]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Fix get_core_register_section leak, introduce thread_section_name
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 void _initialize_corelow (void);
92
93 static struct target_ops core_ops;
94
95 /* An arbitrary identifier for the core inferior. */
96 #define CORELOW_PID 1
97
98 /* Link a new core_fns into the global core_file_fns list. Called on
99 gdb startup by the _initialize routine in each core file register
100 reader, to register information about each format the reader is
101 prepared to handle. */
102
103 void
104 deprecated_add_core_fns (struct core_fns *cf)
105 {
106 cf->next = core_file_fns;
107 core_file_fns = cf;
108 }
109
110 /* The default function that core file handlers can use to examine a
111 core file BFD and decide whether or not to accept the job of
112 reading the core file. */
113
114 int
115 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
116 {
117 int result;
118
119 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
120 return (result);
121 }
122
123 /* Walk through the list of core functions to find a set that can
124 handle the core file open on ABFD. Returns pointer to set that is
125 selected. */
126
127 static struct core_fns *
128 sniff_core_bfd (bfd *abfd)
129 {
130 struct core_fns *cf;
131 struct core_fns *yummy = NULL;
132 int matches = 0;
133
134 /* Don't sniff if we have support for register sets in
135 CORE_GDBARCH. */
136 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
137 return NULL;
138
139 for (cf = core_file_fns; cf != NULL; cf = cf->next)
140 {
141 if (cf->core_sniffer (cf, abfd))
142 {
143 yummy = cf;
144 matches++;
145 }
146 }
147 if (matches > 1)
148 {
149 warning (_("\"%s\": ambiguous core format, %d handlers match"),
150 bfd_get_filename (abfd), matches);
151 }
152 else if (matches == 0)
153 error (_("\"%s\": no core file handler recognizes format"),
154 bfd_get_filename (abfd));
155
156 return (yummy);
157 }
158
159 /* The default is to reject every core file format we see. Either
160 BFD has to recognize it, or we have to provide a function in the
161 core file handler that recognizes it. */
162
163 int
164 default_check_format (bfd *abfd)
165 {
166 return (0);
167 }
168
169 /* Attempt to recognize core file formats that BFD rejects. */
170
171 static int
172 gdb_check_format (bfd *abfd)
173 {
174 struct core_fns *cf;
175
176 for (cf = core_file_fns; cf != NULL; cf = cf->next)
177 {
178 if (cf->check_format (abfd))
179 {
180 return (1);
181 }
182 }
183 return (0);
184 }
185
186 /* Discard all vestiges of any previous core file and mark data and
187 stack spaces as empty. */
188
189 static void
190 core_close (struct target_ops *self)
191 {
192 if (core_bfd)
193 {
194 int pid = ptid_get_pid (inferior_ptid);
195 inferior_ptid = null_ptid; /* Avoid confusion from thread
196 stuff. */
197 if (pid != 0)
198 exit_inferior_silent (pid);
199
200 /* Clear out solib state while the bfd is still open. See
201 comments in clear_solib in solib.c. */
202 clear_solib ();
203
204 if (core_data)
205 {
206 xfree (core_data->sections);
207 xfree (core_data);
208 core_data = NULL;
209 }
210
211 gdb_bfd_unref (core_bfd);
212 core_bfd = NULL;
213 }
214 core_vec = NULL;
215 core_gdbarch = NULL;
216 }
217
218 static void
219 core_close_cleanup (void *ignore)
220 {
221 core_close (NULL);
222 }
223
224 /* Look for sections whose names start with `.reg/' so that we can
225 extract the list of threads in a core file. */
226
227 static void
228 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
229 {
230 ptid_t ptid;
231 int core_tid;
232 int pid, lwpid;
233 asection *reg_sect = (asection *) reg_sect_arg;
234 int fake_pid_p = 0;
235 struct inferior *inf;
236
237 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
238 return;
239
240 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
241
242 pid = bfd_core_file_pid (core_bfd);
243 if (pid == 0)
244 {
245 fake_pid_p = 1;
246 pid = CORELOW_PID;
247 }
248
249 lwpid = core_tid;
250
251 inf = current_inferior ();
252 if (inf->pid == 0)
253 {
254 inferior_appeared (inf, pid);
255 inf->fake_pid_p = fake_pid_p;
256 }
257
258 ptid = ptid_build (pid, lwpid, 0);
259
260 add_thread (ptid);
261
262 /* Warning, Will Robinson, looking at BFD private data! */
263
264 if (reg_sect != NULL
