]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Replace 'core_regset_sections' by iterator method
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "exceptions.h"
42 #include "solib.h"
43 #include "filenames.h"
44 #include "progspace.h"
45 #include "objfiles.h"
46 #include "gdb_bfd.h"
47 #include "completer.h"
48 #include "filestuff.h"
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the
61 core file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 static struct gdbarch *core_gdbarch = NULL;
69
70 /* Per-core data. Currently, only the section table. Note that these
71 target sections are *not* mapped in the current address spaces' set
72 of target sections --- those should come only from pure executable
73 or shared library bfds. The core bfd sections are an
74 implementation detail of the core target, just like ptrace is for
75 unix child targets. */
76 static struct target_section_table *core_data;
77
78 static void core_files_info (struct target_ops *);
79
80 static struct core_fns *sniff_core_bfd (bfd *);
81
82 static int gdb_check_format (bfd *);
83
84 static void core_close (struct target_ops *self);
85
86 static void core_close_cleanup (void *ignore);
87
88 static void add_to_thread_list (bfd *, asection *, void *);
89
90 static void init_core_ops (void);
91
92 void _initialize_corelow (void);
93
94 static struct target_ops core_ops;
95
96 /* An arbitrary identifier for the core inferior. */
97 #define CORELOW_PID 1
98
99 /* Link a new core_fns into the global core_file_fns list. Called on
100 gdb startup by the _initialize routine in each core file register
101 reader, to register information about each format the reader is
102 prepared to handle. */
103
104 void
105 deprecated_add_core_fns (struct core_fns *cf)
106 {
107 cf->next = core_file_fns;
108 core_file_fns = cf;
109 }
110
111 /* The default function that core file handlers can use to examine a
112 core file BFD and decide whether or not to accept the job of
113 reading the core file. */
114
115 int
116 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
117 {
118 int result;
119
120 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
121 return (result);
122 }
123
124 /* Walk through the list of core functions to find a set that can
125 handle the core file open on ABFD. Returns pointer to set that is
126 selected. */
127
128 static struct core_fns *
129 sniff_core_bfd (bfd *abfd)
130 {
131 struct core_fns *cf;
132 struct core_fns *yummy = NULL;
133 int matches = 0;;
134
135 /* Don't sniff if we have support for register sets in
136 CORE_GDBARCH. */
137 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
138 return NULL;
139
140 for (cf = core_file_fns; cf != NULL; cf = cf->next)
141 {
142 if (cf->core_sniffer (cf, abfd))
143 {
144 yummy = cf;
145 matches++;
146 }
147 }
148 if (matches > 1)
149 {
150 warning (_("\"%s\": ambiguous core format, %d handlers match"),
151 bfd_get_filename (abfd), matches);
152 }
153 else if (matches == 0)
154 error (_("\"%s\": no core file handler recognizes format"),
155 bfd_get_filename (abfd));
156
157 return (yummy);
158 }
159
160 /* The default is to reject every core file format we see. Either
161 BFD has to recognize it, or we have to provide a function in the
162 core file handler that recognizes it. */
163
164 int
165 default_check_format (bfd *abfd)
166 {
167 return (0);
168 }
169
170 /* Attempt to recognize core file formats that BFD rejects. */
171
172 static int
173 gdb_check_format (bfd *abfd)
174 {
175 struct core_fns *cf;
176
177 for (cf = core_file_fns; cf != NULL; cf = cf->next)
178 {
179 if (cf->check_format (abfd))
180 {
181 return (1);
182 }
183 }
184 return (0);
185 }
186
187 /* Discard all vestiges of any previous core file and mark data and
188 stack spaces as empty. */
189
190 static void
191 core_close (struct target_ops *self)
192 {
193 if (core_bfd)
194 {
195 int pid = ptid_get_pid (inferior_ptid);
196 inferior_ptid = null_ptid; /* Avoid confusion from thread
197 stuff. */
198 if (pid != 0)
199 exit_inferior_silent (pid);
200
201 /* Clear out solib state while the bfd is still open. See
202 comments in clear_solib in solib.c. */
203 clear_solib ();
204
205 if (core_data)
206 {
