]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/doc/guile.texi
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / doc / guile.texi
1 @c Copyright (C) 2008--2024 Free Software Foundation, Inc.
2 @c Permission is granted to copy, distribute and/or modify this document
3 @c under the terms of the GNU Free Documentation License, Version 1.3 or
4 @c any later version published by the Free Software Foundation; with the
5 @c Invariant Sections being ``Free Software'' and ``Free Software Needs
6 @c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7 @c and with the Back-Cover Texts as in (a) below.
8 @c
9 @c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10 @c this GNU Manual. Buying copies from GNU Press supports the FSF in
11 @c developing GNU and promoting software freedom.''
12
13 @node Guile
14 @section Extending @value{GDBN} using Guile
15 @cindex guile scripting
16 @cindex scripting with guile
17
18 You can extend @value{GDBN} using the @uref{http://www.gnu.org/software/guile/,
19 Guile implementation of the Scheme programming language}.
20 This feature is available only if @value{GDBN} was configured using
21 @option{--with-guile}.
22
23 @menu
24 * Guile Introduction:: Introduction to Guile scripting in @value{GDBN}
25 * Guile Commands:: Accessing Guile from @value{GDBN}
26 * Guile API:: Accessing @value{GDBN} from Guile
27 * Guile Auto-loading:: Automatically loading Guile code
28 * Guile Modules:: Guile modules provided by @value{GDBN}
29 @end menu
30
31 @node Guile Introduction
32 @subsection Guile Introduction
33
34 Guile is an implementation of the Scheme programming language
35 and is the GNU project's official extension language.
36
37 Guile support in @value{GDBN} follows the Python support in @value{GDBN}
38 reasonably closely, so concepts there should carry over.
39 However, some things are done differently where it makes sense.
40
41 @value{GDBN} requires Guile version 3.0, 2.2, or 2.0.
42
43 @cindex guile scripts directory
44 Guile scripts used by @value{GDBN} should be installed in
45 @file{@var{data-directory}/guile}, where @var{data-directory} is
46 the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
47 This directory, known as the @dfn{guile directory},
48 is automatically added to the Guile Search Path in order to allow
49 the Guile interpreter to locate all scripts installed at this location.
50
51 @node Guile Commands
52 @subsection Guile Commands
53 @cindex guile commands
54 @cindex commands to access guile
55
56 @value{GDBN} provides two commands for accessing the Guile interpreter:
57
58 @table @code
59 @kindex guile-repl
60 @kindex gr
61 @item guile-repl
62 @itemx gr
63 The @code{guile-repl} command can be used to start an interactive
64 Guile prompt or @dfn{repl}. To return to @value{GDBN},
65 type @kbd{,q} or the @code{EOF} character (e.g., @kbd{Ctrl-D} on
66 an empty prompt). These commands do not take any arguments.
67
68 @kindex guile
69 @kindex gu
70 @item guile @r{[}@var{scheme-expression}@r{]}
71 @itemx gu @r{[}@var{scheme-expression}@r{]}
72 The @code{guile} command can be used to evaluate a Scheme expression.
73
74 If given an argument, @value{GDBN} will pass the argument to the Guile
75 interpreter for evaluation.
76
77 @smallexample
78 (@value{GDBP}) guile (display (+ 20 3)) (newline)
79 23
80 @end smallexample
81
82 The result of the Scheme expression is displayed using normal Guile rules.
83
84 @smallexample
85 (@value{GDBP}) guile (+ 20 3)
86 23
87 @end smallexample
88
89 If you do not provide an argument to @code{guile}, it will act as a
90 multi-line command, like @code{define}. In this case, the Guile
91 script is made up of subsequent command lines, given after the
92 @code{guile} command. This command list is terminated using a line
93 containing @code{end}. For example:
94
95 @smallexample
96 (@value{GDBP}) guile
97 >(display 23)
98 >(newline)
99 >end
100 23
101 @end smallexample
102 @end table
103
104 It is also possible to execute a Guile script from the @value{GDBN}
105 interpreter:
106
107 @table @code
108 @item source @file{script-name}
109 The script name must end with @samp{.scm} and @value{GDBN} must be configured
110 to recognize the script language based on filename extension using
111 the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
112
113 @item guile (load "script-name")
114 This method uses the @code{load} Guile function.
115 It takes a string argument that is the name of the script to load.
116 See the Guile documentation for a description of this function.
117 (@pxref{Loading,,, guile, GNU Guile Reference Manual}).
118 @end table
119
120 @node Guile API
121 @subsection Guile API
122 @cindex guile api
123 @cindex programming in guile
124
125 You can get quick online help for @value{GDBN}'s Guile API by issuing
126 the command @w{@kbd{help guile}}, or by issuing the command @kbd{,help}
127 from an interactive Guile session. Furthermore, most Guile procedures
128 provided by @value{GDBN} have doc strings which can be obtained with
129 @kbd{,describe @var{procedure-name}} or @kbd{,d @var{procedure-name}}
130 from the Guile interactive prompt.
131
132 @menu
133 * Basic Guile:: Basic Guile Functions
134 * Guile Configuration:: Guile configuration variables
135 * GDB Scheme Data Types:: Scheme representations of GDB objects
136 * Guile Exception Handling:: How Guile exceptions are translated
137 * Values From Inferior In Guile:: Guile representation of values
138 * Arithmetic In Guile:: Arithmetic in Guile
139 * Types In Guile:: Guile representation of types
140 * Guile Pretty Printing API:: Pretty-printing values with Guile
141 * Selecting Guile Pretty-Printers:: How GDB chooses a pretty-printer
142 * Writing a Guile Pretty-Printer:: Writing a pretty-printer
143 * Commands In Guile:: Implementing new commands in Guile
144 * Parameters In Guile:: Adding new @value{GDBN} parameters
145 * Progspaces In Guile:: Program spaces
146 * Objfiles In Guile:: Object files in Guile
147 * Frames In Guile:: Accessing inferior stack frames from Guile
148 * Blocks In Guile:: Accessing blocks from Guile
149 * Symbols In Guile:: Guile representation of symbols
150 * Symbol Tables In Guile:: Guile representation of symbol tables
151 * Breakpoints In Guile:: Manipulating breakpoints using Guile
152 * Lazy Strings In Guile:: Guile representation of lazy strings
153 * Architectures In Guile:: Guile representation of architectures
154 * Disassembly In Guile:: Disassembling instructions from Guile
155 * I/O Ports in Guile:: GDB I/O ports
156 * Memory Ports in Guile:: Accessing memory through ports and bytevectors
157 * Iterators In Guile:: Basic iterator support
158 @end menu
159
160 @node Basic Guile
161 @subsubsection Basic Guile
162
163 @cindex guile stdout
164 @cindex guile pagination
165 At startup, @value{GDBN} overrides Guile's @code{current-output-port} and
166 @code{current-error-port} to print using @value{GDBN}'s output-paging streams.
167 A Guile program which outputs to one of these streams may have its
168 output interrupted by the user (@pxref{Screen Size}). In this
169 situation, a Guile @code{signal} exception is thrown with value @code{SIGINT}.
170
171 Guile's history mechanism uses the same naming as @value{GDBN}'s,
172 namely the user of dollar-variables (e.g., $1, $2, etc.).
173 The results of evaluations in Guile and in GDB are counted separately,
174 @code{$1} in Guile is not the same value as @code{$1} in @value{GDBN}.
175
176 @value{GDBN} is not thread-safe. If your Guile program uses multiple
177 threads, you must be careful to only call @value{GDBN}-specific
178 functions in the @value{GDBN} thread.
179
180 Some care must be taken when writing Guile code to run in
181 @value{GDBN}. Two things are worth noting in particular:
182
183 @itemize @bullet
184 @item
185 @value{GDBN} installs handlers for @code{SIGCHLD} and @code{SIGINT}.
186 Guile code must not override these, or even change the options using
187 @code{sigaction}. If your program changes the handling of these
188 signals, @value{GDBN} will most likely stop working correctly. Note
189 that it is unfortunately common for GUI toolkits to install a
190 @code{SIGCHLD} handler.
191
192 @item
193 @value{GDBN} takes care to mark its internal file descriptors as
194 close-on-exec. However, this cannot be done in a thread-safe way on
195 all platforms. Your Guile programs should be aware of this and
196 should both create new file descriptors with the close-on-exec flag
197 set and arrange to close unneeded file descriptors before starting a
198 child process.
199 @end itemize
200
201 @cindex guile gdb module
202 @value{GDBN} introduces a new Guile module, named @code{gdb}. All
203 methods and classes added by @value{GDBN} are placed in this module.
204 @value{GDBN} does not automatically @code{import} the @code{gdb} module,
205 scripts must do this themselves. There are various options for how to
206 import a module, so @value{GDBN} leaves the choice of how the @code{gdb}
207 module is imported to the user.
208 To simplify interactive use, it is recommended to add one of the following
209 to your ~/.gdbinit.
210
211 @smallexample
212 guile (use-modules (gdb))
213 @end smallexample
214
215 @smallexample
216 guile (use-modules ((gdb) #:renamer (symbol-prefix-proc 'gdb:)))
217 @end smallexample
218
219 Which one to choose depends on your preference.
220 The second one adds @code{gdb:} as a prefix to all module functions
221 and variables.
222
223 The rest of this manual assumes the @code{gdb} module has been imported
224 without any prefix. See the Guile documentation for @code{use-modules}
225 for more information
226 (@pxref{Using Guile Modules,,, guile, GNU Guile Reference Manual}).
227
228 Example:
229
230 @smallexample
231 (gdb) guile (value-type (make-value 1))
232 ERROR: Unbound variable: value-type
233 Error while executing Scheme code.
234 (gdb) guile (use-modules (gdb))
235 (gdb) guile (value-type (make-value 1))
236 int
237 (gdb)
238 @end smallexample
239
240 The @code{(gdb)} module provides these basic Guile functions.
241
242 @deffn {Scheme Procedure} execute command @w{@r{[}#:from-tty boolean@r{]}} @
243 @w{@r{[}#:to-string boolean@r{]}}
244 Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
245 If a @value{GDBN} exception happens while @var{command} runs, it is
246 translated as described in
247 @ref{Guile Exception Handling,,Guile Exception Handling}.
248
249 @var{from-tty} specifies whether @value{GDBN} ought to consider this
250 command as having originated from the user invoking it interactively.
251 It must be a boolean value. If omitted, it defaults to @code{#f}.
252
253 By default, any output produced by @var{command} is sent to
254 @value{GDBN}'s standard output (and to the log output if logging is
255 turned on). If the @var{to-string} parameter is
256 @code{#t}, then output will be collected by @code{execute} and
257 returned as a string. The default is @code{#f}, in which case the
258 return value is unspecified. If @var{to-string} is @code{#t}, the
259 @value{GDBN} virtual terminal will be temporarily set to unlimited width
260 and height, and its pagination will be disabled; @pxref{Screen Size}.
261 @end deffn
262
263 @deffn {Scheme Procedure} history-ref number
264 Return a value from @value{GDBN}'s value history (@pxref{Value
265 History}). The @var{number} argument indicates which history element to return.
266 If @var{number} is negative, then @value{GDBN} will take its absolute value
267 and count backward from the last element (i.e., the most recent element) to
268 find the value to return. If @var{number} is zero, then @value{GDBN} will
269 return the most recent element. If the element specified by @var{number}
270 doesn't exist in the value history, a @code{gdb:error} exception will be
271 raised.
272
273 If no exception is raised, the return value is always an instance of
274 @code{<gdb:value>} (@pxref{Values From Inferior In Guile}).
275
276 @emph{Note:} @value{GDBN}'s value history is independent of Guile's.
277 @code{$1} in @value{GDBN}'s value history contains the result of evaluating
278 an expression from @value{GDBN}'s command line and @code{$1} from Guile's
279 history contains the result of evaluating an expression from Guile's
280 command line.
281 @end deffn
282
283 @deffn {Scheme Procedure} history-append! value
284 Append @var{value}, an instance of @code{<gdb:value>}, to @value{GDBN}'s
285 value history. Return its index in the history.
286
287 Putting into history values returned by Guile extensions will allow
288 the user convenient access to those values via CLI history
289 facilities.
290 @end deffn
291
292 @deffn {Scheme Procedure} parse-and-eval expression
293 Parse @var{expression} as an expression in the current language,
294 evaluate it, and return the result as a @code{<gdb:value>}.
295 The @var{expression} must be a string.
296
297 This function can be useful when implementing a new command
298 (@pxref{Commands In Guile}), as it provides a way to parse the
299 command's arguments as an expression.
300 It is also is useful when computing values.
301 For example, it is the only way to get the value of a
302 convenience variable (@pxref{Convenience Vars}) as a @code{<gdb:value>}.
303 @end deffn
304
305 @node Guile Configuration
306 @subsubsection Guile Configuration
307 @cindex guile configuration
308
309 @value{GDBN} provides these Scheme functions to access various configuration
310 parameters.
311
312 @deffn {Scheme Procedure} data-directory
313 Return a string containing @value{GDBN}'s data directory.
314 This directory contains @value{GDBN}'s ancillary files.
315 @end deffn
316
317 @deffn {Scheme Procedure} guile-data-directory
318 Return a string containing @value{GDBN}'s Guile data directory.
319 This directory contains the Guile modules provided by @value{GDBN}.
320 @end deffn
321
322 @deffn {Scheme Procedure} gdb-version
323 Return a string containing the @value{GDBN} version.
324 @end deffn
325
326 @deffn {Scheme Procedure} host-config
327 Return a string containing the host configuration.
328 This is the string passed to @code{--host} when @value{GDBN} was configured.
329 @end deffn
330
331 @deffn {Scheme Procedure} target-config
332 Return a string containing the target configuration.
333 This is the string passed to @code{--target} when @value{GDBN} was configured.
334 @end deffn
335
336 @node GDB Scheme Data Types
337 @subsubsection GDB Scheme Data Types
338 @cindex gdb objects
339
340 The values exposed by @value{GDBN} to Guile are known as
341 @dfn{@value{GDBN} objects}. There are several kinds of @value{GDBN}
342 object, and each is disjoint from all other types known to Guile.
343
344 @deffn {Scheme Procedure} gdb-object-kind object
345 Return the kind of the @value{GDBN} object, e.g., @code{<gdb:breakpoint>},
346 as a symbol.
347 @end deffn
348
349 @value{GDBN} defines the following object types:
350
351 @table @code
352 @item <gdb:arch>
353 @xref{Architectures In Guile}.
354
355 @item <gdb:block>
356 @xref{Blocks In Guile}.
357
358 @item <gdb:block-symbols-iterator>
359 @xref{Blocks In Guile}.
360
361 @item <gdb:breakpoint>
362 @xref{Breakpoints In Guile}.
363
364 @item <gdb:command>
365 @xref{Commands In Guile}.
366
367 @item <gdb:exception>
368 @xref{Guile Exception Handling}.
369
370 @item <gdb:frame>
371 @xref{Frames In Guile}.
372
373 @item <gdb:iterator>
374 @xref{Iterators In Guile}.
375
376 @item <gdb:lazy-string>
377 @xref{Lazy Strings In Guile}.
378
379 @item <gdb:objfile>
380 @xref{Objfiles In Guile}.
381
382 @item <gdb:parameter>
383 @xref{Parameters In Guile}.
384
385 @item <gdb:pretty-printer>
386 @xref{Guile Pretty Printing API}.
387
388 @item <gdb:pretty-printer-worker>
389 @xref{Guile Pretty Printing API}.
390
391 @item <gdb:progspace>
392 @xref{Progspaces In Guile}.
393
394 @item <gdb:symbol>
395 @xref{Symbols In Guile}.
396
397 @item <gdb:symtab>
398 @xref{Symbol Tables In Guile}.
399
400 @item <gdb:sal>
401 @xref{Symbol Tables In Guile}.
402
403 @item <gdb:type>
404 @xref{Types In Guile}.
405
406 @item <gdb:field>
407 @xref{Types In Guile}.
408
409 @item <gdb:value>
410 @xref{Values From Inferior In Guile}.
411 @end table
412
413 The following @value{GDBN} objects are managed internally so that the
414 Scheme function @code{eq?} may be applied to them.
415
416 @table @code
417 @item <gdb:arch>
418 @item <gdb:block>
419 @item <gdb:breakpoint>
420 @item <gdb:frame>
421 @item <gdb:objfile>
422 @item <gdb:progspace>
423 @item <gdb:symbol>
424 @item <gdb:symtab>
425 @item <gdb:type>
426 @end table
427
428 @node Guile Exception Handling
429 @subsubsection Guile Exception Handling
430 @cindex guile exceptions
431 @cindex exceptions, guile
432 @kindex set guile print-stack
433
434 When executing the @code{guile} command, Guile exceptions
435 uncaught within the Guile code are translated to calls to the
436 @value{GDBN} error-reporting mechanism. If the command that called
437 @code{guile} does not handle the error, @value{GDBN} will
438 terminate it and report the error according to the setting of
439 the @code{guile print-stack} parameter.
440
441 The @code{guile print-stack} parameter has three settings:
442
443 @table @code
444 @item none
445 Nothing is printed.
446
447 @item message
448 An error message is printed containing the Guile exception name,
449 the associated value, and the Guile call stack backtrace at the
450 point where the exception was raised. Example:
451
452 @smallexample
453 (@value{GDBP}) guile (display foo)
454 ERROR: In procedure memoize-variable-access!:
455 ERROR: Unbound variable: foo
456 Error while executing Scheme code.
457 @end smallexample
458
459 @item full
460 In addition to an error message a full backtrace is printed.
461
462 @smallexample
463 (@value{GDBP}) set guile print-stack full
464 (@value{GDBP}) guile (display foo)
465 Guile Backtrace:
466 In ice-9/boot-9.scm:
467 157: 10 [catch #t #<catch-closure 2c76e20> ...]
468 In unknown file:
469 ?: 9 [apply-smob/1 #<catch-closure 2c76e20>]
470 In ice-9/boot-9.scm:
471 157: 8 [catch #t #<catch-closure 2c76d20> ...]
472 In unknown file:
473 ?: 7 [apply-smob/1 #<catch-closure 2c76d20>]
474 ?: 6 [call-with-input-string "(display foo)" ...]
475 In ice-9/boot-9.scm:
476 2320: 5 [save-module-excursion #<procedure 2c2dc30 ... ()>]
477 In ice-9/eval-string.scm:
478 44: 4 [read-and-eval #<input: string 27cb410> #:lang ...]
479 37: 3 [lp (display foo)]
480 In ice-9/eval.scm:
481 387: 2 [eval # ()]
482 393: 1 [eval #<memoized foo> ()]
483 In unknown file:
484 ?: 0 [memoize-variable-access! #<memoized foo> ...]
485
486 ERROR: In procedure memoize-variable-access!:
487 ERROR: Unbound variable: foo
488 Error while executing Scheme code.
489 @end smallexample
490 @end table
491
492 @value{GDBN} errors that happen in @value{GDBN} commands invoked by
493 Guile code are converted to Guile exceptions. The type of the
494 Guile exception depends on the error.
495
496 Guile procedures provided by @value{GDBN} can throw the standard
497 Guile exceptions like @code{wrong-type-arg} and @code{out-of-range}.
498
499 User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
500 prompt) is translated to a Guile @code{signal} exception with value
501 @code{SIGINT}.
502
503 @value{GDBN} Guile procedures can also throw these exceptions:
504
505 @vtable @code
506 @item gdb:error
507 This exception is a catch-all for errors generated from within @value{GDBN}.
508
509 @item gdb:invalid-object
510 This exception is thrown when accessing Guile objects that wrap underlying
511 @value{GDBN} objects have become invalid. For example, a
512 @code{<gdb:breakpoint>} object becomes invalid if the user deletes it
513 from the command line. The object still exists in Guile, but the
514 object it represents is gone. Further operations on this breakpoint
515 will throw this exception.
516
517 @item gdb:memory-error
518 This exception is thrown when an operation tried to access invalid
519 memory in the inferior.
520
521 @item gdb:pp-type-error
522 This exception is thrown when a Guile pretty-printer passes a bad object
523 to @value{GDBN}.