265 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
266 inferior_ptid = ptid; /* Yes, make it current. */
267 }
268
269 /* This routine opens and sets up the core file bfd. */
270
271 static void
272 core_open (const char *arg, int from_tty)
273 {
274 const char *p;
275 int siggy;
276 struct cleanup *old_chain;
277 char *temp;
278 int scratch_chan;
279 int flags;
280 char *filename;
281
282 target_preopen (from_tty);
283 if (!arg)
284 {
285 if (core_bfd)
286 error (_("No core file specified. (Use `detach' "
287 "to stop debugging a core file.)"));
288 else
289 error (_("No core file specified."));
290 }
291
292 filename = tilde_expand (arg);
293 if (!IS_ABSOLUTE_PATH (filename))
294 {
295 temp = concat (current_directory, "/",
296 filename, (char *) NULL);
297 xfree (filename);
298 filename = temp;
299 }
300
301 old_chain = make_cleanup (xfree, filename);
302
303 flags = O_BINARY | O_LARGEFILE;
304 if (write_files)
305 flags |= O_RDWR;
306 else
307 flags |= O_RDONLY;
308 scratch_chan = gdb_open_cloexec (filename, flags, 0);
309 if (scratch_chan < 0)
310 perror_with_name (filename);
311
312 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename, gnutarget,
313 write_files ? FOPEN_RUB : FOPEN_RB,
314 scratch_chan));
315 if (temp_bfd == NULL)
316 perror_with_name (filename);
317
318 if (!bfd_check_format (temp_bfd.get (), bfd_core)
319 && !gdb_check_format (temp_bfd.get ()))
320 {
321 /* Do it after the err msg */
322 /* FIXME: should be checking for errors from bfd_close (for one
323 thing, on error it does not free all the storage associated
324 with the bfd). */
325 error (_("\"%s\" is not a core dump: %s"),
326 filename, bfd_errmsg (bfd_get_error ()));
327 }
328
329 /* Looks semi-reasonable. Toss the old core file and work on the
330 new. */
331
332 do_cleanups (old_chain);
333 unpush_target (&core_ops);
334 core_bfd = temp_bfd.release ();
335 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
336
337 core_gdbarch = gdbarch_from_bfd (core_bfd);
338
339 /* Find a suitable core file handler to munch on core_bfd */
340 core_vec = sniff_core_bfd (core_bfd);
341
342 validate_files ();
343
344 core_data = XCNEW (struct target_section_table);
345
346 /* Find the data section */
347 if (build_section_table (core_bfd,
348 &core_data->sections,
349 &core_data->sections_end))
350 error (_("\"%s\": Can't find sections: %s"),
351 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
352
353 /* If we have no exec file, try to set the architecture from the
354 core file. We don't do this unconditionally since an exec file
355 typically contains more information that helps us determine the
356 architecture than a core file. */
357 if (!exec_bfd)
358 set_gdbarch_from_file (core_bfd);
359
360 push_target (&core_ops);
361 discard_cleanups (old_chain);
362
363 /* Do this before acknowledging the inferior, so if
364 post_create_inferior throws (can happen easilly if you're loading
365 a core file with the wrong exec), we aren't left with threads
366 from the previous inferior. */
367 init_thread_list ();
368
369 inferior_ptid = null_ptid;
370
371 /* Need to flush the register cache (and the frame cache) from a
372 previous debug session. If inferior_ptid ends up the same as the
373 last debug session --- e.g., b foo; run; gcore core1; step; gcore
374 core2; core core1; core core2 --- then there's potential for
375 get_current_regcache to return the cached regcache of the
376 previous session, and the frame cache being stale. */
377 registers_changed ();
378
379 /* Build up thread list from BFD sections, and possibly set the
380 current thread to the .reg/NN section matching the .reg
381 section. */
382 bfd_map_over_sections (core_bfd, add_to_thread_list,
383 bfd_get_section_by_name (core_bfd, ".reg"));
384
385 if (ptid_equal (inferior_ptid, null_ptid))
386 {
387 /* Either we found no .reg/NN section, and hence we have a
388 non-threaded core (single-threaded, from gdb's perspective),
389 or for some reason add_to_thread_list couldn't determine
390 which was the "main" thread. The latter case shouldn't
391 usually happen, but we're dealing with input here, which can
392 always be broken in different ways. */
393 struct thread_info *thread = first_thread_of_process (-1);
394
395 if (thread == NULL)
396 {
