]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/d10v-tdep.c
* defs.h (XMALLOC): Define.
[thirdparty/binutils-gdb.git] / gdb / d10v-tdep.c
1 /* Target-dependent code for Mitsubishi D10V, for GDB.
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* Contributed by Martin Hunt, hunt@cygnus.com */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdb_string.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "language.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41
42 #include "floatformat.h"
43 #include "sim-d10v.h"
44
45 struct frame_extra_info
46 {
47 CORE_ADDR return_pc;
48 int frameless;
49 int size;
50 };
51
52 struct gdbarch_tdep
53 {
54 int a0_regnum;
55 int nr_dmap_regs;
56 unsigned long (*dmap_register) (int nr);
57 unsigned long (*imap_register) (int nr);
58 };
59
60 /* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
62
63 #define DMEM_START 0x2000000
64 #define IMEM_START 0x1000000
65 #define STACK_START 0x200bffe
66
67 /* d10v register names. */
68
69 enum
70 {
71 R0_REGNUM = 0,
72 LR_REGNUM = 13,
73 PSW_REGNUM = 16,
74 NR_IMAP_REGS = 2,
75 NR_A_REGS = 2
76 };
77 #define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
78 #define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
79
80 /* d10v calling convention. */
81
82 #define ARG1_REGNUM R0_REGNUM
83 #define ARGN_REGNUM 3
84 #define RET1_REGNUM R0_REGNUM
85
86 /* Local functions */
87
88 extern void _initialize_d10v_tdep (void);
89
90 static void d10v_eva_prepare_to_trace (void);
91
92 static void d10v_eva_get_trace_data (void);
93
94 static int prologue_find_regs (unsigned short op, struct frame_info *fi,
95 CORE_ADDR addr);
96
97 static void d10v_frame_init_saved_regs (struct frame_info *);
98
99 static void do_d10v_pop_frame (struct frame_info *fi);
100
101 static int
102 d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
103 {
104 return ((chain) != 0 && (frame) != 0
105 && (frame)->pc > IMEM_START
106 && !inside_entry_file (FRAME_SAVED_PC (frame)));
107 }
108
109 static CORE_ADDR
110 d10v_stack_align (CORE_ADDR len)
111 {
112 return (len + 1) & ~1;
113 }
114
115 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
116 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
117 and TYPE is the type (which is known to be struct, union or array).
118
119 The d10v returns anything less than 8 bytes in size in
120 registers. */
121
122 static int
123 d10v_use_struct_convention (int gcc_p, struct type *type)
124 {
125 long alignment;
126 int i;
127 /* The d10v only passes a struct in a register when that structure
128 has an alignment that matches the size of a register. */
129 /* If the structure doesn't fit in 4 registers, put it on the
130 stack. */
131 if (TYPE_LENGTH (type) > 8)
132 return 1;
133 /* If the struct contains only one field, don't put it on the stack
134 - gcc can fit it in one or more registers. */
135 if (TYPE_NFIELDS (type) == 1)
136 return 0;
137 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
138 for (i = 1; i < TYPE_NFIELDS (type); i++)
139 {
140 /* If the alignment changes, just assume it goes on the
141 stack. */
142 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
143 return 1;
144 }
145 /* If the alignment is suitable for the d10v's 16 bit registers,
146 don't put it on the stack. */
147 if (alignment == 2 || alignment == 4)
148 return 0;
149 return 1;
150 }
151
152
153 static unsigned char *
154 d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
155 {
156 static unsigned char breakpoint[] =
157 {0x2f, 0x90, 0x5e, 0x00};
158 *lenptr = sizeof (breakpoint);
159 return breakpoint;
160 }
161
162 /* Map the REG_NR onto an ascii name. Return NULL or an empty string
163 when the reg_nr isn't valid. */
164
165 enum ts2_regnums
166 {
167 TS2_IMAP0_REGNUM = 32,
168 TS2_DMAP_REGNUM = 34,
169 TS2_NR_DMAP_REGS = 1,
170 TS2_A0_REGNUM = 35
171 };
172
173 static char *
174 d10v_ts2_register_name (int reg_nr)
175 {
176 static char *register_names[] =
177 {
178 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
179 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
180 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
181 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
182 "imap0", "imap1", "dmap", "a0", "a1"
183 };
184 if (reg_nr < 0)
185 return NULL;
186 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
187 return NULL;
188 return register_names[reg_nr];
189 }
190
191 enum ts3_regnums
192 {
193 TS3_IMAP0_REGNUM = 36,
194 TS3_DMAP0_REGNUM = 38,
195 TS3_NR_DMAP_REGS = 4,
196 TS3_A0_REGNUM = 32
197 };
198
199 static char *
200 d10v_ts3_register_name (int reg_nr)
201 {
202 static char *register_names[] =
203 {
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
206 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
207 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
208 "a0", "a1",
209 "spi", "spu",
210 "imap0", "imap1",
211 "dmap0", "dmap1", "dmap2", "dmap3"
212 };
213 if (reg_nr < 0)
214 return NULL;
215 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
216 return NULL;
217 return register_names[reg_nr];
218 }
219
220 /* Access the DMAP/IMAP registers in a target independent way.
221
222 Divide the D10V's 64k data space into four 16k segments:
223 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
224 0xc000 -- 0xffff.
225
226 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
227 0x7fff) always map to the on-chip data RAM, and the fourth always
228 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
229 unified memory or instruction memory, under the control of the
230 single DMAP register.
