]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/ns32k/tm-umax.h
5497543f210dd536c292ce252af987e11d685526
[thirdparty/binutils-gdb.git] / gdb / config / ns32k / tm-umax.h
1 /* Definitions to make GDB run on an encore under umax 4.2
2 Copyright 1987, 1989, 1991, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* This is also included by tm-ns32km3.h, as well as being used by umax. */
21
22 #define TARGET_BYTE_ORDER LITTLE_ENDIAN
23
24 /* Need to get function ends by adding this to epilogue address from .bf
25 record, not using x_fsize field. */
26 #define FUNCTION_EPILOGUE_SIZE 4
27
28 /* Offset from address of function to start of its code.
29 Zero on most machines. */
30
31 #define FUNCTION_START_OFFSET 0
32
33 /* Advance PC across any function entry prologue instructions
34 to reach some "real" code. */
35
36 #define SKIP_PROLOGUE(pc) \
37 { register unsigned char op = read_memory_integer (pc, 1); \
38 if (op == 0x82) { op = read_memory_integer (pc+2,1); \
39 if ((op & 0x80) == 0) pc += 3; \
40 else if ((op & 0xc0) == 0x80) pc += 4; \
41 else pc += 6; \
42 } \
43 }
44
45 /* Immediately after a function call, return the saved pc.
46 Can't always go through the frames for this because on some machines
47 the new frame is not set up until the new function executes
48 some instructions. */
49
50 #define SAVED_PC_AFTER_CALL(frame) \
51 read_memory_integer (read_register (SP_REGNUM), 4)
52
53 /* Address of end of stack space. */
54
55 #ifndef STACK_END_ADDR
56 #define STACK_END_ADDR (0xfffff000)
57 #endif
58
59 /* Stack grows downward. */
60
61 #define INNER_THAN <
62
63 /* Sequence of bytes for breakpoint instruction. */
64
65 #define BREAKPOINT {0xf2}
66
67 /* Amount PC must be decremented by after a breakpoint.
68 This is often the number of bytes in BREAKPOINT
69 but not always. */
70
71 #define DECR_PC_AFTER_BREAK 0
72
73 /* Nonzero if instruction at PC is a return instruction. */
74
75 #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x12)
76
77 #if 0 /* Disable until fixed *correctly*. */
78 #ifndef INVALID_FLOAT
79 #ifndef NaN
80 #include <nan.h>
81 #endif NaN
82
83 /* Return 1 if P points to an invalid floating point value. */
84 /* Surely wrong for cross-debugging. */
85 #define INVALID_FLOAT(p, s) \
86 ((s == sizeof (float))? \
87 NaF (*(float *) p) : \
88 NaD (*(double *) p))
89 #endif /* INVALID_FLOAT */
90 #endif
91
92 /* Say how long (ordinary) registers are. This is a piece of bogosity
93 used in push_word and a few other places; REGISTER_RAW_SIZE is the
94 real way to know how big a register is. */
95
96 #define REGISTER_SIZE 4
97
98 /* Number of machine registers */
99
100 #define NUM_REGS 25
101
102 #define NUM_GENERAL_REGS 8
103
104 /* Initializer for an array of names of registers.
105 There should be NUM_REGS strings in this initializer. */
106
107 #define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
108 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
109 "sp", "fp", "pc", "ps", \
110 "fsr", \
111 "l0", "l1", "l2", "l3", "xx", \
112 }
113
114 /* Register numbers of various important registers.
