]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Pass inferior down to target_detach and to_detach
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 /* List of all available core_fns. On gdb startup, each core file
54 register reader calls deprecated_add_core_fns() to register
55 information on each core format it is prepared to read. */
56
57 static struct core_fns *core_file_fns = NULL;
58
59 /* The core_fns for a core file handler that is prepared to read the
60 core file currently open on core_bfd. */
61
62 static struct core_fns *core_vec = NULL;
63
64 /* FIXME: kettenis/20031023: Eventually this variable should
65 disappear. */
66
67 static struct gdbarch *core_gdbarch = NULL;
68
69 /* Per-core data. Currently, only the section table. Note that these
70 target sections are *not* mapped in the current address spaces' set
71 of target sections --- those should come only from pure executable
72 or shared library bfds. The core bfd sections are an
73 implementation detail of the core target, just like ptrace is for
74 unix child targets. */
75 static struct target_section_table *core_data;
76
77 static void core_files_info (struct target_ops *);
78
79 static struct core_fns *sniff_core_bfd (bfd *);
80
81 static int gdb_check_format (bfd *);
82
83 static void core_close (struct target_ops *self);
84
85 static void core_close_cleanup (void *ignore);
86
87 static void add_to_thread_list (bfd *, asection *, void *);
88
89 static void init_core_ops (void);
90
91 static struct target_ops core_ops;
92
93 /* An arbitrary identifier for the core inferior. */
94 #define CORELOW_PID 1
95
96 /* Link a new core_fns into the global core_file_fns list. Called on
97 gdb startup by the _initialize routine in each core file register
98 reader, to register information about each format the reader is
99 prepared to handle. */
100
101 void
102 deprecated_add_core_fns (struct core_fns *cf)
103 {
104 cf->next = core_file_fns;
105 core_file_fns = cf;
106 }
107
108 /* The default function that core file handlers can use to examine a
109 core file BFD and decide whether or not to accept the job of
110 reading the core file. */
111
112 int
113 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
114 {
115 int result;
116
117 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
118 return (result);
119 }
120
121 /* Walk through the list of core functions to find a set that can
122 handle the core file open on ABFD. Returns pointer to set that is
123 selected. */
124
125 static struct core_fns *
126 sniff_core_bfd (bfd *abfd)
127 {
128 struct core_fns *cf;
129 struct core_fns *yummy = NULL;
130 int matches = 0;
131
132 /* Don't sniff if we have support for register sets in
133 CORE_GDBARCH. */
134 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
135 return NULL;
136
137 for (cf = core_file_fns; cf != NULL; cf = cf->next)
138 {
139 if (cf->core_sniffer (cf, abfd))
140 {
141 yummy = cf;
142 matches++;
143 }
144 }
145 if (matches > 1)
146 {
147 warning (_("\"%s\": ambiguous core format, %d handlers match"),
148 bfd_get_filename (abfd), matches);
149 }
150 else if (matches == 0)
151 error (_("\"%s\": no core file handler recognizes format"),
152 bfd_get_filename (abfd));
153
154 return (yummy);
155 }
156
157 /* The default is to reject every core file format we see. Either
158 BFD has to recognize it, or we have to provide a function in the
159 core file handler that recognizes it. */
160
161 int
162 default_check_format (bfd *abfd)
163 {
164 return (0);
165 }
166
167 /* Attempt to recognize core file formats that BFD rejects. */
168
169 static int
170 gdb_check_format (bfd *abfd)
171 {
172 struct core_fns *cf;
173
174 for (cf = core_file_fns; cf != NULL; cf = cf->next)
175 {
176 if (cf->check_format (abfd))
177 {
178 return (1);
179 }
180 }
181 return (0);
182 }
183
184 /* Discard all vestiges of any previous core file and mark data and
185 stack spaces as empty. */
186
187 static void
188 core_close (struct target_ops *self)
189 {
190 if (core_bfd)
191 {
192 int pid = ptid_get_pid (inferior_ptid);
193 inferior_ptid = null_ptid; /* Avoid confusion from thread
194 stuff. */
195 if (pid != 0)
196 exit_inferior_silent (pid);
197
198 /* Clear out solib state while the bfd is still open. See
199 comments in clear_solib in solib.c. */
200 clear_solib ();
