEYWORD
979 { write_exp_elt_opcode (pstate, OP_LONG);
980 write_exp_elt_type (pstate,
981 parse_type (pstate)->builtin_bool);
982 write_exp_elt_longcst (pstate, (LONGEST) 1);
983 write_exp_elt_opcode (pstate, OP_LONG); }
984 ;
985
986 exp : FALSEKEYWORD
987 { write_exp_elt_opcode (pstate, OP_LONG);
988 write_exp_elt_type (pstate,
989 parse_type (pstate)->builtin_bool);
990 write_exp_elt_longcst (pstate, (LONGEST) 0);
991 write_exp_elt_opcode (pstate, OP_LONG); }
992 ;
993
994 /* end of C++. */
995
996 block : BLOCKNAME
997 {
998 if ($1.sym.symbol)
999 $$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
1000 else
1001 error (_("No file or function \"%s\"."),
1002 copy_name ($1.stoken).c_str ());
1003 }
1004 | FILENAME
1005 {
1006 $$ = $1;
1007 }
1008 ;
1009
1010 block : block COLONCOLON name
1011 {
1012 std::string copy = copy_name ($3);
1013 struct symbol *tem
1014 = lookup_symbol (copy.c_str (), $1,
1015 VAR_DOMAIN, NULL).symbol;
1016
1017 if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
1018 error (_("No function \"%s\" in specified context."),
1019 copy.c_str ());
1020 $$ = SYMBOL_BLOCK_VALUE (tem); }
1021 ;
1022
1023 variable: name_not_typename ENTRY
1024 { struct symbol *sym = $1.sym.symbol;
1025
1026 if (sym == NULL || !SYMBOL_IS_ARGUMENT (sym)
1027 || !symbol_read_needs_frame (sym))
1028 error (_("@entry can be used only for function "
1029 "parameters, not for \"%s\""),
1030 copy_name ($1.stoken).c_str ());
1031
1032 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
1033 write_exp_elt_sym (pstate, sym);
1034 write_exp_elt_opcode (pstate, OP_VAR_ENTRY_VALUE);
1035 }
1036 ;
1037
1038 variable: block COLONCOLON name
1039 {
1040 std::string copy = copy_name ($3);
1041 struct block_symbol sym
1042 = lookup_symbol (copy.c_str (), $1,
1043 VAR_DOMAIN, NULL);
1044
1045 if (sym.symbol == 0)
1046 error (_("No symbol \"%s\" in specified context."),
1047 copy.c_str ());
1048 if (symbol_read_needs_frame (sym.symbol))
1049 pstate->block_tracker->update (sym);
1050
1051 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1052 write_exp_elt_block (pstate, sym.block);
1053 write_exp_elt_sym (pstate, sym.symbol);
1054 write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
1055 ;
1056
1057 qualified_name: TYPENAME COLONCOLON name
1058 {
1059 struct type *type = $1.type;
1060 type = check_typedef (type);
1061 if (!type_aggregate_p (type))
1062 error (_("`%s' is not defined as an aggregate type."),
1063 TYPE_SAFE_NAME (type));
1064
1065 write_exp_elt_opcode (pstate, OP_SCOPE);
1066 write_exp_elt_type (pstate, type);
1067 write_exp_string (pstate, $3);
1068 write_exp_elt_opcode (pstate, OP_SCOPE);
1069 }
1070 | TYPENAME COLONCOLON '~' name
1071 {
1072 struct type *type = $1.type;
1073 struct stoken tmp_token;
1074 char *buf;
1075
1076 type = check_typedef (type);
1077 if (!type_aggregate_p (type))
1078 error (_("`%s' is not defined as an aggregate type."),
1079 TYPE_SAFE_NAME (type));
1080 buf = (char *) alloca ($4.length + 2);
1081 tmp_token.ptr = buf;
1082 tmp_token.length = $4.length + 1;
1083 buf[0] = '~';
1084 memcpy (buf+1, $4.ptr, $4.length);
1085 buf[tmp_token.length] = 0;
1086
1087 /* Check for valid destructor name. */
1088 destructor_name_p (tmp_token.ptr, $1.type);
1089 write_exp_elt_opcode (pstate, OP_SCOPE);
1090 write_exp_elt_type (pstate, type);
1091 write_exp_string (pstate, tmp_token);
1092 write_exp_elt_opcode (pstate, OP_SCOPE);
1093 }
1094 | TYPENAME COLONCOLON name COLONCOLON name
1095 {
1096 std::string copy = copy_name ($3);
1097 error (_("No type \"%s\" within class "
1098 "or namespace \"%s\"."),
1099 copy.c_str (), TYPE_SAFE_NAME ($1.type));
1100 }
1101 ;
1102
1103 variable: qualified_name
1104 | COLONCOLON name_not_typename
1105 {
1106 std::string name = copy_name ($2.stoken);
1107 struct symbol *sym;
1108 struct bound_minimal_symbol msymbol;
1109
1110 sym
1111 = lookup_symbol (name.c_str (),
1112 (const struct block *) NULL,
1113 VAR_DOMAIN, NULL).symbol;
1114 if (sym)
1115 {
1116 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1117 write_exp_elt_block (pstate, NULL);
1118 write_exp_elt_sym (pstate, sym);
1119 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1120 break;
1121 }
1122
1123 msymbol = lookup_bound_minimal_symbol (name.c_str ());
1124 if (msymbol.minsym != NULL)
1125 write_exp_msymbol (pstate, msymbol);
1126 else if (!have_full_symbols () && !have_partial_symbols ())
1127 error (_("No symbol table is loaded. Use the \"file\" command."));
1128 else
1129 error (_("No symbol \"%s\" in current context."),
1130 name.c_str ());
1131 }
1132 ;
1133
1134 variable: name_not_typename
1135 { struct block_symbol sym = $1.sym;
1136
1137 if (sym.symbol)
1138 {
1139 if (symbol_read_needs_frame (sym.symbol))
1140 pstate->block_tracker->update (sym);
1141
1142 /* If we found a function, see if it's
1143 an ifunc resolver that has the same
1144 address as the ifunc symbol itself.
1145 If so, prefer the ifunc symbol. */
1146
1147 bound_minimal_symbol resolver
1148 = find_gnu_ifunc (sym.symbol);
1149 if (resolver.minsym != NULL)
1150 write_exp_msymbol (pstate, resolver);
1151 else
1152 {
1153 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1154 write_exp_elt_block (pstate, sym.block);
1155 write_exp_elt_sym (pstate, sym.symbol);
1156 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1157 }
1158 }
1159 else if ($1.is_a_field_of_this)
1160 {
1161 /* C++: it hangs off of `this'. Must
1162 not inadvertently convert from a method call
1163 to data ref. */
1164 pstate->block_tracker->update (sym);
1165 write_exp_elt_opcode (pstate, OP_THIS);
1166 write_exp_elt_opcode (pstate, OP_THIS);
1167 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1168 write_exp_string (pstate, $1.stoken);
1169 write_exp_elt_opcode (pstate, STRUCTOP_PTR);
1170 }
1171 else
1172 {
1173 std::string arg = copy_name ($1.stoken);
1174
1175 bound_minimal_symbol msymbol
1176 = lookup_bound_minimal_symbol (arg.c_str ());
1177 if (msymbol.minsym == NULL)
1178 {
1179 if (!have_full_symbols () && !have_partial_symbols ())
1180 error (_("No symbol table is loaded. Use the \"file\" command."));
1181 else
1182 error (_("No symbol \"%s\" in current context."),
1183 arg.c_str ());
1184 }
1185
1186 /* This minsym might be an alias for
1187 another function. See if we can find
1188 the debug symbol for the target, and
1189 if so, use it instead, since it has
1190 return type / prototype info. This
1191 is important for example for "p
1192 *__errno_location()". */
1193 symbol *alias_target
1194 = ((msymbol.minsym->type != mst_text_gnu_ifunc
1195 && msymbol.minsym->type != mst_data_gnu_ifunc)
1196 ? find_function_alias_target (msymbol)
1197 : NULL);
1198 if (alias_target != NULL)
1199 {
1200 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1201 write_exp_elt_block
1202 (pstate, SYMBOL_BLOCK_VALUE (alias_target));
1203 write_exp_elt_sym (pstate, alias_target);
1204 write_exp_elt_opcode (pstate, OP_VAR_VALUE);
1205 }
1206 else
1207 write_exp_msymbol (pstate, msymbol);
1208 }
1209 }
1210 ;
1211
1212 const_or_volatile: const_or_volatile_noopt
1213 |
1214 ;
1215
1216 single_qualifier:
1217 CONST_KEYWORD
1218 { cpstate->type_stack.insert (tp_const); }
1219 | VOLATILE_KEYWORD
1220 { cpstate->type_stack.insert (tp_volatile); }
1221 | ATOMIC
1222 { cpstate->type_stack.insert (tp_atomic); }
1223 | RESTRICT
1224 { cpstate->type_stack.insert (tp_restrict); }
1225 | '@' NAME
1226 {
1227 cpstate->type_stack.insert (pstate,
1228 copy_name ($2.stoken).c_str ());
1229 }
1230 ;
1231
1232 qualifier_seq_noopt:
1233 single_qualifier
1234 | qualifier_seq single_qualifier
1235 ;
1236
1237 qualifier_seq:
1238 qualifier_seq_noopt
1239 |
1240 ;
1241
1242 ptr_operator:
1243 ptr_operator '*'
1244 { cpstate->type_stack.insert (tp_pointer); }
1245 qualifier_seq
1246 | '*'
1247 { cpstate->type_stack.insert (tp_pointer); }
1248 qualifier_seq
1249 | '&'
1250 { cpstate->type_stack.insert (tp_reference); }
1251 | '&' ptr_operator
1252 { cpstate->type_stack.insert (tp_reference); }
1253 | ANDAND
1254 { cpstate->type_stack.insert (tp_rvalue_reference); }
1255 | ANDAND ptr_operator
1256 { cpstate->type_stack.insert (tp_rvalue_reference); }
1257 ;
1258
1259 ptr_operator_ts: ptr_operator
1260 {
1261 $$ = cpstate->type_stack.create ();
1262 cpstate->type_stacks.emplace_back ($$);
1263 }
1264 ;
1265
1266 abs_decl: ptr_operator_ts direct_abs_decl
1267 { $$ = $2->append ($1); }
1268 | ptr_operator_ts
1269 | direct_abs_decl
1270 ;
1271
1272 direct_abs_decl: '(' abs_decl ')'
1273 { $$ = $2; }
1274 | direct_abs_decl array_mod
1275 {
1276 cpstate->type_stack.push ($1);
1277 cpstate->type_stack.push ($2);
1278 cpstate->type_stack.push (tp_array);
1279 $$ = cpstate->type_stack.create ();
1280 cpstate->type_stacks.emplace_back ($$);
1281 }
1282 | array_mod
1283 {
1284 cpstate->type_stack.push ($1);
1285 cpstate->type_stack.push (tp_array);
1286 $$ = cpstate->type_stack.create ();
1287 cpstate->type_stacks.emplace_back ($$);
1288 }
1289
1290 | direct_abs_decl func_mod
1291 {
1292 cpstate->type_stack.push ($1);
1293 cpstate->type_stack.push ($2);
1294 $$ = cpstate->type_stack.create ();
1295 cpstate->type_stacks.emplace_back ($$);
1296 }
1297 | func_mod
1298 {
1299 cpstate->type_stack.push ($1);
1300 $$ = cpstate->type_stack.create ();
1301 cpstate->type_stacks.emplace_back ($$);
1302 }
1303 ;
1304
1305 array_mod: '[' ']'
1306 { $$ = -1; }
1307 | OBJC_LBRAC ']'
1308 { $$ = -1; }
1309 | '[' INT ']'
1310 { $$ = $2.val; }
1311 | OBJC_LBRAC INT ']'
1312 { $$ = $2.val; }
1313 ;
1314
1315 func_mod: '(' ')'
1316 {
1317 $$ = new std::vector<struct type *>;
1318 cpstate->type_lists.emplace_back ($$);
1319 }
1320 | '(' parameter_typelist ')'
