]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dve3900-rom.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / dve3900-rom.c
1 /* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include "monitor.h"
26 #include "serial.h"
27 #include "inferior.h"
28 #include "command.h"
29 #include "gdb_string.h"
30 #include <time.h>
31
32 /* Type of function passed to bfd_map_over_sections. */
33
34 typedef void (*section_map_func) PARAMS ((bfd * abfd, asection * sect, PTR obj));
35
36 /* Packet escape character used by Densan monitor. */
37
38 #define PESC 0xdc
39
40 /* Maximum packet size. This is actually smaller than necessary
41 just to be safe. */
42
43 #define MAXPSIZE 1024
44
45 /* External functions. */
46
47 extern void report_transfer_performance PARAMS ((unsigned long,
48 time_t, time_t));
49
50 /* Certain registers are "bitmapped", in that the monitor can only display
51 them or let the user modify them as a series of named bitfields.
52 This structure describes a field in a bitmapped register. */
53
54 struct bit_field
55 {
56 char *prefix; /* string appearing before the value */
57 char *suffix; /* string appearing after the value */
58 char *user_name; /* name used by human when entering field value */
59 int length; /* number of bits in the field */
60 int start; /* starting (least significant) bit number of field */
61 };
62
63 /* Local functions for register manipulation. */
64
65 static void r3900_supply_register PARAMS ((char *regname, int regnamelen,
66 char *val, int vallen));
67 static void fetch_bad_vaddr PARAMS ((void));
68 static unsigned long fetch_fields PARAMS ((struct bit_field * bf));
69 static void fetch_bitmapped_register PARAMS ((int regno,
70 struct bit_field * bf));
71 static void r3900_fetch_registers PARAMS ((int regno));
72 static void store_bitmapped_register PARAMS ((int regno,
73 struct bit_field * bf));
74 static void r3900_store_registers PARAMS ((int regno));
75
76 /* Local functions for fast binary loading. */
77
78 static void write_long PARAMS ((char *buf, long n));
79 static void write_long_le PARAMS ((char *buf, long n));
80 static int debug_readchar PARAMS ((int hex));
81 static void debug_write PARAMS ((unsigned char *buf, int buflen));
82 static void ignore_packet PARAMS ((void));
83 static void send_packet PARAMS ((char type, unsigned char *buf, int buflen,
84 int seq));
85 static void process_read_request PARAMS ((unsigned char *buf, int buflen));
86 static void count_section PARAMS ((bfd * abfd, asection * s,
87 unsigned int *section_count));
88 static void load_section PARAMS ((bfd * abfd, asection * s,
89 unsigned int *data_count));
90 static void r3900_load PARAMS ((char *filename, int from_tty));
91
92 /* Miscellaneous local functions. */
93
94 static void r3900_open PARAMS ((char *args, int from_tty));
95
96
97 /* Pointers to static functions in monitor.c for fetching and storing
98 registers. We can't use these function in certain cases where the Densan
99 monitor acts perversely: for registers that it displays in bit-map
100 format, and those that can't be modified at all. In those cases
101 we have to use our own functions to fetch and store their values. */
102
103 static void (*orig_monitor_fetch_registers) PARAMS ((int regno));
104 static void (*orig_monitor_store_registers) PARAMS ((int regno));
105
106 /* Pointer to static function in monitor. for loading programs.
