]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
* win32-low.c (win32_add_one_solib): If the dll name is
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "gdbtypes.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "target.h"
36 #include "value.h"
37 #include "opcode/cris.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "gdb_assert.h"
41
42 #include "objfiles.h"
43
44 #include "solib.h" /* Support for shared libraries. */
45 #include "solib-svr4.h"
46 #include "gdb_string.h"
47 #include "dis-asm.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et. al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* CRIS architecture specific information. */
169 struct gdbarch_tdep
170 {
171 int cris_version;
172 const char *cris_mode;
173 int cris_dwarf2_cfi;
174 };
175
176 /* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179 #define SIGTRAMP_OFFSET0 0
180 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
181 #define SIGTRAMP_OFFSET1 4
182
183 static const unsigned short sigtramp_code[] =
184 {
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187 };
188
189 #define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191 /* Note: same length as normal sigtramp code. */
192
193 static const unsigned short rt_sigtramp_code[] =
194 {
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197 };
198
199 /* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202 static CORE_ADDR
203 cris_sigtramp_start (struct frame_info *this_frame)
204 {
205 CORE_ADDR pc = get_frame_pc (this_frame);
206 gdb_byte buf[SIGTRAMP_LEN];
207
208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
209 return 0;
210
211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
212 {
213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225 }
226
227 /* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230 static CORE_ADDR
231 cris_rt_sigtramp_start (struct frame_info *this_frame)
232 {
233 CORE_ADDR pc = get_frame_pc (this_frame);
234 gdb_byte buf[SIGTRAMP_LEN];
235
236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
237 return 0;
238
239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
240 {
241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253 }
254
255 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
257
258 static CORE_ADDR
259 cris_sigcontext_addr (struct frame_info *this_frame)
260 {
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
269
270 /* Look for normal sigtramp frame first. */
271 pc = cris_sigtramp_start (this_frame);
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
280 pc = cris_rt_sigtramp_start (this_frame);
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
291 error (_("Couldn't recognize signal trampoline."));
292 return 0;
293 }
294
295 struct cris_unwind_cache
296 {
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
311 CORE_ADDR return_pc;
312 int leaf_function;
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
316 };
317
318 static struct cris_unwind_cache *
319 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
320 void **this_cache)
321 {
322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
350 info->base = extract_unsigned_integer (buf, 4, byte_order);
351
352 addr = cris_sigcontext_addr (this_frame);
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
376 = info->saved_regs[IRP_REGNUM];
377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
405 = info->saved_regs[ERP_REGNUM];
406
407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
408 = addr + (25 * 4);
409 }
410
411 return info;
412 }
413
414 static void
415 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
417 {
418 struct cris_unwind_cache *cache =
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
421 }
422
423 /* Forward declaration. */
424
425 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427 static struct value *
428 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
430 {
431 /* Make sure we've initialized the cache. */
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434 }
435
436 static int
437 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440 {
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
446 }
447
448 static const struct frame_unwind cris_sigtramp_frame_unwind =
449 {
450 SIGTRAMP_FRAME,
451 cris_sigtramp_frame_this_id,
452 cris_sigtramp_frame_prev_register,
453 NULL,
454 cris_sigtramp_frame_sniffer
455 };
456
457 static int
458 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 ULONGEST erp;
463 int ret = 0;
464
465 if (tdep->cris_mode == cris_mode_guru)
466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
467 else
468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
469
470 if (erp & 0x1)
471 {
472 /* In delay slot - check if there's a breakpoint at the preceding
473 instruction. */
474 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
475 ret = 1;
476 }
477 return ret;
478 }
479
480 /* Hardware watchpoint support. */
481
482 /* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
484
485 int
486 cris_can_use_hardware_watchpoint (int type, int count, int other)
487 {
488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
489
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
491
492 if (tdep->cris_version != 32)
493 return 0;
494 else
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
499 }
500
501 /* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
503
504 int
505 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
506 {
507 return 1;
508 }
509
510 /* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
512 zero. */
513
514 CORE_ADDR
515 cris_stopped_data_address (void)
516 {
517 CORE_ADDR eda;
518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
519 return eda;
520 }
521
522 /* The instruction environment needed to find single-step breakpoints. */
523
524 typedef
525 struct instruction_environment
526 {
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
532 int branch_found;
533 int prefix_found;
534 int invalid;
535 int slot_needed;
536 int delay_slot_pc_active;
537 int xflag_found;
538 int disable_interrupt;
539 int byte_order;
540 } inst_env_type;
541
542 /* Machine-dependencies in CRIS for opcodes. */
543
544 /* Instruction sizes. */
545 enum cris_instruction_sizes
546 {
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550 };
551
552 /* Addressing modes. */
553 enum cris_addressing_modes
554 {
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558 };
559
560 /* Prefix addressing modes. */
561 enum cris_prefix_addressing_modes
562 {
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568 };
569
570 /* Masks for opcodes. */
571 enum cris_opcode_masks
572 {
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582 };
583
584 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591 static int
592 cris_get_operand2 (unsigned short insn)
593 {
594 return ((insn & 0xF000) >> 12);
595 }
596
597 static int
598 cris_get_mode (unsigned short insn)
599 {
600 return ((insn & 0x0C00) >> 10);
601 }
602
603 static int
604 cris_get_opcode (unsigned short insn)
605 {
606 return ((insn & 0x03C0) >> 6);
607 }
608
609 static int
610 cris_get_size (unsigned short insn)
611 {
612 return ((insn & 0x0030) >> 4);
613 }
614
615 static int
616 cris_get_operand1 (unsigned short insn)
617 {
618 return (insn & 0x000F);
619 }
620
621 /* Additional functions in order to handle opcodes. */
622
623 static int
624 cris_get_quick_value (unsigned short insn)
625 {
626 return (insn & 0x003F);
627 }
628
629 static int
630 cris_get_bdap_quick_offset (unsigned short insn)
631 {
632 return (insn & 0x00FF);
633 }
634
635 static int
636 cris_get_branch_short_offset (unsigned short insn)
637 {
638 return (insn & 0x00FF);
639 }
640
641 static int
642 cris_get_asr_shift_steps (unsigned long value)
643 {
644 return (value & 0x3F);
645 }
646
647 static int
648 cris_get_clear_size (unsigned short insn)
649 {
650 return ((insn) & 0xC000);
651 }
652
653 static int
654 cris_is_signed_extend_bit_on (unsigned short insn)
655 {
656 return (((insn) & 0x20) == 0x20);
657 }
658
659 static int
660 cris_is_xflag_bit_on (unsigned short insn)
661 {
662 return (((insn) & 0x1000) == 0x1000);
663 }
664
665 static void
666 cris_set_size_to_dword (unsigned short *insn)
667 {
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670 }
671
672 static signed char
673 cris_get_signed_offset (unsigned short insn)
674 {
675 return ((signed char) (insn & 0x00FF));
676 }
677
678 /* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
680 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
681 inst_env_type *);
682
683 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
685
686 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
687
688 static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
690
691 static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
693
694 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
696
697 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
698 struct frame_info *this_frame,
699 struct cris_unwind_cache *info);
700
701 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
702 struct frame_info *this_frame,
703 struct cris_unwind_cache *info);
704
705 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
707
708 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
710
711 /* When arguments must be pushed onto the stack, they go on in reverse
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
714
715 struct stack_item
716 {
717 int len;
718 struct stack_item *prev;
719 void *data;
720 };
721
722 static struct stack_item *
723 push_stack_item (struct stack_item *prev, void *contents, int len)
724 {
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
728 si->len = len;
729 si->prev = prev;
730 memcpy (si->data, contents, len);
731 return si;
732 }
733
734 static struct stack_item *
735 pop_stack_item (struct stack_item *si)
736 {
737 struct stack_item *dead = si;
738 si = si->prev;
739 xfree (dead->data);
740 xfree (dead);
741 return si;
742 }
743
744 /* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
748 for it IS the sp for the next frame. */
749
750 static struct cris_unwind_cache *
751 cris_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
753 {
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
756 CORE_ADDR pc;
757 struct cris_unwind_cache *info;
758 int i;
759
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
762
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
766
767 /* Zero all fields. */
768 info->prev_sp = 0;
769 info->base = 0;
770 info->size = 0;
771 info->sp_offset = 0;
772 info->r8_offset = 0;
773 info->uses_frame = 0;
774 info->return_pc = 0;
775 info->leaf_function = 0;
776
777 /* Prologue analysis does the rest... */
778 if (tdep->cris_version == 32)
779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
780 else
781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
782
783 return info;
784 }
785
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789 static void
790 cris_frame_this_id (struct frame_info *this_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793 {
794 struct cris_unwind_cache *info
795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
796 CORE_ADDR base;
797 CORE_ADDR func;
798 struct frame_id id;
799
800 /* The FUNC is easy. */
801 func = get_frame_func (this_frame);
802
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
807 if (base == 0)
808 return;
809
810 id = frame_id_build (base, func);
811
812 (*this_id) = id;
813 }
814
815 static struct value *
816 cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
818 {
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
822 }
823
824 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
827
828 static struct frame_id
829 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
830 {
831 CORE_ADDR sp;
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
834 }
835
836 static CORE_ADDR
837 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
838 {
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
841 return sp & ~3;
842 }
843
844 static CORE_ADDR
845 cris_push_dummy_code (struct gdbarch *gdbarch,
846 CORE_ADDR sp, CORE_ADDR funaddr,
847 struct value **args, int nargs,
848 struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
851 {
852 /* Allocate space sufficient for a breakpoint. */
853 sp = (sp - 4) & ~3;
854 /* Store the address of that breakpoint */
855 *bp_addr = sp;
856 /* CRIS always starts the call at the callee's entry point. */
857 *real_pc = funaddr;
858 return sp;
859 }
860
861 static CORE_ADDR
862 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
866 {
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int stack_alloc;
869 int stack_offset;
870 int argreg;
871 int argnum;
872
873 CORE_ADDR regval;
874
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
878 CORE_ADDR fp_arg;
879 CORE_ADDR fp_mem;
880
881 struct stack_item *si = NULL;
882
883 /* Push the return address. */
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
885
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
889 if (struct_return)
890 {
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
892 }
893
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
897 stack_offset = 0;
898
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len;
902 char *val;
903 int reg_demand;
904 int i;
905
906 len = TYPE_LENGTH (value_type (args[argnum]));
907 val = (char *) value_contents (args[argnum]);
908
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
911
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
913 {
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
916 {
917 regcache_cooked_write (regcache, argreg, val);
918 argreg++;
919 val += 4;
920 }
921 }
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
923 {
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
927 {
928 if (argreg <= ARG4_REGNUM)
929 {
930 regcache_cooked_write (regcache, argreg, val);
931 argreg++;
932 val += 4;
933 }
934 else
935 {
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
939 val += 4;
940 }
941 }
942 }
943 else if (len > (2 * 4))
944 {
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
949
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
953 argreg++;
954 }
955 else
956 {
957 gdb_byte buf[4];
958 store_unsigned_integer (buf, 4, byte_order, sp);
959 si = push_stack_item (si, buf, 4);
960 }
961 }
962 else
963 {
964 /* Data passed by value. No available registers. Put it on
965 the stack. */
966 si = push_stack_item (si, val, len);
967 }
968 }
969
970 while (si)
971 {
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
977 }
978
979 /* Finally, update the SP register. */
980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
981
982 return sp;
983 }
984
985 static const struct frame_unwind cris_frame_unwind =
986 {
987 NORMAL_FRAME,
988 cris_frame_this_id,
989 cris_frame_prev_register,
990 NULL,
991 default_frame_sniffer
992 };
993
994 static CORE_ADDR
995 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
996 {
997 struct cris_unwind_cache *info
998 = cris_frame_unwind_cache (this_frame, this_cache);
999 return info->base;
1000 }
1001
1002 static const struct frame_base cris_frame_base =
1003 {
1004 &cris_frame_unwind,
1005 cris_frame_base_address,
1006 cris_frame_base_address,
1007 cris_frame_base_address
1008 };
1009
1010 /* Frames information. The definition of the struct frame_info is
1011
1012 CORE_ADDR frame
1013 CORE_ADDR pc
1014 enum frame_type type;
1015 CORE_ADDR return_pc
1016 int leaf_function
1017
1018 If the compilation option -fno-omit-frame-pointer is present the
1019 variable frame will be set to the content of R8 which is the frame
1020 pointer register.
1021
1022 The variable pc contains the address where execution is performed
1023 in the present frame. The innermost frame contains the current content
1024 of the register PC. All other frames contain the content of the
1025 register PC in the next frame.
1026
1027 The variable `type' indicates the frame's type: normal, SIGTRAMP
1028 (associated with a signal handler), dummy (associated with a dummy
1029 frame).
1030
1031 The variable return_pc contains the address where execution should be
1032 resumed when the present frame has finished, the return address.