201
202 if (core_data)
203 {
204 xfree (core_data->sections);
205 xfree (core_data);
206 core_data = NULL;
207 }
208
209 gdb_bfd_unref (core_bfd);
210 core_bfd = NULL;
211 }
212 core_vec = NULL;
213 core_gdbarch = NULL;
214 }
215
216 static void
217 core_close_cleanup (void *ignore)
218 {
219 core_close (NULL);
220 }
221
222 /* Look for sections whose names start with `.reg/' so that we can
223 extract the list of threads in a core file. */
224
225 static void
226 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
227 {
228 ptid_t ptid;
229 int core_tid;
230 int pid, lwpid;
231 asection *reg_sect = (asection *) reg_sect_arg;
232 int fake_pid_p = 0;
233 struct inferior *inf;
234
235 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
236 return;
237
238 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
239
240 pid = bfd_core_file_pid (core_bfd);
241 if (pid == 0)
242 {
243 fake_pid_p = 1;
244 pid = CORELOW_PID;
245 }
246
247 lwpid = core_tid;
248
249 inf = current_inferior ();
250 if (inf->pid == 0)
251 {
252 inferior_appeared (inf, pid);
253 inf->fake_pid_p = fake_pid_p;
254 }
255
256 ptid = ptid_build (pid, lwpid, 0);
257
258 add_thread (ptid);
259
260 /* Warning, Will Robinson, looking at BFD private data! */
261
262 if (reg_sect != NULL
263 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
264 inferior_ptid = ptid; /* Yes, make it current. */
265 }
266
267 /* This routine opens and sets up the core file bfd. */
268
269 static void
270 core_open (const char *arg, int from_tty)
271 {
272 const char *p;
273 int siggy;
274 struct cleanup *old_chain;
275 int scratch_chan;
276 int flags;
277
278 target_preopen (from_tty);
279 if (!arg)
280 {
281 if (core_bfd)
282 error (_("No core file specified. (Use `detach' "
283 "to stop debugging a core file.)"));
284 else
285 error (_("No core file specified."));
286 }
287
288 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
289 if (!IS_ABSOLUTE_PATH (filename.get ()))
290 filename.reset (concat (current_directory, "/",
291 filename.get (), (char *) NULL));
292
293 flags = O_BINARY | O_LARGEFILE;
294 if (write_files)
295 flags |= O_RDWR;
296 else
297 flags |= O_RDONLY;
298 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
299 if (scratch_chan < 0)
300 perror_with_name (filename.get ());
301
302 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
303 write_files ? FOPEN_RUB : FOPEN_RB,
304 scratch_chan));
305 if (temp_bfd == NULL)
306 perror_with_name (filename.get ());
307
308 if (!bfd_check_format (temp_bfd.get (), bfd_core)
309 && !gdb_check_format (temp_bfd.get ()))
310 {
311 /* Do it after the err msg */
312 /* FIXME: should be checking for errors from bfd_close (for one
313 thing, on error it does not free all the storage associated
314 with the bfd). */
315 error (_("\"%s\" is not a core dump: %s"),
316 filename.get (), bfd_errmsg (bfd_get_error ()));
317 }
318
319 /* Looks semi-reasonable. Toss the old core file and work on the
320 new. */
321
322 unpush_target (&core_ops);
323 core_bfd = temp_bfd.release ();
324 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
325
326 core_gdbarch = gdbarch_from_bfd (core_bfd);
327
328 /* Find a suitable core file handler to munch on core_bfd */
329 core_vec = sniff_core_bfd (core_bfd);
330
331 validate_files ();
332
333 core_data = XCNEW (struct target_section_table);
334
335 /* Find the data section */
336 if (build_section_table (core_bfd,
337 &core_data->sections,
338 &core_data->sections_end))
339 error (_("\"%s\": Can't find sections: %s"),
340 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
341
342 /* If we have no exec file, try to set the architecture from the
343 core file. We don't do this unconditionally since an exec file
344 typically contains more information that helps us determine the
345 architecture than a core file. */
346 if (!exec_bfd)
347 set_gdbarch_from_file (core_bfd);
348
349 push_target (&core_ops);
350 discard_cleanups (old_chain);
351
352 /* Do this before acknowledging the inferior, so if
353 post_create_inferior throws (can happen easilly if you're loading
354 a core file with the wrong exec), we aren't left with threads
355 from the previous inferior. */
356 init_thread_list ();
357
358 inferior_ptid = null_ptid;
359
360 /* Need to flush the register cache (and the frame cache) from a