397 inferior_appeared (current_inferior (), CORELOW_PID);
398 inferior_ptid = pid_to_ptid (CORELOW_PID);
399 add_thread_silent (inferior_ptid);
400 }
401 else
402 switch_to_thread (thread->ptid);
403 }
404
405 post_create_inferior (&core_ops, from_tty);
406
407 /* Now go through the target stack looking for threads since there
408 may be a thread_stratum target loaded on top of target core by
409 now. The layer above should claim threads found in the BFD
410 sections. */
411 TRY
412 {
413 target_update_thread_list ();
414 }
415
416 CATCH (except, RETURN_MASK_ERROR)
417 {
418 exception_print (gdb_stderr, except);
419 }
420 END_CATCH
421
422 p = bfd_core_file_failing_command (core_bfd);
423 if (p)
424 printf_filtered (_("Core was generated by `%s'.\n"), p);
425
426 /* Clearing any previous state of convenience variables. */
427 clear_exit_convenience_vars ();
428
429 siggy = bfd_core_file_failing_signal (core_bfd);
430 if (siggy > 0)
431 {
432 /* If we don't have a CORE_GDBARCH to work with, assume a native
433 core (map gdb_signal from host signals). If we do have
434 CORE_GDBARCH to work with, but no gdb_signal_from_target
435 implementation for that gdbarch, as a fallback measure,
436 assume the host signal mapping. It'll be correct for native
437 cores, but most likely incorrect for cross-cores. */
438 enum gdb_signal sig = (core_gdbarch != NULL
439 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
440 ? gdbarch_gdb_signal_from_target (core_gdbarch,
441 siggy)
442 : gdb_signal_from_host (siggy));
443
444 printf_filtered (_("Program terminated with signal %s, %s.\n"),
445 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
446
447 /* Set the value of the internal variable $_exitsignal,
448 which holds the signal uncaught by the inferior. */
449 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
450 siggy);
451 }
452
453 /* Fetch all registers from core file. */
454 target_fetch_registers (get_current_regcache (), -1);
455
456 /* Now, set up the frame cache, and print the top of stack. */
457 reinit_frame_cache ();
458 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
459
460 /* Current thread should be NUM 1 but the user does not know that.
461 If a program is single threaded gdb in general does not mention
462 anything about threads. That is why the test is >= 2. */
463 if (thread_count () >= 2)
464 {
465 TRY
466 {
467 thread_command (NULL, from_tty);
468 }
469 CATCH (except, RETURN_MASK_ERROR)
470 {
471 exception_print (gdb_stderr, except);
472 }
473 END_CATCH
474 }
475 }
476
477 static void
478 core_detach (struct target_ops *ops, const char *args, int from_tty)
479 {
480 if (args)
481 error (_("Too many arguments"));
482 unpush_target (ops);
483 reinit_frame_cache ();
484 if (from_tty)
485 printf_filtered (_("No core file now.\n"));
486 }
487
488 /* Build either a single-thread or multi-threaded section name for
489 PTID.
490
491 If ptid's lwp member is zero, we want to do the single-threaded
492 thing: look for a section named NAME (as passed to the
493 constructor). If ptid's lwp member is non-zero, we'll want do the
494 multi-threaded thing: look for a section named "NAME/LWP", where
495 LWP is the shortest ASCII decimal representation of ptid's lwp
496 member. */
497
498 class thread_section_name
499 {
500 public:
501 /* NAME is the single-threaded section name. If PTID represents an
502 LWP, then the build section name is "NAME/LWP", otherwise it's
503 just "NAME" unmodified. */
504 thread_section_name (const char *name, ptid_t ptid)
505 {
506 if (ptid.lwp_p ())
507 {
508 m_storage = string_printf ("%s/%ld", name, ptid.lwp ());
509 m_section_name = m_storage.c_str ();
510 }
511 else
512 m_section_name = name;
513 }
514
515 /* Return the computed section name. The result is valid as long as
516 this thread_section_name object is live. */
517 const char *c_str () const
518 { return m_section_name; }
519
520 /* Disable copy. */
521 thread_section_name (const thread_section_name &) = delete;
522 void operator= (const thread_section_name &) = delete;
523
524 private:
525 /* Either a pointer into M_STORAGE, or a pointer to the name passed
526 as parameter to the constructor. */
527 const char *m_section_name;
528 /* If we need to build a new section name, this is where we store
529 it. */
530 std::string m_storage;
531 };
