]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/pa/tm-hppa.h
Eliminate IEEE_FLOAT.
[thirdparty/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
1 /* Parameters for execution on any Hewlett-Packard PA-RISC machine.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "regcache.h"
26
27 /* Forward declarations of some types we use in prototypes */
28
29 struct frame_info;
30 struct frame_saved_regs;
31 struct value;
32 struct type;
33 struct inferior_status;
34
35 /* Target system byte order. */
36
37 #define TARGET_BYTE_ORDER BFD_ENDIAN_BIG
38
39 /* By default assume we don't have to worry about software floating point. */
40 #ifndef SOFT_FLOAT
41 #define SOFT_FLOAT 0
42 #endif
43
44 /* Get at various relevent fields of an instruction word. */
45
46 #define MASK_5 0x1f
47 #define MASK_11 0x7ff
48 #define MASK_14 0x3fff
49 #define MASK_21 0x1fffff
50
51 /* This macro gets bit fields using HP's numbering (MSB = 0) */
52 #ifndef GET_FIELD
53 #define GET_FIELD(X, FROM, TO) \
54 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
55 #endif
56
57 /* On the PA, any pass-by-value structure > 8 bytes is actually
58 passed via a pointer regardless of its type or the compiler
59 used. */
60
61 #define REG_STRUCT_HAS_ADDR(gcc_p,type) \
62 (TYPE_LENGTH (type) > 8)
63
64 /* Offset from address of function to start of its code.
65 Zero on most machines. */
66
67 #define FUNCTION_START_OFFSET 0
68
69 /* Advance PC across any function entry prologue instructions
70 to reach some "real" code. */
71
72 extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
73 #define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
74
75 /* If PC is in some function-call trampoline code, return the PC
76 where the function itself actually starts. If not, return NULL. */
77
78 #define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
79 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
80
81 /* Return non-zero if we are in an appropriate trampoline. */
82
83 #define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
84 in_solib_call_trampoline (pc, name)
85 extern int in_solib_call_trampoline (CORE_ADDR, char *);
86
87 #define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
88 in_solib_return_trampoline (pc, name)
89 extern int in_solib_return_trampoline (CORE_ADDR, char *);
90
91 /* Immediately after a function call, return the saved pc.
92 Can't go through the frames for this because on some machines
93 the new frame is not set up until the new function executes
94 some instructions. */
95
96 #undef SAVED_PC_AFTER_CALL
97 #define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
98 extern CORE_ADDR saved_pc_after_call (struct frame_info *);
99
100 /* Stack grows upward */
101 #define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
102
103 /* elz: adjust the quantity to the next highest value which is 64-bit aligned.
104 This is used in valops.c, when the sp is adjusted.
105 On hppa the sp must always be kept 64-bit aligned */
106
107 #define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
108 #define EXTRA_STACK_ALIGNMENT_NEEDED 0
109
110 /* Sequence of bytes for breakpoint instruction. */
111
112 #define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
113 #define BREAKPOINT32 0x10004
114
115 /* Amount PC must be decremented by after a breakpoint.
116 This is often the number of bytes in BREAKPOINT
117 but not always.
118
119 Not on the PA-RISC */
120
121 #define DECR_PC_AFTER_BREAK 0
122
123 /* Sometimes we may pluck out a minimal symbol that has a negative
124 address.
125
126 An example of this occurs when an a.out is linked against a foo.sl.
127 The foo.sl defines a global bar(), and the a.out declares a signature
128 for bar(). However, the a.out doesn't directly call bar(), but passes
129 its address in another call.
130
131 If you have this scenario and attempt to "break bar" before running,
132 gdb will find a minimal symbol for bar() in the a.out. But that
133 symbol's address will be negative. What this appears to denote is
134 an index backwards from the base of the procedure linkage table (PLT)
135 into the data linkage table (DLT), the end of which is contiguous
136 with the start of the PLT. This is clearly not a valid address for
137 us to set a breakpoint on.
138
139 Note that one must be careful in how one checks for a negative address.
140 0xc0000000 is a legitimate address of something in a shared text
141 segment, for example. Since I don't know what the possible range
142 is of these "really, truly negative" addresses that come from the
143 minimal symbols, I'm resorting to the gross hack of checking the
144 top byte of the address for all 1's. Sigh.
