]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
This patch adds a new convenience variable called "$_exitsignal", which
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include <errno.h>
24 #include <signal.h>
25 #include <fcntl.h>
26 #ifdef HAVE_SYS_FILE_H
27 #include <sys/file.h> /* needed for F_OK and friends */
28 #endif
29 #include "frame.h" /* required by inferior.h */
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "command.h"
33 #include "bfd.h"
34 #include "target.h"
35 #include "gdbcore.h"
36 #include "gdbthread.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "exec.h"
41 #include "readline/readline.h"
42 #include "gdb_assert.h"
43 #include "exceptions.h"
44 #include "solib.h"
45 #include "filenames.h"
46 #include "progspace.h"
47 #include "objfiles.h"
48 #include "gdb_bfd.h"
49 #include "completer.h"
50 #include "filestuff.h"
51
52 #ifndef O_LARGEFILE
53 #define O_LARGEFILE 0
54 #endif
55
56 /* List of all available core_fns. On gdb startup, each core file
57 register reader calls deprecated_add_core_fns() to register
58 information on each core format it is prepared to read. */
59
60 static struct core_fns *core_file_fns = NULL;
61
62 /* The core_fns for a core file handler that is prepared to read the
63 core file currently open on core_bfd. */
64
65 static struct core_fns *core_vec = NULL;
66
67 /* FIXME: kettenis/20031023: Eventually this variable should
68 disappear. */
69
70 static struct gdbarch *core_gdbarch = NULL;
71
72 /* Per-core data. Currently, only the section table. Note that these
73 target sections are *not* mapped in the current address spaces' set
74 of target sections --- those should come only from pure executable
75 or shared library bfds. The core bfd sections are an
76 implementation detail of the core target, just like ptrace is for
77 unix child targets. */
78 static struct target_section_table *core_data;
79
80 static void core_files_info (struct target_ops *);
81
82 static struct core_fns *sniff_core_bfd (bfd *);
83
84 static int gdb_check_format (bfd *);
85
86 static void core_open (char *, int);
87
88 static void core_detach (struct target_ops *ops, char *, int);
89
90 static void core_close (void);
91
92 static void core_close_cleanup (void *ignore);
93
94 static void add_to_thread_list (bfd *, asection *, void *);
95
96 static void init_core_ops (void);
97
98 void _initialize_corelow (void);
99
100 static struct target_ops core_ops;
101
102 /* An arbitrary identifier for the core inferior. */
103 #define CORELOW_PID 1
104
105 /* Link a new core_fns into the global core_file_fns list. Called on
106 gdb startup by the _initialize routine in each core file register
107 reader, to register information about each format the reader is
108 prepared to handle. */
109
110 void
111 deprecated_add_core_fns (struct core_fns *cf)
112 {
113 cf->next = core_file_fns;
114 core_file_fns = cf;
115 }
116
117 /* The default function that core file handlers can use to examine a
118 core file BFD and decide whether or not to accept the job of
119 reading the core file. */
120
121 int
122 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
123 {
124 int result;
125
126 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
127 return (result);
128 }
129
130 /* Walk through the list of core functions to find a set that can
131 handle the core file open on ABFD. Returns pointer to set that is
132 selected. */
133
134 static struct core_fns *
135 sniff_core_bfd (bfd *abfd)
136 {
137 struct core_fns *cf;
138 struct core_fns *yummy = NULL;
139 int matches = 0;;
140
141 /* Don't sniff if we have support for register sets in
142 CORE_GDBARCH. */
143 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
144 return NULL;
145
146 for (cf = core_file_fns; cf != NULL; cf = cf->next)
147 {
148 if (cf->core_sniffer (cf, abfd))
149 {
150 yummy = cf;
151 matches++;
152 }
153 }
154 if (matches > 1)
155 {
