]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/pa/tm-hppa.h
* config/pa/tm-hppa.h (DEPRECATED_CLEAN_UP_REGISTER_VALUE): Rename
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "regcache.h"
26
27 /* Forward declarations of some types we use in prototypes */
28
29 struct frame_info;
30 struct frame_saved_regs;
31 struct value;
32 struct type;
33 struct inferior_status;
34
35 /* Target system byte order. */
36
37 #define TARGET_BYTE_ORDER BFD_ENDIAN_BIG
38
39 /* By default assume we don't have to worry about software floating point. */
40 #ifndef SOFT_FLOAT
41 #define SOFT_FLOAT 0
42 #endif
43
44 /* Get at various relevent fields of an instruction word. */
45
46 #define MASK_5 0x1f
47 #define MASK_11 0x7ff
48 #define MASK_14 0x3fff
49 #define MASK_21 0x1fffff
50
51 /* This macro gets bit fields using HP's numbering (MSB = 0) */
52 #ifndef GET_FIELD
53 #define GET_FIELD(X, FROM, TO) \
54 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55 #endif
56
57 /* Watch out for NaNs */
58
59 #define IEEE_FLOAT (1)
60
61 /* On the PA, any pass-by-value structure > 8 bytes is actually
62 passed via a pointer regardless of its type or the compiler
63 used. */
64
65 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
66 (TYPE_LENGTH (type) > 8)
67
68 /* Offset from address of function to start of its code.
69 Zero on most machines. */
70
71 #define FUNCTION_START_OFFSET 0
72
73 /* Advance PC across any function entry prologue instructions
74 to reach some "real" code. */
75
76 extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
77 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
78
79 /* If PC is in some function-call trampoline code, return the PC
80 where the function itself actually starts. If not, return NULL. */
81
82 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
83 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
84
85 /* Return non-zero if we are in an appropriate trampoline. */
86
87 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
88 in_solib_call_trampoline (pc, name)
89 extern int in_solib_call_trampoline (CORE_ADDR, char *);
90
91 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
92 in_solib_return_trampoline (pc, name)
93 extern int in_solib_return_trampoline (CORE_ADDR, char *);
94
95 /* Immediately after a function call, return the saved pc.
96 Can't go through the frames for this because on some machines
97 the new frame is not set up until the new function executes
98 some instructions. */
99
100 #undef SAVED_PC_AFTER_CALL
101 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
102 extern CORE_ADDR saved_pc_after_call (struct frame_info *);
103
104 /* Stack grows upward */
105 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
106
107 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
108 This is used in valops.c, when the sp is adjusted.
109 On hppa the sp must always be kept 64-bit aligned */
110
111 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
112 #define EXTRA_STACK_ALIGNMENT_NEEDED 0
113
114 /* Sequence of bytes for breakpoint instruction. */
115
116 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
117 #define BREAKPOINT32 0x10004
118
119 /* Amount PC must be decremented by after a breakpoint.
120 This is often the number of bytes in BREAKPOINT
121 but not always.
122
123 Not on the PA-RISC */
124
125 #define DECR_PC_AFTER_BREAK 0
126
127 /* Sometimes we may pluck out a minimal symbol that has a negative
128 address.
129
130 An example of this occurs when an a.out is linked against a foo.sl.
131 The foo.sl defines a global bar(), and the a.out declares a signature
132 for bar(). However, the a.out doesn't directly call bar(), but passes
133 its address in another call.
134
135 If you have this scenario and attempt to "break bar" before running,
136 gdb will find a minimal symbol for bar() in the a.out. But that
137 symbol's address will be negative. What this appears to denote is
138 an index backwards from the base of the procedure linkage table (PLT)
139 into the data linkage table (DLT), the end of which is contiguous
140 with the start of the PLT. This is clearly not a valid address for
141 us to set a breakpoint on.
142
143 Note that one must be careful in how one checks for a negative address.
144 0xc0000000 is a legitimate address of something in a shared text
145 segment, for example. Since I don't know what the possible range
146 is of these "really, truly negative" addresses that come from the
147 minimal symbols, I'm resorting to the gross hack of checking the
148 top byte of the address for all 1's. Sigh.
