]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/disasm.c
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / disasm.c
1 /* Disassemble support for GDB.
2
3 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "ui-out.h"
25 #include "gdb_string.h"
26 #include "disasm.h"
27 #include "gdbcore.h"
28 #include "dis-asm.h"
29
30 /* Disassemble functions.
31 FIXME: We should get rid of all the duplicate code in gdb that does
32 the same thing: disassemble_command() and the gdbtk variation. */
33
34 /* This Structure is used to store line number information.
35 We need a different sort of line table from the normal one cuz we can't
36 depend upon implicit line-end pc's for lines to do the
37 reordering in this function. */
38
39 struct dis_line_entry
40 {
41 int line;
42 CORE_ADDR start_pc;
43 CORE_ADDR end_pc;
44 };
45
46 /* Like target_read_memory, but slightly different parameters. */
47 static int
48 dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len,
49 struct disassemble_info *info)
50 {
51 return target_read_memory (memaddr, myaddr, len);
52 }
53
54 /* Like memory_error with slightly different parameters. */
55 static void
56 dis_asm_memory_error (int status, bfd_vma memaddr,
57 struct disassemble_info *info)
58 {
59 memory_error (status, memaddr);
60 }
61
62 /* Like print_address with slightly different parameters. */
63 static void
64 dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
65 {
66 struct gdbarch *gdbarch = info->application_data;
67
68 print_address (gdbarch, addr, info->stream);
69 }
70
71 static int
72 compare_lines (const void *mle1p, const void *mle2p)
73 {
74 struct dis_line_entry *mle1, *mle2;
75 int val;
76
77 mle1 = (struct dis_line_entry *) mle1p;
78 mle2 = (struct dis_line_entry *) mle2p;
79
80 val = mle1->line - mle2->line;
81
82 if (val != 0)
83 return val;
84
85 return mle1->start_pc - mle2->start_pc;
86 }
87
88 static int
89 dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout,
90 struct disassemble_info * di,
91 CORE_ADDR low, CORE_ADDR high,
92 int how_many, int flags, struct ui_stream *stb)
93 {
94 int num_displayed = 0;
95 CORE_ADDR pc;
96
97 /* parts of the symbolic representation of the address */
98 int unmapped;
99 int offset;
100 int line;
101 struct cleanup *ui_out_chain;
102
103 for (pc = low; pc < high;)
104 {
105 char *filename = NULL;
106 char *name = NULL;
107
108 QUIT;
109 if (how_many >= 0)
110 {
111 if (num_displayed >= how_many)
112 break;
113 else
114 num_displayed++;
115 }
116 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
117 ui_out_text (uiout, pc_prefix (pc));
118 ui_out_field_core_addr (uiout, "address", gdbarch, pc);
119
120 if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename,
121 &line, &unmapped))
122 {
123 /* We don't care now about line, filename and
124 unmapped. But we might in the future. */
125 ui_out_text (uiout, " <");
126 if ((flags & DISASSEMBLY_OMIT_FNAME) == 0)
127 ui_out_field_string (uiout, "func-name", name);
128 ui_out_text (uiout, "+");
129 ui_out_field_int (uiout, "offset", offset);
130 ui_out_text (uiout, ">:\t");
131 }
132 else
133 ui_out_text (uiout, ":\t");
134
135 if (filename != NULL)
136 xfree (filename);
137 if (name != NULL)
138 xfree (name);
139
140 ui_file_rewind (stb->stream);
141 if (flags & DISASSEMBLY_RAW_INSN)
142 {
143 CORE_ADDR old_pc = pc;
144 bfd_byte data;
145 int status;
146
147 pc += gdbarch_print_insn (gdbarch, pc, di);
