]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/pa/tm-hppa.h
Tweeks from RDBrown to fix compiling on HP/UX using HP's compiler.
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "regcache.h"
26
27 /* Forward declarations of some types we use in prototypes */
28
29 struct frame_info;
30 struct frame_saved_regs;
31 struct value;
32 struct type;
33 struct inferior_status;
34
35 /* Target system byte order. */
36
37 #define TARGET_BYTE_ORDER BIG_ENDIAN
38
39 /* By default assume we don't have to worry about software floating point. */
40 #ifndef SOFT_FLOAT
41 #define SOFT_FLOAT 0
42 #endif
43
44 /* Get at various relevent fields of an instruction word. */
45
46 #define MASK_5 0x1f
47 #define MASK_11 0x7ff
48 #define MASK_14 0x3fff
49 #define MASK_21 0x1fffff
50
51 /* This macro gets bit fields using HP's numbering (MSB = 0) */
52 #ifndef GET_FIELD
53 #define GET_FIELD(X, FROM, TO) \
54 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55 #endif
56
57 /* Watch out for NaNs */
58
59 #define IEEE_FLOAT (1)
60
61 /* On the PA, any pass-by-value structure > 8 bytes is actually
62 passed via a pointer regardless of its type or the compiler
63 used. */
64
65 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
66 (TYPE_LENGTH (type) > 8)
67
68 /* Offset from address of function to start of its code.
69 Zero on most machines. */
70
71 #define FUNCTION_START_OFFSET 0
72
73 /* Advance PC across any function entry prologue instructions
74 to reach some "real" code. */
75
76 extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
77 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
78
79 /* If PC is in some function-call trampoline code, return the PC
80 where the function itself actually starts. If not, return NULL. */
81
82 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
83 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
84
85 /* Return non-zero if we are in an appropriate trampoline. */
86
87 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
88 in_solib_call_trampoline (pc, name)
89 extern int in_solib_call_trampoline (CORE_ADDR, char *);
90
91 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
92 in_solib_return_trampoline (pc, name)
93 extern int in_solib_return_trampoline (CORE_ADDR, char *);
94
95 /* Immediately after a function call, return the saved pc.
96 Can't go through the frames for this because on some machines
97 the new frame is not set up until the new function executes
98 some instructions. */
99
100 #undef SAVED_PC_AFTER_CALL
101 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
102 extern CORE_ADDR saved_pc_after_call (struct frame_info *);
103
104 /* Stack grows upward */
105 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
106
107 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
108 This is used in valops.c, when the sp is adjusted.
109 On hppa the sp must always be kept 64-bit aligned */
110
111 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
112 #define EXTRA_STACK_ALIGNMENT_NEEDED 0
113
114 /* Sequence of bytes for breakpoint instruction. */
115
116 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
117 #define BREAKPOINT32 0x10004
118
119 /* Amount PC must be decremented by after a breakpoint.
120 This is often the number of bytes in BREAKPOINT
121 but not always.
122
123 Not on the PA-RISC */
124
125 #define DECR_PC_AFTER_BREAK 0
126
127 /* Sometimes we may pluck out a minimal symbol that has a negative
128 address.
129
130 An example of this occurs when an a.out is linked against a foo.sl.
131 The foo.sl defines a global bar(), and the a.out declares a signature
132 for bar(). However, the a.out doesn't directly call bar(), but passes
133 its address in another call.
134
135 If you have this scenario and attempt to "break bar" before running,
136 gdb will find a minimal symbol for bar() in the a.out. But that
137 symbol's address will be negative. What this appears to denote is
138 an index backwards from the base of the procedure linkage table (PLT)
139 into the data linkage table (DLT), the end of which is contiguous
140 with the start of the PLT. This is clearly not a valid address for
141 us to set a breakpoint on.
142
143 Note that one must be careful in how one checks for a negative address.
144 0xc0000000 is a legitimate address of something in a shared text
145 segment, for example. Since I don't know what the possible range
146 is of these "really, truly negative" addresses that come from the
147 minimal symbols, I'm resorting to the gross hack of checking the
148 top byte of the address for all 1's. Sigh.
