]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
gdb: remove TYPE_FIELD_NAME and FIELD_NAME macros
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2021 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit-head.h"
36 #include "dwarf2/cu.h"
37 #include "dwarf2/index-cache.h"
38 #include "dwarf2/index-common.h"
39 #include "dwarf2/leb.h"
40 #include "dwarf2/line-header.h"
41 #include "dwarf2/dwz.h"
42 #include "dwarf2/macro.h"
43 #include "dwarf2/die.h"
44 #include "dwarf2/sect-names.h"
45 #include "dwarf2/stringify.h"
46 #include "dwarf2/public.h"
47 #include "bfd.h"
48 #include "elf-bfd.h"
49 #include "symtab.h"
50 #include "gdbtypes.h"
51 #include "objfiles.h"
52 #include "dwarf2.h"
53 #include "demangle.h"
54 #include "gdb-demangle.h"
55 #include "filenames.h" /* for DOSish file names */
56 #include "language.h"
57 #include "complaints.h"
58 #include "dwarf2/expr.h"
59 #include "dwarf2/loc.h"
60 #include "cp-support.h"
61 #include "hashtab.h"
62 #include "command.h"
63 #include "gdbcmd.h"
64 #include "block.h"
65 #include "addrmap.h"
66 #include "typeprint.h"
67 #include "psympriv.h"
68 #include "c-lang.h"
69 #include "go-lang.h"
70 #include "valprint.h"
71 #include "gdbcore.h" /* for gnutarget */
72 #include "gdb/gdb-index.h"
73 #include "gdb_bfd.h"
74 #include "f-lang.h"
75 #include "source.h"
76 #include "build-id.h"
77 #include "namespace.h"
78 #include "gdbsupport/function-view.h"
79 #include "gdbsupport/gdb_optional.h"
80 #include "gdbsupport/underlying.h"
81 #include "gdbsupport/hash_enum.h"
82 #include "filename-seen-cache.h"
83 #include "producer.h"
84 #include <fcntl.h>
85 #include <algorithm>
86 #include <unordered_map>
87 #include "gdbsupport/selftest.h"
88 #include "rust-lang.h"
89 #include "gdbsupport/pathstuff.h"
90 #include "count-one-bits.h"
91 #include <unordered_set>
92
93 /* When == 1, print basic high level tracing messages.
94 When > 1, be more verbose.
95 This is in contrast to the low level DIE reading of dwarf_die_debug. */
96 static unsigned int dwarf_read_debug = 0;
97
98 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 1. */
99
100 #define dwarf_read_debug_printf(fmt, ...) \
101 debug_prefixed_printf_cond (dwarf_read_debug >= 1, "dwarf-read", fmt, \
102 ##__VA_ARGS__)
103
104 /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 2. */
105
106 #define dwarf_read_debug_printf_v(fmt, ...) \
107 debug_prefixed_printf_cond (dwarf_read_debug >= 2, "dwarf-read", fmt, \
108 ##__VA_ARGS__)
109
110 /* When non-zero, dump DIEs after they are read in. */
111 static unsigned int dwarf_die_debug = 0;
112
113 /* When non-zero, dump line number entries as they are read in. */
114 unsigned int dwarf_line_debug = 0;
115
116 /* When true, cross-check physname against demangler. */
117 static bool check_physname = false;
118
119 /* When true, do not reject deprecated .gdb_index sections. */
120 static bool use_deprecated_index_sections = false;
121
122 /* This is used to store the data that is always per objfile. */
123 static const objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
124
125 /* These are used to store the dwarf2_per_bfd objects.
126
127 objfiles having the same BFD, which doesn't require relocations, are going to
128 share a dwarf2_per_bfd object, which is held in the _bfd_data_key version.
129
130 Other objfiles are not going to share a dwarf2_per_bfd with any other
131 objfiles, so they'll have their own version kept in the _objfile_data_key
132 version. */
133 static const struct bfd_key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key;
134 static const struct objfile_key<dwarf2_per_bfd> dwarf2_per_bfd_objfile_data_key;
135
136 /* The "aclass" indices for various kinds of computed DWARF symbols. */
137
138 static int dwarf2_locexpr_index;
139 static int dwarf2_loclist_index;
140 static int dwarf2_locexpr_block_index;
141 static int dwarf2_loclist_block_index;
142
143 /* Size of .debug_loclists section header for 32-bit DWARF format. */
144 #define LOCLIST_HEADER_SIZE32 12
145
146 /* Size of .debug_loclists section header for 64-bit DWARF format. */
147 #define LOCLIST_HEADER_SIZE64 20
148
149 /* Size of .debug_rnglists section header for 32-bit DWARF format. */
150 #define RNGLIST_HEADER_SIZE32 12
151
152 /* Size of .debug_rnglists section header for 64-bit DWARF format. */
153 #define RNGLIST_HEADER_SIZE64 20
154
155 /* An index into a (C++) symbol name component in a symbol name as
156 recorded in the mapped_index's symbol table. For each C++ symbol
157 in the symbol table, we record one entry for the start of each
158 component in the symbol in a table of name components, and then
159 sort the table, in order to be able to binary search symbol names,
160 ignoring leading namespaces, both completion and regular look up.
161 For example, for symbol "A::B::C", we'll have an entry that points
162 to "A::B::C", another that points to "B::C", and another for "C".
163 Note that function symbols in GDB index have no parameter
164 information, just the function/method names. You can convert a
165 name_component to a "const char *" using the
166 'mapped_index::symbol_name_at(offset_type)' method. */
167
168 struct name_component
169 {
170 /* Offset in the symbol name where the component starts. Stored as
171 a (32-bit) offset instead of a pointer to save memory and improve
172 locality on 64-bit architectures. */
173 offset_type name_offset;
174
175 /* The symbol's index in the symbol and constant pool tables of a
176 mapped_index. */
177 offset_type idx;
178 };
179
180 /* Base class containing bits shared by both .gdb_index and
181 .debug_name indexes. */
182
183 struct mapped_index_base
184 {
185 mapped_index_base () = default;
186 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
187
188 /* The name_component table (a sorted vector). See name_component's
189 description above. */
190 std::vector<name_component> name_components;
191
192 /* How NAME_COMPONENTS is sorted. */
193 enum case_sensitivity name_components_casing;
194
195 /* Return the number of names in the symbol table. */
196 virtual size_t symbol_name_count () const = 0;
197
198 /* Get the name of the symbol at IDX in the symbol table. */
199 virtual const char *symbol_name_at
200 (offset_type idx, dwarf2_per_objfile *per_objfile) const = 0;
201
202 /* Return whether the name at IDX in the symbol table should be
203 ignored. */
204 virtual bool symbol_name_slot_invalid (offset_type idx) const
205 {
206 return false;
207 }
208
209 /* Build the symbol name component sorted vector, if we haven't
210 yet. */
211 void build_name_components (dwarf2_per_objfile *per_objfile);
212
213 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
214 possible matches for LN_NO_PARAMS in the name component
215 vector. */
216 std::pair<std::vector<name_component>::const_iterator,
217 std::vector<name_component>::const_iterator>
218 find_name_components_bounds (const lookup_name_info &ln_no_params,
219 enum language lang,
220 dwarf2_per_objfile *per_objfile) const;
221
222 /* Prevent deleting/destroying via a base class pointer. */
223 protected:
224 ~mapped_index_base() = default;
225 };
226
227 /* This is a view into the index that converts from bytes to an
228 offset_type, and allows indexing. Unaligned bytes are specifically
229 allowed here, and handled via unpacking. */
230
231 class offset_view
232 {
233 public:
234 offset_view () = default;
235
236 explicit offset_view (gdb::array_view<const gdb_byte> bytes)
237 : m_bytes (bytes)
238 {
239 }
240
241 /* Extract the INDEXth offset_type from the array. */
242 offset_type operator[] (size_t index) const
243 {
244 const gdb_byte *bytes = &m_bytes[index * sizeof (offset_type)];
245 return (offset_type) extract_unsigned_integer (bytes,
246 sizeof (offset_type),
247 BFD_ENDIAN_LITTLE);
248 }
249
250 /* Return the number of offset_types in this array. */
251 size_t size () const
252 {
253 return m_bytes.size () / sizeof (offset_type);
254 }
255
256 /* Return true if this view is empty. */
257 bool empty () const
258 {
259 return m_bytes.empty ();
260 }
261
262 private:
263 /* The underlying bytes. */
264 gdb::array_view<const gdb_byte> m_bytes;
265 };
266
267 /* A description of the mapped index. The file format is described in
268 a comment by the code that writes the index. */
269 struct mapped_index final : public mapped_index_base
270 {
271 /* Index data format version. */
272 int version = 0;
273
274 /* The address table data. */
275 gdb::array_view<const gdb_byte> address_table;
276
277 /* The symbol table, implemented as a hash table. */
278 offset_view symbol_table;
279
280 /* A pointer to the constant pool. */
281 gdb::array_view<const gdb_byte> constant_pool;
282
283 /* Return the index into the constant pool of the name of the IDXth
284 symbol in the symbol table. */
285 offset_type symbol_name_index (offset_type idx) const
286 {
287 return symbol_table[2 * idx];
288 }
289
290 /* Return the index into the constant pool of the CU vector of the
291 IDXth symbol in the symbol table. */
292 offset_type symbol_vec_index (offset_type idx) const
293 {
294 return symbol_table[2 * idx + 1];
295 }
296
297 bool symbol_name_slot_invalid (offset_type idx) const override
298 {
299 return (symbol_name_index (idx) == 0
300 && symbol_vec_index (idx) == 0);
301 }
302
303 /* Convenience method to get at the name of the symbol at IDX in the
304 symbol table. */
305 const char *symbol_name_at
306 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
307 {
308 return (const char *) (this->constant_pool.data ()
309 + symbol_name_index (idx));
310 }
311
312 size_t symbol_name_count () const override
313 { return this->symbol_table.size () / 2; }
314 };
315
316 /* A description of the mapped .debug_names.
317 Uninitialized map has CU_COUNT 0. */
318 struct mapped_debug_names final : public mapped_index_base
319 {
320 bfd_endian dwarf5_byte_order;
321 bool dwarf5_is_dwarf64;
322 bool augmentation_is_gdb;
323 uint8_t offset_size;
324 uint32_t cu_count = 0;
325 uint32_t tu_count, bucket_count, name_count;
326 const gdb_byte *cu_table_reordered, *tu_table_reordered;
327 const uint32_t *bucket_table_reordered, *hash_table_reordered;
328 const gdb_byte *name_table_string_offs_reordered;
329 const gdb_byte *name_table_entry_offs_reordered;
330 const gdb_byte *entry_pool;
331
332 struct index_val
333 {
334 ULONGEST dwarf_tag;
335 struct attr
336 {
337 /* Attribute name DW_IDX_*. */
338 ULONGEST dw_idx;
339
340 /* Attribute form DW_FORM_*. */
341 ULONGEST form;
342
343 /* Value if FORM is DW_FORM_implicit_const. */
344 LONGEST implicit_const;
345 };
346 std::vector<attr> attr_vec;
347 };
348
349 std::unordered_map<ULONGEST, index_val> abbrev_map;
350
351 const char *namei_to_name
352 (uint32_t namei, dwarf2_per_objfile *per_objfile) const;
353
354 /* Implementation of the mapped_index_base virtual interface, for
355 the name_components cache. */
356
357 const char *symbol_name_at
358 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
359 { return namei_to_name (idx, per_objfile); }
360
361 size_t symbol_name_count () const override
362 { return this->name_count; }
363 };
364
365 /* See dwarf2read.h. */
366
367 dwarf2_per_objfile *
368 get_dwarf2_per_objfile (struct objfile *objfile)
369 {
370 return dwarf2_objfile_data_key.get (objfile);
371 }
372
373 /* Default names of the debugging sections. */
374
375 /* Note that if the debugging section has been compressed, it might
376 have a name like .zdebug_info. */
377
378 const struct dwarf2_debug_sections dwarf2_elf_names =
379 {
380 { ".debug_info", ".zdebug_info" },
381 { ".debug_abbrev", ".zdebug_abbrev" },
382 { ".debug_line", ".zdebug_line" },
383 { ".debug_loc", ".zdebug_loc" },
384 { ".debug_loclists", ".zdebug_loclists" },
385 { ".debug_macinfo", ".zdebug_macinfo" },
386 { ".debug_macro", ".zdebug_macro" },
387 { ".debug_str", ".zdebug_str" },
388 { ".debug_str_offsets", ".zdebug_str_offsets" },
389 { ".debug_line_str", ".zdebug_line_str" },
390 { ".debug_ranges", ".zdebug_ranges" },
391 { ".debug_rnglists", ".zdebug_rnglists" },
392 { ".debug_types", ".zdebug_types" },
393 { ".debug_addr", ".zdebug_addr" },
394 { ".debug_frame", ".zdebug_frame" },
395 { ".eh_frame", NULL },
396 { ".gdb_index", ".zgdb_index" },
397 { ".debug_names", ".zdebug_names" },
398 { ".debug_aranges", ".zdebug_aranges" },
399 23
400 };
401
402 /* List of DWO/DWP sections. */
403
404 static const struct dwop_section_names
405 {
406 struct dwarf2_section_names abbrev_dwo;
407 struct dwarf2_section_names info_dwo;
408 struct dwarf2_section_names line_dwo;
409 struct dwarf2_section_names loc_dwo;
410 struct dwarf2_section_names loclists_dwo;
411 struct dwarf2_section_names macinfo_dwo;
412 struct dwarf2_section_names macro_dwo;
413 struct dwarf2_section_names rnglists_dwo;
414 struct dwarf2_section_names str_dwo;
415 struct dwarf2_section_names str_offsets_dwo;
416 struct dwarf2_section_names types_dwo;
417 struct dwarf2_section_names cu_index;
418 struct dwarf2_section_names tu_index;
419 }
420 dwop_section_names =
421 {
422 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
423 { ".debug_info.dwo", ".zdebug_info.dwo" },
424 { ".debug_line.dwo", ".zdebug_line.dwo" },
425 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
426 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
427 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
428 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
429 { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" },
430 { ".debug_str.dwo", ".zdebug_str.dwo" },
431 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
432 { ".debug_types.dwo", ".zdebug_types.dwo" },
433 { ".debug_cu_index", ".zdebug_cu_index" },
434 { ".debug_tu_index", ".zdebug_tu_index" },
435 };
436
437 /* local data types */
438
439 /* The location list and range list sections (.debug_loclists & .debug_rnglists)
440 begin with a header, which contains the following information. */
441 struct loclists_rnglists_header
442 {
443 /* A 4-byte or 12-byte length containing the length of the
444 set of entries for this compilation unit, not including the
445 length field itself. */
446 unsigned int length;
447
448 /* A 2-byte version identifier. */
449 short version;
450
451 /* A 1-byte unsigned integer containing the size in bytes of an address on
452 the target system. */
453 unsigned char addr_size;
454
455 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
456 on the target system. */
457 unsigned char segment_collector_size;
458
459 /* A 4-byte count of the number of offsets that follow the header. */
460 unsigned int offset_entry_count;
461 };
462
463 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
464 This includes type_unit_group and quick_file_names. */
465
466 struct stmt_list_hash
467 {
468 /* The DWO unit this table is from or NULL if there is none. */
469 struct dwo_unit *dwo_unit;
470
471 /* Offset in .debug_line or .debug_line.dwo. */
472 sect_offset line_sect_off;
473 };
474
475 /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to
476 an object of this type. This contains elements of type unit groups
477 that can be shared across objfiles. The non-shareable parts are in
478 type_unit_group_unshareable. */
479
480 struct type_unit_group : public dwarf2_per_cu_data
481 {
482 /* The TUs that share this DW_AT_stmt_list entry.
483 This is added to while parsing type units to build partial symtabs,
484 and is deleted afterwards and not used again. */
485 std::vector<signatured_type *> *tus = nullptr;
486
487 /* The data used to construct the hash key. */
488 struct stmt_list_hash hash {};
489 };
490
491 /* These sections are what may appear in a (real or virtual) DWO file. */
492
493 struct dwo_sections
494 {
495 struct dwarf2_section_info abbrev;
496 struct dwarf2_section_info line;
497 struct dwarf2_section_info loc;
498 struct dwarf2_section_info loclists;
499 struct dwarf2_section_info macinfo;
500 struct dwarf2_section_info macro;
501 struct dwarf2_section_info rnglists;
502 struct dwarf2_section_info str;
503 struct dwarf2_section_info str_offsets;
504 /* In the case of a virtual DWO file, these two are unused. */
505 struct dwarf2_section_info info;
506 std::vector<dwarf2_section_info> types;
507 };
508
509 /* CUs/TUs in DWP/DWO files. */
510
511 struct dwo_unit
512 {
513 /* Backlink to the containing struct dwo_file. */
514 struct dwo_file *dwo_file;
515
516 /* The "id" that distinguishes this CU/TU.
517 .debug_info calls this "dwo_id", .debug_types calls this "signature".
518 Since signatures came first, we stick with it for consistency. */
519 ULONGEST signature;
520
521 /* The section this CU/TU lives in, in the DWO file. */
522 struct dwarf2_section_info *section;
523
524 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
525 sect_offset sect_off;
526 unsigned int length;
527
528 /* For types, offset in the type's DIE of the type defined by this TU. */
529 cu_offset type_offset_in_tu;
530 };
531
532 /* include/dwarf2.h defines the DWP section codes.
533 It defines a max value but it doesn't define a min value, which we
534 use for error checking, so provide one. */
535
536 enum dwp_v2_section_ids
537 {
538 DW_SECT_MIN = 1
539 };
540
541 /* Data for one DWO file.
542
543 This includes virtual DWO files (a virtual DWO file is a DWO file as it
544 appears in a DWP file). DWP files don't really have DWO files per se -
545 comdat folding of types "loses" the DWO file they came from, and from
546 a high level view DWP files appear to contain a mass of random types.
547 However, to maintain consistency with the non-DWP case we pretend DWP
548 files contain virtual DWO files, and we assign each TU with one virtual
549 DWO file (generally based on the line and abbrev section offsets -
550 a heuristic that seems to work in practice). */
551
552 struct dwo_file
553 {
554 dwo_file () = default;
555 DISABLE_COPY_AND_ASSIGN (dwo_file);
556
557 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
558 For virtual DWO files the name is constructed from the section offsets
559 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
560 from related CU+TUs. */
561 const char *dwo_name = nullptr;
562
563 /* The DW_AT_comp_dir attribute. */
564 const char *comp_dir = nullptr;
565
566 /* The bfd, when the file is open. Otherwise this is NULL.
567 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
568 gdb_bfd_ref_ptr dbfd;
569
570 /* The sections that make up this DWO file.
571 Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual
572 sections (for lack of a better name). */
573 struct dwo_sections sections {};
574
575 /* The CUs in the file.
576 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
577 an extension to handle LLVM's Link Time Optimization output (where
578 multiple source files may be compiled into a single object/dwo pair). */
579 htab_up cus;
580
581 /* Table of TUs in the file.
582 Each element is a struct dwo_unit. */
583 htab_up tus;
584 };
585
586 /* These sections are what may appear in a DWP file. */
587
588 struct dwp_sections
589 {
590 /* These are used by all DWP versions (1, 2 and 5). */
591 struct dwarf2_section_info str;
592 struct dwarf2_section_info cu_index;
593 struct dwarf2_section_info tu_index;
594
595 /* These are only used by DWP version 2 and version 5 files.
596 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
597 sections are referenced by section number, and are not recorded here.
598 In DWP version 2 or 5 there is at most one copy of all these sections,
599 each section being (effectively) comprised of the concatenation of all of
600 the individual sections that exist in the version 1 format.
601 To keep the code simple we treat each of these concatenated pieces as a
602 section itself (a virtual section?). */
603 struct dwarf2_section_info abbrev;
604 struct dwarf2_section_info info;
605 struct dwarf2_section_info line;
606 struct dwarf2_section_info loc;
607 struct dwarf2_section_info loclists;
608 struct dwarf2_section_info macinfo;
609 struct dwarf2_section_info macro;
610 struct dwarf2_section_info rnglists;
611 struct dwarf2_section_info str_offsets;
612 struct dwarf2_section_info types;
613 };
614
615 /* These sections are what may appear in a virtual DWO file in DWP version 1.
616 A virtual DWO file is a DWO file as it appears in a DWP file. */
617
618 struct virtual_v1_dwo_sections
619 {
620 struct dwarf2_section_info abbrev;
621 struct dwarf2_section_info line;
622 struct dwarf2_section_info loc;
623 struct dwarf2_section_info macinfo;
624 struct dwarf2_section_info macro;
625 struct dwarf2_section_info str_offsets;
626 /* Each DWP hash table entry records one CU or one TU.
627 That is recorded here, and copied to dwo_unit.section. */
628 struct dwarf2_section_info info_or_types;
629 };
630
631 /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5.
632 In version 2, the sections of the DWO files are concatenated together
633 and stored in one section of that name. Thus each ELF section contains
634 several "virtual" sections. */
635
636 struct virtual_v2_or_v5_dwo_sections
637 {
638 bfd_size_type abbrev_offset;
639 bfd_size_type abbrev_size;
640
641 bfd_size_type line_offset;
642 bfd_size_type line_size;
643
644 bfd_size_type loc_offset;
645 bfd_size_type loc_size;
646
647 bfd_size_type loclists_offset;
648 bfd_size_type loclists_size;
649
650 bfd_size_type macinfo_offset;
651 bfd_size_type macinfo_size;
652
653 bfd_size_type macro_offset;
654 bfd_size_type macro_size;
655
656 bfd_size_type rnglists_offset;
657 bfd_size_type rnglists_size;
658
659 bfd_size_type str_offsets_offset;
660 bfd_size_type str_offsets_size;
661
662 /* Each DWP hash table entry records one CU or one TU.
663 That is recorded here, and copied to dwo_unit.section. */
664 bfd_size_type info_or_types_offset;
665 bfd_size_type info_or_types_size;
666 };
667
668 /* Contents of DWP hash tables. */
669
670 struct dwp_hash_table
671 {
672 uint32_t version, nr_columns;
673 uint32_t nr_units, nr_slots;
674 const gdb_byte *hash_table, *unit_table;
675 union
676 {
677 struct
678 {
679 const gdb_byte *indices;
680 } v1;
681 struct
682 {
683 /* This is indexed by column number and gives the id of the section
684 in that column. */
685 #define MAX_NR_V2_DWO_SECTIONS \
686 (1 /* .debug_info or .debug_types */ \
687 + 1 /* .debug_abbrev */ \
688 + 1 /* .debug_line */ \
689 + 1 /* .debug_loc */ \
690 + 1 /* .debug_str_offsets */ \
691 + 1 /* .debug_macro or .debug_macinfo */)
692 int section_ids[MAX_NR_V2_DWO_SECTIONS];
693 const gdb_byte *offsets;
694 const gdb_byte *sizes;
695 } v2;
696 struct
697 {
698 /* This is indexed by column number and gives the id of the section
699 in that column. */
700 #define MAX_NR_V5_DWO_SECTIONS \
701 (1 /* .debug_info */ \
702 + 1 /* .debug_abbrev */ \
703 + 1 /* .debug_line */ \
704 + 1 /* .debug_loclists */ \
705 + 1 /* .debug_str_offsets */ \
706 + 1 /* .debug_macro */ \
707 + 1 /* .debug_rnglists */)
708 int section_ids[MAX_NR_V5_DWO_SECTIONS];
709 const gdb_byte *offsets;
710 const gdb_byte *sizes;
711 } v5;
712 } section_pool;
713 };
714
715 /* Data for one DWP file. */
716
717 struct dwp_file
718 {
719 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
720 : name (name_),
721 dbfd (std::move (abfd))
722 {
723 }
724
725 /* Name of the file. */
726 const char *name;
727
728 /* File format version. */
729 int version = 0;
730
731 /* The bfd. */
732 gdb_bfd_ref_ptr dbfd;
733
734 /* Section info for this file. */
735 struct dwp_sections sections {};
736
737 /* Table of CUs in the file. */
738 const struct dwp_hash_table *cus = nullptr;
739
740 /* Table of TUs in the file. */
741 const struct dwp_hash_table *tus = nullptr;
742
743 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
744 htab_up loaded_cus;
745 htab_up loaded_tus;
746
747 /* Table to map ELF section numbers to their sections.
748 This is only needed for the DWP V1 file format. */
749 unsigned int num_sections = 0;
750 asection **elf_sections = nullptr;
751 };
752
753 /* Struct used to pass misc. parameters to read_die_and_children, et
754 al. which are used for both .debug_info and .debug_types dies.
755 All parameters here are unchanging for the life of the call. This
756 struct exists to abstract away the constant parameters of die reading. */
757
758 struct die_reader_specs
759 {
760 /* The bfd of die_section. */
761 bfd *abfd;
762
763 /* The CU of the DIE we are parsing. */
764 struct dwarf2_cu *cu;
765
766 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
767 struct dwo_file *dwo_file;
768
769 /* The section the die comes from.
770 This is either .debug_info or .debug_types, or the .dwo variants. */
771 struct dwarf2_section_info *die_section;
772
773 /* die_section->buffer. */
774 const gdb_byte *buffer;
775
776 /* The end of the buffer. */
777 const gdb_byte *buffer_end;
778
779 /* The abbreviation table to use when reading the DIEs. */
780 struct abbrev_table *abbrev_table;
781 };
782
783 /* A subclass of die_reader_specs that holds storage and has complex
784 constructor and destructor behavior. */
785
786 class cutu_reader : public die_reader_specs
787 {
788 public:
789
790 cutu_reader (dwarf2_per_cu_data *this_cu,
791 dwarf2_per_objfile *per_objfile,
792 struct abbrev_table *abbrev_table,
793 dwarf2_cu *existing_cu,
794 bool skip_partial);
795
796 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
797 dwarf2_per_objfile *per_objfile,
798 struct dwarf2_cu *parent_cu = nullptr,
799 struct dwo_file *dwo_file = nullptr);
800
801 DISABLE_COPY_AND_ASSIGN (cutu_reader);
802
803 const gdb_byte *info_ptr = nullptr;
804 struct die_info *comp_unit_die = nullptr;
805 bool dummy_p = false;
806
807 /* Release the new CU, putting it on the chain. This cannot be done
808 for dummy CUs. */
809 void keep ();
810
811 private:
812 void init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
813 dwarf2_per_objfile *per_objfile,
814 dwarf2_cu *existing_cu);
815
816 struct dwarf2_per_cu_data *m_this_cu;
817 std::unique_ptr<dwarf2_cu> m_new_cu;
818
819 /* The ordinary abbreviation table. */
820 abbrev_table_up m_abbrev_table_holder;
821
822 /* The DWO abbreviation table. */
823 abbrev_table_up m_dwo_abbrev_table;
824 };
825
826 /* When we construct a partial symbol table entry we only
827 need this much information. */
828 struct partial_die_info : public allocate_on_obstack
829 {
830 partial_die_info (sect_offset sect_off, const struct abbrev_info *abbrev);
831
832 /* Disable assign but still keep copy ctor, which is needed
833 load_partial_dies. */
834 partial_die_info& operator=(const partial_die_info& rhs) = delete;
835 partial_die_info (const partial_die_info &) = default;
836
837 /* Adjust the partial die before generating a symbol for it. This
838 function may set the is_external flag or change the DIE's
839 name. */
840 void fixup (struct dwarf2_cu *cu);
841
842 /* Read a minimal amount of information into the minimal die
843 structure. */
844 const gdb_byte *read (const struct die_reader_specs *reader,
845 const struct abbrev_info &abbrev,
846 const gdb_byte *info_ptr);
847
848 /* Compute the name of this partial DIE. This memoizes the
849 result, so it is safe to call multiple times. */
850 const char *name (dwarf2_cu *cu);
851
852 /* Offset of this DIE. */
853 const sect_offset sect_off;
854
855 /* DWARF-2 tag for this DIE. */
856 const ENUM_BITFIELD(dwarf_tag) tag : 16;
857
858 /* Assorted flags describing the data found in this DIE. */
859 const unsigned int has_children : 1;
860
861 unsigned int is_external : 1;
862 unsigned int is_declaration : 1;
863 unsigned int has_type : 1;
864 unsigned int has_specification : 1;
865 unsigned int has_pc_info : 1;
866 unsigned int has_range_info : 1;
867 unsigned int may_be_inlined : 1;
868
869 /* This DIE has been marked DW_AT_main_subprogram. */
870 unsigned int main_subprogram : 1;
871
872 /* Flag set if the SCOPE field of this structure has been
873 computed. */
874 unsigned int scope_set : 1;
875
876 /* Flag set if the DIE has a byte_size attribute. */
877 unsigned int has_byte_size : 1;
878
879 /* Flag set if the DIE has a DW_AT_const_value attribute. */
880 unsigned int has_const_value : 1;
881
882 /* Flag set if any of the DIE's children are template arguments. */
883 unsigned int has_template_arguments : 1;
884
885 /* Flag set if fixup has been called on this die. */
886 unsigned int fixup_called : 1;
887
888 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
889 unsigned int is_dwz : 1;
890
891 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
892 unsigned int spec_is_dwz : 1;
893
894 unsigned int canonical_name : 1;
895
896 /* The name of this DIE. Normally the value of DW_AT_name, but
897 sometimes a default name for unnamed DIEs. */
898 const char *raw_name = nullptr;
899
900 /* The linkage name, if present. */
901 const char *linkage_name = nullptr;
902
903 /* The scope to prepend to our children. This is generally
904 allocated on the comp_unit_obstack, so will disappear
905 when this compilation unit leaves the cache. */
906 const char *scope = nullptr;
907
908 /* Some data associated with the partial DIE. The tag determines
909 which field is live. */
910 union
911 {
912 /* The location description associated with this DIE, if any. */
913 struct dwarf_block *locdesc;
914 /* The offset of an import, for DW_TAG_imported_unit. */
915 sect_offset sect_off;
916 } d {};
917
918 union
919 {
920 /* If HAS_PC_INFO, the PC range associated with this DIE. */
921 struct
922 {
923 CORE_ADDR lowpc;
924 CORE_ADDR highpc;
925 };
926 /* If HAS_RANGE_INFO, the ranges offset associated with this DIE. */
927 ULONGEST ranges_offset;
928 };
929
930 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
931 DW_AT_sibling, if any. */
932 /* NOTE: This member isn't strictly necessary, partial_die_info::read
933 could return DW_AT_sibling values to its caller load_partial_dies. */
934 const gdb_byte *sibling = nullptr;
935
936 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
937 DW_AT_specification (or DW_AT_abstract_origin or
938 DW_AT_extension). */
939 sect_offset spec_offset {};
940
941 /* Pointers to this DIE's parent, first child, and next sibling,
942 if any. */
943 struct partial_die_info *die_parent = nullptr;
944 struct partial_die_info *die_child = nullptr;
945 struct partial_die_info *die_sibling = nullptr;
946
947 friend struct partial_die_info *
948 dwarf2_cu::find_partial_die (sect_offset sect_off);
949
950 private:
951 /* Only need to do look up in dwarf2_cu::find_partial_die. */
952 partial_die_info (sect_offset sect_off)
953 : partial_die_info (sect_off, DW_TAG_padding, 0)
954 {
955 }
956
957 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
958 int has_children_)
959 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
960 {
961 is_external = 0;
962 is_declaration = 0;
963 has_type = 0;
964 has_specification = 0;
965 has_pc_info = 0;
966 has_range_info = 0;
967 may_be_inlined = 0;
968 main_subprogram = 0;
969 scope_set = 0;
970 has_byte_size = 0;
971 has_const_value = 0;
972 has_template_arguments = 0;
973 fixup_called = 0;
974 is_dwz = 0;
975 spec_is_dwz = 0;
976 canonical_name = 0;
977 /* Don't set these using NSDMI (Non-static data member initialisation),
978 because g++-4.8 will error out. */
979 lowpc = 0;
980 highpc = 0;
981 }
982 };
983
984 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
985 but this would require a corresponding change in unpack_field_as_long
986 and friends. */
987 static int bits_per_byte = 8;
988
989 struct variant_part_builder;
990
991 /* When reading a variant, we track a bit more information about the
992 field, and store it in an object of this type. */
993
994 struct variant_field
995 {
996 int first_field = -1;
997 int last_field = -1;
998
999 /* A variant can contain other variant parts. */
1000 std::vector<variant_part_builder> variant_parts;
1001
1002 /* If we see a DW_TAG_variant, then this will be set if this is the
1003 default branch. */
1004 bool default_branch = false;
1005 /* If we see a DW_AT_discr_value, then this will be the discriminant
1006 value. */
1007 ULONGEST discriminant_value = 0;
1008 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1009 data. */
1010 struct dwarf_block *discr_list_data = nullptr;
1011 };
1012
1013 /* This represents a DW_TAG_variant_part. */
1014
1015 struct variant_part_builder
1016 {
1017 /* The offset of the discriminant field. */
1018 sect_offset discriminant_offset {};
1019
1020 /* Variants that are direct children of this variant part. */
1021 std::vector<variant_field> variants;
1022
1023 /* True if we're currently reading a variant. */
1024 bool processing_variant = false;
1025 };
1026
1027 struct nextfield
1028 {
1029 int accessibility = 0;
1030 int virtuality = 0;
1031 /* Variant parts need to find the discriminant, which is a DIE
1032 reference. We track the section offset of each field to make
1033 this link. */
1034 sect_offset offset;
1035 struct field field {};
1036 };
1037
1038 struct fnfieldlist
1039 {
1040 const char *name = nullptr;
1041 std::vector<struct fn_field> fnfields;
1042 };
1043
1044 /* The routines that read and process dies for a C struct or C++ class
1045 pass lists of data member fields and lists of member function fields
1046 in an instance of a field_info structure, as defined below. */
1047 struct field_info
1048 {
1049 /* List of data member and baseclasses fields. */
1050 std::vector<struct nextfield> fields;
1051 std::vector<struct nextfield> baseclasses;
1052
1053 /* Set if the accessibility of one of the fields is not public. */
1054 bool non_public_fields = false;
1055
1056 /* Member function fieldlist array, contains name of possibly overloaded
1057 member function, number of overloaded member functions and a pointer
1058 to the head of the member function field chain. */
1059 std::vector<struct fnfieldlist> fnfieldlists;
1060
1061 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1062 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1063 std::vector<struct decl_field> typedef_field_list;
1064
1065 /* Nested types defined by this class and the number of elements in this
1066 list. */
1067 std::vector<struct decl_field> nested_types_list;
1068
1069 /* If non-null, this is the variant part we are currently
1070 reading. */
1071 variant_part_builder *current_variant_part = nullptr;
1072 /* This holds all the top-level variant parts attached to the type
1073 we're reading. */
1074 std::vector<variant_part_builder> variant_parts;
1075
1076 /* Return the total number of fields (including baseclasses). */
1077 int nfields () const
1078 {
1079 return fields.size () + baseclasses.size ();
1080 }
1081 };
1082
1083 /* Loaded secondary compilation units are kept in memory until they
1084 have not been referenced for the processing of this many
1085 compilation units. Set this to zero to disable caching. Cache
1086 sizes of up to at least twenty will improve startup time for
1087 typical inter-CU-reference binaries, at an obvious memory cost. */
1088 static int dwarf_max_cache_age = 5;
1089 static void
1090 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1091 struct cmd_list_element *c, const char *value)
1092 {
1093 fprintf_filtered (file, _("The upper bound on the age of cached "
1094 "DWARF compilation units is %s.\n"),
1095 value);
1096 }
1097 \f
1098 /* local function prototypes */
1099
1100 static void dwarf2_find_base_address (struct die_info *die,
1101 struct dwarf2_cu *cu);
1102
1103 static dwarf2_psymtab *create_partial_symtab
1104 (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
1105 const char *name);
1106
1107 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1108 const gdb_byte *info_ptr,
1109 struct die_info *type_unit_die);
1110
1111 static void dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile);
1112
1113 static void scan_partial_symbols (struct partial_die_info *,
1114 CORE_ADDR *, CORE_ADDR *,
1115 int, struct dwarf2_cu *);
1116
1117 static void add_partial_symbol (struct partial_die_info *,
1118 struct dwarf2_cu *);
1119
1120 static void add_partial_namespace (struct partial_die_info *pdi,
1121 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1122 int set_addrmap, struct dwarf2_cu *cu);
1123
1124 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1125 CORE_ADDR *highpc, int set_addrmap,
1126 struct dwarf2_cu *cu);
1127
1128 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1129 struct dwarf2_cu *cu);
1130
1131 static void add_partial_subprogram (struct partial_die_info *pdi,
1132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1133 int need_pc, struct dwarf2_cu *cu);
1134
1135 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1136
1137 static struct partial_die_info *load_partial_dies
1138 (const struct die_reader_specs *, const gdb_byte *, int);
1139
1140 /* A pair of partial_die_info and compilation unit. */
1141 struct cu_partial_die_info
1142 {
1143 /* The compilation unit of the partial_die_info. */
1144 struct dwarf2_cu *cu;
1145 /* A partial_die_info. */
1146 struct partial_die_info *pdi;
1147
1148 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1149 : cu (cu),
1150 pdi (pdi)
1151 { /* Nothing. */ }
1152
1153 private:
1154 cu_partial_die_info () = delete;
1155 };
1156
1157 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1158 struct dwarf2_cu *);
1159
1160 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1161 struct attribute *,
1162 const struct attr_abbrev *,
1163 const gdb_byte *);
1164
1165 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1166 struct attribute *attr, dwarf_tag tag);
1167
1168 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1169
1170 static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile,
1171 dwarf2_section_info *, sect_offset);
1172
1173 static const char *read_indirect_string
1174 (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *,
1175 const struct comp_unit_head *, unsigned int *);
1176
1177 static const char *read_indirect_string_at_offset
1178 (dwarf2_per_objfile *per_objfile, LONGEST str_offset);
1179
1180 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1181 const gdb_byte *,
1182 unsigned int *);
1183
1184 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1185 ULONGEST str_index);
1186
1187 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1188 ULONGEST str_index);
1189
1190 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1191 struct dwarf2_cu *);
1192
1193 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1194 struct dwarf2_cu *cu);
1195
1196 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1197
1198 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1199 struct dwarf2_cu *cu);
1200
1201 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1202
1203 static struct die_info *die_specification (struct die_info *die,
1204 struct dwarf2_cu **);
1205
1206 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1207 struct dwarf2_cu *cu);
1208
1209 struct file_and_directory;
1210 static void dwarf_decode_lines (struct line_header *,
1211 const file_and_directory &,
1212 struct dwarf2_cu *, dwarf2_psymtab *,
1213 CORE_ADDR, int decode_mapping);
1214
1215 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1216 const char *);
1217
1218 static struct symbol *new_symbol (struct die_info *, struct type *,
1219 struct dwarf2_cu *, struct symbol * = NULL);
1220
1221 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1222 struct dwarf2_cu *);
1223
1224 static void dwarf2_const_value_attr (const struct attribute *attr,
1225 struct type *type,
1226 const char *name,
1227 struct obstack *obstack,
1228 struct dwarf2_cu *cu, LONGEST *value,
1229 const gdb_byte **bytes,
1230 struct dwarf2_locexpr_baton **baton);
1231
1232 static struct type *read_subrange_index_type (struct die_info *die,
1233 struct dwarf2_cu *cu);
1234
1235 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1236
1237 static int need_gnat_info (struct dwarf2_cu *);
1238
1239 static struct type *die_descriptive_type (struct die_info *,
1240 struct dwarf2_cu *);
1241
1242 static void set_descriptive_type (struct type *, struct die_info *,
1243 struct dwarf2_cu *);
1244
1245 static struct type *die_containing_type (struct die_info *,
1246 struct dwarf2_cu *);
1247
1248 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1249 struct dwarf2_cu *);
1250
1251 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1252
1253 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1254
1255 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1256
1257 static char *typename_concat (struct obstack *obs, const char *prefix,
1258 const char *suffix, int physname,
1259 struct dwarf2_cu *cu);
1260
1261 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1262
1263 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1264
1265 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1266
1267 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1268
1269 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1270
1271 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1272
1273 /* Return the .debug_loclists section to use for cu. */
1274 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1275
1276 /* Return the .debug_rnglists section to use for cu. */
1277 static struct dwarf2_section_info *cu_debug_rnglists_section
1278 (struct dwarf2_cu *cu, dwarf_tag tag);
1279
1280 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1281 values. Keep the items ordered with increasing constraints compliance. */
1282 enum pc_bounds_kind
1283 {
1284 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1285 PC_BOUNDS_NOT_PRESENT,
1286
1287 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1288 were present but they do not form a valid range of PC addresses. */
1289 PC_BOUNDS_INVALID,
1290
1291 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1292 PC_BOUNDS_RANGES,
1293
1294 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1295 PC_BOUNDS_HIGH_LOW,
1296 };
1297
1298 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1299 CORE_ADDR *, CORE_ADDR *,
1300 struct dwarf2_cu *,
1301 dwarf2_psymtab *);
1302
1303 static void get_scope_pc_bounds (struct die_info *,
1304 CORE_ADDR *, CORE_ADDR *,
1305 struct dwarf2_cu *);
1306
1307 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1308 CORE_ADDR, struct dwarf2_cu *);
1309
1310 static void dwarf2_add_field (struct field_info *, struct die_info *,
1311 struct dwarf2_cu *);
1312
1313 static void dwarf2_attach_fields_to_type (struct field_info *,
1314 struct type *, struct dwarf2_cu *);
1315
1316 static void dwarf2_add_member_fn (struct field_info *,
1317 struct die_info *, struct type *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1321 struct type *,
1322 struct dwarf2_cu *);
1323
1324 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1325
1326 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1327
1328 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1329
1330 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1331
1332 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1333
1334 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1335
1336 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1337
1338 static struct type *read_module_type (struct die_info *die,
1339 struct dwarf2_cu *cu);
1340
1341 static const char *namespace_name (struct die_info *die,
1342 int *is_anonymous, struct dwarf2_cu *);
1343
1344 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1345
1346 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1347 bool * = nullptr);
1348
1349 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1350 struct dwarf2_cu *);
1351
1352 static struct die_info *read_die_and_siblings_1
1353 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1354 struct die_info *);
1355
1356 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1357 const gdb_byte *info_ptr,
1358 const gdb_byte **new_info_ptr,
1359 struct die_info *parent);
1360
1361 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1362 struct die_info **, const gdb_byte *,
1363 int);
1364
1365 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1366 struct die_info **, const gdb_byte *);
1367
1368 static void process_die (struct die_info *, struct dwarf2_cu *);
1369
1370 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1371 struct objfile *);
1372
1373 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1374
1375 static const char *dwarf2_full_name (const char *name,
1376 struct die_info *die,
1377 struct dwarf2_cu *cu);
1378
1379 static const char *dwarf2_physname (const char *name, struct die_info *die,
1380 struct dwarf2_cu *cu);
1381
1382 static struct die_info *dwarf2_extension (struct die_info *die,
1383 struct dwarf2_cu **);
1384
1385 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1386
1387 static void dump_die_for_error (struct die_info *);
1388
1389 static void dump_die_1 (struct ui_file *, int level, int max_level,
1390 struct die_info *);
1391
1392 /*static*/ void dump_die (struct die_info *, int max_level);
1393
1394 static void store_in_ref_table (struct die_info *,
1395 struct dwarf2_cu *);
1396
1397 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1398 const struct attribute *,
1399 struct dwarf2_cu **);
1400
1401 static struct die_info *follow_die_ref (struct die_info *,
1402 const struct attribute *,
1403 struct dwarf2_cu **);
1404
1405 static struct die_info *follow_die_sig (struct die_info *,
1406 const struct attribute *,
1407 struct dwarf2_cu **);
1408
1409 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1410 struct dwarf2_cu *);
1411
1412 static struct type *get_DW_AT_signature_type (struct die_info *,
1413 const struct attribute *,
1414 struct dwarf2_cu *);
1415
1416 static void load_full_type_unit (dwarf2_per_cu_data *per_cu,
1417 dwarf2_per_objfile *per_objfile);
1418
1419 static void read_signatured_type (signatured_type *sig_type,
1420 dwarf2_per_objfile *per_objfile);
1421
1422 static int attr_to_dynamic_prop (const struct attribute *attr,
1423 struct die_info *die, struct dwarf2_cu *cu,
1424 struct dynamic_prop *prop, struct type *type);
1425
1426 /* memory allocation interface */
1427
1428 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1429
1430 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1431
1432 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1433
1434 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1435 struct dwarf2_loclist_baton *baton,
1436 const struct attribute *attr);
1437
1438 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1439 struct symbol *sym,
1440 struct dwarf2_cu *cu,
1441 int is_block);
1442
1443 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1444 const gdb_byte *info_ptr,
1445 const struct abbrev_info *abbrev);
1446
1447 static hashval_t partial_die_hash (const void *item);
1448
1449 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1450
1451 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1452 (sect_offset sect_off, unsigned int offset_in_dwz,
1453 dwarf2_per_objfile *per_objfile);
1454
1455 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1456 struct die_info *comp_unit_die,
1457 enum language pretend_language);
1458
1459 static struct type *set_die_type (struct die_info *, struct type *,
1460 struct dwarf2_cu *, bool = false);
1461
1462 static void create_all_comp_units (dwarf2_per_objfile *per_objfile);
1463
1464 static void load_full_comp_unit (dwarf2_per_cu_data *per_cu,
1465 dwarf2_per_objfile *per_objfile,
1466 dwarf2_cu *existing_cu,
1467 bool skip_partial,
1468 enum language pretend_language);
1469
1470 static void process_full_comp_unit (dwarf2_cu *cu,
1471 enum language pretend_language);
1472
1473 static void process_full_type_unit (dwarf2_cu *cu,
1474 enum language pretend_language);
1475
1476 static struct type *get_die_type_at_offset (sect_offset,
1477 dwarf2_per_cu_data *per_cu,
1478 dwarf2_per_objfile *per_objfile);
1479
1480 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1481
1482 static void queue_comp_unit (dwarf2_per_cu_data *per_cu,
1483 dwarf2_per_objfile *per_objfile,
1484 enum language pretend_language);
1485
1486 static void process_queue (dwarf2_per_objfile *per_objfile);
1487
1488 /* Class, the destructor of which frees all allocated queue entries. This
1489 will only have work to do if an error was thrown while processing the
1490 dwarf. If no error was thrown then the queue entries should have all
1491 been processed, and freed, as we went along. */
1492
1493 class dwarf2_queue_guard
1494 {
1495 public:
1496 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1497 : m_per_objfile (per_objfile)
1498 {
1499 gdb_assert (!m_per_objfile->per_bfd->queue.has_value ());
1500
1501 m_per_objfile->per_bfd->queue.emplace ();
1502 }
1503
1504 /* Free any entries remaining on the queue. There should only be
1505 entries left if we hit an error while processing the dwarf. */
1506 ~dwarf2_queue_guard ()
1507 {
1508 gdb_assert (m_per_objfile->per_bfd->queue.has_value ());
1509
1510 m_per_objfile->per_bfd->queue.reset ();
1511 }
1512
1513 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1514
1515 private:
1516 dwarf2_per_objfile *m_per_objfile;
1517 };
1518
1519 dwarf2_queue_item::~dwarf2_queue_item ()
1520 {
1521 /* Anything still marked queued is likely to be in an
1522 inconsistent state, so discard it. */
1523 if (per_cu->queued)
1524 {
1525 per_objfile->remove_cu (per_cu);
1526 per_cu->queued = 0;
1527 }
1528 }
1529
1530 /* See dwarf2/read.h. */
1531
1532 void
1533 dwarf2_per_cu_data_deleter::operator() (dwarf2_per_cu_data *data)
1534 {
1535 if (data->is_debug_types)
1536 delete static_cast<signatured_type *> (data);
1537 else
1538 delete data;
1539 }
1540
1541 /* The return type of find_file_and_directory. Note, the enclosed
1542 string pointers are only valid while this object is valid. */
1543
1544 struct file_and_directory
1545 {
1546 /* The filename. This is never NULL. */
1547 const char *name;
1548
1549 /* The compilation directory. NULL if not known. If we needed to
1550 compute a new string, it will be stored in the per-BFD string
1551 bcache; otherwise, points directly to the DW_AT_comp_dir string
1552 attribute owned by the obstack that owns the DIE. */
1553 const char *comp_dir;
1554 };
1555
1556 static file_and_directory find_file_and_directory (struct die_info *die,
1557 struct dwarf2_cu *cu);
1558
1559 static const char *compute_include_file_name
1560 (const struct line_header *lh,
1561 const file_entry &fe,
1562 const file_and_directory &cu_info,
1563 gdb::unique_xmalloc_ptr<char> *name_holder);
1564
1565 static htab_up allocate_signatured_type_table ();
1566
1567 static htab_up allocate_dwo_unit_table ();
1568
1569 static struct dwo_unit *lookup_dwo_unit_in_dwp
1570 (dwarf2_per_objfile *per_objfile, struct dwp_file *dwp_file,
1571 const char *comp_dir, ULONGEST signature, int is_debug_types);
1572
1573 static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile);
1574
1575 static struct dwo_unit *lookup_dwo_comp_unit
1576 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
1577 ULONGEST signature);
1578
1579 static struct dwo_unit *lookup_dwo_type_unit
1580 (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir);
1581
1582 static void queue_and_load_all_dwo_tus (dwarf2_cu *cu);
1583
1584 /* A unique pointer to a dwo_file. */
1585
1586 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1587
1588 static void process_cu_includes (dwarf2_per_objfile *per_objfile);
1589
1590 static void check_producer (struct dwarf2_cu *cu);
1591 \f
1592 /* Various complaints about symbol reading that don't abort the process. */
1593
1594 static void
1595 dwarf2_debug_line_missing_file_complaint (void)
1596 {
1597 complaint (_(".debug_line section has line data without a file"));
1598 }
1599
1600 static void
1601 dwarf2_debug_line_missing_end_sequence_complaint (void)
1602 {
1603 complaint (_(".debug_line section has line "
1604 "program sequence without an end"));
1605 }
1606
1607 static void
1608 dwarf2_complex_location_expr_complaint (void)
1609 {
1610 complaint (_("location expression too complex"));
1611 }
1612
1613 static void
1614 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1615 int arg3)
1616 {
1617 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1618 arg1, arg2, arg3);
1619 }
1620
1621 static void
1622 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1623 {
1624 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1625 arg1, arg2);
1626 }
1627
1628 /* Hash function for line_header_hash. */
1629
1630 static hashval_t
1631 line_header_hash (const struct line_header *ofs)
1632 {
1633 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1634 }
1635
1636 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1637
1638 static hashval_t
1639 line_header_hash_voidp (const void *item)
1640 {
1641 const struct line_header *ofs = (const struct line_header *) item;
1642
1643 return line_header_hash (ofs);
1644 }
1645
1646 /* Equality function for line_header_hash. */
1647
1648 static int
1649 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1650 {
1651 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1652 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1653
1654 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1655 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1656 }
1657
1658 \f
1659
1660 /* An iterator for all_comp_units that is based on index. This
1661 approach makes it possible to iterate over all_comp_units safely,
1662 when some caller in the loop may add new units. */
1663
1664 class all_comp_units_iterator
1665 {
1666 public:
1667
1668 all_comp_units_iterator (dwarf2_per_bfd *per_bfd, bool start)
1669 : m_per_bfd (per_bfd),
1670 m_index (start ? 0 : per_bfd->all_comp_units.size ())
1671 {
1672 }
1673
1674 all_comp_units_iterator &operator++ ()
1675 {
1676 ++m_index;
1677 return *this;
1678 }
1679
1680 dwarf2_per_cu_data *operator* () const
1681 {
1682 return m_per_bfd->get_cu (m_index);
1683 }
1684
1685 bool operator== (const all_comp_units_iterator &other) const
1686 {
1687 return m_index == other.m_index;
1688 }
1689
1690
1691 bool operator!= (const all_comp_units_iterator &other) const
1692 {
1693 return m_index != other.m_index;
1694 }
1695
1696 private:
1697
1698 dwarf2_per_bfd *m_per_bfd;
1699 size_t m_index;
1700 };
1701
1702 /* A range adapter for the all_comp_units_iterator. */
1703 class all_comp_units_range
1704 {
1705 public:
1706
1707 all_comp_units_range (dwarf2_per_bfd *per_bfd)
1708 : m_per_bfd (per_bfd)
1709 {
1710 }
1711
1712 all_comp_units_iterator begin ()
1713 {
1714 return all_comp_units_iterator (m_per_bfd, true);
1715 }
1716
1717 all_comp_units_iterator end ()
1718 {
1719 return all_comp_units_iterator (m_per_bfd, false);
1720 }
1721
1722 private:
1723
1724 dwarf2_per_bfd *m_per_bfd;
1725 };
1726
1727 /* See declaration. */
1728
1729 dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names,
1730 bool can_copy_)
1731 : obfd (obfd),
1732 can_copy (can_copy_)
1733 {
1734 if (names == NULL)
1735 names = &dwarf2_elf_names;
1736
1737 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1738 locate_sections (obfd, sec, *names);
1739 }
1740
1741 dwarf2_per_bfd::~dwarf2_per_bfd ()
1742 {
1743 for (auto &per_cu : all_comp_units)
1744 {
1745 per_cu->imported_symtabs_free ();
1746 per_cu->free_cached_file_names ();
1747 }
1748
1749 /* Everything else should be on this->obstack. */
1750 }
1751
1752 /* See read.h. */
1753
1754 void
1755 dwarf2_per_objfile::remove_all_cus ()
1756 {
1757 gdb_assert (!this->per_bfd->queue.has_value ());
1758
1759 for (auto pair : m_dwarf2_cus)
1760 delete pair.second;
1761
1762 m_dwarf2_cus.clear ();
1763 }
1764
1765 /* A helper class that calls free_cached_comp_units on
1766 destruction. */
1767
1768 class free_cached_comp_units
1769 {
1770 public:
1771
1772 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1773 : m_per_objfile (per_objfile)
1774 {
1775 }
1776
1777 ~free_cached_comp_units ()
1778 {
1779 m_per_objfile->remove_all_cus ();
1780 }
1781
1782 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1783
1784 private:
1785
1786 dwarf2_per_objfile *m_per_objfile;
1787 };
1788
1789 /* See read.h. */
1790
1791 bool
1792 dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu_data *per_cu) const
1793 {
1794 if (per_cu->index < this->m_symtabs.size ())
1795 return this->m_symtabs[per_cu->index] != nullptr;
1796 return false;
1797 }
1798
1799 /* See read.h. */
1800
1801 compunit_symtab *
1802 dwarf2_per_objfile::get_symtab (const dwarf2_per_cu_data *per_cu) const
1803 {
1804 if (per_cu->index < this->m_symtabs.size ())
1805 return this->m_symtabs[per_cu->index];
1806 return nullptr;
1807 }
1808
1809 /* See read.h. */
1810
1811 void
1812 dwarf2_per_objfile::set_symtab (const dwarf2_per_cu_data *per_cu,
1813 compunit_symtab *symtab)
1814 {
1815 if (per_cu->index >= this->m_symtabs.size ())
1816 this->m_symtabs.resize (per_cu->index + 1);
1817 gdb_assert (this->m_symtabs[per_cu->index] == nullptr);
1818 this->m_symtabs[per_cu->index] = symtab;
1819 }
1820
1821 /* Try to locate the sections we need for DWARF 2 debugging
1822 information and return true if we have enough to do something.