107 We use this function for loading S-records via the serial link. */
108
109 static void (*orig_monitor_load) PARAMS ((char *file, int from_tty));
110
111 /* This flag is set if a fast ethernet download should be used. */
112
113 static int ethernet = 0;
114
115 /* This array of registers needs to match the indexes used by GDB. The
116 whole reason this exists is because the various ROM monitors use
117 different names than GDB does, and don't support all the registers
118 either. */
119
120 static char *r3900_regnames[NUM_REGS] =
121 {
122 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
123 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
124 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
125 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
126
127 "S", /* PS_REGNUM */
128 "l", /* LO_REGNUM */
129 "h", /* HI_REGNUM */
130 "B", /* BADVADDR_REGNUM */
131 "Pcause", /* CAUSE_REGNUM */
132 "p" /* PC_REGNUM */
133 };
134
135
136 /* Table of register names produced by monitor's register dump command. */
137
138 static struct reg_entry
139 {
140 char *name;
141 int regno;
142 }
143 reg_table[] =
144 {
145 {
146 "r0_zero", 0
147 }
148 ,
149 {
150 "r1_at", 1
151 }
152 ,
153 {
154 "r2_v0", 2
155 }
156 ,
157 {
158 "r3_v1", 3
159 }
160 ,
161 {
162 "r4_a0", 4
163 }
164 ,
165 {
166 "r5_a1", 5
167 }
168 ,
169 {
170 "r6_a2", 6
171 }
172 ,
173 {
174 "r7_a3", 7
175 }
176 ,
177 {
178 "r8_t0", 8
179 }
180 ,
181 {
182 "r9_t1", 9
183 }
184 ,
185 {
186 "r10_t2", 10
187 }
188 ,
189 {
190 "r11_t3", 11
191 }
192 ,
193 {
194 "r12_t4", 12
195 }
196 ,
197 {
198 "r13_t5", 13
199 }
200 ,
201 {
202 "r14_t6", 14
203 }
204 ,
205 {
206 "r15_t7", 15
207 }
208 ,
209 {
210 "r16_s0", 16
211 }
212 ,
213 {
214 "r17_s1", 17
215 }
216 ,
217 {
218 "r18_s2", 18
219 }
220 ,
221 {
222 "r19_s3", 19
223 }
224 ,
225 {
226 "r20_s4", 20
227 }
228 ,
229 {
230 "r21_s5", 21
231 }
232 ,
233 {
234 "r22_s6", 22
235 }
236 ,
237 {
238 "r23_s7", 23
239 }
240 ,
241 {
242 "r24_t8", 24
243 }
244 ,
245 {
246 "r25_t9", 25
247 }
248 ,
249 {
250 "r26_k0", 26
251 }
252 ,
253 {
254 "r27_k1", 27
255 }
256 ,
257 {
258 "r28_gp", 28
259 }
260 ,
261 {
262 "r29_sp", 29
263 }
264 ,
265 {
266 "r30_fp", 30
267 }
268 ,
269 {
270 "r31_ra", 31
271 }
272 ,
273 {
274 "HI", HI_REGNUM
275 }
276 ,
277 {
278 "LO", LO_REGNUM
279 }
280 ,
281 {
282 "PC", PC_REGNUM
283 }
284 ,
285 {
286 "BadV", BADVADDR_REGNUM
287 }
288 ,
289 {
290 NULL, 0
291 }
292 };
293
294
295 /* The monitor displays the cache register along with the status register,
296 as if they were a single register. So when we want to fetch the
297 status register, parse but otherwise ignore the fields of the
298 cache register that the monitor displays. Register fields that should
299 be ignored have a length of zero in the tables below. */
300
301 static struct bit_field status_fields[] =
302 {
303 /* Status register portion */
304 {"SR[<CU=", " ", "cu", 4, 28},
305 {"RE=", " ", "re", 1, 25},
306 {"BEV=", " ", "bev", 1, 22},
307 {"TS=", " ", "ts", 1, 21},
308 {"Nmi=", " ", "nmi", 1, 20},
309 {"INT=", " ", "int", 6, 10},
310 {"SW=", ">]", "sw", 2, 8},
311 {"[<KUO=", " ", "kuo", 1, 5},
312 {"IEO=", " ", "ieo", 1, 4},
313 {"KUP=", " ", "kup", 1, 3},
314 {"IEP=", " ", "iep", 1, 2},
315 {"KUC=", " ", "kuc", 1, 1},
316 {"IEC=", ">]", "iec", 1, 0},
317
318 /* Cache register portion (dummy for parsing only) */
319 {"CR[<IalO=", " ", "ialo", 0, 13},
320 {"DalO=", " ", "dalo", 0, 12},
321 {"IalP=", " ", "ialp", 0, 11},
322 {"DalP=", " ", "dalp", 0, 10},
