]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
Remove ptid_get_lwp
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #ifdef HAVE_SYS_FILE_H
25 #include <sys/file.h> /* needed for F_OK and friends */
26 #endif
27 #include "frame.h" /* required by inferior.h */
28 #include "inferior.h"
29 #include "infrun.h"
30 #include "symtab.h"
31 #include "command.h"
32 #include "bfd.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdbthread.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "exec.h"
40 #include "readline/readline.h"
41 #include "solib.h"
42 #include "filenames.h"
43 #include "progspace.h"
44 #include "objfiles.h"
45 #include "gdb_bfd.h"
46 #include "completer.h"
47 #include "filestuff.h"
48
49 #ifndef O_LARGEFILE
50 #define O_LARGEFILE 0
51 #endif
52
53 static core_fns *sniff_core_bfd (gdbarch *core_gdbarch,
54 bfd *abfd);
55
56 /* The core file target. */
57
58 static const target_info core_target_info = {
59 "core",
60 N_("Local core dump file"),
61 N_("Use a core file as a target. Specify the filename of the core file.")
62 };
63
64 class core_target final : public target_ops
65 {
66 public:
67 core_target ();
68 ~core_target () override;
69
70 const target_info &info () const override
71 { return core_target_info; }
72
73 void close () override;
74 void detach (inferior *, int) override;
75 void fetch_registers (struct regcache *, int) override;
76
77 enum target_xfer_status xfer_partial (enum target_object object,
78 const char *annex,
79 gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset, ULONGEST len,
82 ULONGEST *xfered_len) override;
83 void files_info () override;
84
85 bool thread_alive (ptid_t ptid) override;
86 const struct target_desc *read_description () override;
87
88 const char *pid_to_str (ptid_t) override;
89
90 const char *thread_name (struct thread_info *) override;
91
92 bool has_memory () override;
93 bool has_stack () override;
94 bool has_registers () override;
95 bool info_proc (const char *, enum info_proc_what) override;
96
97 /* A few helpers. */
98
99 /* Getter, see variable definition. */
100 struct gdbarch *core_gdbarch ()
101 {
102 return m_core_gdbarch;
103 }
104
105 /* See definition. */
106 void get_core_register_section (struct regcache *regcache,
107 const struct regset *regset,
108 const char *name,
109 int min_size,
110 int which,
111 const char *human_name,
112 bool required);
113
114 private: /* per-core data */
115
116 /* The core's section table. Note that these target sections are
117 *not* mapped in the current address spaces' set of target
118 sections --- those should come only from pure executable or
119 shared library bfds. The core bfd sections are an implementation
120 detail of the core target, just like ptrace is for unix child
121 targets. */
122 target_section_table m_core_section_table {};
123
124 /* The core_fns for a core file handler that is prepared to read the
125 core file currently open on core_bfd. */
126 core_fns *m_core_vec = NULL;
127
128 /* FIXME: kettenis/20031023: Eventually this field should
129 disappear. */
130 struct gdbarch *m_core_gdbarch = NULL;
131 };
132
133 core_target::core_target ()
134 {
135 to_stratum = process_stratum;
136
137 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
138
139 /* Find a suitable core file handler to munch on core_bfd */
140 m_core_vec = sniff_core_bfd (m_core_gdbarch, core_bfd);
141
142 /* Find the data section */
143 if (build_section_table (core_bfd,
144 &m_core_section_table.sections,
145 &m_core_section_table.sections_end))
146 error (_("\"%s\": Can't find sections: %s"),
147 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
148 }
149
150 core_target::~core_target ()
151 {
152 xfree (m_core_section_table.sections);
153 }
154
155 /* List of all available core_fns. On gdb startup, each core file
156 register reader calls deprecated_add_core_fns() to register
157 information on each core format it is prepared to read. */