361 previous debug session. If inferior_ptid ends up the same as the
362 last debug session --- e.g., b foo; run; gcore core1; step; gcore
363 core2; core core1; core core2 --- then there's potential for
364 get_current_regcache to return the cached regcache of the
365 previous session, and the frame cache being stale. */
366 registers_changed ();
367
368 /* Build up thread list from BFD sections, and possibly set the
369 current thread to the .reg/NN section matching the .reg
370 section. */
371 bfd_map_over_sections (core_bfd, add_to_thread_list,
372 bfd_get_section_by_name (core_bfd, ".reg"));
373
374 if (ptid_equal (inferior_ptid, null_ptid))
375 {
376 /* Either we found no .reg/NN section, and hence we have a
377 non-threaded core (single-threaded, from gdb's perspective),
378 or for some reason add_to_thread_list couldn't determine
379 which was the "main" thread. The latter case shouldn't
380 usually happen, but we're dealing with input here, which can
381 always be broken in different ways. */
382 struct thread_info *thread = first_thread_of_process (-1);
383
384 if (thread == NULL)
385 {
386 inferior_appeared (current_inferior (), CORELOW_PID);
387 inferior_ptid = pid_to_ptid (CORELOW_PID);
388 add_thread_silent (inferior_ptid);
389 }
390 else
391 switch_to_thread (thread->ptid);
392 }
393
394 post_create_inferior (&core_ops, from_tty);
395
396 /* Now go through the target stack looking for threads since there
397 may be a thread_stratum target loaded on top of target core by
398 now. The layer above should claim threads found in the BFD
399 sections. */
400 TRY
401 {
402 target_update_thread_list ();
403 }
404
405 CATCH (except, RETURN_MASK_ERROR)
406 {
407 exception_print (gdb_stderr, except);
408 }
409 END_CATCH
410
411 p = bfd_core_file_failing_command (core_bfd);
412 if (p)
413 printf_filtered (_("Core was generated by `%s'.\n"), p);
414
415 /* Clearing any previous state of convenience variables. */
416 clear_exit_convenience_vars ();
417
418 siggy = bfd_core_file_failing_signal (core_bfd);
419 if (siggy > 0)
420 {
421 /* If we don't have a CORE_GDBARCH to work with, assume a native
422 core (map gdb_signal from host signals). If we do have
423 CORE_GDBARCH to work with, but no gdb_signal_from_target
424 implementation for that gdbarch, as a fallback measure,
425 assume the host signal mapping. It'll be correct for native
426 cores, but most likely incorrect for cross-cores. */
427 enum gdb_signal sig = (core_gdbarch != NULL
428 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
429 ? gdbarch_gdb_signal_from_target (core_gdbarch,
430 siggy)
431 : gdb_signal_from_host (siggy));
432
433 printf_filtered (_("Program terminated with signal %s, %s.\n"),
434 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
435
436 /* Set the value of the internal variable $_exitsignal,
437 which holds the signal uncaught by the inferior. */
438 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
439 siggy);
440 }
441
442 /* Fetch all registers from core file. */
443 target_fetch_registers (get_current_regcache (), -1);
444
445 /* Now, set up the frame cache, and print the top of stack. */
446 reinit_frame_cache ();
447 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
448
449 /* Current thread should be NUM 1 but the user does not know that.
450 If a program is single threaded gdb in general does not mention
451 anything about threads. That is why the test is >= 2. */
452 if (thread_count () >= 2)
453 {
454 TRY
455 {
456 thread_command (NULL, from_tty);
457 }
458 CATCH (except, RETURN_MASK_ERROR)
459 {
460 exception_print (gdb_stderr, except);
461 }
462 END_CATCH
463 }
464 }
465
466 static void
467 core_detach (struct target_ops *ops, inferior *inf, int from_tty)
468 {
469 unpush_target (ops);
470 reinit_frame_cache ();
471 if (from_tty)
472 printf_filtered (_("No core file now.\n"));
473 }
474
475 /* Try to retrieve registers from a section in core_bfd, and supply
476 them to core_vec->core_read_registers, as the register set numbered
477 WHICH.
478
479 If ptid's lwp member is zero, do the single-threaded
480 thing: look for a section named NAME. If ptid's lwp
481 member is non-zero, do the multi-threaded thing: look for a section
482 named "NAME/LWP", where LWP is the shortest ASCII decimal
483 representation of ptid's lwp member.
