]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "arch-utils.h"
38 #include "regcache.h"
39 #include "gdb_assert.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "gdb_string.h"
46 #include "dis-asm.h"
47
48 enum cris_num_regs
49 {
50 /* There are no floating point registers. Used in gdbserver low-linux.c. */
51 NUM_FREGS = 0,
52
53 /* There are 16 general registers. */
54 NUM_GENREGS = 16,
55
56 /* There are 16 special registers. */
57 NUM_SPECREGS = 16,
58
59 /* CRISv32 has a pseudo PC register, not noted here. */
60
61 /* CRISv32 has 16 support registers. */
62 NUM_SUPPREGS = 16
63 };
64
65 /* Register numbers of various important registers.
66 CRIS_FP_REGNUM Contains address of executing stack frame.
67 STR_REGNUM Contains the address of structure return values.
68 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
69 ARG1_REGNUM Contains the first parameter to a function.
70 ARG2_REGNUM Contains the second parameter to a function.
71 ARG3_REGNUM Contains the third parameter to a function.
72 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
73 gdbarch_sp_regnum Contains address of top of stack.
74 gdbarch_pc_regnum Contains address of next instruction.
75 SRP_REGNUM Subroutine return pointer register.
76 BRP_REGNUM Breakpoint return pointer register. */
77
78 enum cris_regnums
79 {
80 /* Enums with respect to the general registers, valid for all
81 CRIS versions. The frame pointer is always in R8. */
82 CRIS_FP_REGNUM = 8,
83 /* ABI related registers. */
84 STR_REGNUM = 9,
85 RET_REGNUM = 10,
86 ARG1_REGNUM = 10,
87 ARG2_REGNUM = 11,
88 ARG3_REGNUM = 12,
89 ARG4_REGNUM = 13,
90
91 /* Registers which happen to be common. */
92 VR_REGNUM = 17,
93 MOF_REGNUM = 23,
94 SRP_REGNUM = 27,
95
96 /* CRISv10 et al. specific registers. */
97 P0_REGNUM = 16,
98 P4_REGNUM = 20,
99 CCR_REGNUM = 21,
100 P8_REGNUM = 24,
101 IBR_REGNUM = 25,
102 IRP_REGNUM = 26,
103 BAR_REGNUM = 28,
104 DCCR_REGNUM = 29,
105 BRP_REGNUM = 30,
106 USP_REGNUM = 31,
107
108 /* CRISv32 specific registers. */
109 ACR_REGNUM = 15,
110 BZ_REGNUM = 16,
111 PID_REGNUM = 18,
112 SRS_REGNUM = 19,
113 WZ_REGNUM = 20,
114 EXS_REGNUM = 21,
115 EDA_REGNUM = 22,
116 DZ_REGNUM = 24,
117 EBP_REGNUM = 25,
118 ERP_REGNUM = 26,
119 NRP_REGNUM = 28,
120 CCS_REGNUM = 29,
121 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
122 SPC_REGNUM = 31,
123 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
124
125 S0_REGNUM = 33,
126 S1_REGNUM = 34,
127 S2_REGNUM = 35,
128 S3_REGNUM = 36,
129 S4_REGNUM = 37,
130 S5_REGNUM = 38,
131 S6_REGNUM = 39,
132 S7_REGNUM = 40,
133 S8_REGNUM = 41,
134 S9_REGNUM = 42,
135 S10_REGNUM = 43,
136 S11_REGNUM = 44,
137 S12_REGNUM = 45,
138 S13_REGNUM = 46,
139 S14_REGNUM = 47,
140 S15_REGNUM = 48,
141 };
142
143 extern const struct cris_spec_reg cris_spec_regs[];
144
145 /* CRIS version, set via the user command 'set cris-version'. Affects
146 register names and sizes. */
147 static int usr_cmd_cris_version;
148
149 /* Indicates whether to trust the above variable. */
150 static int usr_cmd_cris_version_valid = 0;
151
152 static const char cris_mode_normal[] = "normal";
153 static const char cris_mode_guru[] = "guru";
154 static const char *const cris_modes[] = {
155 cris_mode_normal,
156 cris_mode_guru,
157 0
158 };
159
160 /* CRIS mode, set via the user command 'set cris-mode'. Affects
161 type of break instruction among other things. */
162 static const char *usr_cmd_cris_mode = cris_mode_normal;
163
164 /* Whether to make use of Dwarf-2 CFI (default on). */
165 static int usr_cmd_cris_dwarf2_cfi = 1;
166
167 /* CRIS architecture specific information. */
168 struct gdbarch_tdep
169 {
170 int cris_version;
171 const char *cris_mode;
172 int cris_dwarf2_cfi;
173 };
174
175 /* Sigtramp identification code copied from i386-linux-tdep.c. */
176
177 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
178 #define SIGTRAMP_OFFSET0 0
179 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
180 #define SIGTRAMP_OFFSET1 4
181
182 static const unsigned short sigtramp_code[] =
183 {
184 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
185 SIGTRAMP_INSN1 /* break 13 */
186 };
187
188 #define SIGTRAMP_LEN (sizeof sigtramp_code)
189
190 /* Note: same length as normal sigtramp code. */
191
192 static const unsigned short rt_sigtramp_code[] =
193 {
194 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
195 SIGTRAMP_INSN1 /* break 13 */
196 };
197
198 /* If PC is in a sigtramp routine, return the address of the start of
199 the routine. Otherwise, return 0. */
200
201 static CORE_ADDR
202 cris_sigtramp_start (struct frame_info *this_frame)
203 {
204 CORE_ADDR pc = get_frame_pc (this_frame);
205 gdb_byte buf[SIGTRAMP_LEN];
206
207 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
208 return 0;
209
210 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
211 {
212 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
213 return 0;
214
215 pc -= SIGTRAMP_OFFSET1;
216 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
217 return 0;
218 }
219
220 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
221 return 0;
222
223 return pc;
224 }
225
226 /* If PC is in a RT sigtramp routine, return the address of the start of
227 the routine. Otherwise, return 0. */
228
229 static CORE_ADDR
230 cris_rt_sigtramp_start (struct frame_info *this_frame)
231 {
232 CORE_ADDR pc = get_frame_pc (this_frame);
233 gdb_byte buf[SIGTRAMP_LEN];
234
235 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
236 return 0;
237
238 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
239 {
240 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
241 return 0;
242
243 pc -= SIGTRAMP_OFFSET1;
244 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
245 return 0;
246 }
247
248 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
249 return 0;
250
251 return pc;
252 }
253
254 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
255 return the address of the associated sigcontext structure. */
256
257 static CORE_ADDR
258 cris_sigcontext_addr (struct frame_info *this_frame)
259 {
260 struct gdbarch *gdbarch = get_frame_arch (this_frame);
261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 CORE_ADDR pc;
263 CORE_ADDR sp;
264 char buf[4];
265
266 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
267 sp = extract_unsigned_integer (buf, 4, byte_order);
268
269 /* Look for normal sigtramp frame first. */
270 pc = cris_sigtramp_start (this_frame);
271 if (pc)
272 {
273 /* struct signal_frame (arch/cris/kernel/signal.c) contains
274 struct sigcontext as its first member, meaning the SP points to
275 it already. */
276 return sp;
277 }
278
279 pc = cris_rt_sigtramp_start (this_frame);
280 if (pc)
281 {
282 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
283 a struct ucontext, which in turn contains a struct sigcontext.
284 Magic digging:
285 4 + 4 + 128 to struct ucontext, then
286 4 + 4 + 12 to struct sigcontext. */
287 return (sp + 156);
288 }
289
290 error (_("Couldn't recognize signal trampoline."));
291 return 0;
292 }
293
294 struct cris_unwind_cache
295 {
296 /* The previous frame's inner most stack address. Used as this
297 frame ID's stack_addr. */
298 CORE_ADDR prev_sp;
299 /* The frame's base, optionally used by the high-level debug info. */
300 CORE_ADDR base;
301 int size;
302 /* How far the SP and r8 (FP) have been offset from the start of
303 the stack frame (as defined by the previous frame's stack
304 pointer). */
305 LONGEST sp_offset;
306 LONGEST r8_offset;
307 int uses_frame;
308
309 /* From old frame_extra_info struct. */
310 CORE_ADDR return_pc;
311 int leaf_function;
312
313 /* Table indicating the location of each and every register. */
314 struct trad_frame_saved_reg *saved_regs;
315 };
316
317 static struct cris_unwind_cache *
318 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
319 void **this_cache)
320 {
321 struct gdbarch *gdbarch = get_frame_arch (this_frame);
322 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
324 struct cris_unwind_cache *info;
325 CORE_ADDR pc;
326 CORE_ADDR sp;
327 CORE_ADDR addr;
328 char buf[4];
329 int i;
330
331 if ((*this_cache))
332 return (*this_cache);
333
334 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
335 (*this_cache) = info;
336 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
337
338 /* Zero all fields. */
339 info->prev_sp = 0;
340 info->base = 0;
341 info->size = 0;
342 info->sp_offset = 0;
343 info->r8_offset = 0;
344 info->uses_frame = 0;
345 info->return_pc = 0;
346 info->leaf_function = 0;
347
348 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
349 info->base = extract_unsigned_integer (buf, 4, byte_order);
350
351 addr = cris_sigcontext_addr (this_frame);
352
353 /* Layout of the sigcontext struct:
354 struct sigcontext {
355 struct pt_regs regs;
356 unsigned long oldmask;
357 unsigned long usp;
358 }; */
359
360 if (tdep->cris_version == 10)
361 {
362 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
363 struct pt_regs. */
364 for (i = 0; i <= 13; i++)
365 info->saved_regs[i].addr = addr + ((15 - i) * 4);
366
367 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
368 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
369 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
370 /* Note: IRP is off by 2 at this point. There's no point in correcting
371 it though since that will mean that the backtrace will show a PC
372 different from what is shown when stopped. */
373 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
374 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
375 = info->saved_regs[IRP_REGNUM];
376 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
377 }
378 else
379 {
380 /* CRISv32. */
381 /* R0 to R13 are stored in order at offset (1 * 4) in
382 struct pt_regs. */
383 for (i = 0; i <= 13; i++)
384 info->saved_regs[i].addr = addr + ((i + 1) * 4);
385
386 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
387 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
388 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
389 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
390 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
391 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
392 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
393 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
394 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
395
396 /* FIXME: If ERP is in a delay slot at this point then the PC will
397 be wrong at this point. This problem manifests itself in the
398 sigaltstack.exp test case, which occasionally generates FAILs when
399 the signal is received while in a delay slot.
