]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
PR gdb/15911: "info threads" changes the default source and line (for "break", "list")
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h> /* needed for F_OK and friends */
28 #endif
29 #include "frame.h" /* required by inferior.h */
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "command.h"
33 #include "bfd.h"
34 #include "target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "gdb_assert.h"
43 #include "exceptions.h"
44 #include "solib.h"
45 #include "filenames.h"
46 #include "progspace.h"
47 #include "objfiles.h"
48 #include "gdb_bfd.h"
49 #include "completer.h"
50 #include "filestuff.h"
51
52 #ifndef O_LARGEFILE
53 #define O_LARGEFILE 0
54 #endif
55
56 /* List of all available core_fns. On gdb startup, each core file
57 register reader calls deprecated_add_core_fns() to register
58 information on each core format it is prepared to read. */
59
60 static struct core_fns *core_file_fns = NULL;
61
62 /* The core_fns for a core file handler that is prepared to read the
63 core file currently open on core_bfd. */
64
65 static struct core_fns *core_vec = NULL;
66
67 /* FIXME: kettenis/20031023: Eventually this variable should
68 disappear. */
69
70 static struct gdbarch *core_gdbarch = NULL;
71
72 /* Per-core data. Currently, only the section table. Note that these
73 target sections are *not* mapped in the current address spaces' set
74 of target sections --- those should come only from pure executable
75 or shared library bfds. The core bfd sections are an
76 implementation detail of the core target, just like ptrace is for
77 unix child targets. */
78 static struct target_section_table *core_data;
79
80 static void core_files_info (struct target_ops *);
81
82 static struct core_fns *sniff_core_bfd (bfd *);
83
84 static int gdb_check_format (bfd *);
85
86 static void core_open (char *, int);
87
88 static void core_detach (struct target_ops *ops, char *, int);
89
90 static void core_close (void);
91
92 static void core_close_cleanup (void *ignore);
93
94 static void add_to_thread_list (bfd *, asection *, void *);
95
96 static void init_core_ops (void);
97
98 void _initialize_corelow (void);
99
100 static struct target_ops core_ops;
101
102 /* An arbitrary identifier for the core inferior. */
103 #define CORELOW_PID 1
104
105 /* Link a new core_fns into the global core_file_fns list. Called on
106 gdb startup by the _initialize routine in each core file register
107 reader, to register information about each format the reader is
108 prepared to handle. */
109
110 void
111 deprecated_add_core_fns (struct core_fns *cf)
112 {
113 cf->next = core_file_fns;
114 core_file_fns = cf;
115 }
116
117 /* The default function that core file handlers can use to examine a
118 core file BFD and decide whether or not to accept the job of
119 reading the core file. */
120
121 int
122 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
123 {
124 int result;
125
126 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
127 return (result);
128 }
129
130 /* Walk through the list of core functions to find a set that can
131 handle the core file open on ABFD. Returns pointer to set that is
132 selected. */
133
134 static struct core_fns *
135 sniff_core_bfd (bfd *abfd)
136 {
137 struct core_fns *cf;
138 struct core_fns *yummy = NULL;
139 int matches = 0;;
140
141 /* Don't sniff if we have support for register sets in
142 CORE_GDBARCH. */
143 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
144 return NULL;
145
146 for (cf = core_file_fns; cf != NULL; cf = cf->next)
147 {
148 if (cf->core_sniffer (cf, abfd))
149 {
150 yummy = cf;
151 matches++;
152 }
153 }
154 if (matches > 1)
155 {
156 warning (_("\"%s\": ambiguous core format, %d handlers match"),
157 bfd_get_filename (abfd), matches);
158 }
159 else if (matches == 0)
