]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/cris-tdep.c
Split breakpoint_from_pc to breakpoint_kind_from_pc and sw_breakpoint_from_kind
[thirdparty/binutils-gdb.git] / gdb / cris-tdep.c
1 /* Target dependent code for CRIS, for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "trad-frame.h"
28 #include "dwarf2-frame.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "target.h"
35 #include "value.h"
36 #include "opcode/cris.h"
37 #include "osabi.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40
41 #include "objfiles.h"
42
43 #include "solib.h" /* Support for shared libraries. */
44 #include "solib-svr4.h"
45 #include "dis-asm.h"
46
47 #include "cris-tdep.h"
48
49 enum cris_num_regs
50 {
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
64 };
65
66 /* Register numbers of various important registers.
67 CRIS_FP_REGNUM Contains address of executing stack frame.
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
79 enum cris_regnums
80 {
81 /* Enums with respect to the general registers, valid for all
82 CRIS versions. The frame pointer is always in R8. */
83 CRIS_FP_REGNUM = 8,
84 /* ABI related registers. */
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
92 /* Registers which happen to be common. */
93 VR_REGNUM = 17,
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et al. specific registers. */
98 P0_REGNUM = 16,
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
104 BAR_REGNUM = 28,
105 DCCR_REGNUM = 29,
106 BRP_REGNUM = 30,
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
142 };
143
144 extern const struct cris_spec_reg cris_spec_regs[];
145
146 /* CRIS version, set via the user command 'set cris-version'. Affects
147 register names and sizes. */
148 static unsigned int usr_cmd_cris_version;
149
150 /* Indicates whether to trust the above variable. */
151 static int usr_cmd_cris_version_valid = 0;
152
153 static const char cris_mode_normal[] = "normal";
154 static const char cris_mode_guru[] = "guru";
155 static const char *const cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159 };
160
161 /* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163 static const char *usr_cmd_cris_mode = cris_mode_normal;
164
165 /* Whether to make use of Dwarf-2 CFI (default on). */
166 static int usr_cmd_cris_dwarf2_cfi = 1;
167
168 /* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170 #define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171 #define SIGTRAMP_OFFSET0 0
172 #define SIGTRAMP_INSN1 0xe93d /* break 13 */
173 #define SIGTRAMP_OFFSET1 4
174
175 static const unsigned short sigtramp_code[] =
176 {
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179 };
180
181 #define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183 /* Note: same length as normal sigtramp code. */
184
185 static const unsigned short rt_sigtramp_code[] =
186 {
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189 };
190
191 /* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194 static CORE_ADDR
195 cris_sigtramp_start (struct frame_info *this_frame)
196 {
197 CORE_ADDR pc = get_frame_pc (this_frame);
198 gdb_byte buf[SIGTRAMP_LEN];
199
200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
201 return 0;
202
203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
204 {
205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217 }
218
219 /* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222 static CORE_ADDR
223 cris_rt_sigtramp_start (struct frame_info *this_frame)
224 {
225 CORE_ADDR pc = get_frame_pc (this_frame);
226 gdb_byte buf[SIGTRAMP_LEN];
227
228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
229 return 0;
230
231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
232 {
233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245 }
246
247 /* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
249
250 static CORE_ADDR
251 cris_sigcontext_addr (struct frame_info *this_frame)
252 {
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
255 CORE_ADDR pc;
256 CORE_ADDR sp;
257 gdb_byte buf[4];
258
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
261
262 /* Look for normal sigtramp frame first. */
263 pc = cris_sigtramp_start (this_frame);
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
272 pc = cris_rt_sigtramp_start (this_frame);
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
283 error (_("Couldn't recognize signal trampoline."));
284 return 0;
285 }
286
287 struct cris_unwind_cache
288 {
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
303 CORE_ADDR return_pc;
304 int leaf_function;
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
308 };
309
310 static struct cris_unwind_cache *
311 cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
312 void **this_cache)
313 {
314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 struct cris_unwind_cache *info;
318 CORE_ADDR addr;
319 gdb_byte buf[4];
320 int i;
321
322 if ((*this_cache))
323 return (struct cris_unwind_cache *) (*this_cache);
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
340 info->base = extract_unsigned_integer (buf, 4, byte_order);
341
342 addr = cris_sigcontext_addr (this_frame);
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
366 = info->saved_regs[IRP_REGNUM];
367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
390 the signal is received while in a delay slot.
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
395 = info->saved_regs[ERP_REGNUM];
396
397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
398 = addr + (25 * 4);
399 }
400
401 return info;
402 }
403
404 static void
405 cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
406 struct frame_id *this_id)
407 {
408 struct cris_unwind_cache *cache =
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
411 }
412
413 /* Forward declaration. */
414
415 static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417 static struct value *
418 cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
420 {
421 /* Make sure we've initialized the cache. */
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424 }
425
426 static int
427 cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430 {
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
436 }
437
438 static const struct frame_unwind cris_sigtramp_frame_unwind =
439 {
440 SIGTRAMP_FRAME,
441 default_frame_unwind_stop_reason,
442 cris_sigtramp_frame_this_id,
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
446 };
447
448 static int
449 crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451 {
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 ULONGEST erp;
454 int ret = 0;
455
456 if (tdep->cris_mode == cris_mode_guru)
457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
458 else
459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
466 ret = 1;
467 }
468 return ret;
469 }
470
471 /* The instruction environment needed to find single-step breakpoints. */
472
473 typedef
474 struct instruction_environment
475 {
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
488 enum bfd_endian byte_order;
489 } inst_env_type;
490
491 /* Machine-dependencies in CRIS for opcodes. */
492
493 /* Instruction sizes. */
494 enum cris_instruction_sizes
495 {
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499 };
500
501 /* Addressing modes. */
502 enum cris_addressing_modes
503 {
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507 };
508
509 /* Prefix addressing modes. */
510 enum cris_prefix_addressing_modes
511 {
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517 };
518
519 /* Masks for opcodes. */
520 enum cris_opcode_masks
521 {
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531 };
532
533 /* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540 static int
541 cris_get_operand2 (unsigned short insn)
542 {
543 return ((insn & 0xF000) >> 12);
544 }
545
546 static int
547 cris_get_mode (unsigned short insn)
548 {
549 return ((insn & 0x0C00) >> 10);
550 }
551
552 static int
553 cris_get_opcode (unsigned short insn)
554 {
555 return ((insn & 0x03C0) >> 6);
556 }
557
558 static int
559 cris_get_size (unsigned short insn)
560 {
561 return ((insn & 0x0030) >> 4);
562 }
563
564 static int
565 cris_get_operand1 (unsigned short insn)
566 {
567 return (insn & 0x000F);
568 }
569
570 /* Additional functions in order to handle opcodes. */
571
572 static int
573 cris_get_quick_value (unsigned short insn)
574 {
575 return (insn & 0x003F);
576 }
577
578 static int
579 cris_get_bdap_quick_offset (unsigned short insn)
580 {
581 return (insn & 0x00FF);
582 }
583
584 static int
585 cris_get_branch_short_offset (unsigned short insn)
586 {
587 return (insn & 0x00FF);
588 }
589
590 static int
591 cris_get_asr_shift_steps (unsigned long value)
592 {
593 return (value & 0x3F);
594 }
595
596 static int
597 cris_get_clear_size (unsigned short insn)
598 {
599 return ((insn) & 0xC000);
600 }
601
602 static int
603 cris_is_signed_extend_bit_on (unsigned short insn)
604 {
605 return (((insn) & 0x20) == 0x20);
606 }
607
608 static int
609 cris_is_xflag_bit_on (unsigned short insn)
610 {
611 return (((insn) & 0x1000) == 0x1000);
612 }
613
614 static void
615 cris_set_size_to_dword (unsigned short *insn)
616 {
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619 }
620
621 static signed char
622 cris_get_signed_offset (unsigned short insn)
623 {
624 return ((signed char) (insn & 0x00FF));
625 }
626
627 /* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
629 static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
631
632 static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
635 static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
637 static void set_cris_version (char *ignore_args, int from_tty,
638 struct cmd_list_element *c);
639
640 static void set_cris_mode (char *ignore_args, int from_tty,
641 struct cmd_list_element *c);
642
643 static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
644 struct cmd_list_element *c);
645
646 static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
647 struct frame_info *this_frame,
648 struct cris_unwind_cache *info);
649
650 static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
651 struct frame_info *this_frame,
652 struct cris_unwind_cache *info);
653
654 static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
655 struct frame_info *next_frame);
656
657 static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
658 struct frame_info *next_frame);
659
660 /* When arguments must be pushed onto the stack, they go on in reverse
661 order. The below implements a FILO (stack) to do this.
662 Copied from d10v-tdep.c. */
663
664 struct stack_item
665 {
666 int len;
667 struct stack_item *prev;
668 gdb_byte *data;
669 };
670
671 static struct stack_item *
672 push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
673 {
674 struct stack_item *si = XNEW (struct stack_item);
675 si->data = (gdb_byte *) xmalloc (len);
676 si->len = len;
677 si->prev = prev;
678 memcpy (si->data, contents, len);
679 return si;
680 }
681
682 static struct stack_item *
683 pop_stack_item (struct stack_item *si)
684 {
685 struct stack_item *dead = si;
686 si = si->prev;
687 xfree (dead->data);
688 xfree (dead);
689 return si;
690 }
691
692 /* Put here the code to store, into fi->saved_regs, the addresses of
693 the saved registers of frame described by FRAME_INFO. This
694 includes special registers such as pc and fp saved in special ways
695 in the stack frame. sp is even more special: the address we return
696 for it IS the sp for the next frame. */
697
698 static struct cris_unwind_cache *
699 cris_frame_unwind_cache (struct frame_info *this_frame,
700 void **this_prologue_cache)
701 {
702 struct gdbarch *gdbarch = get_frame_arch (this_frame);
703 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
704 struct cris_unwind_cache *info;
705
706 if ((*this_prologue_cache))
707 return (struct cris_unwind_cache *) (*this_prologue_cache);
708
709 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
710 (*this_prologue_cache) = info;
711 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
712
713 /* Zero all fields. */
714 info->prev_sp = 0;
715 info->base = 0;
716 info->size = 0;
717 info->sp_offset = 0;
718 info->r8_offset = 0;
719 info->uses_frame = 0;
720 info->return_pc = 0;
721 info->leaf_function = 0;
722
723 /* Prologue analysis does the rest... */
724 if (tdep->cris_version == 32)
725 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
726 else
727 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
728
729 return info;
730 }
731
732 /* Given a GDB frame, determine the address of the calling function's
733 frame. This will be used to create a new GDB frame struct. */
734
735 static void
736 cris_frame_this_id (struct frame_info *this_frame,
737 void **this_prologue_cache,
738 struct frame_id *this_id)
739 {
740 struct cris_unwind_cache *info
741 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
742 CORE_ADDR base;
743 CORE_ADDR func;
744 struct frame_id id;
745
746 /* The FUNC is easy. */
747 func = get_frame_func (this_frame);
748
749 /* Hopefully the prologue analysis either correctly determined the
750 frame's base (which is the SP from the previous frame), or set
751 that base to "NULL". */
752 base = info->prev_sp;
753 if (base == 0)
754 return;
755
756 id = frame_id_build (base, func);
757
758 (*this_id) = id;
759 }
760
761 static struct value *
762 cris_frame_prev_register (struct frame_info *this_frame,
763 void **this_prologue_cache, int regnum)
764 {
765 struct cris_unwind_cache *info
766 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
767 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
768 }
769
770 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
771 frame. The frame ID's base needs to match the TOS value saved by
772 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
773
774 static struct frame_id
775 cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
776 {
777 CORE_ADDR sp;
778 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
779 return frame_id_build (sp, get_frame_pc (this_frame));
780 }
781
782 static CORE_ADDR
783 cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
784 {
785 /* Align to the size of an instruction (so that they can safely be
786 pushed onto the stack). */
787 return sp & ~3;
788 }
789
790 static CORE_ADDR
791 cris_push_dummy_code (struct gdbarch *gdbarch,
792 CORE_ADDR sp, CORE_ADDR funaddr,
793 struct value **args, int nargs,
794 struct type *value_type,
795 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
796 struct regcache *regcache)
797 {
798 /* Allocate space sufficient for a breakpoint. */
799 sp = (sp - 4) & ~3;
800 /* Store the address of that breakpoint */
801 *bp_addr = sp;
802 /* CRIS always starts the call at the callee's entry point. */
803 *real_pc = funaddr;
804 return sp;
805 }
806
807 static CORE_ADDR
808 cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
809 struct regcache *regcache, CORE_ADDR bp_addr,
810 int nargs, struct value **args, CORE_ADDR sp,
811 int struct_return, CORE_ADDR struct_addr)
812 {
813 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
814 int argreg;
815 int argnum;
816
817 struct stack_item *si = NULL;
818
819 /* Push the return address. */
820 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
821
822 /* Are we returning a value using a structure return or a normal value
823 return? struct_addr is the address of the reserved space for the return
824 structure to be written on the stack. */
825 if (struct_return)
826 {
827 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
828 }
829
830 /* Now load as many as possible of the first arguments into registers,
831 and push the rest onto the stack. */
832 argreg = ARG1_REGNUM;
833
834 for (argnum = 0; argnum < nargs; argnum++)
835 {
836 int len;
837 const gdb_byte *val;
838 int reg_demand;
839 int i;
840
841 len = TYPE_LENGTH (value_type (args[argnum]));
842 val = value_contents (args[argnum]);
843
844 /* How may registers worth of storage do we need for this argument? */
845 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
846
847 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
848 {
849 /* Data passed by value. Fits in available register(s). */
850 for (i = 0; i < reg_demand; i++)
851 {
852 regcache_cooked_write (regcache, argreg, val);
853 argreg++;
854 val += 4;
855 }
856 }
857 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
858 {
859 /* Data passed by value. Does not fit in available register(s).