1321 { $$ = $2; }
1322 ;
1323
1324 /* We used to try to recognize pointer to member types here, but
1325 that didn't work (shift/reduce conflicts meant that these rules never
1326 got executed). The problem is that
1327 int (foo::bar::baz::bizzle)
1328 is a function type but
1329 int (foo::bar::baz::bizzle::*)
1330 is a pointer to member type. Stroustrup loses again! */
1331
1332 type : ptype
1333 ;
1334
1335 /* A helper production that recognizes scalar types that can validly
1336 be used with _Complex. */
1337
1338 scalar_type:
1339 INT_KEYWORD
1340 { $$ = lookup_signed_typename (pstate->language (),
1341 "int"); }
1342 | LONG
1343 { $$ = lookup_signed_typename (pstate->language (),
1344 "long"); }
1345 | SHORT
1346 { $$ = lookup_signed_typename (pstate->language (),
1347 "short"); }
1348 | LONG INT_KEYWORD
1349 { $$ = lookup_signed_typename (pstate->language (),
1350 "long"); }
1351 | LONG SIGNED_KEYWORD INT_KEYWORD
1352 { $$ = lookup_signed_typename (pstate->language (),
1353 "long"); }
1354 | LONG SIGNED_KEYWORD
1355 { $$ = lookup_signed_typename (pstate->language (),
1356 "long"); }
1357 | SIGNED_KEYWORD LONG INT_KEYWORD
1358 { $$ = lookup_signed_typename (pstate->language (),
1359 "long"); }
1360 | UNSIGNED LONG INT_KEYWORD
1361 { $$ = lookup_unsigned_typename (pstate->language (),
1362 "long"); }
1363 | LONG UNSIGNED INT_KEYWORD
1364 { $$ = lookup_unsigned_typename (pstate->language (),
1365 "long"); }
1366 | LONG UNSIGNED
1367 { $$ = lookup_unsigned_typename (pstate->language (),
1368 "long"); }
1369 | LONG LONG
1370 { $$ = lookup_signed_typename (pstate->language (),
1371 "long long"); }
1372 | LONG LONG INT_KEYWORD
1373 { $$ = lookup_signed_typename (pstate->language (),
1374 "long long"); }
1375 | LONG LONG SIGNED_KEYWORD INT_KEYWORD
1376 { $$ = lookup_signed_typename (pstate->language (),
1377 "long long"); }
1378 | LONG LONG SIGNED_KEYWORD
1379 { $$ = lookup_signed_typename (pstate->language (),
1380 "long long"); }
1381 | SIGNED_KEYWORD LONG LONG
1382 { $$ = lookup_signed_typename (pstate->language (),
1383 "long long"); }
1384 | SIGNED_KEYWORD LONG LONG INT_KEYWORD
1385 { $$ = lookup_signed_typename (pstate->language (),
1386 "long long"); }
1387 | UNSIGNED LONG LONG
1388 { $$ = lookup_unsigned_typename (pstate->language (),
1389 "long long"); }
1390 | UNSIGNED LONG LONG INT_KEYWORD
1391 { $$ = lookup_unsigned_typename (pstate->language (),
1392 "long long"); }
1393 | LONG LONG UNSIGNED
1394 { $$ = lookup_unsigned_typename (pstate->language (),
1395 "long long"); }
1396 | LONG LONG UNSIGNED INT_KEYWORD
1397 { $$ = lookup_unsigned_typename (pstate->language (),
1398 "long long"); }
1399 | SHORT INT_KEYWORD
1400 { $$ = lookup_signed_typename (pstate->language (),
1401 "short"); }
1402 | SHORT SIGNED_KEYWORD INT_KEYWORD
1403 { $$ = lookup_signed_typename (pstate->language (),
1404 "short"); }
1405 | SHORT SIGNED_KEYWORD
1406 { $$ = lookup_signed_typename (pstate->language (),
1407 "short"); }
1408 | UNSIGNED SHORT INT_KEYWORD
1409 { $$ = lookup_unsigned_typename (pstate->language (),
1410 "short"); }
1411 | SHORT UNSIGNED
1412 { $$ = lookup_unsigned_typename (pstate->language (),
1413 "short"); }
1414 | SHORT UNSIGNED INT_KEYWORD
1415 { $$ = lookup_unsigned_typename (pstate->language (),
1416 "short"); }
1417 | DOUBLE_KEYWORD
1418 { $$ = lookup_typename (pstate->language (),
1419 "double",
1420 NULL,
1421 0); }
1422 | FLOAT_KEYWORD
1423 { $$ = lookup_typename (pstate->language (),
1424 "float",
1425 NULL,
1426 0); }
1427 | LONG DOUBLE_KEYWORD
1428 { $$ = lookup_typename (pstate->language (),
1429 "long double",
1430 NULL,
1431 0); }
1432 | UNSIGNED type_name
1433 { $$ = lookup_unsigned_typename (pstate->language (),
1434 TYPE_NAME($2.type)); }
1435 | UNSIGNED
1436 { $$ = lookup_unsigned_typename (pstate->language (),
1437 "int"); }
1438 | SIGNED_KEYWORD type_name
1439 { $$ = lookup_signed_typename (pstate->language (),
1440 TYPE_NAME($2.type)); }
1441 | SIGNED_KEYWORD
1442 { $$ = lookup_signed_typename (pstate->language (),
1443 "int"); }
1444 ;
1445
1446 /* Implements (approximately): (type-qualifier)* type-specifier.
1447
1448 When type-specifier is only ever a single word, like 'float' then these
1449 arrive as pre-built TYPENAME tokens thanks to the classify_name
1450 function. However, when a type-specifier can contain multiple words,
1451 for example 'double' can appear as just 'double' or 'long double', and
1452 similarly 'long' can appear as just 'long' or in 'long double', then
1453 these type-specifiers are parsed into their own tokens in the function
1454 lex_one_token and the ident_tokens array. These separate tokens are all
1455 recognised here. */
1456 typebase
1457 : TYPENAME
1458 { $$ = $1.type; }
1459 | scalar_type
1460 { $$ = $1; }
1461 | COMPLEX scalar_type
1462 {
1463 $$ = init_complex_type (nullptr, $2);
1464 }
1465 | STRUCT name
1466 { $$
1467 = lookup_struct (copy_name ($2).c_str (),
1468 pstate->expression_context_block);
1469 }
1470 | STRUCT COMPLETE
1471 {
1472 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1473 "", 0);
1474 $$ = NULL;
1475 }
1476 | STRUCT name COMPLETE
1477 {
1478 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1479 $2.ptr, $2.length);
1480 $$ = NULL;
1481 }
1482 | CLASS name
1483 { $$ = lookup_struct
1484 (copy_name ($2).c_str (),
1485 pstate->expression_context_block);
1486 }
1487 | CLASS COMPLETE
1488 {
1489 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1490 "", 0);
1491 $$ = NULL;
1492 }
1493 | CLASS name COMPLETE
1494 {
1495 pstate->mark_completion_tag (TYPE_CODE_STRUCT,
1496 $2.ptr, $2.length);
1497 $$ = NULL;
1498 }
1499 | UNION name
1500 { $$
1501 = lookup_union (copy_name ($2).c_str (),
1502 pstate->expression_context_block);
1503 }
1504 | UNION COMPLETE
1505 {
1506 pstate->mark_completion_tag (TYPE_CODE_UNION,
1507 "", 0);
1508 $$ = NULL;
1509 }
1510 | UNION name COMPLETE
1511 {
1512 pstate->mark_completion_tag (TYPE_CODE_UNION,
1513 $2.ptr, $2.length);
1514 $$ = NULL;
1515 }
1516 | ENUM name
1517 { $$ = lookup_enum (copy_name ($2).c_str (),
1518 pstate->expression_context_block);
1519 }
1520 | ENUM COMPLETE
1521 {
1522 pstate->mark_completion_tag (TYPE_CODE_ENUM, "", 0);
1523 $$ = NULL;
1524 }
1525 | ENUM name COMPLETE
1526 {
1527 pstate->mark_completion_tag (TYPE_CODE_ENUM, $2.ptr,
1528 $2.length);
1529 $$ = NULL;
1530 }
1531 /* It appears that this rule for templates is never
1532 reduced; template recognition happens by lookahead
1533 in the token processing code in yylex. */
1534 | TEMPLATE name '<' type '>'
1535 { $$ = lookup_template_type
1536 (copy_name($2).c_str (), $4,
1537 pstate->expression_context_block);
1538 }
1539 | qualifier_seq_noopt typebase
1540 { $$ = cpstate->type_stack.follow_types ($2); }
1541 | typebase qualifier_seq_noopt
1542 { $$ = cpstate->type_stack.follow_types ($1); }
1543 ;
1544
1545 type_name: TYPENAME
1546 | INT_KEYWORD
1547 {
1548 $$.stoken.ptr = "int";
1549 $$.stoken.length = 3;
1550 $$.type = lookup_signed_typename (pstate->language (),
1551 "int");
1552 }
1553 | LONG
1554 {
1555 $$.stoken.ptr = "long";
1556 $$.stoken.length = 4;
1557 $$.type = lookup_signed_typename (pstate->language (),
1558 "long");
1559 }
1560 | SHORT
1561 {
1562 $$.stoken.ptr = "short";
1563 $$.stoken.length = 5;
1564 $$.type = lookup_signed_typename (pstate->language (),
1565 "short");
1566 }
1567 ;
1568
1569 parameter_typelist:
1570 nonempty_typelist
1571 { check_parameter_typelist ($1); }
1572 | nonempty_typelist ',' DOTDOTDOT
1573 {
1574 $1->push_back (NULL);
1575 check_parameter_typelist ($1);
1576 $$ = $1;
1577 }
1578 ;
1579
1580 nonempty_typelist
1581 : type
1582 {
1583 std::vector<struct type *> *typelist
1584 = new std::vector<struct type *>;
1585 cpstate->type_lists.emplace_back (typelist);
1586
1587 typelist->push_back ($1);
1588 $$ = typelist;
1589 }
1590 | nonempty_typelist ',' type
1591 {
1592 $1->push_back ($3);
1593 $$ = $1;
1594 }
1595 ;
1596
1597 ptype : typebase
1598 | ptype abs_decl
1599 {
1600 cpstate->type_stack.push ($2);
1601 $$ = cpstate->type_stack.follow_types ($1);
1602 }
1603 ;
1604
1605 conversion_type_id: typebase conversion_declarator
1606 { $$ = cpstate->type_stack.follow_types ($1); }
1607 ;
1608
1609 conversion_declarator: /* Nothing. */
1610 | ptr_operator conversion_declarator
1611 ;
1612
1613 const_and_volatile: CONST_KEYWORD VOLATILE_KEYWORD
1614 | VOLATILE_KEYWORD CONST_KEYWORD
1615 ;
1616
1617 const_or_volatile_noopt: const_and_volatile
1618 { cpstate->type_stack.insert (tp_const);
1619 cpstate->type_stack.insert (tp_volatile);
1620 }
1621 | CONST_KEYWORD
1622 { cpstate->type_stack.insert (tp_const); }
1623 | VOLATILE_KEYWORD
1624 { cpstate->type_stack.insert (tp_volatile); }
1625 ;
1626
1627 oper: OPERATOR NEW
1628 { $$ = operator_stoken (" new"); }
1629 | OPERATOR DELETE
1630 { $$ = operator_stoken (" delete"); }
1631 | OPERATOR NEW '[' ']'
1632 { $$ = operator_stoken (" new[]"); }
1633 | OPERATOR DELETE '[' ']'
1634 { $$ = operator_stoken (" delete[]"); }
1635 | OPERATOR NEW OBJC_LBRAC ']'
1636 { $$ = operator_stoken (" new[]"); }
1637 | OPERATOR DELETE OBJC_LBRAC ']'
1638 { $$ = operator_stoken (" delete[]"); }
1639 | OPERATOR '+'
1640 { $$ = operator_stoken ("+"); }
1641 | OPERATOR '-'
1642 { $$ = operator_stoken ("-"); }
1643 | OPERATOR '*'
1644 { $$ = operator_stoken ("*"); }
1645 | OPERATOR '/'
1646 { $$ = operator_stoken ("/"); }
1647 | OPERATOR '%'
1648 { $$ = operator_stoken ("%"); }
1649 | OPERATOR '^'
1650 { $$ = operator_stoken ("^"); }
1651 | OPERATOR '&'
1652 { $$ = operator_stoken ("&"); }
1653 | OPERATOR '|'
1654 { $$ = operator_stoken ("|"); }
1655 | OPERATOR '~'
1656 { $$ = operator_stoken ("~"); }
1657 | OPERATOR '!'