149 */
150 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
151 (! target_has_stack && (pc & 0xFF000000))
152
153 /* return instruction is bv r0(rp) or bv,n r0(rp) */
154
155 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
156
157 /* Say how long (ordinary) registers are. This is a piece of bogosity
158 used in push_word and a few other places; REGISTER_RAW_SIZE is the
159 real way to know how big a register is. */
160
161 #define REGISTER_SIZE 4
162
163 /* Number of machine registers */
164
165 #define NUM_REGS 128
166
167 /* Initializer for an array of names of registers.
168 There should be NUM_REGS strings in this initializer.
169 They are in rows of eight entries */
170
171 #define REGISTER_NAMES \
172 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
173 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
174 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
175 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
176 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
177 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
178 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
179 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
180 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
181 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
182 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
183 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
184 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
185 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
186 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
187 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
188
189 /* Register numbers of various important registers.
190 Note that some of these values are "real" register numbers,
191 and correspond to the general registers of the machine,
192 and some are "phony" register numbers which are too large
193 to be actual register numbers as far as the user is concerned
194 but do serve to get the desired values when passed to read_register. */
195
196 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
197 other r registers. */
198 #define FLAGS_REGNUM 0 /* Various status flags */
199 #define RP_REGNUM 2 /* return pointer */
200 #define FP_REGNUM 3 /* Contains address of executing stack */
201 /* frame */
202 #define SP_REGNUM 30 /* Contains address of top of stack */
203 #define SAR_REGNUM 32 /* Shift Amount Register */
204 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
205 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
206 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
207 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
208 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
209 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
210 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
211 #define IOR_REGNUM 40 /* Interrupt Offset Register */
212 #define SR4_REGNUM 43 /* space register 4 */
213 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
214 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
215 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
216 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
217 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
218 #define FP4_REGNUM 72
219
220 #define ARG0_REGNUM 26 /* The first argument of a callee. */
221 #define ARG1_REGNUM 25 /* The second argument of a callee. */
222 #define ARG2_REGNUM 24 /* The third argument of a callee. */
223 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
224
225 /* compatibility with the rest of gdb. */
226 #define PC_REGNUM PCOQ_HEAD_REGNUM
227 #define NPC_REGNUM PCOQ_TAIL_REGNUM
228
229 /*
230 * Processor Status Word Masks
231 */
232
233 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
234 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
235 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
236 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
237 #define PSW_X 0x00100000 /* Data Memory Break Disable */
238 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
239 #define PSW_C 0x00040000 /* Code Address Translation Enable */
240 #define PSW_V 0x00020000 /* Divide Step Correction */
241 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
242 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
243 #define PSW_R 0x00000010 /* Recovery Counter Enable */
244 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
245 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
246 #define PSW_D 0x00000002 /* Data Address Translation Enable */
247 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
248 /* Machine Check Interruption Enable */
249
250 /* When fetching register values from an inferior or a core file,
251 clean them up using this macro. BUF is a char pointer to
252 the raw value of the register in the registers[] array. */
253
254 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
255 do { \
256 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
257 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
258 } while (0)
259
260 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
261 of register dumps. */
262
263 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
264 extern void pa_do_registers_info (int, int);
265
266 #if 0
267 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
268 extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
269 #endif
270
271 /* PA specific macro to see if the current instruction is nullified. */
272 #ifndef INSTRUCTION_NULLIFIED
273 #define INSTRUCTION_NULLIFIED \
274 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
275 !((int)read_register (FLAGS_REGNUM) & 0x2))
276 #endif
277
278 /* Number of bytes of storage in the actual machine representation
279 for register N. On the PA-RISC, all regs are 4 bytes, including
280 the FP registers (they're accessed as two 4 byte halves). */
281
282 #define REGISTER_RAW_SIZE(N) 4
283
284 /* Total amount of space needed to store our copies of the machine's
285 register state, the array `registers'. */
286 #define REGISTER_BYTES (NUM_REGS * 4)
287
288 /* Index within `registers' of the first byte of the space for
289 register N. */
290
291 #define REGISTER_BYTE(N) (N) * 4
292
293 /* Number of bytes of storage in the program's representation
294 for register N. */
295
296 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
297
298 /* Largest value REGISTER_RAW_SIZE can have. */
299
300 #define MAX_REGISTER_RAW_SIZE 4
301
302 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
303
304 #define MAX_REGISTER_VIRTUAL_SIZE 8
305
306 /* Return the GDB type object for the "standard" data type
307 of data in register N. */
308
309 #define REGISTER_VIRTUAL_TYPE(N) \
310 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
311
312 /* Store the address of the place in which to copy the structure the
313 subroutine will return. This is called from call_function. */
314
315 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
316
317 /* Extract from an array REGBUF containing the (raw) register state
318 a function return value of type TYPE, and copy that, in virtual format,
319 into VALBUF.