149 */
150 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
151 (! target_has_stack && (pc & 0xFF000000))
152
153 /* return instruction is bv r0(rp) or bv,n r0(rp) */
154
155 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
156
157 /* Say how long (ordinary) registers are. This is a piece of bogosity
158 used in push_word and a few other places; REGISTER_RAW_SIZE is the
159 real way to know how big a register is. */
160
161 #define REGISTER_SIZE 4
162
163 /* Number of machine registers */
164
165 #define NUM_REGS 128
166
167 /* Initializer for an array of names of registers.
168 There should be NUM_REGS strings in this initializer.
169 They are in rows of eight entries */
170
171 #define REGISTER_NAMES \
172 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
173 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
174 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
175 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
176 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
177 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
178 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
179 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
180 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
181 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
182 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
183 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
184 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
185 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
186 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
187 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
188
189 /* Register numbers of various important registers.
190 Note that some of these values are "real" register numbers,
191 and correspond to the general registers of the machine,
192 and some are "phony" register numbers which are too large
193 to be actual register numbers as far as the user is concerned
194 but do serve to get the desired values when passed to read_register. */
195
196 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
197 other r registers. */
198 #define FLAGS_REGNUM 0 /* Various status flags */
199 #define RP_REGNUM 2 /* return pointer */
200 #define FP_REGNUM 3 /* Contains address of executing stack */
201 /* frame */
202 #define SP_REGNUM 30 /* Contains address of top of stack */
203 #define SAR_REGNUM 32 /* Shift Amount Register */
204 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
205 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
206 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
207 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
208 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
209 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
210 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
211 #define IOR_REGNUM 40 /* Interrupt Offset Register */
212 #define SR4_REGNUM 43 /* space register 4 */
213 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
214 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
215 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
216 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
217 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
218 #define FP4_REGNUM 72
219
220 #define ARG0_REGNUM 26 /* The first argument of a callee. */
221 #define ARG1_REGNUM 25 /* The second argument of a callee. */
222 #define ARG2_REGNUM 24 /* The third argument of a callee. */
223 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
224
225 /* compatibility with the rest of gdb. */
226 #define PC_REGNUM PCOQ_HEAD_REGNUM
227 #define NPC_REGNUM PCOQ_TAIL_REGNUM
228
229 /*
230 * Processor Status Word Masks
231 */
232
233 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
234 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
235 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
236 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
237 #define PSW_X 0x00100000 /* Data Memory Break Disable */
238 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
239 #define PSW_C 0x00040000 /* Code Address Translation Enable */
240 #define PSW_V 0x00020000 /* Divide Step Correction */
241 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
242 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
243 #define PSW_R 0x00000010 /* Recovery Counter Enable */
244 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
245 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
246 #define PSW_D 0x00000002 /* Data Address Translation Enable */
247 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
248 /* Machine Check Interruption Enable */
249
250 /* When fetching register values from an inferior or a core file,
251 clean them up using this macro. BUF is a char pointer to
252 the raw value of the register in the registers[] array. */
253
254 #define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
255 do { \
256 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
257 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
258 } while (0)
259
260 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
261 of register dumps. */
262
263 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
264 extern void pa_do_registers_info (int, int);
265
266 #if 0
267 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
268 extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
269 #endif
270
271 /* PA specific macro to see if the current instruction is nullified. */
272 #ifndef INSTRUCTION_NULLIFIED
273 #define INSTRUCTION_NULLIFIED \
274 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
275 !((int)read_register (FLAGS_REGNUM) & 0x2))
276 #endif
277
278 /* Number of bytes of storage in the actual machine representation
279 for register N. On the PA-RISC, all regs are 4 bytes, including
280 the FP registers (they're accessed as two 4 byte halves). */
281
282 #define REGISTER_RAW_SIZE(N) 4
283
284 /* Total amount of space needed to store our copies of the machine's
285 register state, the array `registers'. */
286 #define REGISTER_BYTES (NUM_REGS * 4)
287
288 /* Index within `registers' of the first byte of the space for
289 register N. */
290
291 #define REGISTER_BYTE(N) (N) * 4
292
293 /* Number of bytes of storage in the program's representation
294 for register N. */
295
296 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
297
298 /* Largest value REGISTER_RAW_SIZE can have. */
299
300 #define MAX_REGISTER_RAW_SIZE 4
301
302 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
303
304 #define MAX_REGISTER_VIRTUAL_SIZE 8
305
306 /* Return the GDB type object for the "standard" data type
307 of data in register N. */
308
309 #define REGISTER_VIRTUAL_TYPE(N) \
310 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
311
312 /* Store the address of the place in which to copy the structure the
313 subroutine will return. This is called from call_function. */
314
315 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
316
317 /* Extract from an array REGBUF containing the (raw) register state
318 a function return value of type TYPE, and copy that, in virtual format,
319 into VALBUF. */
320
321 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
322 hppa_extract_return_value (TYPE, REGBUF, VALBUF);
323
324 /* elz: decide whether the function returning a value of type type
325 will put it on the stack or in the registers.