207 xfree (core_data->sections);
208 xfree (core_data);
209 core_data = NULL;
210 }
211
212 gdb_bfd_unref (core_bfd);
213 core_bfd = NULL;
214 }
215 core_vec = NULL;
216 core_gdbarch = NULL;
217 }
218
219 static void
220 core_close_cleanup (void *ignore)
221 {
222 core_close (NULL);
223 }
224
225 /* Look for sections whose names start with `.reg/' so that we can
226 extract the list of threads in a core file. */
227
228 static void
229 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
230 {
231 ptid_t ptid;
232 int core_tid;
233 int pid, lwpid;
234 asection *reg_sect = (asection *) reg_sect_arg;
235 int fake_pid_p = 0;
236 struct inferior *inf;
237
238 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
239 return;
240
241 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
242
243 pid = bfd_core_file_pid (core_bfd);
244 if (pid == 0)
245 {
246 fake_pid_p = 1;
247 pid = CORELOW_PID;
248 }
249
250 lwpid = core_tid;
251
252 inf = current_inferior ();
253 if (inf->pid == 0)
254 {
255 inferior_appeared (inf, pid);
256 inf->fake_pid_p = fake_pid_p;
257 }
258
259 ptid = ptid_build (pid, lwpid, 0);
260
261 add_thread (ptid);
262
263 /* Warning, Will Robinson, looking at BFD private data! */
264
265 if (reg_sect != NULL
266 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
267 inferior_ptid = ptid; /* Yes, make it current. */
268 }
269
270 /* This routine opens and sets up the core file bfd. */
271
272 static void
273 core_open (const char *arg, int from_tty)
274 {
275 const char *p;
276 int siggy;
277 struct cleanup *old_chain;
278 char *temp;
279 bfd *temp_bfd;
280 int scratch_chan;
281 int flags;
282 volatile struct gdb_exception except;
283 char *filename;
284
285 target_preopen (from_tty);
286 if (!arg)
287 {
288 if (core_bfd)
289 error (_("No core file specified. (Use `detach' "
290 "to stop debugging a core file.)"));
291 else
292 error (_("No core file specified."));
293 }
294
295 filename = tilde_expand (arg);
296 if (!IS_ABSOLUTE_PATH (filename))
297 {
298 temp = concat (current_directory, "/",
299 filename, (char *) NULL);
300 xfree (filename);
301 filename = temp;
302 }
303
304 old_chain = make_cleanup (xfree, filename);
305
306 flags = O_BINARY | O_LARGEFILE;
307 if (write_files)
308 flags |= O_RDWR;
309 else
310 flags |= O_RDONLY;
311 scratch_chan = gdb_open_cloexec (filename, flags, 0);
312 if (scratch_chan < 0)
313 perror_with_name (filename);
314
315 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
316 write_files ? FOPEN_RUB : FOPEN_RB,
317 scratch_chan);
318 if (temp_bfd == NULL)
319 perror_with_name (filename);
320
321 if (!bfd_check_format (temp_bfd, bfd_core)
322 && !gdb_check_format (temp_bfd))
323 {
324 /* Do it after the err msg */
325 /* FIXME: should be checking for errors from bfd_close (for one
326 thing, on error it does not free all the storage associated
327 with the bfd). */
328 make_cleanup_bfd_unref (temp_bfd);
329 error (_("\"%s\" is not a core dump: %s"),
330 filename, bfd_errmsg (bfd_get_error ()));
331 }
332
333 /* Looks semi-reasonable. Toss the old core file and work on the
334 new. */
335
336 do_cleanups (old_chain);
337 unpush_target (&core_ops);
338 core_bfd = temp_bfd;
339 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
340
341 core_gdbarch = gdbarch_from_bfd (core_bfd);
342
343 /* Find a suitable core file handler to munch on core_bfd */
344 core_vec = sniff_core_bfd (core_bfd);
345
346 validate_files ();
347
348 core_data = XCNEW (struct target_section_table);
349
350 /* Find the data section */
351 if (build_section_table (core_bfd,
352 &core_data->sections,
353 &core_data->sections_end))
354 error (_("\"%s\": Can't find sections: %s"),
355 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
356
357 /* If we have no exec file, try to set the architecture from the
358 core file. We don't do this unconditionally since an exec file
359 typically contains more information that helps us determine the
360 architecture than a core file. */
361 if (!exec_bfd)
362 set_gdbarch_from_file (core_bfd);
363
364 push_target (&core_ops);
365 discard_cleanups (old_chain);
366
367 /* Do this before acknowledging the inferior, so if
368 post_create_inferior throws (can happen easilly if you're loading