1033
1034 The variable leaf_function is 1 if the return address is in the register
1035 SRP, and 0 if it is on the stack.
1036
1037 Prologue instructions C-code.
1038 The prologue may consist of (-fno-omit-frame-pointer)
1039 1) 2)
1040 push srp
1041 push r8 push r8
1042 move.d sp,r8 move.d sp,r8
1043 subq X,sp subq X,sp
1044 movem rY,[sp] movem rY,[sp]
1045 move.S rZ,[r8-U] move.S rZ,[r8-U]
1046
1047 where 1 is a non-terminal function, and 2 is a leaf-function.
1048
1049 Note that this assumption is extremely brittle, and will break at the
1050 slightest change in GCC's prologue.
1051
1052 If local variables are declared or register contents are saved on stack
1053 the subq-instruction will be present with X as the number of bytes
1054 needed for storage. The reshuffle with respect to r8 may be performed
1055 with any size S (b, w, d) and any of the general registers Z={0..13}.
1056 The offset U should be representable by a signed 8-bit value in all cases.
1057 Thus, the prefix word is assumed to be immediate byte offset mode followed
1058 by another word containing the instruction.
1059
1060 Degenerate cases:
1061 3)
1062 push r8
1063 move.d sp,r8
1064 move.d r8,sp
1065 pop r8
1066
1067 Prologue instructions C++-code.
1068 Case 1) and 2) in the C-code may be followed by
1069
1070 move.d r10,rS ; this
1071 move.d r11,rT ; P1
1072 move.d r12,rU ; P2
1073 move.d r13,rV ; P3
1074 move.S [r8+U],rZ ; P4
1075
1076 if any of the call parameters are stored. The host expects these
1077 instructions to be executed in order to get the call parameters right. */
1078
1079 /* Examine the prologue of a function. The variable ip is the address of
1080 the first instruction of the prologue. The variable limit is the address
1081 of the first instruction after the prologue. The variable fi contains the
1082 information in struct frame_info. The variable frameless_p controls whether
1083 the entire prologue is examined (0) or just enough instructions to
1084 determine that it is a prologue (1). */
1085
1086 static CORE_ADDR
1087 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1088 struct cris_unwind_cache *info)
1089 {
1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092
1093 /* Present instruction. */
1094 unsigned short insn;
1095
1096 /* Next instruction, lookahead. */
1097 unsigned short insn_next;
1098 int regno;
1099
1100 /* Is there a push fp? */
1101 int have_fp;
1102
1103 /* Number of byte on stack used for local variables and movem. */
1104 int val;
1105
1106 /* Highest register number in a movem. */
1107 int regsave;
1108
1109 /* move.d r<source_register>,rS */
1110 short source_register;
1111
1112 /* Scan limit. */
1113 int limit;
1114
1115 /* This frame is with respect to a leaf until a push srp is found. */
1116 if (info)
1117 {
1118 info->leaf_function = 1;
1119 }
1120
1121 /* Assume nothing on stack. */
1122 val = 0;
1123 regsave = -1;
1124
1125 /* If we were called without a this_frame, that means we were called
1126 from cris_skip_prologue which already tried to find the end of the
1127 prologue through the symbol information. 64 instructions past current
1128 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1129 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1130
1131 /* Find the prologue instructions. */
1132 while (pc > 0 && pc < limit)
1133 {
1134 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1135 pc += 2;
1136 if (insn == 0xE1FC)
1137 {
1138 /* push <reg> 32 bit instruction */
1139 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1140 pc += 2;
1141 regno = cris_get_operand2 (insn_next);
1142 if (info)
1143 {
1144 info->sp_offset += 4;
1145 }
1146 /* This check, meant to recognize srp, used to be regno ==
1147 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1148 if (insn_next == 0xBE7E)
1149 {
1150 if (info)
1151 {
1152 info->leaf_function = 0;
1153 }
1154 }
1155 else if (insn_next == 0x8FEE)
1156 {
1157 /* push $r8 */
1158 if (info)
1159 {
1160 info->r8_offset = info->sp_offset;
1161 }
1162 }
1163 }
1164 else if (insn == 0x866E)
1165 {
1166 /* move.d sp,r8 */
1167 if (info)
1168 {
1169 info->uses_frame = 1;
1170 }
1171 continue;
1172 }
1173 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1174 && cris_get_mode (insn) == 0x0000
1175 && cris_get_opcode (insn) == 0x000A)
1176 {
1177 /* subq <val>,sp */
1178 if (info)
1179 {
1180 info->sp_offset += cris_get_quick_value (insn);
1181 }
1182 }
1183 else if (cris_get_mode (insn) == 0x0002
1184 && cris_get_opcode (insn) == 0x000F
1185 && cris_get_size (insn) == 0x0003
1186 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1187 {
1188 /* movem r<regsave>,[sp] */
1189 regsave = cris_get_operand2 (insn);
1190 }
1191 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1192 && ((insn & 0x0F00) >> 8) == 0x0001
1193 && (cris_get_signed_offset (insn) < 0))
1194 {
1195 /* Immediate byte offset addressing prefix word with sp as base
1196 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1197 is between 64 and 128.
1198 movem r<regsave>,[sp=sp-<val>] */
1199 if (info)
1200 {
1201 info->sp_offset += -cris_get_signed_offset (insn);
1202 }
1203 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1204 pc += 2;
1205 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1206 && cris_get_opcode (insn_next) == 0x000F
1207 && cris_get_size (insn_next) == 0x0003
1208 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1209 (gdbarch))
1210 {
1211 regsave = cris_get_operand2 (insn_next);
1212 }
1213 else
1214 {
1215 /* The prologue ended before the limit was reached. */
1216 pc -= 4;
1217 break;
1218 }
1219 }
1220 else if (cris_get_mode (insn) == 0x0001
1221 && cris_get_opcode (insn) == 0x0009
1222 && cris_get_size (insn) == 0x0002)
1223 {
1224 /* move.d r<10..13>,r<0..15> */
1225 source_register = cris_get_operand1 (insn);
1226
1227 /* FIXME? In the glibc solibs, the prologue might contain something
1228 like (this example taken from relocate_doit):
1229 move.d $pc,$r0
1230 sub.d 0xfffef426,$r0
1231 which isn't covered by the source_register check below. Question
1232 is whether to add a check for this combo, or make better use of
1233 the limit variable instead. */
1234 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1235 {
1236 /* The prologue ended before the limit was reached. */
1237 pc -= 2;
1238 break;
1239 }
1240 }
1241 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1242 /* The size is a fixed-size. */
1243 && ((insn & 0x0F00) >> 8) == 0x0001
1244 /* A negative offset. */
1245 && (cris_get_signed_offset (insn) < 0))
1246 {
1247 /* move.S rZ,[r8-U] (?) */
1248 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1249 pc += 2;
1250 regno = cris_get_operand2 (insn_next);
1251 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1252 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1253 && cris_get_opcode (insn_next) == 0x000F)
1254 {
1255 /* move.S rZ,[r8-U] */
1256 continue;
1257 }
1258 else
1259 {
1260 /* The prologue ended before the limit was reached. */
1261 pc -= 4;
1262 break;
1263 }
1264 }
1265 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1266 /* The size is a fixed-size. */
1267 && ((insn & 0x0F00) >> 8) == 0x0001
1268 /* A positive offset. */
1269 && (cris_get_signed_offset (insn) > 0))
1270 {
1271 /* move.S [r8+U],rZ (?) */
1272 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1273 pc += 2;
1274 regno = cris_get_operand2 (insn_next);
1275 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1276 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1277 && cris_get_opcode (insn_next) == 0x0009
1278 && cris_get_operand1 (insn_next) == regno)
1279 {
1280 /* move.S [r8+U],rZ */
1281 continue;
1282 }
1283 else
1284 {
1285 /* The prologue ended before the limit was reached. */
1286 pc -= 4;
1287 break;
1288 }
1289 }
1290 else
1291 {
1292 /* The prologue ended before the limit was reached. */
1293 pc -= 2;
1294 break;
1295 }
1296 }
1297
1298 /* We only want to know the end of the prologue when this_frame and info
1299 are NULL (called from cris_skip_prologue i.e.). */
1300 if (this_frame == NULL && info == NULL)
1301 {
1302 return pc;
1303 }
1304
1305 info->size = info->sp_offset;
1306
1307 /* Compute the previous frame's stack pointer (which is also the
1308 frame's ID's stack address), and this frame's base pointer. */
1309 if (info->uses_frame)
1310 {
1311 ULONGEST this_base;
1312 /* The SP was moved to the FP. This indicates that a new frame
1313 was created. Get THIS frame's FP value by unwinding it from
1314 the next frame. */
1315 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1316 info->base = this_base;
1317 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1318
1319 /* The FP points at the last saved register. Adjust the FP back
1320 to before the first saved register giving the SP. */
1321 info->prev_sp = info->base + info->r8_offset;
1322 }
1323 else
1324 {
1325 ULONGEST this_base;
1326 /* Assume that the FP is this frame's SP but with that pushed
1327 stack space added back. */
1328 this_base = get_frame_register_unsigned (this_frame,
1329 gdbarch_sp_regnum (gdbarch));
1330 info->base = this_base;
1331 info->prev_sp = info->base + info->size;
1332 }
1333
1334 /* Calculate the addresses for the saved registers on the stack. */
1335 /* FIXME: The address calculation should really be done on the fly while
1336 we're analyzing the prologue (we only hold one regsave value as it is
1337 now). */
1338 val = info->sp_offset;
1339
1340 for (regno = regsave; regno >= 0; regno--)
1341 {
1342 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1343 val -= 4;
1344 }
1345
1346 /* The previous frame's SP needed to be computed. Save the computed
1347 value. */
1348 trad_frame_set_value (info->saved_regs,
1349 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1350
1351 if (!info->leaf_function)
1352 {
1353 /* SRP saved on the stack. But where? */
1354 if (info->r8_offset == 0)
1355 {
1356 /* R8 not pushed yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base;
1358 }
1359 else
1360 {
1361 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1362 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1363 }
1364 }
1365
1366 /* The PC is found in SRP (the actual register or located on the stack). */
1367 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1368 = info->saved_regs[SRP_REGNUM];
1369
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1375 struct cris_unwind_cache *info)
1376 {
1377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1378 ULONGEST this_base;
1379
1380 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1381 meant to be a full-fledged prologue scanner. It is only needed for
1382 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1383
1384 * PLT stubs (library calls)
1385 * call dummys
1386 * signal trampolines
1387
1388 For those cases, it is assumed that there is no actual prologue; that
1389 the stack pointer is not adjusted, and (as a consequence) the return
1390 address is not pushed onto the stack. */
1391
1392 /* We only want to know the end of the prologue when this_frame and info
1393 are NULL (called from cris_skip_prologue i.e.). */
1394 if (this_frame == NULL && info == NULL)
1395 {
1396 return pc;
1397 }
1398
1399 /* The SP is assumed to be unaltered. */
1400 this_base = get_frame_register_unsigned (this_frame,
1401 gdbarch_sp_regnum (gdbarch));
1402 info->base = this_base;
1403 info->prev_sp = this_base;
1404
1405 /* The PC is assumed to be found in SRP. */
1406 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1407 = info->saved_regs[SRP_REGNUM];
1408
1409 return pc;
1410 }
1411
1412 /* Advance pc beyond any function entry prologue instructions at pc
1413 to reach some "real" code. */
1414
1415 /* Given a PC value corresponding to the start of a function, return the PC
1416 of the first instruction after the function prologue. */
1417
1418 static CORE_ADDR
1419 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1420 {
1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1422 CORE_ADDR func_addr, func_end;
1423 struct symtab_and_line sal;
1424 CORE_ADDR pc_after_prologue;
1425
1426 /* If we have line debugging information, then the end of the prologue
1427 should the first assembly instruction of the first source line. */
1428 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1429 {
1430 sal = find_pc_line (func_addr, 0);
1431 if (sal.end > 0 && sal.end < func_end)
1432 return sal.end;
1433 }
1434
1435 if (tdep->cris_version == 32)
1436 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1437 else
1438 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1439
1440 return pc_after_prologue;
1441 }
1442
1443 static CORE_ADDR
1444 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1445 {
1446 ULONGEST pc;
1447 pc = frame_unwind_register_unsigned (next_frame,
1448 gdbarch_pc_regnum (gdbarch));
1449 return pc;
1450 }
1451
1452 static CORE_ADDR
1453 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454 {
1455 ULONGEST sp;
1456 sp = frame_unwind_register_unsigned (next_frame,
1457 gdbarch_sp_regnum (gdbarch));
1458 return sp;
1459 }
1460
1461 /* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
1467 static const unsigned char *
1468 cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
1469 {
1470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1471 static unsigned char break8_insn[] = {0x38, 0xe9};
1472 static unsigned char break15_insn[] = {0x3f, 0xe9};
1473 *lenptr = 2;
1474
1475 if (tdep->cris_mode == cris_mode_guru)
1476 return break15_insn;
1477 else
1478 return break8_insn;
1479 }
1480
1481 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1482 0 otherwise. */
1483
1484 static int
1485 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1486 struct cris_spec_reg spec_reg)
1487 {
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1489 int version = tdep->cris_version;
1490
1491 switch (spec_reg.applicable_version)
1492 {
1493 case cris_ver_version_all:
1494 return 1;
1495 case cris_ver_warning:
1496 /* Indeterminate/obsolete. */
1497 return 0;
1498 case cris_ver_v0_3:
1499 return (version >= 0 && version <= 3);
1500 case cris_ver_v3p:
1501 return (version >= 3);
1502 case cris_ver_v8:
1503 return (version == 8 || version == 9);
1504 case cris_ver_v8p:
1505 return (version >= 8);
1506 case cris_ver_v0_10:
1507 return (version >= 0 && version <= 10);
1508 case cris_ver_v3_10:
1509 return (version >= 3 && version <= 10);
1510 case cris_ver_v8_10:
1511 return (version >= 8 && version <= 10);
1512 case cris_ver_v10:
1513 return (version == 10);
1514 case cris_ver_v10p:
1515 return (version >= 10);
1516 case cris_ver_v32p:
1517 return (version >= 32);
1518 default:
1519 /* Invalid cris version. */
1520 return 0;
1521 }
1522 }
1523
1524 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1525 register, -1 for an invalid register. */
1526
1527 static int
1528 cris_register_size (struct gdbarch *gdbarch, int regno)
1529 {
1530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1531 int i;
1532 int spec_regno;
1533
1534 if (regno >= 0 && regno < NUM_GENREGS)
1535 {
1536 /* General registers (R0 - R15) are 32 bits. */
1537 return 4;
1538 }
1539 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1540 {
1541 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1542 Adjust regno accordingly. */
1543 spec_regno = regno - NUM_GENREGS;
1544
1545 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1546 {
1547 if (cris_spec_regs[i].number == spec_regno
1548 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1549 /* Go with the first applicable register. */
1550 return cris_spec_regs[i].reg_size;
1551 }
1552 /* Special register not applicable to this CRIS version. */
1553 return 0;
1554 }
1555 else if (regno >= gdbarch_pc_regnum (gdbarch)
1556 && regno < gdbarch_num_regs (gdbarch))
1557 {
1558 /* This will apply to CRISv32 only where there are additional registers
1559 after the special registers (pseudo PC and support registers). */
1560 return 4;
1561 }
1562
1563
1564 return -1;
1565 }
1566
1567 /* Nonzero if regno should not be fetched from the target. This is the case
1568 for unimplemented (size 0) and non-existant registers. */
1569
1570 static int
1571 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1572 {
1573 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1574 || (cris_register_size (gdbarch, regno) == 0));
1575 }
1576
1577 /* Nonzero if regno should not be written to the target, for various
1578 reasons. */
1579
1580 static int
1581 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1582 {
1583 /* There are three kinds of registers we refuse to write to.