156 warning (_("\"%s\": ambiguous core format, %d handlers match"),
157 bfd_get_filename (abfd), matches);
158 }
159 else if (matches == 0)
160 error (_("\"%s\": no core file handler recognizes format"),
161 bfd_get_filename (abfd));
162
163 return (yummy);
164 }
165
166 /* The default is to reject every core file format we see. Either
167 BFD has to recognize it, or we have to provide a function in the
168 core file handler that recognizes it. */
169
170 int
171 default_check_format (bfd *abfd)
172 {
173 return (0);
174 }
175
176 /* Attempt to recognize core file formats that BFD rejects. */
177
178 static int
179 gdb_check_format (bfd *abfd)
180 {
181 struct core_fns *cf;
182
183 for (cf = core_file_fns; cf != NULL; cf = cf->next)
184 {
185 if (cf->check_format (abfd))
186 {
187 return (1);
188 }
189 }
190 return (0);
191 }
192
193 /* Discard all vestiges of any previous core file and mark data and
194 stack spaces as empty. */
195
196 static void
197 core_close (void)
198 {
199 if (core_bfd)
200 {
201 int pid = ptid_get_pid (inferior_ptid);
202 inferior_ptid = null_ptid; /* Avoid confusion from thread
203 stuff. */
204 if (pid != 0)
205 exit_inferior_silent (pid);
206
207 /* Clear out solib state while the bfd is still open. See
208 comments in clear_solib in solib.c. */
209 clear_solib ();
210
211 if (core_data)
212 {
213 xfree (core_data->sections);
214 xfree (core_data);
215 core_data = NULL;
216 }
217
218 gdb_bfd_unref (core_bfd);
219 core_bfd = NULL;
220 }
221 core_vec = NULL;
222 core_gdbarch = NULL;
223 }
224
225 static void
226 core_close_cleanup (void *ignore)
227 {
228 core_close ();
229 }
230
231 /* Look for sections whose names start with `.reg/' so that we can
232 extract the list of threads in a core file. */
233
234 static void
235 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
236 {
237 ptid_t ptid;
238 int core_tid;
239 int pid, lwpid;
240 asection *reg_sect = (asection *) reg_sect_arg;
241 int fake_pid_p = 0;
242 struct inferior *inf;
243
244 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
245 return;
246
247 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
248
249 pid = bfd_core_file_pid (core_bfd);
250 if (pid == 0)
251 {
252 fake_pid_p = 1;
253 pid = CORELOW_PID;
254 }
255
256 lwpid = core_tid;
257
258 inf = current_inferior ();
259 if (inf->pid == 0)
260 {
261 inferior_appeared (inf, pid);
262 inf->fake_pid_p = fake_pid_p;
263 }
264
265 ptid = ptid_build (pid, lwpid, 0);
266
267 add_thread (ptid);
268
269 /* Warning, Will Robinson, looking at BFD private data! */
270
271 if (reg_sect != NULL
272 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
273 inferior_ptid = ptid; /* Yes, make it current. */
274 }
275
276 /* This routine opens and sets up the core file bfd. */
277
278 static void
279 core_open (char *filename, int from_tty)
280 {
281 const char *p;
282 int siggy;
283 struct cleanup *old_chain;
284 char *temp;
285 bfd *temp_bfd;
286 int scratch_chan;
287 int flags;
288 volatile struct gdb_exception except;
289
290 target_preopen (from_tty);
291 if (!filename)
292 {
293 if (core_bfd)
294 error (_("No core file specified. (Use `detach' "
295 "to stop debugging a core file.)"));
296 else
297 error (_("No core file specified."));
298 }
299
300 filename = tilde_expand (filename);
301 if (!IS_ABSOLUTE_PATH (filename))
302 {
303 temp = concat (current_directory, "/",
304 filename, (char *) NULL);
305 xfree (filename);
306 filename = temp;
307 }
308
309 old_chain = make_cleanup (xfree, filename);
310
311 flags = O_BINARY | O_LARGEFILE;
312 if (write_files)
313 flags |= O_RDWR;
314 else
315 flags |= O_RDONLY;
316 scratch_chan = gdb_open_cloexec (filename, flags, 0);
317 if (scratch_chan < 0)
318 perror_with_name (filename);
319
320 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
321 write_files ? FOPEN_RUB : FOPEN_RB,
322 scratch_chan);
323 if (temp_bfd == NULL)
324 perror_with_name (filename);
325