160 error (_("\"%s\": no core file handler recognizes format"),
161 bfd_get_filename (abfd));
162
163 return (yummy);
164 }
165
166 /* The default is to reject every core file format we see. Either
167 BFD has to recognize it, or we have to provide a function in the
168 core file handler that recognizes it. */
169
170 int
171 default_check_format (bfd *abfd)
172 {
173 return (0);
174 }
175
176 /* Attempt to recognize core file formats that BFD rejects. */
177
178 static int
179 gdb_check_format (bfd *abfd)
180 {
181 struct core_fns *cf;
182
183 for (cf = core_file_fns; cf != NULL; cf = cf->next)
184 {
185 if (cf->check_format (abfd))
186 {
187 return (1);
188 }
189 }
190 return (0);
191 }
192
193 /* Discard all vestiges of any previous core file and mark data and
194 stack spaces as empty. */
195
196 static void
197 core_close (void)
198 {
199 if (core_bfd)
200 {
201 int pid = ptid_get_pid (inferior_ptid);
202 inferior_ptid = null_ptid; /* Avoid confusion from thread
203 stuff. */
204 if (pid != 0)
205 exit_inferior_silent (pid);
206
207 /* Clear out solib state while the bfd is still open. See
208 comments in clear_solib in solib.c. */
209 clear_solib ();
210
211 if (core_data)
212 {
213 xfree (core_data->sections);
214 xfree (core_data);
215 core_data = NULL;
216 }
217
218 gdb_bfd_unref (core_bfd);
219 core_bfd = NULL;
220 }
221 core_vec = NULL;
222 core_gdbarch = NULL;
223 }
224
225 static void
226 core_close_cleanup (void *ignore)
227 {
228 core_close ();
229 }
230
231 /* Look for sections whose names start with `.reg/' so that we can
232 extract the list of threads in a core file. */
233
234 static void
235 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
236 {
237 ptid_t ptid;
238 int core_tid;
239 int pid, lwpid;
240 asection *reg_sect = (asection *) reg_sect_arg;
241 int fake_pid_p = 0;
242 struct inferior *inf;
243
244 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
245 return;
246
247 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
248
249 pid = bfd_core_file_pid (core_bfd);
250 if (pid == 0)
251 {
252 fake_pid_p = 1;
253 pid = CORELOW_PID;
254 }
255
256 lwpid = core_tid;
257
258 inf = current_inferior ();
259 if (inf->pid == 0)
260 {
261 inferior_appeared (inf, pid);
262 inf->fake_pid_p = fake_pid_p;
263 }
264
265 ptid = ptid_build (pid, lwpid, 0);
266
267 add_thread (ptid);
268
269 /* Warning, Will Robinson, looking at BFD private data! */
270
271 if (reg_sect != NULL
272 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
273 inferior_ptid = ptid; /* Yes, make it current. */
274 }
275
276 /* This routine opens and sets up the core file bfd. */
277
278 static void
279 core_open (char *filename, int from_tty)
280 {
281 const char *p;
282 int siggy;
283 struct cleanup *old_chain;
284 char *temp;
285 bfd *temp_bfd;
286 int scratch_chan;
287 int flags;
288 volatile struct gdb_exception except;
289
290 target_preopen (from_tty);
291 if (!filename)
292 {
293 if (core_bfd)
294 error (_("No core file specified. (Use `detach' "
295 "to stop debugging a core file.)"));
296 else
297 error (_("No core file specified."));
298 }
299
300 filename = tilde_expand (filename);
301 if (!IS_ABSOLUTE_PATH (filename))
302 {
303 temp = concat (current_directory, "/",
304 filename, (char *) NULL);
305 xfree (filename);
306 filename = temp;
307 }
308
309 old_chain = make_cleanup (xfree, filename);
310
311 flags = O_BINARY | O_LARGEFILE;
312 if (write_files)
313 flags |= O_RDWR;
314 else
315 flags |= O_RDONLY;
316 scratch_chan = gdb_open_cloexec (filename, flags, 0);
317 if (scratch_chan < 0)
318 perror_with_name (filename);
319
320 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
321 write_files ? FOPEN_RUB : FOPEN_RB,
322 scratch_chan);
323 if (temp_bfd == NULL)
324 perror_with_name (filename);
325
326 if (!bfd_check_format (temp_bfd, bfd_core)