115 Note that some of these values are "real" register numbers,
116 and correspond to the general registers of the machine,
117 and some are "phony" register numbers which are too large
118 to be actual register numbers as far as the user is concerned
119 but do serve to get the desired values when passed to read_register. */
120
121 #define R0_REGNUM 0 /* General register 0 */
122 #define FP0_REGNUM 8 /* Floating point register 0 */
123 #define SP_REGNUM 16 /* Contains address of top of stack */
124 #define AP_REGNUM FP_REGNUM
125 #define FP_REGNUM 17 /* Contains address of executing stack frame */
126 #define PC_REGNUM 18 /* Contains program counter */
127 #define PS_REGNUM 19 /* Contains processor status */
128 #define FPS_REGNUM 20 /* Floating point status register */
129 #define LP0_REGNUM 21 /* Double register 0 (same as FP0) */
130
131 /* Total amount of space needed to store our copies of the machine's
132 register state, the array `registers'. */
133 #define REGISTER_BYTES \
134 ((NUM_REGS - 4) * REGISTER_RAW_SIZE(R0_REGNUM) \
135 + 4 * REGISTER_RAW_SIZE(LP0_REGNUM))
136
137 /* Index within `registers' of the first byte of the space for
138 register N. */
139
140 #define REGISTER_BYTE(N) ((N) >= LP0_REGNUM ? \
141 LP0_REGNUM * 4 + ((N) - LP0_REGNUM) * 8 : (N) * 4)
142
143 /* Number of bytes of storage in the actual machine representation
144 for register N. On the 32000, all regs are 4 bytes
145 except for the doubled floating registers. */
146
147 #define REGISTER_RAW_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
148
149 /* Number of bytes of storage in the program's representation
150 for register N. On the 32000, all regs are 4 bytes
151 except for the doubled floating registers. */
152
153 #define REGISTER_VIRTUAL_SIZE(N) ((N) >= LP0_REGNUM ? 8 : 4)
154
155 /* Largest value REGISTER_RAW_SIZE can have. */
156
157 #define MAX_REGISTER_RAW_SIZE 8
158
159 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
160
161 #define MAX_REGISTER_VIRTUAL_SIZE 8
162
163 /* Return the GDB type object for the "standard" data type
164 of data in register N. */
165
166 #define REGISTER_VIRTUAL_TYPE(N) \
167 (((N) < FP0_REGNUM) ? \
168 builtin_type_int : \
169 ((N) < FP0_REGNUM + 8) ? \
170 builtin_type_float : \
171 ((N) < LP0_REGNUM) ? \
172 builtin_type_int : \
173 builtin_type_double)
174
175 /* Store the address of the place in which to copy the structure the
176 subroutine will return. This is called from call_function.
177
178 On this machine this is a no-op, because gcc isn't used on it
179 yet. So this calling convention is not used. */
180
181 #define STORE_STRUCT_RETURN(ADDR, SP)
182
183 /* Extract from an array REGBUF containing the (raw) register state
184 a function return value of type TYPE, and copy that, in virtual format,
185 into VALBUF. */
186
187 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
188 memcpy (VALBUF, REGBUF+REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), TYPE_LENGTH (TYPE))
189
190 /* Write into appropriate registers a function return value
191 of type TYPE, given in virtual format. */
192
193 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
194 write_register_bytes (REGISTER_BYTE (TYPE_CODE (TYPE) == TYPE_CODE_FLT ? FP0_REGNUM : 0), VALBUF, TYPE_LENGTH (TYPE))
195
196 /* Extract from an array REGBUF containing the (raw) register state
197 the address in which a function should return its structure value,
198 as a CORE_ADDR (or an expression that can be used as one). */
199
200 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
201 \f
202 /* Describe the pointer in each stack frame to the previous stack frame
203 (its caller). */
204
205 /* FRAME_CHAIN takes a frame's nominal address
206 and produces the frame's chain-pointer. */
207
208 /* In the case of the ns32000 series, the frame's nominal address is the FP
209 value, and at that address is saved previous FP value as a 4-byte word. */
210
211 #define FRAME_CHAIN(thisframe) \
212 (!inside_entry_file ((thisframe)->pc) ? \
213 read_memory_integer ((thisframe)->frame, 4) :\
214 0)
215
216 /* Define other aspects of the stack frame. */
217
218 #define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame + 4, 4))
219
220 /* Compute base of arguments. */
221
222 #define FRAME_ARGS_ADDRESS(fi) \
223 ((ns32k_get_enter_addr ((fi)->pc) > 1) ? \
224 ((fi)->frame) : (read_register (SP_REGNUM) - 4))
225
226 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
227
228 /* Get the address of the enter opcode for this function, if it is active.
229 Returns positive address > 1 if pc is between enter/exit,
230 1 if pc before enter or after exit, 0 otherwise. */
231
232 extern CORE_ADDR ns32k_get_enter_addr ();
233
234 /* Return number of args passed to a frame.
235 Can return -1, meaning no way to tell.
236 Encore's C compiler often reuses same area on stack for args,
237 so this will often not work properly. If the arg names
238 are known, it's likely most of them will be printed. */
239
240 #define FRAME_NUM_ARGS(numargs, fi) \
241 { CORE_ADDR pc; \
242 CORE_ADDR enter_addr; \
243 unsigned int insn; \
244 unsigned int addr_mode; \
245 int width; \
246 \
247 numargs = -1; \
248 enter_addr = ns32k_get_enter_addr ((fi)->pc); \
249 if (enter_addr > 0) \
250 { \
251 pc = (enter_addr == 1) ? \
252 SAVED_PC_AFTER_CALL (fi) : \
253 FRAME_SAVED_PC (fi); \
254 insn = read_memory_integer (pc,2); \
255 addr_mode = (insn >> 11) & 0x1f; \
256 insn = insn & 0x7ff; \
257 if ((insn & 0x7fc) == 0x57c && \
258 addr_mode == 0x14) /* immediate */ \
259 { \
260 if (insn == 0x57c) /* adjspb */ \
261 width = 1; \
262 else if (insn == 0x57d) /* adjspw */ \
263 width = 2; \
264 else if (insn == 0x57f) /* adjspd */ \
265 width = 4; \
266 numargs = read_memory_integer (pc+2,width); \
267 if (width > 1) \
268 flip_bytes (&numargs, width); \
269 numargs = - sign_extend (numargs, width*8) / 4;\
270 } \
271 } \
272 }
273
274 /* Return number of bytes at start of arglist that are not really args. */
275
276 #define FRAME_ARGS_SKIP 8
277
278 /* Put here the code to store, into a struct frame_saved_regs,
279 the addresses of the saved registers of frame described by FRAME_INFO.