484
485 HUMAN_NAME is a human-readable name for the kind of registers the
486 NAME section contains, for use in error messages.
487
488 If REQUIRED is non-zero, print an error if the core file doesn't
489 have a section by the appropriate name. Otherwise, just do
490 nothing. */
491
492 static void
493 get_core_register_section (struct regcache *regcache,
494 const struct regset *regset,
495 const char *name,
496 int min_size,
497 int which,
498 const char *human_name,
499 int required)
500 {
501 struct bfd_section *section;
502 bfd_size_type size;
503 char *contents;
504 bool variable_size_section = (regset != NULL
505 && regset->flags & REGSET_VARIABLE_SIZE);
506
507 thread_section_name section_name (name, regcache->ptid ());
508
509 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
510 if (! section)
511 {
512 if (required)
513 warning (_("Couldn't find %s registers in core file."),
514 human_name);
515 return;
516 }
517
518 size = bfd_section_size (core_bfd, section);
519 if (size < min_size)
520 {
521 warning (_("Section `%s' in core file too small."),
522 section_name.c_str ());
523 return;
524 }
525 if (size != min_size && !variable_size_section)
526 {
527 warning (_("Unexpected size of section `%s' in core file."),
528 section_name.c_str ());
529 }
530
531 contents = (char *) alloca (size);
532 if (! bfd_get_section_contents (core_bfd, section, contents,
533 (file_ptr) 0, size))
534 {
535 warning (_("Couldn't read %s registers from `%s' section in core file."),
536 human_name, section_name.c_str ());
537 return;
538 }
539
540 if (regset != NULL)
541 {
542 regset->supply_regset (regset, regcache, -1, contents, size);
543 return;
544 }
545
546 gdb_assert (core_vec);
547 core_vec->core_read_registers (regcache, contents, size, which,
548 ((CORE_ADDR)
549 bfd_section_vma (core_bfd, section)));
550 }
551
552 /* Callback for get_core_registers that handles a single core file
553 register note section. */
554
555 static void
556 get_core_registers_cb (const char *sect_name, int size,
557 const struct regset *regset,
558 const char *human_name, void *cb_data)
559 {
560 struct regcache *regcache = (struct regcache *) cb_data;
561 int required = 0;
562
563 if (strcmp (sect_name, ".reg") == 0)
564 {
565 required = 1;
566 if (human_name == NULL)
567 human_name = "general-purpose";
568 }
569 else if (strcmp (sect_name, ".reg2") == 0)
570 {
571 if (human_name == NULL)
572 human_name = "floating-point";
573 }
574
575 /* The 'which' parameter is only used when no regset is provided.