320
321 elz: changed what to return when length is > 4: the stored result is
322 in register 28 and in register 29, with the lower order word being in reg 29,
323 so we must start reading it from somehere in the middle of reg28
324
325 FIXME: Not sure what to do for soft float here. */
326
327 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
328 { \
329 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
330 memcpy ((VALBUF), \
331 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
332 TYPE_LENGTH (TYPE)); \
333 else \
334 memcpy ((VALBUF), \
335 (char *)(REGBUF) + REGISTER_BYTE (28) + \
336 (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
337 TYPE_LENGTH (TYPE)); \
338 }
339
340
341 /* elz: decide whether the function returning a value of type type
342 will put it on the stack or in the registers.
343 The pa calling convention says that:
344 register 28 (called ret0 by gdb) contains any ASCII char,
345 and any non_floating point value up to 32-bits.
346 reg 28 and 29 contain non-floating point up tp 64 bits and larger
347 than 32 bits. (higer order word in reg 28).
348 fr4: floating point up to 64 bits
349 sr1: space identifier (32-bit)
350 stack: any lager than 64-bit, with the address in r28
351 */
352 extern use_struct_convention_fn hppa_use_struct_convention;
353 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
354
355 /* Write into appropriate registers a function return value
356 of type TYPE, given in virtual format.
357
358 For software floating point the return value goes into the integer
359 registers. But we don't have any flag to key this on, so we always
360 store the value into the integer registers, and if it's a float value,
361 then we put it in the float registers too. */
362
363 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
364 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
365 if (!SOFT_FLOAT) \
366 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
367 ? REGISTER_BYTE (FP4_REGNUM) \
368 : REGISTER_BYTE (28)), \
369 (VALBUF), TYPE_LENGTH (TYPE))
370
371 /* Extract from an array REGBUF containing the (raw) register state
372 the address in which a function should return its structure value,
373 as a CORE_ADDR (or an expression that can be used as one). */
374
375 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
376 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
377
378 /* elz: Return a large value, which is stored on the stack at addr.
379 This is defined only for the hppa, at this moment.
380 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
381 because it assumes that on exit from a called function which returns
382 a large structure on the stack, the address of the ret structure is
383 still in register 28. Unfortunately this register is usually overwritten
384 by the called function itself, on hppa. This is specified in the calling
385 convention doc. As far as I know, the only way to get the return value
386 is to have the caller tell us where it told the callee to put it, rather
387 than have the callee tell us.
388 */
389 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
390 hppa_value_returned_from_stack (valtype, addr)
391
392 /*
393 * This macro defines the register numbers (from REGISTER_NAMES) that
394 * are effectively unavailable to the user through ptrace(). It allows
395 * us to include the whole register set in REGISTER_NAMES (inorder to
396 * better support remote debugging). If it is used in
397 * fetch/store_inferior_registers() gdb will not complain about I/O errors
398 * on fetching these registers. If all registers in REGISTER_NAMES
399 * are available, then return false (0).
400 */
401
402 #define CANNOT_STORE_REGISTER(regno) \
403 ((regno) == 0) || \
404 ((regno) == PCSQ_HEAD_REGNUM) || \
405 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
406 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
407
408 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
409 extern void init_extra_frame_info (int, struct frame_info *);
410
411 /* Describe the pointer in each stack frame to the previous stack frame
412 (its caller). */
413
414 /* FRAME_CHAIN takes a frame's nominal address
415 and produces the frame's chain-pointer.
416
417 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
418 and produces the nominal address of the caller frame.
419
420 However, if FRAME_CHAIN_VALID returns zero,
421 it means the given frame is the outermost one and has no caller.
