]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/config/sparc/tm-sparc.h
* tm-sparc.c (EXTRA_FRAME_INFO): New field sp_offset.
[thirdparty/binutils-gdb.git] / gdb / config / sparc / tm-sparc.h
1 /* Target machine sub-parameters for SPARC, for GDB, the GNU debugger.
2 This is included by other tm-*.h files to define SPARC cpu-related info.
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@mcc.com)
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22
23 #define TARGET_BYTE_ORDER BIG_ENDIAN
24
25 /* Floating point is IEEE compatible. */
26 #define IEEE_FLOAT
27
28 /* If an argument is declared "register", Sun cc will keep it in a register,
29 never saving it onto the stack. So we better not believe the "p" symbol
30 descriptor stab. */
31
32 #define USE_REGISTER_NOT_ARG
33
34 /* When passing a structure to a function, Sun cc passes the address
35 not the structure itself. It (under SunOS4) creates two symbols,
36 which we need to combine to a LOC_REGPARM. Gcc version two (as of
37 1.92) behaves like sun cc. REG_STRUCT_HAS_ADDR is smart enough to
38 distinguish between Sun cc, gcc version 1 and gcc version 2. */
39
40 #define REG_STRUCT_HAS_ADDR(gcc_p,type) (gcc_p != 1)
41
42 /* Sun /bin/cc gets this right as of SunOS 4.1.x. We need to define
43 BELIEVE_PCC_PROMOTION to get this right now that the code which
44 detects gcc2_compiled. is broken. This loses for SunOS 4.0.x and
45 earlier. */
46
47 #define BELIEVE_PCC_PROMOTION 1
48
49 /* For acc, there's no need to correct LBRAC entries by guessing how
50 they should work. In fact, this is harmful because the LBRAC
51 entries now all appear at the end of the function, not intermixed
52 with the SLINE entries. n_opt_found detects acc for Solaris binaries;
53 function_stab_type detects acc for SunOS4 binaries.
54
55 For binary from SunOS4 /bin/cc, need to correct LBRAC's.
56
57 For gcc, like acc, don't correct. */
58
59 #define SUN_FIXED_LBRAC_BUG \
60 (n_opt_found \
61 || function_stab_type == N_STSYM \
62 || function_stab_type == N_GSYM \
63 || processing_gcc_compilation)
64
65 /* Do variables in the debug stabs occur after the N_LBRAC or before it?
66 acc: after, gcc: before, SunOS4 /bin/cc: before. */
67
68 #define VARIABLES_INSIDE_BLOCK(desc, gcc_p) \
69 (!(gcc_p) \
70 && (n_opt_found \
71 || function_stab_type == N_STSYM \
72 || function_stab_type == N_GSYM))
73
74 /* Offset from address of function to start of its code.
75 Zero on most machines. */
76
77 #define FUNCTION_START_OFFSET 0
78
79 /* Advance PC across any function entry prologue instructions
80 to reach some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances
81 the PC past some of the prologue, but stops as soon as it
82 knows that the function has a frame. Its result is equal
83 to its input PC if the function is frameless, unequal otherwise. */
84
85 #define SKIP_PROLOGUE(pc) \
86 { pc = skip_prologue (pc, 0); }
87 #define SKIP_PROLOGUE_FRAMELESS_P(pc) \
88 { pc = skip_prologue (pc, 1); }
89 extern CORE_ADDR skip_prologue PARAMS ((CORE_ADDR, int));
90
91 /* Immediately after a function call, return the saved pc.
92 Can't go through the frames for this because on some machines
93 the new frame is not set up until the new function executes
94 some instructions. */
95
96 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
97 encodes the structure size being returned. If we detect such
98 a fake insn, step past it. */
99
100 #define PC_ADJUST(pc) sparc_pc_adjust(pc)
101 extern CORE_ADDR sparc_pc_adjust PARAMS ((CORE_ADDR));
102
103 #define SAVED_PC_AFTER_CALL(frame) PC_ADJUST (read_register (RP_REGNUM))
104
105 /* Stack grows downward. */
106
107 #define INNER_THAN <
108
109 /* Stack has strict alignment. */
110
111 #define STACK_ALIGN(ADDR) (((ADDR)+7)&-8)
112
113 /* Sequence of bytes for breakpoint instruction. */
114
115 #define BREAKPOINT {0x91, 0xd0, 0x20, 0x01}
116
117 /* Amount PC must be decremented by after a breakpoint.