145 */
146 #define PC_REQUIRES_RUN_BEFORE_USE(pc) \
147 (! target_has_stack && (pc & 0xFF000000))
148
149 /* return instruction is bv r0(rp) or bv,n r0(rp) */
150
151 #define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
152
153 /* Say how long (ordinary) registers are. This is a piece of bogosity
154 used in push_word and a few other places; REGISTER_RAW_SIZE is the
155 real way to know how big a register is. */
156
157 #define REGISTER_SIZE 4
158
159 /* Number of machine registers */
160
161 #define NUM_REGS 128
162
163 /* Initializer for an array of names of registers.
164 There should be NUM_REGS strings in this initializer.
165 They are in rows of eight entries */
166
167 #define REGISTER_NAMES \
168 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
169 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
170 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
171 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
172 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
173 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
174 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
175 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
176 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
177 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
178 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
179 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
180 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
181 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
182 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
183 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
184
185 /* Register numbers of various important registers.
186 Note that some of these values are "real" register numbers,
187 and correspond to the general registers of the machine,
188 and some are "phony" register numbers which are too large
189 to be actual register numbers as far as the user is concerned
190 but do serve to get the desired values when passed to read_register. */
191
192 #define R0_REGNUM 0 /* Doesn't actually exist, used as base for
193 other r registers. */
194 #define FLAGS_REGNUM 0 /* Various status flags */
195 #define RP_REGNUM 2 /* return pointer */
196 #define FP_REGNUM 3 /* Contains address of executing stack */
197 /* frame */
198 #define SP_REGNUM 30 /* Contains address of top of stack */
199 #define SAR_REGNUM 32 /* Shift Amount Register */
200 #define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
201 #define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
202 #define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
203 #define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
204 #define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
205 #define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
206 #define IIR_REGNUM 38 /* Interrupt Instruction Register */
207 #define IOR_REGNUM 40 /* Interrupt Offset Register */
208 #define SR4_REGNUM 43 /* space register 4 */
209 #define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
210 #define CCR_REGNUM 54 /* Coprocessor Configuration Register */
211 #define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
212 #define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
213 #define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
214 #define FP4_REGNUM 72
215
216 #define ARG0_REGNUM 26 /* The first argument of a callee. */
217 #define ARG1_REGNUM 25 /* The second argument of a callee. */
218 #define ARG2_REGNUM 24 /* The third argument of a callee. */
219 #define ARG3_REGNUM 23 /* The fourth argument of a callee. */
220
221 /* compatibility with the rest of gdb. */
222 #define PC_REGNUM PCOQ_HEAD_REGNUM
223 #define NPC_REGNUM PCOQ_TAIL_REGNUM
224
225 /*
226 * Processor Status Word Masks
227 */
228
229 #define PSW_T 0x01000000 /* Taken Branch Trap Enable */
230 #define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
231 #define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
232 #define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
233 #define PSW_X 0x00100000 /* Data Memory Break Disable */
234 #define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
235 #define PSW_C 0x00040000 /* Code Address Translation Enable */
236 #define PSW_V 0x00020000 /* Divide Step Correction */
237 #define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
238 #define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
239 #define PSW_R 0x00000010 /* Recovery Counter Enable */
240 #define PSW_Q 0x00000008 /* Interruption State Collection Enable */
241 #define PSW_P 0x00000004 /* Protection ID Validation Enable */
242 #define PSW_D 0x00000002 /* Data Address Translation Enable */
243 #define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
244 /* Machine Check Interruption Enable */
245
246 /* When fetching register values from an inferior or a core file,
247 clean them up using this macro. BUF is a char pointer to
248 the raw value of the register in the registers[] array. */
249
250 #define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
251 do { \
252 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
253 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
254 } while (0)
255
256 /* Define DO_REGISTERS_INFO() to do machine-specific formatting
257 of register dumps. */
258
259 #define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
