]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/pa/tm-hppa.h
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989-1993, 1995, 1999, 2000 Free Software Foundation, Inc.
3
4 Contributed by the Center for Software Science at the
5 University of Utah (pa-gdb-bugs@cs.utah.edu).
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* Forward declarations of some types we use in prototypes */
25
26 struct frame_info;
27 struct frame_saved_regs;
28 struct value;
29 struct type;
30 struct inferior_status;
31
32 /* Target system byte order. */
33
34 #define TARGET_BYTE_ORDER BIG_ENDIAN
35
36 /* By default assume we don't have to worry about software floating point. */
37 #ifndef SOFT_FLOAT
38 #define SOFT_FLOAT 0
39 #endif
40
41 /* Get at various relevent fields of an instruction word. */
42
43 #define MASK_5 0x1f
44 #define MASK_11 0x7ff
45 #define MASK_14 0x3fff
46 #define MASK_21 0x1fffff
47
48 /* This macro gets bit fields using HP's numbering (MSB = 0) */
49 #ifndef GET_FIELD
50 #define GET_FIELD(X, FROM, TO) \
51 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
52 #endif
53
54 /* Watch out for NaNs */
55
56 #define IEEE_FLOAT (1)
57
58 /* On the PA, any pass-by-value structure > 8 bytes is actually
59 passed via a pointer regardless of its type or the compiler
60 used. */
61
62 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
63 (TYPE_LENGTH (type) > 8)
64
65 /* Offset from address of function to start of its code.
66 Zero on most machines. */
67
68 #define FUNCTION_START_OFFSET 0
69
70 /* Advance PC across any function entry prologue instructions
71 to reach some "real" code. */
72
73 extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
74 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
75
76 /* If PC is in some function-call trampoline code, return the PC
77 where the function itself actually starts. If not, return NULL. */
78
79 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
80 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
81
82 /* Return non-zero if we are in an appropriate trampoline. */
83
84 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
85 in_solib_call_trampoline (pc, name)
86 extern int in_solib_call_trampoline (CORE_ADDR, char *);
87
88 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
89 in_solib_return_trampoline (pc, name)
90 extern int in_solib_return_trampoline (CORE_ADDR, char *);
91
92 /* Immediately after a function call, return the saved pc.
93 Can't go through the frames for this because on some machines
94 the new frame is not set up until the new function executes
95 some instructions. */
96
97 #undef SAVED_PC_AFTER_CALL
98 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
99 extern CORE_ADDR saved_pc_after_call (struct frame_info *);
100
101 /* Stack grows upward */
102 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
103
104 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
105 This is used in valops.c, when the sp is adjusted.
106 On hppa the sp must always be kept 64-bit aligned */
107
108 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
109 #define NO_EXTRA_ALIGNMENT_NEEDED 1
110
111 /* Sequence of bytes for breakpoint instruction. */
112
113 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
114 #define BREAKPOINT32 0x10004
115
116 /* Amount PC must be decremented by after a breakpoint.
117 This is often the number of bytes in BREAKPOINT
118 but not always.
119
120 Not on the PA-RISC */
121
122 #define DECR_PC_AFTER_BREAK 0
123
124 /* Sometimes we may pluck out a minimal symbol that has a negative
125 address.
126
127 An example of this occurs when an a.out is linked against a foo.sl.
128 The foo.sl defines a global bar(), and the a.out declares a signature
129 for bar(). However, the a.out doesn't directly call bar(), but passes
130 its address in another call.
131
132 If you have this scenario and attempt to "break bar" before running,
133 gdb will find a minimal symbol for bar() in the a.out. But that
134 symbol's address will be negative. What this appears to denote is
135 an index backwards from the base of the procedure linkage table (PLT)
136 into the data linkage table (DLT), the end of which is contiguous
137 with the start of the PLT. This is clearly not a valid address for
138 us to set a breakpoint on.
139
140 Note that one must be careful in how one checks for a negative address.
141 0xc0000000 is a legitimate address of something in a shared text
142 segment, for example. Since I don't know what the possible range
143 is of these "really, truly negative" addresses that come from the
144 minimal symbols, I'm resorting to the gross hack of checking the
145 top byte of the address for all 1's. Sigh.