118 This is often the number of bytes in BREAKPOINT
119 but not always. */
120
121 #define DECR_PC_AFTER_BREAK 0
122
123 /* Nonzero if instruction at PC is a return instruction. */
124 /* For SPARC, this is either a "jmpl %o7+8,%g0" or "jmpl %i7+8,%g0".
125
126 Note: this does not work for functions returning structures under SunOS. */
127 #define ABOUT_TO_RETURN(pc) \
128 ((read_memory_integer (pc, 4)|0x00040000) == 0x81c7e008)
129
130 /* Say how long (ordinary) registers are. This is a piece of bogosity
131 used in push_word and a few other places; REGISTER_RAW_SIZE is the
132 real way to know how big a register is. */
133
134 #define REGISTER_SIZE 4
135
136 /* Number of machine registers */
137
138 #define NUM_REGS 72
139
140 /* Initializer for an array of names of registers.
141 There should be NUM_REGS strings in this initializer. */
142
143 #define REGISTER_NAMES \
144 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
145 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
146 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
147 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
148 \
149 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
150 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
151 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
152 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
153 \
154 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" }
155
156 /* Register numbers of various important registers.
157 Note that some of these values are "real" register numbers,
158 and correspond to the general registers of the machine,
159 and some are "phony" register numbers which are too large
160 to be actual register numbers as far as the user is concerned
161 but do serve to get the desired values when passed to read_register. */
162
163 #define G0_REGNUM 0 /* %g0 */
164 #define G1_REGNUM 1 /* %g1 */
165 #define O0_REGNUM 8 /* %o0 */
166 #define SP_REGNUM 14 /* Contains address of top of stack, \
167 which is also the bottom of the frame. */
168 #define RP_REGNUM 15 /* Contains return address value, *before* \
169 any windows get switched. */
170 #define O7_REGNUM 15 /* Last local reg not saved on stack frame */
171 #define L0_REGNUM 16 /* First local reg that's saved on stack frame
172 rather than in machine registers */
173 #define I0_REGNUM 24 /* %i0 */
174 #define FP_REGNUM 30 /* Contains address of executing stack frame */
175 #define I7_REGNUM 31 /* Last local reg saved on stack frame */
176 #define FP0_REGNUM 32 /* Floating point register 0 */
177 #define Y_REGNUM 64 /* Temp register for multiplication, etc. */
178 #define PS_REGNUM 65 /* Contains processor status */
179 #define WIM_REGNUM 66 /* Window Invalid Mask (not really supported) */
180 #define TBR_REGNUM 67 /* Trap Base Register (not really supported) */
181 #define PC_REGNUM 68 /* Contains program counter */
182 #define NPC_REGNUM 69 /* Contains next PC */
183 #define FPS_REGNUM 70 /* Floating point status register */
184 #define CPS_REGNUM 71 /* Coprocessor status register */
185
186 /* Total amount of space needed to store our copies of the machine's
187 register state, the array `registers'. On the sparc, `registers'
188 contains the ins and locals, even though they are saved on the
189 stack rather than with the other registers, and this causes hair
190 and confusion in places like pop_frame. It might be
191 better to remove the ins and locals from `registers', make sure
192 that get_saved_register can get them from the stack (even in the
193 innermost frame), and make this the way to access them. For the
194 frame pointer we would do that via TARGET_READ_FP. On the other hand,
195 that is likely to be confusing or worse for flat frames. */
196
197 #define REGISTER_BYTES (32*4+32*4+8*4)
198
199 /* Index within `registers' of the first byte of the space for
200 register N. */
201 /* ?? */
202 #define REGISTER_BYTE(N) ((N)*4)
203
204 /* We need to override GET_SAVED_REGISTER so that we can deal with the way
205 outs change into ins in different frames. HAVE_REGISTER_WINDOWS can't
206 deal with this case and also handle flat frames at the same time. */
207
208 #define GET_SAVED_REGISTER 1
209
