]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 static struct target_ops core_ops;
92
93 /* An arbitrary identifier for the core inferior. */
94 #define CORELOW_PID 1
95
96 /* Link a new core_fns into the global core_file_fns list. Called on
97 gdb startup by the _initialize routine in each core file register
98 reader, to register information about each format the reader is
99 prepared to handle. */
100
101 void
102 deprecated_add_core_fns (struct core_fns *cf)
103 {
104 cf->next = core_file_fns;
105 core_file_fns = cf;
106 }
107
108 /* The default function that core file handlers can use to examine a
109 core file BFD and decide whether or not to accept the job of
110 reading the core file. */
111
112 int
113 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
114 {
115 int result;
116
117 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
118 return (result);
119 }
120
121 /* Walk through the list of core functions to find a set that can
122 handle the core file open on ABFD. Returns pointer to set that is
123 selected. */
124
125 static struct core_fns *
126 sniff_core_bfd (bfd *abfd)
127 {
128 struct core_fns *cf;
129 struct core_fns *yummy = NULL;
130 int matches = 0;
131
132 /* Don't sniff if we have support for register sets in
133 CORE_GDBARCH. */
134 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
135 return NULL;
136
137 for (cf = core_file_fns; cf != NULL; cf = cf->next)
138 {
139 if (cf->core_sniffer (cf, abfd))
140 {
141 yummy = cf;
142 matches++;
143 }
144 }
145 if (matches > 1)
146 {
147 warning (_("\"%s\": ambiguous core format, %d handlers match"),
148 bfd_get_filename (abfd), matches);
149 }
150 else if (matches == 0)
151 error (_("\"%s\": no core file handler recognizes format"),
152 bfd_get_filename (abfd));
153
154 return (yummy);
155 }
156
157 /* The default is to reject every core file format we see. Either
158 BFD has to recognize it, or we have to provide a function in the
159 core file handler that recognizes it. */
160
161 int
162 default_check_format (bfd *abfd)
163 {
164 return (0);
165 }
166
167 /* Attempt to recognize core file formats that BFD rejects. */
168
169 static int
170 gdb_check_format (bfd *abfd)
171 {
172 struct core_fns *cf;
173
174 for (cf = core_file_fns; cf != NULL; cf = cf->next)
175 {
176 if (cf->check_format (abfd))
177 {
178 return (1);
179 }
180 }
181 return (0);
182 }
183
184 /* Discard all vestiges of any previous core file and mark data and
185 stack spaces as empty. */
186
187 static void
188 core_close (struct target_ops *self)
189 {
190 if (core_bfd)
191 {
192 int pid = ptid_get_pid (inferior_ptid);
193 inferior_ptid = null_ptid; /* Avoid confusion from thread
194 stuff. */
195 if (pid != 0)
196 exit_inferior_silent (pid);
197
198 /* Clear out solib state while the bfd is still open. See
199 comments in clear_solib in solib.c. */
200 clear_solib ();
201
202 if (core_data)
203 {
204 xfree (core_data->sections);
205 xfree (core_data);
206 core_data = NULL;
207 }
208
209 gdb_bfd_unref (core_bfd);
210 core_bfd = NULL;
211 }
212 core_vec = NULL;
213 core_gdbarch = NULL;
214 }
215
216 static void
217 core_close_cleanup (void *ignore)
218 {
219 core_close (NULL);
220 }
221
222 /* Look for sections whose names start with `.reg/' so that we can
223 extract the list of threads in a core file. */
224
225 static void
226 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
227 {
228 ptid_t ptid;
229 int core_tid;
230 int pid, lwpid;
231 asection *reg_sect = (asection *) reg_sect_arg;
232 int fake_pid_p = 0;
233 struct inferior *inf;
234
235 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
236 return;
237
238 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
239
240 pid = bfd_core_file_pid (core_bfd);
241 if (pid == 0)
242 {
243 fake_pid_p = 1;
244 pid = CORELOW_PID;
245 }
246
247 lwpid = core_tid;
248