326 The pa calling convention says that:
327 register 28 (called ret0 by gdb) contains any ASCII char,
328 and any non_floating point value up to 32-bits.
329 reg 28 and 29 contain non-floating point up tp 64 bits and larger
330 than 32 bits. (higer order word in reg 28).
331 fr4: floating point up to 64 bits
332 sr1: space identifier (32-bit)
333 stack: any lager than 64-bit, with the address in r28
334 */
335 extern use_struct_convention_fn hppa_use_struct_convention;
336 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
337
338 /* Write into appropriate registers a function return value
339 of type TYPE, given in virtual format. */
340
341 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
342 hppa_store_return_value (TYPE, VALBUF);
343
344 /* Extract from an array REGBUF containing the (raw) register state
345 the address in which a function should return its structure value,
346 as a CORE_ADDR (or an expression that can be used as one). */
347
348 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
349 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
350
351 /* elz: Return a large value, which is stored on the stack at addr.
352 This is defined only for the hppa, at this moment.
353 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
354 because it assumes that on exit from a called function which returns
355 a large structure on the stack, the address of the ret structure is
356 still in register 28. Unfortunately this register is usually overwritten
357 by the called function itself, on hppa. This is specified in the calling
358 convention doc. As far as I know, the only way to get the return value
359 is to have the caller tell us where it told the callee to put it, rather
360 than have the callee tell us.
361 */
362 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
363 hppa_value_returned_from_stack (valtype, addr)
364
365 /*
366 * This macro defines the register numbers (from REGISTER_NAMES) that
367 * are effectively unavailable to the user through ptrace(). It allows
368 * us to include the whole register set in REGISTER_NAMES (inorder to
369 * better support remote debugging). If it is used in
370 * fetch/store_inferior_registers() gdb will not complain about I/O errors
371 * on fetching these registers. If all registers in REGISTER_NAMES
372 * are available, then return false (0).
373 */
374
375 #define CANNOT_STORE_REGISTER(regno) \
376 ((regno) == 0) || \
377 ((regno) == PCSQ_HEAD_REGNUM) || \
378 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
379 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
380
381 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
382 extern void init_extra_frame_info (int, struct frame_info *);
383
384 /* Describe the pointer in each stack frame to the previous stack frame
385 (its caller). */
386
387 /* FRAME_CHAIN takes a frame's nominal address
388 and produces the frame's chain-pointer.
389
390 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
391 and produces the nominal address of the caller frame.
392
393 However, if FRAME_CHAIN_VALID returns zero,
394 it means the given frame is the outermost one and has no caller.
395 In that case, FRAME_CHAIN_COMBINE is not used. */
396
397 /* In the case of the PA-RISC, the frame's nominal address
398 is the address of a 4-byte word containing the calling frame's
399 address (previous FP). */
400
401 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
402 extern CORE_ADDR frame_chain (struct frame_info *);
403
404 extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
405 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
406
407 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
408
409 /* Define other aspects of the stack frame. */
410
411 /* A macro that tells us whether the function invocation represented
412 by FI does not have a frame on the stack associated with it. If it
413 does not, FRAMELESS is set to 1, else 0. */
414 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
415 (frameless_function_invocation (FI))
416 extern int frameless_function_invocation (struct frame_info *);
417
418 extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
419 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
420
421 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
422
423 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
424 /* Set VAL to the number of args passed to frame described by FI.