1823 NAMES points to the dwarf2 section names, or is NULL if the standard
1824 ELF names are used. CAN_COPY is true for formats where symbol
1825 interposition is possible and so symbol values must follow copy
1826 relocation rules. */
1827
1828 int
1829 dwarf2_has_info (struct objfile *objfile,
1830 const struct dwarf2_debug_sections *names,
1831 bool can_copy)
1832 {
1833 if (objfile->flags & OBJF_READNEVER)
1834 return 0;
1835
1836 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
1837
1838 if (per_objfile == NULL)
1839 {
1840 dwarf2_per_bfd *per_bfd;
1841
1842 /* We can share a "dwarf2_per_bfd" with other objfiles if the
1843 BFD doesn't require relocations.
1844
1845 We don't share with objfiles for which -readnow was requested,
1846 because it would complicate things when loading the same BFD with
1847 -readnow and then without -readnow. */
1848 if (!gdb_bfd_requires_relocations (objfile->obfd)
1849 && (objfile->flags & OBJF_READNOW) == 0)
1850 {
1851 /* See if one has been created for this BFD yet. */
1852 per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd);
1853
1854 if (per_bfd == nullptr)
1855 {
1856 /* No, create it now. */
1857 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1858 dwarf2_per_bfd_bfd_data_key.set (objfile->obfd, per_bfd);
1859 }
1860 }
1861 else
1862 {
1863 /* No sharing possible, create one specifically for this objfile. */
1864 per_bfd = new dwarf2_per_bfd (objfile->obfd, names, can_copy);
1865 dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd);
1866 }
1867
1868 per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd);
1869 }
1870
1871 return (!per_objfile->per_bfd->info.is_virtual
1872 && per_objfile->per_bfd->info.s.section != NULL
1873 && !per_objfile->per_bfd->abbrev.is_virtual
1874 && per_objfile->per_bfd->abbrev.s.section != NULL);
1875 }
1876
1877 /* See declaration. */
1878
1879 void
1880 dwarf2_per_bfd::locate_sections (bfd *abfd, asection *sectp,
1881 const dwarf2_debug_sections &names)
1882 {
1883 flagword aflag = bfd_section_flags (sectp);
1884
1885 if ((aflag & SEC_HAS_CONTENTS) == 0)
1886 {
1887 }
1888 else if (elf_section_data (sectp)->this_hdr.sh_size
1889 > bfd_get_file_size (abfd))
1890 {
1891 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1892 warning (_("Discarding section %s which has a section size (%s"
1893 ") larger than the file size [in module %s]"),
1894 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1895 bfd_get_filename (abfd));
1896 }
1897 else if (names.info.matches (sectp->name))
1898 {
1899 this->info.s.section = sectp;
1900 this->info.size = bfd_section_size (sectp);
1901 }
1902 else if (names.abbrev.matches (sectp->name))
1903 {
1904 this->abbrev.s.section = sectp;
1905 this->abbrev.size = bfd_section_size (sectp);
1906 }
1907 else if (names.line.matches (sectp->name))
1908 {
1909 this->line.s.section = sectp;
1910 this->line.size = bfd_section_size (sectp);
1911 }
1912 else if (names.loc.matches (sectp->name))
1913 {
1914 this->loc.s.section = sectp;
1915 this->loc.size = bfd_section_size (sectp);
1916 }
1917 else if (names.loclists.matches (sectp->name))
1918 {
1919 this->loclists.s.section = sectp;
1920 this->loclists.size = bfd_section_size (sectp);
1921 }
1922 else if (names.macinfo.matches (sectp->name))
1923 {
1924 this->macinfo.s.section = sectp;
1925 this->macinfo.size = bfd_section_size (sectp);
1926 }
1927 else if (names.macro.matches (sectp->name))
1928 {
1929 this->macro.s.section = sectp;
1930 this->macro.size = bfd_section_size (sectp);
1931 }
1932 else if (names.str.matches (sectp->name))
1933 {
1934 this->str.s.section = sectp;
1935 this->str.size = bfd_section_size (sectp);
1936 }
1937 else if (names.str_offsets.matches (sectp->name))
1938 {
1939 this->str_offsets.s.section = sectp;
1940 this->str_offsets.size = bfd_section_size (sectp);
1941 }
1942 else if (names.line_str.matches (sectp->name))
1943 {
1944 this->line_str.s.section = sectp;
1945 this->line_str.size = bfd_section_size (sectp);
1946 }
1947 else if (names.addr.matches (sectp->name))
1948 {
1949 this->addr.s.section = sectp;
1950 this->addr.size = bfd_section_size (sectp);
1951 }
1952 else if (names.frame.matches (sectp->name))
1953 {
1954 this->frame.s.section = sectp;
1955 this->frame.size = bfd_section_size (sectp);
1956 }
1957 else if (names.eh_frame.matches (sectp->name))
1958 {
1959 this->eh_frame.s.section = sectp;
1960 this->eh_frame.size = bfd_section_size (sectp);
1961 }
1962 else if (names.ranges.matches (sectp->name))
1963 {
1964 this->ranges.s.section = sectp;
1965 this->ranges.size = bfd_section_size (sectp);
1966 }
1967 else if (names.rnglists.matches (sectp->name))
1968 {
1969 this->rnglists.s.section = sectp;
1970 this->rnglists.size = bfd_section_size (sectp);
1971 }
1972 else if (names.types.matches (sectp->name))
1973 {
1974 struct dwarf2_section_info type_section;
1975
1976 memset (&type_section, 0, sizeof (type_section));
1977 type_section.s.section = sectp;
1978 type_section.size = bfd_section_size (sectp);
1979
1980 this->types.push_back (type_section);
1981 }
1982 else if (names.gdb_index.matches (sectp->name))
1983 {
1984 this->gdb_index.s.section = sectp;
1985 this->gdb_index.size = bfd_section_size (sectp);
1986 }
1987 else if (names.debug_names.matches (sectp->name))
1988 {
1989 this->debug_names.s.section = sectp;
1990 this->debug_names.size = bfd_section_size (sectp);
1991 }
1992 else if (names.debug_aranges.matches (sectp->name))
1993 {
1994 this->debug_aranges.s.section = sectp;
1995 this->debug_aranges.size = bfd_section_size (sectp);
1996 }
1997
1998 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1999 && bfd_section_vma (sectp) == 0)
2000 this->has_section_at_zero = true;
2001 }
2002
2003 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2004 SECTION_NAME. */
2005
2006 void
2007 dwarf2_get_section_info (struct objfile *objfile,
2008 enum dwarf2_section_enum sect,
2009 asection **sectp, const gdb_byte **bufp,
2010 bfd_size_type *sizep)
2011 {
2012 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
2013 struct dwarf2_section_info *info;
2014
2015 /* We may see an objfile without any DWARF, in which case we just
2016 return nothing. */
2017 if (per_objfile == NULL)
2018 {
2019 *sectp = NULL;
2020 *bufp = NULL;
2021 *sizep = 0;
2022 return;
2023 }
2024 switch (sect)
2025 {
2026 case DWARF2_DEBUG_FRAME:
2027 info = &per_objfile->per_bfd->frame;
2028 break;
2029 case DWARF2_EH_FRAME:
2030 info = &per_objfile->per_bfd->eh_frame;
2031 break;
2032 default:
2033 gdb_assert_not_reached ("unexpected section");
2034 }
2035
2036 info->read (objfile);
2037
2038 *sectp = info->get_bfd_section ();
2039 *bufp = info->buffer;
2040 *sizep = info->size;
2041 }
2042
2043 \f
2044 /* DWARF quick_symbol_functions support. */
2045
2046 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2047 unique line tables, so we maintain a separate table of all .debug_line
2048 derived entries to support the sharing.
2049 All the quick functions need is the list of file names. We discard the
2050 line_header when we're done and don't need to record it here. */
2051 struct quick_file_names
2052 {
2053 /* The data used to construct the hash key. */
2054 struct stmt_list_hash hash;
2055
2056 /* The number of entries in file_names, real_names. */
2057 unsigned int num_file_names;
2058
2059 /* The CU directory, as given by DW_AT_comp_dir. May be
2060 nullptr. */
2061 const char *comp_dir;
2062
2063 /* The file names from the line table, after being run through
2064 file_full_name. */
2065 const char **file_names;
2066
2067 /* The file names from the line table after being run through
2068 gdb_realpath. These are computed lazily. */
2069 const char **real_names;
2070 };
2071
2072 /* When using the index (and thus not using psymtabs), each CU has an
2073 object of this type. This is used to hold information needed by
2074 the various "quick" methods. */
2075 struct dwarf2_per_cu_quick_data
2076 {
2077 /* The file table. This can be NULL if there was no file table
2078 or it's currently not read in.
2079 NOTE: This points into dwarf2_per_objfile->per_bfd->quick_file_names_table. */
2080 struct quick_file_names *file_names;
2081
2082 /* A temporary mark bit used when iterating over all CUs in
2083 expand_symtabs_matching. */
2084 unsigned int mark : 1;
2085
2086 /* True if we've tried to read the file table. There will be no
2087 point in trying to read it again next time. */
2088 bool files_read : 1;
2089 };
2090
2091 /* A subclass of psymbol_functions that arranges to read the DWARF
2092 partial symbols when needed. */
2093 struct lazy_dwarf_reader : public psymbol_functions
2094 {
2095 using psymbol_functions::psymbol_functions;
2096
2097 bool can_lazily_read_symbols () override
2098 {
2099 return true;
2100 }
2101
2102 void read_partial_symbols (struct objfile *objfile) override
2103 {
2104 if (dwarf2_has_info (objfile, nullptr))
2105 dwarf2_build_psymtabs (objfile, this);
2106 }
2107 };
2108
2109 static quick_symbol_functions_up
2110 make_lazy_dwarf_reader ()
2111 {
2112 return quick_symbol_functions_up (new lazy_dwarf_reader);
2113 }
2114
2115 struct dwarf2_base_index_functions : public quick_symbol_functions
2116 {
2117 bool has_symbols (struct objfile *objfile) override;
2118
2119 bool has_unexpanded_symtabs (struct objfile *objfile) override;
2120
2121 struct symtab *find_last_source_symtab (struct objfile *objfile) override;
2122
2123 void forget_cached_source_info (struct objfile *objfile) override;
2124
2125 enum language lookup_global_symbol_language (struct objfile *objfile,
2126 const char *name,
2127 domain_enum domain,
2128 bool *symbol_found_p) override
2129 {
2130 *symbol_found_p = false;
2131 return language_unknown;
2132 }
2133
2134 void print_stats (struct objfile *objfile, bool print_bcache) override;
2135
2136 void expand_all_symtabs (struct objfile *objfile) override;
2137
2138 struct compunit_symtab *find_pc_sect_compunit_symtab
2139 (struct objfile *objfile, struct bound_minimal_symbol msymbol,
2140 CORE_ADDR pc, struct obj_section *section, int warn_if_readin) override;
2141
2142 struct compunit_symtab *find_compunit_symtab_by_address
2143 (struct objfile *objfile, CORE_ADDR address) override
2144 {
2145 return nullptr;
2146 }
2147
2148 void map_symbol_filenames (struct objfile *objfile,
2149 gdb::function_view<symbol_filename_ftype> fun,
2150 bool need_fullname) override;
2151 };
2152
2153 struct dwarf2_gdb_index : public dwarf2_base_index_functions
2154 {
2155 void dump (struct objfile *objfile) override;
2156
2157 void expand_matching_symbols
2158 (struct objfile *,
2159 const lookup_name_info &lookup_name,
2160 domain_enum domain,
2161 int global,
2162 symbol_compare_ftype *ordered_compare) override;
2163
2164 bool expand_symtabs_matching
2165 (struct objfile *objfile,
2166 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2167 const lookup_name_info *lookup_name,
2168 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2169 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2170 block_search_flags search_flags,
2171 domain_enum domain,
2172 enum search_domain kind) override;
2173 };
2174
2175 struct dwarf2_debug_names_index : public dwarf2_base_index_functions
2176 {
2177 void dump (struct objfile *objfile) override;
2178
2179 void expand_matching_symbols
2180 (struct objfile *,
2181 const lookup_name_info &lookup_name,
2182 domain_enum domain,
2183 int global,
2184 symbol_compare_ftype *ordered_compare) override;
2185
2186 bool expand_symtabs_matching
2187 (struct objfile *objfile,
2188 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
2189 const lookup_name_info *lookup_name,
2190 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
2191 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
2192 block_search_flags search_flags,
2193 domain_enum domain,
2194 enum search_domain kind) override;
2195 };
2196
2197 static quick_symbol_functions_up
2198 make_dwarf_gdb_index ()
2199 {
2200 return quick_symbol_functions_up (new dwarf2_gdb_index);
2201 }
2202
2203 static quick_symbol_functions_up
2204 make_dwarf_debug_names ()
2205 {
2206 return quick_symbol_functions_up (new dwarf2_debug_names_index);
2207 }
2208
2209 /* Utility hash function for a stmt_list_hash. */
2210
2211 static hashval_t
2212 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2213 {
2214 hashval_t v = 0;
2215
2216 if (stmt_list_hash->dwo_unit != NULL)
2217 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2218 v += to_underlying (stmt_list_hash->line_sect_off);
2219 return v;
2220 }
2221
2222 /* Utility equality function for a stmt_list_hash. */
2223
2224 static int
2225 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2226 const struct stmt_list_hash *rhs)
2227 {
2228 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2229 return 0;
2230 if (lhs->dwo_unit != NULL
2231 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2232 return 0;
2233
2234 return lhs->line_sect_off == rhs->line_sect_off;
2235 }
2236
2237 /* Hash function for a quick_file_names. */
2238
2239 static hashval_t
2240 hash_file_name_entry (const void *e)
2241 {
2242 const struct quick_file_names *file_data
2243 = (const struct quick_file_names *) e;
2244
2245 return hash_stmt_list_entry (&file_data->hash);
2246 }
2247
2248 /* Equality function for a quick_file_names. */
2249
2250 static int
2251 eq_file_name_entry (const void *a, const void *b)
2252 {
2253 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2254 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2255
2256 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2257 }
2258
2259 /* Create a quick_file_names hash table. */
2260
2261 static htab_up
2262 create_quick_file_names_table (unsigned int nr_initial_entries)
2263 {
2264 return htab_up (htab_create_alloc (nr_initial_entries,
2265 hash_file_name_entry, eq_file_name_entry,
2266 nullptr, xcalloc, xfree));
2267 }
2268
2269 /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This
2270 function is unrelated to symtabs, symtab would have to be created afterwards.
2271 You should call age_cached_comp_units after processing the CU. */
2272
2273 static dwarf2_cu *
2274 load_cu (dwarf2_per_cu_data *per_cu, dwarf2_per_objfile *per_objfile,
2275 bool skip_partial)
2276 {
2277 if (per_cu->is_debug_types)
2278 load_full_type_unit (per_cu, per_objfile);
2279 else
2280 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
2281 skip_partial, language_minimal);
2282
2283 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
2284 if (cu == nullptr)
2285 return nullptr; /* Dummy CU. */
2286
2287 dwarf2_find_base_address (cu->dies, cu);
2288
2289 return cu;
2290 }
2291
2292 /* Read in the symbols for PER_CU in the context of PER_OBJFILE. */
2293
2294 static void
2295 dw2_do_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2296 dwarf2_per_objfile *per_objfile, bool skip_partial)
2297 {
2298 /* Skip type_unit_groups, reading the type units they contain
2299 is handled elsewhere. */
2300 if (per_cu->type_unit_group_p ())
2301 return;
2302
2303 {
2304 /* The destructor of dwarf2_queue_guard frees any entries left on
2305 the queue. After this point we're guaranteed to leave this function
2306 with the dwarf queue empty. */
2307 dwarf2_queue_guard q_guard (per_objfile);
2308
2309 if (!per_objfile->symtab_set_p (per_cu))
2310 {
2311 queue_comp_unit (per_cu, per_objfile, language_minimal);
2312 dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial);
2313
2314 /* If we just loaded a CU from a DWO, and we're working with an index
2315 that may badly handle TUs, load all the TUs in that DWO as well.
2316 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2317 if (!per_cu->is_debug_types
2318 && cu != NULL
2319 && cu->dwo_unit != NULL
2320 && per_objfile->per_bfd->index_table != NULL
2321 && per_objfile->per_bfd->index_table->version <= 7
2322 /* DWP files aren't supported yet. */
2323 && get_dwp_file (per_objfile) == NULL)
2324 queue_and_load_all_dwo_tus (cu);
2325 }
2326
2327 process_queue (per_objfile);
2328 }
2329
2330 /* Age the cache, releasing compilation units that have not
2331 been used recently. */
2332 per_objfile->age_comp_units ();
2333 }
2334
2335 /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is
2336 the per-objfile for which this symtab is instantiated.
2337
2338 Returns the resulting symbol table. */
2339
2340 static struct compunit_symtab *
2341 dw2_instantiate_symtab (dwarf2_per_cu_data *per_cu,
2342 dwarf2_per_objfile *per_objfile,
2343 bool skip_partial)
2344 {
2345 gdb_assert (per_objfile->per_bfd->using_index);
2346
2347 if (!per_objfile->symtab_set_p (per_cu))
2348 {
2349 free_cached_comp_units freer (per_objfile);
2350 scoped_restore decrementer = increment_reading_symtab ();
2351 dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial);
2352 process_cu_includes (per_objfile);
2353 }
2354
2355 return per_objfile->get_symtab (per_cu);
2356 }
2357
2358 /* See read.h. */
2359
2360 dwarf2_per_cu_data_up
2361 dwarf2_per_bfd::allocate_per_cu ()
2362 {
2363 dwarf2_per_cu_data_up result (new dwarf2_per_cu_data);
2364 result->per_bfd = this;
2365 result->index = all_comp_units.size ();
2366 return result;
2367 }
2368
2369 /* See read.h. */
2370
2371 signatured_type_up
2372 dwarf2_per_bfd::allocate_signatured_type (ULONGEST signature)
2373 {
2374 signatured_type_up result (new signatured_type (signature));
2375 result->per_bfd = this;
2376 result->index = all_comp_units.size ();
2377 result->is_debug_types = true;
2378 tu_stats.nr_tus++;
2379 return result;
2380 }
2381
2382 /* Return a new dwarf2_per_cu_data allocated on the per-bfd
2383 obstack, and constructed with the specified field values. */
2384
2385 static dwarf2_per_cu_data_up
2386 create_cu_from_index_list (dwarf2_per_bfd *per_bfd,
2387 struct dwarf2_section_info *section,
2388 int is_dwz,
2389 sect_offset sect_off, ULONGEST length)
2390 {
2391 dwarf2_per_cu_data_up the_cu = per_bfd->allocate_per_cu ();
2392 the_cu->sect_off = sect_off;
2393 the_cu->length = length;
2394 the_cu->section = section;
2395 the_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
2396 struct dwarf2_per_cu_quick_data);
2397 the_cu->is_dwz = is_dwz;
2398 return the_cu;
2399 }
2400
2401 /* A helper for create_cus_from_index that handles a given list of
2402 CUs. */
2403
2404 static void
2405 create_cus_from_index_list (dwarf2_per_bfd *per_bfd,
2406 const gdb_byte *cu_list, offset_type n_elements,
2407 struct dwarf2_section_info *section,
2408 int is_dwz)
2409 {
2410 for (offset_type i = 0; i < n_elements; i += 2)
2411 {
2412 gdb_static_assert (sizeof (ULONGEST) >= 8);
2413
2414 sect_offset sect_off
2415 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2416 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2417 cu_list += 2 * 8;
2418
2419 dwarf2_per_cu_data_up per_cu
2420 = create_cu_from_index_list (per_bfd, section, is_dwz, sect_off,
2421 length);
2422 per_bfd->all_comp_units.push_back (std::move (per_cu));
2423 }
2424 }
2425
2426 /* Read the CU list from the mapped index, and use it to create all
2427 the CU objects for PER_BFD. */
2428
2429 static void
2430 create_cus_from_index (dwarf2_per_bfd *per_bfd,
2431 const gdb_byte *cu_list, offset_type cu_list_elements,
2432 const gdb_byte *dwz_list, offset_type dwz_elements)
2433 {
2434 gdb_assert (per_bfd->all_comp_units.empty ());
2435 per_bfd->all_comp_units.reserve ((cu_list_elements + dwz_elements) / 2);
2436
2437 create_cus_from_index_list (per_bfd, cu_list, cu_list_elements,
2438 &per_bfd->info, 0);
2439
2440 if (dwz_elements == 0)
2441 return;
2442
2443 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
2444 create_cus_from_index_list (per_bfd, dwz_list, dwz_elements,
2445 &dwz->info, 1);
2446 }
2447
2448 /* Create the signatured type hash table from the index. */
2449
2450 static void
2451 create_signatured_type_table_from_index
2452 (dwarf2_per_bfd *per_bfd, struct dwarf2_section_info *section,
2453 const gdb_byte *bytes, offset_type elements)
2454 {
2455 htab_up sig_types_hash = allocate_signatured_type_table ();
2456
2457 for (offset_type i = 0; i < elements; i += 3)
2458 {
2459 signatured_type_up sig_type;
2460 ULONGEST signature;
2461 void **slot;
2462 cu_offset type_offset_in_tu;
2463
2464 gdb_static_assert (sizeof (ULONGEST) >= 8);
2465 sect_offset sect_off
2466 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2467 type_offset_in_tu
2468 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2469 BFD_ENDIAN_LITTLE);
2470 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 bytes += 3 * 8;
2472
2473 sig_type = per_bfd->allocate_signatured_type (signature);
2474 sig_type->type_offset_in_tu = type_offset_in_tu;
2475 sig_type->section = section;
2476 sig_type->sect_off = sect_off;
2477 sig_type->v.quick
2478 = OBSTACK_ZALLOC (&per_bfd->obstack,
2479 struct dwarf2_per_cu_quick_data);
2480
2481 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2482 *slot = sig_type.get ();
2483
2484 per_bfd->all_comp_units.emplace_back (sig_type.release ());
2485 }
2486
2487 per_bfd->signatured_types = std::move (sig_types_hash);
2488 }
2489
2490 /* Create the signatured type hash table from .debug_names. */
2491
2492 static void
2493 create_signatured_type_table_from_debug_names
2494 (dwarf2_per_objfile *per_objfile,
2495 const mapped_debug_names &map,
2496 struct dwarf2_section_info *section,
2497 struct dwarf2_section_info *abbrev_section)
2498 {
2499 struct objfile *objfile = per_objfile->objfile;
2500
2501 section->read (objfile);
2502 abbrev_section->read (objfile);
2503
2504 htab_up sig_types_hash = allocate_signatured_type_table ();
2505
2506 for (uint32_t i = 0; i < map.tu_count; ++i)
2507 {
2508 signatured_type_up sig_type;
2509 void **slot;
2510
2511 sect_offset sect_off
2512 = (sect_offset) (extract_unsigned_integer
2513 (map.tu_table_reordered + i * map.offset_size,
2514 map.offset_size,
2515 map.dwarf5_byte_order));
2516
2517 comp_unit_head cu_header;
2518 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
2519 abbrev_section,
2520 section->buffer + to_underlying (sect_off),
2521 rcuh_kind::TYPE);
2522
2523 sig_type = per_objfile->per_bfd->allocate_signatured_type
2524 (cu_header.signature);
2525 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2526 sig_type->section = section;
2527 sig_type->sect_off = sect_off;
2528 sig_type->v.quick
2529 = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
2530 struct dwarf2_per_cu_quick_data);
2531
2532 slot = htab_find_slot (sig_types_hash.get (), sig_type.get (), INSERT);
2533 *slot = sig_type.get ();
2534
2535 per_objfile->per_bfd->all_comp_units.emplace_back (sig_type.release ());
2536 }
2537
2538 per_objfile->per_bfd->signatured_types = std::move (sig_types_hash);
2539 }
2540
2541 /* Read the address map data from the mapped index, and use it to
2542 populate the psymtabs_addrmap. */
2543
2544 static void
2545 create_addrmap_from_index (dwarf2_per_objfile *per_objfile,
2546 struct mapped_index *index)
2547 {
2548 struct objfile *objfile = per_objfile->objfile;
2549 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2550 struct gdbarch *gdbarch = objfile->arch ();
2551 const gdb_byte *iter, *end;
2552 struct addrmap *mutable_map;
2553 CORE_ADDR baseaddr;
2554
2555 auto_obstack temp_obstack;
2556
2557 mutable_map = addrmap_create_mutable (&temp_obstack);
2558
2559 iter = index->address_table.data ();
2560 end = iter + index->address_table.size ();
2561
2562 baseaddr = objfile->text_section_offset ();
2563
2564 while (iter < end)
2565 {
2566 ULONGEST hi, lo, cu_index;
2567 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2568 iter += 8;
2569 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2570 iter += 8;
2571 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2572 iter += 4;
2573
2574 if (lo > hi)
2575 {
2576 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2577 hex_string (lo), hex_string (hi));
2578 continue;
2579 }
2580
2581 if (cu_index >= per_bfd->all_comp_units.size ())
2582 {
2583 complaint (_(".gdb_index address table has invalid CU number %u"),
2584 (unsigned) cu_index);
2585 continue;
2586 }
2587
2588 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2589 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2590 addrmap_set_empty (mutable_map, lo, hi - 1,
2591 per_bfd->get_cu (cu_index));
2592 }
2593
2594 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2595 &per_bfd->obstack);
2596 }
2597
2598 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2599 populate the psymtabs_addrmap. */
2600
2601 static void
2602 create_addrmap_from_aranges (dwarf2_per_objfile *per_objfile,
2603 struct dwarf2_section_info *section)
2604 {
2605 struct objfile *objfile = per_objfile->objfile;
2606 bfd *abfd = objfile->obfd;
2607 struct gdbarch *gdbarch = objfile->arch ();
2608 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2609 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2610
2611 auto_obstack temp_obstack;
2612 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2613
2614 std::unordered_map<sect_offset,
2615 dwarf2_per_cu_data *,
2616 gdb::hash_enum<sect_offset>>
2617 debug_info_offset_to_per_cu;
2618 for (const auto &per_cu : per_bfd->all_comp_units)
2619 {
2620 /* A TU will not need aranges, and skipping them here is an easy
2621 way of ignoring .debug_types -- and possibly seeing a
2622 duplicate section offset -- entirely. */
2623 if (per_cu->is_debug_types)
2624 continue;
2625
2626 const auto insertpair
2627 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off,
2628 per_cu.get ());
2629 if (!insertpair.second)
2630 {
2631 warning (_("Section .debug_aranges in %s has duplicate "
2632 "debug_info_offset %s, ignoring .debug_aranges."),
2633 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2634 return;
2635 }
2636 }
2637
2638 section->read (objfile);
2639
2640 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2641
2642 const gdb_byte *addr = section->buffer;
2643
2644 while (addr < section->buffer + section->size)
2645 {
2646 const gdb_byte *const entry_addr = addr;
2647 unsigned int bytes_read;
2648
2649 const LONGEST entry_length = read_initial_length (abfd, addr,
2650 &bytes_read);
2651 addr += bytes_read;
2652
2653 const gdb_byte *const entry_end = addr + entry_length;
2654 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2655 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2656 if (addr + entry_length > section->buffer + section->size)
2657 {
2658 warning (_("Section .debug_aranges in %s entry at offset %s "
2659 "length %s exceeds section length %s, "
2660 "ignoring .debug_aranges."),
2661 objfile_name (objfile),
2662 plongest (entry_addr - section->buffer),
2663 plongest (bytes_read + entry_length),
2664 pulongest (section->size));
2665 return;
2666 }
2667
2668 /* The version number. */
2669 const uint16_t version = read_2_bytes (abfd, addr);
2670 addr += 2;
2671 if (version != 2)
2672 {
2673 warning (_("Section .debug_aranges in %s entry at offset %s "
2674 "has unsupported version %d, ignoring .debug_aranges."),
2675 objfile_name (objfile),
2676 plongest (entry_addr - section->buffer), version);
2677 return;
2678 }
2679
2680 const uint64_t debug_info_offset
2681 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2682 addr += offset_size;
2683 const auto per_cu_it
2684 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2685 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2686 {
2687 warning (_("Section .debug_aranges in %s entry at offset %s "
2688 "debug_info_offset %s does not exists, "
2689 "ignoring .debug_aranges."),
2690 objfile_name (objfile),
2691 plongest (entry_addr - section->buffer),
2692 pulongest (debug_info_offset));
2693 return;
2694 }
2695 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2696
2697 const uint8_t address_size = *addr++;
2698 if (address_size < 1 || address_size > 8)
2699 {
2700 warning (_("Section .debug_aranges in %s entry at offset %s "
2701 "address_size %u is invalid, ignoring .debug_aranges."),
2702 objfile_name (objfile),
2703 plongest (entry_addr - section->buffer), address_size);
2704 return;
2705 }
2706
2707 const uint8_t segment_selector_size = *addr++;
2708 if (segment_selector_size != 0)
2709 {
2710 warning (_("Section .debug_aranges in %s entry at offset %s "
2711 "segment_selector_size %u is not supported, "
2712 "ignoring .debug_aranges."),
2713 objfile_name (objfile),
2714 plongest (entry_addr - section->buffer),
2715 segment_selector_size);
2716 return;
2717 }
2718
2719 /* Must pad to an alignment boundary that is twice the address
2720 size. It is undocumented by the DWARF standard but GCC does
2721 use it. However, not every compiler does this. We can see
2722 whether it has happened by looking at the total length of the
2723 contents of the aranges for this CU -- it if isn't a multiple
2724 of twice the address size, then we skip any leftover
2725 bytes. */
2726 addr += (entry_end - addr) % (2 * address_size);
2727
2728 for (;;)
2729 {
2730 if (addr + 2 * address_size > entry_end)
2731 {
2732 warning (_("Section .debug_aranges in %s entry at offset %s "
2733 "address list is not properly terminated, "
2734 "ignoring .debug_aranges."),
2735 objfile_name (objfile),
2736 plongest (entry_addr - section->buffer));
2737 return;
2738 }
2739 ULONGEST start = extract_unsigned_integer (addr, address_size,
2740 dwarf5_byte_order);
2741 addr += address_size;
2742 ULONGEST length = extract_unsigned_integer (addr, address_size,
2743 dwarf5_byte_order);
2744 addr += address_size;
2745 if (start == 0 && length == 0)
2746 break;
2747 if (start == 0 && !per_bfd->has_section_at_zero)
2748 {
2749 /* Symbol was eliminated due to a COMDAT group. */
2750 continue;
2751 }
2752 ULONGEST end = start + length;
2753 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2754 - baseaddr);
2755 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2756 - baseaddr);
2757 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2758 }
2759 }
2760
2761 per_bfd->index_addrmap = addrmap_create_fixed (mutable_map,
2762 &per_bfd->obstack);
2763 }
2764
2765 /* A helper function that reads the .gdb_index from BUFFER and fills
2766 in MAP. FILENAME is the name of the file containing the data;
2767 it is used for error reporting. DEPRECATED_OK is true if it is
2768 ok to use deprecated sections.
2769
2770 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2771 out parameters that are filled in with information about the CU and
2772 TU lists in the section.
2773
2774 Returns true if all went well, false otherwise. */
2775
2776 static bool
2777 read_gdb_index_from_buffer (const char *filename,
2778 bool deprecated_ok,
2779 gdb::array_view<const gdb_byte> buffer,
2780 struct mapped_index *map,
2781 const gdb_byte **cu_list,
2782 offset_type *cu_list_elements,
2783 const gdb_byte **types_list,
2784 offset_type *types_list_elements)
2785 {
2786 const gdb_byte *addr = &buffer[0];
2787 offset_view metadata (buffer);
2788
2789 /* Version check. */
2790 offset_type version = metadata[0];
2791 /* Versions earlier than 3 emitted every copy of a psymbol. This
2792 causes the index to behave very poorly for certain requests. Version 3
2793 contained incomplete addrmap. So, it seems better to just ignore such
2794 indices. */
2795 if (version < 4)
2796 {
2797 static int warning_printed = 0;
2798 if (!warning_printed)
2799 {
2800 warning (_("Skipping obsolete .gdb_index section in %s."),
2801 filename);
2802 warning_printed = 1;
2803 }
2804 return 0;
2805 }
2806 /* Index version 4 uses a different hash function than index version
2807 5 and later.
2808
2809 Versions earlier than 6 did not emit psymbols for inlined
2810 functions. Using these files will cause GDB not to be able to
2811 set breakpoints on inlined functions by name, so we ignore these
2812 indices unless the user has done
2813 "set use-deprecated-index-sections on". */
2814 if (version < 6 && !deprecated_ok)
2815 {
2816 static int warning_printed = 0;
2817 if (!warning_printed)
2818 {
2819 warning (_("\
2820 Skipping deprecated .gdb_index section in %s.\n\
2821 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2822 to use the section anyway."),
2823 filename);
2824 warning_printed = 1;
2825 }
2826 return 0;
2827 }
2828 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2829 of the TU (for symbols coming from TUs),
2830 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2831 Plus gold-generated indices can have duplicate entries for global symbols,
2832 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2833 These are just performance bugs, and we can't distinguish gdb-generated
2834 indices from gold-generated ones, so issue no warning here. */
2835
2836 /* Indexes with higher version than the one supported by GDB may be no
2837 longer backward compatible. */
2838 if (version > 8)
2839 return 0;
2840
2841 map->version = version;
2842
2843 int i = 1;
2844 *cu_list = addr + metadata[i];
2845 *cu_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2846 ++i;
2847
2848 *types_list = addr + metadata[i];
2849 *types_list_elements = (metadata[i + 1] - metadata[i]) / 8;
2850 ++i;
2851
2852 const gdb_byte *address_table = addr + metadata[i];
2853 const gdb_byte *address_table_end = addr + metadata[i + 1];
2854 map->address_table
2855 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2856 ++i;
2857
2858 const gdb_byte *symbol_table = addr + metadata[i];
2859 const gdb_byte *symbol_table_end = addr + metadata[i + 1];
2860 map->symbol_table
2861 = offset_view (gdb::array_view<const gdb_byte> (symbol_table,
2862 symbol_table_end));
2863
2864 ++i;
2865 map->constant_pool = buffer.slice (metadata[i]);
2866
2867 if (map->constant_pool.empty () && !map->symbol_table.empty ())
2868 {
2869 /* An empty constant pool implies that all symbol table entries are
2870 empty. Make map->symbol_table.empty () == true. */
2871 map->symbol_table
2872 = offset_view (gdb::array_view<const gdb_byte> (symbol_table,
2873 symbol_table));
2874 }
2875
2876 return 1;
2877 }
2878
2879 /* Callback types for dwarf2_read_gdb_index. */
2880
2881 typedef gdb::function_view
2882 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_bfd *)>
2883 get_gdb_index_contents_ftype;
2884 typedef gdb::function_view
2885 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2886 get_gdb_index_contents_dwz_ftype;
2887
2888 /* Read .gdb_index. If everything went ok, initialize the "quick"
2889 elements of all the CUs and return 1. Otherwise, return 0. */
2890
2891 static int
2892 dwarf2_read_gdb_index
2893 (dwarf2_per_objfile *per_objfile,
2894 get_gdb_index_contents_ftype get_gdb_index_contents,
2895 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2896 {
2897 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2898 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2899 struct dwz_file *dwz;
2900 struct objfile *objfile = per_objfile->objfile;
2901 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
2902
2903 gdb::array_view<const gdb_byte> main_index_contents
2904 = get_gdb_index_contents (objfile, per_bfd);
2905
2906 if (main_index_contents.empty ())
2907 return 0;
2908
2909 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
2910 if (!read_gdb_index_from_buffer (objfile_name (objfile),
2911 use_deprecated_index_sections,
2912 main_index_contents, map.get (), &cu_list,
2913 &cu_list_elements, &types_list,
2914 &types_list_elements))
2915 return 0;
2916
2917 /* Don't use the index if it's empty. */
2918 if (map->symbol_table.empty ())
2919 return 0;
2920
2921 /* If there is a .dwz file, read it so we can get its CU list as
2922 well. */
2923 dwz = dwarf2_get_dwz_file (per_bfd);
2924 if (dwz != NULL)
2925 {
2926 struct mapped_index dwz_map;
2927 const gdb_byte *dwz_types_ignore;
2928 offset_type dwz_types_elements_ignore;
2929
2930 gdb::array_view<const gdb_byte> dwz_index_content
2931 = get_gdb_index_contents_dwz (objfile, dwz);
2932
2933 if (dwz_index_content.empty ())
2934 return 0;
2935
2936 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
2937 1, dwz_index_content, &dwz_map,
2938 &dwz_list, &dwz_list_elements,
2939 &dwz_types_ignore,
2940 &dwz_types_elements_ignore))
2941 {
2942 warning (_("could not read '.gdb_index' section from %s; skipping"),
2943 bfd_get_filename (dwz->dwz_bfd.get ()));
2944 return 0;
2945 }
2946 }
2947
2948 create_cus_from_index (per_bfd, cu_list, cu_list_elements, dwz_list,
2949 dwz_list_elements);
2950
2951 if (types_list_elements)
2952 {
2953 /* We can only handle a single .debug_types when we have an
2954 index. */
2955 if (per_bfd->types.size () != 1)
2956 return 0;
2957
2958 dwarf2_section_info *section = &per_bfd->types[0];
2959
2960 create_signatured_type_table_from_index (per_bfd, section, types_list,
2961 types_list_elements);
2962 }
2963
2964 create_addrmap_from_index (per_objfile, map.get ());
2965
2966 per_bfd->index_table = std::move (map);
2967 per_bfd->using_index = 1;
2968 per_bfd->quick_file_names_table =
2969 create_quick_file_names_table (per_bfd->all_comp_units.size ());
2970
2971 return 1;
2972 }
2973
2974 /* die_reader_func for dw2_get_file_names. */
2975
2976 static void
2977 dw2_get_file_names_reader (const struct die_reader_specs *reader,
2978 struct die_info *comp_unit_die)
2979 {
2980 struct dwarf2_cu *cu = reader->cu;
2981 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2982 dwarf2_per_objfile *per_objfile = cu->per_objfile;
2983 struct dwarf2_per_cu_data *lh_cu;
2984 struct attribute *attr;
2985 void **slot;
2986 struct quick_file_names *qfn;
2987
2988 gdb_assert (! this_cu->is_debug_types);
2989
2990 this_cu->v.quick->files_read = true;
2991 /* Our callers never want to match partial units -- instead they
2992 will match the enclosing full CU. */
2993 if (comp_unit_die->tag == DW_TAG_partial_unit)
2994 return;
2995
2996 lh_cu = this_cu;
2997 slot = NULL;
2998
2999 line_header_up lh;
3000 sect_offset line_offset {};
3001
3002 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3003 if (attr != nullptr && attr->form_is_unsigned ())
3004 {
3005 struct quick_file_names find_entry;
3006
3007 line_offset = (sect_offset) attr->as_unsigned ();
3008
3009 /* We may have already read in this line header (TU line header sharing).
3010 If we have we're done. */
3011 find_entry.hash.dwo_unit = cu->dwo_unit;
3012 find_entry.hash.line_sect_off = line_offset;
3013 slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (),
3014 &find_entry, INSERT);
3015 if (*slot != NULL)
3016 {
3017 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3018 return;
3019 }
3020
3021 lh = dwarf_decode_line_header (line_offset, cu);
3022 }
3023
3024 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3025
3026 int offset = 0;
3027 if (strcmp (fnd.name, "<unknown>") != 0)
3028 ++offset;
3029 else if (lh == nullptr)
3030 return;
3031
3032 qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names);
3033 qfn->hash.dwo_unit = cu->dwo_unit;
3034 qfn->hash.line_sect_off = line_offset;
3035 /* There may not be a DW_AT_stmt_list. */
3036 if (slot != nullptr)
3037 *slot = qfn;
3038
3039 std::vector<const char *> include_names;
3040 if (lh != nullptr)
3041 {
3042 for (const auto &entry : lh->file_names ())
3043 {
3044 gdb::unique_xmalloc_ptr<char> name_holder;
3045 const char *include_name =
3046 compute_include_file_name (lh.get (), entry, fnd, &name_holder);
3047 if (include_name != nullptr)
3048 {
3049 include_name = per_objfile->objfile->intern (include_name);
3050 include_names.push_back (include_name);
3051 }
3052 }
3053 }
3054
3055 qfn->num_file_names = offset + include_names.size ();
3056 qfn->comp_dir = fnd.comp_dir;
3057 qfn->file_names =
3058 XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *,
3059 qfn->num_file_names);
3060 if (offset != 0)
3061 qfn->file_names[0] = xstrdup (fnd.name);
3062
3063 if (!include_names.empty ())
3064 memcpy (&qfn->file_names[offset], include_names.data (),
3065 include_names.size () * sizeof (const char *));
3066
3067 qfn->real_names = NULL;
3068
3069 lh_cu->v.quick->file_names = qfn;
3070 }
3071
3072 /* A helper for the "quick" functions which attempts to read the line
3073 table for THIS_CU. */
3074
3075 static struct quick_file_names *
3076 dw2_get_file_names (dwarf2_per_cu_data *this_cu,
3077 dwarf2_per_objfile *per_objfile)
3078 {
3079 /* This should never be called for TUs. */
3080 gdb_assert (! this_cu->is_debug_types);
3081 /* Nor type unit groups. */
3082 gdb_assert (! this_cu->type_unit_group_p ());
3083
3084 if (this_cu->v.quick->files_read)
3085 return this_cu->v.quick->file_names;
3086
3087 cutu_reader reader (this_cu, per_objfile);
3088 if (!reader.dummy_p)
3089 dw2_get_file_names_reader (&reader, reader.comp_unit_die);
3090
3091 return this_cu->v.quick->file_names;
3092 }
3093
3094 /* A helper for the "quick" functions which computes and caches the
3095 real path for a given file name from the line table. */
3096
3097 static const char *
3098 dw2_get_real_path (dwarf2_per_objfile *per_objfile,
3099 struct quick_file_names *qfn, int index)
3100 {
3101 if (qfn->real_names == NULL)
3102 qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
3103 qfn->num_file_names, const char *);
3104
3105 if (qfn->real_names[index] == NULL)
3106 {
3107 const char *dirname = nullptr;
3108
3109 if (!IS_ABSOLUTE_PATH (qfn->file_names[index]))
3110 dirname = qfn->comp_dir;
3111
3112 gdb::unique_xmalloc_ptr<char> fullname;
3113 fullname = find_source_or_rewrite (qfn->file_names[index], dirname);
3114
3115 qfn->real_names[index] = fullname.release ();
3116 }
3117
3118 return qfn->real_names[index];
3119 }
3120
3121 struct symtab *
3122 dwarf2_base_index_functions::find_last_source_symtab (struct objfile *objfile)
3123 {
3124 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3125 dwarf2_per_cu_data *dwarf_cu
3126 = per_objfile->per_bfd->all_comp_units.back ().get ();
3127 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false);
3128
3129 if (cust == NULL)
3130 return NULL;
3131
3132 return compunit_primary_filetab (cust);
3133 }
3134
3135 /* See read.h. */
3136
3137 void
3138 dwarf2_per_cu_data::free_cached_file_names ()
3139 {
3140 if (per_bfd == nullptr || !per_bfd->using_index || v.quick == nullptr)
3141 return;
3142
3143 struct quick_file_names *file_data = v.quick->file_names;
3144 if (file_data != nullptr && file_data->real_names != nullptr)
3145 {
3146 for (int i = 0; i < file_data->num_file_names; ++i)
3147 {
3148 xfree ((void *) file_data->real_names[i]);
3149 file_data->real_names[i] = nullptr;
3150 }
3151 }
3152 }
3153
3154 void
3155 dwarf2_base_index_functions::forget_cached_source_info
3156 (struct objfile *objfile)
3157 {
3158 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3159
3160 for (auto &per_cu : per_objfile->per_bfd->all_comp_units)
3161 per_cu->free_cached_file_names ();
3162 }
3163
3164 /* Struct used to manage iterating over all CUs looking for a symbol. */
3165
3166 struct dw2_symtab_iterator
3167 {
3168 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3169 dwarf2_per_objfile *per_objfile;
3170 /* If set, only look for symbols that match that block. Valid values are
3171 GLOBAL_BLOCK and STATIC_BLOCK. */
3172 gdb::optional<block_enum> block_index;
3173 /* The kind of symbol we're looking for. */
3174 domain_enum domain;
3175 /* The list of CUs from the index entry of the symbol,
3176 or NULL if not found. */
3177 offset_view vec;
3178 /* The next element in VEC to look at. */
3179 int next;
3180 /* The number of elements in VEC, or zero if there is no match. */
3181 int length;
3182 /* Have we seen a global version of the symbol?
3183 If so we can ignore all further global instances.
3184 This is to work around gold/15646, inefficient gold-generated
3185 indices. */
3186 int global_seen;
3187 };
3188
3189 /* Initialize the index symtab iterator ITER, offset_type NAMEI variant. */
3190
3191 static void
3192 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3193 dwarf2_per_objfile *per_objfile,
3194 gdb::optional<block_enum> block_index,
3195 domain_enum domain, offset_type namei)
3196 {
3197 iter->per_objfile = per_objfile;
3198 iter->block_index = block_index;
3199 iter->domain = domain;
3200 iter->next = 0;
3201 iter->global_seen = 0;
3202 iter->vec = {};
3203 iter->length = 0;
3204
3205 mapped_index *index = per_objfile->per_bfd->index_table.get ();
3206 /* index is NULL if OBJF_READNOW. */
3207 if (index == NULL)
3208 return;
3209
3210 gdb_assert (!index->symbol_name_slot_invalid (namei));
3211 offset_type vec_idx = index->symbol_vec_index (namei);
3212
3213 iter->vec = offset_view (index->constant_pool.slice (vec_idx));
3214 iter->length = iter->vec[0];
3215 }
3216
3217 /* Return the next matching CU or NULL if there are no more. */
3218
3219 static struct dwarf2_per_cu_data *
3220 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3221 {
3222 dwarf2_per_objfile *per_objfile = iter->per_objfile;
3223
3224 for ( ; iter->next < iter->length; ++iter->next)
3225 {
3226 offset_type cu_index_and_attrs = iter->vec[iter->next + 1];
3227 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3228 gdb_index_symbol_kind symbol_kind =
3229 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3230 /* Only check the symbol attributes if they're present.
3231 Indices prior to version 7 don't record them,
3232 and indices >= 7 may elide them for certain symbols
3233 (gold does this). */
3234 int attrs_valid =
3235 (per_objfile->per_bfd->index_table->version >= 7
3236 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3237
3238 /* Don't crash on bad data. */
3239 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
3240 {
3241 complaint (_(".gdb_index entry has bad CU index"
3242 " [in module %s]"), objfile_name (per_objfile->objfile));
3243 continue;
3244 }
3245
3246 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
3247
3248 /* Skip if already read in. */
3249 if (per_objfile->symtab_set_p (per_cu))
3250 continue;
3251
3252 /* Check static vs global. */
3253 if (attrs_valid)
3254 {
3255 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3256
3257 if (iter->block_index.has_value ())
3258 {
3259 bool want_static = *iter->block_index == STATIC_BLOCK;
3260
3261 if (is_static != want_static)
3262 continue;
3263 }
3264
3265 /* Work around gold/15646. */
3266 if (!is_static
3267 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
3268 {
3269 if (iter->global_seen)
3270 continue;
3271
3272 iter->global_seen = 1;
3273 }
3274 }
3275
3276 /* Only check the symbol's kind if it has one. */
3277 if (attrs_valid)
3278 {
3279 switch (iter->domain)
3280 {
3281 case VAR_DOMAIN:
3282 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3283 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3284 /* Some types are also in VAR_DOMAIN. */
3285 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3286 continue;
3287 break;
3288 case STRUCT_DOMAIN:
3289 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3290 continue;
3291 break;
3292 case LABEL_DOMAIN:
3293 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3294 continue;
3295 break;
3296 case MODULE_DOMAIN:
3297 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3298 continue;
3299 break;
3300 default:
3301 break;
3302 }
3303 }
3304
3305 ++iter->next;
3306 return per_cu;
3307 }
3308
3309 return NULL;
3310 }
3311
3312 void
3313 dwarf2_base_index_functions::print_stats (struct objfile *objfile,
3314 bool print_bcache)
3315 {
3316 if (print_bcache)
3317 return;
3318
3319 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3320 int total = per_objfile->per_bfd->all_comp_units.size ();
3321 int count = 0;
3322
3323 for (int i = 0; i < total; ++i)
3324 {
3325 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3326
3327 if (!per_objfile->symtab_set_p (per_cu))
3328 ++count;
3329 }
3330 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3331 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3332 }
3333
3334 /* This dumps minimal information about the index.