326 if (!bfd_check_format (temp_bfd, bfd_core)
327 && !gdb_check_format (temp_bfd))
328 {
329 /* Do it after the err msg */
330 /* FIXME: should be checking for errors from bfd_close (for one
331 thing, on error it does not free all the storage associated
332 with the bfd). */
333 make_cleanup_bfd_unref (temp_bfd);
334 error (_("\"%s\" is not a core dump: %s"),
335 filename, bfd_errmsg (bfd_get_error ()));
336 }
337
338 /* Looks semi-reasonable. Toss the old core file and work on the
339 new. */
340
341 do_cleanups (old_chain);
342 unpush_target (&core_ops);
343 core_bfd = temp_bfd;
344 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
345
346 core_gdbarch = gdbarch_from_bfd (core_bfd);
347
348 /* Find a suitable core file handler to munch on core_bfd */
349 core_vec = sniff_core_bfd (core_bfd);
350
351 validate_files ();
352
353 core_data = XZALLOC (struct target_section_table);
354
355 /* Find the data section */
356 if (build_section_table (core_bfd,
357 &core_data->sections,
358 &core_data->sections_end))
359 error (_("\"%s\": Can't find sections: %s"),
360 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
361
362 /* If we have no exec file, try to set the architecture from the
363 core file. We don't do this unconditionally since an exec file
364 typically contains more information that helps us determine the
365 architecture than a core file. */
366 if (!exec_bfd)
367 set_gdbarch_from_file (core_bfd);
368
369 push_target (&core_ops);
370 discard_cleanups (old_chain);
371
372 /* Do this before acknowledging the inferior, so if
373 post_create_inferior throws (can happen easilly if you're loading
374 a core file with the wrong exec), we aren't left with threads
375 from the previous inferior. */
376 init_thread_list ();
377
378 inferior_ptid = null_ptid;
379
380 /* Need to flush the register cache (and the frame cache) from a
381 previous debug session. If inferior_ptid ends up the same as the
382 last debug session --- e.g., b foo; run; gcore core1; step; gcore
383 core2; core core1; core core2 --- then there's potential for
384 get_current_regcache to return the cached regcache of the
385 previous session, and the frame cache being stale. */
386 registers_changed ();
387
388 /* Build up thread list from BFD sections, and possibly set the
389 current thread to the .reg/NN section matching the .reg
390 section. */
391 bfd_map_over_sections (core_bfd, add_to_thread_list,
392 bfd_get_section_by_name (core_bfd, ".reg"));
393
394 if (ptid_equal (inferior_ptid, null_ptid))
395 {
396 /* Either we found no .reg/NN section, and hence we have a
397 non-threaded core (single-threaded, from gdb's perspective),
398 or for some reason add_to_thread_list couldn't determine
399 which was the "main" thread. The latter case shouldn't
400 usually happen, but we're dealing with input here, which can
401 always be broken in different ways. */
402 struct thread_info *thread = first_thread_of_process (-1);
403
404 if (thread == NULL)
405 {
406 inferior_appeared (current_inferior (), CORELOW_PID);
407 inferior_ptid = pid_to_ptid (CORELOW_PID);
408 add_thread_silent (inferior_ptid);
409 }
410 else
411 switch_to_thread (thread->ptid);
412 }
413
414 post_create_inferior (&core_ops, from_tty);
415
416 /* Now go through the target stack looking for threads since there
417 may be a thread_stratum target loaded on top of target core by
418 now. The layer above should claim threads found in the BFD
419 sections. */
420 TRY_CATCH (except, RETURN_MASK_ERROR)
421 {
422 target_find_new_threads ();
423 }
424
425 if (except.reason < 0)
426 exception_print (gdb_stderr, except);
427
428 p = bfd_core_file_failing_command (core_bfd);
429 if (p)
430 printf_filtered (_("Core was generated by `%s'.\n"), p);
431
432 /* Clearing any previous state of convenience variables. */
433 clear_exit_convenience_vars ();
434
435 siggy = bfd_core_file_failing_signal (core_bfd);
436 if (siggy > 0)
437 {