1584 1. Those that not implemented.
1585 2. Those that are read-only (depends on the processor mode).
1586 3. Those registers to which a write has no effect.
1587 */
1588
1589 if (regno < 0
1590 || regno >= gdbarch_num_regs (gdbarch)
1591 || cris_register_size (gdbarch, regno) == 0)
1592 /* Not implemented. */
1593 return 1;
1594
1595 else if (regno == VR_REGNUM)
1596 /* Read-only. */
1597 return 1;
1598
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1601 return 1;
1602
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
1605
1606 return 0;
1607 }
1608
1609 /* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1611
1612 static int
1613 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1614 {
1615 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1616 || (cris_register_size (gdbarch, regno) == 0));
1617 }
1618
1619 /* Nonzero if regno should not be written to the target, for various
1620 reasons. */
1621
1622 static int
1623 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1624 {
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect.
1629 */
1630
1631 if (regno < 0
1632 || regno >= gdbarch_num_regs (gdbarch)
1633 || cris_register_size (gdbarch, regno) == 0)
1634 /* Not implemented. */
1635 return 1;
1636
1637 else if (regno == VR_REGNUM)
1638 /* Read-only. */
1639 return 1;
1640
1641 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1642 /* Writing has no effect. */
1643 return 1;
1644
1645 /* Many special registers are read-only in user mode. Let the debug
1646 agent decide whether they are writable. */
1647
1648 return 0;
1649 }
1650
1651 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1652 of data in register regno. */
1653
1654 static struct type *
1655 cris_register_type (struct gdbarch *gdbarch, int regno)
1656 {
1657 if (regno == gdbarch_pc_regnum (gdbarch))
1658 return builtin_type (gdbarch)->builtin_func_ptr;
1659 else if (regno == gdbarch_sp_regnum (gdbarch)
1660 || regno == CRIS_FP_REGNUM)
1661 return builtin_type (gdbarch)->builtin_data_ptr;
1662 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1663 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1664 /* Note: R8 taken care of previous clause. */
1665 return builtin_type (gdbarch)->builtin_uint32;
1666 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1667 return builtin_type (gdbarch)->builtin_uint16;
1668 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1669 return builtin_type (gdbarch)->builtin_uint8;
1670 else
1671 /* Invalid (unimplemented) register. */
1672 return builtin_type (gdbarch)->builtin_int0;
1673 }
1674
1675 static struct type *
1676 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1677 {
1678 if (regno == gdbarch_pc_regnum (gdbarch))
1679 return builtin_type (gdbarch)->builtin_func_ptr;
1680 else if (regno == gdbarch_sp_regnum (gdbarch)
1681 || regno == CRIS_FP_REGNUM)
1682 return builtin_type (gdbarch)->builtin_data_ptr;
1683 else if ((regno >= 0 && regno <= ACR_REGNUM)
1684 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1685 || (regno == PID_REGNUM)
1686 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1687 /* Note: R8 and SP taken care of by previous clause. */
1688 return builtin_type (gdbarch)->builtin_uint32;
1689 else if (regno == WZ_REGNUM)
1690 return builtin_type (gdbarch)->builtin_uint16;
1691 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1692 return builtin_type (gdbarch)->builtin_uint8;
1693 else
1694 {
1695 /* Invalid (unimplemented) register. Should not happen as there are
1696 no unimplemented CRISv32 registers. */
1697 warning (_("crisv32_register_type: unknown regno %d"), regno);
1698 return builtin_type (gdbarch)->builtin_int0;
1699 }
1700 }
1701
1702 /* Stores a function return value of type type, where valbuf is the address
1703 of the value to be stored. */
1704
1705 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1706
1707 static void
1708 cris_store_return_value (struct type *type, struct regcache *regcache,
1709 const void *valbuf)
1710 {
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1713 ULONGEST val;
1714 int len = TYPE_LENGTH (type);
1715
1716 if (len <= 4)
1717 {
1718 /* Put the return value in R10. */
1719 val = extract_unsigned_integer (valbuf, len, byte_order);
1720 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1721 }
1722 else if (len <= 8)
1723 {
1724 /* Put the return value in R10 and R11. */
1725 val = extract_unsigned_integer (valbuf, 4, byte_order);
1726 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1727 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1728 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1729 }
1730 else
1731 error (_("cris_store_return_value: type length too large."));
1732 }
1733
1734 /* Return the name of register regno as a string. Return NULL for an invalid or
1735 unimplemented register. */
1736
1737 static const char *
1738 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1739 {
1740 int spec_regno;
1741 int i;
1742
1743 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1744 Adjust regno accordingly. */
1745 spec_regno = regno - NUM_GENREGS;
1746
1747 /* Assume nothing about the layout of the cris_spec_regs struct
1748 when searching. */
1749 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1750 {
1751 if (cris_spec_regs[i].number == spec_regno
1752 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1753 /* Go with the first applicable register. */
1754 return cris_spec_regs[i].name;
1755 }
1756 /* Special register not applicable to this CRIS version. */
1757 return NULL;
1758 }
1759
1760 static const char *
1761 cris_register_name (struct gdbarch *gdbarch, int regno)
1762 {
1763 static char *cris_genreg_names[] =
1764 { "r0", "r1", "r2", "r3", \
1765 "r4", "r5", "r6", "r7", \
1766 "r8", "r9", "r10", "r11", \
1767 "r12", "r13", "sp", "pc" };
1768
1769 if (regno >= 0 && regno < NUM_GENREGS)
1770 {
1771 /* General register. */
1772 return cris_genreg_names[regno];
1773 }
1774 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1775 {
1776 return cris_special_register_name (gdbarch, regno);
1777 }
1778 else
1779 {
1780 /* Invalid register. */
1781 return NULL;
1782 }
1783 }
1784
1785 static const char *
1786 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1787 {
1788 static char *crisv32_genreg_names[] =
1789 { "r0", "r1", "r2", "r3", \
1790 "r4", "r5", "r6", "r7", \
1791 "r8", "r9", "r10", "r11", \
1792 "r12", "r13", "sp", "acr"
1793 };
1794
1795 static char *crisv32_sreg_names[] =
1796 { "s0", "s1", "s2", "s3", \
1797 "s4", "s5", "s6", "s7", \
1798 "s8", "s9", "s10", "s11", \
1799 "s12", "s13", "s14", "s15"
1800 };
1801
1802 if (regno >= 0 && regno < NUM_GENREGS)
1803 {
1804 /* General register. */
1805 return crisv32_genreg_names[regno];
1806 }
1807 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1808 {
1809 return cris_special_register_name (gdbarch, regno);
1810 }
1811 else if (regno == gdbarch_pc_regnum (gdbarch))
1812 {
1813 return "pc";
1814 }
1815 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1816 {
1817 return crisv32_sreg_names[regno - S0_REGNUM];
1818 }
1819 else
1820 {
1821 /* Invalid register. */
1822 return NULL;
1823 }
1824 }
1825
1826 /* Convert DWARF register number REG to the appropriate register
1827 number used by GDB. */
1828
1829 static int
1830 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1831 {
1832 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1833 numbering, MOF is 18).
1834 Adapted from gcc/config/cris/cris.h. */
1835 static int cris_dwarf_regmap[] = {
1836 0, 1, 2, 3,
1837 4, 5, 6, 7,
1838 8, 9, 10, 11,
1839 12, 13, 14, 15,
1840 27, -1, -1, -1,
1841 -1, -1, -1, 23,
1842 -1, -1, -1, 27,
1843 -1, -1, -1, -1
1844 };
1845 int regnum = -1;
1846
1847 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1848 regnum = cris_dwarf_regmap[reg];
1849
1850 if (regnum == -1)
1851 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1852
1853 return regnum;
1854 }
1855
1856 /* DWARF-2 frame support. */
1857
1858 static void
1859 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1860 struct dwarf2_frame_state_reg *reg,
1861 struct frame_info *this_frame)
1862 {
1863 /* The return address column. */
1864 if (regnum == gdbarch_pc_regnum (gdbarch))
1865 reg->how = DWARF2_FRAME_REG_RA;
1866
1867 /* The call frame address. */
1868 else if (regnum == gdbarch_sp_regnum (gdbarch))
1869 reg->how = DWARF2_FRAME_REG_CFA;
1870 }
1871
1872 /* Extract from an array regbuf containing the raw register state a function
1873 return value of type type, and copy that, in virtual format, into
1874 valbuf. */
1875
1876 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1877
1878 static void
1879 cris_extract_return_value (struct type *type, struct regcache *regcache,
1880 void *valbuf)
1881 {
1882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1884 ULONGEST val;
1885 int len = TYPE_LENGTH (type);
1886
1887 if (len <= 4)
1888 {
1889 /* Get the return value from R10. */
1890 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1891 store_unsigned_integer (valbuf, len, byte_order, val);
1892 }
1893 else if (len <= 8)
1894 {
1895 /* Get the return value from R10 and R11. */
1896 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1897 store_unsigned_integer (valbuf, 4, byte_order, val);
1898 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1899 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1900 }
1901 else
1902 error (_("cris_extract_return_value: type length too large"));
1903 }
1904
1905 /* Handle the CRIS return value convention. */
1906
1907 static enum return_value_convention
1908 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1909 struct type *type, struct regcache *regcache,
1910 gdb_byte *readbuf, const gdb_byte *writebuf)
1911 {
1912 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1913 || TYPE_CODE (type) == TYPE_CODE_UNION
1914 || TYPE_LENGTH (type) > 8)
1915 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1916 goes on the stack. */
1917 return RETURN_VALUE_STRUCT_CONVENTION;
1918
1919 if (readbuf)
1920 cris_extract_return_value (type, regcache, readbuf);
1921 if (writebuf)
1922 cris_store_return_value (type, regcache, writebuf);
1923
1924 return RETURN_VALUE_REGISTER_CONVENTION;
1925 }
1926
1927 /* Calculates a value that measures how good inst_args constraints an
1928 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929
1930 static int
1931 constraint (unsigned int insn, const signed char *inst_args,
1932 inst_env_type *inst_env)
1933 {
1934 int retval = 0;
1935 int tmp, i;
1936
1937 const char *s = inst_args;
1938
1939 for (; *s; s++)
1940 switch (*s)
1941 {
1942 case 'm':
1943 if ((insn & 0x30) == 0x30)
1944 return -1;
1945 break;
1946
1947 case 'S':
1948 /* A prefix operand. */
1949 if (inst_env->prefix_found)
1950 break;
1951 else
1952 return -1;
1953
1954 case 'B':
1955 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1956 valid "push" size. In case of special register, it may be != 4. */
1957 if (inst_env->prefix_found)
1958 break;
1959 else
1960 return -1;
1961
1962 case 'D':
1963 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1964 if (!retval)
1965 return -1;
1966 else
1967 retval += 4;
1968 break;
1969
1970 case 'P':
1971 tmp = (insn >> 0xC) & 0xF;
1972
1973 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1974 {
1975 /* Since we match four bits, we will give a value of
1976 4 - 1 = 3 in a match. If there is a corresponding
1977 exact match of a special register in another pattern, it
1978 will get a value of 4, which will be higher. This should
1979 be correct in that an exact pattern would match better that
1980 a general pattern.