280 This includes special registers such as pc and fp saved in special
281 ways in the stack frame. sp is even more special:
282 the address we return for it IS the sp for the next frame. */
283
284 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
285 { \
286 register int regmask, regnum; \
287 int localcount; \
288 register CORE_ADDR enter_addr; \
289 register CORE_ADDR next_addr; \
290 \
291 memset (&(frame_saved_regs), '\0', sizeof (frame_saved_regs)); \
292 enter_addr = ns32k_get_enter_addr ((frame_info)->pc); \
293 if (enter_addr > 1) \
294 { \
295 regmask = read_memory_integer (enter_addr+1, 1) & 0xff; \
296 localcount = ns32k_localcount (enter_addr); \
297 next_addr = (frame_info)->frame + localcount; \
298 for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) \
299 (frame_saved_regs).regs[regnum] = (regmask & 1) ? \
300 (next_addr -= 4) : 0; \
301 (frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4;\
302 (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 4;\
303 (frame_saved_regs).regs[FP_REGNUM] = \
304 (read_memory_integer ((frame_info)->frame, 4));\
305 } \
306 else if (enter_addr == 1) \
307 { \
308 CORE_ADDR sp = read_register (SP_REGNUM); \
309 (frame_saved_regs).regs[PC_REGNUM] = sp; \
310 (frame_saved_regs).regs[SP_REGNUM] = sp + 4; \
311 } \
312 }
313 \f
314 /* Things needed for making the inferior call functions. */
315
316 /* Push an empty stack frame, to record the current PC, etc. */
317
318 #define PUSH_DUMMY_FRAME \
319 { register CORE_ADDR sp = read_register (SP_REGNUM);\
320 register int regnum; \
321 sp = push_word (sp, read_register (PC_REGNUM)); \
322 sp = push_word (sp, read_register (FP_REGNUM)); \
323 write_register (FP_REGNUM, sp); \
324 for (regnum = 0; regnum < 8; regnum++) \
325 sp = push_word (sp, read_register (regnum)); \
326 write_register (SP_REGNUM, sp); \
327 }
328
329 /* Discard from the stack the innermost frame, restoring all registers. */
330
331 #define POP_FRAME \
332 { register struct frame_info *frame = get_current_frame (); \
333 register CORE_ADDR fp; \
334 register int regnum; \
335 struct frame_saved_regs fsr; \
336 struct frame_info *fi; \
337 fp = frame->frame; \
338 get_frame_saved_regs (frame, &fsr); \
339 for (regnum = 0; regnum < 8; regnum++) \
340 if (fsr.regs[regnum]) \
341 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4)); \
342 write_register (FP_REGNUM, read_memory_integer (fp, 4)); \
343 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); \
344 write_register (SP_REGNUM, fp + 8); \
345 flush_cached_frames (); \
346 }
347
348 /* This sequence of words is the instructions
349 enter 0xff,0 82 ff 00
350 jsr @0x00010203 7f ae c0 01 02 03
351 adjspd 0x69696969 7f a5 01 02 03 04
352 bpt f2
353 Note this is 16 bytes. */
354
355 #define CALL_DUMMY { 0x7f00ff82, 0x0201c0ae, 0x01a57f03, 0xf2040302 }
356
357 #define CALL_DUMMY_START_OFFSET 3
358 #define CALL_DUMMY_LENGTH 16
359 #define CALL_DUMMY_ADDR 5
360 #define CALL_DUMMY_NARGS 11
361
362 /* Insert the specified number of args and function address
363 into a call sequence of the above form stored at DUMMYNAME. */
364
365 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
366 { \
367 int flipped; \
368 flipped = fun | 0xc0000000; \
369 flip_bytes (&flipped, 4); \
370 *((int *) (((char *) dummyname)+CALL_DUMMY_ADDR)) = flipped; \
371 flipped = - nargs * 4; \
372 flip_bytes (&flipped, 4); \
373 *((int *) (((char *) dummyname)+CALL_DUMMY_NARGS)) = flipped; \
374 }