260 extern void pa_do_registers_info (int, int);
261
262 #if 0
263 #define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
264 extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
265 #endif
266
267 /* PA specific macro to see if the current instruction is nullified. */
268 #ifndef INSTRUCTION_NULLIFIED
269 #define INSTRUCTION_NULLIFIED \
270 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
271 !((int)read_register (FLAGS_REGNUM) & 0x2))
272 #endif
273
274 /* Number of bytes of storage in the actual machine representation
275 for register N. On the PA-RISC, all regs are 4 bytes, including
276 the FP registers (they're accessed as two 4 byte halves). */
277
278 #define REGISTER_RAW_SIZE(N) 4
279
280 /* Total amount of space needed to store our copies of the machine's
281 register state, the array `registers'. */
282 #define REGISTER_BYTES (NUM_REGS * 4)
283
284 /* Index within `registers' of the first byte of the space for
285 register N. */
286
287 #define REGISTER_BYTE(N) (N) * 4
288
289 /* Number of bytes of storage in the program's representation
290 for register N. */
291
292 #define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
293
294 /* Largest value REGISTER_RAW_SIZE can have. */
295
296 #define MAX_REGISTER_RAW_SIZE 4
297
298 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
299
300 #define MAX_REGISTER_VIRTUAL_SIZE 8
301
302 /* Return the GDB type object for the "standard" data type
303 of data in register N. */
304
305 #define REGISTER_VIRTUAL_TYPE(N) \
306 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
307
308 /* Store the address of the place in which to copy the structure the
309 subroutine will return. This is called from call_function. */
310
311 #define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
312
313 /* Extract from an array REGBUF containing the (raw) register state
314 a function return value of type TYPE, and copy that, in virtual format,
315 into VALBUF. */
316
317 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
318 hppa_extract_return_value (TYPE, REGBUF, VALBUF);
319
320 /* elz: decide whether the function returning a value of type type
321 will put it on the stack or in the registers.
322 The pa calling convention says that:
323 register 28 (called ret0 by gdb) contains any ASCII char,
324 and any non_floating point value up to 32-bits.
325 reg 28 and 29 contain non-floating point up tp 64 bits and larger
326 than 32 bits. (higer order word in reg 28).
327 fr4: floating point up to 64 bits
328 sr1: space identifier (32-bit)
329 stack: any lager than 64-bit, with the address in r28
330 */
331 extern use_struct_convention_fn hppa_use_struct_convention;
332 #define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
333
334 /* Write into appropriate registers a function return value
335 of type TYPE, given in virtual format. */
336
337 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
338 hppa_store_return_value (TYPE, VALBUF);
339
340 /* Extract from an array REGBUF containing the (raw) register state
341 the address in which a function should return its structure value,
342 as a CORE_ADDR (or an expression that can be used as one). */
343
344 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
345 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
346
347 /* elz: Return a large value, which is stored on the stack at addr.
348 This is defined only for the hppa, at this moment.
349 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
350 because it assumes that on exit from a called function which returns
351 a large structure on the stack, the address of the ret structure is
352 still in register 28. Unfortunately this register is usually overwritten
353 by the called function itself, on hppa. This is specified in the calling
354 convention doc. As far as I know, the only way to get the return value
355 is to have the caller tell us where it told the callee to put it, rather
356 than have the callee tell us.
357 */
358 #define VALUE_RETURNED_FROM_STACK(valtype,addr) \
359 hppa_value_returned_from_stack (valtype, addr)
360
361 /*
362 * This macro defines the register numbers (from REGISTER_NAMES) that
363 * are effectively unavailable to the user through ptrace(). It allows
364 * us to include the whole register set in REGISTER_NAMES (inorder to
365 * better support remote debugging). If it is used in
366 * fetch/store_inferior_registers() gdb will not complain about I/O errors
367 * on fetching these registers. If all registers in REGISTER_NAMES
368 * are available, then return false (0).
369 */
370
371 #define CANNOT_STORE_REGISTER(regno) \
372 ((regno) == 0) || \
373 ((regno) == PCSQ_HEAD_REGNUM) || \
374 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
375 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
376
377 #define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
378 extern void init_extra_frame_info (int, struct frame_info *);
379
380 /* Describe the pointer in each stack frame to the previous stack frame
381 (its caller). */
382
383 /* FRAME_CHAIN takes a frame's nominal address
384 and produces the frame's chain-pointer.
385
386 FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
387 and produces the nominal address of the caller frame.
388
389 However, if FRAME_CHAIN_VALID returns zero,
390 it means the given frame is the outermost one and has no caller.