524 @end vtable
525
526 The following exception-related procedures are provided by the
527 @code{(gdb)} module.
528
529 @deffn {Scheme Procedure} make-exception key args
530 Return a @code{<gdb:exception>} object given by its @var{key} and
531 @var{args}, which are the standard Guile parameters of an exception.
532 See the Guile documentation for more information (@pxref{Exceptions,,,
533 guile, GNU Guile Reference Manual}).
534 @end deffn
535
536 @deffn {Scheme Procedure} exception? object
537 Return @code{#t} if @var{object} is a @code{<gdb:exception>} object.
538 Otherwise return @code{#f}.
539 @end deffn
540
541 @deffn {Scheme Procedure} exception-key exception
542 Return the @var{args} field of a @code{<gdb:exception>} object.
543 @end deffn
544
545 @deffn {Scheme Procedure} exception-args exception
546 Return the @var{args} field of a @code{<gdb:exception>} object.
547 @end deffn
548
549 @node Values From Inferior In Guile
550 @subsubsection Values From Inferior In Guile
551 @cindex values from inferior, in guile
552 @cindex guile, working with values from inferior
553
554 @tindex @code{<gdb:value>}
555 @value{GDBN} provides values it obtains from the inferior program in
556 an object of type @code{<gdb:value>}. @value{GDBN} uses this object
557 for its internal bookkeeping of the inferior's values, and for
558 fetching values when necessary.
559
560 @value{GDBN} does not memoize @code{<gdb:value>} objects.
561 @code{make-value} always returns a fresh object.
562
563 @smallexample
564 (gdb) guile (eq? (make-value 1) (make-value 1))
565 $1 = #f
566 (gdb) guile (equal? (make-value 1) (make-value 1))
567 $1 = #t
568 @end smallexample
569
570 A @code{<gdb:value>} that represents a function can be executed via
571 inferior function call with @code{value-call}.
572 Any arguments provided to the call must match the function's prototype,
573 and must be provided in the order specified by that prototype.
574
575 For example, @code{some-val} is a @code{<gdb:value>} instance
576 representing a function that takes two integers as arguments. To
577 execute this function, call it like so:
578
579 @smallexample
580 (define result (value-call some-val 10 20))
581 @end smallexample
582
583 Any values returned from a function call are @code{<gdb:value>} objects.
584
585 Note: Unlike Python scripting in @value{GDBN},
586 inferior values that are simple scalars cannot be used directly in
587 Scheme expressions that are valid for the value's data type.
588 For example, @code{(+ (parse-and-eval "int_variable") 2)} does not work.
589 And inferior values that are structures or instances of some class cannot
590 be accessed using any special syntax, instead @code{value-field} must be used.
591
592 The following value-related procedures are provided by the
593 @code{(gdb)} module.
594
595 @deffn {Scheme Procedure} value? object
596 Return @code{#t} if @var{object} is a @code{<gdb:value>} object.
597 Otherwise return @code{#f}.
598 @end deffn
599
600 @deffn {Scheme Procedure} make-value value @r{[}#:type type@r{]}
601 Many Scheme values can be converted directly to a @code{<gdb:value>}
602 with this procedure. If @var{type} is specified, the result is a value
603 of this type, and if @var{value} can't be represented with this type
604 an exception is thrown. Otherwise the type of the result is determined from
605 @var{value} as described below.
606
607 @xref{Architectures In Guile}, for a list of the builtin
608 types for an architecture.
609
610 Here's how Scheme values are converted when @var{type} argument to
611 @code{make-value} is not specified:
612
613 @table @asis
614 @item Scheme boolean
615 A Scheme boolean is converted the boolean type for the current language.
616
617 @item Scheme integer
618 A Scheme integer is converted to the first of a C @code{int},
619 @code{unsigned int}, @code{long}, @code{unsigned long},
620 @code{long long} or @code{unsigned long long} type
621 for the current architecture that can represent the value.
622
623 If the Scheme integer cannot be represented as a target integer
624 an @code{out-of-range} exception is thrown.
625
626 @item Scheme real
627 A Scheme real is converted to the C @code{double} type for the
628 current architecture.
629
630 @item Scheme string
631 A Scheme string is converted to a string in the current target
632 language using the current target encoding.
633 Characters that cannot be represented in the current target encoding
634 are replaced with the corresponding escape sequence. This is Guile's
635 @code{SCM_FAILED_CONVERSION_ESCAPE_SEQUENCE} conversion strategy
636 (@pxref{Strings,,, guile, GNU Guile Reference Manual}).
637
638 Passing @var{type} is not supported in this case,
639 if it is provided a @code{wrong-type-arg} exception is thrown.
640
641 @item @code{<gdb:lazy-string>}
642 If @var{value} is a @code{<gdb:lazy-string>} object (@pxref{Lazy Strings In
643 Guile}), then the @code{lazy-string->value} procedure is called, and
644 its result is used.
645
646 Passing @var{type} is not supported in this case,
647 if it is provided a @code{wrong-type-arg} exception is thrown.
648
649 @item Scheme bytevector
650 If @var{value} is a Scheme bytevector and @var{type} is provided,
651 @var{value} must be the same size, in bytes, of values of type @var{type},
652 and the result is essentially created by using @code{memcpy}.
653
654 If @var{value} is a Scheme bytevector and @var{type} is not provided,
655 the result is an array of type @code{uint8} of the same length.
656 @end table
657 @end deffn
658
659 @cindex optimized out value in guile
660 @deffn {Scheme Procedure} value-optimized-out? value
661 Return @code{#t} if the compiler optimized out @var{value},
662 thus it is not available for fetching from the inferior.
663 Otherwise return @code{#f}.
664 @end deffn
665
666 @deffn {Scheme Procedure} value-address value
667 If @var{value} is addressable, returns a
668 @code{<gdb:value>} object representing the address.
669 Otherwise, @code{#f} is returned.
670 @end deffn
671
672 @deffn {Scheme Procedure} value-type value
673 Return the type of @var{value} as a @code{<gdb:type>} object
674 (@pxref{Types In Guile}).
675 @end deffn
676
677 @deffn {Scheme Procedure} value-dynamic-type value
678 Return the dynamic type of @var{value}. This uses C@t{++} run-time
679 type information (@acronym{RTTI}) to determine the dynamic type of the
680 value. If the value is of class type, it will return the class in
681 which the value is embedded, if any. If the value is of pointer or
682 reference to a class type, it will compute the dynamic type of the
683 referenced object, and return a pointer or reference to that type,
684 respectively. In all other cases, it will return the value's static
685 type.
686
687 Note that this feature will only work when debugging a C@t{++} program
688 that includes @acronym{RTTI} for the object in question. Otherwise,
689 it will just return the static type of the value as in @kbd{ptype foo}.
690 @xref{Symbols, ptype}.
691 @end deffn
692
693 @deffn {Scheme Procedure} value-cast value type
694 Return a new instance of @code{<gdb:value>} that is the result of
695 casting @var{value} to the type described by @var{type}, which must
696 be a @code{<gdb:type>} object. If the cast cannot be performed for some
697 reason, this method throws an exception.
698 @end deffn
699
700 @deffn {Scheme Procedure} value-dynamic-cast value type
701 Like @code{value-cast}, but works as if the C@t{++} @code{dynamic_cast}
702 operator were used. Consult a C@t{++} reference for details.
703 @end deffn
704
705 @deffn {Scheme Procedure} value-reinterpret-cast value type
706 Like @code{value-cast}, but works as if the C@t{++} @code{reinterpret_cast}
707 operator were used. Consult a C@t{++} reference for details.
708 @end deffn
709
710 @deffn {Scheme Procedure} value-dereference value
711 For pointer data types, this method returns a new @code{<gdb:value>} object
712 whose contents is the object pointed to by @var{value}. For example, if
713 @code{foo} is a C pointer to an @code{int}, declared in your C program as
714
715 @smallexample
716 int *foo;
717 @end smallexample
718
719 @noindent
720 then you can use the corresponding @code{<gdb:value>} to access what
721 @code{foo} points to like this:
722
723 @smallexample
724 (define bar (value-dereference foo))
725 @end smallexample
726
727 The result @code{bar} will be a @code{<gdb:value>} object holding the
728 value pointed to by @code{foo}.
729
730 A similar function @code{value-referenced-value} exists which also
731 returns @code{<gdb:value>} objects corresponding to the values pointed to
732 by pointer values (and additionally, values referenced by reference
733 values). However, the behavior of @code{value-dereference}
734 differs from @code{value-referenced-value} by the fact that the
735 behavior of @code{value-dereference} is identical to applying the C
736 unary operator @code{*} on a given value. For example, consider a
737 reference to a pointer @code{ptrref}, declared in your C@t{++} program
738 as
739
740 @smallexample
741 typedef int *intptr;
742 ...
743 int val = 10;
744 intptr ptr = &val;
745 intptr &ptrref = ptr;
746 @end smallexample
747
748 Though @code{ptrref} is a reference value, one can apply the method
749 @code{value-dereference} to the @code{<gdb:value>} object corresponding
750 to it and obtain a @code{<gdb:value>} which is identical to that
751 corresponding to @code{val}. However, if you apply the method
752 @code{value-referenced-value}, the result would be a @code{<gdb:value>}
753 object identical to that corresponding to @code{ptr}.
754
755 @smallexample
756 (define scm-ptrref (parse-and-eval "ptrref"))
757 (define scm-val (value-dereference scm-ptrref))
758 (define scm-ptr (value-referenced-value scm-ptrref))
759 @end smallexample
760
761 The @code{<gdb:value>} object @code{scm-val} is identical to that
762 corresponding to @code{val}, and @code{scm-ptr} is identical to that
763 corresponding to @code{ptr}. In general, @code{value-dereference} can
764 be applied whenever the C unary operator @code{*} can be applied
765 to the corresponding C value. For those cases where applying both
766 @code{value-dereference} and @code{value-referenced-value} is allowed,
767 the results obtained need not be identical (as we have seen in the above
768 example). The results are however identical when applied on
769 @code{<gdb:value>} objects corresponding to pointers (@code{<gdb:value>}
770 objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
771 @end deffn
772
773 @deffn {Scheme Procedure} value-referenced-value value
774 For pointer or reference data types, this method returns a new
775 @code{<gdb:value>} object corresponding to the value referenced by the
776 pointer/reference value. For pointer data types,
777 @code{value-dereference} and @code{value-referenced-value} produce
778 identical results. The difference between these methods is that
779 @code{value-dereference} cannot get the values referenced by reference
780 values. For example, consider a reference to an @code{int}, declared
781 in your C@t{++} program as
782
783 @smallexample
784 int val = 10;
785 int &ref = val;
786 @end smallexample
787
788 @noindent
789 then applying @code{value-dereference} to the @code{<gdb:value>} object
790 corresponding to @code{ref} will result in an error, while applying
791 @code{value-referenced-value} will result in a @code{<gdb:value>} object
792 identical to that corresponding to @code{val}.
793
794 @smallexample
795 (define scm-ref (parse-and-eval "ref"))
796 (define err-ref (value-dereference scm-ref)) ;; error
797 (define scm-val (value-referenced-value scm-ref)) ;; ok
798 @end smallexample
799
800 The @code{<gdb:value>} object @code{scm-val} is identical to that
801 corresponding to @code{val}.
802 @end deffn
803
804 @deffn {Scheme Procedure} value-reference-value value
805 Return a new @code{<gdb:value>} object which is a reference to the value
806 encapsulated by @code{<gdb:value>} object @var{value}.
807 @end deffn
808
809 @deffn {Scheme Procedure} value-rvalue-reference-value value
810 Return a new @code{<gdb:value>} object which is an rvalue reference to
811 the value encapsulated by @code{<gdb:value>} object @var{value}.
812 @end deffn
813
814 @deffn {Scheme Procedure} value-const-value value
815 Return a new @code{<gdb:value>} object which is a @samp{const} version
816 of @code{<gdb:value>} object @var{value}.
817 @end deffn
818
819 @deffn {Scheme Procedure} value-field value field-name
820 Return field @var{field-name} from @code{<gdb:value>} object @var{value}.
821 @end deffn
822
823 @deffn {Scheme Procedure} value-subscript value index
824 Return the value of array @var{value} at index @var{index}.
825 The @var{value} argument must be a subscriptable @code{<gdb:value>} object.
826 @end deffn
827
828 @deffn {Scheme Procedure} value-call value arg-list
829 Perform an inferior function call, taking @var{value} as a pointer
830 to the function to call.
831 Each element of list @var{arg-list} must be a <gdb:value> object or an object
832 that can be converted to a value.
833 The result is the value returned by the function.
834 @end deffn
835
836 @deffn {Scheme Procedure} value->bool value
837 Return the Scheme boolean representing @code{<gdb:value>} @var{value}.
838 The value must be ``integer like''. Pointers are ok.
839 @end deffn
840
841 @deffn {Scheme Procedure} value->integer
842 Return the Scheme integer representing @code{<gdb:value>} @var{value}.
843 The value must be ``integer like''. Pointers are ok.
844 @end deffn
845
846 @deffn {Scheme Procedure} value->real
847 Return the Scheme real number representing @code{<gdb:value>} @var{value}.
848 The value must be a number.
849 @end deffn
850
851 @deffn {Scheme Procedure} value->bytevector
852 Return a Scheme bytevector with the raw contents of @code{<gdb:value>}
853 @var{value}. No transformation, endian or otherwise, is performed.
854 @end deffn
855
856 @deffn {Scheme Procedure} value->string value @
857 @w{@r{[}#:encoding encoding@r{]}} @w{@r{[}#:errors errors@r{]}} @
858 @w{@r{[}#:length length@r{]}}
859 If @var{value>} represents a string, then this method
860 converts the contents to a Guile string. Otherwise, this method will
861 throw an exception.
862
863 Values are interpreted as strings according to the rules of the
864 current language. If the optional length argument is given, the
865 string will be converted to that length, and will include any embedded
866 zeroes that the string may contain. Otherwise, for languages
867 where the string is zero-terminated, the entire string will be
868 converted.
869
870 For example, in C-like languages, a value is a string if it is a pointer
871 to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
872 or @code{char32_t}.
873
874 If the optional @var{encoding} argument is given, it must be a string
875 naming the encoding of the string in the @code{<gdb:value>}, such as
876 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
877 the same encodings as the corresponding argument to Guile's
878 @code{scm_from_stringn} function, and the Guile codec machinery will be used
879 to convert the string. If @var{encoding} is not given, or if
880 @var{encoding} is the empty string, then either the @code{target-charset}
881 (@pxref{Character Sets}) will be used, or a language-specific encoding
882 will be used, if the current language is able to supply one.
883
884 The optional @var{errors} argument is one of @code{#f}, @code{error} or
885 @code{substitute}. @code{error} and @code{substitute} must be symbols.
886 If @var{errors} is not specified, or if its value is @code{#f}, then the
887 default conversion strategy is used, which is set with the Scheme function
888 @code{set-port-conversion-strategy!}.
889 If the value is @code{'error} then an exception is thrown if there is any
890 conversion error. If the value is @code{'substitute} then any conversion
891 error is replaced with question marks.
892 @xref{Strings,,, guile, GNU Guile Reference Manual}.
893
894 If the optional @var{length} argument is given, the string will be
895 fetched and converted to the given length.
896 The length must be a Scheme integer and not a @code{<gdb:value>} integer.
897 @end deffn
898
899 @deffn {Scheme Procedure} value->lazy-string value @
900 @w{@r{[}#:encoding encoding@r{]}} @w{@r{[}#:length length@r{]}}
901 If this @code{<gdb:value>} represents a string, then this method
902 converts @var{value} to a @code{<gdb:lazy-string} (@pxref{Lazy Strings
903 In Guile}). Otherwise, this method will throw an exception.
904
905 If the optional @var{encoding} argument is given, it must be a string
906 naming the encoding of the @code{<gdb:lazy-string}. Some examples are:
907 @code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. If the
908 @var{encoding} argument is an encoding that @value{GDBN} does not
909 recognize, @value{GDBN} will raise an error.
910
911 When a lazy string is printed, the @value{GDBN} encoding machinery is
912 used to convert the string during printing. If the optional
913 @var{encoding} argument is not provided, or is an empty string,
914 @value{GDBN} will automatically select the encoding most suitable for
915 the string type. For further information on encoding in @value{GDBN}
916 please see @ref{Character Sets}.
917
918 If the optional @var{length} argument is given, the string will be
919 fetched and encoded to the length of characters specified. If
920 the @var{length} argument is not provided, the string will be fetched
921 and encoded until a null of appropriate width is found.
922 The length must be a Scheme integer and not a @code{<gdb:value>} integer.
923 @end deffn
924
925 @deffn {Scheme Procedure} value-lazy? value
926 Return @code{#t} if @var{value} has not yet been fetched
927 from the inferior.
928 Otherwise return @code{#f}.
929 @value{GDBN} does not fetch values until necessary, for efficiency.
930 For example:
931
932 @smallexample
933 (define myval (parse-and-eval "somevar"))
934 @end smallexample
935
936 The value of @code{somevar} is not fetched at this time. It will be
937 fetched when the value is needed, or when the @code{fetch-lazy}
938 procedure is invoked.
939 @end deffn
940
941 @deffn {Scheme Procedure} make-lazy-value type address
942 Return a @code{<gdb:value>} that will be lazily fetched from the
943 target. The object of type @code{<gdb:type>} whose value to fetch is
944 specified by its @var{type} and its target memory @var{address}, which
945 is a Scheme integer.
946 @end deffn
947
948 @deffn {Scheme Procedure} value-fetch-lazy! value
949 If @var{value} is a lazy value (@code{(value-lazy? value)} is @code{#t}),
950 then the value is fetched from the inferior.
951 Any errors that occur in the process will produce a Guile exception.
952
953 If @var{value} is not a lazy value, this method has no effect.
954
955 The result of this function is unspecified.
956 @end deffn
957
958 @deffn {Scheme Procedure} value-print value
959 Return the string representation (print form) of @code{<gdb:value>}
960 @var{value}.
961 @end deffn
962
963 @node Arithmetic In Guile
964 @subsubsection Arithmetic In Guile
965
966 The @code{(gdb)} module provides several functions for performing
967 arithmetic on @code{<gdb:value>} objects.
968 The arithmetic is performed as if it were done by the target,
969 and therefore has target semantics which are not necessarily
970 those of Scheme. For example operations work with a fixed precision,
971 not the arbitrary precision of Scheme.
972
973 Wherever a function takes an integer or pointer as an operand,
974 @value{GDBN} will convert appropriate Scheme values to perform
975 the operation.
976
977 @deffn {Scheme Procedure} value-add a b
978 @end deffn
979
980 @deffn {Scheme Procedure} value-sub a b
981 @end deffn
982
983 @deffn {Scheme Procedure} value-mul a b
984 @end deffn
985
986 @deffn {Scheme Procedure} value-div a b
987 @end deffn
988
989 @deffn {Scheme Procedure} value-rem a b
990 @end deffn
991
992 @deffn {Scheme Procedure} value-mod a b
993 @end deffn
994
995 @deffn {Scheme Procedure} value-pow a b
996 @end deffn
997
998 @deffn {Scheme Procedure} value-not a
999 @end deffn
1000
1001 @deffn {Scheme Procedure} value-neg a
1002 @end deffn
1003
1004 @deffn {Scheme Procedure} value-pos a
1005 @end deffn
1006
1007 @deffn {Scheme Procedure} value-abs a
1008 @end deffn
1009
1010 @deffn {Scheme Procedure} value-lsh a b
1011 @end deffn
1012
1013 @deffn {Scheme Procedure} value-rsh a b
1014 @end deffn
1015
1016 @deffn {Scheme Procedure} value-min a b
1017 @end deffn
1018
1019 @deffn {Scheme Procedure} value-max a b
1020 @end deffn
1021
1022 @deffn {Scheme Procedure} value-lognot a
1023 @end deffn
1024
1025 @deffn {Scheme Procedure} value-logand a b
1026 @end deffn
1027
1028 @deffn {Scheme Procedure} value-logior a b
1029 @end deffn
1030
1031 @deffn {Scheme Procedure} value-logxor a b
1032 @end deffn
1033
1034 @deffn {Scheme Procedure} value=? a b
1035 @end deffn
1036
1037 @deffn {Scheme Procedure} value<? a b
1038 @end deffn
1039
1040 @deffn {Scheme Procedure} value<=? a b
1041 @end deffn
1042
1043 @deffn {Scheme Procedure} value>? a b
1044 @end deffn
1045
1046 @deffn {Scheme Procedure} value>=? a b
1047 @end deffn
1048
1049 Scheme does not provide a @code{not-equal} function,
1050 and thus Guile support in @value{GDBN} does not either.