369 a core file with the wrong exec), we aren't left with threads
370 from the previous inferior. */
371 init_thread_list ();
372
373 inferior_ptid = null_ptid;
374
375 /* Need to flush the register cache (and the frame cache) from a
376 previous debug session. If inferior_ptid ends up the same as the
377 last debug session --- e.g., b foo; run; gcore core1; step; gcore
378 core2; core core1; core core2 --- then there's potential for
379 get_current_regcache to return the cached regcache of the
380 previous session, and the frame cache being stale. */
381 registers_changed ();
382
383 /* Build up thread list from BFD sections, and possibly set the
384 current thread to the .reg/NN section matching the .reg
385 section. */
386 bfd_map_over_sections (core_bfd, add_to_thread_list,
387 bfd_get_section_by_name (core_bfd, ".reg"));
388
389 if (ptid_equal (inferior_ptid, null_ptid))
390 {
391 /* Either we found no .reg/NN section, and hence we have a
392 non-threaded core (single-threaded, from gdb's perspective),
393 or for some reason add_to_thread_list couldn't determine
394 which was the "main" thread. The latter case shouldn't
395 usually happen, but we're dealing with input here, which can
396 always be broken in different ways. */
397 struct thread_info *thread = first_thread_of_process (-1);
398
399 if (thread == NULL)
400 {
401 inferior_appeared (current_inferior (), CORELOW_PID);
402 inferior_ptid = pid_to_ptid (CORELOW_PID);
403 add_thread_silent (inferior_ptid);
404 }
405 else
406 switch_to_thread (thread->ptid);
407 }
408
409 post_create_inferior (&core_ops, from_tty);
410
411 /* Now go through the target stack looking for threads since there
412 may be a thread_stratum target loaded on top of target core by
413 now. The layer above should claim threads found in the BFD
414 sections. */
415 TRY_CATCH (except, RETURN_MASK_ERROR)
416 {
417 target_find_new_threads ();
418 }
419
420 if (except.reason < 0)
421 exception_print (gdb_stderr, except);
422
423 p = bfd_core_file_failing_command (core_bfd);
424 if (p)
425 printf_filtered (_("Core was generated by `%s'.\n"), p);
426
427 /* Clearing any previous state of convenience variables. */
428 clear_exit_convenience_vars ();
429
430 siggy = bfd_core_file_failing_signal (core_bfd);
431 if (siggy > 0)
432 {
433 /* If we don't have a CORE_GDBARCH to work with, assume a native
434 core (map gdb_signal from host signals). If we do have
435 CORE_GDBARCH to work with, but no gdb_signal_from_target
436 implementation for that gdbarch, as a fallback measure,
437 assume the host signal mapping. It'll be correct for native
438 cores, but most likely incorrect for cross-cores. */
439 enum gdb_signal sig = (core_gdbarch != NULL
440 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
441 ? gdbarch_gdb_signal_from_target (core_gdbarch,
442 siggy)
443 : gdb_signal_from_host (siggy));
444
445 printf_filtered (_("Program terminated with signal %s, %s.\n"),
446 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
447
448 /* Set the value of the internal variable $_exitsignal,
449 which holds the signal uncaught by the inferior. */
450 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
451 siggy);
452 }
453
454 /* Fetch all registers from core file. */
455 target_fetch_registers (get_current_regcache (), -1);
456
457 /* Now, set up the frame cache, and print the top of stack. */
458 reinit_frame_cache ();
459 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
460 }
461
462 static void
463 core_detach (struct target_ops *ops, const char *args, int from_tty)
464 {
465 if (args)
466 error (_("Too many arguments"));
467 unpush_target (ops);
468 reinit_frame_cache ();
469 if (from_tty)
470 printf_filtered (_("No core file now.\n"));
471 }
472
473 /* Try to retrieve registers from a section in core_bfd, and supply
474 them to core_vec->core_read_registers, as the register set numbered
475 WHICH.
476
477 If inferior_ptid's lwp member is zero, do the single-threaded
478 thing: look for a section named NAME. If inferior_ptid's lwp
479 member is non-zero, do the multi-threaded thing: look for a section
480 named "NAME/LWP", where LWP is the shortest ASCII decimal
481 representation of inferior_ptid's lwp member.