1658 { $$ = operator_stoken ("!"); }
1659 | OPERATOR '='
1660 { $$ = operator_stoken ("="); }
1661 | OPERATOR '<'
1662 { $$ = operator_stoken ("<"); }
1663 | OPERATOR '>'
1664 { $$ = operator_stoken (">"); }
1665 | OPERATOR ASSIGN_MODIFY
1666 { const char *op = " unknown";
1667 switch ($2)
1668 {
1669 case BINOP_RSH:
1670 op = ">>=";
1671 break;
1672 case BINOP_LSH:
1673 op = "<<=";
1674 break;
1675 case BINOP_ADD:
1676 op = "+=";
1677 break;
1678 case BINOP_SUB:
1679 op = "-=";
1680 break;
1681 case BINOP_MUL:
1682 op = "*=";
1683 break;
1684 case BINOP_DIV:
1685 op = "/=";
1686 break;
1687 case BINOP_REM:
1688 op = "%=";
1689 break;
1690 case BINOP_BITWISE_IOR:
1691 op = "|=";
1692 break;
1693 case BINOP_BITWISE_AND:
1694 op = "&=";
1695 break;
1696 case BINOP_BITWISE_XOR:
1697 op = "^=";
1698 break;
1699 default:
1700 break;
1701 }
1702
1703 $$ = operator_stoken (op);
1704 }
1705 | OPERATOR LSH
1706 { $$ = operator_stoken ("<<"); }
1707 | OPERATOR RSH
1708 { $$ = operator_stoken (">>"); }
1709 | OPERATOR EQUAL
1710 { $$ = operator_stoken ("=="); }
1711 | OPERATOR NOTEQUAL
1712 { $$ = operator_stoken ("!="); }
1713 | OPERATOR LEQ
1714 { $$ = operator_stoken ("<="); }
1715 | OPERATOR GEQ
1716 { $$ = operator_stoken (">="); }
1717 | OPERATOR ANDAND
1718 { $$ = operator_stoken ("&&"); }
1719 | OPERATOR OROR
1720 { $$ = operator_stoken ("||"); }
1721 | OPERATOR INCREMENT
1722 { $$ = operator_stoken ("++"); }
1723 | OPERATOR DECREMENT
1724 { $$ = operator_stoken ("--"); }
1725 | OPERATOR ','
1726 { $$ = operator_stoken (","); }
1727 | OPERATOR ARROW_STAR
1728 { $$ = operator_stoken ("->*"); }
1729 | OPERATOR ARROW
1730 { $$ = operator_stoken ("->"); }
1731 | OPERATOR '(' ')'
1732 { $$ = operator_stoken ("()"); }
1733 | OPERATOR '[' ']'
1734 { $$ = operator_stoken ("[]"); }
1735 | OPERATOR OBJC_LBRAC ']'
1736 { $$ = operator_stoken ("[]"); }
1737 | OPERATOR conversion_type_id
1738 { string_file buf;
1739
1740 c_print_type ($2, NULL, &buf, -1, 0,
1741 &type_print_raw_options);
1742
1743 /* This also needs canonicalization. */
1744 std::string canon
1745 = cp_canonicalize_string (buf.c_str ());
1746 if (canon.empty ())
1747 canon = std::move (buf.string ());
1748 $$ = operator_stoken ((" " + canon).c_str ());
1749 }
1750 ;
1751
1752 /* This rule exists in order to allow some tokens that would not normally
1753 match the 'name' rule to appear as fields within a struct. The example
1754 that initially motivated this was the RISC-V target which models the
1755 floating point registers as a union with fields called 'float' and
1756 'double'. */
1757 field_name
1758 : name
1759 | DOUBLE_KEYWORD { $$ = typename_stoken ("double"); }
1760 | FLOAT_KEYWORD { $$ = typename_stoken ("float"); }
1761 | INT_KEYWORD { $$ = typename_stoken ("int"); }
1762 | LONG { $$ = typename_stoken ("long"); }
1763 | SHORT { $$ = typename_stoken ("short"); }
1764 | SIGNED_KEYWORD { $$ = typename_stoken ("signed"); }
1765 | UNSIGNED { $$ = typename_stoken ("unsigned"); }
1766 ;
1767
1768 name : NAME { $$ = $1.stoken; }
1769 | BLOCKNAME { $$ = $1.stoken; }
1770 | TYPENAME { $$ = $1.stoken; }
1771 | NAME_OR_INT { $$ = $1.stoken; }
1772 | UNKNOWN_CPP_NAME { $$ = $1.stoken; }
1773 | oper { $$ = $1; }
1774 ;
1775
1776 name_not_typename : NAME
1777 | BLOCKNAME
1778 /* These would be useful if name_not_typename was useful, but it is just
1779 a fake for "variable", so these cause reduce/reduce conflicts because
1780 the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
1781 =exp) or just an exp. If name_not_typename was ever used in an lvalue
1782 context where only a name could occur, this might be useful.
1783 | NAME_OR_INT
1784 */
1785 | oper
1786 {
1787 struct field_of_this_result is_a_field_of_this;
1788
1789 $$.stoken = $1;
1790 $$.sym
1791 = lookup_symbol ($1.ptr,
1792 pstate->expression_context_block,
1793 VAR_DOMAIN,
1794 &is_a_field_of_this);
1795 $$.is_a_field_of_this
1796 = is_a_field_of_this.type != NULL;
1797 }
1798 | UNKNOWN_CPP_NAME
1799 ;
1800
1801 %%
1802
1803 /* Like write_exp_string, but prepends a '~'. */
1804
1805 static void
1806 write_destructor_name (struct parser_state *par_state, struct stoken token)
1807 {
1808 char *copy = (char *) alloca (token.length + 1);
1809
1810 copy[0] = '~';
1811 memcpy (&copy[1], token.ptr, token.length);
1812
1813 token.ptr = copy;
1814 ++token.length;
1815
1816 write_exp_string (par_state, token);
1817 }
1818
1819 /* Returns a stoken of the operator name given by OP (which does not
1820 include the string "operator"). */
1821
1822 static struct stoken
1823 operator_stoken (const char *op)
1824 {
1825 struct stoken st = { NULL, 0 };
1826 char *buf;
1827
1828 st.length = CP_OPERATOR_LEN + strlen (op);
1829 buf = (char *) malloc (st.length + 1);
1830 strcpy (buf, CP_OPERATOR_STR);
1831 strcat (buf, op);
1832 st.ptr = buf;
1833
1834 /* The toplevel (c_parse) will free the memory allocated here. */
1835 cpstate->strings.emplace_back (buf);
1836 return st;
1837 };
1838
1839 /* Returns a stoken of the type named TYPE. */
1840
1841 static struct stoken
1842 typename_stoken (const char *type)
1843 {
1844 struct stoken st = { type, 0 };
1845 st.length = strlen (type);
1846 return st;
1847 };
1848
1849 /* Return true if the type is aggregate-like. */
1850
1851 static int
1852 type_aggregate_p (struct type *type)
1853 {
1854 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION
1856 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE
1857 || (TYPE_CODE (type) == TYPE_CODE_ENUM
1858 && TYPE_DECLARED_CLASS (type)));
1859 }
1860
1861 /* Validate a parameter typelist. */
1862
1863 static void
1864 check_parameter_typelist (std::vector<struct type *> *params)
1865 {
1866 struct type *type;
1867 int ix;
1868
1869 for (ix = 0; ix < params->size (); ++ix)
1870 {
1871 type = (*params)[ix];
1872 if (type != NULL && TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
1873 {
1874 if (ix == 0)
1875 {
1876 if (params->size () == 1)
1877 {
1878 /* Ok. */
1879 break;
1880 }
1881 error (_("parameter types following 'void'"));
1882 }
1883 else
1884 error (_("'void' invalid as parameter type"));
1885 }
1886 }
1887 }
1888
1889 /* Take care of parsing a number (anything that starts with a digit).