323 {"IalC=", " ", "ialc", 0, 9},
324 {"DalC=", ">] ", "dalc", 0, 8},
325
326 {NULL, NULL, 0, 0} /* end of table marker */
327 };
328
329
330 #if 0 /* FIXME: Enable when we add support for modifying cache register. */
331 static struct bit_field cache_fields[] =
332 {
333 /* Status register portion (dummy for parsing only) */
334 {"SR[<CU=", " ", "cu", 0, 28},
335 {"RE=", " ", "re", 0, 25},
336 {"BEV=", " ", "bev", 0, 22},
337 {"TS=", " ", "ts", 0, 21},
338 {"Nmi=", " ", "nmi", 0, 20},
339 {"INT=", " ", "int", 0, 10},
340 {"SW=", ">]", "sw", 0, 8},
341 {"[<KUO=", " ", "kuo", 0, 5},
342 {"IEO=", " ", "ieo", 0, 4},
343 {"KUP=", " ", "kup", 0, 3},
344 {"IEP=", " ", "iep", 0, 2},
345 {"KUC=", " ", "kuc", 0, 1},
346 {"IEC=", ">]", "iec", 0, 0},
347
348 /* Cache register portion */
349 {"CR[<IalO=", " ", "ialo", 1, 13},
350 {"DalO=", " ", "dalo", 1, 12},
351 {"IalP=", " ", "ialp", 1, 11},
352 {"DalP=", " ", "dalp", 1, 10},
353 {"IalC=", " ", "ialc", 1, 9},
354 {"DalC=", ">] ", "dalc", 1, 8},
355
356 {NULL, NULL, NULL, 0, 0} /* end of table marker */
357 };
358 #endif
359
360
361 static struct bit_field cause_fields[] =
362 {
363 {"<BD=", " ", "bd", 1, 31},
364 {"CE=", " ", "ce", 2, 28},
365 {"IP=", " ", "ip", 6, 10},
366 {"SW=", " ", "sw", 2, 8},
367 {"EC=", ">]", "ec", 5, 2},
368
369 {NULL, NULL, NULL, 0, 0} /* end of table marker */
370 };
371
372
373 /* The monitor prints register values in the form
374
375 regname = xxxx xxxx
376
377 We look up the register name in a table, and remove the embedded space in
378 the hex value before passing it to monitor_supply_register. */
379
380 static void
381 r3900_supply_register (regname, regnamelen, val, vallen)
382 char *regname;
383 int regnamelen;
384 char *val;
385 int vallen;
386 {
387 int regno = -1;
388 int i;
389 char valbuf[10];
390 char *p;
391
392 /* Perform some sanity checks on the register name and value. */
393 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
394 return;
395
396 /* Look up the register name. */
397 for (i = 0; reg_table[i].name != NULL; i++)
398 {
399 int rlen = strlen (reg_table[i].name);
400 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
401 {
402 regno = reg_table[i].regno;
403 break;
404 }
405 }
406 if (regno == -1)
407 return;
408
409 /* Copy the hex value to a buffer and eliminate the embedded space. */
410 for (i = 0, p = valbuf; i < vallen; i++)
411 if (val[i] != ' ')
412 *p++ = val[i];
413 *p = '\0';
414
415 monitor_supply_register (regno, valbuf);
416 }
417
418
419 /* Fetch the BadVaddr register. Unlike the other registers, this
420 one can't be modified, and the monitor won't even prompt to let
421 you modify it. */
422
423 static void
424 fetch_bad_vaddr ()
425 {
426 char buf[20];
427
428 monitor_printf ("xB\r");
429 monitor_expect ("BadV=", NULL, 0);
430 monitor_expect_prompt (buf, sizeof (buf));
431 monitor_supply_register (BADVADDR_REGNUM, buf);
432 }
433
434
435 /* Read a series of bit fields from the monitor, and return their
436 combined binary value. */
437
438 static unsigned long
439 fetch_fields (bf)
440 struct bit_field *bf;
441 {
442 char buf[20];
443 unsigned long val = 0;
444 unsigned long bits;
445
446 for (; bf->prefix != NULL; bf++)
447 {
448 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
449 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
450 if (bf->length != 0)
451 {
452 bits = strtoul (buf, NULL, 16); /* get field value */
453 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
454 val |= bits << bf->start; /* insert into register */