158
159 static struct core_fns *core_file_fns = NULL;
160
161 static int gdb_check_format (bfd *);
162
163 static void add_to_thread_list (bfd *, asection *, void *);
164
165 /* An arbitrary identifier for the core inferior. */
166 #define CORELOW_PID 1
167
168 /* Link a new core_fns into the global core_file_fns list. Called on
169 gdb startup by the _initialize routine in each core file register
170 reader, to register information about each format the reader is
171 prepared to handle. */
172
173 void
174 deprecated_add_core_fns (struct core_fns *cf)
175 {
176 cf->next = core_file_fns;
177 core_file_fns = cf;
178 }
179
180 /* The default function that core file handlers can use to examine a
181 core file BFD and decide whether or not to accept the job of
182 reading the core file. */
183
184 int
185 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
186 {
187 int result;
188
189 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
190 return (result);
191 }
192
193 /* Walk through the list of core functions to find a set that can
194 handle the core file open on ABFD. Returns pointer to set that is
195 selected. */
196
197 static struct core_fns *
198 sniff_core_bfd (struct gdbarch *core_gdbarch, bfd *abfd)
199 {
200 struct core_fns *cf;
201 struct core_fns *yummy = NULL;
202 int matches = 0;
203
204 /* Don't sniff if we have support for register sets in
205 CORE_GDBARCH. */
206 if (core_gdbarch && gdbarch_iterate_over_regset_sections_p (core_gdbarch))
207 return NULL;
208
209 for (cf = core_file_fns; cf != NULL; cf = cf->next)
210 {
211 if (cf->core_sniffer (cf, abfd))
212 {
213 yummy = cf;
214 matches++;
215 }
216 }
217 if (matches > 1)
218 {
219 warning (_("\"%s\": ambiguous core format, %d handlers match"),
220 bfd_get_filename (abfd), matches);
221 }
222 else if (matches == 0)
223 error (_("\"%s\": no core file handler recognizes format"),
224 bfd_get_filename (abfd));
225
226 return (yummy);
227 }
228
229 /* The default is to reject every core file format we see. Either
230 BFD has to recognize it, or we have to provide a function in the
231 core file handler that recognizes it. */
232
233 int
234 default_check_format (bfd *abfd)
235 {
236 return (0);
237 }
238
239 /* Attempt to recognize core file formats that BFD rejects. */
240
241 static int
242 gdb_check_format (bfd *abfd)
243 {
244 struct core_fns *cf;
245
246 for (cf = core_file_fns; cf != NULL; cf = cf->next)
247 {
248 if (cf->check_format (abfd))
249 {
250 return (1);
251 }
252 }
253 return (0);
254 }
255
256 /* Close the core target. */
257
258 void
259 core_target::close ()
260 {
261 if (core_bfd)
262 {
263 inferior_ptid = null_ptid; /* Avoid confusion from thread
264 stuff. */
265 exit_inferior_silent (current_inferior ());
266
267 /* Clear out solib state while the bfd is still open. See
268 comments in clear_solib in solib.c. */
269 clear_solib ();
270
271 current_program_space->cbfd.reset (nullptr);
272 }
273
274 /* Core targets are heap-allocated (see core_target_open), so here
275 we delete ourselves. */
276 delete this;
277 }
278
279 /* Look for sections whose names start with `.reg/' so that we can
280 extract the list of threads in a core file. */
281
282 static void
283 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
284 {
285 ptid_t ptid;
286 int core_tid;
287 int pid, lwpid;
288 asection *reg_sect = (asection *) reg_sect_arg;
289 int fake_pid_p = 0;
290 struct inferior *inf;
291
292 if (!startswith (bfd_section_name (abfd, asect), ".reg/"))
293 return;
294
295 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
296
297 pid = bfd_core_file_pid (core_bfd);
298 if (pid == 0)
299 {
300 fake_pid_p = 1;
301 pid = CORELOW_PID;
302 }
303
304 lwpid = core_tid;
305
306 inf = current_inferior ();
307 if (inf->pid == 0)
308 {
309 inferior_appeared (inf, pid);
310 inf->fake_pid_p = fake_pid_p;
311 }
312
313 ptid = ptid_t (pid, lwpid, 0);
314