860 Use the register(s) first, then the stack. */
861 for (i = 0; i < reg_demand; i++)
862 {
863 if (argreg <= ARG4_REGNUM)
864 {
865 regcache_cooked_write (regcache, argreg, val);
866 argreg++;
867 val += 4;
868 }
869 else
870 {
871 /* Push item for later so that pushed arguments
872 come in the right order. */
873 si = push_stack_item (si, val, 4);
874 val += 4;
875 }
876 }
877 }
878 else if (len > (2 * 4))
879 {
880 /* Data passed by reference. Push copy of data onto stack
881 and pass pointer to this copy as argument. */
882 sp = (sp - len) & ~3;
883 write_memory (sp, val, len);
884
885 if (argreg <= ARG4_REGNUM)
886 {
887 regcache_cooked_write_unsigned (regcache, argreg, sp);
888 argreg++;
889 }
890 else
891 {
892 gdb_byte buf[4];
893 store_unsigned_integer (buf, 4, byte_order, sp);
894 si = push_stack_item (si, buf, 4);
895 }
896 }
897 else
898 {
899 /* Data passed by value. No available registers. Put it on
900 the stack. */
901 si = push_stack_item (si, val, len);
902 }
903 }
904
905 while (si)
906 {
907 /* fp_arg must be word-aligned (i.e., don't += len) to match
908 the function prologue. */
909 sp = (sp - si->len) & ~3;
910 write_memory (sp, si->data, si->len);
911 si = pop_stack_item (si);
912 }
913
914 /* Finally, update the SP register. */
915 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
916
917 return sp;
918 }
919
920 static const struct frame_unwind cris_frame_unwind =
921 {
922 NORMAL_FRAME,
923 default_frame_unwind_stop_reason,
924 cris_frame_this_id,
925 cris_frame_prev_register,
926 NULL,
927 default_frame_sniffer
928 };
929
930 static CORE_ADDR
931 cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
932 {
933 struct cris_unwind_cache *info
934 = cris_frame_unwind_cache (this_frame, this_cache);
935 return info->base;
936 }
937
938 static const struct frame_base cris_frame_base =
939 {
940 &cris_frame_unwind,
941 cris_frame_base_address,
942 cris_frame_base_address,
943 cris_frame_base_address
944 };
945
946 /* Frames information. The definition of the struct frame_info is
947
948 CORE_ADDR frame
949 CORE_ADDR pc
950 enum frame_type type;
951 CORE_ADDR return_pc
952 int leaf_function
953
954 If the compilation option -fno-omit-frame-pointer is present the
955 variable frame will be set to the content of R8 which is the frame
956 pointer register.
957
958 The variable pc contains the address where execution is performed
959 in the present frame. The innermost frame contains the current content
960 of the register PC. All other frames contain the content of the
961 register PC in the next frame.
962
963 The variable `type' indicates the frame's type: normal, SIGTRAMP
964 (associated with a signal handler), dummy (associated with a dummy
965 frame).
966
967 The variable return_pc contains the address where execution should be
968 resumed when the present frame has finished, the return address.
969
970 The variable leaf_function is 1 if the return address is in the register
971 SRP, and 0 if it is on the stack.
972
973 Prologue instructions C-code.
974 The prologue may consist of (-fno-omit-frame-pointer)
975 1) 2)
976 push srp
977 push r8 push r8
978 move.d sp,r8 move.d sp,r8
979 subq X,sp subq X,sp
980 movem rY,[sp] movem rY,[sp]
981 move.S rZ,[r8-U] move.S rZ,[r8-U]
982
983 where 1 is a non-terminal function, and 2 is a leaf-function.
984
985 Note that this assumption is extremely brittle, and will break at the
986 slightest change in GCC's prologue.
987
988 If local variables are declared or register contents are saved on stack
989 the subq-instruction will be present with X as the number of bytes
990 needed for storage. The reshuffle with respect to r8 may be performed
991 with any size S (b, w, d) and any of the general registers Z={0..13}.
992 The offset U should be representable by a signed 8-bit value in all cases.
993 Thus, the prefix word is assumed to be immediate byte offset mode followed
994 by another word containing the instruction.
995
996 Degenerate cases:
997 3)
998 push r8
999 move.d sp,r8
1000 move.d r8,sp
1001 pop r8
1002
1003 Prologue instructions C++-code.
1004 Case 1) and 2) in the C-code may be followed by
1005
1006 move.d r10,rS ; this
1007 move.d r11,rT ; P1
1008 move.d r12,rU ; P2
1009 move.d r13,rV ; P3
1010 move.S [r8+U],rZ ; P4
1011
1012 if any of the call parameters are stored. The host expects these
1013 instructions to be executed in order to get the call parameters right. */
1014
1015 /* Examine the prologue of a function. The variable ip is the address of
1016 the first instruction of the prologue. The variable limit is the address
1017 of the first instruction after the prologue. The variable fi contains the
1018 information in struct frame_info. The variable frameless_p controls whether
1019 the entire prologue is examined (0) or just enough instructions to
1020 determine that it is a prologue (1). */
1021
1022 static CORE_ADDR
1023 cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1024 struct cris_unwind_cache *info)
1025 {
1026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1028
1029 /* Present instruction. */
1030 unsigned short insn;
1031
1032 /* Next instruction, lookahead. */
1033 unsigned short insn_next;
1034 int regno;
1035
1036 /* Number of byte on stack used for local variables and movem. */
1037 int val;
1038
1039 /* Highest register number in a movem. */
1040 int regsave;
1041
1042 /* move.d r<source_register>,rS */
1043 short source_register;
1044
1045 /* Scan limit. */
1046 int limit;
1047
1048 /* This frame is with respect to a leaf until a push srp is found. */
1049 if (info)
1050 {
1051 info->leaf_function = 1;
1052 }
1053
1054 /* Assume nothing on stack. */
1055 val = 0;
1056 regsave = -1;
1057
1058 /* If we were called without a this_frame, that means we were called
1059 from cris_skip_prologue which already tried to find the end of the
1060 prologue through the symbol information. 64 instructions past current
1061 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1062 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
1063
1064 /* Find the prologue instructions. */
1065 while (pc > 0 && pc < limit)
1066 {
1067 insn = read_memory_unsigned_integer (pc, 2, byte_order);
1068 pc += 2;
1069 if (insn == 0xE1FC)
1070 {
1071 /* push <reg> 32 bit instruction. */
1072 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1073 pc += 2;
1074 regno = cris_get_operand2 (insn_next);
1075 if (info)
1076 {
1077 info->sp_offset += 4;
1078 }
1079 /* This check, meant to recognize srp, used to be regno ==
1080 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1081 if (insn_next == 0xBE7E)
1082 {
1083 if (info)
1084 {
1085 info->leaf_function = 0;
1086 }
1087 }
1088 else if (insn_next == 0x8FEE)
1089 {
1090 /* push $r8 */
1091 if (info)
1092 {
1093 info->r8_offset = info->sp_offset;
1094 }
1095 }
1096 }
1097 else if (insn == 0x866E)
1098 {
1099 /* move.d sp,r8 */
1100 if (info)
1101 {
1102 info->uses_frame = 1;
1103 }
1104 continue;
1105 }
1106 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1107 && cris_get_mode (insn) == 0x0000
1108 && cris_get_opcode (insn) == 0x000A)
1109 {
1110 /* subq <val>,sp */
1111 if (info)
1112 {
1113 info->sp_offset += cris_get_quick_value (insn);
1114 }
1115 }
1116 else if (cris_get_mode (insn) == 0x0002
1117 && cris_get_opcode (insn) == 0x000F
1118 && cris_get_size (insn) == 0x0003
1119 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
1120 {
1121 /* movem r<regsave>,[sp] */
1122 regsave = cris_get_operand2 (insn);
1123 }
1124 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
1125 && ((insn & 0x0F00) >> 8) == 0x0001
1126 && (cris_get_signed_offset (insn) < 0))
1127 {
1128 /* Immediate byte offset addressing prefix word with sp as base
1129 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1130 is between 64 and 128.
1131 movem r<regsave>,[sp=sp-<val>] */
1132 if (info)
1133 {
1134 info->sp_offset += -cris_get_signed_offset (insn);
1135 }
1136 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1137 pc += 2;
1138 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1139 && cris_get_opcode (insn_next) == 0x000F
1140 && cris_get_size (insn_next) == 0x0003
1141 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
1142 (gdbarch))
1143 {
1144 regsave = cris_get_operand2 (insn_next);
1145 }
1146 else
1147 {
1148 /* The prologue ended before the limit was reached. */
1149 pc -= 4;
1150 break;
1151 }
1152 }
1153 else if (cris_get_mode (insn) == 0x0001
1154 && cris_get_opcode (insn) == 0x0009
1155 && cris_get_size (insn) == 0x0002)
1156 {
1157 /* move.d r<10..13>,r<0..15> */
1158 source_register = cris_get_operand1 (insn);
1159
1160 /* FIXME? In the glibc solibs, the prologue might contain something
1161 like (this example taken from relocate_doit):
1162 move.d $pc,$r0
1163 sub.d 0xfffef426,$r0
1164 which isn't covered by the source_register check below. Question
1165 is whether to add a check for this combo, or make better use of
1166 the limit variable instead. */
1167 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1168 {
1169 /* The prologue ended before the limit was reached. */
1170 pc -= 2;
1171 break;
1172 }
1173 }
1174 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1175 /* The size is a fixed-size. */
1176 && ((insn & 0x0F00) >> 8) == 0x0001
1177 /* A negative offset. */
1178 && (cris_get_signed_offset (insn) < 0))
1179 {
1180 /* move.S rZ,[r8-U] (?) */
1181 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1182 pc += 2;
1183 regno = cris_get_operand2 (insn_next);
1184 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1185 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1186 && cris_get_opcode (insn_next) == 0x000F)
1187 {
1188 /* move.S rZ,[r8-U] */
1189 continue;
1190 }
1191 else
1192 {
1193 /* The prologue ended before the limit was reached. */
1194 pc -= 4;
1195 break;
1196 }
1197 }
1198 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
1199 /* The size is a fixed-size. */
1200 && ((insn & 0x0F00) >> 8) == 0x0001
1201 /* A positive offset. */
1202 && (cris_get_signed_offset (insn) > 0))
1203 {
1204 /* move.S [r8+U],rZ (?) */
1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
1206 pc += 2;
1207 regno = cris_get_operand2 (insn_next);
1208 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1209 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1210 && cris_get_opcode (insn_next) == 0x0009
1211 && cris_get_operand1 (insn_next) == regno)
1212 {
1213 /* move.S [r8+U],rZ */
1214 continue;
1215 }
1216 else
1217 {
1218 /* The prologue ended before the limit was reached. */
1219 pc -= 4;
1220 break;
1221 }
1222 }
1223 else
1224 {
1225 /* The prologue ended before the limit was reached. */
1226 pc -= 2;
1227 break;
1228 }
1229 }
1230
1231 /* We only want to know the end of the prologue when this_frame and info
1232 are NULL (called from cris_skip_prologue i.e.). */
1233 if (this_frame == NULL && info == NULL)
1234 {
1235 return pc;
1236 }
1237
1238 info->size = info->sp_offset;
1239
1240 /* Compute the previous frame's stack pointer (which is also the
1241 frame's ID's stack address), and this frame's base pointer. */
1242 if (info->uses_frame)
1243 {
1244 ULONGEST this_base;
1245 /* The SP was moved to the FP. This indicates that a new frame
1246 was created. Get THIS frame's FP value by unwinding it from
1247 the next frame. */
1248 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
1249 info->base = this_base;
1250 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1251
1252 /* The FP points at the last saved register. Adjust the FP back
1253 to before the first saved register giving the SP. */
1254 info->prev_sp = info->base + info->r8_offset;
1255 }
1256 else
1257 {
1258 ULONGEST this_base;
1259 /* Assume that the FP is this frame's SP but with that pushed
1260 stack space added back. */
1261 this_base = get_frame_register_unsigned (this_frame,
1262 gdbarch_sp_regnum (gdbarch));
1263 info->base = this_base;
1264 info->prev_sp = info->base + info->size;
1265 }
1266
1267 /* Calculate the addresses for the saved registers on the stack. */
1268 /* FIXME: The address calculation should really be done on the fly while
1269 we're analyzing the prologue (we only hold one regsave value as it is
1270 now). */
1271 val = info->sp_offset;
1272
1273 for (regno = regsave; regno >= 0; regno--)
1274 {
1275 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1276 val -= 4;
1277 }
1278
1279 /* The previous frame's SP needed to be computed. Save the computed
1280 value. */
1281 trad_frame_set_value (info->saved_regs,
1282 gdbarch_sp_regnum (gdbarch), info->prev_sp);
1283
1284 if (!info->leaf_function)
1285 {
1286 /* SRP saved on the stack. But where? */
1287 if (info->r8_offset == 0)
1288 {
1289 /* R8 not pushed yet. */
1290 info->saved_regs[SRP_REGNUM].addr = info->base;
1291 }
1292 else
1293 {
1294 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1295 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1296 }
1297 }
1298
1299 /* The PC is found in SRP (the actual register or located on the stack). */
1300 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1301 = info->saved_regs[SRP_REGNUM];
1302
1303 return pc;
1304 }
1305
1306 static CORE_ADDR
1307 crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
1308 struct cris_unwind_cache *info)
1309 {
1310 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1311 ULONGEST this_base;
1312
1313 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1314 meant to be a full-fledged prologue scanner. It is only needed for
1315 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1316
1317 * PLT stubs (library calls)
1318 * call dummys
1319 * signal trampolines
1320
1321 For those cases, it is assumed that there is no actual prologue; that
1322 the stack pointer is not adjusted, and (as a consequence) the return
1323 address is not pushed onto the stack. */
1324