1981 Note that there is a reason for not returning zero; the
1982 pattern for "clear" is partly matched in the bit-pattern
1983 (the two lower bits must be zero), while the bit-pattern
1984 for a move from a special register is matched in the
1985 register constraint.
1986 This also means we will will have a race condition if
1987 there is a partly match in three bits in the bit pattern. */
1988 if (tmp == cris_spec_regs[i].number)
1989 {
1990 retval += 3;
1991 break;
1992 }
1993 }
1994
1995 if (cris_spec_regs[i].name == NULL)
1996 return -1;
1997 break;
1998 }
1999 return retval;
2000 }
2001
2002 /* Returns the number of bits set in the variable value. */
2003
2004 static int
2005 number_of_bits (unsigned int value)
2006 {
2007 int number_of_bits = 0;
2008
2009 while (value != 0)
2010 {
2011 number_of_bits += 1;
2012 value &= (value - 1);
2013 }
2014 return number_of_bits;
2015 }
2016
2017 /* Finds the address that should contain the single step breakpoint(s).
2018 It stems from code in cris-dis.c. */
2019
2020 static int
2021 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022 {
2023 int i;
2024 int max_level_of_match = -1;
2025 int max_matched = -1;
2026 int level_of_match;
2027
2028 for (i = 0; cris_opcodes[i].name != NULL; i++)
2029 {
2030 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2031 && ((cris_opcodes[i].lose & insn) == 0)
2032 /* Only CRISv10 instructions, please. */
2033 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2034 {
2035 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2036 if (level_of_match >= 0)
2037 {
2038 level_of_match +=
2039 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2040 if (level_of_match > max_level_of_match)
2041 {
2042 max_matched = i;
2043 max_level_of_match = level_of_match;
2044 if (level_of_match == 16)
2045 {
2046 /* All bits matched, cannot find better. */
2047 break;
2048 }
2049 }
2050 }
2051 }
2052 }
2053 return max_matched;
2054 }
2055
2056 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2057 actually an internal error. */
2058
2059 static int
2060 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2061 {
2062 int i;
2063 int offset;
2064 unsigned short insn;
2065 struct gdbarch *gdbarch = get_frame_arch (frame);
2066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2067
2068 /* Create a local register image and set the initial state. */
2069 for (i = 0; i < NUM_GENREGS; i++)
2070 {
2071 inst_env->reg[i] =
2072 (unsigned long) get_frame_register_unsigned (frame, i);
2073 }
2074 offset = NUM_GENREGS;
2075 for (i = 0; i < NUM_SPECREGS; i++)
2076 {
2077 inst_env->preg[i] =
2078 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2079 }
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2087 inst_env->byte_order = byte_order;
2088
2089 /* Look for a step target. */
2090 do
2091 {
2092 /* Read an instruction from the client. */
2093 insn = read_memory_unsigned_integer
2094 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2095
2096 /* If the instruction is not in a delay slot the new content of the
2097 PC is [PC] + 2. If the instruction is in a delay slot it is not
2098 that simple. Since a instruction in a delay slot cannot change
2099 the content of the PC, it does not matter what value PC will have.
2100 Just make sure it is a valid instruction. */
2101 if (!inst_env->delay_slot_pc_active)
2102 {
2103 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2104 }
2105 else
2106 {
2107 inst_env->delay_slot_pc_active = 0;
2108 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2109 = inst_env->delay_slot_pc;
2110 }
2111 /* Analyse the present instruction. */
2112 i = find_cris_op (insn, inst_env);
2113 if (i == -1)
2114 {
2115 inst_env->invalid = 1;
2116 }
2117 else
2118 {
2119 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2120 }
2121 } while (!inst_env->invalid
2122 && (inst_env->prefix_found || inst_env->xflag_found
2123 || inst_env->slot_needed));
2124 return i;
2125 }
2126
2127 /* There is no hardware single-step support. The function find_step_target
2128 digs through the opcodes in order to find all possible targets.
2129 Either one ordinary target or two targets for branches may be found. */
2130
2131 static int
2132 cris_software_single_step (struct frame_info *frame)
2133 {
2134 struct gdbarch *gdbarch = get_frame_arch (frame);
2135 struct address_space *aspace = get_frame_address_space (frame);
2136 inst_env_type inst_env;
2137
2138 /* Analyse the present instruction environment and insert
2139 breakpoints. */
2140 int status = find_step_target (frame, &inst_env);
2141 if (status == -1)
2142 {
2143 /* Could not find a target. Things are likely to go downhill
2144 from here. */
2145 warning (_("CRIS software single step could not find a step target."));
2146 }
2147 else
2148 {
2149 /* Insert at most two breakpoints. One for the next PC content
2150 and possibly another one for a branch, jump, etc. */
2151 CORE_ADDR next_pc
2152 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2153 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2154 if (inst_env.branch_found
2155 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2156 {
2157 CORE_ADDR branch_target_address
2158 = (CORE_ADDR) inst_env.branch_break_address;
2159 insert_single_step_breakpoint (gdbarch,
2160 aspace, branch_target_address);
2161 }
2162 }
2163
2164 return 1;
2165 }
2166
2167 /* Calculates the prefix value for quick offset addressing mode. */
2168
2169 static void
2170 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2171 {
2172 /* It's invalid to be in a delay slot. You can't have a prefix to this
2173 instruction (not 100% sure). */
2174 if (inst_env->slot_needed || inst_env->prefix_found)
2175 {
2176 inst_env->invalid = 1;
2177 return;
2178 }
2179
2180 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2181 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2182
2183 /* A prefix doesn't change the xflag_found. But the rest of the flags
2184 need updating. */
2185 inst_env->slot_needed = 0;
2186 inst_env->prefix_found = 1;
2187 }
2188
2189 /* Updates the autoincrement register. The size of the increment is derived
2190 from the size of the operation. The PC is always kept aligned on even
2191 word addresses. */
2192
2193 static void
2194 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2195 {
2196 if (size == INST_BYTE_SIZE)
2197 {
2198 inst_env->reg[cris_get_operand1 (inst)] += 1;
2199
2200 /* The PC must be word aligned, so increase the PC with one
2201 word even if the size is byte. */
2202 if (cris_get_operand1 (inst) == REG_PC)
2203 {
2204 inst_env->reg[REG_PC] += 1;
2205 }
2206 }
2207 else if (size == INST_WORD_SIZE)
2208 {
2209 inst_env->reg[cris_get_operand1 (inst)] += 2;
2210 }
2211 else if (size == INST_DWORD_SIZE)
2212 {
2213 inst_env->reg[cris_get_operand1 (inst)] += 4;
2214 }
2215 else
2216 {
2217 /* Invalid size. */
2218 inst_env->invalid = 1;
2219 }
2220 }
2221
2222 /* Just a forward declaration. */
2223
2224 static unsigned long get_data_from_address (unsigned short *inst,
2225 CORE_ADDR address,
2226 enum bfd_endian byte_order);
2227
2228 /* Calculates the prefix value for the general case of offset addressing
2229 mode. */
2230
2231 static void
2232 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2233 {
2234
2235 long offset;
2236
2237 /* It's invalid to be in a delay slot. */
2238 if (inst_env->slot_needed || inst_env->prefix_found)
2239 {
2240 inst_env->invalid = 1;
2241 return;
2242 }
2243
2244 /* The calculation of prefix_value used to be after process_autoincrement,
2245 but that fails for an instruction such as jsr [$r0+12] which is encoded
2246 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2247 mustn't be incremented until we have read it and what it points at. */
2248 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2249
2250 /* The offset is an indirection of the contents of the operand1 register. */
2251 inst_env->prefix_value +=
2252 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2253 inst_env->byte_order);
2254
2255 if (cris_get_mode (inst) == AUTOINC_MODE)
2256 {
2257 process_autoincrement (cris_get_size (inst), inst, inst_env);
2258 }
2259
2260 /* A prefix doesn't change the xflag_found. But the rest of the flags
2261 need updating. */
2262 inst_env->slot_needed = 0;
2263 inst_env->prefix_found = 1;
2264 }
2265
2266 /* Calculates the prefix value for the index addressing mode. */
2267
2268 static void
2269 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2270 {
2271 /* It's invalid to be in a delay slot. I can't see that it's possible to
2272 have a prefix to this instruction. So I will treat this as invalid. */
2273 if (inst_env->slot_needed || inst_env->prefix_found)
2274 {
2275 inst_env->invalid = 1;
2276 return;
2277 }
2278
2279 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2280
2281 /* The offset is the operand2 value shifted the size of the instruction
2282 to the left. */
2283 inst_env->prefix_value +=
2284 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2285
2286 /* If the PC is operand1 (base) the address used is the address after
2287 the main instruction, i.e. address + 2 (the PC is already compensated
2288 for the prefix operation). */
2289 if (cris_get_operand1 (inst) == REG_PC)
2290 {
2291 inst_env->prefix_value += 2;
2292 }
2293
2294 /* A prefix doesn't change the xflag_found. But the rest of the flags
2295 need updating. */
2296 inst_env->slot_needed = 0;
2297 inst_env->xflag_found = 0;
2298 inst_env->prefix_found = 1;
2299 }
2300
2301 /* Calculates the prefix value for the double indirect addressing mode. */
2302
2303 static void
2304 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2305 {
2306
2307 CORE_ADDR address;
2308
2309 /* It's invalid to be in a delay slot. */
2310 if (inst_env->slot_needed || inst_env->prefix_found)
2311 {
2312 inst_env->invalid = 1;
2313 return;
2314 }
2315
2316 /* The prefix value is one dereference of the contents of the operand1
2317 register. */
2318 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2319 inst_env->prefix_value
2320 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2321
2322 /* Check if the mode is autoincrement. */
2323 if (cris_get_mode (inst) == AUTOINC_MODE)
2324 {
2325 inst_env->reg[cris_get_operand1 (inst)] += 4;
2326 }
2327
2328 /* A prefix doesn't change the xflag_found. But the rest of the flags
2329 need updating. */
2330 inst_env->slot_needed = 0;
2331 inst_env->xflag_found = 0;
2332 inst_env->prefix_found = 1;
2333 }
2334
2335 /* Finds the destination for a branch with 8-bits offset. */
2336
2337 static void
2338 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2339 {
2340
2341 short offset;
2342
2343 /* If we have a prefix or are in a delay slot it's bad. */
2344 if (inst_env->slot_needed || inst_env->prefix_found)
2345 {
2346 inst_env->invalid = 1;
2347 return;
2348 }
2349
2350 /* We have a branch, find out where the branch will land. */
2351 offset = cris_get_branch_short_offset (inst);
2352
2353 /* Check if the offset is signed. */
2354 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2355 {
2356 offset |= 0xFF00;
2357 }
2358
2359 /* The offset ends with the sign bit, set it to zero. The address
2360 should always be word aligned. */
2361 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2362
2363 inst_env->branch_found = 1;
2364 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2365
2366 inst_env->slot_needed = 1;
2367 inst_env->prefix_found = 0;
2368 inst_env->xflag_found = 0;
2369 inst_env->disable_interrupt = 1;
2370 }
2371
2372 /* Finds the destination for a branch with 16-bits offset. */
2373
2374 static void
2375 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2376 {
2377 short offset;
2378
2379 /* If we have a prefix or is in a delay slot it's bad. */
2380 if (inst_env->slot_needed || inst_env->prefix_found)
2381 {
2382 inst_env->invalid = 1;
2383 return;
2384 }
2385
2386 /* We have a branch, find out the offset for the branch. */
2387 offset = read_memory_integer (inst_env->reg[REG_PC], 2, inst_env->byte_order);
2388
2389 /* The instruction is one word longer than normal, so add one word
2390 to the PC. */
2391 inst_env->reg[REG_PC] += 2;
2392
2393 inst_env->branch_found = 1;
2394 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2395
2396
2397 inst_env->slot_needed = 1;
2398 inst_env->prefix_found = 0;
2399 inst_env->xflag_found = 0;
2400 inst_env->disable_interrupt = 1;
2401 }
2402
2403 /* Handles the ABS instruction. */
2404
2405 static void
2406 abs_op (unsigned short inst, inst_env_type *inst_env)
2407 {
2408
2409 long value;
2410
2411 /* ABS can't have a prefix, so it's bad if it does. */
2412 if (inst_env->prefix_found)
2413 {
2414 inst_env->invalid = 1;