146 */
147 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
148 (! target_has_stack && (pc & 0xFF000000))
149
150 /* return instruction is bv r0(rp) or bv,n r0(rp) */
151
152 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
153
154 /* Say how long (ordinary) registers are. This is a piece of bogosity
155 used in push_word and a few other places; REGISTER_RAW_SIZE is the
156 real way to know how big a register is. */
157
158 #define REGISTER_SIZE 4
159
160 /* Number of machine registers */
161
162 #define NUM_REGS 128
163
164 /* Initializer for an array of names of registers.
165 There should be NUM_REGS strings in this initializer.
166 They are in rows of eight entries */
167
168 #define REGISTER_NAMES \
169 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
170 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
171 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
172 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
173 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
174 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
175 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
176 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
177 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
178 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
179 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
180 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
181 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
182 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
183 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
184 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
185
186 /* Register numbers of various important registers.
187 Note that some of these values are "real" register numbers,
188 and correspond to the general registers of the machine,
189 and some are "phony" register numbers which are too large
190 to be actual register numbers as far as the user is concerned
191 but do serve to get the desired values when passed to read_register. */
192
193 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
194 other r registers. */
195 #define FLAGS_REGNUM 0 /* Various status flags */
196 #define RP_REGNUM 2 /* return pointer */
197 #define FP_REGNUM 3 /* Contains address of executing stack */
198 /* frame */
199 #define SP_REGNUM 30 /* Contains address of top of stack */
200 #define SAR_REGNUM 32 /* Shift Amount Register */
201 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
202 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
203 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
204 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
205 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
206 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
207 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
208 #define IOR_REGNUM 40 /* Interrupt Offset Register */
209 #define SR4_REGNUM 43 /* space register 4 */
210 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
211 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
212 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
213 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
214 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
215 #define FP4_REGNUM 72
216
217 #define ARG0_REGNUM 26 /* The first argument of a callee. */
218 #define ARG1_REGNUM 25 /* The second argument of a callee. */
219 #define ARG2_REGNUM 24 /* The third argument of a callee. */
220 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
221
222 /* compatibility with the rest of gdb. */
223 #define PC_REGNUM PCOQ_HEAD_REGNUM
224 #define NPC_REGNUM PCOQ_TAIL_REGNUM
225
226 /*
227 * Processor Status Word Masks
228 */
229
230 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
231 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
232 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
233 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
234 #define PSW_X 0x00100000 /* Data Memory Break Disable */
235 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
236 #define PSW_C 0x00040000 /* Code Address Translation Enable */
237 #define PSW_V 0x00020000 /* Divide Step Correction */
238 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
239 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
240 #define PSW_R 0x00000010 /* Recovery Counter Enable */
241 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
242 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
243 #define PSW_D 0x00000002 /* Data Address Translation Enable */
244 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
245 /* Machine Check Interruption Enable */
246
247 /* When fetching register values from an inferior or a core file,
248 clean them up using this macro. BUF is a char pointer to
249 the raw value of the register in the registers[] array. */
250
251 #define CLEAN_UP_REGISTER_VALUE(regno, buf) \
252 do { \
253 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
254 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
255 } while (0)
256
257 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
258 of register dumps. */
259
260 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
261 extern void pa_do_registers_info (int, int);
262
263 #if 0
264 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
265 extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
266 #endif
267
268 /* PA specific macro to see if the current instruction is nullified. */
269 #ifndef INSTRUCTION_NULLIFIED
270 #define INSTRUCTION_NULLIFIED \
271 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
272 !((int)read_register (FLAGS_REGNUM) & 0x2))
273 #endif
274
275 /* Number of bytes of storage in the actual machine representation
276 for register N. On the PA-RISC, all regs are 4 bytes, including
277 the FP registers (they're accessed as two 4 byte halves). */
278
279 #define REGISTER_RAW_SIZE(N) 4
280
281 /* Total amount of space needed to store our copies of the machine's
282 register state, the array `registers'. */
283 #define REGISTER_BYTES (NUM_REGS * 4)
284
285 /* Index within `registers' of the first byte of the space for
286 register N. */
287
288 #define REGISTER_BYTE(N) (N) * 4
289
290 /* Number of bytes of storage in the program's representation
291 for register N. */
292
293 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
294
295 /* Largest value REGISTER_RAW_SIZE can have. */
296
297 #define MAX_REGISTER_RAW_SIZE 4
298
299 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
300
301 #define MAX_REGISTER_VIRTUAL_SIZE 8
302
303 /* Return the GDB type object for the "standard" data type
304 of data in register N. */
305
306 #define REGISTER_VIRTUAL_TYPE(N) \
307 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
308
309 /* Store the address of the place in which to copy the structure the
310 subroutine will return. This is called from call_function. */
311
312 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
313
314 /* Extract from an array REGBUF containing the (raw) register state
315 a function return value of type TYPE, and copy that, in virtual format,
316 into VALBUF.