391 In that case, FRAME_CHAIN_COMBINE is not used. */
392
393 /* In the case of the PA-RISC, the frame's nominal address
394 is the address of a 4-byte word containing the calling frame's
395 address (previous FP). */
396
397 #define FRAME_CHAIN(thisframe) frame_chain (thisframe)
398 extern CORE_ADDR frame_chain (struct frame_info *);
399
400 extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
401 #define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
402
403 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
404
405 /* Define other aspects of the stack frame. */
406
407 /* A macro that tells us whether the function invocation represented
408 by FI does not have a frame on the stack associated with it. If it
409 does not, FRAMELESS is set to 1, else 0. */
410 #define FRAMELESS_FUNCTION_INVOCATION(FI) \
411 (frameless_function_invocation (FI))
412 extern int frameless_function_invocation (struct frame_info *);
413
414 extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
415 #define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
416
417 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
418
419 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
420 /* Set VAL to the number of args passed to frame described by FI.
421 Can set VAL to -1, meaning no way to tell. */
422
423 /* We can't tell how many args there are
424 now that the C compiler delays popping them. */
425 #define FRAME_NUM_ARGS(fi) (-1)
426
427 /* Return number of bytes at start of arglist that are not really args. */
428
429 #define FRAME_ARGS_SKIP 0
430
431 #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
432 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
433 extern void
434 hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
435 \f
436
437 /* Things needed for making the inferior call functions. */
438
439 /* Push an empty stack frame, to record the current PC, etc. */
440
441 #define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
442 extern void push_dummy_frame (struct inferior_status *);
443
444 /* Discard from the stack the innermost frame,
445 restoring all saved registers. */
446 #define POP_FRAME hppa_pop_frame ()
447 extern void hppa_pop_frame (void);
448
449 #define INSTRUCTION_SIZE 4
450
451 #ifndef PA_LEVEL_0
452
453 /* Non-level zero PA's have space registers (but they don't always have
454 floating-point, do they???? */
455
456 /* This sequence of words is the instructions
457
458 ; Call stack frame has already been built by gdb. Since we could be calling
459 ; a varargs function, and we do not have the benefit of a stub to put things in
460 ; the right place, we load the first 4 word of arguments into both the general
461 ; and fp registers.
462 call_dummy
463 ldw -36(sp), arg0
464 ldw -40(sp), arg1
465 ldw -44(sp), arg2
466 ldw -48(sp), arg3
467 ldo -36(sp), r1
468 fldws 0(0, r1), fr4
469 fldds -4(0, r1), fr5
470 fldws -8(0, r1), fr6
471 fldds -12(0, r1), fr7
472 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
473 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
474 ldsid (0,r22), r4
475 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
476 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
477 ldsid (0,r1), r20
478 combt,=,n r4, r20, text_space ; If target is in data space, do a
479 ble 0(sr5, r22) ; "normal" procedure call
480 copy r31, r2
481 break 4, 8
482 mtsp r21, sr0
483 ble,n 0(sr0, r22)
484 text_space ; Otherwise, go through _sr4export,
485 ble (sr4, r1) ; which will return back here.
486 stw r31,-24(r30)
487 break 4, 8
488 mtsp r21, sr0
489 ble,n 0(sr0, r22)
490 nop ; To avoid kernel bugs
491 nop ; and keep the dummy 8 byte aligned
492
493 The dummy decides if the target is in text space or data space. If
494 it's in data space, there's no problem because the target can
495 return back to the dummy. However, if the target is in text space,
496 the dummy calls the secret, undocumented routine _sr4export, which
497 calls a function in text space and can return to any space. Instead
498 of including fake instructions to represent saved registers, we
499 know that the frame is associated with the call dummy and treat it
500 specially.
501
502 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
503 kernels. If the memory at the location pointed to by the PC is
504 0xffffffff then a ptrace step call will fail (even if the instruction
505 is nullified).
506
507 The code to pop a dummy frame single steps three instructions
508 starting with the last mtsp. This includes the nullified "instruction"
509 following the ble (which is uninitialized junk). If the
510 "instruction" following the last BLE is 0xffffffff, then the ptrace
511 will fail and the dummy frame is not correctly popped.