1325 /* We only want to know the end of the prologue when this_frame and info
1326 are NULL (called from cris_skip_prologue i.e.). */
1327 if (this_frame == NULL && info == NULL)
1328 {
1329 return pc;
1330 }
1331
1332 /* The SP is assumed to be unaltered. */
1333 this_base = get_frame_register_unsigned (this_frame,
1334 gdbarch_sp_regnum (gdbarch));
1335 info->base = this_base;
1336 info->prev_sp = this_base;
1337
1338 /* The PC is assumed to be found in SRP. */
1339 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
1340 = info->saved_regs[SRP_REGNUM];
1341
1342 return pc;
1343 }
1344
1345 /* Advance pc beyond any function entry prologue instructions at pc
1346 to reach some "real" code. */
1347
1348 /* Given a PC value corresponding to the start of a function, return the PC
1349 of the first instruction after the function prologue. */
1350
1351 static CORE_ADDR
1352 cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1353 {
1354 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1355 CORE_ADDR func_addr, func_end;
1356 struct symtab_and_line sal;
1357 CORE_ADDR pc_after_prologue;
1358
1359 /* If we have line debugging information, then the end of the prologue
1360 should the first assembly instruction of the first source line. */
1361 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1362 {
1363 sal = find_pc_line (func_addr, 0);
1364 if (sal.end > 0 && sal.end < func_end)
1365 return sal.end;
1366 }
1367
1368 if (tdep->cris_version == 32)
1369 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1370 else
1371 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1372
1373 return pc_after_prologue;
1374 }
1375
1376 static CORE_ADDR
1377 cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1378 {
1379 ULONGEST pc;
1380 pc = frame_unwind_register_unsigned (next_frame,
1381 gdbarch_pc_regnum (gdbarch));
1382 return pc;
1383 }
1384
1385 static CORE_ADDR
1386 cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1387 {
1388 ULONGEST sp;
1389 sp = frame_unwind_register_unsigned (next_frame,
1390 gdbarch_sp_regnum (gdbarch));
1391 return sp;
1392 }
1393
1394 static int
1395 cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1396 {
1397 return 2;
1398 }
1399
1400 static const gdb_byte *
1401 cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1402 {
1403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1404 static unsigned char break8_insn[] = {0x38, 0xe9};
1405 static unsigned char break15_insn[] = {0x3f, 0xe9};
1406
1407 *size = kind;
1408
1409 if (tdep->cris_mode == cris_mode_guru)
1410 return break15_insn;
1411 else
1412 return break8_insn;
1413 }
1414
1415 /* Use the program counter to determine the contents and size of a breakpoint
1416 instruction. It returns a pointer to a string of bytes that encode a
1417 breakpoint instruction, stores the length of the string to *lenptr, and
1418 adjusts pcptr (if necessary) to point to the actual memory location where
1419 the breakpoint should be inserted. */
1420
1421 GDBARCH_BREAKPOINT_FROM_PC (cris)
1422
1423 /* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1424 0 otherwise. */
1425
1426 static int
1427 cris_spec_reg_applicable (struct gdbarch *gdbarch,
1428 struct cris_spec_reg spec_reg)
1429 {
1430 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1431 unsigned int version = tdep->cris_version;
1432
1433 switch (spec_reg.applicable_version)
1434 {
1435 case cris_ver_version_all:
1436 return 1;
1437 case cris_ver_warning:
1438 /* Indeterminate/obsolete. */
1439 return 0;
1440 case cris_ver_v0_3:
1441 return (version >= 0 && version <= 3);
1442 case cris_ver_v3p:
1443 return (version >= 3);
1444 case cris_ver_v8:
1445 return (version == 8 || version == 9);
1446 case cris_ver_v8p:
1447 return (version >= 8);
1448 case cris_ver_v0_10:
1449 return (version >= 0 && version <= 10);
1450 case cris_ver_v3_10:
1451 return (version >= 3 && version <= 10);
1452 case cris_ver_v8_10:
1453 return (version >= 8 && version <= 10);
1454 case cris_ver_v10:
1455 return (version == 10);
1456 case cris_ver_v10p:
1457 return (version >= 10);
1458 case cris_ver_v32p:
1459 return (version >= 32);
1460 default:
1461 /* Invalid cris version. */
1462 return 0;
1463 }
1464 }
1465
1466 /* Returns the register size in unit byte. Returns 0 for an unimplemented
1467 register, -1 for an invalid register. */
1468
1469 static int
1470 cris_register_size (struct gdbarch *gdbarch, int regno)
1471 {
1472 int i;
1473 int spec_regno;
1474
1475 if (regno >= 0 && regno < NUM_GENREGS)
1476 {
1477 /* General registers (R0 - R15) are 32 bits. */
1478 return 4;
1479 }
1480 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1481 {
1482 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1483 Adjust regno accordingly. */
1484 spec_regno = regno - NUM_GENREGS;
1485
1486 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1487 {
1488 if (cris_spec_regs[i].number == spec_regno
1489 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1490 /* Go with the first applicable register. */
1491 return cris_spec_regs[i].reg_size;
1492 }
1493 /* Special register not applicable to this CRIS version. */
1494 return 0;
1495 }
1496 else if (regno >= gdbarch_pc_regnum (gdbarch)
1497 && regno < gdbarch_num_regs (gdbarch))
1498 {
1499 /* This will apply to CRISv32 only where there are additional registers
1500 after the special registers (pseudo PC and support registers). */
1501 return 4;
1502 }
1503
1504
1505 return -1;
1506 }
1507
1508 /* Nonzero if regno should not be fetched from the target. This is the case
1509 for unimplemented (size 0) and non-existant registers. */
1510
1511 static int
1512 cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1513 {
1514 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1515 || (cris_register_size (gdbarch, regno) == 0));
1516 }
1517
1518 /* Nonzero if regno should not be written to the target, for various
1519 reasons. */
1520
1521 static int
1522 cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
1523 {
1524 /* There are three kinds of registers we refuse to write to.
1525 1. Those that not implemented.
1526 2. Those that are read-only (depends on the processor mode).
1527 3. Those registers to which a write has no effect. */
1528
1529 if (regno < 0
1530 || regno >= gdbarch_num_regs (gdbarch)
1531 || cris_register_size (gdbarch, regno) == 0)
1532 /* Not implemented. */
1533 return 1;
1534
1535 else if (regno == VR_REGNUM)
1536 /* Read-only. */
1537 return 1;
1538
1539 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1540 /* Writing has no effect. */
1541 return 1;
1542
1543 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1544 agent decide whether they are writable. */
1545
1546 return 0;
1547 }
1548
1549 /* Nonzero if regno should not be fetched from the target. This is the case
1550 for unimplemented (size 0) and non-existant registers. */
1551
1552 static int
1553 crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
1554 {
1555 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
1556 || (cris_register_size (gdbarch, regno) == 0));
1557 }
1558
1559 /* Nonzero if regno should not be written to the target, for various
1560 reasons. */
1561
1562 static int
1563 crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
1564 {
1565 /* There are three kinds of registers we refuse to write to.
1566 1. Those that not implemented.
1567 2. Those that are read-only (depends on the processor mode).
1568 3. Those registers to which a write has no effect. */
1569
1570 if (regno < 0
1571 || regno >= gdbarch_num_regs (gdbarch)
1572 || cris_register_size (gdbarch, regno) == 0)
1573 /* Not implemented. */
1574 return 1;
1575
1576 else if (regno == VR_REGNUM)
1577 /* Read-only. */
1578 return 1;
1579
1580 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1581 /* Writing has no effect. */
1582 return 1;
1583
1584 /* Many special registers are read-only in user mode. Let the debug
1585 agent decide whether they are writable. */
1586
1587 return 0;
1588 }
1589
1590 /* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1591 of data in register regno. */
1592
1593 static struct type *
1594 cris_register_type (struct gdbarch *gdbarch, int regno)
1595 {
1596 if (regno == gdbarch_pc_regnum (gdbarch))
1597 return builtin_type (gdbarch)->builtin_func_ptr;
1598 else if (regno == gdbarch_sp_regnum (gdbarch)
1599 || regno == CRIS_FP_REGNUM)
1600 return builtin_type (gdbarch)->builtin_data_ptr;
1601 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
1602 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1603 /* Note: R8 taken care of previous clause. */
1604 return builtin_type (gdbarch)->builtin_uint32;
1605 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1606 return builtin_type (gdbarch)->builtin_uint16;
1607 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1608 return builtin_type (gdbarch)->builtin_uint8;
1609 else
1610 /* Invalid (unimplemented) register. */
1611 return builtin_type (gdbarch)->builtin_int0;
1612 }
1613
1614 static struct type *
1615 crisv32_register_type (struct gdbarch *gdbarch, int regno)
1616 {
1617 if (regno == gdbarch_pc_regnum (gdbarch))
1618 return builtin_type (gdbarch)->builtin_func_ptr;
1619 else if (regno == gdbarch_sp_regnum (gdbarch)
1620 || regno == CRIS_FP_REGNUM)
1621 return builtin_type (gdbarch)->builtin_data_ptr;
1622 else if ((regno >= 0 && regno <= ACR_REGNUM)
1623 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1624 || (regno == PID_REGNUM)
1625 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1626 /* Note: R8 and SP taken care of by previous clause. */
1627 return builtin_type (gdbarch)->builtin_uint32;
1628 else if (regno == WZ_REGNUM)
1629 return builtin_type (gdbarch)->builtin_uint16;
1630 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1631 return builtin_type (gdbarch)->builtin_uint8;
1632 else
1633 {
1634 /* Invalid (unimplemented) register. Should not happen as there are
1635 no unimplemented CRISv32 registers. */
1636 warning (_("crisv32_register_type: unknown regno %d"), regno);
1637 return builtin_type (gdbarch)->builtin_int0;
1638 }
1639 }
1640
1641 /* Stores a function return value of type type, where valbuf is the address
1642 of the value to be stored. */
1643
1644 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1645
1646 static void
1647 cris_store_return_value (struct type *type, struct regcache *regcache,
1648 const gdb_byte *valbuf)
1649 {
1650 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1651 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1652 ULONGEST val;
1653 int len = TYPE_LENGTH (type);
1654
1655 if (len <= 4)
1656 {
1657 /* Put the return value in R10. */
1658 val = extract_unsigned_integer (valbuf, len, byte_order);
1659 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1660 }
1661 else if (len <= 8)
1662 {
1663 /* Put the return value in R10 and R11. */
1664 val = extract_unsigned_integer (valbuf, 4, byte_order);
1665 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1666 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
1667 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
1668 }
1669 else
1670 error (_("cris_store_return_value: type length too large."));
1671 }
1672
1673 /* Return the name of register regno as a string. Return NULL for an
1674 invalid or unimplemented register. */
1675
1676 static const char *
1677 cris_special_register_name (struct gdbarch *gdbarch, int regno)
1678 {
1679 int spec_regno;
1680 int i;
1681
1682 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1683 Adjust regno accordingly. */
1684 spec_regno = regno - NUM_GENREGS;
1685
1686 /* Assume nothing about the layout of the cris_spec_regs struct
1687 when searching. */
1688 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1689 {
1690 if (cris_spec_regs[i].number == spec_regno
1691 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1692 /* Go with the first applicable register. */
1693 return cris_spec_regs[i].name;
1694 }
1695 /* Special register not applicable to this CRIS version. */
1696 return NULL;
1697 }
1698
1699 static const char *
1700 cris_register_name (struct gdbarch *gdbarch, int regno)
1701 {
1702 static char *cris_genreg_names[] =
1703 { "r0", "r1", "r2", "r3", \
1704 "r4", "r5", "r6", "r7", \
1705 "r8", "r9", "r10", "r11", \
1706 "r12", "r13", "sp", "pc" };
1707
1708 if (regno >= 0 && regno < NUM_GENREGS)
1709 {
1710 /* General register. */
1711 return cris_genreg_names[regno];
1712 }
1713 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
1714 {
1715 return cris_special_register_name (gdbarch, regno);
1716 }
1717 else
1718 {
1719 /* Invalid register. */
1720 return NULL;
1721 }
1722 }
1723
1724 static const char *
1725 crisv32_register_name (struct gdbarch *gdbarch, int regno)
1726 {
1727 static char *crisv32_genreg_names[] =
1728 { "r0", "r1", "r2", "r3", \
1729 "r4", "r5", "r6", "r7", \
1730 "r8", "r9", "r10", "r11", \
1731 "r12", "r13", "sp", "acr"
1732 };
1733
1734 static char *crisv32_sreg_names[] =
1735 { "s0", "s1", "s2", "s3", \
1736 "s4", "s5", "s6", "s7", \
1737 "s8", "s9", "s10", "s11", \
1738 "s12", "s13", "s14", "s15"
1739 };
1740
1741 if (regno >= 0 && regno < NUM_GENREGS)
1742 {
1743 /* General register. */
1744 return crisv32_genreg_names[regno];
1745 }
1746 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1747 {
1748 return cris_special_register_name (gdbarch, regno);
1749 }
1750 else if (regno == gdbarch_pc_regnum (gdbarch))
1751 {
1752 return "pc";
1753 }
1754 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1755 {
1756 return crisv32_sreg_names[regno - S0_REGNUM];
1757 }
1758 else
1759 {
1760 /* Invalid register. */
1761 return NULL;
1762 }
1763 }
1764
1765 /* Convert DWARF register number REG to the appropriate register
1766 number used by GDB. */
1767
1768 static int
1769 cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1770 {
1771 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1772 numbering, MOF is 18).