148 for (;old_pc < pc; old_pc++)
149 {
150 status = (*di->read_memory_func) (old_pc, &data, 1, di);
151 if (status != 0)
152 (*di->memory_error_func) (status, old_pc, di);
153 ui_out_message (uiout, 0, " %02x", (unsigned)data);
154 }
155 ui_out_text (uiout, "\t");
156 }
157 else
158 pc += gdbarch_print_insn (gdbarch, pc, di);
159 ui_out_field_stream (uiout, "inst", stb);
160 ui_file_rewind (stb->stream);
161 do_cleanups (ui_out_chain);
162 ui_out_text (uiout, "\n");
163 }
164 return num_displayed;
165 }
166
167 /* The idea here is to present a source-O-centric view of a
168 function to the user. This means that things are presented
169 in source order, with (possibly) out of order assembly
170 immediately following. */
171 static void
172 do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout,
173 struct disassemble_info *di, int nlines,
174 struct linetable_entry *le,
175 CORE_ADDR low, CORE_ADDR high,
176 struct symtab *symtab,
177 int how_many, int flags, struct ui_stream *stb)
178 {
179 int newlines = 0;
180 struct dis_line_entry *mle;
181 struct symtab_and_line sal;
182 int i;
183 int out_of_order = 0;
184 int next_line = 0;
185 int num_displayed = 0;
186 struct cleanup *ui_out_chain;
187 struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
188 struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0);
189
190 mle = (struct dis_line_entry *) alloca (nlines
191 * sizeof (struct dis_line_entry));
192
193 /* Copy linetable entries for this function into our data
194 structure, creating end_pc's and setting out_of_order as
195 appropriate. */
196
197 /* First, skip all the preceding functions. */
198
199 for (i = 0; i < nlines - 1 && le[i].pc < low; i++);
200
201 /* Now, copy all entries before the end of this function. */
202
203 for (; i < nlines - 1 && le[i].pc < high; i++)
204 {
205 if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc)
206 continue; /* Ignore duplicates */
207
208 /* Skip any end-of-function markers. */
209 if (le[i].line == 0)
210 continue;
211
212 mle[newlines].line = le[i].line;
213 if (le[i].line > le[i + 1].line)
214 out_of_order = 1;
215 mle[newlines].start_pc = le[i].pc;
216 mle[newlines].end_pc = le[i + 1].pc;
217 newlines++;
218 }
219
220 /* If we're on the last line, and it's part of the function,
221 then we need to get the end pc in a special way. */
222
223 if (i == nlines - 1 && le[i].pc < high)
224 {
225 mle[newlines].line = le[i].line;
226 mle[newlines].start_pc = le[i].pc;
227 sal = find_pc_line (le[i].pc, 0);
228 mle[newlines].end_pc = sal.end;
229 newlines++;
230 }
231
232 /* Now, sort mle by line #s (and, then by addresses within
233 lines). */
234
235 if (out_of_order)
236 qsort (mle, newlines, sizeof (struct dis_line_entry), compare_lines);
237
238 /* Now, for each line entry, emit the specified lines (unless
239 they have been emitted before), followed by the assembly code
240 for that line. */
241
242 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
243
244 for (i = 0; i < newlines; i++)
245 {
246 /* Print out everything from next_line to the current line. */
247 if (mle[i].line >= next_line)
248 {
249 if (next_line != 0)
250 {
251 /* Just one line to print. */
252 if (next_line == mle[i].line)
253 {
254 ui_out_tuple_chain
255 = make_cleanup_ui_out_tuple_begin_end (uiout,
256 "src_and_asm_line");
257 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
258 }