210 /* Number of bytes of storage in the actual machine representation
211 for register N. */
212
213 /* On the SPARC, all regs are 4 bytes. */
214
215 #define REGISTER_RAW_SIZE(N) (4)
216
217 /* Number of bytes of storage in the program's representation
218 for register N. */
219
220 /* On the SPARC, all regs are 4 bytes. */
221
222 #define REGISTER_VIRTUAL_SIZE(N) (4)
223
224 /* Largest value REGISTER_RAW_SIZE can have. */
225
226 #define MAX_REGISTER_RAW_SIZE 8
227
228 /* Largest value REGISTER_VIRTUAL_SIZE can have. */
229
230 #define MAX_REGISTER_VIRTUAL_SIZE 8
231
232 /* Return the GDB type object for the "standard" data type
233 of data in register N. */
234
235 #define REGISTER_VIRTUAL_TYPE(N) \
236 ((N) < 32 ? builtin_type_int : (N) < 64 ? builtin_type_float : \
237 builtin_type_int)
238
239 /* Writing to %g0 is a noop (not an error or exception or anything like
240 that, however). */
241
242 #define CANNOT_STORE_REGISTER(regno) ((regno) == G0_REGNUM)
243
244 /* Store the address of the place in which to copy the structure the
245 subroutine will return. This is called from call_function. */
246
247 #define STORE_STRUCT_RETURN(ADDR, SP) \
248 { target_write_memory ((SP)+(16*4), (char *)&(ADDR), 4); }
249
250 /* Extract from an array REGBUF containing the (raw) register state
251 a function return value of type TYPE, and copy that, in virtual format,
252 into VALBUF. */
253
254 #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
255 { \
256 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
257 { \
258 memcpy ((VALBUF), ((int *)(REGBUF))+FP0_REGNUM, TYPE_LENGTH(TYPE));\
259 } \
260 else \
261 memcpy ((VALBUF), \
262 (char *)(REGBUF) + 4 * 8 + \
263 (TYPE_LENGTH(TYPE) >= 4 ? 0 : 4 - TYPE_LENGTH(TYPE)), \
264 TYPE_LENGTH(TYPE)); \
265 }
266
267 /* Write into appropriate registers a function return value
268 of type TYPE, given in virtual format. */
269 /* On sparc, values are returned in register %o0. */
270 #define STORE_RETURN_VALUE(TYPE,VALBUF) \
271 { \
272 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
273 /* Floating-point values are returned in the register pair */ \
274 /* formed by %f0 and %f1 (doubles are, anyway). */ \
275 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), (VALBUF), \
276 TYPE_LENGTH (TYPE)); \
277 else \
278 /* Other values are returned in register %o0. */ \
279 write_register_bytes (REGISTER_BYTE (O0_REGNUM), (VALBUF), \
280 TYPE_LENGTH (TYPE)); \
281 }
282
283 /* Extract from an array REGBUF containing the (raw) register state
284 the address in which a function should return its structure value,
285 as a CORE_ADDR (or an expression that can be used as one). */
286
287 #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
288 (sparc_extract_struct_value_address (REGBUF))
289
290 extern CORE_ADDR
291 sparc_extract_struct_value_address PARAMS ((char [REGISTER_BYTES]));
292
293 \f
294 /* Describe the pointer in each stack frame to the previous stack frame
295 (its caller). */
296
297 /* FRAME_CHAIN takes a frame's nominal address
298 and produces the frame's chain-pointer. */
299
300 /* In the case of the Sun 4, the frame-chain's nominal address
301 is held in the frame pointer register.
302
303 On the Sun4, the frame (in %fp) is %sp for the previous frame.
304 From the previous frame's %sp, we can find the previous frame's
305 %fp: it is in the save area just above the previous frame's %sp.
306
307 If we are setting up an arbitrary frame, we'll need to know where
308 it ends. Hence the following. This part of the frame cache
309 structure should be checked before it is assumed that this frame's
310 bottom is in the stack pointer.
311
312 If there isn't a frame below this one, the bottom of this frame is
313 in the stack pointer.
314
315 If there is a frame below this one, and the frame pointers are
316 identical, it's a leaf frame and the bottoms are the same also.
317
318 Otherwise the bottom of this frame is the top of the next frame.
319
320 The bottom field is misnamed, since it might imply that memory from
321 bottom to frame contains this frame. That need not be true if
322 stack frames are allocated in different segments (e.g. some on a
323 stack, some on a heap in the data segment).