532
533 /* Try to retrieve registers from a section in core_bfd, and supply
534 them to core_vec->core_read_registers, as the register set numbered
535 WHICH.
536
537 If ptid's lwp member is zero, do the single-threaded
538 thing: look for a section named NAME. If ptid's lwp
539 member is non-zero, do the multi-threaded thing: look for a section
540 named "NAME/LWP", where LWP is the shortest ASCII decimal
541 representation of ptid's lwp member.
542
543 HUMAN_NAME is a human-readable name for the kind of registers the
544 NAME section contains, for use in error messages.
545
546 If REQUIRED is non-zero, print an error if the core file doesn't
547 have a section by the appropriate name. Otherwise, just do
548 nothing. */
549
550 static void
551 get_core_register_section (struct regcache *regcache,
552 const struct regset *regset,
553 const char *name,
554 int min_size,
555 int which,
556 const char *human_name,
557 int required)
558 {
559 struct bfd_section *section;
560 bfd_size_type size;
561 char *contents;
562 bool variable_size_section = (regset != NULL
563 && regset->flags & REGSET_VARIABLE_SIZE);
564
565 thread_section_name section_name (name, regcache->ptid ());
566
567 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
568 if (! section)
569 {
570 if (required)
571 warning (_("Couldn't find %s registers in core file."),
572 human_name);
573 return;
574 }
575
576 size = bfd_section_size (core_bfd, section);
577 if (size < min_size)
578 {
579 warning (_("Section `%s' in core file too small."),
580 section_name.c_str ());
581 return;
582 }
583 if (size != min_size && !variable_size_section)
584 {
585 warning (_("Unexpected size of section `%s' in core file."),
586 section_name.c_str ());
587 }
588
589 contents = (char *) alloca (size);
590 if (! bfd_get_section_contents (core_bfd, section, contents,
591 (file_ptr) 0, size))
592 {
593 warning (_("Couldn't read %s registers from `%s' section in core file."),
594 human_name, section_name.c_str ());
595 return;
596 }
597
598 if (regset != NULL)
599 {
600 regset->supply_regset (regset, regcache, -1, contents, size);
601 return;
602 }
603
604 gdb_assert (core_vec);
605 core_vec->core_read_registers (regcache, contents, size, which,
606 ((CORE_ADDR)
607 bfd_section_vma (core_bfd, section)));
608 }
609
610 /* Callback for get_core_registers that handles a single core file
611 register note section. */
612
613 static void
614 get_core_registers_cb (const char *sect_name, int size,
615 const struct regset *regset,
616 const char *human_name, void *cb_data)
617 {
618 struct regcache *regcache = (struct regcache *) cb_data;
619 int required = 0;
620
621 if (strcmp (sect_name, ".reg") == 0)
622 {
623 required = 1;
624 if (human_name == NULL)
625 human_name = "general-purpose";
626 }
627 else if (strcmp (sect_name, ".reg2") == 0)
628 {
629 if (human_name == NULL)
630 human_name = "floating-point";
631 }
632
633 /* The 'which' parameter is only used when no regset is provided.