425 Can set VAL to -1, meaning no way to tell. */
426
427 /* We can't tell how many args there are
428 now that the C compiler delays popping them. */
429 #define FRAME_NUM_ARGS(fi) (-1)
430
431 /* Return number of bytes at start of arglist that are not really args. */
432
433 #define FRAME_ARGS_SKIP 0
434
435 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
436 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
437 extern void
438 hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
439 \f
440
441 /* Things needed for making the inferior call functions. */
442
443 /* Push an empty stack frame, to record the current PC, etc. */
444
445 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
446 extern void push_dummy_frame (struct inferior_status *);
447
448 /* Discard from the stack the innermost frame,
449 restoring all saved registers. */
450 #define POP_FRAME hppa_pop_frame ()
451 extern void hppa_pop_frame (void);
452
453 #define INSTRUCTION_SIZE 4
454
455 #ifndef PA_LEVEL_0
456
457 /* Non-level zero PA's have space registers (but they don't always have
458 floating-point, do they???? */
459
460 /* This sequence of words is the instructions
461
462 ; Call stack frame has already been built by gdb. Since we could be calling
463 ; a varargs function, and we do not have the benefit of a stub to put things in
464 ; the right place, we load the first 4 word of arguments into both the general
465 ; and fp registers.
466 call_dummy
467 ldw -36(sp), arg0
468 ldw -40(sp), arg1
469 ldw -44(sp), arg2
470 ldw -48(sp), arg3
471 ldo -36(sp), r1
472 fldws 0(0, r1), fr4
473 fldds -4(0, r1), fr5
474 fldws -8(0, r1), fr6
475 fldds -12(0, r1), fr7
476 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
477 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
478 ldsid (0,r22), r4
479 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
480 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
481 ldsid (0,r1), r20
482 combt,=,n r4, r20, text_space ; If target is in data space, do a
483 ble 0(sr5, r22) ; "normal" procedure call
484 copy r31, r2
485 break 4, 8
486 mtsp r21, sr0
487 ble,n 0(sr0, r22)
488 text_space ; Otherwise, go through _sr4export,
489 ble (sr4, r1) ; which will return back here.
490 stw r31,-24(r30)
491 break 4, 8
492 mtsp r21, sr0
493 ble,n 0(sr0, r22)
494 nop ; To avoid kernel bugs
495 nop ; and keep the dummy 8 byte aligned
496
497 The dummy decides if the target is in text space or data space. If
498 it's in data space, there's no problem because the target can
499 return back to the dummy. However, if the target is in text space,
500 the dummy calls the secret, undocumented routine _sr4export, which
501 calls a function in text space and can return to any space. Instead
502 of including fake instructions to represent saved registers, we
503 know that the frame is associated with the call dummy and treat it
504 specially.
505
506 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
507 kernels. If the memory at the location pointed to by the PC is
508 0xffffffff then a ptrace step call will fail (even if the instruction
509 is nullified).
510
511 The code to pop a dummy frame single steps three instructions
512 starting with the last mtsp. This includes the nullified "instruction"
513 following the ble (which is uninitialized junk). If the
514 "instruction" following the last BLE is 0xffffffff, then the ptrace
515 will fail and the dummy frame is not correctly popped.
516
517 By placing a NOP in the delay slot of the BLE instruction we can be
518 sure that we never try to execute a 0xffffffff instruction and
519 avoid the kernel bug. The second NOP is needed to keep the call
520 dummy 8 byte aligned. */
521
522 /* Define offsets into the call dummy for the target function address */
523 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
524 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
525
526 /* Define offsets into the call dummy for the _sr4export address */
527 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
528 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
529
530 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
531 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
532 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
533 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
534 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
535 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
536 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
537
538 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
539 #define REG_PARM_STACK_SPACE 16
540
541 #else /* defined PA_LEVEL_0 */
542
543 /* This is the call dummy for a level 0 PA. Level 0's don't have space
544 registers (or floating point?), so we skip all that inter-space call stuff,
545 and avoid touching the fp regs.
