]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
* gdbarch.sh (gcore_bfd_target): New gdbarch callback.
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include <errno.h>
26 #include <signal.h>
27 #include <fcntl.h>
28 #ifdef HAVE_SYS_FILE_H
29 #include <sys/file.h> /* needed for F_OK and friends */
30 #endif
31 #include "frame.h" /* required by inferior.h */
32 #include "inferior.h"
33 #include "symtab.h"
34 #include "command.h"
35 #include "bfd.h"
36 #include "target.h"
37 #include "gdbcore.h"
38 #include "gdbthread.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "exec.h"
43 #include "readline/readline.h"
44 #include "gdb_assert.h"
45 #include "exceptions.h"
46 #include "solib.h"
47 #include "filenames.h"
48
49
50 #ifndef O_LARGEFILE
51 #define O_LARGEFILE 0
52 #endif
53
54 /* List of all available core_fns. On gdb startup, each core file
55 register reader calls deprecated_add_core_fns() to register
56 information on each core format it is prepared to read. */
57
58 static struct core_fns *core_file_fns = NULL;
59
60 /* The core_fns for a core file handler that is prepared to read the core
61 file currently open on core_bfd. */
62
63 static struct core_fns *core_vec = NULL;
64
65 /* FIXME: kettenis/20031023: Eventually this variable should
66 disappear. */
67
68 struct gdbarch *core_gdbarch = NULL;
69
70 /* Per-core data. Currently, only the section table. Note that these
71 target sections are *not* mapped in the current address spaces' set
72 of target sections --- those should come only from pure executable
73 or shared library bfds. The core bfd sections are an
74 implementation detail of the core target, just like ptrace is for
75 unix child targets. */
76 static struct target_section_table *core_data;
77
78 static void core_files_info (struct target_ops *);
79
80 static struct core_fns *sniff_core_bfd (bfd *);
81
82 static int gdb_check_format (bfd *);
83
84 static void core_open (char *, int);
85
86 static void core_detach (struct target_ops *ops, char *, int);
87
88 static void core_close (int);
89
90 static void core_close_cleanup (void *ignore);
91
92 static void add_to_thread_list (bfd *, asection *, void *);
93
94 static void init_core_ops (void);
95
96 void _initialize_corelow (void);
97
98 struct target_ops core_ops;
99
100 /* An arbitrary identifier for the core inferior. */
101 #define CORELOW_PID 1
102
103 /* Link a new core_fns into the global core_file_fns list. Called on gdb
104 startup by the _initialize routine in each core file register reader, to
105 register information about each format the the reader is prepared to
106 handle. */
107
108 void
109 deprecated_add_core_fns (struct core_fns *cf)
110 {
111 cf->next = core_file_fns;
112 core_file_fns = cf;
113 }
114
115 /* The default function that core file handlers can use to examine a
116 core file BFD and decide whether or not to accept the job of
117 reading the core file. */
118
119 int
120 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
121 {
122 int result;
123
124 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
125 return (result);
126 }
127
128 /* Walk through the list of core functions to find a set that can
129 handle the core file open on ABFD. Default to the first one in the
130 list if nothing matches. Returns pointer to set that is
131 selected. */
132
133 static struct core_fns *
134 sniff_core_bfd (bfd *abfd)
135 {
136 struct core_fns *cf;
137 struct core_fns *yummy = NULL;
138 int matches = 0;;
139
140 /* Don't sniff if we have support for register sets in CORE_GDBARCH. */
141 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
142 return NULL;
143
144 for (cf = core_file_fns; cf != NULL; cf = cf->next)
145 {
146 if (cf->core_sniffer (cf, abfd))
147 {
148 yummy = cf;
149 matches++;
150 }
151 }
152 if (matches > 1)
153 {
154 warning (_("\"%s\": ambiguous core format, %d handlers match"),
155 bfd_get_filename (abfd), matches);
156 }
157 else if (matches == 0)
158 {
159 warning (_("\"%s\": no core file handler recognizes format, using default"),