324
325 GCC 2.6 and later can generate ``flat register window'' code that
326 makes frames by explicitly saving those registers that need to be
327 saved. %i7 is used as the frame pointer, and the frame is laid out so
328 that flat and non-flat calls can be intermixed freely within a
329 program. Unfortunately for GDB, this means it must detect and record
330 the flatness of frames.
331
332 Since the prologue in a flat frame also tells us where fp and pc
333 have been stashed (the frame is of variable size, so their location
334 is not fixed), it's convenient to record them in the frame info. */
335
336 #define EXTRA_FRAME_INFO \
337 CORE_ADDR bottom; \
338 int flat; \
339 /* Following fields only relevant for flat frames. */ \
340 CORE_ADDR pc_addr; \
341 CORE_ADDR fp_addr; \
342 /* Add this to ->frame to get the value of the stack pointer at the */ \
343 /* time of the register saves. */ \
344 int sp_offset;
345
346 #define INIT_EXTRA_FRAME_INFO(fromleaf, fci) \
347 sparc_init_extra_frame_info (fromleaf, fci)
348 extern void sparc_init_extra_frame_info ();
349
350 #define PRINT_EXTRA_FRAME_INFO(fi) \
351 { \
352 if ((fi) && (fi)->flat) \
353 printf_filtered (" flat, pc saved at 0x%x, fp saved at 0x%x\n", \
354 (fi)->pc_addr, (fi)->fp_addr); \
355 }
356
357 #ifdef __STDC__
358 struct frame_info;
359 #endif
360
361 #define FRAME_CHAIN(thisframe) (sparc_frame_chain (thisframe))
362 extern CORE_ADDR sparc_frame_chain PARAMS ((struct frame_info *));
363
364 /* INIT_EXTRA_FRAME_INFO needs the PC to detect flat frames. */
365
366 #define INIT_FRAME_PC(fromleaf, prev) /* nothing */
367 #define INIT_FRAME_PC_FIRST(fromleaf, prev) \
368 (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
369 (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());
370
371 /* Define other aspects of the stack frame. */
372
373 /* A macro that tells us whether the function invocation represented
374 by FI does not have a frame on the stack associated with it. If it
375 does not, FRAMELESS is set to 1, else 0. */
376 #define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
377 (FRAMELESS) = frameless_look_for_prologue(FI)
378
379 /* The location of I0 w.r.t SP. This is actually dependent on how the system's
380 window overflow/underflow routines are written. Most vendors save the L regs
381 followed by the I regs (at the higher address). Some vendors get it wrong.
382 */
383
384 #define FRAME_SAVED_L0 0
385 #define FRAME_SAVED_I0 (8 * REGISTER_RAW_SIZE (L0_REGNUM))
386
387 /* Where is the PC for a specific frame */
388
389 #define FRAME_SAVED_PC(FRAME) sparc_frame_saved_pc (FRAME)
390 extern CORE_ADDR sparc_frame_saved_pc ();
391
392 /* If the argument is on the stack, it will be here. */
393 #define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
394
395 #define FRAME_STRUCT_ARGS_ADDRESS(fi) ((fi)->frame)
396
397 #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
398
399 /* Set VAL to the number of args passed to frame described by FI.
400 Can set VAL to -1, meaning no way to tell. */
401
402 /* We can't tell how many args there are
403 now that the C compiler delays popping them. */
404 #define FRAME_NUM_ARGS(val,fi) (val = -1)
405
406 /* Return number of bytes at start of arglist that are not really args. */
407
408 #define FRAME_ARGS_SKIP 68
409 \f
410 /* Things needed for making the inferior call functions. */
411 /*
412 * First of all, let me give my opinion of what the DUMMY_FRAME
413 * actually looks like.