1890 Set yylval and return the token type; update lexptr.
1891 LEN is the number of characters in it. */
1892
1893 /*** Needs some error checking for the float case ***/
1894
1895 static int
1896 parse_number (struct parser_state *par_state,
1897 const char *buf, int len, int parsed_float, YYSTYPE *putithere)
1898 {
1899 ULONGEST n = 0;
1900 ULONGEST prevn = 0;
1901 ULONGEST un;
1902
1903 int i = 0;
1904 int c;
1905 int base = input_radix;
1906 int unsigned_p = 0;
1907
1908 /* Number of "L" suffixes encountered. */
1909 int long_p = 0;
1910
1911 /* Imaginary number. */
1912 bool imaginary_p = false;
1913
1914 /* We have found a "L" or "U" (or "i") suffix. */
1915 int found_suffix = 0;
1916
1917 ULONGEST high_bit;
1918 struct type *signed_type;
1919 struct type *unsigned_type;
1920 char *p;
1921
1922 p = (char *) alloca (len);
1923 memcpy (p, buf, len);
1924
1925 if (parsed_float)
1926 {
1927 if (len >= 1 && p[len - 1] == 'i')
1928 {
1929 imaginary_p = true;
1930 --len;
1931 }
1932
1933 /* Handle suffixes for decimal floating-point: "df", "dd" or "dl". */
1934 if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'f')
1935 {
1936 putithere->typed_val_float.type
1937 = parse_type (par_state)->builtin_decfloat;
1938 len -= 2;
1939 }
1940 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'd')
1941 {
1942 putithere->typed_val_float.type
1943 = parse_type (par_state)->builtin_decdouble;
1944 len -= 2;
1945 }
1946 else if (len >= 2 && p[len - 2] == 'd' && p[len - 1] == 'l')
1947 {
1948 putithere->typed_val_float.type
1949 = parse_type (par_state)->builtin_declong;
1950 len -= 2;
1951 }
1952 /* Handle suffixes: 'f' for float, 'l' for long double. */
1953 else if (len >= 1 && TOLOWER (p[len - 1]) == 'f')
1954 {
1955 putithere->typed_val_float.type
1956 = parse_type (par_state)->builtin_float;
1957 len -= 1;
1958 }
1959 else if (len >= 1 && TOLOWER (p[len - 1]) == 'l')
1960 {
1961 putithere->typed_val_float.type
1962 = parse_type (par_state)->builtin_long_double;
1963 len -= 1;
1964 }
1965 /* Default type for floating-point literals is double. */
1966 else
1967 {
1968 putithere->typed_val_float.type
1969 = parse_type (par_state)->builtin_double;
1970 }
1971
1972 if (!parse_float (p, len,
1973 putithere->typed_val_float.type,
1974 putithere->typed_val_float.val))
1975 return ERROR;
1976
1977 if (imaginary_p)
1978 putithere->typed_val_float.type
1979 = init_complex_type (nullptr, putithere->typed_val_float.type);
1980
1981 return imaginary_p ? COMPLEX_FLOAT : FLOAT;
1982 }
1983
1984 /* Handle base-switching prefixes 0x, 0t, 0d, 0 */
1985 if (p[0] == '0' && len > 1)
1986 switch (p[1])
1987 {
1988 case 'x':
1989 case 'X':
1990 if (len >= 3)
1991 {
1992 p += 2;
1993 base = 16;
1994 len -= 2;
1995 }
1996 break;
1997
1998 case 'b':
1999 case 'B':
2000 if (len >= 3)
2001 {
2002 p += 2;
2003 base = 2;
2004 len -= 2;
2005 }
2006 break;
2007
2008 case 't':
2009 case 'T':
2010 case 'd':
2011 case 'D':
2012 if (len >= 3)
2013 {
2014 p += 2;
2015 base = 10;
2016 len -= 2;
2017 }
2018 break;
2019
2020 default:
2021 base = 8;
2022 break;
2023 }
2024
2025 while (len-- > 0)
2026 {
2027 c = *p++;
2028 if (c >= 'A' && c <= 'Z')
2029 c += 'a' - 'A';
2030 if (c != 'l' && c != 'u' && c != 'i')
2031 n *= base;
2032 if (c >= '0' && c <= '9')
2033 {
2034 if (found_suffix)
2035 return ERROR;
2036 n += i = c - '0';
2037 }
2038 else
2039 {
2040 if (base > 10 && c >= 'a' && c <= 'f')
2041 {
2042 if (found_suffix)
2043 return ERROR;
2044 n += i = c - 'a' + 10;
2045 }
2046 else if (c == 'l')
2047 {
2048 ++long_p;
2049 found_suffix = 1;
2050 }
2051 else if (c == 'u')
2052 {
2053 unsigned_p = 1;
2054 found_suffix = 1;
2055 }
2056 else if (c == 'i')
2057 {
2058 imaginary_p = true;
2059 found_suffix = 1;
2060 }
2061 else
2062 return ERROR; /* Char not a digit */
2063 }
2064 if (i >= base)
2065 return ERROR; /* Invalid digit in this base */
2066
2067 /* Portably test for overflow (only works for nonzero values, so make
2068 a second check for zero). FIXME: Can't we just make n and prevn
2069 unsigned and avoid this? */
2070 if (c != 'l' && c != 'u' && c != 'i' && (prevn >= n) && n != 0)
2071 unsigned_p = 1; /* Try something unsigned */
2072
2073 /* Portably test for unsigned overflow.
2074 FIXME: This check is wrong; for example it doesn't find overflow
2075 on 0x123456789 when LONGEST is 32 bits. */
2076 if (c != 'l' && c != 'u' && c != 'i' && n != 0)
2077 {
2078 if (unsigned_p && prevn >= n)
2079 error (_("Numeric constant too large."));
2080 }
2081 prevn = n;
2082 }
2083
2084 /* An integer constant is an int, a long, or a long long. An L
2085 suffix forces it to be long; an LL suffix forces it to be long
2086 long. If not forced to a larger size, it gets the first type of
2087 the above that it fits in. To figure out whether it fits, we
2088 shift it right and see whether anything remains. Note that we
2089 can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
2090 operation, because many compilers will warn about such a shift
2091 (which always produces a zero result). Sometimes gdbarch_int_bit
2092 or gdbarch_long_bit will be that big, sometimes not. To deal with
2093 the case where it is we just always shift the value more than
2094 once, with fewer bits each time. */
2095
2096 un = n >> 2;
2097 if (long_p == 0
2098 && (un >> (gdbarch_int_bit (par_state->gdbarch ()) - 2)) == 0)
2099 {
2100 high_bit
2101 = ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
2102
2103 /* A large decimal (not hex or octal) constant (between INT_MAX
2104 and UINT_MAX) is a long or unsigned long, according to ANSI,
2105 never an unsigned int, but this code treats it as unsigned
2106 int. This probably should be fixed. GCC gives a warning on
2107 such constants. */
2108
2109 unsigned_type = parse_type (par_state)->builtin_unsigned_int;
2110 signed_type = parse_type (par_state)->builtin_int;
2111 }
2112 else if (long_p <= 1
2113 && (un >> (gdbarch_long_bit (par_state->gdbarch ()) - 2)) == 0)
2114 {
2115 high_bit
2116 = ((ULONGEST)1) << (gdbarch_long_bit (par_state->gdbarch ()) - 1);
2117 unsigned_type = parse_type (par_state)->builtin_unsigned_long;
2118 signed_type = parse_type (par_state)->builtin_long;
2119 }
2120 else
2121 {
2122 int shift;
2123 if (sizeof (ULONGEST) * HOST_CHAR_BIT
2124 < gdbarch_long_long_bit (par_state->gdbarch ()))
2125 /* A long long does not fit in a LONGEST. */
2126 shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
2127 else
2128 shift = (gdbarch_long_long_bit (par_state->gdbarch ()) - 1);
2129 high_bit = (ULONGEST) 1 << shift;
2130 unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
2131 signed_type = parse_type (par_state)->builtin_long_long;
2132 }
2133
2134 putithere->typed_val_int.val = n;
2135
2136 /* If the high bit of the worked out type is set then this number
2137 has to be unsigned. */
2138
2139 if (unsigned_p || (n & high_bit))
2140 {
2141 putithere->typed_val_int.type = unsigned_type;
2142 }
2143 else
2144 {
2145 putithere->typed_val_int.type = signed_type;
2146 }
2147
2148 if (imaginary_p)
2149 putithere->typed_val_int.type
2150 = init_complex_type (nullptr, putithere->typed_val_int.type);
2151
2152 return imaginary_p ? COMPLEX_INT : INT;
2153 }
2154
2155 /* Temporary obstack used for holding strings. */
2156 static struct obstack tempbuf;
2157 static int tempbuf_init;
2158
2159 /* Parse a C escape sequence. The initial backslash of the sequence
2160 is at (*PTR)[-1]. *PTR will be updated to point to just after the
2161 last character of the sequence. If OUTPUT is not NULL, the
2162 translated form of the escape sequence will be written there. If
2163 OUTPUT is NULL, no output is written and the call will only affect
2164 *PTR. If an escape sequence is expressed in target bytes, then the
2165 entire sequence will simply be copied to OUTPUT. Return 1 if any
2166 character was emitted, 0 otherwise. */
2167
2168 int
2169 c_parse_escape (const char **ptr, struct obstack *output)
2170 {
2171 const char *tokptr = *ptr;
2172 int result = 1;
2173
2174 /* Some escape sequences undergo character set conversion. Those we
2175 translate here. */
2176 switch (*tokptr)
2177 {
2178 /* Hex escapes do not undergo character set conversion, so keep
2179 the escape sequence for later. */
2180 case 'x':
2181 if (output)
2182 obstack_grow_str (output, "\\x");
2183 ++tokptr;
2184 if (!ISXDIGIT (*tokptr))
2185 error (_("\\x escape without a following hex digit"));
2186 while (ISXDIGIT (*tokptr))
2187 {
2188 if (output)
2189 obstack_1grow (output, *tokptr);
2190 ++tokptr;
2191 }
2192 break;
2193
2194 /* Octal escapes do not undergo character set conversion, so
2195 keep the escape sequence for later. */
2196 case '0':
2197 case '1':
2198 case '2':
2199 case '3':
2200 case '4':
2201 case '5':
2202 case '6':
2203 case '7':
2204 {
2205 int i;
2206 if (output)
2207 obstack_grow_str (output, "\\");
2208 for (i = 0;
2209 i < 3 && ISDIGIT (*tokptr) && *tokptr != '8' && *tokptr != '9';
2210 ++i)
2211 {
2212 if (output)
2213 obstack_1grow (output, *tokptr);
2214 ++tokptr;
2215 }
2216 }
2217 break;
2218
2219 /* We handle UCNs later. We could handle them here, but that
2220 would mean a spurious error in the case where the UCN could
2221 be converted to the target charset but not the host
2222 charset. */