231
232 On the TS3, there are four DMAP registers, each of which controls
233 one of the segments. */
234
235 static unsigned long
236 d10v_ts2_dmap_register (int reg_nr)
237 {
238 switch (reg_nr)
239 {
240 case 0:
241 case 1:
242 return 0x2000;
243 case 2:
244 return read_register (TS2_DMAP_REGNUM);
245 default:
246 return 0;
247 }
248 }
249
250 static unsigned long
251 d10v_ts3_dmap_register (int reg_nr)
252 {
253 return read_register (TS3_DMAP0_REGNUM + reg_nr);
254 }
255
256 static unsigned long
257 d10v_dmap_register (int reg_nr)
258 {
259 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
260 }
261
262 static unsigned long
263 d10v_ts2_imap_register (int reg_nr)
264 {
265 return read_register (TS2_IMAP0_REGNUM + reg_nr);
266 }
267
268 static unsigned long
269 d10v_ts3_imap_register (int reg_nr)
270 {
271 return read_register (TS3_IMAP0_REGNUM + reg_nr);
272 }
273
274 static unsigned long
275 d10v_imap_register (int reg_nr)
276 {
277 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
278 }
279
280 /* MAP GDB's internal register numbering (determined by the layout fo
281 the REGISTER_BYTE array) onto the simulator's register
282 numbering. */
283
284 static int
285 d10v_ts2_register_sim_regno (int nr)
286 {
287 if (nr >= TS2_IMAP0_REGNUM
288 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
289 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
290 if (nr == TS2_DMAP_REGNUM)
291 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
292 if (nr >= TS2_A0_REGNUM
293 && nr < TS2_A0_REGNUM + NR_A_REGS)
294 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
295 return nr;
296 }
297
298 static int
299 d10v_ts3_register_sim_regno (int nr)
300 {
301 if (nr >= TS3_IMAP0_REGNUM
302 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
303 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
304 if (nr >= TS3_DMAP0_REGNUM
305 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
306 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
307 if (nr >= TS3_A0_REGNUM
308 && nr < TS3_A0_REGNUM + NR_A_REGS)
309 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
310 return nr;
311 }
312
313 /* Index within `registers' of the first byte of the space for
314 register REG_NR. */
315
316 static int
317 d10v_register_byte (int reg_nr)
318 {
319 if (reg_nr < A0_REGNUM)
320 return (reg_nr * 2);
321 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
322 return (A0_REGNUM * 2
323 + (reg_nr - A0_REGNUM) * 8);
324 else
325 return (A0_REGNUM * 2
326 + NR_A_REGS * 8
327 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
328 }
329
330 /* Number of bytes of storage in the actual machine representation for
331 register REG_NR. */
332
333 static int
334 d10v_register_raw_size (int reg_nr)
335 {
336 if (reg_nr < A0_REGNUM)
337 return 2;
338 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
339 return 8;
340 else
341 return 2;
342 }
343
344 /* Return the GDB type object for the "standard" data type
345 of data in register N. */
346
347 static struct type *
348 d10v_register_virtual_type (int reg_nr)
349 {
350 if (reg_nr == PC_REGNUM)
351 return builtin_type_void_func_ptr;
352 else if (reg_nr >= A0_REGNUM
353 && reg_nr < (A0_REGNUM + NR_A_REGS))
354 return builtin_type_int64;
355 else
356 return builtin_type_int16;
357 }
358
359 static CORE_ADDR
360 d10v_make_daddr (CORE_ADDR x)
361 {
362 return ((x) | DMEM_START);
363 }
364
365 static CORE_ADDR
366 d10v_make_iaddr (CORE_ADDR x)
367 {
368 return (((x) << 2) | IMEM_START);
369 }
370
371 static int
372 d10v_daddr_p (CORE_ADDR x)
373 {
374 return (((x) & 0x3000000) == DMEM_START);
375 }
376
377 static int
378 d10v_iaddr_p (CORE_ADDR x)
379 {
380 return (((x) & 0x3000000) == IMEM_START);
381 }
382
383
384 static CORE_ADDR
385 d10v_convert_iaddr_to_raw (CORE_ADDR x)
386 {
387 return (((x) >> 2) & 0xffff);
388 }
389
390 static CORE_ADDR
391 d10v_convert_daddr_to_raw (CORE_ADDR x)
392 {
393 return ((x) & 0xffff);
394 }
395
396 static void
397 d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
398 {
399 /* Is it a code address? */
400 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
401 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
402 {
403 store_unsigned_integer (buf, TYPE_LENGTH (type),
404 d10v_convert_iaddr_to_raw (addr));
405 }
406 else
407 {
408 /* Strip off any upper segment bits. */
409 store_unsigned_integer (buf, TYPE_LENGTH (type),
410 d10v_convert_daddr_to_raw (addr));
411 }
412 }
413
414 static CORE_ADDR
415 d10v_pointer_to_address (struct type *type, void *buf)
416 {
417 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
418
419 /* Is it a code address? */
420 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
421 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
422 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
423 return d10v_make_iaddr (addr);
424 else
425 return d10v_make_daddr (addr);
426 }
427
428 static CORE_ADDR
429 d10v_integer_to_address (struct type *type, void *buf)
430 {
431 LONGEST val;
432 val = unpack_long (type, buf);
433 if (TYPE_CODE (type) == TYPE_CODE_INT
434 && TYPE_LENGTH (type) <= TYPE_LENGTH (builtin_type_void_data_ptr))
435 /* Convert small integers that would would be directly copied into
436 a pointer variable into an address pointing into data space. */
437 return d10v_make_daddr (val & 0xffff);
438 else
439 /* The value is too large to fit in a pointer. Assume this was
440 intentional and that the user in fact specified a raw address. */
441 return val;
442 }
443
444 /* Store the address of the place in which to copy the structure the
445 subroutine will return. This is called from call_function.