546
547 call_dummy
548
549 ldw -36(%sp), %arg0
550 ldw -40(%sp), %arg1
551 ldw -44(%sp), %arg2
552 ldw -48(%sp), %arg3
553 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
554 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
555 ble 0(%sr0, %r31)
556 copy %r31, %r2
557 break 4, 8
558 nop ; restore_pc_queue expects these
559 bv,n 0(%r22) ; instructions to be here...
560 nop
561 */
562
563 /* Define offsets into the call dummy for the target function address */
564 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
565 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
566
567 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
568 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
569 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
570
571 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
572
573 #endif
574
575 #define CALL_DUMMY_START_OFFSET 0
576
577 /* If we've reached a trap instruction within the call dummy, then
578 we'll consider that to mean that we've reached the call dummy's
579 end after its successful completion. */
580 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
581 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
582 (read_memory_integer((pc), 4) == BREAKPOINT32))
583
584 /*
585 * Insert the specified number of args and function address
586 * into a call sequence of the above form stored at DUMMYNAME.
587 *
588 * On the hppa we need to call the stack dummy through $$dyncall.
589 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
590 * real_pc, which is the location where gdb should start up the
591 * inferior to do the function call.
592 */
593
594 #define FIX_CALL_DUMMY hppa_fix_call_dummy
595
596 extern CORE_ADDR
597 hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
598 struct value **, struct type *, int);
599
600 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
601 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
602 extern CORE_ADDR
603 hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
604 \f
605 /* The low two bits of the PC on the PA contain the privilege level. Some
606 genius implementing a (non-GCC) compiler apparently decided this means
607 that "addresses" in a text section therefore include a privilege level,
608 and thus symbol tables should contain these bits. This seems like a
609 bonehead thing to do--anyway, it seems to work for our purposes to just
610 ignore those bits. */
611 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
612
613 #define GDB_TARGET_IS_HPPA
614
615 #define BELIEVE_PCC_PROMOTION 1
616
617 /*
618 * Unwind table and descriptor.
619 */
620
621 struct unwind_table_entry
622 {
623 CORE_ADDR region_start;
624 CORE_ADDR region_end;
625
626 unsigned int Cannot_unwind:1; /* 0 */
627 unsigned int Millicode:1; /* 1 */
628 unsigned int Millicode_save_sr0:1; /* 2 */
629 unsigned int Region_description:2; /* 3..4 */
630 unsigned int reserved1:1; /* 5 */
631 unsigned int Entry_SR:1; /* 6 */
632 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
633 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
634 unsigned int Args_stored:1; /* 16 */
635 unsigned int Variable_Frame:1; /* 17 */
636 unsigned int Separate_Package_Body:1; /* 18 */
637 unsigned int Frame_Extension_Millicode:1; /* 19 */
638 unsigned int Stack_Overflow_Check:1; /* 20 */
639 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
640 unsigned int Ada_Region:1; /* 22 */
641 unsigned int cxx_info:1; /* 23 */
642 unsigned int cxx_try_catch:1; /* 24 */
643 unsigned int sched_entry_seq:1; /* 25 */
644 unsigned int reserved2:1; /* 26 */
645 unsigned int Save_SP:1; /* 27 */
646 unsigned int Save_RP:1; /* 28 */
647 unsigned int Save_MRP_in_frame:1; /* 29 */
648 unsigned int extn_ptr_defined:1; /* 30 */
649 unsigned int Cleanup_defined:1; /* 31 */
650
651 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
652 unsigned int HP_UX_interrupt_marker:1; /* 1 */
653 unsigned int Large_frame:1; /* 2 */
654 unsigned int Pseudo_SP_Set:1; /* 3 */
655 unsigned int reserved4:1; /* 4 */
656 unsigned int Total_frame_size:27; /* 5..31 */
657
658 /* This is *NOT* part of an actual unwind_descriptor in an object
659 file. It is *ONLY* part of the "internalized" descriptors that
660 we create from those in a file.