327 && !gdb_check_format (temp_bfd))
328 {
329 /* Do it after the err msg */
330 /* FIXME: should be checking for errors from bfd_close (for one
331 thing, on error it does not free all the storage associated
332 with the bfd). */
333 make_cleanup_bfd_unref (temp_bfd);
334 error (_("\"%s\" is not a core dump: %s"),
335 filename, bfd_errmsg (bfd_get_error ()));
336 }
337
338 /* Looks semi-reasonable. Toss the old core file and work on the
339 new. */
340
341 do_cleanups (old_chain);
342 unpush_target (&core_ops);
343 core_bfd = temp_bfd;
344 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
345
346 core_gdbarch = gdbarch_from_bfd (core_bfd);
347
348 /* Find a suitable core file handler to munch on core_bfd */
349 core_vec = sniff_core_bfd (core_bfd);
350
351 validate_files ();
352
353 core_data = XZALLOC (struct target_section_table);
354
355 /* Find the data section */
356 if (build_section_table (core_bfd,
357 &core_data->sections,
358 &core_data->sections_end))
359 error (_("\"%s\": Can't find sections: %s"),
360 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
361
362 /* If we have no exec file, try to set the architecture from the
363 core file. We don't do this unconditionally since an exec file
364 typically contains more information that helps us determine the
365 architecture than a core file. */
366 if (!exec_bfd)
367 set_gdbarch_from_file (core_bfd);
368
369 push_target (&core_ops);
370 discard_cleanups (old_chain);
371
372 /* Do this before acknowledging the inferior, so if
373 post_create_inferior throws (can happen easilly if you're loading
374 a core file with the wrong exec), we aren't left with threads
375 from the previous inferior. */
376 init_thread_list ();
377
378 inferior_ptid = null_ptid;
379
380 /* Need to flush the register cache (and the frame cache) from a
381 previous debug session. If inferior_ptid ends up the same as the
382 last debug session --- e.g., b foo; run; gcore core1; step; gcore
383 core2; core core1; core core2 --- then there's potential for
384 get_current_regcache to return the cached regcache of the
385 previous session, and the frame cache being stale. */
386 registers_changed ();
387
388 /* Build up thread list from BFD sections, and possibly set the
389 current thread to the .reg/NN section matching the .reg
390 section. */
391 bfd_map_over_sections (core_bfd, add_to_thread_list,
392 bfd_get_section_by_name (core_bfd, ".reg"));
393
394 if (ptid_equal (inferior_ptid, null_ptid))
395 {
396 /* Either we found no .reg/NN section, and hence we have a
397 non-threaded core (single-threaded, from gdb's perspective),
398 or for some reason add_to_thread_list couldn't determine
399 which was the "main" thread. The latter case shouldn't
400 usually happen, but we're dealing with input here, which can
401 always be broken in different ways. */
402 struct thread_info *thread = first_thread_of_process (-1);
403
404 if (thread == NULL)
405 {
406 inferior_appeared (current_inferior (), CORELOW_PID);
407 inferior_ptid = pid_to_ptid (CORELOW_PID);
408 add_thread_silent (inferior_ptid);
409 }
410 else
411 switch_to_thread (thread->ptid);
412 }
413
414 post_create_inferior (&core_ops, from_tty);
415
416 /* Now go through the target stack looking for threads since there
417 may be a thread_stratum target loaded on top of target core by
418 now. The layer above should claim threads found in the BFD
419 sections. */
420 TRY_CATCH (except, RETURN_MASK_ERROR)
421 {
422 target_find_new_threads ();
423 }
424
425 if (except.reason < 0)
426 exception_print (gdb_stderr, except);
427
428 p = bfd_core_file_failing_command (core_bfd);
429 if (p)
430 printf_filtered (_("Core was generated by `%s'.\n"), p);
431
432 siggy = bfd_core_file_failing_signal (core_bfd);
433 if (siggy > 0)
434 {
435 /* If we don't have a CORE_GDBARCH to work with, assume a native