1773 Adapted from gcc/config/cris/cris.h. */
1774 static int cris_dwarf_regmap[] = {
1775 0, 1, 2, 3,
1776 4, 5, 6, 7,
1777 8, 9, 10, 11,
1778 12, 13, 14, 15,
1779 27, -1, -1, -1,
1780 -1, -1, -1, 23,
1781 -1, -1, -1, 27,
1782 -1, -1, -1, -1
1783 };
1784 int regnum = -1;
1785
1786 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1787 regnum = cris_dwarf_regmap[reg];
1788
1789 return regnum;
1790 }
1791
1792 /* DWARF-2 frame support. */
1793
1794 static void
1795 cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1796 struct dwarf2_frame_state_reg *reg,
1797 struct frame_info *this_frame)
1798 {
1799 /* The return address column. */
1800 if (regnum == gdbarch_pc_regnum (gdbarch))
1801 reg->how = DWARF2_FRAME_REG_RA;
1802
1803 /* The call frame address. */
1804 else if (regnum == gdbarch_sp_regnum (gdbarch))
1805 reg->how = DWARF2_FRAME_REG_CFA;
1806 }
1807
1808 /* Extract from an array regbuf containing the raw register state a function
1809 return value of type type, and copy that, in virtual format, into
1810 valbuf. */
1811
1812 /* In the CRIS ABI, R10 and R11 are used to store return values. */
1813
1814 static void
1815 cris_extract_return_value (struct type *type, struct regcache *regcache,
1816 gdb_byte *valbuf)
1817 {
1818 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1820 ULONGEST val;
1821 int len = TYPE_LENGTH (type);
1822
1823 if (len <= 4)
1824 {
1825 /* Get the return value from R10. */
1826 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1827 store_unsigned_integer (valbuf, len, byte_order, val);
1828 }
1829 else if (len <= 8)
1830 {
1831 /* Get the return value from R10 and R11. */
1832 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1833 store_unsigned_integer (valbuf, 4, byte_order, val);
1834 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1835 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
1836 }
1837 else
1838 error (_("cris_extract_return_value: type length too large"));
1839 }
1840
1841 /* Handle the CRIS return value convention. */
1842
1843 static enum return_value_convention
1844 cris_return_value (struct gdbarch *gdbarch, struct value *function,
1845 struct type *type, struct regcache *regcache,
1846 gdb_byte *readbuf, const gdb_byte *writebuf)
1847 {
1848 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1849 || TYPE_CODE (type) == TYPE_CODE_UNION
1850 || TYPE_LENGTH (type) > 8)
1851 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1852 goes on the stack. */
1853 return RETURN_VALUE_STRUCT_CONVENTION;
1854
1855 if (readbuf)
1856 cris_extract_return_value (type, regcache, readbuf);
1857 if (writebuf)
1858 cris_store_return_value (type, regcache, writebuf);
1859
1860 return RETURN_VALUE_REGISTER_CONVENTION;
1861 }
1862
1863 /* Calculates a value that measures how good inst_args constraints an
1864 instruction. It stems from cris_constraint, found in cris-dis.c. */
1865
1866 static int
1867 constraint (unsigned int insn, const char *inst_args,
1868 inst_env_type *inst_env)
1869 {
1870 int retval = 0;
1871 int tmp, i;
1872
1873 const gdb_byte *s = (const gdb_byte *) inst_args;
1874
1875 for (; *s; s++)
1876 switch (*s)
1877 {
1878 case 'm':
1879 if ((insn & 0x30) == 0x30)
1880 return -1;
1881 break;
1882
1883 case 'S':
1884 /* A prefix operand. */
1885 if (inst_env->prefix_found)
1886 break;
1887 else
1888 return -1;
1889
1890 case 'B':
1891 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1892 valid "push" size. In case of special register, it may be != 4. */
1893 if (inst_env->prefix_found)
1894 break;
1895 else
1896 return -1;
1897
1898 case 'D':
1899 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1900 if (!retval)
1901 return -1;
1902 else
1903 retval += 4;
1904 break;
1905
1906 case 'P':
1907 tmp = (insn >> 0xC) & 0xF;
1908
1909 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1910 {
1911 /* Since we match four bits, we will give a value of
1912 4 - 1 = 3 in a match. If there is a corresponding
1913 exact match of a special register in another pattern, it
1914 will get a value of 4, which will be higher. This should
1915 be correct in that an exact pattern would match better that
1916 a general pattern.
1917 Note that there is a reason for not returning zero; the
1918 pattern for "clear" is partly matched in the bit-pattern
1919 (the two lower bits must be zero), while the bit-pattern
1920 for a move from a special register is matched in the
1921 register constraint.
1922 This also means we will will have a race condition if
1923 there is a partly match in three bits in the bit pattern. */
1924 if (tmp == cris_spec_regs[i].number)
1925 {
1926 retval += 3;
1927 break;
1928 }
1929 }
1930
1931 if (cris_spec_regs[i].name == NULL)
1932 return -1;
1933 break;
1934 }
1935 return retval;
1936 }
1937
1938 /* Returns the number of bits set in the variable value. */
1939
1940 static int
1941 number_of_bits (unsigned int value)
1942 {
1943 int number_of_bits = 0;
1944
1945 while (value != 0)
1946 {
1947 number_of_bits += 1;
1948 value &= (value - 1);
1949 }
1950 return number_of_bits;
1951 }
1952
1953 /* Finds the address that should contain the single step breakpoint(s).
1954 It stems from code in cris-dis.c. */
1955
1956 static int
1957 find_cris_op (unsigned short insn, inst_env_type *inst_env)
1958 {
1959 int i;
1960 int max_level_of_match = -1;
1961 int max_matched = -1;
1962 int level_of_match;
1963
1964 for (i = 0; cris_opcodes[i].name != NULL; i++)
1965 {
1966 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1967 && ((cris_opcodes[i].lose & insn) == 0)
1968 /* Only CRISv10 instructions, please. */
1969 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
1970 {
1971 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1972 if (level_of_match >= 0)
1973 {
1974 level_of_match +=
1975 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1976 if (level_of_match > max_level_of_match)
1977 {
1978 max_matched = i;
1979 max_level_of_match = level_of_match;
1980 if (level_of_match == 16)
1981 {
1982 /* All bits matched, cannot find better. */
1983 break;
1984 }
1985 }
1986 }
1987 }
1988 }
1989 return max_matched;
1990 }
1991
1992 /* Attempts to find single-step breakpoints. Returns -1 on failure which is
1993 actually an internal error. */
1994
1995 static int
1996 find_step_target (struct frame_info *frame, inst_env_type *inst_env)
1997 {
1998 int i;
1999 int offset;
2000 unsigned short insn;
2001 struct gdbarch *gdbarch = get_frame_arch (frame);
2002 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2003
2004 /* Create a local register image and set the initial state. */
2005 for (i = 0; i < NUM_GENREGS; i++)
2006 {
2007 inst_env->reg[i] =
2008 (unsigned long) get_frame_register_unsigned (frame, i);
2009 }
2010 offset = NUM_GENREGS;
2011 for (i = 0; i < NUM_SPECREGS; i++)
2012 {
2013 inst_env->preg[i] =
2014 (unsigned long) get_frame_register_unsigned (frame, offset + i);
2015 }
2016 inst_env->branch_found = 0;
2017 inst_env->slot_needed = 0;
2018 inst_env->delay_slot_pc_active = 0;
2019 inst_env->prefix_found = 0;
2020 inst_env->invalid = 0;
2021 inst_env->xflag_found = 0;
2022 inst_env->disable_interrupt = 0;
2023 inst_env->byte_order = byte_order;
2024
2025 /* Look for a step target. */
2026 do
2027 {
2028 /* Read an instruction from the client. */
2029 insn = read_memory_unsigned_integer
2030 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
2031
2032 /* If the instruction is not in a delay slot the new content of the
2033 PC is [PC] + 2. If the instruction is in a delay slot it is not
2034 that simple. Since a instruction in a delay slot cannot change
2035 the content of the PC, it does not matter what value PC will have.
2036 Just make sure it is a valid instruction. */
2037 if (!inst_env->delay_slot_pc_active)
2038 {
2039 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
2040 }
2041 else
2042 {
2043 inst_env->delay_slot_pc_active = 0;
2044 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
2045 = inst_env->delay_slot_pc;
2046 }
2047 /* Analyse the present instruction. */
2048 i = find_cris_op (insn, inst_env);
2049 if (i == -1)
2050 {
2051 inst_env->invalid = 1;
2052 }
2053 else
2054 {
2055 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
2056 }
2057 } while (!inst_env->invalid
2058 && (inst_env->prefix_found || inst_env->xflag_found
2059 || inst_env->slot_needed));
2060 return i;
2061 }
2062
2063 /* There is no hardware single-step support. The function find_step_target
2064 digs through the opcodes in order to find all possible targets.
2065 Either one ordinary target or two targets for branches may be found. */
2066
2067 static int
2068 cris_software_single_step (struct frame_info *frame)
2069 {
2070 struct gdbarch *gdbarch = get_frame_arch (frame);
2071 struct address_space *aspace = get_frame_address_space (frame);
2072 inst_env_type inst_env;
2073
2074 /* Analyse the present instruction environment and insert
2075 breakpoints. */
2076 int status = find_step_target (frame, &inst_env);
2077 if (status == -1)
2078 {
2079 /* Could not find a target. Things are likely to go downhill
2080 from here. */
2081 warning (_("CRIS software single step could not find a step target."));
2082 }
2083 else
2084 {
2085 /* Insert at most two breakpoints. One for the next PC content
2086 and possibly another one for a branch, jump, etc. */
2087 CORE_ADDR next_pc
2088 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2089 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
2090 if (inst_env.branch_found
2091 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2092 {
2093 CORE_ADDR branch_target_address
2094 = (CORE_ADDR) inst_env.branch_break_address;
2095 insert_single_step_breakpoint (gdbarch,
2096 aspace, branch_target_address);
2097 }
2098 }
2099
2100 return 1;
2101 }
2102
2103 /* Calculates the prefix value for quick offset addressing mode. */
2104
2105 static void
2106 quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2107 {
2108 /* It's invalid to be in a delay slot. You can't have a prefix to this
2109 instruction (not 100% sure). */
2110 if (inst_env->slot_needed || inst_env->prefix_found)
2111 {
2112 inst_env->invalid = 1;
2113 return;
2114 }
2115
2116 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2117 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2118
2119 /* A prefix doesn't change the xflag_found. But the rest of the flags
2120 need updating. */
2121 inst_env->slot_needed = 0;
2122 inst_env->prefix_found = 1;
2123 }
2124
2125 /* Updates the autoincrement register. The size of the increment is derived
2126 from the size of the operation. The PC is always kept aligned on even
2127 word addresses. */
2128
2129 static void
2130 process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2131 {
2132 if (size == INST_BYTE_SIZE)
2133 {
2134 inst_env->reg[cris_get_operand1 (inst)] += 1;
2135
2136 /* The PC must be word aligned, so increase the PC with one
2137 word even if the size is byte. */
2138 if (cris_get_operand1 (inst) == REG_PC)
2139 {
2140 inst_env->reg[REG_PC] += 1;
2141 }
2142 }
2143 else if (size == INST_WORD_SIZE)
2144 {
2145 inst_env->reg[cris_get_operand1 (inst)] += 2;
2146 }
2147 else if (size == INST_DWORD_SIZE)
2148 {
2149 inst_env->reg[cris_get_operand1 (inst)] += 4;
2150 }
2151 else
2152 {
2153 /* Invalid size. */
2154 inst_env->invalid = 1;
2155 }
2156 }
2157
2158 /* Just a forward declaration. */
2159
2160 static unsigned long get_data_from_address (unsigned short *inst,
2161 CORE_ADDR address,
2162 enum bfd_endian byte_order);
2163
2164 /* Calculates the prefix value for the general case of offset addressing
2165 mode. */
2166
2167 static void
2168 bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2169 {
2170 /* It's invalid to be in a delay slot. */
2171 if (inst_env->slot_needed || inst_env->prefix_found)
2172 {
2173 inst_env->invalid = 1;
2174 return;
2175 }
2176
2177 /* The calculation of prefix_value used to be after process_autoincrement,
2178 but that fails for an instruction such as jsr [$r0+12] which is encoded
2179 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2180 mustn't be incremented until we have read it and what it points at. */
2181 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2182
2183 /* The offset is an indirection of the contents of the operand1 register. */
2184 inst_env->prefix_value +=
2185 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2186 inst_env->byte_order);
2187
2188 if (cris_get_mode (inst) == AUTOINC_MODE)
2189 {
2190 process_autoincrement (cris_get_size (inst), inst, inst_env);
2191 }
2192
2193 /* A prefix doesn't change the xflag_found. But the rest of the flags
2194 need updating. */
2195 inst_env->slot_needed = 0;
2196 inst_env->prefix_found = 1;
2197 }
2198
2199 /* Calculates the prefix value for the index addressing mode. */
2200
2201 static void
2202 biap_prefix (unsigned short inst, inst_env_type *inst_env)
2203 {
2204 /* It's invalid to be in a delay slot. I can't see that it's possible to
2205 have a prefix to this instruction. So I will treat this as invalid. */
2206 if (inst_env->slot_needed || inst_env->prefix_found)
2207 {
2208 inst_env->invalid = 1;
2209 return;
2210 }
2211
2212 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2213
2214 /* The offset is the operand2 value shifted the size of the instruction
2215 to the left. */
2216 inst_env->prefix_value +=
2217 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2218
2219 /* If the PC is operand1 (base) the address used is the address after
2220 the main instruction, i.e. address + 2 (the PC is already compensated
2221 for the prefix operation). */
2222 if (cris_get_operand1 (inst) == REG_PC)
2223 {
2224 inst_env->prefix_value += 2;
2225 }
2226
2227 /* A prefix doesn't change the xflag_found. But the rest of the flags
2228 need updating. */
2229 inst_env->slot_needed = 0;
2230 inst_env->xflag_found = 0;
2231 inst_env->prefix_found = 1;
2232 }
2233
2234 /* Calculates the prefix value for the double indirect addressing mode. */
2235
2236 static void
2237 dip_prefix (unsigned short inst, inst_env_type *inst_env)
2238 {
2239
2240 CORE_ADDR address;
2241
2242 /* It's invalid to be in a delay slot. */
2243 if (inst_env->slot_needed || inst_env->prefix_found)
2244 {