438 /* If we don't have a CORE_GDBARCH to work with, assume a native
439 core (map gdb_signal from host signals). If we do have
440 CORE_GDBARCH to work with, but no gdb_signal_from_target
441 implementation for that gdbarch, as a fallback measure,
442 assume the host signal mapping. It'll be correct for native
443 cores, but most likely incorrect for cross-cores. */
444 enum gdb_signal sig = (core_gdbarch != NULL
445 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
446 ? gdbarch_gdb_signal_from_target (core_gdbarch,
447 siggy)
448 : gdb_signal_from_host (siggy));
449
450 printf_filtered (_("Program terminated with signal %s, %s.\n"),
451 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
452
453 /* Set the value of the internal variable $_exitsignal,
454 which holds the signal uncaught by the inferior. */
455 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
456 siggy);
457 }
458
459 /* Fetch all registers from core file. */
460 target_fetch_registers (get_current_regcache (), -1);
461
462 /* Now, set up the frame cache, and print the top of stack. */
463 reinit_frame_cache ();
464 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
465 }
466
467 static void
468 core_detach (struct target_ops *ops, char *args, int from_tty)
469 {
470 if (args)
471 error (_("Too many arguments"));
472 unpush_target (ops);
473 reinit_frame_cache ();
474 if (from_tty)
475 printf_filtered (_("No core file now.\n"));
476 }
477
478 /* Try to retrieve registers from a section in core_bfd, and supply
479 them to core_vec->core_read_registers, as the register set numbered
480 WHICH.
481
482 If inferior_ptid's lwp member is zero, do the single-threaded
483 thing: look for a section named NAME. If inferior_ptid's lwp
484 member is non-zero, do the multi-threaded thing: look for a section
485 named "NAME/LWP", where LWP is the shortest ASCII decimal
486 representation of inferior_ptid's lwp member.
487
488 HUMAN_NAME is a human-readable name for the kind of registers the
489 NAME section contains, for use in error messages.
490
491 If REQUIRED is non-zero, print an error if the core file doesn't
492 have a section by the appropriate name. Otherwise, just do
493 nothing. */
494
495 static void
496 get_core_register_section (struct regcache *regcache,
497 const char *name,
498 int which,
499 const char *human_name,
500 int required)
501 {
502 static char *section_name = NULL;
503 struct bfd_section *section;
504 bfd_size_type size;
505 char *contents;
506
507 xfree (section_name);
508
509 if (ptid_get_lwp (inferior_ptid))
510 section_name = xstrprintf ("%s/%ld", name,
511 ptid_get_lwp (inferior_ptid));
512 else
513 section_name = xstrdup (name);
514
515 section = bfd_get_section_by_name (core_bfd, section_name);
516 if (! section)
517 {
518 if (required)
519 warning (_("Couldn't find %s registers in core file."),
520 human_name);
521 return;
522 }
523
524 size = bfd_section_size (core_bfd, section);
525 contents = alloca (size);
526 if (! bfd_get_section_contents (core_bfd, section, contents,
527 (file_ptr) 0, size))
528 {
529 warning (_("Couldn't read %s registers from `%s' section in core file."),
530 human_name, name);
531 return;
532 }
533
534 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
535 {
536 const struct regset *regset;
537
538 regset = gdbarch_regset_from_core_section (core_gdbarch,
539 name, size);
540 if (regset == NULL)
541 {
542 if (required)
543 warning (_("Couldn't recognize %s registers in core file."),
544 human_name);
545 return;
546 }
547
548 regset->supply_regset (regset, regcache, -1, contents, size);
549 return;
550 }
551
552 gdb_assert (core_vec);
553 core_vec->core_read_registers (regcache, contents, size, which,
554 ((CORE_ADDR)
555 bfd_section_vma (core_bfd, section)));
556 }
557
558
559 /* Get the registers out of a core file. This is the machine-
560 independent part. Fetch_core_registers is the machine-dependent