446
447 We store structs through a pointer passed in the first Argument
448 register. */
449
450 static void
451 d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
452 {
453 write_register (ARG1_REGNUM, (addr));
454 }
455
456 /* Write into appropriate registers a function return value
457 of type TYPE, given in virtual format.
458
459 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
460
461 static void
462 d10v_store_return_value (struct type *type, char *valbuf)
463 {
464 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
465 valbuf,
466 TYPE_LENGTH (type));
467 }
468
469 /* Extract from an array REGBUF containing the (raw) register state
470 the address in which a function should return its structure value,
471 as a CORE_ADDR (or an expression that can be used as one). */
472
473 static CORE_ADDR
474 d10v_extract_struct_value_address (char *regbuf)
475 {
476 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
477 REGISTER_RAW_SIZE (ARG1_REGNUM))
478 | DMEM_START);
479 }
480
481 static CORE_ADDR
482 d10v_frame_saved_pc (struct frame_info *frame)
483 {
484 return ((frame)->extra_info->return_pc);
485 }
486
487 /* Immediately after a function call, return the saved pc. We can't
488 use frame->return_pc beause that is determined by reading R13 off
489 the stack and that may not be written yet. */
490
491 static CORE_ADDR
492 d10v_saved_pc_after_call (struct frame_info *frame)
493 {
494 return ((read_register (LR_REGNUM) << 2)
495 | IMEM_START);
496 }
497
498 /* Discard from the stack the innermost frame, restoring all saved
499 registers. */
500
501 static void
502 d10v_pop_frame (void)
503 {
504 generic_pop_current_frame (do_d10v_pop_frame);
505 }
506
507 static void
508 do_d10v_pop_frame (struct frame_info *fi)
509 {
510 CORE_ADDR fp;
511 int regnum;
512 char raw_buffer[8];
513
514 fp = FRAME_FP (fi);
515 /* fill out fsr with the address of where each */
516 /* register was stored in the frame */
517 d10v_frame_init_saved_regs (fi);
518
519 /* now update the current registers with the old values */
520 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
521 {
522 if (fi->saved_regs[regnum])
523 {
524 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
525 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
526 }
527 }
528 for (regnum = 0; regnum < SP_REGNUM; regnum++)
529 {
530 if (fi->saved_regs[regnum])
531 {
532 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
533 }
534 }
535 if (fi->saved_regs[PSW_REGNUM])
536 {
537 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
538 }
539
540 write_register (PC_REGNUM, read_register (LR_REGNUM));
541 write_register (SP_REGNUM, fp + fi->extra_info->size);
542 target_store_registers (-1);
543 flush_cached_frames ();
544 }
545
546 static int
547 check_prologue (unsigned short op)
548 {
549 /* st rn, @-sp */
550 if ((op & 0x7E1F) == 0x6C1F)
551 return 1;
552
553 /* st2w rn, @-sp */
554 if ((op & 0x7E3F) == 0x6E1F)
555 return 1;
556
557 /* subi sp, n */
558 if ((op & 0x7FE1) == 0x01E1)
559 return 1;
560
561 /* mv r11, sp */
562 if (op == 0x417E)
563 return 1;
564
565 /* nop */
566 if (op == 0x5E00)
567 return 1;
568
569 /* st rn, @sp */
570 if ((op & 0x7E1F) == 0x681E)
571 return 1;
572
573 /* st2w rn, @sp */
574 if ((op & 0x7E3F) == 0x3A1E)
575 return 1;
576
577 return 0;
578 }
579
580 static CORE_ADDR
581 d10v_skip_prologue (CORE_ADDR pc)
582 {
583 unsigned long op;
584 unsigned short op1, op2;
585 CORE_ADDR func_addr, func_end;
586 struct symtab_and_line sal;
587
588 /* If we have line debugging information, then the end of the */
589 /* prologue should the first assembly instruction of the first source line */
590 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
591 {
592 sal = find_pc_line (func_addr, 0);
593 if (sal.end && sal.end < func_end)
594 return sal.end;
595 }
596
597 if (target_read_memory (pc, (char *) &op, 4))
598 return pc; /* Can't access it -- assume no prologue. */
599
600 while (1)
601 {
602 op = (unsigned long) read_memory_integer (pc, 4);
603 if ((op & 0xC0000000) == 0xC0000000)
604 {
605 /* long instruction */
606 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
607 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
608 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
609 break;
610 }
611 else
612 {
613 /* short instructions */
614 if ((op & 0xC0000000) == 0x80000000)
615 {
616 op2 = (op & 0x3FFF8000) >> 15;
617 op1 = op & 0x7FFF;
618 }
619 else
620 {
621 op1 = (op & 0x3FFF8000) >> 15;
622 op2 = op & 0x7FFF;
623 }
624 if (check_prologue (op1))
625 {
626 if (!check_prologue (op2))
627 {
628 /* if the previous opcode was really part of the prologue */
629 /* and not just a NOP, then we want to break after both instructions */
630 if (op1 != 0x5E00)
631 pc += 4;
632 break;
633 }
634 }
635 else
636 break;
637 }
638 pc += 4;
639 }
640 return pc;
641 }
642
643 /* Given a GDB frame, determine the address of the calling function's frame.