160 bfd_get_filename (abfd));
161 }
162 if (yummy == NULL)
163 {
164 yummy = core_file_fns;
165 }
166 return (yummy);
167 }
168
169 /* The default is to reject every core file format we see. Either
170 BFD has to recognize it, or we have to provide a function in the
171 core file handler that recognizes it. */
172
173 int
174 default_check_format (bfd *abfd)
175 {
176 return (0);
177 }
178
179 /* Attempt to recognize core file formats that BFD rejects. */
180
181 static int
182 gdb_check_format (bfd *abfd)
183 {
184 struct core_fns *cf;
185
186 for (cf = core_file_fns; cf != NULL; cf = cf->next)
187 {
188 if (cf->check_format (abfd))
189 {
190 return (1);
191 }
192 }
193 return (0);
194 }
195
196 /* Discard all vestiges of any previous core file and mark data and stack
197 spaces as empty. */
198
199 static void
200 core_close (int quitting)
201 {
202 char *name;
203
204 if (core_bfd)
205 {
206 int pid = ptid_get_pid (inferior_ptid);
207 inferior_ptid = null_ptid; /* Avoid confusion from thread stuff */
208 delete_inferior_silent (pid);
209
210 /* Clear out solib state while the bfd is still open. See
211 comments in clear_solib in solib.c. */
212 clear_solib ();
213
214 xfree (core_data->sections);
215 xfree (core_data);
216 core_data = NULL;
217
218 name = bfd_get_filename (core_bfd);
219 if (!bfd_close (core_bfd))
220 warning (_("cannot close \"%s\": %s"),
221 name, bfd_errmsg (bfd_get_error ()));
222 xfree (name);
223 core_bfd = NULL;
224 }
225 core_vec = NULL;
226 core_gdbarch = NULL;
227 }
228
229 static void
230 core_close_cleanup (void *ignore)
231 {
232 core_close (0/*ignored*/);
233 }
234
235 /* Look for sections whose names start with `.reg/' so that we can extract the
236 list of threads in a core file. */
237
238 static void
239 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
240 {
241 ptid_t ptid;
242 int thread_id;
243 asection *reg_sect = (asection *) reg_sect_arg;
244
245 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
246 return;
247
248 thread_id = atoi (bfd_section_name (abfd, asect) + 5);
249
250 if (core_gdbarch
251 && gdbarch_core_reg_section_encodes_pid (core_gdbarch))
252 {
253 uint32_t merged_pid = thread_id;
254 ptid = ptid_build (merged_pid & 0xffff,
255 merged_pid >> 16, 0);
256 }
257 else
258 ptid = ptid_build (ptid_get_pid (inferior_ptid), thread_id, 0);
259
260 if (ptid_get_lwp (inferior_ptid) == 0)
261 /* The main thread has already been added before getting here, and
262 this is the first time we hear about a thread id. Assume this
263 is the main thread. */
264 thread_change_ptid (inferior_ptid, ptid);
265 else
266 /* Nope, really a new thread. */
267 add_thread (ptid);
268
269 /* Warning, Will Robinson, looking at BFD private data! */
270
271 if (reg_sect != NULL
272 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
273 inferior_ptid = ptid; /* Yes, make it current */
274 }
275
276 /* This routine opens and sets up the core file bfd. */
277
278 static void
279 core_open (char *filename, int from_tty)
280 {
281 const char *p;
282 int siggy;
283 struct cleanup *old_chain;
284 char *temp;
285 bfd *temp_bfd;
286 int scratch_chan;
287 int flags;
288 int corelow_pid = CORELOW_PID;
289
290 target_preopen (from_tty);
291 if (!filename)
292 {
293 if (core_bfd)
294 error (_("No core file specified. (Use `detach' to stop debugging a core file.)"));
295 else
296 error (_("No core file specified."));
297 }
298
299 filename = tilde_expand (filename);
300 if (!IS_ABSOLUTE_PATH(filename))
301 {
302 temp = concat (current_directory, "/", filename, (char *)NULL);
303 xfree (filename);
304 filename = temp;
305 }
306
307 old_chain = make_cleanup (xfree, filename);
308
309 flags = O_BINARY | O_LARGEFILE;
310 if (write_files)
311 flags |= O_RDWR;
312 else
313 flags |= O_RDONLY;
314 scratch_chan = open (filename, flags, 0);
315 if (scratch_chan < 0)
316 perror_with_name (filename);
317
318 temp_bfd = bfd_fopen (filename, gnutarget,
319 write_files ? FOPEN_RUB : FOPEN_RB,
320 scratch_chan);
321 if (temp_bfd == NULL)
322 perror_with_name (filename);
323