436 core (map gdb_signal from host signals). If we do have
437 CORE_GDBARCH to work with, but no gdb_signal_from_target
438 implementation for that gdbarch, as a fallback measure,
439 assume the host signal mapping. It'll be correct for native
440 cores, but most likely incorrect for cross-cores. */
441 enum gdb_signal sig = (core_gdbarch != NULL
442 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
443 ? gdbarch_gdb_signal_from_target (core_gdbarch,
444 siggy)
445 : gdb_signal_from_host (siggy));
446
447 printf_filtered (_("Program terminated with signal %s, %s.\n"),
448 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
449 }
450
451 /* Fetch all registers from core file. */
452 target_fetch_registers (get_current_regcache (), -1);
453
454 /* Now, set up the frame cache, and print the top of stack. */
455 reinit_frame_cache ();
456 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
457 }
458
459 static void
460 core_detach (struct target_ops *ops, char *args, int from_tty)
461 {
462 if (args)
463 error (_("Too many arguments"));
464 unpush_target (ops);
465 reinit_frame_cache ();
466 if (from_tty)
467 printf_filtered (_("No core file now.\n"));
468 }
469
470 /* Try to retrieve registers from a section in core_bfd, and supply
471 them to core_vec->core_read_registers, as the register set numbered
472 WHICH.
473
474 If inferior_ptid's lwp member is zero, do the single-threaded
475 thing: look for a section named NAME. If inferior_ptid's lwp
476 member is non-zero, do the multi-threaded thing: look for a section
477 named "NAME/LWP", where LWP is the shortest ASCII decimal
478 representation of inferior_ptid's lwp member.
479
480 HUMAN_NAME is a human-readable name for the kind of registers the
481 NAME section contains, for use in error messages.
482
483 If REQUIRED is non-zero, print an error if the core file doesn't
484 have a section by the appropriate name. Otherwise, just do
485 nothing. */
486
487 static void
488 get_core_register_section (struct regcache *regcache,
489 const char *name,
490 int which,
491 const char *human_name,
492 int required)
493 {
494 static char *section_name = NULL;
495 struct bfd_section *section;
496 bfd_size_type size;
497 char *contents;
498
499 xfree (section_name);
500
501 if (ptid_get_lwp (inferior_ptid))
502 section_name = xstrprintf ("%s/%ld", name,
503 ptid_get_lwp (inferior_ptid));
504 else
505 section_name = xstrdup (name);
506
507 section = bfd_get_section_by_name (core_bfd, section_name);
508 if (! section)
509 {
510 if (required)
511 warning (_("Couldn't find %s registers in core file."),
512 human_name);
513 return;
514 }
515
516 size = bfd_section_size (core_bfd, section);
517 contents = alloca (size);
518 if (! bfd_get_section_contents (core_bfd, section, contents,
519 (file_ptr) 0, size))
520 {
521 warning (_("Couldn't read %s registers from `%s' section in core file."),
522 human_name, name);
523 return;
524 }
525
526 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
527 {
528 const struct regset *regset;
529
530 regset = gdbarch_regset_from_core_section (core_gdbarch,
531 name, size);
532 if (regset == NULL)
533 {
534 if (required)
535 warning (_("Couldn't recognize %s registers in core file."),
536 human_name);
537 return;
538 }
539
540 regset->supply_regset (regset, regcache, -1, contents, size);
541 return;
542 }
543
544 gdb_assert (core_vec);
545 core_vec->core_read_registers (regcache, contents, size, which,
546 ((CORE_ADDR)
547 bfd_section_vma (core_bfd, section)));
548 }
549
550
551 /* Get the registers out of a core file. This is the machine-
552 independent part. Fetch_core_registers is the machine-dependent
553 part, typically implemented in the xm-file for each
554 architecture. */
555
556 /* We just get all the registers, so we don't use regno. */
557
558 static void