644 This will be used to create a new GDB frame struct, and then
645 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
646 */
647
648 static CORE_ADDR
649 d10v_frame_chain (struct frame_info *fi)
650 {
651 d10v_frame_init_saved_regs (fi);
652
653 if (fi->extra_info->return_pc == IMEM_START
654 || inside_entry_file (fi->extra_info->return_pc))
655 return (CORE_ADDR) 0;
656
657 if (!fi->saved_regs[FP_REGNUM])
658 {
659 if (!fi->saved_regs[SP_REGNUM]
660 || fi->saved_regs[SP_REGNUM] == STACK_START)
661 return (CORE_ADDR) 0;
662
663 return fi->saved_regs[SP_REGNUM];
664 }
665
666 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
667 REGISTER_RAW_SIZE (FP_REGNUM)))
668 return (CORE_ADDR) 0;
669
670 return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
671 REGISTER_RAW_SIZE (FP_REGNUM)));
672 }
673
674 static int next_addr, uses_frame;
675
676 static int
677 prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
678 {
679 int n;
680
681 /* st rn, @-sp */
682 if ((op & 0x7E1F) == 0x6C1F)
683 {
684 n = (op & 0x1E0) >> 5;
685 next_addr -= 2;
686 fi->saved_regs[n] = next_addr;
687 return 1;
688 }
689
690 /* st2w rn, @-sp */
691 else if ((op & 0x7E3F) == 0x6E1F)
692 {
693 n = (op & 0x1E0) >> 5;
694 next_addr -= 4;
695 fi->saved_regs[n] = next_addr;
696 fi->saved_regs[n + 1] = next_addr + 2;
697 return 1;
698 }
699
700 /* subi sp, n */
701 if ((op & 0x7FE1) == 0x01E1)
702 {
703 n = (op & 0x1E) >> 1;
704 if (n == 0)
705 n = 16;
706 next_addr -= n;
707 return 1;
708 }
709
710 /* mv r11, sp */
711 if (op == 0x417E)
712 {
713 uses_frame = 1;
714 return 1;
715 }
716
717 /* nop */
718 if (op == 0x5E00)
719 return 1;
720
721 /* st rn, @sp */
722 if ((op & 0x7E1F) == 0x681E)
723 {
724 n = (op & 0x1E0) >> 5;
725 fi->saved_regs[n] = next_addr;
726 return 1;
727 }
728
729 /* st2w rn, @sp */
730 if ((op & 0x7E3F) == 0x3A1E)
731 {
732 n = (op & 0x1E0) >> 5;
733 fi->saved_regs[n] = next_addr;
734 fi->saved_regs[n + 1] = next_addr + 2;
735 return 1;
736 }
737
738 return 0;
739 }
740
741 /* Put here the code to store, into fi->saved_regs, the addresses of
742 the saved registers of frame described by FRAME_INFO. This
743 includes special registers such as pc and fp saved in special ways
744 in the stack frame. sp is even more special: the address we return
745 for it IS the sp for the next frame. */
746
747 static void
748 d10v_frame_init_saved_regs (struct frame_info *fi)
749 {
750 CORE_ADDR fp, pc;
751 unsigned long op;
752 unsigned short op1, op2;
753 int i;
754
755 fp = fi->frame;
756 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
757 next_addr = 0;
758
759 pc = get_pc_function_start (fi->pc);
760
761 uses_frame = 0;
762 while (1)
763 {
764 op = (unsigned long) read_memory_integer (pc, 4);
765 if ((op & 0xC0000000) == 0xC0000000)
766 {
767 /* long instruction */
768 if ((op & 0x3FFF0000) == 0x01FF0000)
769 {
770 /* add3 sp,sp,n */
771 short n = op & 0xFFFF;
772 next_addr += n;
773 }
774 else if ((op & 0x3F0F0000) == 0x340F0000)
775 {
776 /* st rn, @(offset,sp) */
777 short offset = op & 0xFFFF;
778 short n = (op >> 20) & 0xF;
779 fi->saved_regs[n] = next_addr + offset;
780 }
781 else if ((op & 0x3F1F0000) == 0x350F0000)
782 {
783 /* st2w rn, @(offset,sp) */
784 short offset = op & 0xFFFF;
785 short n = (op >> 20) & 0xF;
786 fi->saved_regs[n] = next_addr + offset;
787 fi->saved_regs[n + 1] = next_addr + offset + 2;
788 }
789 else
790 break;
791 }
792 else
793 {
794 /* short instructions */
795 if ((op & 0xC0000000) == 0x80000000)
796 {
797 op2 = (op & 0x3FFF8000) >> 15;
798 op1 = op & 0x7FFF;
799 }
800 else
801 {
802 op1 = (op & 0x3FFF8000) >> 15;
803 op2 = op & 0x7FFF;
804 }
805 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
806 break;
807 }
808 pc += 4;
809 }
810
811 fi->extra_info->size = -next_addr;
812
813 if (!(fp & 0xffff))
814 fp = d10v_make_daddr (read_register (SP_REGNUM));
815
816 for (i = 0; i < NUM_REGS - 1; i++)
817 if (fi->saved_regs[i])
818 {
819 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
820 }
821
822 if (fi->saved_regs[LR_REGNUM])
823 {
824 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
825 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
826 }
827 else
828 {
829 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
830 }
831
832 /* th SP is not normally (ever?) saved, but check anyway */
833 if (!fi->saved_regs[SP_REGNUM])
834 {
835 /* if the FP was saved, that means the current FP is valid, */
836 /* otherwise, it isn't being used, so we use the SP instead */
837 if (uses_frame)
838 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
839 else
840 {
841 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
842 fi->extra_info->frameless = 1;
843 fi->saved_regs[FP_REGNUM] = 0;
844 }
845 }
846 }
847
848 static void
849 d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
850 {
851 fi->extra_info = (struct frame_extra_info *)
852 frame_obstack_alloc (sizeof (struct frame_extra_info));
853 frame_saved_regs_zalloc (fi);
854
855 fi->extra_info->frameless = 0;
856 fi->extra_info->size = 0;
857 fi->extra_info->return_pc = 0;
858
859 /* The call dummy doesn't save any registers on the stack, so we can
860 return now. */
861 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
862 {
863 return;
864 }
865 else
866 {
867 d10v_frame_init_saved_regs (fi);
868 }
869 }
870
871 static void
872 show_regs (char *args, int from_tty)
873 {
874 int a;
875 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
876 (long) read_register (PC_REGNUM),
877 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
878 (long) read_register (PSW_REGNUM),
879 (long) read_register (24),
880 (long) read_register (25),
881 (long) read_register (23));
882 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
883 (long) read_register (0),