315 add_thread (ptid);
316
317 /* Warning, Will Robinson, looking at BFD private data! */
318
319 if (reg_sect != NULL
320 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
321 inferior_ptid = ptid; /* Yes, make it current. */
322 }
323
324 /* Issue a message saying we have no core to debug, if FROM_TTY. */
325
326 static void
327 maybe_say_no_core_file_now (int from_tty)
328 {
329 if (from_tty)
330 printf_filtered (_("No core file now.\n"));
331 }
332
333 /* Backward compatability with old way of specifying core files. */
334
335 void
336 core_file_command (const char *filename, int from_tty)
337 {
338 dont_repeat (); /* Either way, seems bogus. */
339
340 if (filename == NULL)
341 {
342 if (core_bfd != NULL)
343 {
344 target_detach (current_inferior (), from_tty);
345 gdb_assert (core_bfd == NULL);
346 }
347 else
348 maybe_say_no_core_file_now (from_tty);
349 }
350 else
351 core_target_open (filename, from_tty);
352 }
353
354 /* See gdbcore.h. */
355
356 void
357 core_target_open (const char *arg, int from_tty)
358 {
359 const char *p;
360 int siggy;
361 struct cleanup *old_chain;
362 int scratch_chan;
363 int flags;
364
365 target_preopen (from_tty);
366 if (!arg)
367 {
368 if (core_bfd)
369 error (_("No core file specified. (Use `detach' "
370 "to stop debugging a core file.)"));
371 else
372 error (_("No core file specified."));
373 }
374
375 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
376 if (!IS_ABSOLUTE_PATH (filename.get ()))
377 filename.reset (concat (current_directory, "/",
378 filename.get (), (char *) NULL));
379
380 flags = O_BINARY | O_LARGEFILE;
381 if (write_files)
382 flags |= O_RDWR;
383 else
384 flags |= O_RDONLY;
385 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
386 if (scratch_chan < 0)
387 perror_with_name (filename.get ());
388
389 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
390 write_files ? FOPEN_RUB : FOPEN_RB,
391 scratch_chan));
392 if (temp_bfd == NULL)
393 perror_with_name (filename.get ());
394
395 if (!bfd_check_format (temp_bfd.get (), bfd_core)
396 && !gdb_check_format (temp_bfd.get ()))
397 {
398 /* Do it after the err msg */
399 /* FIXME: should be checking for errors from bfd_close (for one
400 thing, on error it does not free all the storage associated
401 with the bfd). */
402 error (_("\"%s\" is not a core dump: %s"),
403 filename.get (), bfd_errmsg (bfd_get_error ()));
404 }
405
406 current_program_space->cbfd = std::move (temp_bfd);
407
408 core_target *target = new core_target ();
409
410 /* Own the target until it is successfully pushed. */
411 target_ops_up target_holder (target);
412
413 validate_files ();
414
415 /* If we have no exec file, try to set the architecture from the
416 core file. We don't do this unconditionally since an exec file
417 typically contains more information that helps us determine the
418 architecture than a core file. */
419 if (!exec_bfd)
420 set_gdbarch_from_file (core_bfd);
421
422 push_target (target);
423 target_holder.release ();
424
425 /* Do this before acknowledging the inferior, so if
426 post_create_inferior throws (can happen easilly if you're loading
427 a core file with the wrong exec), we aren't left with threads
428 from the previous inferior. */
429 init_thread_list ();
430
431 inferior_ptid = null_ptid;
432
433 /* Need to flush the register cache (and the frame cache) from a
434 previous debug session. If inferior_ptid ends up the same as the
435 last debug session --- e.g., b foo; run; gcore core1; step; gcore
436 core2; core core1; core core2 --- then there's potential for
437 get_current_regcache to return the cached regcache of the
438 previous session, and the frame cache being stale. */
439 registers_changed ();
440
441 /* Build up thread list from BFD sections, and possibly set the
442 current thread to the .reg/NN section matching the .reg
443 section. */
444 bfd_map_over_sections (core_bfd, add_to_thread_list,