422 In that case, FRAME_CHAIN_COMBINE is not used. */
423
424 /* In the case of the PA-RISC, the frame's nominal address
425 is the address of a 4-byte word containing the calling frame's
426 address (previous FP). */
427
428 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
429 extern CORE_ADDR frame_chain (struct frame_info *);
430
431 extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
432 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
433
434 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
435
436 /* Define other aspects of the stack frame. */
437
438 /* A macro that tells us whether the function invocation represented
439 by FI does not have a frame on the stack associated with it. If it
440 does not, FRAMELESS is set to 1, else 0. */
441 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
442 (frameless_function_invocation (FI))
443 extern int frameless_function_invocation (struct frame_info *);
444
445 extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
446 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
447
448 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
449
450 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
451 /* Set VAL to the number of args passed to frame described by FI.
452 Can set VAL to -1, meaning no way to tell. */
453
454 /* We can't tell how many args there are
455 now that the C compiler delays popping them. */
456 #define FRAME_NUM_ARGS(fi) (-1)
457
458 /* Return number of bytes at start of arglist that are not really args. */
459
460 #define FRAME_ARGS_SKIP 0
461
462 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
463 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
464 extern void
465 hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
466 \f
467
468 /* Things needed for making the inferior call functions. */
469
470 /* Push an empty stack frame, to record the current PC, etc. */
471
472 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
473 extern void push_dummy_frame (struct inferior_status *);
474
475 /* Discard from the stack the innermost frame,
476 restoring all saved registers. */
477 #define POP_FRAME hppa_pop_frame ()
478 extern void hppa_pop_frame (void);
479
480 #define INSTRUCTION_SIZE 4
481
482 #ifndef PA_LEVEL_0
483
484 /* Non-level zero PA's have space registers (but they don't always have
485 floating-point, do they???? */
486
487 /* This sequence of words is the instructions
488
489 ; Call stack frame has already been built by gdb. Since we could be calling
490 ; a varargs function, and we do not have the benefit of a stub to put things in
491 ; the right place, we load the first 4 word of arguments into both the general
492 ; and fp registers.
493 call_dummy
494 ldw -36(sp), arg0
495 ldw -40(sp), arg1
496 ldw -44(sp), arg2
497 ldw -48(sp), arg3
498 ldo -36(sp), r1
499 fldws 0(0, r1), fr4
500 fldds -4(0, r1), fr5
501 fldws -8(0, r1), fr6
502 fldds -12(0, r1), fr7
503 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
504 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
505 ldsid (0,r22), r4
506 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
507 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
508 ldsid (0,r1), r20
509 combt,=,n r4, r20, text_space ; If target is in data space, do a
510 ble 0(sr5, r22) ; "normal" procedure call
511 copy r31, r2
512 break 4, 8
513 mtsp r21, sr0
514 ble,n 0(sr0, r22)
515 text_space ; Otherwise, go through _sr4export,
516 ble (sr4, r1) ; which will return back here.
517 stw r31,-24(r30)
518 break 4, 8
519 mtsp r21, sr0
520 ble,n 0(sr0, r22)
521 nop ; To avoid kernel bugs
522 nop ; and keep the dummy 8 byte aligned
523
524 The dummy decides if the target is in text space or data space. If
525 it's in data space, there's no problem because the target can
526 return back to the dummy. However, if the target is in text space,
527 the dummy calls the secret, undocumented routine _sr4export, which
528 calls a function in text space and can return to any space. Instead
529 of including fake instructions to represent saved registers, we
530 know that the frame is associated with the call dummy and treat it
531 specially.
532
533 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
534 kernels. If the memory at the location pointed to by the PC is
535 0xffffffff then a ptrace step call will fail (even if the instruction
536 is nullified).
537
538 The code to pop a dummy frame single steps three instructions
539 starting with the last mtsp. This includes the nullified "instruction"
540 following the ble (which is uninitialized junk). If the
541 "instruction" following the last BLE is 0xffffffff, then the ptrace
542 will fail and the dummy frame is not correctly popped.