249 inf = current_inferior ();
250 if (inf->pid == 0)
251 {
252 inferior_appeared (inf, pid);
253 inf->fake_pid_p = fake_pid_p;
254 }
255
256 ptid = ptid_build (pid, lwpid, 0);
257
258 add_thread (ptid);
259
260 /* Warning, Will Robinson, looking at BFD private data! */
261
262 if (reg_sect != NULL
263 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
264 inferior_ptid = ptid; /* Yes, make it current. */
265 }
266
267 /* This routine opens and sets up the core file bfd. */
268
269 static void
270 core_open (const char *arg, int from_tty)
271 {
272 const char *p;
273 int siggy;
274 struct cleanup *old_chain;
275 int scratch_chan;
276 int flags;
277
278 target_preopen (from_tty);
279 if (!arg)
280 {
281 if (core_bfd)
282 error (_("No core file specified. (Use `detach' "
283 "to stop debugging a core file.)"));
284 else
285 error (_("No core file specified."));
286 }
287
288 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
289 if (!IS_ABSOLUTE_PATH (filename.get ()))
290 filename.reset (concat (current_directory, "/",
291 filename.get (), (char *) NULL));
292
293 flags = O_BINARY | O_LARGEFILE;
294 if (write_files)
295 flags |= O_RDWR;
296 else
297 flags |= O_RDONLY;
298 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
299 if (scratch_chan < 0)
300 perror_with_name (filename.get ());
301
302 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
303 write_files ? FOPEN_RUB : FOPEN_RB,
304 scratch_chan));
305 if (temp_bfd == NULL)
306 perror_with_name (filename.get ());
307
308 if (!bfd_check_format (temp_bfd.get (), bfd_core)
309 && !gdb_check_format (temp_bfd.get ()))
310 {
311 /* Do it after the err msg */
312 /* FIXME: should be checking for errors from bfd_close (for one
313 thing, on error it does not free all the storage associated
314 with the bfd). */
315 error (_("\"%s\" is not a core dump: %s"),
316 filename.get (), bfd_errmsg (bfd_get_error ()));
317 }
318
319 /* Looks semi-reasonable. Toss the old core file and work on the
320 new. */
321
322 unpush_target (&core_ops);
323 core_bfd = temp_bfd.release ();
324 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
325
326 core_gdbarch = gdbarch_from_bfd (core_bfd);
327
328 /* Find a suitable core file handler to munch on core_bfd */
329 core_vec = sniff_core_bfd (core_bfd);
330
331 validate_files ();
332
333 core_data = XCNEW (struct target_section_table);
334
335 /* Find the data section */
336 if (build_section_table (core_bfd,
337 &core_data->sections,
338 &core_data->sections_end))
339 error (_("\"%s\": Can't find sections: %s"),
340 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
341
342 /* If we have no exec file, try to set the architecture from the
343 core file. We don't do this unconditionally since an exec file
344 typically contains more information that helps us determine the
345 architecture than a core file. */
346 if (!exec_bfd)
347 set_gdbarch_from_file (core_bfd);
348
349 push_target (&core_ops);
350 discard_cleanups (old_chain);
351
352 /* Do this before acknowledging the inferior, so if
353 post_create_inferior throws (can happen easilly if you're loading
354 a core file with the wrong exec), we aren't left with threads
355 from the previous inferior. */
356 init_thread_list ();
357
358 inferior_ptid = null_ptid;
359
360 /* Need to flush the register cache (and the frame cache) from a
361 previous debug session. If inferior_ptid ends up the same as the
362 last debug session --- e.g., b foo; run; gcore core1; step; gcore
363 core2; core core1; core core2 --- then there's potential for
364 get_current_regcache to return the cached regcache of the
365 previous session, and the frame cache being stale. */
366 registers_changed ();
367
368 /* Build up thread list from BFD sections, and possibly set the
369 current thread to the .reg/NN section matching the .reg
370 section. */