576 Thus we just set it to -1. */
577 get_core_register_section (regcache, regset, sect_name,
578 size, -1, human_name, required);
579 }
580
581 /* Get the registers out of a core file. This is the machine-
582 independent part. Fetch_core_registers is the machine-dependent
583 part, typically implemented in the xm-file for each
584 architecture. */
585
586 /* We just get all the registers, so we don't use regno. */
587
588 static void
589 get_core_registers (struct target_ops *ops,
590 struct regcache *regcache, int regno)
591 {
592 int i;
593 struct gdbarch *gdbarch;
594
595 if (!(core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
596 && (core_vec == NULL || core_vec->core_read_registers == NULL))
597 {
598 fprintf_filtered (gdb_stderr,
599 "Can't fetch registers from this type of core file\n");
600 return;
601 }
602
603 gdbarch = regcache->arch ();
604 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
605 gdbarch_iterate_over_regset_sections (gdbarch,
606 get_core_registers_cb,
607 (void *) regcache, NULL);
608 else
609 {
610 get_core_register_section (regcache, NULL,
611 ".reg", 0, 0, "general-purpose", 1);
612 get_core_register_section (regcache, NULL,
613 ".reg2", 0, 2, "floating-point", 0);
614 }
615
616 /* Mark all registers not found in the core as unavailable. */
617 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
618 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
619 regcache_raw_supply (regcache, i, NULL);
620 }
621
622 static void
623 core_files_info (struct target_ops *t)
624 {
625 print_section_info (core_data, core_bfd);
626 }
627 \f
628 struct spuid_list
629 {
630 gdb_byte *buf;
631 ULONGEST offset;
632 LONGEST len;
633 ULONGEST pos;
634 ULONGEST written;
635 };
636
637 static void
638 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
639 {
640 struct spuid_list *list = (struct spuid_list *) list_p;
641 enum bfd_endian byte_order
642 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
643 int fd, pos = 0;
644
645 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
646 if (pos == 0)
647 return;
648
649 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
650 {
651 store_unsigned_integer (list->buf + list->pos - list->offset,
652 4, byte_order, fd);
653 list->written += 4;
654 }
655 list->pos += 4;
656 }
657
658 static enum target_xfer_status
659 core_xfer_partial (struct target_ops *ops, enum target_object object,
660 const char *annex, gdb_byte *readbuf,
661 const gdb_byte *writebuf, ULONGEST offset,
662 ULONGEST len, ULONGEST *xfered_len)
663 {
664 switch (object)
665 {
666 case TARGET_OBJECT_MEMORY:
667 return section_table_xfer_memory_partial (readbuf, writebuf,
668 offset, len, xfered_len,
669 core_data->sections,
670 core_data->sections_end,
671 NULL);
672
673 case TARGET_OBJECT_AUXV:
674 if (readbuf)
675 {
676 /* When the aux vector is stored in core file, BFD
677 represents this with a fake section called ".auxv". */
678
679 struct bfd_section *section;
680 bfd_size_type size;
681
682 section = bfd_get_section_by_name (core_bfd, ".auxv");
683 if (section == NULL)
684 return TARGET_XFER_E_IO;
685
686 size = bfd_section_size (core_bfd, section);
687 if (offset >= size)
688 return TARGET_XFER_EOF;
689 size -= offset;
690 if (size > len)
691 size = len;
692
693 if (size == 0)
694 return TARGET_XFER_EOF;
695 if (!bfd_get_section_contents (core_bfd, section, readbuf,
696 (file_ptr) offset, size))
697 {
698 warning (_("Couldn't read NT_AUXV note in core file."));
699 return TARGET_XFER_E_IO;
700 }
701
702 *xfered_len = (ULONGEST) size;
703 return TARGET_XFER_OK;
704 }
705 return TARGET_XFER_E_IO;
706
707 case TARGET_OBJECT_WCOOKIE:
708 if (readbuf)
709 {
710 /* When the StackGhost cookie is stored in core file, BFD
711 represents this with a fake section called
712 ".wcookie". */
713
714 struct bfd_section *section;
715 bfd_size_type size;
716
717 section = bfd_get_section_by_name (core_bfd, ".wcookie");
718 if (section == NULL)
719 return TARGET_XFER_E_IO;
720
721 size = bfd_section_size (core_bfd, section);
722 if (offset >= size)
723 return TARGET_XFER_EOF;
724 size -= offset;
725 if (size > len)
726 size = len;
727
728 if (size == 0)