482
483 HUMAN_NAME is a human-readable name for the kind of registers the
484 NAME section contains, for use in error messages.
485
486 If REQUIRED is non-zero, print an error if the core file doesn't
487 have a section by the appropriate name. Otherwise, just do
488 nothing. */
489
490 static void
491 get_core_register_section (struct regcache *regcache,
492 const char *name,
493 int which,
494 const char *human_name,
495 int required)
496 {
497 static char *section_name = NULL;
498 struct bfd_section *section;
499 bfd_size_type size;
500 char *contents;
501
502 xfree (section_name);
503
504 if (ptid_get_lwp (inferior_ptid))
505 section_name = xstrprintf ("%s/%ld", name,
506 ptid_get_lwp (inferior_ptid));
507 else
508 section_name = xstrdup (name);
509
510 section = bfd_get_section_by_name (core_bfd, section_name);
511 if (! section)
512 {
513 if (required)
514 warning (_("Couldn't find %s registers in core file."),
515 human_name);
516 return;
517 }
518
519 size = bfd_section_size (core_bfd, section);
520 contents = alloca (size);
521 if (! bfd_get_section_contents (core_bfd, section, contents,
522 (file_ptr) 0, size))
523 {
524 warning (_("Couldn't read %s registers from `%s' section in core file."),
525 human_name, name);
526 return;
527 }
528
529 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
530 {
531 const struct regset *regset;
532
533 regset = gdbarch_regset_from_core_section (core_gdbarch,
534 name, size);
535 if (regset == NULL)
536 {
537 if (required)
538 warning (_("Couldn't recognize %s registers in core file."),
539 human_name);
540 return;
541 }
542
543 regset->supply_regset (regset, regcache, -1, contents, size);
544 return;
545 }
546
547 gdb_assert (core_vec);
548 core_vec->core_read_registers (regcache, contents, size, which,
549 ((CORE_ADDR)
550 bfd_section_vma (core_bfd, section)));
551 }
552
553 /* Callback for get_core_registers that handles a single core file
554 register note section. */
555
556 static void
557 get_core_registers_cb (const char *sect_name, int size,
558 const char *human_name, void *cb_data)
559 {
560 struct regcache *regcache = (struct regcache *) cb_data;
561
562 if (strcmp (sect_name, ".reg") == 0)
563 get_core_register_section (regcache, sect_name, 0, human_name, 1);
564 else if (strcmp (sect_name, ".reg2") == 0)
565 get_core_register_section (regcache, sect_name, 2, human_name, 0);
566 else
567 get_core_register_section (regcache, sect_name, 3, human_name, 0);
568 }
569
570 /* Get the registers out of a core file. This is the machine-
571 independent part. Fetch_core_registers is the machine-dependent
572 part, typically implemented in the xm-file for each
573 architecture. */
574
575 /* We just get all the registers, so we don't use regno. */
576
577 static void
578 get_core_registers (struct target_ops *ops,
579 struct regcache *regcache, int regno)
580 {
581 int i;
582 struct gdbarch *gdbarch;
583
584 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
585 && (core_vec == NULL || core_vec->core_read_registers == NULL))
586 {
587 fprintf_filtered (gdb_stderr,
588 "Can't fetch registers from this type of core file\n");
589 return;
590 }
591
592 gdbarch = get_regcache_arch (regcache);
593 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
594 gdbarch_iterate_over_regset_sections (gdbarch,
595 get_core_registers_cb,
596 (void *) regcache, NULL);
597 else
598 {
599 get_core_register_section (regcache,
600 ".reg", 0, "general-purpose", 1);
601 get_core_register_section (regcache,
602 ".reg2", 2, "floating-point", 0);
603 }
604
605 /* Mark all registers not found in the core as unavailable. */