2245 inst_env->invalid = 1;
2246 return;
2247 }
2248
2249 /* The prefix value is one dereference of the contents of the operand1
2250 register. */
2251 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2252 inst_env->prefix_value
2253 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
2254
2255 /* Check if the mode is autoincrement. */
2256 if (cris_get_mode (inst) == AUTOINC_MODE)
2257 {
2258 inst_env->reg[cris_get_operand1 (inst)] += 4;
2259 }
2260
2261 /* A prefix doesn't change the xflag_found. But the rest of the flags
2262 need updating. */
2263 inst_env->slot_needed = 0;
2264 inst_env->xflag_found = 0;
2265 inst_env->prefix_found = 1;
2266 }
2267
2268 /* Finds the destination for a branch with 8-bits offset. */
2269
2270 static void
2271 eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2272 {
2273
2274 short offset;
2275
2276 /* If we have a prefix or are in a delay slot it's bad. */
2277 if (inst_env->slot_needed || inst_env->prefix_found)
2278 {
2279 inst_env->invalid = 1;
2280 return;
2281 }
2282
2283 /* We have a branch, find out where the branch will land. */
2284 offset = cris_get_branch_short_offset (inst);
2285
2286 /* Check if the offset is signed. */
2287 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2288 {
2289 offset |= 0xFF00;
2290 }
2291
2292 /* The offset ends with the sign bit, set it to zero. The address
2293 should always be word aligned. */
2294 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2295
2296 inst_env->branch_found = 1;
2297 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2298
2299 inst_env->slot_needed = 1;
2300 inst_env->prefix_found = 0;
2301 inst_env->xflag_found = 0;
2302 inst_env->disable_interrupt = 1;
2303 }
2304
2305 /* Finds the destination for a branch with 16-bits offset. */
2306
2307 static void
2308 sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2309 {
2310 short offset;
2311
2312 /* If we have a prefix or is in a delay slot it's bad. */
2313 if (inst_env->slot_needed || inst_env->prefix_found)
2314 {
2315 inst_env->invalid = 1;
2316 return;
2317 }
2318
2319 /* We have a branch, find out the offset for the branch. */
2320 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2321 inst_env->byte_order);
2322
2323 /* The instruction is one word longer than normal, so add one word
2324 to the PC. */
2325 inst_env->reg[REG_PC] += 2;
2326
2327 inst_env->branch_found = 1;
2328 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2329
2330
2331 inst_env->slot_needed = 1;
2332 inst_env->prefix_found = 0;
2333 inst_env->xflag_found = 0;
2334 inst_env->disable_interrupt = 1;
2335 }
2336
2337 /* Handles the ABS instruction. */
2338
2339 static void
2340 abs_op (unsigned short inst, inst_env_type *inst_env)
2341 {
2342
2343 long value;
2344
2345 /* ABS can't have a prefix, so it's bad if it does. */
2346 if (inst_env->prefix_found)
2347 {
2348 inst_env->invalid = 1;
2349 return;
2350 }
2351
2352 /* Check if the operation affects the PC. */
2353 if (cris_get_operand2 (inst) == REG_PC)
2354 {
2355
2356 /* It's invalid to change to the PC if we are in a delay slot. */
2357 if (inst_env->slot_needed)
2358 {
2359 inst_env->invalid = 1;
2360 return;
2361 }
2362
2363 value = (long) inst_env->reg[REG_PC];
2364
2365 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2366 if (value != SIGNED_DWORD_MASK)
2367 {
2368 value = -value;
2369 inst_env->reg[REG_PC] = (long) value;
2370 }
2371 }
2372
2373 inst_env->slot_needed = 0;
2374 inst_env->prefix_found = 0;
2375 inst_env->xflag_found = 0;
2376 inst_env->disable_interrupt = 0;
2377 }
2378
2379 /* Handles the ADDI instruction. */
2380
2381 static void
2382 addi_op (unsigned short inst, inst_env_type *inst_env)
2383 {
2384 /* It's invalid to have the PC as base register. And ADDI can't have
2385 a prefix. */
2386 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2387 {
2388 inst_env->invalid = 1;
2389 return;
2390 }
2391
2392 inst_env->slot_needed = 0;
2393 inst_env->prefix_found = 0;
2394 inst_env->xflag_found = 0;
2395 inst_env->disable_interrupt = 0;
2396 }
2397
2398 /* Handles the ASR instruction. */
2399
2400 static void
2401 asr_op (unsigned short inst, inst_env_type *inst_env)
2402 {
2403 int shift_steps;
2404 unsigned long value;
2405 unsigned long signed_extend_mask = 0;
2406
2407 /* ASR can't have a prefix, so check that it doesn't. */
2408 if (inst_env->prefix_found)
2409 {
2410 inst_env->invalid = 1;
2411 return;
2412 }
2413
2414 /* Check if the PC is the target register. */
2415 if (cris_get_operand2 (inst) == REG_PC)
2416 {
2417 /* It's invalid to change the PC in a delay slot. */
2418 if (inst_env->slot_needed)
2419 {
2420 inst_env->invalid = 1;
2421 return;
2422 }
2423 /* Get the number of bits to shift. */
2424 shift_steps
2425 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2426 value = inst_env->reg[REG_PC];
2427
2428 /* Find out how many bits the operation should apply to. */
2429 if (cris_get_size (inst) == INST_BYTE_SIZE)
2430 {
2431 if (value & SIGNED_BYTE_MASK)
2432 {
2433 signed_extend_mask = 0xFF;
2434 signed_extend_mask = signed_extend_mask >> shift_steps;
2435 signed_extend_mask = ~signed_extend_mask;
2436 }
2437 value = value >> shift_steps;
2438 value |= signed_extend_mask;
2439 value &= 0xFF;
2440 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2441 inst_env->reg[REG_PC] |= value;
2442 }
2443 else if (cris_get_size (inst) == INST_WORD_SIZE)
2444 {
2445 if (value & SIGNED_WORD_MASK)
2446 {
2447 signed_extend_mask = 0xFFFF;
2448 signed_extend_mask = signed_extend_mask >> shift_steps;
2449 signed_extend_mask = ~signed_extend_mask;
2450 }
2451 value = value >> shift_steps;
2452 value |= signed_extend_mask;
2453 value &= 0xFFFF;
2454 inst_env->reg[REG_PC] &= 0xFFFF0000;
2455 inst_env->reg[REG_PC] |= value;
2456 }
2457 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2458 {
2459 if (value & SIGNED_DWORD_MASK)
2460 {
2461 signed_extend_mask = 0xFFFFFFFF;
2462 signed_extend_mask = signed_extend_mask >> shift_steps;
2463 signed_extend_mask = ~signed_extend_mask;
2464 }
2465 value = value >> shift_steps;
2466 value |= signed_extend_mask;
2467 inst_env->reg[REG_PC] = value;
2468 }
2469 }
2470 inst_env->slot_needed = 0;
2471 inst_env->prefix_found = 0;
2472 inst_env->xflag_found = 0;
2473 inst_env->disable_interrupt = 0;
2474 }
2475
2476 /* Handles the ASRQ instruction. */
2477
2478 static void
2479 asrq_op (unsigned short inst, inst_env_type *inst_env)
2480 {
2481
2482 int shift_steps;
2483 unsigned long value;
2484 unsigned long signed_extend_mask = 0;
2485
2486 /* ASRQ can't have a prefix, so check that it doesn't. */
2487 if (inst_env->prefix_found)
2488 {
2489 inst_env->invalid = 1;
2490 return;
2491 }
2492
2493 /* Check if the PC is the target register. */
2494 if (cris_get_operand2 (inst) == REG_PC)
2495 {
2496
2497 /* It's invalid to change the PC in a delay slot. */
2498 if (inst_env->slot_needed)
2499 {
2500 inst_env->invalid = 1;
2501 return;
2502 }
2503 /* The shift size is given as a 5 bit quick value, i.e. we don't
2504 want the sign bit of the quick value. */
2505 shift_steps = cris_get_asr_shift_steps (inst);
2506 value = inst_env->reg[REG_PC];
2507 if (value & SIGNED_DWORD_MASK)
2508 {
2509 signed_extend_mask = 0xFFFFFFFF;
2510 signed_extend_mask = signed_extend_mask >> shift_steps;
2511 signed_extend_mask = ~signed_extend_mask;
2512 }
2513 value = value >> shift_steps;
2514 value |= signed_extend_mask;
2515 inst_env->reg[REG_PC] = value;
2516 }
2517 inst_env->slot_needed = 0;
2518 inst_env->prefix_found = 0;
2519 inst_env->xflag_found = 0;
2520 inst_env->disable_interrupt = 0;
2521 }
2522
2523 /* Handles the AX, EI and SETF instruction. */
2524
2525 static void
2526 ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2527 {
2528 if (inst_env->prefix_found)
2529 {
2530 inst_env->invalid = 1;
2531 return;
2532 }
2533 /* Check if the instruction is setting the X flag. */
2534 if (cris_is_xflag_bit_on (inst))
2535 {
2536 inst_env->xflag_found = 1;
2537 }
2538 else
2539 {
2540 inst_env->xflag_found = 0;
2541 }
2542 inst_env->slot_needed = 0;
2543 inst_env->prefix_found = 0;
2544 inst_env->disable_interrupt = 1;
2545 }
2546
2547 /* Checks if the instruction is in assign mode. If so, it updates the assign
2548 register. Note that check_assign assumes that the caller has checked that
2549 there is a prefix to this instruction. The mode check depends on this. */
2550
2551 static void
2552 check_assign (unsigned short inst, inst_env_type *inst_env)
2553 {
2554 /* Check if it's an assign addressing mode. */
2555 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2556 {
2557 /* Assign the prefix value to operand 1. */
2558 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2559 }
2560 }
2561
2562 /* Handles the 2-operand BOUND instruction. */
2563
2564 static void
2565 two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2566 {
2567 /* It's invalid to have the PC as the index operand. */
2568 if (cris_get_operand2 (inst) == REG_PC)
2569 {
2570 inst_env->invalid = 1;
2571 return;
2572 }
2573 /* Check if we have a prefix. */
2574 if (inst_env->prefix_found)
2575 {
2576 check_assign (inst, inst_env);
2577 }
2578 /* Check if this is an autoincrement mode. */
2579 else if (cris_get_mode (inst) == AUTOINC_MODE)
2580 {
2581 /* It's invalid to change the PC in a delay slot. */
2582 if (inst_env->slot_needed)
2583 {
2584 inst_env->invalid = 1;
2585 return;
2586 }
2587 process_autoincrement (cris_get_size (inst), inst, inst_env);
2588 }
2589 inst_env->slot_needed = 0;
2590 inst_env->prefix_found = 0;
2591 inst_env->xflag_found = 0;
2592 inst_env->disable_interrupt = 0;
2593 }
2594
2595 /* Handles the 3-operand BOUND instruction. */
2596
2597 static void
2598 three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2599 {
2600 /* It's an error if we haven't got a prefix. And it's also an error
2601 if the PC is the destination register. */
2602 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2603 {
2604 inst_env->invalid = 1;
2605 return;
2606 }
2607 inst_env->slot_needed = 0;
2608 inst_env->prefix_found = 0;
2609 inst_env->xflag_found = 0;
2610 inst_env->disable_interrupt = 0;
2611 }
2612
2613 /* Clears the status flags in inst_env. */
2614
2615 static void
2616 btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2617 {
2618 /* It's an error if we have got a prefix. */
2619 if (inst_env->prefix_found)
2620 {
2621 inst_env->invalid = 1;
2622 return;
2623 }
2624
2625 inst_env->slot_needed = 0;
2626 inst_env->prefix_found = 0;
2627 inst_env->xflag_found = 0;
2628 inst_env->disable_interrupt = 0;
2629 }
2630
2631 /* Clears the status flags in inst_env. */
2632
2633 static void
2634 clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2635 {
2636 /* It's an error if we have got a prefix. */
2637 if (inst_env->prefix_found)
2638 {
2639 inst_env->invalid = 1;
2640 return;
2641 }
2642
2643 inst_env->slot_needed = 0;
2644 inst_env->prefix_found = 0;
2645 inst_env->xflag_found = 0;
2646 inst_env->disable_interrupt = 1;
2647 }
2648
2649 /* Handles the CLEAR instruction if it's in register mode. */
2650
2651 static void
2652 reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2653 {
2654 /* Check if the target is the PC. */
2655 if (cris_get_operand2 (inst) == REG_PC)
2656 {
2657 /* The instruction will clear the instruction's size bits. */
2658 int clear_size = cris_get_clear_size (inst);
2659 if (clear_size == INST_BYTE_SIZE)
2660 {
2661 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2662 }
2663 if (clear_size == INST_WORD_SIZE)
2664 {
2665 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2666 }
2667 if (clear_size == INST_DWORD_SIZE)
2668 {
2669 inst_env->delay_slot_pc = 0x0;
2670 }
2671 /* The jump will be delayed with one delay slot. So we need a delay
2672 slot. */
2673 inst_env->slot_needed = 1;
2674 inst_env->delay_slot_pc_active = 1;
2675 }
2676 else
2677 {
2678 /* The PC will not change => no delay slot. */
2679 inst_env->slot_needed = 0;
2680 }
2681 inst_env->prefix_found = 0;
2682 inst_env->xflag_found = 0;
2683 inst_env->disable_interrupt = 0;
2684 }
2685
2686 /* Handles the TEST instruction if it's in register mode. */
2687
2688 static void
2689 reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2690 {
2691 /* It's an error if we have got a prefix. */
2692 if (inst_env->prefix_found)
2693 {
2694 inst_env->invalid = 1;
2695 return;
2696 }
2697 inst_env->slot_needed = 0;
2698 inst_env->prefix_found = 0;
2699 inst_env->xflag_found = 0;
2700 inst_env->disable_interrupt = 0;
2701
2702 }
2703
2704 /* Handles the CLEAR and TEST instruction if the instruction isn't
2705 in register mode. */
2706
2707 static void
2708 none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2709 {
2710 /* Check if we are in a prefix mode. */
2711 if (inst_env->prefix_found)
2712 {
2713 /* The only way the PC can change is if this instruction is in
2714 assign addressing mode. */
2715 check_assign (inst, inst_env);
2716 }
2717 /* Indirect mode can't change the PC so just check if the mode is
2718 autoincrement. */
2719 else if (cris_get_mode (inst) == AUTOINC_MODE)
2720 {
2721 process_autoincrement (cris_get_size (inst), inst, inst_env);
2722 }
2723 inst_env->slot_needed = 0;
2724 inst_env->prefix_found = 0;
2725 inst_env->xflag_found = 0;
2726 inst_env->disable_interrupt = 0;
2727 }
2728
2729 /* Checks that the PC isn't the destination register or the instructions has
2730 a prefix. */
2731
2732 static void
2733 dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2734 {
2735 /* It's invalid to have the PC as the destination. The instruction can't
2736 have a prefix. */
2737 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2738 {
2739 inst_env->invalid = 1;
2740 return;
2741 }
2742
2743 inst_env->slot_needed = 0;
2744 inst_env->prefix_found = 0;
2745 inst_env->xflag_found = 0;
2746 inst_env->disable_interrupt = 0;
2747 }
2748
2749 /* Checks that the instruction doesn't have a prefix. */
2750
2751 static void
2752 break_op (unsigned short inst, inst_env_type *inst_env)
2753 {
2754 /* The instruction can't have a prefix. */
2755 if (inst_env->prefix_found)
2756 {
2757 inst_env->invalid = 1;
2758 return;
2759 }
2760
2761 inst_env->slot_needed = 0;
2762 inst_env->prefix_found = 0;