324 if (!bfd_check_format (temp_bfd, bfd_core) &&
325 !gdb_check_format (temp_bfd))
326 {
327 /* Do it after the err msg */
328 /* FIXME: should be checking for errors from bfd_close (for one thing,
329 on error it does not free all the storage associated with the
330 bfd). */
331 make_cleanup_bfd_close (temp_bfd);
332 error (_("\"%s\" is not a core dump: %s"),
333 filename, bfd_errmsg (bfd_get_error ()));
334 }
335
336 /* Looks semi-reasonable. Toss the old core file and work on the new. */
337
338 discard_cleanups (old_chain); /* Don't free filename any more */
339 unpush_target (&core_ops);
340 core_bfd = temp_bfd;
341 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
342
343 /* FIXME: kettenis/20031023: This is very dangerous. The
344 CORE_GDBARCH that results from this call may very well be
345 different from CURRENT_GDBARCH. However, its methods may only
346 work if it is selected as the current architecture, because they
347 rely on swapped data (see gdbarch.c). We should get rid of that
348 swapped data. */
349 core_gdbarch = gdbarch_from_bfd (core_bfd);
350
351 /* Find a suitable core file handler to munch on core_bfd */
352 core_vec = sniff_core_bfd (core_bfd);
353
354 validate_files ();
355
356 core_data = XZALLOC (struct target_section_table);
357
358 /* Find the data section */
359 if (build_section_table (core_bfd,
360 &core_data->sections, &core_data->sections_end))
361 error (_("\"%s\": Can't find sections: %s"),
362 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
363
364 /* If we have no exec file, try to set the architecture from the
365 core file. We don't do this unconditionally since an exec file
366 typically contains more information that helps us determine the
367 architecture than a core file. */
368 if (!exec_bfd)
369 set_gdbarch_from_file (core_bfd);
370
371 push_target (&core_ops);
372 discard_cleanups (old_chain);
373
374 add_inferior_silent (corelow_pid);
375
376 /* Do this before acknowledging the inferior, so if
377 post_create_inferior throws (can happen easilly if you're loading
378 a core file with the wrong exec), we aren't left with threads
379 from the previous inferior. */
380 init_thread_list ();
381
382 /* Set INFERIOR_PTID early, so an upper layer can rely on it being
383 set while in the target_find_new_threads call below. */
384 inferior_ptid = pid_to_ptid (corelow_pid);
385
386 /* Assume ST --- Add a main task. We'll later detect when we go
387 from ST to MT. */
388 add_thread_silent (inferior_ptid);
389
390 /* Need to flush the register cache (and the frame cache) from a
391 previous debug session. If inferior_ptid ends up the same as the
392 last debug session --- e.g., b foo; run; gcore core1; step; gcore
393 core2; core core1; core core2 --- then there's potential for
394 get_current_regcache to return the cached regcache of the
395 previous session, and the frame cache being stale. */
396 registers_changed ();
397
398 /* Build up thread list from BFD sections, and possibly set the
399 current thread to the .reg/NN section matching the .reg
400 section. */
401 bfd_map_over_sections (core_bfd, add_to_thread_list,
402 bfd_get_section_by_name (core_bfd, ".reg"));
403
404 post_create_inferior (&core_ops, from_tty);
405
406 /* Now go through the target stack looking for threads since there
407 may be a thread_stratum target loaded on top of target core by
408 now. The layer above should claim threads found in the BFD
409 sections. */
410 target_find_new_threads ();
411
412 p = bfd_core_file_failing_command (core_bfd);
413 if (p)
414 printf_filtered (_("Core was generated by `%s'.\n"), p);
415
416 siggy = bfd_core_file_failing_signal (core_bfd);
417 if (siggy > 0)
418 /* NOTE: target_signal_from_host() converts a target signal value
419 into gdb's internal signal value. Unfortunately gdb's internal
420 value is called ``target_signal'' and this function got the
421 name ..._from_host(). */
422 printf_filtered (_("Program terminated with signal %d, %s.\n"), siggy,
423 target_signal_to_string (
424 (core_gdbarch != NULL) ?