400
401 This could be solved by a couple of read_memory_unsigned_integer and a
402 trad_frame_set_value. */
403 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
404 = info->saved_regs[ERP_REGNUM];
405
406 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
407 = addr + (25 * 4);
408 }
409
410 return info;
411 }
412
413 static void
414 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
415 struct frame_id *this_id)
416 {
417 struct cris_unwind_cache *cache =
418 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
419 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
420 }
421
422 /* Forward declaration. */
423
424 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
425 void **this_cache, int regnum);
426 static struct value *
427 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
428 void **this_cache, int regnum)
429 {
430 /* Make sure we've initialized the cache. */
431 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
432 return cris_frame_prev_register (this_frame, this_cache, regnum);
433 }
434
435 static int
436 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
437 struct frame_info *this_frame,
438 void **this_cache)
439 {
440 if (cris_sigtramp_start (this_frame)
441 || cris_rt_sigtramp_start (this_frame))
442 return 1;
443
444 return 0;
445 }
446
447 static const struct frame_unwind cris_sigtramp_frame_unwind =
448 {
449 SIGTRAMP_FRAME,
450 default_frame_unwind_stop_reason,
451 cris_sigtramp_frame_this_id,
452 cris_sigtramp_frame_prev_register,
453 NULL,
454 cris_sigtramp_frame_sniffer
455 };
456
457 static int
458 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
460 {
461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
462 ULONGEST erp;
463 int ret = 0;
464
465 if (tdep->cris_mode == cris_mode_guru)
466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
467 else
468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
469
470 if (erp & 0x1)
471 {
472 /* In delay slot - check if there's a breakpoint at the preceding
473 instruction. */
474 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
475 ret = 1;
476 }
477 return ret;
478 }
479
480 /* Hardware watchpoint support. */
481
482 /* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
484
485 int
486 cris_can_use_hardware_watchpoint (int type, int count, int other)
487 {
488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
489
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
491
492 if (tdep->cris_version != 32)
493 return 0;
494 else
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
499 }
500
501 /* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
503
504 int
505 cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
506 {
507 return 1;
508 }
509
510 /* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
512 zero. */
513
514 CORE_ADDR
515 cris_stopped_data_address (void)
516 {
517 CORE_ADDR eda;
518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
519 return eda;
520 }
521
522 /* The instruction environment needed to find single-step breakpoints. */
523
524 typedef
525 struct instruction_environment
526 {
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
532 int branch_found;
533 int prefix_found;
534 int invalid;
535 int slot_needed;
536 int delay_slot_pc_active;
537 int xflag_found;
538 int disable_interrupt;
539 int byte_order;
540 } inst_env_type;
541
542 /* Machine-dependencies in CRIS for opcodes. */
543
544 /* Instruction sizes. */
545 enum cris_instruction_sizes
546 {
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550 };
551
552 /* Addressing modes. */
553 enum cris_addressing_modes
554 {
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558 };
559
560 /* Prefix addressing modes. */
561 enum cris_prefix_addressing_modes
562 {
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568 };
569
570 /* Masks for opcodes. */
571 enum cris_opcode_masks
572 {
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582 };
583
584 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591 static int
592 cris_get_operand2 (unsigned short insn)
593 {
594 return ((insn & 0xF000) >> 12);
595 }
596
597 static int
598 cris_get_mode (unsigned short insn)
599 {
600 return ((insn & 0x0C00) >> 10);
601 }
602
603 static int
604 cris_get_opcode (unsigned short insn)
605 {
606 return ((insn & 0x03C0) >> 6);
607 }
608
609 static int
610 cris_get_size (unsigned short insn)
611 {
612 return ((insn & 0x0030) >> 4);
613 }
614
615 static int
616 cris_get_operand1 (unsigned short insn)
617 {
618 return (insn & 0x000F);
619 }
620
621 /* Additional functions in order to handle opcodes. */
622
623 static int
624 cris_get_quick_value (unsigned short insn)
625 {
626 return (insn & 0x003F);
627 }
628
629 static int
630 cris_get_bdap_quick_offset (unsigned short insn)
631 {
632 return (insn & 0x00FF);
633 }
634
635 static int
636 cris_get_branch_short_offset (unsigned short insn)
637 {
638 return (insn & 0x00FF);
639 }
640
641 static int
642 cris_get_asr_shift_steps (unsigned long value)
643 {
644 return (value & 0x3F);
645 }
646
647 static int
648 cris_get_clear_size (unsigned short insn)
649 {
650 return ((insn) & 0xC000);
651 }
652
653 static int
654 cris_is_signed_extend_bit_on (unsigned short insn)
655 {
656 return (((insn) & 0x20) == 0x20);
657 }
658
659 static int
660 cris_is_xflag_bit_on (unsigned short insn)
661 {
662 return (((insn) & 0x1000) == 0x1000);
663 }
664
665 static void
666 cris_set_size_to_dword (unsigned short *insn)
667 {
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670 }
671
672 static signed char
673 cris_get_signed_offset (unsigned short insn)
674 {
675 return ((signed char) (insn & 0x00FF));
676 }
677
678 /* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
680 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
681 inst_env_type *);
682
683 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
685
686 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
687
688 static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
690
691 static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
693
694 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
696
697 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
698 struct frame_info *this_frame,
699 struct cris_unwind_cache *info);
700
701 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
702 struct frame_info *this_frame,
703 struct cris_unwind_cache *info);
704
705 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
707
708 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
710
711 /* When arguments must be pushed onto the stack, they go on in reverse
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
714
715 struct stack_item
716 {
717 int len;
718 struct stack_item *prev;
719 void *data;
720 };
721
722 static struct stack_item *
723 push_stack_item (struct stack_item *prev, void *contents, int len)
724 {
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
728 si->len = len;
729 si->prev = prev;
730 memcpy (si->data, contents, len);
731 return si;
732 }
733
734 static struct stack_item *
735 pop_stack_item (struct stack_item *si)
736 {
737 struct stack_item *dead = si;
738 si = si->prev;
739 xfree (dead->data);
740 xfree (dead);
741 return si;
742 }
743
744 /* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
748 for it IS the sp for the next frame. */
749
750 static struct cris_unwind_cache *
751 cris_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
753 {
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
756 CORE_ADDR pc;
757 struct cris_unwind_cache *info;
758 int i;
759
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
762
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
766
767 /* Zero all fields. */
768 info->prev_sp = 0;
769 info->base = 0;
770 info->size = 0;
771 info->sp_offset = 0;
772 info->r8_offset = 0;
773 info->uses_frame = 0;
774 info->return_pc = 0;
775 info->leaf_function = 0;
776
777 /* Prologue analysis does the rest... */
778 if (tdep->cris_version == 32)
779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
780 else
781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
782
783 return info;
784 }
785
786 /* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789 static void
790 cris_frame_this_id (struct frame_info *this_frame,
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793 {
794 struct cris_unwind_cache *info
795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
796 CORE_ADDR base;
797 CORE_ADDR func;
798 struct frame_id id;
799
800 /* The FUNC is easy. */
801 func = get_frame_func (this_frame);
802
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
807 if (base == 0)
808 return;
809
810 id = frame_id_build (base, func);
811
812 (*this_id) = id;
813 }
814
815 static struct value *
816 cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
818 {
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
822 }
823
824 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
827
828 static struct frame_id
829 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
830 {
831 CORE_ADDR sp;
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
834 }
835
836 static CORE_ADDR
837 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
838 {
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
841 return sp & ~3;
842 }
843
844 static CORE_ADDR
845 cris_push_dummy_code (struct gdbarch *gdbarch,
846 CORE_ADDR sp, CORE_ADDR funaddr,
847 struct value **args, int nargs,
848 struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
851 {
852 /* Allocate space sufficient for a breakpoint. */
853 sp = (sp - 4) & ~3;
854 /* Store the address of that breakpoint */
855 *bp_addr = sp;
856 /* CRIS always starts the call at the callee's entry point. */
857 *real_pc = funaddr;
858 return sp;
859 }
860
861 static CORE_ADDR
862 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
866 {
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int stack_alloc;
869 int stack_offset;
870 int argreg;
871 int argnum;
872
873 CORE_ADDR regval;
874
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
878 CORE_ADDR fp_arg;
879 CORE_ADDR fp_mem;
880
881 struct stack_item *si = NULL;
882
883 /* Push the return address. */
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
885
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
889 if (struct_return)
890 {
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
892 }
893
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
897 stack_offset = 0;
898
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len;
902 char *val;
903 int reg_demand;
904 int i;
905
906 len = TYPE_LENGTH (value_type (args[argnum]));
907 val = (char *) value_contents (args[argnum]);
908
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
911
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
913 {
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
916 {
917 regcache_cooked_write (regcache, argreg, val);
918 argreg++;
919 val += 4;
920 }
921 }
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
923 {
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
927 {
928 if (argreg <= ARG4_REGNUM)
929 {
930 regcache_cooked_write (regcache, argreg, val);
931 argreg++;
932 val += 4;
933 }
934 else
935 {
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
939 val += 4;
940 }
941 }
942 }
943 else if (len > (2 * 4))
944 {
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
949
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
953 argreg++;
954 }
955 else
956 {
957 gdb_byte buf[4];
958 store_unsigned_integer (buf, 4, byte_order, sp);
959 si = push_stack_item (si, buf, 4);
960 }
961 }
962 else
963 {
964 /* Data passed by value. No available registers. Put it on
965 the stack. */
966 si = push_stack_item (si, val, len);
967 }
968 }
969
970 while (si)
971 {
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
977 }
978
979 /* Finally, update the SP register. */
980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
981
982 return sp;
983 }
984
985 static const struct frame_unwind cris_frame_unwind =
986 {
987 NORMAL_FRAME,
988 default_frame_unwind_stop_reason,
989 cris_frame_this_id,
990 cris_frame_prev_register,
991 NULL,
992 default_frame_sniffer
993 };
994
995 static CORE_ADDR
996 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
997 {
998 struct cris_unwind_cache *info
999 = cris_frame_unwind_cache (this_frame, this_cache);
1000 return info->base;
1001 }
1002
1003 static const struct frame_base cris_frame_base =
1004 {
1005 &cris_frame_unwind,
1006 cris_frame_base_address,
1007 cris_frame_base_address,
1008 cris_frame_base_address
1009 };
1010
1011 /* Frames information. The definition of the struct frame_info is
1012
1013 CORE_ADDR frame
1014 CORE_ADDR pc
1015 enum frame_type type;
1016 CORE_ADDR return_pc
1017 int leaf_function
1018
1019 If the compilation option -fno-omit-frame-pointer is present the
1020 variable frame will be set to the content of R8 which is the frame
1021 pointer register.
1022
1023 The variable pc contains the address where execution is performed
1024 in the present frame. The innermost frame contains the current content
1025 of the register PC. All other frames contain the content of the
1026 register PC in the next frame.
1027
1028 The variable `type' indicates the frame's type: normal, SIGTRAMP
1029 (associated with a signal handler), dummy (associated with a dummy
1030 frame).
1031
1032 The variable return_pc contains the address where execution should be
1033 resumed when the present frame has finished, the return address.
1034
1035 The variable leaf_function is 1 if the return address is in the register
1036 SRP, and 0 if it is on the stack.
1037
1038 Prologue instructions C-code.
1039 The prologue may consist of (-fno-omit-frame-pointer)
1040 1) 2)
1041 push srp
1042 push r8 push r8
1043 move.d sp,r8 move.d sp,r8
1044 subq X,sp subq X,sp
1045 movem rY,[sp] movem rY,[sp]
1046 move.S rZ,[r8-U] move.S rZ,[r8-U]
1047
1048 where 1 is a non-terminal function, and 2 is a leaf-function.
1049
1050 Note that this assumption is extremely brittle, and will break at the
1051 slightest change in GCC's prologue.
1052
1053 If local variables are declared or register contents are saved on stack
1054 the subq-instruction will be present with X as the number of bytes
1055 needed for storage. The reshuffle with respect to r8 may be performed
1056 with any size S (b, w, d) and any of the general registers Z={0..13}.
1057 The offset U should be representable by a signed 8-bit value in all cases.
1058 Thus, the prefix word is assumed to be immediate byte offset mode followed
1059 by another word containing the instruction.
1060
1061 Degenerate cases:
1062 3)
1063 push r8
1064 move.d sp,r8
1065 move.d r8,sp
1066 pop r8
1067
1068 Prologue instructions C++-code.
1069 Case 1) and 2) in the C-code may be followed by
1070
1071 move.d r10,rS ; this
1072 move.d r11,rT ; P1
1073 move.d r12,rU ; P2
1074 move.d r13,rV ; P3
1075 move.S [r8+U],rZ ; P4
1076
1077 if any of the call parameters are stored. The host expects these
1078 instructions to be executed in order to get the call parameters right. */
1079
1080 /* Examine the prologue of a function. The variable ip is the address of
1081 the first instruction of the prologue. The variable limit is the address
1082 of the first instruction after the prologue. The variable fi contains the
1083 information in struct frame_info. The variable frameless_p controls whether
1084 the entire prologue is examined (0) or just enough instructions to
1085 determine that it is a prologue (1). */
1086
1087 static CORE_ADDR
1088 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1089 struct cris_unwind_cache *info)
1090 {
1091 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1092 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1093
1094 /* Present instruction. */
1095 unsigned short insn;
1096
1097 /* Next instruction, lookahead. */
1098 unsigned short insn_next;
1099 int regno;
1100
1101 /* Is there a push fp? */
1102 int have_fp;
1103
1104 /* Number of byte on stack used for local variables and movem. */
1105 int val;
1106
1107 /* Highest register number in a movem. */
1108 int regsave;
1109
1110 /* move.d r<source_register>,rS */
1111 short source_register;
1112
1113 /* Scan limit. */
1114 int limit;
1115
1116 /* This frame is with respect to a leaf until a push srp is found. */
1117 if (info)
1118 {
1119 info->leaf_function = 1;
1120 }
1121
1122 /* Assume nothing on stack. */
1123 val = 0;
1124 regsave = -1;
1125
1126 /* If we were called without a this_frame, that means we were called
1127 from cris_skip_prologue which already tried to find the end of the
1128 prologue through the symbol information. 64 instructions past current
1129 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1130 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1131
1132 /* Find the prologue instructions. */
1133 while (pc > 0 && pc < limit)
1134 {
1135 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1136 pc += 2;
1137 if (insn == 0xE1FC)
1138 {
1139 /* push <reg> 32 bit instruction. */
1140 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1141 pc += 2;
1142 regno = cris_get_operand2 (insn_next);
1143 if (info)
1144 {
1145 info->sp_offset += 4;
1146 }
1147 /* This check, meant to recognize srp, used to be regno ==
1148 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1149 if (insn_next == 0xBE7E)
1150 {
1151 if (info)
1152 {
1153 info->leaf_function = 0;
1154 }
1155 }
1156 else if (insn_next == 0x8FEE)
1157 {
1158 /* push $r8 */
1159 if (info)
1160 {
1161 info->r8_offset = info->sp_offset;
1162 }
1163 }
1164 }
1165 else if (insn == 0x866E)
1166 {
1167 /* move.d sp,r8 */
1168 if (info)
1169 {
1170 info->uses_frame = 1;
1171 }
1172 continue;
1173 }
1174 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1175 && cris_get_mode (insn) == 0x0000
1176 && cris_get_opcode (insn) == 0x000A)
1177 {
1178 /* subq <val>,sp */
1179 if (info)
1180 {
1181 info->sp_offset += cris_get_quick_value (insn);
1182 }
1183 }
1184 else if (cris_get_mode (insn) == 0x0002
1185 && cris_get_opcode (insn) == 0x000F
1186 && cris_get_size (insn) == 0x0003
1187 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1188 {
1189 /* movem r<regsave>,[sp] */
1190 regsave = cris_get_operand2 (insn);
1191 }
1192 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1193 && ((insn & 0x0F00) >> 8) == 0x0001
1194 && (cris_get_signed_offset (insn) < 0))
1195 {
1196 /* Immediate byte offset addressing prefix word with sp as base
1197 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1198 is between 64 and 128.