2415 return;
2416 }
2417
2418 /* Check if the operation affects the PC. */
2419 if (cris_get_operand2 (inst) == REG_PC)
2420 {
2421
2422 /* It's invalid to change to the PC if we are in a delay slot. */
2423 if (inst_env->slot_needed)
2424 {
2425 inst_env->invalid = 1;
2426 return;
2427 }
2428
2429 value = (long) inst_env->reg[REG_PC];
2430
2431 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2432 if (value != SIGNED_DWORD_MASK)
2433 {
2434 value = -value;
2435 inst_env->reg[REG_PC] = (long) value;
2436 }
2437 }
2438
2439 inst_env->slot_needed = 0;
2440 inst_env->prefix_found = 0;
2441 inst_env->xflag_found = 0;
2442 inst_env->disable_interrupt = 0;
2443 }
2444
2445 /* Handles the ADDI instruction. */
2446
2447 static void
2448 addi_op (unsigned short inst, inst_env_type *inst_env)
2449 {
2450 /* It's invalid to have the PC as base register. And ADDI can't have
2451 a prefix. */
2452 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2453 {
2454 inst_env->invalid = 1;
2455 return;
2456 }
2457
2458 inst_env->slot_needed = 0;
2459 inst_env->prefix_found = 0;
2460 inst_env->xflag_found = 0;
2461 inst_env->disable_interrupt = 0;
2462 }
2463
2464 /* Handles the ASR instruction. */
2465
2466 static void
2467 asr_op (unsigned short inst, inst_env_type *inst_env)
2468 {
2469 int shift_steps;
2470 unsigned long value;
2471 unsigned long signed_extend_mask = 0;
2472
2473 /* ASR can't have a prefix, so check that it doesn't. */
2474 if (inst_env->prefix_found)
2475 {
2476 inst_env->invalid = 1;
2477 return;
2478 }
2479
2480 /* Check if the PC is the target register. */
2481 if (cris_get_operand2 (inst) == REG_PC)
2482 {
2483 /* It's invalid to change the PC in a delay slot. */
2484 if (inst_env->slot_needed)
2485 {
2486 inst_env->invalid = 1;
2487 return;
2488 }
2489 /* Get the number of bits to shift. */
2490 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2491 value = inst_env->reg[REG_PC];
2492
2493 /* Find out how many bits the operation should apply to. */
2494 if (cris_get_size (inst) == INST_BYTE_SIZE)
2495 {
2496 if (value & SIGNED_BYTE_MASK)
2497 {
2498 signed_extend_mask = 0xFF;
2499 signed_extend_mask = signed_extend_mask >> shift_steps;
2500 signed_extend_mask = ~signed_extend_mask;
2501 }
2502 value = value >> shift_steps;
2503 value |= signed_extend_mask;
2504 value &= 0xFF;
2505 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2506 inst_env->reg[REG_PC] |= value;
2507 }
2508 else if (cris_get_size (inst) == INST_WORD_SIZE)
2509 {
2510 if (value & SIGNED_WORD_MASK)
2511 {
2512 signed_extend_mask = 0xFFFF;
2513 signed_extend_mask = signed_extend_mask >> shift_steps;
2514 signed_extend_mask = ~signed_extend_mask;
2515 }
2516 value = value >> shift_steps;
2517 value |= signed_extend_mask;
2518 value &= 0xFFFF;
2519 inst_env->reg[REG_PC] &= 0xFFFF0000;
2520 inst_env->reg[REG_PC] |= value;
2521 }
2522 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2523 {
2524 if (value & SIGNED_DWORD_MASK)
2525 {
2526 signed_extend_mask = 0xFFFFFFFF;
2527 signed_extend_mask = signed_extend_mask >> shift_steps;
2528 signed_extend_mask = ~signed_extend_mask;
2529 }
2530 value = value >> shift_steps;
2531 value |= signed_extend_mask;
2532 inst_env->reg[REG_PC] = value;
2533 }
2534 }
2535 inst_env->slot_needed = 0;
2536 inst_env->prefix_found = 0;
2537 inst_env->xflag_found = 0;
2538 inst_env->disable_interrupt = 0;
2539 }
2540
2541 /* Handles the ASRQ instruction. */
2542
2543 static void
2544 asrq_op (unsigned short inst, inst_env_type *inst_env)
2545 {
2546
2547 int shift_steps;
2548 unsigned long value;
2549 unsigned long signed_extend_mask = 0;
2550
2551 /* ASRQ can't have a prefix, so check that it doesn't. */
2552 if (inst_env->prefix_found)
2553 {
2554 inst_env->invalid = 1;
2555 return;
2556 }
2557
2558 /* Check if the PC is the target register. */
2559 if (cris_get_operand2 (inst) == REG_PC)
2560 {
2561
2562 /* It's invalid to change the PC in a delay slot. */
2563 if (inst_env->slot_needed)
2564 {
2565 inst_env->invalid = 1;
2566 return;
2567 }
2568 /* The shift size is given as a 5 bit quick value, i.e. we don't
2569 want the the sign bit of the quick value. */
2570 shift_steps = cris_get_asr_shift_steps (inst);
2571 value = inst_env->reg[REG_PC];
2572 if (value & SIGNED_DWORD_MASK)
2573 {
2574 signed_extend_mask = 0xFFFFFFFF;
2575 signed_extend_mask = signed_extend_mask >> shift_steps;
2576 signed_extend_mask = ~signed_extend_mask;
2577 }
2578 value = value >> shift_steps;
2579 value |= signed_extend_mask;
2580 inst_env->reg[REG_PC] = value;
2581 }
2582 inst_env->slot_needed = 0;
2583 inst_env->prefix_found = 0;
2584 inst_env->xflag_found = 0;
2585 inst_env->disable_interrupt = 0;
2586 }
2587
2588 /* Handles the AX, EI and SETF instruction. */
2589
2590 static void
2591 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2592 {
2593 if (inst_env->prefix_found)
2594 {
2595 inst_env->invalid = 1;
2596 return;
2597 }
2598 /* Check if the instruction is setting the X flag. */
2599 if (cris_is_xflag_bit_on (inst))
2600 {
2601 inst_env->xflag_found = 1;
2602 }
2603 else
2604 {
2605 inst_env->xflag_found = 0;
2606 }
2607 inst_env->slot_needed = 0;
2608 inst_env->prefix_found = 0;
2609 inst_env->disable_interrupt = 1;
2610 }
2611
2612 /* Checks if the instruction is in assign mode. If so, it updates the assign
2613 register. Note that check_assign assumes that the caller has checked that
2614 there is a prefix to this instruction. The mode check depends on this. */
2615
2616 static void
2617 check_assign (unsigned short inst, inst_env_type *inst_env)
2618 {
2619 /* Check if it's an assign addressing mode. */
2620 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2621 {
2622 /* Assign the prefix value to operand 1. */
2623 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2624 }
2625 }
2626
2627 /* Handles the 2-operand BOUND instruction. */
2628
2629 static void
2630 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2631 {
2632 /* It's invalid to have the PC as the index operand. */
2633 if (cris_get_operand2 (inst) == REG_PC)
2634 {
2635 inst_env->invalid = 1;
2636 return;
2637 }
2638 /* Check if we have a prefix. */
2639 if (inst_env->prefix_found)
2640 {
2641 check_assign (inst, inst_env);
2642 }
2643 /* Check if this is an autoincrement mode. */
2644 else if (cris_get_mode (inst) == AUTOINC_MODE)
2645 {
2646 /* It's invalid to change the PC in a delay slot. */
2647 if (inst_env->slot_needed)
2648 {
2649 inst_env->invalid = 1;
2650 return;
2651 }
2652 process_autoincrement (cris_get_size (inst), inst, inst_env);
2653 }
2654 inst_env->slot_needed = 0;
2655 inst_env->prefix_found = 0;
2656 inst_env->xflag_found = 0;
2657 inst_env->disable_interrupt = 0;
2658 }
2659
2660 /* Handles the 3-operand BOUND instruction. */
2661
2662 static void
2663 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2664 {
2665 /* It's an error if we haven't got a prefix. And it's also an error
2666 if the PC is the destination register. */
2667 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2668 {
2669 inst_env->invalid = 1;
2670 return;
2671 }
2672 inst_env->slot_needed = 0;
2673 inst_env->prefix_found = 0;
2674 inst_env->xflag_found = 0;
2675 inst_env->disable_interrupt = 0;
2676 }
2677
2678 /* Clears the status flags in inst_env. */
2679
2680 static void
2681 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2682 {
2683 /* It's an error if we have got a prefix. */
2684 if (inst_env->prefix_found)
2685 {
2686 inst_env->invalid = 1;
2687 return;
2688 }
2689
2690 inst_env->slot_needed = 0;
2691 inst_env->prefix_found = 0;
2692 inst_env->xflag_found = 0;
2693 inst_env->disable_interrupt = 0;
2694 }
2695
2696 /* Clears the status flags in inst_env. */
2697
2698 static void
2699 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2700 {
2701 /* It's an error if we have got a prefix. */
2702 if (inst_env->prefix_found)
2703 {
2704 inst_env->invalid = 1;
2705 return;
2706 }
2707
2708 inst_env->slot_needed = 0;
2709 inst_env->prefix_found = 0;
2710 inst_env->xflag_found = 0;
2711 inst_env->disable_interrupt = 1;
2712 }
2713
2714 /* Handles the CLEAR instruction if it's in register mode. */
2715
2716 static void
2717 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2718 {
2719 /* Check if the target is the PC. */
2720 if (cris_get_operand2 (inst) == REG_PC)
2721 {
2722 /* The instruction will clear the instruction's size bits. */
2723 int clear_size = cris_get_clear_size (inst);
2724 if (clear_size == INST_BYTE_SIZE)
2725 {
2726 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2727 }
2728 if (clear_size == INST_WORD_SIZE)
2729 {
2730 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2731 }
2732 if (clear_size == INST_DWORD_SIZE)
2733 {
2734 inst_env->delay_slot_pc = 0x0;
2735 }
2736 /* The jump will be delayed with one delay slot. So we need a delay
2737 slot. */
2738 inst_env->slot_needed = 1;
2739 inst_env->delay_slot_pc_active = 1;
2740 }
2741 else
2742 {
2743 /* The PC will not change => no delay slot. */
2744 inst_env->slot_needed = 0;
2745 }
2746 inst_env->prefix_found = 0;
2747 inst_env->xflag_found = 0;
2748 inst_env->disable_interrupt = 0;
2749 }
2750
2751 /* Handles the TEST instruction if it's in register mode. */
2752
2753 static void
2754 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2755 {
2756 /* It's an error if we have got a prefix. */
2757 if (inst_env->prefix_found)
2758 {
2759 inst_env->invalid = 1;
2760 return;
2761 }
2762 inst_env->slot_needed = 0;
2763 inst_env->prefix_found = 0;
2764 inst_env->xflag_found = 0;
2765 inst_env->disable_interrupt = 0;
2766
2767 }
2768
2769 /* Handles the CLEAR and TEST instruction if the instruction isn't
2770 in register mode. */
2771
2772 static void
2773 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2774 {
2775 /* Check if we are in a prefix mode. */
2776 if (inst_env->prefix_found)
2777 {
2778 /* The only way the PC can change is if this instruction is in
2779 assign addressing mode. */
2780 check_assign (inst, inst_env);
2781 }
2782 /* Indirect mode can't change the PC so just check if the mode is
2783 autoincrement. */
2784 else if (cris_get_mode (inst) == AUTOINC_MODE)
2785 {
2786 process_autoincrement (cris_get_size (inst), inst, inst_env);
2787 }
2788 inst_env->slot_needed = 0;
2789 inst_env->prefix_found = 0;
2790 inst_env->xflag_found = 0;
2791 inst_env->disable_interrupt = 0;
2792 }
2793
2794 /* Checks that the PC isn't the destination register or the instructions has
2795 a prefix. */
2796
2797 static void
2798 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2799 {
2800 /* It's invalid to have the PC as the destination. The instruction can't
2801 have a prefix. */
2802 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2803 {
2804 inst_env->invalid = 1;
2805 return;
2806 }
2807
2808 inst_env->slot_needed = 0;
2809 inst_env->prefix_found = 0;
2810 inst_env->xflag_found = 0;
2811 inst_env->disable_interrupt = 0;
2812 }
2813
2814 /* Checks that the instruction doesn't have a prefix. */
2815
2816 static void
2817 break_op (unsigned short inst, inst_env_type *inst_env)
2818 {
2819 /* The instruction can't have a prefix. */
2820 if (inst_env->prefix_found)
2821 {
2822 inst_env->invalid = 1;
2823 return;
2824 }
2825
2826 inst_env->slot_needed = 0;
2827 inst_env->prefix_found = 0;
2828 inst_env->xflag_found = 0;
2829 inst_env->disable_interrupt = 1;
2830 }
2831
2832 /* Checks that the PC isn't the destination register and that the instruction
2833 doesn't have a prefix. */
2834
2835 static void
2836 scc_op (unsigned short inst, inst_env_type *inst_env)
2837 {
2838 /* It's invalid to have the PC as the destination. The instruction can't
2839 have a prefix. */
2840 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2841 {
2842 inst_env->invalid = 1;
2843 return;
2844 }
2845
2846 inst_env->slot_needed = 0;
2847 inst_env->prefix_found = 0;
2848 inst_env->xflag_found = 0;
2849 inst_env->disable_interrupt = 1;
2850 }
2851
2852 /* Handles the register mode JUMP instruction. */
2853
2854 static void
2855 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2856 {
2857 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2858 you can't have a prefix. */
2859 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2860 {
2861 inst_env->invalid = 1;
2862 return;
2863 }
2864
2865 /* Just change the PC. */
2866 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2867 inst_env->slot_needed = 0;
2868 inst_env->prefix_found = 0;
2869 inst_env->xflag_found = 0;
2870 inst_env->disable_interrupt = 1;
2871 }
2872
2873 /* Handles the JUMP instruction for all modes except register. */
2874
2875 static void
2876 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2877 {
