]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/arm/tm-arm.h
import gdb-1999-08-30 snapshot
[thirdparty/binutils-gdb.git] / gdb / config / arm / tm-arm.h
1 /* Definitions to make GDB target for an ARM
2 Copyright 1986-1989, 1991, 1993-1999 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 /* Forward decls for prototypes */
22 struct type;
23 struct value;
24
25 #define TARGET_BYTE_ORDER_SELECTABLE
26
27 /* IEEE format floating point */
28
29 #define IEEE_FLOAT
30
31 /* FIXME: may need a floatformat_ieee_double_bigbyte_littleword format for
32 BIG_ENDIAN use. -fnf */
33
34 #define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
35 ? &floatformat_ieee_double_big \
36 : &floatformat_ieee_double_littlebyte_bigword)
37
38 /* When reading symbols, we need to zap the low bit of the address, which
39 may be set to 1 for Thumb functions. */
40
41 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
42
43 /* Remove useless bits from addresses in a running program. */
44
45 CORE_ADDR arm_addr_bits_remove PARAMS ((CORE_ADDR));
46
47 #define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
48
49 /* Offset from address of function to start of its code.
50 Zero on most machines. */
51
52 #define FUNCTION_START_OFFSET 0
53
54 /* Advance PC across any function entry prologue instructions
55 to reach some "real" code. */
56
57 extern CORE_ADDR arm_skip_prologue PARAMS ((CORE_ADDR pc));
58
59 #define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
60
61 /* Immediately after a function call, return the saved pc.
62 Can't always go through the frames for this because on some machines
63 the new frame is not set up until the new function executes
64 some instructions. */
65
66 #define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
67 struct frame_info;
68 extern CORE_ADDR arm_saved_pc_after_call PARAMS ((struct frame_info *));
69
70 /* I don't know the real values for these. */
71 #define TARGET_UPAGES UPAGES
72 #define TARGET_NBPG NBPG
73
74 /* Address of end of stack space. */
75
76 #define STACK_END_ADDR (0x01000000 - (TARGET_UPAGES * TARGET_NBPG))
77
78 /* Stack grows downward. */
79
80 #define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
81
82 /* !!!! if we're using RDP, then we're inserting breakpoints and storing
83 their handles instread of what was in memory. It is nice that
84 this is the same size as a handle - otherwise remote-rdp will
85 have to change. */
86
87 /* BREAKPOINT_FROM_PC uses the program counter value to determine whether a
88 16- or 32-bit breakpoint should be used. It returns a pointer
89 to a string of bytes that encode a breakpoint instruction, stores
90 the length of the string to *lenptr, and adjusts the pc (if necessary) to
91 point to the actual memory location where the breakpoint should be
92 inserted. */
93
94 extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
95 #define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
96
97 /* Amount PC must be decremented by after a breakpoint.
98 This is often the number of bytes in BREAKPOINT
99 but not always. */
100
101 #define DECR_PC_AFTER_BREAK 0
102
103 /* code to execute to print interesting information about the
104 * floating point processor (if any)
105 * No need to define if there is nothing to do.
106 */
107 extern void arm_float_info (void);
108
109 #define FLOAT_INFO { arm_float_info (); }
110
111 /* Say how long (ordinary) registers are. This is a piece of bogosity
112 used in push_word and a few other places; REGISTER_RAW_SIZE is the
113 real way to know how big a register is. */
114
115 #define REGISTER_SIZE 4
116
117 /* Number of machine registers */
118
119 /* Note: I make a fake copy of the pc in register 25 (calling it ps) so
120 that I can clear the status bits from pc (register 15) */
121
122 #define NUM_REGS 26
123
124 /* An array of names of registers. */
125
126 extern char **arm_register_names;
127 #define REGISTER_NAME(i) arm_register_names[i]
128
129 /* Register numbers of various important registers.