2763 inst_env->xflag_found = 0;
2764 inst_env->disable_interrupt = 1;
2765 }
2766
2767 /* Checks that the PC isn't the destination register and that the instruction
2768 doesn't have a prefix. */
2769
2770 static void
2771 scc_op (unsigned short inst, inst_env_type *inst_env)
2772 {
2773 /* It's invalid to have the PC as the destination. The instruction can't
2774 have a prefix. */
2775 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2776 {
2777 inst_env->invalid = 1;
2778 return;
2779 }
2780
2781 inst_env->slot_needed = 0;
2782 inst_env->prefix_found = 0;
2783 inst_env->xflag_found = 0;
2784 inst_env->disable_interrupt = 1;
2785 }
2786
2787 /* Handles the register mode JUMP instruction. */
2788
2789 static void
2790 reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2791 {
2792 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2793 you can't have a prefix. */
2794 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2795 {
2796 inst_env->invalid = 1;
2797 return;
2798 }
2799
2800 /* Just change the PC. */
2801 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2802 inst_env->slot_needed = 0;
2803 inst_env->prefix_found = 0;
2804 inst_env->xflag_found = 0;
2805 inst_env->disable_interrupt = 1;
2806 }
2807
2808 /* Handles the JUMP instruction for all modes except register. */
2809
2810 static void
2811 none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2812 {
2813 unsigned long newpc;
2814 CORE_ADDR address;
2815
2816 /* It's invalid to do a JUMP in a delay slot. */
2817 if (inst_env->slot_needed)
2818 {
2819 inst_env->invalid = 1;
2820 }
2821 else
2822 {
2823 /* Check if we have a prefix. */
2824 if (inst_env->prefix_found)
2825 {
2826 check_assign (inst, inst_env);
2827
2828 /* Get the new value for the PC. */
2829 newpc =
2830 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2831 4, inst_env->byte_order);
2832 }
2833 else
2834 {
2835 /* Get the new value for the PC. */
2836 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2837 newpc = read_memory_unsigned_integer (address,
2838 4, inst_env->byte_order);
2839
2840 /* Check if we should increment a register. */
2841 if (cris_get_mode (inst) == AUTOINC_MODE)
2842 {
2843 inst_env->reg[cris_get_operand1 (inst)] += 4;
2844 }
2845 }
2846 inst_env->reg[REG_PC] = newpc;
2847 }
2848 inst_env->slot_needed = 0;
2849 inst_env->prefix_found = 0;
2850 inst_env->xflag_found = 0;
2851 inst_env->disable_interrupt = 1;
2852 }
2853
2854 /* Handles moves to special registers (aka P-register) for all modes. */
2855
2856 static void
2857 move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2858 inst_env_type *inst_env)
2859 {
2860 if (inst_env->prefix_found)
2861 {
2862 /* The instruction has a prefix that means we are only interested if
2863 the instruction is in assign mode. */
2864 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2865 {
2866 /* The prefix handles the problem if we are in a delay slot. */
2867 if (cris_get_operand1 (inst) == REG_PC)
2868 {
2869 /* Just take care of the assign. */
2870 check_assign (inst, inst_env);
2871 }
2872 }
2873 }
2874 else if (cris_get_mode (inst) == AUTOINC_MODE)
2875 {
2876 /* The instruction doesn't have a prefix, the only case left that we
2877 are interested in is the autoincrement mode. */
2878 if (cris_get_operand1 (inst) == REG_PC)
2879 {
2880 /* If the PC is to be incremented it's invalid to be in a
2881 delay slot. */
2882 if (inst_env->slot_needed)
2883 {
2884 inst_env->invalid = 1;
2885 return;
2886 }
2887
2888 /* The increment depends on the size of the special register. */
2889 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2890 {
2891 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2892 }
2893 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2894 {
2895 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2896 }
2897 else
2898 {
2899 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2900 }
2901 }
2902 }
2903 inst_env->slot_needed = 0;
2904 inst_env->prefix_found = 0;
2905 inst_env->xflag_found = 0;
2906 inst_env->disable_interrupt = 1;
2907 }
2908
2909 /* Handles moves from special registers (aka P-register) for all modes
2910 except register. */
2911
2912 static void
2913 none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2914 inst_env_type *inst_env)
2915 {
2916 if (inst_env->prefix_found)
2917 {
2918 /* The instruction has a prefix that means we are only interested if
2919 the instruction is in assign mode. */
2920 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2921 {
2922 /* The prefix handles the problem if we are in a delay slot. */
2923 if (cris_get_operand1 (inst) == REG_PC)
2924 {
2925 /* Just take care of the assign. */
2926 check_assign (inst, inst_env);
2927 }
2928 }
2929 }
2930 /* The instruction doesn't have a prefix, the only case left that we
2931 are interested in is the autoincrement mode. */
2932 else if (cris_get_mode (inst) == AUTOINC_MODE)
2933 {
2934 if (cris_get_operand1 (inst) == REG_PC)
2935 {
2936 /* If the PC is to be incremented it's invalid to be in a
2937 delay slot. */
2938 if (inst_env->slot_needed)
2939 {
2940 inst_env->invalid = 1;
2941 return;
2942 }
2943
2944 /* The increment depends on the size of the special register. */
2945 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
2946 {
2947 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2948 }
2949 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
2950 {
2951 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2952 }
2953 else
2954 {
2955 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2956 }
2957 }
2958 }
2959 inst_env->slot_needed = 0;
2960 inst_env->prefix_found = 0;
2961 inst_env->xflag_found = 0;
2962 inst_env->disable_interrupt = 1;
2963 }
2964
2965 /* Handles moves from special registers (aka P-register) when the mode
2966 is register. */
2967
2968 static void
2969 reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2970 {
2971 /* Register mode move from special register can't have a prefix. */
2972 if (inst_env->prefix_found)
2973 {
2974 inst_env->invalid = 1;
2975 return;
2976 }
2977
2978 if (cris_get_operand1 (inst) == REG_PC)
2979 {
2980 /* It's invalid to change the PC in a delay slot. */
2981 if (inst_env->slot_needed)
2982 {
2983 inst_env->invalid = 1;
2984 return;
2985 }
2986 /* The destination is the PC, the jump will have a delay slot. */
2987 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2988 inst_env->slot_needed = 1;
2989 inst_env->delay_slot_pc_active = 1;
2990 }
2991 else
2992 {
2993 /* If the destination isn't PC, there will be no jump. */
2994 inst_env->slot_needed = 0;
2995 }
2996 inst_env->prefix_found = 0;
2997 inst_env->xflag_found = 0;
2998 inst_env->disable_interrupt = 1;
2999 }
3000
3001 /* Handles the MOVEM from memory to general register instruction. */
3002
3003 static void
3004 move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3005 {
3006 if (inst_env->prefix_found)
3007 {
3008 /* The prefix handles the problem if we are in a delay slot. Is the
3009 MOVEM instruction going to change the PC? */
3010 if (cris_get_operand2 (inst) >= REG_PC)
3011 {
3012 inst_env->reg[REG_PC] =
3013 read_memory_unsigned_integer (inst_env->prefix_value,
3014 4, inst_env->byte_order);
3015 }
3016 /* The assign value is the value after the increment. Normally, the
3017 assign value is the value before the increment. */
3018 if ((cris_get_operand1 (inst) == REG_PC)
3019 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3020 {
3021 inst_env->reg[REG_PC] = inst_env->prefix_value;
3022 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3023 }
3024 }
3025 else
3026 {
3027 /* Is the MOVEM instruction going to change the PC? */
3028 if (cris_get_operand2 (inst) == REG_PC)
3029 {
3030 /* It's invalid to change the PC in a delay slot. */
3031 if (inst_env->slot_needed)
3032 {
3033 inst_env->invalid = 1;
3034 return;
3035 }
3036 inst_env->reg[REG_PC] =
3037 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3038 4, inst_env->byte_order);
3039 }
3040 /* The increment is not depending on the size, instead it's depending
3041 on the number of registers loaded from memory. */
3042 if ((cris_get_operand1 (inst) == REG_PC)
3043 && (cris_get_mode (inst) == AUTOINC_MODE))
3044 {
3045 /* It's invalid to change the PC in a delay slot. */
3046 if (inst_env->slot_needed)
3047 {
3048 inst_env->invalid = 1;
3049 return;
3050 }
3051 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3052 }
3053 }
3054 inst_env->slot_needed = 0;
3055 inst_env->prefix_found = 0;
3056 inst_env->xflag_found = 0;
3057 inst_env->disable_interrupt = 0;
3058 }
3059
3060 /* Handles the MOVEM to memory from general register instruction. */
3061
3062 static void
3063 move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3064 {
3065 if (inst_env->prefix_found)
3066 {
3067 /* The assign value is the value after the increment. Normally, the
3068 assign value is the value before the increment. */
3069 if ((cris_get_operand1 (inst) == REG_PC)
3070 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3071 {
3072 /* The prefix handles the problem if we are in a delay slot. */
3073 inst_env->reg[REG_PC] = inst_env->prefix_value;
3074 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3075 }
3076 }
3077 else
3078 {
3079 /* The increment is not depending on the size, instead it's depending
3080 on the number of registers loaded to memory. */
3081 if ((cris_get_operand1 (inst) == REG_PC)
3082 && (cris_get_mode (inst) == AUTOINC_MODE))
3083 {
3084 /* It's invalid to change the PC in a delay slot. */
3085 if (inst_env->slot_needed)
3086 {
3087 inst_env->invalid = 1;
3088 return;
3089 }
3090 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3091 }
3092 }
3093 inst_env->slot_needed = 0;
3094 inst_env->prefix_found = 0;
3095 inst_env->xflag_found = 0;
3096 inst_env->disable_interrupt = 0;
3097 }
3098
3099 /* Handles the intructions that's not yet implemented, by setting
3100 inst_env->invalid to true. */
3101
3102 static void
3103 not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3104 {
3105 inst_env->invalid = 1;
3106 }
3107
3108 /* Handles the XOR instruction. */
3109
3110 static void
3111 xor_op (unsigned short inst, inst_env_type *inst_env)
3112 {
3113 /* XOR can't have a prefix. */
3114 if (inst_env->prefix_found)
3115 {
3116 inst_env->invalid = 1;
3117 return;
3118 }
3119
3120 /* Check if the PC is the target. */
3121 if (cris_get_operand2 (inst) == REG_PC)
3122 {
3123 /* It's invalid to change the PC in a delay slot. */
3124 if (inst_env->slot_needed)
3125 {
3126 inst_env->invalid = 1;
3127 return;
3128 }
3129 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3130 }
3131 inst_env->slot_needed = 0;
3132 inst_env->prefix_found = 0;
3133 inst_env->xflag_found = 0;
3134 inst_env->disable_interrupt = 0;
3135 }
3136
3137 /* Handles the MULS instruction. */
3138
3139 static void
3140 muls_op (unsigned short inst, inst_env_type *inst_env)
3141 {
3142 /* MULS/U can't have a prefix. */
3143 if (inst_env->prefix_found)
3144 {
3145 inst_env->invalid = 1;
3146 return;
3147 }
3148
3149 /* Consider it invalid if the PC is the target. */
3150 if (cris_get_operand2 (inst) == REG_PC)
3151 {
3152 inst_env->invalid = 1;
3153 return;
3154 }
3155 inst_env->slot_needed = 0;
3156 inst_env->prefix_found = 0;
3157 inst_env->xflag_found = 0;
3158 inst_env->disable_interrupt = 0;
3159 }
3160
3161 /* Handles the MULU instruction. */
3162
3163 static void
3164 mulu_op (unsigned short inst, inst_env_type *inst_env)
3165 {
3166 /* MULS/U can't have a prefix. */
3167 if (inst_env->prefix_found)
3168 {
3169 inst_env->invalid = 1;
3170 return;
3171 }
3172
3173 /* Consider it invalid if the PC is the target. */
3174 if (cris_get_operand2 (inst) == REG_PC)
3175 {
3176 inst_env->invalid = 1;
3177 return;
3178 }
3179 inst_env->slot_needed = 0;
3180 inst_env->prefix_found = 0;
3181 inst_env->xflag_found = 0;
3182 inst_env->disable_interrupt = 0;
3183 }
3184
3185 /* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3186 The MOVE instruction is the move from source to register. */
3187
3188 static void
3189 add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3190 unsigned long source1, unsigned long source2)
3191 {
3192 unsigned long pc_mask;
3193 unsigned long operation_mask;
3194
3195 /* Find out how many bits the operation should apply to. */
3196 if (cris_get_size (inst) == INST_BYTE_SIZE)
3197 {
3198 pc_mask = 0xFFFFFF00;
3199 operation_mask = 0xFF;
3200 }
3201 else if (cris_get_size (inst) == INST_WORD_SIZE)
3202 {
3203 pc_mask = 0xFFFF0000;
3204 operation_mask = 0xFFFF;
3205 }
3206 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3207 {
3208 pc_mask = 0x0;
3209 operation_mask = 0xFFFFFFFF;
3210 }
3211 else
3212 {
3213 /* The size is out of range. */
3214 inst_env->invalid = 1;
3215 return;
3216 }
3217
3218 /* The instruction just works on uw_operation_mask bits. */
3219 source2 &= operation_mask;
3220 source1 &= operation_mask;
3221
3222 /* Now calculate the result. The opcode's 3 first bits separates
3223 the different actions. */
3224 switch (cris_get_opcode (inst) & 7)
3225 {
3226 case 0: /* add */
3227 source1 += source2;
3228 break;
3229
3230 case 1: /* move */
3231 source1 = source2;
3232 break;
3233
3234 case 2: /* subtract */
3235 source1 -= source2;
3236 break;
3237
3238 case 3: /* compare */
3239 break;
3240
3241 case 4: /* and */
3242 source1 &= source2;
3243 break;
3244
3245 case 5: /* or */
3246 source1 |= source2;
3247 break;
3248
3249 default:
3250 inst_env->invalid = 1;
3251 return;
3252
3253 break;
3254 }
3255
3256 /* Make sure that the result doesn't contain more than the instruction
3257 size bits. */
3258 source2 &= operation_mask;
3259
3260 /* Calculate the new breakpoint address. */
3261 inst_env->reg[REG_PC] &= pc_mask;
3262 inst_env->reg[REG_PC] |= source1;
3263
3264 }
3265
3266 /* Extends the value from either byte or word size to a dword. If the mode
3267 is zero extend then the value is extended with zero. If instead the mode
3268 is signed extend the sign bit of the value is taken into consideration. */
3269
3270 static unsigned long
3271 do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3272 {
3273 /* The size can be either byte or word, check which one it is.