884 (long) read_register (1),
885 (long) read_register (2),
886 (long) read_register (3),
887 (long) read_register (4),
888 (long) read_register (5),
889 (long) read_register (6),
890 (long) read_register (7));
891 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
892 (long) read_register (8),
893 (long) read_register (9),
894 (long) read_register (10),
895 (long) read_register (11),
896 (long) read_register (12),
897 (long) read_register (13),
898 (long) read_register (14),
899 (long) read_register (15));
900 for (a = 0; a < NR_IMAP_REGS; a++)
901 {
902 if (a > 0)
903 printf_filtered (" ");
904 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
905 }
906 if (NR_DMAP_REGS == 1)
907 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
908 else
909 {
910 for (a = 0; a < NR_DMAP_REGS; a++)
911 {
912 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
913 }
914 printf_filtered ("\n");
915 }
916 printf_filtered ("A0-A%d", NR_A_REGS - 1);
917 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
918 {
919 char num[MAX_REGISTER_RAW_SIZE];
920 int i;
921 printf_filtered (" ");
922 read_register_gen (a, (char *) &num);
923 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
924 {
925 printf_filtered ("%02x", (num[i] & 0xff));
926 }
927 }
928 printf_filtered ("\n");
929 }
930
931 static CORE_ADDR
932 d10v_read_pc (ptid_t ptid)
933 {
934 ptid_t save_ptid;
935 CORE_ADDR pc;
936 CORE_ADDR retval;
937
938 save_ptid = inferior_ptid;
939 inferior_ptid = ptid;
940 pc = (int) read_register (PC_REGNUM);
941 inferior_ptid = save_ptid;
942 retval = d10v_make_iaddr (pc);
943 return retval;
944 }
945
946 static void
947 d10v_write_pc (CORE_ADDR val, ptid_t ptid)
948 {
949 ptid_t save_ptid;
950
951 save_ptid = inferior_ptid;
952 inferior_ptid = ptid;
953 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
954 inferior_ptid = save_ptid;
955 }
956
957 static CORE_ADDR
958 d10v_read_sp (void)
959 {
960 return (d10v_make_daddr (read_register (SP_REGNUM)));
961 }
962
963 static void
964 d10v_write_sp (CORE_ADDR val)
965 {
966 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
967 }
968
969 static void
970 d10v_write_fp (CORE_ADDR val)
971 {
972 write_register (FP_REGNUM, d10v_convert_daddr_to_raw (val));
973 }
974
975 static CORE_ADDR
976 d10v_read_fp (void)
977 {
978 return (d10v_make_daddr (read_register (FP_REGNUM)));
979 }
980
981 /* Function: push_return_address (pc)
982 Set up the return address for the inferior function call.
983 Needed for targets where we don't actually execute a JSR/BSR instruction */
984
985 static CORE_ADDR
986 d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
987 {
988 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
989 return sp;
990 }
991
992
993 /* When arguments must be pushed onto the stack, they go on in reverse
994 order. The below implements a FILO (stack) to do this. */
995
996 struct stack_item
997 {
998 int len;
999 struct stack_item *prev;
1000 void *data;
1001 };
1002
1003 static struct stack_item *push_stack_item (struct stack_item *prev,
1004 void *contents, int len);
1005 static struct stack_item *
1006 push_stack_item (struct stack_item *prev, void *contents, int len)
1007 {
1008 struct stack_item *si;
1009 si = xmalloc (sizeof (struct stack_item));
1010 si->data = xmalloc (len);
1011 si->len = len;
1012 si->prev = prev;
1013 memcpy (si->data, contents, len);
1014 return si;
1015 }
1016
1017 static struct stack_item *pop_stack_item (struct stack_item *si);
1018 static struct stack_item *
1019 pop_stack_item (struct stack_item *si)
1020 {
1021 struct stack_item *dead = si;
1022 si = si->prev;
1023 xfree (dead->data);
1024 xfree (dead);
1025 return si;
1026 }
1027
1028
1029 static CORE_ADDR
1030 d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1031 int struct_return, CORE_ADDR struct_addr)
1032 {
1033 int i;
1034 int regnum = ARG1_REGNUM;
1035 struct stack_item *si = NULL;
1036
1037 /* Fill in registers and arg lists */
1038 for (i = 0; i < nargs; i++)
1039 {
1040 struct value *arg = args[i];
1041 struct type *type = check_typedef (VALUE_TYPE (arg));
1042 char *contents = VALUE_CONTENTS (arg);
1043 int len = TYPE_LENGTH (type);
1044 /* printf ("push: type=%d len=%d\n", type->code, len); */
1045 {
1046 int aligned_regnum = (regnum + 1) & ~1;
1047 if (len <= 2 && regnum <= ARGN_REGNUM)
1048 /* fits in a single register, do not align */
1049 {
1050 long val = extract_unsigned_integer (contents, len);
1051 write_register (regnum++, val);
1052 }
1053 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1054 /* value fits in remaining registers, store keeping left
1055 aligned */
1056 {
1057 int b;
1058 regnum = aligned_regnum;
1059 for (b = 0; b < (len & ~1); b += 2)
1060 {
1061 long val = extract_unsigned_integer (&contents[b], 2);
1062 write_register (regnum++, val);
1063 }
1064 if (b < len)
1065 {
1066 long val = extract_unsigned_integer (&contents[b], 1);
1067 write_register (regnum++, (val << 8));
1068 }
1069 }
1070 else
1071 {
1072 /* arg will go onto stack */
1073 regnum = ARGN_REGNUM + 1;
1074 si = push_stack_item (si, contents, len);
1075 }
1076 }
1077 }
1078
1079 while (si)
1080 {
1081 sp = (sp - si->len) & ~1;
1082 write_memory (sp, si->data, si->len);
1083 si = pop_stack_item (si);
1084 }
1085
1086 return sp;
1087 }
1088
1089
1090 /* Given a return value in `regbuf' with a type `valtype',
1091 extract and copy its value into `valbuf'. */
1092
1093 static void
1094 d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1095 char *valbuf)
1096 {
1097 int len;
1098 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n",type->code, TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
1099 {
1100 len = TYPE_LENGTH (type);
1101 if (len == 1)
1102 {
1103 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1104 store_unsigned_integer (valbuf, 1, c);