606 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
607 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
608 regcache_raw_supply (regcache, i, NULL);
609 }
610
611 static void
612 core_files_info (struct target_ops *t)
613 {
614 print_section_info (core_data, core_bfd);
615 }
616 \f
617 struct spuid_list
618 {
619 gdb_byte *buf;
620 ULONGEST offset;
621 LONGEST len;
622 ULONGEST pos;
623 ULONGEST written;
624 };
625
626 static void
627 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
628 {
629 struct spuid_list *list = list_p;
630 enum bfd_endian byte_order
631 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
632 int fd, pos = 0;
633
634 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
635 if (pos == 0)
636 return;
637
638 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
639 {
640 store_unsigned_integer (list->buf + list->pos - list->offset,
641 4, byte_order, fd);
642 list->written += 4;
643 }
644 list->pos += 4;
645 }
646
647 /* Read siginfo data from the core, if possible. Returns -1 on
648 failure. Otherwise, returns the number of bytes read. ABFD is the
649 core file's BFD; READBUF, OFFSET, and LEN are all as specified by
650 the to_xfer_partial interface. */
651
652 static LONGEST
653 get_core_siginfo (bfd *abfd, gdb_byte *readbuf, ULONGEST offset, ULONGEST len)
654 {
655 asection *section;
656 char *section_name;
657 const char *name = ".note.linuxcore.siginfo";
658
659 if (ptid_get_lwp (inferior_ptid))
660 section_name = xstrprintf ("%s/%ld", name,
661 ptid_get_lwp (inferior_ptid));
662 else
663 section_name = xstrdup (name);
664
665 section = bfd_get_section_by_name (abfd, section_name);
666 xfree (section_name);
667 if (section == NULL)
668 return -1;
669
670 if (!bfd_get_section_contents (abfd, section, readbuf, offset, len))
671 return -1;
672
673 return len;
674 }
675
676 static enum target_xfer_status
677 core_xfer_partial (struct target_ops *ops, enum target_object object,
678 const char *annex, gdb_byte *readbuf,
679 const gdb_byte *writebuf, ULONGEST offset,
680 ULONGEST len, ULONGEST *xfered_len)
681 {
682 switch (object)
683 {
684 case TARGET_OBJECT_MEMORY:
685 return section_table_xfer_memory_partial (readbuf, writebuf,
686 offset, len, xfered_len,
687 core_data->sections,
688 core_data->sections_end,
689 NULL);
690
691 case TARGET_OBJECT_AUXV:
692 if (readbuf)
693 {
694 /* When the aux vector is stored in core file, BFD
695 represents this with a fake section called ".auxv". */
696
697 struct bfd_section *section;
698 bfd_size_type size;
699
700 section = bfd_get_section_by_name (core_bfd, ".auxv");
701 if (section == NULL)
702 return TARGET_XFER_E_IO;
703
704 size = bfd_section_size (core_bfd, section);
705 if (offset >= size)
706 return TARGET_XFER_EOF;
707 size -= offset;
708 if (size > len)
709 size = len;
710
711 if (size == 0)
712 return TARGET_XFER_EOF;
713 if (!bfd_get_section_contents (core_bfd, section, readbuf,
714 (file_ptr) offset, size))
715 {
716 warning (_("Couldn't read NT_AUXV note in core file."));
717 return TARGET_XFER_E_IO;
718 }
719
720 *xfered_len = (ULONGEST) size;
721 return TARGET_XFER_OK;
722 }
723 return TARGET_XFER_E_IO;
724
725 case TARGET_OBJECT_WCOOKIE:
726 if (readbuf)
727 {
728 /* When the StackGhost cookie is stored in core file, BFD
729 represents this with a fake section called
730 ".wcookie". */
731
732 struct bfd_section *section;
733 bfd_size_type size;
734
735 section = bfd_get_section_by_name (core_bfd, ".wcookie");
736 if (section == NULL)
737 return TARGET_XFER_E_IO;
738
739 size = bfd_section_size (core_bfd, section);
740 if (offset >= size)
741 return TARGET_XFER_EOF;
742 size -= offset;