2878 unsigned long newpc;
2879 CORE_ADDR address;
2880
2881 /* It's invalid to do a JUMP in a delay slot. */
2882 if (inst_env->slot_needed)
2883 {
2884 inst_env->invalid = 1;
2885 }
2886 else
2887 {
2888 /* Check if we have a prefix. */
2889 if (inst_env->prefix_found)
2890 {
2891 check_assign (inst, inst_env);
2892
2893 /* Get the new value for the the PC. */
2894 newpc =
2895 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2896 4, inst_env->byte_order);
2897 }
2898 else
2899 {
2900 /* Get the new value for the PC. */
2901 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2902 newpc = read_memory_unsigned_integer (address,
2903 4, inst_env->byte_order);
2904
2905 /* Check if we should increment a register. */
2906 if (cris_get_mode (inst) == AUTOINC_MODE)
2907 {
2908 inst_env->reg[cris_get_operand1 (inst)] += 4;
2909 }
2910 }
2911 inst_env->reg[REG_PC] = newpc;
2912 }
2913 inst_env->slot_needed = 0;
2914 inst_env->prefix_found = 0;
2915 inst_env->xflag_found = 0;
2916 inst_env->disable_interrupt = 1;
2917 }
2918
2919 /* Handles moves to special registers (aka P-register) for all modes. */
2920
2921 static void
2922 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2923 inst_env_type *inst_env)
2924 {
2925 if (inst_env->prefix_found)
2926 {
2927 /* The instruction has a prefix that means we are only interested if
2928 the instruction is in assign mode. */
2929 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2930 {
2931 /* The prefix handles the problem if we are in a delay slot. */
2932 if (cris_get_operand1 (inst) == REG_PC)
2933 {
2934 /* Just take care of the assign. */
2935 check_assign (inst, inst_env);
2936 }
2937 }
2938 }
2939 else if (cris_get_mode (inst) == AUTOINC_MODE)
2940 {
2941 /* The instruction doesn't have a prefix, the only case left that we
2942 are interested in is the autoincrement mode. */
2943 if (cris_get_operand1 (inst) == REG_PC)
2944 {
2945 /* If the PC is to be incremented it's invalid to be in a
2946 delay slot. */
2947 if (inst_env->slot_needed)
2948 {
2949 inst_env->invalid = 1;
2950 return;
2951 }
2952
2953 /* The increment depends on the size of the special register. */
2954 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2955 {
2956 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2957 }
2958 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2959 {
2960 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2961 }
2962 else
2963 {
2964 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2965 }
2966 }
2967 }
2968 inst_env->slot_needed = 0;
2969 inst_env->prefix_found = 0;
2970 inst_env->xflag_found = 0;
2971 inst_env->disable_interrupt = 1;
2972 }
2973
2974 /* Handles moves from special registers (aka P-register) for all modes
2975 except register. */
2976
2977 static void
2978 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2979 inst_env_type *inst_env)
2980 {
2981 if (inst_env->prefix_found)
2982 {
2983 /* The instruction has a prefix that means we are only interested if
2984 the instruction is in assign mode. */
2985 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2986 {
2987 /* The prefix handles the problem if we are in a delay slot. */
2988 if (cris_get_operand1 (inst) == REG_PC)
2989 {
2990 /* Just take care of the assign. */
2991 check_assign (inst, inst_env);
2992 }
2993 }
2994 }
2995 /* The instruction doesn't have a prefix, the only case left that we
2996 are interested in is the autoincrement mode. */
2997 else if (cris_get_mode (inst) == AUTOINC_MODE)
2998 {
2999 if (cris_get_operand1 (inst) == REG_PC)
3000 {
3001 /* If the PC is to be incremented it's invalid to be in a
3002 delay slot. */
3003 if (inst_env->slot_needed)
3004 {
3005 inst_env->invalid = 1;
3006 return;
3007 }
3008
3009 /* The increment depends on the size of the special register. */
3010 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3011 {
3012 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3013 }
3014 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3015 {
3016 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3017 }
3018 else
3019 {
3020 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3021 }
3022 }
3023 }
3024 inst_env->slot_needed = 0;
3025 inst_env->prefix_found = 0;
3026 inst_env->xflag_found = 0;
3027 inst_env->disable_interrupt = 1;
3028 }
3029
3030 /* Handles moves from special registers (aka P-register) when the mode
3031 is register. */
3032
3033 static void
3034 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3035 {
3036 /* Register mode move from special register can't have a prefix. */
3037 if (inst_env->prefix_found)
3038 {
3039 inst_env->invalid = 1;
3040 return;
3041 }
3042
3043 if (cris_get_operand1 (inst) == REG_PC)
3044 {
3045 /* It's invalid to change the PC in a delay slot. */
3046 if (inst_env->slot_needed)
3047 {
3048 inst_env->invalid = 1;
3049 return;
3050 }
3051 /* The destination is the PC, the jump will have a delay slot. */
3052 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3053 inst_env->slot_needed = 1;
3054 inst_env->delay_slot_pc_active = 1;
3055 }
3056 else
3057 {
3058 /* If the destination isn't PC, there will be no jump. */
3059 inst_env->slot_needed = 0;
3060 }
3061 inst_env->prefix_found = 0;
3062 inst_env->xflag_found = 0;
3063 inst_env->disable_interrupt = 1;
3064 }
3065
3066 /* Handles the MOVEM from memory to general register instruction. */
3067
3068 static void
3069 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3070 {
3071 if (inst_env->prefix_found)
3072 {
3073 /* The prefix handles the problem if we are in a delay slot. Is the
3074 MOVEM instruction going to change the PC? */
3075 if (cris_get_operand2 (inst) >= REG_PC)
3076 {
3077 inst_env->reg[REG_PC] =
3078 read_memory_unsigned_integer (inst_env->prefix_value,
3079 4, inst_env->byte_order);
3080 }
3081 /* The assign value is the value after the increment. Normally, the
3082 assign value is the value before the increment. */
3083 if ((cris_get_operand1 (inst) == REG_PC)
3084 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3085 {
3086 inst_env->reg[REG_PC] = inst_env->prefix_value;
3087 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3088 }
3089 }
3090 else
3091 {
3092 /* Is the MOVEM instruction going to change the PC? */
3093 if (cris_get_operand2 (inst) == REG_PC)
3094 {
3095 /* It's invalid to change the PC in a delay slot. */
3096 if (inst_env->slot_needed)
3097 {
3098 inst_env->invalid = 1;
3099 return;
3100 }
3101 inst_env->reg[REG_PC] =
3102 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3103 4, inst_env->byte_order);
3104 }
3105 /* The increment is not depending on the size, instead it's depending
3106 on the number of registers loaded from memory. */
3107 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3108 {
3109 /* It's invalid to change the PC in a delay slot. */
3110 if (inst_env->slot_needed)
3111 {
3112 inst_env->invalid = 1;
3113 return;
3114 }
3115 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3116 }
3117 }
3118 inst_env->slot_needed = 0;
3119 inst_env->prefix_found = 0;
3120 inst_env->xflag_found = 0;
3121 inst_env->disable_interrupt = 0;
3122 }
3123
3124 /* Handles the MOVEM to memory from general register instruction. */
3125
3126 static void
3127 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3128 {
3129 if (inst_env->prefix_found)
3130 {
3131 /* The assign value is the value after the increment. Normally, the
3132 assign value is the value before the increment. */
3133 if ((cris_get_operand1 (inst) == REG_PC)
3134 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3135 {
3136 /* The prefix handles the problem if we are in a delay slot. */
3137 inst_env->reg[REG_PC] = inst_env->prefix_value;
3138 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3139 }
3140 }
3141 else
3142 {
3143 /* The increment is not depending on the size, instead it's depending
3144 on the number of registers loaded to memory. */
3145 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3146 {
3147 /* It's invalid to change the PC in a delay slot. */
3148 if (inst_env->slot_needed)
3149 {
3150 inst_env->invalid = 1;
3151 return;
3152 }
3153 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3154 }
3155 }
3156 inst_env->slot_needed = 0;
3157 inst_env->prefix_found = 0;
3158 inst_env->xflag_found = 0;
3159 inst_env->disable_interrupt = 0;
3160 }
3161
3162 /* Handles the intructions that's not yet implemented, by setting
3163 inst_env->invalid to true. */
3164
3165 static void
3166 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3167 {
3168 inst_env->invalid = 1;
3169 }
3170
3171 /* Handles the XOR instruction. */
3172
3173 static void
3174 xor_op (unsigned short inst, inst_env_type *inst_env)
3175 {
3176 /* XOR can't have a prefix. */
3177 if (inst_env->prefix_found)
3178 {
3179 inst_env->invalid = 1;
3180 return;
3181 }
3182
3183 /* Check if the PC is the target. */
3184 if (cris_get_operand2 (inst) == REG_PC)
3185 {
3186 /* It's invalid to change the PC in a delay slot. */
3187 if (inst_env->slot_needed)
3188 {
3189 inst_env->invalid = 1;
3190 return;
3191 }
3192 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3193 }
3194 inst_env->slot_needed = 0;
3195 inst_env->prefix_found = 0;
3196 inst_env->xflag_found = 0;
3197 inst_env->disable_interrupt = 0;
3198 }
3199
3200 /* Handles the MULS instruction. */
3201
3202 static void
3203 muls_op (unsigned short inst, inst_env_type *inst_env)
3204 {
3205 /* MULS/U can't have a prefix. */
3206 if (inst_env->prefix_found)
3207 {
3208 inst_env->invalid = 1;
3209 return;
3210 }
3211
3212 /* Consider it invalid if the PC is the target. */
3213 if (cris_get_operand2 (inst) == REG_PC)
3214 {
3215 inst_env->invalid = 1;
3216 return;
3217 }
3218 inst_env->slot_needed = 0;
3219 inst_env->prefix_found = 0;
3220 inst_env->xflag_found = 0;
3221 inst_env->disable_interrupt = 0;
3222 }
3223
3224 /* Handles the MULU instruction. */
3225
3226 static void
3227 mulu_op (unsigned short inst, inst_env_type *inst_env)
3228 {
3229 /* MULS/U can't have a prefix. */
3230 if (inst_env->prefix_found)
3231 {
3232 inst_env->invalid = 1;
3233 return;
3234 }
3235
3236 /* Consider it invalid if the PC is the target. */
3237 if (cris_get_operand2 (inst) == REG_PC)
3238 {
3239 inst_env->invalid = 1;
3240 return;
3241 }
3242 inst_env->slot_needed = 0;
3243 inst_env->prefix_found = 0;
3244 inst_env->xflag_found = 0;
3245 inst_env->disable_interrupt = 0;
3246 }
3247
3248 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3249 The MOVE instruction is the move from source to register. */
3250
3251 static void
3252 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3253 unsigned long source1, unsigned long source2)
3254 {
3255 unsigned long pc_mask;
3256 unsigned long operation_mask;
3257
3258 /* Find out how many bits the operation should apply to. */
3259 if (cris_get_size (inst) == INST_BYTE_SIZE)
3260 {
3261 pc_mask = 0xFFFFFF00;
3262 operation_mask = 0xFF;
3263 }
3264 else if (cris_get_size (inst) == INST_WORD_SIZE)
3265 {
3266 pc_mask = 0xFFFF0000;
3267 operation_mask = 0xFFFF;
3268 }
3269 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3270 {
3271 pc_mask = 0x0;
3272 operation_mask = 0xFFFFFFFF;
3273 }
3274 else
3275 {
3276 /* The size is out of range. */
3277 inst_env->invalid = 1;
3278 return;
3279 }
3280
3281 /* The instruction just works on uw_operation_mask bits. */
3282 source2 &= operation_mask;
3283 source1 &= operation_mask;
3284
3285 /* Now calculate the result. The opcode's 3 first bits separates
3286 the different actions. */
3287 switch (cris_get_opcode (inst) & 7)
3288 {
3289 case 0: /* add */
3290 source1 += source2;
3291 break;
3292
3293 case 1: /* move */
3294 source1 = source2;
3295 break;
3296
3297 case 2: /* subtract */
3298 source1 -= source2;
3299 break;
3300
3301 case 3: /* compare */
3302 break;
3303
3304 case 4: /* and */
3305 source1 &= source2;
3306 break;
3307
3308 case 5: /* or */
3309 source1 |= source2;
3310 break;
3311
3312 default:
3313 inst_env->invalid = 1;
3314 return;
3315
3316 break;
3317 }
3318
3319 /* Make sure that the result doesn't contain more than the instruction
3320 size bits. */
3321 source2 &= operation_mask;
3322
3323 /* Calculate the new breakpoint address. */
3324 inst_env->reg[REG_PC] &= pc_mask;
3325 inst_env->reg[REG_PC] |= source1;
3326
3327 }
3328
3329 /* Extends the value from either byte or word size to a dword. If the mode
3330 is zero extend then the value is extended with zero. If instead the mode
3331 is signed extend the sign bit of the value is taken into consideration. */
3332
3333 static unsigned long
3334 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3335 {
3336 /* The size can be either byte or word, check which one it is.