1105 }
1106 else if ((len & 1) == 0)
1107 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1108 else
1109 {
1110 /* For return values of odd size, the first byte is in the
1111 least significant part of the first register. The
1112 remaining bytes in remaining registers. Interestingly,
1113 when such values are passed in, the last byte is in the
1114 most significant byte of that same register - wierd. */
1115 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1116 }
1117 }
1118 }
1119
1120 /* Translate a GDB virtual ADDR/LEN into a format the remote target
1121 understands. Returns number of bytes that can be transfered
1122 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1123 (segmentation fault). Since the simulator knows all about how the
1124 VM system works, we just call that to do the translation. */
1125
1126 static void
1127 remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1128 CORE_ADDR *targ_addr, int *targ_len)
1129 {
1130 long out_addr;
1131 long out_len;
1132 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1133 &out_addr,
1134 d10v_dmap_register,
1135 d10v_imap_register);
1136 *targ_addr = out_addr;
1137 *targ_len = out_len;
1138 }
1139
1140
1141 /* The following code implements access to, and display of, the D10V's
1142 instruction trace buffer. The buffer consists of 64K or more
1143 4-byte words of data, of which each words includes an 8-bit count,
1144 an 8-bit segment number, and a 16-bit instruction address.
1145
1146 In theory, the trace buffer is continuously capturing instruction
1147 data that the CPU presents on its "debug bus", but in practice, the
1148 ROMified GDB stub only enables tracing when it continues or steps
1149 the program, and stops tracing when the program stops; so it
1150 actually works for GDB to read the buffer counter out of memory and
1151 then read each trace word. The counter records where the tracing
1152 stops, but there is no record of where it started, so we remember
1153 the PC when we resumed and then search backwards in the trace
1154 buffer for a word that includes that address. This is not perfect,
1155 because you will miss trace data if the resumption PC is the target
1156 of a branch. (The value of the buffer counter is semi-random, any
1157 trace data from a previous program stop is gone.) */
1158
1159 /* The address of the last word recorded in the trace buffer. */
1160
1161 #define DBBC_ADDR (0xd80000)
1162
1163 /* The base of the trace buffer, at least for the "Board_0". */
1164
1165 #define TRACE_BUFFER_BASE (0xf40000)
1166
1167 static void trace_command (char *, int);
1168
1169 static void untrace_command (char *, int);
1170
1171 static void trace_info (char *, int);
1172
1173 static void tdisassemble_command (char *, int);
1174
1175 static void display_trace (int, int);
1176
1177 /* True when instruction traces are being collected. */
1178
1179 static int tracing;
1180
1181 /* Remembered PC. */
1182
1183 static CORE_ADDR last_pc;
1184
1185 /* True when trace output should be displayed whenever program stops. */
1186
1187 static int trace_display;
1188
1189 /* True when trace listing should include source lines. */
1190
1191 static int default_trace_show_source = 1;
1192
1193 struct trace_buffer
1194 {
1195 int size;
1196 short *counts;
1197 CORE_ADDR *addrs;
1198 }
1199 trace_data;
1200
1201 static void
1202 trace_command (char *args, int from_tty)
1203 {
1204 /* Clear the host-side trace buffer, allocating space if needed. */
1205 trace_data.size = 0;
1206 if (trace_data.counts == NULL)
1207 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
1208 if (trace_data.addrs == NULL)
1209 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
1210
1211 tracing = 1;
1212
1213 printf_filtered ("Tracing is now on.\n");
1214 }
1215
1216 static void
1217 untrace_command (char *args, int from_tty)
1218 {
1219 tracing = 0;
1220
1221 printf_filtered ("Tracing is now off.\n");
1222 }
1223
1224 static void
1225 trace_info (char *args, int from_tty)
1226 {
1227 int i;
1228
1229 if (trace_data.size)
1230 {
1231 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1232
1233 for (i = 0; i < trace_data.size; ++i)
1234 {
1235 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1236 i,
1237 trace_data.counts[i],
1238 (trace_data.counts[i] == 1 ? "" : "s"),
1239 paddr_nz (trace_data.addrs[i]));
1240 }
1241 }
1242 else
1243 printf_filtered ("No entries in trace buffer.\n");
1244
1245 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1246 }
1247
1248 /* Print the instruction at address MEMADDR in debugged memory,
1249 on STREAM. Returns length of the instruction, in bytes. */
1250
1251 static int
1252 print_insn (CORE_ADDR memaddr, struct ui_file *stream)
1253 {
1254 /* If there's no disassembler, something is very wrong. */
1255 if (tm_print_insn == NULL)
1256 internal_error (__FILE__, __LINE__,
1257 "print_insn: no disassembler");
1258
1259 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1260 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1261 else
1262 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
1263 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
1264 }
1265
1266 static void
1267 d10v_eva_prepare_to_trace (void)
1268 {
1269 if (!tracing)
1270 return;
1271
1272 last_pc = read_register (PC_REGNUM);
1273 }
1274
1275 /* Collect trace data from the target board and format it into a form
1276 more useful for display. */
1277
1278 static void
1279 d10v_eva_get_trace_data (void)
1280 {
1281 int count, i, j, oldsize;
1282 int trace_addr, trace_seg, trace_cnt, next_cnt;
1283 unsigned int last_trace, trace_word, next_word;
1284 unsigned int *tmpspace;
1285
1286 if (!tracing)
1287 return;
1288
1289 tmpspace = xmalloc (65536 * sizeof (unsigned int));