3274 Don't check the highest bit, it's indicating if it's a zero
3275 or sign extend. */
3276 if (cris_get_size (*inst) & INST_WORD_SIZE)
3277 {
3278 /* Word size. */
3279 value &= 0xFFFF;
3280
3281 /* Check if the instruction is signed extend. If so, check if value has
3282 the sign bit on. */
3283 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3284 {
3285 value |= SIGNED_WORD_EXTEND_MASK;
3286 }
3287 }
3288 else
3289 {
3290 /* Byte size. */
3291 value &= 0xFF;
3292
3293 /* Check if the instruction is signed extend. If so, check if value has
3294 the sign bit on. */
3295 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3296 {
3297 value |= SIGNED_BYTE_EXTEND_MASK;
3298 }
3299 }
3300 /* The size should now be dword. */
3301 cris_set_size_to_dword (inst);
3302 return value;
3303 }
3304
3305 /* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3306 instruction. The MOVE instruction is the move from source to register. */
3307
3308 static void
3309 reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3310 inst_env_type *inst_env)
3311 {
3312 unsigned long operand1;
3313 unsigned long operand2;
3314
3315 /* It's invalid to have a prefix to the instruction. This is a register
3316 mode instruction and can't have a prefix. */
3317 if (inst_env->prefix_found)
3318 {
3319 inst_env->invalid = 1;
3320 return;
3321 }
3322 /* Check if the instruction has PC as its target. */
3323 if (cris_get_operand2 (inst) == REG_PC)
3324 {
3325 if (inst_env->slot_needed)
3326 {
3327 inst_env->invalid = 1;
3328 return;
3329 }
3330 /* The instruction has the PC as its target register. */
3331 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3332 operand2 = inst_env->reg[REG_PC];
3333
3334 /* Check if it's a extend, signed or zero instruction. */
3335 if (cris_get_opcode (inst) < 4)
3336 {
3337 operand1 = do_sign_or_zero_extend (operand1, &inst);
3338 }
3339 /* Calculate the PC value after the instruction, i.e. where the
3340 breakpoint should be. The order of the udw_operands is vital. */
3341 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3342 }
3343 inst_env->slot_needed = 0;
3344 inst_env->prefix_found = 0;
3345 inst_env->xflag_found = 0;
3346 inst_env->disable_interrupt = 0;
3347 }
3348
3349 /* Returns the data contained at address. The size of the data is derived from
3350 the size of the operation. If the instruction is a zero or signed
3351 extend instruction, the size field is changed in instruction. */
3352
3353 static unsigned long
3354 get_data_from_address (unsigned short *inst, CORE_ADDR address,
3355 enum bfd_endian byte_order)
3356 {
3357 int size = cris_get_size (*inst);
3358 unsigned long value;
3359
3360 /* If it's an extend instruction we don't want the signed extend bit,
3361 because it influences the size. */
3362 if (cris_get_opcode (*inst) < 4)
3363 {
3364 size &= ~SIGNED_EXTEND_BIT_MASK;
3365 }
3366 /* Is there a need for checking the size? Size should contain the number of
3367 bytes to read. */
3368 size = 1 << size;
3369 value = read_memory_unsigned_integer (address, size, byte_order);
3370
3371 /* Check if it's an extend, signed or zero instruction. */
3372 if (cris_get_opcode (*inst) < 4)
3373 {
3374 value = do_sign_or_zero_extend (value, inst);
3375 }
3376 return value;
3377 }
3378
3379 /* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3380 instructions. The MOVE instruction is the move from source to register. */
3381
3382 static void
3383 handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3384 inst_env_type *inst_env)
3385 {
3386 unsigned long operand2;
3387 unsigned long operand3;
3388
3389 check_assign (inst, inst_env);
3390 if (cris_get_operand2 (inst) == REG_PC)
3391 {
3392 operand2 = inst_env->reg[REG_PC];
3393
3394 /* Get the value of the third operand. */
3395 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3396 inst_env->byte_order);
3397
3398 /* Calculate the PC value after the instruction, i.e. where the
3399 breakpoint should be. The order of the udw_operands is vital. */
3400 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3401 }
3402 inst_env->slot_needed = 0;
3403 inst_env->prefix_found = 0;
3404 inst_env->xflag_found = 0;
3405 inst_env->disable_interrupt = 0;
3406 }
3407
3408 /* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3409 OR instructions. Note that for this to work as expected, the calling
3410 function must have made sure that there is a prefix to this instruction. */
3411
3412 static void
3413 three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3414 inst_env_type *inst_env)
3415 {
3416 unsigned long operand2;
3417 unsigned long operand3;
3418
3419 if (cris_get_operand1 (inst) == REG_PC)
3420 {
3421 /* The PC will be changed by the instruction. */
3422 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3423
3424 /* Get the value of the third operand. */
3425 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3426 inst_env->byte_order);
3427
3428 /* Calculate the PC value after the instruction, i.e. where the
3429 breakpoint should be. */
3430 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3431 }
3432 inst_env->slot_needed = 0;
3433 inst_env->prefix_found = 0;
3434 inst_env->xflag_found = 0;
3435 inst_env->disable_interrupt = 0;
3436 }
3437
3438 /* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3439 instructions. The MOVE instruction is the move from source to register. */
3440
3441 static void
3442 handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3443 inst_env_type *inst_env)
3444 {
3445 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3446 {
3447 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3448 SUB, AND or OR something weird is going on (if everything works these
3449 instructions should end up in the three operand version). */
3450 inst_env->invalid = 1;
3451 return;
3452 }
3453 else
3454 {
3455 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3456 so use it. */
3457 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3458 }
3459 inst_env->slot_needed = 0;
3460 inst_env->prefix_found = 0;
3461 inst_env->xflag_found = 0;
3462 inst_env->disable_interrupt = 0;
3463 }
3464
3465 /* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3466 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3467 source to register. */
3468
3469 static void
3470 handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3471 inst_env_type *inst_env)
3472 {
3473 unsigned long operand1;
3474 unsigned long operand2;
3475 unsigned long operand3;
3476 int size;
3477
3478 /* The instruction is either an indirect or autoincrement addressing mode.
3479 Check if the destination register is the PC. */
3480 if (cris_get_operand2 (inst) == REG_PC)
3481 {
3482 /* Must be done here, get_data_from_address may change the size
3483 field. */
3484 size = cris_get_size (inst);
3485 operand2 = inst_env->reg[REG_PC];
3486
3487 /* Get the value of the third operand, i.e. the indirect operand. */
3488 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3489 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
3490
3491 /* Calculate the PC value after the instruction, i.e. where the
3492 breakpoint should be. The order of the udw_operands is vital. */
3493 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3494 }
3495 /* If this is an autoincrement addressing mode, check if the increment
3496 changes the PC. */
3497 if ((cris_get_operand1 (inst) == REG_PC)
3498 && (cris_get_mode (inst) == AUTOINC_MODE))
3499 {
3500 /* Get the size field. */
3501 size = cris_get_size (inst);
3502
3503 /* If it's an extend instruction we don't want the signed extend bit,
3504 because it influences the size. */
3505 if (cris_get_opcode (inst) < 4)
3506 {
3507 size &= ~SIGNED_EXTEND_BIT_MASK;
3508 }
3509 process_autoincrement (size, inst, inst_env);
3510 }
3511 inst_env->slot_needed = 0;
3512 inst_env->prefix_found = 0;
3513 inst_env->xflag_found = 0;
3514 inst_env->disable_interrupt = 0;
3515 }
3516
3517 /* Handles the two-operand addressing mode, all modes except register, for
3518 the ADD, SUB CMP, AND and OR instruction. */
3519
3520 static void
3521 none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3522 inst_env_type *inst_env)
3523 {
3524 if (inst_env->prefix_found)
3525 {
3526 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3527 {
3528 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3529 }
3530 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3531 {
3532 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3533 }
3534 else
3535 {
3536 /* The mode is invalid for a prefixed base instruction. */
3537 inst_env->invalid = 1;
3538 return;
3539 }
3540 }
3541 else
3542 {
3543 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3544 }
3545 }
3546
3547 /* Handles the quick addressing mode for the ADD and SUB instruction. */
3548
3549 static void
3550 quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3551 {
3552 unsigned long operand1;
3553 unsigned long operand2;
3554
3555 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3556 instruction and can't have a prefix. */
3557 if (inst_env->prefix_found)
3558 {
3559 inst_env->invalid = 1;
3560 return;
3561 }
3562
3563 /* Check if the instruction has PC as its target. */
3564 if (cris_get_operand2 (inst) == REG_PC)
3565 {
3566 if (inst_env->slot_needed)
3567 {
3568 inst_env->invalid = 1;
3569 return;
3570 }
3571 operand1 = cris_get_quick_value (inst);
3572 operand2 = inst_env->reg[REG_PC];
3573
3574 /* The size should now be dword. */
3575 cris_set_size_to_dword (&inst);
3576
3577 /* Calculate the PC value after the instruction, i.e. where the
3578 breakpoint should be. */
3579 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3580 }
3581 inst_env->slot_needed = 0;
3582 inst_env->prefix_found = 0;
3583 inst_env->xflag_found = 0;
3584 inst_env->disable_interrupt = 0;
3585 }
3586
3587 /* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3588
3589 static void
3590 quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3591 {
3592 unsigned long operand1;
3593 unsigned long operand2;
3594
3595 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3596 instruction and can't have a prefix. */
3597 if (inst_env->prefix_found)
3598 {
3599 inst_env->invalid = 1;
3600 return;
3601 }
3602 /* Check if the instruction has PC as its target. */
3603 if (cris_get_operand2 (inst) == REG_PC)
3604 {
3605 if (inst_env->slot_needed)
3606 {
3607 inst_env->invalid = 1;
3608 return;
3609 }
3610 /* The instruction has the PC as its target register. */
3611 operand1 = cris_get_quick_value (inst);
3612 operand2 = inst_env->reg[REG_PC];
3613
3614 /* The quick value is signed, so check if we must do a signed extend. */
3615 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3616 {
3617 /* sign extend */
3618 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3619 }
3620 /* The size should now be dword. */
3621 cris_set_size_to_dword (&inst);
3622
3623 /* Calculate the PC value after the instruction, i.e. where the
3624 breakpoint should be. */
3625 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3626 }
3627 inst_env->slot_needed = 0;
3628 inst_env->prefix_found = 0;
3629 inst_env->xflag_found = 0;
3630 inst_env->disable_interrupt = 0;
3631 }
3632
3633 /* Translate op_type to a function and call it. */
3634
3635 static void
3636 cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3637 unsigned short inst, inst_env_type *inst_env)
3638 {
3639 switch (op_type)
3640 {
3641 case cris_not_implemented_op:
3642 not_implemented_op (inst, inst_env);
3643 break;
3644
3645 case cris_abs_op:
3646 abs_op (inst, inst_env);
3647 break;
3648
3649 case cris_addi_op:
3650 addi_op (inst, inst_env);
3651 break;
3652
3653 case cris_asr_op:
3654 asr_op (inst, inst_env);
3655 break;
3656
3657 case cris_asrq_op:
3658 asrq_op (inst, inst_env);
3659 break;
3660
3661 case cris_ax_ei_setf_op:
3662 ax_ei_setf_op (inst, inst_env);
3663 break;
3664
3665 case cris_bdap_prefix:
3666 bdap_prefix (inst, inst_env);
3667 break;
3668
3669 case cris_biap_prefix:
3670 biap_prefix (inst, inst_env);
3671 break;
3672
3673 case cris_break_op:
3674 break_op (inst, inst_env);
3675 break;
3676
3677 case cris_btst_nop_op:
3678 btst_nop_op (inst, inst_env);
3679 break;
3680
3681 case cris_clearf_di_op:
3682 clearf_di_op (inst, inst_env);
3683 break;
3684
3685 case cris_dip_prefix:
3686 dip_prefix (inst, inst_env);
3687 break;
3688
3689 case cris_dstep_logshift_mstep_neg_not_op:
3690 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3691 break;
3692
3693 case cris_eight_bit_offset_branch_op:
3694 eight_bit_offset_branch_op (inst, inst_env);
3695 break;
3696
3697 case cris_move_mem_to_reg_movem_op:
3698 move_mem_to_reg_movem_op (inst, inst_env);
3699 break;
3700
3701 case cris_move_reg_to_mem_movem_op:
3702 move_reg_to_mem_movem_op (inst, inst_env);
3703 break;
3704
3705 case cris_move_to_preg_op:
3706 move_to_preg_op (gdbarch, inst, inst_env);
3707 break;
3708
3709 case cris_muls_op:
3710 muls_op (inst, inst_env);
3711 break;
3712
3713 case cris_mulu_op:
3714 mulu_op (inst, inst_env);
3715 break;
3716
3717 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3718 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3719 break;
3720
3721 case cris_none_reg_mode_clear_test_op:
3722 none_reg_mode_clear_test_op (inst, inst_env);
3723 break;
3724
3725 case cris_none_reg_mode_jump_op:
3726 none_reg_mode_jump_op (inst, inst_env);
3727 break;
3728
3729 case cris_none_reg_mode_move_from_preg_op:
3730 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
3731 break;
3732
3733 case cris_quick_mode_add_sub_op:
3734 quick_mode_add_sub_op (inst, inst_env);
3735 break;