3337 Don't check the highest bit, it's indicating if it's a zero
3338 or sign extend. */
3339 if (cris_get_size (*inst) & INST_WORD_SIZE)
3340 {
3341 /* Word size. */
3342 value &= 0xFFFF;
3343
3344 /* Check if the instruction is signed extend. If so, check if value has
3345 the sign bit on. */
3346 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3347 {
3348 value |= SIGNED_WORD_EXTEND_MASK;
3349 }
3350 }
3351 else
3352 {
3353 /* Byte size. */
3354 value &= 0xFF;
3355
3356 /* Check if the instruction is signed extend. If so, check if value has
3357 the sign bit on. */
3358 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3359 {
3360 value |= SIGNED_BYTE_EXTEND_MASK;
3361 }
3362 }
3363 /* The size should now be dword. */
3364 cris_set_size_to_dword (inst);
3365 return value;
3366 }
3367
3368 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3369 instruction. The MOVE instruction is the move from source to register. */
3370
3371 static void
3372 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3373 inst_env_type *inst_env)
3374 {
3375 unsigned long operand1;
3376 unsigned long operand2;
3377
3378 /* It's invalid to have a prefix to the instruction. This is a register
3379 mode instruction and can't have a prefix. */
3380 if (inst_env->prefix_found)
3381 {
3382 inst_env->invalid = 1;
3383 return;
3384 }
3385 /* Check if the instruction has PC as its target. */
3386 if (cris_get_operand2 (inst) == REG_PC)
3387 {
3388 if (inst_env->slot_needed)
3389 {
3390 inst_env->invalid = 1;
3391 return;
3392 }
3393 /* The instruction has the PC as its target register. */
3394 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3395 operand2 = inst_env->reg[REG_PC];
3396
3397 /* Check if it's a extend, signed or zero instruction. */
3398 if (cris_get_opcode (inst) < 4)
3399 {
3400 operand1 = do_sign_or_zero_extend (operand1, &inst);
3401 }
3402 /* Calculate the PC value after the instruction, i.e. where the
3403 breakpoint should be. The order of the udw_operands is vital. */
3404 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3405 }
3406 inst_env->slot_needed = 0;
3407 inst_env->prefix_found = 0;
3408 inst_env->xflag_found = 0;
3409 inst_env->disable_interrupt = 0;
3410 }
3411
3412 /* Returns the data contained at address. The size of the data is derived from
3413 the size of the operation. If the instruction is a zero or signed
3414 extend instruction, the size field is changed in instruction. */
3415
3416 static unsigned long
3417 get_data_from_address (unsigned short *inst, CORE_ADDR address, enum bfd_endian byte_order)
3418 {
3419 int size = cris_get_size (*inst);
3420 unsigned long value;
3421
3422 /* If it's an extend instruction we don't want the signed extend bit,
3423 because it influences the size. */
3424 if (cris_get_opcode (*inst) < 4)
3425 {
3426 size &= ~SIGNED_EXTEND_BIT_MASK;
3427 }
3428 /* Is there a need for checking the size? Size should contain the number of
3429 bytes to read. */
3430 size = 1 << size;
3431 value = read_memory_unsigned_integer (address, size, byte_order);
3432
3433 /* Check if it's an extend, signed or zero instruction. */
3434 if (cris_get_opcode (*inst) < 4)
3435 {
3436 value = do_sign_or_zero_extend (value, inst);
3437 }
3438 return value;
3439 }
3440
3441 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3442 instructions. The MOVE instruction is the move from source to register. */
3443
3444 static void
3445 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3446 inst_env_type *inst_env)
3447 {
3448 unsigned long operand2;
3449 unsigned long operand3;
3450
3451 check_assign (inst, inst_env);
3452 if (cris_get_operand2 (inst) == REG_PC)
3453 {
3454 operand2 = inst_env->reg[REG_PC];
3455
3456 /* Get the value of the third operand. */
3457 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3458 inst_env->byte_order);
3459
3460 /* Calculate the PC value after the instruction, i.e. where the
3461 breakpoint should be. The order of the udw_operands is vital. */
3462 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3463 }
3464 inst_env->slot_needed = 0;
3465 inst_env->prefix_found = 0;
3466 inst_env->xflag_found = 0;
3467 inst_env->disable_interrupt = 0;
3468 }
3469
3470 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3471 OR instructions. Note that for this to work as expected, the calling
3472 function must have made sure that there is a prefix to this instruction. */
3473
3474 static void
3475 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3476 inst_env_type *inst_env)
3477 {
3478 unsigned long operand2;
3479 unsigned long operand3;
3480
3481 if (cris_get_operand1 (inst) == REG_PC)
3482 {
3483 /* The PC will be changed by the instruction. */
3484 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3485
3486 /* Get the value of the third operand. */
3487 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3488 inst_env->byte_order);
3489
3490 /* Calculate the PC value after the instruction, i.e. where the
3491 breakpoint should be. */
3492 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3493 }
3494 inst_env->slot_needed = 0;
3495 inst_env->prefix_found = 0;
3496 inst_env->xflag_found = 0;
3497 inst_env->disable_interrupt = 0;
3498 }
3499
3500 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3501 instructions. The MOVE instruction is the move from source to register. */
3502
3503 static void
3504 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3505 inst_env_type *inst_env)
3506 {
3507 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3508 {
3509 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3510 SUB, AND or OR something weird is going on (if everything works these
3511 instructions should end up in the three operand version). */
3512 inst_env->invalid = 1;
3513 return;
3514 }
3515 else
3516 {
3517 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3518 so use it. */
3519 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3520 }
3521 inst_env->slot_needed = 0;
3522 inst_env->prefix_found = 0;
3523 inst_env->xflag_found = 0;
3524 inst_env->disable_interrupt = 0;
3525 }
3526
3527 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3528 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3529 source to register. */
3530
3531 static void
3532 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3533 inst_env_type *inst_env)
3534 {
3535 unsigned long operand1;
3536 unsigned long operand2;
3537 unsigned long operand3;
3538 int size;
3539
3540 /* The instruction is either an indirect or autoincrement addressing mode.
3541 Check if the destination register is the PC. */
3542 if (cris_get_operand2 (inst) == REG_PC)
3543 {
3544 /* Must be done here, get_data_from_address may change the size
3545 field. */
3546 size = cris_get_size (inst);
3547 operand2 = inst_env->reg[REG_PC];
3548
3549 /* Get the value of the third operand, i.e. the indirect operand. */
3550 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3551 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3552
3553 /* Calculate the PC value after the instruction, i.e. where the
3554 breakpoint should be. The order of the udw_operands is vital. */
3555 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3556 }
3557 /* If this is an autoincrement addressing mode, check if the increment
3558 changes the PC. */
3559 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3560 {
3561 /* Get the size field. */
3562 size = cris_get_size (inst);
3563
3564 /* If it's an extend instruction we don't want the signed extend bit,
3565 because it influences the size. */
3566 if (cris_get_opcode (inst) < 4)
3567 {
3568 size &= ~SIGNED_EXTEND_BIT_MASK;
3569 }
3570 process_autoincrement (size, inst, inst_env);
3571 }
3572 inst_env->slot_needed = 0;
3573 inst_env->prefix_found = 0;
3574 inst_env->xflag_found = 0;
3575 inst_env->disable_interrupt = 0;
3576 }
3577
3578 /* Handles the two-operand addressing mode, all modes except register, for
3579 the ADD, SUB CMP, AND and OR instruction. */
3580
3581 static void
3582 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3583 inst_env_type *inst_env)
3584 {
3585 if (inst_env->prefix_found)
3586 {
3587 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3588 {
3589 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3590 }
3591 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3592 {
3593 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3594 }
3595 else
3596 {
3597 /* The mode is invalid for a prefixed base instruction. */
3598 inst_env->invalid = 1;
3599 return;
3600 }
3601 }
3602 else
3603 {
3604 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3605 }
3606 }
3607
3608 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3609
3610 static void
3611 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3612 {
3613 unsigned long operand1;
3614 unsigned long operand2;
3615
3616 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3617 instruction and can't have a prefix. */
3618 if (inst_env->prefix_found)
3619 {
3620 inst_env->invalid = 1;
3621 return;
3622 }
3623
3624 /* Check if the instruction has PC as its target. */
3625 if (cris_get_operand2 (inst) == REG_PC)
3626 {
3627 if (inst_env->slot_needed)
3628 {
3629 inst_env->invalid = 1;
3630 return;
3631 }
3632 operand1 = cris_get_quick_value (inst);
3633 operand2 = inst_env->reg[REG_PC];
3634
3635 /* The size should now be dword. */
3636 cris_set_size_to_dword (&inst);
3637
3638 /* Calculate the PC value after the instruction, i.e. where the
3639 breakpoint should be. */
3640 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3641 }
3642 inst_env->slot_needed = 0;
3643 inst_env->prefix_found = 0;
3644 inst_env->xflag_found = 0;
3645 inst_env->disable_interrupt = 0;
3646 }
3647
3648 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3649
3650 static void
3651 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3652 {
3653 unsigned long operand1;
3654 unsigned long operand2;
3655
3656 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3657 instruction and can't have a prefix. */
3658 if (inst_env->prefix_found)
3659 {
3660 inst_env->invalid = 1;
3661 return;
3662 }
3663 /* Check if the instruction has PC as its target. */
3664 if (cris_get_operand2 (inst) == REG_PC)
3665 {
3666 if (inst_env->slot_needed)
3667 {
3668 inst_env->invalid = 1;
3669 return;
3670 }
3671 /* The instruction has the PC as its target register. */
3672 operand1 = cris_get_quick_value (inst);
3673 operand2 = inst_env->reg[REG_PC];
3674
3675 /* The quick value is signed, so check if we must do a signed extend. */
3676 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3677 {
3678 /* sign extend */
3679 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3680 }
3681 /* The size should now be dword. */
3682 cris_set_size_to_dword (&inst);
3683
3684 /* Calculate the PC value after the instruction, i.e. where the
3685 breakpoint should be. */
3686 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3687 }
3688 inst_env->slot_needed = 0;
3689 inst_env->prefix_found = 0;
3690 inst_env->xflag_found = 0;
3691 inst_env->disable_interrupt = 0;
3692 }
3693
3694 /* Translate op_type to a function and call it. */
3695
3696 static void
3697 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3698 unsigned short inst, inst_env_type *inst_env)
3699 {
3700 switch (op_type)
3701 {
3702 case cris_not_implemented_op:
3703 not_implemented_op (inst, inst_env);
3704 break;
3705
3706 case cris_abs_op:
3707 abs_op (inst, inst_env);
3708 break;
3709
3710 case cris_addi_op:
3711 addi_op (inst, inst_env);
3712 break;
3713
3714 case cris_asr_op:
3715 asr_op (inst, inst_env);
3716 break;
3717
3718 case cris_asrq_op:
3719 asrq_op (inst, inst_env);
3720 break;
3721
3722 case cris_ax_ei_setf_op:
3723 ax_ei_setf_op (inst, inst_env);
3724 break;
3725
3726 case cris_bdap_prefix:
3727 bdap_prefix (inst, inst_env);
3728 break;
3729
3730 case cris_biap_prefix:
3731 biap_prefix (inst, inst_env);
3732 break;
3733
3734 case cris_break_op:
3735 break_op (inst, inst_env);
3736 break;
3737
3738 case cris_btst_nop_op:
3739 btst_nop_op (inst, inst_env);
3740 break;
3741
3742 case cris_clearf_di_op:
3743 clearf_di_op (inst, inst_env);
3744 break;
3745
3746 case cris_dip_prefix:
3747 dip_prefix (inst, inst_env);
3748 break;
3749
3750 case cris_dstep_logshift_mstep_neg_not_op:
3751 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3752 break;
3753
3754 case cris_eight_bit_offset_branch_op:
3755 eight_bit_offset_branch_op (inst, inst_env);
3756 break;
3757
3758 case cris_move_mem_to_reg_movem_op:
3759 move_mem_to_reg_movem_op (inst, inst_env);
3760 break;
3761
3762 case cris_move_reg_to_mem_movem_op:
3763 move_reg_to_mem_movem_op (inst, inst_env);
3764 break;
3765
3766 case cris_move_to_preg_op:
3767 move_to_preg_op (gdbarch, inst, inst_env);
3768 break;
3769
3770 case cris_muls_op:
3771 muls_op (inst, inst_env);
3772 break;
3773
3774 case cris_mulu_op:
3775 mulu_op (inst, inst_env);
3776 break;
3777
3778 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3779 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3780 break;
3781
3782 case cris_none_reg_mode_clear_test_op:
3783 none_reg_mode_clear_test_op (inst, inst_env);
3784 break;
3785
3786 case cris_none_reg_mode_jump_op:
3787 none_reg_mode_jump_op (inst, inst_env);
3788 break;
3789
3790 case cris_none_reg_mode_move_from_preg_op:
3791 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3792 break;
3793
3794 case cris_quick_mode_add_sub_op:
3795 quick_mode_add_sub_op (inst, inst_env);
3796 break;
3797
3798 case cris_quick_mode_and_cmp_move_or_op:
3799 quick_mode_and_cmp_move_or_op (inst, inst_env);