2223 case 'u':
2224 case 'U':
2225 {
2226 char c = *tokptr;
2227 int i, len = c == 'U' ? 8 : 4;
2228 if (output)
2229 {
2230 obstack_1grow (output, '\\');
2231 obstack_1grow (output, *tokptr);
2232 }
2233 ++tokptr;
2234 if (!ISXDIGIT (*tokptr))
2235 error (_("\\%c escape without a following hex digit"), c);
2236 for (i = 0; i < len && ISXDIGIT (*tokptr); ++i)
2237 {
2238 if (output)
2239 obstack_1grow (output, *tokptr);
2240 ++tokptr;
2241 }
2242 }
2243 break;
2244
2245 /* We must pass backslash through so that it does not
2246 cause quoting during the second expansion. */
2247 case '\\':
2248 if (output)
2249 obstack_grow_str (output, "\\\\");
2250 ++tokptr;
2251 break;
2252
2253 /* Escapes which undergo conversion. */
2254 case 'a':
2255 if (output)
2256 obstack_1grow (output, '\a');
2257 ++tokptr;
2258 break;
2259 case 'b':
2260 if (output)
2261 obstack_1grow (output, '\b');
2262 ++tokptr;
2263 break;
2264 case 'f':
2265 if (output)
2266 obstack_1grow (output, '\f');
2267 ++tokptr;
2268 break;
2269 case 'n':
2270 if (output)
2271 obstack_1grow (output, '\n');
2272 ++tokptr;
2273 break;
2274 case 'r':
2275 if (output)
2276 obstack_1grow (output, '\r');
2277 ++tokptr;
2278 break;
2279 case 't':
2280 if (output)
2281 obstack_1grow (output, '\t');
2282 ++tokptr;
2283 break;
2284 case 'v':
2285 if (output)
2286 obstack_1grow (output, '\v');
2287 ++tokptr;
2288 break;
2289
2290 /* GCC extension. */
2291 case 'e':
2292 if (output)
2293 obstack_1grow (output, HOST_ESCAPE_CHAR);
2294 ++tokptr;
2295 break;
2296
2297 /* Backslash-newline expands to nothing at all. */
2298 case '\n':
2299 ++tokptr;
2300 result = 0;
2301 break;
2302
2303 /* A few escapes just expand to the character itself. */
2304 case '\'':
2305 case '\"':
2306 case '?':
2307 /* GCC extensions. */
2308 case '(':
2309 case '{':
2310 case '[':
2311 case '%':
2312 /* Unrecognized escapes turn into the character itself. */
2313 default:
2314 if (output)
2315 obstack_1grow (output, *tokptr);
2316 ++tokptr;
2317 break;
2318 }
2319 *ptr = tokptr;
2320 return result;
2321 }
2322
2323 /* Parse a string or character literal from TOKPTR. The string or
2324 character may be wide or unicode. *OUTPTR is set to just after the
2325 end of the literal in the input string. The resulting token is
2326 stored in VALUE. This returns a token value, either STRING or
2327 CHAR, depending on what was parsed. *HOST_CHARS is set to the
2328 number of host characters in the literal. */
2329
2330 static int
2331 parse_string_or_char (const char *tokptr, const char **outptr,
2332 struct typed_stoken *value, int *host_chars)
2333 {
2334 int quote;
2335 c_string_type type;
2336 int is_objc = 0;
2337
2338 /* Build the gdb internal form of the input string in tempbuf. Note
2339 that the buffer is null byte terminated *only* for the
2340 convenience of debugging gdb itself and printing the buffer
2341 contents when the buffer contains no embedded nulls. Gdb does
2342 not depend upon the buffer being null byte terminated, it uses
2343 the length string instead. This allows gdb to handle C strings
2344 (as well as strings in other languages) with embedded null
2345 bytes */
2346
2347 if (!tempbuf_init)
2348 tempbuf_init = 1;
2349 else
2350 obstack_free (&tempbuf, NULL);
2351 obstack_init (&tempbuf);
2352
2353 /* Record the string type. */
2354 if (*tokptr == 'L')
2355 {
2356 type = C_WIDE_STRING;
2357 ++tokptr;
2358 }
2359 else if (*tokptr == 'u')
2360 {
2361 type = C_STRING_16;
2362 ++tokptr;
2363 }
2364 else if (*tokptr == 'U')
2365 {
2366 type = C_STRING_32;
2367 ++tokptr;
2368 }
2369 else if (*tokptr == '@')
2370 {
2371 /* An Objective C string. */
2372 is_objc = 1;
2373 type = C_STRING;
2374 ++tokptr;
2375 }
2376 else
2377 type = C_STRING;
2378
2379 /* Skip the quote. */
2380 quote = *tokptr;
2381 if (quote == '\'')
2382 type |= C_CHAR;
2383 ++tokptr;
2384
2385 *host_chars = 0;
2386
2387 while (*tokptr)
2388 {
2389 char c = *tokptr;
2390 if (c == '\\')
2391 {
2392 ++tokptr;
2393 *host_chars += c_parse_escape (&tokptr, &tempbuf);
2394 }
2395 else if (c == quote)
2396 break;
2397 else
2398 {
2399 obstack_1grow (&tempbuf, c);
2400 ++tokptr;
2401 /* FIXME: this does the wrong thing with multi-byte host
2402 characters. We could use mbrlen here, but that would
2403 make "set host-charset" a bit less useful. */
2404 ++*host_chars;
2405 }
2406 }
2407
2408 if (*tokptr != quote)
2409 {
2410 if (quote == '"')
2411 error (_("Unterminated string in expression."));
2412 else
2413 error (_("Unmatched single quote."));
2414 }
2415 ++tokptr;
2416
2417 value->type = type;
2418 value->ptr = (char *) obstack_base (&tempbuf);
2419 value->length = obstack_object_size (&tempbuf);
2420
2421 *outptr = tokptr;
2422
2423 return quote == '"' ? (is_objc ? NSSTRING : STRING) : CHAR;
2424 }
2425
2426 /* This is used to associate some attributes with a token. */
2427
2428 enum token_flag
2429 {
2430 /* If this bit is set, the token is C++-only. */
2431
2432 FLAG_CXX = 1,
2433
2434 /* If this bit is set, the token is C-only. */
2435
2436 FLAG_C = 2,
2437
2438 /* If this bit is set, the token is conditional: if there is a
2439 symbol of the same name, then the token is a symbol; otherwise,
2440 the token is a keyword. */
2441
2442 FLAG_SHADOW = 4
2443 };
2444 DEF_ENUM_FLAGS_TYPE (enum token_flag, token_flags);
2445
2446 struct token
2447 {
2448 const char *oper;
2449 int token;
2450 enum exp_opcode opcode;
2451 token_flags flags;
2452 };
2453
2454 static const struct token tokentab3[] =
2455 {
2456 {">>=", ASSIGN_MODIFY, BINOP_RSH, 0},
2457 {"<<=", ASSIGN_MODIFY, BINOP_LSH, 0},
2458 {"->*", ARROW_STAR, BINOP_END, FLAG_CXX},
2459 {"...", DOTDOTDOT, BINOP_END, 0}
2460 };
2461
2462 static const struct token tokentab2[] =
2463 {
2464 {"+=", ASSIGN_MODIFY, BINOP_ADD, 0},
2465 {"-=", ASSIGN_MODIFY, BINOP_SUB, 0},
2466 {"*=", ASSIGN_MODIFY, BINOP_MUL, 0},
2467 {"/=", ASSIGN_MODIFY, BINOP_DIV, 0},
2468 {"%=", ASSIGN_MODIFY, BINOP_REM, 0},
2469 {"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR, 0},
2470 {"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND, 0},
2471 {"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR, 0},
2472 {"++", INCREMENT, BINOP_END, 0},
2473 {"--", DECREMENT, BINOP_END, 0},
2474 {"->", ARROW, BINOP_END, 0},
2475 {"&&", ANDAND, BINOP_END, 0},
2476 {"||", OROR, BINOP_END, 0},
2477 /* "::" is *not* only C++: gdb overrides its meaning in several
2478 different ways, e.g., 'filename'::func, function::variable. */
2479 {"::", COLONCOLON, BINOP_END, 0},
2480 {"<<", LSH, BINOP_END, 0},
2481 {">>", RSH, BINOP_END, 0},
2482 {"==", EQUAL, BINOP_END, 0},
2483 {"!=", NOTEQUAL, BINOP_END, 0},
2484 {"<=", LEQ, BINOP_END, 0},
2485 {">=", GEQ, BINOP_END, 0},
2486 {".*", DOT_STAR, BINOP_END, FLAG_CXX}
2487 };
2488
2489 /* Identifier-like tokens. Only type-specifiers than can appear in
2490 multi-word type names (for example 'double' can appear in 'long
2491 double') need to be listed here. type-specifiers that are only ever
2492 single word (like 'char') are handled by the classify_name function. */
2493 static const struct token ident_tokens[] =
2494 {
2495 {"unsigned", UNSIGNED, OP_NULL, 0},
2496 {"template", TEMPLATE, OP_NULL, FLAG_CXX},
2497 {"volatile", VOLATILE_KEYWORD, OP_NULL, 0},
2498 {"struct", STRUCT, OP_NULL, 0},
2499 {"signed", SIGNED_KEYWORD, OP_NULL, 0},
2500 {"sizeof", SIZEOF, OP_NULL, 0},
2501 {"_Alignof", ALIGNOF, OP_NULL, 0},
2502 {"alignof", ALIGNOF, OP_NULL, FLAG_CXX},
2503 {"double", DOUBLE_KEYWORD, OP_NULL, 0},
2504 {"float", FLOAT_KEYWORD, OP_NULL, 0},
2505 {"false", FALSEKEYWORD, OP_NULL, FLAG_CXX},
2506 {"class", CLASS, OP_NULL, FLAG_CXX},
2507 {"union", UNION, OP_NULL, 0},
2508 {"short", SHORT, OP_NULL, 0},
2509 {"const", CONST_KEYWORD, OP_NULL, 0},
2510 {"restrict", RESTRICT, OP_NULL, FLAG_C | FLAG_SHADOW},
2511 {"__restrict__", RESTRICT, OP_NULL, 0},
2512 {"__restrict", RESTRICT, OP_NULL, 0},
2513 {"_Atomic", ATOMIC, OP_NULL, 0},
2514 {"enum", ENUM, OP_NULL, 0},
2515 {"long", LONG, OP_NULL, 0},
2516 {"_Complex", COMPLEX, OP_NULL, 0},
2517 {"__complex__", COMPLEX, OP_NULL, 0},
2518
2519 {"true", TRUEKEYWORD, OP_NULL, FLAG_CXX},
2520 {"int", INT_KEYWORD, OP_NULL, 0},
2521 {"new", NEW, OP_NULL, FLAG_CXX},
2522 {"delete", DELETE, OP_NULL, FLAG_CXX},
2523 {"operator", OPERATOR, OP_NULL, FLAG_CXX},
2524
2525 {"and", ANDAND, BINOP_END, FLAG_CXX},
2526 {"and_eq", ASSIGN_MODIFY, BINOP_BITWISE_AND, FLAG_CXX},
2527 {"bitand", '&', OP_NULL, FLAG_CXX},
2528 {"bitor", '|', OP_NULL, FLAG_CXX},
2529 {"compl", '~', OP_NULL, FLAG_CXX},
2530 {"not", '!', OP_NULL, FLAG_CXX},
2531 {"not_eq", NOTEQUAL, BINOP_END, FLAG_CXX},
2532 {"or", OROR, BINOP_END, FLAG_CXX},
2533 {"or_eq", ASSIGN_MODIFY, BINOP_BITWISE_IOR, FLAG_CXX},
2534 {"xor", '^', OP_NULL, FLAG_CXX},
2535 {"xor_eq", ASSIGN_MODIFY, BINOP_BITWISE_XOR, FLAG_CXX},
2536
2537 {"const_cast", CONST_CAST, OP_NULL, FLAG_CXX },
2538 {"dynamic_cast", DYNAMIC_CAST, OP_NULL, FLAG_CXX },
2539 {"static_cast", STATIC_CAST, OP_NULL, FLAG_CXX },
2540 {"reinterpret_cast", REINTERPRET_CAST, OP_NULL, FLAG_CXX },
2541
2542 {"__typeof__", TYPEOF, OP_TYPEOF, 0 },
2543 {"__typeof", TYPEOF, OP_TYPEOF, 0 },
2544 {"typeof", TYPEOF, OP_TYPEOF, FLAG_SHADOW },
2545 {"__decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX },
2546 {"decltype", DECLTYPE, OP_DECLTYPE, FLAG_CXX | FLAG_SHADOW },
2547
2548 {"typeid", TYPEID, OP_TYPEID, FLAG_CXX}
2549 };
2550
2551
2552 static void
2553 scan_macro_expansion (char *expansion)
2554 {
2555 const char *copy;
2556
2557 /* We'd better not be trying to push the stack twice. */
2558 gdb_assert (! cpstate->macro_original_text);
2559
2560 /* Copy to the obstack, and then free the intermediate
2561 expansion. */
2562 copy = obstack_strdup (&cpstate->expansion_obstack, expansion);
2563 xfree (expansion);
2564
2565 /* Save the old lexptr value, so we can return to it when we're done
2566 parsing the expanded text. */
2567 cpstate->macro_original_text = pstate->lexptr;
2568 pstate->lexptr = copy;
2569 }
2570
2571 static int
2572 scanning_macro_expansion (void)
2573 {
2574 return cpstate->macro_original_text != 0;
2575 }
2576
2577 static void
2578 finished_macro_expansion (void)
2579 {
2580 /* There'd better be something to pop back to. */
2581 gdb_assert (cpstate->macro_original_text);
2582
2583 /* Pop back to the original text. */
2584 pstate->lexptr = cpstate->macro_original_text;
2585 cpstate->macro_original_text = 0;
2586 }
2587
2588 /* Return true iff the token represents a C++ cast operator. */
2589
2590 static int
2591 is_cast_operator (const char *token, int len)
2592 {
2593 return (! strncmp (token, "dynamic_cast", len)
2594 || ! strncmp (token, "static_cast", len)
2595 || ! strncmp (token, "reinterpret_cast", len)
2596 || ! strncmp (token, "const_cast", len));
2597 }
2598
2599 /* The scope used for macro expansion. */
2600 static struct macro_scope *expression_macro_scope;
2601
2602 /* This is set if a NAME token appeared at the very end of the input
2603 string, with no whitespace separating the name from the EOF. This
2604 is used only when parsing to do field name completion. */
2605 static int saw_name_at_eof;
2606
2607 /* This is set if the previously-returned token was a structure
2608 operator -- either '.' or ARROW. */
2609 static bool last_was_structop;
2610
2611 /* Depth of parentheses. */
2612 static int paren_depth;
2613
2614 /* Read one token, getting characters through lexptr. */
2615
2616 static int
2617 lex_one_token (struct parser_state *par_state, bool *is_quoted_name)
2618 {
2619 int c;
2620 int namelen;
2621 unsigned int i;
2622 const char *tokstart;
2623 bool saw_structop = last_was_structop;
2624
2625 last_was_structop = false;
2626 *is_quoted_name = false;
2627
2628 retry:
2629
2630 /* Check if this is a macro invocation that we need to expand. */
2631 if (! scanning_macro_expansion ())
2632 {
2633 char *expanded = macro_expand_next (&pstate->lexptr,
2634 standard_macro_lookup,
2635 expression_macro_scope);
2636
2637 if (expanded)
2638 scan_macro_expansion (expanded);
2639 }
2640
2641 pstate->prev_lexptr = pstate->lexptr;
2642
2643 tokstart = pstate->lexptr;
2644 /* See if it is a special token of length 3. */
2645 for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
2646 if (strncmp (tokstart, tokentab3[i].oper, 3) == 0)
2647 {
2648 if ((tokentab3[i].flags & FLAG_CXX) != 0
2649 && par_state->language ()->la_language != language_cplus)
2650 break;
2651 gdb_assert ((tokentab3[i].flags & FLAG_C) == 0);
2652
2653 pstate->lexptr += 3;
2654 yylval.opcode = tokentab3[i].opcode;
2655 return tokentab3[i].token;
2656 }
2657
2658 /* See if it is a special token of length 2. */
2659 for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
2660 if (strncmp (tokstart, tokentab2[i].oper, 2) == 0)
2661 {
2662 if ((tokentab2[i].flags & FLAG_CXX) != 0
2663 && par_state->language ()->la_language != language_cplus)
2664 break;
2665 gdb_assert ((tokentab2[i].flags & FLAG_C) == 0);
2666
2667 pstate->lexptr += 2;
2668 yylval.opcode = tokentab2[i].opcode;
2669 if (tokentab2[i].token == ARROW)
2670 last_was_structop = 1;
2671 return tokentab2[i].token;
2672 }
2673
2674 switch (c = *tokstart)
2675 {
2676 case 0:
2677 /* If we were just scanning the result of a macro expansion,
2678 then we need to resume scanning the original text.
2679 If we're parsing for field name completion, and the previous
2680 token allows such completion, return a COMPLETE token.
2681 Otherwise, we were already scanning the original text, and
2682 we're really done. */
2683 if (scanning_macro_expansion ())
2684 {
2685 finished_macro_expansion ();
2686 goto retry;
2687 }
2688 else if (saw_name_at_eof)
2689 {
2690 saw_name_at_eof = 0;
2691 return COMPLETE;
2692 }
2693 else if (par_state->parse_completion && saw_structop)
2694 return COMPLETE;
2695 else
2696 return 0;
2697
2698 case ' ':
2699 case '\t':
2700 case '\n':
2701 pstate->lexptr++;
2702 goto retry;
2703
2704 case '[':
2705 case '(':
2706 paren_depth++;
2707 pstate->lexptr++;
2708 if (par_state->language ()->la_language == language_objc
2709 && c == '[')
2710 return OBJC_LBRAC;
2711 return c;
2712
2713 case ']':
2714 case ')':
2715 if (paren_depth == 0)
2716 return 0;
2717 paren_depth--;
2718 pstate->lexptr++;
2719 return c;
2720
2721 case ',':
2722 if (pstate->comma_terminates
2723 && paren_depth == 0
2724 && ! scanning_macro_expansion ())
2725 return 0;
2726 pstate->lexptr++;
2727 return c;
2728
2729 case '.':
2730 /* Might be a floating point number. */
2731 if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
2732 {
2733 last_was_structop = true;
2734 goto symbol; /* Nope, must be a symbol. */
2735 }
2736 /* FALL THRU. */
2737
2738 case '0':
2739 case '1':
2740 case '2':
2741 case '3':
2742 case '4':
2743 case '5':
2744 case '6':
2745 case '7':
2746 case '8':
2747 case '9':
2748 {
2749 /* It's a number. */
2750 int got_dot = 0, got_e = 0, toktype;
2751 const char *p = tokstart;
2752 int hex = input_radix > 10;
2753
2754 if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
2755 {
2756 p += 2;
2757 hex = 1;
2758 }
2759 else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
2760 {
2761 p += 2;
2762 hex = 0;
2763 }
2764
2765 for (;; ++p)
2766 {
2767 /* This test includes !hex because 'e' is a valid hex digit
2768 and thus does not indicate a floating point number when
2769 the radix is hex. */
2770 if (!hex && !got_e && (*p == 'e' || *p == 'E'))
2771 got_dot = got_e = 1;
2772 /* This test does not include !hex, because a '.' always indicates
2773 a decimal floating point number regardless of the radix. */
2774 else if (!got_dot && *p == '.')
2775 got_dot = 1;
2776 else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
2777 && (*p == '-' || *p == '+'))
2778 /* This is the sign of the exponent, not the end of the
2779 number. */
2780 continue;
2781 /* We will take any letters or digits. parse_number will
2782 complain if past the radix, or if L or U are not final. */
2783 else if ((*p < '0' || *p > '9')
2784 && ((*p < 'a' || *p > 'z')
2785 && (*p < 'A' || *p > 'Z')))
2786 break;
2787 }
2788 toktype = parse_number (par_state, tokstart, p - tokstart,
2789 got_dot|got_e, &yylval);
2790 if (toktype == ERROR)
2791 {
2792 char *err_copy = (char *) alloca (p - tokstart + 1);
2793
2794 memcpy (err_copy, tokstart, p - tokstart);
2795 err_copy[p - tokstart] = 0;
2796 error (_("Invalid number \"%s\"."), err_copy);
2797 }
2798 pstate->lexptr = p;
2799 return toktype;
2800 }
2801
2802 case '@':
2803 {
2804 const char *p = &tokstart[1];
2805
2806 if (par_state->language ()->la_language == language_objc)
2807 {
2808 size_t len = strlen ("selector");
2809
2810 if (strncmp (p, "selector", len) == 0
2811 && (p[len] == '\0' || ISSPACE (p[len])))
2812 {
2813 pstate->lexptr = p + len;
2814 return SELECTOR;
2815 }
2816 else if (*p == '"')
2817 goto parse_string;
2818 }
2819
2820 while (ISSPACE (*p))
2821 p++;
2822 size_t len = strlen ("entry");
2823 if (strncmp (p, "entry", len) == 0 && !c_ident_is_alnum (p[len])
2824 && p[len] != '_')
2825 {
2826 pstate->lexptr = &p[len];
2827 return ENTRY;
2828 }
2829 }
2830 /* FALLTHRU */
2831 case '+':
2832 case '-':
2833 case '*':
2834 case '/':
2835 case '%':
2836 case '|':
2837 case '&':
2838 case '^':
2839 case '~':
2840 case '!':
2841 case '<':
2842 case '>':
2843 case '?':
2844 case ':':
2845 case '=':
2846 case '{':
2847 case '}':
2848 symbol:
2849 pstate->lexptr++;
2850 return c;
2851
2852 case 'L':
2853 case 'u':
2854 case 'U':
2855 if (tokstart[1] != '"' && tokstart[1] != '\'')
2856 break;
2857 /* Fall through. */
2858 case '\'':
2859 case '"':
2860
2861 parse_string:
2862 {
2863 int host_len;
2864 int result = parse_string_or_char (tokstart, &pstate->lexptr,
2865 &yylval.tsval, &host_len);
2866 if (result == CHAR)
2867 {
2868 if (host_len == 0)
2869 error (_("Empty character constant."));
2870 else if (host_len > 2 && c == '\'')
2871 {
2872 ++tokstart;
2873 namelen = pstate->lexptr - tokstart - 1;
2874 *is_quoted_name = true;
2875
2876 goto tryname;
2877 }
2878 else if (host_len > 1)
2879 error (_("Invalid character constant."));
2880 }
2881 return result;
2882 }
2883 }
2884
2885 if (!(c == '_' || c == '$' || c_ident_is_alpha (c)))
2886 /* We must have come across a bad character (e.g. ';'). */
2887 error (_("Invalid character '%c' in expression."), c);
2888
2889 /* It's a name. See how long it is. */
2890 namelen = 0;
2891 for (c = tokstart[namelen];
2892 (c == '_' || c == '$' || c_ident_is_alnum (c) || c == '<');)
2893 {
2894 /* Template parameter lists are part of the name.