445 bfd_get_section_by_name (core_bfd, ".reg"));
446
447 if (ptid_equal (inferior_ptid, null_ptid))
448 {
449 /* Either we found no .reg/NN section, and hence we have a
450 non-threaded core (single-threaded, from gdb's perspective),
451 or for some reason add_to_thread_list couldn't determine
452 which was the "main" thread. The latter case shouldn't
453 usually happen, but we're dealing with input here, which can
454 always be broken in different ways. */
455 thread_info *thread = first_thread_of_inferior (current_inferior ());
456
457 if (thread == NULL)
458 {
459 inferior_appeared (current_inferior (), CORELOW_PID);
460 inferior_ptid = ptid_t (CORELOW_PID);
461 add_thread_silent (inferior_ptid);
462 }
463 else
464 switch_to_thread (thread);
465 }
466
467 post_create_inferior (target, from_tty);
468
469 /* Now go through the target stack looking for threads since there
470 may be a thread_stratum target loaded on top of target core by
471 now. The layer above should claim threads found in the BFD
472 sections. */
473 TRY
474 {
475 target_update_thread_list ();
476 }
477
478 CATCH (except, RETURN_MASK_ERROR)
479 {
480 exception_print (gdb_stderr, except);
481 }
482 END_CATCH
483
484 p = bfd_core_file_failing_command (core_bfd);
485 if (p)
486 printf_filtered (_("Core was generated by `%s'.\n"), p);
487
488 /* Clearing any previous state of convenience variables. */
489 clear_exit_convenience_vars ();
490
491 siggy = bfd_core_file_failing_signal (core_bfd);
492 if (siggy > 0)
493 {
494 gdbarch *core_gdbarch = target->core_gdbarch ();
495
496 /* If we don't have a CORE_GDBARCH to work with, assume a native
497 core (map gdb_signal from host signals). If we do have
498 CORE_GDBARCH to work with, but no gdb_signal_from_target
499 implementation for that gdbarch, as a fallback measure,
500 assume the host signal mapping. It'll be correct for native
501 cores, but most likely incorrect for cross-cores. */
502 enum gdb_signal sig = (core_gdbarch != NULL
503 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
504 ? gdbarch_gdb_signal_from_target (core_gdbarch,
505 siggy)
506 : gdb_signal_from_host (siggy));
507
508 printf_filtered (_("Program terminated with signal %s, %s.\n"),
509 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
510
511 /* Set the value of the internal variable $_exitsignal,
512 which holds the signal uncaught by the inferior. */
513 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
514 siggy);
515 }
516
517 /* Fetch all registers from core file. */
518 target_fetch_registers (get_current_regcache (), -1);
519
520 /* Now, set up the frame cache, and print the top of stack. */
521 reinit_frame_cache ();
522 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
523
524 /* Current thread should be NUM 1 but the user does not know that.
525 If a program is single threaded gdb in general does not mention
526 anything about threads. That is why the test is >= 2. */
527 if (thread_count () >= 2)
528 {
529 TRY
530 {
531 thread_command (NULL, from_tty);
532 }
533 CATCH (except, RETURN_MASK_ERROR)
534 {
535 exception_print (gdb_stderr, except);
536 }
537 END_CATCH
538 }
539 }
540
541 void
542 core_target::detach (inferior *inf, int from_tty)
543 {
544 /* Note that 'this' is dangling after this call. unpush_target
545 closes the target, and our close implementation deletes
546 'this'. */
547 unpush_target (this);
548
549 reinit_frame_cache ();
550 maybe_say_no_core_file_now (from_tty);
551 }
552
553 /* Try to retrieve registers from a section in core_bfd, and supply
554 them to m_core_vec->core_read_registers, as the register set
555 numbered WHICH.
556
557 If ptid's lwp member is zero, do the single-threaded
558 thing: look for a section named NAME. If ptid's lwp
559 member is non-zero, do the multi-threaded thing: look for a section
560 named "NAME/LWP", where LWP is the shortest ASCII decimal
561 representation of ptid's lwp member.