455 }
456
457 }
458
459 return val;
460 }
461
462
463 static void
464 fetch_bitmapped_register (regno, bf)
465 int regno;
466 struct bit_field *bf;
467 {
468 unsigned long val;
469 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
470
471 monitor_printf ("x%s\r", r3900_regnames[regno]);
472 val = fetch_fields (bf);
473 monitor_printf (".\r");
474 monitor_expect_prompt (NULL, 0);
475
476 /* supply register stores in target byte order, so swap here */
477
478 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
479 supply_register (regno, regbuf);
480
481 }
482
483
484 /* Fetch all registers (if regno is -1), or one register from the
485 monitor. For most registers, we can use the generic monitor_
486 monitor_fetch_registers function. But others are displayed in
487 a very unusual fashion by the monitor, and must be handled specially. */
488
489 static void
490 r3900_fetch_registers (regno)
491 int regno;
492 {
493 switch (regno)
494 {
495 case BADVADDR_REGNUM:
496 fetch_bad_vaddr ();
497 return;
498 case PS_REGNUM:
499 fetch_bitmapped_register (PS_REGNUM, status_fields);
500 return;
501 case CAUSE_REGNUM:
502 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
503 return;
504 default:
505 orig_monitor_fetch_registers (regno);
506 }
507 }
508
509
510 /* Write the new value of the bitmapped register to the monitor. */
511
512 static void
513 store_bitmapped_register (regno, bf)
514 int regno;
515 struct bit_field *bf;
516 {
517 unsigned long oldval, newval;
518
519 /* Fetch the current value of the register. */
520 monitor_printf ("x%s\r", r3900_regnames[regno]);
521 oldval = fetch_fields (bf);
522 newval = read_register (regno);
523
524 /* To save time, write just the fields that have changed. */
525 for (; bf->prefix != NULL; bf++)
526 {
527 if (bf->length != 0)
528 {
529 unsigned long oldbits, newbits, mask;
530
531 mask = (1 << bf->length) - 1;
532 oldbits = (oldval >> bf->start) & mask;
533 newbits = (newval >> bf->start) & mask;
534 if (oldbits != newbits)
535 monitor_printf ("%s %x ", bf->user_name, newbits);
536 }
537 }
538
539 monitor_printf (".\r");
540 monitor_expect_prompt (NULL, 0);
541 }
542
543
544 static void
545 r3900_store_registers (regno)
546 int regno;
547 {
548 switch (regno)
549 {
550 case PS_REGNUM:
551 store_bitmapped_register (PS_REGNUM, status_fields);
552 return;
553 case CAUSE_REGNUM:
554 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
555 return;
556 default:
557 orig_monitor_store_registers (regno);
558 }
559 }
560
561
562 /* Write a 4-byte integer to the buffer in big-endian order. */
563
564 static void
565 write_long (buf, n)
566 char *buf;
567 long n;
568 {
569 buf[0] = (n >> 24) & 0xff;
570 buf[1] = (n >> 16) & 0xff;
571 buf[2] = (n >> 8) & 0xff;
572 buf[3] = n & 0xff;
573 }
574
575
576 /* Write a 4-byte integer to the buffer in little-endian order. */
577
578 static void
579 write_long_le (buf, n)
580 char *buf;
581 long n;
582 {
583 buf[0] = n & 0xff;
584 buf[1] = (n >> 8) & 0xff;
585 buf[2] = (n >> 16) & 0xff;
586 buf[3] = (n >> 24) & 0xff;
587 }
588
589
590 /* Read a character from the monitor. If remote debugging is on,
591 print the received character. If HEX is non-zero, print the
592 character in hexadecimal; otherwise, print it in ASCII. */
593
594 static int
595 debug_readchar (hex)
596 int hex;
597 {
598 char buf[10];
599 int c = monitor_readchar ();
600
601 if (remote_debug > 0)
602 {
603 if (hex)
604 sprintf (buf, "[%02x]", c & 0xff);
605 else if (c == '\0')