2895 FIXME: This mishandles `print $a<4&&$a>3'. */
2896
2897 if (c == '<')
2898 {
2899 if (! is_cast_operator (tokstart, namelen))
2900 {
2901 /* Scan ahead to get rest of the template specification. Note
2902 that we look ahead only when the '<' adjoins non-whitespace
2903 characters; for comparison expressions, e.g. "a < b > c",
2904 there must be spaces before the '<', etc. */
2905 const char *p = find_template_name_end (tokstart + namelen);
2906
2907 if (p)
2908 namelen = p - tokstart;
2909 }
2910 break;
2911 }
2912 c = tokstart[++namelen];
2913 }
2914
2915 /* The token "if" terminates the expression and is NOT removed from
2916 the input stream. It doesn't count if it appears in the
2917 expansion of a macro. */
2918 if (namelen == 2
2919 && tokstart[0] == 'i'
2920 && tokstart[1] == 'f'
2921 && ! scanning_macro_expansion ())
2922 {
2923 return 0;
2924 }
2925
2926 /* For the same reason (breakpoint conditions), "thread N"
2927 terminates the expression. "thread" could be an identifier, but
2928 an identifier is never followed by a number without intervening
2929 punctuation. "task" is similar. Handle abbreviations of these,
2930 similarly to breakpoint.c:find_condition_and_thread. */
2931 if (namelen >= 1
2932 && (strncmp (tokstart, "thread", namelen) == 0
2933 || strncmp (tokstart, "task", namelen) == 0)
2934 && (tokstart[namelen] == ' ' || tokstart[namelen] == '\t')
2935 && ! scanning_macro_expansion ())
2936 {
2937 const char *p = tokstart + namelen + 1;
2938
2939 while (*p == ' ' || *p == '\t')
2940 p++;
2941 if (*p >= '0' && *p <= '9')
2942 return 0;
2943 }
2944
2945 pstate->lexptr += namelen;
2946
2947 tryname:
2948
2949 yylval.sval.ptr = tokstart;
2950 yylval.sval.length = namelen;
2951
2952 /* Catch specific keywords. */
2953 std::string copy = copy_name (yylval.sval);
2954 for (i = 0; i < sizeof ident_tokens / sizeof ident_tokens[0]; i++)
2955 if (copy == ident_tokens[i].oper)
2956 {
2957 if ((ident_tokens[i].flags & FLAG_CXX) != 0
2958 && par_state->language ()->la_language != language_cplus)
2959 break;
2960 if ((ident_tokens[i].flags & FLAG_C) != 0
2961 && par_state->language ()->la_language != language_c
2962 && par_state->language ()->la_language != language_objc)
2963 break;
2964
2965 if ((ident_tokens[i].flags & FLAG_SHADOW) != 0)
2966 {
2967 struct field_of_this_result is_a_field_of_this;
2968
2969 if (lookup_symbol (copy.c_str (),
2970 pstate->expression_context_block,
2971 VAR_DOMAIN,
2972 (par_state->language ()->la_language
2973 == language_cplus ? &is_a_field_of_this
2974 : NULL)).symbol
2975 != NULL)
2976 {
2977 /* The keyword is shadowed. */
2978 break;
2979 }
2980 }
2981
2982 /* It is ok to always set this, even though we don't always
2983 strictly need to. */
2984 yylval.opcode = ident_tokens[i].opcode;
2985 return ident_tokens[i].token;
2986 }
2987
2988 if (*tokstart == '$')
2989 return DOLLAR_VARIABLE;
2990
2991 if (pstate->parse_completion && *pstate->lexptr == '\0')
2992 saw_name_at_eof = 1;
2993
2994 yylval.ssym.stoken = yylval.sval;
2995 yylval.ssym.sym.symbol = NULL;
2996 yylval.ssym.sym.block = NULL;
2997 yylval.ssym.is_a_field_of_this = 0;
2998 return NAME;
2999 }
3000
3001 /* An object of this type is pushed on a FIFO by the "outer" lexer. */
3002 struct token_and_value
3003 {
3004 int token;
3005 YYSTYPE value;
3006 };
3007
3008 /* A FIFO of tokens that have been read but not yet returned to the
3009 parser. */
3010 static std::vector<token_and_value> token_fifo;
3011
3012 /* Non-zero if the lexer should return tokens from the FIFO. */
3013 static int popping;
3014
3015 /* Temporary storage for c_lex; this holds symbol names as they are
3016 built up. */
3017 auto_obstack name_obstack;
3018
3019 /* Classify a NAME token. The contents of the token are in `yylval'.
3020 Updates yylval and returns the new token type. BLOCK is the block
3021 in which lookups start; this can be NULL to mean the global scope.
3022 IS_QUOTED_NAME is non-zero if the name token was originally quoted
3023 in single quotes. IS_AFTER_STRUCTOP is true if this name follows
3024 a structure operator -- either '.' or ARROW */
3025
3026 static int
3027 classify_name (struct parser_state *par_state, const struct block *block,
3028 bool is_quoted_name, bool is_after_structop)
3029 {
3030 struct block_symbol bsym;
3031 struct field_of_this_result is_a_field_of_this;
3032
3033 std::string copy = copy_name (yylval.sval);
3034
3035 /* Initialize this in case we *don't* use it in this call; that way
3036 we can refer to it unconditionally below. */
3037 memset (&is_a_field_of_this, 0, sizeof (is_a_field_of_this));
3038
3039 bsym = lookup_symbol (copy.c_str (), block, VAR_DOMAIN,
3040 par_state->language ()->la_name_of_this
3041 ? &is_a_field_of_this : NULL);
3042
3043 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_BLOCK)
3044 {
3045 yylval.ssym.sym = bsym;
3046 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3047 return BLOCKNAME;
3048 }
3049 else if (!bsym.symbol)
3050 {
3051 /* If we found a field of 'this', we might have erroneously
3052 found a constructor where we wanted a type name. Handle this
3053 case by noticing that we found a constructor and then look up
3054 the type tag instead. */
3055 if (is_a_field_of_this.type != NULL
3056 && is_a_field_of_this.fn_field != NULL
3057 && TYPE_FN_FIELD_CONSTRUCTOR (is_a_field_of_this.fn_field->fn_fields,
3058 0))
3059 {
3060 struct field_of_this_result inner_is_a_field_of_this;
3061
3062 bsym = lookup_symbol (copy.c_str (), block, STRUCT_DOMAIN,
3063 &inner_is_a_field_of_this);
3064 if (bsym.symbol != NULL)
3065 {
3066 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
3067 return TYPENAME;
3068 }
3069 }
3070
3071 /* If we found a field on the "this" object, or we are looking
3072 up a field on a struct, then we want to prefer it over a
3073 filename. However, if the name was quoted, then it is better
3074 to check for a filename or a block, since this is the only
3075 way the user has of requiring the extension to be used. */
3076 if ((is_a_field_of_this.type == NULL && !is_after_structop)
3077 || is_quoted_name)
3078 {
3079 /* See if it's a file name. */
3080 struct symtab *symtab;
3081
3082 symtab = lookup_symtab (copy.c_str ());
3083 if (symtab)
3084 {
3085 yylval.bval = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symtab),
3086 STATIC_BLOCK);
3087 return FILENAME;
3088 }
3089 }
3090 }
3091
3092 if (bsym.symbol && SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF)
3093 {
3094 yylval.tsym.type = SYMBOL_TYPE (bsym.symbol);
3095 return TYPENAME;
3096 }
3097
3098 /* See if it's an ObjC classname. */
3099 if (par_state->language ()->la_language == language_objc && !bsym.symbol)
3100 {
3101 CORE_ADDR Class = lookup_objc_class (par_state->gdbarch (),
3102 copy.c_str ());
3103 if (Class)
3104 {
3105 struct symbol *sym;
3106
3107 yylval.theclass.theclass = Class;
3108 sym = lookup_struct_typedef (copy.c_str (),
3109 par_state->expression_context_block, 1);
3110 if (sym)
3111 yylval.theclass.type = SYMBOL_TYPE (sym);
3112 return CLASSNAME;
3113 }
3114 }
3115
3116 /* Input names that aren't symbols but ARE valid hex numbers, when
3117 the input radix permits them, can be names or numbers depending
3118 on the parse. Note we support radixes > 16 here. */
3119 if (!bsym.symbol
3120 && ((copy[0] >= 'a' && copy[0] < 'a' + input_radix - 10)
3121 || (copy[0] >= 'A' && copy[0] < 'A' + input_radix - 10)))
3122 {
3123 YYSTYPE newlval; /* Its value is ignored. */
3124 int hextype = parse_number (par_state, copy.c_str (), yylval.sval.length,
3125 0, &newlval);
3126
3127 if (hextype == INT)
3128 {
3129 yylval.ssym.sym = bsym;
3130 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3131 return NAME_OR_INT;
3132 }
3133 }
3134
3135 /* Any other kind of symbol */
3136 yylval.ssym.sym = bsym;
3137 yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
3138
3139 if (bsym.symbol == NULL
3140 && par_state->language ()->la_language == language_cplus
3141 && is_a_field_of_this.type == NULL
3142 && lookup_minimal_symbol (copy.c_str (), NULL, NULL).minsym == NULL)
3143 return UNKNOWN_CPP_NAME;
3144
3145 return NAME;
3146 }
3147
3148 /* Like classify_name, but used by the inner loop of the lexer, when a
3149 name might have already been seen. CONTEXT is the context type, or
3150 NULL if this is the first component of a name. */
3151
3152 static int
3153 classify_inner_name (struct parser_state *par_state,
3154 const struct block *block, struct type *context)
3155 {
3156 struct type *type;
3157
3158 if (context == NULL)
3159 return classify_name (par_state, block, false, false);
3160
3161 type = check_typedef (context);
3162 if (!type_aggregate_p (type))
3163 return ERROR;
3164
3165 std::string copy = copy_name (yylval.ssym.stoken);
3166 /* N.B. We assume the symbol can only be in VAR_DOMAIN. */
3167 yylval.ssym.sym = cp_lookup_nested_symbol (type, copy.c_str (), block,
3168 VAR_DOMAIN);
3169
3170 /* If no symbol was found, search for a matching base class named
3171 COPY. This will allow users to enter qualified names of class members
3172 relative to the `this' pointer. */
3173 if (yylval.ssym.sym.symbol == NULL)
3174 {
3175 struct type *base_type = cp_find_type_baseclass_by_name (type,
3176 copy.c_str ());
3177
3178 if (base_type != NULL)
3179 {
3180 yylval.tsym.type = base_type;
3181 return TYPENAME;
3182 }
3183
3184 return ERROR;
3185 }
3186
3187 switch (SYMBOL_CLASS (yylval.ssym.sym.symbol))
3188 {
3189 case LOC_BLOCK:
3190 case LOC_LABEL:
3191 /* cp_lookup_nested_symbol might have accidentally found a constructor
3192 named COPY when we really wanted a base class of the same name.