3335 It is called via "mt print objfiles".
3336 One use is to verify .gdb_index has been loaded by the
3337 gdb.dwarf2/gdb-index.exp testcase. */
3338
3339 void
3340 dwarf2_gdb_index::dump (struct objfile *objfile)
3341 {
3342 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3343
3344 gdb_assert (per_objfile->per_bfd->using_index);
3345 printf_filtered (".gdb_index:");
3346 if (per_objfile->per_bfd->index_table != NULL)
3347 {
3348 printf_filtered (" version %d\n",
3349 per_objfile->per_bfd->index_table->version);
3350 }
3351 else
3352 printf_filtered (" faked for \"readnow\"\n");
3353 printf_filtered ("\n");
3354 }
3355
3356 void
3357 dwarf2_base_index_functions::expand_all_symtabs (struct objfile *objfile)
3358 {
3359 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3360 int total_units = per_objfile->per_bfd->all_comp_units.size ();
3361
3362 for (int i = 0; i < total_units; ++i)
3363 {
3364 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (i);
3365
3366 /* We don't want to directly expand a partial CU, because if we
3367 read it with the wrong language, then assertion failures can
3368 be triggered later on. See PR symtab/23010. So, tell
3369 dw2_instantiate_symtab to skip partial CUs -- any important
3370 partial CU will be read via DW_TAG_imported_unit anyway. */
3371 dw2_instantiate_symtab (per_cu, per_objfile, true);
3372 }
3373 }
3374
3375 static bool
3376 dw2_expand_symtabs_matching_symbol
3377 (mapped_index_base &index,
3378 const lookup_name_info &lookup_name_in,
3379 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3380 gdb::function_view<bool (offset_type)> match_callback,
3381 dwarf2_per_objfile *per_objfile);
3382
3383 static bool
3384 dw2_expand_symtabs_matching_one
3385 (dwarf2_per_cu_data *per_cu,
3386 dwarf2_per_objfile *per_objfile,
3387 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3388 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify);
3389
3390 void
3391 dwarf2_gdb_index::expand_matching_symbols
3392 (struct objfile *objfile,
3393 const lookup_name_info &name, domain_enum domain,
3394 int global,
3395 symbol_compare_ftype *ordered_compare)
3396 {
3397 /* Used for Ada. */
3398 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
3399
3400 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3401
3402 if (per_objfile->per_bfd->index_table != nullptr)
3403 {
3404 mapped_index &index = *per_objfile->per_bfd->index_table;
3405
3406 const char *match_name = name.ada ().lookup_name ().c_str ();
3407 auto matcher = [&] (const char *symname)
3408 {
3409 if (ordered_compare == nullptr)
3410 return true;
3411 return ordered_compare (symname, match_name) == 0;
3412 };
3413
3414 dw2_expand_symtabs_matching_symbol (index, name, matcher,
3415 [&] (offset_type namei)
3416 {
3417 struct dw2_symtab_iterator iter;
3418 struct dwarf2_per_cu_data *per_cu;
3419
3420 dw2_symtab_iter_init (&iter, per_objfile, block_kind, domain,
3421 namei);
3422 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3423 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
3424 nullptr);
3425 return true;
3426 }, per_objfile);
3427 }
3428 else
3429 {
3430 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3431 proceed assuming all symtabs have been read in. */
3432 }
3433 }
3434
3435 /* Starting from a search name, return the string that finds the upper
3436 bound of all strings that start with SEARCH_NAME in a sorted name
3437 list. Returns the empty string to indicate that the upper bound is
3438 the end of the list. */
3439
3440 static std::string
3441 make_sort_after_prefix_name (const char *search_name)
3442 {
3443 /* When looking to complete "func", we find the upper bound of all
3444 symbols that start with "func" by looking for where we'd insert
3445 the closest string that would follow "func" in lexicographical
3446 order. Usually, that's "func"-with-last-character-incremented,
3447 i.e. "fund". Mind non-ASCII characters, though. Usually those
3448 will be UTF-8 multi-byte sequences, but we can't be certain.
3449 Especially mind the 0xff character, which is a valid character in
3450 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3451 rule out compilers allowing it in identifiers. Note that
3452 conveniently, strcmp/strcasecmp are specified to compare
3453 characters interpreted as unsigned char. So what we do is treat
3454 the whole string as a base 256 number composed of a sequence of
3455 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3456 to 0, and carries 1 to the following more-significant position.
3457 If the very first character in SEARCH_NAME ends up incremented
3458 and carries/overflows, then the upper bound is the end of the
3459 list. The string after the empty string is also the empty
3460 string.
3461
3462 Some examples of this operation:
3463
3464 SEARCH_NAME => "+1" RESULT
3465
3466 "abc" => "abd"
3467 "ab\xff" => "ac"
3468 "\xff" "a" "\xff" => "\xff" "b"
3469 "\xff" => ""
3470 "\xff\xff" => ""
3471 "" => ""
3472
3473 Then, with these symbols for example:
3474
3475 func
3476 func1
3477 fund
3478
3479 completing "func" looks for symbols between "func" and
3480 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3481 which finds "func" and "func1", but not "fund".
3482
3483 And with:
3484
3485 funcÿ (Latin1 'ÿ' [0xff])
3486 funcÿ1
3487 fund
3488
3489 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3490 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3491
3492 And with:
3493
3494 ÿÿ (Latin1 'ÿ' [0xff])
3495 ÿÿ1
3496
3497 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3498 the end of the list.
3499 */
3500 std::string after = search_name;
3501 while (!after.empty () && (unsigned char) after.back () == 0xff)
3502 after.pop_back ();
3503 if (!after.empty ())
3504 after.back () = (unsigned char) after.back () + 1;
3505 return after;
3506 }
3507
3508 /* See declaration. */
3509
3510 std::pair<std::vector<name_component>::const_iterator,
3511 std::vector<name_component>::const_iterator>
3512 mapped_index_base::find_name_components_bounds
3513 (const lookup_name_info &lookup_name_without_params, language lang,
3514 dwarf2_per_objfile *per_objfile) const
3515 {
3516 auto *name_cmp
3517 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3518
3519 const char *lang_name
3520 = lookup_name_without_params.language_lookup_name (lang);
3521
3522 /* Comparison function object for lower_bound that matches against a
3523 given symbol name. */
3524 auto lookup_compare_lower = [&] (const name_component &elem,
3525 const char *name)
3526 {
3527 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3528 const char *elem_name = elem_qualified + elem.name_offset;
3529 return name_cmp (elem_name, name) < 0;
3530 };
3531
3532 /* Comparison function object for upper_bound that matches against a
3533 given symbol name. */
3534 auto lookup_compare_upper = [&] (const char *name,
3535 const name_component &elem)
3536 {
3537 const char *elem_qualified = this->symbol_name_at (elem.idx, per_objfile);
3538 const char *elem_name = elem_qualified + elem.name_offset;
3539 return name_cmp (name, elem_name) < 0;
3540 };
3541
3542 auto begin = this->name_components.begin ();
3543 auto end = this->name_components.end ();
3544
3545 /* Find the lower bound. */
3546 auto lower = [&] ()
3547 {
3548 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3549 return begin;
3550 else
3551 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3552 } ();
3553
3554 /* Find the upper bound. */
3555 auto upper = [&] ()
3556 {
3557 if (lookup_name_without_params.completion_mode ())
3558 {
3559 /* In completion mode, we want UPPER to point past all
3560 symbols names that have the same prefix. I.e., with
3561 these symbols, and completing "func":
3562
3563 function << lower bound
3564 function1
3565 other_function << upper bound
3566
3567 We find the upper bound by looking for the insertion
3568 point of "func"-with-last-character-incremented,
3569 i.e. "fund". */
3570 std::string after = make_sort_after_prefix_name (lang_name);
3571 if (after.empty ())
3572 return end;
3573 return std::lower_bound (lower, end, after.c_str (),
3574 lookup_compare_lower);
3575 }
3576 else
3577 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3578 } ();
3579
3580 return {lower, upper};
3581 }
3582
3583 /* See declaration. */
3584
3585 void
3586 mapped_index_base::build_name_components (dwarf2_per_objfile *per_objfile)
3587 {
3588 if (!this->name_components.empty ())
3589 return;
3590
3591 this->name_components_casing = case_sensitivity;
3592 auto *name_cmp
3593 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3594
3595 /* The code below only knows how to break apart components of C++
3596 symbol names (and other languages that use '::' as
3597 namespace/module separator) and Ada symbol names. */
3598 auto count = this->symbol_name_count ();
3599 for (offset_type idx = 0; idx < count; idx++)
3600 {
3601 if (this->symbol_name_slot_invalid (idx))
3602 continue;
3603
3604 const char *name = this->symbol_name_at (idx, per_objfile);
3605
3606 /* Add each name component to the name component table. */
3607 unsigned int previous_len = 0;
3608
3609 if (strstr (name, "::") != nullptr)
3610 {
3611 for (unsigned int current_len = cp_find_first_component (name);
3612 name[current_len] != '\0';
3613 current_len += cp_find_first_component (name + current_len))
3614 {
3615 gdb_assert (name[current_len] == ':');
3616 this->name_components.push_back ({previous_len, idx});
3617 /* Skip the '::'. */
3618 current_len += 2;
3619 previous_len = current_len;
3620 }
3621 }
3622 else
3623 {
3624 /* Handle the Ada encoded (aka mangled) form here. */
3625 for (const char *iter = strstr (name, "__");
3626 iter != nullptr;
3627 iter = strstr (iter, "__"))
3628 {
3629 this->name_components.push_back ({previous_len, idx});
3630 iter += 2;
3631 previous_len = iter - name;
3632 }
3633 }
3634
3635 this->name_components.push_back ({previous_len, idx});
3636 }
3637
3638 /* Sort name_components elements by name. */
3639 auto name_comp_compare = [&] (const name_component &left,
3640 const name_component &right)
3641 {
3642 const char *left_qualified
3643 = this->symbol_name_at (left.idx, per_objfile);
3644 const char *right_qualified
3645 = this->symbol_name_at (right.idx, per_objfile);
3646
3647 const char *left_name = left_qualified + left.name_offset;
3648 const char *right_name = right_qualified + right.name_offset;
3649
3650 return name_cmp (left_name, right_name) < 0;
3651 };
3652
3653 std::sort (this->name_components.begin (),
3654 this->name_components.end (),
3655 name_comp_compare);
3656 }
3657
3658 /* Helper for dw2_expand_symtabs_matching that works with a
3659 mapped_index_base instead of the containing objfile. This is split
3660 to a separate function in order to be able to unit test the
3661 name_components matching using a mock mapped_index_base. For each
3662 symbol name that matches, calls MATCH_CALLBACK, passing it the
3663 symbol's index in the mapped_index_base symbol table. */
3664
3665 static bool
3666 dw2_expand_symtabs_matching_symbol
3667 (mapped_index_base &index,
3668 const lookup_name_info &lookup_name_in,
3669 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3670 gdb::function_view<bool (offset_type)> match_callback,
3671 dwarf2_per_objfile *per_objfile)
3672 {
3673 lookup_name_info lookup_name_without_params
3674 = lookup_name_in.make_ignore_params ();
3675
3676 /* Build the symbol name component sorted vector, if we haven't
3677 yet. */
3678 index.build_name_components (per_objfile);
3679
3680 /* The same symbol may appear more than once in the range though.
3681 E.g., if we're looking for symbols that complete "w", and we have
3682 a symbol named "w1::w2", we'll find the two name components for
3683 that same symbol in the range. To be sure we only call the
3684 callback once per symbol, we first collect the symbol name
3685 indexes that matched in a temporary vector and ignore
3686 duplicates. */
3687 std::vector<offset_type> matches;
3688
3689 struct name_and_matcher
3690 {
3691 symbol_name_matcher_ftype *matcher;
3692 const char *name;
3693
3694 bool operator== (const name_and_matcher &other) const
3695 {
3696 return matcher == other.matcher && strcmp (name, other.name) == 0;
3697 }
3698 };
3699
3700 /* A vector holding all the different symbol name matchers, for all
3701 languages. */
3702 std::vector<name_and_matcher> matchers;
3703
3704 for (int i = 0; i < nr_languages; i++)
3705 {
3706 enum language lang_e = (enum language) i;
3707
3708 const language_defn *lang = language_def (lang_e);
3709 symbol_name_matcher_ftype *name_matcher
3710 = lang->get_symbol_name_matcher (lookup_name_without_params);
3711
3712 name_and_matcher key {
3713 name_matcher,
3714 lookup_name_without_params.language_lookup_name (lang_e)
3715 };
3716
3717 /* Don't insert the same comparison routine more than once.
3718 Note that we do this linear walk. This is not a problem in
3719 practice because the number of supported languages is
3720 low. */
3721 if (std::find (matchers.begin (), matchers.end (), key)
3722 != matchers.end ())
3723 continue;
3724 matchers.push_back (std::move (key));
3725
3726 auto bounds
3727 = index.find_name_components_bounds (lookup_name_without_params,
3728 lang_e, per_objfile);
3729
3730 /* Now for each symbol name in range, check to see if we have a name
3731 match, and if so, call the MATCH_CALLBACK callback. */
3732
3733 for (; bounds.first != bounds.second; ++bounds.first)
3734 {
3735 const char *qualified
3736 = index.symbol_name_at (bounds.first->idx, per_objfile);
3737
3738 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3739 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3740 continue;
3741
3742 matches.push_back (bounds.first->idx);
3743 }
3744 }
3745
3746 std::sort (matches.begin (), matches.end ());
3747
3748 /* Finally call the callback, once per match. */
3749 ULONGEST prev = -1;
3750 bool result = true;
3751 for (offset_type idx : matches)
3752 {
3753 if (prev != idx)
3754 {
3755 if (!match_callback (idx))
3756 {
3757 result = false;
3758 break;
3759 }
3760 prev = idx;
3761 }
3762 }
3763
3764 /* Above we use a type wider than idx's for 'prev', since 0 and
3765 (offset_type)-1 are both possible values. */
3766 static_assert (sizeof (prev) > sizeof (offset_type), "");
3767
3768 return result;
3769 }
3770
3771 #if GDB_SELF_TEST
3772
3773 namespace selftests { namespace dw2_expand_symtabs_matching {
3774
3775 /* A mock .gdb_index/.debug_names-like name index table, enough to
3776 exercise dw2_expand_symtabs_matching_symbol, which works with the
3777 mapped_index_base interface. Builds an index from the symbol list
3778 passed as parameter to the constructor. */
3779 class mock_mapped_index : public mapped_index_base
3780 {
3781 public:
3782 mock_mapped_index (gdb::array_view<const char *> symbols)
3783 : m_symbol_table (symbols)
3784 {}
3785
3786 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
3787
3788 /* Return the number of names in the symbol table. */
3789 size_t symbol_name_count () const override
3790 {
3791 return m_symbol_table.size ();
3792 }
3793
3794 /* Get the name of the symbol at IDX in the symbol table. */
3795 const char *symbol_name_at
3796 (offset_type idx, dwarf2_per_objfile *per_objfile) const override
3797 {
3798 return m_symbol_table[idx];
3799 }
3800
3801 private:
3802 gdb::array_view<const char *> m_symbol_table;
3803 };
3804
3805 /* Convenience function that converts a NULL pointer to a "<null>"
3806 string, to pass to print routines. */
3807
3808 static const char *
3809 string_or_null (const char *str)
3810 {
3811 return str != NULL ? str : "<null>";
3812 }
3813
3814 /* Check if a lookup_name_info built from
3815 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
3816 index. EXPECTED_LIST is the list of expected matches, in expected
3817 matching order. If no match expected, then an empty list is
3818 specified. Returns true on success. On failure prints a warning
3819 indicating the file:line that failed, and returns false. */
3820
3821 static bool
3822 check_match (const char *file, int line,
3823 mock_mapped_index &mock_index,
3824 const char *name, symbol_name_match_type match_type,
3825 bool completion_mode,
3826 std::initializer_list<const char *> expected_list,
3827 dwarf2_per_objfile *per_objfile)
3828 {
3829 lookup_name_info lookup_name (name, match_type, completion_mode);
3830
3831 bool matched = true;
3832
3833 auto mismatch = [&] (const char *expected_str,
3834 const char *got)
3835 {
3836 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
3837 "expected=\"%s\", got=\"%s\"\n"),
3838 file, line,
3839 (match_type == symbol_name_match_type::FULL
3840 ? "FULL" : "WILD"),
3841 name, string_or_null (expected_str), string_or_null (got));
3842 matched = false;
3843 };
3844
3845 auto expected_it = expected_list.begin ();
3846 auto expected_end = expected_list.end ();
3847
3848 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
3849 nullptr,
3850 [&] (offset_type idx)
3851 {
3852 const char *matched_name = mock_index.symbol_name_at (idx, per_objfile);
3853 const char *expected_str
3854 = expected_it == expected_end ? NULL : *expected_it++;
3855
3856 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
3857 mismatch (expected_str, matched_name);
3858 return true;
3859 }, per_objfile);
3860
3861 const char *expected_str
3862 = expected_it == expected_end ? NULL : *expected_it++;
3863 if (expected_str != NULL)
3864 mismatch (expected_str, NULL);
3865
3866 return matched;
3867 }
3868
3869 /* The symbols added to the mock mapped_index for testing (in
3870 canonical form). */
3871 static const char *test_symbols[] = {
3872 "function",
3873 "std::bar",
3874 "std::zfunction",
3875 "std::zfunction2",
3876 "w1::w2",
3877 "ns::foo<char*>",
3878 "ns::foo<int>",
3879 "ns::foo<long>",
3880 "ns2::tmpl<int>::foo2",
3881 "(anonymous namespace)::A::B::C",
3882
3883 /* These are used to check that the increment-last-char in the
3884 matching algorithm for completion doesn't match "t1_fund" when
3885 completing "t1_func". */
3886 "t1_func",
3887 "t1_func1",
3888 "t1_fund",
3889 "t1_fund1",
3890
3891 /* A UTF-8 name with multi-byte sequences to make sure that
3892 cp-name-parser understands this as a single identifier ("função"
3893 is "function" in PT). */
3894 u8"u8função",
3895
3896 /* \377 (0xff) is Latin1 'ÿ'. */
3897 "yfunc\377",
3898
3899 /* \377 (0xff) is Latin1 'ÿ'. */
3900 "\377",
3901 "\377\377123",
3902
3903 /* A name with all sorts of complications. Starts with "z" to make
3904 it easier for the completion tests below. */
3905 #define Z_SYM_NAME \
3906 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
3907 "::tuple<(anonymous namespace)::ui*, " \
3908 "std::default_delete<(anonymous namespace)::ui>, void>"
3909
3910 Z_SYM_NAME
3911 };
3912
3913 /* Returns true if the mapped_index_base::find_name_component_bounds
3914 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
3915 in completion mode. */
3916
3917 static bool
3918 check_find_bounds_finds (mapped_index_base &index,
3919 const char *search_name,
3920 gdb::array_view<const char *> expected_syms,
3921 dwarf2_per_objfile *per_objfile)
3922 {
3923 lookup_name_info lookup_name (search_name,
3924 symbol_name_match_type::FULL, true);
3925
3926 auto bounds = index.find_name_components_bounds (lookup_name,
3927 language_cplus,
3928 per_objfile);
3929
3930 size_t distance = std::distance (bounds.first, bounds.second);
3931 if (distance != expected_syms.size ())
3932 return false;
3933
3934 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
3935 {
3936 auto nc_elem = bounds.first + exp_elem;
3937 const char *qualified = index.symbol_name_at (nc_elem->idx, per_objfile);
3938 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
3939 return false;
3940 }
3941
3942 return true;
3943 }
3944
3945 /* Test the lower-level mapped_index::find_name_component_bounds
3946 method. */
3947
3948 static void
3949 test_mapped_index_find_name_component_bounds ()
3950 {
3951 mock_mapped_index mock_index (test_symbols);
3952
3953 mock_index.build_name_components (NULL /* per_objfile */);
3954
3955 /* Test the lower-level mapped_index::find_name_component_bounds
3956 method in completion mode. */
3957 {
3958 static const char *expected_syms[] = {
3959 "t1_func",
3960 "t1_func1",
3961 };
3962
3963 SELF_CHECK (check_find_bounds_finds
3964 (mock_index, "t1_func", expected_syms,
3965 NULL /* per_objfile */));
3966 }
3967
3968 /* Check that the increment-last-char in the name matching algorithm
3969 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
3970 {
3971 static const char *expected_syms1[] = {
3972 "\377",
3973 "\377\377123",
3974 };
3975 SELF_CHECK (check_find_bounds_finds
3976 (mock_index, "\377", expected_syms1, NULL /* per_objfile */));
3977
3978 static const char *expected_syms2[] = {
3979 "\377\377123",
3980 };
3981 SELF_CHECK (check_find_bounds_finds
3982 (mock_index, "\377\377", expected_syms2,
3983 NULL /* per_objfile */));
3984 }
3985 }
3986
3987 /* Test dw2_expand_symtabs_matching_symbol. */
3988
3989 static void
3990 test_dw2_expand_symtabs_matching_symbol ()
3991 {
3992 mock_mapped_index mock_index (test_symbols);
3993
3994 /* We let all tests run until the end even if some fails, for debug
3995 convenience. */
3996 bool any_mismatch = false;
3997
3998 /* Create the expected symbols list (an initializer_list). Needed
3999 because lists have commas, and we need to pass them to CHECK,
4000 which is a macro. */
4001 #define EXPECT(...) { __VA_ARGS__ }
4002
4003 /* Wrapper for check_match that passes down the current
4004 __FILE__/__LINE__. */
4005 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4006 any_mismatch |= !check_match (__FILE__, __LINE__, \
4007 mock_index, \
4008 NAME, MATCH_TYPE, COMPLETION_MODE, \
4009 EXPECTED_LIST, NULL)
4010
4011 /* Identity checks. */
4012 for (const char *sym : test_symbols)
4013 {
4014 /* Should be able to match all existing symbols. */
4015 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4016 EXPECT (sym));
4017
4018 /* Should be able to match all existing symbols with
4019 parameters. */
4020 std::string with_params = std::string (sym) + "(int)";
4021 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4022 EXPECT (sym));
4023
4024 /* Should be able to match all existing symbols with
4025 parameters and qualifiers. */
4026 with_params = std::string (sym) + " ( int ) const";
4027 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4028 EXPECT (sym));
4029
4030 /* This should really find sym, but cp-name-parser.y doesn't
4031 know about lvalue/rvalue qualifiers yet. */
4032 with_params = std::string (sym) + " ( int ) &&";
4033 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4034 {});
4035 }
4036
4037 /* Check that the name matching algorithm for completion doesn't get
4038 confused with Latin1 'ÿ' / 0xff. */
4039 {
4040 static const char str[] = "\377";
4041 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4042 EXPECT ("\377", "\377\377123"));
4043 }
4044
4045 /* Check that the increment-last-char in the matching algorithm for
4046 completion doesn't match "t1_fund" when completing "t1_func". */
4047 {
4048 static const char str[] = "t1_func";
4049 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4050 EXPECT ("t1_func", "t1_func1"));
4051 }
4052
4053 /* Check that completion mode works at each prefix of the expected
4054 symbol name. */
4055 {
4056 static const char str[] = "function(int)";
4057 size_t len = strlen (str);
4058 std::string lookup;
4059
4060 for (size_t i = 1; i < len; i++)
4061 {
4062 lookup.assign (str, i);
4063 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4064 EXPECT ("function"));
4065 }
4066 }
4067
4068 /* While "w" is a prefix of both components, the match function
4069 should still only be called once. */
4070 {
4071 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4072 EXPECT ("w1::w2"));
4073 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4074 EXPECT ("w1::w2"));
4075 }
4076
4077 /* Same, with a "complicated" symbol. */
4078 {
4079 static const char str[] = Z_SYM_NAME;
4080 size_t len = strlen (str);
4081 std::string lookup;
4082
4083 for (size_t i = 1; i < len; i++)
4084 {
4085 lookup.assign (str, i);
4086 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4087 EXPECT (Z_SYM_NAME));
4088 }
4089 }
4090
4091 /* In FULL mode, an incomplete symbol doesn't match. */
4092 {
4093 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4094 {});
4095 }
4096
4097 /* A complete symbol with parameters matches any overload, since the
4098 index has no overload info. */
4099 {
4100 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4101 EXPECT ("std::zfunction", "std::zfunction2"));
4102 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4103 EXPECT ("std::zfunction", "std::zfunction2"));
4104 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4105 EXPECT ("std::zfunction", "std::zfunction2"));
4106 }
4107
4108 /* Check that whitespace is ignored appropriately. A symbol with a
4109 template argument list. */
4110 {
4111 static const char expected[] = "ns::foo<int>";
4112 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4113 EXPECT (expected));
4114 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4115 EXPECT (expected));
4116 }
4117
4118 /* Check that whitespace is ignored appropriately. A symbol with a
4119 template argument list that includes a pointer. */
4120 {
4121 static const char expected[] = "ns::foo<char*>";
4122 /* Try both completion and non-completion modes. */
4123 static const bool completion_mode[2] = {false, true};
4124 for (size_t i = 0; i < 2; i++)
4125 {
4126 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4127 completion_mode[i], EXPECT (expected));
4128 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4129 completion_mode[i], EXPECT (expected));
4130
4131 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4132 completion_mode[i], EXPECT (expected));
4133 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4134 completion_mode[i], EXPECT (expected));
4135 }
4136 }
4137
4138 {
4139 /* Check method qualifiers are ignored. */
4140 static const char expected[] = "ns::foo<char*>";
4141 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4142 symbol_name_match_type::FULL, true, EXPECT (expected));
4143 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4144 symbol_name_match_type::FULL, true, EXPECT (expected));
4145 CHECK_MATCH ("foo < char * > ( int ) const",
4146 symbol_name_match_type::WILD, true, EXPECT (expected));
4147 CHECK_MATCH ("foo < char * > ( int ) &&",
4148 symbol_name_match_type::WILD, true, EXPECT (expected));
4149 }
4150
4151 /* Test lookup names that don't match anything. */
4152 {
4153 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4154 {});
4155
4156 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4157 {});
4158 }
4159
4160 /* Some wild matching tests, exercising "(anonymous namespace)",
4161 which should not be confused with a parameter list. */
4162 {
4163 static const char *syms[] = {
4164 "A::B::C",
4165 "B::C",
4166 "C",
4167 "A :: B :: C ( int )",
4168 "B :: C ( int )",
4169 "C ( int )",
4170 };
4171
4172 for (const char *s : syms)
4173 {
4174 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4175 EXPECT ("(anonymous namespace)::A::B::C"));
4176 }
4177 }
4178
4179 {
4180 static const char expected[] = "ns2::tmpl<int>::foo2";
4181 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4182 EXPECT (expected));
4183 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4184 EXPECT (expected));
4185 }
4186
4187 SELF_CHECK (!any_mismatch);
4188
4189 #undef EXPECT
4190 #undef CHECK_MATCH
4191 }
4192
4193 static void
4194 run_test ()
4195 {
4196 test_mapped_index_find_name_component_bounds ();
4197 test_dw2_expand_symtabs_matching_symbol ();
4198 }
4199
4200 }} // namespace selftests::dw2_expand_symtabs_matching
4201
4202 #endif /* GDB_SELF_TEST */
4203
4204 /* If FILE_MATCHER is NULL or if PER_CU has
4205 dwarf2_per_cu_quick_data::MARK set (see
4206 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4207 EXPANSION_NOTIFY on it. */
4208
4209 static bool
4210 dw2_expand_symtabs_matching_one
4211 (dwarf2_per_cu_data *per_cu,
4212 dwarf2_per_objfile *per_objfile,
4213 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4214 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4215 {
4216 if (file_matcher == NULL || per_cu->v.quick->mark)
4217 {
4218 bool symtab_was_null = !per_objfile->symtab_set_p (per_cu);
4219
4220 compunit_symtab *symtab
4221 = dw2_instantiate_symtab (per_cu, per_objfile, false);
4222 gdb_assert (symtab != nullptr);
4223
4224 if (expansion_notify != NULL && symtab_was_null)
4225 return expansion_notify (symtab);
4226 }
4227 return true;
4228 }
4229
4230 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4231 matched, to expand corresponding CUs that were marked. IDX is the
4232 index of the symbol name that matched. */
4233
4234 static bool
4235 dw2_expand_marked_cus
4236 (dwarf2_per_objfile *per_objfile, offset_type idx,
4237 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4238 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4239 block_search_flags search_flags,
4240 search_domain kind)
4241 {
4242 offset_type vec_len, vec_idx;
4243 bool global_seen = false;
4244 mapped_index &index = *per_objfile->per_bfd->index_table;
4245
4246 offset_view vec (index.constant_pool.slice (index.symbol_vec_index (idx)));
4247 vec_len = vec[0];
4248 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4249 {
4250 offset_type cu_index_and_attrs = vec[vec_idx + 1];
4251 /* This value is only valid for index versions >= 7. */
4252 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4253 gdb_index_symbol_kind symbol_kind =
4254 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4255 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4256 /* Only check the symbol attributes if they're present.
4257 Indices prior to version 7 don't record them,
4258 and indices >= 7 may elide them for certain symbols
4259 (gold does this). */
4260 int attrs_valid =
4261 (index.version >= 7
4262 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4263
4264 /* Work around gold/15646. */
4265 if (attrs_valid
4266 && !is_static
4267 && symbol_kind == GDB_INDEX_SYMBOL_KIND_TYPE)
4268 {
4269 if (global_seen)
4270 continue;
4271
4272 global_seen = true;
4273 }
4274
4275 /* Only check the symbol's kind if it has one. */
4276 if (attrs_valid)
4277 {
4278 if (is_static)
4279 {
4280 if ((search_flags & SEARCH_STATIC_BLOCK) == 0)
4281 continue;
4282 }
4283 else
4284 {
4285 if ((search_flags & SEARCH_GLOBAL_BLOCK) == 0)
4286 continue;
4287 }
4288
4289 switch (kind)
4290 {
4291 case VARIABLES_DOMAIN:
4292 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4293 continue;
4294 break;
4295 case FUNCTIONS_DOMAIN:
4296 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4297 continue;
4298 break;
4299 case TYPES_DOMAIN:
4300 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4301 continue;
4302 break;
4303 case MODULES_DOMAIN:
4304 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4305 continue;
4306 break;
4307 default:
4308 break;
4309 }
4310 }
4311
4312 /* Don't crash on bad data. */
4313 if (cu_index >= per_objfile->per_bfd->all_comp_units.size ())
4314 {
4315 complaint (_(".gdb_index entry has bad CU index"
4316 " [in module %s]"), objfile_name (per_objfile->objfile));
4317 continue;
4318 }
4319
4320 dwarf2_per_cu_data *per_cu = per_objfile->per_bfd->get_cu (cu_index);
4321 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile, file_matcher,
4322 expansion_notify))
4323 return false;
4324 }
4325
4326 return true;
4327 }
4328
4329 /* If FILE_MATCHER is non-NULL, set all the
4330 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4331 that match FILE_MATCHER. */
4332
4333 static void
4334 dw_expand_symtabs_matching_file_matcher
4335 (dwarf2_per_objfile *per_objfile,
4336 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4337 {
4338 if (file_matcher == NULL)
4339 return;
4340
4341 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4342 htab_eq_pointer,
4343 NULL, xcalloc, xfree));
4344 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4345 htab_eq_pointer,
4346 NULL, xcalloc, xfree));
4347
4348 /* The rule is CUs specify all the files, including those used by
4349 any TU, so there's no need to scan TUs here. */
4350
4351 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4352 {
4353 QUIT;
4354
4355 if (per_cu->is_debug_types)
4356 continue;
4357 per_cu->v.quick->mark = 0;
4358
4359 /* We only need to look at symtabs not already expanded. */
4360 if (per_objfile->symtab_set_p (per_cu.get ()))
4361 continue;
4362
4363 quick_file_names *file_data = dw2_get_file_names (per_cu.get (),
4364 per_objfile);
4365 if (file_data == NULL)
4366 continue;
4367
4368 if (htab_find (visited_not_found.get (), file_data) != NULL)
4369 continue;
4370 else if (htab_find (visited_found.get (), file_data) != NULL)
4371 {
4372 per_cu->v.quick->mark = 1;
4373 continue;
4374 }
4375
4376 for (int j = 0; j < file_data->num_file_names; ++j)
4377 {
4378 const char *this_real_name;
4379
4380 if (file_matcher (file_data->file_names[j], false))
4381 {
4382 per_cu->v.quick->mark = 1;
4383 break;
4384 }
4385
4386 /* Before we invoke realpath, which can get expensive when many
4387 files are involved, do a quick comparison of the basenames. */
4388 if (!basenames_may_differ
4389 && !file_matcher (lbasename (file_data->file_names[j]),
4390 true))
4391 continue;
4392
4393 this_real_name = dw2_get_real_path (per_objfile, file_data, j);
4394 if (file_matcher (this_real_name, false))
4395 {
4396 per_cu->v.quick->mark = 1;
4397 break;
4398 }
4399 }
4400
4401 void **slot = htab_find_slot (per_cu->v.quick->mark
4402 ? visited_found.get ()
4403 : visited_not_found.get (),
4404 file_data, INSERT);
4405 *slot = file_data;
4406 }
4407 }
4408
4409 bool
4410 dwarf2_gdb_index::expand_symtabs_matching
4411 (struct objfile *objfile,
4412 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4413 const lookup_name_info *lookup_name,
4414 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4415 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4416 block_search_flags search_flags,
4417 domain_enum domain,
4418 enum search_domain kind)
4419 {
4420 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4421
4422 /* index_table is NULL if OBJF_READNOW. */
4423 if (!per_objfile->per_bfd->index_table)
4424 return true;
4425
4426 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
4427
4428 /* This invariant is documented in quick-functions.h. */
4429 gdb_assert (lookup_name != nullptr || symbol_matcher == nullptr);
4430 if (lookup_name == nullptr)
4431 {
4432 for (dwarf2_per_cu_data *per_cu
4433 : all_comp_units_range (per_objfile->per_bfd))
4434 {
4435 QUIT;
4436
4437 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
4438 file_matcher,
4439 expansion_notify))
4440 return false;
4441 }
4442 return true;
4443 }
4444
4445 mapped_index &index = *per_objfile->per_bfd->index_table;
4446
4447 bool result
4448 = dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4449 symbol_matcher,
4450 [&] (offset_type idx)
4451 {
4452 if (!dw2_expand_marked_cus (per_objfile, idx, file_matcher,
4453 expansion_notify, search_flags, kind))
4454 return false;
4455 return true;
4456 }, per_objfile);
4457
4458 return result;
4459 }
4460
4461 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4462 symtab. */
4463
4464 static struct compunit_symtab *
4465 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4466 CORE_ADDR pc)
4467 {
4468 int i;
4469
4470 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4471 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4472 return cust;
4473
4474 if (cust->includes == NULL)
4475 return NULL;
4476
4477 for (i = 0; cust->includes[i]; ++i)
4478 {
4479 struct compunit_symtab *s = cust->includes[i];
4480
4481 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4482 if (s != NULL)
4483 return s;
4484 }
4485
4486 return NULL;
4487 }
4488
4489 struct compunit_symtab *
4490 dwarf2_base_index_functions::find_pc_sect_compunit_symtab
4491 (struct objfile *objfile,
4492 struct bound_minimal_symbol msymbol,
4493 CORE_ADDR pc,
4494 struct obj_section *section,
4495 int warn_if_readin)
4496 {
4497 struct dwarf2_per_cu_data *data;
4498 struct compunit_symtab *result;
4499
4500 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4501 if (per_objfile->per_bfd->index_addrmap == nullptr)
4502 return NULL;
4503
4504 CORE_ADDR baseaddr = objfile->text_section_offset ();
4505 data = ((struct dwarf2_per_cu_data *)
4506 addrmap_find (per_objfile->per_bfd->index_addrmap,
4507 pc - baseaddr));
4508 if (!data)
4509 return NULL;
4510
4511 if (warn_if_readin && per_objfile->symtab_set_p (data))
4512 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4513 paddress (objfile->arch (), pc));
4514
4515 result = recursively_find_pc_sect_compunit_symtab
4516 (dw2_instantiate_symtab (data, per_objfile, false), pc);
4517
4518 gdb_assert (result != NULL);
4519 return result;
4520 }
4521
4522 void
4523 dwarf2_base_index_functions::map_symbol_filenames
4524 (struct objfile *objfile,
4525 gdb::function_view<symbol_filename_ftype> fun,
4526 bool need_fullname)
4527 {
4528 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4529
4530 /* Use caches to ensure we only call FUN once for each filename. */
4531 filename_seen_cache filenames_cache;
4532 std::unordered_set<quick_file_names *> qfn_cache;
4533
4534 /* The rule is CUs specify all the files, including those used by any TU,
4535 so there's no need to scan TUs here. We can ignore file names coming
4536 from already-expanded CUs. It is possible that an expanded CU might
4537 reuse the file names data from a currently unexpanded CU, in this
4538 case we don't want to report the files from the unexpanded CU. */
4539
4540 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4541 {
4542 if (!per_cu->is_debug_types
4543 && per_objfile->symtab_set_p (per_cu.get ()))
4544 {
4545 if (per_cu->v.quick->file_names != nullptr)
4546 qfn_cache.insert (per_cu->v.quick->file_names);
4547 }
4548 }
4549
4550 for (dwarf2_per_cu_data *per_cu
4551 : all_comp_units_range (per_objfile->per_bfd))
4552 {
4553 /* We only need to look at symtabs not already expanded. */
4554 if (per_cu->is_debug_types || per_objfile->symtab_set_p (per_cu))
4555 continue;
4556
4557 quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile);
4558 if (file_data == nullptr
4559 || qfn_cache.find (file_data) != qfn_cache.end ())
4560 continue;
4561
4562 for (int j = 0; j < file_data->num_file_names; ++j)
4563 {
4564 const char *filename = file_data->file_names[j];
4565 const char *key = filename;
4566 const char *fullname = nullptr;
4567
4568 if (need_fullname)
4569 {
4570 fullname = dw2_get_real_path (per_objfile, file_data, j);
4571 key = fullname;
4572 }
4573
4574 if (!filenames_cache.seen (key))
4575 fun (filename, fullname);
4576 }
4577 }
4578 }
4579
4580 bool
4581 dwarf2_base_index_functions::has_symbols (struct objfile *objfile)
4582 {
4583 return true;
4584 }
4585
4586 /* See quick_symbol_functions::has_unexpanded_symtabs in quick-symbol.h. */
4587
4588 bool
4589 dwarf2_base_index_functions::has_unexpanded_symtabs (struct objfile *objfile)
4590 {
4591 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
4592
4593 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
4594 {
4595 /* Is this already expanded? */
4596 if (per_objfile->symtab_set_p (per_cu.get ()))
4597 continue;
4598
4599 /* It has not yet been expanded. */
4600 return true;
4601 }
4602
4603 return false;
4604 }
4605
4606 /* DWARF-5 debug_names reader. */
4607
4608 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4609 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4610
4611 /* A helper function that reads the .debug_names section in SECTION
4612 and fills in MAP. FILENAME is the name of the file containing the
4613 section; it is used for error reporting.
4614
4615 Returns true if all went well, false otherwise. */
4616
4617 static bool
4618 read_debug_names_from_section (struct objfile *objfile,
4619 const char *filename,
4620 struct dwarf2_section_info *section,
4621 mapped_debug_names &map)
4622 {
4623 if (section->empty ())
4624 return false;
4625
4626 /* Older elfutils strip versions could keep the section in the main
4627 executable while splitting it for the separate debug info file. */
4628 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4629 return false;
4630
4631 section->read (objfile);
4632
4633 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4634
4635 const gdb_byte *addr = section->buffer;
4636
4637 bfd *const abfd = section->get_bfd_owner ();
4638
4639 unsigned int bytes_read;
4640 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4641 addr += bytes_read;
4642
4643 map.dwarf5_is_dwarf64 = bytes_read != 4;
4644 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4645 if (bytes_read + length != section->size)
4646 {
4647 /* There may be multiple per-CU indices. */
4648 warning (_("Section .debug_names in %s length %s does not match "
4649 "section length %s, ignoring .debug_names."),
4650 filename, plongest (bytes_read + length),
4651 pulongest (section->size));
4652 return false;
4653 }
4654
4655 /* The version number. */
4656 uint16_t version = read_2_bytes (abfd, addr);
4657 addr += 2;
4658 if (version != 5)
4659 {
4660 warning (_("Section .debug_names in %s has unsupported version %d, "
4661 "ignoring .debug_names."),
4662 filename, version);
4663 return false;
4664 }
4665
4666 /* Padding. */
4667 uint16_t padding = read_2_bytes (abfd, addr);
4668 addr += 2;
4669 if (padding != 0)
4670 {
4671 warning (_("Section .debug_names in %s has unsupported padding %d, "
4672 "ignoring .debug_names."),
4673 filename, padding);
4674 return false;
4675 }
4676
4677 /* comp_unit_count - The number of CUs in the CU list. */
4678 map.cu_count = read_4_bytes (abfd, addr);
4679 addr += 4;
4680
4681 /* local_type_unit_count - The number of TUs in the local TU
4682 list. */
4683 map.tu_count = read_4_bytes (abfd, addr);
4684 addr += 4;
4685
4686 /* foreign_type_unit_count - The number of TUs in the foreign TU
4687 list. */
4688 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4689 addr += 4;
4690 if (foreign_tu_count != 0)
4691 {
4692 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4693 "ignoring .debug_names."),
4694 filename, static_cast<unsigned long> (foreign_tu_count));
4695 return false;
4696 }
4697
4698 /* bucket_count - The number of hash buckets in the hash lookup
4699 table. */
4700 map.bucket_count = read_4_bytes (abfd, addr);
4701 addr += 4;
4702
4703 /* name_count - The number of unique names in the index. */
4704 map.name_count = read_4_bytes (abfd, addr);
4705 addr += 4;
4706
4707 /* abbrev_table_size - The size in bytes of the abbreviations
4708 table. */
4709 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4710 addr += 4;
4711
4712 /* augmentation_string_size - The size in bytes of the augmentation
4713 string. This value is rounded up to a multiple of 4. */
4714 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4715 addr += 4;
4716 map.augmentation_is_gdb = ((augmentation_string_size
4717 == sizeof (dwarf5_augmentation))
4718 && memcmp (addr, dwarf5_augmentation,
4719 sizeof (dwarf5_augmentation)) == 0);
4720 augmentation_string_size += (-augmentation_string_size) & 3;
4721 addr += augmentation_string_size;
4722
4723 /* List of CUs */
4724 map.cu_table_reordered = addr;
4725 addr += map.cu_count * map.offset_size;
4726
4727 /* List of Local TUs */
4728 map.tu_table_reordered = addr;
4729 addr += map.tu_count * map.offset_size;
4730
4731 /* Hash Lookup Table */
4732 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4733 addr += map.bucket_count * 4;
4734 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4735 addr += map.name_count * 4;
4736
4737 /* Name Table */
4738 map.name_table_string_offs_reordered = addr;
4739 addr += map.name_count * map.offset_size;
4740 map.name_table_entry_offs_reordered = addr;
4741 addr += map.name_count * map.offset_size;
4742
4743 const gdb_byte *abbrev_table_start = addr;
4744 for (;;)
4745 {
4746 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4747 addr += bytes_read;
4748 if (index_num == 0)
4749 break;
4750
4751 const auto insertpair
4752 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4753 if (!insertpair.second)
4754 {
4755 warning (_("Section .debug_names in %s has duplicate index %s, "
4756 "ignoring .debug_names."),
4757 filename, pulongest (index_num));
4758 return false;
4759 }
4760 mapped_debug_names::index_val &indexval = insertpair.first->second;
4761 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4762 addr += bytes_read;
4763
4764 for (;;)
4765 {
4766 mapped_debug_names::index_val::attr attr;
4767 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4768 addr += bytes_read;
4769 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4770 addr += bytes_read;
4771 if (attr.form == DW_FORM_implicit_const)
4772 {
4773 attr.implicit_const = read_signed_leb128 (abfd, addr,
4774 &bytes_read);
4775 addr += bytes_read;
4776 }
4777 if (attr.dw_idx == 0 && attr.form == 0)
4778 break;
4779 indexval.attr_vec.push_back (std::move (attr));
4780 }
4781 }
4782 if (addr != abbrev_table_start + abbrev_table_size)
4783 {
4784 warning (_("Section .debug_names in %s has abbreviation_table "
4785 "of size %s vs. written as %u, ignoring .debug_names."),
4786 filename, plongest (addr - abbrev_table_start),
4787 abbrev_table_size);
4788 return false;
4789 }
4790 map.entry_pool = addr;
4791
4792 return true;
4793 }
4794
4795 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4796 list. */
4797
4798 static void
4799 create_cus_from_debug_names_list (dwarf2_per_bfd *per_bfd,
4800 const mapped_debug_names &map,
4801 dwarf2_section_info &section,
4802 bool is_dwz)
4803 {
4804 if (!map.augmentation_is_gdb)
4805 {
4806 for (uint32_t i = 0; i < map.cu_count; ++i)
4807 {
4808 sect_offset sect_off
4809 = (sect_offset) (extract_unsigned_integer
4810 (map.cu_table_reordered + i * map.offset_size,
4811 map.offset_size,
4812 map.dwarf5_byte_order));
4813 /* We don't know the length of the CU, because the CU list in a
4814 .debug_names index can be incomplete, so we can't use the start
4815 of the next CU as end of this CU. We create the CUs here with
4816 length 0, and in cutu_reader::cutu_reader we'll fill in the
4817 actual length. */
4818 dwarf2_per_cu_data_up per_cu
4819 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4820 sect_off, 0);
4821 per_bfd->all_comp_units.push_back (std::move (per_cu));
4822 }
4823 return;
4824 }
4825
4826 sect_offset sect_off_prev;
4827 for (uint32_t i = 0; i <= map.cu_count; ++i)
4828 {
4829 sect_offset sect_off_next;
4830 if (i < map.cu_count)
4831 {
4832 sect_off_next
4833 = (sect_offset) (extract_unsigned_integer
4834 (map.cu_table_reordered + i * map.offset_size,
4835 map.offset_size,
4836 map.dwarf5_byte_order));
4837 }
4838 else
4839 sect_off_next = (sect_offset) section.size;
4840 if (i >= 1)
4841 {
4842 const ULONGEST length = sect_off_next - sect_off_prev;
4843 dwarf2_per_cu_data_up per_cu
4844 = create_cu_from_index_list (per_bfd, &section, is_dwz,
4845 sect_off_prev, length);
4846 per_bfd->all_comp_units.push_back (std::move (per_cu));
4847 }
4848 sect_off_prev = sect_off_next;
4849 }
4850 }
4851
4852 /* Read the CU list from the mapped index, and use it to create all
4853 the CU objects for this dwarf2_per_objfile. */
4854
4855 static void
4856 create_cus_from_debug_names (dwarf2_per_bfd *per_bfd,
4857 const mapped_debug_names &map,
4858 const mapped_debug_names &dwz_map)
4859 {
4860 gdb_assert (per_bfd->all_comp_units.empty ());
4861 per_bfd->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
4862
4863 create_cus_from_debug_names_list (per_bfd, map, per_bfd->info,
4864 false /* is_dwz */);
4865
4866 if (dwz_map.cu_count == 0)
4867 return;
4868
4869 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4870 create_cus_from_debug_names_list (per_bfd, dwz_map, dwz->info,
4871 true /* is_dwz */);
4872 }
4873
4874 /* Read .debug_names. If everything went ok, initialize the "quick"
4875 elements of all the CUs and return true. Otherwise, return false. */
4876
4877 static bool
4878 dwarf2_read_debug_names (dwarf2_per_objfile *per_objfile)
4879 {
4880 std::unique_ptr<mapped_debug_names> map (new mapped_debug_names);
4881 mapped_debug_names dwz_map;
4882 struct objfile *objfile = per_objfile->objfile;
4883 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
4884
4885 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
4886 &per_bfd->debug_names, *map))
4887 return false;
4888
4889 /* Don't use the index if it's empty. */
4890 if (map->name_count == 0)
4891 return false;
4892
4893 /* If there is a .dwz file, read it so we can get its CU list as
4894 well. */
4895 dwz_file *dwz = dwarf2_get_dwz_file (per_bfd);
4896 if (dwz != NULL)
4897 {
4898 if (!read_debug_names_from_section (objfile,
4899 bfd_get_filename (dwz->dwz_bfd.get ()),
4900 &dwz->debug_names, dwz_map))
4901 {
4902 warning (_("could not read '.debug_names' section from %s; skipping"),
4903 bfd_get_filename (dwz->dwz_bfd.get ()));
4904 return false;
4905 }
4906 }
4907
4908 create_cus_from_debug_names (per_bfd, *map, dwz_map);
4909
4910 if (map->tu_count != 0)
4911 {
4912 /* We can only handle a single .debug_types when we have an
4913 index. */
4914 if (per_bfd->types.size () != 1)
4915 return false;
4916
4917 dwarf2_section_info *section = &per_bfd->types[0];
4918
4919 create_signatured_type_table_from_debug_names
4920 (per_objfile, *map, section, &per_bfd->abbrev);
4921 }
4922
4923 create_addrmap_from_aranges (per_objfile, &per_bfd->debug_aranges);
4924
4925 per_bfd->debug_names_table = std::move (map);
4926 per_bfd->using_index = 1;
4927 per_bfd->quick_file_names_table =
4928 create_quick_file_names_table (per_bfd->all_comp_units.size ());
4929
4930 return true;
4931 }
4932
4933 /* Type used to manage iterating over all CUs looking for a symbol for
4934 .debug_names. */
4935
4936 class dw2_debug_names_iterator
4937 {
4938 public:
4939 dw2_debug_names_iterator (const mapped_debug_names &map,
4940 block_search_flags block_index,
4941 domain_enum domain,
4942 const char *name, dwarf2_per_objfile *per_objfile)
4943 : m_map (map), m_block_index (block_index), m_domain (domain),
4944 m_addr (find_vec_in_debug_names (map, name, per_objfile)),
4945 m_per_objfile (per_objfile)
4946 {}
4947
4948 dw2_debug_names_iterator (const mapped_debug_names &map,
4949 search_domain search, uint32_t namei,
4950 dwarf2_per_objfile *per_objfile,
4951 domain_enum domain = UNDEF_DOMAIN)
4952 : m_map (map),
4953 m_domain (domain),
4954 m_search (search),
4955 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4956 m_per_objfile (per_objfile)
4957 {}
4958
4959 dw2_debug_names_iterator (const mapped_debug_names &map,
4960 block_search_flags block_index, domain_enum domain,
4961 uint32_t namei, dwarf2_per_objfile *per_objfile)
4962 : m_map (map), m_block_index (block_index), m_domain (domain),
4963 m_addr (find_vec_in_debug_names (map, namei, per_objfile)),
4964 m_per_objfile (per_objfile)
4965 {}
4966
4967 /* Return the next matching CU or NULL if there are no more. */
4968 dwarf2_per_cu_data *next ();
4969
4970 private:
4971 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4972 const char *name,
4973 dwarf2_per_objfile *per_objfile);
4974 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
4975 uint32_t namei,
4976 dwarf2_per_objfile *per_objfile);
4977
4978 /* The internalized form of .debug_names. */
4979 const mapped_debug_names &m_map;
4980
4981 /* Restrict the search to these blocks. */
4982 block_search_flags m_block_index = (SEARCH_GLOBAL_BLOCK
4983 | SEARCH_STATIC_BLOCK);
4984
4985 /* The kind of symbol we're looking for. */
4986 const domain_enum m_domain = UNDEF_DOMAIN;
4987 const search_domain m_search = ALL_DOMAIN;
4988
4989 /* The list of CUs from the index entry of the symbol, or NULL if
4990 not found. */
4991 const gdb_byte *m_addr;
4992
4993 dwarf2_per_objfile *m_per_objfile;
4994 };
4995
4996 const char *
4997 mapped_debug_names::namei_to_name
4998 (uint32_t namei, dwarf2_per_objfile *per_objfile) const
4999 {
5000 const ULONGEST namei_string_offs
5001 = extract_unsigned_integer ((name_table_string_offs_reordered
5002 + namei * offset_size),
5003 offset_size,
5004 dwarf5_byte_order);
5005 return read_indirect_string_at_offset (per_objfile, namei_string_offs);
5006 }
5007
5008 /* Find a slot in .debug_names for the object named NAME. If NAME is
5009 found, return pointer to its pool data. If NAME cannot be found,
5010 return NULL. */
5011
5012 const gdb_byte *
5013 dw2_debug_names_iterator::find_vec_in_debug_names
5014 (const mapped_debug_names &map, const char *name,
5015 dwarf2_per_objfile *per_objfile)
5016 {
5017 int (*cmp) (const char *, const char *);
5018
5019 gdb::unique_xmalloc_ptr<char> without_params;
5020 if (current_language->la_language == language_cplus
5021 || current_language->la_language == language_fortran
5022 || current_language->la_language == language_d)
5023 {
5024 /* NAME is already canonical. Drop any qualifiers as
5025 .debug_names does not contain any. */
5026
5027 if (strchr (name, '(') != NULL)
5028 {
5029 without_params = cp_remove_params (name);
5030 if (without_params != NULL)
5031 name = without_params.get ();
5032 }
5033 }
5034
5035 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5036
5037 const uint32_t full_hash = dwarf5_djb_hash (name);
5038 uint32_t namei
5039 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5040 (map.bucket_table_reordered
5041 + (full_hash % map.bucket_count)), 4,
5042 map.dwarf5_byte_order);
5043 if (namei == 0)
5044 return NULL;
5045 --namei;
5046 if (namei >= map.name_count)
5047 {
5048 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5049 "[in module %s]"),
5050 namei, map.name_count,
5051 objfile_name (per_objfile->objfile));
5052 return NULL;
5053 }
5054
5055 for (;;)
5056 {
5057 const uint32_t namei_full_hash
5058 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5059 (map.hash_table_reordered + namei), 4,
5060 map.dwarf5_byte_order);
5061 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5062 return NULL;
5063
5064 if (full_hash == namei_full_hash)
5065 {
5066 const char *const namei_string = map.namei_to_name (namei, per_objfile);
5067
5068 #if 0 /* An expensive sanity check. */
5069 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5070 {
5071 complaint (_("Wrong .debug_names hash for string at index %u "
5072 "[in module %s]"),
5073 namei, objfile_name (dwarf2_per_objfile->objfile));
5074 return NULL;
5075 }
5076 #endif
5077
5078 if (cmp (namei_string, name) == 0)
5079 {
5080 const ULONGEST namei_entry_offs
5081 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5082 + namei * map.offset_size),
5083 map.offset_size, map.dwarf5_byte_order);
5084 return map.entry_pool + namei_entry_offs;
5085 }
5086 }
5087
5088 ++namei;
5089 if (namei >= map.name_count)
5090 return NULL;
5091 }
5092 }
5093
5094 const gdb_byte *
5095 dw2_debug_names_iterator::find_vec_in_debug_names
5096 (const mapped_debug_names &map, uint32_t namei, dwarf2_per_objfile *per_objfile)
5097 {
5098 if (namei >= map.name_count)
5099 {
5100 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5101 "[in module %s]"),
5102 namei, map.name_count,
5103 objfile_name (per_objfile->objfile));
5104 return NULL;
5105 }
5106
5107 const ULONGEST namei_entry_offs
5108 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5109 + namei * map.offset_size),
5110 map.offset_size, map.dwarf5_byte_order);
5111 return map.entry_pool + namei_entry_offs;
5112 }
5113
5114 /* See dw2_debug_names_iterator. */
5115
5116 dwarf2_per_cu_data *
5117 dw2_debug_names_iterator::next ()
5118 {
5119 if (m_addr == NULL)
5120 return NULL;
5121
5122 dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd;
5123 struct objfile *objfile = m_per_objfile->objfile;
5124 bfd *const abfd = objfile->obfd;
5125
5126 again:
5127
5128 unsigned int bytes_read;
5129 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5130 m_addr += bytes_read;
5131 if (abbrev == 0)
5132 return NULL;
5133
5134 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5135 if (indexval_it == m_map.abbrev_map.cend ())
5136 {
5137 complaint (_("Wrong .debug_names undefined abbrev code %s "
5138 "[in module %s]"),
5139 pulongest (abbrev), objfile_name (objfile));
5140 return NULL;
5141 }
5142 const mapped_debug_names::index_val &indexval = indexval_it->second;
5143 enum class symbol_linkage {
5144 unknown,
5145 static_,
5146 extern_,
5147 } symbol_linkage_ = symbol_linkage::unknown;
5148 dwarf2_per_cu_data *per_cu = NULL;
5149 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5150 {
5151 ULONGEST ull;
5152 switch (attr.form)
5153 {
5154 case DW_FORM_implicit_const:
5155 ull = attr.implicit_const;
5156 break;
5157 case DW_FORM_flag_present:
5158 ull = 1;
5159 break;
5160 case DW_FORM_udata:
5161 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5162 m_addr += bytes_read;
5163 break;
5164 case DW_FORM_ref4:
5165 ull = read_4_bytes (abfd, m_addr);
5166 m_addr += 4;
5167 break;
5168 case DW_FORM_ref8:
5169 ull = read_8_bytes (abfd, m_addr);
5170 m_addr += 8;
5171 break;
5172 case DW_FORM_ref_sig8:
5173 ull = read_8_bytes (abfd, m_addr);
5174 m_addr += 8;
5175 break;
5176 default:
5177 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5178 dwarf_form_name (attr.form),
5179 objfile_name (objfile));
5180 return NULL;
5181 }
5182 switch (attr.dw_idx)
5183 {
5184 case DW_IDX_compile_unit:
5185 /* Don't crash on bad data. */
5186 if (ull >= per_bfd->all_comp_units.size ())
5187 {
5188 complaint (_(".debug_names entry has bad CU index %s"
5189 " [in module %s]"),
5190 pulongest (ull),
5191 objfile_name (objfile));
5192 continue;
5193 }
5194 per_cu = per_bfd->get_cu (ull);
5195 break;
5196 case DW_IDX_type_unit:
5197 /* Don't crash on bad data. */
5198 if (ull >= per_bfd->tu_stats.nr_tus)
5199 {
5200 complaint (_(".debug_names entry has bad TU index %s"
5201 " [in module %s]"),
5202 pulongest (ull),
5203 objfile_name (objfile));
5204 continue;
5205 }
5206 per_cu = per_bfd->get_cu (ull + per_bfd->tu_stats.nr_tus);
5207 break;
5208 case DW_IDX_die_offset:
5209 /* In a per-CU index (as opposed to a per-module index), index
5210 entries without CU attribute implicitly refer to the single CU. */
5211 if (per_cu == NULL)
5212 per_cu = per_bfd->get_cu (0);
5213 break;
5214 case DW_IDX_GNU_internal:
5215 if (!m_map.augmentation_is_gdb)
5216 break;
5217 symbol_linkage_ = symbol_linkage::static_;
5218 break;
5219 case DW_IDX_GNU_external:
5220 if (!m_map.augmentation_is_gdb)
5221 break;
5222 symbol_linkage_ = symbol_linkage::extern_;
5223 break;
5224 }
5225 }
5226
5227 /* Skip if already read in. */
5228 if (m_per_objfile->symtab_set_p (per_cu))
5229 goto again;
5230
5231 /* Check static vs global. */
5232 if (symbol_linkage_ != symbol_linkage::unknown)
5233 {
5234 if (symbol_linkage_ == symbol_linkage::static_)
5235 {
5236 if ((m_block_index & SEARCH_STATIC_BLOCK) == 0)
5237 goto again;
5238 }
5239 else
5240 {
5241 if ((m_block_index & SEARCH_GLOBAL_BLOCK) == 0)
5242 goto again;
5243 }
5244 }
5245
5246 /* Match dw2_symtab_iter_next, symbol_kind
5247 and debug_names::psymbol_tag. */
5248 switch (m_domain)
5249 {
5250 case VAR_DOMAIN:
5251 switch (indexval.dwarf_tag)
5252 {
5253 case DW_TAG_variable:
5254 case DW_TAG_subprogram:
5255 /* Some types are also in VAR_DOMAIN. */
5256 case DW_TAG_typedef:
5257 case DW_TAG_structure_type:
5258 break;
5259 default:
5260 goto again;
5261 }
5262 break;
5263 case STRUCT_DOMAIN:
5264 switch (indexval.dwarf_tag)
5265 {
5266 case DW_TAG_typedef:
5267 case DW_TAG_structure_type:
5268 break;
5269 default:
5270 goto again;
5271 }
5272 break;
5273 case LABEL_DOMAIN:
5274 switch (indexval.dwarf_tag)
5275 {
5276 case 0:
5277 case DW_TAG_variable:
5278 break;
5279 default:
5280 goto again;
5281 }
5282 break;
5283 case MODULE_DOMAIN:
5284 switch (indexval.dwarf_tag)
5285 {
5286 case DW_TAG_module:
5287 break;
5288 default:
5289 goto again;
5290 }
5291 break;
5292 default:
5293 break;
5294 }
5295
5296 /* Match dw2_expand_symtabs_matching, symbol_kind and
5297 debug_names::psymbol_tag. */
5298 switch (m_search)
5299 {
5300 case VARIABLES_DOMAIN:
5301 switch (indexval.dwarf_tag)
5302 {
5303 case DW_TAG_variable:
5304 break;
5305 default:
5306 goto again;
5307 }
5308 break;
5309 case FUNCTIONS_DOMAIN:
5310 switch (indexval.dwarf_tag)
5311 {
5312 case DW_TAG_subprogram:
5313 break;
5314 default:
5315 goto again;
5316 }
5317 break;
5318 case TYPES_DOMAIN:
5319 switch (indexval.dwarf_tag)
5320 {
5321 case DW_TAG_typedef:
5322 case DW_TAG_structure_type:
5323 break;
5324 default:
5325 goto again;
5326 }
5327 break;
5328 case MODULES_DOMAIN:
5329 switch (indexval.dwarf_tag)
5330 {
5331 case DW_TAG_module:
5332 break;
5333 default:
5334 goto again;
5335 }
5336 default:
5337 break;
5338 }
5339
5340 return per_cu;
5341 }
5342
5343 /* This dumps minimal information about .debug_names. It is called
5344 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5345 uses this to verify that .debug_names has been loaded. */
5346
5347 void
5348 dwarf2_debug_names_index::dump (struct objfile *objfile)
5349 {
5350 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5351
5352 gdb_assert (per_objfile->per_bfd->using_index);
5353 printf_filtered (".debug_names:");
5354 if (per_objfile->per_bfd->debug_names_table)
5355 printf_filtered (" exists\n");
5356 else
5357 printf_filtered (" faked for \"readnow\"\n");
5358 printf_filtered ("\n");
5359 }
5360
5361 void
5362 dwarf2_debug_names_index::expand_matching_symbols
5363 (struct objfile *objfile,
5364 const lookup_name_info &name, domain_enum domain,
5365 int global,
5366 symbol_compare_ftype *ordered_compare)
5367 {
5368 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5369
5370 /* debug_names_table is NULL if OBJF_READNOW. */
5371 if (!per_objfile->per_bfd->debug_names_table)
5372 return;
5373
5374 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5375 const block_search_flags block_flags
5376 = global ? SEARCH_GLOBAL_BLOCK : SEARCH_STATIC_BLOCK;
5377
5378 const char *match_name = name.ada ().lookup_name ().c_str ();
5379 auto matcher = [&] (const char *symname)
5380 {
5381 if (ordered_compare == nullptr)
5382 return true;
5383 return ordered_compare (symname, match_name) == 0;
5384 };
5385
5386 dw2_expand_symtabs_matching_symbol (map, name, matcher,
5387 [&] (offset_type namei)
5388 {
5389 /* The name was matched, now expand corresponding CUs that were
5390 marked. */
5391 dw2_debug_names_iterator iter (map, block_flags, domain, namei,
5392 per_objfile);
5393
5394 struct dwarf2_per_cu_data *per_cu;
5395 while ((per_cu = iter.next ()) != NULL)
5396 dw2_expand_symtabs_matching_one (per_cu, per_objfile, nullptr,
5397 nullptr);
5398 return true;
5399 }, per_objfile);
5400 }
5401
5402 bool
5403 dwarf2_debug_names_index::expand_symtabs_matching
5404 (struct objfile *objfile,
5405 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5406 const lookup_name_info *lookup_name,
5407 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5408 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5409 block_search_flags search_flags,
5410 domain_enum domain,
5411 enum search_domain kind)
5412 {
5413 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5414
5415 /* debug_names_table is NULL if OBJF_READNOW. */
5416 if (!per_objfile->per_bfd->debug_names_table)
5417 return true;
5418
5419 dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher);
5420
5421 /* This invariant is documented in quick-functions.h. */
5422 gdb_assert (lookup_name != nullptr || symbol_matcher == nullptr);
5423 if (lookup_name == nullptr)
5424 {
5425 for (dwarf2_per_cu_data *per_cu
5426 : all_comp_units_range (per_objfile->per_bfd))
5427 {
5428 QUIT;
5429
5430 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
5431 file_matcher,
5432 expansion_notify))
5433 return false;
5434 }
5435 return true;
5436 }
5437
5438 mapped_debug_names &map = *per_objfile->per_bfd->debug_names_table;
5439
5440 bool result
5441 = dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5442 symbol_matcher,
5443 [&] (offset_type namei)
5444 {
5445 /* The name was matched, now expand corresponding CUs that were
5446 marked. */
5447 dw2_debug_names_iterator iter (map, kind, namei, per_objfile, domain);
5448
5449 struct dwarf2_per_cu_data *per_cu;
5450 while ((per_cu = iter.next ()) != NULL)
5451 if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile,
5452 file_matcher,
5453 expansion_notify))
5454 return false;
5455 return true;
5456 }, per_objfile);
5457
5458 return result;
5459 }
5460
5461 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5462 to either a dwarf2_per_bfd or dwz_file object. */
5463
5464 template <typename T>
5465 static gdb::array_view<const gdb_byte>
5466 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5467 {
5468 dwarf2_section_info *section = &section_owner->gdb_index;
5469
5470 if (section->empty ())
5471 return {};
5472
5473 /* Older elfutils strip versions could keep the section in the main
5474 executable while splitting it for the separate debug info file. */
5475 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5476 return {};
5477
5478 section->read (obj);
5479
5480 /* dwarf2_section_info::size is a bfd_size_type, while
5481 gdb::array_view works with size_t. On 32-bit hosts, with
5482 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5483 is 32-bit. So we need an explicit narrowing conversion here.