371 bfd_map_over_sections (core_bfd, add_to_thread_list,
372 bfd_get_section_by_name (core_bfd, ".reg"));
373
374 if (ptid_equal (inferior_ptid, null_ptid))
375 {
376 /* Either we found no .reg/NN section, and hence we have a
377 non-threaded core (single-threaded, from gdb's perspective),
378 or for some reason add_to_thread_list couldn't determine
379 which was the "main" thread. The latter case shouldn't
380 usually happen, but we're dealing with input here, which can
381 always be broken in different ways. */
382 struct thread_info *thread = first_thread_of_process (-1);
383
384 if (thread == NULL)
385 {
386 inferior_appeared (current_inferior (), CORELOW_PID);
387 inferior_ptid = pid_to_ptid (CORELOW_PID);
388 add_thread_silent (inferior_ptid);
389 }
390 else
391 switch_to_thread (thread->ptid);
392 }
393
394 post_create_inferior (&core_ops, from_tty);
395
396 /* Now go through the target stack looking for threads since there
397 may be a thread_stratum target loaded on top of target core by
398 now. The layer above should claim threads found in the BFD
399 sections. */
400 TRY
401 {
402 target_update_thread_list ();
403 }
404
405 CATCH (except, RETURN_MASK_ERROR)
406 {
407 exception_print (gdb_stderr, except);
408 }
409 END_CATCH
410
411 p = bfd_core_file_failing_command (core_bfd);
412 if (p)
413 printf_filtered (_("Core was generated by `%s'.\n"), p);
414
415 /* Clearing any previous state of convenience variables. */
416 clear_exit_convenience_vars ();
417
418 siggy = bfd_core_file_failing_signal (core_bfd);
419 if (siggy > 0)
420 {
421 /* If we don't have a CORE_GDBARCH to work with, assume a native
422 core (map gdb_signal from host signals). If we do have
423 CORE_GDBARCH to work with, but no gdb_signal_from_target
424 implementation for that gdbarch, as a fallback measure,
425 assume the host signal mapping. It'll be correct for native
426 cores, but most likely incorrect for cross-cores. */
427 enum gdb_signal sig = (core_gdbarch != NULL
428 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
429 ? gdbarch_gdb_signal_from_target (core_gdbarch,
430 siggy)
431 : gdb_signal_from_host (siggy));
432
433 printf_filtered (_("Program terminated with signal %s, %s.\n"),
434 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
435
436 /* Set the value of the internal variable $_exitsignal,
437 which holds the signal uncaught by the inferior. */
438 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
439 siggy);
440 }
441
442 /* Fetch all registers from core file. */
443 target_fetch_registers (get_current_regcache (), -1);
444
445 /* Now, set up the frame cache, and print the top of stack. */
446 reinit_frame_cache ();
447 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
448
449 /* Current thread should be NUM 1 but the user does not know that.
450 If a program is single threaded gdb in general does not mention
451 anything about threads. That is why the test is >= 2. */
452 if (thread_count () >= 2)
453 {
454 TRY
455 {
456 thread_command (NULL, from_tty);
457 }
458 CATCH (except, RETURN_MASK_ERROR)
459 {
460 exception_print (gdb_stderr, except);
461 }
462 END_CATCH
463 }
464 }
465
466 static void
467 core_detach (struct target_ops *ops, const char *args, int from_tty)
468 {
469 if (args)
470 error (_("Too many arguments"));
471 unpush_target (ops);
472 reinit_frame_cache ();
473 if (from_tty)
474 printf_filtered (_("No core file now.\n"));
475 }
476
477 /* Try to retrieve registers from a section in core_bfd, and supply
478 them to core_vec->core_read_registers, as the register set numbered
479 WHICH.
480
481 If ptid's lwp member is zero, do the single-threaded
482 thing: look for a section named NAME. If ptid's lwp
483 member is non-zero, do the multi-threaded thing: look for a section
484 named "NAME/LWP", where LWP is the shortest ASCII decimal
485 representation of ptid's lwp member.