743 if (size > len)
744 size = len;
745
746 if (size == 0)
747 return TARGET_XFER_EOF;
748 if (!bfd_get_section_contents (core_bfd, section, readbuf,
749 (file_ptr) offset, size))
750 {
751 warning (_("Couldn't read StackGhost cookie in core file."));
752 return TARGET_XFER_E_IO;
753 }
754
755 *xfered_len = (ULONGEST) size;
756 return TARGET_XFER_OK;
757
758 }
759 return TARGET_XFER_E_IO;
760
761 case TARGET_OBJECT_LIBRARIES:
762 if (core_gdbarch
763 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
764 {
765 if (writebuf)
766 return TARGET_XFER_E_IO;
767 else
768 {
769 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
770 readbuf,
771 offset, len);
772
773 if (*xfered_len == 0)
774 return TARGET_XFER_EOF;
775 else
776 return TARGET_XFER_OK;
777 }
778 }
779 /* FALL THROUGH */
780
781 case TARGET_OBJECT_LIBRARIES_AIX:
782 if (core_gdbarch
783 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
784 {
785 if (writebuf)
786 return TARGET_XFER_E_IO;
787 else
788 {
789 *xfered_len
790 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
791 readbuf, offset,
792 len);
793
794 if (*xfered_len == 0)
795 return TARGET_XFER_EOF;
796 else
797 return TARGET_XFER_OK;
798 }
799 }
800 /* FALL THROUGH */
801
802 case TARGET_OBJECT_SPU:
803 if (readbuf && annex)
804 {
805 /* When the SPU contexts are stored in a core file, BFD
806 represents this with a fake section called
807 "SPU/<annex>". */
808
809 struct bfd_section *section;
810 bfd_size_type size;
811 char sectionstr[100];
812
813 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
814
815 section = bfd_get_section_by_name (core_bfd, sectionstr);
816 if (section == NULL)
817 return TARGET_XFER_E_IO;
818
819 size = bfd_section_size (core_bfd, section);
820 if (offset >= size)
821 return TARGET_XFER_EOF;
822 size -= offset;
823 if (size > len)
824 size = len;
825
826 if (size == 0)
827 return TARGET_XFER_EOF;
828 if (!bfd_get_section_contents (core_bfd, section, readbuf,
829 (file_ptr) offset, size))
830 {
831 warning (_("Couldn't read SPU section in core file."));
832 return TARGET_XFER_E_IO;
833 }
834
835 *xfered_len = (ULONGEST) size;
836 return TARGET_XFER_OK;
837 }
838 else if (readbuf)
839 {
840 /* NULL annex requests list of all present spuids. */
841 struct spuid_list list;
842
843 list.buf = readbuf;
844 list.offset = offset;
845 list.len = len;
846 list.pos = 0;
847 list.written = 0;
848 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
849
850 if (list.written == 0)
851 return TARGET_XFER_EOF;
852 else
853 {
854 *xfered_len = (ULONGEST) list.written;
855 return TARGET_XFER_OK;
856 }
857 }
858 return TARGET_XFER_E_IO;
859
860 case TARGET_OBJECT_SIGNAL_INFO:
861 if (readbuf)
862 {
863 LONGEST l = get_core_siginfo (core_bfd, readbuf, offset, len);
864
865 if (l > 0)
866 {
867 *xfered_len = len;
868 return TARGET_XFER_OK;
869 }
870 }
871 return TARGET_XFER_E_IO;
872
873 default:
874 return ops->beneath->to_xfer_partial (ops->beneath, object,
875 annex, readbuf,
876 writebuf, offset, len,
877 xfered_len);
878 }
879 }
880
881 \f
882 /* If mourn is being called in all the right places, this could be say
883 `gdb internal error' (since generic_mourn calls
884 breakpoint_init_inferior). */
885
886 static int
887 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
888 struct bp_target_info *bp_tgt)
889 {
890 return 0;
891 }
892
893
894 /* Okay, let's be honest: threads gleaned from a core file aren't
895 exactly lively, are they? On the other hand, if we don't claim
896 that each & every one is alive, then we don't get any of them
897 to appear in an "info thread" command, which is quite a useful
898 behaviour.