5484 This is fine, because it's impossible to allocate or mmap an
5485 array/buffer larger than what size_t can represent. */
5486 return gdb::make_array_view (section->buffer, section->size);
5487 }
5488
5489 /* Lookup the index cache for the contents of the index associated to
5490 DWARF2_OBJ. */
5491
5492 static gdb::array_view<const gdb_byte>
5493 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd)
5494 {
5495 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5496 if (build_id == nullptr)
5497 return {};
5498
5499 return global_index_cache.lookup_gdb_index (build_id,
5500 &dwarf2_per_bfd->index_cache_res);
5501 }
5502
5503 /* Same as the above, but for DWZ. */
5504
5505 static gdb::array_view<const gdb_byte>
5506 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5507 {
5508 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5509 if (build_id == nullptr)
5510 return {};
5511
5512 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5513 }
5514
5515 /* See dwarf2/public.h. */
5516
5517 void
5518 dwarf2_initialize_objfile (struct objfile *objfile)
5519 {
5520 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5521 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5522
5523 dwarf_read_debug_printf ("called");
5524
5525 /* If we're about to read full symbols, don't bother with the
5526 indices. In this case we also don't care if some other debug
5527 format is making psymtabs, because they are all about to be
5528 expanded anyway. */
5529 if ((objfile->flags & OBJF_READNOW))
5530 {
5531 dwarf_read_debug_printf ("readnow requested");
5532
5533 /* When using READNOW, the using_index flag (set below) indicates that
5534 PER_BFD was already initialized, when we loaded some other objfile. */
5535 if (per_bfd->using_index)
5536 {
5537 dwarf_read_debug_printf ("using_index already set");
5538 objfile->qf.push_front (make_dwarf_gdb_index ());
5539 return;
5540 }
5541
5542 per_bfd->using_index = 1;
5543 create_all_comp_units (per_objfile);
5544 per_bfd->quick_file_names_table
5545 = create_quick_file_names_table (per_bfd->all_comp_units.size ());
5546
5547 for (int i = 0; i < per_bfd->all_comp_units.size (); ++i)
5548 {
5549 dwarf2_per_cu_data *per_cu = per_bfd->get_cu (i);
5550
5551 per_cu->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
5552 struct dwarf2_per_cu_quick_data);
5553 }
5554
5555 /* Arrange for gdb to see the "quick" functions. However, these
5556 functions will be no-ops because we will have expanded all
5557 symtabs. */
5558 objfile->qf.push_front (make_dwarf_gdb_index ());
5559 return;
5560 }
5561
5562 /* Was a debug names index already read when we processed an objfile sharing
5563 PER_BFD? */
5564 if (per_bfd->debug_names_table != nullptr)
5565 {
5566 dwarf_read_debug_printf ("re-using shared debug names table");
5567 objfile->qf.push_front (make_dwarf_debug_names ());
5568 return;
5569 }
5570
5571 /* Was a GDB index already read when we processed an objfile sharing
5572 PER_BFD? */
5573 if (per_bfd->index_table != nullptr)
5574 {
5575 dwarf_read_debug_printf ("re-using shared index table");
5576 objfile->qf.push_front (make_dwarf_gdb_index ());
5577 return;
5578 }
5579
5580 /* There might already be partial symtabs built for this BFD. This happens
5581 when loading the same binary twice with the index-cache enabled. If so,
5582 don't try to read an index. The objfile / per_objfile initialization will
5583 be completed in dwarf2_build_psymtabs, in the standard partial symtabs
5584 code path. */
5585 if (per_bfd->partial_symtabs != nullptr)
5586 {
5587 dwarf_read_debug_printf ("re-using shared partial symtabs");
5588 objfile->qf.push_front (make_lazy_dwarf_reader ());
5589 return;
5590 }
5591
5592 if (dwarf2_read_debug_names (per_objfile))
5593 {
5594 dwarf_read_debug_printf ("found debug names");
5595 objfile->qf.push_front (make_dwarf_debug_names ());
5596 return;
5597 }
5598
5599 if (dwarf2_read_gdb_index (per_objfile,
5600 get_gdb_index_contents_from_section<struct dwarf2_per_bfd>,
5601 get_gdb_index_contents_from_section<dwz_file>))
5602 {
5603 dwarf_read_debug_printf ("found gdb index from file");
5604 objfile->qf.push_front (make_dwarf_gdb_index ());
5605 return;
5606 }
5607
5608 /* ... otherwise, try to find the index in the index cache. */
5609 if (dwarf2_read_gdb_index (per_objfile,
5610 get_gdb_index_contents_from_cache,
5611 get_gdb_index_contents_from_cache_dwz))
5612 {
5613 dwarf_read_debug_printf ("found gdb index from cache");
5614 global_index_cache.hit ();
5615 objfile->qf.push_front (make_dwarf_gdb_index ());
5616 return;
5617 }
5618
5619 global_index_cache.miss ();
5620 objfile->qf.push_front (make_lazy_dwarf_reader ());
5621 }
5622
5623 \f
5624
5625 /* Build a partial symbol table. */
5626
5627 void
5628 dwarf2_build_psymtabs (struct objfile *objfile, psymbol_functions *psf)
5629 {
5630 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
5631 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
5632
5633 if (per_bfd->partial_symtabs != nullptr)
5634 {
5635 /* Partial symbols were already read, so now we can simply
5636 attach them. */
5637 if (psf == nullptr)
5638 {
5639 psf = new psymbol_functions (per_bfd->partial_symtabs);
5640 objfile->qf.emplace_front (psf);
5641 }
5642 else
5643 psf->set_partial_symtabs (per_bfd->partial_symtabs);
5644 return;
5645 }
5646
5647 if (psf == nullptr)
5648 {
5649 psf = new psymbol_functions;
5650 objfile->qf.emplace_front (psf);
5651 }
5652 const std::shared_ptr<psymtab_storage> &partial_symtabs
5653 = psf->get_partial_symtabs ();
5654
5655 /* Set the local reference to partial symtabs, so that we don't try
5656 to read them again if reading another objfile with the same BFD.
5657 If we can't in fact share, this won't make a difference anyway as
5658 the dwarf2_per_bfd object won't be shared. */
5659 per_bfd->partial_symtabs = partial_symtabs;
5660
5661 try
5662 {
5663 /* This isn't really ideal: all the data we allocate on the
5664 objfile's obstack is still uselessly kept around. However,
5665 freeing it seems unsafe. */
5666 psymtab_discarder psymtabs (partial_symtabs.get ());
5667 dwarf2_build_psymtabs_hard (per_objfile);
5668 psymtabs.keep ();
5669
5670 /* (maybe) store an index in the cache. */
5671 global_index_cache.store (per_objfile);
5672 }
5673 catch (const gdb_exception_error &except)
5674 {
5675 exception_print (gdb_stderr, except);
5676 }
5677 }
5678
5679 /* Find the base address of the compilation unit for range lists and
5680 location lists. It will normally be specified by DW_AT_low_pc.
5681 In DWARF-3 draft 4, the base address could be overridden by
5682 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5683 compilation units with discontinuous ranges. */
5684
5685 static void
5686 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5687 {
5688 struct attribute *attr;
5689
5690 cu->base_address.reset ();
5691
5692 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5693 if (attr != nullptr)
5694 cu->base_address = attr->as_address ();
5695 else
5696 {
5697 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5698 if (attr != nullptr)
5699 cu->base_address = attr->as_address ();
5700 }
5701 }
5702
5703 /* Helper function that returns the proper abbrev section for
5704 THIS_CU. */
5705
5706 static struct dwarf2_section_info *
5707 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5708 {
5709 struct dwarf2_section_info *abbrev;
5710 dwarf2_per_bfd *per_bfd = this_cu->per_bfd;
5711
5712 if (this_cu->is_dwz)
5713 abbrev = &dwarf2_get_dwz_file (per_bfd, true)->abbrev;
5714 else
5715 abbrev = &per_bfd->abbrev;
5716
5717 return abbrev;
5718 }
5719
5720 /* Fetch the abbreviation table offset from a comp or type unit header. */
5721
5722 static sect_offset
5723 read_abbrev_offset (dwarf2_per_objfile *per_objfile,
5724 struct dwarf2_section_info *section,
5725 sect_offset sect_off)
5726 {
5727 bfd *abfd = section->get_bfd_owner ();
5728 const gdb_byte *info_ptr;
5729 unsigned int initial_length_size, offset_size;
5730 uint16_t version;
5731
5732 section->read (per_objfile->objfile);
5733 info_ptr = section->buffer + to_underlying (sect_off);
5734 read_initial_length (abfd, info_ptr, &initial_length_size);
5735 offset_size = initial_length_size == 4 ? 4 : 8;
5736 info_ptr += initial_length_size;
5737
5738 version = read_2_bytes (abfd, info_ptr);
5739 info_ptr += 2;
5740 if (version >= 5)
5741 {
5742 /* Skip unit type and address size. */
5743 info_ptr += 2;
5744 }
5745
5746 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5747 }
5748
5749 /* A partial symtab that is used only for include files. */
5750 struct dwarf2_include_psymtab : public partial_symtab
5751 {
5752 dwarf2_include_psymtab (const char *filename,
5753 psymtab_storage *partial_symtabs,
5754 objfile_per_bfd_storage *objfile_per_bfd)
5755 : partial_symtab (filename, partial_symtabs, objfile_per_bfd)
5756 {
5757 }
5758
5759 void read_symtab (struct objfile *objfile) override
5760 {
5761 /* It's an include file, no symbols to read for it.
5762 Everything is in the includer symtab. */
5763
5764 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5765 expansion of the includer psymtab. We use the dependencies[0] field to
5766 model the includer. But if we go the regular route of calling
5767 expand_psymtab here, and having expand_psymtab call expand_dependencies
5768 to expand the includer, we'll only use expand_psymtab on the includer
5769 (making it a non-toplevel psymtab), while if we expand the includer via
5770 another path, we'll use read_symtab (making it a toplevel psymtab).
5771 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5772 psymtab, and trigger read_symtab on the includer here directly. */
5773 includer ()->read_symtab (objfile);
5774 }
5775
5776 void expand_psymtab (struct objfile *objfile) override
5777 {
5778 /* This is not called by read_symtab, and should not be called by any
5779 expand_dependencies. */
5780 gdb_assert (false);
5781 }
5782
5783 bool readin_p (struct objfile *objfile) const override
5784 {
5785 return includer ()->readin_p (objfile);
5786 }
5787
5788 compunit_symtab *get_compunit_symtab (struct objfile *objfile) const override
5789 {
5790 return nullptr;
5791 }
5792
5793 private:
5794 partial_symtab *includer () const
5795 {
5796 /* An include psymtab has exactly one dependency: the psymtab that
5797 includes it. */
5798 gdb_assert (this->number_of_dependencies == 1);
5799 return this->dependencies[0];
5800 }
5801 };
5802
5803 /* Allocate a new partial symtab for file named NAME and mark this new
5804 partial symtab as being an include of PST. */
5805
5806 static void
5807 dwarf2_create_include_psymtab (dwarf2_per_bfd *per_bfd,
5808 const char *name,
5809 dwarf2_psymtab *pst,
5810 psymtab_storage *partial_symtabs,
5811 objfile_per_bfd_storage *objfile_per_bfd)
5812 {
5813 dwarf2_include_psymtab *subpst
5814 = new dwarf2_include_psymtab (name, partial_symtabs, objfile_per_bfd);
5815
5816 if (!IS_ABSOLUTE_PATH (subpst->filename))
5817 subpst->dirname = pst->dirname;
5818
5819 subpst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (1);
5820 subpst->dependencies[0] = pst;
5821 subpst->number_of_dependencies = 1;
5822 }
5823
5824 /* Read the Line Number Program data and extract the list of files
5825 included by the source file represented by PST. Build an include
5826 partial symtab for each of these included files. */
5827
5828 static void
5829 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5830 struct die_info *die,
5831 const file_and_directory &fnd,
5832 dwarf2_psymtab *pst)
5833 {
5834 line_header_up lh;
5835 struct attribute *attr;
5836
5837 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5838 if (attr != nullptr && attr->form_is_unsigned ())
5839 lh = dwarf_decode_line_header ((sect_offset) attr->as_unsigned (), cu);
5840 if (lh == NULL)
5841 return; /* No linetable, so no includes. */
5842
5843 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
5844 that we pass in the raw text_low here; that is ok because we're
5845 only decoding the line table to make include partial symtabs, and
5846 so the addresses aren't really used. */
5847 dwarf_decode_lines (lh.get (), fnd, cu, pst,
5848 pst->raw_text_low (), 1);
5849 }
5850
5851 static hashval_t
5852 hash_signatured_type (const void *item)
5853 {
5854 const struct signatured_type *sig_type
5855 = (const struct signatured_type *) item;
5856
5857 /* This drops the top 32 bits of the signature, but is ok for a hash. */
5858 return sig_type->signature;
5859 }
5860
5861 static int
5862 eq_signatured_type (const void *item_lhs, const void *item_rhs)
5863 {
5864 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
5865 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
5866
5867 return lhs->signature == rhs->signature;
5868 }
5869
5870 /* Allocate a hash table for signatured types. */
5871
5872 static htab_up
5873 allocate_signatured_type_table ()
5874 {
5875 return htab_up (htab_create_alloc (41,
5876 hash_signatured_type,
5877 eq_signatured_type,
5878 NULL, xcalloc, xfree));
5879 }
5880
5881 /* A helper for create_debug_types_hash_table. Read types from SECTION
5882 and fill them into TYPES_HTAB. It will process only type units,
5883 therefore DW_UT_type. */
5884
5885 static void
5886 create_debug_type_hash_table (dwarf2_per_objfile *per_objfile,
5887 struct dwo_file *dwo_file,
5888 dwarf2_section_info *section, htab_up &types_htab,
5889 rcuh_kind section_kind)
5890 {
5891 struct objfile *objfile = per_objfile->objfile;
5892 struct dwarf2_section_info *abbrev_section;
5893 bfd *abfd;
5894 const gdb_byte *info_ptr, *end_ptr;
5895
5896 abbrev_section = &dwo_file->sections.abbrev;
5897
5898 dwarf_read_debug_printf ("Reading %s for %s",
5899 section->get_name (),
5900 abbrev_section->get_file_name ());
5901
5902 section->read (objfile);
5903 info_ptr = section->buffer;
5904
5905 if (info_ptr == NULL)
5906 return;
5907
5908 /* We can't set abfd until now because the section may be empty or
5909 not present, in which case the bfd is unknown. */
5910 abfd = section->get_bfd_owner ();
5911
5912 /* We don't use cutu_reader here because we don't need to read
5913 any dies: the signature is in the header. */
5914
5915 end_ptr = info_ptr + section->size;
5916 while (info_ptr < end_ptr)
5917 {
5918 signatured_type_up sig_type;
5919 struct dwo_unit *dwo_tu;
5920 void **slot;
5921 const gdb_byte *ptr = info_ptr;
5922 struct comp_unit_head header;
5923 unsigned int length;
5924
5925 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
5926
5927 /* Initialize it due to a false compiler warning. */
5928 header.signature = -1;
5929 header.type_cu_offset_in_tu = (cu_offset) -1;
5930
5931 /* We need to read the type's signature in order to build the hash
5932 table, but we don't need anything else just yet. */
5933
5934 ptr = read_and_check_comp_unit_head (per_objfile, &header, section,
5935 abbrev_section, ptr, section_kind);
5936
5937 length = header.get_length ();
5938
5939 /* Skip dummy type units. */
5940 if (ptr >= info_ptr + length
5941 || peek_abbrev_code (abfd, ptr) == 0
5942 || (header.unit_type != DW_UT_type
5943 && header.unit_type != DW_UT_split_type))
5944 {
5945 info_ptr += length;
5946 continue;
5947 }
5948
5949 if (types_htab == NULL)
5950 types_htab = allocate_dwo_unit_table ();
5951
5952 dwo_tu = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit);
5953 dwo_tu->dwo_file = dwo_file;
5954 dwo_tu->signature = header.signature;
5955 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
5956 dwo_tu->section = section;
5957 dwo_tu->sect_off = sect_off;
5958 dwo_tu->length = length;
5959
5960 slot = htab_find_slot (types_htab.get (), dwo_tu, INSERT);
5961 gdb_assert (slot != NULL);
5962 if (*slot != NULL)
5963 complaint (_("debug type entry at offset %s is duplicate to"
5964 " the entry at offset %s, signature %s"),
5965 sect_offset_str (sect_off),
5966 sect_offset_str (dwo_tu->sect_off),
5967 hex_string (header.signature));
5968 *slot = dwo_tu;
5969
5970 dwarf_read_debug_printf_v (" offset %s, signature %s",
5971 sect_offset_str (sect_off),
5972 hex_string (header.signature));
5973
5974 info_ptr += length;
5975 }
5976 }
5977
5978 /* Create the hash table of all entries in the .debug_types
5979 (or .debug_types.dwo) section(s).
5980 DWO_FILE is a pointer to the DWO file object.
5981
5982 The result is a pointer to the hash table or NULL if there are no types.
5983
5984 Note: This function processes DWO files only, not DWP files. */
5985
5986 static void
5987 create_debug_types_hash_table (dwarf2_per_objfile *per_objfile,
5988 struct dwo_file *dwo_file,
5989 gdb::array_view<dwarf2_section_info> type_sections,
5990 htab_up &types_htab)
5991 {
5992 for (dwarf2_section_info &section : type_sections)
5993 create_debug_type_hash_table (per_objfile, dwo_file, &section, types_htab,
5994 rcuh_kind::TYPE);
5995 }
5996
5997 /* Add an entry for signature SIG to dwarf2_per_objfile->per_bfd->signatured_types.
5998 If SLOT is non-NULL, it is the entry to use in the hash table.
5999 Otherwise we find one. */
6000
6001 static struct signatured_type *
6002 add_type_unit (dwarf2_per_objfile *per_objfile, ULONGEST sig, void **slot)
6003 {
6004 if (per_objfile->per_bfd->all_comp_units.size ()
6005 == per_objfile->per_bfd->all_comp_units.capacity ())
6006 ++per_objfile->per_bfd->tu_stats.nr_all_type_units_reallocs;
6007
6008 signatured_type_up sig_type_holder
6009 = per_objfile->per_bfd->allocate_signatured_type (sig);
6010 signatured_type *sig_type = sig_type_holder.get ();
6011
6012 per_objfile->per_bfd->all_comp_units.emplace_back
6013 (sig_type_holder.release ());
6014 if (per_objfile->per_bfd->using_index)
6015 {
6016 sig_type->v.quick =
6017 OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack,
6018 struct dwarf2_per_cu_quick_data);
6019 }
6020
6021 if (slot == NULL)
6022 {
6023 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6024 sig_type, INSERT);
6025 }
6026 gdb_assert (*slot == NULL);
6027 *slot = sig_type;
6028 /* The rest of sig_type must be filled in by the caller. */
6029 return sig_type;
6030 }
6031
6032 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6033 Fill in SIG_ENTRY with DWO_ENTRY. */
6034
6035 static void
6036 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile,
6037 struct signatured_type *sig_entry,
6038 struct dwo_unit *dwo_entry)
6039 {
6040 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6041
6042 /* Make sure we're not clobbering something we don't expect to. */
6043 gdb_assert (! sig_entry->queued);
6044 gdb_assert (per_objfile->get_cu (sig_entry) == NULL);
6045 if (per_bfd->using_index)
6046 {
6047 gdb_assert (sig_entry->v.quick != NULL);
6048 gdb_assert (!per_objfile->symtab_set_p (sig_entry));
6049 }
6050 else
6051 gdb_assert (sig_entry->v.psymtab == NULL);
6052 gdb_assert (sig_entry->signature == dwo_entry->signature);
6053 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6054 gdb_assert (sig_entry->type_unit_group == NULL);
6055 gdb_assert (sig_entry->dwo_unit == NULL);
6056
6057 sig_entry->section = dwo_entry->section;
6058 sig_entry->sect_off = dwo_entry->sect_off;
6059 sig_entry->length = dwo_entry->length;
6060 sig_entry->reading_dwo_directly = 1;
6061 sig_entry->per_bfd = per_bfd;
6062 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6063 sig_entry->dwo_unit = dwo_entry;
6064 }
6065
6066 /* Subroutine of lookup_signatured_type.
6067 If we haven't read the TU yet, create the signatured_type data structure
6068 for a TU to be read in directly from a DWO file, bypassing the stub.
6069 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6070 using .gdb_index, then when reading a CU we want to stay in the DWO file
6071 containing that CU. Otherwise we could end up reading several other DWO
6072 files (due to comdat folding) to process the transitive closure of all the
6073 mentioned TUs, and that can be slow. The current DWO file will have every
6074 type signature that it needs.
6075 We only do this for .gdb_index because in the psymtab case we already have
6076 to read all the DWOs to build the type unit groups. */
6077
6078 static struct signatured_type *
6079 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6080 {
6081 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6082 struct dwo_file *dwo_file;
6083 struct dwo_unit find_dwo_entry, *dwo_entry;
6084 void **slot;
6085
6086 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6087
6088 /* If TU skeletons have been removed then we may not have read in any
6089 TUs yet. */
6090 if (per_objfile->per_bfd->signatured_types == NULL)
6091 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6092
6093 /* We only ever need to read in one copy of a signatured type.
6094 Use the global signatured_types array to do our own comdat-folding
6095 of types. If this is the first time we're reading this TU, and
6096 the TU has an entry in .gdb_index, replace the recorded data from
6097 .gdb_index with this TU. */
6098
6099 signatured_type find_sig_entry (sig);
6100 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6101 &find_sig_entry, INSERT);
6102 signatured_type *sig_entry = (struct signatured_type *) *slot;
6103
6104 /* We can get here with the TU already read, *or* in the process of being
6105 read. Don't reassign the global entry to point to this DWO if that's
6106 the case. Also note that if the TU is already being read, it may not
6107 have come from a DWO, the program may be a mix of Fission-compiled
6108 code and non-Fission-compiled code. */
6109
6110 /* Have we already tried to read this TU?
6111 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6112 needn't exist in the global table yet). */
6113 if (sig_entry != NULL && sig_entry->tu_read)
6114 return sig_entry;
6115
6116 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6117 dwo_unit of the TU itself. */
6118 dwo_file = cu->dwo_unit->dwo_file;
6119
6120 /* Ok, this is the first time we're reading this TU. */
6121 if (dwo_file->tus == NULL)
6122 return NULL;
6123 find_dwo_entry.signature = sig;
6124 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6125 &find_dwo_entry);
6126 if (dwo_entry == NULL)
6127 return NULL;
6128
6129 /* If the global table doesn't have an entry for this TU, add one. */
6130 if (sig_entry == NULL)
6131 sig_entry = add_type_unit (per_objfile, sig, slot);
6132
6133 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6134 sig_entry->tu_read = 1;
6135 return sig_entry;
6136 }
6137
6138 /* Subroutine of lookup_signatured_type.
6139 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6140 then try the DWP file. If the TU stub (skeleton) has been removed then
6141 it won't be in .gdb_index. */
6142
6143 static struct signatured_type *
6144 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6145 {
6146 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6147 struct dwp_file *dwp_file = get_dwp_file (per_objfile);
6148 struct dwo_unit *dwo_entry;
6149 void **slot;
6150
6151 gdb_assert (cu->dwo_unit && per_objfile->per_bfd->using_index);
6152 gdb_assert (dwp_file != NULL);
6153
6154 /* If TU skeletons have been removed then we may not have read in any
6155 TUs yet. */
6156 if (per_objfile->per_bfd->signatured_types == NULL)
6157 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
6158
6159 signatured_type find_sig_entry (sig);
6160 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
6161 &find_sig_entry, INSERT);
6162 signatured_type *sig_entry = (struct signatured_type *) *slot;
6163
6164 /* Have we already tried to read this TU?
6165 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6166 needn't exist in the global table yet). */
6167 if (sig_entry != NULL)
6168 return sig_entry;
6169
6170 if (dwp_file->tus == NULL)
6171 return NULL;
6172 dwo_entry = lookup_dwo_unit_in_dwp (per_objfile, dwp_file, NULL, sig,
6173 1 /* is_debug_types */);
6174 if (dwo_entry == NULL)
6175 return NULL;
6176
6177 sig_entry = add_type_unit (per_objfile, sig, slot);
6178 fill_in_sig_entry_from_dwo_entry (per_objfile, sig_entry, dwo_entry);
6179
6180 return sig_entry;
6181 }
6182
6183 /* Lookup a signature based type for DW_FORM_ref_sig8.
6184 Returns NULL if signature SIG is not present in the table.
6185 It is up to the caller to complain about this. */
6186
6187 static struct signatured_type *
6188 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6189 {
6190 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6191
6192 if (cu->dwo_unit && per_objfile->per_bfd->using_index)
6193 {
6194 /* We're in a DWO/DWP file, and we're using .gdb_index.
6195 These cases require special processing. */
6196 if (get_dwp_file (per_objfile) == NULL)
6197 return lookup_dwo_signatured_type (cu, sig);
6198 else
6199 return lookup_dwp_signatured_type (cu, sig);
6200 }
6201 else
6202 {
6203 if (per_objfile->per_bfd->signatured_types == NULL)
6204 return NULL;
6205 signatured_type find_entry (sig);
6206 return ((struct signatured_type *)
6207 htab_find (per_objfile->per_bfd->signatured_types.get (),
6208 &find_entry));
6209 }
6210 }
6211
6212 /* Low level DIE reading support. */
6213
6214 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6215
6216 static void
6217 init_cu_die_reader (struct die_reader_specs *reader,
6218 struct dwarf2_cu *cu,
6219 struct dwarf2_section_info *section,
6220 struct dwo_file *dwo_file,
6221 struct abbrev_table *abbrev_table)
6222 {
6223 gdb_assert (section->readin && section->buffer != NULL);
6224 reader->abfd = section->get_bfd_owner ();
6225 reader->cu = cu;
6226 reader->dwo_file = dwo_file;
6227 reader->die_section = section;
6228 reader->buffer = section->buffer;
6229 reader->buffer_end = section->buffer + section->size;
6230 reader->abbrev_table = abbrev_table;
6231 }
6232
6233 /* Subroutine of cutu_reader to simplify it.
6234 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6235 There's just a lot of work to do, and cutu_reader is big enough
6236 already.
6237
6238 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6239 from it to the DIE in the DWO. If NULL we are skipping the stub.
6240 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6241 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6242 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6243 STUB_COMP_DIR may be non-NULL.
6244 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6245 are filled in with the info of the DIE from the DWO file.
6246 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6247 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6248 kept around for at least as long as *RESULT_READER.
6249
6250 The result is non-zero if a valid (non-dummy) DIE was found. */
6251
6252 static int
6253 read_cutu_die_from_dwo (dwarf2_cu *cu,
6254 struct dwo_unit *dwo_unit,
6255 struct die_info *stub_comp_unit_die,
6256 const char *stub_comp_dir,
6257 struct die_reader_specs *result_reader,
6258 const gdb_byte **result_info_ptr,
6259 struct die_info **result_comp_unit_die,
6260 abbrev_table_up *result_dwo_abbrev_table)
6261 {
6262 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6263 dwarf2_per_cu_data *per_cu = cu->per_cu;
6264 struct objfile *objfile = per_objfile->objfile;
6265 bfd *abfd;
6266 const gdb_byte *begin_info_ptr, *info_ptr;
6267 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6268 int i,num_extra_attrs;
6269 struct dwarf2_section_info *dwo_abbrev_section;
6270 struct die_info *comp_unit_die;
6271
6272 /* At most one of these may be provided. */
6273 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6274
6275 /* These attributes aren't processed until later:
6276 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6277 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6278 referenced later. However, these attributes are found in the stub
6279 which we won't have later. In order to not impose this complication
6280 on the rest of the code, we read them here and copy them to the
6281 DWO CU/TU die. */
6282
6283 stmt_list = NULL;
6284 low_pc = NULL;
6285 high_pc = NULL;
6286 ranges = NULL;
6287 comp_dir = NULL;
6288
6289 if (stub_comp_unit_die != NULL)
6290 {
6291 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6292 DWO file. */
6293 if (!per_cu->is_debug_types)
6294 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6295 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6296 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6297 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6298 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6299
6300 cu->addr_base = stub_comp_unit_die->addr_base ();
6301
6302 /* There should be a DW_AT_GNU_ranges_base attribute here (if needed).
6303 We need the value before we can process DW_AT_ranges values from the
6304 DWO. */
6305 cu->gnu_ranges_base = stub_comp_unit_die->gnu_ranges_base ();
6306
6307 /* For DWARF5: record the DW_AT_rnglists_base value from the skeleton. If
6308 there are attributes of form DW_FORM_rnglistx in the skeleton, they'll
6309 need the rnglists base. Attributes of form DW_FORM_rnglistx in the
6310 split unit don't use it, as the DWO has its own .debug_rnglists.dwo
6311 section. */
6312 cu->rnglists_base = stub_comp_unit_die->rnglists_base ();
6313 }
6314 else if (stub_comp_dir != NULL)
6315 {
6316 /* Reconstruct the comp_dir attribute to simplify the code below. */
6317 comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, struct attribute);
6318 comp_dir->name = DW_AT_comp_dir;
6319 comp_dir->form = DW_FORM_string;
6320 comp_dir->set_string_noncanonical (stub_comp_dir);
6321 }
6322
6323 /* Set up for reading the DWO CU/TU. */
6324 cu->dwo_unit = dwo_unit;
6325 dwarf2_section_info *section = dwo_unit->section;
6326 section->read (objfile);
6327 abfd = section->get_bfd_owner ();
6328 begin_info_ptr = info_ptr = (section->buffer
6329 + to_underlying (dwo_unit->sect_off));
6330 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6331
6332 if (per_cu->is_debug_types)
6333 {
6334 signatured_type *sig_type = (struct signatured_type *) per_cu;
6335
6336 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6337 section, dwo_abbrev_section,
6338 info_ptr, rcuh_kind::TYPE);
6339 /* This is not an assert because it can be caused by bad debug info. */
6340 if (sig_type->signature != cu->header.signature)
6341 {
6342 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6343 " TU at offset %s [in module %s]"),
6344 hex_string (sig_type->signature),
6345 hex_string (cu->header.signature),
6346 sect_offset_str (dwo_unit->sect_off),
6347 bfd_get_filename (abfd));
6348 }
6349 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6350 /* For DWOs coming from DWP files, we don't know the CU length
6351 nor the type's offset in the TU until now. */
6352 dwo_unit->length = cu->header.get_length ();
6353 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6354
6355 /* Establish the type offset that can be used to lookup the type.
6356 For DWO files, we don't know it until now. */
6357 sig_type->type_offset_in_section
6358 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6359 }
6360 else
6361 {
6362 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6363 section, dwo_abbrev_section,
6364 info_ptr, rcuh_kind::COMPILE);
6365 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6366 /* For DWOs coming from DWP files, we don't know the CU length
6367 until now. */
6368 dwo_unit->length = cu->header.get_length ();
6369 }
6370
6371 dwo_abbrev_section->read (objfile);
6372 *result_dwo_abbrev_table
6373 = abbrev_table::read (dwo_abbrev_section, cu->header.abbrev_sect_off);
6374 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6375 result_dwo_abbrev_table->get ());
6376
6377 /* Read in the die, but leave space to copy over the attributes
6378 from the stub. This has the benefit of simplifying the rest of
6379 the code - all the work to maintain the illusion of a single
6380 DW_TAG_{compile,type}_unit DIE is done here. */
6381 num_extra_attrs = ((stmt_list != NULL)
6382 + (low_pc != NULL)
6383 + (high_pc != NULL)
6384 + (ranges != NULL)
6385 + (comp_dir != NULL));
6386 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6387 num_extra_attrs);
6388
6389 /* Copy over the attributes from the stub to the DIE we just read in. */
6390 comp_unit_die = *result_comp_unit_die;
6391 i = comp_unit_die->num_attrs;
6392 if (stmt_list != NULL)
6393 comp_unit_die->attrs[i++] = *stmt_list;
6394 if (low_pc != NULL)
6395 comp_unit_die->attrs[i++] = *low_pc;
6396 if (high_pc != NULL)
6397 comp_unit_die->attrs[i++] = *high_pc;
6398 if (ranges != NULL)
6399 comp_unit_die->attrs[i++] = *ranges;
6400 if (comp_dir != NULL)
6401 comp_unit_die->attrs[i++] = *comp_dir;
6402 comp_unit_die->num_attrs += num_extra_attrs;
6403
6404 if (dwarf_die_debug)
6405 {
6406 fprintf_unfiltered (gdb_stdlog,
6407 "Read die from %s@0x%x of %s:\n",
6408 section->get_name (),
6409 (unsigned) (begin_info_ptr - section->buffer),
6410 bfd_get_filename (abfd));
6411 dump_die (comp_unit_die, dwarf_die_debug);
6412 }
6413
6414 /* Skip dummy compilation units. */
6415 if (info_ptr >= begin_info_ptr + dwo_unit->length
6416 || peek_abbrev_code (abfd, info_ptr) == 0)
6417 return 0;
6418
6419 *result_info_ptr = info_ptr;
6420 return 1;
6421 }
6422
6423 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6424 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6425 signature is part of the header. */
6426 static gdb::optional<ULONGEST>
6427 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6428 {
6429 if (cu->header.version >= 5)
6430 return cu->header.signature;
6431 struct attribute *attr;
6432 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6433 if (attr == nullptr || !attr->form_is_unsigned ())
6434 return gdb::optional<ULONGEST> ();
6435 return attr->as_unsigned ();
6436 }
6437
6438 /* Subroutine of cutu_reader to simplify it.
6439 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6440 Returns NULL if the specified DWO unit cannot be found. */
6441
6442 static struct dwo_unit *
6443 lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name)
6444 {
6445 dwarf2_per_cu_data *per_cu = cu->per_cu;
6446 struct dwo_unit *dwo_unit;
6447 const char *comp_dir;
6448
6449 gdb_assert (cu != NULL);
6450
6451 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6452 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6453 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6454
6455 if (per_cu->is_debug_types)
6456 dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir);
6457 else
6458 {
6459 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6460
6461 if (!signature.has_value ())
6462 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6463 " [in module %s]"),
6464 dwo_name, bfd_get_filename (per_cu->per_bfd->obfd));
6465
6466 dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature);
6467 }
6468
6469 return dwo_unit;
6470 }
6471
6472 /* Subroutine of cutu_reader to simplify it.
6473 See it for a description of the parameters.
6474 Read a TU directly from a DWO file, bypassing the stub. */
6475
6476 void
6477 cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu_data *this_cu,
6478 dwarf2_per_objfile *per_objfile,
6479 dwarf2_cu *existing_cu)
6480 {
6481 struct signatured_type *sig_type;
6482
6483 /* Verify we can do the following downcast, and that we have the
6484 data we need. */
6485 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6486 sig_type = (struct signatured_type *) this_cu;
6487 gdb_assert (sig_type->dwo_unit != NULL);
6488
6489 dwarf2_cu *cu;
6490
6491 if (existing_cu != nullptr)
6492 {
6493 cu = existing_cu;
6494 gdb_assert (cu->dwo_unit == sig_type->dwo_unit);
6495 /* There's no need to do the rereading_dwo_cu handling that
6496 cutu_reader does since we don't read the stub. */
6497 }
6498 else
6499 {
6500 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6501 in per_objfile yet. */
6502 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6503 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6504 cu = m_new_cu.get ();
6505 }
6506
6507 /* A future optimization, if needed, would be to use an existing
6508 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6509 could share abbrev tables. */
6510
6511 if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit,
6512 NULL /* stub_comp_unit_die */,
6513 sig_type->dwo_unit->dwo_file->comp_dir,
6514 this, &info_ptr,
6515 &comp_unit_die,
6516 &m_dwo_abbrev_table) == 0)
6517 {
6518 /* Dummy die. */
6519 dummy_p = true;
6520 }
6521 }
6522
6523 /* Initialize a CU (or TU) and read its DIEs.
6524 If the CU defers to a DWO file, read the DWO file as well.
6525
6526 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6527 Otherwise the table specified in the comp unit header is read in and used.
6528 This is an optimization for when we already have the abbrev table.
6529
6530 If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is
6531 allocated. */
6532
6533 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6534 dwarf2_per_objfile *per_objfile,
6535 struct abbrev_table *abbrev_table,
6536 dwarf2_cu *existing_cu,
6537 bool skip_partial)
6538 : die_reader_specs {},
6539 m_this_cu (this_cu)
6540 {
6541 struct objfile *objfile = per_objfile->objfile;
6542 struct dwarf2_section_info *section = this_cu->section;
6543 bfd *abfd = section->get_bfd_owner ();
6544 const gdb_byte *begin_info_ptr;
6545 struct signatured_type *sig_type = NULL;
6546 struct dwarf2_section_info *abbrev_section;
6547 /* Non-zero if CU currently points to a DWO file and we need to
6548 reread it. When this happens we need to reread the skeleton die
6549 before we can reread the DWO file (this only applies to CUs, not TUs). */
6550 int rereading_dwo_cu = 0;
6551
6552 if (dwarf_die_debug)
6553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6554 this_cu->is_debug_types ? "type" : "comp",
6555 sect_offset_str (this_cu->sect_off));
6556
6557 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6558 file (instead of going through the stub), short-circuit all of this. */
6559 if (this_cu->reading_dwo_directly)
6560 {
6561 /* Narrow down the scope of possibilities to have to understand. */
6562 gdb_assert (this_cu->is_debug_types);
6563 gdb_assert (abbrev_table == NULL);
6564 init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu);
6565 return;
6566 }
6567
6568 /* This is cheap if the section is already read in. */
6569 section->read (objfile);
6570
6571 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6572
6573 abbrev_section = get_abbrev_section_for_cu (this_cu);
6574
6575 dwarf2_cu *cu;
6576
6577 if (existing_cu != nullptr)
6578 {
6579 cu = existing_cu;
6580 /* If this CU is from a DWO file we need to start over, we need to
6581 refetch the attributes from the skeleton CU.
6582 This could be optimized by retrieving those attributes from when we
6583 were here the first time: the previous comp_unit_die was stored in
6584 comp_unit_obstack. But there's no data yet that we need this
6585 optimization. */
6586 if (cu->dwo_unit != NULL)
6587 rereading_dwo_cu = 1;
6588 }
6589 else
6590 {
6591 /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu
6592 in per_objfile yet. */
6593 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6594 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6595 cu = m_new_cu.get ();
6596 }
6597
6598 /* Get the header. */
6599 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6600 {
6601 /* We already have the header, there's no need to read it in again. */
6602 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6603 }
6604 else
6605 {
6606 if (this_cu->is_debug_types)
6607 {
6608 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6609 section, abbrev_section,
6610 info_ptr, rcuh_kind::TYPE);
6611
6612 /* Since per_cu is the first member of struct signatured_type,
6613 we can go from a pointer to one to a pointer to the other. */
6614 sig_type = (struct signatured_type *) this_cu;
6615 gdb_assert (sig_type->signature == cu->header.signature);
6616 gdb_assert (sig_type->type_offset_in_tu
6617 == cu->header.type_cu_offset_in_tu);
6618 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6619
6620 /* LENGTH has not been set yet for type units if we're
6621 using .gdb_index. */
6622 this_cu->length = cu->header.get_length ();
6623
6624 /* Establish the type offset that can be used to lookup the type. */
6625 sig_type->type_offset_in_section =
6626 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6627
6628 this_cu->dwarf_version = cu->header.version;
6629 }
6630 else
6631 {
6632 info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header,
6633 section, abbrev_section,
6634 info_ptr,
6635 rcuh_kind::COMPILE);
6636
6637 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6638 if (this_cu->length == 0)
6639 this_cu->length = cu->header.get_length ();
6640 else
6641 gdb_assert (this_cu->length == cu->header.get_length ());
6642 this_cu->dwarf_version = cu->header.version;
6643 }
6644 }
6645
6646 /* Skip dummy compilation units. */
6647 if (info_ptr >= begin_info_ptr + this_cu->length
6648 || peek_abbrev_code (abfd, info_ptr) == 0)
6649 {
6650 dummy_p = true;
6651 return;
6652 }
6653
6654 /* If we don't have them yet, read the abbrevs for this compilation unit.
6655 And if we need to read them now, make sure they're freed when we're
6656 done. */
6657 if (abbrev_table != NULL)
6658 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6659 else
6660 {
6661 abbrev_section->read (objfile);
6662 m_abbrev_table_holder
6663 = abbrev_table::read (abbrev_section, cu->header.abbrev_sect_off);
6664 abbrev_table = m_abbrev_table_holder.get ();
6665 }
6666
6667 /* Read the top level CU/TU die. */
6668 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6669 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6670
6671 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6672 {
6673 dummy_p = true;
6674 return;
6675 }
6676
6677 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6678 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6679 table from the DWO file and pass the ownership over to us. It will be
6680 referenced from READER, so we must make sure to free it after we're done
6681 with READER.