130 Note that some of these values are "real" register numbers,
131 and correspond to the general registers of the machine,
132 and some are "phony" register numbers which are too large
133 to be actual register numbers as far as the user is concerned
134 but do serve to get the desired values when passed to read_register. */
135
136 #define A1_REGNUM 0 /* first integer-like argument */
137 #define A4_REGNUM 3 /* last integer-like argument */
138 #define AP_REGNUM 11
139 #define FP_REGNUM 11 /* Contains address of executing stack frame */
140 #define SP_REGNUM 13 /* Contains address of top of stack */
141 #define LR_REGNUM 14 /* address to return to from a function call */
142 #define PC_REGNUM 15 /* Contains program counter */
143 #define F0_REGNUM 16 /* first floating point register */
144 #define F3_REGNUM 19 /* last floating point argument register */
145 #define F7_REGNUM 23 /* last floating point register */
146 #define FPS_REGNUM 24 /* floating point status register */
147 #define PS_REGNUM 25 /* Contains processor status */
148
149 #define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
150
151 #define ARM_NUM_ARG_REGS 4
152 #define ARM_LAST_ARG_REGNUM A4_REGNUM
153 #define ARM_NUM_FP_ARG_REGS 4
154 #define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
155
156 /* Instruction condition field values. */
157 #define INST_EQ 0x0
158 #define INST_NE 0x1
159 #define INST_CS 0x2
160 #define INST_CC 0x3
161 #define INST_MI 0x4
162 #define INST_PL 0x5
163 #define INST_VS 0x6
164 #define INST_VC 0x7
165 #define INST_HI 0x8
166 #define INST_LS 0x9
167 #define INST_GE 0xa
168 #define INST_LT 0xb
169 #define INST_GT 0xc
170 #define INST_LE 0xd
171 #define INST_AL 0xe
172 #define INST_NV 0xf
173
174 #define FLAG_N 0x80000000
175 #define FLAG_Z 0x40000000
176 #define FLAG_C 0x20000000
177 #define FLAG_V 0x10000000
178
179
180
181 /* Total amount of space needed to store our copies of the machine's
182 register state, the array `registers'. */
183 #define REGISTER_BYTES (16*4 + 12*8 + 4 + 4)
184
185 /* Index within `registers' of the first byte of the space for
186 register N. */
187
188 #define REGISTER_BYTE(N) (((N) < F0_REGNUM) ? (N)*4 : \
189 (((N) < PS_REGNUM) ? 16*4 + ((N) - 16)*12 : \
190 16*4 + 8*12 + ((N) - FPS_REGNUM) * 4))
191
192 /* Number of bytes of storage in the actual machine representation
193 for register N. On the vax, all regs are 4 bytes. */
194
195 #define REGISTER_RAW_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 12)
196
197 /* Number of bytes of storage in the program's representation
198 for register N. On the vax, all regs are 4 bytes. */
199
200 #define REGISTER_VIRTUAL_SIZE(N) (((N) < F0_REGNUM || (N) >= FPS_REGNUM) ? 4 : 8)
201
202 /* Largest value REGISTER_RAW_SIZE can have. */
203
204 #define MAX_REGISTER_RAW_SIZE 12
205
206 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
207
208 #define MAX_REGISTER_VIRTUAL_SIZE 8
209
210 /* Nonzero if register N requires conversion
211 from raw format to virtual format. */
212 #define REGISTER_CONVERTIBLE(N) ((unsigned)(N) - F0_REGNUM < 8)
213
214 /* Convert data from raw format for register REGNUM in buffer FROM
215 to virtual format with type TYPE in buffer TO. */
216
217 void convert_from_extended (void *ptr, /*double*/void *dbl);
218
219 #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
220 { \
221 double val; \
222 convert_from_extended ((FROM), & val); \
223 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
224 }
225
226 /* Convert data from virtual format with type TYPE in buffer FROM
227 to raw format for register REGNUM in buffer TO. */
228
229 extern void convert_to_extended (void *ptr, /*double*/void *dbl);
230
231 #define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
232 { \
233 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
234 convert_to_extended (&val, (TO)); \
235 }
236 /* Return the GDB type object for the "standard" data type
237 of data in register N. */
238
239 #define REGISTER_VIRTUAL_TYPE(N) \
240 (((unsigned)(N) - F0_REGNUM) < 8 ? builtin_type_double : builtin_type_int)
241 \f
242 /* The system C compiler uses a similar structure return convention to gcc */
243 extern use_struct_convention_fn arm_use_struct_convention;
244 #define USE_STRUCT_CONVENTION(gcc_p, type) arm_use_struct_convention (gcc_p, type)
245
246 /* Store the address of the place in which to copy the structure the