561 part, typically implemented in the xm-file for each
562 architecture. */
563
564 /* We just get all the registers, so we don't use regno. */
565
566 static void
567 get_core_registers (struct target_ops *ops,
568 struct regcache *regcache, int regno)
569 {
570 struct core_regset_section *sect_list;
571 int i;
572
573 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
574 && (core_vec == NULL || core_vec->core_read_registers == NULL))
575 {
576 fprintf_filtered (gdb_stderr,
577 "Can't fetch registers from this type of core file\n");
578 return;
579 }
580
581 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
582 if (sect_list)
583 while (sect_list->sect_name != NULL)
584 {
585 if (strcmp (sect_list->sect_name, ".reg") == 0)
586 get_core_register_section (regcache, sect_list->sect_name,
587 0, sect_list->human_name, 1);
588 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
589 get_core_register_section (regcache, sect_list->sect_name,
590 2, sect_list->human_name, 0);
591 else
592 get_core_register_section (regcache, sect_list->sect_name,
593 3, sect_list->human_name, 0);
594
595 sect_list++;
596 }
597
598 else
599 {
600 get_core_register_section (regcache,
601 ".reg", 0, "general-purpose", 1);
602 get_core_register_section (regcache,
603 ".reg2", 2, "floating-point", 0);
604 }
605
606 /* Mark all registers not found in the core as unavailable. */
607 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
608 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
609 regcache_raw_supply (regcache, i, NULL);
610 }
611
612 static void
613 core_files_info (struct target_ops *t)
614 {
615 print_section_info (core_data, core_bfd);
616 }
617 \f
618 struct spuid_list
619 {
620 gdb_byte *buf;
621 ULONGEST offset;
622 LONGEST len;
623 ULONGEST pos;
624 ULONGEST written;
625 };
626
627 static void
628 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
629 {
630 struct spuid_list *list = list_p;
631 enum bfd_endian byte_order
632 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
633 int fd, pos = 0;
634
635 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
636 if (pos == 0)
637 return;
638
639 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
640 {
641 store_unsigned_integer (list->buf + list->pos - list->offset,
642 4, byte_order, fd);
643 list->written += 4;
644 }
645 list->pos += 4;
646 }
647
648 /* Read siginfo data from the core, if possible. Returns -1 on
649 failure. Otherwise, returns the number of bytes read. ABFD is the
650 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
651 the to_xfer_partial interface. */
652
653 static LONGEST
654 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, LONGEST len)
655 {
656 asection *section;
657 char *section_name;
658 const char *name = ".note.linuxcore.siginfo";
659
660 if (ptid_get_lwp (inferior_ptid))
661 section_name = xstrprintf ("%s/%ld", name,
662 ptid_get_lwp (inferior_ptid));
663 else
664 section_name = xstrdup (name);
665
666 section = bfd_get_section_by_name (abfd, section_name);
667 xfree (section_name);
668 if (section == NULL)
669 return -1;
670
671 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
672 return -1;
673
674 return len;
675 }
676
677 static LONGEST
678 core_xfer_partial (struct target_ops *ops, enum target_object object,
679 const char *annex, gdb_byte *readbuf,
680 const gdb_byte *writebuf, ULONGEST offset,
681 LONGEST len)
682 {
683 switch (object)
684 {
685 case TARGET_OBJECT_MEMORY:
686 return section_table_xfer_memory_partial (readbuf, writebuf,
687 offset, len,
688 core_data->sections,
689 core_data->sections_end,
690 NULL);
691
692 case TARGET_OBJECT_AUXV:
693 if (readbuf)
694 {
695 /* When the aux vector is stored in core file, BFD
696 represents this with a fake section called ".auxv". */
697
698 struct bfd_section *section;
699 bfd_size_type size;
700
701 section = bfd_get_section_by_name (core_bfd, ".auxv");
702 if (section == NULL)
703 return -1;