729 return TARGET_XFER_EOF;
730 if (!bfd_get_section_contents (core_bfd, section, readbuf,
731 (file_ptr) offset, size))
732 {
733 warning (_("Couldn't read StackGhost cookie in core file."));
734 return TARGET_XFER_E_IO;
735 }
736
737 *xfered_len = (ULONGEST) size;
738 return TARGET_XFER_OK;
739
740 }
741 return TARGET_XFER_E_IO;
742
743 case TARGET_OBJECT_LIBRARIES:
744 if (core_gdbarch
745 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
746 {
747 if (writebuf)
748 return TARGET_XFER_E_IO;
749 else
750 {
751 *xfered_len = gdbarch_core_xfer_shared_libraries (core_gdbarch,
752 readbuf,
753 offset, len);
754
755 if (*xfered_len == 0)
756 return TARGET_XFER_EOF;
757 else
758 return TARGET_XFER_OK;
759 }
760 }
761 /* FALL THROUGH */
762
763 case TARGET_OBJECT_LIBRARIES_AIX:
764 if (core_gdbarch
765 && gdbarch_core_xfer_shared_libraries_aix_p (core_gdbarch))
766 {
767 if (writebuf)
768 return TARGET_XFER_E_IO;
769 else
770 {
771 *xfered_len
772 = gdbarch_core_xfer_shared_libraries_aix (core_gdbarch,
773 readbuf, offset,
774 len);
775
776 if (*xfered_len == 0)
777 return TARGET_XFER_EOF;
778 else
779 return TARGET_XFER_OK;
780 }
781 }
782 /* FALL THROUGH */
783
784 case TARGET_OBJECT_SPU:
785 if (readbuf && annex)
786 {
787 /* When the SPU contexts are stored in a core file, BFD
788 represents this with a fake section called
789 "SPU/<annex>". */
790
791 struct bfd_section *section;
792 bfd_size_type size;
793 char sectionstr[100];
794
795 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
796
797 section = bfd_get_section_by_name (core_bfd, sectionstr);
798 if (section == NULL)
799 return TARGET_XFER_E_IO;
800
801 size = bfd_section_size (core_bfd, section);
802 if (offset >= size)
803 return TARGET_XFER_EOF;
804 size -= offset;
805 if (size > len)
806 size = len;
807
808 if (size == 0)
809 return TARGET_XFER_EOF;
810 if (!bfd_get_section_contents (core_bfd, section, readbuf,
811 (file_ptr) offset, size))
812 {
813 warning (_("Couldn't read SPU section in core file."));
814 return TARGET_XFER_E_IO;
815 }
816
817 *xfered_len = (ULONGEST) size;
818 return TARGET_XFER_OK;
819 }
820 else if (readbuf)
821 {
822 /* NULL annex requests list of all present spuids. */
823 struct spuid_list list;
824
825 list.buf = readbuf;
826 list.offset = offset;
827 list.len = len;
828 list.pos = 0;
829 list.written = 0;
830 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
831
832 if (list.written == 0)
833 return TARGET_XFER_EOF;
834 else
835 {
836 *xfered_len = (ULONGEST) list.written;
837 return TARGET_XFER_OK;
838 }
839 }
840 return TARGET_XFER_E_IO;
841
842 case TARGET_OBJECT_SIGNAL_INFO:
843 if (readbuf)
844 {
845 if (core_gdbarch
846 && gdbarch_core_xfer_siginfo_p (core_gdbarch))
847 {
848 LONGEST l = gdbarch_core_xfer_siginfo (core_gdbarch, readbuf,
849 offset, len);
850
851 if (l >= 0)
852 {
853 *xfered_len = l;
854 if (l == 0)
855 return TARGET_XFER_EOF;
856 else
857 return TARGET_XFER_OK;
858 }
859 }
860 }
861 return TARGET_XFER_E_IO;
862
863 default:
864 return ops->beneath->to_xfer_partial (ops->beneath, object,
865 annex, readbuf,
866 writebuf, offset, len,
867 xfered_len);
868 }
869 }
870
871 \f
872 /* If mourn is being called in all the right places, this could be say
873 `gdb internal error' (since generic_mourn calls
874 breakpoint_init_inferior). */
875
876 static int
877 ignore (struct target_ops *ops, struct gdbarch *gdbarch,
878 struct bp_target_info *bp_tgt)
879 {
880 return 0;
881 }
882
883 /* Implement the to_remove_breakpoint method. */
884
885 static int
886 core_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
887 struct bp_target_info *bp_tgt,
888 enum remove_bp_reason reason)
889 {
890 return 0;
891 }
892
893
894 /* Okay, let's be honest: threads gleaned from a core file aren't
895 exactly lively, are they? On the other hand, if we don't claim
896 that each & every one is alive, then we don't get any of them
897 to appear in an "info thread" command, which is quite a useful
898 behaviour.
899 */
900 static int
901 core_thread_alive (struct target_ops *ops, ptid_t ptid)
902 {
903 return 1;
904 }
905
906 /* Ask the current architecture what it knows about this core file.