634 Thus we just set it to -1. */
635 get_core_register_section (regcache, regset, sect_name,
636 size, -1, human_name, required);
637 }
638
639 /* Get the registers out of a core file. This is the machine-
640 independent part. Fetch_core_registers is the machine-dependent
641 part, typically implemented in the xm-file for each
642 architecture. */
643
644 /* We just get all the registers, so we don't use regno. */
645
646 static void
647 get_core_registers (struct target_ops *ops,
648 struct regcache *regcache, int regno)
649 {
650 int i;
651 struct gdbarch *gdbarch;
652
653 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
654 && (core_vec == NULL || core_vec->core_read_registers == NULL))
655 {
656 fprintf_filtered (gdb_stderr,
657 "Can't fetch registers from this type of core file\n");
658 return;
659 }
660
661 gdbarch = get_regcache_arch (regcache);
662 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
663 gdbarch_iterate_over_regset_sections (gdbarch,
664 get_core_registers_cb,
665 (void *) regcache, NULL);
666 else
667 {
668 get_core_register_section (regcache, NULL,
669 ".reg", 0, 0, "general-purpose", 1);
670 get_core_register_section (regcache, NULL,
671 ".reg2", 0, 2, "floating-point", 0);
672 }
673
674 /* Mark all registers not found in the core as unavailable. */
675 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
676 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
677 regcache_raw_supply (regcache, i, NULL);
678 }
679
680 static void
681 core_files_info (struct target_ops *t)
682 {
683 print_section_info (core_data, core_bfd);
684 }
685 \f
686 struct spuid_list
687 {
688 gdb_byte *buf;
689 ULONGEST offset;
690 LONGEST len;
691 ULONGEST pos;
692 ULONGEST written;
693 };
694
695 static void
696 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
697 {
698 struct spuid_list *list = (struct spuid_list *) list_p;
699 enum bfd_endian byte_order
700 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
701 int fd, pos = 0;
702
703 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
704 if (pos == 0)
705 return;
706
707 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
708 {
709 store_unsigned_integer (list->buf + list->pos - list->offset,
710 4, byte_order, fd);
711 list->written += 4;
712 }
713 list->pos += 4;
714 }
715
716 /* Read siginfo data from the core, if possible. Returns -1 on
717 failure. Otherwise, returns the number of bytes read. ABFD is the
718 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
719 the to_xfer_partial interface. */
720
721 static LONGEST
722 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
723 {
724 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
725 asection *section = bfd_get_section_by_name (abfd, section_name.c_str ());
726 if (section == NULL)
727 return -1;
728
729 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
730 return -1;
731
732 return len;
733 }
734
735 static enum target_xfer_status
736 core_xfer_partial (struct target_ops *ops, enum target_object object,
737 const char *annex, gdb_byte *readbuf,
738 const gdb_byte *writebuf, ULONGEST offset,
739 ULONGEST len, ULONGEST *xfered_len)
740 {
741 switch (object)
742 {
743 case TARGET_OBJECT_MEMORY:
744 return section_table_xfer_memory_partial (readbuf, writebuf,
745 offset, len, xfered_len,
746 core_data->sections,
747 core_data->sections_end,
748 NULL);
749
750 case TARGET_OBJECT_AUXV:
751 if (readbuf)
752 {
753 /* When the aux vector is stored in core file, BFD
754 represents this with a fake section called ".auxv". */
755
756 struct bfd_section *section;
757 bfd_size_type size;
758
759 section = bfd_get_section_by_name (core_bfd, ".auxv");
760 if (section == NULL)
761 return TARGET_XFER_E_IO;
762
763 size = bfd_section_size (core_bfd, section);
764 if (offset >= size)
765 return TARGET_XFER_EOF;
766 size -= offset;
767 if (size > len)
768 size = len;
769
770 if (size == 0)
771 return TARGET_XFER_EOF;
772 if (!bfd_get_section_contents (core_bfd, section, readbuf,
773 (file_ptr) offset, size))
774 {
775 warning (_("Couldn't read NT_AUXV note in core file."));
776 return TARGET_XFER_E_IO;
777 }
778
779 *xfered_len = (ULONGEST) size;
780 return TARGET_XFER_OK;
781 }
782 return TARGET_XFER_E_IO;
783
784 case TARGET_OBJECT_WCOOKIE:
785 if (readbuf)
786 {
787 /* When the StackGhost cookie is stored in core file, BFD
788 represents this with a fake section called