543
544 By placing a NOP in the delay slot of the BLE instruction we can be
545 sure that we never try to execute a 0xffffffff instruction and
546 avoid the kernel bug. The second NOP is needed to keep the call
547 dummy 8 byte aligned. */
548
549 /* Define offsets into the call dummy for the target function address */
550 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
551 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
552
553 /* Define offsets into the call dummy for the _sr4export address */
554 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
555 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
556
557 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
558 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
559 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
560 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
561 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
562 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
563 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
564
565 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
566 #define REG_PARM_STACK_SPACE 16
567
568 #else /* defined PA_LEVEL_0 */
569
570 /* This is the call dummy for a level 0 PA. Level 0's don't have space
571 registers (or floating point?), so we skip all that inter-space call stuff,
572 and avoid touching the fp regs.
573
574 call_dummy
575
576 ldw -36(%sp), %arg0
577 ldw -40(%sp), %arg1
578 ldw -44(%sp), %arg2
579 ldw -48(%sp), %arg3
580 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
581 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
582 ble 0(%sr0, %r31)
583 copy %r31, %r2
584 break 4, 8
585 nop ; restore_pc_queue expects these
586 bv,n 0(%r22) ; instructions to be here...
587 nop
588 */
589
590 /* Define offsets into the call dummy for the target function address */
591 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
592 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
593
594 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
595 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
596 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
597
598 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
599
600 #endif
601
602 #define CALL_DUMMY_START_OFFSET 0
603
604 /* If we've reached a trap instruction within the call dummy, then
605 we'll consider that to mean that we've reached the call dummy's
606 end after its successful completion. */
607 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
608 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
609 (read_memory_integer((pc), 4) == BREAKPOINT32))
610
611 /*
612 * Insert the specified number of args and function address
613 * into a call sequence of the above form stored at DUMMYNAME.
614 *
615 * On the hppa we need to call the stack dummy through $$dyncall.
616 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
617 * real_pc, which is the location where gdb should start up the
618 * inferior to do the function call.
619 */
620
621 #define FIX_CALL_DUMMY hppa_fix_call_dummy
622
623 extern CORE_ADDR
624 hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
625 struct value **, struct type *, int);
626
627 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
628 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
629 extern CORE_ADDR
630 hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
631 \f
632 /* The low two bits of the PC on the PA contain the privilege level. Some
633 genius implementing a (non-GCC) compiler apparently decided this means
634 that "addresses" in a text section therefore include a privilege level,
635 and thus symbol tables should contain these bits. This seems like a
636 bonehead thing to do--anyway, it seems to work for our purposes to just
637 ignore those bits. */
638 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
639
640 #define GDB_TARGET_IS_HPPA
641
642 #define BELIEVE_PCC_PROMOTION 1
643
644 /*
645 * Unwind table and descriptor.
646 */
647
648 struct unwind_table_entry
649 {
650 CORE_ADDR region_start;
651 CORE_ADDR region_end;
652
653 unsigned int Cannot_unwind:1; /* 0 */
654 unsigned int Millicode:1; /* 1 */
655 unsigned int Millicode_save_sr0:1; /* 2 */
656 unsigned int Region_description:2; /* 3..4 */
657 unsigned int reserved1:1; /* 5 */
658 unsigned int Entry_SR:1; /* 6 */
659 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
660 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
661 unsigned int Args_stored:1; /* 16 */
662 unsigned int Variable_Frame:1; /* 17 */
663 unsigned int Separate_Package_Body:1; /* 18 */
664 unsigned int Frame_Extension_Millicode:1; /* 19 */
665 unsigned int Stack_Overflow_Check:1; /* 20 */
666 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
667 unsigned int Ada_Region:1; /* 22 */
668 unsigned int cxx_info:1; /* 23 */
669 unsigned int cxx_try_catch:1; /* 24 */
670 unsigned int sched_entry_seq:1; /* 25 */
671 unsigned int reserved2:1; /* 26 */
672 unsigned int Save_SP:1; /* 27 */
673 unsigned int Save_RP:1; /* 28 */
674 unsigned int Save_MRP_in_frame:1; /* 29 */
675 unsigned int extn_ptr_defined:1; /* 30 */
676 unsigned int Cleanup_defined:1; /* 31 */
677
678 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
679 unsigned int HP_UX_interrupt_marker:1; /* 1 */
680 unsigned int Large_frame:1; /* 2 */
681 unsigned int Pseudo_SP_Set:1; /* 3 */
682 unsigned int reserved4:1; /* 4 */
683 unsigned int Total_frame_size:27; /* 5..31 */
684
685 /* This is *NOT* part of an actual unwind_descriptor in an object
686 file. It is *ONLY* part of the "internalized" descriptors that
687 we create from those in a file.