704
705 size = bfd_section_size (core_bfd, section);
706 if (offset >= size)
707 return 0;
708 size -= offset;
709 if (size > len)
710 size = len;
711 if (size > 0
712 && !bfd_get_section_contents (core_bfd, section, readbuf,
713 (file_ptr) offset, size))
714 {
715 warning (_("Couldn't read NT_AUXV note in core file."));
716 return -1;
717 }
718
719 return size;
720 }
721 return -1;
722
723 case TARGET_OBJECT_WCOOKIE:
724 if (readbuf)
725 {
726 /* When the StackGhost cookie is stored in core file, BFD
727 represents this with a fake section called
728 ".wcookie". */
729
730 struct bfd_section *section;
731 bfd_size_type size;
732
733 section = bfd_get_section_by_name (core_bfd, ".wcookie");
734 if (section == NULL)
735 return -1;
736
737 size = bfd_section_size (core_bfd, section);
738 if (offset >= size)
739 return 0;
740 size -= offset;
741 if (size > len)
742 size = len;
743 if (size > 0
744 && !bfd_get_section_contents (core_bfd, section, readbuf,
745 (file_ptr) offset, size))
746 {
747 warning (_("Couldn't read StackGhost cookie in core file."));
748 return -1;
749 }
750
751 return size;
752 }
753 return -1;
754
755 case TARGET_OBJECT_LIBRARIES:
756 if (core_gdbarch
757 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
758 {
759 if (writebuf)
760 return -1;
761 return
762 gdbarch_core_xfer_shared_libraries (core_gdbarch,
763 readbuf, offset, len);
764 }
765 /* FALL THROUGH */
766
767 case TARGET_OBJECT_LIBRARIES_AIX:
768 if (core_gdbarch
769 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
770 {
771 if (writebuf)
772 return -1;
773 return
774 gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
775 readbuf, offset, len);
776 }
777 /* FALL THROUGH */
778
779 case TARGET_OBJECT_SPU:
780 if (readbuf && annex)
781 {
782 /* When the SPU contexts are stored in a core file, BFD
783 represents this with a fake section called
784 "SPU/<annex>". */
785
786 struct bfd_section *section;
787 bfd_size_type size;
788 char sectionstr[100];
789
790 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
791
792 section = bfd_get_section_by_name (core_bfd, sectionstr);
793 if (section == NULL)
794 return -1;
795
796 size = bfd_section_size (core_bfd, section);
797 if (offset >= size)
798 return 0;
799 size -= offset;
800 if (size > len)
801 size = len;
802 if (size > 0
803 && !bfd_get_section_contents (core_bfd, section, readbuf,
804 (file_ptr) offset, size))
805 {
806 warning (_("Couldn't read SPU section in core file."));
807 return -1;
808 }
809
810 return size;
811 }
812 else if (readbuf)
813 {
814 /* NULL annex requests list of all present spuids. */
815 struct spuid_list list;
816
817 list.buf = readbuf;
818 list.offset = offset;
819 list.len = len;
820 list.pos = 0;
821 list.written = 0;
822 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
823 return list.written;
824 }
825 return -1;
826
827 case TARGET_OBJECT_SIGNAL_INFO:
828 if (readbuf)
829 return get_core_siginfo (core_bfd, readbuf, offset, len);
830 return -1;
831
832 default:
833 if (ops->beneath != NULL)
834 return ops->beneath->to_xfer_partial (ops->beneath, object,
835 annex, readbuf,
836 writebuf, offset, len);
837 return -1;
838 }
839 }
840
841 \f
842 /* If mourn is being called in all the right places, this could be say
843 `gdb internal error' (since generic_mourn calls
844 breakpoint_init_inferior). */
845
846 static int
847 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
848 {
849 return 0;
850 }
851
852
853 /* Okay, let's be honest: threads gleaned from a core file aren't
854 exactly lively, are they? On the other hand, if we don't claim
855 that each & every one is alive, then we don't get any of them
856 to appear in an "info thread" command, which is quite a useful
857 behaviour.
858 */
859 static int
860 core_thread_alive (struct target_ops *ops, ptid_t ptid)
861 {
862 return 1;
863 }
864
865 /* Ask the current architecture what it knows about this core file.