425 gdbarch_target_signal_from_host (core_gdbarch, siggy)
426 : siggy));
427
428 /* Fetch all registers from core file. */
429 target_fetch_registers (get_current_regcache (), -1);
430
431 /* Now, set up the frame cache, and print the top of stack. */
432 reinit_frame_cache ();
433 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
434 }
435
436 static void
437 core_detach (struct target_ops *ops, char *args, int from_tty)
438 {
439 if (args)
440 error (_("Too many arguments"));
441 unpush_target (ops);
442 reinit_frame_cache ();
443 if (from_tty)
444 printf_filtered (_("No core file now.\n"));
445 }
446
447 #ifdef DEPRECATED_IBM6000_TARGET
448
449 /* Resize the core memory's section table, by NUM_ADDED. Returns a
450 pointer into the first new slot. This will not be necessary when
451 the rs6000 target is converted to use the standard solib
452 framework. */
453
454 struct target_section *
455 deprecated_core_resize_section_table (int num_added)
456 {
457 int old_count;
458
459 old_count = resize_section_table (core_data, num_added);
460 return core_data->sections + old_count;
461 }
462
463 #endif
464
465 /* Try to retrieve registers from a section in core_bfd, and supply
466 them to core_vec->core_read_registers, as the register set numbered
467 WHICH.
468
469 If inferior_ptid's lwp member is zero, do the single-threaded
470 thing: look for a section named NAME. If inferior_ptid's lwp
471 member is non-zero, do the multi-threaded thing: look for a section
472 named "NAME/LWP", where LWP is the shortest ASCII decimal
473 representation of inferior_ptid's lwp member.
474
475 HUMAN_NAME is a human-readable name for the kind of registers the
476 NAME section contains, for use in error messages.
477
478 If REQUIRED is non-zero, print an error if the core file doesn't
479 have a section by the appropriate name. Otherwise, just do nothing. */
480
481 static void
482 get_core_register_section (struct regcache *regcache,
483 char *name,
484 int which,
485 char *human_name,
486 int required)
487 {
488 static char *section_name = NULL;
489 struct bfd_section *section;
490 bfd_size_type size;
491 char *contents;
492
493 xfree (section_name);
494
495 if (core_gdbarch
496 && gdbarch_core_reg_section_encodes_pid (core_gdbarch))
497 {
498 uint32_t merged_pid;
499
500 merged_pid = ptid_get_lwp (inferior_ptid);
501 merged_pid = merged_pid << 16 | ptid_get_pid (inferior_ptid);
502
503 section_name = xstrprintf ("%s/%s", name, plongest (merged_pid));
504 }
505 else if (ptid_get_lwp (inferior_ptid))
506 section_name = xstrprintf ("%s/%ld", name, ptid_get_lwp (inferior_ptid));
507 else
508 section_name = xstrdup (name);
509
510 section = bfd_get_section_by_name (core_bfd, section_name);
511 if (! section)
512 {
513 if (required)
514 warning (_("Couldn't find %s registers in core file."), human_name);
515 return;
516 }
517
518 size = bfd_section_size (core_bfd, section);
519 contents = alloca (size);
520 if (! bfd_get_section_contents (core_bfd, section, contents,
521 (file_ptr) 0, size))
522 {
523 warning (_("Couldn't read %s registers from `%s' section in core file."),
524 human_name, name);
525 return;
526 }
527
528 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
529 {
530 const struct regset *regset;
531
532 regset = gdbarch_regset_from_core_section (core_gdbarch, name, size);
533 if (regset == NULL)
534 {
535 if (required)
536 warning (_("Couldn't recognize %s registers in core file."),
537 human_name);
538 return;
539 }
540
541 regset->supply_regset (regset, regcache, -1, contents, size);
542 return;
543 }
544
545 gdb_assert (core_vec);
546 core_vec->core_read_registers (regcache, contents, size, which,
547 ((CORE_ADDR)
548 bfd_section_vma (core_bfd, section)));
549 }
550
551
552 /* Get the registers out of a core file. This is the machine-
553 independent part. Fetch_core_registers is the machine-dependent
554 part, typically implemented in the xm-file for each architecture. */
555
556 /* We just get all the registers, so we don't use regno. */
557
558 static void