1051
1052 @node Types In Guile
1053 @subsubsection Types In Guile
1054 @cindex types in guile
1055 @cindex guile, working with types
1056
1057 @tindex <gdb:type>
1058 @value{GDBN} represents types from the inferior in objects of type
1059 @code{<gdb:type>}.
1060
1061 The following type-related procedures are provided by the
1062 @code{(gdb)} module.
1063
1064 @deffn {Scheme Procedure} type? object
1065 Return @code{#t} if @var{object} is an object of type @code{<gdb:type>}.
1066 Otherwise return @code{#f}.
1067 @end deffn
1068
1069 @deffn {Scheme Procedure} lookup-type name @r{[}#:block block@r{]}
1070 This function looks up a type by its @var{name}, which must be a string.
1071
1072 If @var{block} is given, it is an object of type @code{<gdb:block>},
1073 and @var{name} is looked up in that scope.
1074 Otherwise, it is searched for globally.
1075
1076 Ordinarily, this function will return an instance of @code{<gdb:type>}.
1077 If the named type cannot be found, it will throw an exception.
1078 @end deffn
1079
1080 @deffn {Scheme Procedure} type-code type
1081 Return the type code of @var{type}. The type code will be one of the
1082 @code{TYPE_CODE_} constants defined below.
1083 @end deffn
1084
1085 @deffn {Scheme Procedure} type-tag type
1086 Return the tag name of @var{type}. The tag name is the name after
1087 @code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1088 languages have this concept. If this type has no tag name, then
1089 @code{#f} is returned.
1090 @end deffn
1091
1092 @deffn {Scheme Procedure} type-name type
1093 Return the name of @var{type}.
1094 If this type has no name, then @code{#f} is returned.
1095 @end deffn
1096
1097 @deffn {Scheme Procedure} type-print-name type
1098 Return the print name of @var{type}.
1099 This returns something even for anonymous types.
1100 For example, for an anonymous C struct @code{"struct @{...@}"} is returned.
1101 @end deffn
1102
1103 @deffn {Scheme Procedure} type-sizeof type
1104 Return the size of this type, in target @code{char} units. Usually, a
1105 target's @code{char} type will be an 8-bit byte. However, on some
1106 unusual platforms, this type may have a different size.
1107 @end deffn
1108
1109 @deffn {Scheme Procedure} type-strip-typedefs type
1110 Return a new @code{<gdb:type>} that represents the real type of @var{type},
1111 after removing all layers of typedefs.
1112 @end deffn
1113
1114 @deffn {Scheme Procedure} type-array type n1 @r{[}n2@r{]}
1115 Return a new @code{<gdb:type>} object which represents an array of this
1116 type. If one argument is given, it is the inclusive upper bound of
1117 the array; in this case the lower bound is zero. If two arguments are
1118 given, the first argument is the lower bound of the array, and the
1119 second argument is the upper bound of the array. An array's length
1120 must not be negative, but the bounds can be.
1121 @end deffn
1122
1123 @deffn {Scheme Procedure} type-vector type n1 @r{[}n2@r{]}
1124 Return a new @code{<gdb:type>} object which represents a vector of this
1125 type. If one argument is given, it is the inclusive upper bound of
1126 the vector; in this case the lower bound is zero. If two arguments are
1127 given, the first argument is the lower bound of the vector, and the
1128 second argument is the upper bound of the vector. A vector's length
1129 must not be negative, but the bounds can be.
1130
1131 The difference between an @code{array} and a @code{vector} is that
1132 arrays behave like in C: when used in expressions they decay to a pointer
1133 to the first element whereas vectors are treated as first class values.
1134 @end deffn
1135
1136 @deffn {Scheme Procedure} type-pointer type
1137 Return a new @code{<gdb:type>} object which represents a pointer to
1138 @var{type}.
1139 @end deffn
1140
1141 @deffn {Scheme Procedure} type-range type
1142 Return a list of two elements: the low bound and high bound of @var{type}.
1143 If @var{type} does not have a range, an exception is thrown.
1144 @end deffn
1145
1146 @deffn {Scheme Procedure} type-reference type
1147 Return a new @code{<gdb:type>} object which represents a reference to
1148 @var{type}.
1149 @end deffn
1150
1151 @deffn {Scheme Procedure} type-target type
1152 Return a new @code{<gdb:type>} object which represents the target type
1153 of @var{type}.
1154
1155 For a pointer type, the target type is the type of the pointed-to
1156 object. For an array type (meaning C-like arrays), the target type is
1157 the type of the elements of the array. For a function or method type,
1158 the target type is the type of the return value. For a complex type,
1159 the target type is the type of the elements. For a typedef, the
1160 target type is the aliased type.
1161
1162 If the type does not have a target, this method will throw an
1163 exception.
1164 @end deffn
1165
1166 @deffn {Scheme Procedure} type-const type
1167 Return a new @code{<gdb:type>} object which represents a
1168 @code{const}-qualified variant of @var{type}.
1169 @end deffn
1170
1171 @deffn {Scheme Procedure} type-volatile type
1172 Return a new @code{<gdb:type>} object which represents a
1173 @code{volatile}-qualified variant of @var{type}.
1174 @end deffn
1175
1176 @deffn {Scheme Procedure} type-unqualified type
1177 Return a new @code{<gdb:type>} object which represents an unqualified
1178 variant of @var{type}. That is, the result is neither @code{const} nor
1179 @code{volatile}.
1180 @end deffn
1181
1182 @deffn {Scheme Procedure} type-num-fields
1183 Return the number of fields of @code{<gdb:type>} @var{type}.
1184 @end deffn
1185
1186 @deffn {Scheme Procedure} type-fields type
1187 Return the fields of @var{type} as a list.
1188 For structure and union types, @code{fields} has the usual meaning.
1189 Range types have two fields, the minimum and maximum values. Enum types
1190 have one field per enum constant. Function and method types have one
1191 field per parameter. The base types of C@t{++} classes are also
1192 represented as fields. If the type has no fields, or does not fit
1193 into one of these categories, an empty list will be returned.
1194 @xref{Fields of a type in Guile}.
1195 @end deffn
1196
1197 @deffn {Scheme Procedure} make-field-iterator type
1198 Return the fields of @var{type} as a <gdb:iterator> object.
1199 @xref{Iterators In Guile}.
1200 @end deffn
1201
1202 @deffn {Scheme Procedure} type-field type field-name
1203 Return field named @var{field-name} in @var{type}.
1204 The result is an object of type @code{<gdb:field>}.
1205 @xref{Fields of a type in Guile}.
1206 If the type does not have fields, or @var{field-name} is not a field
1207 of @var{type}, an exception is thrown.
1208
1209 For example, if @code{some-type} is a @code{<gdb:type>} instance holding
1210 a structure type, you can access its @code{foo} field with:
1211
1212 @smallexample
1213 (define bar (type-field some-type "foo"))
1214 @end smallexample
1215
1216 @code{bar} will be a @code{<gdb:field>} object.
1217 @end deffn
1218
1219 @deffn {Scheme Procedure} type-has-field? type name
1220 Return @code{#t} if @code{<gdb:type>} @var{type} has field named @var{name}.
1221 Otherwise return @code{#f}.
1222 @end deffn
1223
1224 Each type has a code, which indicates what category this type falls
1225 into. The available type categories are represented by constants
1226 defined in the @code{(gdb)} module:
1227
1228 @vtable @code
1229 @item TYPE_CODE_PTR
1230 The type is a pointer.
1231
1232 @item TYPE_CODE_ARRAY
1233 The type is an array.
1234
1235 @item TYPE_CODE_STRUCT
1236 The type is a structure.
1237
1238 @item TYPE_CODE_UNION
1239 The type is a union.
1240
1241 @item TYPE_CODE_ENUM
1242 The type is an enum.
1243
1244 @item TYPE_CODE_FLAGS
1245 A bit flags type, used for things such as status registers.
1246
1247 @item TYPE_CODE_FUNC
1248 The type is a function.
1249
1250 @item TYPE_CODE_INT
1251 The type is an integer type.
1252
1253 @item TYPE_CODE_FLT
1254 A floating point type.
1255
1256 @item TYPE_CODE_VOID
1257 The special type @code{void}.
1258
1259 @item TYPE_CODE_SET
1260 A Pascal set type.
1261
1262 @item TYPE_CODE_RANGE
1263 A range type, that is, an integer type with bounds.
1264
1265 @item TYPE_CODE_STRING
1266 A string type. Note that this is only used for certain languages with
1267 language-defined string types; C strings are not represented this way.
1268
1269 @item TYPE_CODE_BITSTRING
1270 A string of bits. It is deprecated.
1271
1272 @item TYPE_CODE_ERROR
1273 An unknown or erroneous type.
1274
1275 @item TYPE_CODE_METHOD
1276 A method type, as found in C@t{++}.
1277
1278 @item TYPE_CODE_METHODPTR
1279 A pointer-to-member-function.
1280
1281 @item TYPE_CODE_MEMBERPTR
1282 A pointer-to-member.
1283
1284 @item TYPE_CODE_REF
1285 A reference type.
1286
1287 @item TYPE_CODE_RVALUE_REF
1288 A C@t{++}11 rvalue reference type.
1289
1290 @item TYPE_CODE_CHAR
1291 A character type.
1292
1293 @item TYPE_CODE_BOOL
1294 A boolean type.
1295
1296 @item TYPE_CODE_COMPLEX
1297 A complex float type.
1298
1299 @item TYPE_CODE_TYPEDEF
1300 A typedef to some other type.
1301
1302 @item TYPE_CODE_NAMESPACE
1303 A C@t{++} namespace.
1304
1305 @item TYPE_CODE_DECFLOAT
1306 A decimal floating point type.
1307
1308 @item TYPE_CODE_INTERNAL_FUNCTION
1309 A function internal to @value{GDBN}. This is the type used to represent
1310 convenience functions (@pxref{Convenience Funs}).
1311
1312 @vindex TYPE_CODE_XMETHOD
1313 @item gdb.TYPE_CODE_XMETHOD
1314 A method internal to @value{GDBN}. This is the type used to represent
1315 xmethods (@pxref{Writing an Xmethod}).
1316
1317 @vindex TYPE_CODE_FIXED_POINT
1318 @item gdb.TYPE_CODE_FIXED_POINT
1319 A fixed-point number.
1320
1321 @vindex TYPE_CODE_NAMESPACE
1322 @item gdb.TYPE_CODE_NAMESPACE
1323 A Fortran namelist.
1324 @end vtable
1325
1326 Further support for types is provided in the @code{(gdb types)}
1327 Guile module (@pxref{Guile Types Module}).
1328
1329 @anchor{Fields of a type in Guile}
1330 Each field is represented as an object of type @code{<gdb:field>}.
1331
1332 The following field-related procedures are provided by the
1333 @code{(gdb)} module:
1334
1335 @deffn {Scheme Procedure} field? object
1336 Return @code{#t} if @var{object} is an object of type @code{<gdb:field>}.
1337 Otherwise return @code{#f}.
1338 @end deffn
1339
1340 @deffn {Scheme Procedure} field-name field
1341 Return the name of the field, or @code{#f} for anonymous fields.
1342 @end deffn
1343
1344 @deffn {Scheme Procedure} field-type field
1345 Return the type of the field. This is usually an instance of
1346 @code{<gdb:type>}, but it can be @code{#f} in some situations.
1347 @end deffn
1348
1349 @deffn {Scheme Procedure} field-enumval field
1350 Return the enum value represented by @code{<gdb:field>} @var{field}.
1351 @end deffn
1352
1353 @deffn {Scheme Procedure} field-bitpos field
1354 Return the bit position of @code{<gdb:field>} @var{field}.
1355 This attribute is not available for @code{static} fields (as in
1356 C@t{++}).
1357 @end deffn
1358
1359 @deffn {Scheme Procedure} field-bitsize field
1360 If the field is packed, or is a bitfield, return the size of
1361 @code{<gdb:field>} @var{field} in bits. Otherwise, zero is returned;
1362 in which case the field's size is given by its type.
1363 @end deffn
1364
1365 @deffn {Scheme Procedure} field-artificial? field
1366 Return @code{#t} if the field is artificial, usually meaning that
1367 it was provided by the compiler and not the user.
1368 Otherwise return @code{#f}.
1369 @end deffn
1370
1371 @deffn {Scheme Procedure} field-base-class? field
1372 Return @code{#t} if the field represents a base class of a C@t{++}
1373 structure.
1374 Otherwise return @code{#f}.
1375 @end deffn
1376
1377 @node Guile Pretty Printing API
1378 @subsubsection Guile Pretty Printing API
1379 @cindex guile pretty printing api
1380
1381 An example output is provided (@pxref{Pretty Printing}).
1382
1383 A pretty-printer is represented by an object of type <gdb:pretty-printer>.
1384 Pretty-printer objects are created with @code{make-pretty-printer}.
1385
1386 The following pretty-printer-related procedures are provided by the
1387 @code{(gdb)} module:
1388
1389 @deffn {Scheme Procedure} make-pretty-printer name lookup-function
1390 Return a @code{<gdb:pretty-printer>} object named @var{name}.
1391
1392 @var{lookup-function} is a function of one parameter: the value to
1393 be printed. If the value is handled by this pretty-printer, then
1394 @var{lookup-function} returns an object of type
1395 <gdb:pretty-printer-worker> to perform the actual pretty-printing.
1396 Otherwise @var{lookup-function} returns @code{#f}.
1397 @end deffn
1398
1399 @deffn {Scheme Procedure} pretty-printer? object
1400 Return @code{#t} if @var{object} is a @code{<gdb:pretty-printer>} object.
1401 Otherwise return @code{#f}.
1402 @end deffn
1403
1404 @deffn {Scheme Procedure} pretty-printer-enabled? pretty-printer
1405 Return @code{#t} if @var{pretty-printer} is enabled.
1406 Otherwise return @code{#f}.
1407 @end deffn
1408
1409 @deffn {Scheme Procedure} set-pretty-printer-enabled! pretty-printer flag
1410 Set the enabled flag of @var{pretty-printer} to @var{flag}.
1411 The value returned is unspecified.
1412 @end deffn
1413
1414 @deffn {Scheme Procedure} pretty-printers
1415 Return the list of global pretty-printers.
1416 @end deffn
1417
1418 @deffn {Scheme Procedure} set-pretty-printers! pretty-printers
1419 Set the list of global pretty-printers to @var{pretty-printers}.
1420 The value returned is unspecified.
1421 @end deffn
1422
1423 @deffn {Scheme Procedure} make-pretty-printer-worker display-hint to-string children
1424 Return an object of type @code{<gdb:pretty-printer-worker>}.
1425
1426 This function takes three parameters:
1427
1428 @table @samp
1429 @item display-hint
1430 @var{display-hint} provides a hint to @value{GDBN} or @value{GDBN}
1431 front end via MI to change the formatting of the value being printed.
1432 The value must be a string or @code{#f} (meaning there is no hint).
1433 Several values for @var{display-hint}
1434 are predefined by @value{GDBN}:
1435
1436 @table @samp
1437 @item array
1438 Indicate that the object being printed is ``array-like''. The CLI
1439 uses this to respect parameters such as @code{set print elements} and
1440 @code{set print array}.
1441
1442 @item map
1443 Indicate that the object being printed is ``map-like'', and that the
1444 children of this value can be assumed to alternate between keys and
1445 values.
1446
1447 @item string
1448 Indicate that the object being printed is ``string-like''. If the
1449 printer's @code{to-string} function returns a Guile string of some
1450 kind, then @value{GDBN} will call its internal language-specific
1451 string-printing function to format the string. For the CLI this means
1452 adding quotation marks, possibly escaping some characters, respecting
1453 @code{set print elements}, and the like.
1454 @end table
1455
1456 @item to-string
1457 @var{to-string} is either a function of one parameter, the
1458 @code{<gdb:pretty-printer-worker>} object, or @code{#f}.
1459
1460 When printing from the CLI, if the @code{to-string} method exists,
1461 then @value{GDBN} will prepend its result to the values returned by
1462 @code{children}. Exactly how this formatting is done is dependent on
1463 the display hint, and may change as more hints are added. Also,
1464 depending on the print settings (@pxref{Print Settings}), the CLI may
1465 print just the result of @code{to-string} in a stack trace, omitting
1466 the result of @code{children}.
1467
1468 If this method returns a string, it is printed verbatim.
1469
1470 Otherwise, if this method returns an instance of @code{<gdb:value>},
1471 then @value{GDBN} prints this value. This may result in a call to
1472 another pretty-printer.
1473
1474 If instead the method returns a Guile value which is convertible to a
1475 @code{<gdb:value>}, then @value{GDBN} performs the conversion and prints
1476 the resulting value. Again, this may result in a call to another
1477 pretty-printer. Guile scalars (integers, floats, and booleans) and
1478 strings are convertible to @code{<gdb:value>}; other types are not.
1479
1480 Finally, if this method returns @code{#f} then no further operations
1481 are peformed in this method and nothing is printed.
1482
1483 If the result is not one of these types, an exception is raised.
1484
1485 @var{to-string} may also be @code{#f} in which case it is left to
1486 @var{children} to print the value.
1487
1488 @item children
1489 @var{children} is either a function of one parameter, the
1490 @code{<gdb:pretty-printer-worker>} object, or @code{#f}.
1491
1492 @value{GDBN} will call this function on a pretty-printer to compute the
1493 children of the pretty-printer's value.
1494
1495 This function must return a <gdb:iterator> object.
1496 Each item returned by the iterator must be a tuple holding
1497 two elements. The first element is the ``name'' of the child; the
1498 second element is the child's value. The value can be any Guile
1499 object which is convertible to a @value{GDBN} value.
1500
1501 If @var{children} is @code{#f}, @value{GDBN} will act
1502 as though the value has no children.
1503
1504 Children may be hidden from display based on the value of @samp{set
1505 print max-depth} (@pxref{Print Settings}).
1506 @end table
1507 @end deffn
1508
1509 @value{GDBN} provides a function which can be used to look up the
1510 default pretty-printer for a @code{<gdb:value>}:
1511
1512 @deffn {Scheme Procedure} default-visualizer value
1513 This function takes a @code{<gdb:value>} object as an argument. If a
1514 pretty-printer for this value exists, then it is returned. If no such
1515 printer exists, then this returns @code{#f}.
1516 @end deffn
1517
1518 @node Selecting Guile Pretty-Printers
1519 @subsubsection Selecting Guile Pretty-Printers
1520 @cindex selecting guile pretty-printers
1521
1522 There are three sets of pretty-printers that @value{GDBN} searches:
1523
1524 @itemize @bullet
1525 @item
1526 Per-objfile list of pretty-printers (@pxref{Objfiles In Guile}).
1527 @item
1528 Per-progspace list of pretty-printers (@pxref{Progspaces In Guile}).
1529 @item
1530 The global list of pretty-printers (@pxref{Guile Pretty Printing API}).
1531 These printers are available when debugging any inferior.
1532 @end itemize
1533
1534 Pretty-printer lookup is done by passing the value to be printed to the
1535 lookup function of each enabled object in turn.
1536 Lookup stops when a lookup function returns a non-@code{#f} value
1537 or when the list is exhausted.
1538 Lookup functions must return either a @code{<gdb:pretty-printer-worker>}
1539 object or @code{#f}. Otherwise an exception is thrown.
1540
1541 @value{GDBN} first checks the result of @code{objfile-pretty-printers}
1542 of each @code{<gdb:objfile>} in the current program space and iteratively
1543 calls each enabled lookup function in the list for that @code{<gdb:objfile>}
1544 until a non-@code{#f} object is returned.