317
318 elz: changed what to return when length is > 4: the stored result is
319 in register 28 and in register 29, with the lower order word being in reg 29,
320 so we must start reading it from somehere in the middle of reg28
321
322 FIXME: Not sure what to do for soft float here. */
323
324 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
325 { \
326 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT && !SOFT_FLOAT) \
327 memcpy ((VALBUF), \
328 ((char *)(REGBUF)) + REGISTER_BYTE (FP4_REGNUM), \
329 TYPE_LENGTH (TYPE)); \
330 else \
331 memcpy ((VALBUF), \
332 (char *)(REGBUF) + REGISTER_BYTE (28) + \
333 (TYPE_LENGTH (TYPE) > 4 ? (8 - TYPE_LENGTH (TYPE)) : (4 - TYPE_LENGTH (TYPE))), \
334 TYPE_LENGTH (TYPE)); \
335 }
336
337
338 /* elz: decide whether the function returning a value of type type
339 will put it on the stack or in the registers.
340 The pa calling convention says that:
341 register 28 (called ret0 by gdb) contains any ASCII char,
342 and any non_floating point value up to 32-bits.
343 reg 28 and 29 contain non-floating point up tp 64 bits and larger
344 than 32 bits. (higer order word in reg 28).
345 fr4: floating point up to 64 bits
346 sr1: space identifier (32-bit)
347 stack: any lager than 64-bit, with the address in r28
348 */
349 extern use_struct_convention_fn hppa_use_struct_convention;
350 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
351
352 /* Write into appropriate registers a function return value
353 of type TYPE, given in virtual format.
354
355 For software floating point the return value goes into the integer
356 registers. But we don't have any flag to key this on, so we always
357 store the value into the integer registers, and if it's a float value,
358 then we put it in the float registers too. */
359
360 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
361 write_register_bytes (REGISTER_BYTE (28),(VALBUF), TYPE_LENGTH (TYPE)) ; \
362 if (!SOFT_FLOAT) \
363 write_register_bytes ((TYPE_CODE(TYPE) == TYPE_CODE_FLT \
364 ? REGISTER_BYTE (FP4_REGNUM) \
365 : REGISTER_BYTE (28)), \
366 (VALBUF), TYPE_LENGTH (TYPE))
367
368 /* Extract from an array REGBUF containing the (raw) register state
369 the address in which a function should return its structure value,
370 as a CORE_ADDR (or an expression that can be used as one). */
371
372 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
373 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
374
375 /* elz: Return a large value, which is stored on the stack at addr.
376 This is defined only for the hppa, at this moment.
377 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
378 because it assumes that on exit from a called function which returns
379 a large structure on the stack, the address of the ret structure is
380 still in register 28. Unfortunately this register is usually overwritten
381 by the called function itself, on hppa. This is specified in the calling
382 convention doc. As far as I know, the only way to get the return value
383 is to have the caller tell us where it told the callee to put it, rather
384 than have the callee tell us.
385 */
386 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
387 hppa_value_returned_from_stack (valtype, addr)
388
389 /*
390 * This macro defines the register numbers (from REGISTER_NAMES) that
391 * are effectively unavailable to the user through ptrace(). It allows
392 * us to include the whole register set in REGISTER_NAMES (inorder to
393 * better support remote debugging). If it is used in
394 * fetch/store_inferior_registers() gdb will not complain about I/O errors
395 * on fetching these registers. If all registers in REGISTER_NAMES
396 * are available, then return false (0).
397 */
398
399 #define CANNOT_STORE_REGISTER(regno) \
400 ((regno) == 0) || \
401 ((regno) == PCSQ_HEAD_REGNUM) || \
402 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
403 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
404
405 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
406 extern void init_extra_frame_info (int, struct frame_info *);
407
408 /* Describe the pointer in each stack frame to the previous stack frame
409 (its caller). */
410
411 /* FRAME_CHAIN takes a frame's nominal address
412 and produces the frame's chain-pointer.