559 get_core_registers (struct target_ops *ops,
560 struct regcache *regcache, int regno)
561 {
562 struct core_regset_section *sect_list;
563 int i;
564
565 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
566 && (core_vec == NULL || core_vec->core_read_registers == NULL))
567 {
568 fprintf_filtered (gdb_stderr,
569 "Can't fetch registers from this type of core file\n");
570 return;
571 }
572
573 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
574 if (sect_list)
575 while (sect_list->sect_name != NULL)
576 {
577 if (strcmp (sect_list->sect_name, ".reg") == 0)
578 get_core_register_section (regcache, sect_list->sect_name,
579 0, sect_list->human_name, 1);
580 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
581 get_core_register_section (regcache, sect_list->sect_name,
582 2, sect_list->human_name, 0);
583 else
584 get_core_register_section (regcache, sect_list->sect_name,
585 3, sect_list->human_name, 0);
586
587 sect_list++;
588 }
589
590 else
591 {
592 get_core_register_section (regcache,
593 ".reg", 0, "general-purpose", 1);
594 get_core_register_section (regcache,
595 ".reg2", 2, "floating-point", 0);
596 }
597
598 /* Mark all registers not found in the core as unavailable. */
599 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
600 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
601 regcache_raw_supply (regcache, i, NULL);
602 }
603
604 static void
605 core_files_info (struct target_ops *t)
606 {
607 print_section_info (core_data, core_bfd);
608 }
609 \f
610 struct spuid_list
611 {
612 gdb_byte *buf;
613 ULONGEST offset;
614 LONGEST len;
615 ULONGEST pos;
616 ULONGEST written;
617 };
618
619 static void
620 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
621 {
622 struct spuid_list *list = list_p;
623 enum bfd_endian byte_order
624 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
625 int fd, pos = 0;
626
627 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
628 if (pos == 0)
629 return;
630
631 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
632 {
633 store_unsigned_integer (list->buf + list->pos - list->offset,
634 4, byte_order, fd);
635 list->written += 4;
636 }
637 list->pos += 4;
638 }
639
640 /* Read siginfo data from the core, if possible. Returns -1 on
641 failure. Otherwise, returns the number of bytes read. ABFD is the
642 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
643 the to_xfer_partial interface. */
644
645 static LONGEST
646 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, LONGEST len)
647 {
648 asection *section;
649 char *section_name;
650 const char *name = ".note.linuxcore.siginfo";
651
652 if (ptid_get_lwp (inferior_ptid))
653 section_name = xstrprintf ("%s/%ld", name,
654 ptid_get_lwp (inferior_ptid));
655 else
656 section_name = xstrdup (name);
657
658 section = bfd_get_section_by_name (abfd, section_name);
659 xfree (section_name);
660 if (section == NULL)
661 return -1;
662
663 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
664 return -1;
665
666 return len;
667 }
668
669 static LONGEST
670 core_xfer_partial (struct target_ops *ops, enum target_object object,
671 const char *annex, gdb_byte *readbuf,
672 const gdb_byte *writebuf, ULONGEST offset,
673 LONGEST len)
674 {
675 switch (object)
676 {
677 case TARGET_OBJECT_MEMORY:
678 return section_table_xfer_memory_partial (readbuf, writebuf,
679 offset, len,
680 core_data->sections,
681 core_data->sections_end,
682 NULL);
683
684 case TARGET_OBJECT_AUXV:
685 if (readbuf)
686 {
687 /* When the aux vector is stored in core file, BFD
688 represents this with a fake section called ".auxv". */
689
690 struct bfd_section *section;
691 bfd_size_type size;
692
693 section = bfd_get_section_by_name (core_bfd, ".auxv");
694 if (section == NULL)
695 return -1;
696
697 size = bfd_section_size (core_bfd, section);
698 if (offset >= size)