247 subroutine will return. This is called from call_function. */
248
249 #define STORE_STRUCT_RETURN(ADDR, SP) \
250 { write_register (0, (ADDR)); }
251
252 /* Extract from an array REGBUF containing the (raw) register state
253 a function return value of type TYPE, and copy that, in virtual format,
254 into VALBUF. */
255
256 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
257 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
258 convert_from_extended (REGBUF + REGISTER_BYTE (F0_REGNUM), VALBUF); \
259 else \
260 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE))
261
262 /* Write into appropriate registers a function return value
263 of type TYPE, given in virtual format. */
264
265 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
266 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
267 char _buf[MAX_REGISTER_RAW_SIZE]; \
268 convert_to_extended (VALBUF, _buf); \
269 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
270 } else \
271 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
272
273 /* Extract from an array REGBUF containing the (raw) register state
274 the address in which a function should return its structure value,
275 as a CORE_ADDR (or an expression that can be used as one). */
276
277 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
278 (extract_address ((PTR) (REGBUF), REGISTER_RAW_SIZE(0)))
279
280 /* Specify that for the native compiler variables for a particular
281 lexical context are listed after the beginning LBRAC instead of
282 before in the executables list of symbols. */
283 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
284 \f
285
286 /* Define other aspects of the stack frame.
287 We keep the offsets of all saved registers, 'cause we need 'em a lot!
288 We also keep the current size of the stack frame, and the offset of
289 the frame pointer from the stack pointer (for frameless functions, and
290 when we're still in the prologue of a function with a frame) */
291
292 #define EXTRA_FRAME_INFO \
293 struct frame_saved_regs fsr; \
294 int framesize; \
295 int frameoffset; \
296 int framereg;
297
298 extern void arm_init_extra_frame_info PARAMS ((int fromleaf,
299 struct frame_info *fi));
300 #define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
301 arm_init_extra_frame_info (fromleaf, fi)
302
303 /* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
304 CORE_ADDR arm_target_read_fp PARAMS ((void));
305 #define TARGET_READ_FP() arm_target_read_fp ()
306
307 /* Describe the pointer in each stack frame to the previous stack frame
308 (its caller). */
309
310 /* FRAME_CHAIN takes a frame's nominal address
311 and produces the frame's chain-pointer.
312
313 However, if FRAME_CHAIN_VALID returns zero,
314 it means the given frame is the outermost one and has no caller. */
315
316 #define FRAME_CHAIN(thisframe) (CORE_ADDR) arm_frame_chain (thisframe)
317 extern CORE_ADDR arm_frame_chain PARAMS ((struct frame_info *));
318
319 extern int arm_frame_chain_valid PARAMS ((CORE_ADDR, struct frame_info *));
320 #define FRAME_CHAIN_VALID(chain, thisframe) arm_frame_chain_valid (chain, thisframe)
321
322 /* Define other aspects of the stack frame. */
323
324 /* A macro that tells us whether the function invocation represented
325 by FI does not have a frame on the stack associated with it. If it
326 does not, FRAMELESS is set to 1, else 0.
327
328 Sometimes we have functions that do a little setup (like saving the vN
329 registers with the stmdb instruction, but DO NOT set up a frame.
330 The symbol table will report this as a prologue. However, it is
331 important not to try to parse these partial frames as frames, or we
332 will get really confused.
333
334 So I will demand 3 instructions between the start & end of the prologue
335 before I call it a real prologue, i.e. at least
336 mov ip, sp,
337 stmdb sp!, {}
338 sub sp, ip, #4. */
339
340 extern int arm_frameless_function_invocation (struct frame_info *fi);
341 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
342 (arm_frameless_function_invocation (FI))
343
344 /* Saved Pc. */
345
346 #define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
347 extern CORE_ADDR arm_frame_saved_pc PARAMS ((struct frame_info *));
348
349 #define FRAME_ARGS_ADDRESS(fi) (fi->frame)
350
351 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
352
353 /* Return number of args passed to a frame.