1199 movem r<regsave>,[sp=sp-<val>] */
1200 if (info)
1201 {
1202 info->sp_offset += -cris_get_signed_offset (insn);
1203 }
1204 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1205 pc += 2;
1206 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1207 && cris_get_opcode (insn_next) == 0x000F
1208 && cris_get_size (insn_next) == 0x0003
1209 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1210 (gdbarch))
1211 {
1212 regsave = cris_get_operand2 (insn_next);
1213 }
1214 else
1215 {
1216 /* The prologue ended before the limit was reached. */
1217 pc -= 4;
1218 break;
1219 }
1220 }
1221 else if (cris_get_mode (insn) == 0x0001
1222 && cris_get_opcode (insn) == 0x0009
1223 && cris_get_size (insn) == 0x0002)
1224 {
1225 /* move.d r<10..13>,r<0..15> */
1226 source_register = cris_get_operand1 (insn);
1227
1228 /* FIXME? In the glibc solibs, the prologue might contain something
1229 like (this example taken from relocate_doit):
1230 move.d $pc,$r0
1231 sub.d 0xfffef426,$r0
1232 which isn't covered by the source_register check below. Question
1233 is whether to add a check for this combo, or make better use of
1234 the limit variable instead. */
1235 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1236 {
1237 /* The prologue ended before the limit was reached. */
1238 pc -= 2;
1239 break;
1240 }
1241 }
1242 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1243 /* The size is a fixed-size. */
1244 && ((insn & 0x0F00) >> 8) == 0x0001
1245 /* A negative offset. */
1246 && (cris_get_signed_offset (insn) < 0))
1247 {
1248 /* move.S rZ,[r8-U] (?) */
1249 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1250 pc += 2;
1251 regno = cris_get_operand2 (insn_next);
1252 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1253 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1254 && cris_get_opcode (insn_next) == 0x000F)
1255 {
1256 /* move.S rZ,[r8-U] */
1257 continue;
1258 }
1259 else
1260 {
1261 /* The prologue ended before the limit was reached. */
1262 pc -= 4;
1263 break;
1264 }
1265 }
1266 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1267 /* The size is a fixed-size. */
1268 && ((insn & 0x0F00) >> 8) == 0x0001
1269 /* A positive offset. */
1270 && (cris_get_signed_offset (insn) > 0))
1271 {
1272 /* move.S [r8+U],rZ (?) */
1273 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1274 pc += 2;
1275 regno = cris_get_operand2 (insn_next);
1276 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1277 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1278 && cris_get_opcode (insn_next) == 0x0009
1279 && cris_get_operand1 (insn_next) == regno)
1280 {
1281 /* move.S [r8+U],rZ */
1282 continue;
1283 }
1284 else
1285 {
1286 /* The prologue ended before the limit was reached. */
1287 pc -= 4;
1288 break;
1289 }
1290 }
1291 else
1292 {
1293 /* The prologue ended before the limit was reached. */
1294 pc -= 2;
1295 break;
1296 }
1297 }
1298
1299 /* We only want to know the end of the prologue when this_frame and info
1300 are NULL (called from cris_skip_prologue i.e.). */
1301 if (this_frame == NULL && info == NULL)
1302 {
1303 return pc;
1304 }
1305
1306 info->size = info->sp_offset;
1307
1308 /* Compute the previous frame's stack pointer (which is also the
1309 frame's ID's stack address), and this frame's base pointer. */
1310 if (info->uses_frame)
1311 {
1312 ULONGEST this_base;
1313 /* The SP was moved to the FP. This indicates that a new frame
1314 was created. Get THIS frame's FP value by unwinding it from
1315 the next frame. */
1316 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1317 info->base = this_base;
1318 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1319
1320 /* The FP points at the last saved register. Adjust the FP back
1321 to before the first saved register giving the SP. */
1322 info->prev_sp = info->base + info->r8_offset;
1323 }
1324 else
1325 {
1326 ULONGEST this_base;
1327 /* Assume that the FP is this frame's SP but with that pushed
1328 stack space added back. */
1329 this_base = get_frame_register_unsigned (this_frame,
1330 gdbarch_sp_regnum (gdbarch));
1331 info->base = this_base;
1332 info->prev_sp = info->base + info->size;
1333 }
1334
1335 /* Calculate the addresses for the saved registers on the stack. */
1336 /* FIXME: The address calculation should really be done on the fly while
1337 we're analyzing the prologue (we only hold one regsave value as it is
1338 now). */
1339 val = info->sp_offset;
1340
1341 for (regno = regsave; regno >= 0; regno--)
1342 {
1343 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1344 val -= 4;
1345 }
1346
1347 /* The previous frame's SP needed to be computed. Save the computed
1348 value. */
1349 trad_frame_set_value (info->saved_regs,
1350 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1351
1352 if (!info->leaf_function)
1353 {
1354 /* SRP saved on the stack. But where? */
1355 if (info->r8_offset == 0)
1356 {
1357 /* R8 not pushed yet. */
1358 info->saved_regs[SRP_REGNUM].addr = info->base;
1359 }
1360 else
1361 {
1362 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1363 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1364 }
1365 }
1366
1367 /* The PC is found in SRP (the actual register or located on the stack). */
1368 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1369 = info->saved_regs[SRP_REGNUM];
1370
1371 return pc;
1372 }
1373
1374 static CORE_ADDR
1375 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1376 struct cris_unwind_cache *info)
1377 {
1378 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1379 ULONGEST this_base;
1380
1381 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1382 meant to be a full-fledged prologue scanner. It is only needed for
1383 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1384
1385 * PLT stubs (library calls)
1386 * call dummys
1387 * signal trampolines
1388
1389 For those cases, it is assumed that there is no actual prologue; that
1390 the stack pointer is not adjusted, and (as a consequence) the return
1391 address is not pushed onto the stack. */
1392
1393 /* We only want to know the end of the prologue when this_frame and info
1394 are NULL (called from cris_skip_prologue i.e.). */
1395 if (this_frame == NULL && info == NULL)
1396 {
1397 return pc;
1398 }
1399
1400 /* The SP is assumed to be unaltered. */
1401 this_base = get_frame_register_unsigned (this_frame,
1402 gdbarch_sp_regnum (gdbarch));
1403 info->base = this_base;
1404 info->prev_sp = this_base;
1405
1406 /* The PC is assumed to be found in SRP. */
1407 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1408 = info->saved_regs[SRP_REGNUM];
1409
1410 return pc;
1411 }
1412
1413 /* Advance pc beyond any function entry prologue instructions at pc
1414 to reach some "real" code. */
1415
1416 /* Given a PC value corresponding to the start of a function, return the PC
1417 of the first instruction after the function prologue. */
1418
1419 static CORE_ADDR
1420 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1421 {
1422 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1423 CORE_ADDR func_addr, func_end;
1424 struct symtab_and_line sal;
1425 CORE_ADDR pc_after_prologue;
1426
1427 /* If we have line debugging information, then the end of the prologue
1428 should the first assembly instruction of the first source line. */
1429 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1430 {
1431 sal = find_pc_line (func_addr, 0);
1432 if (sal.end > 0 && sal.end < func_end)
1433 return sal.end;
1434 }
1435
1436 if (tdep->cris_version == 32)
1437 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1438 else
1439 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1440
1441 return pc_after_prologue;
1442 }
1443
1444 static CORE_ADDR
1445 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1446 {
1447 ULONGEST pc;
1448 pc = frame_unwind_register_unsigned (next_frame,
1449 gdbarch_pc_regnum (gdbarch));
1450 return pc;
1451 }
1452
1453 static CORE_ADDR
1454 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1455 {
1456 ULONGEST sp;
1457 sp = frame_unwind_register_unsigned (next_frame,
1458 gdbarch_sp_regnum (gdbarch));
1459 return sp;
1460 }
1461
1462 /* Use the program counter to determine the contents and size of a breakpoint
1463 instruction. It returns a pointer to a string of bytes that encode a
1464 breakpoint instruction, stores the length of the string to *lenptr, and
1465 adjusts pcptr (if necessary) to point to the actual memory location where
1466 the breakpoint should be inserted. */
1467
1468 static const unsigned char *
1469 cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1470 CORE_ADDR *pcptr, int *lenptr)
1471 {
1472 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1473 static unsigned char break8_insn[] = {0x38, 0xe9};
1474 static unsigned char break15_insn[] = {0x3f, 0xe9};
1475 *lenptr = 2;
1476
1477 if (tdep->cris_mode == cris_mode_guru)
1478 return break15_insn;
1479 else
1480 return break8_insn;
1481 }
1482
1483 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1484 0 otherwise. */
1485
1486 static int
1487 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1488 struct cris_spec_reg spec_reg)
1489 {
1490 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1491 int version = tdep->cris_version;
1492
1493 switch (spec_reg.applicable_version)
1494 {
1495 case cris_ver_version_all:
1496 return 1;
1497 case cris_ver_warning:
1498 /* Indeterminate/obsolete. */
1499 return 0;
1500 case cris_ver_v0_3:
1501 return (version >= 0 && version <= 3);
1502 case cris_ver_v3p:
1503 return (version >= 3);
1504 case cris_ver_v8:
1505 return (version == 8 || version == 9);
1506 case cris_ver_v8p:
1507 return (version >= 8);
1508 case cris_ver_v0_10:
1509 return (version >= 0 && version <= 10);
1510 case cris_ver_v3_10:
1511 return (version >= 3 && version <= 10);
1512 case cris_ver_v8_10:
1513 return (version >= 8 && version <= 10);
1514 case cris_ver_v10:
1515 return (version == 10);
1516 case cris_ver_v10p:
1517 return (version >= 10);
1518 case cris_ver_v32p:
1519 return (version >= 32);
1520 default:
1521 /* Invalid cris version. */
1522 return 0;
1523 }
1524 }
1525
1526 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1527 register, -1 for an invalid register. */
1528
1529 static int
1530 cris_register_size (struct gdbarch *gdbarch, int regno)
1531 {
1532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1533 int i;
1534 int spec_regno;
1535
1536 if (regno >= 0 && regno < NUM_GENREGS)
1537 {
1538 /* General registers (R0 - R15) are 32 bits. */
1539 return 4;
1540 }
1541 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1542 {
1543 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1544 Adjust regno accordingly. */
1545 spec_regno = regno - NUM_GENREGS;
1546
1547 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1548 {
1549 if (cris_spec_regs[i].number == spec_regno
1550 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1551 /* Go with the first applicable register. */
1552 return cris_spec_regs[i].reg_size;
1553 }
1554 /* Special register not applicable to this CRIS version. */
1555 return 0;
1556 }
1557 else if (regno >= gdbarch_pc_regnum (gdbarch)
1558 && regno < gdbarch_num_regs (gdbarch))
1559 {
1560 /* This will apply to CRISv32 only where there are additional registers
1561 after the special registers (pseudo PC and support registers). */
1562 return 4;
1563 }
1564
1565
1566 return -1;
1567 }
1568
1569 /* Nonzero if regno should not be fetched from the target. This is the case
1570 for unimplemented (size 0) and non-existant registers. */
1571
1572 static int
1573 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1574 {
1575 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1576 || (cris_register_size (gdbarch, regno) == 0));
1577 }
1578
1579 /* Nonzero if regno should not be written to the target, for various
1580 reasons. */
1581
1582 static int
1583 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1584 {
1585 /* There are three kinds of registers we refuse to write to.
1586 1. Those that not implemented.
1587 2. Those that are read-only (depends on the processor mode).
1588 3. Those registers to which a write has no effect. */
1589
1590 if (regno < 0
1591 || regno >= gdbarch_num_regs (gdbarch)
1592 || cris_register_size (gdbarch, regno) == 0)
1593 /* Not implemented. */
1594 return 1;
1595
1596 else if (regno == VR_REGNUM)
1597 /* Read-only. */
1598 return 1;
1599
1600 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1601 /* Writing has no effect. */
1602 return 1;
1603
1604 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1605 agent decide whether they are writable. */
1606
1607 return 0;
1608 }
1609
1610 /* Nonzero if regno should not be fetched from the target. This is the case
1611 for unimplemented (size 0) and non-existant registers. */
1612
1613 static int
1614 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1615 {
1616 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1617 || (cris_register_size (gdbarch, regno) == 0));
1618 }
1619
1620 /* Nonzero if regno should not be written to the target, for various
1621 reasons. */
1622
1623 static int
1624 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1625 {
1626 /* There are three kinds of registers we refuse to write to.
1627 1. Those that not implemented.
1628 2. Those that are read-only (depends on the processor mode).
1629 3. Those registers to which a write has no effect. */
1630
1631 if (regno < 0
1632 || regno >= gdbarch_num_regs (gdbarch)
1633 || cris_register_size (gdbarch, regno) == 0)
1634 /* Not implemented. */
1635 return 1;
1636
1637 else if (regno == VR_REGNUM)
1638 /* Read-only. */
1639 return 1;
1640
1641 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1642 /* Writing has no effect. */
1643 return 1;
1644
1645 /* Many special registers are read-only in user mode. Let the debug
1646 agent decide whether they are writable. */
1647
1648 return 0;
1649 }
1650
1651 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1652 of data in register regno. */
1653
1654 static struct type *
1655 cris_register_type (struct gdbarch *gdbarch, int regno)
1656 {
1657 if (regno == gdbarch_pc_regnum (gdbarch))
1658 return builtin_type (gdbarch)->builtin_func_ptr;
1659 else if (regno == gdbarch_sp_regnum (gdbarch)
1660 || regno == CRIS_FP_REGNUM)
1661 return builtin_type (gdbarch)->builtin_data_ptr;
1662 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1663 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1664 /* Note: R8 taken care of previous clause. */
1665 return builtin_type (gdbarch)->builtin_uint32;
1666 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1667 return builtin_type (gdbarch)->builtin_uint16;
1668 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1669 return builtin_type (gdbarch)->builtin_uint8;
1670 else
1671 /* Invalid (unimplemented) register. */
1672 return builtin_type (gdbarch)->builtin_int0;
1673 }
1674
1675 static struct type *
1676 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1677 {
1678 if (regno == gdbarch_pc_regnum (gdbarch))
1679 return builtin_type (gdbarch)->builtin_func_ptr;
1680 else if (regno == gdbarch_sp_regnum (gdbarch)
1681 || regno == CRIS_FP_REGNUM)
1682 return builtin_type (gdbarch)->builtin_data_ptr;
1683 else if ((regno >= 0 && regno <= ACR_REGNUM)
1684 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1685 || (regno == PID_REGNUM)
1686 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1687 /* Note: R8 and SP taken care of by previous clause. */
1688 return builtin_type (gdbarch)->builtin_uint32;
1689 else if (regno == WZ_REGNUM)
1690 return builtin_type (gdbarch)->builtin_uint16;
1691 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1692 return builtin_type (gdbarch)->builtin_uint8;
1693 else
1694 {
1695 /* Invalid (unimplemented) register. Should not happen as there are
1696 no unimplemented CRISv32 registers. */
1697 warning (_("crisv32_register_type: unknown regno %d"), regno);
1698 return builtin_type (gdbarch)->builtin_int0;
1699 }
1700 }
1701
1702 /* Stores a function return value of type type, where valbuf is the address
1703 of the value to be stored. */
1704
1705 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1706
1707 static void
1708 cris_store_return_value (struct type *type, struct regcache *regcache,
1709 const void *valbuf)
1710 {
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1713 ULONGEST val;
1714 int len = TYPE_LENGTH (type);
1715
1716 if (len <= 4)
1717 {
1718 /* Put the return value in R10. */
1719 val = extract_unsigned_integer (valbuf, len, byte_order);
1720 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1721 }
1722 else if (len <= 8)
1723 {
1724 /* Put the return value in R10 and R11. */
1725 val = extract_unsigned_integer (valbuf, 4, byte_order);
1726 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1727 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
1728 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1729 }
1730 else
1731 error (_("cris_store_return_value: type length too large."));
1732 }
1733
1734 /* Return the name of register regno as a string. Return NULL for an
1735 invalid or unimplemented register. */
1736
1737 static const char *
1738 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1739 {
1740 int spec_regno;
1741 int i;
1742
1743 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1744 Adjust regno accordingly. */
1745 spec_regno = regno - NUM_GENREGS;
1746
1747 /* Assume nothing about the layout of the cris_spec_regs struct
1748 when searching. */
1749 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1750 {
1751 if (cris_spec_regs[i].number == spec_regno
1752 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1753 /* Go with the first applicable register. */
1754 return cris_spec_regs[i].name;
1755 }
1756 /* Special register not applicable to this CRIS version. */
1757 return NULL;
1758 }
1759
1760 static const char *
1761 cris_register_name (struct gdbarch *gdbarch, int regno)
1762 {
1763 static char *cris_genreg_names[] =
1764 { "r0", "r1", "r2", "r3", \
1765 "r4", "r5", "r6", "r7", \
1766 "r8", "r9", "r10", "r11", \
1767 "r12", "r13", "sp", "pc" };
1768
1769 if (regno >= 0 && regno < NUM_GENREGS)
1770 {
1771 /* General register. */
1772 return cris_genreg_names[regno];
1773 }
1774 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1775 {
1776 return cris_special_register_name (gdbarch, regno);
1777 }
1778 else
1779 {
1780 /* Invalid register. */
1781 return NULL;
1782 }
1783 }
1784
1785 static const char *
1786 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1787 {
1788 static char *crisv32_genreg_names[] =
1789 { "r0", "r1", "r2", "r3", \
1790 "r4", "r5", "r6", "r7", \
1791 "r8", "r9", "r10", "r11", \
1792 "r12", "r13", "sp", "acr"
1793 };
1794
1795 static char *crisv32_sreg_names[] =
1796 { "s0", "s1", "s2", "s3", \
1797 "s4", "s5", "s6", "s7", \
1798 "s8", "s9", "s10", "s11", \
1799 "s12", "s13", "s14", "s15"
1800 };
1801
1802 if (regno >= 0 && regno < NUM_GENREGS)
1803 {
1804 /* General register. */
1805 return crisv32_genreg_names[regno];
1806 }
1807 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1808 {
1809 return cris_special_register_name (gdbarch, regno);
1810 }
1811 else if (regno == gdbarch_pc_regnum (gdbarch))
1812 {
1813 return "pc";
1814 }
1815 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1816 {
1817 return crisv32_sreg_names[regno - S0_REGNUM];
1818 }
1819 else
1820 {
1821 /* Invalid register. */
1822 return NULL;
1823 }
1824 }
1825
1826 /* Convert DWARF register number REG to the appropriate register
1827 number used by GDB. */
1828
1829 static int
1830 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1831 {
1832 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1833 numbering, MOF is 18).