789 ".wcookie". */
790
791 struct bfd_section *section;
792 bfd_size_type size;
793
794 section = bfd_get_section_by_name (core_bfd, ".wcookie");
795 if (section == NULL)
796 return TARGET_XFER_E_IO;
797
798 size = bfd_section_size (core_bfd, section);
799 if (offset >= size)
800 return TARGET_XFER_EOF;
801 size -= offset;
802 if (size > len)
803 size = len;
804
805 if (size == 0)
806 return TARGET_XFER_EOF;
807 if (!bfd_get_section_contents (core_bfd, section, readbuf,
808 (file_ptr) offset, size))
809 {
810 warning (_("Couldn't read StackGhost cookie in core file."));
811 return TARGET_XFER_E_IO;
812 }
813
814 *xfered_len = (ULONGEST) size;
815 return TARGET_XFER_OK;
816
817 }
818 return TARGET_XFER_E_IO;
819
820 case TARGET_OBJECT_LIBRARIES:
821 if (core_gdbarch
822 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
823 {
824 if (writebuf)
825 return TARGET_XFER_E_IO;
826 else
827 {
828 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
829 readbuf,
830 offset, len);
831
832 if (*xfered_len == 0)
833 return TARGET_XFER_EOF;
834 else
835 return TARGET_XFER_OK;
836 }
837 }
838 /* FALL THROUGH */
839
840 case TARGET_OBJECT_LIBRARIES_AIX:
841 if (core_gdbarch
842 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
843 {
844 if (writebuf)
845 return TARGET_XFER_E_IO;
846 else
847 {
848 *xfered_len
849 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
850 readbuf, offset,
851 len);
852
853 if (*xfered_len == 0)
854 return TARGET_XFER_EOF;
855 else
856 return TARGET_XFER_OK;
857 }
858 }
859 /* FALL THROUGH */
860
861 case TARGET_OBJECT_SPU:
862 if (readbuf && annex)
863 {
864 /* When the SPU contexts are stored in a core file, BFD
865 represents this with a fake section called
866 "SPU/<annex>". */
867
868 struct bfd_section *section;
869 bfd_size_type size;
870 char sectionstr[100];
871
872 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
873
874 section = bfd_get_section_by_name (core_bfd, sectionstr);
875 if (section == NULL)
876 return TARGET_XFER_E_IO;
877
878 size = bfd_section_size (core_bfd, section);
879 if (offset >= size)
880 return TARGET_XFER_EOF;
881 size -= offset;
882 if (size > len)
883 size = len;
884
885 if (size == 0)
886 return TARGET_XFER_EOF;
887 if (!bfd_get_section_contents (core_bfd, section, readbuf,
888 (file_ptr) offset, size))
889 {
890 warning (_("Couldn't read SPU section in core file."));
891 return TARGET_XFER_E_IO;
892 }
893
894 *xfered_len = (ULONGEST) size;
895 return TARGET_XFER_OK;
896 }
897 else if (readbuf)
898 {
899 /* NULL annex requests list of all present spuids. */
900 struct spuid_list list;
901
902 list.buf = readbuf;
903 list.offset = offset;
904 list.len = len;
905 list.pos = 0;
906 list.written = 0;
907 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
908
909 if (list.written == 0)
910 return TARGET_XFER_EOF;
911 else
912 {
913 *xfered_len = (ULONGEST) list.written;
914 return TARGET_XFER_OK;
915 }
916 }
917 return TARGET_XFER_E_IO;
918
919 case TARGET_OBJECT_SIGNAL_INFO:
920 if (readbuf)
921 {
922 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
923
924 if (l > 0)
925 {
926 *xfered_len = len;
927 return TARGET_XFER_OK;
928 }
929 }
930 return TARGET_XFER_E_IO;
931
932 default:
933 return ops->beneath->to_xfer_partial (ops->beneath, object,
934 annex, readbuf,
935 writebuf, offset, len,
936 xfered_len);
937 }
938 }
939
940 \f
941 /* If mourn is being called in all the right places, this could be say
942 `gdb internal error' (since generic_mourn calls
943 breakpoint_init_inferior). */
944
945 static int
946 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
947 struct bp_target_info *bp_tgt)
948 {
949 return 0;
950 }
951
952 /* Implement the to_remove_breakpoint method. */
953
954 static int
955 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
956 struct bp_target_info *bp_tgt,
957 enum remove_bp_reason reason)
958 {
959 return 0;
960 }
961
962
963 /* Okay, let's be honest: threads gleaned from a core file aren't
964 exactly lively, are they? On the other hand, if we don't claim
965 that each & every one is alive, then we don't get any of them
966 to appear in an "info thread" command, which is quite a useful
967 behaviour.
968 */
969 static int
970 core_thread_alive (struct target_ops *ops, ptid_t ptid)
971 {
972 return 1;
973 }
974
975 /* Ask the current architecture what it knows about this core file.