562
563 HUMAN_NAME is a human-readable name for the kind of registers the
564 NAME section contains, for use in error messages.
565
566 If REQUIRED is true, print an error if the core file doesn't have a
567 section by the appropriate name. Otherwise, just do nothing. */
568
569 void
570 core_target::get_core_register_section (struct regcache *regcache,
571 const struct regset *regset,
572 const char *name,
573 int min_size,
574 int which,
575 const char *human_name,
576 bool required)
577 {
578 struct bfd_section *section;
579 bfd_size_type size;
580 char *contents;
581 bool variable_size_section = (regset != NULL
582 && regset->flags & REGSET_VARIABLE_SIZE);
583
584 thread_section_name section_name (name, regcache->ptid ());
585
586 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
587 if (! section)
588 {
589 if (required)
590 warning (_("Couldn't find %s registers in core file."),
591 human_name);
592 return;
593 }
594
595 size = bfd_section_size (core_bfd, section);
596 if (size < min_size)
597 {
598 warning (_("Section `%s' in core file too small."),
599 section_name.c_str ());
600 return;
601 }
602 if (size != min_size && !variable_size_section)
603 {
604 warning (_("Unexpected size of section `%s' in core file."),
605 section_name.c_str ());
606 }
607
608 contents = (char *) alloca (size);
609 if (! bfd_get_section_contents (core_bfd, section, contents,
610 (file_ptr) 0, size))
611 {
612 warning (_("Couldn't read %s registers from `%s' section in core file."),
613 human_name, section_name.c_str ());
614 return;
615 }
616
617 if (regset != NULL)
618 {
619 regset->supply_regset (regset, regcache, -1, contents, size);
620 return;
621 }
622
623 gdb_assert (m_core_vec != nullptr);
624 m_core_vec->core_read_registers (regcache, contents, size, which,
625 ((CORE_ADDR)
626 bfd_section_vma (core_bfd, section)));
627 }
628
629 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
630 struct get_core_registers_cb_data
631 {
632 core_target *target;
633 struct regcache *regcache;
634 };
635
636 /* Callback for get_core_registers that handles a single core file
637 register note section. */
638
639 static void
640 get_core_registers_cb (const char *sect_name, int size,
641 const struct regset *regset,
642 const char *human_name, void *cb_data)
643 {
644 auto *data = (get_core_registers_cb_data *) cb_data;
645 bool required = false;
646
647 if (strcmp (sect_name, ".reg") == 0)
648 {
649 required = true;
650 if (human_name == NULL)
651 human_name = "general-purpose";
652 }
653 else if (strcmp (sect_name, ".reg2") == 0)
654 {
655 if (human_name == NULL)
656 human_name = "floating-point";
657 }
658
659 /* The 'which' parameter is only used when no regset is provided.
660 Thus we just set it to -1. */
661 data->target->get_core_register_section (data->regcache, regset, sect_name,
662 size, -1, human_name, required);
663 }
664
665 /* Get the registers out of a core file. This is the machine-
666 independent part. Fetch_core_registers is the machine-dependent
667 part, typically implemented in the xm-file for each
668 architecture. */
669
670 /* We just get all the registers, so we don't use regno. */
671
672 void
673 core_target::fetch_registers (struct regcache *regcache, int regno)
674 {
675 int i;
676 struct gdbarch *gdbarch;
677
678 if (!(m_core_gdbarch != nullptr
679 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
680 && (m_core_vec == NULL || m_core_vec->core_read_registers == NULL))
681 {
682 fprintf_filtered (gdb_stderr,
683 "Can't fetch registers from this type of core file\n");
684 return;
685 }
686
687 gdbarch = regcache->arch ();
688 if (gdbarch_iterate_over_regset_sections_p (gdbarch))
689 {
690 get_core_registers_cb_data data = { this, regcache };
691 gdbarch_iterate_over_regset_sections (gdbarch,
692 get_core_registers_cb,
693 (void *) &data, NULL);
694 }
695 else
696 {
697 get_core_register_section (regcache, NULL,
698 ".reg", 0, 0, "general-purpose", 1);
699 get_core_register_section (regcache, NULL,
700 ".reg2", 0, 2, "floating-point", 0);
701 }
702
703 /* Mark all registers not found in the core as unavailable. */
704 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
705 if (regcache->get_register_status (i) == REG_UNKNOWN)
706 regcache->raw_supply (i, NULL);
707 }
708
709 void
710 core_target::files_info ()
711 {
712 print_section_info (&m_core_section_table, core_bfd);
713 }
714 \f