559 get_core_registers (struct target_ops *ops,
560 struct regcache *regcache, int regno)
561 {
562 int i;
563
564 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
565 && (core_vec == NULL || core_vec->core_read_registers == NULL))
566 {
567 fprintf_filtered (gdb_stderr,
568 "Can't fetch registers from this type of core file\n");
569 return;
570 }
571
572 get_core_register_section (regcache,
573 ".reg", 0, "general-purpose", 1);
574 get_core_register_section (regcache,
575 ".reg2", 2, "floating-point", 0);
576 get_core_register_section (regcache,
577 ".reg-xfp", 3, "extended floating-point", 0);
578 get_core_register_section (regcache,
579 ".reg-ppc-vmx", 3, "ppc Altivec", 0);
580 get_core_register_section (regcache,
581 ".reg-ppc-vsx", 4, "POWER7 VSX", 0);
582
583 /* Supply dummy value for all registers not found in the core. */
584 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
585 if (!regcache_valid_p (regcache, i))
586 regcache_raw_supply (regcache, i, NULL);
587 }
588
589 static void
590 core_files_info (struct target_ops *t)
591 {
592 print_section_info (core_data, core_bfd);
593 }
594 \f
595 static LONGEST
596 core_xfer_partial (struct target_ops *ops, enum target_object object,
597 const char *annex, gdb_byte *readbuf,
598 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
599 {
600 switch (object)
601 {
602 case TARGET_OBJECT_MEMORY:
603 return section_table_xfer_memory_partial (readbuf, writebuf,
604 offset, len,
605 core_data->sections,
606 core_data->sections_end,
607 NULL);
608
609 case TARGET_OBJECT_AUXV:
610 if (readbuf)
611 {
612 /* When the aux vector is stored in core file, BFD
613 represents this with a fake section called ".auxv". */
614
615 struct bfd_section *section;
616 bfd_size_type size;
617 char *contents;
618
619 section = bfd_get_section_by_name (core_bfd, ".auxv");
620 if (section == NULL)
621 return -1;
622
623 size = bfd_section_size (core_bfd, section);
624 if (offset >= size)
625 return 0;
626 size -= offset;
627 if (size > len)
628 size = len;
629 if (size > 0
630 && !bfd_get_section_contents (core_bfd, section, readbuf,
631 (file_ptr) offset, size))
632 {
633 warning (_("Couldn't read NT_AUXV note in core file."));
634 return -1;
635 }
636
637 return size;
638 }
639 return -1;
640
641 case TARGET_OBJECT_WCOOKIE:
642 if (readbuf)
643 {
644 /* When the StackGhost cookie is stored in core file, BFD
645 represents this with a fake section called ".wcookie". */
646
647 struct bfd_section *section;
648 bfd_size_type size;
649 char *contents;
650
651 section = bfd_get_section_by_name (core_bfd, ".wcookie");
652 if (section == NULL)
653 return -1;
654
655 size = bfd_section_size (core_bfd, section);
656 if (offset >= size)
657 return 0;
658 size -= offset;
659 if (size > len)
660 size = len;
661 if (size > 0
662 && !bfd_get_section_contents (core_bfd, section, readbuf,
663 (file_ptr) offset, size))
664 {
665 warning (_("Couldn't read StackGhost cookie in core file."));
666 return -1;
667 }
668
669 return size;
670 }
671 return -1;
672
673 case TARGET_OBJECT_LIBRARIES:
674 if (core_gdbarch
675 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
676 {
677 if (writebuf)
678 return -1;
679 return
680 gdbarch_core_xfer_shared_libraries (core_gdbarch,
681 readbuf, offset, len);
682 }
683 /* FALL THROUGH */
684
685 default:
686 if (ops->beneath != NULL)
687 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
688 readbuf, writebuf, offset, len);
689 return -1;
690 }
691 }
692
693 \f
694 /* If mourn is being called in all the right places, this could be say
695 `gdb internal error' (since generic_mourn calls breakpoint_init_inferior). */
696
697 static int
698 ignore (struct bp_target_info *bp_tgt)
699 {
700 return 0;
701 }
702
703
704 /* Okay, let's be honest: threads gleaned from a core file aren't
705 exactly lively, are they? On the other hand, if we don't claim
706 that each & every one is alive, then we don't get any of them
707 to appear in an "info thread" command, which is quite a useful
708 behaviour.