976 That will be used, in turn, to pick a better architecture. This
977 wrapper could be avoided if targets got a chance to specialize
978 core_ops. */
979
980 static const struct target_desc *
981 core_read_description (struct target_ops *target)
982 {
983 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
984 {
985 const struct target_desc *result;
986
987 result = gdbarch_core_read_description (core_gdbarch,
988 target, core_bfd);
989 if (result != NULL)
990 return result;
991 }
992
993 return target->beneath->to_read_description (target->beneath);
994 }
995
996 static const char *
997 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
998 {
999 static char buf[64];
1000 struct inferior *inf;
1001 int pid;
1002
1003 /* The preferred way is to have a gdbarch/OS specific
1004 implementation. */
1005 if (core_gdbarch
1006 && gdbarch_core_pid_to_str_p (core_gdbarch))
1007 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
1008
1009 /* Otherwise, if we don't have one, we'll just fallback to
1010 "process", with normal_pid_to_str. */
1011
1012 /* Try the LWPID field first. */
1013 pid = ptid_get_lwp (ptid);
1014 if (pid != 0)
1015 return normal_pid_to_str (pid_to_ptid (pid));
1016
1017 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1018 only if it isn't a fake PID. */
1019 inf = find_inferior_ptid (ptid);
1020 if (inf != NULL && !inf->fake_pid_p)
1021 return normal_pid_to_str (ptid);
1022
1023 /* No luck. We simply don't have a valid PID to print. */
1024 xsnprintf (buf, sizeof buf, "<main task>");
1025 return buf;
1026 }
1027
1028 static const char *
1029 core_thread_name (struct target_ops *self, struct thread_info *thr)
1030 {
1031 if (core_gdbarch
1032 && gdbarch_core_thread_name_p (core_gdbarch))
1033 return gdbarch_core_thread_name (core_gdbarch, thr);
1034 return NULL;
1035 }
1036
1037 static int
1038 core_has_memory (struct target_ops *ops)
1039 {
1040 return (core_bfd != NULL);
1041 }
1042
1043 static int
1044 core_has_stack (struct target_ops *ops)
1045 {
1046 return (core_bfd != NULL);
1047 }
1048
1049 static int
1050 core_has_registers (struct target_ops *ops)
1051 {
1052 return (core_bfd != NULL);
1053 }
1054
1055 /* Implement the to_info_proc method. */
1056
1057 static void
1058 core_info_proc (struct target_ops *ops, const char *args,
1059 enum info_proc_what request)
1060 {
1061 struct gdbarch *gdbarch = get_current_arch ();
1062
1063 /* Since this is the core file target, call the 'core_info_proc'
1064 method on gdbarch, not 'info_proc'. */
1065 if (gdbarch_core_info_proc_p (gdbarch))
1066 gdbarch_core_info_proc (gdbarch, args, request);
1067 }
1068
1069 /* Fill in core_ops with its defined operations and properties. */
1070
1071 static void
1072 init_core_ops (void)
1073 {
1074 core_ops.to_shortname = "core";
1075 core_ops.to_longname = "Local core dump file";
1076 core_ops.to_doc =
1077 "Use a core file as a target. Specify the filename of the core file.";
1078 core_ops.to_open = core_open;
1079 core_ops.to_close = core_close;
1080 core_ops.to_detach = core_detach;
1081 core_ops.to_fetch_registers = get_core_registers;
1082 core_ops.to_xfer_partial = core_xfer_partial;
1083 core_ops.to_files_info = core_files_info;
1084 core_ops.to_insert_breakpoint = ignore;
1085 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1086 core_ops.to_thread_alive = core_thread_alive;
1087 core_ops.to_read_description = core_read_description;
1088 core_ops.to_pid_to_str = core_pid_to_str;
1089 core_ops.to_thread_name = core_thread_name;
1090 core_ops.to_stratum = process_stratum;
1091 core_ops.to_has_memory = core_has_memory;
1092 core_ops.to_has_stack = core_has_stack;
1093 core_ops.to_has_registers = core_has_registers;
1094 core_ops.to_info_proc = core_info_proc;
1095 core_ops.to_magic = OPS_MAGIC;
1096
1097 if (core_target)
1098 internal_error (__FILE__, __LINE__,
1099 _("init_core_ops: core target already exists (\"%s\")."),
1100 core_target->to_longname);
1101 core_target = &core_ops;
1102 }
1103
1104 void
1105 _initialize_corelow (void)
1106 {
1107 init_core_ops ();
1108
1109 add_target_with_completer (&core_ops, filename_completer);
1110 }