3193 Double-check this case by looking for a base class. */
3194 {
3195 struct type *base_type
3196 = cp_find_type_baseclass_by_name (type, copy.c_str ());
3197
3198 if (base_type != NULL)
3199 {
3200 yylval.tsym.type = base_type;
3201 return TYPENAME;
3202 }
3203 }
3204 return ERROR;
3205
3206 case LOC_TYPEDEF:
3207 yylval.tsym.type = SYMBOL_TYPE (yylval.ssym.sym.symbol);
3208 return TYPENAME;
3209
3210 default:
3211 return NAME;
3212 }
3213 internal_error (__FILE__, __LINE__, _("not reached"));
3214 }
3215
3216 /* The outer level of a two-level lexer. This calls the inner lexer
3217 to return tokens. It then either returns these tokens, or
3218 aggregates them into a larger token. This lets us work around a
3219 problem in our parsing approach, where the parser could not
3220 distinguish between qualified names and qualified types at the
3221 right point.
3222
3223 This approach is still not ideal, because it mishandles template
3224 types. See the comment in lex_one_token for an example. However,
3225 this is still an improvement over the earlier approach, and will
3226 suffice until we move to better parsing technology. */
3227
3228 static int
3229 yylex (void)
3230 {
3231 token_and_value current;
3232 int first_was_coloncolon, last_was_coloncolon;
3233 struct type *context_type = NULL;
3234 int last_to_examine, next_to_examine, checkpoint;
3235 const struct block *search_block;
3236 bool is_quoted_name, last_lex_was_structop;
3237
3238 if (popping && !token_fifo.empty ())
3239 goto do_pop;
3240 popping = 0;
3241
3242 last_lex_was_structop = last_was_structop;
3243
3244 /* Read the first token and decide what to do. Most of the
3245 subsequent code is C++-only; but also depends on seeing a "::" or
3246 name-like token. */
3247 current.token = lex_one_token (pstate, &is_quoted_name);
3248 if (current.token == NAME)
3249 current.token = classify_name (pstate, pstate->expression_context_block,
3250 is_quoted_name, last_lex_was_structop);
3251 if (pstate->language ()->la_language != language_cplus
3252 || (current.token != TYPENAME && current.token != COLONCOLON
3253 && current.token != FILENAME))
3254 return current.token;
3255
3256 /* Read any sequence of alternating "::" and name-like tokens into
3257 the token FIFO. */
3258 current.value = yylval;
3259 token_fifo.push_back (current);
3260 last_was_coloncolon = current.token == COLONCOLON;
3261 while (1)
3262 {
3263 bool ignore;
3264
3265 /* We ignore quoted names other than the very first one.
3266 Subsequent ones do not have any special meaning. */
3267 current.token = lex_one_token (pstate, &ignore);
3268 current.value = yylval;
3269 token_fifo.push_back (current);
3270
3271 if ((last_was_coloncolon && current.token != NAME)
3272 || (!last_was_coloncolon && current.token != COLONCOLON))
3273 break;
3274 last_was_coloncolon = !last_was_coloncolon;
3275 }
3276 popping = 1;
3277
3278 /* We always read one extra token, so compute the number of tokens
3279 to examine accordingly. */
3280 last_to_examine = token_fifo.size () - 2;
3281 next_to_examine = 0;
3282
3283 current = token_fifo[next_to_examine];
3284 ++next_to_examine;
3285
3286 name_obstack.clear ();
3287 checkpoint = 0;
3288 if (current.token == FILENAME)
3289 search_block = current.value.bval;
3290 else if (current.token == COLONCOLON)
3291 search_block = NULL;
3292 else
3293 {
3294 gdb_assert (current.token == TYPENAME);
3295 search_block = pstate->expression_context_block;
3296 obstack_grow (&name_obstack, current.value.sval.ptr,
3297 current.value.sval.length);
3298 context_type = current.value.tsym.type;
3299 checkpoint = 1;
3300 }
3301
3302 first_was_coloncolon = current.token == COLONCOLON;
3303 last_was_coloncolon = first_was_coloncolon;
3304
3305 while (next_to_examine <= last_to_examine)
3306 {
3307 token_and_value next;
3308
3309 next = token_fifo[next_to_examine];
3310 ++next_to_examine;
3311
3312 if (next.token == NAME && last_was_coloncolon)
3313 {
3314 int classification;
3315
3316 yylval = next.value;
3317 classification = classify_inner_name (pstate, search_block,
3318 context_type);
3319 /* We keep going until we either run out of names, or until
3320 we have a qualified name which is not a type. */
3321 if (classification != TYPENAME && classification != NAME)
3322 break;
3323
3324 /* Accept up to this token. */
3325 checkpoint = next_to_examine;
3326
3327 /* Update the partial name we are constructing. */
3328 if (context_type != NULL)
3329 {
3330 /* We don't want to put a leading "::" into the name. */
3331 obstack_grow_str (&name_obstack, "::");
3332 }
3333 obstack_grow (&name_obstack, next.value.sval.ptr,
3334 next.value.sval.length);
3335
3336 yylval.sval.ptr = (const char *) obstack_base (&name_obstack);
3337 yylval.sval.length = obstack_object_size (&name_obstack);
3338 current.value = yylval;
3339 current.token = classification;
3340
3341 last_was_coloncolon = 0;
3342
3343 if (classification == NAME)
3344 break;
3345
3346 context_type = yylval.tsym.type;
3347 }
3348 else if (next.token == COLONCOLON && !last_was_coloncolon)
3349 last_was_coloncolon = 1;
3350 else
3351 {
3352 /* We've reached the end of the name. */
3353 break;
3354 }
3355 }
3356
3357 /* If we have a replacement token, install it as the first token in
3358 the FIFO, and delete the other constituent tokens. */
3359 if (checkpoint > 0)
3360 {
3361 current.value.sval.ptr
3362 = obstack_strndup (&cpstate->expansion_obstack,
3363 current.value.sval.ptr,
3364 current.value.sval.length);
3365
3366 token_fifo[0] = current;
3367 if (checkpoint > 1)
3368 token_fifo.erase (token_fifo.begin () + 1,
3369 token_fifo.begin () + checkpoint);
3370 }
3371
3372 do_pop:
3373 current = token_fifo[0];
3374 token_fifo.erase (token_fifo.begin ());
3375 yylval = current.value;
3376 return current.token;
3377 }
3378
3379 int
3380 c_parse (struct parser_state *par_state)
3381 {
3382 /* Setting up the parser state. */
3383 scoped_restore pstate_restore = make_scoped_restore (&pstate);
3384 gdb_assert (par_state != NULL);
3385 pstate = par_state;
3386
3387 c_parse_state cstate;
3388 scoped_restore cstate_restore = make_scoped_restore (&cpstate, &cstate);
3389
3390 gdb::unique_xmalloc_ptr<struct macro_scope> macro_scope;
3391
3392 if (par_state->expression_context_block)
3393 macro_scope
3394 = sal_macro_scope (find_pc_line (par_state->expression_context_pc, 0));
3395 else
3396 macro_scope = default_macro_scope ();
3397 if (! macro_scope)
3398 macro_scope = user_macro_scope ();
3399
3400 scoped_restore restore_macro_scope
3401 = make_scoped_restore (&expression_macro_scope, macro_scope.get ());
3402
3403 scoped_restore restore_yydebug = make_scoped_restore (&yydebug,
3404 parser_debug);
3405
3406 /* Initialize some state used by the lexer. */
3407 last_was_structop = false;
3408 saw_name_at_eof = 0;
3409 paren_depth = 0;
3410
3411 token_fifo.clear ();
3412 popping = 0;
3413 name_obstack.clear ();
3414
3415 return yyparse ();
3416 }
3417
3418 #ifdef YYBISON
3419
3420 /* This is called via the YYPRINT macro when parser debugging is
3421 enabled. It prints a token's value. */
3422
3423 static void
3424 c_print_token (FILE *file, int type, YYSTYPE value)
3425 {
3426 switch (type)
3427 {
3428 case INT:
3429 parser_fprintf (file, "typed_val_int<%s, %s>",
3430 TYPE_SAFE_NAME (value.typed_val_int.type),
3431 pulongest (value.typed_val_int.val));
3432 break;
3433
3434 case CHAR:
3435 case STRING:
3436 {
3437 char *copy = (char *) alloca (value.tsval.length + 1);
3438
3439 memcpy (copy, value.tsval.ptr, value.tsval.length);
3440 copy[value.tsval.length] = '\0';
3441
3442 parser_fprintf (file, "tsval<type=%d, %s>", value.tsval.type, copy);
3443 }
3444 break;
3445
3446 case NSSTRING:
3447 case DOLLAR_VARIABLE:
3448 parser_fprintf (file, "sval<%s>", copy_name (value.sval).c_str ());
3449 break;
3450
3451 case TYPENAME:
3452 parser_fprintf (file, "tsym<type=%s, name=%s>",
3453 TYPE_SAFE_NAME (value.tsym.type),
3454 copy_name (value.tsym.stoken).c_str ());
3455 break;
3456
3457 case NAME:
3458 case UNKNOWN_CPP_NAME:
3459 case NAME_OR_INT:
3460 case BLOCKNAME:
3461 parser_fprintf (file, "ssym<name=%s, sym=%s, field_of_this=%d>",
3462 copy_name (value.ssym.stoken).c_str (),
3463 (value.ssym.sym.symbol == NULL
3464 ? "(null)" : value.ssym.sym.symbol->print_name ()),
3465 value.ssym.is_a_field_of_this);
3466 break;
3467
3468 case FILENAME:
3469 parser_fprintf (file, "bval<%s>", host_address_to_string (value.bval));
3470 break;
3471 }
3472 }
3473
3474 #endif
3475
3476 static void
3477 yyerror (const char *msg)
3478 {
3479 if (pstate->prev_lexptr)
3480 pstate->lexptr = pstate->prev_lexptr;
3481
3482 error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
3483 }