3800 break;
3801
3802 case cris_quick_mode_bdap_prefix:
3803 quick_mode_bdap_prefix (inst, inst_env);
3804 break;
3805
3806 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3807 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3808 break;
3809
3810 case cris_reg_mode_clear_op:
3811 reg_mode_clear_op (inst, inst_env);
3812 break;
3813
3814 case cris_reg_mode_jump_op:
3815 reg_mode_jump_op (inst, inst_env);
3816 break;
3817
3818 case cris_reg_mode_move_from_preg_op:
3819 reg_mode_move_from_preg_op (inst, inst_env);
3820 break;
3821
3822 case cris_reg_mode_test_op:
3823 reg_mode_test_op (inst, inst_env);
3824 break;
3825
3826 case cris_scc_op:
3827 scc_op (inst, inst_env);
3828 break;
3829
3830 case cris_sixteen_bit_offset_branch_op:
3831 sixteen_bit_offset_branch_op (inst, inst_env);
3832 break;
3833
3834 case cris_three_operand_add_sub_cmp_and_or_op:
3835 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3836 break;
3837
3838 case cris_three_operand_bound_op:
3839 three_operand_bound_op (inst, inst_env);
3840 break;
3841
3842 case cris_two_operand_bound_op:
3843 two_operand_bound_op (inst, inst_env);
3844 break;
3845
3846 case cris_xor_op:
3847 xor_op (inst, inst_env);
3848 break;
3849 }
3850 }
3851
3852 /* This wrapper is to avoid cris_get_assembler being called before
3853 exec_bfd has been set. */
3854
3855 static int
3856 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3857 {
3858 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3859 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3860 disassembler, even when there is no BFD. Does something like
3861 "gdb; target remote; disassmeble *0x123" work? */
3862 gdb_assert (exec_bfd != NULL);
3863 print_insn = cris_get_disassembler (exec_bfd);
3864 gdb_assert (print_insn != NULL);
3865 return print_insn (addr, info);
3866 }
3867
3868 /* Copied from <asm/elf.h>. */
3869 typedef unsigned long elf_greg_t;
3870
3871 /* Same as user_regs_struct struct in <asm/user.h>. */
3872 #define CRISV10_ELF_NGREG 35
3873 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3874
3875 #define CRISV32_ELF_NGREG 32
3876 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3877
3878 /* Unpack an elf_gregset_t into GDB's register cache. */
3879
3880 static void
3881 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3882 {
3883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3885 int i;
3886 elf_greg_t *regp = *gregsetp;
3887 static char zerobuf[4] = {0};
3888
3889 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3890 knows about the actual size of each register so that's no problem. */
3891 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3892 {
3893 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3894 }
3895
3896 if (tdep->cris_version == 32)
3897 {
3898 /* Needed to set pseudo-register PC for CRISv32. */
3899 /* FIXME: If ERP is in a delay slot at this point then the PC will
3900 be wrong. Issue a warning to alert the user. */
3901 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3902 (char *)&regp[ERP_REGNUM]);
3903
3904 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3905 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3906 }
3907 }
3908
3909 /* Use a local version of this function to get the correct types for
3910 regsets, until multi-arch core support is ready. */
3911
3912 static void
3913 fetch_core_registers (struct regcache *regcache,
3914 char *core_reg_sect, unsigned core_reg_size,
3915 int which, CORE_ADDR reg_addr)
3916 {
3917 elf_gregset_t gregset;
3918
3919 switch (which)
3920 {
3921 case 0:
3922 if (core_reg_size != sizeof (elf_gregset_t)
3923 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3924 {
3925 warning (_("wrong size gregset struct in core file"));
3926 }
3927 else
3928 {
3929 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3930 cris_supply_gregset (regcache, &gregset);
3931 }
3932
3933 default:
3934 /* We've covered all the kinds of registers we know about here,
3935 so this must be something we wouldn't know what to do with
3936 anyway. Just ignore it. */
3937 break;
3938 }
3939 }
3940
3941 static struct core_fns cris_elf_core_fns =
3942 {
3943 bfd_target_elf_flavour, /* core_flavour */
3944 default_check_format, /* check_format */
3945 default_core_sniffer, /* core_sniffer */
3946 fetch_core_registers, /* core_read_registers */
3947 NULL /* next */
3948 };
3949
3950 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3951
3952 void
3953 _initialize_cris_tdep (void)
3954 {
3955 static struct cmd_list_element *cris_set_cmdlist;
3956 static struct cmd_list_element *cris_show_cmdlist;
3957
3958 struct cmd_list_element *c;
3959
3960 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3961
3962 /* CRIS-specific user-commands. */
3963 add_setshow_uinteger_cmd ("cris-version", class_support,
3964 &usr_cmd_cris_version,
3965 _("Set the current CRIS version."),
3966 _("Show the current CRIS version."),
3967 _("\
3968 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3969 Defaults to 10. "),
3970 set_cris_version,
3971 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3972 &setlist, &showlist);
3973
3974 add_setshow_enum_cmd ("cris-mode", class_support,
3975 cris_modes, &usr_cmd_cris_mode,
3976 _("Set the current CRIS mode."),
3977 _("Show the current CRIS mode."),
3978 _("\
3979 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3980 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3981 set_cris_mode,
3982 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3983 &setlist, &showlist);
3984
3985 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3986 &usr_cmd_cris_dwarf2_cfi,
3987 _("Set the usage of Dwarf-2 CFI for CRIS."),
3988 _("Show the usage of Dwarf-2 CFI for CRIS."),
3989 _("Set this to \"off\" if using gcc-cris < R59."),
3990 set_cris_dwarf2_cfi,
3991 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
3992 &setlist, &showlist);
3993
3994 deprecated_add_core_fns (&cris_elf_core_fns);
3995 }
3996
3997 /* Prints out all target specific values. */
3998
3999 static void
4000 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4001 {
4002 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4003 if (tdep != NULL)
4004 {
4005 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4006 tdep->cris_version);
4007 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4008 tdep->cris_mode);
4009 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4010 tdep->cris_dwarf2_cfi);
4011 }
4012 }
4013
4014 static void
4015 set_cris_version (char *ignore_args, int from_tty,
4016 struct cmd_list_element *c)
4017 {
4018 struct gdbarch_info info;
4019
4020 usr_cmd_cris_version_valid = 1;
4021
4022 /* Update the current architecture, if needed. */
4023 gdbarch_info_init (&info);
4024 if (!gdbarch_update_p (info))
4025 internal_error (__FILE__, __LINE__,
4026 _("cris_gdbarch_update: failed to update architecture."));
4027 }
4028
4029 static void
4030 set_cris_mode (char *ignore_args, int from_tty,
4031 struct cmd_list_element *c)
4032 {
4033 struct gdbarch_info info;
4034
4035 /* Update the current architecture, if needed. */
4036 gdbarch_info_init (&info);
4037 if (!gdbarch_update_p (info))
4038 internal_error (__FILE__, __LINE__,
4039 "cris_gdbarch_update: failed to update architecture.");
4040 }
4041
4042 static void
4043 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4044 struct cmd_list_element *c)
4045 {
4046 struct gdbarch_info info;
4047
4048 /* Update the current architecture, if needed. */
4049 gdbarch_info_init (&info);
4050 if (!gdbarch_update_p (info))
4051 internal_error (__FILE__, __LINE__,
4052 _("cris_gdbarch_update: failed to update architecture."));
4053 }
4054
4055 static struct gdbarch *
4056 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4057 {
4058 struct gdbarch *gdbarch;
4059 struct gdbarch_tdep *tdep;
4060 int cris_version;
4061
4062 if (usr_cmd_cris_version_valid)
4063 {
4064 /* Trust the user's CRIS version setting. */
4065 cris_version = usr_cmd_cris_version;
4066 }
4067 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4068 {
4069 cris_version = 32;
4070 }
4071 else
4072 {
4073 /* Assume it's CRIS version 10. */
4074 cris_version = 10;
4075 }
4076
4077 /* Make the current settings visible to the user. */
4078 usr_cmd_cris_version = cris_version;
4079
4080 /* Find a candidate among the list of pre-declared architectures. */
4081 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4082 arches != NULL;
4083 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4084 {
4085 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4086 == usr_cmd_cris_version)
4087 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4088 == usr_cmd_cris_mode)
4089 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4090 == usr_cmd_cris_dwarf2_cfi))
4091 return arches->gdbarch;
4092 }
4093
4094 /* No matching architecture was found. Create a new one. */
4095 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4096 gdbarch = gdbarch_alloc (&info, tdep);
4097
4098 tdep->cris_version = usr_cmd_cris_version;
4099 tdep->cris_mode = usr_cmd_cris_mode;
4100 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4101
4102 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4103 switch (info.byte_order)
4104 {
4105 case BFD_ENDIAN_LITTLE:
4106 /* Ok. */
4107 break;
4108
4109 case BFD_ENDIAN_BIG:
4110 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
4111 break;
4112
4113 default:
4114 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
4115 }
4116
4117 set_gdbarch_return_value (gdbarch, cris_return_value);
4118
4119 set_gdbarch_sp_regnum (gdbarch, 14);
4120
4121 /* Length of ordinary registers used in push_word and a few other
4122 places. register_size() is the real way to know how big a
4123 register is. */
4124
4125 set_gdbarch_double_bit (gdbarch, 64);
4126 /* The default definition of a long double is 2 * gdbarch_double_bit,
4127 which means we have to set this explicitly. */
4128 set_gdbarch_long_double_bit (gdbarch, 64);
4129
4130 /* The total amount of space needed to store (in an array called registers)
4131 GDB's copy of the machine's register state. Note: We can not use
4132 cris_register_size at this point, since it relies on gdbarch
4133 being set. */
4134 switch (tdep->cris_version)
4135 {
4136 case 0:
4137 case 1:
4138 case 2:
4139 case 3:
4140 case 8:
4141 case 9:
4142 /* Old versions; not supported. */
4143 internal_error (__FILE__, __LINE__,
4144 _("cris_gdbarch_init: unsupported CRIS version"));
4145 break;
4146
4147 case 10:
4148 case 11:
4149 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4150 P7 (32 bits), and P15 (32 bits) have been implemented. */
4151 set_gdbarch_pc_regnum (gdbarch, 15);
4152 set_gdbarch_register_type (gdbarch, cris_register_type);
4153 /* There are 32 registers (some of which may not be implemented). */
4154 set_gdbarch_num_regs (gdbarch, 32);
4155 set_gdbarch_register_name (gdbarch, cris_register_name);
4156 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4157 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4158
4159 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4160 break;
4161
4162 case 32:
4163 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4164 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4165 and pseudo-register PC (32 bits). */
4166 set_gdbarch_pc_regnum (gdbarch, 32);
4167 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4168 /* 32 registers + pseudo-register PC + 16 support registers. */
4169 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4170 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4171
4172 set_gdbarch_cannot_store_register
4173 (gdbarch, crisv32_cannot_store_register);
4174 set_gdbarch_cannot_fetch_register
4175 (gdbarch, crisv32_cannot_fetch_register);
4176
4177 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4178
4179 set_gdbarch_single_step_through_delay
4180 (gdbarch, crisv32_single_step_through_delay);
4181
4182 break;
4183
4184 default:
4185 internal_error (__FILE__, __LINE__,
4186 _("cris_gdbarch_init: unknown CRIS version"));
4187 }
4188
4189 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4190 have the same ABI). */
4191 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4192 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4193 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4194 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4195
4196 /* The stack grows downward. */
4197 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4198
4199 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4200
4201 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4202 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4203 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4204
4205 if (tdep->cris_dwarf2_cfi == 1)
4206 {
4207 /* Hook in the Dwarf-2 frame sniffer. */
4208 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4209 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4210 dwarf2_append_unwinders (gdbarch);
4211 }
4212
4213 if (tdep->cris_mode != cris_mode_guru)
4214 {
4215 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4216 }
4217
4218 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4219 frame_base_set_default (gdbarch, &cris_frame_base);
4220
4221 set_solib_svr4_fetch_link_map_offsets
4222 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4223
4224 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4225 disassembler, even when there is no BFD. Does something like
4226 "gdb; target remote; disassmeble *0x123" work? */
4227 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4228
4229 return gdbarch;
4230 }