907 That will be used, in turn, to pick a better architecture. This
908 wrapper could be avoided if targets got a chance to specialize
909 core_ops. */
910
911 static const struct target_desc *
912 core_read_description (struct target_ops *target)
913 {
914 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
915 {
916 const struct target_desc *result;
917
918 result = gdbarch_core_read_description (core_gdbarch,
919 target, core_bfd);
920 if (result != NULL)
921 return result;
922 }
923
924 return target->beneath->to_read_description (target->beneath);
925 }
926
927 static const char *
928 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
929 {
930 static char buf[64];
931 struct inferior *inf;
932 int pid;
933
934 /* The preferred way is to have a gdbarch/OS specific
935 implementation. */
936 if (core_gdbarch
937 && gdbarch_core_pid_to_str_p (core_gdbarch))
938 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
939
940 /* Otherwise, if we don't have one, we'll just fallback to
941 "process", with normal_pid_to_str. */
942
943 /* Try the LWPID field first. */
944 pid = ptid_get_lwp (ptid);
945 if (pid != 0)
946 return normal_pid_to_str (pid_to_ptid (pid));
947
948 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
949 only if it isn't a fake PID. */
950 inf = find_inferior_ptid (ptid);
951 if (inf != NULL && !inf->fake_pid_p)
952 return normal_pid_to_str (ptid);
953
954 /* No luck. We simply don't have a valid PID to print. */
955 xsnprintf (buf, sizeof buf, "<main task>");
956 return buf;
957 }
958
959 static const char *
960 core_thread_name (struct target_ops *self, struct thread_info *thr)
961 {
962 if (core_gdbarch
963 && gdbarch_core_thread_name_p (core_gdbarch))
964 return gdbarch_core_thread_name (core_gdbarch, thr);
965 return NULL;
966 }
967
968 static int
969 core_has_memory (struct target_ops *ops)
970 {
971 return (core_bfd != NULL);
972 }
973
974 static int
975 core_has_stack (struct target_ops *ops)
976 {
977 return (core_bfd != NULL);
978 }
979
980 static int
981 core_has_registers (struct target_ops *ops)
982 {
983 return (core_bfd != NULL);
984 }
985
986 /* Implement the to_info_proc method. */
987
988 static void
989 core_info_proc (struct target_ops *ops, const char *args,
990 enum info_proc_what request)
991 {
992 struct gdbarch *gdbarch = get_current_arch ();
993
994 /* Since this is the core file target, call the 'core_info_proc'
995 method on gdbarch, not 'info_proc'. */
996 if (gdbarch_core_info_proc_p (gdbarch))
997 gdbarch_core_info_proc (gdbarch, args, request);
998 }
999
1000 /* Fill in core_ops with its defined operations and properties. */
1001
1002 static void
1003 init_core_ops (void)
1004 {
1005 core_ops.to_shortname = "core";
1006 core_ops.to_longname = "Local core dump file";
1007 core_ops.to_doc =
1008 "Use a core file as a target. Specify the filename of the core file.";
1009 core_ops.to_open = core_open;
1010 core_ops.to_close = core_close;
1011 core_ops.to_detach = core_detach;
1012 core_ops.to_fetch_registers = get_core_registers;
1013 core_ops.to_xfer_partial = core_xfer_partial;
1014 core_ops.to_files_info = core_files_info;
1015 core_ops.to_insert_breakpoint = ignore;
1016 core_ops.to_remove_breakpoint = core_remove_breakpoint;
1017 core_ops.to_thread_alive = core_thread_alive;
1018 core_ops.to_read_description = core_read_description;
1019 core_ops.to_pid_to_str = core_pid_to_str;
1020 core_ops.to_thread_name = core_thread_name;
1021 core_ops.to_stratum = process_stratum;
1022 core_ops.to_has_memory = core_has_memory;
1023 core_ops.to_has_stack = core_has_stack;
1024 core_ops.to_has_registers = core_has_registers;
1025 core_ops.to_info_proc = core_info_proc;
1026 core_ops.to_magic = OPS_MAGIC;
1027
1028 if (core_target)
1029 internal_error (__FILE__, __LINE__,
1030 _("init_core_ops: core target already exists (\"%s\")."),
1031 core_target->to_longname);
1032 core_target = &core_ops;
1033 }
1034
1035 void
1036 _initialize_corelow (void)
1037 {
1038 init_core_ops ();
1039
1040 add_target_with_completer (&core_ops, filename_completer);
1041 }