486
487 HUMAN_NAME is a human-readable name for the kind of registers the
488 NAME section contains, for use in error messages.
489
490 If REQUIRED is non-zero, print an error if the core file doesn't
491 have a section by the appropriate name. Otherwise, just do
492 nothing. */
493
494 static void
495 get_core_register_section (struct regcache *regcache,
496 const struct regset *regset,
497 const char *name,
498 int min_size,
499 int which,
500 const char *human_name,
501 int required)
502 {
503 struct bfd_section *section;
504 bfd_size_type size;
505 char *contents;
506 bool variable_size_section = (regset != NULL
507 && regset->flags & REGSET_VARIABLE_SIZE);
508
509 thread_section_name section_name (name, regcache->ptid ());
510
511 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
512 if (! section)
513 {
514 if (required)
515 warning (_("Couldn't find %s registers in core file."),
516 human_name);
517 return;
518 }
519
520 size = bfd_section_size (core_bfd, section);
521 if (size < min_size)
522 {
523 warning (_("Section `%s' in core file too small."),
524 section_name.c_str ());
525 return;
526 }
527 if (size != min_size && !variable_size_section)
528 {
529 warning (_("Unexpected size of section `%s' in core file."),
530 section_name.c_str ());
531 }
532
533 contents = (char *) alloca (size);
534 if (! bfd_get_section_contents (core_bfd, section, contents,
535 (file_ptr) 0, size))
536 {
537 warning (_("Couldn't read %s registers from `%s' section in core file."),
538 human_name, section_name.c_str ());
539 return;
540 }
541
542 if (regset != NULL)
543 {
544 regset->supply_regset (regset, regcache, -1, contents, size);
545 return;
546 }
547
548 gdb_assert (core_vec);
549 core_vec->core_read_registers (regcache, contents, size, which,
550 ((CORE_ADDR)
551 bfd_section_vma (core_bfd, section)));
552 }
553
554 /* Callback for get_core_registers that handles a single core file
555 register note section. */
556
557 static void
558 get_core_registers_cb (const char *sect_name, int size,
559 const struct regset *regset,
560 const char *human_name, void *cb_data)
561 {
562 struct regcache *regcache = (struct regcache *) cb_data;
563 int required = 0;
564
565 if (strcmp (sect_name, ".reg") == 0)
566 {
567 required = 1;
568 if (human_name == NULL)
569 human_name = "general-purpose";
570 }
571 else if (strcmp (sect_name, ".reg2") == 0)
572 {
573 if (human_name == NULL)
574 human_name = "floating-point";
575 }
576
577 /* The 'which' parameter is only used when no regset is provided.
578 Thus we just set it to -1. */
579 get_core_register_section (regcache, regset, sect_name,
580 size, -1, human_name, required);
581 }
582
583 /* Get the registers out of a core file. This is the machine-
584 independent part. Fetch_core_registers is the machine-dependent
585 part, typically implemented in the xm-file for each
586 architecture. */
587
588 /* We just get all the registers, so we don't use regno. */
589
590 static void
591 get_core_registers (struct target_ops *ops,
592 struct regcache *regcache, int regno)
593 {
594 int i;
595 struct gdbarch *gdbarch;
596
597 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
598 && (core_vec == NULL || core_vec->core_read_registers == NULL))
599 {
600 fprintf_filtered (gdb_stderr,
601 "Can't fetch registers from this type of core file\n");
602 return;
603 }
604
605 gdbarch = regcache->arch ();
606 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
607 gdbarch_iterate_over_regset_sections (gdbarch,
608 get_core_registers_cb,
609 (void *) regcache, NULL);
610 else
611 {
612 get_core_register_section (regcache, NULL,