6682
6683 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6684 DWO CU, that this test will fail (the attribute will not be present). */
6685 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6686 if (dwo_name != nullptr)
6687 {
6688 struct dwo_unit *dwo_unit;
6689 struct die_info *dwo_comp_unit_die;
6690
6691 if (comp_unit_die->has_children)
6692 {
6693 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6694 " has children (offset %s) [in module %s]"),
6695 sect_offset_str (this_cu->sect_off),
6696 bfd_get_filename (abfd));
6697 }
6698 dwo_unit = lookup_dwo_unit (cu, comp_unit_die, dwo_name);
6699 if (dwo_unit != NULL)
6700 {
6701 if (read_cutu_die_from_dwo (cu, dwo_unit,
6702 comp_unit_die, NULL,
6703 this, &info_ptr,
6704 &dwo_comp_unit_die,
6705 &m_dwo_abbrev_table) == 0)
6706 {
6707 /* Dummy die. */
6708 dummy_p = true;
6709 return;
6710 }
6711 comp_unit_die = dwo_comp_unit_die;
6712 }
6713 else
6714 {
6715 /* Yikes, we couldn't find the rest of the DIE, we only have
6716 the stub. A complaint has already been logged. There's
6717 not much more we can do except pass on the stub DIE to
6718 die_reader_func. We don't want to throw an error on bad
6719 debug info. */
6720 }
6721 }
6722 }
6723
6724 void
6725 cutu_reader::keep ()
6726 {
6727 /* Done, clean up. */
6728 gdb_assert (!dummy_p);
6729 if (m_new_cu != NULL)
6730 {
6731 /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it
6732 now. */
6733 dwarf2_per_objfile *per_objfile = m_new_cu->per_objfile;
6734 per_objfile->set_cu (m_this_cu, m_new_cu.release ());
6735 }
6736 }
6737
6738 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
6739 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
6740 assumed to have already done the lookup to find the DWO file).
6741
6742 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
6743 THIS_CU->is_debug_types, but nothing else.
6744
6745 We fill in THIS_CU->length.
6746
6747 THIS_CU->cu is always freed when done.
6748 This is done in order to not leave THIS_CU->cu in a state where we have
6749 to care whether it refers to the "main" CU or the DWO CU.
6750
6751 When parent_cu is passed, it is used to provide a default value for
6752 str_offsets_base and addr_base from the parent. */
6753
6754 cutu_reader::cutu_reader (dwarf2_per_cu_data *this_cu,
6755 dwarf2_per_objfile *per_objfile,
6756 struct dwarf2_cu *parent_cu,
6757 struct dwo_file *dwo_file)
6758 : die_reader_specs {},
6759 m_this_cu (this_cu)
6760 {
6761 struct objfile *objfile = per_objfile->objfile;
6762 struct dwarf2_section_info *section = this_cu->section;
6763 bfd *abfd = section->get_bfd_owner ();
6764 struct dwarf2_section_info *abbrev_section;
6765 const gdb_byte *begin_info_ptr, *info_ptr;
6766
6767 if (dwarf_die_debug)
6768 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6769 this_cu->is_debug_types ? "type" : "comp",
6770 sect_offset_str (this_cu->sect_off));
6771
6772 gdb_assert (per_objfile->get_cu (this_cu) == nullptr);
6773
6774 abbrev_section = (dwo_file != NULL
6775 ? &dwo_file->sections.abbrev
6776 : get_abbrev_section_for_cu (this_cu));
6777
6778 /* This is cheap if the section is already read in. */
6779 section->read (objfile);
6780
6781 m_new_cu.reset (new dwarf2_cu (this_cu, per_objfile));
6782
6783 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6784 info_ptr = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header,
6785 section, abbrev_section, info_ptr,
6786 (this_cu->is_debug_types
6787 ? rcuh_kind::TYPE
6788 : rcuh_kind::COMPILE));
6789
6790 if (parent_cu != nullptr)
6791 {
6792 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
6793 m_new_cu->addr_base = parent_cu->addr_base;
6794 }
6795 this_cu->length = m_new_cu->header.get_length ();
6796
6797 /* Skip dummy compilation units. */
6798 if (info_ptr >= begin_info_ptr + this_cu->length
6799 || peek_abbrev_code (abfd, info_ptr) == 0)
6800 {
6801 dummy_p = true;
6802 return;
6803 }
6804
6805 abbrev_section->read (objfile);
6806 m_abbrev_table_holder
6807 = abbrev_table::read (abbrev_section, m_new_cu->header.abbrev_sect_off);
6808
6809 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
6810 m_abbrev_table_holder.get ());
6811 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6812 }
6813
6814 \f
6815 /* Type Unit Groups.
6816
6817 Type Unit Groups are a way to collapse the set of all TUs (type units) into
6818 a more manageable set. The grouping is done by DW_AT_stmt_list entry
6819 so that all types coming from the same compilation (.o file) are grouped
6820 together. A future step could be to put the types in the same symtab as
6821 the CU the types ultimately came from. */
6822
6823 static hashval_t
6824 hash_type_unit_group (const void *item)
6825 {
6826 const struct type_unit_group *tu_group
6827 = (const struct type_unit_group *) item;
6828
6829 return hash_stmt_list_entry (&tu_group->hash);
6830 }
6831
6832 static int
6833 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
6834 {
6835 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
6836 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
6837
6838 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
6839 }
6840
6841 /* Allocate a hash table for type unit groups. */
6842
6843 static htab_up
6844 allocate_type_unit_groups_table ()
6845 {
6846 return htab_up (htab_create_alloc (3,
6847 hash_type_unit_group,
6848 eq_type_unit_group,
6849 htab_delete_entry<type_unit_group>,
6850 xcalloc, xfree));
6851 }
6852
6853 /* Type units that don't have DW_AT_stmt_list are grouped into their own
6854 partial symtabs. We combine several TUs per psymtab to not let the size
6855 of any one psymtab grow too big. */
6856 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
6857 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
6858
6859 /* Helper routine for get_type_unit_group.
6860 Create the type_unit_group object used to hold one or more TUs. */
6861
6862 static std::unique_ptr<type_unit_group>
6863 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
6864 {
6865 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6866 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6867
6868 std::unique_ptr<type_unit_group> tu_group (new type_unit_group);
6869 tu_group->per_bfd = per_bfd;
6870
6871 if (per_bfd->using_index)
6872 {
6873 tu_group->v.quick = OBSTACK_ZALLOC (&per_bfd->obstack,
6874 struct dwarf2_per_cu_quick_data);
6875 }
6876 else
6877 {
6878 unsigned int line_offset = to_underlying (line_offset_struct);
6879 dwarf2_psymtab *pst;
6880 std::string name;
6881
6882 /* Give the symtab a useful name for debug purposes. */
6883 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
6884 name = string_printf ("<type_units_%d>",
6885 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
6886 else
6887 name = string_printf ("<type_units_at_0x%x>", line_offset);
6888
6889 pst = create_partial_symtab (tu_group.get (), per_objfile,
6890 name.c_str ());
6891 pst->anonymous = true;
6892 }
6893
6894 tu_group->hash.dwo_unit = cu->dwo_unit;
6895 tu_group->hash.line_sect_off = line_offset_struct;
6896
6897 return tu_group;
6898 }
6899
6900 /* Look up the type_unit_group for type unit CU, and create it if necessary.
6901 STMT_LIST is a DW_AT_stmt_list attribute. */
6902
6903 static struct type_unit_group *
6904 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
6905 {
6906 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6907 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
6908 struct type_unit_group *tu_group;
6909 void **slot;
6910 unsigned int line_offset;
6911 struct type_unit_group type_unit_group_for_lookup;
6912
6913 if (per_objfile->per_bfd->type_unit_groups == NULL)
6914 per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table ();
6915
6916 /* Do we need to create a new group, or can we use an existing one? */
6917
6918 if (stmt_list != nullptr && stmt_list->form_is_unsigned ())
6919 {
6920 line_offset = stmt_list->as_unsigned ();
6921 ++tu_stats->nr_symtab_sharers;
6922 }
6923 else
6924 {
6925 /* Ugh, no stmt_list. Rare, but we have to handle it.
6926 We can do various things here like create one group per TU or
6927 spread them over multiple groups to split up the expansion work.
6928 To avoid worst case scenarios (too many groups or too large groups)
6929 we, umm, group them in bunches. */
6930 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
6931 | (tu_stats->nr_stmt_less_type_units
6932 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
6933 ++tu_stats->nr_stmt_less_type_units;
6934 }
6935
6936 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
6937 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
6938 slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (),
6939 &type_unit_group_for_lookup, INSERT);
6940 if (*slot == nullptr)
6941 {
6942 sect_offset line_offset_struct = (sect_offset) line_offset;
6943 std::unique_ptr<type_unit_group> grp
6944 = create_type_unit_group (cu, line_offset_struct);
6945 *slot = grp.release ();
6946 ++tu_stats->nr_symtabs;
6947 }
6948
6949 tu_group = (struct type_unit_group *) *slot;
6950 gdb_assert (tu_group != nullptr);
6951 return tu_group;
6952 }
6953 \f
6954 /* Partial symbol tables. */
6955
6956 /* Create a psymtab named NAME and assign it to PER_CU.
6957
6958 The caller must fill in the following details:
6959 dirname, textlow, texthigh. */
6960
6961 static dwarf2_psymtab *
6962 create_partial_symtab (dwarf2_per_cu_data *per_cu,
6963 dwarf2_per_objfile *per_objfile,
6964 const char *name)
6965 {
6966 dwarf2_psymtab *pst
6967 = new dwarf2_psymtab (name, per_objfile->per_bfd->partial_symtabs.get (),
6968 per_objfile->objfile->per_bfd, per_cu);
6969
6970 pst->psymtabs_addrmap_supported = true;
6971
6972 /* This is the glue that links PST into GDB's symbol API. */
6973 per_cu->v.psymtab = pst;
6974
6975 return pst;
6976 }
6977
6978 /* DIE reader function for process_psymtab_comp_unit. */
6979
6980 static void
6981 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
6982 const gdb_byte *info_ptr,
6983 struct die_info *comp_unit_die,
6984 enum language pretend_language)
6985 {
6986 struct dwarf2_cu *cu = reader->cu;
6987 dwarf2_per_objfile *per_objfile = cu->per_objfile;
6988 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
6989 struct objfile *objfile = per_objfile->objfile;
6990 struct gdbarch *gdbarch = objfile->arch ();
6991 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6992 CORE_ADDR baseaddr;
6993 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6994 dwarf2_psymtab *pst;
6995 enum pc_bounds_kind cu_bounds_kind;
6996
6997 gdb_assert (! per_cu->is_debug_types);
6998
6999 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7000
7001 /* Allocate a new partial symbol table structure. */
7002 gdb::unique_xmalloc_ptr<char> debug_filename;
7003 static const char artificial[] = "<artificial>";
7004 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
7005 if (strcmp (fnd.name, artificial) == 0)
7006 {
7007 debug_filename.reset (concat (artificial, "@",
7008 sect_offset_str (per_cu->sect_off),
7009 (char *) NULL));
7010 fnd.name = debug_filename.get ();
7011 }
7012
7013 pst = create_partial_symtab (per_cu, per_objfile, fnd.name);
7014
7015 /* This must be done before calling dwarf2_build_include_psymtabs. */
7016 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7017
7018 baseaddr = objfile->text_section_offset ();
7019
7020 dwarf2_find_base_address (comp_unit_die, cu);
7021
7022 /* Possibly set the default values of LOWPC and HIGHPC from
7023 `DW_AT_ranges'. */
7024 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7025 &best_highpc, cu, pst);
7026 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7027 {
7028 CORE_ADDR low
7029 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7030 - baseaddr);
7031 CORE_ADDR high
7032 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7033 - baseaddr - 1);
7034 /* Store the contiguous range if it is not empty; it can be
7035 empty for CUs with no code. */
7036 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
7037 low, high, pst);
7038 }
7039
7040 /* Check if comp unit has_children.
7041 If so, read the rest of the partial symbols from this comp unit.
7042 If not, there's no more debug_info for this comp unit. */
7043 if (comp_unit_die->has_children)
7044 {
7045 struct partial_die_info *first_die;
7046 CORE_ADDR lowpc, highpc;
7047
7048 lowpc = ((CORE_ADDR) -1);
7049 highpc = ((CORE_ADDR) 0);
7050
7051 first_die = load_partial_dies (reader, info_ptr, 1);
7052
7053 scan_partial_symbols (first_die, &lowpc, &highpc,
7054 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7055
7056 /* If we didn't find a lowpc, set it to highpc to avoid
7057 complaints from `maint check'. */
7058 if (lowpc == ((CORE_ADDR) -1))
7059 lowpc = highpc;
7060
7061 /* If the compilation unit didn't have an explicit address range,
7062 then use the information extracted from its child dies. */
7063 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7064 {
7065 best_lowpc = lowpc;
7066 best_highpc = highpc;
7067 }
7068 }
7069 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7070 best_lowpc + baseaddr)
7071 - baseaddr);
7072 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7073 best_highpc + baseaddr)
7074 - baseaddr);
7075
7076 pst->end ();
7077
7078 if (!cu->per_cu->imported_symtabs_empty ())
7079 {
7080 int i;
7081 int len = cu->per_cu->imported_symtabs_size ();
7082
7083 /* Fill in 'dependencies' here; we fill in 'users' in a
7084 post-pass. */
7085 pst->number_of_dependencies = len;
7086 pst->dependencies
7087 = per_bfd->partial_symtabs->allocate_dependencies (len);
7088 for (i = 0; i < len; ++i)
7089 {
7090 pst->dependencies[i]
7091 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7092 }
7093
7094 cu->per_cu->imported_symtabs_free ();
7095 }
7096
7097 /* Get the list of files included in the current compilation unit,
7098 and build a psymtab for each of them. */
7099 dwarf2_build_include_psymtabs (cu, comp_unit_die, fnd, pst);
7100
7101 dwarf_read_debug_printf ("Psymtab for %s unit @%s: %s - %s"
7102 ", %d global, %d static syms",
7103 per_cu->is_debug_types ? "type" : "comp",
7104 sect_offset_str (per_cu->sect_off),
7105 paddress (gdbarch, pst->text_low (objfile)),
7106 paddress (gdbarch, pst->text_high (objfile)),
7107 (int) pst->global_psymbols.size (),
7108 (int) pst->static_psymbols.size ());
7109 }
7110
7111 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7112 Process compilation unit THIS_CU for a psymtab. */
7113
7114 static void
7115 process_psymtab_comp_unit (dwarf2_per_cu_data *this_cu,
7116 dwarf2_per_objfile *per_objfile,
7117 bool want_partial_unit,
7118 enum language pretend_language)
7119 {
7120 /* If this compilation unit was already read in, free the
7121 cached copy in order to read it in again. This is
7122 necessary because we skipped some symbols when we first
7123 read in the compilation unit (see load_partial_dies).
7124 This problem could be avoided, but the benefit is unclear. */
7125 per_objfile->remove_cu (this_cu);
7126
7127 cutu_reader reader (this_cu, per_objfile, nullptr, nullptr, false);
7128
7129 if (reader.comp_unit_die == nullptr)
7130 return;
7131
7132 switch (reader.comp_unit_die->tag)
7133 {
7134 case DW_TAG_compile_unit:
7135 this_cu->unit_type = DW_UT_compile;
7136 break;
7137 case DW_TAG_partial_unit:
7138 this_cu->unit_type = DW_UT_partial;
7139 break;
7140 case DW_TAG_type_unit:
7141 this_cu->unit_type = DW_UT_type;
7142 break;
7143 default:
7144 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
7145 dwarf_tag_name (reader.comp_unit_die->tag),
7146 sect_offset_str (reader.cu->per_cu->sect_off),
7147 objfile_name (per_objfile->objfile));
7148 }
7149
7150 if (reader.dummy_p)
7151 {
7152 /* Nothing. */
7153 }
7154 else if (this_cu->is_debug_types)
7155 build_type_psymtabs_reader (&reader, reader.info_ptr,
7156 reader.comp_unit_die);
7157 else if (want_partial_unit
7158 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7159 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7160 reader.comp_unit_die,
7161 pretend_language);
7162
7163 /* Age out any secondary CUs. */
7164 per_objfile->age_comp_units ();
7165 }
7166
7167 /* Reader function for build_type_psymtabs. */
7168
7169 static void
7170 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7171 const gdb_byte *info_ptr,
7172 struct die_info *type_unit_die)
7173 {
7174 dwarf2_per_objfile *per_objfile = reader->cu->per_objfile;
7175 struct dwarf2_cu *cu = reader->cu;
7176 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7177 struct signatured_type *sig_type;
7178 struct type_unit_group *tu_group;
7179 struct attribute *attr;
7180 struct partial_die_info *first_die;
7181 CORE_ADDR lowpc, highpc;
7182 dwarf2_psymtab *pst;
7183
7184 gdb_assert (per_cu->is_debug_types);
7185 sig_type = (struct signatured_type *) per_cu;
7186
7187 if (! type_unit_die->has_children)
7188 return;
7189
7190 attr = type_unit_die->attr (DW_AT_stmt_list);
7191 tu_group = get_type_unit_group (cu, attr);
7192
7193 if (tu_group->tus == nullptr)
7194 tu_group->tus = new std::vector<signatured_type *>;
7195 tu_group->tus->push_back (sig_type);
7196
7197 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7198 pst = create_partial_symtab (per_cu, per_objfile, "");
7199 pst->anonymous = true;
7200
7201 first_die = load_partial_dies (reader, info_ptr, 1);
7202
7203 lowpc = (CORE_ADDR) -1;
7204 highpc = (CORE_ADDR) 0;
7205 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7206
7207 pst->end ();
7208 }
7209
7210 /* Struct used to sort TUs by their abbreviation table offset. */
7211
7212 struct tu_abbrev_offset
7213 {
7214 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7215 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7216 {}
7217
7218 /* This is used when sorting. */
7219 bool operator< (const tu_abbrev_offset &other) const
7220 {
7221 return abbrev_offset < other.abbrev_offset;
7222 }
7223
7224 signatured_type *sig_type;
7225 sect_offset abbrev_offset;
7226 };
7227
7228 /* Efficiently read all the type units.
7229
7230 The efficiency is because we sort TUs by the abbrev table they use and
7231 only read each abbrev table once. In one program there are 200K TUs
7232 sharing 8K abbrev tables.
7233
7234 The main purpose of this function is to support building the
7235 dwarf2_per_objfile->per_bfd->type_unit_groups table.
7236 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7237 can collapse the search space by grouping them by stmt_list.
7238 The savings can be significant, in the same program from above the 200K TUs
7239 share 8K stmt_list tables.
7240
7241 FUNC is expected to call get_type_unit_group, which will create the
7242 struct type_unit_group if necessary and add it to
7243 dwarf2_per_objfile->per_bfd->type_unit_groups. */
7244
7245 static void
7246 build_type_psymtabs (dwarf2_per_objfile *per_objfile)
7247 {
7248 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7249 abbrev_table_up abbrev_table;
7250 sect_offset abbrev_offset;
7251
7252 /* It's up to the caller to not call us multiple times. */
7253 gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL);
7254
7255 if (per_objfile->per_bfd->tu_stats.nr_tus == 0)
7256 return;
7257
7258 /* TUs typically share abbrev tables, and there can be way more TUs than
7259 abbrev tables. Sort by abbrev table to reduce the number of times we
7260 read each abbrev table in.
7261 Alternatives are to punt or to maintain a cache of abbrev tables.
7262 This is simpler and efficient enough for now.
7263
7264 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7265 symtab to use). Typically TUs with the same abbrev offset have the same
7266 stmt_list value too so in practice this should work well.
7267
7268 The basic algorithm here is:
7269
7270 sort TUs by abbrev table
7271 for each TU with same abbrev table:
7272 read abbrev table if first user
7273 read TU top level DIE
7274 [IWBN if DWO skeletons had DW_AT_stmt_list]
7275 call FUNC */
7276
7277 dwarf_read_debug_printf ("Building type unit groups ...");
7278
7279 /* Sort in a separate table to maintain the order of all_comp_units
7280 for .gdb_index: TU indices directly index all_type_units. */
7281 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7282 sorted_by_abbrev.reserve (per_objfile->per_bfd->tu_stats.nr_tus);
7283
7284 for (const auto &cu : per_objfile->per_bfd->all_comp_units)
7285 {
7286 if (cu->is_debug_types)
7287 {
7288 auto sig_type = static_cast<signatured_type *> (cu.get ());
7289 sorted_by_abbrev.emplace_back
7290 (sig_type, read_abbrev_offset (per_objfile, sig_type->section,
7291 sig_type->sect_off));
7292 }
7293 }
7294
7295 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end ());
7296
7297 abbrev_offset = (sect_offset) ~(unsigned) 0;
7298
7299 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7300 {
7301 /* Switch to the next abbrev table if necessary. */
7302 if (abbrev_table == NULL
7303 || tu.abbrev_offset != abbrev_offset)
7304 {
7305 abbrev_offset = tu.abbrev_offset;
7306 per_objfile->per_bfd->abbrev.read (per_objfile->objfile);
7307 abbrev_table =
7308 abbrev_table::read (&per_objfile->per_bfd->abbrev, abbrev_offset);
7309 ++tu_stats->nr_uniq_abbrev_tables;
7310 }
7311
7312 cutu_reader reader (tu.sig_type, per_objfile,
7313 abbrev_table.get (), nullptr, false);
7314 if (!reader.dummy_p)
7315 build_type_psymtabs_reader (&reader, reader.info_ptr,
7316 reader.comp_unit_die);
7317 }
7318 }
7319
7320 /* Print collected type unit statistics. */
7321
7322 static void
7323 print_tu_stats (dwarf2_per_objfile *per_objfile)
7324 {
7325 struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats;
7326
7327 dwarf_read_debug_printf ("Type unit statistics:");
7328 dwarf_read_debug_printf (" %d TUs", tu_stats->nr_tus);
7329 dwarf_read_debug_printf (" %d uniq abbrev tables",
7330 tu_stats->nr_uniq_abbrev_tables);
7331 dwarf_read_debug_printf (" %d symtabs from stmt_list entries",
7332 tu_stats->nr_symtabs);
7333 dwarf_read_debug_printf (" %d symtab sharers",
7334 tu_stats->nr_symtab_sharers);
7335 dwarf_read_debug_printf (" %d type units without a stmt_list",
7336 tu_stats->nr_stmt_less_type_units);
7337 dwarf_read_debug_printf (" %d all_type_units reallocs",
7338 tu_stats->nr_all_type_units_reallocs);
7339 }
7340
7341 /* Traversal function for build_type_psymtabs. */
7342
7343 static int
7344 build_type_psymtab_dependencies (void **slot, void *info)
7345 {
7346 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7347 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7348 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7349 dwarf2_psymtab *pst = tu_group->v.psymtab;
7350 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7351 int i;
7352
7353 gdb_assert (len > 0);
7354 gdb_assert (tu_group->type_unit_group_p ());
7355
7356 pst->number_of_dependencies = len;
7357 pst->dependencies = per_bfd->partial_symtabs->allocate_dependencies (len);
7358 for (i = 0; i < len; ++i)
7359 {
7360 struct signatured_type *iter = tu_group->tus->at (i);
7361 gdb_assert (iter->is_debug_types);
7362 pst->dependencies[i] = iter->v.psymtab;
7363 iter->type_unit_group = tu_group;
7364 }
7365
7366 delete tu_group->tus;
7367 tu_group->tus = nullptr;
7368
7369 return 1;
7370 }
7371
7372 /* Traversal function for process_skeletonless_type_unit.
7373 Read a TU in a DWO file and build partial symbols for it. */
7374
7375 static int
7376 process_skeletonless_type_unit (void **slot, void *info)
7377 {
7378 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7379 dwarf2_per_objfile *per_objfile = (dwarf2_per_objfile *) info;
7380
7381 /* If this TU doesn't exist in the global table, add it and read it in. */
7382
7383 if (per_objfile->per_bfd->signatured_types == NULL)
7384 per_objfile->per_bfd->signatured_types = allocate_signatured_type_table ();
7385
7386 signatured_type find_entry (dwo_unit->signature);
7387 slot = htab_find_slot (per_objfile->per_bfd->signatured_types.get (),
7388 &find_entry, INSERT);
7389 /* If we've already seen this type there's nothing to do. What's happening
7390 is we're doing our own version of comdat-folding here. */
7391 if (*slot != NULL)
7392 return 1;
7393
7394 /* This does the job that create_all_comp_units would have done for
7395 this TU. */
7396 signatured_type *entry
7397 = add_type_unit (per_objfile, dwo_unit->signature, slot);
7398 fill_in_sig_entry_from_dwo_entry (per_objfile, entry, dwo_unit);
7399 *slot = entry;
7400
7401 /* This does the job that build_type_psymtabs would have done. */
7402 cutu_reader reader (entry, per_objfile, nullptr, nullptr, false);
7403 if (!reader.dummy_p)
7404 build_type_psymtabs_reader (&reader, reader.info_ptr,
7405 reader.comp_unit_die);
7406
7407 return 1;
7408 }
7409
7410 /* Traversal function for process_skeletonless_type_units. */
7411
7412 static int
7413 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7414 {
7415 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7416
7417 if (dwo_file->tus != NULL)
7418 htab_traverse_noresize (dwo_file->tus.get (),
7419 process_skeletonless_type_unit, info);
7420
7421 return 1;
7422 }
7423
7424 /* Scan all TUs of DWO files, verifying we've processed them.
7425 This is needed in case a TU was emitted without its skeleton.
7426 Note: This can't be done until we know what all the DWO files are. */
7427
7428 static void
7429 process_skeletonless_type_units (dwarf2_per_objfile *per_objfile)
7430 {
7431 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7432 if (get_dwp_file (per_objfile) == NULL
7433 && per_objfile->per_bfd->dwo_files != NULL)
7434 {
7435 htab_traverse_noresize (per_objfile->per_bfd->dwo_files.get (),
7436 process_dwo_file_for_skeletonless_type_units,
7437 per_objfile);
7438 }
7439 }
7440
7441 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7442
7443 static void
7444 set_partial_user (dwarf2_per_objfile *per_objfile)
7445 {
7446 for (const auto &per_cu : per_objfile->per_bfd->all_comp_units)
7447 {
7448 dwarf2_psymtab *pst = per_cu->v.psymtab;
7449
7450 if (pst == NULL)
7451 continue;
7452
7453 for (int j = 0; j < pst->number_of_dependencies; ++j)
7454 {
7455 /* Set the 'user' field only if it is not already set. */
7456 if (pst->dependencies[j]->user == NULL)
7457 pst->dependencies[j]->user = pst;
7458 }
7459 }
7460 }
7461
7462 /* Build the partial symbol table by doing a quick pass through the
7463 .debug_info and .debug_abbrev sections. */
7464
7465 static void
7466 dwarf2_build_psymtabs_hard (dwarf2_per_objfile *per_objfile)
7467 {
7468 struct objfile *objfile = per_objfile->objfile;
7469 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
7470
7471 dwarf_read_debug_printf ("Building psymtabs of objfile %s ...",
7472 objfile_name (objfile));
7473
7474 scoped_restore restore_reading_psyms
7475 = make_scoped_restore (&per_bfd->reading_partial_symbols, true);
7476
7477 per_bfd->info.read (objfile);
7478
7479 /* Any cached compilation units will be linked by the per-objfile
7480 read_in_chain. Make sure to free them when we're done. */
7481 free_cached_comp_units freer (per_objfile);
7482
7483 create_all_comp_units (per_objfile);
7484 build_type_psymtabs (per_objfile);
7485
7486 /* Create a temporary address map on a temporary obstack. We later
7487 copy this to the final obstack. */
7488 auto_obstack temp_obstack;
7489
7490 scoped_restore save_psymtabs_addrmap
7491 = make_scoped_restore (&per_bfd->partial_symtabs->psymtabs_addrmap,
7492 addrmap_create_mutable (&temp_obstack));
7493
7494 for (const auto &per_cu : per_bfd->all_comp_units)
7495 {
7496 if (per_cu->v.psymtab != NULL)
7497 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7498 continue;
7499 process_psymtab_comp_unit (per_cu.get (), per_objfile, false,
7500 language_minimal);
7501 }
7502
7503 /* This has to wait until we read the CUs, we need the list of DWOs. */
7504 process_skeletonless_type_units (per_objfile);
7505
7506 /* Now that all TUs have been processed we can fill in the dependencies. */
7507 if (per_bfd->type_unit_groups != NULL)
7508 {
7509 htab_traverse_noresize (per_bfd->type_unit_groups.get (),
7510 build_type_psymtab_dependencies, per_objfile);
7511 }
7512
7513 if (dwarf_read_debug > 0)
7514 print_tu_stats (per_objfile);
7515
7516 set_partial_user (per_objfile);
7517
7518 per_bfd->partial_symtabs->psymtabs_addrmap
7519 = addrmap_create_fixed (per_bfd->partial_symtabs->psymtabs_addrmap,
7520 per_bfd->partial_symtabs->obstack ());
7521 /* At this point we want to keep the address map. */
7522 save_psymtabs_addrmap.release ();
7523
7524 dwarf_read_debug_printf ("Done building psymtabs of %s",
7525 objfile_name (objfile));
7526 }
7527
7528 /* Load the partial DIEs for a secondary CU into memory.
7529 This is also used when rereading a primary CU with load_all_dies. */
7530
7531 static void
7532 load_partial_comp_unit (dwarf2_per_cu_data *this_cu,
7533 dwarf2_per_objfile *per_objfile,
7534 dwarf2_cu *existing_cu)
7535 {
7536 cutu_reader reader (this_cu, per_objfile, nullptr, existing_cu, false);
7537
7538 if (!reader.dummy_p)
7539 {
7540 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7541 language_minimal);
7542
7543 /* Check if comp unit has_children.
7544 If so, read the rest of the partial symbols from this comp unit.
7545 If not, there's no more debug_info for this comp unit. */
7546 if (reader.comp_unit_die->has_children)
7547 load_partial_dies (&reader, reader.info_ptr, 0);
7548
7549 reader.keep ();
7550 }
7551 }
7552
7553 static void
7554 read_comp_units_from_section (dwarf2_per_objfile *per_objfile,
7555 struct dwarf2_section_info *section,
7556 struct dwarf2_section_info *abbrev_section,
7557 unsigned int is_dwz,
7558 htab_up &types_htab,
7559 rcuh_kind section_kind)
7560 {
7561 const gdb_byte *info_ptr;
7562 struct objfile *objfile = per_objfile->objfile;
7563
7564 dwarf_read_debug_printf ("Reading %s for %s",
7565 section->get_name (),
7566 section->get_file_name ());
7567
7568 section->read (objfile);
7569
7570 info_ptr = section->buffer;
7571
7572 while (info_ptr < section->buffer + section->size)
7573 {
7574 dwarf2_per_cu_data_up this_cu;
7575
7576 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7577
7578 comp_unit_head cu_header;
7579 read_and_check_comp_unit_head (per_objfile, &cu_header, section,
7580 abbrev_section, info_ptr,
7581 section_kind);
7582
7583 /* Save the compilation unit for later lookup. */
7584 if (cu_header.unit_type != DW_UT_type)
7585 this_cu = per_objfile->per_bfd->allocate_per_cu ();
7586 else
7587 {
7588 if (types_htab == nullptr)
7589 types_htab = allocate_signatured_type_table ();
7590
7591 auto sig_type = per_objfile->per_bfd->allocate_signatured_type
7592 (cu_header.signature);
7593 signatured_type *sig_ptr = sig_type.get ();
7594 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7595 this_cu.reset (sig_type.release ());
7596
7597 void **slot = htab_find_slot (types_htab.get (), sig_ptr, INSERT);
7598 gdb_assert (slot != nullptr);
7599 if (*slot != nullptr)
7600 complaint (_("debug type entry at offset %s is duplicate to"
7601 " the entry at offset %s, signature %s"),
7602 sect_offset_str (sect_off),
7603 sect_offset_str (sig_ptr->sect_off),
7604 hex_string (sig_ptr->signature));
7605 *slot = sig_ptr;
7606 }
7607 this_cu->sect_off = sect_off;
7608 this_cu->length = cu_header.length + cu_header.initial_length_size;
7609 this_cu->is_dwz = is_dwz;
7610 this_cu->section = section;
7611
7612 info_ptr = info_ptr + this_cu->length;
7613 per_objfile->per_bfd->all_comp_units.push_back (std::move (this_cu));
7614 }
7615 }
7616
7617 /* Create a list of all compilation units in OBJFILE.
7618 This is only done for -readnow and building partial symtabs. */
7619
7620 static void
7621 create_all_comp_units (dwarf2_per_objfile *per_objfile)
7622 {
7623 htab_up types_htab;
7624
7625 read_comp_units_from_section (per_objfile, &per_objfile->per_bfd->info,
7626 &per_objfile->per_bfd->abbrev, 0,
7627 types_htab, rcuh_kind::COMPILE);
7628 for (dwarf2_section_info &section : per_objfile->per_bfd->types)
7629 read_comp_units_from_section (per_objfile, &section,
7630 &per_objfile->per_bfd->abbrev, 0,
7631 types_htab, rcuh_kind::TYPE);
7632
7633 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd);
7634 if (dwz != NULL)
7635 read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1,
7636 types_htab, rcuh_kind::COMPILE);
7637
7638 per_objfile->per_bfd->signatured_types = std::move (types_htab);
7639 }
7640
7641 /* Process all loaded DIEs for compilation unit CU, starting at
7642 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7643 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7644 DW_AT_ranges). See the comments of add_partial_subprogram on how
7645 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7646
7647 static void
7648 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7649 CORE_ADDR *highpc, int set_addrmap,
7650 struct dwarf2_cu *cu)
7651 {
7652 struct partial_die_info *pdi;
7653
7654 /* Now, march along the PDI's, descending into ones which have
7655 interesting children but skipping the children of the other ones,
7656 until we reach the end of the compilation unit. */
7657
7658 pdi = first_die;
7659
7660 while (pdi != NULL)
7661 {
7662 pdi->fixup (cu);
7663
7664 /* Anonymous namespaces or modules have no name but have interesting
7665 children, so we need to look at them. Ditto for anonymous
7666 enums. */
7667
7668 if (pdi->raw_name != NULL || pdi->tag == DW_TAG_namespace
7669 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7670 || pdi->tag == DW_TAG_imported_unit
7671 || pdi->tag == DW_TAG_inlined_subroutine)
7672 {
7673 switch (pdi->tag)
7674 {
7675 case DW_TAG_subprogram:
7676 case DW_TAG_inlined_subroutine:
7677 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7678 if (cu->per_cu->lang == language_cplus)
7679 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7680 set_addrmap, cu);
7681 break;
7682 case DW_TAG_constant:
7683 case DW_TAG_variable:
7684 case DW_TAG_typedef:
7685 case DW_TAG_union_type:
7686 if (!pdi->is_declaration
7687 || (pdi->tag == DW_TAG_variable && pdi->is_external))
7688 {
7689 add_partial_symbol (pdi, cu);
7690 }
7691 break;
7692 case DW_TAG_class_type:
7693 case DW_TAG_interface_type:
7694 case DW_TAG_structure_type:
7695 if (!pdi->is_declaration)
7696 {
7697 add_partial_symbol (pdi, cu);
7698 }
7699 if ((cu->per_cu->lang == language_rust
7700 || cu->per_cu->lang == language_cplus)
7701 && pdi->has_children)
7702 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7703 set_addrmap, cu);
7704 break;
7705 case DW_TAG_enumeration_type:
7706 if (!pdi->is_declaration)
7707 add_partial_enumeration (pdi, cu);
7708 break;
7709 case DW_TAG_base_type:
7710 case DW_TAG_subrange_type:
7711 /* File scope base type definitions are added to the partial
7712 symbol table. */
7713 add_partial_symbol (pdi, cu);
7714 break;
7715 case DW_TAG_namespace:
7716 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7717 break;
7718 case DW_TAG_module:
7719 if (!pdi->is_declaration)
7720 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7721 break;
7722 case DW_TAG_imported_unit:
7723 {
7724 struct dwarf2_per_cu_data *per_cu;
7725
7726 /* For now we don't handle imported units in type units. */
7727 if (cu->per_cu->is_debug_types)
7728 {
7729 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7730 " supported in type units [in module %s]"),
7731 objfile_name (cu->per_objfile->objfile));
7732 }
7733
7734 per_cu = dwarf2_find_containing_comp_unit
7735 (pdi->d.sect_off, pdi->is_dwz, cu->per_objfile);
7736
7737 /* Go read the partial unit, if needed. */
7738 if (per_cu->v.psymtab == NULL)
7739 process_psymtab_comp_unit (per_cu, cu->per_objfile, true,
7740 cu->per_cu->lang);
7741
7742 if (pdi->die_parent == nullptr
7743 && per_cu->unit_type == DW_UT_compile
7744 && per_cu->lang == language_cplus)
7745 /* Regard import as hint. See corresponding code in
7746 process_imported_unit_die. */
7747 break;
7748
7749 cu->per_cu->imported_symtabs_push (per_cu);
7750 }
7751 break;
7752 case DW_TAG_imported_declaration:
7753 add_partial_symbol (pdi, cu);
7754 break;
7755 default:
7756 break;
7757 }
7758 }
7759
7760 /* If the die has a sibling, skip to the sibling. */
7761
7762 pdi = pdi->die_sibling;
7763 }
7764 }
7765
7766 /* Functions used to compute the fully scoped name of a partial DIE.
7767
7768 Normally, this is simple. For C++, the parent DIE's fully scoped
7769 name is concatenated with "::" and the partial DIE's name.
7770 Enumerators are an exception; they use the scope of their parent
7771 enumeration type, i.e. the name of the enumeration type is not
7772 prepended to the enumerator.
7773
7774 There are two complexities. One is DW_AT_specification; in this
7775 case "parent" means the parent of the target of the specification,
7776 instead of the direct parent of the DIE. The other is compilers
7777 which do not emit DW_TAG_namespace; in this case we try to guess
7778 the fully qualified name of structure types from their members'
7779 linkage names. This must be done using the DIE's children rather
7780 than the children of any DW_AT_specification target. We only need
7781 to do this for structures at the top level, i.e. if the target of
7782 any DW_AT_specification (if any; otherwise the DIE itself) does not
7783 have a parent. */
7784
7785 /* Compute the scope prefix associated with PDI's parent, in
7786 compilation unit CU. The result will be allocated on CU's
7787 comp_unit_obstack, or a copy of the already allocated PDI->NAME
7788 field. NULL is returned if no prefix is necessary. */
7789 static const char *
7790 partial_die_parent_scope (struct partial_die_info *pdi,
7791 struct dwarf2_cu *cu)
7792 {
7793 const char *grandparent_scope;
7794 struct partial_die_info *parent, *real_pdi;
7795
7796 /* We need to look at our parent DIE; if we have a DW_AT_specification,
7797 then this means the parent of the specification DIE. */
7798
7799 real_pdi = pdi;
7800 while (real_pdi->has_specification)
7801 {
7802 auto res = find_partial_die (real_pdi->spec_offset,
7803 real_pdi->spec_is_dwz, cu);
7804 real_pdi = res.pdi;
7805 cu = res.cu;
7806 }
7807
7808 parent = real_pdi->die_parent;
7809 if (parent == NULL)
7810 return NULL;
7811
7812 if (parent->scope_set)
7813 return parent->scope;
7814
7815 parent->fixup (cu);
7816
7817 grandparent_scope = partial_die_parent_scope (parent, cu);
7818
7819 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
7820 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
7821 Work around this problem here. */
7822 if (cu->per_cu->lang == language_cplus
7823 && parent->tag == DW_TAG_namespace
7824 && strcmp (parent->name (cu), "::") == 0
7825 && grandparent_scope == NULL)
7826 {
7827 parent->scope = NULL;
7828 parent->scope_set = 1;
7829 return NULL;
7830 }
7831
7832 /* Nested subroutines in Fortran get a prefix. */
7833 if (pdi->tag == DW_TAG_enumerator)
7834 /* Enumerators should not get the name of the enumeration as a prefix. */
7835 parent->scope = grandparent_scope;
7836 else if (parent->tag == DW_TAG_namespace
7837 || parent->tag == DW_TAG_module
7838 || parent->tag == DW_TAG_structure_type
7839 || parent->tag == DW_TAG_class_type
7840 || parent->tag == DW_TAG_interface_type
7841 || parent->tag == DW_TAG_union_type
7842 || parent->tag == DW_TAG_enumeration_type
7843 || (cu->per_cu->lang == language_fortran
7844 && parent->tag == DW_TAG_subprogram
7845 && pdi->tag == DW_TAG_subprogram))
7846 {
7847 if (grandparent_scope == NULL)
7848 parent->scope = parent->name (cu);
7849 else
7850 parent->scope = typename_concat (&cu->comp_unit_obstack,
7851 grandparent_scope,
7852 parent->name (cu), 0, cu);
7853 }
7854 else
7855 {
7856 /* FIXME drow/2004-04-01: What should we be doing with
7857 function-local names? For partial symbols, we should probably be
7858 ignoring them. */
7859 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
7860 dwarf_tag_name (parent->tag),
7861 sect_offset_str (pdi->sect_off));
7862 parent->scope = grandparent_scope;
7863 }
7864
7865 parent->scope_set = 1;
7866 return parent->scope;
7867 }
7868
7869 /* Return the fully scoped name associated with PDI, from compilation unit
7870 CU. The result will be allocated with malloc. */
7871
7872 static gdb::unique_xmalloc_ptr<char>
7873 partial_die_full_name (struct partial_die_info *pdi,
7874 struct dwarf2_cu *cu)
7875 {
7876 const char *parent_scope;
7877
7878 /* If this is a template instantiation, we can not work out the
7879 template arguments from partial DIEs. So, unfortunately, we have
7880 to go through the full DIEs. At least any work we do building
7881 types here will be reused if full symbols are loaded later. */
7882 if (pdi->has_template_arguments)
7883 {
7884 pdi->fixup (cu);
7885
7886 if (pdi->name (cu) != NULL && strchr (pdi->name (cu), '<') == NULL)
7887 {
7888 struct die_info *die;
7889 struct attribute attr;
7890 struct dwarf2_cu *ref_cu = cu;
7891
7892 /* DW_FORM_ref_addr is using section offset. */
7893 attr.name = (enum dwarf_attribute) 0;
7894 attr.form = DW_FORM_ref_addr;
7895 attr.u.unsnd = to_underlying (pdi->sect_off);
7896 die = follow_die_ref (NULL, &attr, &ref_cu);
7897
7898 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
7899 }
7900 }
7901
7902 parent_scope = partial_die_parent_scope (pdi, cu);
7903 if (parent_scope == NULL)
7904 return NULL;
7905 else
7906 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
7907 pdi->name (cu),
7908 0, cu));
7909 }
7910
7911 static void
7912 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
7913 {
7914 dwarf2_per_objfile *per_objfile = cu->per_objfile;
7915 struct objfile *objfile = per_objfile->objfile;
7916 struct gdbarch *gdbarch = objfile->arch ();
7917 CORE_ADDR addr = 0;
7918 const char *actual_name = NULL;
7919 CORE_ADDR baseaddr;
7920
7921 baseaddr = objfile->text_section_offset ();
7922
7923 gdb::unique_xmalloc_ptr<char> built_actual_name
7924 = partial_die_full_name (pdi, cu);
7925 if (built_actual_name != NULL)
7926 actual_name = built_actual_name.get ();
7927
7928 if (actual_name == NULL)
7929 actual_name = pdi->name (cu);
7930
7931 partial_symbol psymbol;
7932 memset (&psymbol, 0, sizeof (psymbol));
7933 psymbol.ginfo.set_language (cu->per_cu->lang,
7934 &objfile->objfile_obstack);
7935 psymbol.ginfo.set_section_index (-1);
7936
7937 /* The code below indicates that the psymbol should be installed by
7938 setting this. */
7939 gdb::optional<psymbol_placement> where;
7940
7941 switch (pdi->tag)
7942 {
7943 case DW_TAG_inlined_subroutine:
7944 case DW_TAG_subprogram:
7945 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
7946 - baseaddr);
7947 if (pdi->is_external
7948 || cu->per_cu->lang == language_ada
7949 || (cu->per_cu->lang == language_fortran
7950 && pdi->die_parent != NULL
7951 && pdi->die_parent->tag == DW_TAG_subprogram))
7952 {
7953 /* Normally, only "external" DIEs are part of the global scope.
7954 But in Ada and Fortran, we want to be able to access nested
7955 procedures globally. So all Ada and Fortran subprograms are
7956 stored in the global scope. */
7957 where = psymbol_placement::GLOBAL;
7958 }
7959 else
7960 where = psymbol_placement::STATIC;
7961
7962 psymbol.domain = VAR_DOMAIN;
7963 psymbol.aclass = LOC_BLOCK;
7964 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
7965 psymbol.ginfo.value.address = addr;
7966
7967 if (pdi->main_subprogram && actual_name != NULL)
7968 set_objfile_main_name (objfile, actual_name, cu->per_cu->lang);
7969 break;
7970 case DW_TAG_constant:
7971 psymbol.domain = VAR_DOMAIN;
7972 psymbol.aclass = LOC_STATIC;
7973 where = (pdi->is_external
7974 ? psymbol_placement::GLOBAL
7975 : psymbol_placement::STATIC);
7976 break;
7977 case DW_TAG_variable:
7978 if (pdi->d.locdesc)
7979 addr = decode_locdesc (pdi->d.locdesc, cu);
7980
7981 if (pdi->d.locdesc
7982 && addr == 0
7983 && !per_objfile->per_bfd->has_section_at_zero)
7984 {
7985 /* A global or static variable may also have been stripped
7986 out by the linker if unused, in which case its address
7987 will be nullified; do not add such variables into partial
7988 symbol table then. */
7989 }
7990 else if (pdi->is_external)
7991 {
7992 /* Global Variable.
7993 Don't enter into the minimal symbol tables as there is
7994 a minimal symbol table entry from the ELF symbols already.
7995 Enter into partial symbol table if it has a location
7996 descriptor or a type.
7997 If the location descriptor is missing, new_symbol will create
7998 a LOC_UNRESOLVED symbol, the address of the variable will then
7999 be determined from the minimal symbol table whenever the variable
8000 is referenced.
8001 The address for the partial symbol table entry is not
8002 used by GDB, but it comes in handy for debugging partial symbol
8003 table building. */
8004
8005 if (pdi->d.locdesc || pdi->has_type)
8006 {
8007 psymbol.domain = VAR_DOMAIN;
8008 psymbol.aclass = LOC_STATIC;
8009 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
8010 psymbol.ginfo.value.address = addr;
8011 where = psymbol_placement::GLOBAL;
8012 }
8013 }
8014 else
8015 {
8016 int has_loc = pdi->d.locdesc != NULL;
8017
8018 /* Static Variable. Skip symbols whose value we cannot know (those
8019 without location descriptors or constant values). */
8020 if (!has_loc && !pdi->has_const_value)
8021 return;
8022
8023 psymbol.domain = VAR_DOMAIN;
8024 psymbol.aclass = LOC_STATIC;
8025 psymbol.ginfo.set_section_index (SECT_OFF_TEXT (objfile));
8026 if (has_loc)
8027 psymbol.ginfo.value.address = addr;
8028 where = psymbol_placement::STATIC;
8029 }
8030 break;
8031 case DW_TAG_array_type:
8032 case DW_TAG_typedef:
8033 case DW_TAG_base_type:
8034 case DW_TAG_subrange_type:
8035 psymbol.domain = VAR_DOMAIN;
8036 psymbol.aclass = LOC_TYPEDEF;
8037 where = psymbol_placement::STATIC;
8038 break;
8039 case DW_TAG_imported_declaration:
8040 case DW_TAG_namespace:
8041 psymbol.domain = VAR_DOMAIN;
8042 psymbol.aclass = LOC_TYPEDEF;
8043 where = psymbol_placement::GLOBAL;
8044 break;
8045 case DW_TAG_module:
8046 /* With Fortran 77 there might be a "BLOCK DATA" module
8047 available without any name. If so, we skip the module as it
8048 doesn't bring any value. */
8049 if (actual_name != nullptr)
8050 {
8051 psymbol.domain = MODULE_DOMAIN;
8052 psymbol.aclass = LOC_TYPEDEF;
8053 where = psymbol_placement::GLOBAL;
8054 }
8055 break;
8056 case DW_TAG_class_type:
8057 case DW_TAG_interface_type:
8058 case DW_TAG_structure_type:
8059 case DW_TAG_union_type:
8060 case DW_TAG_enumeration_type:
8061 /* Skip external references. The DWARF standard says in the section
8062 about "Structure, Union, and Class Type Entries": "An incomplete
8063 structure, union or class type is represented by a structure,
8064 union or class entry that does not have a byte size attribute
8065 and that has a DW_AT_declaration attribute." */
8066 if (!pdi->has_byte_size && pdi->is_declaration)
8067 return;
8068
8069 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8070 static vs. global. */
8071 psymbol.domain = STRUCT_DOMAIN;
8072 psymbol.aclass = LOC_TYPEDEF;
8073 where = (cu->per_cu->lang == language_cplus
8074 ? psymbol_placement::GLOBAL
8075 : psymbol_placement::STATIC);
8076 break;
8077 case DW_TAG_enumerator:
8078 psymbol.domain = VAR_DOMAIN;
8079 psymbol.aclass = LOC_CONST;
8080 where = (cu->per_cu->lang == language_cplus
8081 ? psymbol_placement::GLOBAL
8082 : psymbol_placement::STATIC);
8083 break;
8084 default:
8085 break;
8086 }
8087
8088 if (where.has_value ())
8089 {
8090 if (built_actual_name != nullptr)
8091 actual_name = objfile->intern (actual_name);
8092 if (pdi->linkage_name == nullptr
8093 || cu->per_cu->lang == language_ada)
8094 psymbol.ginfo.set_linkage_name (actual_name);
8095 else
8096 {
8097 psymbol.ginfo.set_demangled_name (actual_name,
8098 &objfile->objfile_obstack);
8099 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8100 }
8101 cu->per_cu->v.psymtab->add_psymbol
8102 (psymbol, *where, per_objfile->per_bfd->partial_symtabs.get (),
8103 objfile);
8104 }
8105 }
8106
8107 /* Read a partial die corresponding to a namespace; also, add a symbol
8108 corresponding to that namespace to the symbol table. NAMESPACE is
8109 the name of the enclosing namespace. */
8110
8111 static void
8112 add_partial_namespace (struct partial_die_info *pdi,
8113 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8114 int set_addrmap, struct dwarf2_cu *cu)
8115 {
8116 /* Add a symbol for the namespace. */
8117
8118 add_partial_symbol (pdi, cu);
8119
8120 /* Now scan partial symbols in that namespace. */
8121
8122 if (pdi->has_children)
8123 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8124 }
8125
8126 /* Read a partial die corresponding to a Fortran module. */
8127
8128 static void
8129 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8130 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8131 {
8132 /* Add a symbol for the namespace. */
8133
8134 add_partial_symbol (pdi, cu);
8135
8136 /* Now scan partial symbols in that module. */
8137
8138 if (pdi->has_children)
8139 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8140 }
8141
8142 static int
8143 dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
8144 dwarf2_psymtab *, dwarf_tag);
8145
8146 /* Read a partial die corresponding to a subprogram or an inlined
8147 subprogram and create a partial symbol for that subprogram.
8148 When the CU language allows it, this routine also defines a partial
8149 symbol for each nested subprogram that this subprogram contains.
8150 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8151 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8152
8153 PDI may also be a lexical block, in which case we simply search
8154 recursively for subprograms defined inside that lexical block.