3736
3737 case cris_quick_mode_and_cmp_move_or_op:
3738 quick_mode_and_cmp_move_or_op (inst, inst_env);
3739 break;
3740
3741 case cris_quick_mode_bdap_prefix:
3742 quick_mode_bdap_prefix (inst, inst_env);
3743 break;
3744
3745 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3746 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3747 break;
3748
3749 case cris_reg_mode_clear_op:
3750 reg_mode_clear_op (inst, inst_env);
3751 break;
3752
3753 case cris_reg_mode_jump_op:
3754 reg_mode_jump_op (inst, inst_env);
3755 break;
3756
3757 case cris_reg_mode_move_from_preg_op:
3758 reg_mode_move_from_preg_op (inst, inst_env);
3759 break;
3760
3761 case cris_reg_mode_test_op:
3762 reg_mode_test_op (inst, inst_env);
3763 break;
3764
3765 case cris_scc_op:
3766 scc_op (inst, inst_env);
3767 break;
3768
3769 case cris_sixteen_bit_offset_branch_op:
3770 sixteen_bit_offset_branch_op (inst, inst_env);
3771 break;
3772
3773 case cris_three_operand_add_sub_cmp_and_or_op:
3774 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3775 break;
3776
3777 case cris_three_operand_bound_op:
3778 three_operand_bound_op (inst, inst_env);
3779 break;
3780
3781 case cris_two_operand_bound_op:
3782 two_operand_bound_op (inst, inst_env);
3783 break;
3784
3785 case cris_xor_op:
3786 xor_op (inst, inst_env);
3787 break;
3788 }
3789 }
3790
3791 /* This wrapper is to avoid cris_get_assembler being called before
3792 exec_bfd has been set. */
3793
3794 static int
3795 cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
3796 {
3797 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
3798 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3799 disassembler, even when there is no BFD. Does something like
3800 "gdb; target remote; disassmeble *0x123" work? */
3801 gdb_assert (exec_bfd != NULL);
3802 print_insn = cris_get_disassembler (exec_bfd);
3803 gdb_assert (print_insn != NULL);
3804 return print_insn (addr, info);
3805 }
3806
3807 /* Originally from <asm/elf.h>. */
3808 typedef unsigned char cris_elf_greg_t[4];
3809
3810 /* Same as user_regs_struct struct in <asm/user.h>. */
3811 #define CRISV10_ELF_NGREG 35
3812 typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
3813
3814 #define CRISV32_ELF_NGREG 32
3815 typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
3816
3817 /* Unpack a cris_elf_gregset_t into GDB's register cache. */
3818
3819 static void
3820 cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
3821 {
3822 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3823 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3824 int i;
3825 cris_elf_greg_t *regp = *gregsetp;
3826
3827 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3828 knows about the actual size of each register so that's no problem. */
3829 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3830 {
3831 regcache_raw_supply (regcache, i, (char *)&regp[i]);
3832 }
3833
3834 if (tdep->cris_version == 32)
3835 {
3836 /* Needed to set pseudo-register PC for CRISv32. */
3837 /* FIXME: If ERP is in a delay slot at this point then the PC will
3838 be wrong. Issue a warning to alert the user. */
3839 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
3840 (char *)&regp[ERP_REGNUM]);
3841
3842 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3843 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3844 }
3845 }
3846
3847 /* Use a local version of this function to get the correct types for
3848 regsets, until multi-arch core support is ready. */
3849
3850 static void
3851 fetch_core_registers (struct regcache *regcache,
3852 char *core_reg_sect, unsigned core_reg_size,
3853 int which, CORE_ADDR reg_addr)
3854 {
3855 cris_elf_gregset_t gregset;
3856
3857 switch (which)
3858 {
3859 case 0:
3860 if (core_reg_size != sizeof (cris_elf_gregset_t)
3861 && core_reg_size != sizeof (crisv32_elf_gregset_t))
3862 {
3863 warning (_("wrong size gregset struct in core file"));
3864 }
3865 else
3866 {
3867 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3868 cris_supply_gregset (regcache, &gregset);
3869 }
3870
3871 default:
3872 /* We've covered all the kinds of registers we know about here,
3873 so this must be something we wouldn't know what to do with
3874 anyway. Just ignore it. */
3875 break;
3876 }
3877 }
3878
3879 static struct core_fns cris_elf_core_fns =
3880 {
3881 bfd_target_elf_flavour, /* core_flavour */
3882 default_check_format, /* check_format */
3883 default_core_sniffer, /* core_sniffer */
3884 fetch_core_registers, /* core_read_registers */
3885 NULL /* next */
3886 };
3887
3888 extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3889
3890 void
3891 _initialize_cris_tdep (void)
3892 {
3893 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3894
3895 /* CRIS-specific user-commands. */
3896 add_setshow_zuinteger_cmd ("cris-version", class_support,
3897 &usr_cmd_cris_version,
3898 _("Set the current CRIS version."),
3899 _("Show the current CRIS version."),
3900 _("\
3901 Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3902 Defaults to 10. "),
3903 set_cris_version,
3904 NULL, /* FIXME: i18n: Current CRIS version
3905 is %s. */
3906 &setlist, &showlist);
3907
3908 add_setshow_enum_cmd ("cris-mode", class_support,
3909 cris_modes, &usr_cmd_cris_mode,
3910 _("Set the current CRIS mode."),
3911 _("Show the current CRIS mode."),
3912 _("\
3913 Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3914 Makes GDB use the NRP register instead of the ERP register in certain cases."),
3915 set_cris_mode,
3916 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3917 &setlist, &showlist);
3918
3919 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3920 &usr_cmd_cris_dwarf2_cfi,
3921 _("Set the usage of Dwarf-2 CFI for CRIS."),
3922 _("Show the usage of Dwarf-2 CFI for CRIS."),
3923 _("Set this to \"off\" if using gcc-cris < R59."),
3924 set_cris_dwarf2_cfi,
3925 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3926 for CRIS is %d. */
3927 &setlist, &showlist);
3928
3929 deprecated_add_core_fns (&cris_elf_core_fns);
3930 }
3931
3932 /* Prints out all target specific values. */
3933
3934 static void
3935 cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3936 {
3937 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3938 if (tdep != NULL)
3939 {
3940 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3941 tdep->cris_version);
3942 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3943 tdep->cris_mode);
3944 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3945 tdep->cris_dwarf2_cfi);
3946 }
3947 }
3948
3949 static void
3950 set_cris_version (char *ignore_args, int from_tty,
3951 struct cmd_list_element *c)
3952 {
3953 struct gdbarch_info info;
3954
3955 usr_cmd_cris_version_valid = 1;
3956
3957 /* Update the current architecture, if needed. */
3958 gdbarch_info_init (&info);
3959 if (!gdbarch_update_p (info))
3960 internal_error (__FILE__, __LINE__,
3961 _("cris_gdbarch_update: failed to update architecture."));
3962 }
3963
3964 static void
3965 set_cris_mode (char *ignore_args, int from_tty,
3966 struct cmd_list_element *c)
3967 {
3968 struct gdbarch_info info;
3969
3970 /* Update the current architecture, if needed. */
3971 gdbarch_info_init (&info);
3972 if (!gdbarch_update_p (info))
3973 internal_error (__FILE__, __LINE__,
3974 "cris_gdbarch_update: failed to update architecture.");
3975 }
3976
3977 static void
3978 set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
3979 struct cmd_list_element *c)
3980 {
3981 struct gdbarch_info info;
3982
3983 /* Update the current architecture, if needed. */
3984 gdbarch_info_init (&info);
3985 if (!gdbarch_update_p (info))
3986 internal_error (__FILE__, __LINE__,
3987 _("cris_gdbarch_update: failed to update architecture."));
3988 }
3989
3990 static struct gdbarch *
3991 cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3992 {
3993 struct gdbarch *gdbarch;
3994 struct gdbarch_tdep *tdep;
3995 unsigned int cris_version;
3996
3997 if (usr_cmd_cris_version_valid)
3998 {
3999 /* Trust the user's CRIS version setting. */
4000 cris_version = usr_cmd_cris_version;
4001 }
4002 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4003 {
4004 cris_version = 32;
4005 }
4006 else
4007 {
4008 /* Assume it's CRIS version 10. */
4009 cris_version = 10;
4010 }
4011
4012 /* Make the current settings visible to the user. */
4013 usr_cmd_cris_version = cris_version;
4014
4015 /* Find a candidate among the list of pre-declared architectures. */
4016 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4017 arches != NULL;
4018 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4019 {
4020 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4021 == usr_cmd_cris_version)
4022 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4023 == usr_cmd_cris_mode)
4024 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4025 == usr_cmd_cris_dwarf2_cfi))
4026 return arches->gdbarch;
4027 }
4028
4029 /* No matching architecture was found. Create a new one. */
4030 tdep = XNEW (struct gdbarch_tdep);
4031 gdbarch = gdbarch_alloc (&info, tdep);
4032
4033 tdep->cris_version = usr_cmd_cris_version;
4034 tdep->cris_mode = usr_cmd_cris_mode;
4035 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
4036
4037 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4038 switch (info.byte_order)
4039 {
4040 case BFD_ENDIAN_LITTLE:
4041 /* Ok. */
4042 break;
4043
4044 case BFD_ENDIAN_BIG:
4045 /* Cris is always little endian, but the user could have forced
4046 big endian with "set endian". */
4047 return 0;
4048
4049 default:
4050 internal_error (__FILE__, __LINE__,
4051 _("cris_gdbarch_init: unknown byte order in info"));
4052 }
4053
4054 set_gdbarch_return_value (gdbarch, cris_return_value);
4055
4056 set_gdbarch_sp_regnum (gdbarch, 14);
4057
4058 /* Length of ordinary registers used in push_word and a few other
4059 places. register_size() is the real way to know how big a
4060 register is. */
4061
4062 set_gdbarch_double_bit (gdbarch, 64);
4063 /* The default definition of a long double is 2 * gdbarch_double_bit,
4064 which means we have to set this explicitly. */
4065 set_gdbarch_long_double_bit (gdbarch, 64);
4066
4067 /* The total amount of space needed to store (in an array called registers)
4068 GDB's copy of the machine's register state. Note: We can not use
4069 cris_register_size at this point, since it relies on gdbarch
4070 being set. */
4071 switch (tdep->cris_version)
4072 {
4073 case 0:
4074 case 1:
4075 case 2:
4076 case 3:
4077 case 8:
4078 case 9:
4079 /* Old versions; not supported. */
4080 return 0;
4081
4082 case 10:
4083 case 11:
4084 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4085 P7 (32 bits), and P15 (32 bits) have been implemented. */
4086 set_gdbarch_pc_regnum (gdbarch, 15);
4087 set_gdbarch_register_type (gdbarch, cris_register_type);
4088 /* There are 32 registers (some of which may not be implemented). */
4089 set_gdbarch_num_regs (gdbarch, 32);
4090 set_gdbarch_register_name (gdbarch, cris_register_name);
4091 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4092 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4093
4094 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4095 break;
4096
4097 case 32:
4098 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4099 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4100 and pseudo-register PC (32 bits). */
4101 set_gdbarch_pc_regnum (gdbarch, 32);
4102 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4103 /* 32 registers + pseudo-register PC + 16 support registers. */
4104 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4105 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4106
4107 set_gdbarch_cannot_store_register
4108 (gdbarch, crisv32_cannot_store_register);
4109 set_gdbarch_cannot_fetch_register
4110 (gdbarch, crisv32_cannot_fetch_register);
4111
4112 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4113
4114 set_gdbarch_single_step_through_delay
4115 (gdbarch, crisv32_single_step_through_delay);
4116
4117 break;
4118
4119 default:
4120 /* Unknown version. */
4121 return 0;
4122 }
4123
4124 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4125 have the same ABI). */
4126 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4127 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4128 set_gdbarch_frame_align (gdbarch, cris_frame_align);
4129 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4130
4131 /* The stack grows downward. */
4132 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4133
4134 SET_GDBARCH_BREAKPOINT_MANIPULATION (cris);
4135
4136 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4137 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4138 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
4139
4140 if (tdep->cris_dwarf2_cfi == 1)
4141 {
4142 /* Hook in the Dwarf-2 frame sniffer. */
4143 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4144 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4145 dwarf2_append_unwinders (gdbarch);
4146 }
4147
4148 if (tdep->cris_mode != cris_mode_guru)
4149 {
4150 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
4151 }
4152
4153 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
4154 frame_base_set_default (gdbarch, &cris_frame_base);
4155
4156 /* Hook in ABI-specific overrides, if they have been registered. */
4157 gdbarch_init_osabi (info, gdbarch);
4158
4159 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4160 disassembler, even when there is no BFD. Does something like
4161 "gdb; target remote; disassmeble *0x123" work? */
4162 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4163
4164 return gdbarch;
4165 }