715 struct spuid_list
716 {
717 gdb_byte *buf;
718 ULONGEST offset;
719 LONGEST len;
720 ULONGEST pos;
721 ULONGEST written;
722 };
723
724 static void
725 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
726 {
727 struct spuid_list *list = (struct spuid_list *) list_p;
728 enum bfd_endian byte_order
729 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
730 int fd, pos = 0;
731
732 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
733 if (pos == 0)
734 return;
735
736 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
737 {
738 store_unsigned_integer (list->buf + list->pos - list->offset,
739 4, byte_order, fd);
740 list->written += 4;
741 }
742 list->pos += 4;
743 }
744
745 enum target_xfer_status
746 core_target::xfer_partial (enum target_object object, const char *annex,
747 gdb_byte *readbuf, const gdb_byte *writebuf,
748 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
749 {
750 switch (object)
751 {
752 case TARGET_OBJECT_MEMORY:
753 return (section_table_xfer_memory_partial
754 (readbuf, writebuf,
755 offset, len, xfered_len,
756 m_core_section_table.sections,
757 m_core_section_table.sections_end,
758 NULL));
759
760 case TARGET_OBJECT_AUXV:
761 if (readbuf)
762 {
763 /* When the aux vector is stored in core file, BFD
764 represents this with a fake section called ".auxv". */
765
766 struct bfd_section *section;
767 bfd_size_type size;
768
769 section = bfd_get_section_by_name (core_bfd, ".auxv");
770 if (section == NULL)
771 return TARGET_XFER_E_IO;
772
773 size = bfd_section_size (core_bfd, section);
774 if (offset >= size)
775 return TARGET_XFER_EOF;
776 size -= offset;
777 if (size > len)
778 size = len;
779
780 if (size == 0)
781 return TARGET_XFER_EOF;
782 if (!bfd_get_section_contents (core_bfd, section, readbuf,
783 (file_ptr) offset, size))
784 {
785 warning (_("Couldn't read NT_AUXV note in core file."));
786 return TARGET_XFER_E_IO;
787 }
788
789 *xfered_len = (ULONGEST) size;
790 return TARGET_XFER_OK;
791 }
792 return TARGET_XFER_E_IO;
793
794 case TARGET_OBJECT_WCOOKIE:
795 if (readbuf)
796 {
797 /* When the StackGhost cookie is stored in core file, BFD
798 represents this with a fake section called
799 ".wcookie". */
800
801 struct bfd_section *section;
802 bfd_size_type size;
803
804 section = bfd_get_section_by_name (core_bfd, ".wcookie");
805 if (section == NULL)
806 return TARGET_XFER_E_IO;
807
808 size = bfd_section_size (core_bfd, section);
809 if (offset >= size)
810 return TARGET_XFER_EOF;
811 size -= offset;
812 if (size > len)
813 size = len;
814
815 if (size == 0)
816 return TARGET_XFER_EOF;
817 if (!bfd_get_section_contents (core_bfd, section, readbuf,
818 (file_ptr) offset, size))
819 {
820 warning (_("Couldn't read StackGhost cookie in core file."));
821 return TARGET_XFER_E_IO;
822 }
823
824 *xfered_len = (ULONGEST) size;
825 return TARGET_XFER_OK;
826
827 }
828 return TARGET_XFER_E_IO;
829
830 case TARGET_OBJECT_LIBRARIES:
831 if (m_core_gdbarch != nullptr
832 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
833 {
834 if (writebuf)
835 return TARGET_XFER_E_IO;
836 else
837 {
838 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
839 readbuf,
840 offset, len);
841
842 if (*xfered_len == 0)
843 return TARGET_XFER_EOF;
844 else
845 return TARGET_XFER_OK;
846 }
847 }
848 /* FALL THROUGH */
849
850 case TARGET_OBJECT_LIBRARIES_AIX:
851 if (m_core_gdbarch != nullptr
852 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
853 {
854 if (writebuf)
855 return TARGET_XFER_E_IO;
856 else
857 {
858 *xfered_len
859 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
860 readbuf, offset,
861 len);
862
863 if (*xfered_len == 0)
864 return TARGET_XFER_EOF;
865 else
866 return TARGET_XFER_OK;
867 }
868 }
869 /* FALL THROUGH */
870
871 case TARGET_OBJECT_SPU:
872 if (readbuf && annex)
873 {
874 /* When the SPU contexts are stored in a core file, BFD
875 represents this with a fake section called
876 "SPU/<annex>". */
877
878 struct bfd_section *section;
879 bfd_size_type size;
880 char sectionstr[100];
881
882 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
883
884 section = bfd_get_section_by_name (core_bfd, sectionstr);
885 if (section == NULL)
886 return TARGET_XFER_E_IO;
887
888 size = bfd_section_size (core_bfd, section);
889 if (offset >= size)
890 return TARGET_XFER_EOF;
891 size -= offset;
892 if (size > len)
893 size = len;
894
895 if (size == 0)