8155 Again, this is only performed when the CU language allows this
8156 type of definitions. */
8157
8158 static void
8159 add_partial_subprogram (struct partial_die_info *pdi,
8160 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8161 int set_addrmap, struct dwarf2_cu *cu)
8162 {
8163 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8164 {
8165 if (pdi->has_pc_info)
8166 {
8167 if (pdi->lowpc < *lowpc)
8168 *lowpc = pdi->lowpc;
8169 if (pdi->highpc > *highpc)
8170 *highpc = pdi->highpc;
8171 if (set_addrmap)
8172 {
8173 struct objfile *objfile = cu->per_objfile->objfile;
8174 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
8175 struct gdbarch *gdbarch = objfile->arch ();
8176 CORE_ADDR baseaddr;
8177 CORE_ADDR this_highpc;
8178 CORE_ADDR this_lowpc;
8179
8180 baseaddr = objfile->text_section_offset ();
8181 this_lowpc
8182 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8183 pdi->lowpc + baseaddr)
8184 - baseaddr);
8185 this_highpc
8186 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8187 pdi->highpc + baseaddr)
8188 - baseaddr);
8189 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
8190 this_lowpc, this_highpc - 1,
8191 cu->per_cu->v.psymtab);
8192 }
8193 }
8194
8195 if (pdi->has_range_info
8196 && dwarf2_ranges_read (pdi->ranges_offset, &pdi->lowpc, &pdi->highpc,
8197 cu,
8198 set_addrmap ? cu->per_cu->v.psymtab : nullptr,
8199 pdi->tag))
8200 {
8201 if (pdi->lowpc < *lowpc)
8202 *lowpc = pdi->lowpc;
8203 if (pdi->highpc > *highpc)
8204 *highpc = pdi->highpc;
8205 }
8206
8207 if (pdi->has_pc_info || pdi->has_range_info
8208 || (!pdi->is_external && pdi->may_be_inlined))
8209 {
8210 if (!pdi->is_declaration)
8211 /* Ignore subprogram DIEs that do not have a name, they are
8212 illegal. Do not emit a complaint at this point, we will
8213 do so when we convert this psymtab into a symtab. */
8214 if (pdi->name (cu))
8215 add_partial_symbol (pdi, cu);
8216 }
8217 }
8218
8219 if (! pdi->has_children)
8220 return;
8221
8222 if (cu->per_cu->lang == language_ada
8223 || cu->per_cu->lang == language_fortran)
8224 {
8225 pdi = pdi->die_child;
8226 while (pdi != NULL)
8227 {
8228 pdi->fixup (cu);
8229 if (pdi->tag == DW_TAG_subprogram
8230 || pdi->tag == DW_TAG_inlined_subroutine
8231 || pdi->tag == DW_TAG_lexical_block)
8232 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8233 pdi = pdi->die_sibling;
8234 }
8235 }
8236 }
8237
8238 /* Read a partial die corresponding to an enumeration type. */
8239
8240 static void
8241 add_partial_enumeration (struct partial_die_info *enum_pdi,
8242 struct dwarf2_cu *cu)
8243 {
8244 struct partial_die_info *pdi;
8245
8246 if (enum_pdi->name (cu) != NULL)
8247 add_partial_symbol (enum_pdi, cu);
8248
8249 pdi = enum_pdi->die_child;
8250 while (pdi)
8251 {
8252 if (pdi->tag != DW_TAG_enumerator || pdi->raw_name == NULL)
8253 complaint (_("malformed enumerator DIE ignored"));
8254 else
8255 add_partial_symbol (pdi, cu);
8256 pdi = pdi->die_sibling;
8257 }
8258 }
8259
8260 /* Return the initial uleb128 in the die at INFO_PTR. */
8261
8262 static unsigned int
8263 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8264 {
8265 unsigned int bytes_read;
8266
8267 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8268 }
8269
8270 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8271 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8272
8273 Return the corresponding abbrev, or NULL if the number is zero (indicating
8274 an empty DIE). In either case *BYTES_READ will be set to the length of
8275 the initial number. */
8276
8277 static const struct abbrev_info *
8278 peek_die_abbrev (const die_reader_specs &reader,
8279 const gdb_byte *info_ptr, unsigned int *bytes_read)
8280 {
8281 dwarf2_cu *cu = reader.cu;
8282 bfd *abfd = reader.abfd;
8283 unsigned int abbrev_number
8284 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8285
8286 if (abbrev_number == 0)
8287 return NULL;
8288
8289 const abbrev_info *abbrev
8290 = reader.abbrev_table->lookup_abbrev (abbrev_number);
8291 if (!abbrev)
8292 {
8293 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8294 " at offset %s [in module %s]"),
8295 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8296 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8297 }
8298
8299 return abbrev;
8300 }
8301
8302 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8303 Returns a pointer to the end of a series of DIEs, terminated by an empty
8304 DIE. Any children of the skipped DIEs will also be skipped. */
8305
8306 static const gdb_byte *
8307 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8308 {
8309 while (1)
8310 {
8311 unsigned int bytes_read;
8312 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
8313 &bytes_read);
8314
8315 if (abbrev == NULL)
8316 return info_ptr + bytes_read;
8317 else
8318 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8319 }
8320 }
8321
8322 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8323 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8324 abbrev corresponding to that skipped uleb128 should be passed in
8325 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8326 children. */
8327
8328 static const gdb_byte *
8329 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8330 const struct abbrev_info *abbrev)
8331 {
8332 unsigned int bytes_read;
8333 struct attribute attr;
8334 bfd *abfd = reader->abfd;
8335 struct dwarf2_cu *cu = reader->cu;
8336 const gdb_byte *buffer = reader->buffer;
8337 const gdb_byte *buffer_end = reader->buffer_end;
8338 unsigned int form, i;
8339
8340 for (i = 0; i < abbrev->num_attrs; i++)
8341 {
8342 /* The only abbrev we care about is DW_AT_sibling. */
8343 if (abbrev->attrs[i].name == DW_AT_sibling)
8344 {
8345 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
8346 if (attr.form == DW_FORM_ref_addr)
8347 complaint (_("ignoring absolute DW_AT_sibling"));
8348 else
8349 {
8350 sect_offset off = attr.get_ref_die_offset ();
8351 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8352
8353 if (sibling_ptr < info_ptr)
8354 complaint (_("DW_AT_sibling points backwards"));
8355 else if (sibling_ptr > reader->buffer_end)
8356 reader->die_section->overflow_complaint ();
8357 else
8358 return sibling_ptr;
8359 }
8360 }
8361
8362 /* If it isn't DW_AT_sibling, skip this attribute. */
8363 form = abbrev->attrs[i].form;
8364 skip_attribute:
8365 switch (form)
8366 {
8367 case DW_FORM_ref_addr:
8368 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8369 and later it is offset sized. */
8370 if (cu->header.version == 2)
8371 info_ptr += cu->header.addr_size;
8372 else
8373 info_ptr += cu->header.offset_size;
8374 break;
8375 case DW_FORM_GNU_ref_alt:
8376 info_ptr += cu->header.offset_size;
8377 break;
8378 case DW_FORM_addr:
8379 info_ptr += cu->header.addr_size;
8380 break;
8381 case DW_FORM_data1:
8382 case DW_FORM_ref1:
8383 case DW_FORM_flag:
8384 case DW_FORM_strx1:
8385 info_ptr += 1;
8386 break;
8387 case DW_FORM_flag_present:
8388 case DW_FORM_implicit_const:
8389 break;
8390 case DW_FORM_data2:
8391 case DW_FORM_ref2:
8392 case DW_FORM_strx2:
8393 info_ptr += 2;
8394 break;
8395 case DW_FORM_strx3:
8396 info_ptr += 3;
8397 break;
8398 case DW_FORM_data4:
8399 case DW_FORM_ref4:
8400 case DW_FORM_strx4:
8401 info_ptr += 4;
8402 break;
8403 case DW_FORM_data8:
8404 case DW_FORM_ref8:
8405 case DW_FORM_ref_sig8:
8406 info_ptr += 8;
8407 break;
8408 case DW_FORM_data16:
8409 info_ptr += 16;
8410 break;
8411 case DW_FORM_string:
8412 read_direct_string (abfd, info_ptr, &bytes_read);
8413 info_ptr += bytes_read;
8414 break;
8415 case DW_FORM_sec_offset:
8416 case DW_FORM_strp:
8417 case DW_FORM_GNU_strp_alt:
8418 info_ptr += cu->header.offset_size;
8419 break;
8420 case DW_FORM_exprloc:
8421 case DW_FORM_block:
8422 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8423 info_ptr += bytes_read;
8424 break;
8425 case DW_FORM_block1:
8426 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8427 break;
8428 case DW_FORM_block2:
8429 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8430 break;
8431 case DW_FORM_block4:
8432 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8433 break;
8434 case DW_FORM_addrx:
8435 case DW_FORM_strx:
8436 case DW_FORM_sdata:
8437 case DW_FORM_udata:
8438 case DW_FORM_ref_udata:
8439 case DW_FORM_GNU_addr_index:
8440 case DW_FORM_GNU_str_index:
8441 case DW_FORM_rnglistx:
8442 case DW_FORM_loclistx:
8443 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8444 break;
8445 case DW_FORM_indirect:
8446 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8447 info_ptr += bytes_read;
8448 /* We need to continue parsing from here, so just go back to
8449 the top. */
8450 goto skip_attribute;
8451
8452 default:
8453 error (_("Dwarf Error: Cannot handle %s "
8454 "in DWARF reader [in module %s]"),
8455 dwarf_form_name (form),
8456 bfd_get_filename (abfd));
8457 }
8458 }
8459
8460 if (abbrev->has_children)
8461 return skip_children (reader, info_ptr);
8462 else
8463 return info_ptr;
8464 }
8465
8466 /* Locate ORIG_PDI's sibling.
8467 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8468
8469 static const gdb_byte *
8470 locate_pdi_sibling (const struct die_reader_specs *reader,
8471 struct partial_die_info *orig_pdi,
8472 const gdb_byte *info_ptr)
8473 {
8474 /* Do we know the sibling already? */
8475
8476 if (orig_pdi->sibling)
8477 return orig_pdi->sibling;
8478
8479 /* Are there any children to deal with? */
8480
8481 if (!orig_pdi->has_children)
8482 return info_ptr;
8483
8484 /* Skip the children the long way. */
8485
8486 return skip_children (reader, info_ptr);
8487 }
8488
8489 /* Expand this partial symbol table into a full symbol table. SELF is
8490 not NULL. */
8491
8492 void
8493 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8494 {
8495 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8496
8497 gdb_assert (!per_objfile->symtab_set_p (per_cu_data));
8498
8499 /* If this psymtab is constructed from a debug-only objfile, the
8500 has_section_at_zero flag will not necessarily be correct. We
8501 can get the correct value for this flag by looking at the data
8502 associated with the (presumably stripped) associated objfile. */
8503 if (objfile->separate_debug_objfile_backlink)
8504 {
8505 dwarf2_per_objfile *per_objfile_backlink
8506 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8507
8508 per_objfile->per_bfd->has_section_at_zero
8509 = per_objfile_backlink->per_bfd->has_section_at_zero;
8510 }
8511
8512 expand_psymtab (objfile);
8513
8514 process_cu_includes (per_objfile);
8515 }
8516 \f
8517 /* Reading in full CUs. */
8518
8519 /* Add PER_CU to the queue. */
8520
8521 static void
8522 queue_comp_unit (dwarf2_per_cu_data *per_cu,
8523 dwarf2_per_objfile *per_objfile,
8524 enum language pretend_language)
8525 {
8526 per_cu->queued = 1;
8527
8528 gdb_assert (per_objfile->per_bfd->queue.has_value ());
8529 per_cu->per_bfd->queue->emplace (per_cu, per_objfile, pretend_language);
8530 }
8531
8532 /* If PER_CU is not yet expanded of queued for expansion, add it to the queue.
8533
8534 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8535 dependency.
8536
8537 Return true if maybe_queue_comp_unit requires the caller to load the CU's
8538 DIEs, false otherwise.
8539
8540 Explanation: there is an invariant that if a CU is queued for expansion
8541 (present in `dwarf2_per_bfd::queue`), then its DIEs are loaded
8542 (a dwarf2_cu object exists for this CU, and `dwarf2_per_objfile::get_cu`
8543 returns non-nullptr). If the CU gets enqueued by this function but its DIEs
8544 are not yet loaded, the the caller must load the CU's DIEs to ensure the
8545 invariant is respected.
8546
8547 The caller is therefore not required to load the CU's DIEs (we return false)
8548 if:
8549
8550 - the CU is already expanded, and therefore does not get enqueued
8551 - the CU gets enqueued for expansion, but its DIEs are already loaded
8552
8553 Note that the caller should not use this function's return value as an
8554 indicator of whether the CU's DIEs are loaded right now, it should check
8555 that by calling `dwarf2_per_objfile::get_cu` instead. */
8556
8557 static int
8558 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8559 dwarf2_per_cu_data *per_cu,
8560 dwarf2_per_objfile *per_objfile,
8561 enum language pretend_language)
8562 {
8563 /* We may arrive here during partial symbol reading, if we need full
8564 DIEs to process an unusual case (e.g. template arguments). Do
8565 not queue PER_CU, just tell our caller to load its DIEs. */
8566 if (per_cu->per_bfd->reading_partial_symbols)
8567 {
8568 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8569
8570 if (cu == NULL || cu->dies == NULL)
8571 return 1;
8572 return 0;
8573 }
8574
8575 /* Mark the dependence relation so that we don't flush PER_CU
8576 too early. */
8577 if (dependent_cu != NULL)
8578 dependent_cu->add_dependence (per_cu);
8579
8580 /* If it's already on the queue, we have nothing to do. */
8581 if (per_cu->queued)
8582 {
8583 /* Verify the invariant that if a CU is queued for expansion, its DIEs are
8584 loaded. */
8585 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
8586
8587 /* If the CU is queued for expansion, it should not already be
8588 expanded. */
8589 gdb_assert (!per_objfile->symtab_set_p (per_cu));
8590
8591 /* The DIEs are already loaded, the caller doesn't need to do it. */
8592 return 0;
8593 }
8594
8595 bool queued = false;
8596 if (!per_objfile->symtab_set_p (per_cu))
8597 {
8598 /* Add it to the queue. */
8599 queue_comp_unit (per_cu, per_objfile, pretend_language);
8600 queued = true;
8601 }
8602
8603 /* If the compilation unit is already loaded, just mark it as
8604 used. */
8605 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8606 if (cu != nullptr)
8607 cu->last_used = 0;
8608
8609 /* Ask the caller to load the CU's DIEs if the CU got enqueued for expansion
8610 and the DIEs are not already loaded. */
8611 return queued && cu == nullptr;
8612 }
8613
8614 /* Process the queue. */
8615
8616 static void
8617 process_queue (dwarf2_per_objfile *per_objfile)
8618 {
8619 dwarf_read_debug_printf ("Expanding one or more symtabs of objfile %s ...",
8620 objfile_name (per_objfile->objfile));
8621
8622 /* The queue starts out with one item, but following a DIE reference
8623 may load a new CU, adding it to the end of the queue. */
8624 while (!per_objfile->per_bfd->queue->empty ())
8625 {
8626 dwarf2_queue_item &item = per_objfile->per_bfd->queue->front ();
8627 dwarf2_per_cu_data *per_cu = item.per_cu;
8628
8629 if (!per_objfile->symtab_set_p (per_cu))
8630 {
8631 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
8632
8633 /* Skip dummy CUs. */
8634 if (cu != nullptr)
8635 {
8636 unsigned int debug_print_threshold;
8637 char buf[100];
8638
8639 if (per_cu->is_debug_types)
8640 {
8641 struct signatured_type *sig_type =
8642 (struct signatured_type *) per_cu;
8643
8644 sprintf (buf, "TU %s at offset %s",
8645 hex_string (sig_type->signature),
8646 sect_offset_str (per_cu->sect_off));
8647 /* There can be 100s of TUs.
8648 Only print them in verbose mode. */
8649 debug_print_threshold = 2;
8650 }
8651 else
8652 {
8653 sprintf (buf, "CU at offset %s",
8654 sect_offset_str (per_cu->sect_off));
8655 debug_print_threshold = 1;
8656 }
8657
8658 if (dwarf_read_debug >= debug_print_threshold)
8659 dwarf_read_debug_printf ("Expanding symtab of %s", buf);
8660
8661 if (per_cu->is_debug_types)
8662 process_full_type_unit (cu, item.pretend_language);
8663 else
8664 process_full_comp_unit (cu, item.pretend_language);
8665
8666 if (dwarf_read_debug >= debug_print_threshold)
8667 dwarf_read_debug_printf ("Done expanding %s", buf);
8668 }
8669 }
8670
8671 per_cu->queued = 0;
8672 per_objfile->per_bfd->queue->pop ();
8673 }
8674
8675 dwarf_read_debug_printf ("Done expanding symtabs of %s.",
8676 objfile_name (per_objfile->objfile));
8677 }
8678
8679 /* Read in full symbols for PST, and anything it depends on. */
8680
8681 void
8682 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8683 {
8684 gdb_assert (!readin_p (objfile));
8685
8686 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8687 free_cached_comp_units freer (per_objfile);
8688 expand_dependencies (objfile);
8689
8690 dw2_do_instantiate_symtab (per_cu_data, per_objfile, false);
8691 gdb_assert (get_compunit_symtab (objfile) != nullptr);
8692 }
8693
8694 /* See psympriv.h. */
8695
8696 bool
8697 dwarf2_psymtab::readin_p (struct objfile *objfile) const
8698 {
8699 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8700 return per_objfile->symtab_set_p (per_cu_data);
8701 }
8702
8703 /* See psympriv.h. */
8704
8705 compunit_symtab *
8706 dwarf2_psymtab::get_compunit_symtab (struct objfile *objfile) const
8707 {
8708 dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile);
8709 return per_objfile->get_symtab (per_cu_data);
8710 }
8711
8712 /* Trivial hash function for die_info: the hash value of a DIE
8713 is its offset in .debug_info for this objfile. */
8714
8715 static hashval_t
8716 die_hash (const void *item)
8717 {
8718 const struct die_info *die = (const struct die_info *) item;
8719
8720 return to_underlying (die->sect_off);
8721 }
8722
8723 /* Trivial comparison function for die_info structures: two DIEs
8724 are equal if they have the same offset. */
8725
8726 static int
8727 die_eq (const void *item_lhs, const void *item_rhs)
8728 {
8729 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8730 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8731
8732 return die_lhs->sect_off == die_rhs->sect_off;
8733 }
8734
8735 /* Load the DIEs associated with PER_CU into memory.
8736
8737 In some cases, the caller, while reading partial symbols, will need to load
8738 the full symbols for the CU for some reason. It will already have a
8739 dwarf2_cu object for THIS_CU and pass it as EXISTING_CU, so it can be re-used
8740 rather than creating a new one. */
8741
8742 static void
8743 load_full_comp_unit (dwarf2_per_cu_data *this_cu,
8744 dwarf2_per_objfile *per_objfile,
8745 dwarf2_cu *existing_cu,
8746 bool skip_partial,
8747 enum language pretend_language)
8748 {
8749 gdb_assert (! this_cu->is_debug_types);
8750
8751 cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial);
8752 if (reader.dummy_p)
8753 return;
8754
8755 struct dwarf2_cu *cu = reader.cu;
8756 const gdb_byte *info_ptr = reader.info_ptr;
8757
8758 gdb_assert (cu->die_hash == NULL);
8759 cu->die_hash =
8760 htab_create_alloc_ex (cu->header.length / 12,
8761 die_hash,
8762 die_eq,
8763 NULL,
8764 &cu->comp_unit_obstack,
8765 hashtab_obstack_allocate,
8766 dummy_obstack_deallocate);
8767
8768 if (reader.comp_unit_die->has_children)
8769 reader.comp_unit_die->child
8770 = read_die_and_siblings (&reader, reader.info_ptr,
8771 &info_ptr, reader.comp_unit_die);
8772 cu->dies = reader.comp_unit_die;
8773 /* comp_unit_die is not stored in die_hash, no need. */
8774
8775 /* We try not to read any attributes in this function, because not
8776 all CUs needed for references have been loaded yet, and symbol
8777 table processing isn't initialized. But we have to set the CU language,
8778 or we won't be able to build types correctly.
8779 Similarly, if we do not read the producer, we can not apply
8780 producer-specific interpretation. */
8781 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8782
8783 reader.keep ();
8784 }
8785
8786 /* Add a DIE to the delayed physname list. */
8787
8788 static void
8789 add_to_method_list (struct type *type, int fnfield_index, int index,
8790 const char *name, struct die_info *die,
8791 struct dwarf2_cu *cu)
8792 {
8793 struct delayed_method_info mi;
8794 mi.type = type;
8795 mi.fnfield_index = fnfield_index;
8796 mi.index = index;
8797 mi.name = name;
8798 mi.die = die;
8799 cu->method_list.push_back (mi);
8800 }
8801
8802 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8803 "const" / "volatile". If so, decrements LEN by the length of the
8804 modifier and return true. Otherwise return false. */
8805
8806 template<size_t N>
8807 static bool
8808 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8809 {
8810 size_t mod_len = sizeof (mod) - 1;
8811 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8812 {
8813 len -= mod_len;
8814 return true;
8815 }
8816 return false;
8817 }
8818
8819 /* Compute the physnames of any methods on the CU's method list.
8820
8821 The computation of method physnames is delayed in order to avoid the
8822 (bad) condition that one of the method's formal parameters is of an as yet
8823 incomplete type. */
8824
8825 static void
8826 compute_delayed_physnames (struct dwarf2_cu *cu)
8827 {
8828 /* Only C++ delays computing physnames. */
8829 if (cu->method_list.empty ())
8830 return;
8831 gdb_assert (cu->per_cu->lang == language_cplus);
8832
8833 for (const delayed_method_info &mi : cu->method_list)
8834 {
8835 const char *physname;
8836 struct fn_fieldlist *fn_flp
8837 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
8838 physname = dwarf2_physname (mi.name, mi.die, cu);
8839 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
8840 = physname ? physname : "";
8841
8842 /* Since there's no tag to indicate whether a method is a
8843 const/volatile overload, extract that information out of the
8844 demangled name. */
8845 if (physname != NULL)
8846 {
8847 size_t len = strlen (physname);
8848
8849 while (1)
8850 {
8851 if (physname[len] == ')') /* shortcut */
8852 break;
8853 else if (check_modifier (physname, len, " const"))
8854 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
8855 else if (check_modifier (physname, len, " volatile"))
8856 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
8857 else
8858 break;
8859 }
8860 }
8861 }
8862
8863 /* The list is no longer needed. */
8864 cu->method_list.clear ();
8865 }
8866
8867 /* Go objects should be embedded in a DW_TAG_module DIE,
8868 and it's not clear if/how imported objects will appear.
8869 To keep Go support simple until that's worked out,
8870 go back through what we've read and create something usable.
8871 We could do this while processing each DIE, and feels kinda cleaner,
8872 but that way is more invasive.
8873 This is to, for example, allow the user to type "p var" or "b main"
8874 without having to specify the package name, and allow lookups
8875 of module.object to work in contexts that use the expression
8876 parser. */
8877
8878 static void
8879 fixup_go_packaging (struct dwarf2_cu *cu)
8880 {
8881 gdb::unique_xmalloc_ptr<char> package_name;
8882 struct pending *list;
8883 int i;
8884
8885 for (list = *cu->get_builder ()->get_global_symbols ();
8886 list != NULL;
8887 list = list->next)
8888 {
8889 for (i = 0; i < list->nsyms; ++i)
8890 {
8891 struct symbol *sym = list->symbol[i];
8892
8893 if (sym->language () == language_go
8894 && SYMBOL_CLASS (sym) == LOC_BLOCK)
8895 {
8896 gdb::unique_xmalloc_ptr<char> this_package_name
8897 (go_symbol_package_name (sym));
8898
8899 if (this_package_name == NULL)
8900 continue;
8901 if (package_name == NULL)
8902 package_name = std::move (this_package_name);
8903 else
8904 {
8905 struct objfile *objfile = cu->per_objfile->objfile;
8906 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
8907 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
8908 (symbol_symtab (sym) != NULL
8909 ? symtab_to_filename_for_display
8910 (symbol_symtab (sym))
8911 : objfile_name (objfile)),
8912 this_package_name.get (), package_name.get ());
8913 }
8914 }
8915 }
8916 }
8917
8918 if (package_name != NULL)
8919 {
8920 struct objfile *objfile = cu->per_objfile->objfile;
8921 const char *saved_package_name = objfile->intern (package_name.get ());
8922 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
8923 saved_package_name);
8924 struct symbol *sym;
8925
8926 sym = new (&objfile->objfile_obstack) symbol;
8927 sym->set_language (language_go, &objfile->objfile_obstack);
8928 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
8929 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
8930 e.g., "main" finds the "main" module and not C's main(). */
8931 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
8932 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
8933 SYMBOL_TYPE (sym) = type;
8934
8935 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
8936 }
8937 }
8938
8939 /* Allocate a fully-qualified name consisting of the two parts on the
8940 obstack. */
8941
8942 static const char *
8943 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
8944 {
8945 return obconcat (obstack, p1, "::", p2, (char *) NULL);
8946 }
8947
8948 /* A helper that allocates a variant part to attach to a Rust enum
8949 type. OBSTACK is where the results should be allocated. TYPE is
8950 the type we're processing. DISCRIMINANT_INDEX is the index of the
8951 discriminant. It must be the index of one of the fields of TYPE,
8952 or -1 to mean there is no discriminant (univariant enum).
8953 DEFAULT_INDEX is the index of the default field; or -1 if there is
8954 no default. RANGES is indexed by "effective" field number (the
8955 field index, but omitting the discriminant and default fields) and
8956 must hold the discriminant values used by the variants. Note that
8957 RANGES must have a lifetime at least as long as OBSTACK -- either
8958 already allocated on it, or static. */
8959
8960 static void
8961 alloc_rust_variant (struct obstack *obstack, struct type *type,
8962 int discriminant_index, int default_index,
8963 gdb::array_view<discriminant_range> ranges)
8964 {
8965 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */
8966 gdb_assert (discriminant_index == -1
8967 || (discriminant_index >= 0
8968 && discriminant_index < type->num_fields ()));
8969 gdb_assert (default_index == -1
8970 || (default_index >= 0 && default_index < type->num_fields ()));
8971
8972 /* We have one variant for each non-discriminant field. */
8973 int n_variants = type->num_fields ();
8974 if (discriminant_index != -1)
8975 --n_variants;
8976
8977 variant *variants = new (obstack) variant[n_variants];
8978 int var_idx = 0;
8979 int range_idx = 0;
8980 for (int i = 0; i < type->num_fields (); ++i)
8981 {
8982 if (i == discriminant_index)
8983 continue;
8984
8985 variants[var_idx].first_field = i;
8986 variants[var_idx].last_field = i + 1;
8987
8988 /* The default field does not need a range, but other fields do.
8989 We skipped the discriminant above. */
8990 if (i != default_index)
8991 {
8992 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
8993 ++range_idx;
8994 }
8995
8996 ++var_idx;
8997 }
8998
8999 gdb_assert (range_idx == ranges.size ());
9000 gdb_assert (var_idx == n_variants);
9001
9002 variant_part *part = new (obstack) variant_part;
9003 part->discriminant_index = discriminant_index;
9004 /* If there is no discriminant, then whether it is signed is of no
9005 consequence. */
9006 part->is_unsigned
9007 = (discriminant_index == -1
9008 ? false
9009 : type->field (discriminant_index).type ()->is_unsigned ());
9010 part->variants = gdb::array_view<variant> (variants, n_variants);
9011
9012 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9013 gdb::array_view<variant_part> *prop_value
9014 = new (storage) gdb::array_view<variant_part> (part, 1);
9015
9016 struct dynamic_prop prop;
9017 prop.set_variant_parts (prop_value);
9018
9019 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9020 }
9021
9022 /* Some versions of rustc emitted enums in an unusual way.
9023
9024 Ordinary enums were emitted as unions. The first element of each
9025 structure in the union was named "RUST$ENUM$DISR". This element
9026 held the discriminant.
9027
9028 These versions of Rust also implemented the "non-zero"
9029 optimization. When the enum had two values, and one is empty and
9030 the other holds a pointer that cannot be zero, the pointer is used
9031 as the discriminant, with a zero value meaning the empty variant.
9032 Here, the union's first member is of the form
9033 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9034 where the fieldnos are the indices of the fields that should be
9035 traversed in order to find the field (which may be several fields deep)
9036 and the variantname is the name of the variant of the case when the
9037 field is zero.
9038
9039 This function recognizes whether TYPE is of one of these forms,
9040 and, if so, smashes it to be a variant type. */
9041
9042 static void
9043 quirk_rust_enum (struct type *type, struct objfile *objfile)
9044 {
9045 gdb_assert (type->code () == TYPE_CODE_UNION);
9046
9047 /* We don't need to deal with empty enums. */
9048 if (type->num_fields () == 0)
9049 return;
9050
9051 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9052 if (type->num_fields () == 1
9053 && startswith (type->field (0).name (), RUST_ENUM_PREFIX))
9054 {
9055 const char *name = type->field (0).name () + strlen (RUST_ENUM_PREFIX);
9056
9057 /* Decode the field name to find the offset of the
9058 discriminant. */
9059 ULONGEST bit_offset = 0;
9060 struct type *field_type = type->field (0).type ();
9061 while (name[0] >= '0' && name[0] <= '9')
9062 {
9063 char *tail;
9064 unsigned long index = strtoul (name, &tail, 10);
9065 name = tail;
9066 if (*name != '$'
9067 || index >= field_type->num_fields ()
9068 || (TYPE_FIELD_LOC_KIND (field_type, index)
9069 != FIELD_LOC_KIND_BITPOS))
9070 {
9071 complaint (_("Could not parse Rust enum encoding string \"%s\""
9072 "[in module %s]"),
9073 type->field (0).name (),
9074 objfile_name (objfile));
9075 return;
9076 }
9077 ++name;
9078
9079 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9080 field_type = field_type->field (index).type ();
9081 }
9082
9083 /* Smash this type to be a structure type. We have to do this
9084 because the type has already been recorded. */
9085 type->set_code (TYPE_CODE_STRUCT);
9086 type->set_num_fields (3);
9087 /* Save the field we care about. */
9088 struct field saved_field = type->field (0);
9089 type->set_fields
9090 ((struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field)));
9091
9092 /* Put the discriminant at index 0. */
9093 type->field (0).set_type (field_type);
9094 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9095 type->field (0).set_name ("<<discriminant>>");
9096 SET_FIELD_BITPOS (type->field (0), bit_offset);
9097
9098 /* The order of fields doesn't really matter, so put the real
9099 field at index 1 and the data-less field at index 2. */
9100 type->field (1) = saved_field;
9101 type->field (1).set_name
9102 (rust_last_path_segment (type->field (1).type ()->name ()));
9103 type->field (1).type ()->set_name
9104 (rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9105 type->field (1).name ()));
9106
9107 const char *dataless_name
9108 = rust_fully_qualify (&objfile->objfile_obstack, type->name (),
9109 name);
9110 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9111 dataless_name);
9112 type->field (2).set_type (dataless_type);
9113 /* NAME points into the original discriminant name, which
9114 already has the correct lifetime. */
9115 type->field (2).set_name (name);
9116 SET_FIELD_BITPOS (type->field (2), 0);
9117
9118 /* Indicate that this is a variant type. */
9119 static discriminant_range ranges[1] = { { 0, 0 } };
9120 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9121 }
9122 /* A union with a single anonymous field is probably an old-style
9123 univariant enum. */
9124 else if (type->num_fields () == 1 && streq (type->field (0).name (), ""))
9125 {
9126 /* Smash this type to be a structure type. We have to do this
9127 because the type has already been recorded. */
9128 type->set_code (TYPE_CODE_STRUCT);
9129
9130 struct type *field_type = type->field (0).type ();
9131 const char *variant_name
9132 = rust_last_path_segment (field_type->name ());
9133 type->field (0).set_name (variant_name);
9134 field_type->set_name
9135 (rust_fully_qualify (&objfile->objfile_obstack,
9136 type->name (), variant_name));
9137
9138 alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {});
9139 }
9140 else
9141 {
9142 struct type *disr_type = nullptr;
9143 for (int i = 0; i < type->num_fields (); ++i)
9144 {
9145 disr_type = type->field (i).type ();
9146
9147 if (disr_type->code () != TYPE_CODE_STRUCT)
9148 {
9149 /* All fields of a true enum will be structs. */
9150 return;
9151 }
9152 else if (disr_type->num_fields () == 0)
9153 {
9154 /* Could be data-less variant, so keep going. */
9155 disr_type = nullptr;
9156 }
9157 else if (strcmp (disr_type->field (0).name (),
9158 "RUST$ENUM$DISR") != 0)
9159 {
9160 /* Not a Rust enum. */
9161 return;
9162 }
9163 else
9164 {
9165 /* Found one. */
9166 break;
9167 }
9168 }
9169
9170 /* If we got here without a discriminant, then it's probably
9171 just a union. */
9172 if (disr_type == nullptr)
9173 return;
9174
9175 /* Smash this type to be a structure type. We have to do this
9176 because the type has already been recorded. */
9177 type->set_code (TYPE_CODE_STRUCT);
9178
9179 /* Make space for the discriminant field. */
9180 struct field *disr_field = &disr_type->field (0);
9181 field *new_fields
9182 = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1)
9183 * sizeof (struct field)));
9184 memcpy (new_fields + 1, type->fields (),
9185 type->num_fields () * sizeof (struct field));
9186 type->set_fields (new_fields);
9187 type->set_num_fields (type->num_fields () + 1);
9188
9189 /* Install the discriminant at index 0 in the union. */
9190 type->field (0) = *disr_field;
9191 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9192 type->field (0).set_name ("<<discriminant>>");
9193
9194 /* We need a way to find the correct discriminant given a
9195 variant name. For convenience we build a map here. */
9196 struct type *enum_type = disr_field->type ();
9197 std::unordered_map<std::string, ULONGEST> discriminant_map;
9198 for (int i = 0; i < enum_type->num_fields (); ++i)
9199 {
9200 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9201 {
9202 const char *name
9203 = rust_last_path_segment (enum_type->field (i).name ());
9204 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9205 }
9206 }
9207
9208 int n_fields = type->num_fields ();
9209 /* We don't need a range entry for the discriminant, but we do
9210 need one for every other field, as there is no default
9211 variant. */
9212 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9213 discriminant_range,
9214 n_fields - 1);
9215 /* Skip the discriminant here. */
9216 for (int i = 1; i < n_fields; ++i)
9217 {
9218 /* Find the final word in the name of this variant's type.
9219 That name can be used to look up the correct
9220 discriminant. */
9221 const char *variant_name
9222 = rust_last_path_segment (type->field (i).type ()->name ());
9223
9224 auto iter = discriminant_map.find (variant_name);
9225 if (iter != discriminant_map.end ())
9226 {
9227 ranges[i - 1].low = iter->second;
9228 ranges[i - 1].high = iter->second;
9229 }
9230
9231 /* In Rust, each element should have the size of the
9232 enclosing enum. */
9233 TYPE_LENGTH (type->field (i).type ()) = TYPE_LENGTH (type);
9234
9235 /* Remove the discriminant field, if it exists. */
9236 struct type *sub_type = type->field (i).type ();
9237 if (sub_type->num_fields () > 0)
9238 {
9239 sub_type->set_num_fields (sub_type->num_fields () - 1);
9240 sub_type->set_fields (sub_type->fields () + 1);
9241 }
9242 type->field (i).set_name (variant_name);
9243 sub_type->set_name
9244 (rust_fully_qualify (&objfile->objfile_obstack,
9245 type->name (), variant_name));
9246 }
9247
9248 /* Indicate that this is a variant type. */
9249 alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1,
9250 gdb::array_view<discriminant_range> (ranges,
9251 n_fields - 1));
9252 }
9253 }
9254
9255 /* Rewrite some Rust unions to be structures with variants parts. */
9256
9257 static void
9258 rust_union_quirks (struct dwarf2_cu *cu)
9259 {
9260 gdb_assert (cu->per_cu->lang == language_rust);
9261 for (type *type_ : cu->rust_unions)
9262 quirk_rust_enum (type_, cu->per_objfile->objfile);
9263 /* We don't need this any more. */
9264 cu->rust_unions.clear ();
9265 }
9266
9267 /* See read.h. */
9268
9269 type_unit_group_unshareable *
9270 dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group)
9271 {
9272 auto iter = this->m_type_units.find (tu_group);
9273 if (iter != this->m_type_units.end ())
9274 return iter->second.get ();
9275
9276 type_unit_group_unshareable_up uniq (new type_unit_group_unshareable);
9277 type_unit_group_unshareable *result = uniq.get ();
9278 this->m_type_units[tu_group] = std::move (uniq);
9279 return result;
9280 }
9281
9282 struct type *
9283 dwarf2_per_objfile::get_type_for_signatured_type
9284 (signatured_type *sig_type) const
9285 {
9286 auto iter = this->m_type_map.find (sig_type);
9287 if (iter == this->m_type_map.end ())
9288 return nullptr;
9289
9290 return iter->second;
9291 }
9292
9293 void dwarf2_per_objfile::set_type_for_signatured_type
9294 (signatured_type *sig_type, struct type *type)
9295 {
9296 gdb_assert (this->m_type_map.find (sig_type) == this->m_type_map.end ());
9297
9298 this->m_type_map[sig_type] = type;
9299 }
9300
9301 /* A helper function for computing the list of all symbol tables
9302 included by PER_CU. */
9303
9304 static void
9305 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9306 htab_t all_children, htab_t all_type_symtabs,
9307 dwarf2_per_cu_data *per_cu,
9308 dwarf2_per_objfile *per_objfile,
9309 struct compunit_symtab *immediate_parent)
9310 {
9311 void **slot = htab_find_slot (all_children, per_cu, INSERT);
9312 if (*slot != NULL)
9313 {
9314 /* This inclusion and its children have been processed. */
9315 return;
9316 }
9317
9318 *slot = per_cu;
9319
9320 /* Only add a CU if it has a symbol table. */
9321 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9322 if (cust != NULL)
9323 {
9324 /* If this is a type unit only add its symbol table if we haven't
9325 seen it yet (type unit per_cu's can share symtabs). */
9326 if (per_cu->is_debug_types)
9327 {
9328 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9329 if (*slot == NULL)
9330 {
9331 *slot = cust;
9332 result->push_back (cust);
9333 if (cust->user == NULL)
9334 cust->user = immediate_parent;
9335 }
9336 }
9337 else
9338 {
9339 result->push_back (cust);
9340 if (cust->user == NULL)
9341 cust->user = immediate_parent;
9342 }
9343 }
9344
9345 if (!per_cu->imported_symtabs_empty ())
9346 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9347 {
9348 recursively_compute_inclusions (result, all_children,
9349 all_type_symtabs, ptr, per_objfile,
9350 cust);
9351 }
9352 }
9353
9354 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9355 PER_CU. */
9356
9357 static void
9358 compute_compunit_symtab_includes (dwarf2_per_cu_data *per_cu,
9359 dwarf2_per_objfile *per_objfile)
9360 {
9361 gdb_assert (! per_cu->is_debug_types);
9362
9363 if (!per_cu->imported_symtabs_empty ())
9364 {
9365 int len;
9366 std::vector<compunit_symtab *> result_symtabs;
9367 compunit_symtab *cust = per_objfile->get_symtab (per_cu);
9368
9369 /* If we don't have a symtab, we can just skip this case. */
9370 if (cust == NULL)
9371 return;
9372
9373 htab_up all_children (htab_create_alloc (1, htab_hash_pointer,
9374 htab_eq_pointer,
9375 NULL, xcalloc, xfree));
9376 htab_up all_type_symtabs (htab_create_alloc (1, htab_hash_pointer,
9377 htab_eq_pointer,
9378 NULL, xcalloc, xfree));
9379
9380 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9381 {
9382 recursively_compute_inclusions (&result_symtabs, all_children.get (),
9383 all_type_symtabs.get (), ptr,
9384 per_objfile, cust);
9385 }
9386
9387 /* Now we have a transitive closure of all the included symtabs. */
9388 len = result_symtabs.size ();
9389 cust->includes
9390 = XOBNEWVEC (&per_objfile->objfile->objfile_obstack,
9391 struct compunit_symtab *, len + 1);
9392 memcpy (cust->includes, result_symtabs.data (),
9393 len * sizeof (compunit_symtab *));
9394 cust->includes[len] = NULL;
9395 }
9396 }
9397
9398 /* Compute the 'includes' field for the symtabs of all the CUs we just
9399 read. */
9400
9401 static void
9402 process_cu_includes (dwarf2_per_objfile *per_objfile)
9403 {
9404 for (dwarf2_per_cu_data *iter : per_objfile->per_bfd->just_read_cus)
9405 {
9406 if (! iter->is_debug_types)
9407 compute_compunit_symtab_includes (iter, per_objfile);
9408 }
9409
9410 per_objfile->per_bfd->just_read_cus.clear ();
9411 }
9412
9413 /* Generate full symbol information for CU, whose DIEs have
9414 already been loaded into memory. */
9415
9416 static void
9417 process_full_comp_unit (dwarf2_cu *cu, enum language pretend_language)
9418 {
9419 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9420 struct objfile *objfile = per_objfile->objfile;
9421 struct gdbarch *gdbarch = objfile->arch ();
9422 CORE_ADDR lowpc, highpc;
9423 struct compunit_symtab *cust;
9424 CORE_ADDR baseaddr;
9425 struct block *static_block;
9426 CORE_ADDR addr;
9427
9428 baseaddr = objfile->text_section_offset ();
9429
9430 /* Clear the list here in case something was left over. */
9431 cu->method_list.clear ();
9432
9433 dwarf2_find_base_address (cu->dies, cu);
9434
9435 /* Before we start reading the top-level DIE, ensure it has a valid tag
9436 type. */
9437 switch (cu->dies->tag)
9438 {
9439 case DW_TAG_compile_unit:
9440 case DW_TAG_partial_unit:
9441 case DW_TAG_type_unit:
9442 break;
9443 default:
9444 error (_("Dwarf Error: unexpected tag '%s' at offset %s [in module %s]"),
9445 dwarf_tag_name (cu->dies->tag),
9446 sect_offset_str (cu->per_cu->sect_off),
9447 objfile_name (per_objfile->objfile));
9448 }
9449
9450 /* Do line number decoding in read_file_scope () */
9451 process_die (cu->dies, cu);
9452
9453 /* For now fudge the Go package. */
9454 if (cu->per_cu->lang == language_go)
9455 fixup_go_packaging (cu);
9456
9457 /* Now that we have processed all the DIEs in the CU, all the types
9458 should be complete, and it should now be safe to compute all of the
9459 physnames. */
9460 compute_delayed_physnames (cu);
9461
9462 if (cu->per_cu->lang == language_rust)
9463 rust_union_quirks (cu);
9464
9465 /* Some compilers don't define a DW_AT_high_pc attribute for the
9466 compilation unit. If the DW_AT_high_pc is missing, synthesize
9467 it, by scanning the DIE's below the compilation unit. */
9468 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9469
9470 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9471 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9472
9473 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9474 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9475 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9476 addrmap to help ensure it has an accurate map of pc values belonging to
9477 this comp unit. */
9478 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9479
9480 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9481 SECT_OFF_TEXT (objfile),
9482 0);
9483
9484 if (cust != NULL)
9485 {
9486 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9487
9488 /* Set symtab language to language from DW_AT_language. If the
9489 compilation is from a C file generated by language preprocessors, do
9490 not set the language if it was already deduced by start_subfile. */
9491 if (!(cu->per_cu->lang == language_c
9492 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9493 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9494
9495 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9496 produce DW_AT_location with location lists but it can be possibly
9497 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9498 there were bugs in prologue debug info, fixed later in GCC-4.5
9499 by "unwind info for epilogues" patch (which is not directly related).
9500
9501 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9502 needed, it would be wrong due to missing DW_AT_producer there.
9503
9504 Still one can confuse GDB by using non-standard GCC compilation
9505 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9506 */
9507 if (cu->has_loclist && gcc_4_minor >= 5)
9508 cust->locations_valid = 1;
9509
9510 if (gcc_4_minor >= 5)
9511 cust->epilogue_unwind_valid = 1;
9512
9513 cust->call_site_htab = cu->call_site_htab;
9514 }
9515
9516 per_objfile->set_symtab (cu->per_cu, cust);
9517
9518 /* Push it for inclusion processing later. */
9519 per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu);
9520
9521 /* Not needed any more. */
9522 cu->reset_builder ();
9523 }
9524
9525 /* Generate full symbol information for type unit CU, whose DIEs have
9526 already been loaded into memory. */
9527
9528 static void
9529 process_full_type_unit (dwarf2_cu *cu,
9530 enum language pretend_language)
9531 {
9532 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9533 struct objfile *objfile = per_objfile->objfile;
9534 struct compunit_symtab *cust;
9535 struct signatured_type *sig_type;
9536
9537 gdb_assert (cu->per_cu->is_debug_types);
9538 sig_type = (struct signatured_type *) cu->per_cu;
9539
9540 /* Clear the list here in case something was left over. */
9541 cu->method_list.clear ();
9542
9543 /* The symbol tables are set up in read_type_unit_scope. */
9544 process_die (cu->dies, cu);
9545
9546 /* For now fudge the Go package. */
9547 if (cu->per_cu->lang == language_go)
9548 fixup_go_packaging (cu);
9549
9550 /* Now that we have processed all the DIEs in the CU, all the types
9551 should be complete, and it should now be safe to compute all of the
9552 physnames. */
9553 compute_delayed_physnames (cu);
9554
9555 if (cu->per_cu->lang == language_rust)
9556 rust_union_quirks (cu);
9557
9558 /* TUs share symbol tables.
9559 If this is the first TU to use this symtab, complete the construction
9560 of it with end_expandable_symtab. Otherwise, complete the addition of
9561 this TU's symbols to the existing symtab. */
9562 type_unit_group_unshareable *tug_unshare =
9563 per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group);
9564 if (tug_unshare->compunit_symtab == NULL)
9565 {
9566 buildsym_compunit *builder = cu->get_builder ();
9567 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9568 tug_unshare->compunit_symtab = cust;
9569
9570 if (cust != NULL)
9571 {
9572 /* Set symtab language to language from DW_AT_language. If the
9573 compilation is from a C file generated by language preprocessors,
9574 do not set the language if it was already deduced by
9575 start_subfile. */
9576 if (!(cu->per_cu->lang == language_c
9577 && COMPUNIT_FILETABS (cust)->language != language_c))
9578 COMPUNIT_FILETABS (cust)->language = cu->per_cu->lang;
9579 }
9580 }
9581 else
9582 {
9583 cu->get_builder ()->augment_type_symtab ();
9584 cust = tug_unshare->compunit_symtab;
9585 }
9586
9587 per_objfile->set_symtab (cu->per_cu, cust);
9588
9589 /* Not needed any more. */
9590 cu->reset_builder ();
9591 }
9592
9593 /* Process an imported unit DIE. */
9594
9595 static void
9596 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9597 {
9598 struct attribute *attr;
9599
9600 /* For now we don't handle imported units in type units. */
9601 if (cu->per_cu->is_debug_types)
9602 {
9603 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9604 " supported in type units [in module %s]"),
9605 objfile_name (cu->per_objfile->objfile));
9606 }
9607
9608 attr = dwarf2_attr (die, DW_AT_import, cu);
9609 if (attr != NULL)
9610 {
9611 sect_offset sect_off = attr->get_ref_die_offset ();
9612 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9613 dwarf2_per_objfile *per_objfile = cu->per_objfile;
9614 dwarf2_per_cu_data *per_cu
9615 = dwarf2_find_containing_comp_unit (sect_off, is_dwz, per_objfile);
9616
9617 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9618 into another compilation unit, at root level. Regard this as a hint,
9619 and ignore it. */
9620 if (die->parent && die->parent->parent == NULL
9621 && per_cu->unit_type == DW_UT_compile
9622 && per_cu->lang == language_cplus)
9623 return;
9624
9625 /* If necessary, add it to the queue and load its DIEs. */
9626 if (maybe_queue_comp_unit (cu, per_cu, per_objfile,
9627 cu->per_cu->lang))
9628 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
9629 false, cu->per_cu->lang);
9630
9631 cu->per_cu->imported_symtabs_push (per_cu);
9632 }
9633 }
9634
9635 /* RAII object that represents a process_die scope: i.e.,
9636 starts/finishes processing a DIE. */
9637 class process_die_scope
9638 {
9639 public:
9640 process_die_scope (die_info *die, dwarf2_cu *cu)
9641 : m_die (die), m_cu (cu)
9642 {
9643 /* We should only be processing DIEs not already in process. */
9644 gdb_assert (!m_die->in_process);
9645 m_die->in_process = true;
9646 }
9647
9648 ~process_die_scope ()
9649 {
9650 m_die->in_process = false;
9651
9652 /* If we're done processing the DIE for the CU that owns the line
9653 header, we don't need the line header anymore. */
9654 if (m_cu->line_header_die_owner == m_die)
9655 {
9656 delete m_cu->line_header;
9657 m_cu->line_header = NULL;
9658 m_cu->line_header_die_owner = NULL;
9659 }
9660 }
9661
9662 private:
9663 die_info *m_die;
9664 dwarf2_cu *m_cu;
9665 };
9666
9667 /* Process a die and its children. */
9668
9669 static void
9670 process_die (struct die_info *die, struct dwarf2_cu *cu)
9671 {
9672 process_die_scope scope (die, cu);
9673
9674 switch (die->tag)
9675 {
9676 case DW_TAG_padding:
9677 break;
9678 case DW_TAG_compile_unit:
9679 case DW_TAG_partial_unit:
9680 read_file_scope (die, cu);
9681 break;
9682 case DW_TAG_type_unit:
9683 read_type_unit_scope (die, cu);
9684 break;
9685 case DW_TAG_subprogram:
9686 /* Nested subprograms in Fortran get a prefix. */
9687 if (cu->per_cu->lang == language_fortran
9688 && die->parent != NULL
9689 && die->parent->tag == DW_TAG_subprogram)
9690 cu->processing_has_namespace_info = true;
9691 /* Fall through. */
9692 case DW_TAG_inlined_subroutine:
9693 read_func_scope (die, cu);
9694 break;
9695 case DW_TAG_lexical_block:
9696 case DW_TAG_try_block:
9697 case DW_TAG_catch_block:
9698 read_lexical_block_scope (die, cu);
9699 break;
9700 case DW_TAG_call_site:
9701 case DW_TAG_GNU_call_site:
9702 read_call_site_scope (die, cu);
9703 break;
9704 case DW_TAG_class_type:
9705 case DW_TAG_interface_type:
9706 case DW_TAG_structure_type:
9707 case DW_TAG_union_type:
9708 process_structure_scope (die, cu);
9709 break;
9710 case DW_TAG_enumeration_type:
9711 process_enumeration_scope (die, cu);
9712 break;
9713
9714 /* These dies have a type, but processing them does not create
9715 a symbol or recurse to process the children. Therefore we can
9716 read them on-demand through read_type_die. */
9717 case DW_TAG_subroutine_type:
9718 case DW_TAG_set_type:
9719 case DW_TAG_pointer_type:
9720 case DW_TAG_ptr_to_member_type:
9721 case DW_TAG_reference_type:
9722 case DW_TAG_rvalue_reference_type:
9723 case DW_TAG_string_type:
9724 break;
9725
9726 case DW_TAG_array_type:
9727 /* We only need to handle this case for Ada -- in other
9728 languages, it's normal for the compiler to emit a typedef
9729 instead. */
9730 if (cu->per_cu->lang != language_ada)
9731 break;
9732 /* FALLTHROUGH */
9733 case DW_TAG_base_type:
9734 case DW_TAG_subrange_type:
9735 case DW_TAG_typedef:
9736 /* Add a typedef symbol for the type definition, if it has a
9737 DW_AT_name. */
9738 new_symbol (die, read_type_die (die, cu), cu);
9739 break;
9740 case DW_TAG_common_block:
9741 read_common_block (die, cu);
9742 break;
9743 case DW_TAG_common_inclusion:
9744 break;
9745 case DW_TAG_namespace:
9746 cu->processing_has_namespace_info = true;
9747 read_namespace (die, cu);
9748 break;
9749 case DW_TAG_module:
9750 cu->processing_has_namespace_info = true;
9751 read_module (die, cu);
9752 break;
9753 case DW_TAG_imported_declaration:
9754 cu->processing_has_namespace_info = true;
9755 if (read_namespace_alias (die, cu))
9756 break;
9757 /* The declaration is not a global namespace alias. */
9758 /* Fall through. */
9759 case DW_TAG_imported_module:
9760 cu->processing_has_namespace_info = true;
9761 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9762 || cu->per_cu->lang != language_fortran))
9763 complaint (_("Tag '%s' has unexpected children"),
9764 dwarf_tag_name (die->tag));
9765 read_import_statement (die, cu);
9766 break;
9767
9768 case DW_TAG_imported_unit:
9769 process_imported_unit_die (die, cu);
9770 break;
9771
9772 case DW_TAG_variable:
9773 read_variable (die, cu);
9774 break;
9775
9776 default:
9777 new_symbol (die, NULL, cu);
9778 break;
9779 }
9780 }
9781 \f
9782 /* DWARF name computation. */
9783
9784 /* A helper function for dwarf2_compute_name which determines whether DIE
9785 needs to have the name of the scope prepended to the name listed in the
9786 die. */
9787
9788 static int
9789 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9790 {
9791 struct attribute *attr;
9792
9793 switch (die->tag)
9794 {
9795 case DW_TAG_namespace:
9796 case DW_TAG_typedef:
9797 case DW_TAG_class_type:
9798 case DW_TAG_interface_type:
9799 case DW_TAG_structure_type:
9800 case DW_TAG_union_type:
9801 case DW_TAG_enumeration_type:
9802 case DW_TAG_enumerator:
9803 case DW_TAG_subprogram:
9804 case DW_TAG_inlined_subroutine:
9805 case DW_TAG_member:
9806 case DW_TAG_imported_declaration:
9807 return 1;
9808
9809 case DW_TAG_variable:
9810 case DW_TAG_constant:
9811 /* We only need to prefix "globally" visible variables. These include
9812 any variable marked with DW_AT_external or any variable that
9813 lives in a namespace. [Variables in anonymous namespaces
9814 require prefixing, but they are not DW_AT_external.] */
9815
9816 if (dwarf2_attr (die, DW_AT_specification, cu))
9817 {
9818 struct dwarf2_cu *spec_cu = cu;
9819
9820 return die_needs_namespace (die_specification (die, &spec_cu),
9821 spec_cu);
9822 }
9823
9824 attr = dwarf2_attr (die, DW_AT_external, cu);
9825 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9826 && die->parent->tag != DW_TAG_module)
9827 return 0;
9828 /* A variable in a lexical block of some kind does not need a
9829 namespace, even though in C++ such variables may be external
9830 and have a mangled name. */
9831 if (die->parent->tag == DW_TAG_lexical_block
9832 || die->parent->tag == DW_TAG_try_block
9833 || die->parent->tag == DW_TAG_catch_block
9834 || die->parent->tag == DW_TAG_subprogram)
9835 return 0;
9836 return 1;
9837
9838 default:
9839 return 0;
9840 }
9841 }
9842
9843 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9844 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9845 defined for the given DIE. */
9846
9847 static struct attribute *
9848 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9849 {
9850 struct attribute *attr;
9851
9852 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9853 if (attr == NULL)
9854 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9855
9856 return attr;
9857 }
9858
9859 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9860 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9861 defined for the given DIE. */
9862
9863 static const char *
9864 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9865 {
9866 const char *linkage_name;
9867
9868 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9869 if (linkage_name == NULL)
9870 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9871
9872 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
9873 See https://github.com/rust-lang/rust/issues/32925. */
9874 if (cu->per_cu->lang == language_rust && linkage_name != NULL
9875 && strchr (linkage_name, '{') != NULL)
9876 linkage_name = NULL;
9877
9878 return linkage_name;
9879 }
9880
9881 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
9882 compute the physname for the object, which include a method's:
9883 - formal parameters (C++),
9884 - receiver type (Go),
9885
9886 The term "physname" is a bit confusing.
9887 For C++, for example, it is the demangled name.
9888 For Go, for example, it's the mangled name.
9889
9890 For Ada, return the DIE's linkage name rather than the fully qualified
9891 name. PHYSNAME is ignored..