699 return 0;
700 size -= offset;
701 if (size > len)
702 size = len;
703 if (size > 0
704 && !bfd_get_section_contents (core_bfd, section, readbuf,
705 (file_ptr) offset, size))
706 {
707 warning (_("Couldn't read NT_AUXV note in core file."));
708 return -1;
709 }
710
711 return size;
712 }
713 return -1;
714
715 case TARGET_OBJECT_WCOOKIE:
716 if (readbuf)
717 {
718 /* When the StackGhost cookie is stored in core file, BFD
719 represents this with a fake section called
720 ".wcookie". */
721
722 struct bfd_section *section;
723 bfd_size_type size;
724
725 section = bfd_get_section_by_name (core_bfd, ".wcookie");
726 if (section == NULL)
727 return -1;
728
729 size = bfd_section_size (core_bfd, section);
730 if (offset >= size)
731 return 0;
732 size -= offset;
733 if (size > len)
734 size = len;
735 if (size > 0
736 && !bfd_get_section_contents (core_bfd, section, readbuf,
737 (file_ptr) offset, size))
738 {
739 warning (_("Couldn't read StackGhost cookie in core file."));
740 return -1;
741 }
742
743 return size;
744 }
745 return -1;
746
747 case TARGET_OBJECT_LIBRARIES:
748 if (core_gdbarch
749 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
750 {
751 if (writebuf)
752 return -1;
753 return
754 gdbarch_core_xfer_shared_libraries (core_gdbarch,
755 readbuf, offset, len);
756 }
757 /* FALL THROUGH */
758
759 case TARGET_OBJECT_LIBRARIES_AIX:
760 if (core_gdbarch
761 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
762 {
763 if (writebuf)
764 return -1;
765 return
766 gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
767 readbuf, offset, len);
768 }
769 /* FALL THROUGH */
770
771 case TARGET_OBJECT_SPU:
772 if (readbuf && annex)
773 {
774 /* When the SPU contexts are stored in a core file, BFD
775 represents this with a fake section called
776 "SPU/<annex>". */
777
778 struct bfd_section *section;
779 bfd_size_type size;
780 char sectionstr[100];
781
782 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
783
784 section = bfd_get_section_by_name (core_bfd, sectionstr);
785 if (section == NULL)
786 return -1;
787
788 size = bfd_section_size (core_bfd, section);
789 if (offset >= size)
790 return 0;
791 size -= offset;
792 if (size > len)
793 size = len;
794 if (size > 0
795 && !bfd_get_section_contents (core_bfd, section, readbuf,
796 (file_ptr) offset, size))
797 {
798 warning (_("Couldn't read SPU section in core file."));
799 return -1;
800 }
801
802 return size;
803 }
804 else if (readbuf)
805 {
806 /* NULL annex requests list of all present spuids. */
807 struct spuid_list list;
808
809 list.buf = readbuf;
810 list.offset = offset;
811 list.len = len;
812 list.pos = 0;
813 list.written = 0;
814 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
815 return list.written;
816 }
817 return -1;
818
819 case TARGET_OBJECT_SIGNAL_INFO:
820 if (readbuf)
821 return get_core_siginfo (core_bfd, readbuf, offset, len);
822 return -1;
823
824 default:
825 if (ops->beneath != NULL)
826 return ops->beneath->to_xfer_partial (ops->beneath, object,
827 annex, readbuf,
828 writebuf, offset, len);
829 return -1;
830 }
831 }
832
833 \f
834 /* If mourn is being called in all the right places, this could be say
835 `gdb internal error' (since generic_mourn calls
836 breakpoint_init_inferior). */
837
838 static int
839 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
840 {
841 return 0;
842 }
843
844
845 /* Okay, let's be honest: threads gleaned from a core file aren't
846 exactly lively, are they? On the other hand, if we don't claim
847 that each & every one is alive, then we don't get any of them
848 to appear in an "info thread" command, which is quite a useful
849 behaviour.
850 */
851 static int
852 core_thread_alive (struct target_ops *ops, ptid_t ptid)
853 {
854 return 1;
855 }
856
857 /* Ask the current architecture what it knows about this core file.