413
414 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
415 and produces the nominal address of the caller frame.
416
417 However, if FRAME_CHAIN_VALID returns zero,
418 it means the given frame is the outermost one and has no caller.
419 In that case, FRAME_CHAIN_COMBINE is not used. */
420
421 /* In the case of the PA-RISC, the frame's nominal address
422 is the address of a 4-byte word containing the calling frame's
423 address (previous FP). */
424
425 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
426 extern CORE_ADDR frame_chain (struct frame_info *);
427
428 extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
429 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
430
431 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
432
433 /* Define other aspects of the stack frame. */
434
435 /* A macro that tells us whether the function invocation represented
436 by FI does not have a frame on the stack associated with it. If it
437 does not, FRAMELESS is set to 1, else 0. */
438 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
439 (frameless_function_invocation (FI))
440 extern int frameless_function_invocation (struct frame_info *);
441
442 extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
443 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
444
445 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
446
447 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
448 /* Set VAL to the number of args passed to frame described by FI.
449 Can set VAL to -1, meaning no way to tell. */
450
451 /* We can't tell how many args there are
452 now that the C compiler delays popping them. */
453 #define FRAME_NUM_ARGS(fi) (-1)
454
455 /* Return number of bytes at start of arglist that are not really args. */
456
457 #define FRAME_ARGS_SKIP 0
458
459 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
460 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
461 extern void
462 hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
463 \f
464
465 /* Things needed for making the inferior call functions. */
466
467 /* Push an empty stack frame, to record the current PC, etc. */
468
469 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
470 extern void push_dummy_frame (struct inferior_status *);
471
472 /* Discard from the stack the innermost frame,
473 restoring all saved registers. */
474 #define POP_FRAME hppa_pop_frame ()
475 extern void hppa_pop_frame (void);
476
477 #define INSTRUCTION_SIZE 4
478
479 #ifndef PA_LEVEL_0
480
481 /* Non-level zero PA's have space registers (but they don't always have
482 floating-point, do they???? */
483
484 /* This sequence of words is the instructions
485
486 ; Call stack frame has already been built by gdb. Since we could be calling
487 ; a varargs function, and we do not have the benefit of a stub to put things in
488 ; the right place, we load the first 4 word of arguments into both the general
489 ; and fp registers.
490 call_dummy
491 ldw -36(sp), arg0
492 ldw -40(sp), arg1
493 ldw -44(sp), arg2
494 ldw -48(sp), arg3
495 ldo -36(sp), r1
496 fldws 0(0, r1), fr4
497 fldds -4(0, r1), fr5
498 fldws -8(0, r1), fr6
499 fldds -12(0, r1), fr7
500 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
501 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
502 ldsid (0,r22), r4
503 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
504 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
505 ldsid (0,r1), r20
506 combt,=,n r4, r20, text_space ; If target is in data space, do a
507 ble 0(sr5, r22) ; "normal" procedure call
508 copy r31, r2
509 break 4, 8
510 mtsp r21, sr0
511 ble,n 0(sr0, r22)
512 text_space ; Otherwise, go through _sr4export,
513 ble (sr4, r1) ; which will return back here.
514 stw r31,-24(r30)
515 break 4, 8
516 mtsp r21, sr0
517 ble,n 0(sr0, r22)
518 nop ; To avoid kernel bugs
519 nop ; and keep the dummy 8 byte aligned
520
521 The dummy decides if the target is in text space or data space. If
522 it's in data space, there's no problem because the target can
523 return back to the dummy. However, if the target is in text space,
524 the dummy calls the secret, undocumented routine _sr4export, which
525 calls a function in text space and can return to any space. Instead
526 of including fake instructions to represent saved registers, we
527 know that the frame is associated with the call dummy and treat it
528 specially.
529
530 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
531 kernels. If the memory at the location pointed to by the PC is
532 0xffffffff then a ptrace step call will fail (even if the instruction
533 is nullified).
534
535 The code to pop a dummy frame single steps three instructions
536 starting with the last mtsp. This includes the nullified "instruction"
537 following the ble (which is uninitialized junk). If the
538 "instruction" following the last BLE is 0xffffffff, then the ptrace
539 will fail and the dummy frame is not correctly popped.