9892
9893 The result is allocated on the objfile->per_bfd's obstack and
9894 canonicalized. */
9895
9896 static const char *
9897 dwarf2_compute_name (const char *name,
9898 struct die_info *die, struct dwarf2_cu *cu,
9899 int physname)
9900 {
9901 struct objfile *objfile = cu->per_objfile->objfile;
9902
9903 if (name == NULL)
9904 name = dwarf2_name (die, cu);
9905
9906 enum language lang = cu->per_cu->lang;
9907
9908 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
9909 but otherwise compute it by typename_concat inside GDB.
9910 FIXME: Actually this is not really true, or at least not always true.
9911 It's all very confusing. compute_and_set_names doesn't try to demangle
9912 Fortran names because there is no mangling standard. So new_symbol
9913 will set the demangled name to the result of dwarf2_full_name, and it is
9914 the demangled name that GDB uses if it exists. */
9915 if (lang == language_ada
9916 || (lang == language_fortran && physname))
9917 {
9918 /* For Ada unit, we prefer the linkage name over the name, as
9919 the former contains the exported name, which the user expects
9920 to be able to reference. Ideally, we want the user to be able
9921 to reference this entity using either natural or linkage name,
9922 but we haven't started looking at this enhancement yet. */
9923 const char *linkage_name = dw2_linkage_name (die, cu);
9924
9925 if (linkage_name != NULL)
9926 return linkage_name;
9927 }
9928
9929 /* These are the only languages we know how to qualify names in. */
9930 if (name != NULL
9931 && (lang == language_cplus
9932 || lang == language_fortran || lang == language_d
9933 || lang == language_rust))
9934 {
9935 if (die_needs_namespace (die, cu))
9936 {
9937 const char *prefix;
9938 const char *canonical_name = NULL;
9939
9940 string_file buf;
9941
9942 prefix = determine_prefix (die, cu);
9943 if (*prefix != '\0')
9944 {
9945 gdb::unique_xmalloc_ptr<char> prefixed_name
9946 (typename_concat (NULL, prefix, name, physname, cu));
9947
9948 buf.puts (prefixed_name.get ());
9949 }
9950 else
9951 buf.puts (name);
9952
9953 /* Template parameters may be specified in the DIE's DW_AT_name, or
9954 as children with DW_TAG_template_type_param or
9955 DW_TAG_value_type_param. If the latter, add them to the name
9956 here. If the name already has template parameters, then
9957 skip this step; some versions of GCC emit both, and
9958 it is more efficient to use the pre-computed name.
9959
9960 Something to keep in mind about this process: it is very
9961 unlikely, or in some cases downright impossible, to produce
9962 something that will match the mangled name of a function.
9963 If the definition of the function has the same debug info,
9964 we should be able to match up with it anyway. But fallbacks
9965 using the minimal symbol, for instance to find a method
9966 implemented in a stripped copy of libstdc++, will not work.
9967 If we do not have debug info for the definition, we will have to
9968 match them up some other way.
9969
9970 When we do name matching there is a related problem with function
9971 templates; two instantiated function templates are allowed to
9972 differ only by their return types, which we do not add here. */
9973
9974 if (lang == language_cplus && strchr (name, '<') == NULL)
9975 {
9976 struct attribute *attr;
9977 struct die_info *child;
9978 int first = 1;
9979
9980 die->building_fullname = 1;
9981
9982 for (child = die->child; child != NULL; child = child->sibling)
9983 {
9984 struct type *type;
9985 LONGEST value;
9986 const gdb_byte *bytes;
9987 struct dwarf2_locexpr_baton *baton;
9988 struct value *v;
9989
9990 if (child->tag != DW_TAG_template_type_param
9991 && child->tag != DW_TAG_template_value_param)
9992 continue;
9993
9994 if (first)
9995 {
9996 buf.puts ("<");
9997 first = 0;
9998 }
9999 else
10000 buf.puts (", ");
10001
10002 attr = dwarf2_attr (child, DW_AT_type, cu);
10003 if (attr == NULL)
10004 {
10005 complaint (_("template parameter missing DW_AT_type"));
10006 buf.puts ("UNKNOWN_TYPE");
10007 continue;
10008 }
10009 type = die_type (child, cu);
10010
10011 if (child->tag == DW_TAG_template_type_param)
10012 {
10013 cu->language_defn->print_type (type, "", &buf, -1, 0,
10014 &type_print_raw_options);
10015 continue;
10016 }
10017
10018 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10019 if (attr == NULL)
10020 {
10021 complaint (_("template parameter missing "
10022 "DW_AT_const_value"));
10023 buf.puts ("UNKNOWN_VALUE");
10024 continue;
10025 }
10026
10027 dwarf2_const_value_attr (attr, type, name,
10028 &cu->comp_unit_obstack, cu,
10029 &value, &bytes, &baton);
10030
10031 if (type->has_no_signedness ())
10032 /* GDB prints characters as NUMBER 'CHAR'. If that's
10033 changed, this can use value_print instead. */
10034 cu->language_defn->printchar (value, type, &buf);
10035 else
10036 {
10037 struct value_print_options opts;
10038
10039 if (baton != NULL)
10040 v = dwarf2_evaluate_loc_desc (type, NULL,
10041 baton->data,
10042 baton->size,
10043 baton->per_cu,
10044 baton->per_objfile);
10045 else if (bytes != NULL)
10046 {
10047 v = allocate_value (type);
10048 memcpy (value_contents_writeable (v), bytes,
10049 TYPE_LENGTH (type));
10050 }
10051 else
10052 v = value_from_longest (type, value);
10053
10054 /* Specify decimal so that we do not depend on
10055 the radix. */
10056 get_formatted_print_options (&opts, 'd');
10057 opts.raw = 1;
10058 value_print (v, &buf, &opts);
10059 release_value (v);
10060 }
10061 }
10062
10063 die->building_fullname = 0;
10064
10065 if (!first)
10066 {
10067 /* Close the argument list, with a space if necessary
10068 (nested templates). */
10069 if (!buf.empty () && buf.string ().back () == '>')
10070 buf.puts (" >");
10071 else
10072 buf.puts (">");
10073 }
10074 }
10075
10076 /* For C++ methods, append formal parameter type
10077 information, if PHYSNAME. */
10078
10079 if (physname && die->tag == DW_TAG_subprogram
10080 && lang == language_cplus)
10081 {
10082 struct type *type = read_type_die (die, cu);
10083
10084 c_type_print_args (type, &buf, 1, lang,
10085 &type_print_raw_options);
10086
10087 if (lang == language_cplus)
10088 {
10089 /* Assume that an artificial first parameter is
10090 "this", but do not crash if it is not. RealView
10091 marks unnamed (and thus unused) parameters as
10092 artificial; there is no way to differentiate
10093 the two cases. */
10094 if (type->num_fields () > 0
10095 && TYPE_FIELD_ARTIFICIAL (type, 0)
10096 && type->field (0).type ()->code () == TYPE_CODE_PTR
10097 && TYPE_CONST (TYPE_TARGET_TYPE (type->field (0).type ())))
10098 buf.puts (" const");
10099 }
10100 }
10101
10102 const std::string &intermediate_name = buf.string ();
10103
10104 if (lang == language_cplus)
10105 canonical_name
10106 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10107 objfile);
10108
10109 /* If we only computed INTERMEDIATE_NAME, or if
10110 INTERMEDIATE_NAME is already canonical, then we need to
10111 intern it. */
10112 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10113 name = objfile->intern (intermediate_name);
10114 else
10115 name = canonical_name;
10116 }
10117 }
10118
10119 return name;
10120 }
10121
10122 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10123 If scope qualifiers are appropriate they will be added. The result
10124 will be allocated on the storage_obstack, or NULL if the DIE does
10125 not have a name. NAME may either be from a previous call to
10126 dwarf2_name or NULL.
10127
10128 The output string will be canonicalized (if C++). */
10129
10130 static const char *
10131 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10132 {
10133 return dwarf2_compute_name (name, die, cu, 0);
10134 }
10135
10136 /* Construct a physname for the given DIE in CU. NAME may either be
10137 from a previous call to dwarf2_name or NULL. The result will be
10138 allocated on the objfile_objstack or NULL if the DIE does not have a
10139 name.
10140
10141 The output string will be canonicalized (if C++). */
10142
10143 static const char *
10144 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10145 {
10146 struct objfile *objfile = cu->per_objfile->objfile;
10147 const char *retval, *mangled = NULL, *canon = NULL;
10148 int need_copy = 1;
10149
10150 /* In this case dwarf2_compute_name is just a shortcut not building anything
10151 on its own. */
10152 if (!die_needs_namespace (die, cu))
10153 return dwarf2_compute_name (name, die, cu, 1);
10154
10155 if (cu->per_cu->lang != language_rust)
10156 mangled = dw2_linkage_name (die, cu);
10157
10158 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10159 has computed. */
10160 gdb::unique_xmalloc_ptr<char> demangled;
10161 if (mangled != NULL)
10162 {
10163 if (cu->language_defn->store_sym_names_in_linkage_form_p ())
10164 {
10165 /* Do nothing (do not demangle the symbol name). */
10166 }
10167 else
10168 {
10169 /* Use DMGL_RET_DROP for C++ template functions to suppress
10170 their return type. It is easier for GDB users to search
10171 for such functions as `name(params)' than `long name(params)'.
10172 In such case the minimal symbol names do not match the full
10173 symbol names but for template functions there is never a need
10174 to look up their definition from their declaration so
10175 the only disadvantage remains the minimal symbol variant
10176 `long name(params)' does not have the proper inferior type. */
10177 demangled.reset (gdb_demangle (mangled,
10178 (DMGL_PARAMS | DMGL_ANSI
10179 | DMGL_RET_DROP)));
10180 }
10181 if (demangled)
10182 canon = demangled.get ();
10183 else
10184 {
10185 canon = mangled;
10186 need_copy = 0;
10187 }
10188 }
10189
10190 if (canon == NULL || check_physname)
10191 {
10192 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10193
10194 if (canon != NULL && strcmp (physname, canon) != 0)
10195 {
10196 /* It may not mean a bug in GDB. The compiler could also
10197 compute DW_AT_linkage_name incorrectly. But in such case
10198 GDB would need to be bug-to-bug compatible. */
10199
10200 complaint (_("Computed physname <%s> does not match demangled <%s> "
10201 "(from linkage <%s>) - DIE at %s [in module %s]"),
10202 physname, canon, mangled, sect_offset_str (die->sect_off),
10203 objfile_name (objfile));
10204
10205 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10206 is available here - over computed PHYSNAME. It is safer
10207 against both buggy GDB and buggy compilers. */
10208
10209 retval = canon;
10210 }
10211 else
10212 {
10213 retval = physname;
10214 need_copy = 0;
10215 }
10216 }
10217 else
10218 retval = canon;
10219
10220 if (need_copy)
10221 retval = objfile->intern (retval);
10222
10223 return retval;
10224 }
10225
10226 /* Inspect DIE in CU for a namespace alias. If one exists, record
10227 a new symbol for it.
10228
10229 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10230
10231 static int
10232 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10233 {
10234 struct attribute *attr;
10235
10236 /* If the die does not have a name, this is not a namespace
10237 alias. */
10238 attr = dwarf2_attr (die, DW_AT_name, cu);
10239 if (attr != NULL)
10240 {
10241 int num;
10242 struct die_info *d = die;
10243 struct dwarf2_cu *imported_cu = cu;
10244
10245 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10246 keep inspecting DIEs until we hit the underlying import. */
10247 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10248 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10249 {
10250 attr = dwarf2_attr (d, DW_AT_import, cu);
10251 if (attr == NULL)
10252 break;
10253
10254 d = follow_die_ref (d, attr, &imported_cu);
10255 if (d->tag != DW_TAG_imported_declaration)
10256 break;
10257 }
10258
10259 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10260 {
10261 complaint (_("DIE at %s has too many recursively imported "
10262 "declarations"), sect_offset_str (d->sect_off));
10263 return 0;
10264 }
10265
10266 if (attr != NULL)
10267 {
10268 struct type *type;
10269 sect_offset sect_off = attr->get_ref_die_offset ();
10270
10271 type = get_die_type_at_offset (sect_off, cu->per_cu, cu->per_objfile);
10272 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10273 {
10274 /* This declaration is a global namespace alias. Add
10275 a symbol for it whose type is the aliased namespace. */
10276 new_symbol (die, type, cu);
10277 return 1;
10278 }
10279 }
10280 }
10281
10282 return 0;
10283 }
10284
10285 /* Return the using directives repository (global or local?) to use in the
10286 current context for CU.
10287
10288 For Ada, imported declarations can materialize renamings, which *may* be
10289 global. However it is impossible (for now?) in DWARF to distinguish
10290 "external" imported declarations and "static" ones. As all imported
10291 declarations seem to be static in all other languages, make them all CU-wide
10292 global only in Ada. */
10293
10294 static struct using_direct **
10295 using_directives (struct dwarf2_cu *cu)
10296 {
10297 if (cu->per_cu->lang == language_ada
10298 && cu->get_builder ()->outermost_context_p ())
10299 return cu->get_builder ()->get_global_using_directives ();
10300 else
10301 return cu->get_builder ()->get_local_using_directives ();
10302 }
10303
10304 /* Read the import statement specified by the given die and record it. */
10305
10306 static void
10307 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10308 {
10309 struct objfile *objfile = cu->per_objfile->objfile;
10310 struct attribute *import_attr;
10311 struct die_info *imported_die, *child_die;
10312 struct dwarf2_cu *imported_cu;
10313 const char *imported_name;
10314 const char *imported_name_prefix;
10315 const char *canonical_name;
10316 const char *import_alias;
10317 const char *imported_declaration = NULL;
10318 const char *import_prefix;
10319 std::vector<const char *> excludes;
10320
10321 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10322 if (import_attr == NULL)
10323 {
10324 complaint (_("Tag '%s' has no DW_AT_import"),
10325 dwarf_tag_name (die->tag));
10326 return;
10327 }
10328
10329 imported_cu = cu;
10330 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10331 imported_name = dwarf2_name (imported_die, imported_cu);
10332 if (imported_name == NULL)
10333 {
10334 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10335
10336 The import in the following code:
10337 namespace A
10338 {
10339 typedef int B;
10340 }
10341
10342 int main ()
10343 {
10344 using A::B;
10345 B b;
10346 return b;
10347 }
10348
10349 ...
10350 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10351 <52> DW_AT_decl_file : 1
10352 <53> DW_AT_decl_line : 6
10353 <54> DW_AT_import : <0x75>
10354 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10355 <59> DW_AT_name : B
10356 <5b> DW_AT_decl_file : 1
10357 <5c> DW_AT_decl_line : 2
10358 <5d> DW_AT_type : <0x6e>
10359 ...
10360 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10361 <76> DW_AT_byte_size : 4
10362 <77> DW_AT_encoding : 5 (signed)
10363
10364 imports the wrong die ( 0x75 instead of 0x58 ).
10365 This case will be ignored until the gcc bug is fixed. */
10366 return;
10367 }
10368
10369 /* Figure out the local name after import. */
10370 import_alias = dwarf2_name (die, cu);
10371
10372 /* Figure out where the statement is being imported to. */
10373 import_prefix = determine_prefix (die, cu);
10374
10375 /* Figure out what the scope of the imported die is and prepend it
10376 to the name of the imported die. */
10377 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10378
10379 if (imported_die->tag != DW_TAG_namespace
10380 && imported_die->tag != DW_TAG_module)
10381 {
10382 imported_declaration = imported_name;
10383 canonical_name = imported_name_prefix;
10384 }
10385 else if (strlen (imported_name_prefix) > 0)
10386 canonical_name = obconcat (&objfile->objfile_obstack,
10387 imported_name_prefix,
10388 (cu->per_cu->lang == language_d
10389 ? "."
10390 : "::"),
10391 imported_name, (char *) NULL);
10392 else
10393 canonical_name = imported_name;
10394
10395 if (die->tag == DW_TAG_imported_module
10396 && cu->per_cu->lang == language_fortran)
10397 for (child_die = die->child; child_die && child_die->tag;
10398 child_die = child_die->sibling)
10399 {
10400 /* DWARF-4: A Fortran use statement with a “rename list” may be
10401 represented by an imported module entry with an import attribute
10402 referring to the module and owned entries corresponding to those
10403 entities that are renamed as part of being imported. */
10404
10405 if (child_die->tag != DW_TAG_imported_declaration)
10406 {
10407 complaint (_("child DW_TAG_imported_declaration expected "
10408 "- DIE at %s [in module %s]"),
10409 sect_offset_str (child_die->sect_off),
10410 objfile_name (objfile));
10411 continue;
10412 }
10413
10414 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10415 if (import_attr == NULL)
10416 {
10417 complaint (_("Tag '%s' has no DW_AT_import"),
10418 dwarf_tag_name (child_die->tag));
10419 continue;
10420 }
10421
10422 imported_cu = cu;
10423 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10424 &imported_cu);
10425 imported_name = dwarf2_name (imported_die, imported_cu);
10426 if (imported_name == NULL)
10427 {
10428 complaint (_("child DW_TAG_imported_declaration has unknown "
10429 "imported name - DIE at %s [in module %s]"),
10430 sect_offset_str (child_die->sect_off),
10431 objfile_name (objfile));
10432 continue;
10433 }
10434
10435 excludes.push_back (imported_name);
10436
10437 process_die (child_die, cu);
10438 }
10439
10440 add_using_directive (using_directives (cu),
10441 import_prefix,
10442 canonical_name,
10443 import_alias,
10444 imported_declaration,
10445 excludes,
10446 0,
10447 &objfile->objfile_obstack);
10448 }
10449
10450 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10451 types, but gives them a size of zero. Starting with version 14,
10452 ICC is compatible with GCC. */
10453
10454 static bool
10455 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10456 {
10457 if (!cu->checked_producer)
10458 check_producer (cu);
10459
10460 return cu->producer_is_icc_lt_14;
10461 }
10462
10463 /* ICC generates a DW_AT_type for C void functions. This was observed on
10464 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10465 which says that void functions should not have a DW_AT_type. */
10466
10467 static bool
10468 producer_is_icc (struct dwarf2_cu *cu)
10469 {
10470 if (!cu->checked_producer)
10471 check_producer (cu);
10472
10473 return cu->producer_is_icc;
10474 }
10475
10476 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10477 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10478 this, it was first present in GCC release 4.3.0. */
10479
10480 static bool
10481 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10482 {
10483 if (!cu->checked_producer)
10484 check_producer (cu);
10485
10486 return cu->producer_is_gcc_lt_4_3;
10487 }
10488
10489 static file_and_directory
10490 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10491 {
10492 file_and_directory res;
10493
10494 /* Find the filename. Do not use dwarf2_name here, since the filename
10495 is not a source language identifier. */
10496 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10497 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10498
10499 if (res.comp_dir == NULL
10500 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10501 && IS_ABSOLUTE_PATH (res.name))
10502 {
10503 std::string comp_dir_storage = ldirname (res.name);
10504 if (!comp_dir_storage.empty ())
10505 res.comp_dir
10506 = cu->per_objfile->objfile->intern (comp_dir_storage.c_str ());
10507 }
10508 if (res.comp_dir != NULL)
10509 {
10510 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10511 directory, get rid of it. */
10512 const char *cp = strchr (res.comp_dir, ':');
10513
10514 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10515 res.comp_dir = cp + 1;
10516 }
10517
10518 if (res.name == NULL)
10519 res.name = "<unknown>";
10520
10521 return res;
10522 }
10523
10524 /* Handle DW_AT_stmt_list for a compilation unit.
10525 DIE is the DW_TAG_compile_unit die for CU.
10526 COMP_DIR is the compilation directory. LOWPC is passed to
10527 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10528
10529 static void
10530 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10531 const file_and_directory &fnd, CORE_ADDR lowpc) /* ARI: editCase function */
10532 {
10533 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10534 struct attribute *attr;
10535 struct line_header line_header_local;
10536 hashval_t line_header_local_hash;
10537 void **slot;
10538 int decode_mapping;
10539
10540 gdb_assert (! cu->per_cu->is_debug_types);
10541
10542 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10543 if (attr == NULL || !attr->form_is_unsigned ())
10544 return;
10545
10546 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10547
10548 /* The line header hash table is only created if needed (it exists to
10549 prevent redundant reading of the line table for partial_units).
10550 If we're given a partial_unit, we'll need it. If we're given a
10551 compile_unit, then use the line header hash table if it's already
10552 created, but don't create one just yet. */
10553
10554 if (per_objfile->line_header_hash == NULL
10555 && die->tag == DW_TAG_partial_unit)
10556 {
10557 per_objfile->line_header_hash
10558 .reset (htab_create_alloc (127, line_header_hash_voidp,
10559 line_header_eq_voidp,
10560 htab_delete_entry<line_header>,
10561 xcalloc, xfree));
10562 }
10563
10564 line_header_local.sect_off = line_offset;
10565 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10566 line_header_local_hash = line_header_hash (&line_header_local);
10567 if (per_objfile->line_header_hash != NULL)
10568 {
10569 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10570 &line_header_local,
10571 line_header_local_hash, NO_INSERT);
10572
10573 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10574 is not present in *SLOT (since if there is something in *SLOT then
10575 it will be for a partial_unit). */
10576 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10577 {
10578 gdb_assert (*slot != NULL);
10579 cu->line_header = (struct line_header *) *slot;
10580 return;
10581 }
10582 }
10583
10584 /* dwarf_decode_line_header does not yet provide sufficient information.
10585 We always have to call also dwarf_decode_lines for it. */
10586 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10587 if (lh == NULL)
10588 return;
10589
10590 cu->line_header = lh.release ();
10591 cu->line_header_die_owner = die;
10592
10593 if (per_objfile->line_header_hash == NULL)
10594 slot = NULL;
10595 else
10596 {
10597 slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (),
10598 &line_header_local,
10599 line_header_local_hash, INSERT);
10600 gdb_assert (slot != NULL);
10601 }
10602 if (slot != NULL && *slot == NULL)
10603 {
10604 /* This newly decoded line number information unit will be owned
10605 by line_header_hash hash table. */
10606 *slot = cu->line_header;
10607 cu->line_header_die_owner = NULL;
10608 }
10609 else
10610 {
10611 /* We cannot free any current entry in (*slot) as that struct line_header
10612 may be already used by multiple CUs. Create only temporary decoded
10613 line_header for this CU - it may happen at most once for each line
10614 number information unit. And if we're not using line_header_hash
10615 then this is what we want as well. */
10616 gdb_assert (die->tag != DW_TAG_partial_unit);
10617 }
10618 decode_mapping = (die->tag != DW_TAG_partial_unit);
10619 dwarf_decode_lines (cu->line_header, fnd, cu, nullptr, lowpc,
10620 decode_mapping);
10621
10622 }
10623
10624 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10625
10626 static void
10627 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10628 {
10629 dwarf2_per_objfile *per_objfile = cu->per_objfile;
10630 struct objfile *objfile = per_objfile->objfile;
10631 struct gdbarch *gdbarch = objfile->arch ();
10632 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10633 CORE_ADDR highpc = ((CORE_ADDR) 0);
10634 struct attribute *attr;
10635 struct die_info *child_die;
10636 CORE_ADDR baseaddr;
10637
10638 prepare_one_comp_unit (cu, die, cu->per_cu->lang);
10639 baseaddr = objfile->text_section_offset ();
10640
10641 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10642
10643 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10644 from finish_block. */
10645 if (lowpc == ((CORE_ADDR) -1))
10646 lowpc = highpc;
10647 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10648
10649 file_and_directory fnd = find_file_and_directory (die, cu);
10650
10651 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10652
10653 gdb_assert (per_objfile->sym_cu == nullptr);
10654 scoped_restore restore_sym_cu
10655 = make_scoped_restore (&per_objfile->sym_cu, cu);
10656
10657 /* Decode line number information if present. We do this before
10658 processing child DIEs, so that the line header table is available
10659 for DW_AT_decl_file. */
10660 handle_DW_AT_stmt_list (die, cu, fnd, lowpc);
10661
10662 /* Process all dies in compilation unit. */
10663 if (die->child != NULL)
10664 {
10665 child_die = die->child;
10666 while (child_die && child_die->tag)
10667 {
10668 process_die (child_die, cu);
10669 child_die = child_die->sibling;
10670 }
10671 }
10672 per_objfile->sym_cu = nullptr;
10673
10674 /* Decode macro information, if present. Dwarf 2 macro information
10675 refers to information in the line number info statement program
10676 header, so we can only read it if we've read the header
10677 successfully. */
10678 attr = dwarf2_attr (die, DW_AT_macros, cu);
10679 if (attr == NULL)
10680 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10681 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10682 {
10683 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10684 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10685
10686 dwarf_decode_macros (cu, attr->as_unsigned (), 1);
10687 }
10688 else
10689 {
10690 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10691 if (attr != nullptr && attr->form_is_unsigned () && cu->line_header)
10692 {
10693 unsigned int macro_offset = attr->as_unsigned ();
10694
10695 dwarf_decode_macros (cu, macro_offset, 0);
10696 }
10697 }
10698 }
10699
10700 void
10701 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10702 {
10703 struct type_unit_group *tu_group;
10704 int first_time;
10705 struct attribute *attr;
10706 unsigned int i;
10707 struct signatured_type *sig_type;
10708
10709 gdb_assert (per_cu->is_debug_types);
10710 sig_type = (struct signatured_type *) per_cu;
10711
10712 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10713
10714 /* If we're using .gdb_index (includes -readnow) then
10715 per_cu->type_unit_group may not have been set up yet. */
10716 if (sig_type->type_unit_group == NULL)
10717 sig_type->type_unit_group = get_type_unit_group (this, attr);
10718 tu_group = sig_type->type_unit_group;
10719
10720 /* If we've already processed this stmt_list there's no real need to
10721 do it again, we could fake it and just recreate the part we need
10722 (file name,index -> symtab mapping). If data shows this optimization
10723 is useful we can do it then. */
10724 type_unit_group_unshareable *tug_unshare
10725 = per_objfile->get_type_unit_group_unshareable (tu_group);
10726 first_time = tug_unshare->compunit_symtab == NULL;
10727
10728 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10729 debug info. */
10730 line_header_up lh;
10731 if (attr != NULL && attr->form_is_unsigned ())
10732 {
10733 sect_offset line_offset = (sect_offset) attr->as_unsigned ();
10734 lh = dwarf_decode_line_header (line_offset, this);
10735 }
10736 if (lh == NULL)
10737 {
10738 if (first_time)
10739 start_symtab ("", NULL, 0);
10740 else
10741 {
10742 gdb_assert (tug_unshare->symtabs == NULL);
10743 gdb_assert (m_builder == nullptr);
10744 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10745 m_builder.reset (new struct buildsym_compunit
10746 (COMPUNIT_OBJFILE (cust), "",
10747 COMPUNIT_DIRNAME (cust),
10748 compunit_language (cust),
10749 0, cust));
10750 list_in_scope = get_builder ()->get_file_symbols ();
10751 }
10752 return;
10753 }
10754
10755 line_header = lh.release ();
10756 line_header_die_owner = die;
10757
10758 if (first_time)
10759 {
10760 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10761
10762 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10763 still initializing it, and our caller (a few levels up)
10764 process_full_type_unit still needs to know if this is the first
10765 time. */
10766
10767 tug_unshare->symtabs
10768 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10769 struct symtab *, line_header->file_names_size ());
10770
10771 auto &file_names = line_header->file_names ();
10772 for (i = 0; i < file_names.size (); ++i)
10773 {
10774 file_entry &fe = file_names[i];
10775 dwarf2_start_subfile (this, fe.name,
10776 fe.include_dir (line_header));
10777 buildsym_compunit *b = get_builder ();
10778 if (b->get_current_subfile ()->symtab == NULL)
10779 {
10780 /* NOTE: start_subfile will recognize when it's been
10781 passed a file it has already seen. So we can't
10782 assume there's a simple mapping from
10783 cu->line_header->file_names to subfiles, plus
10784 cu->line_header->file_names may contain dups. */
10785 b->get_current_subfile ()->symtab
10786 = allocate_symtab (cust, b->get_current_subfile ()->name);
10787 }
10788
10789 fe.symtab = b->get_current_subfile ()->symtab;
10790 tug_unshare->symtabs[i] = fe.symtab;
10791 }
10792 }
10793 else
10794 {
10795 gdb_assert (m_builder == nullptr);
10796 struct compunit_symtab *cust = tug_unshare->compunit_symtab;
10797 m_builder.reset (new struct buildsym_compunit
10798 (COMPUNIT_OBJFILE (cust), "",
10799 COMPUNIT_DIRNAME (cust),
10800 compunit_language (cust),
10801 0, cust));
10802 list_in_scope = get_builder ()->get_file_symbols ();
10803
10804 auto &file_names = line_header->file_names ();
10805 for (i = 0; i < file_names.size (); ++i)
10806 {
10807 file_entry &fe = file_names[i];
10808 fe.symtab = tug_unshare->symtabs[i];
10809 }
10810 }
10811
10812 /* The main symtab is allocated last. Type units don't have DW_AT_name
10813 so they don't have a "real" (so to speak) symtab anyway.
10814 There is later code that will assign the main symtab to all symbols
10815 that don't have one. We need to handle the case of a symbol with a
10816 missing symtab (DW_AT_decl_file) anyway. */
10817 }
10818
10819 /* Process DW_TAG_type_unit.
10820 For TUs we want to skip the first top level sibling if it's not the
10821 actual type being defined by this TU. In this case the first top
10822 level sibling is there to provide context only. */
10823
10824 static void
10825 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10826 {
10827 struct die_info *child_die;
10828
10829 prepare_one_comp_unit (cu, die, language_minimal);
10830
10831 /* Initialize (or reinitialize) the machinery for building symtabs.
10832 We do this before processing child DIEs, so that the line header table
10833 is available for DW_AT_decl_file. */
10834 cu->setup_type_unit_groups (die);
10835
10836 if (die->child != NULL)
10837 {
10838 child_die = die->child;
10839 while (child_die && child_die->tag)
10840 {
10841 process_die (child_die, cu);
10842 child_die = child_die->sibling;
10843 }
10844 }
10845 }
10846 \f
10847 /* DWO/DWP files.
10848
10849 http://gcc.gnu.org/wiki/DebugFission
10850 http://gcc.gnu.org/wiki/DebugFissionDWP
10851
10852 To simplify handling of both DWO files ("object" files with the DWARF info)
10853 and DWP files (a file with the DWOs packaged up into one file), we treat
10854 DWP files as having a collection of virtual DWO files. */
10855
10856 static hashval_t
10857 hash_dwo_file (const void *item)
10858 {
10859 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10860 hashval_t hash;
10861
10862 hash = htab_hash_string (dwo_file->dwo_name);
10863 if (dwo_file->comp_dir != NULL)
10864 hash += htab_hash_string (dwo_file->comp_dir);
10865 return hash;
10866 }
10867
10868 static int
10869 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10870 {
10871 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
10872 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
10873
10874 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
10875 return 0;
10876 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
10877 return lhs->comp_dir == rhs->comp_dir;
10878 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
10879 }
10880
10881 /* Allocate a hash table for DWO files. */
10882
10883 static htab_up
10884 allocate_dwo_file_hash_table ()
10885 {
10886 return htab_up (htab_create_alloc (41,
10887 hash_dwo_file,
10888 eq_dwo_file,
10889 htab_delete_entry<dwo_file>,
10890 xcalloc, xfree));
10891 }
10892
10893 /* Lookup DWO file DWO_NAME. */
10894
10895 static void **
10896 lookup_dwo_file_slot (dwarf2_per_objfile *per_objfile,
10897 const char *dwo_name,
10898 const char *comp_dir)
10899 {
10900 struct dwo_file find_entry;
10901 void **slot;
10902
10903 if (per_objfile->per_bfd->dwo_files == NULL)
10904 per_objfile->per_bfd->dwo_files = allocate_dwo_file_hash_table ();
10905
10906 find_entry.dwo_name = dwo_name;
10907 find_entry.comp_dir = comp_dir;
10908 slot = htab_find_slot (per_objfile->per_bfd->dwo_files.get (), &find_entry,
10909 INSERT);
10910
10911 return slot;
10912 }
10913
10914 static hashval_t
10915 hash_dwo_unit (const void *item)
10916 {
10917 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
10918
10919 /* This drops the top 32 bits of the id, but is ok for a hash. */
10920 return dwo_unit->signature;
10921 }
10922
10923 static int
10924 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
10925 {
10926 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
10927 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
10928
10929 /* The signature is assumed to be unique within the DWO file.
10930 So while object file CU dwo_id's always have the value zero,
10931 that's OK, assuming each object file DWO file has only one CU,
10932 and that's the rule for now. */
10933 return lhs->signature == rhs->signature;
10934 }
10935
10936 /* Allocate a hash table for DWO CUs,TUs.
10937 There is one of these tables for each of CUs,TUs for each DWO file. */
10938
10939 static htab_up
10940 allocate_dwo_unit_table ()
10941 {
10942 /* Start out with a pretty small number.
10943 Generally DWO files contain only one CU and maybe some TUs. */
10944 return htab_up (htab_create_alloc (3,
10945 hash_dwo_unit,
10946 eq_dwo_unit,
10947 NULL, xcalloc, xfree));
10948 }
10949
10950 /* die_reader_func for create_dwo_cu. */
10951
10952 static void
10953 create_dwo_cu_reader (const struct die_reader_specs *reader,
10954 const gdb_byte *info_ptr,
10955 struct die_info *comp_unit_die,
10956 struct dwo_file *dwo_file,
10957 struct dwo_unit *dwo_unit)
10958 {
10959 struct dwarf2_cu *cu = reader->cu;
10960 sect_offset sect_off = cu->per_cu->sect_off;
10961 struct dwarf2_section_info *section = cu->per_cu->section;
10962
10963 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
10964 if (!signature.has_value ())
10965 {
10966 complaint (_("Dwarf Error: debug entry at offset %s is missing"
10967 " its dwo_id [in module %s]"),
10968 sect_offset_str (sect_off), dwo_file->dwo_name);
10969 return;
10970 }
10971
10972 dwo_unit->dwo_file = dwo_file;
10973 dwo_unit->signature = *signature;
10974 dwo_unit->section = section;
10975 dwo_unit->sect_off = sect_off;
10976 dwo_unit->length = cu->per_cu->length;
10977
10978 dwarf_read_debug_printf (" offset %s, dwo_id %s",
10979 sect_offset_str (sect_off),
10980 hex_string (dwo_unit->signature));
10981 }
10982
10983 /* Create the dwo_units for the CUs in a DWO_FILE.
10984 Note: This function processes DWO files only, not DWP files. */
10985
10986 static void
10987 create_cus_hash_table (dwarf2_per_objfile *per_objfile,
10988 dwarf2_cu *cu, struct dwo_file &dwo_file,
10989 dwarf2_section_info &section, htab_up &cus_htab)
10990 {
10991 struct objfile *objfile = per_objfile->objfile;
10992 dwarf2_per_bfd *per_bfd = per_objfile->per_bfd;
10993 const gdb_byte *info_ptr, *end_ptr;
10994
10995 section.read (objfile);
10996 info_ptr = section.buffer;
10997
10998 if (info_ptr == NULL)
10999 return;
11000
11001 dwarf_read_debug_printf ("Reading %s for %s:",
11002 section.get_name (),
11003 section.get_file_name ());
11004
11005 end_ptr = info_ptr + section.size;
11006 while (info_ptr < end_ptr)
11007 {
11008 struct dwarf2_per_cu_data per_cu;
11009 struct dwo_unit read_unit {};
11010 struct dwo_unit *dwo_unit;
11011 void **slot;
11012 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11013
11014 per_cu.per_bfd = per_bfd;
11015 per_cu.is_debug_types = 0;
11016 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11017 per_cu.section = &section;
11018
11019 cutu_reader reader (&per_cu, per_objfile, cu, &dwo_file);
11020 if (!reader.dummy_p)
11021 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11022 &dwo_file, &read_unit);
11023 info_ptr += per_cu.length;
11024
11025 // If the unit could not be parsed, skip it.
11026 if (read_unit.dwo_file == NULL)
11027 continue;
11028
11029 if (cus_htab == NULL)
11030 cus_htab = allocate_dwo_unit_table ();
11031
11032 dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack,
11033 struct dwo_unit);
11034 *dwo_unit = read_unit;
11035 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11036 gdb_assert (slot != NULL);
11037 if (*slot != NULL)
11038 {
11039 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11040 sect_offset dup_sect_off = dup_cu->sect_off;
11041
11042 complaint (_("debug cu entry at offset %s is duplicate to"
11043 " the entry at offset %s, signature %s"),
11044 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11045 hex_string (dwo_unit->signature));
11046 }
11047 *slot = (void *)dwo_unit;
11048 }
11049 }
11050
11051 /* DWP file .debug_{cu,tu}_index section format:
11052 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11053 [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"]
11054
11055 DWP Versions 1 & 2 are older, pre-standard format versions. The first
11056 officially standard DWP format was published with DWARF v5 and is called
11057 Version 5. There are no versions 3 or 4.
11058
11059 DWP Version 1:
11060
11061 Both index sections have the same format, and serve to map a 64-bit
11062 signature to a set of section numbers. Each section begins with a header,
11063 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11064 indexes, and a pool of 32-bit section numbers. The index sections will be
11065 aligned at 8-byte boundaries in the file.
11066
11067 The index section header consists of:
11068
11069 V, 32 bit version number
11070 -, 32 bits unused
11071 N, 32 bit number of compilation units or type units in the index
11072 M, 32 bit number of slots in the hash table
11073
11074 Numbers are recorded using the byte order of the application binary.
11075
11076 The hash table begins at offset 16 in the section, and consists of an array
11077 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11078 order of the application binary). Unused slots in the hash table are 0.
11079 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11080
11081 The parallel table begins immediately after the hash table
11082 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11083 array of 32-bit indexes (using the byte order of the application binary),
11084 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11085 table contains a 32-bit index into the pool of section numbers. For unused
11086 hash table slots, the corresponding entry in the parallel table will be 0.
11087
11088 The pool of section numbers begins immediately following the hash table
11089 (at offset 16 + 12 * M from the beginning of the section). The pool of
11090 section numbers consists of an array of 32-bit words (using the byte order
11091 of the application binary). Each item in the array is indexed starting
11092 from 0. The hash table entry provides the index of the first section
11093 number in the set. Additional section numbers in the set follow, and the
11094 set is terminated by a 0 entry (section number 0 is not used in ELF).
11095
11096 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11097 section must be the first entry in the set, and the .debug_abbrev.dwo must
11098 be the second entry. Other members of the set may follow in any order.
11099
11100 ---
11101
11102 DWP Versions 2 and 5:
11103
11104 DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one,
11105 and the entries in the index tables are now offsets into these sections.
11106 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11107 section.
11108
11109 Index Section Contents:
11110 Header
11111 Hash Table of Signatures dwp_hash_table.hash_table
11112 Parallel Table of Indices dwp_hash_table.unit_table
11113 Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets}
11114 Table of Section Sizes dwp_hash_table.{v2|v5}.sizes
11115
11116 The index section header consists of:
11117
11118 V, 32 bit version number
11119 L, 32 bit number of columns in the table of section offsets
11120 N, 32 bit number of compilation units or type units in the index
11121 M, 32 bit number of slots in the hash table
11122
11123 Numbers are recorded using the byte order of the application binary.
11124
11125 The hash table has the same format as version 1.
11126 The parallel table of indices has the same format as version 1,
11127 except that the entries are origin-1 indices into the table of sections
11128 offsets and the table of section sizes.
11129
11130 The table of offsets begins immediately following the parallel table
11131 (at offset 16 + 12 * M from the beginning of the section). The table is
11132 a two-dimensional array of 32-bit words (using the byte order of the
11133 application binary), with L columns and N+1 rows, in row-major order.
11134 Each row in the array is indexed starting from 0. The first row provides
11135 a key to the remaining rows: each column in this row provides an identifier
11136 for a debug section, and the offsets in the same column of subsequent rows
11137 refer to that section. The section identifiers for Version 2 are:
11138
11139 DW_SECT_INFO 1 .debug_info.dwo
11140 DW_SECT_TYPES 2 .debug_types.dwo
11141 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11142 DW_SECT_LINE 4 .debug_line.dwo
11143 DW_SECT_LOC 5 .debug_loc.dwo
11144 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11145 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11146 DW_SECT_MACRO 8 .debug_macro.dwo
11147
11148 The section identifiers for Version 5 are:
11149
11150 DW_SECT_INFO_V5 1 .debug_info.dwo
11151 DW_SECT_RESERVED_V5 2 --
11152 DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo
11153 DW_SECT_LINE_V5 4 .debug_line.dwo
11154 DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo
11155 DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo
11156 DW_SECT_MACRO_V5 7 .debug_macro.dwo
11157 DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo
11158
11159 The offsets provided by the CU and TU index sections are the base offsets
11160 for the contributions made by each CU or TU to the corresponding section
11161 in the package file. Each CU and TU header contains an abbrev_offset
11162 field, used to find the abbreviations table for that CU or TU within the
11163 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11164 be interpreted as relative to the base offset given in the index section.
11165 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11166 should be interpreted as relative to the base offset for .debug_line.dwo,
11167 and offsets into other debug sections obtained from DWARF attributes should
11168 also be interpreted as relative to the corresponding base offset.
11169
11170 The table of sizes begins immediately following the table of offsets.
11171 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11172 with L columns and N rows, in row-major order. Each row in the array is
11173 indexed starting from 1 (row 0 is shared by the two tables).
11174
11175 ---
11176
11177 Hash table lookup is handled the same in version 1 and 2:
11178
11179 We assume that N and M will not exceed 2^32 - 1.
11180 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11181
11182 Given a 64-bit compilation unit signature or a type signature S, an entry
11183 in the hash table is located as follows:
11184
11185 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11186 the low-order k bits all set to 1.
11187
11188 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11189
11190 3) If the hash table entry at index H matches the signature, use that
11191 entry. If the hash table entry at index H is unused (all zeroes),
11192 terminate the search: the signature is not present in the table.
11193
11194 4) Let H = (H + H') modulo M. Repeat at Step 3.
11195
11196 Because M > N and H' and M are relatively prime, the search is guaranteed
11197 to stop at an unused slot or find the match. */
11198
11199 /* Create a hash table to map DWO IDs to their CU/TU entry in
11200 .debug_{info,types}.dwo in DWP_FILE.
11201 Returns NULL if there isn't one.
11202 Note: This function processes DWP files only, not DWO files. */
11203
11204 static struct dwp_hash_table *
11205 create_dwp_hash_table (dwarf2_per_objfile *per_objfile,
11206 struct dwp_file *dwp_file, int is_debug_types)
11207 {
11208 struct objfile *objfile = per_objfile->objfile;
11209 bfd *dbfd = dwp_file->dbfd.get ();
11210 const gdb_byte *index_ptr, *index_end;
11211 struct dwarf2_section_info *index;
11212 uint32_t version, nr_columns, nr_units, nr_slots;
11213 struct dwp_hash_table *htab;
11214
11215 if (is_debug_types)
11216 index = &dwp_file->sections.tu_index;
11217 else
11218 index = &dwp_file->sections.cu_index;
11219
11220 if (index->empty ())
11221 return NULL;
11222 index->read (objfile);
11223
11224 index_ptr = index->buffer;
11225 index_end = index_ptr + index->size;
11226
11227 /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding.
11228 For now it's safe to just read 4 bytes (particularly as it's difficult to
11229 tell if you're dealing with Version 5 before you've read the version). */
11230 version = read_4_bytes (dbfd, index_ptr);
11231 index_ptr += 4;
11232 if (version == 2 || version == 5)
11233 nr_columns = read_4_bytes (dbfd, index_ptr);
11234 else
11235 nr_columns = 0;
11236 index_ptr += 4;
11237 nr_units = read_4_bytes (dbfd, index_ptr);
11238 index_ptr += 4;
11239 nr_slots = read_4_bytes (dbfd, index_ptr);
11240 index_ptr += 4;
11241
11242 if (version != 1 && version != 2 && version != 5)
11243 {
11244 error (_("Dwarf Error: unsupported DWP file version (%s)"
11245 " [in module %s]"),
11246 pulongest (version), dwp_file->name);
11247 }
11248 if (nr_slots != (nr_slots & -nr_slots))
11249 {
11250 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11251 " is not power of 2 [in module %s]"),
11252 pulongest (nr_slots), dwp_file->name);
11253 }
11254
11255 htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table);
11256 htab->version = version;
11257 htab->nr_columns = nr_columns;
11258 htab->nr_units = nr_units;
11259 htab->nr_slots = nr_slots;
11260 htab->hash_table = index_ptr;
11261 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11262
11263 /* Exit early if the table is empty. */
11264 if (nr_slots == 0 || nr_units == 0
11265 || (version == 2 && nr_columns == 0)
11266 || (version == 5 && nr_columns == 0))
11267 {
11268 /* All must be zero. */
11269 if (nr_slots != 0 || nr_units != 0
11270 || (version == 2 && nr_columns != 0)
11271 || (version == 5 && nr_columns != 0))
11272 {
11273 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11274 " all zero [in modules %s]"),
11275 dwp_file->name);
11276 }
11277 return htab;
11278 }
11279
11280 if (version == 1)
11281 {
11282 htab->section_pool.v1.indices =
11283 htab->unit_table + sizeof (uint32_t) * nr_slots;
11284 /* It's harder to decide whether the section is too small in v1.
11285 V1 is deprecated anyway so we punt. */
11286 }
11287 else if (version == 2)
11288 {
11289 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11290 int *ids = htab->section_pool.v2.section_ids;
11291 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11292 /* Reverse map for error checking. */
11293 int ids_seen[DW_SECT_MAX + 1];
11294 int i;
11295
11296 if (nr_columns < 2)
11297 {
11298 error (_("Dwarf Error: bad DWP hash table, too few columns"
11299 " in section table [in module %s]"),
11300 dwp_file->name);
11301 }
11302 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11303 {
11304 error (_("Dwarf Error: bad DWP hash table, too many columns"
11305 " in section table [in module %s]"),
11306 dwp_file->name);
11307 }
11308 memset (ids, 255, sizeof_ids);
11309 memset (ids_seen, 255, sizeof (ids_seen));
11310 for (i = 0; i < nr_columns; ++i)
11311 {
11312 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11313
11314 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11315 {
11316 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11317 " in section table [in module %s]"),
11318 id, dwp_file->name);
11319 }
11320 if (ids_seen[id] != -1)
11321 {
11322 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11323 " id %d in section table [in module %s]"),
11324 id, dwp_file->name);
11325 }
11326 ids_seen[id] = i;
11327 ids[i] = id;
11328 }
11329 /* Must have exactly one info or types section. */
11330 if (((ids_seen[DW_SECT_INFO] != -1)
11331 + (ids_seen[DW_SECT_TYPES] != -1))
11332 != 1)
11333 {
11334 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11335 " DWO info/types section [in module %s]"),
11336 dwp_file->name);
11337 }
11338 /* Must have an abbrev section. */
11339 if (ids_seen[DW_SECT_ABBREV] == -1)
11340 {
11341 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11342 " section [in module %s]"),
11343 dwp_file->name);
11344 }
11345 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11346 htab->section_pool.v2.sizes =
11347 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11348 * nr_units * nr_columns);
11349 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11350 * nr_units * nr_columns))
11351 > index_end)
11352 {
11353 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11354 " [in module %s]"),
11355 dwp_file->name);
11356 }
11357 }
11358 else /* version == 5 */
11359 {
11360 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11361 int *ids = htab->section_pool.v5.section_ids;
11362 size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids);
11363 /* Reverse map for error checking. */
11364 int ids_seen[DW_SECT_MAX_V5 + 1];
11365
11366 if (nr_columns < 2)
11367 {
11368 error (_("Dwarf Error: bad DWP hash table, too few columns"
11369 " in section table [in module %s]"),
11370 dwp_file->name);
11371 }
11372 if (nr_columns > MAX_NR_V5_DWO_SECTIONS)
11373 {
11374 error (_("Dwarf Error: bad DWP hash table, too many columns"
11375 " in section table [in module %s]"),
11376 dwp_file->name);
11377 }
11378 memset (ids, 255, sizeof_ids);
11379 memset (ids_seen, 255, sizeof (ids_seen));
11380 for (int i = 0; i < nr_columns; ++i)
11381 {
11382 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11383
11384 if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5)
11385 {
11386 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11387 " in section table [in module %s]"),
11388 id, dwp_file->name);
11389 }
11390 if (ids_seen[id] != -1)
11391 {
11392 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11393 " id %d in section table [in module %s]"),
11394 id, dwp_file->name);
11395 }
11396 ids_seen[id] = i;
11397 ids[i] = id;
11398 }
11399 /* Must have seen an info section. */
11400 if (ids_seen[DW_SECT_INFO_V5] == -1)
11401 {
11402 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11403 " DWO info/types section [in module %s]"),
11404 dwp_file->name);
11405 }
11406 /* Must have an abbrev section. */
11407 if (ids_seen[DW_SECT_ABBREV_V5] == -1)
11408 {
11409 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11410 " section [in module %s]"),
11411 dwp_file->name);
11412 }
11413 htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11414 htab->section_pool.v5.sizes
11415 = htab->section_pool.v5.offsets + (sizeof (uint32_t)
11416 * nr_units * nr_columns);
11417 if ((htab->section_pool.v5.sizes + (sizeof (uint32_t)
11418 * nr_units * nr_columns))
11419 > index_end)
11420 {
11421 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11422 " [in module %s]"),
11423 dwp_file->name);
11424 }
11425 }
11426
11427 return htab;
11428 }
11429
11430 /* Update SECTIONS with the data from SECTP.
11431
11432 This function is like the other "locate" section routines, but in
11433 this context the sections to read comes from the DWP V1 hash table,
11434 not the full ELF section table.