1290
1291 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1292
1293 /* Collect buffer contents from the target, stopping when we reach
1294 the word recorded when execution resumed. */
1295
1296 count = 0;
1297 while (last_trace > 0)
1298 {
1299 QUIT;
1300 trace_word =
1301 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1302 trace_addr = trace_word & 0xffff;
1303 last_trace -= 4;
1304 /* Ignore an apparently nonsensical entry. */
1305 if (trace_addr == 0xffd5)
1306 continue;
1307 tmpspace[count++] = trace_word;
1308 if (trace_addr == last_pc)
1309 break;
1310 if (count > 65535)
1311 break;
1312 }
1313
1314 /* Move the data to the host-side trace buffer, adjusting counts to
1315 include the last instruction executed and transforming the address
1316 into something that GDB likes. */
1317
1318 for (i = 0; i < count; ++i)
1319 {
1320 trace_word = tmpspace[i];
1321 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1322 trace_addr = trace_word & 0xffff;
1323 next_cnt = (next_word >> 24) & 0xff;
1324 j = trace_data.size + count - i - 1;
1325 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1326 trace_data.counts[j] = next_cnt + 1;
1327 }
1328
1329 oldsize = trace_data.size;
1330 trace_data.size += count;
1331
1332 xfree (tmpspace);
1333
1334 if (trace_display)
1335 display_trace (oldsize, trace_data.size);
1336 }
1337
1338 static void
1339 tdisassemble_command (char *arg, int from_tty)
1340 {
1341 int i, count;
1342 CORE_ADDR low, high;
1343 char *space_index;
1344
1345 if (!arg)
1346 {
1347 low = 0;
1348 high = trace_data.size;
1349 }
1350 else if (!(space_index = (char *) strchr (arg, ' ')))
1351 {
1352 low = parse_and_eval_address (arg);
1353 high = low + 5;
1354 }
1355 else
1356 {
1357 /* Two arguments. */
1358 *space_index = '\0';
1359 low = parse_and_eval_address (arg);
1360 high = parse_and_eval_address (space_index + 1);
1361 if (high < low)
1362 high = low;
1363 }
1364
1365 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
1366
1367 display_trace (low, high);
1368
1369 printf_filtered ("End of trace dump.\n");
1370 gdb_flush (gdb_stdout);
1371 }
1372
1373 static void
1374 display_trace (int low, int high)
1375 {
1376 int i, count, trace_show_source, first, suppress;
1377 CORE_ADDR next_address;
1378
1379 trace_show_source = default_trace_show_source;
1380 if (!have_full_symbols () && !have_partial_symbols ())
1381 {
1382 trace_show_source = 0;
1383 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1384 printf_filtered ("Trace will not display any source.\n");
1385 }
1386
1387 first = 1;
1388 suppress = 0;
1389 for (i = low; i < high; ++i)
1390 {
1391 next_address = trace_data.addrs[i];
1392 count = trace_data.counts[i];
1393 while (count-- > 0)
1394 {
1395 QUIT;
1396 if (trace_show_source)
1397 {
1398 struct symtab_and_line sal, sal_prev;
1399
1400 sal_prev = find_pc_line (next_address - 4, 0);
1401 sal = find_pc_line (next_address, 0);
1402
1403 if (sal.symtab)
1404 {
1405 if (first || sal.line != sal_prev.line)
1406 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1407 suppress = 0;
1408 }
1409 else
1410 {
1411 if (!suppress)
1412 /* FIXME-32x64--assumes sal.pc fits in long. */
1413 printf_filtered ("No source file for address %s.\n",
1414 local_hex_string ((unsigned long) sal.pc));
1415 suppress = 1;
1416 }
1417 }
1418 first = 0;
1419 print_address (next_address, gdb_stdout);
1420 printf_filtered (":");
1421 printf_filtered ("\t");
1422 wrap_here (" ");
1423 next_address = next_address + print_insn (next_address, gdb_stdout);
1424 printf_filtered ("\n");
1425 gdb_flush (gdb_stdout);
1426 }
1427 }
1428 }
1429
1430
1431 static gdbarch_init_ftype d10v_gdbarch_init;
1432
1433 static struct gdbarch *
1434 d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1435 {
1436 static LONGEST d10v_call_dummy_words[] =
1437 {0};
1438 struct gdbarch *gdbarch;
1439 int d10v_num_regs;
1440 struct gdbarch_tdep *tdep;
1441 gdbarch_register_name_ftype *d10v_register_name;
1442 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
1443
1444 /* Find a candidate among the list of pre-declared architectures. */
1445 arches = gdbarch_list_lookup_by_info (arches, &info);
1446 if (arches != NULL)
1447 return arches->gdbarch;
1448
1449 /* None found, create a new architecture from the information
1450 provided. */
1451 tdep = XMALLOC (struct gdbarch_tdep);
1452 gdbarch = gdbarch_alloc (&info, tdep);
1453
1454 switch (info.bfd_arch_info->mach)
1455 {
1456 case bfd_mach_d10v_ts2:
1457 d10v_num_regs = 37;
1458 d10v_register_name = d10v_ts2_register_name;
1459 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
1460 tdep->a0_regnum = TS2_A0_REGNUM;
1461 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
1462 tdep->dmap_register = d10v_ts2_dmap_register;
1463 tdep->imap_register = d10v_ts2_imap_register;
1464 break;
1465 default:
1466 case bfd_mach_d10v_ts3:
1467 d10v_num_regs = 42;
1468 d10v_register_name = d10v_ts3_register_name;
1469 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
1470 tdep->a0_regnum = TS3_A0_REGNUM;
1471 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
1472 tdep->dmap_register = d10v_ts3_dmap_register;
1473 tdep->imap_register = d10v_ts3_imap_register;
1474 break;
1475 }
1476
1477 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1478 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1479 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
1480 set_gdbarch_write_fp (gdbarch, d10v_write_fp);
1481 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1482 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1483
1484 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1485 set_gdbarch_sp_regnum (gdbarch, 15);
1486 set_gdbarch_fp_regnum (gdbarch, 11);
1487 set_gdbarch_pc_regnum (gdbarch, 18);