414 *
415 * | |
416 * | |
417 * + - - - - - - - - - - - - - - - - +<-- fp (level 0)
418 * | |
419 * | |
420 * | |
421 * | |
422 * | Frame of innermost program |
423 * | function |
424 * | |
425 * | |
426 * | |
427 * | |
428 * | |
429 * |---------------------------------|<-- sp (level 0), fp (c)
430 * | |
431 * DUMMY | fp0-31 |
432 * | |
433 * | ------ |<-- fp - 0x80
434 * FRAME | g0-7 |<-- fp - 0xa0
435 * | i0-7 |<-- fp - 0xc0
436 * | other |<-- fp - 0xe0
437 * | ? |
438 * | ? |
439 * |---------------------------------|<-- sp' = fp - 0x140
440 * | |
441 * xcution start | |
442 * sp' + 0x94 -->| CALL_DUMMY (x code) |
443 * | |
444 * | |
445 * |---------------------------------|<-- sp'' = fp - 0x200
446 * | align sp to 8 byte boundary |
447 * | ==> args to fn <== |
448 * Room for | |
449 * i & l's + agg | CALL_DUMMY_STACK_ADJUST = 0x0x44|
450 * |---------------------------------|<-- final sp (variable)
451 * | |
452 * | Where function called will |
453 * | build frame. |
454 * | |
455 * | |
456 *
457 * I understand everything in this picture except what the space
458 * between fp - 0xe0 and fp - 0x140 is used for. Oh, and I don't
459 * understand why there's a large chunk of CALL_DUMMY that never gets
460 * executed (its function is superceeded by PUSH_DUMMY_FRAME; they
461 * are designed to do the same thing).
462 *
463 * PUSH_DUMMY_FRAME saves the registers above sp' and pushes the
464 * register file stack down one.
465 *
466 * call_function then writes CALL_DUMMY, pushes the args onto the
467 * stack, and adjusts the stack pointer.
468 *
469 * run_stack_dummy then starts execution (in the middle of
470 * CALL_DUMMY, as directed by call_function).
471 */
472
473 /* Push an empty stack frame, to record the current PC, etc. */
474
475 #define PUSH_DUMMY_FRAME sparc_push_dummy_frame ()
476 #define POP_FRAME sparc_pop_frame ()
477
478 void sparc_push_dummy_frame (), sparc_pop_frame ();
479 /* This sequence of words is the instructions
480
481 save %sp,-0x140,%sp
482 std %f30,[%fp-0x08]
483 std %f28,[%fp-0x10]
484 std %f26,[%fp-0x18]
485 std %f24,[%fp-0x20]
486 std %f22,[%fp-0x28]
487 std %f20,[%fp-0x30]
488 std %f18,[%fp-0x38]
489 std %f16,[%fp-0x40]
490 std %f14,[%fp-0x48]
491 std %f12,[%fp-0x50]
492 std %f10,[%fp-0x58]
493 std %f8,[%fp-0x60]
494 std %f6,[%fp-0x68]
495 std %f4,[%fp-0x70]
496 std %f2,[%fp-0x78]
497 std %f0,[%fp-0x80]
498 std %g6,[%fp-0x88]
499 std %g4,[%fp-0x90]
500 std %g2,[%fp-0x98]
501 std %g0,[%fp-0xa0]
502 std %i6,[%fp-0xa8]
503 std %i4,[%fp-0xb0]
504 std %i2,[%fp-0xb8]
505 std %i0,[%fp-0xc0]
506 nop ! stcsr [%fp-0xc4]
507 nop ! stfsr [%fp-0xc8]
508 nop ! wr %npc,[%fp-0xcc]
509 nop ! wr %pc,[%fp-0xd0]
510 rd %tbr,%o0
511 st %o0,[%fp-0xd4]
512 rd %wim,%o1
513 st %o0,[%fp-0xd8]
514 rd %psr,%o0
515 st %o0,[%fp-0xdc]
516 rd %y,%o0
517 st %o0,[%fp-0xe0]
518
519 /..* The arguments are pushed at this point by GDB;
520 no code is needed in the dummy for this.
521 The CALL_DUMMY_START_OFFSET gives the position of
522 the following ld instruction. *../
523
524 ld [%sp+0x58],%o5
525 ld [%sp+0x54],%o4
526 ld [%sp+0x50],%o3
527 ld [%sp+0x4c],%o2
528 ld [%sp+0x48],%o1
529 call 0x00000000
530 ld [%sp+0x44],%o0
531 nop
532 ta 1
533 nop
534
535 note that this is 192 bytes, which is a multiple of 8 (not only 4) bytes.
536 note that the `call' insn is a relative, not an absolute call.
537 note that the `nop' at the end is needed to keep the trap from
538 clobbering things (if NPC pointed to garbage instead).