709 */
710 static int
711 core_thread_alive (struct target_ops *ops, ptid_t ptid)
712 {
713 return 1;
714 }
715
716 /* Ask the current architecture what it knows about this core file.
717 That will be used, in turn, to pick a better architecture. This
718 wrapper could be avoided if targets got a chance to specialize
719 core_ops. */
720
721 static const struct target_desc *
722 core_read_description (struct target_ops *target)
723 {
724 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
725 return gdbarch_core_read_description (core_gdbarch, target, core_bfd);
726
727 return NULL;
728 }
729
730 static char *
731 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
732 {
733 static char buf[64];
734
735 if (core_gdbarch
736 && gdbarch_core_pid_to_str_p (core_gdbarch))
737 {
738 char *ret = gdbarch_core_pid_to_str (core_gdbarch, ptid);
739 if (ret != NULL)
740 return ret;
741 }
742
743 if (ptid_get_lwp (ptid) == 0)
744 xsnprintf (buf, sizeof buf, "<main task>");
745 else
746 xsnprintf (buf, sizeof buf, "Thread %ld", ptid_get_lwp (ptid));
747
748 return buf;
749 }
750
751 static int
752 core_has_memory (struct target_ops *ops)
753 {
754 return (core_bfd != NULL);
755 }
756
757 static int
758 core_has_stack (struct target_ops *ops)
759 {
760 return (core_bfd != NULL);
761 }
762
763 static int
764 core_has_registers (struct target_ops *ops)
765 {
766 return (core_bfd != NULL);
767 }
768
769 /* Fill in core_ops with its defined operations and properties. */
770
771 static void
772 init_core_ops (void)
773 {
774 core_ops.to_shortname = "core";
775 core_ops.to_longname = "Local core dump file";
776 core_ops.to_doc =
777 "Use a core file as a target. Specify the filename of the core file.";
778 core_ops.to_open = core_open;
779 core_ops.to_close = core_close;
780 core_ops.to_attach = find_default_attach;
781 core_ops.to_detach = core_detach;
782 core_ops.to_fetch_registers = get_core_registers;
783 core_ops.to_xfer_partial = core_xfer_partial;
784 core_ops.to_files_info = core_files_info;
785 core_ops.to_insert_breakpoint = ignore;
786 core_ops.to_remove_breakpoint = ignore;
787 core_ops.to_create_inferior = find_default_create_inferior;
788 core_ops.to_thread_alive = core_thread_alive;
789 core_ops.to_read_description = core_read_description;
790 core_ops.to_pid_to_str = core_pid_to_str;
791 core_ops.to_stratum = core_stratum;
792 core_ops.to_has_memory = core_has_memory;
793 core_ops.to_has_stack = core_has_stack;
794 core_ops.to_has_registers = core_has_registers;
795 core_ops.to_magic = OPS_MAGIC;
796 }
797
798 void
799 _initialize_corelow (void)
800 {
801 init_core_ops ();
802
803 add_target (&core_ops);
804 }