896 return TARGET_XFER_EOF;
897 if (!bfd_get_section_contents (core_bfd, section, readbuf,
898 (file_ptr) offset, size))
899 {
900 warning (_("Couldn't read SPU section in core file."));
901 return TARGET_XFER_E_IO;
902 }
903
904 *xfered_len = (ULONGEST) size;
905 return TARGET_XFER_OK;
906 }
907 else if (readbuf)
908 {
909 /* NULL annex requests list of all present spuids. */
910 struct spuid_list list;
911
912 list.buf = readbuf;
913 list.offset = offset;
914 list.len = len;
915 list.pos = 0;
916 list.written = 0;
917 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
918
919 if (list.written == 0)
920 return TARGET_XFER_EOF;
921 else
922 {
923 *xfered_len = (ULONGEST) list.written;
924 return TARGET_XFER_OK;
925 }
926 }
927 return TARGET_XFER_E_IO;
928
929 case TARGET_OBJECT_SIGNAL_INFO:
930 if (readbuf)
931 {
932 if (m_core_gdbarch != nullptr
933 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
934 {
935 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
936 offset, len);
937
938 if (l >= 0)
939 {
940 *xfered_len = l;
941 if (l == 0)
942 return TARGET_XFER_EOF;
943 else
944 return TARGET_XFER_OK;
945 }
946 }
947 }
948 return TARGET_XFER_E_IO;
949
950 default:
951 return this->beneath ()->xfer_partial (object, annex, readbuf,
952 writebuf, offset, len,
953 xfered_len);
954 }
955 }
956
957 \f
958
959 /* Okay, let's be honest: threads gleaned from a core file aren't
960 exactly lively, are they? On the other hand, if we don't claim
961 that each & every one is alive, then we don't get any of them
962 to appear in an "info thread" command, which is quite a useful
963 behaviour.
964 */
965 bool
966 core_target::thread_alive (ptid_t ptid)
967 {
968 return true;
969 }
970
971 /* Ask the current architecture what it knows about this core file.
972 That will be used, in turn, to pick a better architecture. This
973 wrapper could be avoided if targets got a chance to specialize
974 core_target. */
975
976 const struct target_desc *
977 core_target::read_description ()
978 {
979 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
980 {
981 const struct target_desc *result;
982
983 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
984 if (result != NULL)
985 return result;
986 }
987
988 return this->beneath ()->read_description ();
989 }
990
991 const char *
992 core_target::pid_to_str (ptid_t ptid)
993 {
994 static char buf[64];
995 struct inferior *inf;
996 int pid;
997
998 /* The preferred way is to have a gdbarch/OS specific
999 implementation. */
1000 if (m_core_gdbarch != nullptr
1001 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1002 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1003
1004 /* Otherwise, if we don't have one, we'll just fallback to
1005 "process", with normal_pid_to_str. */
1006
1007 /* Try the LWPID field first. */
1008 pid = ptid.lwp ();
1009 if (pid != 0)
1010 return normal_pid_to_str (ptid_t (pid));
1011
1012 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1013 only if it isn't a fake PID. */
1014 inf = find_inferior_ptid (ptid);
1015 if (inf != NULL && !inf->fake_pid_p)
1016 return normal_pid_to_str (ptid);
1017
1018 /* No luck. We simply don't have a valid PID to print. */
1019 xsnprintf (buf, sizeof buf, "<main task>");
1020 return buf;
1021 }
1022
1023 const char *
1024 core_target::thread_name (struct thread_info *thr)
1025 {
1026 if (m_core_gdbarch != nullptr
1027 && gdbarch_core_thread_name_p (m_core_gdbarch))
1028 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1029 return NULL;
1030 }
1031
1032 bool
1033 core_target::has_memory ()
1034 {
1035 return (core_bfd != NULL);
1036 }
1037
1038 bool
1039 core_target::has_stack ()
1040 {
1041 return (core_bfd != NULL);
1042 }
1043
1044 bool
1045 core_target::has_registers ()
1046 {
1047 return (core_bfd != NULL);
1048 }
1049
1050 /* Implement the to_info_proc method. */
1051
1052 bool
1053 core_target::info_proc (const char *args, enum info_proc_what request)
1054 {
1055 struct gdbarch *gdbarch = get_current_arch ();
1056
1057 /* Since this is the core file target, call the 'core_info_proc'
1058 method on gdbarch, not 'info_proc'. */
1059 if (gdbarch_core_info_proc_p (gdbarch))
1060 gdbarch_core_info_proc (gdbarch, args, request);
1061
1062 return true;
1063 }
1064
1065 void
1066 _initialize_corelow (void)
1067 {
1068 add_target (core_target_info, core_target_open, filename_completer);
1069 }