613 ".reg", 0, 0, "general-purpose", 1);
614 get_core_register_section (regcache, NULL,
615 ".reg2", 0, 2, "floating-point", 0);
616 }
617
618 /* Mark all registers not found in the core as unavailable. */
619 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
620 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
621 regcache_raw_supply (regcache, i, NULL);
622 }
623
624 static void
625 core_files_info (struct target_ops *t)
626 {
627 print_section_info (core_data, core_bfd);
628 }
629 \f
630 struct spuid_list
631 {
632 gdb_byte *buf;
633 ULONGEST offset;
634 LONGEST len;
635 ULONGEST pos;
636 ULONGEST written;
637 };
638
639 static void
640 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
641 {
642 struct spuid_list *list = (struct spuid_list *) list_p;
643 enum bfd_endian byte_order
644 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
645 int fd, pos = 0;
646
647 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
648 if (pos == 0)
649 return;
650
651 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
652 {
653 store_unsigned_integer (list->buf + list->pos - list->offset,
654 4, byte_order, fd);
655 list->written += 4;
656 }
657 list->pos += 4;
658 }
659
660 static enum target_xfer_status
661 core_xfer_partial (struct target_ops *ops, enum target_object object,
662 const char *annex, gdb_byte *readbuf,
663 const gdb_byte *writebuf, ULONGEST offset,
664 ULONGEST len, ULONGEST *xfered_len)
665 {
666 switch (object)
667 {
668 case TARGET_OBJECT_MEMORY:
669 return section_table_xfer_memory_partial (readbuf, writebuf,
670 offset, len, xfered_len,
671 core_data->sections,
672 core_data->sections_end,
673 NULL);
674
675 case TARGET_OBJECT_AUXV:
676 if (readbuf)
677 {
678 /* When the aux vector is stored in core file, BFD
679 represents this with a fake section called ".auxv". */
680
681 struct bfd_section *section;
682 bfd_size_type size;
683
684 section = bfd_get_section_by_name (core_bfd, ".auxv");
685 if (section == NULL)
686 return TARGET_XFER_E_IO;
687
688 size = bfd_section_size (core_bfd, section);
689 if (offset >= size)
690 return TARGET_XFER_EOF;
691 size -= offset;
692 if (size > len)
693 size = len;
694
695 if (size == 0)
696 return TARGET_XFER_EOF;
697 if (!bfd_get_section_contents (core_bfd, section, readbuf,
698 (file_ptr) offset, size))
699 {
700 warning (_("Couldn't read NT_AUXV note in core file."));
701 return TARGET_XFER_E_IO;
702 }
703
704 *xfered_len = (ULONGEST) size;
705 return TARGET_XFER_OK;
706 }
707 return TARGET_XFER_E_IO;
708
709 case TARGET_OBJECT_WCOOKIE:
710 if (readbuf)
711 {
712 /* When the StackGhost cookie is stored in core file, BFD
713 represents this with a fake section called
714 ".wcookie". */
715
716 struct bfd_section *section;
717 bfd_size_type size;
718
719 section = bfd_get_section_by_name (core_bfd, ".wcookie");
720 if (section == NULL)
721 return TARGET_XFER_E_IO;
722
723 size = bfd_section_size (core_bfd, section);
724 if (offset >= size)
725 return TARGET_XFER_EOF;
726 size -= offset;
727 if (size > len)
728 size = len;
729
730 if (size == 0)
731 return TARGET_XFER_EOF;
732 if (!bfd_get_section_contents (core_bfd, section, readbuf,
733 (file_ptr) offset, size))
734 {
735 warning (_("Couldn't read StackGhost cookie in core file."));
736 return TARGET_XFER_E_IO;
737 }
738
739 *xfered_len = (ULONGEST) size;
740 return TARGET_XFER_OK;
741
742 }
743 return TARGET_XFER_E_IO;
744
745 case TARGET_OBJECT_LIBRARIES:
746 if (core_gdbarch
747 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
748 {
749 if (writebuf)
750 return TARGET_XFER_E_IO;
751 else
752 {