606 strcpy (buf, "\\0");
607 else
608 {
609 buf[0] = c;
610 buf[1] = '\0';
611 }
612 puts_debug ("Read -->", buf, "<--");
613 }
614 return c;
615 }
616
617
618 /* Send a buffer of characters to the monitor. If remote debugging is on,
619 print the sent buffer in hex. */
620
621 static void
622 debug_write (buf, buflen)
623 unsigned char *buf;
624 int buflen;
625 {
626 char s[10];
627
628 monitor_write (buf, buflen);
629
630 if (remote_debug > 0)
631 {
632 while (buflen-- > 0)
633 {
634 sprintf (s, "[%02x]", *buf & 0xff);
635 puts_debug ("Sent -->", s, "<--");
636 buf++;
637 }
638 }
639 }
640
641
642 /* Ignore a packet sent to us by the monitor. It send packets
643 when its console is in "communications interface" mode. A packet
644 is of this form:
645
646 start of packet flag (one byte: 0xdc)
647 packet type (one byte)
648 length (low byte)
649 length (high byte)
650 data (length bytes)
651
652 The last two bytes of the data field are a checksum, but we don't
653 bother to verify it.
654 */
655
656 static void
657 ignore_packet ()
658 {
659 int c;
660 int len;
661
662 /* Ignore lots of trash (messages about section addresses, for example)
663 until we see the start of a packet. */
664 for (len = 0; len < 256; len++)
665 {
666 c = debug_readchar (0);
667 if (c == PESC)
668 break;
669 }
670 if (len == 8)
671 error ("Packet header byte not found; %02x seen instead.", c);
672
673 /* Read the packet type and length. */
674 c = debug_readchar (1); /* type */
675
676 c = debug_readchar (1); /* low byte of length */
677 len = c & 0xff;
678
679 c = debug_readchar (1); /* high byte of length */
680 len += (c & 0xff) << 8;
681
682 /* Ignore the rest of the packet. */
683 while (len-- > 0)
684 c = debug_readchar (1);
685 }
686
687
688 /* Encapsulate some data into a packet and send it to the monitor.
689
690 The 'p' packet is a special case. This is a packet we send
691 in response to a read ('r') packet from the monitor. This function
692 appends a one-byte sequence number to the data field of such a packet.
693 */
694
695 static void
696 send_packet (type, buf, buflen, seq)
697 char type;
698 unsigned char *buf;
699 int buflen, seq;
700 {
701 unsigned char hdr[4];
702 int len = buflen;
703 int sum, i;
704
705 /* If this is a 'p' packet, add one byte for a sequence number. */
706 if (type == 'p')
707 len++;
708
709 /* If the buffer has a non-zero length, add two bytes for a checksum. */
710 if (len > 0)
711 len += 2;
712
713 /* Write the packet header. */
714 hdr[0] = PESC;
715 hdr[1] = type;
716 hdr[2] = len & 0xff;
717 hdr[3] = (len >> 8) & 0xff;
718 debug_write (hdr, sizeof (hdr));
719
720 if (len)
721 {
722 /* Write the packet data. */
723 debug_write (buf, buflen);
724
725 /* Write the sequence number if this is a 'p' packet. */
726 if (type == 'p')
727 {
728 hdr[0] = seq;
729 debug_write (hdr, 1);
730 }
731
732 /* Write the checksum. */
733 sum = 0;
734 for (i = 0; i < buflen; i++)
735 {
736 int tmp = (buf[i] & 0xff);
737 if (i & 1)
738 sum += tmp;
739 else
740 sum += tmp << 8;
741 }
742 if (type == 'p')
743 {
744 if (buflen & 1)
745 sum += (seq & 0xff);
746 else
747 sum += (seq & 0xff) << 8;
748 }
749 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
750 sum += (sum >> 16) & 1;
751 sum = ~sum;
752
753 hdr[0] = (sum >> 8) & 0xff;
754 hdr[1] = sum & 0xff;
755 debug_write (hdr, 2);
756 }
757 }
758
759
760 /* Respond to an expected read request from the monitor by sending
761 data in chunks. Handle all acknowledgements and handshaking packets.