1834 Adapted from gcc/config/cris/cris.h. */
1835 static int cris_dwarf_regmap[] = {
1836 0, 1, 2, 3,
1837 4, 5, 6, 7,
1838 8, 9, 10, 11,
1839 12, 13, 14, 15,
1840 27, -1, -1, -1,
1841 -1, -1, -1, 23,
1842 -1, -1, -1, 27,
1843 -1, -1, -1, -1
1844 };
1845 int regnum = -1;
1846
1847 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1848 regnum = cris_dwarf_regmap[reg];
1849
1850 if (regnum == -1)
1851 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1852
1853 return regnum;
1854 }
1855
1856 /* DWARF-2 frame support. */
1857
1858 static void
1859 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1860 struct dwarf2_frame_state_reg *reg,
1861 struct frame_info *this_frame)
1862 {
1863 /* The return address column. */
1864 if (regnum == gdbarch_pc_regnum (gdbarch))
1865 reg->how = DWARF2_FRAME_REG_RA;
1866
1867 /* The call frame address. */
1868 else if (regnum == gdbarch_sp_regnum (gdbarch))
1869 reg->how = DWARF2_FRAME_REG_CFA;
1870 }
1871
1872 /* Extract from an array regbuf containing the raw register state a function
1873 return value of type type, and copy that, in virtual format, into
1874 valbuf. */
1875
1876 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1877
1878 static void
1879 cris_extract_return_value (struct type *type, struct regcache *regcache,
1880 void *valbuf)
1881 {
1882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1884 ULONGEST val;
1885 int len = TYPE_LENGTH (type);
1886
1887 if (len <= 4)
1888 {
1889 /* Get the return value from R10. */
1890 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1891 store_unsigned_integer (valbuf, len, byte_order, val);
1892 }
1893 else if (len <= 8)
1894 {
1895 /* Get the return value from R10 and R11. */
1896 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1897 store_unsigned_integer (valbuf, 4, byte_order, val);
1898 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1899 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
1900 }
1901 else
1902 error (_("cris_extract_return_value: type length too large"));
1903 }
1904
1905 /* Handle the CRIS return value convention. */
1906
1907 static enum return_value_convention
1908 cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1909 struct type *type, struct regcache *regcache,
1910 gdb_byte *readbuf, const gdb_byte *writebuf)
1911 {
1912 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1913 || TYPE_CODE (type) == TYPE_CODE_UNION
1914 || TYPE_LENGTH (type) > 8)
1915 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1916 goes on the stack. */
1917 return RETURN_VALUE_STRUCT_CONVENTION;
1918
1919 if (readbuf)
1920 cris_extract_return_value (type, regcache, readbuf);
1921 if (writebuf)
1922 cris_store_return_value (type, regcache, writebuf);
1923
1924 return RETURN_VALUE_REGISTER_CONVENTION;
1925 }
1926
1927 /* Calculates a value that measures how good inst_args constraints an
1928 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929
1930 static int
1931 constraint (unsigned int insn, const signed char *inst_args,
1932 inst_env_type *inst_env)
1933 {
1934 int retval = 0;
1935 int tmp, i;
1936
1937 const char *s = inst_args;
1938
1939 for (; *s; s++)
1940 switch (*s)
1941 {
1942 case 'm':
1943 if ((insn & 0x30) == 0x30)
1944 return -1;
1945 break;
1946
1947 case 'S':
1948 /* A prefix operand. */
1949 if (inst_env->prefix_found)
1950 break;
1951 else
1952 return -1;
1953
1954 case 'B':
1955 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1956 valid "push" size. In case of special register, it may be != 4. */
1957 if (inst_env->prefix_found)
1958 break;
1959 else
1960 return -1;
1961
1962 case 'D':
1963 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1964 if (!retval)
1965 return -1;
1966 else
1967 retval += 4;
1968 break;
1969
1970 case 'P':
1971 tmp = (insn >> 0xC) & 0xF;
1972
1973 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1974 {
1975 /* Since we match four bits, we will give a value of
1976 4 - 1 = 3 in a match. If there is a corresponding
1977 exact match of a special register in another pattern, it
1978 will get a value of 4, which will be higher. This should
1979 be correct in that an exact pattern would match better that
1980 a general pattern.
1981 Note that there is a reason for not returning zero; the
1982 pattern for "clear" is partly matched in the bit-pattern
1983 (the two lower bits must be zero), while the bit-pattern
1984 for a move from a special register is matched in the
1985 register constraint.
1986 This also means we will will have a race condition if
1987 there is a partly match in three bits in the bit pattern. */
1988 if (tmp == cris_spec_regs[i].number)
1989 {
1990 retval += 3;
1991 break;
1992 }
1993 }
1994
1995 if (cris_spec_regs[i].name == NULL)
1996 return -1;
1997 break;
1998 }
1999 return retval;
2000 }
2001
2002 /* Returns the number of bits set in the variable value. */
2003
2004 static int
2005 number_of_bits (unsigned int value)
2006 {
2007 int number_of_bits = 0;
2008
2009 while (value != 0)
2010 {
2011 number_of_bits += 1;
2012 value &= (value - 1);
2013 }
2014 return number_of_bits;
2015 }
2016
2017 /* Finds the address that should contain the single step breakpoint(s).
2018 It stems from code in cris-dis.c. */
2019
2020 static int
2021 find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022 {
2023 int i;
2024 int max_level_of_match = -1;
2025 int max_matched = -1;
2026 int level_of_match;
2027
2028 for (i = 0; cris_opcodes[i].name != NULL; i++)
2029 {
2030 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
2031 && ((cris_opcodes[i].lose & insn) == 0)
2032 /* Only CRISv10 instructions, please. */
2033 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
2034 {
2035 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2036 if (level_of_match >= 0)
2037 {
2038 level_of_match +=
2039 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2040 if (level_of_match > max_level_of_match)
2041 {
2042 max_matched = i;
2043 max_level_of_match = level_of_match;
2044 if (level_of_match == 16)
2045 {
2046 /* All bits matched, cannot find better. */
2047 break;
2048 }
2049 }
2050 }
2051 }
2052 }
2053 return max_matched;
2054 }
2055
2056 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
2057 actually an internal error. */
2058
2059 static int
2060 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
2061 {
2062 int i;
2063 int offset;
2064 unsigned short insn;
2065 struct gdbarch *gdbarch = get_frame_arch (frame);
2066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2067
2068 /* Create a local register image and set the initial state. */
2069 for (i = 0; i < NUM_GENREGS; i++)
2070 {
2071 inst_env->reg[i] =
2072 (unsigned long) get_frame_register_unsigned (frame, i);
2073 }
2074 offset = NUM_GENREGS;
2075 for (i = 0; i < NUM_SPECREGS; i++)
2076 {
2077 inst_env->preg[i] =
2078 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2079 }
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2087 inst_env->byte_order = byte_order;
2088
2089 /* Look for a step target. */
2090 do
2091 {
2092 /* Read an instruction from the client. */
2093 insn = read_memory_unsigned_integer
2094 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2095
2096 /* If the instruction is not in a delay slot the new content of the
2097 PC is [PC] + 2. If the instruction is in a delay slot it is not
2098 that simple. Since a instruction in a delay slot cannot change
2099 the content of the PC, it does not matter what value PC will have.
2100 Just make sure it is a valid instruction. */
2101 if (!inst_env->delay_slot_pc_active)
2102 {
2103 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2104 }
2105 else
2106 {
2107 inst_env->delay_slot_pc_active = 0;
2108 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2109 = inst_env->delay_slot_pc;
2110 }
2111 /* Analyse the present instruction. */
2112 i = find_cris_op (insn, inst_env);
2113 if (i == -1)
2114 {
2115 inst_env->invalid = 1;
2116 }
2117 else
2118 {
2119 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2120 }
2121 } while (!inst_env->invalid
2122 && (inst_env->prefix_found || inst_env->xflag_found
2123 || inst_env->slot_needed));
2124 return i;
2125 }
2126
2127 /* There is no hardware single-step support. The function find_step_target
2128 digs through the opcodes in order to find all possible targets.