1545 If no pretty-printer is found in the objfile lists, @value{GDBN} then
1546 searches the result of @code{progspace-pretty-printers} of the current
1547 program space, calling each enabled function until a non-@code{#f} object
1548 is returned.
1549 After these lists have been exhausted, it tries the global pretty-printers
1550 list, obtained with @code{pretty-printers}, again calling each enabled
1551 function until a non-@code{#f} object is returned.
1552
1553 The order in which the objfiles are searched is not specified. For a
1554 given list, functions are always invoked from the head of the list,
1555 and iterated over sequentially until the end of the list, or a
1556 @code{<gdb:pretty-printer-worker>} object is returned.
1557
1558 For various reasons a pretty-printer may not work.
1559 For example, the underlying data structure may have changed and
1560 the pretty-printer is out of date.
1561
1562 The consequences of a broken pretty-printer are severe enough that
1563 @value{GDBN} provides support for enabling and disabling individual
1564 printers. For example, if @code{print frame-arguments} is on,
1565 a backtrace can become highly illegible if any argument is printed
1566 with a broken printer.
1567
1568 Pretty-printers are enabled and disabled from Scheme by calling
1569 @code{set-pretty-printer-enabled!}.
1570 @xref{Guile Pretty Printing API}.
1571
1572 @node Writing a Guile Pretty-Printer
1573 @subsubsection Writing a Guile Pretty-Printer
1574 @cindex writing a Guile pretty-printer
1575
1576 A pretty-printer consists of two basic parts: a lookup function to determine
1577 if the type is supported, and the printer itself.
1578
1579 Here is an example showing how a @code{std::string} printer might be
1580 written. @xref{Guile Pretty Printing API}, for details.
1581
1582 @smallexample
1583 (define (make-my-string-printer value)
1584 "Print a my::string string"
1585 (make-pretty-printer-worker
1586 "string"
1587 (lambda (printer)
1588 (value-field value "_data"))
1589 #f))
1590 @end smallexample
1591
1592 And here is an example showing how a lookup function for the printer
1593 example above might be written.
1594
1595 @smallexample
1596 (define (str-lookup-function pretty-printer value)
1597 (let ((tag (type-tag (value-type value))))
1598 (and tag
1599 (string-prefix? "std::string<" tag)
1600 (make-my-string-printer value))))
1601 @end smallexample
1602
1603 Then to register this printer in the global printer list:
1604
1605 @smallexample
1606 (append-pretty-printer!
1607 (make-pretty-printer "my-string" str-lookup-function))
1608 @end smallexample
1609
1610 The example lookup function extracts the value's type, and attempts to
1611 match it to a type that it can pretty-print. If it is a type the
1612 printer can pretty-print, it will return a <gdb:pretty-printer-worker> object.
1613 If not, it returns @code{#f}.
1614
1615 We recommend that you put your core pretty-printers into a Guile
1616 package. If your pretty-printers are for use with a library, we
1617 further recommend embedding a version number into the package name.
1618 This practice will enable @value{GDBN} to load multiple versions of
1619 your pretty-printers at the same time, because they will have
1620 different names.
1621
1622 You should write auto-loaded code (@pxref{Guile Auto-loading}) such that it
1623 can be evaluated multiple times without changing its meaning. An
1624 ideal auto-load file will consist solely of @code{import}s of your
1625 printer modules, followed by a call to a register pretty-printers with
1626 the current objfile.
1627
1628 Taken as a whole, this approach will scale nicely to multiple
1629 inferiors, each potentially using a different library version.
1630 Embedding a version number in the Guile package name will ensure that
1631 @value{GDBN} is able to load both sets of printers simultaneously.
1632 Then, because the search for pretty-printers is done by objfile, and
1633 because your auto-loaded code took care to register your library's
1634 printers with a specific objfile, @value{GDBN} will find the correct
1635 printers for the specific version of the library used by each
1636 inferior.
1637
1638 To continue the @code{my::string} example,
1639 this code might appear in @code{(my-project my-library v1)}:
1640
1641 @smallexample
1642 (use-modules (gdb))
1643 (define (register-printers objfile)
1644 (append-objfile-pretty-printer!
1645 (make-pretty-printer "my-string" str-lookup-function)))
1646 @end smallexample
1647
1648 @noindent
1649 And then the corresponding contents of the auto-load file would be:
1650
1651 @smallexample
1652 (use-modules (gdb) (my-project my-library v1))
1653 (register-printers (current-objfile))
1654 @end smallexample
1655
1656 The previous example illustrates a basic pretty-printer.
1657 There are a few things that can be improved on.
1658 The printer only handles one type, whereas a library typically has
1659 several types. One could install a lookup function for each desired type
1660 in the library, but one could also have a single lookup function recognize
1661 several types. The latter is the conventional way this is handled.
1662 If a pretty-printer can handle multiple data types, then its
1663 @dfn{subprinters} are the printers for the individual data types.
1664
1665 The @code{(gdb printing)} module provides a formal way of solving this
1666 problem (@pxref{Guile Printing Module}).
1667 Here is another example that handles multiple types.
1668
1669 These are the types we are going to pretty-print:
1670
1671 @smallexample
1672 struct foo @{ int a, b; @};
1673 struct bar @{ struct foo x, y; @};
1674 @end smallexample
1675
1676 Here are the printers:
1677
1678 @smallexample
1679 (define (make-foo-printer value)
1680 "Print a foo object"
1681 (make-pretty-printer-worker
1682 "foo"
1683 (lambda (printer)
1684 (format #f "a=<~a> b=<~a>"
1685 (value-field value "a") (value-field value "a")))
1686 #f))
1687
1688 (define (make-bar-printer value)
1689 "Print a bar object"
1690 (make-pretty-printer-worker
1691 "foo"
1692 (lambda (printer)
1693 (format #f "x=<~a> y=<~a>"
1694 (value-field value "x") (value-field value "y")))
1695 #f))
1696 @end smallexample
1697
1698 This example doesn't need a lookup function, that is handled by the
1699 @code{(gdb printing)} module. Instead a function is provided to build up
1700 the object that handles the lookup.
1701
1702 @smallexample
1703 (use-modules (gdb printing))
1704
1705 (define (build-pretty-printer)
1706 (let ((pp (make-pretty-printer-collection "my-library")))
1707 (pp-collection-add-tag-printer "foo" make-foo-printer)
1708 (pp-collection-add-tag-printer "bar" make-bar-printer)
1709 pp))
1710 @end smallexample
1711
1712 And here is the autoload support:
1713
1714 @smallexample
1715 (use-modules (gdb) (my-library))
1716 (append-objfile-pretty-printer! (current-objfile) (build-pretty-printer))
1717 @end smallexample
1718
1719 Finally, when this printer is loaded into @value{GDBN}, here is the
1720 corresponding output of @samp{info pretty-printer}:
1721
1722 @smallexample
1723 (gdb) info pretty-printer
1724 my_library.so:
1725 my-library
1726 foo
1727 bar
1728 @end smallexample
1729
1730 @node Commands In Guile
1731 @subsubsection Commands In Guile
1732
1733 @cindex commands in guile
1734 @cindex guile commands
1735 You can implement new @value{GDBN} CLI commands in Guile. A CLI
1736 command object is created with the @code{make-command} Guile function,
1737 and added to @value{GDBN} with the @code{register-command!} Guile function.
1738 This two-step approach is taken to separate out the side-effect of adding
1739 the command to @value{GDBN} from @code{make-command}.
1740
1741 There is no support for multi-line commands, that is commands that
1742 consist of multiple lines and are terminated with @code{end}.
1743
1744 @deffn {Scheme Procedure} make-command name @w{@r{[}#:invoke invoke@r{]}} @
1745 @w{@r{[}#:command-class command-class@r{]}} @
1746 @w{@r{[}#:completer-class completer@r{]}} @
1747 @w{@r{[}#:prefix? prefix@r{]}} @w{@r{[}#:doc doc-string@r{]}}
1748
1749 The argument @var{name} is the name of the command. If @var{name} consists of
1750 multiple words, then the initial words are looked for as prefix
1751 commands. In this case, if one of the prefix commands does not exist,
1752 an exception is raised.
1753
1754 The result is the @code{<gdb:command>} object representing the command.
1755 The command is not usable until it has been registered with @value{GDBN}
1756 with @code{register-command!}.
1757
1758 The rest of the arguments are optional.
1759
1760 The argument @var{invoke} is a procedure of three arguments: @var{self},
1761 @var{args} and @var{from-tty}. The argument @var{self} is the
1762 @code{<gdb:command>} object representing the command.
1763 The argument @var{args} is a string representing the arguments passed to
1764 the command, after leading and trailing whitespace has been stripped.
1765 The argument @var{from-tty} is a boolean flag and specifies whether the
1766 command should consider itself to have been originated from the user
1767 invoking it interactively. If this function throws an exception,
1768 it is turned into a @value{GDBN} @code{error} call.
1769 Otherwise, the return value is ignored.
1770
1771 The argument @var{command-class} is one of the @samp{COMMAND_} constants
1772 defined below. This argument tells @value{GDBN} how to categorize the
1773 new command in the help system. The default is @code{COMMAND_NONE}.
1774
1775 The argument @var{completer} is either @code{#f}, one of the @samp{COMPLETE_}
1776 constants defined below, or a procedure, also defined below.
1777 This argument tells @value{GDBN} how to perform completion
1778 for this command. If not provided or if the value is @code{#f},
1779 then no completion is performed on the command.
1780
1781 The argument @var{prefix} is a boolean flag indicating whether the new
1782 command is a prefix command; sub-commands of this command may be
1783 registered.
1784
1785 The argument @var{doc-string} is help text for the new command.
1786 If no documentation string is provided, the default value ``This command is
1787 not documented.'' is used.
1788 @end deffn
1789
1790 @deffn {Scheme Procedure} register-command! command
1791 Add @var{command}, a @code{<gdb:command>} object, to @value{GDBN}'s
1792 list of commands.
1793 It is an error to register a command more than once.
1794 The result is unspecified.
1795 @end deffn
1796
1797 @deffn {Scheme Procedure} command? object
1798 Return @code{#t} if @var{object} is a @code{<gdb:command>} object.
1799 Otherwise return @code{#f}.
1800 @end deffn
1801
1802 @cindex don't repeat Guile command
1803 @deffn {Scheme Procedure} dont-repeat
1804 By default, a @value{GDBN} command is repeated when the user enters a
1805 blank line at the command prompt. A command can suppress this
1806 behavior by invoking the @code{dont-repeat} function. This is similar
1807 to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
1808 @end deffn
1809
1810 @deffn {Scheme Procedure} string->argv string
1811 Convert a string to a list of strings split up according to
1812 @value{GDBN}'s argv parsing rules.
1813 It is recommended to use this for consistency.
1814 Arguments are separated by spaces and may be quoted.
1815 Example:
1816
1817 @smallexample
1818 scheme@@(guile-user)> (string->argv "1 2\\ \\\"3 '4 \"5' \"6 '7\"")
1819 $1 = ("1" "2 \"3" "4 \"5" "6 '7")
1820 @end smallexample
1821 @end deffn
1822
1823 @deffn {Scheme Procedure} throw-user-error message . args
1824 Throw a @code{gdb:user-error} exception.
1825 The argument @var{message} is the error message as a format string, like the
1826 @var{fmt} argument to the @code{format} Scheme function.
1827 @xref{Formatted Output,,, guile, GNU Guile Reference Manual}.
1828 The argument @var{args} is a list of the optional arguments of @var{message}.
1829
1830 This is used when the command detects a user error of some kind,
1831 say a bad command argument.
1832
1833 @smallexample
1834 (gdb) guile (use-modules (gdb))
1835 (gdb) guile
1836 (register-command! (make-command "test-user-error"
1837 #:command-class COMMAND_OBSCURE
1838 #:invoke (lambda (self arg from-tty)
1839 (throw-user-error "Bad argument ~a" arg))))
1840 end
1841 (gdb) test-user-error ugh
1842 ERROR: Bad argument ugh
1843 @end smallexample
1844 @end deffn
1845
1846 @cindex completion of Guile commands
1847 @deffn completer self text word
1848 If the @var{completer} option to @code{make-command} is a procedure,
1849 it takes three arguments: @var{self} which is the @code{<gdb:command>}
1850 object, and @var{text} and @var{word} which are both strings.
1851 The argument @var{text} holds the complete command line up to the cursor's
1852 location. The argument @var{word} holds the last word of the command line;
1853 this is computed using a word-breaking heuristic.
1854
1855 All forms of completion are handled by this function, that is,
1856 the @key{TAB} and @key{M-?} key bindings (@pxref{Completion}),
1857 and the @code{complete} command (@pxref{Help, complete}).
1858
1859 This procedure can return several kinds of values:
1860
1861 @itemize @bullet
1862 @item
1863 If the return value is a list, the contents of the list are used as the
1864 completions. It is up to @var{completer} to ensure that the
1865 contents actually do complete the word. An empty list is
1866 allowed, it means that there were no completions available. Only
1867 string elements of the list are used; other elements in the
1868 list are ignored.
1869
1870 @item
1871 If the return value is a @code{<gdb:iterator>} object, it is iterated over to
1872 obtain the completions. It is up to @code{completer-procedure} to ensure
1873 that the results actually do complete the word. Only
1874 string elements of the result are used; other elements in the
1875 sequence are ignored.
1876
1877 @item
1878 All other results are treated as though there were no available
1879 completions.
1880 @end itemize
1881 @end deffn
1882
1883 When a new command is registered, it will have been declared as a member of
1884 some general class of commands. This is used to classify top-level
1885 commands in the on-line help system; note that prefix commands are not
1886 listed under their own category but rather that of their top-level
1887 command. The available classifications are represented by constants
1888 defined in the @code{gdb} module:
1889
1890 @vtable @code
1891 @item COMMAND_NONE
1892 The command does not belong to any particular class. A command in
1893 this category will not be displayed in any of the help categories.
1894 This is the default.
1895
1896 @item COMMAND_RUNNING
1897 The command is related to running the inferior. For example,
1898 @code{start}, @code{step}, and @code{continue} are in this category.
1899 Type @kbd{help running} at the @value{GDBN} prompt to see a list of
1900 commands in this category.
1901
1902 @item COMMAND_DATA
1903 The command is related to data or variables. For example,
1904 @code{call}, @code{find}, and @code{print} are in this category. Type
1905 @kbd{help data} at the @value{GDBN} prompt to see a list of commands
1906 in this category.
1907
1908 @item COMMAND_STACK
1909 The command has to do with manipulation of the stack. For example,
1910 @code{backtrace}, @code{frame}, and @code{return} are in this
1911 category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
1912 list of commands in this category.
1913
1914 @item COMMAND_FILES
1915 This class is used for file-related commands. For example,
1916 @code{file}, @code{list} and @code{section} are in this category.
1917 Type @kbd{help files} at the @value{GDBN} prompt to see a list of
1918 commands in this category.
1919
1920 @item COMMAND_SUPPORT
1921 This should be used for ``support facilities'', generally meaning
1922 things that are useful to the user when interacting with @value{GDBN},
1923 but not related to the state of the inferior. For example,
1924 @code{help}, @code{make}, and @code{shell} are in this category. Type
1925 @kbd{help support} at the @value{GDBN} prompt to see a list of
1926 commands in this category.
1927
1928 @item COMMAND_STATUS
1929 The command is an @samp{info}-related command, that is, related to the
1930 state of @value{GDBN} itself. For example, @code{info}, @code{macro},
1931 and @code{show} are in this category. Type @kbd{help status} at the
1932 @value{GDBN} prompt to see a list of commands in this category.
1933
1934 @item COMMAND_BREAKPOINTS
1935 The command has to do with breakpoints. For example, @code{break},
1936 @code{clear}, and @code{delete} are in this category. Type @kbd{help
1937 breakpoints} at the @value{GDBN} prompt to see a list of commands in
1938 this category.
1939
1940 @item COMMAND_TRACEPOINTS
1941 The command has to do with tracepoints. For example, @code{trace},
1942 @code{actions}, and @code{tfind} are in this category. Type
1943 @kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
1944 commands in this category.
1945
1946 @item COMMAND_USER
1947 The command is a general purpose command for the user, and typically
1948 does not fit in one of the other categories.
1949 Type @kbd{help user-defined} at the @value{GDBN} prompt to see
1950 a list of commands in this category, as well as the list of gdb macros
1951 (@pxref{Sequences}).
1952
1953 @item COMMAND_OBSCURE
1954 The command is only used in unusual circumstances, or is not of
1955 general interest to users. For example, @code{checkpoint},
1956 @code{fork}, and @code{stop} are in this category. Type @kbd{help
1957 obscure} at the @value{GDBN} prompt to see a list of commands in this
1958 category.
1959
1960 @item COMMAND_MAINTENANCE
1961 The command is only useful to @value{GDBN} maintainers. The
1962 @code{maintenance} and @code{flushregs} commands are in this category.
1963 Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
1964 commands in this category.
1965 @end vtable
1966
1967 A new command can use a predefined completion function, either by
1968 specifying it via an argument at initialization, or by returning it
1969 from the @code{completer} procedure. These predefined completion
1970 constants are all defined in the @code{gdb} module:
1971
1972 @vtable @code
1973 @item COMPLETE_NONE
1974 This constant means that no completion should be done.
1975
1976 @item COMPLETE_FILENAME
1977 This constant means that filename completion should be performed.
1978
1979 @item COMPLETE_LOCATION
1980 This constant means that location completion should be done.
1981 @xref{Location Specifications}.
1982
1983 @item COMPLETE_COMMAND
1984 This constant means that completion should examine @value{GDBN}
1985 command names.
1986
1987 @item COMPLETE_SYMBOL
1988 This constant means that completion should be done using symbol names
1989 as the source.
1990
1991 @item COMPLETE_EXPRESSION
1992 This constant means that completion should be done on expressions.
1993 Often this means completing on symbol names, but some language
1994 parsers also have support for completing on field names.
1995 @end vtable
1996
1997 The following code snippet shows how a trivial CLI command can be
1998 implemented in Guile:
1999
2000 @smallexample
2001 (gdb) guile
2002 (register-command! (make-command "hello-world"
2003 #:command-class COMMAND_USER
2004 #:doc "Greet the whole world."
2005 #:invoke (lambda (self args from-tty) (display "Hello, World!\n"))))
2006 end
2007 (gdb) hello-world
2008 Hello, World!
2009 @end smallexample
2010
2011 @node Parameters In Guile
2012 @subsubsection Parameters In Guile
2013
2014 @cindex parameters in guile
2015 @cindex guile parameters
2016 @tindex Parameter
2017 You can implement new @value{GDBN} @dfn{parameters} using Guile
2018 @footnote{Note that @value{GDBN} parameters must not be confused with
2019 Guile’s parameter objects (@pxref{Parameters,,, guile, GNU Guile
2020 Reference Manual}).}.
2021
2022 There are many parameters that already exist and can be set in
2023 @value{GDBN}. Two examples are: @code{set follow-fork} and
2024 @code{set charset}. Setting these parameters influences certain
2025 behavior in @value{GDBN}. Similarly, you can define parameters that
2026 can be used to influence behavior in custom Guile scripts and commands.
2027
2028 A new parameter is defined with the @code{make-parameter} Guile function,
2029 and added to @value{GDBN} with the @code{register-parameter!} Guile function.
2030 This two-step approach is taken to separate out the side-effect of adding
2031 the parameter to @value{GDBN} from @code{make-parameter}.
2032
2033 Parameters are exposed to the user via the @code{set} and
2034 @code{show} commands. @xref{Help}.
2035
2036 @deffn {Scheme Procedure} make-parameter name @
2037 @w{@r{[}#:command-class command-class@r{]}} @
2038 @w{@r{[}#:parameter-type parameter-type@r{]}} @
2039 @w{@r{[}#:enum-list enum-list@r{]}} @w{@r{[}#:set-func set-func@r{]}} @
2040 @w{@r{[}#:show-func show-func@r{]}} @w{@r{[}#:doc doc@r{]}} @
2041 @w{@r{[}#:set-doc set-doc@r{]}} @w{@r{[}#:show-doc show-doc@r{]}} @
2042 @w{@r{[}#:initial-value initial-value@r{]}}
2043
2044 The argument @var{name} is the name of the new parameter. If @var{name}
2045 consists of multiple words, then the initial words are looked for as prefix
2046 parameters. An example of this can be illustrated with the
2047 @code{set print} set of parameters. If @var{name} is
2048 @code{print foo}, then @code{print} will be searched as the prefix
2049 parameter. In this case the parameter can subsequently be accessed in
2050 @value{GDBN} as @code{set print foo}.