762
763 The monitor expects a response consisting of a one or more 'p' packets,
764 each followed by a portion of the data requested. The 'p' packet
765 contains only a four-byte integer, the value of which is the number
766 of bytes of data we are about to send. Following the 'p' packet,
767 the monitor expects the data bytes themselves in raw, unpacketized,
768 form, without even a checksum.
769 */
770
771 static void
772 process_read_request (buf, buflen)
773 unsigned char *buf;
774 int buflen;
775 {
776 unsigned char len[4];
777 int i, chunk;
778 unsigned char seq;
779
780 /* Discard the read request. FIXME: we have to hope it's for
781 the exact number of bytes we want to send; should check for this. */
782 ignore_packet ();
783
784 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
785 {
786 /* Don't send more than MAXPSIZE bytes at a time. */
787 chunk = buflen - i;
788 if (chunk > MAXPSIZE)
789 chunk = MAXPSIZE;
790
791 /* Write a packet containing the number of bytes we are sending. */
792 write_long_le (len, chunk);
793 send_packet ('p', len, sizeof (len), seq);
794
795 /* Write the data in raw form following the packet. */
796 debug_write (&buf[i], chunk);
797
798 /* Discard the ACK packet. */
799 ignore_packet ();
800 }
801
802 /* Send an "end of data" packet. */
803 send_packet ('e', "", 0, 0);
804 }
805
806
807 /* Count loadable sections (helper function for r3900_load). */
808
809 static void
810 count_section (abfd, s, section_count)
811 bfd *abfd;
812 asection *s;
813 unsigned int *section_count;
814 {
815 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
816 (*section_count)++;
817 }
818
819
820 /* Load a single BFD section (helper function for r3900_load).
821
822 WARNING: this code is filled with assumptions about how
823 the Densan monitor loads programs. The monitor issues
824 packets containing read requests, but rather than respond
825 to them in an general way, we expect them to following
826 a certain pattern.
827
828 For example, we know that the monitor will start loading by
829 issuing an 8-byte read request for the binary file header.
830 We know this is coming and ignore the actual contents
831 of the read request packet.
832 */
833
834 static void
835 load_section (abfd, s, data_count)
836 bfd *abfd;
837 asection *s;
838 unsigned int *data_count;
839 {
840 if (s->flags & SEC_LOAD)
841 {
842 bfd_size_type section_size = bfd_section_size (abfd, s);
843 bfd_vma section_base = bfd_section_lma (abfd, s);
844 unsigned char *buffer;
845 unsigned char header[8];
846
847 /* Don't output zero-length sections. */
848 if (section_size == 0)
849 return;
850 if (data_count)
851 *data_count += section_size;
852
853 /* Print some fluff about the section being loaded. */
854 printf_filtered ("Loading section %s, size 0x%lx lma ",
855 bfd_section_name (abfd, s), (long) section_size);
856 print_address_numeric (section_base, 1, gdb_stdout);
857 printf_filtered ("\n");
858 gdb_flush (gdb_stdout);
859
860 /* Write the section header (location and size). */
861 write_long (&header[0], (long) section_base);
862 write_long (&header[4], (long) section_size);
863 process_read_request (header, sizeof (header));
864
865 /* Read the section contents into a buffer, write it out,
866 then free the buffer. */
867 buffer = (unsigned char *) xmalloc (section_size);
868 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
869 process_read_request (buffer, section_size);
870 free (buffer);
871 }
872 }
873
874
875 /* When the ethernet is used as the console port on the Densan board,
876 we can use the "Rm" command to do a fast binary load. The format
877 of the download data is:
878
879 number of sections (4 bytes)
880 starting address (4 bytes)
881 repeat for each section:
882 location address (4 bytes)
883 section size (4 bytes)