753 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
754 readbuf,
755 offset, len);
756
757 if (*xfered_len == 0)
758 return TARGET_XFER_EOF;
759 else
760 return TARGET_XFER_OK;
761 }
762 }
763 /* FALL THROUGH */
764
765 case TARGET_OBJECT_LIBRARIES_AIX:
766 if (core_gdbarch
767 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
768 {
769 if (writebuf)
770 return TARGET_XFER_E_IO;
771 else
772 {
773 *xfered_len
774 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
775 readbuf, offset,
776 len);
777
778 if (*xfered_len == 0)
779 return TARGET_XFER_EOF;
780 else
781 return TARGET_XFER_OK;
782 }
783 }
784 /* FALL THROUGH */
785
786 case TARGET_OBJECT_SPU:
787 if (readbuf && annex)
788 {
789 /* When the SPU contexts are stored in a core file, BFD
790 represents this with a fake section called
791 "SPU/<annex>". */
792
793 struct bfd_section *section;
794 bfd_size_type size;
795 char sectionstr[100];
796
797 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
798
799 section = bfd_get_section_by_name (core_bfd, sectionstr);
800 if (section == NULL)
801 return TARGET_XFER_E_IO;
802
803 size = bfd_section_size (core_bfd, section);
804 if (offset >= size)
805 return TARGET_XFER_EOF;
806 size -= offset;
807 if (size > len)
808 size = len;
809
810 if (size == 0)
811 return TARGET_XFER_EOF;
812 if (!bfd_get_section_contents (core_bfd, section, readbuf,
813 (file_ptr) offset, size))
814 {
815 warning (_("Couldn't read SPU section in core file."));
816 return TARGET_XFER_E_IO;
817 }
818
819 *xfered_len = (ULONGEST) size;
820 return TARGET_XFER_OK;
821 }
822 else if (readbuf)
823 {
824 /* NULL annex requests list of all present spuids. */
825 struct spuid_list list;
826
827 list.buf = readbuf;
828 list.offset = offset;
829 list.len = len;
830 list.pos = 0;
831 list.written = 0;
832 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
833
834 if (list.written == 0)
835 return TARGET_XFER_EOF;
836 else
837 {
838 *xfered_len = (ULONGEST) list.written;
839 return TARGET_XFER_OK;
840 }
841 }
842 return TARGET_XFER_E_IO;
843
844 case TARGET_OBJECT_SIGNAL_INFO:
845 if (readbuf)
846 {
847 if (core_gdbarch
848 && gdbarch_core_xfer_siginfo_p (core_gdbarch))
849 {
850 LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
851 offset, len);
852
853 if (l >= 0)
854 {
855 *xfered_len = l;
856 if (l == 0)
857 return TARGET_XFER_EOF;
858 else
859 return TARGET_XFER_OK;
860 }
861 }
862 }
863 return TARGET_XFER_E_IO;
864
865 default:
866 return ops->beneath->to_xfer_partial (ops->beneath, object,
867 annex, readbuf,
868 writebuf, offset, len,
869 xfered_len);
870 }
871 }
872
873 \f
874 /* If mourn is being called in all the right places, this could be say
875 `gdb internal error' (since generic_mourn calls
876 breakpoint_init_inferior). */
877
878 static int
879 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
880 struct bp_target_info *bp_tgt)
881 {
882 return 0;
883 }
884
885 /* Implement the to_remove_breakpoint method. */
886
887 static int
888 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
889 struct bp_target_info *bp_tgt,
890 enum remove_bp_reason reason)
891 {
892 return 0;
893 }
894
895
896 /* Okay, let's be honest: threads gleaned from a core file aren't
897 exactly lively, are they? On the other hand, if we don't claim
898 that each & every one is alive, then we don't get any of them
899 to appear in an "info thread" command, which is quite a useful
900 behaviour.
901 */
902 static int
903 core_thread_alive (struct target_ops *ops, ptid_t ptid)
904 {
905 return 1;
906 }
907
908 /* Ask the current architecture what it knows about this core file.