688 */
689 struct
690 {
691 unsigned int stub_type:4; /* 0..3 */
692 unsigned int padding:28; /* 4..31 */
693 }
694 stub_unwind;
695 };
696
697 /* HP linkers also generate unwinds for various linker-generated stubs.
698 GDB reads in the stubs from the $UNWIND_END$ subspace, then
699 "converts" them into normal unwind entries using some of the reserved
700 fields to store the stub type. */
701
702 struct stub_unwind_entry
703 {
704 /* The offset within the executable for the associated stub. */
705 unsigned stub_offset;
706
707 /* The type of stub this unwind entry describes. */
708 char type;
709
710 /* Unknown. Not needed by GDB at this time. */
711 char prs_info;
712
713 /* Length (in instructions) of the associated stub. */
714 short stub_length;
715 };
716
717 /* Sizes (in bytes) of the native unwind entries. */
718 #define UNWIND_ENTRY_SIZE 16
719 #define STUB_UNWIND_ENTRY_SIZE 8
720
721 /* The gaps represent linker stubs used in MPE and space for future
722 expansion. */
723 enum unwind_stub_types
724 {
725 LONG_BRANCH = 1,
726 PARAMETER_RELOCATION = 2,
727 EXPORT = 10,
728 IMPORT = 11,
729 IMPORT_SHLIB = 12,
730 };
731
732 /* We use the objfile->obj_private pointer for two things:
733
734 * 1. An unwind table;
735 *
736 * 2. A pointer to any associated shared library object.
737 *
738 * #defines are used to help refer to these objects.
739 */
740
741 /* Info about the unwind table associated with an object file.
742
743 * This is hung off of the "objfile->obj_private" pointer, and
744 * is allocated in the objfile's psymbol obstack. This allows
745 * us to have unique unwind info for each executable and shared
746 * library that we are debugging.
747 */
748 struct obj_unwind_info
749 {
750 struct unwind_table_entry *table; /* Pointer to unwind info */
751 struct unwind_table_entry *cache; /* Pointer to last entry we found */
752 int last; /* Index of last entry */
753 };
754
755 typedef struct obj_private_struct
756 {
757 struct obj_unwind_info *unwind_info; /* a pointer */
758 struct so_list *so_info; /* a pointer */
759 CORE_ADDR dp;
760 }
761 obj_private_data_t;
762
763 #if 0
764 extern void target_write_pc (CORE_ADDR, int);
765 extern CORE_ADDR target_read_pc (int);
766 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
767 #endif
768
769 #define TARGET_READ_PC(pid) target_read_pc (pid)
770 extern CORE_ADDR target_read_pc (ptid_t);
771
772 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
773 extern void target_write_pc (CORE_ADDR, ptid_t);
774
775 #define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
776 extern CORE_ADDR target_read_fp (int);
777
778 /* For a number of horrible reasons we may have to adjust the location
779 of variables on the stack. Ugh. */
780 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
781
782 extern int hpread_adjust_stack_address (CORE_ADDR);
783
784 /* If the current gcc for for this target does not produce correct debugging
785 information for float parameters, both prototyped and unprototyped, then
786 define this macro. This forces gdb to always assume that floats are
787 passed as doubles and then converted in the callee.
788
789 For the pa, it appears that the debug info marks the parameters as
790 floats regardless of whether the function is prototyped, but the actual
791 values are passed as doubles for the non-prototyped case and floats for
792 the prototyped case. Thus we choose to make the non-prototyped case work
793 for C and break the prototyped case, since the non-prototyped case is
794 probably much more common. (FIXME). */
795
796 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
797
798 /* Here's how to step off a permanent breakpoint. */
799 #define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
800 extern void hppa_skip_permanent_breakpoint (void);
801
802 /* On HP-UX, certain system routines (millicode) have names beginning
803 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
804 calls on PA-RISC. Tell the expression parser to check for those
805 when parsing tokens that begin with "$". */
806 #define SYMBOLS_CAN_START_WITH_DOLLAR (1)