884 binary data
885
886 The 4-byte fields are all in big-endian order.
887
888 Using this command is tricky because we have to put the monitor
889 into a special funky "communications interface" mode, in which
890 it sends and receives packets of data along with the normal prompt.
891 */
892
893 static void
894 r3900_load (filename, from_tty)
895 char *filename;
896 int from_tty;
897 {
898 bfd *abfd;
899 unsigned int data_count = 0;
900 time_t start_time, end_time; /* for timing of download */
901 int section_count = 0;
902 unsigned char buffer[8];
903
904 /* If we are not using the ethernet, use the normal monitor load,
905 which sends S-records over the serial link. */
906 if (!ethernet)
907 {
908 orig_monitor_load (filename, from_tty);
909 return;
910 }
911
912 /* Open the file. */
913 if (filename == NULL || filename[0] == 0)
914 filename = get_exec_file (1);
915 abfd = bfd_openr (filename, 0);
916 if (!abfd)
917 error ("Unable to open file %s\n", filename);
918 if (bfd_check_format (abfd, bfd_object) == 0)
919 error ("File is not an object file\n");
920
921 /* Output the "vconsi" command to get the monitor in the communication
922 state where it will accept a load command. This will cause
923 the monitor to emit a packet before each prompt, so ignore the packet. */
924 monitor_printf ("vconsi\r");
925 ignore_packet ();
926 monitor_expect_prompt (NULL, 0);
927
928 /* Output the "Rm" (load) command and respond to the subsequent "open"
929 packet by sending an ACK packet. */
930 monitor_printf ("Rm\r");
931 ignore_packet ();
932 send_packet ('a', "", 0, 0);
933
934 /* Output the fast load header (number of sections and starting address). */
935 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
936 &section_count);
937 write_long (&buffer[0], (long) section_count);
938 if (exec_bfd)
939 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
940 else
941 write_long (&buffer[4], 0);
942 process_read_request (buffer, sizeof (buffer));
943
944 /* Output the section data. */
945 start_time = time (NULL);
946 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
947 end_time = time (NULL);
948
949 /* Acknowledge the close packet and put the monitor back into
950 "normal" mode so it won't send packets any more. */
951 ignore_packet ();
952 send_packet ('a', "", 0, 0);
953 monitor_expect_prompt (NULL, 0);
954 monitor_printf ("vconsx\r");
955 monitor_expect_prompt (NULL, 0);
956
957 /* Print start address and download performance information. */
958 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
959 report_transfer_performance (data_count, start_time, end_time);
960
961 /* Finally, make the PC point at the start address */
962 if (exec_bfd)
963 write_pc (bfd_get_start_address (exec_bfd));
964
965 inferior_pid = 0; /* No process now */
966
967 /* This is necessary because many things were based on the PC at the
968 time that we attached to the monitor, which is no longer valid
969 now that we have loaded new code (and just changed the PC).
970 Another way to do this might be to call normal_stop, except that
971 the stack may not be valid, and things would get horribly
972 confused... */
973 clear_symtab_users ();
974 }
975
976
977 /* Commands to send to the monitor when first connecting:
978 * The bare carriage return forces a prompt from the monitor
979 (monitor doesn't prompt immediately after a reset).
980 * The "vconsx" switches the monitor back to interactive mode
981 in case an aborted download had left it in packet mode.
982 * The "Xtr" command causes subsequent "t" (trace) commands to display
983 the general registers only.