909 That will be used, in turn, to pick a better architecture. This
910 wrapper could be avoided if targets got a chance to specialize
911 core_ops. */
912
913 static const struct target_desc *
914 core_read_description (struct target_ops *target)
915 {
916 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
917 {
918 const struct target_desc *result;
919
920 result = gdbarch_core_read_description (core_gdbarch,
921 target, core_bfd);
922 if (result != NULL)
923 return result;
924 }
925
926 return target->beneath->to_read_description (target->beneath);
927 }
928
929 static const char *
930 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
931 {
932 static char buf[64];
933 struct inferior *inf;
934 int pid;
935
936 /* The preferred way is to have a gdbarch/OS specific
937 implementation. */
938 if (core_gdbarch
939 && gdbarch_core_pid_to_str_p (core_gdbarch))
940 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
941
942 /* Otherwise, if we don't have one, we'll just fallback to
943 "process", with normal_pid_to_str. */
944
945 /* Try the LWPID field first. */
946 pid = ptid_get_lwp (ptid);
947 if (pid != 0)
948 return normal_pid_to_str (pid_to_ptid (pid));
949
950 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
951 only if it isn't a fake PID. */
952 inf = find_inferior_ptid (ptid);
953 if (inf != NULL && !inf->fake_pid_p)
954 return normal_pid_to_str (ptid);
955
956 /* No luck. We simply don't have a valid PID to print. */
957 xsnprintf (buf, sizeof buf, "<main task>");
958 return buf;
959 }
960
961 static const char *
962 core_thread_name (struct target_ops *self, struct thread_info *thr)
963 {
964 if (core_gdbarch
965 && gdbarch_core_thread_name_p (core_gdbarch))
966 return gdbarch_core_thread_name (core_gdbarch, thr);
967 return NULL;
968 }
969
970 static int
971 core_has_memory (struct target_ops *ops)
972 {
973 return (core_bfd != NULL);
974 }
975
976 static int
977 core_has_stack (struct target_ops *ops)
978 {
979 return (core_bfd != NULL);
980 }
981
982 static int
983 core_has_registers (struct target_ops *ops)
984 {
985 return (core_bfd != NULL);
986 }
987
988 /* Implement the to_info_proc method. */
989
990 static void
991 core_info_proc (struct target_ops *ops, const char *args,
992 enum info_proc_what request)
993 {
994 struct gdbarch *gdbarch = get_current_arch ();
995
996 /* Since this is the core file target, call the 'core_info_proc'
997 method on gdbarch, not 'info_proc'. */
998 if (gdbarch_core_info_proc_p (gdbarch))
999 gdbarch_core_info_proc (gdbarch, args, request);
1000 }
1001
1002 /* Fill in core_ops with its defined operations and properties. */
1003
1004 static void
1005 init_core_ops (void)
1006 {
1007 core_ops.to_shortname = "core";
1008 core_ops.to_longname = "Local core dump file";
1009 core_ops.to_doc =
1010 "Use a core file as a target. Specify the filename of the core file.";
1011 core_ops.to_open = core_open;
1012 core_ops.to_close = core_close;
1013 core_ops.to_detach = core_detach;
1014 core_ops.to_fetch_registers = get_core_registers;
1015 core_ops.to_xfer_partial = core_xfer_partial;
1016 core_ops.to_files_info = core_files_info;
1017 core_ops.to_insert_breakpoint = ignore;
1018 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1019 core_ops.to_thread_alive = core_thread_alive;
1020 core_ops.to_read_description = core_read_description;
1021 core_ops.to_pid_to_str = core_pid_to_str;
1022 core_ops.to_thread_name = core_thread_name;
1023 core_ops.to_stratum = process_stratum;
1024 core_ops.to_has_memory = core_has_memory;
1025 core_ops.to_has_stack = core_has_stack;
1026 core_ops.to_has_registers = core_has_registers;
1027 core_ops.to_info_proc = core_info_proc;
1028 core_ops.to_magic = OPS_MAGIC;
1029
1030 if (core_target)
1031 internal_error (__FILE__, __LINE__,
1032 _("init_core_ops: core target already exists (\"%s\")."),
1033 core_target->to_longname);
1034 core_target = &core_ops;
1035 }
1036
1037 void
1038 _initialize_corelow (void)
1039 {
1040 init_core_ops ();
1041
1042 add_target_with_completer (&core_ops, filename_completer);
1043 }