539
540 We actually start executing at the `sethi', since the pushing of the
541 registers (as arguments) is done by PUSH_DUMMY_FRAME. If this were
542 real code, the arguments for the function called by the CALL would be
543 pushed between the list of ST insns and the CALL, and we could allow
544 it to execute through. But the arguments have to be pushed by GDB
545 after the PUSH_DUMMY_FRAME is done, and we cannot allow these ST
546 insns to be performed again, lest the registers saved be taken for
547 arguments. */
548
549 #define CALL_DUMMY { 0x9de3bee0, 0xfd3fbff8, 0xf93fbff0, 0xf53fbfe8, \
550 0xf13fbfe0, 0xed3fbfd8, 0xe93fbfd0, 0xe53fbfc8, \
551 0xe13fbfc0, 0xdd3fbfb8, 0xd93fbfb0, 0xd53fbfa8, \
552 0xd13fbfa0, 0xcd3fbf98, 0xc93fbf90, 0xc53fbf88, \
553 0xc13fbf80, 0xcc3fbf78, 0xc83fbf70, 0xc43fbf68, \
554 0xc03fbf60, 0xfc3fbf58, 0xf83fbf50, 0xf43fbf48, \
555 0xf03fbf40, 0x01000000, 0x01000000, 0x01000000, \
556 0x01000000, 0x91580000, 0xd027bf50, 0x93500000, \
557 0xd027bf4c, 0x91480000, 0xd027bf48, 0x91400000, \
558 0xd027bf44, 0xda03a058, 0xd803a054, 0xd603a050, \
559 0xd403a04c, 0xd203a048, 0x40000000, 0xd003a044, \
560 0x01000000, 0x91d02001, 0x01000000, 0x01000000}
561
562 #define CALL_DUMMY_LENGTH 192
563
564 #define CALL_DUMMY_START_OFFSET 148
565
566 #define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (8 * 4))
567
568 #define CALL_DUMMY_STACK_ADJUST 68
569
570 /* Insert the specified number of args and function address
571 into a call sequence of the above form stored at DUMMYNAME.
572
573 For structs and unions, if the function was compiled with Sun cc,
574 it expects 'unimp' after the call. But gcc doesn't use that
575 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
576 can assume it is operating on a pristine CALL_DUMMY, not one that
577 has already been customized for a different function). */
578
579 #define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
580 { \
581 *(int *)((char *) dummyname+168) = (0x40000000|((fun-(pc+168))>>2)); \
582 if (!gcc_p \
583 && (TYPE_CODE (type) == TYPE_CODE_STRUCT \
584 || TYPE_CODE (type) == TYPE_CODE_UNION)) \
585 *(int *)((char *) dummyname+176) = (TYPE_LENGTH (type) & 0x1fff); \
586 }
587
588 \f
589 /* Sparc has no reliable single step ptrace call */
590
591 #define NO_SINGLE_STEP 1
592 extern void single_step PARAMS ((int));
593
594 /* We need more arguments in a frame specification for the
595 "frame" or "info frame" command. */
596
597 #define SETUP_ARBITRARY_FRAME(argc, argv) setup_arbitrary_frame (argc, argv)
598 extern struct frame_info *setup_arbitrary_frame PARAMS ((int, CORE_ADDR *));
599
600 /* To print every pair of float registers as a double, we use this hook. */
601
602 #define PRINT_REGISTER_HOOK(regno) \
603 if (((regno) >= FP0_REGNUM) \
604 && ((regno) < FP0_REGNUM + 32) \
605 && (0 == ((regno) & 1))) { \
606 char doublereg[8]; /* two float regs */ \
607 if (!read_relative_register_raw_bytes ((regno) , doublereg ) \
608 && !read_relative_register_raw_bytes ((regno)+1, doublereg+4)) { \
609 printf("\t"); \
610 print_floating (doublereg, builtin_type_double, stdout); \
611 } \
612 }
613
614 /* Optimization for storing registers to the inferior. The hook
615 DO_DEFERRED_STORES
616 actually executes any deferred stores. It is called any time
617 we are going to proceed the child, or read its registers.
618 The hook CLEAR_DEFERRED_STORES is called when we want to throw
619 away the inferior process, e.g. when it dies or we kill it.
620 FIXME, this does not handle remote debugging cleanly. */
621
622 extern int deferred_stores;
623 #define DO_DEFERRED_STORES \
624 if (deferred_stores) \
625 target_store_registers (-2);
626 #define CLEAR_DEFERRED_STORES \
627 deferred_stores = 0;