512
513 By placing a NOP in the delay slot of the BLE instruction we can be
514 sure that we never try to execute a 0xffffffff instruction and
515 avoid the kernel bug. The second NOP is needed to keep the call
516 dummy 8 byte aligned. */
517
518 /* Define offsets into the call dummy for the target function address */
519 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
520 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
521
522 /* Define offsets into the call dummy for the _sr4export address */
523 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
524 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
525
526 #define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
527 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
528 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
529 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
530 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
531 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
532 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
533
534 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
535 #define REG_PARM_STACK_SPACE 16
536
537 #else /* defined PA_LEVEL_0 */
538
539 /* This is the call dummy for a level 0 PA. Level 0's don't have space
540 registers (or floating point?), so we skip all that inter-space call stuff,
541 and avoid touching the fp regs.
542
543 call_dummy
544
545 ldw -36(%sp), %arg0
546 ldw -40(%sp), %arg1
547 ldw -44(%sp), %arg2
548 ldw -48(%sp), %arg3
549 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
550 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
551 ble 0(%sr0, %r31)
552 copy %r31, %r2
553 break 4, 8
554 nop ; restore_pc_queue expects these
555 bv,n 0(%r22) ; instructions to be here...
556 nop
557 */
558
559 /* Define offsets into the call dummy for the target function address */
560 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
561 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
562
563 #define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
564 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
565 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
566
567 #define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
568
569 #endif
570
571 #define CALL_DUMMY_START_OFFSET 0
572
573 /* If we've reached a trap instruction within the call dummy, then
574 we'll consider that to mean that we've reached the call dummy's
575 end after its successful completion. */
576 #define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
577 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
578 (read_memory_integer((pc), 4) == BREAKPOINT32))
579
580 /*
581 * Insert the specified number of args and function address
582 * into a call sequence of the above form stored at DUMMYNAME.
583 *
584 * On the hppa we need to call the stack dummy through $$dyncall.
585 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
586 * real_pc, which is the location where gdb should start up the
587 * inferior to do the function call.
588 */
589
590 #define FIX_CALL_DUMMY hppa_fix_call_dummy
591
592 extern CORE_ADDR
593 hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
594 struct value **, struct type *, int);
595
596 #define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
597 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
598 extern CORE_ADDR
599 hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
600 \f
601 /* The low two bits of the PC on the PA contain the privilege level. Some
602 genius implementing a (non-GCC) compiler apparently decided this means
603 that "addresses" in a text section therefore include a privilege level,
604 and thus symbol tables should contain these bits. This seems like a
605 bonehead thing to do--anyway, it seems to work for our purposes to just
606 ignore those bits. */
607 #define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
608
609 #define GDB_TARGET_IS_HPPA
610
611 #define BELIEVE_PCC_PROMOTION 1
612
613 /*
614 * Unwind table and descriptor.
615 */
616
617 struct unwind_table_entry
618 {
619 CORE_ADDR region_start;
620 CORE_ADDR region_end;
621
622 unsigned int Cannot_unwind:1; /* 0 */
623 unsigned int Millicode:1; /* 1 */
624 unsigned int Millicode_save_sr0:1; /* 2 */
625 unsigned int Region_description:2; /* 3..4 */
626 unsigned int reserved1:1; /* 5 */
627 unsigned int Entry_SR:1; /* 6 */
628 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
629 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
630 unsigned int Args_stored:1; /* 16 */
631 unsigned int Variable_Frame:1; /* 17 */
632 unsigned int Separate_Package_Body:1; /* 18 */
633 unsigned int Frame_Extension_Millicode:1; /* 19 */
634 unsigned int Stack_Overflow_Check:1; /* 20 */
635 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
636 unsigned int Ada_Region:1; /* 22 */
637 unsigned int cxx_info:1; /* 23 */
638 unsigned int cxx_try_catch:1; /* 24 */
639 unsigned int sched_entry_seq:1; /* 25 */
640 unsigned int reserved2:1; /* 26 */
641 unsigned int Save_SP:1; /* 27 */
642 unsigned int Save_RP:1; /* 28 */
643 unsigned int Save_MRP_in_frame:1; /* 29 */
644 unsigned int extn_ptr_defined:1; /* 30 */
645 unsigned int Cleanup_defined:1; /* 31 */
646
647 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
648 unsigned int HP_UX_interrupt_marker:1; /* 1 */
649 unsigned int Large_frame:1; /* 2 */
650 unsigned int Pseudo_SP_Set:1; /* 3 */
651 unsigned int reserved4:1; /* 4 */
652 unsigned int Total_frame_size:27; /* 5..31 */
653
654 /* This is *NOT* part of an actual unwind_descriptor in an object
655 file. It is *ONLY* part of the "internalized" descriptors that
656 we create from those in a file.