866 That will be used, in turn, to pick a better architecture. This
867 wrapper could be avoided if targets got a chance to specialize
868 core_ops. */
869
870 static const struct target_desc *
871 core_read_description (struct target_ops *target)
872 {
873 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
874 return gdbarch_core_read_description (core_gdbarch,
875 target, core_bfd);
876
877 return NULL;
878 }
879
880 static char *
881 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
882 {
883 static char buf[64];
884 struct inferior *inf;
885 int pid;
886
887 /* The preferred way is to have a gdbarch/OS specific
888 implementation. */
889 if (core_gdbarch
890 && gdbarch_core_pid_to_str_p (core_gdbarch))
891 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
892
893 /* Otherwise, if we don't have one, we'll just fallback to
894 "process", with normal_pid_to_str. */
895
896 /* Try the LWPID field first. */
897 pid = ptid_get_lwp (ptid);
898 if (pid != 0)
899 return normal_pid_to_str (pid_to_ptid (pid));
900
901 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
902 only if it isn't a fake PID. */
903 inf = find_inferior_pid (ptid_get_pid (ptid));
904 if (inf != NULL && !inf->fake_pid_p)
905 return normal_pid_to_str (ptid);
906
907 /* No luck. We simply don't have a valid PID to print. */
908 xsnprintf (buf, sizeof buf, "<main task>");
909 return buf;
910 }
911
912 static int
913 core_has_memory (struct target_ops *ops)
914 {
915 return (core_bfd != NULL);
916 }
917
918 static int
919 core_has_stack (struct target_ops *ops)
920 {
921 return (core_bfd != NULL);
922 }
923
924 static int
925 core_has_registers (struct target_ops *ops)
926 {
927 return (core_bfd != NULL);
928 }
929
930 /* Implement the to_info_proc method. */
931
932 static void
933 core_info_proc (struct target_ops *ops, char *args, enum info_proc_what request)
934 {
935 struct gdbarch *gdbarch = get_current_arch ();
936
937 /* Since this is the core file target, call the 'core_info_proc'
938 method on gdbarch, not 'info_proc'. */
939 if (gdbarch_core_info_proc_p (gdbarch))
940 gdbarch_core_info_proc (gdbarch, args, request);
941 }
942
943 /* Fill in core_ops with its defined operations and properties. */
944
945 static void
946 init_core_ops (void)
947 {
948 core_ops.to_shortname = "core";
949 core_ops.to_longname = "Local core dump file";
950 core_ops.to_doc =
951 "Use a core file as a target. Specify the filename of the core file.";
952 core_ops.to_open = core_open;
953 core_ops.to_close = core_close;
954 core_ops.to_attach = find_default_attach;
955 core_ops.to_detach = core_detach;
956 core_ops.to_fetch_registers = get_core_registers;
957 core_ops.to_xfer_partial = core_xfer_partial;
958 core_ops.to_files_info = core_files_info;
959 core_ops.to_insert_breakpoint = ignore;
960 core_ops.to_remove_breakpoint = ignore;
961 core_ops.to_create_inferior = find_default_create_inferior;
962 core_ops.to_thread_alive = core_thread_alive;
963 core_ops.to_read_description = core_read_description;
964 core_ops.to_pid_to_str = core_pid_to_str;
965 core_ops.to_stratum = process_stratum;
966 core_ops.to_has_memory = core_has_memory;
967 core_ops.to_has_stack = core_has_stack;
968 core_ops.to_has_registers = core_has_registers;
969 core_ops.to_info_proc = core_info_proc;
970 core_ops.to_magic = OPS_MAGIC;
971
972 if (core_target)
973 internal_error (__FILE__, __LINE__,
974 _("init_core_ops: core target already exists (\"%s\")."),
975 core_target->to_longname);
976 core_target = &core_ops;
977 }
978
979 void
980 _initialize_corelow (void)
981 {
982 init_core_ops ();
983
984 add_target_with_completer (&core_ops, filename_completer);
985 }