858 That will be used, in turn, to pick a better architecture. This
859 wrapper could be avoided if targets got a chance to specialize
860 core_ops. */
861
862 static const struct target_desc *
863 core_read_description (struct target_ops *target)
864 {
865 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
866 return gdbarch_core_read_description (core_gdbarch,
867 target, core_bfd);
868
869 return NULL;
870 }
871
872 static char *
873 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
874 {
875 static char buf[64];
876 struct inferior *inf;
877 int pid;
878
879 /* The preferred way is to have a gdbarch/OS specific
880 implementation. */
881 if (core_gdbarch
882 && gdbarch_core_pid_to_str_p (core_gdbarch))
883 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
884
885 /* Otherwise, if we don't have one, we'll just fallback to
886 "process", with normal_pid_to_str. */
887
888 /* Try the LWPID field first. */
889 pid = ptid_get_lwp (ptid);
890 if (pid != 0)
891 return normal_pid_to_str (pid_to_ptid (pid));
892
893 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
894 only if it isn't a fake PID. */
895 inf = find_inferior_pid (ptid_get_pid (ptid));
896 if (inf != NULL && !inf->fake_pid_p)
897 return normal_pid_to_str (ptid);
898
899 /* No luck. We simply don't have a valid PID to print. */
900 xsnprintf (buf, sizeof buf, "<main task>");
901 return buf;
902 }
903
904 static int
905 core_has_memory (struct target_ops *ops)
906 {
907 return (core_bfd != NULL);
908 }
909
910 static int
911 core_has_stack (struct target_ops *ops)
912 {
913 return (core_bfd != NULL);
914 }
915
916 static int
917 core_has_registers (struct target_ops *ops)
918 {
919 return (core_bfd != NULL);
920 }
921
922 /* Implement the to_info_proc method. */
923
924 static void
925 core_info_proc (struct target_ops *ops, char *args, enum info_proc_what request)
926 {
927 struct gdbarch *gdbarch = get_current_arch ();
928
929 /* Since this is the core file target, call the 'core_info_proc'
930 method on gdbarch, not 'info_proc'. */
931 if (gdbarch_core_info_proc_p (gdbarch))
932 gdbarch_core_info_proc (gdbarch, args, request);
933 }
934
935 /* Fill in core_ops with its defined operations and properties. */
936
937 static void
938 init_core_ops (void)
939 {
940 core_ops.to_shortname = "core";
941 core_ops.to_longname = "Local core dump file";
942 core_ops.to_doc =
943 "Use a core file as a target. Specify the filename of the core file.";
944 core_ops.to_open = core_open;
945 core_ops.to_close = core_close;
946 core_ops.to_attach = find_default_attach;
947 core_ops.to_detach = core_detach;
948 core_ops.to_fetch_registers = get_core_registers;
949 core_ops.to_xfer_partial = core_xfer_partial;
950 core_ops.to_files_info = core_files_info;
951 core_ops.to_insert_breakpoint = ignore;
952 core_ops.to_remove_breakpoint = ignore;
953 core_ops.to_create_inferior = find_default_create_inferior;
954 core_ops.to_thread_alive = core_thread_alive;
955 core_ops.to_read_description = core_read_description;
956 core_ops.to_pid_to_str = core_pid_to_str;
957 core_ops.to_stratum = process_stratum;
958 core_ops.to_has_memory = core_has_memory;
959 core_ops.to_has_stack = core_has_stack;
960 core_ops.to_has_registers = core_has_registers;
961 core_ops.to_info_proc = core_info_proc;
962 core_ops.to_magic = OPS_MAGIC;
963
964 if (core_target)
965 internal_error (__FILE__, __LINE__,
966 _("init_core_ops: core target already exists (\"%s\")."),
967 core_target->to_longname);
968 core_target = &core_ops;
969 }
970
971 void
972 _initialize_corelow (void)
973 {
974 init_core_ops ();
975
976 add_target_with_completer (&core_ops, filename_completer);
977 }