2051 If @var{name} consists of multiple words, and no prefix parameter group
2052 can be found, an exception is raised.
2053
2054 The result is the @code{<gdb:parameter>} object representing the parameter.
2055 The parameter is not usable until it has been registered with @value{GDBN}
2056 with @code{register-parameter!}.
2057
2058 The rest of the arguments are optional.
2059
2060 The argument @var{command-class} should be one of the @samp{COMMAND_} constants
2061 (@pxref{Commands In Guile}). This argument tells @value{GDBN} how to
2062 categorize the new parameter in the help system.
2063 The default is @code{COMMAND_NONE}.
2064
2065 The argument @var{parameter-type} should be one of the @samp{PARAM_} constants
2066 defined below. This argument tells @value{GDBN} the type of the new
2067 parameter; this information is used for input validation and
2068 completion. The default is @code{PARAM_BOOLEAN}.
2069
2070 If @var{parameter-type} is @code{PARAM_ENUM}, then
2071 @var{enum-list} must be a list of strings. These strings
2072 represent the possible values for the parameter.
2073
2074 If @var{parameter-type} is not @code{PARAM_ENUM}, then the presence
2075 of @var{enum-list} will cause an exception to be thrown.
2076
2077 The argument @var{set-func} is a function of one argument: @var{self} which
2078 is the @code{<gdb:parameter>} object representing the parameter.
2079 @value{GDBN} will call this function when a @var{parameter}'s value has
2080 been changed via the @code{set} API (for example, @kbd{set foo off}).
2081 The value of the parameter has already been set to the new value.
2082 This function must return a string to be displayed to the user.
2083 @value{GDBN} will add a trailing newline if the string is non-empty.
2084 @value{GDBN} generally doesn't print anything when a parameter is set,
2085 thus typically this function should return @samp{""}.
2086 A non-empty string result should typically be used for displaying warnings
2087 and errors.
2088
2089 The argument @var{show-func} is a function of two arguments: @var{self} which
2090 is the @code{<gdb:parameter>} object representing the parameter, and
2091 @var{svalue} which is the string representation of the current value.
2092 @value{GDBN} will call this function when a @var{parameter}'s
2093 @code{show} API has been invoked (for example, @kbd{show foo}).
2094 This function must return a string, and will be displayed to the user.
2095 @value{GDBN} will add a trailing newline.
2096
2097 The argument @var{doc} is the help text for the new parameter.
2098 If there is no documentation string, a default value is used.
2099
2100 The argument @var{set-doc} is the help text for this parameter's
2101 @code{set} command.
2102
2103 The argument @var{show-doc} is the help text for this parameter's
2104 @code{show} command.
2105
2106 The argument @var{initial-value} specifies the initial value of the parameter.
2107 If it is a function, it takes one parameter, the @code{<gdb:parameter>}
2108 object and its result is used as the initial value of the parameter.
2109 The initial value must be valid for the parameter type,
2110 otherwise an exception is thrown.
2111 @end deffn
2112
2113 @deffn {Scheme Procedure} register-parameter! parameter
2114 Add @var{parameter}, a @code{<gdb:parameter>} object, to @value{GDBN}'s
2115 list of parameters.
2116 It is an error to register a parameter more than once.
2117 The result is unspecified.
2118 @end deffn
2119
2120 @deffn {Scheme Procedure} parameter? object
2121 Return @code{#t} if @var{object} is a @code{<gdb:parameter>} object.
2122 Otherwise return @code{#f}.
2123 @end deffn
2124
2125 @deffn {Scheme Procedure} parameter-value parameter
2126 Return the value of @var{parameter} which may either be
2127 a @code{<gdb:parameter>} object or a string naming the parameter.
2128 @end deffn
2129
2130 @deffn {Scheme Procedure} set-parameter-value! parameter new-value
2131 Assign @var{parameter} the value of @var{new-value}.
2132 The argument @var{parameter} must be an object of type @code{<gdb:parameter>}.
2133 @value{GDBN} does validation when assignments are made.
2134 @end deffn
2135
2136 When a new parameter is defined, its type must be specified. The
2137 available types are represented by constants defined in the @code{gdb}
2138 module:
2139
2140 @vtable @code
2141 @item PARAM_BOOLEAN
2142 The value is a plain boolean. The Guile boolean values, @code{#t}
2143 and @code{#f} are the only valid values.
2144
2145 @item PARAM_AUTO_BOOLEAN
2146 The value has three possible states: true, false, and @samp{auto}. In
2147 Guile, true and false are represented using boolean constants, and
2148 @samp{auto} is represented using @code{#:auto}.
2149
2150 @item PARAM_UINTEGER
2151 The value is an unsigned integer. The value of @code{#:unlimited}
2152 should be interpreted to mean ``unlimited'', and the value of @samp{0}
2153 is reserved and should not be used.
2154
2155 @item PARAM_ZINTEGER
2156 The value is an integer.
2157
2158 @item PARAM_ZUINTEGER
2159 The value is an unsigned integer.
2160
2161 @item PARAM_ZUINTEGER_UNLIMITED
2162 The value is an integer in the range @samp{[0, INT_MAX]}. The value
2163 of @code{#:unlimited} means ``unlimited'', the value of @samp{-1} is
2164 reserved and should not be used, and other negative numbers are not
2165 allowed.
2166
2167 @item PARAM_STRING
2168 The value is a string. When the user modifies the string, any escape
2169 sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
2170 translated into corresponding characters and encoded into the current
2171 host charset.
2172
2173 @item PARAM_STRING_NOESCAPE
2174 The value is a string. When the user modifies the string, escapes are
2175 passed through untranslated.
2176
2177 @item PARAM_OPTIONAL_FILENAME
2178 The value is a either a filename (a string), or @code{#f}.
2179
2180 @item PARAM_FILENAME
2181 The value is a filename. This is just like
2182 @code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
2183
2184 @item PARAM_ENUM
2185 The value is a string, which must be one of a collection of string
2186 constants provided when the parameter is created.
2187 @end vtable
2188
2189 @node Progspaces In Guile
2190 @subsubsection Program Spaces In Guile
2191
2192 @cindex progspaces in guile
2193 @tindex <gdb:progspace>
2194 A program space, or @dfn{progspace}, represents a symbolic view
2195 of an address space.
2196 It consists of all of the objfiles of the program.
2197 @xref{Objfiles In Guile}.
2198 @xref{Inferiors Connections and Programs, program spaces}, for more details
2199 about program spaces.
2200
2201 Each progspace is represented by an instance of the @code{<gdb:progspace>}
2202 smob. @xref{GDB Scheme Data Types}.
2203
2204 The following progspace-related functions are available in the
2205 @code{(gdb)} module:
2206
2207 @deffn {Scheme Procedure} progspace? object
2208 Return @code{#t} if @var{object} is a @code{<gdb:progspace>} object.
2209 Otherwise return @code{#f}.
2210 @end deffn
2211
2212 @deffn {Scheme Procedure} progspace-valid? progspace
2213 Return @code{#t} if @var{progspace} is valid, @code{#f} if not.
2214 A @code{<gdb:progspace>} object can become invalid
2215 if the program it refers to is not loaded in @value{GDBN} any longer.
2216 @end deffn
2217
2218 @deffn {Scheme Procedure} current-progspace
2219 This function returns the program space of the currently selected inferior.
2220 There is always a current progspace, this never returns @code{#f}.
2221 @xref{Inferiors Connections and Programs}.
2222 @end deffn
2223
2224 @deffn {Scheme Procedure} progspaces
2225 Return a list of all the progspaces currently known to @value{GDBN}.
2226 @end deffn
2227
2228 @deffn {Scheme Procedure} progspace-filename progspace
2229 Return the absolute file name of @var{progspace} as a string.
2230 This is the name of the file passed as the argument to the @code{file}
2231 or @code{symbol-file} commands.
2232 If the program space does not have an associated file name,
2233 then @code{#f} is returned. This occurs, for example, when @value{GDBN}
2234 is started without a program to debug.
2235
2236 A @code{gdb:invalid-object-error} exception is thrown if @var{progspace}
2237 is invalid.
2238 @end deffn
2239
2240 @deffn {Scheme Procedure} progspace-objfiles progspace
2241 Return the list of objfiles of @var{progspace}.
2242 The order of objfiles in the result is arbitrary.
2243 Each element is an object of type @code{<gdb:objfile>}.
2244 @xref{Objfiles In Guile}.
2245
2246 A @code{gdb:invalid-object-error} exception is thrown if @var{progspace}
2247 is invalid.
2248 @end deffn
2249
2250 @deffn {Scheme Procedure} progspace-pretty-printers progspace
2251 Return the list of pretty-printers of @var{progspace}.
2252 Each element is an object of type @code{<gdb:pretty-printer>}.
2253 @xref{Guile Pretty Printing API}, for more information.
2254 @end deffn
2255
2256 @deffn {Scheme Procedure} set-progspace-pretty-printers! progspace printer-list
2257 Set the list of registered @code{<gdb:pretty-printer>} objects for
2258 @var{progspace} to @var{printer-list}.
2259 @xref{Guile Pretty Printing API}, for more information.
2260 @end deffn
2261
2262 @node Objfiles In Guile
2263 @subsubsection Objfiles In Guile
2264
2265 @cindex objfiles in guile
2266 @tindex <gdb:objfile>
2267 @value{GDBN} loads symbols for an inferior from various
2268 symbol-containing files (@pxref{Files}). These include the primary
2269 executable file, any shared libraries used by the inferior, and any
2270 separate debug info files (@pxref{Separate Debug Files}).
2271 @value{GDBN} calls these symbol-containing files @dfn{objfiles}.
2272
2273 Each objfile is represented as an object of type @code{<gdb:objfile>}.
2274
2275 The following objfile-related procedures are provided by the
2276 @code{(gdb)} module:
2277
2278 @deffn {Scheme Procedure} objfile? object
2279 Return @code{#t} if @var{object} is a @code{<gdb:objfile>} object.
2280 Otherwise return @code{#f}.
2281 @end deffn
2282
2283 @deffn {Scheme Procedure} objfile-valid? objfile
2284 Return @code{#t} if @var{objfile} is valid, @code{#f} if not.
2285 A @code{<gdb:objfile>} object can become invalid
2286 if the object file it refers to is not loaded in @value{GDBN} any
2287 longer. All other @code{<gdb:objfile>} procedures will throw an exception
2288 if it is invalid at the time the procedure is called.
2289 @end deffn
2290
2291 @deffn {Scheme Procedure} objfile-filename objfile
2292 Return the file name of @var{objfile} as a string,
2293 with symbolic links resolved.
2294 @end deffn
2295
2296 @deffn {Scheme Procedure} objfile-progspace objfile
2297 Return the @code{<gdb:progspace>} that this object file lives in.
2298 @xref{Progspaces In Guile}, for more on progspaces.
2299 @end deffn
2300
2301 @deffn {Scheme Procedure} objfile-pretty-printers objfile
2302 Return the list of registered @code{<gdb:pretty-printer>} objects for
2303 @var{objfile}. @xref{Guile Pretty Printing API}, for more information.
2304 @end deffn
2305
2306 @deffn {Scheme Procedure} set-objfile-pretty-printers! objfile printer-list
2307 Set the list of registered @code{<gdb:pretty-printer>} objects for
2308 @var{objfile} to @var{printer-list}. The
2309 @var{printer-list} must be a list of @code{<gdb:pretty-printer>} objects.
2310 @xref{Guile Pretty Printing API}, for more information.
2311 @end deffn
2312
2313 @deffn {Scheme Procedure} current-objfile
2314 When auto-loading a Guile script (@pxref{Guile Auto-loading}), @value{GDBN}
2315 sets the ``current objfile'' to the corresponding objfile. This
2316 function returns the current objfile. If there is no current objfile,
2317 this function returns @code{#f}.
2318 @end deffn
2319
2320 @deffn {Scheme Procedure} objfiles
2321 Return a list of all the objfiles in the current program space.
2322 @end deffn
2323
2324 @node Frames In Guile
2325 @subsubsection Accessing inferior stack frames from Guile.
2326
2327 @cindex frames in guile
2328 When the debugged program stops, @value{GDBN} is able to analyze its call
2329 stack (@pxref{Frames,,Stack frames}). The @code{<gdb:frame>} class
2330 represents a frame in the stack. A @code{<gdb:frame>} object is only valid
2331 while its corresponding frame exists in the inferior's stack. If you try
2332 to use an invalid frame object, @value{GDBN} will throw a
2333 @code{gdb:invalid-object} exception (@pxref{Guile Exception Handling}).
2334
2335 Two @code{<gdb:frame>} objects can be compared for equality with the
2336 @code{equal?} function, like:
2337
2338 @smallexample
2339 (@value{GDBP}) guile (equal? (newest-frame) (selected-frame))
2340 #t
2341 @end smallexample
2342
2343 The following frame-related procedures are provided by the
2344 @code{(gdb)} module:
2345
2346 @deffn {Scheme Procedure} frame? object
2347 Return @code{#t} if @var{object} is a @code{<gdb:frame>} object.
2348 Otherwise return @code{#f}.
2349 @end deffn
2350
2351 @deffn {Scheme Procedure} frame-valid? frame
2352 Returns @code{#t} if @var{frame} is valid, @code{#f} if not.
2353 A frame object can become invalid if the frame it refers to doesn't
2354 exist anymore in the inferior. All @code{<gdb:frame>} procedures will throw
2355 an exception if the frame is invalid at the time the procedure is called.
2356 @end deffn
2357
2358 @deffn {Scheme Procedure} frame-name frame
2359 Return the function name of @var{frame}, or @code{#f} if it can't be
2360 obtained.
2361 @end deffn
2362
2363 @deffn {Scheme Procedure} frame-arch frame
2364 Return the @code{<gdb:architecture>} object corresponding to @var{frame}'s
2365 architecture. @xref{Architectures In Guile}.
2366 @end deffn
2367
2368 @deffn {Scheme Procedure} frame-type frame
2369 Return the type of @var{frame}. The value can be one of:
2370
2371 @table @code
2372 @item NORMAL_FRAME
2373 An ordinary stack frame.
2374
2375 @item DUMMY_FRAME
2376 A fake stack frame that was created by @value{GDBN} when performing an
2377 inferior function call.
2378
2379 @item INLINE_FRAME
2380 A frame representing an inlined function. The function was inlined
2381 into a @code{NORMAL_FRAME} that is older than this one.
2382
2383 @item TAILCALL_FRAME
2384 A frame representing a tail call. @xref{Tail Call Frames}.
2385
2386 @item SIGTRAMP_FRAME
2387 A signal trampoline frame. This is the frame created by the OS when
2388 it calls into a signal handler.
2389
2390 @item ARCH_FRAME
2391 A fake stack frame representing a cross-architecture call.
2392
2393 @item SENTINEL_FRAME
2394 This is like @code{NORMAL_FRAME}, but it is only used for the
2395 newest frame.
2396 @end table
2397 @end deffn
2398
2399 @deffn {Scheme Procedure} frame-unwind-stop-reason frame
2400 Return an integer representing the reason why it's not possible to find
2401 more frames toward the outermost frame. Use
2402 @code{unwind-stop-reason-string} to convert the value returned by this
2403 function to a string. The value can be one of:
2404
2405 @table @code
2406 @item FRAME_UNWIND_NO_REASON
2407 No particular reason (older frames should be available).
2408
2409 @item FRAME_UNWIND_NULL_ID
2410 The previous frame's analyzer returns an invalid result.
2411
2412 @item FRAME_UNWIND_OUTERMOST
2413 This frame is the outermost.
2414
2415 @item FRAME_UNWIND_UNAVAILABLE
2416 Cannot unwind further, because that would require knowing the
2417 values of registers or memory that have not been collected.
2418
2419 @item FRAME_UNWIND_INNER_ID
2420 This frame ID looks like it ought to belong to a NEXT frame,
2421 but we got it for a PREV frame. Normally, this is a sign of
2422 unwinder failure. It could also indicate stack corruption.
2423
2424 @item FRAME_UNWIND_SAME_ID
2425 This frame has the same ID as the previous one. That means
2426 that unwinding further would almost certainly give us another
2427 frame with exactly the same ID, so break the chain. Normally,
2428 this is a sign of unwinder failure. It could also indicate
2429 stack corruption.
2430
2431 @item FRAME_UNWIND_NO_SAVED_PC
2432 The frame unwinder did not find any saved PC, but we needed
2433 one to unwind further.
2434
2435 @item FRAME_UNWIND_MEMORY_ERROR
2436 The frame unwinder caused an error while trying to access memory.
2437
2438 @item FRAME_UNWIND_FIRST_ERROR
2439 Any stop reason greater or equal to this value indicates some kind
2440 of error. This special value facilitates writing code that tests
2441 for errors in unwinding in a way that will work correctly even if
2442 the list of the other values is modified in future @value{GDBN}
2443 versions. Using it, you could write:
2444
2445 @smallexample
2446 (define reason (frame-unwind-stop-readon (selected-frame)))
2447 (define reason-str (unwind-stop-reason-string reason))
2448 (if (>= reason FRAME_UNWIND_FIRST_ERROR)
2449 (format #t "An error occurred: ~s\n" reason-str))
2450 @end smallexample
2451 @end table
2452 @end deffn
2453
2454 @deffn {Scheme Procedure} frame-pc frame
2455 Return the frame's resume address.
2456 @end deffn
2457
2458 @deffn {Scheme Procedure} frame-block frame
2459 Return the frame's code block as a @code{<gdb:block>} object.
2460 @xref{Blocks In Guile}.
2461 @end deffn
2462
2463 @deffn {Scheme Procedure} frame-function frame
2464 Return the symbol for the function corresponding to this frame
2465 as a @code{<gdb:symbol>} object, or @code{#f} if there isn't one.
2466 @xref{Symbols In Guile}.
2467 @end deffn
2468
2469 @deffn {Scheme Procedure} frame-older frame
2470 Return the frame that called @var{frame}.
2471 @end deffn
2472
2473 @deffn {Scheme Procedure} frame-newer frame
2474 Return the frame called by @var{frame}.
2475 @end deffn
2476
2477 @deffn {Scheme Procedure} frame-sal frame
2478 Return the frame's @code{<gdb:sal>} (symtab and line) object.
2479 @xref{Symbol Tables In Guile}.
2480 @end deffn
2481
2482 @deffn {Scheme Procedure} frame-read-register frame register
2483 Return the value of @var{register} in @var{frame}. @var{register}
2484 should be a string, like @samp{pc}.
2485 @end deffn
2486
2487 @deffn {Scheme Procedure} frame-read-var frame variable @r{[}#:block block@r{]}
2488 Return the value of @var{variable} in @var{frame}. If the optional
2489 argument @var{block} is provided, search for the variable from that
2490 block; otherwise start at the frame's current block (which is
2491 determined by the frame's current program counter). The
2492 @var{variable} must be given as a string or a @code{<gdb:symbol>}
2493 object, and @var{block} must be a @code{<gdb:block>} object.
2494 @end deffn
2495
2496 @deffn {Scheme Procedure} frame-select frame
2497 Set @var{frame} to be the selected frame. @xref{Stack, ,Examining the
2498 Stack}.
2499 @end deffn
2500
2501 @deffn {Scheme Procedure} selected-frame
2502 Return the selected frame object. @xref{Selection,,Selecting a Frame}.
2503 @end deffn
2504
2505 @deffn {Scheme Procedure} newest-frame
2506 Return the newest frame object for the selected thread.
2507 @end deffn
2508
2509 @deffn {Scheme Procedure} unwind-stop-reason-string reason
2510 Return a string explaining the reason why @value{GDBN} stopped unwinding
2511 frames, as expressed by the given @var{reason} code (an integer, see the
2512 @code{frame-unwind-stop-reason} procedure above in this section).