1488 set_gdbarch_register_name (gdbarch, d10v_register_name);
1489 set_gdbarch_register_size (gdbarch, 2);
1490 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1491 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1492 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1493 set_gdbarch_max_register_raw_size (gdbarch, 8);
1494 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
1495 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1496 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1497
1498 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1499 set_gdbarch_addr_bit (gdbarch, 32);
1500 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1501 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
1502 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
1503 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1504 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1505 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1506 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1507 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1508 double'' is 64 bits. */
1509 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1510 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1511 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1512 switch (info.byte_order)
1513 {
1514 case BFD_ENDIAN_BIG:
1515 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1516 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1517 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1518 break;
1519 case BFD_ENDIAN_LITTLE:
1520 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1521 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1522 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1523 break;
1524 default:
1525 internal_error (__FILE__, __LINE__,
1526 "d10v_gdbarch_init: bad byte order for float format");
1527 }
1528
1529 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1530 set_gdbarch_call_dummy_length (gdbarch, 0);
1531 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1532 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1533 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1534 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1535 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1536 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1537 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1538 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1539 set_gdbarch_call_dummy_p (gdbarch, 1);
1540 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1541 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1542 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1543
1544 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1545 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1546 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1547 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1548
1549 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1550 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1551 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1552 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1553
1554 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1555 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1556
1557 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1558
1559 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1560 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1561 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1562 set_gdbarch_function_start_offset (gdbarch, 0);
1563 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1564
1565 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1566
1567 set_gdbarch_frame_args_skip (gdbarch, 0);
1568 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1569 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1570 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1571 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
1572 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1573 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1574 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1575 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1576 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
1577
1578 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
1579 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
1580
1581 return gdbarch;
1582 }
1583
1584
1585 extern void (*target_resume_hook) (void);
1586 extern void (*target_wait_loop_hook) (void);
1587
1588 void
1589 _initialize_d10v_tdep (void)
1590 {
1591 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1592
1593 tm_print_insn = print_insn_d10v;
1594
1595 target_resume_hook = d10v_eva_prepare_to_trace;
1596 target_wait_loop_hook = d10v_eva_get_trace_data;
1597
1598 add_com ("regs", class_vars, show_regs, "Print all registers");
1599
1600 add_com ("itrace", class_support, trace_command,
1601 "Enable tracing of instruction execution.");
1602
1603 add_com ("iuntrace", class_support, untrace_command,
1604 "Disable tracing of instruction execution.");
1605
1606 add_com ("itdisassemble", class_vars, tdisassemble_command,
1607 "Disassemble the trace buffer.\n\
1608 Two optional arguments specify a range of trace buffer entries\n\
1609 as reported by info trace (NOT addresses!).");
1610
1611 add_info ("itrace", trace_info,
1612 "Display info about the trace data buffer.");
1613
1614 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
1615 var_integer, (char *) &trace_display,
1616 "Set automatic display of trace.\n", &setlist),
1617 &showlist);
1618 add_show_from_set (add_set_cmd ("itracesource", no_class,
1619 var_integer, (char *) &default_trace_show_source,
1620 "Set display of source code with trace.\n", &setlist),
1621 &showlist);
1622
1623 }