661 */
662 struct
663 {
664 unsigned int stub_type:4; /* 0..3 */
665 unsigned int padding:28; /* 4..31 */
666 }
667 stub_unwind;
668 };
669
670 /* HP linkers also generate unwinds for various linker-generated stubs.
671 GDB reads in the stubs from the $UNWIND_END$ subspace, then
672 "converts" them into normal unwind entries using some of the reserved
673 fields to store the stub type. */
674
675 struct stub_unwind_entry
676 {
677 /* The offset within the executable for the associated stub. */
678 unsigned stub_offset;
679
680 /* The type of stub this unwind entry describes. */
681 char type;
682
683 /* Unknown. Not needed by GDB at this time. */
684 char prs_info;
685
686 /* Length (in instructions) of the associated stub. */
687 short stub_length;
688 };
689
690 /* Sizes (in bytes) of the native unwind entries. */
691 #define UNWIND_ENTRY_SIZE 16
692 #define STUB_UNWIND_ENTRY_SIZE 8
693
694 /* The gaps represent linker stubs used in MPE and space for future
695 expansion. */
696 enum unwind_stub_types
697 {
698 LONG_BRANCH = 1,
699 PARAMETER_RELOCATION = 2,
700 EXPORT = 10,
701 IMPORT = 11,
702 IMPORT_SHLIB = 12,
703 };
704
705 /* We use the objfile->obj_private pointer for two things:
706
707 * 1. An unwind table;
708 *
709 * 2. A pointer to any associated shared library object.
710 *
711 * #defines are used to help refer to these objects.
712 */
713
714 /* Info about the unwind table associated with an object file.
715
716 * This is hung off of the "objfile->obj_private" pointer, and
717 * is allocated in the objfile's psymbol obstack. This allows
718 * us to have unique unwind info for each executable and shared
719 * library that we are debugging.
720 */
721 struct obj_unwind_info
722 {
723 struct unwind_table_entry *table; /* Pointer to unwind info */
724 struct unwind_table_entry *cache; /* Pointer to last entry we found */
725 int last; /* Index of last entry */
726 };
727
728 typedef struct obj_private_struct
729 {
730 struct obj_unwind_info *unwind_info; /* a pointer */
731 struct so_list *so_info; /* a pointer */
732 CORE_ADDR dp;
733 }
734 obj_private_data_t;
735
736 #if 0
737 extern void target_write_pc (CORE_ADDR, int);
738 extern CORE_ADDR target_read_pc (int);
739 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
740 #endif
741
742 #define TARGET_READ_PC(pid) target_read_pc (pid)
743 extern CORE_ADDR target_read_pc (ptid_t);
744
745 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
746 extern void target_write_pc (CORE_ADDR, ptid_t);
747
748 #define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
749 extern CORE_ADDR target_read_fp (int);
750
751 /* For a number of horrible reasons we may have to adjust the location
752 of variables on the stack. Ugh. */
753 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
754
755 extern int hpread_adjust_stack_address (CORE_ADDR);
756
757 /* If the current gcc for for this target does not produce correct debugging
758 information for float parameters, both prototyped and unprototyped, then
759 define this macro. This forces gdb to always assume that floats are
760 passed as doubles and then converted in the callee.
761
762 For the pa, it appears that the debug info marks the parameters as
763 floats regardless of whether the function is prototyped, but the actual
764 values are passed as doubles for the non-prototyped case and floats for
765 the prototyped case. Thus we choose to make the non-prototyped case work
766 for C and break the prototyped case, since the non-prototyped case is
767 probably much more common. (FIXME). */
768
769 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
770
771 /* Here's how to step off a permanent breakpoint. */
772 #define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
773 extern void hppa_skip_permanent_breakpoint (void);
774
775 /* On HP-UX, certain system routines (millicode) have names beginning
776 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
777 calls on PA-RISC. Tell the expression parser to check for those
778 when parsing tokens that begin with "$". */
779 #define SYMBOLS_CAN_START_WITH_DOLLAR (1)