2513 @end deffn
2514
2515 @node Blocks In Guile
2516 @subsubsection Accessing blocks from Guile.
2517
2518 @cindex blocks in guile
2519 @tindex <gdb:block>
2520
2521 In @value{GDBN}, symbols are stored in blocks. A block corresponds
2522 roughly to a scope in the source code. Blocks are organized
2523 hierarchically, and are represented individually in Guile as an object
2524 of type @code{<gdb:block>}. Blocks rely on debugging information being
2525 available.
2526
2527 A frame has a block. Please see @ref{Frames In Guile}, for a more
2528 in-depth discussion of frames.
2529
2530 The outermost block is known as the @dfn{global block}. The global
2531 block typically holds public global variables and functions.
2532
2533 The block nested just inside the global block is the @dfn{static
2534 block}. The static block typically holds file-scoped variables and
2535 functions.
2536
2537 @value{GDBN} provides a method to get a block's superblock, but there
2538 is currently no way to examine the sub-blocks of a block, or to
2539 iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
2540 Guile}).
2541
2542 Here is a short example that should help explain blocks:
2543
2544 @smallexample
2545 /* This is in the global block. */
2546 int global;
2547
2548 /* This is in the static block. */
2549 static int file_scope;
2550
2551 /* 'function' is in the global block, and 'argument' is
2552 in a block nested inside of 'function'. */
2553 int function (int argument)
2554 @{
2555 /* 'local' is in a block inside 'function'. It may or may
2556 not be in the same block as 'argument'. */
2557 int local;
2558
2559 @{
2560 /* 'inner' is in a block whose superblock is the one holding
2561 'local'. */
2562 int inner;
2563
2564 /* If this call is expanded by the compiler, you may see
2565 a nested block here whose function is 'inline_function'
2566 and whose superblock is the one holding 'inner'. */
2567 inline_function ();
2568 @}
2569 @}
2570 @end smallexample
2571
2572 The following block-related procedures are provided by the
2573 @code{(gdb)} module:
2574
2575 @deffn {Scheme Procedure} block? object
2576 Return @code{#t} if @var{object} is a @code{<gdb:block>} object.
2577 Otherwise return @code{#f}.
2578 @end deffn
2579
2580 @deffn {Scheme Procedure} block-valid? block
2581 Returns @code{#t} if @code{<gdb:block>} @var{block} is valid,
2582 @code{#f} if not. A block object can become invalid if the block it
2583 refers to doesn't exist anymore in the inferior. All other
2584 @code{<gdb:block>} methods will throw an exception if it is invalid at
2585 the time the procedure is called. The block's validity is also checked
2586 during iteration over symbols of the block.
2587 @end deffn
2588
2589 @deffn {Scheme Procedure} block-start block
2590 Return the start address of @code{<gdb:block>} @var{block}.
2591 @end deffn
2592
2593 @deffn {Scheme Procedure} block-end block
2594 Return the end address of @code{<gdb:block>} @var{block}.
2595 @end deffn
2596
2597 @deffn {Scheme Procedure} block-function block
2598 Return the name of @code{<gdb:block>} @var{block} represented as a
2599 @code{<gdb:symbol>} object.
2600 If the block is not named, then @code{#f} is returned.
2601
2602 For ordinary function blocks, the superblock is the static block.
2603 However, you should note that it is possible for a function block to
2604 have a superblock that is not the static block -- for instance this
2605 happens for an inlined function.
2606 @end deffn
2607
2608 @deffn {Scheme Procedure} block-superblock block
2609 Return the block containing @code{<gdb:block>} @var{block}.
2610 If the parent block does not exist, then @code{#f} is returned.
2611 @end deffn
2612
2613 @deffn {Scheme Procedure} block-global-block block
2614 Return the global block associated with @code{<gdb:block>} @var{block}.
2615 @end deffn
2616
2617 @deffn {Scheme Procedure} block-static-block block
2618 Return the static block associated with @code{<gdb:block>} @var{block}.
2619 @end deffn
2620
2621 @deffn {Scheme Procedure} block-global? block
2622 Return @code{#t} if @code{<gdb:block>} @var{block} is a global block.
2623 Otherwise return @code{#f}.
2624 @end deffn
2625
2626 @deffn {Scheme Procedure} block-static? block
2627 Return @code{#t} if @code{<gdb:block>} @var{block} is a static block.
2628 Otherwise return @code{#f}.
2629 @end deffn
2630
2631 @deffn {Scheme Procedure} block-symbols
2632 Return a list of all symbols (as <gdb:symbol> objects) in
2633 @code{<gdb:block>} @var{block}.
2634 @end deffn
2635
2636 @deffn {Scheme Procedure} make-block-symbols-iterator block
2637 Return an object of type @code{<gdb:iterator>} that will iterate
2638 over all symbols of the block.
2639 Guile programs should not assume that a specific block object will
2640 always contain a given symbol, since changes in @value{GDBN} features and
2641 infrastructure may cause symbols move across blocks in a symbol table.
2642 @xref{Iterators In Guile}.
2643 @end deffn
2644
2645 @deffn {Scheme Procedure} block-symbols-progress?
2646 Return #t if the object is a <gdb:block-symbols-progress> object.
2647 This object would be obtained from the @code{progress} element of the
2648 @code{<gdb:iterator>} object returned by @code{make-block-symbols-iterator}.
2649 @end deffn
2650
2651 @deffn {Scheme Procedure} lookup-block pc
2652 Return the innermost @code{<gdb:block>} containing the given @var{pc}
2653 value. If the block cannot be found for the @var{pc} value specified,
2654 the function will return @code{#f}.
2655 @end deffn
2656
2657 @node Symbols In Guile
2658 @subsubsection Guile representation of Symbols.
2659
2660 @cindex symbols in guile
2661 @tindex <gdb:symbol>
2662
2663 @value{GDBN} represents every variable, function and type as an
2664 entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
2665 Guile represents these symbols in @value{GDBN} with the
2666 @code{<gdb:symbol>} object.
2667
2668 The following symbol-related procedures are provided by the
2669 @code{(gdb)} module:
2670
2671 @deffn {Scheme Procedure} symbol? object
2672 Return @code{#t} if @var{object} is an object of type @code{<gdb:symbol>}.
2673 Otherwise return @code{#f}.
2674 @end deffn
2675
2676 @deffn {Scheme Procedure} symbol-valid? symbol
2677 Return @code{#t} if the @code{<gdb:symbol>} object is valid,
2678 @code{#f} if not. A @code{<gdb:symbol>} object can become invalid if
2679 the symbol it refers to does not exist in @value{GDBN} any longer.
2680 All other @code{<gdb:symbol>} procedures will throw an exception if it is
2681 invalid at the time the procedure is called.
2682 @end deffn
2683
2684 @deffn {Scheme Procedure} symbol-type symbol
2685 Return the type of @var{symbol} or @code{#f} if no type is recorded.
2686 The result is an object of type @code{<gdb:type>}.
2687 @xref{Types In Guile}.
2688 @end deffn
2689
2690 @deffn {Scheme Procedure} symbol-symtab symbol
2691 Return the symbol table in which @var{symbol} appears.
2692 The result is an object of type @code{<gdb:symtab>}.
2693 @xref{Symbol Tables In Guile}.
2694 @end deffn
2695
2696 @deffn {Scheme Procedure} symbol-line symbol
2697 Return the line number in the source code at which @var{symbol} was defined.
2698 This is an integer.
2699 @end deffn
2700
2701 @deffn {Scheme Procedure} symbol-name symbol
2702 Return the name of @var{symbol} as a string.
2703 @end deffn
2704
2705 @deffn {Scheme Procedure} symbol-linkage-name symbol
2706 Return the name of @var{symbol}, as used by the linker (i.e., may be mangled).
2707 @end deffn
2708
2709 @deffn {Scheme Procedure} symbol-print-name symbol
2710 Return the name of @var{symbol} in a form suitable for output. This is either
2711 @code{name} or @code{linkage_name}, depending on whether the user
2712 asked @value{GDBN} to display demangled or mangled names.
2713 @end deffn
2714
2715 @deffn {Scheme Procedure} symbol-addr-class symbol
2716 Return the address class of the symbol. This classifies how to find the value
2717 of a symbol. Each address class is a constant defined in the
2718 @code{(gdb)} module and described later in this chapter.
2719 @end deffn
2720
2721 @deffn {Scheme Procedure} symbol-needs-frame? symbol
2722 Return @code{#t} if evaluating @var{symbol}'s value requires a frame
2723 (@pxref{Frames In Guile}) and @code{#f} otherwise. Typically,
2724 local variables will require a frame, but other symbols will not.
2725 @end deffn
2726
2727 @deffn {Scheme Procedure} symbol-argument? symbol
2728 Return @code{#t} if @var{symbol} is an argument of a function.
2729 Otherwise return @code{#f}.
2730 @end deffn
2731
2732 @deffn {Scheme Procedure} symbol-constant? symbol
2733 Return @code{#t} if @var{symbol} is a constant.
2734 Otherwise return @code{#f}.
2735 @end deffn
2736
2737 @deffn {Scheme Procedure} symbol-function? symbol
2738 Return @code{#t} if @var{symbol} is a function or a method.
2739 Otherwise return @code{#f}.
2740 @end deffn
2741
2742 @deffn {Scheme Procedure} symbol-variable? symbol
2743 Return @code{#t} if @var{symbol} is a variable.
2744 Otherwise return @code{#f}.
2745 @end deffn
2746
2747 @deffn {Scheme Procedure} symbol-value symbol @r{[}#:frame frame@r{]}
2748 Compute the value of @var{symbol}, as a @code{<gdb:value>}. For
2749 functions, this computes the address of the function, cast to the
2750 appropriate type. If the symbol requires a frame in order to compute
2751 its value, then @var{frame} must be given. If @var{frame} is not
2752 given, or if @var{frame} is invalid, then an exception is thrown.
2753 @end deffn
2754
2755 @deffn {Scheme Procedure} lookup-symbol name @w{@r{[}#:block block@r{]}} @
2756 @w{@r{[}#:domain domain@r{]}}
2757 This function searches for a symbol by name. The search scope can be
2758 restricted to the parameters defined in the optional domain and block
2759 arguments.
2760
2761 @var{name} is the name of the symbol. It must be a string. The
2762 optional @var{block} argument restricts the search to symbols visible
2763 in that @var{block}. The @var{block} argument must be a
2764 @code{<gdb:block>} object. If omitted, the block for the current frame
2765 is used. The optional @var{domain} argument restricts
2766 the search to the domain type. The @var{domain} argument must be a
2767 domain constant defined in the @code{(gdb)} module and described later
2768 in this chapter.
2769
2770 The result is a list of two elements.
2771 The first element is a @code{<gdb:symbol>} object or @code{#f} if the symbol
2772 is not found.
2773 If the symbol is found, the second element is @code{#t} if the symbol
2774 is a field of a method's object (e.g., @code{this} in C@t{++}),
2775 otherwise it is @code{#f}.
2776 If the symbol is not found, the second element is @code{#f}.
2777 @end deffn
2778
2779 @deffn {Scheme Procedure} lookup-global-symbol name @r{[}#:domain domain@r{]}
2780 This function searches for a global symbol by name.
2781 The search scope can be restricted by the domain argument.
2782
2783 @var{name} is the name of the symbol. It must be a string.
2784 The optional @var{domain} argument restricts the search to the domain type.
2785 The @var{domain} argument must be a domain constant defined in the @code{(gdb)}
2786 module and described later in this chapter.
2787
2788 The result is a @code{<gdb:symbol>} object or @code{#f} if the symbol
2789 is not found.
2790 @end deffn
2791
2792 The available domain categories in @code{<gdb:symbol>} are represented
2793 as constants in the @code{(gdb)} module:
2794
2795 @vtable @code
2796 @item SYMBOL_UNDEF_DOMAIN
2797 This is used when a domain has not been discovered or none of the
2798 following domains apply. This usually indicates an error either
2799 in the symbol information or in @value{GDBN}'s handling of symbols.
2800
2801 @item SYMBOL_VAR_DOMAIN
2802 This domain contains variables, function names, typedef names and enum
2803 type values.
2804
2805 @item SYMBOL_STRUCT_DOMAIN
2806 This domain holds struct, union and enum type names.
2807
2808 @item SYMBOL_LABEL_DOMAIN
2809 This domain contains names of labels (for gotos).
2810
2811 @item SYMBOL_VARIABLES_DOMAIN
2812 This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
2813 contains everything minus functions and types.
2814
2815 @item SYMBOL_FUNCTIONS_DOMAIN
2816 This domain contains all functions.
2817
2818 @item SYMBOL_TYPES_DOMAIN
2819 This domain contains all types.
2820 @end vtable
2821
2822 The available address class categories in @code{<gdb:symbol>} are represented
2823 as constants in the @code{gdb} module:
2824
2825 @vtable @code
2826 @item SYMBOL_LOC_UNDEF
2827 If this is returned by address class, it indicates an error either in
2828 the symbol information or in @value{GDBN}'s handling of symbols.
2829
2830 @item SYMBOL_LOC_CONST
2831 Value is constant int.
2832
2833 @item SYMBOL_LOC_STATIC
2834 Value is at a fixed address.
2835
2836 @item SYMBOL_LOC_REGISTER
2837 Value is in a register.
2838
2839 @item SYMBOL_LOC_ARG
2840 Value is an argument. This value is at the offset stored within the
2841 symbol inside the frame's argument list.
2842
2843 @item SYMBOL_LOC_REF_ARG
2844 Value address is stored in the frame's argument list. Just like
2845 @code{LOC_ARG} except that the value's address is stored at the
2846 offset, not the value itself.
2847
2848 @item SYMBOL_LOC_REGPARM_ADDR
2849 Value is a specified register. Just like @code{LOC_REGISTER} except
2850 the register holds the address of the argument instead of the argument
2851 itself.
2852
2853 @item SYMBOL_LOC_LOCAL
2854 Value is a local variable.
2855
2856 @item SYMBOL_LOC_TYPEDEF
2857 Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
2858 have this class.
2859
2860 @item SYMBOL_LOC_BLOCK
2861 Value is a block.
2862
2863 @item SYMBOL_LOC_CONST_BYTES
2864 Value is a byte-sequence.
2865
2866 @item SYMBOL_LOC_UNRESOLVED
2867 Value is at a fixed address, but the address of the variable has to be
2868 determined from the minimal symbol table whenever the variable is
2869 referenced.
2870
2871 @item SYMBOL_LOC_OPTIMIZED_OUT
2872 The value does not actually exist in the program.
2873
2874 @item SYMBOL_LOC_COMPUTED
2875 The value's address is a computed location.
2876 @end vtable
2877
2878 @node Symbol Tables In Guile
2879 @subsubsection Symbol table representation in Guile.
2880
2881 @cindex symbol tables in guile
2882 @tindex <gdb:symtab>
2883 @tindex <gdb:sal>
2884
2885 Access to symbol table data maintained by @value{GDBN} on the inferior
2886 is exposed to Guile via two objects: @code{<gdb:sal>} (symtab-and-line) and
2887 @code{<gdb:symtab>}. Symbol table and line data for a frame is returned
2888 from the @code{frame-find-sal} @code{<gdb:frame>} procedure.
2889 @xref{Frames In Guile}.
2890
2891 For more information on @value{GDBN}'s symbol table management, see
2892 @ref{Symbols, ,Examining the Symbol Table}.
2893
2894 The following symtab-related procedures are provided by the
2895 @code{(gdb)} module:
2896
2897 @deffn {Scheme Procedure} symtab? object
2898 Return @code{#t} if @var{object} is an object of type @code{<gdb:symtab>}.
2899 Otherwise return @code{#f}.
2900 @end deffn
2901
2902 @deffn {Scheme Procedure} symtab-valid? symtab
2903 Return @code{#t} if the @code{<gdb:symtab>} object is valid,
2904 @code{#f} if not. A @code{<gdb:symtab>} object becomes invalid when
2905 the symbol table it refers to no longer exists in @value{GDBN}.
2906 All other @code{<gdb:symtab>} procedures will throw an exception
2907 if it is invalid at the time the procedure is called.
2908 @end deffn
2909
2910 @deffn {Scheme Procedure} symtab-filename symtab
2911 Return the symbol table's source filename.
2912 @end deffn
2913
2914 @deffn {Scheme Procedure} symtab-fullname symtab
2915 Return the symbol table's source absolute file name.
2916 @end deffn
2917
2918 @deffn {Scheme Procedure} symtab-objfile symtab
2919 Return the symbol table's backing object file. @xref{Objfiles In Guile}.
2920 @end deffn
2921
2922 @deffn {Scheme Procedure} symtab-global-block symtab
2923 Return the global block of the underlying symbol table.
2924 @xref{Blocks In Guile}.
2925 @end deffn
2926
2927 @deffn {Scheme Procedure} symtab-static-block symtab
2928 Return the static block of the underlying symbol table.
2929 @xref{Blocks In Guile}.
2930 @end deffn
2931
2932 The following symtab-and-line-related procedures are provided by the
2933 @code{(gdb)} module:
2934
2935 @deffn {Scheme Procedure} sal? object
2936 Return @code{#t} if @var{object} is an object of type @code{<gdb:sal>}.
2937 Otherwise return @code{#f}.
2938 @end deffn
2939
2940 @deffn {Scheme Procedure} sal-valid? sal
2941 Return @code{#t} if @var{sal} is valid, @code{#f} if not.
2942 A @code{<gdb:sal>} object becomes invalid when the Symbol table object
2943 it refers to no longer exists in @value{GDBN}. All other
2944 @code{<gdb:sal>} procedures will throw an exception if it is
2945 invalid at the time the procedure is called.
2946 @end deffn
2947
2948 @deffn {Scheme Procedure} sal-symtab sal
2949 Return the symbol table object (@code{<gdb:symtab>}) for @var{sal}.
2950 @end deffn
2951
2952 @deffn {Scheme Procedure} sal-line sal
2953 Return the line number for @var{sal}.
2954 @end deffn
2955
2956 @deffn {Scheme Procedure} sal-pc sal
2957 Return the start of the address range occupied by code for @var{sal}.
2958 @end deffn
2959
2960 @deffn {Scheme Procedure} sal-last sal
2961 Return the end of the address range occupied by code for @var{sal}.
2962 @end deffn
2963
2964 @deffn {Scheme Procedure} find-pc-line pc
2965 Return the @code{<gdb:sal>} object corresponding to the @var{pc} value.
2966 If an invalid value of @var{pc} is passed as an argument, then the
2967 @code{symtab} and @code{line} attributes of the returned @code{<gdb:sal>}
2968 object will be @code{#f} and 0 respectively.
2969 @end deffn
2970
2971 @node Breakpoints In Guile
2972 @subsubsection Manipulating breakpoints using Guile
2973
2974 @cindex breakpoints in guile
2975 @tindex <gdb:breakpoint>
2976
2977 Breakpoints in Guile are represented by objects of type
2978 @code{<gdb:breakpoint>}. New breakpoints can be created with the
2979 @code{make-breakpoint} Guile function, and then added to @value{GDBN} with the
2980 @code{register-breakpoint!} Guile function.
2981 This two-step approach is taken to separate out the side-effect of adding
2982 the breakpoint to @value{GDBN} from @code{make-breakpoint}.
2983
2984 Support is also provided to view and manipulate breakpoints created
2985 outside of Guile.
2986
2987 The following breakpoint-related procedures are provided by the
2988 @code{(gdb)} module:
2989
2990 @deffn {Scheme Procedure} make-breakpoint location @w{@r{[}#:type type@r{]}} @
2991 @w{@r{[}#:wp-class wp-class@r{]}} @w{@r{[}#:internal internal@r{]}} @
2992 @w{@r{[}#:temporary temporary@r{]}}
2993 Create a new breakpoint at @var{location}, a string naming the
2994 location of the breakpoint, or an expression that defines a watchpoint.
2995 The contents can be any location recognized by the @code{break} command,
2996 or in the case of a watchpoint, by the @code{watch} command.
2997
2998 The breakpoint is initially marked as @samp{invalid}.
2999 The breakpoint is not usable until it has been registered with @value{GDBN}
3000 with @code{register-breakpoint!}, at which point it becomes @samp{valid}.