2129 Either one ordinary target or two targets for branches may be found. */
2130
2131 static int
2132 cris_software_single_step (struct frame_info *frame)
2133 {
2134 struct gdbarch *gdbarch = get_frame_arch (frame);
2135 struct address_space *aspace = get_frame_address_space (frame);
2136 inst_env_type inst_env;
2137
2138 /* Analyse the present instruction environment and insert
2139 breakpoints. */
2140 int status = find_step_target (frame, &inst_env);
2141 if (status == -1)
2142 {
2143 /* Could not find a target. Things are likely to go downhill
2144 from here. */
2145 warning (_("CRIS software single step could not find a step target."));
2146 }
2147 else
2148 {
2149 /* Insert at most two breakpoints. One for the next PC content
2150 and possibly another one for a branch, jump, etc. */
2151 CORE_ADDR next_pc
2152 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2153 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2154 if (inst_env.branch_found
2155 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2156 {
2157 CORE_ADDR branch_target_address
2158 = (CORE_ADDR) inst_env.branch_break_address;
2159 insert_single_step_breakpoint (gdbarch,
2160 aspace, branch_target_address);
2161 }
2162 }
2163
2164 return 1;
2165 }
2166
2167 /* Calculates the prefix value for quick offset addressing mode. */
2168
2169 static void
2170 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2171 {
2172 /* It's invalid to be in a delay slot. You can't have a prefix to this
2173 instruction (not 100% sure). */
2174 if (inst_env->slot_needed || inst_env->prefix_found)
2175 {
2176 inst_env->invalid = 1;
2177 return;
2178 }
2179
2180 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2181 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2182
2183 /* A prefix doesn't change the xflag_found. But the rest of the flags
2184 need updating. */
2185 inst_env->slot_needed = 0;
2186 inst_env->prefix_found = 1;
2187 }
2188
2189 /* Updates the autoincrement register. The size of the increment is derived
2190 from the size of the operation. The PC is always kept aligned on even
2191 word addresses. */
2192
2193 static void
2194 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2195 {
2196 if (size == INST_BYTE_SIZE)
2197 {
2198 inst_env->reg[cris_get_operand1 (inst)] += 1;
2199
2200 /* The PC must be word aligned, so increase the PC with one
2201 word even if the size is byte. */
2202 if (cris_get_operand1 (inst) == REG_PC)
2203 {
2204 inst_env->reg[REG_PC] += 1;
2205 }
2206 }
2207 else if (size == INST_WORD_SIZE)
2208 {
2209 inst_env->reg[cris_get_operand1 (inst)] += 2;
2210 }
2211 else if (size == INST_DWORD_SIZE)
2212 {
2213 inst_env->reg[cris_get_operand1 (inst)] += 4;
2214 }
2215 else
2216 {
2217 /* Invalid size. */
2218 inst_env->invalid = 1;
2219 }
2220 }
2221
2222 /* Just a forward declaration. */
2223
2224 static unsigned long get_data_from_address (unsigned short *inst,
2225 CORE_ADDR address,
2226 enum bfd_endian byte_order);
2227
2228 /* Calculates the prefix value for the general case of offset addressing
2229 mode. */
2230
2231 static void
2232 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2233 {
2234
2235 long offset;
2236
2237 /* It's invalid to be in a delay slot. */
2238 if (inst_env->slot_needed || inst_env->prefix_found)
2239 {
2240 inst_env->invalid = 1;
2241 return;
2242 }
2243
2244 /* The calculation of prefix_value used to be after process_autoincrement,
2245 but that fails for an instruction such as jsr [$r0+12] which is encoded
2246 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2247 mustn't be incremented until we have read it and what it points at. */
2248 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2249
2250 /* The offset is an indirection of the contents of the operand1 register. */
2251 inst_env->prefix_value +=
2252 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2253 inst_env->byte_order);
2254
2255 if (cris_get_mode (inst) == AUTOINC_MODE)
2256 {
2257 process_autoincrement (cris_get_size (inst), inst, inst_env);
2258 }
2259
2260 /* A prefix doesn't change the xflag_found. But the rest of the flags
2261 need updating. */
2262 inst_env->slot_needed = 0;
2263 inst_env->prefix_found = 1;
2264 }
2265
2266 /* Calculates the prefix value for the index addressing mode. */
2267
2268 static void
2269 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2270 {
2271 /* It's invalid to be in a delay slot. I can't see that it's possible to
2272 have a prefix to this instruction. So I will treat this as invalid. */
2273 if (inst_env->slot_needed || inst_env->prefix_found)
2274 {
2275 inst_env->invalid = 1;
2276 return;
2277 }
2278
2279 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2280
2281 /* The offset is the operand2 value shifted the size of the instruction
2282 to the left. */
2283 inst_env->prefix_value +=
2284 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2285
2286 /* If the PC is operand1 (base) the address used is the address after
2287 the main instruction, i.e. address + 2 (the PC is already compensated
2288 for the prefix operation). */
2289 if (cris_get_operand1 (inst) == REG_PC)
2290 {
2291 inst_env->prefix_value += 2;
2292 }
2293
2294 /* A prefix doesn't change the xflag_found. But the rest of the flags
2295 need updating. */
2296 inst_env->slot_needed = 0;
2297 inst_env->xflag_found = 0;
2298 inst_env->prefix_found = 1;
2299 }
2300
2301 /* Calculates the prefix value for the double indirect addressing mode. */
2302
2303 static void
2304 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2305 {
2306
2307 CORE_ADDR address;
2308
2309 /* It's invalid to be in a delay slot. */
2310 if (inst_env->slot_needed || inst_env->prefix_found)
2311 {
2312 inst_env->invalid = 1;
2313 return;
2314 }
2315
2316 /* The prefix value is one dereference of the contents of the operand1
2317 register. */
2318 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2319 inst_env->prefix_value
2320 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2321
2322 /* Check if the mode is autoincrement. */
2323 if (cris_get_mode (inst) == AUTOINC_MODE)
2324 {
2325 inst_env->reg[cris_get_operand1 (inst)] += 4;
2326 }
2327
2328 /* A prefix doesn't change the xflag_found. But the rest of the flags
2329 need updating. */
2330 inst_env->slot_needed = 0;
2331 inst_env->xflag_found = 0;
2332 inst_env->prefix_found = 1;
2333 }
2334
2335 /* Finds the destination for a branch with 8-bits offset. */
2336
2337 static void
2338 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2339 {
2340
2341 short offset;
2342
2343 /* If we have a prefix or are in a delay slot it's bad. */
2344 if (inst_env->slot_needed || inst_env->prefix_found)
2345 {
2346 inst_env->invalid = 1;
2347 return;
2348 }
2349
2350 /* We have a branch, find out where the branch will land. */
2351 offset = cris_get_branch_short_offset (inst);
2352
2353 /* Check if the offset is signed. */
2354 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2355 {
2356 offset |= 0xFF00;
2357 }
2358
2359 /* The offset ends with the sign bit, set it to zero. The address
2360 should always be word aligned. */
2361 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2362
2363 inst_env->branch_found = 1;
2364 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2365
2366 inst_env->slot_needed = 1;
2367 inst_env->prefix_found = 0;
2368 inst_env->xflag_found = 0;
2369 inst_env->disable_interrupt = 1;
2370 }
2371
2372 /* Finds the destination for a branch with 16-bits offset. */
2373
2374 static void
2375 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2376 {
2377 short offset;
2378
2379 /* If we have a prefix or is in a delay slot it's bad. */
2380 if (inst_env->slot_needed || inst_env->prefix_found)
2381 {
2382 inst_env->invalid = 1;
2383 return;
2384 }
2385
2386 /* We have a branch, find out the offset for the branch. */
2387 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2388 inst_env->byte_order);
2389
2390 /* The instruction is one word longer than normal, so add one word
2391 to the PC. */
2392 inst_env->reg[REG_PC] += 2;
2393
2394 inst_env->branch_found = 1;
2395 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2396
2397
2398 inst_env->slot_needed = 1;
2399 inst_env->prefix_found = 0;
2400 inst_env->xflag_found = 0;
2401 inst_env->disable_interrupt = 1;
2402 }
2403
2404 /* Handles the ABS instruction. */
2405
2406 static void
2407 abs_op (unsigned short inst, inst_env_type *inst_env)
2408 {
2409
2410 long value;
2411
2412 /* ABS can't have a prefix, so it's bad if it does. */
2413 if (inst_env->prefix_found)
2414 {
2415 inst_env->invalid = 1;
2416 return;
2417 }
2418
2419 /* Check if the operation affects the PC. */
2420 if (cris_get_operand2 (inst) == REG_PC)
2421 {
2422
2423 /* It's invalid to change to the PC if we are in a delay slot. */
2424 if (inst_env->slot_needed)
2425 {
2426 inst_env->invalid = 1;
2427 return;
2428 }
2429
2430 value = (long) inst_env->reg[REG_PC];
2431
2432 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2433 if (value != SIGNED_DWORD_MASK)
2434 {
2435 value = -value;
2436 inst_env->reg[REG_PC] = (long) value;
2437 }
2438 }
2439
2440 inst_env->slot_needed = 0;
2441 inst_env->prefix_found = 0;
2442 inst_env->xflag_found = 0;
2443 inst_env->disable_interrupt = 0;
2444 }
2445
2446 /* Handles the ADDI instruction. */
2447
2448 static void
2449 addi_op (unsigned short inst, inst_env_type *inst_env)
2450 {
2451 /* It's invalid to have the PC as base register. And ADDI can't have
2452 a prefix. */
2453 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2454 {
2455 inst_env->invalid = 1;
2456 return;
2457 }
2458
2459 inst_env->slot_needed = 0;
2460 inst_env->prefix_found = 0;
2461 inst_env->xflag_found = 0;
2462 inst_env->disable_interrupt = 0;
2463 }
2464
2465 /* Handles the ASR instruction. */
2466
2467 static void
2468 asr_op (unsigned short inst, inst_env_type *inst_env)
2469 {
2470 int shift_steps;
2471 unsigned long value;
2472 unsigned long signed_extend_mask = 0;
2473
2474 /* ASR can't have a prefix, so check that it doesn't. */
2475 if (inst_env->prefix_found)
2476 {
2477 inst_env->invalid = 1;
2478 return;
2479 }
2480
2481 /* Check if the PC is the target register. */
2482 if (cris_get_operand2 (inst) == REG_PC)
2483 {
2484 /* It's invalid to change the PC in a delay slot. */
2485 if (inst_env->slot_needed)
2486 {
2487 inst_env->invalid = 1;
2488 return;
2489 }
2490 /* Get the number of bits to shift. */
2491 shift_steps
2492 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2493 value = inst_env->reg[REG_PC];
2494
2495 /* Find out how many bits the operation should apply to. */
2496 if (cris_get_size (inst) == INST_BYTE_SIZE)
2497 {
2498 if (value & SIGNED_BYTE_MASK)
2499 {
2500 signed_extend_mask = 0xFF;
2501 signed_extend_mask = signed_extend_mask >> shift_steps;
2502 signed_extend_mask = ~signed_extend_mask;
2503 }
2504 value = value >> shift_steps;
2505 value |= signed_extend_mask;
2506 value &= 0xFF;
2507 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2508 inst_env->reg[REG_PC] |= value;
2509 }
2510 else if (cris_get_size (inst) == INST_WORD_SIZE)
2511 {
2512 if (value & SIGNED_WORD_MASK)
2513 {
2514 signed_extend_mask = 0xFFFF;
2515 signed_extend_mask = signed_extend_mask >> shift_steps;
2516 signed_extend_mask = ~signed_extend_mask;
2517 }
2518 value = value >> shift_steps;
2519 value |= signed_extend_mask;
2520 value &= 0xFFFF;
2521 inst_env->reg[REG_PC] &= 0xFFFF0000;
2522 inst_env->reg[REG_PC] |= value;
2523 }
2524 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2525 {
2526 if (value & SIGNED_DWORD_MASK)
2527 {
2528 signed_extend_mask = 0xFFFFFFFF;
2529 signed_extend_mask = signed_extend_mask >> shift_steps;
2530 signed_extend_mask = ~signed_extend_mask;
2531 }
2532 value = value >> shift_steps;
2533 value |= signed_extend_mask;
2534 inst_env->reg[REG_PC] = value;
2535 }
2536 }
2537 inst_env->slot_needed = 0;
2538 inst_env->prefix_found = 0;
2539 inst_env->xflag_found = 0;
2540 inst_env->disable_interrupt = 0;
2541 }
2542
2543 /* Handles the ASRQ instruction. */
2544
2545 static void
2546 asrq_op (unsigned short inst, inst_env_type *inst_env)
2547 {
2548
2549 int shift_steps;
2550 unsigned long value;
2551 unsigned long signed_extend_mask = 0;
2552
2553 /* ASRQ can't have a prefix, so check that it doesn't. */
2554 if (inst_env->prefix_found)
2555 {
2556 inst_env->invalid = 1;
2557 return;
2558 }
2559
2560 /* Check if the PC is the target register. */
2561 if (cris_get_operand2 (inst) == REG_PC)
2562 {
2563
2564 /* It's invalid to change the PC in a delay slot. */
2565 if (inst_env->slot_needed)
2566 {
2567 inst_env->invalid = 1;
2568 return;
2569 }
2570 /* The shift size is given as a 5 bit quick value, i.e. we don't
2571 want the sign bit of the quick value. */
2572 shift_steps = cris_get_asr_shift_steps (inst);
2573 value = inst_env->reg[REG_PC];
2574 if (value & SIGNED_DWORD_MASK)
2575 {
2576 signed_extend_mask = 0xFFFFFFFF;
2577 signed_extend_mask = signed_extend_mask >> shift_steps;
2578 signed_extend_mask = ~signed_extend_mask;
2579 }
2580 value = value >> shift_steps;
2581 value |= signed_extend_mask;
2582 inst_env->reg[REG_PC] = value;
2583 }
2584 inst_env->slot_needed = 0;
2585 inst_env->prefix_found = 0;
2586 inst_env->xflag_found = 0;
2587 inst_env->disable_interrupt = 0;
2588 }
2589
2590 /* Handles the AX, EI and SETF instruction. */
2591
2592 static void
2593 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2594 {
2595 if (inst_env->prefix_found)
2596 {
2597 inst_env->invalid = 1;
2598 return;
2599 }
2600 /* Check if the instruction is setting the X flag. */
2601 if (cris_is_xflag_bit_on (inst))
2602 {
2603 inst_env->xflag_found = 1;
2604 }
2605 else
2606 {
2607 inst_env->xflag_found = 0;
2608 }
2609 inst_env->slot_needed = 0;
2610 inst_env->prefix_found = 0;
2611 inst_env->disable_interrupt = 1;
2612 }
2613
2614 /* Checks if the instruction is in assign mode. If so, it updates the assign
2615 register. Note that check_assign assumes that the caller has checked that
2616 there is a prefix to this instruction. The mode check depends on this. */
2617
2618 static void
2619 check_assign (unsigned short inst, inst_env_type *inst_env)
2620 {
2621 /* Check if it's an assign addressing mode. */
2622 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2623 {
2624 /* Assign the prefix value to operand 1. */
2625 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2626 }
2627 }
2628
2629 /* Handles the 2-operand BOUND instruction. */
2630
2631 static void
2632 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2633 {
2634 /* It's invalid to have the PC as the index operand. */
2635 if (cris_get_operand2 (inst) == REG_PC)
2636 {
2637 inst_env->invalid = 1;
2638 return;
2639 }
2640 /* Check if we have a prefix. */
2641 if (inst_env->prefix_found)
2642 {
2643 check_assign (inst, inst_env);
2644 }
2645 /* Check if this is an autoincrement mode. */
2646 else if (cris_get_mode (inst) == AUTOINC_MODE)
2647 {
2648 /* It's invalid to change the PC in a delay slot. */
2649 if (inst_env->slot_needed)
2650 {
2651 inst_env->invalid = 1;
2652 return;
2653 }
2654 process_autoincrement (cris_get_size (inst), inst, inst_env);
2655 }
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2660 }
2661
2662 /* Handles the 3-operand BOUND instruction. */
2663
2664 static void
2665 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2666 {
2667 /* It's an error if we haven't got a prefix. And it's also an error
2668 if the PC is the destination register. */
2669 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2670 {
2671 inst_env->invalid = 1;
2672 return;
2673 }
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2678 }
2679
2680 /* Clears the status flags in inst_env. */
2681
2682 static void
2683 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2684 {
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2687 {
2688 inst_env->invalid = 1;
2689 return;
2690 }
2691
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 0;
2696 }
2697
2698 /* Clears the status flags in inst_env. */
2699
2700 static void
2701 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2702 {
2703 /* It's an error if we have got a prefix. */
2704 if (inst_env->prefix_found)
2705 {
2706 inst_env->invalid = 1;
2707 return;
2708 }
2709
2710 inst_env->slot_needed = 0;
2711 inst_env->prefix_found = 0;
2712 inst_env->xflag_found = 0;
2713 inst_env->disable_interrupt = 1;
2714 }
2715
2716 /* Handles the CLEAR instruction if it's in register mode. */
2717
2718 static void
2719 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2720 {
2721 /* Check if the target is the PC. */
2722 if (cris_get_operand2 (inst) == REG_PC)
2723 {
2724 /* The instruction will clear the instruction's size bits. */
2725 int clear_size = cris_get_clear_size (inst);
2726 if (clear_size == INST_BYTE_SIZE)
2727 {