259 else
260 {
261 /* Several source lines w/o asm instructions associated. */
262 for (; next_line < mle[i].line; next_line++)
263 {
264 struct cleanup *ui_out_list_chain_line;
265 struct cleanup *ui_out_tuple_chain_line;
266
267 ui_out_tuple_chain_line
268 = make_cleanup_ui_out_tuple_begin_end (uiout,
269 "src_and_asm_line");
270 print_source_lines (symtab, next_line, next_line + 1,
271 0);
272 ui_out_list_chain_line
273 = make_cleanup_ui_out_list_begin_end (uiout,
274 "line_asm_insn");
275 do_cleanups (ui_out_list_chain_line);
276 do_cleanups (ui_out_tuple_chain_line);
277 }
278 /* Print the last line and leave list open for
279 asm instructions to be added. */
280 ui_out_tuple_chain
281 = make_cleanup_ui_out_tuple_begin_end (uiout,
282 "src_and_asm_line");
283 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
284 }
285 }
286 else
287 {
288 ui_out_tuple_chain
289 = make_cleanup_ui_out_tuple_begin_end (uiout,
290 "src_and_asm_line");
291 print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
292 }
293
294 next_line = mle[i].line + 1;
295 ui_out_list_chain
296 = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn");
297 }
298
299 num_displayed += dump_insns (gdbarch, uiout, di,
300 mle[i].start_pc, mle[i].end_pc,
301 how_many, flags, stb);
302
303 /* When we've reached the end of the mle array, or we've seen the last
304 assembly range for this source line, close out the list/tuple. */
305 if (i == (newlines - 1) || mle[i + 1].line > mle[i].line)
306 {
307 do_cleanups (ui_out_list_chain);
308 do_cleanups (ui_out_tuple_chain);
309 ui_out_tuple_chain = make_cleanup (null_cleanup, 0);
310 ui_out_list_chain = make_cleanup (null_cleanup, 0);
311 ui_out_text (uiout, "\n");
312 }
313 if (how_many >= 0 && num_displayed >= how_many)
314 break;
315 }
316 do_cleanups (ui_out_chain);
317 }
318
319
320 static void
321 do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout,
322 struct disassemble_info * di,
323 CORE_ADDR low, CORE_ADDR high,
324 int how_many, int flags, struct ui_stream *stb)
325 {
326 int num_displayed = 0;
327 struct cleanup *ui_out_chain;
328
329 ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns");
330
331 num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many,
332 flags, stb);
333
334 do_cleanups (ui_out_chain);
335 }
336
337 /* Initialize the disassemble info struct ready for the specified
338 stream. */
339
340 static int ATTRIBUTE_PRINTF (2, 3)
341 fprintf_disasm (void *stream, const char *format, ...)
342 {
343 va_list args;
344
345 va_start (args, format);
346 vfprintf_filtered (stream, format, args);
347 va_end (args);
348 /* Something non -ve. */
349 return 0;
350 }
351
352 static struct disassemble_info
353 gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file)
354 {
355 struct disassemble_info di;
356
357 init_disassemble_info (&di, file, fprintf_disasm);
358 di.flavour = bfd_target_unknown_flavour;
359 di.memory_error_func = dis_asm_memory_error;
360 di.print_address_func = dis_asm_print_address;
361 /* NOTE: cagney/2003-04-28: The original code, from the old Insight
362 disassembler had a local optomization here. By default it would
363 access the executable file, instead of the target memory (there
364 was a growing list of exceptions though). Unfortunately, the
365 heuristic was flawed. Commands like "disassemble &variable"
366 didn't work as they relied on the access going to the target.