3001 The result is the @code{<gdb:breakpoint>} object representing the breakpoint.
3002
3003 The optional @var{type} denotes the breakpoint to create.
3004 This argument can be either @code{BP_BREAKPOINT} or @code{BP_WATCHPOINT},
3005 and defaults to @code{BP_BREAKPOINT}.
3006
3007 The optional @var{wp-class} argument defines the class of watchpoint to
3008 create, if @var{type} is @code{BP_WATCHPOINT}. If a watchpoint class is
3009 not provided, it is assumed to be a @code{WP_WRITE} class.
3010
3011 The optional @var{internal} argument allows the breakpoint to become
3012 invisible to the user. The breakpoint will neither be reported when
3013 registered, nor will it be listed in the output from @code{info breakpoints}
3014 (but will be listed with the @code{maint info breakpoints} command).
3015 If an internal flag is not provided, the breakpoint is visible
3016 (non-internal).
3017
3018 The optional @var{temporary} argument makes the breakpoint a temporary
3019 breakpoint. Temporary breakpoints are deleted after they have been hit,
3020 after which the Guile breakpoint is no longer usable (although it may be
3021 re-registered with @code{register-breakpoint!}).
3022
3023 When a watchpoint is created, @value{GDBN} will try to create a
3024 hardware assisted watchpoint. If successful, the type of the watchpoint
3025 is changed from @code{BP_WATCHPOINT} to @code{BP_HARDWARE_WATCHPOINT}
3026 for @code{WP_WRITE}, @code{BP_READ_WATCHPOINT} for @code{WP_READ},
3027 and @code{BP_ACCESS_WATCHPOINT} for @code{WP_ACCESS}.
3028 If not successful, the type of the watchpoint is left as @code{WP_WATCHPOINT}.
3029
3030 The available types are represented by constants defined in the @code{gdb}
3031 module:
3032
3033 @vtable @code
3034 @item BP_BREAKPOINT
3035 Normal code breakpoint.
3036
3037 @item BP_WATCHPOINT
3038 Watchpoint breakpoint.
3039
3040 @item BP_HARDWARE_WATCHPOINT
3041 Hardware assisted watchpoint.
3042 This value cannot be specified when creating the breakpoint.
3043
3044 @item BP_READ_WATCHPOINT
3045 Hardware assisted read watchpoint.
3046 This value cannot be specified when creating the breakpoint.
3047
3048 @item BP_ACCESS_WATCHPOINT
3049 Hardware assisted access watchpoint.
3050 This value cannot be specified when creating the breakpoint.
3051
3052 @item BP_CATCHPOINT
3053 Catchpoint.
3054 This value cannot be specified when creating the breakpoint.
3055 @end vtable
3056
3057 The available watchpoint types are represented by constants defined in the
3058 @code{(gdb)} module:
3059
3060 @vtable @code
3061 @item WP_READ
3062 Read only watchpoint.
3063
3064 @item WP_WRITE
3065 Write only watchpoint.
3066
3067 @item WP_ACCESS
3068 Read/Write watchpoint.
3069 @end vtable
3070
3071 @end deffn
3072
3073 @deffn {Scheme Procedure} register-breakpoint! breakpoint
3074 Add @var{breakpoint}, a @code{<gdb:breakpoint>} object, to @value{GDBN}'s
3075 list of breakpoints. The breakpoint must have been created with
3076 @code{make-breakpoint}. One cannot register breakpoints that have been
3077 created outside of Guile. Once a breakpoint is registered it becomes
3078 @samp{valid}.
3079 It is an error to register an already registered breakpoint.
3080 The result is unspecified.
3081 @end deffn
3082
3083 @deffn {Scheme Procedure} delete-breakpoint! breakpoint
3084 Remove @var{breakpoint} from @value{GDBN}'s list of breakpoints.
3085 This also invalidates the Guile @var{breakpoint} object.
3086 Any further attempt to access the object will throw an exception.
3087
3088 If @var{breakpoint} was created from Guile with @code{make-breakpoint}
3089 it may be re-registered with @value{GDBN}, in which case the breakpoint
3090 becomes valid again.
3091 @end deffn
3092
3093 @deffn {Scheme Procedure} breakpoints
3094 Return a list of all breakpoints.
3095 Each element of the list is a @code{<gdb:breakpoint>} object.
3096 @end deffn
3097
3098 @deffn {Scheme Procedure} breakpoint? object
3099 Return @code{#t} if @var{object} is a @code{<gdb:breakpoint>} object,
3100 and @code{#f} otherwise.
3101 @end deffn
3102
3103 @deffn {Scheme Procedure} breakpoint-valid? breakpoint
3104 Return @code{#t} if @var{breakpoint} is valid, @code{#f} otherwise.
3105 Breakpoints created with @code{make-breakpoint} are marked as invalid
3106 until they are registered with @value{GDBN} with @code{register-breakpoint!}.
3107 A @code{<gdb:breakpoint>} object can become invalid
3108 if the user deletes the breakpoint. In this case, the object still
3109 exists, but the underlying breakpoint does not. In the cases of
3110 watchpoint scope, the watchpoint remains valid even if execution of the
3111 inferior leaves the scope of that watchpoint.
3112 @end deffn
3113
3114 @deffn {Scheme Procedure} breakpoint-number breakpoint
3115 Return the breakpoint's number --- the identifier used by
3116 the user to manipulate the breakpoint.
3117 @end deffn
3118
3119 @deffn {Scheme Procedure} breakpoint-temporary? breakpoint
3120 Return @code{#t} if the breakpoint was created as a temporary
3121 breakpoint. Temporary breakpoints are automatically deleted after
3122 they've been hit. Calling this procedure, and all other procedures
3123 other than @code{breakpoint-valid?} and @code{register-breakpoint!},
3124 will result in an error after the breakpoint has been hit (since it has
3125 been automatically deleted).
3126 @end deffn
3127
3128 @deffn {Scheme Procedure} breakpoint-type breakpoint
3129 Return the breakpoint's type --- the identifier used to
3130 determine the actual breakpoint type or use-case.
3131 @end deffn
3132
3133 @deffn {Scheme Procedure} breakpoint-visible? breakpoint
3134 Return @code{#t} if the breakpoint is visible to the user
3135 when hit, or when the @samp{info breakpoints} command is run.
3136 Otherwise return @code{#f}.
3137 @end deffn
3138
3139 @deffn {Scheme Procedure} breakpoint-location breakpoint
3140 Return the location of the breakpoint, as specified by
3141 the user. It is a string. If the breakpoint does not have a location
3142 (that is, it is a watchpoint) return @code{#f}.
3143 @end deffn
3144
3145 @deffn {Scheme Procedure} breakpoint-expression breakpoint
3146 Return the breakpoint expression, as specified by the user. It is a string.
3147 If the breakpoint does not have an expression (the breakpoint is not a
3148 watchpoint) return @code{#f}.
3149 @end deffn
3150
3151 @deffn {Scheme Procedure} breakpoint-enabled? breakpoint
3152 Return @code{#t} if the breakpoint is enabled, and @code{#f} otherwise.
3153 @end deffn
3154
3155 @deffn {Scheme Procedure} set-breakpoint-enabled! breakpoint flag
3156 Set the enabled state of @var{breakpoint} to @var{flag}.
3157 If flag is @code{#f} it is disabled, otherwise it is enabled.
3158 @end deffn
3159
3160 @deffn {Scheme Procedure} breakpoint-silent? breakpoint
3161 Return @code{#t} if the breakpoint is silent, and @code{#f} otherwise.
3162
3163 Note that a breakpoint can also be silent if it has commands and the
3164 first command is @code{silent}. This is not reported by the
3165 @code{silent} attribute.
3166 @end deffn
3167
3168 @deffn {Scheme Procedure} set-breakpoint-silent! breakpoint flag
3169 Set the silent state of @var{breakpoint} to @var{flag}.
3170 If flag is @code{#f} the breakpoint is made silent,
3171 otherwise it is made non-silent (or noisy).
3172 @end deffn
3173
3174 @deffn {Scheme Procedure} breakpoint-ignore-count breakpoint
3175 Return the ignore count for @var{breakpoint}.
3176 @end deffn
3177
3178 @deffn {Scheme Procedure} set-breakpoint-ignore-count! breakpoint count
3179 Set the ignore count for @var{breakpoint} to @var{count}.
3180 @end deffn
3181
3182 @deffn {Scheme Procedure} breakpoint-hit-count breakpoint
3183 Return hit count of @var{breakpoint}.
3184 @end deffn
3185
3186 @deffn {Scheme Procedure} set-breakpoint-hit-count! breakpoint count
3187 Set the hit count of @var{breakpoint} to @var{count}.
3188 At present, @var{count} must be zero.
3189 @end deffn
3190
3191 @deffn {Scheme Procedure} breakpoint-thread breakpoint
3192 Return the global-thread-id for thread-specific breakpoint
3193 @var{breakpoint}. Return #f if @var{breakpoint} is not
3194 thread-specific.
3195 @end deffn
3196
3197 @deffn {Scheme Procedure} set-breakpoint-thread! breakpoint global-thread-id|#f
3198 Set the thread-id for @var{breakpoint} to @var{global-thread-id} If
3199 set to @code{#f}, the breakpoint is no longer thread-specific.
3200 @end deffn
3201
3202 @deffn {Scheme Procedure} breakpoint-task breakpoint
3203 If the breakpoint is Ada task-specific, return the Ada task id.
3204 If the breakpoint is not task-specific (or the underlying
3205 language is not Ada), return @code{#f}.
3206 @end deffn
3207
3208 @deffn {Scheme Procedure} set-breakpoint-task! breakpoint task
3209 Set the Ada task of @var{breakpoint} to @var{task}.
3210 If set to @code{#f}, the breakpoint is no longer task-specific.
3211 @end deffn
3212
3213 @deffn {Scheme Procedure} breakpoint-condition breakpoint
3214 Return the condition of @var{breakpoint}, as specified by the user.
3215 It is a string. If there is no condition, return @code{#f}.
3216 @end deffn
3217
3218 @deffn {Scheme Procedure} set-breakpoint-condition! breakpoint condition
3219 Set the condition of @var{breakpoint} to @var{condition},
3220 which must be a string. If set to @code{#f} then the breakpoint
3221 becomes unconditional.
3222 @end deffn
3223
3224 @deffn {Scheme Procedure} breakpoint-stop breakpoint
3225 Return the stop predicate of @var{breakpoint}.
3226 See @code{set-breakpoint-stop!} below in this section.
3227 @end deffn
3228
3229 @deffn {Scheme Procedure} set-breakpoint-stop! breakpoint procedure|#f
3230 Set the stop predicate of @var{breakpoint}. The predicate
3231 @var{procedure} takes one argument: the <gdb:breakpoint> object.
3232 If this predicate is set to a procedure then it is invoked whenever
3233 the inferior reaches this breakpoint. If it returns @code{#t},
3234 or any non-@code{#f} value, then the inferior is stopped,
3235 otherwise the inferior will continue.
3236
3237 If there are multiple breakpoints at the same location with a
3238 @code{stop} predicate, each one will be called regardless of the
3239 return status of the previous. This ensures that all @code{stop}
3240 predicates have a chance to execute at that location. In this scenario
3241 if one of the methods returns @code{#t} but the others return
3242 @code{#f}, the inferior will still be stopped.
3243
3244 You should not alter the execution state of the inferior (i.e.@:, step,
3245 next, etc.), alter the current frame context (i.e.@:, change the current
3246 active frame), or alter, add or delete any breakpoint. As a general
3247 rule, you should not alter any data within @value{GDBN} or the inferior
3248 at this time.
3249
3250 Example @code{stop} implementation:
3251
3252 @smallexample
3253 (define (my-stop? bkpt)
3254 (let ((int-val (parse-and-eval "foo")))
3255 (value=? int-val 3)))
3256 (define bkpt (make-breakpoint "main.c:42"))
3257 (register-breakpoint! bkpt)
3258 (set-breakpoint-stop! bkpt my-stop?)
3259 @end smallexample
3260 @end deffn
3261
3262 @deffn {Scheme Procedure} breakpoint-commands breakpoint
3263 Return the commands attached to @var{breakpoint} as a string,
3264 or @code{#f} if there are none.
3265 @end deffn
3266
3267 @node Lazy Strings In Guile
3268 @subsubsection Guile representation of lazy strings.
3269
3270 @cindex lazy strings in guile
3271 @tindex <gdb:lazy-string>
3272
3273 A @dfn{lazy string} is a string whose contents is not retrieved or
3274 encoded until it is needed.
3275
3276 A @code{<gdb:lazy-string>} is represented in @value{GDBN} as an
3277 @code{address} that points to a region of memory, an @code{encoding}
3278 that will be used to encode that region of memory, and a @code{length}
3279 to delimit the region of memory that represents the string. The
3280 difference between a @code{<gdb:lazy-string>} and a string wrapped within
3281 a @code{<gdb:value>} is that a @code{<gdb:lazy-string>} will be treated
3282 differently by @value{GDBN} when printing. A @code{<gdb:lazy-string>} is
3283 retrieved and encoded during printing, while a @code{<gdb:value>}
3284 wrapping a string is immediately retrieved and encoded on creation.
3285
3286 The following lazy-string-related procedures are provided by the
3287 @code{(gdb)} module:
3288
3289 @deffn {Scheme Procedure} lazy-string? object
3290 Return @code{#t} if @var{object} is an object of type @code{<gdb:lazy-string>}.
3291 Otherwise return @code{#f}.
3292 @end deffn
3293
3294 @deffn {Scheme Procedure} lazy-string-address lazy-sring
3295 Return the address of @var{lazy-string}.
3296 @end deffn
3297
3298 @deffn {Scheme Procedure} lazy-string-length lazy-string
3299 Return the length of @var{lazy-string} in characters. If the
3300 length is -1, then the string will be fetched and encoded up to the
3301 first null of appropriate width.
3302 @end deffn
3303
3304 @deffn {Scheme Procedure} lazy-string-encoding lazy-string
3305 Return the encoding that will be applied to @var{lazy-string}
3306 when the string is printed by @value{GDBN}. If the encoding is not
3307 set, or contains an empty string, then @value{GDBN} will select the
3308 most appropriate encoding when the string is printed.
3309 @end deffn
3310
3311 @deffn {Scheme Procedure} lazy-string-type lazy-string
3312 Return the type that is represented by @var{lazy-string}'s type.
3313 For a lazy string this is a pointer or array type. To
3314 resolve this to the lazy string's character type, use @code{type-target-type}.
3315 @xref{Types In Guile}.
3316 @end deffn
3317
3318 @deffn {Scheme Procedure} lazy-string->value lazy-string
3319 Convert the @code{<gdb:lazy-string>} to a @code{<gdb:value>}. This value
3320 will point to the string in memory, but will lose all the delayed
3321 retrieval, encoding and handling that @value{GDBN} applies to a
3322 @code{<gdb:lazy-string>}.
3323 @end deffn
3324
3325 @node Architectures In Guile
3326 @subsubsection Guile representation of architectures
3327
3328 @cindex guile architectures
3329 @tindex <gdb:arch>
3330
3331 @value{GDBN} uses architecture specific parameters and artifacts in a
3332 number of its various computations. An architecture is represented
3333 by an instance of the @code{<gdb:arch>} class.
3334
3335 The following architecture-related procedures are provided by the
3336 @code{(gdb)} module:
3337
3338 @deffn {Scheme Procedure} arch? object
3339 Return @code{#t} if @var{object} is an object of type @code{<gdb:arch>}.
3340 Otherwise return @code{#f}.
3341 @end deffn
3342
3343 @deffn {Scheme Procedure} current-arch
3344 Return the current architecture as a @code{<gdb:arch>} object.
3345 @end deffn
3346
3347 @deffn {Scheme Procedure} arch-name arch
3348 Return the name (string value) of @code{<gdb:arch>} @var{arch}.
3349 @end deffn
3350
3351 @deffn {Scheme Procedure} arch-charset arch
3352 Return name of target character set of @code{<gdb:arch>} @var{arch}.
3353 @end deffn
3354
3355 @deffn {Scheme Procedure} arch-wide-charset
3356 Return name of target wide character set of @code{<gdb:arch>} @var{arch}.
3357 @end deffn
3358
3359 Each architecture provides a set of predefined types, obtained by
3360 the following functions.
3361
3362 @deffn {Scheme Procedure} arch-void-type arch
3363 Return the @code{<gdb:type>} object for a @code{void} type
3364 of architecture @var{arch}.
3365 @end deffn
3366
3367 @deffn {Scheme Procedure} arch-char-type arch
3368 Return the @code{<gdb:type>} object for a @code{char} type
3369 of architecture @var{arch}.
3370 @end deffn
3371
3372 @deffn {Scheme Procedure} arch-short-type arch
3373 Return the @code{<gdb:type>} object for a @code{short} type
3374 of architecture @var{arch}.
3375 @end deffn
3376
3377 @deffn {Scheme Procedure} arch-int-type arch
3378 Return the @code{<gdb:type>} object for an @code{int} type
3379 of architecture @var{arch}.
3380 @end deffn
3381
3382 @deffn {Scheme Procedure} arch-long-type arch
3383 Return the @code{<gdb:type>} object for a @code{long} type
3384 of architecture @var{arch}.
3385 @end deffn
3386
3387 @deffn {Scheme Procedure} arch-schar-type arch
3388 Return the @code{<gdb:type>} object for a @code{signed char} type
3389 of architecture @var{arch}.
3390 @end deffn
3391
3392 @deffn {Scheme Procedure} arch-uchar-type arch
3393 Return the @code{<gdb:type>} object for an @code{unsigned char} type
3394 of architecture @var{arch}.
3395 @end deffn
3396
3397 @deffn {Scheme Procedure} arch-ushort-type arch
3398 Return the @code{<gdb:type>} object for an @code{unsigned short} type
3399 of architecture @var{arch}.
3400 @end deffn
3401
3402 @deffn {Scheme Procedure} arch-uint-type arch
3403 Return the @code{<gdb:type>} object for an @code{unsigned int} type
3404 of architecture @var{arch}.
3405 @end deffn
3406
3407 @deffn {Scheme Procedure} arch-ulong-type arch
3408 Return the @code{<gdb:type>} object for an @code{unsigned long} type
3409 of architecture @var{arch}.
3410 @end deffn
3411
3412 @deffn {Scheme Procedure} arch-float-type arch
3413 Return the @code{<gdb:type>} object for a @code{float} type
3414 of architecture @var{arch}.
3415 @end deffn
3416
3417 @deffn {Scheme Procedure} arch-double-type arch
3418 Return the @code{<gdb:type>} object for a @code{double} type
3419 of architecture @var{arch}.
3420 @end deffn
3421
3422 @deffn {Scheme Procedure} arch-longdouble-type arch
3423 Return the @code{<gdb:type>} object for a @code{long double} type
3424 of architecture @var{arch}.
3425 @end deffn
3426
3427 @deffn {Scheme Procedure} arch-bool-type arch
3428 Return the @code{<gdb:type>} object for a @code{bool} type
3429 of architecture @var{arch}.
3430 @end deffn
3431
3432 @deffn {Scheme Procedure} arch-longlong-type arch
3433 Return the @code{<gdb:type>} object for a @code{long long} type
3434 of architecture @var{arch}.
3435 @end deffn
3436
3437 @deffn {Scheme Procedure} arch-ulonglong-type arch
3438 Return the @code{<gdb:type>} object for an @code{unsigned long long} type
3439 of architecture @var{arch}.
3440 @end deffn
3441
3442 @deffn {Scheme Procedure} arch-int8-type arch
3443 Return the @code{<gdb:type>} object for an @code{int8} type
3444 of architecture @var{arch}.
3445 @end deffn
3446
3447 @deffn {Scheme Procedure} arch-uint8-type arch
3448 Return the @code{<gdb:type>} object for a @code{uint8} type
3449 of architecture @var{arch}.
3450 @end deffn
3451
3452 @deffn {Scheme Procedure} arch-int16-type arch
3453 Return the @code{<gdb:type>} object for an @code{int16} type
3454 of architecture @var{arch}.