2728 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2729 }
2730 if (clear_size == INST_WORD_SIZE)
2731 {
2732 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2733 }
2734 if (clear_size == INST_DWORD_SIZE)
2735 {
2736 inst_env->delay_slot_pc = 0x0;
2737 }
2738 /* The jump will be delayed with one delay slot. So we need a delay
2739 slot. */
2740 inst_env->slot_needed = 1;
2741 inst_env->delay_slot_pc_active = 1;
2742 }
2743 else
2744 {
2745 /* The PC will not change => no delay slot. */
2746 inst_env->slot_needed = 0;
2747 }
2748 inst_env->prefix_found = 0;
2749 inst_env->xflag_found = 0;
2750 inst_env->disable_interrupt = 0;
2751 }
2752
2753 /* Handles the TEST instruction if it's in register mode. */
2754
2755 static void
2756 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2757 {
2758 /* It's an error if we have got a prefix. */
2759 if (inst_env->prefix_found)
2760 {
2761 inst_env->invalid = 1;
2762 return;
2763 }
2764 inst_env->slot_needed = 0;
2765 inst_env->prefix_found = 0;
2766 inst_env->xflag_found = 0;
2767 inst_env->disable_interrupt = 0;
2768
2769 }
2770
2771 /* Handles the CLEAR and TEST instruction if the instruction isn't
2772 in register mode. */
2773
2774 static void
2775 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2776 {
2777 /* Check if we are in a prefix mode. */
2778 if (inst_env->prefix_found)
2779 {
2780 /* The only way the PC can change is if this instruction is in
2781 assign addressing mode. */
2782 check_assign (inst, inst_env);
2783 }
2784 /* Indirect mode can't change the PC so just check if the mode is
2785 autoincrement. */
2786 else if (cris_get_mode (inst) == AUTOINC_MODE)
2787 {
2788 process_autoincrement (cris_get_size (inst), inst, inst_env);
2789 }
2790 inst_env->slot_needed = 0;
2791 inst_env->prefix_found = 0;
2792 inst_env->xflag_found = 0;
2793 inst_env->disable_interrupt = 0;
2794 }
2795
2796 /* Checks that the PC isn't the destination register or the instructions has
2797 a prefix. */
2798
2799 static void
2800 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2801 {
2802 /* It's invalid to have the PC as the destination. The instruction can't
2803 have a prefix. */
2804 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2805 {
2806 inst_env->invalid = 1;
2807 return;
2808 }
2809
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 0;
2814 }
2815
2816 /* Checks that the instruction doesn't have a prefix. */
2817
2818 static void
2819 break_op (unsigned short inst, inst_env_type *inst_env)
2820 {
2821 /* The instruction can't have a prefix. */
2822 if (inst_env->prefix_found)
2823 {
2824 inst_env->invalid = 1;
2825 return;
2826 }
2827
2828 inst_env->slot_needed = 0;
2829 inst_env->prefix_found = 0;
2830 inst_env->xflag_found = 0;
2831 inst_env->disable_interrupt = 1;
2832 }
2833
2834 /* Checks that the PC isn't the destination register and that the instruction
2835 doesn't have a prefix. */
2836
2837 static void
2838 scc_op (unsigned short inst, inst_env_type *inst_env)
2839 {
2840 /* It's invalid to have the PC as the destination. The instruction can't
2841 have a prefix. */
2842 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2847
2848 inst_env->slot_needed = 0;
2849 inst_env->prefix_found = 0;
2850 inst_env->xflag_found = 0;
2851 inst_env->disable_interrupt = 1;
2852 }
2853
2854 /* Handles the register mode JUMP instruction. */
2855
2856 static void
2857 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2858 {
2859 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2860 you can't have a prefix. */
2861 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2862 {
2863 inst_env->invalid = 1;
2864 return;
2865 }
2866
2867 /* Just change the PC. */
2868 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2869 inst_env->slot_needed = 0;
2870 inst_env->prefix_found = 0;
2871 inst_env->xflag_found = 0;
2872 inst_env->disable_interrupt = 1;
2873 }
2874
2875 /* Handles the JUMP instruction for all modes except register. */
2876
2877 static void
2878 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2879 {
2880 unsigned long newpc;
2881 CORE_ADDR address;
2882
2883 /* It's invalid to do a JUMP in a delay slot. */
2884 if (inst_env->slot_needed)
2885 {
2886 inst_env->invalid = 1;
2887 }
2888 else
2889 {
2890 /* Check if we have a prefix. */
2891 if (inst_env->prefix_found)
2892 {
2893 check_assign (inst, inst_env);
2894
2895 /* Get the new value for the PC. */
2896 newpc =
2897 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2898 4, inst_env->byte_order);
2899 }
2900 else
2901 {
2902 /* Get the new value for the PC. */
2903 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2904 newpc = read_memory_unsigned_integer (address,
2905 4, inst_env->byte_order);
2906
2907 /* Check if we should increment a register. */
2908 if (cris_get_mode (inst) == AUTOINC_MODE)
2909 {
2910 inst_env->reg[cris_get_operand1 (inst)] += 4;
2911 }
2912 }
2913 inst_env->reg[REG_PC] = newpc;
2914 }
2915 inst_env->slot_needed = 0;
2916 inst_env->prefix_found = 0;
2917 inst_env->xflag_found = 0;
2918 inst_env->disable_interrupt = 1;
2919 }
2920
2921 /* Handles moves to special registers (aka P-register) for all modes. */
2922
2923 static void
2924 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2925 inst_env_type *inst_env)
2926 {
2927 if (inst_env->prefix_found)
2928 {
2929 /* The instruction has a prefix that means we are only interested if
2930 the instruction is in assign mode. */
2931 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2932 {
2933 /* The prefix handles the problem if we are in a delay slot. */
2934 if (cris_get_operand1 (inst) == REG_PC)
2935 {
2936 /* Just take care of the assign. */
2937 check_assign (inst, inst_env);
2938 }
2939 }
2940 }
2941 else if (cris_get_mode (inst) == AUTOINC_MODE)
2942 {
2943 /* The instruction doesn't have a prefix, the only case left that we
2944 are interested in is the autoincrement mode. */
2945 if (cris_get_operand1 (inst) == REG_PC)
2946 {
2947 /* If the PC is to be incremented it's invalid to be in a
2948 delay slot. */
2949 if (inst_env->slot_needed)
2950 {
2951 inst_env->invalid = 1;
2952 return;
2953 }
2954
2955 /* The increment depends on the size of the special register. */
2956 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2957 {
2958 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2959 }
2960 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2961 {
2962 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2963 }
2964 else
2965 {
2966 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2967 }
2968 }
2969 }
2970 inst_env->slot_needed = 0;
2971 inst_env->prefix_found = 0;
2972 inst_env->xflag_found = 0;
2973 inst_env->disable_interrupt = 1;
2974 }
2975
2976 /* Handles moves from special registers (aka P-register) for all modes
2977 except register. */
2978
2979 static void
2980 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2981 inst_env_type *inst_env)
2982 {
2983 if (inst_env->prefix_found)
2984 {
2985 /* The instruction has a prefix that means we are only interested if
2986 the instruction is in assign mode. */
2987 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2988 {
2989 /* The prefix handles the problem if we are in a delay slot. */
2990 if (cris_get_operand1 (inst) == REG_PC)
2991 {
2992 /* Just take care of the assign. */
2993 check_assign (inst, inst_env);
2994 }
2995 }
2996 }
2997 /* The instruction doesn't have a prefix, the only case left that we
2998 are interested in is the autoincrement mode. */
2999 else if (cris_get_mode (inst) == AUTOINC_MODE)
3000 {
3001 if (cris_get_operand1 (inst) == REG_PC)
3002 {
3003 /* If the PC is to be incremented it's invalid to be in a
3004 delay slot. */
3005 if (inst_env->slot_needed)
3006 {
3007 inst_env->invalid = 1;
3008 return;
3009 }
3010
3011 /* The increment depends on the size of the special register. */
3012 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
3013 {
3014 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3015 }
3016 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
3017 {
3018 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3019 }
3020 else
3021 {
3022 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3023 }
3024 }
3025 }
3026 inst_env->slot_needed = 0;
3027 inst_env->prefix_found = 0;
3028 inst_env->xflag_found = 0;
3029 inst_env->disable_interrupt = 1;
3030 }
3031
3032 /* Handles moves from special registers (aka P-register) when the mode
3033 is register. */
3034
3035 static void
3036 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3037 {
3038 /* Register mode move from special register can't have a prefix. */
3039 if (inst_env->prefix_found)
3040 {
3041 inst_env->invalid = 1;
3042 return;
3043 }
3044
3045 if (cris_get_operand1 (inst) == REG_PC)
3046 {
3047 /* It's invalid to change the PC in a delay slot. */
3048 if (inst_env->slot_needed)
3049 {
3050 inst_env->invalid = 1;
3051 return;
3052 }
3053 /* The destination is the PC, the jump will have a delay slot. */
3054 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3055 inst_env->slot_needed = 1;
3056 inst_env->delay_slot_pc_active = 1;
3057 }
3058 else
3059 {
3060 /* If the destination isn't PC, there will be no jump. */
3061 inst_env->slot_needed = 0;
3062 }
3063 inst_env->prefix_found = 0;
3064 inst_env->xflag_found = 0;
3065 inst_env->disable_interrupt = 1;
3066 }
3067
3068 /* Handles the MOVEM from memory to general register instruction. */
3069
3070 static void
3071 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3072 {
3073 if (inst_env->prefix_found)
3074 {
3075 /* The prefix handles the problem if we are in a delay slot. Is the
3076 MOVEM instruction going to change the PC? */
3077 if (cris_get_operand2 (inst) >= REG_PC)
3078 {
3079 inst_env->reg[REG_PC] =
3080 read_memory_unsigned_integer (inst_env->prefix_value,
3081 4, inst_env->byte_order);
3082 }
3083 /* The assign value is the value after the increment. Normally, the
3084 assign value is the value before the increment. */
3085 if ((cris_get_operand1 (inst) == REG_PC)
3086 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3087 {
3088 inst_env->reg[REG_PC] = inst_env->prefix_value;
3089 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3090 }
3091 }
3092 else
3093 {
3094 /* Is the MOVEM instruction going to change the PC? */
3095 if (cris_get_operand2 (inst) == REG_PC)
3096 {
3097 /* It's invalid to change the PC in a delay slot. */
3098 if (inst_env->slot_needed)
3099 {
3100 inst_env->invalid = 1;
3101 return;
3102 }
3103 inst_env->reg[REG_PC] =
3104 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3105 4, inst_env->byte_order);
3106 }
3107 /* The increment is not depending on the size, instead it's depending
3108 on the number of registers loaded from memory. */
3109 if ((cris_get_operand1 (inst) == REG_PC)
3110 && (cris_get_mode (inst) == AUTOINC_MODE))
3111 {
3112 /* It's invalid to change the PC in a delay slot. */
3113 if (inst_env->slot_needed)
3114 {
3115 inst_env->invalid = 1;
3116 return;
3117 }
3118 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3119 }
3120 }
3121 inst_env->slot_needed = 0;
3122 inst_env->prefix_found = 0;
3123 inst_env->xflag_found = 0;
3124 inst_env->disable_interrupt = 0;
3125 }
3126
3127 /* Handles the MOVEM to memory from general register instruction. */
3128
3129 static void
3130 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3131 {
3132 if (inst_env->prefix_found)
3133 {
3134 /* The assign value is the value after the increment. Normally, the
3135 assign value is the value before the increment. */
3136 if ((cris_get_operand1 (inst) == REG_PC)
3137 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3138 {
3139 /* The prefix handles the problem if we are in a delay slot. */
3140 inst_env->reg[REG_PC] = inst_env->prefix_value;
3141 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3142 }
3143 }
3144 else
3145 {
3146 /* The increment is not depending on the size, instead it's depending
3147 on the number of registers loaded to memory. */
3148 if ((cris_get_operand1 (inst) == REG_PC)
3149 && (cris_get_mode (inst) == AUTOINC_MODE))
3150 {
3151 /* It's invalid to change the PC in a delay slot. */
3152 if (inst_env->slot_needed)
3153 {
3154 inst_env->invalid = 1;
3155 return;
3156 }
3157 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3158 }
3159 }
3160 inst_env->slot_needed = 0;
3161 inst_env->prefix_found = 0;
3162 inst_env->xflag_found = 0;
3163 inst_env->disable_interrupt = 0;
3164 }
3165
3166 /* Handles the intructions that's not yet implemented, by setting
3167 inst_env->invalid to true. */
3168
3169 static void
3170 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3171 {
3172 inst_env->invalid = 1;
3173 }
3174
3175 /* Handles the XOR instruction. */
3176
3177 static void
3178 xor_op (unsigned short inst, inst_env_type *inst_env)
3179 {
3180 /* XOR can't have a prefix. */
3181 if (inst_env->prefix_found)
3182 {
3183 inst_env->invalid = 1;
3184 return;
3185 }
3186
3187 /* Check if the PC is the target. */
3188 if (cris_get_operand2 (inst) == REG_PC)
3189 {
3190 /* It's invalid to change the PC in a delay slot. */
3191 if (inst_env->slot_needed)
3192 {
3193 inst_env->invalid = 1;
3194 return;
3195 }
3196 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3197 }
3198 inst_env->slot_needed = 0;
3199 inst_env->prefix_found = 0;
3200 inst_env->xflag_found = 0;
3201 inst_env->disable_interrupt = 0;
3202 }
3203
3204 /* Handles the MULS instruction. */
3205
3206 static void
3207 muls_op (unsigned short inst, inst_env_type *inst_env)
3208 {
3209 /* MULS/U can't have a prefix. */
3210 if (inst_env->prefix_found)
3211 {
3212 inst_env->invalid = 1;
3213 return;
3214 }
3215
3216 /* Consider it invalid if the PC is the target. */
3217 if (cris_get_operand2 (inst) == REG_PC)
3218 {
3219 inst_env->invalid = 1;
3220 return;
3221 }
3222 inst_env->slot_needed = 0;
3223 inst_env->prefix_found = 0;
3224 inst_env->xflag_found = 0;
3225 inst_env->disable_interrupt = 0;
3226 }
3227
3228 /* Handles the MULU instruction. */
3229
3230 static void
3231 mulu_op (unsigned short inst, inst_env_type *inst_env)
3232 {
3233 /* MULS/U can't have a prefix. */
3234 if (inst_env->prefix_found)
3235 {
3236 inst_env->invalid = 1;
3237 return;
3238 }
3239
3240 /* Consider it invalid if the PC is the target. */
3241 if (cris_get_operand2 (inst) == REG_PC)
3242 {
3243 inst_env->invalid = 1;
3244 return;
3245 }
3246 inst_env->slot_needed = 0;
3247 inst_env->prefix_found = 0;
3248 inst_env->xflag_found = 0;
3249 inst_env->disable_interrupt = 0;
3250 }
3251
3252 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3253 The MOVE instruction is the move from source to register. */
3254
3255 static void
3256 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3257 unsigned long source1, unsigned long source2)
3258 {
3259 unsigned long pc_mask;
3260 unsigned long operation_mask;
3261
3262 /* Find out how many bits the operation should apply to. */
3263 if (cris_get_size (inst) == INST_BYTE_SIZE)
3264 {
3265 pc_mask = 0xFFFFFF00;
3266 operation_mask = 0xFF;
3267 }
3268 else if (cris_get_size (inst) == INST_WORD_SIZE)
3269 {
3270 pc_mask = 0xFFFF0000;
3271 operation_mask = 0xFFFF;
3272 }
3273 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3274 {
3275 pc_mask = 0x0;
3276 operation_mask = 0xFFFFFFFF;
3277 }
3278 else
3279 {
3280 /* The size is out of range. */
3281 inst_env->invalid = 1;
3282 return;
3283 }
3284
3285 /* The instruction just works on uw_operation_mask bits. */
3286 source2 &= operation_mask;
3287 source1 &= operation_mask;
3288
3289 /* Now calculate the result. The opcode's 3 first bits separates
3290 the different actions. */
3291 switch (cris_get_opcode (inst) & 7)
3292 {
3293 case 0: /* add */
3294 source1 += source2;
3295 break;
3296
3297 case 1: /* move */
3298 source1 = source2;
3299 break;
3300
3301 case 2: /* subtract */
3302 source1 -= source2;
3303 break;
3304
3305 case 3: /* compare */
3306 break;
3307
3308 case 4: /* and */
3309 source1 &= source2;
3310 break;
3311
3312 case 5: /* or */
3313 source1 |= source2;
3314 break;
3315
3316 default:
3317 inst_env->invalid = 1;
3318 return;
3319
3320 break;
3321 }
3322
3323 /* Make sure that the result doesn't contain more than the instruction
3324 size bits. */
3325 source2 &= operation_mask;
3326
3327 /* Calculate the new breakpoint address. */
3328 inst_env->reg[REG_PC] &= pc_mask;
3329 inst_env->reg[REG_PC] |= source1;
3330
3331 }
3332
3333 /* Extends the value from either byte or word size to a dword. If the mode
3334 is zero extend then the value is extended with zero. If instead the mode
3335 is signed extend the sign bit of the value is taken into consideration. */
3336
3337 static unsigned long
3338 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3339 {
3340 /* The size can be either byte or word, check which one it is.