540
541 By placing a NOP in the delay slot of the BLE instruction we can be
542 sure that we never try to execute a 0xffffffff instruction and
543 avoid the kernel bug. The second NOP is needed to keep the call
544 dummy 8 byte aligned. */
545
546 /* Define offsets into the call dummy for the target function address */
547 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
548 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
549
550 /* Define offsets into the call dummy for the _sr4export address */
551 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
552 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
553
554 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
555 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
556 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
557 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
558 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
559 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
560 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
561
562 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
563 #define REG_PARM_STACK_SPACE 16
564
565 #else /* defined PA_LEVEL_0 */
566
567 /* This is the call dummy for a level 0 PA. Level 0's don't have space
568 registers (or floating point??), so we skip all that inter-space call stuff,
569 and avoid touching the fp regs.
570
571 call_dummy
572
573 ldw -36(%sp), %arg0
574 ldw -40(%sp), %arg1
575 ldw -44(%sp), %arg2
576 ldw -48(%sp), %arg3
577 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
578 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
579 ble 0(%sr0, %r31)
580 copy %r31, %r2
581 break 4, 8
582 nop ; restore_pc_queue expects these
583 bv,n 0(%r22) ; instructions to be here...
584 nop
585 */
586
587 /* Define offsets into the call dummy for the target function address */
588 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
589 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
590
591 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
592 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
593 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
594
595 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
596
597 #endif
598
599 #define CALL_DUMMY_START_OFFSET 0
600
601 /* If we've reached a trap instruction within the call dummy, then
602 we'll consider that to mean that we've reached the call dummy's
603 end after its successful completion. */
604 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
605 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
606 (read_memory_integer((pc), 4) == BREAKPOINT32))
607
608 /*
609 * Insert the specified number of args and function address
610 * into a call sequence of the above form stored at DUMMYNAME.
611 *
612 * On the hppa we need to call the stack dummy through $$dyncall.
613 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
614 * real_pc, which is the location where gdb should start up the
615 * inferior to do the function call.
616 */
617
618 #define FIX_CALL_DUMMY hppa_fix_call_dummy
619
620 extern CORE_ADDR
621 hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
622 struct value **, struct type *, int);
623
624 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
625 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
626 extern CORE_ADDR
627 hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
628 \f
629 /* The low two bits of the PC on the PA contain the privilege level. Some
630 genius implementing a (non-GCC) compiler apparently decided this means
631 that "addresses" in a text section therefore include a privilege level,
632 and thus symbol tables should contain these bits. This seems like a
633 bonehead thing to do--anyway, it seems to work for our purposes to just
634 ignore those bits. */
635 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
636
637 #define GDB_TARGET_IS_HPPA
638
639 #define BELIEVE_PCC_PROMOTION 1
640
641 /*
642 * Unwind table and descriptor.
643 */
644
645 struct unwind_table_entry
646 {
647 CORE_ADDR region_start;
648 CORE_ADDR region_end;
649
650 unsigned int Cannot_unwind:1; /* 0 */
651 unsigned int Millicode:1; /* 1 */
652 unsigned int Millicode_save_sr0:1; /* 2 */
653 unsigned int Region_description:2; /* 3..4 */
654 unsigned int reserved1:1; /* 5 */
655 unsigned int Entry_SR:1; /* 6 */
656 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
657 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
658 unsigned int Args_stored:1; /* 16 */
659 unsigned int Variable_Frame:1; /* 17 */
660 unsigned int Separate_Package_Body:1; /* 18 */
661 unsigned int Frame_Extension_Millicode:1; /* 19 */
662 unsigned int Stack_Overflow_Check:1; /* 20 */
663 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
664 unsigned int Ada_Region:1; /* 22 */
665 unsigned int cxx_info:1; /* 23 */
666 unsigned int cxx_try_catch:1; /* 24 */
667 unsigned int sched_entry_seq:1; /* 25 */
668 unsigned int reserved2:1; /* 26 */
669 unsigned int Save_SP:1; /* 27 */
670 unsigned int Save_RP:1; /* 28 */
671 unsigned int Save_MRP_in_frame:1; /* 29 */
672 unsigned int extn_ptr_defined:1; /* 30 */
673 unsigned int Cleanup_defined:1; /* 31 */
674
675 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
676 unsigned int HP_UX_interrupt_marker:1; /* 1 */
677 unsigned int Large_frame:1; /* 2 */
678 unsigned int Pseudo_SP_Set:1; /* 3 */
679 unsigned int reserved4:1; /* 4 */
680 unsigned int Total_frame_size:27; /* 5..31 */
681
682 /* This is *NOT* part of an actual unwind_descriptor in an object
683 file. It is *ONLY* part of the "internalized" descriptors that
684 we create from those in a file.