354 Can return -1, meaning no way to tell. */
355
356 #define FRAME_NUM_ARGS(fi) (-1)
357
358 /* Return number of bytes at start of arglist that are not really args. */
359
360 #define FRAME_ARGS_SKIP 0
361
362 /* Put here the code to store, into a struct frame_saved_regs,
363 the addresses of the saved registers of frame described by FRAME_INFO.
364 This includes special registers such as pc and fp saved in special
365 ways in the stack frame. sp is even more special:
366 the address we return for it IS the sp for the next frame. */
367
368 struct frame_saved_regs;
369 struct frame_info;
370 void arm_frame_find_saved_regs (struct frame_info * fi,
371 struct frame_saved_regs * fsr);
372
373 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
374 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
375 \f
376
377 /* Things needed for making the inferior call functions. */
378
379 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
380 (arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr)))
381 extern CORE_ADDR arm_push_arguments PARAMS ((int, struct value **, CORE_ADDR, int, CORE_ADDR));
382
383 /* Push an empty stack frame, to record the current PC, etc. */
384
385 void arm_push_dummy_frame PARAMS ((void));
386
387 #define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
388
389 /* Discard from the stack the innermost frame, restoring all registers. */
390
391 void arm_pop_frame PARAMS ((void));
392
393 #define POP_FRAME arm_pop_frame ()
394
395 /* This sequence of words is the instructions
396
397 mov lr,pc
398 mov pc,r4
399 illegal
400
401 Note this is 12 bytes. */
402
403 #define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xE7FFDEFE}
404
405 #define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
406
407 #define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
408 extern int arm_call_dummy_breakpoint_offset PARAMS ((void));
409
410 /* Insert the specified number of args and function address
411 into a call sequence of the above form stored at DUMMYNAME. */
412
413 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
414 arm_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
415
416 void arm_fix_call_dummy PARAMS ((char *dummy, CORE_ADDR pc, CORE_ADDR fun,
417 int nargs, struct value ** args,
418 struct type * type, int gcc_p));
419
420 CORE_ADDR arm_get_next_pc PARAMS ((CORE_ADDR));
421
422 /* Functions for dealing with Thumb call thunks. */
423 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) arm_in_call_stub (pc, name)
424 #define SKIP_TRAMPOLINE_CODE(pc) arm_skip_stub (pc)
425 extern int arm_in_call_stub PARAMS ((CORE_ADDR pc, char *name));
426 extern CORE_ADDR arm_skip_stub PARAMS ((CORE_ADDR pc));
427
428 /* Function to determine whether MEMADDR is in a Thumb function. */
429 extern int arm_pc_is_thumb PARAMS ((bfd_vma memaddr));
430
431 /* Function to determine whether MEMADDR is in a call dummy called from
432 a Thumb function. */
433 extern int arm_pc_is_thumb_dummy PARAMS ((bfd_vma memaddr));
434
435 /* Macros for setting and testing a bit in a minimal symbol that
436 marks it as Thumb function. The MSB of the minimal symbol's
437 "info" field is used for this purpose. This field is already
438 being used to store the symbol size, so the assumption is
439 that the symbol size cannot exceed 2^31.
440
441 COFF_MAKE_MSYMBOL_SPECIAL
442 ELF_MAKE_MSYMBOL_SPECIAL tests whether the COFF or ELF symbol corresponds
443 to a thumb function, and sets a "special" bit in a
444 minimal symbol to indicate that it does
445 MSYMBOL_SET_SPECIAL actually sets the "special" bit
446 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
447 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
448 the "info" field with the "special" bit masked out
449 */
450
451 extern int coff_sym_is_thumb (int val);
452 #define MSYMBOL_SET_SPECIAL(msym) \
453 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
454 #define MSYMBOL_IS_SPECIAL(msym) \
455 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
456 #define MSYMBOL_SIZE(msym) \
457 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
458
459 /* Thumb symbol are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
460 #define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
461 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
462 MSYMBOL_SET_SPECIAL(msym); }
463
464 #define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
465 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
466
467 #undef IN_SIGTRAMP
468 #define IN_SIGTRAMP(pc, name) 0