3341 Don't check the highest bit, it's indicating if it's a zero
3342 or sign extend. */
3343 if (cris_get_size (*inst) & INST_WORD_SIZE)
3344 {
3345 /* Word size. */
3346 value &= 0xFFFF;
3347
3348 /* Check if the instruction is signed extend. If so, check if value has
3349 the sign bit on. */
3350 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3351 {
3352 value |= SIGNED_WORD_EXTEND_MASK;
3353 }
3354 }
3355 else
3356 {
3357 /* Byte size. */
3358 value &= 0xFF;
3359
3360 /* Check if the instruction is signed extend. If so, check if value has
3361 the sign bit on. */
3362 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3363 {
3364 value |= SIGNED_BYTE_EXTEND_MASK;
3365 }
3366 }
3367 /* The size should now be dword. */
3368 cris_set_size_to_dword (inst);
3369 return value;
3370 }
3371
3372 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3373 instruction. The MOVE instruction is the move from source to register. */
3374
3375 static void
3376 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3377 inst_env_type *inst_env)
3378 {
3379 unsigned long operand1;
3380 unsigned long operand2;
3381
3382 /* It's invalid to have a prefix to the instruction. This is a register
3383 mode instruction and can't have a prefix. */
3384 if (inst_env->prefix_found)
3385 {
3386 inst_env->invalid = 1;
3387 return;
3388 }
3389 /* Check if the instruction has PC as its target. */
3390 if (cris_get_operand2 (inst) == REG_PC)
3391 {
3392 if (inst_env->slot_needed)
3393 {
3394 inst_env->invalid = 1;
3395 return;
3396 }
3397 /* The instruction has the PC as its target register. */
3398 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3399 operand2 = inst_env->reg[REG_PC];
3400
3401 /* Check if it's a extend, signed or zero instruction. */
3402 if (cris_get_opcode (inst) < 4)
3403 {
3404 operand1 = do_sign_or_zero_extend (operand1, &inst);
3405 }
3406 /* Calculate the PC value after the instruction, i.e. where the
3407 breakpoint should be. The order of the udw_operands is vital. */
3408 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3409 }
3410 inst_env->slot_needed = 0;
3411 inst_env->prefix_found = 0;
3412 inst_env->xflag_found = 0;
3413 inst_env->disable_interrupt = 0;
3414 }
3415
3416 /* Returns the data contained at address. The size of the data is derived from
3417 the size of the operation. If the instruction is a zero or signed
3418 extend instruction, the size field is changed in instruction. */
3419
3420 static unsigned long
3421 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3422 enum bfd_endian byte_order)
3423 {
3424 int size = cris_get_size (*inst);
3425 unsigned long value;
3426
3427 /* If it's an extend instruction we don't want the signed extend bit,
3428 because it influences the size. */
3429 if (cris_get_opcode (*inst) < 4)
3430 {
3431 size &= ~SIGNED_EXTEND_BIT_MASK;
3432 }
3433 /* Is there a need for checking the size? Size should contain the number of
3434 bytes to read. */
3435 size = 1 << size;
3436 value = read_memory_unsigned_integer (address, size, byte_order);
3437
3438 /* Check if it's an extend, signed or zero instruction. */
3439 if (cris_get_opcode (*inst) < 4)
3440 {
3441 value = do_sign_or_zero_extend (value, inst);
3442 }
3443 return value;
3444 }
3445
3446 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3447 instructions. The MOVE instruction is the move from source to register. */
3448
3449 static void
3450 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3451 inst_env_type *inst_env)
3452 {
3453 unsigned long operand2;
3454 unsigned long operand3;
3455
3456 check_assign (inst, inst_env);
3457 if (cris_get_operand2 (inst) == REG_PC)
3458 {
3459 operand2 = inst_env->reg[REG_PC];
3460
3461 /* Get the value of the third operand. */
3462 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3463 inst_env->byte_order);
3464
3465 /* Calculate the PC value after the instruction, i.e. where the
3466 breakpoint should be. The order of the udw_operands is vital. */
3467 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3468 }
3469 inst_env->slot_needed = 0;
3470 inst_env->prefix_found = 0;
3471 inst_env->xflag_found = 0;
3472 inst_env->disable_interrupt = 0;
3473 }
3474
3475 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3476 OR instructions. Note that for this to work as expected, the calling
3477 function must have made sure that there is a prefix to this instruction. */
3478
3479 static void
3480 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3481 inst_env_type *inst_env)
3482 {
3483 unsigned long operand2;
3484 unsigned long operand3;
3485
3486 if (cris_get_operand1 (inst) == REG_PC)
3487 {
3488 /* The PC will be changed by the instruction. */
3489 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3490
3491 /* Get the value of the third operand. */
3492 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3493 inst_env->byte_order);
3494
3495 /* Calculate the PC value after the instruction, i.e. where the
3496 breakpoint should be. */
3497 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3498 }
3499 inst_env->slot_needed = 0;
3500 inst_env->prefix_found = 0;
3501 inst_env->xflag_found = 0;
3502 inst_env->disable_interrupt = 0;
3503 }
3504
3505 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3506 instructions. The MOVE instruction is the move from source to register. */
3507
3508 static void
3509 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3510 inst_env_type *inst_env)
3511 {
3512 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3513 {
3514 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3515 SUB, AND or OR something weird is going on (if everything works these
3516 instructions should end up in the three operand version). */
3517 inst_env->invalid = 1;
3518 return;
3519 }
3520 else
3521 {
3522 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3523 so use it. */
3524 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3525 }
3526 inst_env->slot_needed = 0;
3527 inst_env->prefix_found = 0;
3528 inst_env->xflag_found = 0;
3529 inst_env->disable_interrupt = 0;
3530 }
3531
3532 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3533 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3534 source to register. */
3535
3536 static void
3537 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3538 inst_env_type *inst_env)
3539 {
3540 unsigned long operand1;
3541 unsigned long operand2;
3542 unsigned long operand3;
3543 int size;
3544
3545 /* The instruction is either an indirect or autoincrement addressing mode.
3546 Check if the destination register is the PC. */
3547 if (cris_get_operand2 (inst) == REG_PC)
3548 {
3549 /* Must be done here, get_data_from_address may change the size
3550 field. */
3551 size = cris_get_size (inst);
3552 operand2 = inst_env->reg[REG_PC];
3553
3554 /* Get the value of the third operand, i.e. the indirect operand. */
3555 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3556 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3557
3558 /* Calculate the PC value after the instruction, i.e. where the
3559 breakpoint should be. The order of the udw_operands is vital. */
3560 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3561 }
3562 /* If this is an autoincrement addressing mode, check if the increment
3563 changes the PC. */
3564 if ((cris_get_operand1 (inst) == REG_PC)
3565 && (cris_get_mode (inst) == AUTOINC_MODE))
3566 {
3567 /* Get the size field. */
3568 size = cris_get_size (inst);
3569
3570 /* If it's an extend instruction we don't want the signed extend bit,
3571 because it influences the size. */
3572 if (cris_get_opcode (inst) < 4)
3573 {
3574 size &= ~SIGNED_EXTEND_BIT_MASK;
3575 }
3576 process_autoincrement (size, inst, inst_env);
3577 }
3578 inst_env->slot_needed = 0;
3579 inst_env->prefix_found = 0;
3580 inst_env->xflag_found = 0;
3581 inst_env->disable_interrupt = 0;
3582 }
3583
3584 /* Handles the two-operand addressing mode, all modes except register, for
3585 the ADD, SUB CMP, AND and OR instruction. */
3586
3587 static void
3588 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3589 inst_env_type *inst_env)
3590 {
3591 if (inst_env->prefix_found)
3592 {
3593 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3594 {
3595 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3596 }
3597 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3598 {
3599 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3600 }
3601 else
3602 {
3603 /* The mode is invalid for a prefixed base instruction. */
3604 inst_env->invalid = 1;
3605 return;
3606 }
3607 }
3608 else
3609 {
3610 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3611 }
3612 }
3613
3614 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3615
3616 static void
3617 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3618 {
3619 unsigned long operand1;
3620 unsigned long operand2;
3621
3622 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3623 instruction and can't have a prefix. */
3624 if (inst_env->prefix_found)
3625 {
3626 inst_env->invalid = 1;
3627 return;
3628 }
3629
3630 /* Check if the instruction has PC as its target. */
3631 if (cris_get_operand2 (inst) == REG_PC)
3632 {
3633 if (inst_env->slot_needed)
3634 {
3635 inst_env->invalid = 1;
3636 return;
3637 }
3638 operand1 = cris_get_quick_value (inst);
3639 operand2 = inst_env->reg[REG_PC];
3640
3641 /* The size should now be dword. */
3642 cris_set_size_to_dword (&inst);
3643
3644 /* Calculate the PC value after the instruction, i.e. where the
3645 breakpoint should be. */
3646 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3647 }
3648 inst_env->slot_needed = 0;
3649 inst_env->prefix_found = 0;
3650 inst_env->xflag_found = 0;
3651 inst_env->disable_interrupt = 0;
3652 }
3653
3654 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3655
3656 static void
3657 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3658 {
3659 unsigned long operand1;
3660 unsigned long operand2;
3661
3662 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3663 instruction and can't have a prefix. */
3664 if (inst_env->prefix_found)
3665 {
3666 inst_env->invalid = 1;
3667 return;
3668 }
3669 /* Check if the instruction has PC as its target. */
3670 if (cris_get_operand2 (inst) == REG_PC)
3671 {
3672 if (inst_env->slot_needed)
3673 {
3674 inst_env->invalid = 1;
3675 return;
3676 }
3677 /* The instruction has the PC as its target register. */
3678 operand1 = cris_get_quick_value (inst);
3679 operand2 = inst_env->reg[REG_PC];
3680
3681 /* The quick value is signed, so check if we must do a signed extend. */
3682 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3683 {
3684 /* sign extend */
3685 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3686 }
3687 /* The size should now be dword. */
3688 cris_set_size_to_dword (&inst);
3689
3690 /* Calculate the PC value after the instruction, i.e. where the
3691 breakpoint should be. */
3692 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3693 }
3694 inst_env->slot_needed = 0;
3695 inst_env->prefix_found = 0;
3696 inst_env->xflag_found = 0;
3697 inst_env->disable_interrupt = 0;
3698 }
3699
3700 /* Translate op_type to a function and call it. */
3701
3702 static void
3703 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3704 unsigned short inst, inst_env_type *inst_env)
3705 {
3706 switch (op_type)
3707 {
3708 case cris_not_implemented_op:
3709 not_implemented_op (inst, inst_env);
3710 break;
3711
3712 case cris_abs_op:
3713 abs_op (inst, inst_env);
3714 break;
3715
3716 case cris_addi_op:
3717 addi_op (inst, inst_env);
3718 break;
3719
3720 case cris_asr_op:
3721 asr_op (inst, inst_env);
3722 break;
3723
3724 case cris_asrq_op:
3725 asrq_op (inst, inst_env);
3726 break;
3727
3728 case cris_ax_ei_setf_op:
3729 ax_ei_setf_op (inst, inst_env);
3730 break;
3731
3732 case cris_bdap_prefix:
3733 bdap_prefix (inst, inst_env);
3734 break;
3735
3736 case cris_biap_prefix:
3737 biap_prefix (inst, inst_env);
3738 break;
3739
3740 case cris_break_op:
3741 break_op (inst, inst_env);
3742 break;
3743
3744 case cris_btst_nop_op:
3745 btst_nop_op (inst, inst_env);
3746 break;
3747
3748 case cris_clearf_di_op:
3749 clearf_di_op (inst, inst_env);
3750 break;
3751
3752 case cris_dip_prefix:
3753 dip_prefix (inst, inst_env);
3754 break;
3755
3756 case cris_dstep_logshift_mstep_neg_not_op:
3757 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3758 break;
3759
3760 case cris_eight_bit_offset_branch_op:
3761 eight_bit_offset_branch_op (inst, inst_env);
3762 break;
3763
3764 case cris_move_mem_to_reg_movem_op:
3765 move_mem_to_reg_movem_op (inst, inst_env);
3766 break;
3767
3768 case cris_move_reg_to_mem_movem_op:
3769 move_reg_to_mem_movem_op (inst, inst_env);
3770 break;
3771
3772 case cris_move_to_preg_op:
3773 move_to_preg_op (gdbarch, inst, inst_env);
3774 break;
3775
3776 case cris_muls_op:
3777 muls_op (inst, inst_env);
3778 break;
3779
3780 case cris_mulu_op:
3781 mulu_op (inst, inst_env);
3782 break;
3783
3784 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3785 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3786 break;
3787
3788 case cris_none_reg_mode_clear_test_op:
3789 none_reg_mode_clear_test_op (inst, inst_env);
3790 break;
3791
3792 case cris_none_reg_mode_jump_op:
3793 none_reg_mode_jump_op (inst, inst_env);
3794 break;
3795
3796 case cris_none_reg_mode_move_from_preg_op:
3797 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3798 break;
3799
3800 case cris_quick_mode_add_sub_op:
3801 quick_mode_add_sub_op (inst, inst_env);
3802 break;
3803
3804 case cris_quick_mode_and_cmp_move_or_op:
3805 quick_mode_and_cmp_move_or_op (inst, inst_env);
3806 break;
3807
3808 case cris_quick_mode_bdap_prefix:
3809 quick_mode_bdap_prefix (inst, inst_env);
3810 break;
3811
3812 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3813 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3814 break;
3815
3816 case cris_reg_mode_clear_op:
3817 reg_mode_clear_op (inst, inst_env);
3818 break;
3819
3820 case cris_reg_mode_jump_op:
3821 reg_mode_jump_op (inst, inst_env);
3822 break;
3823
3824 case cris_reg_mode_move_from_preg_op:
3825 reg_mode_move_from_preg_op (inst, inst_env);
3826 break;
3827
3828 case cris_reg_mode_test_op:
3829 reg_mode_test_op (inst, inst_env);
3830 break;
3831
3832 case cris_scc_op:
3833 scc_op (inst, inst_env);
3834 break;
3835
3836 case cris_sixteen_bit_offset_branch_op:
3837 sixteen_bit_offset_branch_op (inst, inst_env);
3838 break;
3839
3840 case cris_three_operand_add_sub_cmp_and_or_op:
3841 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3842 break;
3843
3844 case cris_three_operand_bound_op:
3845 three_operand_bound_op (inst, inst_env);
3846 break;
3847
3848 case cris_two_operand_bound_op:
3849 two_operand_bound_op (inst, inst_env);
3850 break;
3851
3852 case cris_xor_op:
3853 xor_op (inst, inst_env);
3854 break;
3855 }
3856 }
3857
3858 /* This wrapper is to avoid cris_get_assembler being called before
3859 exec_bfd has been set. */
3860
3861 static int
3862 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3863 {
3864 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3865 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3866 disassembler, even when there is no BFD. Does something like
3867 "gdb; target remote; disassmeble *0x123" work? */
3868 gdb_assert (exec_bfd != NULL);
3869 print_insn = cris_get_disassembler (exec_bfd);
3870 gdb_assert (print_insn != NULL);
3871 return print_insn (addr, info);
3872 }
3873
3874 /* Copied from <asm/elf.h>. */
3875 typedef unsigned long elf_greg_t;
3876
3877 /* Same as user_regs_struct struct in <asm/user.h>. */
3878 #define CRISV10_ELF_NGREG 35
3879 typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3880
3881 #define CRISV32_ELF_NGREG 32
3882 typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3883
3884 /* Unpack an elf_gregset_t into GDB's register cache. */
3885
3886 static void
3887 cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
3888 {
3889 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3890 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3891 int i;
3892 elf_greg_t *regp = *gregsetp;
3893 static char zerobuf[4] = {0};
3894
3895 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3896 knows about the actual size of each register so that's no problem. */
3897 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3898 {
3899 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3900 }
3901
3902 if (tdep->cris_version == 32)
3903 {
3904 /* Needed to set pseudo-register PC for CRISv32. */
3905 /* FIXME: If ERP is in a delay slot at this point then the PC will
3906 be wrong. Issue a warning to alert the user. */
3907 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3908 (char *)&regp[ERP_REGNUM]);
3909
3910 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3911 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3912 }
3913 }
3914
3915 /* Use a local version of this function to get the correct types for
3916 regsets, until multi-arch core support is ready. */
3917
3918 static void
3919 fetch_core_registers (struct regcache *regcache,
3920 char *core_reg_sect, unsigned core_reg_size,
3921 int which, CORE_ADDR reg_addr)
3922 {
3923 elf_gregset_t gregset;
3924
3925 switch (which)
3926 {
3927 case 0:
3928 if (core_reg_size != sizeof (elf_gregset_t)
3929 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3930 {
3931 warning (_("wrong size gregset struct in core file"));
3932 }
3933 else
3934 {
3935 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3936 cris_supply_gregset (regcache, &gregset);
3937 }
3938
3939 default:
3940 /* We've covered all the kinds of registers we know about here,
3941 so this must be something we wouldn't know what to do with
3942 anyway. Just ignore it. */
3943 break;
3944 }
3945 }
3946
3947 static struct core_fns cris_elf_core_fns =
3948 {
3949 bfd_target_elf_flavour, /* core_flavour */
3950 default_check_format, /* check_format */
3951 default_core_sniffer, /* core_sniffer */
3952 fetch_core_registers, /* core_read_registers */
3953 NULL /* next */
3954 };
3955
3956 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3957
3958 void
3959 _initialize_cris_tdep (void)
3960 {
3961 static struct cmd_list_element *cris_set_cmdlist;
3962 static struct cmd_list_element *cris_show_cmdlist;
3963
3964 struct cmd_list_element *c;
3965
3966 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3967
3968 /* CRIS-specific user-commands. */
3969 add_setshow_uinteger_cmd ("cris-version", class_support,
3970 &usr_cmd_cris_version,
3971 _("Set the current CRIS version."),
3972 _("Show the current CRIS version."),
3973 _("\
3974 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3975 Defaults to 10. "),
3976 set_cris_version,
3977 NULL, /* FIXME: i18n: Current CRIS version
3978 is %s. */
3979 &setlist, &showlist);
3980
3981 add_setshow_enum_cmd ("cris-mode", class_support,
3982 cris_modes, &usr_cmd_cris_mode,
3983 _("Set the current CRIS mode."),
3984 _("Show the current CRIS mode."),
3985 _("\
3986 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3987 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3988 set_cris_mode,
3989 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3990 &setlist, &showlist);
3991
3992 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3993 &usr_cmd_cris_dwarf2_cfi,
3994 _("Set the usage of Dwarf-2 CFI for CRIS."),
3995 _("Show the usage of Dwarf-2 CFI for CRIS."),
3996 _("Set this to \"off\" if using gcc-cris < R59."),
3997 set_cris_dwarf2_cfi,
3998 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3999 for CRIS is %d. */
4000 &setlist, &showlist);
4001
4002 deprecated_add_core_fns (&cris_elf_core_fns);
4003 }
4004
4005 /* Prints out all target specific values. */
4006
4007 static void
4008 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4009 {
4010 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4011 if (tdep != NULL)
4012 {
4013 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4014 tdep->cris_version);
4015 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4016 tdep->cris_mode);
4017 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4018 tdep->cris_dwarf2_cfi);
4019 }
4020 }
4021
4022 static void
4023 set_cris_version (char *ignore_args, int from_tty,
4024 struct cmd_list_element *c)
4025 {
4026 struct gdbarch_info info;
4027
4028 usr_cmd_cris_version_valid = 1;
4029
4030 /* Update the current architecture, if needed. */
4031 gdbarch_info_init (&info);
4032 if (!gdbarch_update_p (info))
4033 internal_error (__FILE__, __LINE__,
4034 _("cris_gdbarch_update: failed to update architecture."));
4035 }
4036
4037 static void
4038 set_cris_mode (char *ignore_args, int from_tty,
4039 struct cmd_list_element *c)
4040 {
4041 struct gdbarch_info info;
4042
4043 /* Update the current architecture, if needed. */
4044 gdbarch_info_init (&info);
4045 if (!gdbarch_update_p (info))
4046 internal_error (__FILE__, __LINE__,
4047 "cris_gdbarch_update: failed to update architecture.");
4048 }
4049
4050 static void
4051 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4052 struct cmd_list_element *c)
4053 {
4054 struct gdbarch_info info;
4055
4056 /* Update the current architecture, if needed. */
4057 gdbarch_info_init (&info);
4058 if (!gdbarch_update_p (info))
4059 internal_error (__FILE__, __LINE__,
4060 _("cris_gdbarch_update: failed to update architecture."));
4061 }
4062
4063 static struct gdbarch *
4064 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4065 {
4066 struct gdbarch *gdbarch;
4067 struct gdbarch_tdep *tdep;
4068 int cris_version;
4069
4070 if (usr_cmd_cris_version_valid)
4071 {
4072 /* Trust the user's CRIS version setting. */
4073 cris_version = usr_cmd_cris_version;
4074 }
4075 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4076 {
4077 cris_version = 32;
4078 }
4079 else
4080 {
4081 /* Assume it's CRIS version 10. */
4082 cris_version = 10;
4083 }
4084
4085 /* Make the current settings visible to the user. */
4086 usr_cmd_cris_version = cris_version;
4087
4088 /* Find a candidate among the list of pre-declared architectures. */
4089 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4090 arches != NULL;
4091 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4092 {
4093 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4094 == usr_cmd_cris_version)
4095 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4096 == usr_cmd_cris_mode)
4097 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4098 == usr_cmd_cris_dwarf2_cfi))
4099 return arches->gdbarch;
4100 }
4101
4102 /* No matching architecture was found. Create a new one. */
4103 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4104 gdbarch = gdbarch_alloc (&info, tdep);
4105
4106 tdep->cris_version = usr_cmd_cris_version;
4107 tdep->cris_mode = usr_cmd_cris_mode;
4108 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4109
4110 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4111 switch (info.byte_order)
4112 {
4113 case BFD_ENDIAN_LITTLE:
4114 /* Ok. */
4115 break;
4116
4117 case BFD_ENDIAN_BIG:
4118 internal_error (__FILE__, __LINE__,
4119 _("cris_gdbarch_init: big endian byte order in info"));
4120 break;
4121
4122 default:
4123 internal_error (__FILE__, __LINE__,
4124 _("cris_gdbarch_init: unknown byte order in info"));
4125 }
4126
4127 set_gdbarch_return_value (gdbarch, cris_return_value);
4128
4129 set_gdbarch_sp_regnum (gdbarch, 14);
4130
4131 /* Length of ordinary registers used in push_word and a few other
4132 places. register_size() is the real way to know how big a
4133 register is. */
4134
4135 set_gdbarch_double_bit (gdbarch, 64);
4136 /* The default definition of a long double is 2 * gdbarch_double_bit,
4137 which means we have to set this explicitly. */
4138 set_gdbarch_long_double_bit (gdbarch, 64);
4139
4140 /* The total amount of space needed to store (in an array called registers)
4141 GDB's copy of the machine's register state. Note: We can not use
4142 cris_register_size at this point, since it relies on gdbarch
4143 being set. */
4144 switch (tdep->cris_version)
4145 {
4146 case 0:
4147 case 1:
4148 case 2:
4149 case 3:
4150 case 8:
4151 case 9:
4152 /* Old versions; not supported. */
4153 internal_error (__FILE__, __LINE__,
4154 _("cris_gdbarch_init: unsupported CRIS version"));
4155 break;
4156
4157 case 10:
4158 case 11:
4159 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4160 P7 (32 bits), and P15 (32 bits) have been implemented. */
4161 set_gdbarch_pc_regnum (gdbarch, 15);
4162 set_gdbarch_register_type (gdbarch, cris_register_type);
4163 /* There are 32 registers (some of which may not be implemented). */
4164 set_gdbarch_num_regs (gdbarch, 32);
4165 set_gdbarch_register_name (gdbarch, cris_register_name);
4166 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4167 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4168
4169 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4170 break;
4171
4172 case 32:
4173 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4174 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4175 and pseudo-register PC (32 bits). */
4176 set_gdbarch_pc_regnum (gdbarch, 32);
4177 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4178 /* 32 registers + pseudo-register PC + 16 support registers. */
4179 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4180 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4181
4182 set_gdbarch_cannot_store_register
4183 (gdbarch, crisv32_cannot_store_register);
4184 set_gdbarch_cannot_fetch_register
4185 (gdbarch, crisv32_cannot_fetch_register);
4186
4187 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4188
4189 set_gdbarch_single_step_through_delay
4190 (gdbarch, crisv32_single_step_through_delay);
4191
4192 break;
4193
4194 default:
4195 internal_error (__FILE__, __LINE__,
4196 _("cris_gdbarch_init: unknown CRIS version"));
4197 }
4198
4199 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4200 have the same ABI). */
4201 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4202 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4203 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4204 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4205
4206 /* The stack grows downward. */
4207 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4208
4209 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4210
4211 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4212 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4213 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4214
4215 if (tdep->cris_dwarf2_cfi == 1)
4216 {
4217 /* Hook in the Dwarf-2 frame sniffer. */
4218 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4219 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4220 dwarf2_append_unwinders (gdbarch);
4221 }
4222
4223 if (tdep->cris_mode != cris_mode_guru)
4224 {
4225 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4226 }
4227
4228 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4229 frame_base_set_default (gdbarch, &cris_frame_base);
4230
4231 set_solib_svr4_fetch_link_map_offsets
4232 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
4233
4234 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4235 disassembler, even when there is no BFD. Does something like
4236 "gdb; target remote; disassmeble *0x123" work? */
4237 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4238
4239 return gdbarch;
4240 }