367 Further, it has been supperseeded by trust-read-only-sections
368 (although that should be superseeded by target_trust..._p()). */
369 di.read_memory_func = dis_asm_read_memory;
370 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
371 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
372 di.endian = gdbarch_byte_order (gdbarch);
373 di.endian_code = gdbarch_byte_order_for_code (gdbarch);
374 di.application_data = gdbarch;
375 disassemble_init_for_target (&di);
376 return di;
377 }
378
379 void
380 gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout,
381 char *file_string, int flags, int how_many,
382 CORE_ADDR low, CORE_ADDR high)
383 {
384 struct ui_stream *stb = ui_out_stream_new (uiout);
385 struct cleanup *cleanups = make_cleanup_ui_out_stream_delete (stb);
386 struct disassemble_info di = gdb_disassemble_info (gdbarch, stb->stream);
387 /* To collect the instruction outputted from opcodes. */
388 struct symtab *symtab = NULL;
389 struct linetable_entry *le = NULL;
390 int nlines = -1;
391
392 /* Assume symtab is valid for whole PC range */
393 symtab = find_pc_symtab (low);
394
395 if (symtab != NULL && symtab->linetable != NULL)
396 {
397 /* Convert the linetable to a bunch of my_line_entry's. */
398 le = symtab->linetable->item;
399 nlines = symtab->linetable->nitems;
400 }
401
402 if (!(flags & DISASSEMBLY_SOURCE) || nlines <= 0
403 || symtab == NULL || symtab->linetable == NULL)
404 do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb);
405
406 else if (flags & DISASSEMBLY_SOURCE)
407 do_mixed_source_and_assembly (gdbarch, uiout, &di, nlines, le, low,
408 high, symtab, how_many, flags, stb);
409
410 do_cleanups (cleanups);
411 gdb_flush (gdb_stdout);
412 }
413
414 /* Print the instruction at address MEMADDR in debugged memory,
415 on STREAM. Returns the length of the instruction, in bytes,
416 and, if requested, the number of branch delay slot instructions. */
417
418 int
419 gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr,
420 struct ui_file *stream, int *branch_delay_insns)
421 {
422 struct disassemble_info di;
423 int length;
424
425 di = gdb_disassemble_info (gdbarch, stream);
426 length = gdbarch_print_insn (gdbarch, memaddr, &di);
427 if (branch_delay_insns)
428 {
429 if (di.insn_info_valid)
430 *branch_delay_insns = di.branch_delay_insns;
431 else
432 *branch_delay_insns = 0;
433 }
434 return length;
435 }
436
437 static void
438 do_ui_file_delete (void *arg)
439 {
440 ui_file_delete (arg);
441 }
442
443 /* Return the length in bytes of the instruction at address MEMADDR in
444 debugged memory. */
445
446 int
447 gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr)
448 {
449 static struct ui_file *null_stream = NULL;
450
451 /* Dummy file descriptor for the disassembler. */
452 if (!null_stream)
453 {
454 null_stream = ui_file_new ();
455 make_final_cleanup (do_ui_file_delete, null_stream);
456 }
457
458 return gdb_print_insn (gdbarch, addr, null_stream, NULL);
459 }
460
461 /* fprintf-function for gdb_buffered_insn_length. This function is a
462 nop, we don't want to print anything, we just want to compute the
463 length of the insn. */
464
465 static int ATTRIBUTE_PRINTF (2, 3)
466 gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...)
467 {
468 return 0;
469 }
470
471 /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */
472
473 static void
474 gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch,
475 struct disassemble_info *di,
476 const gdb_byte *insn, int max_len,
477 CORE_ADDR addr)
478 {
479 init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf);
480
481 /* init_disassemble_info installs buffer_read_memory, etc.
482 so we don't need to do that here.
483 The cast is necessary until disassemble_info is const-ified. */
484 di->buffer = (gdb_byte *) insn;
485 di->buffer_length = max_len;
486 di->buffer_vma = addr;
487
488 di->arch = gdbarch_bfd_arch_info (gdbarch)->arch;
489 di->mach = gdbarch_bfd_arch_info (gdbarch)->mach;
490 di->endian = gdbarch_byte_order (gdbarch);
491 di->endian_code = gdbarch_byte_order_for_code (gdbarch);
492
493 disassemble_init_for_target (di);
494 }
495
496 /* Return the length in bytes of INSN. MAX_LEN is the size of the
497 buffer containing INSN. */
498
499 int
500 gdb_buffered_insn_length (struct gdbarch *gdbarch,
501 const gdb_byte *insn, int max_len, CORE_ADDR addr)
502 {
503 struct disassemble_info di;
504
505 gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr);
506
507 return gdbarch_print_insn (gdbarch, addr, &di);
508 }