3455 @end deffn
3456
3457 @deffn {Scheme Procedure} arch-uint16-type arch
3458 Return the @code{<gdb:type>} object for a @code{uint16} type
3459 of architecture @var{arch}.
3460 @end deffn
3461
3462 @deffn {Scheme Procedure} arch-int32-type arch
3463 Return the @code{<gdb:type>} object for an @code{int32} type
3464 of architecture @var{arch}.
3465 @end deffn
3466
3467 @deffn {Scheme Procedure} arch-uint32-type arch
3468 Return the @code{<gdb:type>} object for a @code{uint32} type
3469 of architecture @var{arch}.
3470 @end deffn
3471
3472 @deffn {Scheme Procedure} arch-int64-type arch
3473 Return the @code{<gdb:type>} object for an @code{int64} type
3474 of architecture @var{arch}.
3475 @end deffn
3476
3477 @deffn {Scheme Procedure} arch-uint64-type arch
3478 Return the @code{<gdb:type>} object for a @code{uint64} type
3479 of architecture @var{arch}.
3480 @end deffn
3481
3482 Example:
3483
3484 @smallexample
3485 (gdb) guile (type-name (arch-uchar-type (current-arch)))
3486 "unsigned char"
3487 @end smallexample
3488
3489 @node Disassembly In Guile
3490 @subsubsection Disassembly In Guile
3491
3492 The disassembler can be invoked from Scheme code.
3493 Furthermore, the disassembler can take a Guile port as input,
3494 allowing one to disassemble from any source, and not just target memory.
3495
3496 @deffn {Scheme Procedure} arch-disassemble arch start-pc @
3497 @w{@r{[}#:port port@r{]}} @w{@r{[}#:offset offset@r{]}} @
3498 @w{@r{[}#:size size@r{]}} @w{@r{[}#:count count@r{]}}
3499 Return a list of disassembled instructions starting from the memory
3500 address @var{start-pc}.
3501
3502 The optional argument @var{port} specifies the input port to read bytes from.
3503 If @var{port} is @code{#f} then bytes are read from target memory.
3504
3505 The optional argument @var{offset} specifies the address offset of the
3506 first byte in @var{port}. This is useful, for example, when @var{port}
3507 specifies a @samp{bytevector} and you want the bytevector to be disassembled
3508 as if it came from that address. The @var{start-pc} passed to the reader
3509 for @var{port} is offset by the same amount.
3510
3511 Example:
3512 @smallexample
3513 (gdb) guile (use-modules (rnrs io ports))
3514 (gdb) guile (define pc (value->integer (parse-and-eval "$pc")))
3515 (gdb) guile (define mem (open-memory #:start pc))
3516 (gdb) guile (define bv (get-bytevector-n mem 10))
3517 (gdb) guile (define bv-port (open-bytevector-input-port bv))
3518 (gdb) guile (define arch (current-arch))
3519 (gdb) guile (arch-disassemble arch pc #:port bv-port #:offset pc)
3520 (((address . 4195516) (asm . "mov $0x4005c8,%edi") (length . 5)))
3521 @end smallexample
3522
3523 The optional arguments @var{size} and
3524 @var{count} determine the number of instructions in the returned list.
3525 If either @var{size} or @var{count} is specified as zero, then
3526 no instructions are disassembled and an empty list is returned.
3527 If both the optional arguments @var{size} and @var{count} are
3528 specified, then a list of at most @var{count} disassembled instructions
3529 whose start address falls in the closed memory address interval from
3530 @var{start-pc} to (@var{start-pc} + @var{size} - 1) are returned.
3531 If @var{size} is not specified, but @var{count} is specified,
3532 then @var{count} number of instructions starting from the address
3533 @var{start-pc} are returned. If @var{count} is not specified but
3534 @var{size} is specified, then all instructions whose start address
3535 falls in the closed memory address interval from @var{start-pc} to
3536 (@var{start-pc} + @var{size} - 1) are returned.
3537 If neither @var{size} nor @var{count} are specified, then a single
3538 instruction at @var{start-pc} is returned.
3539
3540 Each element of the returned list is an alist (associative list)
3541 with the following keys:
3542
3543 @table @code
3544
3545 @item address
3546 The value corresponding to this key is a Guile integer of
3547 the memory address of the instruction.
3548
3549 @item asm
3550 The value corresponding to this key is a string value which represents
3551 the instruction with assembly language mnemonics. The assembly
3552 language flavor used is the same as that specified by the current CLI
3553 variable @code{disassembly-flavor}. @xref{Machine Code}.
3554
3555 @item length
3556 The value corresponding to this key is the length of the instruction in bytes.
3557
3558 @end table
3559 @end deffn
3560
3561 @node I/O Ports in Guile
3562 @subsubsection I/O Ports in Guile
3563
3564 @deffn {Scheme Procedure} input-port
3565 Return @value{GDBN}'s input port as a Guile port object.
3566 @end deffn
3567
3568 @deffn {Scheme Procedure} output-port
3569 Return @value{GDBN}'s output port as a Guile port object.
3570 @end deffn
3571
3572 @deffn {Scheme Procedure} error-port
3573 Return @value{GDBN}'s error port as a Guile port object.
3574 @end deffn
3575
3576 @deffn {Scheme Procedure} stdio-port? object
3577 Return @code{#t} if @var{object} is a @value{GDBN} stdio port.
3578 Otherwise return @code{#f}.
3579 @end deffn
3580
3581 @node Memory Ports in Guile
3582 @subsubsection Memory Ports in Guile
3583
3584 @value{GDBN} provides a @code{port} interface to target memory.
3585 This allows Guile code to read/write target memory using Guile's port and
3586 bytevector functionality. The main routine is @code{open-memory} which
3587 returns a port object. One can then read/write memory using that object.
3588
3589 @deffn {Scheme Procedure} open-memory @w{@r{[}#:mode mode@r{]}} @
3590 @w{@r{[}#:start address@r{]}} @w{@r{[}#:size size@r{]}}
3591 Return a port object that can be used for reading and writing memory.
3592 The port will be open according to @var{mode}, which is the standard
3593 mode argument to Guile port open routines, except that the @samp{"a"}
3594 and @samp{"l"} modes are not supported.
3595 @xref{File Ports,,, guile, GNU Guile Reference Manual}.
3596 The @samp{"b"} (binary) character may be present, but is ignored:
3597 memory ports are binary only. If @samp{"0"} is appended then
3598 the port is marked as unbuffered.
3599 The default is @samp{"r"}, read-only and buffered.
3600
3601 The chunk of memory that can be accessed can be bounded.
3602 If both @var{start} and @var{size} are unspecified, all of memory can be
3603 accessed. If only @var{start} is specified, all of memory from that point
3604 on can be accessed. If only @var{size} if specified, all memory in the
3605 range [0,@var{size}) can be accessed. If both are specified, all memory
3606 in the rane [@var{start},@var{start}+@var{size}) can be accessed.
3607 @end deffn
3608
3609 @deffn {Scheme Procedure} memory-port?
3610 Return @code{#t} if @var{object} is an object of type @code{<gdb:memory-port>}.
3611 Otherwise return @code{#f}.
3612 @end deffn
3613
3614 @deffn {Scheme Procedure} memory-port-range memory-port
3615 Return the range of @code{<gdb:memory-port>} @var{memory-port} as a list
3616 of two elements: @code{(start end)}. The range is @var{start} to @var{end}
3617 inclusive.
3618 @end deffn
3619
3620 @deffn {Scheme Procedure} memory-port-read-buffer-size memory-port
3621 Return the size of the read buffer of @code{<gdb:memory-port>}
3622 @var{memory-port}.
3623
3624 This procedure is deprecated and will be removed in @value{GDBN} 11.
3625 It returns 0 when using Guile 2.2 or later.
3626 @end deffn
3627
3628 @deffn {Scheme Procedure} set-memory-port-read-buffer-size! memory-port size
3629 Set the size of the read buffer of @code{<gdb:memory-port>}
3630 @var{memory-port} to @var{size}. The result is unspecified.
3631
3632 This procedure is deprecated and will be removed in @value{GDBN} 11.
3633 When @value{GDBN} is built with Guile 2.2 or later, you can call
3634 @code{setvbuf} instead (@pxref{Buffering, @code{setvbuf},, guile, GNU
3635 Guile Reference Manual}).
3636 @end deffn
3637
3638 @deffn {Scheme Procedure} memory-port-write-buffer-size memory-port
3639 Return the size of the write buffer of @code{<gdb:memory-port>}
3640 @var{memory-port}.
3641
3642 This procedure is deprecated and will be removed in @value{GDBN} 11.
3643 It returns 0 when @value{GDBN} is built with Guile 2.2 or later.
3644 @end deffn
3645
3646 @deffn {Scheme Procedure} set-memory-port-write-buffer-size! memory-port size
3647 Set the size of the write buffer of @code{<gdb:memory-port>}
3648 @var{memory-port} to @var{size}. The result is unspecified.
3649
3650 This procedure is deprecated and will be removed in @value{GDBN} 11.
3651 When @value{GDBN} is built with Guile 2.2 or later, you can call
3652 @code{setvbuf} instead.
3653 @end deffn
3654
3655 A memory port is closed like any other port, with @code{close-port}.
3656
3657 Combined with Guile's @code{bytevectors}, memory ports provide a lot
3658 of utility. For example, to fill a buffer of 10 integers in memory,
3659 one can do something like the following.
3660
3661 @smallexample
3662 ;; In the program: int buffer[10];
3663 (use-modules (rnrs bytevectors))
3664 (use-modules (rnrs io ports))
3665 (define addr (parse-and-eval "buffer"))
3666 (define n 10)
3667 (define byte-size (* n 4))
3668 (define mem-port (open-memory #:mode "r+" #:start
3669 (value->integer addr) #:size byte-size))
3670 (define byte-vec (make-bytevector byte-size))
3671 (do ((i 0 (+ i 1)))
3672 ((>= i n))
3673 (bytevector-s32-native-set! byte-vec (* i 4) (* i 42)))
3674 (put-bytevector mem-port byte-vec)
3675 (close-port mem-port)
3676 @end smallexample
3677
3678 @node Iterators In Guile
3679 @subsubsection Iterators In Guile
3680
3681 @cindex guile iterators
3682 @tindex <gdb:iterator>
3683
3684 A simple iterator facility is provided to allow, for example,
3685 iterating over the set of program symbols without having to first
3686 construct a list of all of them. A useful contribution would be
3687 to add support for SRFI 41 and SRFI 45.
3688
3689 @deffn {Scheme Procedure} make-iterator object progress next!
3690 A @code{<gdb:iterator>} object is constructed with the @code{make-iterator}
3691 procedure. It takes three arguments: the object to be iterated over,
3692 an object to record the progress of the iteration, and a procedure to
3693 return the next element in the iteration, or an implementation chosen value
3694 to denote the end of iteration.
3695
3696 By convention, end of iteration is marked with @code{(end-of-iteration)},
3697 and may be tested with the @code{end-of-iteration?} predicate.
3698 The result of @code{(end-of-iteration)} is chosen so that it is not
3699 otherwise used by the @code{(gdb)} module. If you are using
3700 @code{<gdb:iterator>} in your own code it is your responsibility to
3701 maintain this invariant.
3702
3703 A trivial example for illustration's sake:
3704
3705 @smallexample
3706 (use-modules (gdb iterator))
3707 (define my-list (list 1 2 3))
3708 (define iter
3709 (make-iterator my-list my-list
3710 (lambda (iter)
3711 (let ((l (iterator-progress iter)))
3712 (if (eq? l '())
3713 (end-of-iteration)
3714 (begin
3715 (set-iterator-progress! iter (cdr l))
3716 (car l)))))))
3717 @end smallexample
3718
3719 Here is a slightly more realistic example, which computes a list of all the
3720 functions in @code{my-global-block}.
3721
3722 @smallexample
3723 (use-modules (gdb iterator))
3724 (define this-sal (find-pc-line (frame-pc (selected-frame))))
3725 (define this-symtab (sal-symtab this-sal))
3726 (define this-global-block (symtab-global-block this-symtab))
3727 (define syms-iter (make-block-symbols-iterator this-global-block))
3728 (define functions (iterator-filter symbol-function? syms-iter))
3729 @end smallexample
3730 @end deffn
3731
3732 @deffn {Scheme Procedure} iterator? object
3733 Return @code{#t} if @var{object} is a @code{<gdb:iterator>} object.
3734 Otherwise return @code{#f}.
3735 @end deffn
3736
3737 @deffn {Scheme Procedure} iterator-object iterator
3738 Return the first argument that was passed to @code{make-iterator}.
3739 This is the object being iterated over.
3740 @end deffn
3741
3742 @deffn {Scheme Procedure} iterator-progress iterator
3743 Return the object tracking iteration progress.
3744 @end deffn
3745
3746 @deffn {Scheme Procedure} set-iterator-progress! iterator new-value
3747 Set the object tracking iteration progress.
3748 @end deffn
3749
3750 @deffn {Scheme Procedure} iterator-next! iterator
3751 Invoke the procedure that was the third argument to @code{make-iterator},
3752 passing it one argument, the @code{<gdb:iterator>} object.
3753 The result is either the next element in the iteration, or an end
3754 marker as implemented by the @code{next!} procedure.
3755 By convention the end marker is the result of @code{(end-of-iteration)}.
3756 @end deffn
3757
3758 @deffn {Scheme Procedure} end-of-iteration
3759 Return the Scheme object that denotes end of iteration.
3760 @end deffn
3761
3762 @deffn {Scheme Procedure} end-of-iteration? object
3763 Return @code{#t} if @var{object} is the end of iteration marker.
3764 Otherwise return @code{#f}.
3765 @end deffn
3766
3767 These functions are provided by the @code{(gdb iterator)} module to
3768 assist in using iterators.
3769
3770 @deffn {Scheme Procedure} make-list-iterator list
3771 Return a @code{<gdb:iterator>} object that will iterate over @var{list}.
3772 @end deffn
3773
3774 @deffn {Scheme Procedure} iterator->list iterator
3775 Return the elements pointed to by @var{iterator} as a list.
3776 @end deffn
3777
3778 @deffn {Scheme Procedure} iterator-map proc iterator
3779 Return the list of objects obtained by applying @var{proc} to the object
3780 pointed to by @var{iterator} and to each subsequent object.
3781 @end deffn
3782
3783 @deffn {Scheme Procedure} iterator-for-each proc iterator
3784 Apply @var{proc} to each element pointed to by @var{iterator}.
3785 The result is unspecified.
3786 @end deffn
3787
3788 @deffn {Scheme Procedure} iterator-filter pred iterator
3789 Return the list of elements pointed to by @var{iterator} that satisfy
3790 @var{pred}.
3791 @end deffn
3792
3793 @deffn {Scheme Procedure} iterator-until pred iterator
3794 Run @var{iterator} until the result of @code{(pred element)} is true
3795 and return that as the result. Otherwise return @code{#f}.
3796 @end deffn
3797
3798 @node Guile Auto-loading
3799 @subsection Guile Auto-loading
3800 @cindex guile auto-loading
3801
3802 When a new object file is read (for example, due to the @code{file}
3803 command, or because the inferior has loaded a shared library),
3804 @value{GDBN} will look for Guile support scripts in two ways:
3805 @file{@var{objfile}-gdb.scm} and the @code{.debug_gdb_scripts} section.
3806 @xref{Auto-loading extensions}.
3807
3808 The auto-loading feature is useful for supplying application-specific
3809 debugging commands and scripts.
3810
3811 Auto-loading can be enabled or disabled,
3812 and the list of auto-loaded scripts can be printed.
3813
3814 @table @code
3815 @anchor{set auto-load guile-scripts}
3816 @kindex set auto-load guile-scripts
3817 @item set auto-load guile-scripts [on|off]
3818 Enable or disable the auto-loading of Guile scripts.
3819
3820 @anchor{show auto-load guile-scripts}
3821 @kindex show auto-load guile-scripts
3822 @item show auto-load guile-scripts
3823 Show whether auto-loading of Guile scripts is enabled or disabled.
3824
3825 @anchor{info auto-load guile-scripts}
3826 @kindex info auto-load guile-scripts
3827 @cindex print list of auto-loaded Guile scripts
3828 @item info auto-load guile-scripts [@var{regexp}]
3829 Print the list of all Guile scripts that @value{GDBN} auto-loaded.
3830
3831 Also printed is the list of Guile scripts that were mentioned in
3832 the @code{.debug_gdb_scripts} section and were not found.
3833 This is useful because their names are not printed when @value{GDBN}
3834 tries to load them and fails. There may be many of them, and printing
3835 an error message for each one is problematic.
3836
3837 If @var{regexp} is supplied only Guile scripts with matching names are printed.
3838
3839 Example:
3840
3841 @smallexample
3842 (gdb) info auto-load guile-scripts
3843 Loaded Script
3844 Yes scm-section-script.scm
3845 full name: /tmp/scm-section-script.scm
3846 No my-foo-pretty-printers.scm
3847 @end smallexample
3848 @end table
3849
3850 When reading an auto-loaded file, @value{GDBN} sets the
3851 @dfn{current objfile}. This is available via the @code{current-objfile}
3852 procedure (@pxref{Objfiles In Guile}). This can be useful for
3853 registering objfile-specific pretty-printers.
3854
3855 @node Guile Modules
3856 @subsection Guile Modules
3857 @cindex guile modules
3858
3859 @value{GDBN} comes with several modules to assist writing Guile code.
3860
3861 @menu
3862 * Guile Printing Module:: Building and registering pretty-printers
3863 * Guile Types Module:: Utilities for working with types
3864 @end menu
3865
3866 @node Guile Printing Module
3867 @subsubsection Guile Printing Module
3868
3869 This module provides a collection of utilities for working with
3870 pretty-printers.
3871
3872 Usage:
3873
3874 @smallexample
3875 (use-modules (gdb printing))
3876 @end smallexample
3877
3878 @deffn {Scheme Procedure} prepend-pretty-printer! object printer
3879 Add @var{printer} to the front of the list of pretty-printers for
3880 @var{object}. The @var{object} must either be a @code{<gdb:objfile>} object,
3881 or @code{#f} in which case @var{printer} is added to the global list of
3882 printers.
3883 @end deffn
3884
3885 @deffn {Scheme Procecure} append-pretty-printer! object printer
3886 Add @var{printer} to the end of the list of pretty-printers for
3887 @var{object}. The @var{object} must either be a @code{<gdb:objfile>} object,
3888 or @code{#f} in which case @var{printer} is added to the global list of
3889 printers.
3890 @end deffn
3891
3892 @node Guile Types Module
3893 @subsubsection Guile Types Module
3894
3895 This module provides a collection of utilities for working with
3896 @code{<gdb:type>} objects.
3897
3898 Usage:
3899
3900 @smallexample
3901 (use-modules (gdb types))
3902 @end smallexample
3903
3904 @deffn {Scheme Procedure} get-basic-type type
3905 Return @var{type} with const and volatile qualifiers stripped,
3906 and with typedefs and C@t{++} references converted to the underlying type.
3907
3908 C@t{++} example:
3909
3910 @smallexample
3911 typedef const int const_int;
3912 const_int foo (3);
3913 const_int& foo_ref (foo);
3914 int main () @{ return 0; @}
3915 @end smallexample
3916
3917 Then in gdb:
3918
3919 @smallexample
3920 (gdb) start
3921 (gdb) guile (use-modules (gdb) (gdb types))
3922 (gdb) guile (define foo-ref (parse-and-eval "foo_ref"))
3923 (gdb) guile (get-basic-type (value-type foo-ref))
3924 int
3925 @end smallexample
3926 @end deffn
3927
3928 @deffn {Scheme Procedure} type-has-field-deep? type field
3929 Return @code{#t} if @var{type}, assumed to be a type with fields
3930 (e.g., a structure or union), has field @var{field}.
3931 Otherwise return @code{#f}.
3932 This searches baseclasses, whereas @code{type-has-field?} does not.
3933 @end deffn
3934
3935 @deffn {Scheme Procedure} make-enum-hashtable enum-type
3936 Return a Guile hash table produced from @var{enum-type}.
3937 Elements in the hash table are referenced with @code{hashq-ref}.
3938 @end deffn