657 */
658 struct
659 {
660 unsigned int stub_type:4; /* 0..3 */
661 unsigned int padding:28; /* 4..31 */
662 }
663 stub_unwind;
664 };
665
666 /* HP linkers also generate unwinds for various linker-generated stubs.
667 GDB reads in the stubs from the $UNWIND_END$ subspace, then
668 "converts" them into normal unwind entries using some of the reserved
669 fields to store the stub type. */
670
671 struct stub_unwind_entry
672 {
673 /* The offset within the executable for the associated stub. */
674 unsigned stub_offset;
675
676 /* The type of stub this unwind entry describes. */
677 char type;
678
679 /* Unknown. Not needed by GDB at this time. */
680 char prs_info;
681
682 /* Length (in instructions) of the associated stub. */
683 short stub_length;
684 };
685
686 /* Sizes (in bytes) of the native unwind entries. */
687 #define UNWIND_ENTRY_SIZE 16
688 #define STUB_UNWIND_ENTRY_SIZE 8
689
690 /* The gaps represent linker stubs used in MPE and space for future
691 expansion. */
692 enum unwind_stub_types
693 {
694 LONG_BRANCH = 1,
695 PARAMETER_RELOCATION = 2,
696 EXPORT = 10,
697 IMPORT = 11,
698 IMPORT_SHLIB = 12,
699 };
700
701 /* We use the objfile->obj_private pointer for two things:
702
703 * 1. An unwind table;
704 *
705 * 2. A pointer to any associated shared library object.
706 *
707 * #defines are used to help refer to these objects.
708 */
709
710 /* Info about the unwind table associated with an object file.
711
712 * This is hung off of the "objfile->obj_private" pointer, and
713 * is allocated in the objfile's psymbol obstack. This allows
714 * us to have unique unwind info for each executable and shared
715 * library that we are debugging.
716 */
717 struct obj_unwind_info
718 {
719 struct unwind_table_entry *table; /* Pointer to unwind info */
720 struct unwind_table_entry *cache; /* Pointer to last entry we found */
721 int last; /* Index of last entry */
722 };
723
724 typedef struct obj_private_struct
725 {
726 struct obj_unwind_info *unwind_info; /* a pointer */
727 struct so_list *so_info; /* a pointer */
728 CORE_ADDR dp;
729 }
730 obj_private_data_t;
731
732 #if 0
733 extern void target_write_pc (CORE_ADDR, int);
734 extern CORE_ADDR target_read_pc (int);
735 extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
736 #endif
737
738 #define TARGET_READ_PC(pid) target_read_pc (pid)
739 extern CORE_ADDR target_read_pc (ptid_t);
740
741 #define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
742 extern void target_write_pc (CORE_ADDR, ptid_t);
743
744 #define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
745 extern CORE_ADDR target_read_fp (int);
746
747 /* For a number of horrible reasons we may have to adjust the location
748 of variables on the stack. Ugh. */
749 #define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
750
751 extern int hpread_adjust_stack_address (CORE_ADDR);
752
753 /* If the current gcc for for this target does not produce correct debugging
754 information for float parameters, both prototyped and unprototyped, then
755 define this macro. This forces gdb to always assume that floats are
756 passed as doubles and then converted in the callee.
757
758 For the pa, it appears that the debug info marks the parameters as
759 floats regardless of whether the function is prototyped, but the actual
760 values are passed as doubles for the non-prototyped case and floats for
761 the prototyped case. Thus we choose to make the non-prototyped case work
762 for C and break the prototyped case, since the non-prototyped case is
763 probably much more common. (FIXME). */
764
765 #define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
766
767 /* Here's how to step off a permanent breakpoint. */
768 #define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
769 extern void hppa_skip_permanent_breakpoint (void);
770
771 /* On HP-UX, certain system routines (millicode) have names beginning
772 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
773 calls on PA-RISC. Tell the expression parser to check for those
774 when parsing tokens that begin with "$". */
775 #define SYMBOLS_CAN_START_WITH_DOLLAR (1)