685 */
686 struct
687 {
688 unsigned int stub_type:4; /* 0..3 */
689 unsigned int padding:28; /* 4..31 */
690 }
691 stub_unwind;
692 };
693
694 /* HP linkers also generate unwinds for various linker-generated stubs.
695 GDB reads in the stubs from the $UNWIND_END$ subspace, then
696 "converts" them into normal unwind entries using some of the reserved
697 fields to store the stub type. */
698
699 struct stub_unwind_entry
700 {
701 /* The offset within the executable for the associated stub. */
702 unsigned stub_offset;
703
704 /* The type of stub this unwind entry describes. */
705 char type;
706
707 /* Unknown. Not needed by GDB at this time. */
708 char prs_info;
709
710 /* Length (in instructions) of the associated stub. */
711 short stub_length;
712 };
713
714 /* Sizes (in bytes) of the native unwind entries. */
715 #define UNWIND_ENTRY_SIZE 16
716 #define STUB_UNWIND_ENTRY_SIZE 8
717
718 /* The gaps represent linker stubs used in MPE and space for future
719 expansion. */
720 enum unwind_stub_types
721 {
722 LONG_BRANCH = 1,
723 PARAMETER_RELOCATION = 2,
724 EXPORT = 10,
725 IMPORT = 11,
726 IMPORT_SHLIB = 12,
727 };
728
729 /* We use the objfile->obj_private pointer for two things:
730
731 * 1. An unwind table;
732 *
733 * 2. A pointer to any associated shared library object.
734 *
735 * #defines are used to help refer to these objects.
736 */
737
738 /* Info about the unwind table associated with an object file.
739
740 * This is hung off of the "objfile->obj_private" pointer, and
741 * is allocated in the objfile's psymbol obstack. This allows
742 * us to have unique unwind info for each executable and shared
743 * library that we are debugging.
744 */
745 struct obj_unwind_info
746 {
747 struct unwind_table_entry *table; /* Pointer to unwind info */
748 struct unwind_table_entry *cache; /* Pointer to last entry we found */
749 int last; /* Index of last entry */
750 };
751
752 typedef struct obj_private_struct
753 {
754 struct obj_unwind_info *unwind_info; /* a pointer */
755 struct so_list *so_info; /* a pointer */
756 CORE_ADDR dp;
757 }
758 obj_private_data_t;
759
760 #if 0
761 extern void target_write_pc (CORE_ADDR, int);
762 extern CORE_ADDR target_read_pc (int);
763 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
764 #endif
765
766 #define TARGET_READ_PC(pid) target_read_pc (pid)
767 extern CORE_ADDR target_read_pc (int);
768
769 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
770 extern void target_write_pc (CORE_ADDR, int);
771
772 #define TARGET_READ_FP() target_read_fp (inferior_pid)
773 extern CORE_ADDR target_read_fp (int);
774
775 /* For a number of horrible reasons we may have to adjust the location
776 of variables on the stack. Ugh. */
777 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
778
779 extern int hpread_adjust_stack_address (CORE_ADDR);
780
781 /* If the current gcc for for this target does not produce correct debugging
782 information for float parameters, both prototyped and unprototyped, then
783 define this macro. This forces gdb to always assume that floats are
784 passed as doubles and then converted in the callee.
785
786 For the pa, it appears that the debug info marks the parameters as
787 floats regardless of whether the function is prototyped, but the actual
788 values are passed as doubles for the non-prototyped case and floats for
789 the prototyped case. Thus we choose to make the non-prototyped case work
790 for C and break the prototyped case, since the non-prototyped case is
791 probably much more common. (FIXME). */
792
793 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
794
795 /* Here's how to step off a permanent breakpoint. */
796 #define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
797 extern void hppa_skip_permanent_breakpoint (void);
798
799 /* On HP-UX, certain system routines (millicode) have names beginning
800 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
801 calls on PA-RISC. Tell the expression parser to check for those
802 when parsing tokens that begin with "$". */
803 #define SYMBOLS_CAN_START_WITH_DOLLAR (1)