899 */
900 static int
901 core_thread_alive (struct target_ops *ops, ptid_t ptid)
902 {
903 return 1;
904 }
905
906 /* Ask the current architecture what it knows about this core file.
907 That will be used, in turn, to pick a better architecture. This
908 wrapper could be avoided if targets got a chance to specialize
909 core_ops. */
910
911 static const struct target_desc *
912 core_read_description (struct target_ops *target)
913 {
914 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
915 {
916 const struct target_desc *result;
917
918 result = gdbarch_core_read_description (core_gdbarch,
919 target, core_bfd);
920 if (result != NULL)
921 return result;
922 }
923
924 return target->beneath->to_read_description (target->beneath);
925 }
926
927 static char *
928 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
929 {
930 static char buf[64];
931 struct inferior *inf;
932 int pid;
933
934 /* The preferred way is to have a gdbarch/OS specific
935 implementation. */
936 if (core_gdbarch
937 && gdbarch_core_pid_to_str_p (core_gdbarch))
938 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
939
940 /* Otherwise, if we don't have one, we'll just fallback to
941 "process", with normal_pid_to_str. */
942
943 /* Try the LWPID field first. */
944 pid = ptid_get_lwp (ptid);
945 if (pid != 0)
946 return normal_pid_to_str (pid_to_ptid (pid));
947
948 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
949 only if it isn't a fake PID. */
950 inf = find_inferior_pid (ptid_get_pid (ptid));
951 if (inf != NULL && !inf->fake_pid_p)
952 return normal_pid_to_str (ptid);
953
954 /* No luck. We simply don't have a valid PID to print. */
955 xsnprintf (buf, sizeof buf, "<main task>");
956 return buf;
957 }
958
959 static int
960 core_has_memory (struct target_ops *ops)
961 {
962 return (core_bfd != NULL);
963 }
964
965 static int
966 core_has_stack (struct target_ops *ops)
967 {
968 return (core_bfd != NULL);
969 }
970
971 static int
972 core_has_registers (struct target_ops *ops)
973 {
974 return (core_bfd != NULL);
975 }
976
977 /* Implement the to_info_proc method. */
978
979 static void
980 core_info_proc (struct target_ops *ops, const char *args,
981 enum info_proc_what request)
982 {
983 struct gdbarch *gdbarch = get_current_arch ();
984
985 /* Since this is the core file target, call the 'core_info_proc'
986 method on gdbarch, not 'info_proc'. */
987 if (gdbarch_core_info_proc_p (gdbarch))
988 gdbarch_core_info_proc (gdbarch, args, request);
989 }
990
991 /* Fill in core_ops with its defined operations and properties. */
992
993 static void
994 init_core_ops (void)
995 {
996 core_ops.to_shortname = "core";
997 core_ops.to_longname = "Local core dump file";
998 core_ops.to_doc =
999 "Use a core file as a target. Specify the filename of the core file.";
1000 core_ops.to_open = core_open;
1001 core_ops.to_close = core_close;
1002 core_ops.to_detach = core_detach;
1003 core_ops.to_fetch_registers = get_core_registers;
1004 core_ops.to_xfer_partial = core_xfer_partial;
1005 core_ops.to_files_info = core_files_info;
1006 core_ops.to_insert_breakpoint = ignore;
1007 core_ops.to_remove_breakpoint = ignore;
1008 core_ops.to_thread_alive = core_thread_alive;
1009 core_ops.to_read_description = core_read_description;
1010 core_ops.to_pid_to_str = core_pid_to_str;
1011 core_ops.to_stratum = process_stratum;
1012 core_ops.to_has_memory = core_has_memory;
1013 core_ops.to_has_stack = core_has_stack;
1014 core_ops.to_has_registers = core_has_registers;
1015 core_ops.to_info_proc = core_info_proc;
1016 core_ops.to_magic = OPS_MAGIC;
1017
1018 if (core_target)
1019 internal_error (__FILE__, __LINE__,
1020 _("init_core_ops: core target already exists (\"%s\")."),
1021 core_target->to_longname);
1022 core_target = &core_ops;
1023 }
1024
1025 void
1026 _initialize_corelow (void)
1027 {
1028 init_core_ops ();
1029
1030 add_target_with_completer (&core_ops, filename_completer);
1031 }