984 * The "Xxr" command does the same thing for the "x" (examine
985 registers) command.
986 * The "bx" command clears all breakpoints.
987 */
988
989 static char *r3900_inits[] =
990 {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
991 static char *dummy_inits[] =
992 {NULL};
993
994 static struct target_ops r3900_ops;
995 static struct monitor_ops r3900_cmds;
996
997 static void
998 r3900_open (args, from_tty)
999 char *args;
1000 int from_tty;
1001 {
1002 char buf[64];
1003 int i;
1004
1005 monitor_open (args, &r3900_cmds, from_tty);
1006
1007 /* We have to handle sending the init strings ourselves, because
1008 the first two strings we send (carriage returns) may not be echoed
1009 by the monitor, but the rest will be. */
1010 monitor_printf_noecho ("\r\r");
1011 for (i = 0; r3900_inits[i] != NULL; i++)
1012 {
1013 monitor_printf (r3900_inits[i]);
1014 monitor_expect_prompt (NULL, 0);
1015 }
1016
1017 /* Attempt to determine whether the console device is ethernet or serial.
1018 This will tell us which kind of load to use (S-records over a serial
1019 link, or the Densan fast binary multi-section format over the net). */
1020
1021 ethernet = 0;
1022 monitor_printf ("v\r");
1023 if (monitor_expect ("console device :", NULL, 0) != -1)
1024 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
1025 if (strstr (buf, "ethernet") != NULL)
1026 ethernet = 1;
1027 monitor_expect_prompt (NULL, 0);
1028 }
1029
1030 void
1031 _initialize_r3900_rom ()
1032 {
1033 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
1034 MO_ADDR_BITS_REMOVE |
1035 MO_CLR_BREAK_USES_ADDR |
1036 MO_GETMEM_READ_SINGLE |
1037 MO_PRINT_PROGRAM_OUTPUT;
1038
1039 r3900_cmds.init = dummy_inits;
1040 r3900_cmds.cont = "g\r";
1041 r3900_cmds.step = "t\r";
1042 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1043 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1044 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
1045
1046 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1047 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1048 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1049
1050 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1051 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1052 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
1053 r3900_cmds.getmem.resp_delim = " : ";
1054 r3900_cmds.getmem.term = " ";
1055 r3900_cmds.getmem.term_cmd = ".\r";
1056
1057 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
1058
1059 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
1060 r3900_cmds.getreg.resp_delim = "=";
1061 r3900_cmds.getreg.term = " ";
1062 r3900_cmds.getreg.term_cmd = ".\r";
1063
1064 r3900_cmds.dump_registers = "x\r";
1065 r3900_cmds.register_pattern =
1066 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
1067 r3900_cmds.supply_register = r3900_supply_register;
1068 /* S-record download, via "keyboard port". */
1069 r3900_cmds.load = "r0\r";
1070 r3900_cmds.prompt = "#";
1071 r3900_cmds.line_term = "\r";
1072 r3900_cmds.target = &r3900_ops;
1073 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1074 r3900_cmds.regnames = r3900_regnames;
1075 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1076
1077 init_monitor_ops (&r3900_ops);
1078
1079 r3900_ops.to_shortname = "r3900";
1080 r3900_ops.to_longname = "R3900 monitor";
1081 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1082 Specify the serial device it is connected to (e.g. /dev/ttya).";
1083 r3900_ops.to_open = r3900_open;
1084
1085 /* Override the functions to fetch and store registers. But save the
1086 addresses of the default functions, because we will use those functions
1087 for "normal" registers. */
1088
1089 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1090 orig_monitor_store_registers = r3900_ops.to_store_registers;
1091 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1092 r3900_ops.to_store_registers = r3900_store_registers;
1093
1094 /* Override the load function, but save the address of the default
1095 function to use when loading S-records over a serial link. */
1096 orig_monitor_load = r3900_ops.to_load;
1097 r3900_ops.to_load = r3900_load;
1098
1099 add_target (&r3900_ops);
1100 }