11435
11436 The result is non-zero for success, or zero if an error was found. */
11437
11438 static int
11439 locate_v1_virtual_dwo_sections (asection *sectp,
11440 struct virtual_v1_dwo_sections *sections)
11441 {
11442 const struct dwop_section_names *names = &dwop_section_names;
11443
11444 if (names->abbrev_dwo.matches (sectp->name))
11445 {
11446 /* There can be only one. */
11447 if (sections->abbrev.s.section != NULL)
11448 return 0;
11449 sections->abbrev.s.section = sectp;
11450 sections->abbrev.size = bfd_section_size (sectp);
11451 }
11452 else if (names->info_dwo.matches (sectp->name)
11453 || names->types_dwo.matches (sectp->name))
11454 {
11455 /* There can be only one. */
11456 if (sections->info_or_types.s.section != NULL)
11457 return 0;
11458 sections->info_or_types.s.section = sectp;
11459 sections->info_or_types.size = bfd_section_size (sectp);
11460 }
11461 else if (names->line_dwo.matches (sectp->name))
11462 {
11463 /* There can be only one. */
11464 if (sections->line.s.section != NULL)
11465 return 0;
11466 sections->line.s.section = sectp;
11467 sections->line.size = bfd_section_size (sectp);
11468 }
11469 else if (names->loc_dwo.matches (sectp->name))
11470 {
11471 /* There can be only one. */
11472 if (sections->loc.s.section != NULL)
11473 return 0;
11474 sections->loc.s.section = sectp;
11475 sections->loc.size = bfd_section_size (sectp);
11476 }
11477 else if (names->macinfo_dwo.matches (sectp->name))
11478 {
11479 /* There can be only one. */
11480 if (sections->macinfo.s.section != NULL)
11481 return 0;
11482 sections->macinfo.s.section = sectp;
11483 sections->macinfo.size = bfd_section_size (sectp);
11484 }
11485 else if (names->macro_dwo.matches (sectp->name))
11486 {
11487 /* There can be only one. */
11488 if (sections->macro.s.section != NULL)
11489 return 0;
11490 sections->macro.s.section = sectp;
11491 sections->macro.size = bfd_section_size (sectp);
11492 }
11493 else if (names->str_offsets_dwo.matches (sectp->name))
11494 {
11495 /* There can be only one. */
11496 if (sections->str_offsets.s.section != NULL)
11497 return 0;
11498 sections->str_offsets.s.section = sectp;
11499 sections->str_offsets.size = bfd_section_size (sectp);
11500 }
11501 else
11502 {
11503 /* No other kind of section is valid. */
11504 return 0;
11505 }
11506
11507 return 1;
11508 }
11509
11510 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11511 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11512 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11513 This is for DWP version 1 files. */
11514
11515 static struct dwo_unit *
11516 create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile *per_objfile,
11517 struct dwp_file *dwp_file,
11518 uint32_t unit_index,
11519 const char *comp_dir,
11520 ULONGEST signature, int is_debug_types)
11521 {
11522 const struct dwp_hash_table *dwp_htab =
11523 is_debug_types ? dwp_file->tus : dwp_file->cus;
11524 bfd *dbfd = dwp_file->dbfd.get ();
11525 const char *kind = is_debug_types ? "TU" : "CU";
11526 struct dwo_file *dwo_file;
11527 struct dwo_unit *dwo_unit;
11528 struct virtual_v1_dwo_sections sections;
11529 void **dwo_file_slot;
11530 int i;
11531
11532 gdb_assert (dwp_file->version == 1);
11533
11534 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V1 file: %s",
11535 kind, pulongest (unit_index), hex_string (signature),
11536 dwp_file->name);
11537
11538 /* Fetch the sections of this DWO unit.
11539 Put a limit on the number of sections we look for so that bad data
11540 doesn't cause us to loop forever. */
11541
11542 #define MAX_NR_V1_DWO_SECTIONS \
11543 (1 /* .debug_info or .debug_types */ \
11544 + 1 /* .debug_abbrev */ \
11545 + 1 /* .debug_line */ \
11546 + 1 /* .debug_loc */ \
11547 + 1 /* .debug_str_offsets */ \
11548 + 1 /* .debug_macro or .debug_macinfo */ \
11549 + 1 /* trailing zero */)
11550
11551 memset (&sections, 0, sizeof (sections));
11552
11553 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11554 {
11555 asection *sectp;
11556 uint32_t section_nr =
11557 read_4_bytes (dbfd,
11558 dwp_htab->section_pool.v1.indices
11559 + (unit_index + i) * sizeof (uint32_t));
11560
11561 if (section_nr == 0)
11562 break;
11563 if (section_nr >= dwp_file->num_sections)
11564 {
11565 error (_("Dwarf Error: bad DWP hash table, section number too large"
11566 " [in module %s]"),
11567 dwp_file->name);
11568 }
11569
11570 sectp = dwp_file->elf_sections[section_nr];
11571 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11572 {
11573 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11574 " [in module %s]"),
11575 dwp_file->name);
11576 }
11577 }
11578
11579 if (i < 2
11580 || sections.info_or_types.empty ()
11581 || sections.abbrev.empty ())
11582 {
11583 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11584 " [in module %s]"),
11585 dwp_file->name);
11586 }
11587 if (i == MAX_NR_V1_DWO_SECTIONS)
11588 {
11589 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11590 " [in module %s]"),
11591 dwp_file->name);
11592 }
11593
11594 /* It's easier for the rest of the code if we fake a struct dwo_file and
11595 have dwo_unit "live" in that. At least for now.
11596
11597 The DWP file can be made up of a random collection of CUs and TUs.
11598 However, for each CU + set of TUs that came from the same original DWO
11599 file, we can combine them back into a virtual DWO file to save space
11600 (fewer struct dwo_file objects to allocate). Remember that for really
11601 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11602
11603 std::string virtual_dwo_name =
11604 string_printf ("virtual-dwo/%d-%d-%d-%d",
11605 sections.abbrev.get_id (),
11606 sections.line.get_id (),
11607 sections.loc.get_id (),
11608 sections.str_offsets.get_id ());
11609 /* Can we use an existing virtual DWO file? */
11610 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11611 comp_dir);
11612 /* Create one if necessary. */
11613 if (*dwo_file_slot == NULL)
11614 {
11615 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11616 virtual_dwo_name.c_str ());
11617
11618 dwo_file = new struct dwo_file;
11619 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11620 dwo_file->comp_dir = comp_dir;
11621 dwo_file->sections.abbrev = sections.abbrev;
11622 dwo_file->sections.line = sections.line;
11623 dwo_file->sections.loc = sections.loc;
11624 dwo_file->sections.macinfo = sections.macinfo;
11625 dwo_file->sections.macro = sections.macro;
11626 dwo_file->sections.str_offsets = sections.str_offsets;
11627 /* The "str" section is global to the entire DWP file. */
11628 dwo_file->sections.str = dwp_file->sections.str;
11629 /* The info or types section is assigned below to dwo_unit,
11630 there's no need to record it in dwo_file.
11631 Also, we can't simply record type sections in dwo_file because
11632 we record a pointer into the vector in dwo_unit. As we collect more
11633 types we'll grow the vector and eventually have to reallocate space
11634 for it, invalidating all copies of pointers into the previous
11635 contents. */
11636 *dwo_file_slot = dwo_file;
11637 }
11638 else
11639 {
11640 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11641 virtual_dwo_name.c_str ());
11642
11643 dwo_file = (struct dwo_file *) *dwo_file_slot;
11644 }
11645
11646 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11647 dwo_unit->dwo_file = dwo_file;
11648 dwo_unit->signature = signature;
11649 dwo_unit->section =
11650 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11651 *dwo_unit->section = sections.info_or_types;
11652 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11653
11654 return dwo_unit;
11655 }
11656
11657 /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to
11658 simplify them. Given a pointer to the containing section SECTION, and
11659 OFFSET,SIZE of the piece within that section used by a TU/CU, return a
11660 virtual section of just that piece. */
11661
11662 static struct dwarf2_section_info
11663 create_dwp_v2_or_v5_section (dwarf2_per_objfile *per_objfile,
11664 struct dwarf2_section_info *section,
11665 bfd_size_type offset, bfd_size_type size)
11666 {
11667 struct dwarf2_section_info result;
11668 asection *sectp;
11669
11670 gdb_assert (section != NULL);
11671 gdb_assert (!section->is_virtual);
11672
11673 memset (&result, 0, sizeof (result));
11674 result.s.containing_section = section;
11675 result.is_virtual = true;
11676
11677 if (size == 0)
11678 return result;
11679
11680 sectp = section->get_bfd_section ();
11681
11682 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11683 bounds of the real section. This is a pretty-rare event, so just
11684 flag an error (easier) instead of a warning and trying to cope. */
11685 if (sectp == NULL
11686 || offset + size > bfd_section_size (sectp))
11687 {
11688 error (_("Dwarf Error: Bad DWP V2 or V5 section info, doesn't fit"
11689 " in section %s [in module %s]"),
11690 sectp ? bfd_section_name (sectp) : "<unknown>",
11691 objfile_name (per_objfile->objfile));
11692 }
11693
11694 result.virtual_offset = offset;
11695 result.size = size;
11696 return result;
11697 }
11698
11699 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11700 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11701 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11702 This is for DWP version 2 files. */
11703
11704 static struct dwo_unit *
11705 create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile *per_objfile,
11706 struct dwp_file *dwp_file,
11707 uint32_t unit_index,
11708 const char *comp_dir,
11709 ULONGEST signature, int is_debug_types)
11710 {
11711 const struct dwp_hash_table *dwp_htab =
11712 is_debug_types ? dwp_file->tus : dwp_file->cus;
11713 bfd *dbfd = dwp_file->dbfd.get ();
11714 const char *kind = is_debug_types ? "TU" : "CU";
11715 struct dwo_file *dwo_file;
11716 struct dwo_unit *dwo_unit;
11717 struct virtual_v2_or_v5_dwo_sections sections;
11718 void **dwo_file_slot;
11719 int i;
11720
11721 gdb_assert (dwp_file->version == 2);
11722
11723 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V2 file: %s",
11724 kind, pulongest (unit_index), hex_string (signature),
11725 dwp_file->name);
11726
11727 /* Fetch the section offsets of this DWO unit. */
11728
11729 memset (&sections, 0, sizeof (sections));
11730
11731 for (i = 0; i < dwp_htab->nr_columns; ++i)
11732 {
11733 uint32_t offset = read_4_bytes (dbfd,
11734 dwp_htab->section_pool.v2.offsets
11735 + (((unit_index - 1) * dwp_htab->nr_columns
11736 + i)
11737 * sizeof (uint32_t)));
11738 uint32_t size = read_4_bytes (dbfd,
11739 dwp_htab->section_pool.v2.sizes
11740 + (((unit_index - 1) * dwp_htab->nr_columns
11741 + i)
11742 * sizeof (uint32_t)));
11743
11744 switch (dwp_htab->section_pool.v2.section_ids[i])
11745 {
11746 case DW_SECT_INFO:
11747 case DW_SECT_TYPES:
11748 sections.info_or_types_offset = offset;
11749 sections.info_or_types_size = size;
11750 break;
11751 case DW_SECT_ABBREV:
11752 sections.abbrev_offset = offset;
11753 sections.abbrev_size = size;
11754 break;
11755 case DW_SECT_LINE:
11756 sections.line_offset = offset;
11757 sections.line_size = size;
11758 break;
11759 case DW_SECT_LOC:
11760 sections.loc_offset = offset;
11761 sections.loc_size = size;
11762 break;
11763 case DW_SECT_STR_OFFSETS:
11764 sections.str_offsets_offset = offset;
11765 sections.str_offsets_size = size;
11766 break;
11767 case DW_SECT_MACINFO:
11768 sections.macinfo_offset = offset;
11769 sections.macinfo_size = size;
11770 break;
11771 case DW_SECT_MACRO:
11772 sections.macro_offset = offset;
11773 sections.macro_size = size;
11774 break;
11775 }
11776 }
11777
11778 /* It's easier for the rest of the code if we fake a struct dwo_file and
11779 have dwo_unit "live" in that. At least for now.
11780
11781 The DWP file can be made up of a random collection of CUs and TUs.
11782 However, for each CU + set of TUs that came from the same original DWO
11783 file, we can combine them back into a virtual DWO file to save space
11784 (fewer struct dwo_file objects to allocate). Remember that for really
11785 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11786
11787 std::string virtual_dwo_name =
11788 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11789 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11790 (long) (sections.line_size ? sections.line_offset : 0),
11791 (long) (sections.loc_size ? sections.loc_offset : 0),
11792 (long) (sections.str_offsets_size
11793 ? sections.str_offsets_offset : 0));
11794 /* Can we use an existing virtual DWO file? */
11795 dwo_file_slot = lookup_dwo_file_slot (per_objfile, virtual_dwo_name.c_str (),
11796 comp_dir);
11797 /* Create one if necessary. */
11798 if (*dwo_file_slot == NULL)
11799 {
11800 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11801 virtual_dwo_name.c_str ());
11802
11803 dwo_file = new struct dwo_file;
11804 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11805 dwo_file->comp_dir = comp_dir;
11806 dwo_file->sections.abbrev =
11807 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.abbrev,
11808 sections.abbrev_offset,
11809 sections.abbrev_size);
11810 dwo_file->sections.line =
11811 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.line,
11812 sections.line_offset,
11813 sections.line_size);
11814 dwo_file->sections.loc =
11815 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.loc,
11816 sections.loc_offset, sections.loc_size);
11817 dwo_file->sections.macinfo =
11818 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macinfo,
11819 sections.macinfo_offset,
11820 sections.macinfo_size);
11821 dwo_file->sections.macro =
11822 create_dwp_v2_or_v5_section (per_objfile, &dwp_file->sections.macro,
11823 sections.macro_offset,
11824 sections.macro_size);
11825 dwo_file->sections.str_offsets =
11826 create_dwp_v2_or_v5_section (per_objfile,
11827 &dwp_file->sections.str_offsets,
11828 sections.str_offsets_offset,
11829 sections.str_offsets_size);
11830 /* The "str" section is global to the entire DWP file. */
11831 dwo_file->sections.str = dwp_file->sections.str;
11832 /* The info or types section is assigned below to dwo_unit,
11833 there's no need to record it in dwo_file.
11834 Also, we can't simply record type sections in dwo_file because
11835 we record a pointer into the vector in dwo_unit. As we collect more
11836 types we'll grow the vector and eventually have to reallocate space
11837 for it, invalidating all copies of pointers into the previous
11838 contents. */
11839 *dwo_file_slot = dwo_file;
11840 }
11841 else
11842 {
11843 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
11844 virtual_dwo_name.c_str ());
11845
11846 dwo_file = (struct dwo_file *) *dwo_file_slot;
11847 }
11848
11849 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
11850 dwo_unit->dwo_file = dwo_file;
11851 dwo_unit->signature = signature;
11852 dwo_unit->section =
11853 XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
11854 *dwo_unit->section = create_dwp_v2_or_v5_section
11855 (per_objfile,
11856 is_debug_types
11857 ? &dwp_file->sections.types
11858 : &dwp_file->sections.info,
11859 sections.info_or_types_offset,
11860 sections.info_or_types_size);
11861 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11862
11863 return dwo_unit;
11864 }
11865
11866 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11867 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11868 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11869 This is for DWP version 5 files. */
11870
11871 static struct dwo_unit *
11872 create_dwo_unit_in_dwp_v5 (dwarf2_per_objfile *per_objfile,
11873 struct dwp_file *dwp_file,
11874 uint32_t unit_index,
11875 const char *comp_dir,
11876 ULONGEST signature, int is_debug_types)
11877 {
11878 const struct dwp_hash_table *dwp_htab
11879 = is_debug_types ? dwp_file->tus : dwp_file->cus;
11880 bfd *dbfd = dwp_file->dbfd.get ();
11881 const char *kind = is_debug_types ? "TU" : "CU";
11882 struct dwo_file *dwo_file;
11883 struct dwo_unit *dwo_unit;
11884 struct virtual_v2_or_v5_dwo_sections sections {};
11885 void **dwo_file_slot;
11886
11887 gdb_assert (dwp_file->version == 5);
11888
11889 dwarf_read_debug_printf ("Reading %s %s/%s in DWP V5 file: %s",
11890 kind, pulongest (unit_index), hex_string (signature),
11891 dwp_file->name);
11892
11893 /* Fetch the section offsets of this DWO unit. */
11894
11895 /* memset (&sections, 0, sizeof (sections)); */
11896
11897 for (int i = 0; i < dwp_htab->nr_columns; ++i)
11898 {
11899 uint32_t offset = read_4_bytes (dbfd,
11900 dwp_htab->section_pool.v5.offsets
11901 + (((unit_index - 1)
11902 * dwp_htab->nr_columns
11903 + i)
11904 * sizeof (uint32_t)));
11905 uint32_t size = read_4_bytes (dbfd,
11906 dwp_htab->section_pool.v5.sizes
11907 + (((unit_index - 1) * dwp_htab->nr_columns
11908 + i)
11909 * sizeof (uint32_t)));
11910
11911 switch (dwp_htab->section_pool.v5.section_ids[i])
11912 {
11913 case DW_SECT_ABBREV_V5:
11914 sections.abbrev_offset = offset;
11915 sections.abbrev_size = size;
11916 break;
11917 case DW_SECT_INFO_V5:
11918 sections.info_or_types_offset = offset;
11919 sections.info_or_types_size = size;
11920 break;
11921 case DW_SECT_LINE_V5:
11922 sections.line_offset = offset;
11923 sections.line_size = size;
11924 break;
11925 case DW_SECT_LOCLISTS_V5:
11926 sections.loclists_offset = offset;
11927 sections.loclists_size = size;
11928 break;
11929 case DW_SECT_MACRO_V5:
11930 sections.macro_offset = offset;
11931 sections.macro_size = size;
11932 break;
11933 case DW_SECT_RNGLISTS_V5:
11934 sections.rnglists_offset = offset;
11935 sections.rnglists_size = size;
11936 break;
11937 case DW_SECT_STR_OFFSETS_V5:
11938 sections.str_offsets_offset = offset;
11939 sections.str_offsets_size = size;
11940 break;
11941 case DW_SECT_RESERVED_V5:
11942 default:
11943 break;
11944 }
11945 }
11946
11947 /* It's easier for the rest of the code if we fake a struct dwo_file and
11948 have dwo_unit "live" in that. At least for now.
11949
11950 The DWP file can be made up of a random collection of CUs and TUs.
11951 However, for each CU + set of TUs that came from the same original DWO
11952 file, we can combine them back into a virtual DWO file to save space
11953 (fewer struct dwo_file objects to allocate). Remember that for really
11954 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11955
11956 std::string virtual_dwo_name =
11957 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld",
11958 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11959 (long) (sections.line_size ? sections.line_offset : 0),
11960 (long) (sections.loclists_size ? sections.loclists_offset : 0),
11961 (long) (sections.str_offsets_size
11962 ? sections.str_offsets_offset : 0),
11963 (long) (sections.macro_size ? sections.macro_offset : 0),
11964 (long) (sections.rnglists_size ? sections.rnglists_offset: 0));
11965 /* Can we use an existing virtual DWO file? */
11966 dwo_file_slot = lookup_dwo_file_slot (per_objfile,
11967 virtual_dwo_name.c_str (),
11968 comp_dir);
11969 /* Create one if necessary. */
11970 if (*dwo_file_slot == NULL)
11971 {
11972 dwarf_read_debug_printf ("Creating virtual DWO: %s",
11973 virtual_dwo_name.c_str ());
11974
11975 dwo_file = new struct dwo_file;
11976 dwo_file->dwo_name = per_objfile->objfile->intern (virtual_dwo_name);
11977 dwo_file->comp_dir = comp_dir;
11978 dwo_file->sections.abbrev =
11979 create_dwp_v2_or_v5_section (per_objfile,
11980 &dwp_file->sections.abbrev,
11981 sections.abbrev_offset,
11982 sections.abbrev_size);
11983 dwo_file->sections.line =
11984 create_dwp_v2_or_v5_section (per_objfile,
11985 &dwp_file->sections.line,
11986 sections.line_offset, sections.line_size);
11987 dwo_file->sections.macro =
11988 create_dwp_v2_or_v5_section (per_objfile,
11989 &dwp_file->sections.macro,
11990 sections.macro_offset,
11991 sections.macro_size);
11992 dwo_file->sections.loclists =
11993 create_dwp_v2_or_v5_section (per_objfile,
11994 &dwp_file->sections.loclists,
11995 sections.loclists_offset,
11996 sections.loclists_size);
11997 dwo_file->sections.rnglists =
11998 create_dwp_v2_or_v5_section (per_objfile,
11999 &dwp_file->sections.rnglists,
12000 sections.rnglists_offset,
12001 sections.rnglists_size);
12002 dwo_file->sections.str_offsets =
12003 create_dwp_v2_or_v5_section (per_objfile,
12004 &dwp_file->sections.str_offsets,
12005 sections.str_offsets_offset,
12006 sections.str_offsets_size);
12007 /* The "str" section is global to the entire DWP file. */
12008 dwo_file->sections.str = dwp_file->sections.str;
12009 /* The info or types section is assigned below to dwo_unit,
12010 there's no need to record it in dwo_file.
12011 Also, we can't simply record type sections in dwo_file because
12012 we record a pointer into the vector in dwo_unit. As we collect more
12013 types we'll grow the vector and eventually have to reallocate space
12014 for it, invalidating all copies of pointers into the previous
12015 contents. */
12016 *dwo_file_slot = dwo_file;
12017 }
12018 else
12019 {
12020 dwarf_read_debug_printf ("Using existing virtual DWO: %s",
12021 virtual_dwo_name.c_str ());
12022
12023 dwo_file = (struct dwo_file *) *dwo_file_slot;
12024 }
12025
12026 dwo_unit = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwo_unit);
12027 dwo_unit->dwo_file = dwo_file;
12028 dwo_unit->signature = signature;
12029 dwo_unit->section
12030 = XOBNEW (&per_objfile->per_bfd->obstack, struct dwarf2_section_info);
12031 *dwo_unit->section = create_dwp_v2_or_v5_section (per_objfile,
12032 &dwp_file->sections.info,
12033 sections.info_or_types_offset,
12034 sections.info_or_types_size);
12035 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12036
12037 return dwo_unit;
12038 }
12039
12040 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12041 Returns NULL if the signature isn't found. */
12042
12043 static struct dwo_unit *
12044 lookup_dwo_unit_in_dwp (dwarf2_per_objfile *per_objfile,
12045 struct dwp_file *dwp_file, const char *comp_dir,
12046 ULONGEST signature, int is_debug_types)
12047 {
12048 const struct dwp_hash_table *dwp_htab =
12049 is_debug_types ? dwp_file->tus : dwp_file->cus;
12050 bfd *dbfd = dwp_file->dbfd.get ();
12051 uint32_t mask = dwp_htab->nr_slots - 1;
12052 uint32_t hash = signature & mask;
12053 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12054 unsigned int i;
12055 void **slot;
12056 struct dwo_unit find_dwo_cu;
12057
12058 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12059 find_dwo_cu.signature = signature;
12060 slot = htab_find_slot (is_debug_types
12061 ? dwp_file->loaded_tus.get ()
12062 : dwp_file->loaded_cus.get (),
12063 &find_dwo_cu, INSERT);
12064
12065 if (*slot != NULL)
12066 return (struct dwo_unit *) *slot;
12067
12068 /* Use a for loop so that we don't loop forever on bad debug info. */
12069 for (i = 0; i < dwp_htab->nr_slots; ++i)
12070 {
12071 ULONGEST signature_in_table;
12072
12073 signature_in_table =
12074 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12075 if (signature_in_table == signature)
12076 {
12077 uint32_t unit_index =
12078 read_4_bytes (dbfd,
12079 dwp_htab->unit_table + hash * sizeof (uint32_t));
12080
12081 if (dwp_file->version == 1)
12082 {
12083 *slot = create_dwo_unit_in_dwp_v1 (per_objfile, dwp_file,
12084 unit_index, comp_dir,
12085 signature, is_debug_types);
12086 }
12087 else if (dwp_file->version == 2)
12088 {
12089 *slot = create_dwo_unit_in_dwp_v2 (per_objfile, dwp_file,
12090 unit_index, comp_dir,
12091 signature, is_debug_types);
12092 }
12093 else /* version == 5 */
12094 {
12095 *slot = create_dwo_unit_in_dwp_v5 (per_objfile, dwp_file,
12096 unit_index, comp_dir,
12097 signature, is_debug_types);
12098 }
12099 return (struct dwo_unit *) *slot;
12100 }
12101 if (signature_in_table == 0)
12102 return NULL;
12103 hash = (hash + hash2) & mask;
12104 }
12105
12106 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12107 " [in module %s]"),
12108 dwp_file->name);
12109 }
12110
12111 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12112 Open the file specified by FILE_NAME and hand it off to BFD for
12113 preliminary analysis. Return a newly initialized bfd *, which
12114 includes a canonicalized copy of FILE_NAME.
12115 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12116 SEARCH_CWD is true if the current directory is to be searched.
12117 It will be searched before debug-file-directory.
12118 If successful, the file is added to the bfd include table of the
12119 objfile's bfd (see gdb_bfd_record_inclusion).
12120 If unable to find/open the file, return NULL.
12121 NOTE: This function is derived from symfile_bfd_open. */
12122
12123 static gdb_bfd_ref_ptr
12124 try_open_dwop_file (dwarf2_per_objfile *per_objfile,
12125 const char *file_name, int is_dwp, int search_cwd)
12126 {
12127 int desc;
12128 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12129 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12130 to debug_file_directory. */
12131 const char *search_path;
12132 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12133
12134 gdb::unique_xmalloc_ptr<char> search_path_holder;
12135 if (search_cwd)
12136 {
12137 if (*debug_file_directory != '\0')
12138 {
12139 search_path_holder.reset (concat (".", dirname_separator_string,
12140 debug_file_directory,
12141 (char *) NULL));
12142 search_path = search_path_holder.get ();
12143 }
12144 else
12145 search_path = ".";
12146 }
12147 else
12148 search_path = debug_file_directory;
12149
12150 /* Add the path for the executable binary to the list of search paths. */
12151 std::string objfile_dir = ldirname (objfile_name (per_objfile->objfile));
12152 search_path_holder.reset (concat (objfile_dir.c_str (),
12153 dirname_separator_string,
12154 search_path, nullptr));
12155 search_path = search_path_holder.get ();
12156
12157 openp_flags flags = OPF_RETURN_REALPATH;
12158 if (is_dwp)
12159 flags |= OPF_SEARCH_IN_PATH;
12160
12161 gdb::unique_xmalloc_ptr<char> absolute_name;
12162 desc = openp (search_path, flags, file_name,
12163 O_RDONLY | O_BINARY, &absolute_name);
12164 if (desc < 0)
12165 return NULL;
12166
12167 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12168 gnutarget, desc));
12169 if (sym_bfd == NULL)
12170 return NULL;
12171 bfd_set_cacheable (sym_bfd.get (), 1);
12172
12173 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12174 return NULL;
12175
12176 /* Success. Record the bfd as having been included by the objfile's bfd.
12177 This is important because things like demangled_names_hash lives in the
12178 objfile's per_bfd space and may have references to things like symbol
12179 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12180 gdb_bfd_record_inclusion (per_objfile->objfile->obfd, sym_bfd.get ());
12181
12182 return sym_bfd;
12183 }
12184
12185 /* Try to open DWO file FILE_NAME.
12186 COMP_DIR is the DW_AT_comp_dir attribute.
12187 The result is the bfd handle of the file.
12188 If there is a problem finding or opening the file, return NULL.
12189 Upon success, the canonicalized path of the file is stored in the bfd,
12190 same as symfile_bfd_open. */
12191
12192 static gdb_bfd_ref_ptr
12193 open_dwo_file (dwarf2_per_objfile *per_objfile,
12194 const char *file_name, const char *comp_dir)
12195 {
12196 if (IS_ABSOLUTE_PATH (file_name))
12197 return try_open_dwop_file (per_objfile, file_name,
12198 0 /*is_dwp*/, 0 /*search_cwd*/);
12199
12200 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12201
12202 if (comp_dir != NULL)
12203 {
12204 gdb::unique_xmalloc_ptr<char> path_to_try
12205 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12206
12207 /* NOTE: If comp_dir is a relative path, this will also try the
12208 search path, which seems useful. */
12209 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, path_to_try.get (),
12210 0 /*is_dwp*/,
12211 1 /*search_cwd*/));
12212 if (abfd != NULL)
12213 return abfd;
12214 }
12215
12216 /* That didn't work, try debug-file-directory, which, despite its name,
12217 is a list of paths. */
12218
12219 if (*debug_file_directory == '\0')
12220 return NULL;
12221
12222 return try_open_dwop_file (per_objfile, file_name,
12223 0 /*is_dwp*/, 1 /*search_cwd*/);
12224 }
12225
12226 /* This function is mapped across the sections and remembers the offset and
12227 size of each of the DWO debugging sections we are interested in. */
12228
12229 static void
12230 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp,
12231 dwo_sections *dwo_sections)
12232 {
12233 const struct dwop_section_names *names = &dwop_section_names;
12234
12235 if (names->abbrev_dwo.matches (sectp->name))
12236 {
12237 dwo_sections->abbrev.s.section = sectp;
12238 dwo_sections->abbrev.size = bfd_section_size (sectp);
12239 }
12240 else if (names->info_dwo.matches (sectp->name))
12241 {
12242 dwo_sections->info.s.section = sectp;
12243 dwo_sections->info.size = bfd_section_size (sectp);
12244 }
12245 else if (names->line_dwo.matches (sectp->name))
12246 {
12247 dwo_sections->line.s.section = sectp;
12248 dwo_sections->line.size = bfd_section_size (sectp);
12249 }
12250 else if (names->loc_dwo.matches (sectp->name))
12251 {
12252 dwo_sections->loc.s.section = sectp;
12253 dwo_sections->loc.size = bfd_section_size (sectp);
12254 }
12255 else if (names->loclists_dwo.matches (sectp->name))
12256 {
12257 dwo_sections->loclists.s.section = sectp;
12258 dwo_sections->loclists.size = bfd_section_size (sectp);
12259 }
12260 else if (names->macinfo_dwo.matches (sectp->name))
12261 {
12262 dwo_sections->macinfo.s.section = sectp;
12263 dwo_sections->macinfo.size = bfd_section_size (sectp);
12264 }
12265 else if (names->macro_dwo.matches (sectp->name))
12266 {
12267 dwo_sections->macro.s.section = sectp;
12268 dwo_sections->macro.size = bfd_section_size (sectp);
12269 }
12270 else if (names->rnglists_dwo.matches (sectp->name))
12271 {
12272 dwo_sections->rnglists.s.section = sectp;
12273 dwo_sections->rnglists.size = bfd_section_size (sectp);
12274 }
12275 else if (names->str_dwo.matches (sectp->name))
12276 {
12277 dwo_sections->str.s.section = sectp;
12278 dwo_sections->str.size = bfd_section_size (sectp);
12279 }
12280 else if (names->str_offsets_dwo.matches (sectp->name))
12281 {
12282 dwo_sections->str_offsets.s.section = sectp;
12283 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12284 }
12285 else if (names->types_dwo.matches (sectp->name))
12286 {
12287 struct dwarf2_section_info type_section;
12288
12289 memset (&type_section, 0, sizeof (type_section));
12290 type_section.s.section = sectp;
12291 type_section.size = bfd_section_size (sectp);
12292 dwo_sections->types.push_back (type_section);
12293 }
12294 }
12295
12296 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12297 by PER_CU. This is for the non-DWP case.
12298 The result is NULL if DWO_NAME can't be found. */
12299
12300 static struct dwo_file *
12301 open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name,
12302 const char *comp_dir)
12303 {
12304 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12305
12306 gdb_bfd_ref_ptr dbfd = open_dwo_file (per_objfile, dwo_name, comp_dir);
12307 if (dbfd == NULL)
12308 {
12309 dwarf_read_debug_printf ("DWO file not found: %s", dwo_name);
12310
12311 return NULL;
12312 }
12313
12314 dwo_file_up dwo_file (new struct dwo_file);
12315 dwo_file->dwo_name = dwo_name;
12316 dwo_file->comp_dir = comp_dir;
12317 dwo_file->dbfd = std::move (dbfd);
12318
12319 for (asection *sec : gdb_bfd_sections (dwo_file->dbfd))
12320 dwarf2_locate_dwo_sections (dwo_file->dbfd.get (), sec,
12321 &dwo_file->sections);
12322
12323 create_cus_hash_table (per_objfile, cu, *dwo_file, dwo_file->sections.info,
12324 dwo_file->cus);
12325
12326 if (cu->per_cu->dwarf_version < 5)
12327 {
12328 create_debug_types_hash_table (per_objfile, dwo_file.get (),
12329 dwo_file->sections.types, dwo_file->tus);
12330 }
12331 else
12332 {
12333 create_debug_type_hash_table (per_objfile, dwo_file.get (),
12334 &dwo_file->sections.info, dwo_file->tus,
12335 rcuh_kind::COMPILE);
12336 }
12337
12338 dwarf_read_debug_printf ("DWO file found: %s", dwo_name);
12339
12340 return dwo_file.release ();
12341 }
12342
12343 /* This function is mapped across the sections and remembers the offset and
12344 size of each of the DWP debugging sections common to version 1 and 2 that
12345 we are interested in. */
12346
12347 static void
12348 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12349 dwp_file *dwp_file)
12350 {
12351 const struct dwop_section_names *names = &dwop_section_names;
12352 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12353
12354 /* Record the ELF section number for later lookup: this is what the
12355 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12356 gdb_assert (elf_section_nr < dwp_file->num_sections);
12357 dwp_file->elf_sections[elf_section_nr] = sectp;
12358
12359 /* Look for specific sections that we need. */
12360 if (names->str_dwo.matches (sectp->name))
12361 {
12362 dwp_file->sections.str.s.section = sectp;
12363 dwp_file->sections.str.size = bfd_section_size (sectp);
12364 }
12365 else if (names->cu_index.matches (sectp->name))
12366 {
12367 dwp_file->sections.cu_index.s.section = sectp;
12368 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12369 }
12370 else if (names->tu_index.matches (sectp->name))
12371 {
12372 dwp_file->sections.tu_index.s.section = sectp;
12373 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12374 }
12375 }
12376
12377 /* This function is mapped across the sections and remembers the offset and
12378 size of each of the DWP version 2 debugging sections that we are interested
12379 in. This is split into a separate function because we don't know if we
12380 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12381
12382 static void
12383 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12384 {
12385 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12386 const struct dwop_section_names *names = &dwop_section_names;
12387 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12388
12389 /* Record the ELF section number for later lookup: this is what the
12390 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12391 gdb_assert (elf_section_nr < dwp_file->num_sections);
12392 dwp_file->elf_sections[elf_section_nr] = sectp;
12393
12394 /* Look for specific sections that we need. */
12395 if (names->abbrev_dwo.matches (sectp->name))
12396 {
12397 dwp_file->sections.abbrev.s.section = sectp;
12398 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12399 }
12400 else if (names->info_dwo.matches (sectp->name))
12401 {
12402 dwp_file->sections.info.s.section = sectp;
12403 dwp_file->sections.info.size = bfd_section_size (sectp);
12404 }
12405 else if (names->line_dwo.matches (sectp->name))
12406 {
12407 dwp_file->sections.line.s.section = sectp;
12408 dwp_file->sections.line.size = bfd_section_size (sectp);
12409 }
12410 else if (names->loc_dwo.matches (sectp->name))
12411 {
12412 dwp_file->sections.loc.s.section = sectp;
12413 dwp_file->sections.loc.size = bfd_section_size (sectp);
12414 }
12415 else if (names->macinfo_dwo.matches (sectp->name))
12416 {
12417 dwp_file->sections.macinfo.s.section = sectp;
12418 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12419 }
12420 else if (names->macro_dwo.matches (sectp->name))
12421 {
12422 dwp_file->sections.macro.s.section = sectp;
12423 dwp_file->sections.macro.size = bfd_section_size (sectp);
12424 }
12425 else if (names->str_offsets_dwo.matches (sectp->name))
12426 {
12427 dwp_file->sections.str_offsets.s.section = sectp;
12428 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12429 }
12430 else if (names->types_dwo.matches (sectp->name))
12431 {
12432 dwp_file->sections.types.s.section = sectp;
12433 dwp_file->sections.types.size = bfd_section_size (sectp);
12434 }
12435 }
12436
12437 /* This function is mapped across the sections and remembers the offset and
12438 size of each of the DWP version 5 debugging sections that we are interested
12439 in. This is split into a separate function because we don't know if we
12440 have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */
12441
12442 static void
12443 dwarf2_locate_v5_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12444 {
12445 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12446 const struct dwop_section_names *names = &dwop_section_names;
12447 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12448
12449 /* Record the ELF section number for later lookup: this is what the
12450 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12451 gdb_assert (elf_section_nr < dwp_file->num_sections);
12452 dwp_file->elf_sections[elf_section_nr] = sectp;
12453
12454 /* Look for specific sections that we need. */
12455 if (names->abbrev_dwo.matches (sectp->name))
12456 {
12457 dwp_file->sections.abbrev.s.section = sectp;
12458 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12459 }
12460 else if (names->info_dwo.matches (sectp->name))
12461 {
12462 dwp_file->sections.info.s.section = sectp;
12463 dwp_file->sections.info.size = bfd_section_size (sectp);
12464 }
12465 else if (names->line_dwo.matches (sectp->name))
12466 {
12467 dwp_file->sections.line.s.section = sectp;
12468 dwp_file->sections.line.size = bfd_section_size (sectp);
12469 }
12470 else if (names->loclists_dwo.matches (sectp->name))
12471 {
12472 dwp_file->sections.loclists.s.section = sectp;
12473 dwp_file->sections.loclists.size = bfd_section_size (sectp);
12474 }
12475 else if (names->macro_dwo.matches (sectp->name))
12476 {
12477 dwp_file->sections.macro.s.section = sectp;
12478 dwp_file->sections.macro.size = bfd_section_size (sectp);
12479 }
12480 else if (names->rnglists_dwo.matches (sectp->name))
12481 {
12482 dwp_file->sections.rnglists.s.section = sectp;
12483 dwp_file->sections.rnglists.size = bfd_section_size (sectp);
12484 }
12485 else if (names->str_offsets_dwo.matches (sectp->name))
12486 {
12487 dwp_file->sections.str_offsets.s.section = sectp;
12488 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12489 }
12490 }
12491
12492 /* Hash function for dwp_file loaded CUs/TUs. */
12493
12494 static hashval_t
12495 hash_dwp_loaded_cutus (const void *item)
12496 {
12497 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12498
12499 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12500 return dwo_unit->signature;
12501 }
12502
12503 /* Equality function for dwp_file loaded CUs/TUs. */
12504
12505 static int
12506 eq_dwp_loaded_cutus (const void *a, const void *b)
12507 {
12508 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12509 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12510
12511 return dua->signature == dub->signature;
12512 }
12513
12514 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12515
12516 static htab_up
12517 allocate_dwp_loaded_cutus_table ()
12518 {
12519 return htab_up (htab_create_alloc (3,
12520 hash_dwp_loaded_cutus,
12521 eq_dwp_loaded_cutus,
12522 NULL, xcalloc, xfree));
12523 }
12524
12525 /* Try to open DWP file FILE_NAME.
12526 The result is the bfd handle of the file.
12527 If there is a problem finding or opening the file, return NULL.
12528 Upon success, the canonicalized path of the file is stored in the bfd,
12529 same as symfile_bfd_open. */
12530
12531 static gdb_bfd_ref_ptr
12532 open_dwp_file (dwarf2_per_objfile *per_objfile, const char *file_name)
12533 {
12534 gdb_bfd_ref_ptr abfd (try_open_dwop_file (per_objfile, file_name,
12535 1 /*is_dwp*/,
12536 1 /*search_cwd*/));
12537 if (abfd != NULL)
12538 return abfd;
12539
12540 /* Work around upstream bug 15652.
12541 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12542 [Whether that's a "bug" is debatable, but it is getting in our way.]
12543 We have no real idea where the dwp file is, because gdb's realpath-ing
12544 of the executable's path may have discarded the needed info.
12545 [IWBN if the dwp file name was recorded in the executable, akin to
12546 .gnu_debuglink, but that doesn't exist yet.]
12547 Strip the directory from FILE_NAME and search again. */
12548 if (*debug_file_directory != '\0')
12549 {
12550 /* Don't implicitly search the current directory here.
12551 If the user wants to search "." to handle this case,
12552 it must be added to debug-file-directory. */
12553 return try_open_dwop_file (per_objfile, lbasename (file_name),
12554 1 /*is_dwp*/,
12555 0 /*search_cwd*/);
12556 }
12557
12558 return NULL;
12559 }
12560
12561 /* Initialize the use of the DWP file for the current objfile.
12562 By convention the name of the DWP file is ${objfile}.dwp.
12563 The result is NULL if it can't be found. */
12564
12565 static std::unique_ptr<struct dwp_file>
12566 open_and_init_dwp_file (dwarf2_per_objfile *per_objfile)
12567 {
12568 struct objfile *objfile = per_objfile->objfile;
12569
12570 /* Try to find first .dwp for the binary file before any symbolic links
12571 resolving. */
12572
12573 /* If the objfile is a debug file, find the name of the real binary
12574 file and get the name of dwp file from there. */
12575 std::string dwp_name;
12576 if (objfile->separate_debug_objfile_backlink != NULL)
12577 {
12578 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12579 const char *backlink_basename = lbasename (backlink->original_name);
12580
12581 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12582 }
12583 else
12584 dwp_name = objfile->original_name;
12585
12586 dwp_name += ".dwp";
12587
12588 gdb_bfd_ref_ptr dbfd (open_dwp_file (per_objfile, dwp_name.c_str ()));
12589 if (dbfd == NULL
12590 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12591 {
12592 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12593 dwp_name = objfile_name (objfile);
12594 dwp_name += ".dwp";
12595 dbfd = open_dwp_file (per_objfile, dwp_name.c_str ());
12596 }
12597
12598 if (dbfd == NULL)
12599 {
12600 dwarf_read_debug_printf ("DWP file not found: %s", dwp_name.c_str ());
12601
12602 return std::unique_ptr<dwp_file> ();
12603 }
12604
12605 const char *name = bfd_get_filename (dbfd.get ());
12606 std::unique_ptr<struct dwp_file> dwp_file
12607 (new struct dwp_file (name, std::move (dbfd)));
12608
12609 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12610 dwp_file->elf_sections =
12611 OBSTACK_CALLOC (&per_objfile->per_bfd->obstack,
12612 dwp_file->num_sections, asection *);
12613
12614 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12615 dwarf2_locate_common_dwp_sections (dwp_file->dbfd.get (), sec,
12616 dwp_file.get ());
12617
12618 dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0);
12619
12620 dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1);
12621
12622 /* The DWP file version is stored in the hash table. Oh well. */
12623 if (dwp_file->cus && dwp_file->tus
12624 && dwp_file->cus->version != dwp_file->tus->version)
12625 {
12626 /* Technically speaking, we should try to limp along, but this is
12627 pretty bizarre. We use pulongest here because that's the established
12628 portability solution (e.g, we cannot use %u for uint32_t). */
12629 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12630 " TU version %s [in DWP file %s]"),
12631 pulongest (dwp_file->cus->version),
12632 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12633 }
12634
12635 if (dwp_file->cus)
12636 dwp_file->version = dwp_file->cus->version;
12637 else if (dwp_file->tus)
12638 dwp_file->version = dwp_file->tus->version;
12639 else
12640 dwp_file->version = 2;
12641
12642 for (asection *sec : gdb_bfd_sections (dwp_file->dbfd))
12643 {
12644 if (dwp_file->version == 2)
12645 dwarf2_locate_v2_dwp_sections (dwp_file->dbfd.get (), sec,
12646 dwp_file.get ());
12647 else
12648 dwarf2_locate_v5_dwp_sections (dwp_file->dbfd.get (), sec,
12649 dwp_file.get ());
12650 }
12651
12652 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12653 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12654
12655 dwarf_read_debug_printf ("DWP file found: %s", dwp_file->name);
12656 dwarf_read_debug_printf (" %s CUs, %s TUs",
12657 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12658 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12659
12660 return dwp_file;
12661 }
12662
12663 /* Wrapper around open_and_init_dwp_file, only open it once. */
12664
12665 static struct dwp_file *
12666 get_dwp_file (dwarf2_per_objfile *per_objfile)
12667 {
12668 if (!per_objfile->per_bfd->dwp_checked)
12669 {
12670 per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile);
12671 per_objfile->per_bfd->dwp_checked = 1;
12672 }
12673 return per_objfile->per_bfd->dwp_file.get ();
12674 }
12675
12676 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12677 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12678 or in the DWP file for the objfile, referenced by THIS_UNIT.
12679 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12680 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12681
12682 This is called, for example, when wanting to read a variable with a
12683 complex location. Therefore we don't want to do file i/o for every call.
12684 Therefore we don't want to look for a DWO file on every call.
12685 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12686 then we check if we've already seen DWO_NAME, and only THEN do we check
12687 for a DWO file.
12688
12689 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12690 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12691
12692 static struct dwo_unit *
12693 lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12694 ULONGEST signature, int is_debug_types)
12695 {
12696 dwarf2_per_objfile *per_objfile = cu->per_objfile;
12697 struct objfile *objfile = per_objfile->objfile;
12698 const char *kind = is_debug_types ? "TU" : "CU";
12699 void **dwo_file_slot;
12700 struct dwo_file *dwo_file;
12701 struct dwp_file *dwp_file;
12702
12703 /* First see if there's a DWP file.
12704 If we have a DWP file but didn't find the DWO inside it, don't
12705 look for the original DWO file. It makes gdb behave differently
12706 depending on whether one is debugging in the build tree. */
12707
12708 dwp_file = get_dwp_file (per_objfile);
12709 if (dwp_file != NULL)
12710 {
12711 const struct dwp_hash_table *dwp_htab =
12712 is_debug_types ? dwp_file->tus : dwp_file->cus;
12713
12714 if (dwp_htab != NULL)
12715 {
12716 struct dwo_unit *dwo_cutu =
12717 lookup_dwo_unit_in_dwp (per_objfile, dwp_file, comp_dir, signature,
12718 is_debug_types);
12719
12720 if (dwo_cutu != NULL)
12721 {
12722 dwarf_read_debug_printf ("Virtual DWO %s %s found: @%s",
12723 kind, hex_string (signature),
12724 host_address_to_string (dwo_cutu));
12725
12726 return dwo_cutu;
12727 }
12728 }
12729 }
12730 else
12731 {
12732 /* No DWP file, look for the DWO file. */
12733
12734 dwo_file_slot = lookup_dwo_file_slot (per_objfile, dwo_name, comp_dir);
12735 if (*dwo_file_slot == NULL)
12736 {
12737 /* Read in the file and build a table of the CUs/TUs it contains. */
12738 *dwo_file_slot = open_and_init_dwo_file (cu, dwo_name, comp_dir);
12739 }
12740 /* NOTE: This will be NULL if unable to open the file. */
12741 dwo_file = (struct dwo_file *) *dwo_file_slot;
12742
12743 if (dwo_file != NULL)
12744 {
12745 struct dwo_unit *dwo_cutu = NULL;
12746
12747 if (is_debug_types && dwo_file->tus)
12748 {
12749 struct dwo_unit find_dwo_cutu;
12750
12751 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12752 find_dwo_cutu.signature = signature;
12753 dwo_cutu
12754 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12755 &find_dwo_cutu);
12756 }
12757 else if (!is_debug_types && dwo_file->cus)
12758 {
12759 struct dwo_unit find_dwo_cutu;
12760
12761 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12762 find_dwo_cutu.signature = signature;
12763 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12764 &find_dwo_cutu);
12765 }
12766
12767 if (dwo_cutu != NULL)
12768 {
12769 dwarf_read_debug_printf ("DWO %s %s(%s) found: @%s",
12770 kind, dwo_name, hex_string (signature),
12771 host_address_to_string (dwo_cutu));
12772
12773 return dwo_cutu;
12774 }
12775 }
12776 }
12777
12778 /* We didn't find it. This could mean a dwo_id mismatch, or
12779 someone deleted the DWO/DWP file, or the search path isn't set up
12780 correctly to find the file. */
12781
12782 dwarf_read_debug_printf ("DWO %s %s(%s) not found",
12783 kind, dwo_name, hex_string (signature));
12784
12785 /* This is a warning and not a complaint because it can be caused by
12786 pilot error (e.g., user accidentally deleting the DWO). */
12787 {
12788 /* Print the name of the DWP file if we looked there, helps the user
12789 better diagnose the problem. */
12790 std::string dwp_text;
12791
12792 if (dwp_file != NULL)
12793 dwp_text = string_printf (" [in DWP file %s]",
12794 lbasename (dwp_file->name));
12795
12796 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12797 " [in module %s]"),
12798 kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind,
12799 sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile));
12800 }
12801 return NULL;
12802 }
12803
12804 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12805 See lookup_dwo_cutu_unit for details. */
12806
12807 static struct dwo_unit *
12808 lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir,
12809 ULONGEST signature)
12810 {
12811 gdb_assert (!cu->per_cu->is_debug_types);
12812
12813 return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0);
12814 }
12815
12816 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12817 See lookup_dwo_cutu_unit for details. */
12818
12819 static struct dwo_unit *
12820 lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir)
12821 {
12822 gdb_assert (cu->per_cu->is_debug_types);
12823
12824 signatured_type *sig_type = (signatured_type *) cu->per_cu;
12825
12826 return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1);
12827 }
12828
12829 /* Traversal function for queue_and_load_all_dwo_tus. */
12830
12831 static int
12832 queue_and_load_dwo_tu (void **slot, void *info)
12833 {
12834 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12835 dwarf2_cu *cu = (dwarf2_cu *) info;
12836 ULONGEST signature = dwo_unit->signature;
12837 signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature);
12838
12839 if (sig_type != NULL)
12840 {
12841 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12842 a real dependency of PER_CU on SIG_TYPE. That is detected later
12843 while processing PER_CU. */
12844 if (maybe_queue_comp_unit (NULL, sig_type, cu->per_objfile,
12845 cu->per_cu->lang))
12846 load_full_type_unit (sig_type, cu->per_objfile);
12847 cu->per_cu->imported_symtabs_push (sig_type);
12848 }
12849
12850 return 1;
12851 }
12852
12853 /* Queue all TUs contained in the DWO of CU to be read in.
12854 The DWO may have the only definition of the type, though it may not be
12855 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12856 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12857
12858 static void
12859 queue_and_load_all_dwo_tus (dwarf2_cu *cu)
12860 {
12861 struct dwo_unit *dwo_unit;
12862 struct dwo_file *dwo_file;
12863
12864 gdb_assert (cu != nullptr);
12865 gdb_assert (!cu->per_cu->is_debug_types);
12866 gdb_assert (get_dwp_file (cu->per_objfile) == nullptr);
12867
12868 dwo_unit = cu->dwo_unit;
12869 gdb_assert (dwo_unit != NULL);
12870
12871 dwo_file = dwo_unit->dwo_file;
12872 if (dwo_file->tus != NULL)
12873 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu, cu);
12874 }
12875
12876 /* Read in various DIEs. */
12877
12878 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12879 Inherit only the children of the DW_AT_abstract_origin DIE not being
12880 already referenced by DW_AT_abstract_origin from the children of the
12881 current DIE. */
12882
12883 static void
12884 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12885 {
12886 struct die_info *child_die;
12887 sect_offset *offsetp;
12888 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12889 struct die_info *origin_die;
12890 /* Iterator of the ORIGIN_DIE children. */
12891 struct die_info *origin_child_die;
12892 struct attribute *attr;
12893 struct dwarf2_cu *origin_cu;
12894 struct pending **origin_previous_list_in_scope;
12895
12896 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12897 if (!attr)
12898 return;
12899
12900 /* Note that following die references may follow to a die in a
12901 different cu. */
12902
12903 origin_cu = cu;
12904 origin_die = follow_die_ref (die, attr, &origin_cu);
12905
12906 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12907 symbols in. */
12908 origin_previous_list_in_scope = origin_cu->list_in_scope;
12909 origin_cu->list_in_scope = cu->list_in_scope;
12910
12911 if (die->tag != origin_die->tag
12912 && !(die->tag == DW_TAG_inlined_subroutine
12913 && origin_die->tag == DW_TAG_subprogram))
12914 complaint (_("DIE %s and its abstract origin %s have different tags"),
12915 sect_offset_str (die->sect_off),
12916 sect_offset_str (origin_die->sect_off));
12917
12918 /* Find if the concrete and abstract trees are structurally the
12919 same. This is a shallow traversal and it is not bullet-proof;
12920 the compiler can trick the debugger into believing that the trees
12921 are isomorphic, whereas they actually are not. However, the
12922 likelyhood of this happening is pretty low, and a full-fledged
12923 check would be an overkill. */
12924 bool are_isomorphic = true;
12925 die_info *concrete_child = die->child;
12926 die_info *abstract_child = origin_die->child;
12927 while (concrete_child != nullptr || abstract_child != nullptr)
12928 {
12929 if (concrete_child == nullptr
12930 || abstract_child == nullptr
12931 || concrete_child->tag != abstract_child->tag)
12932 {
12933 are_isomorphic = false;
12934 break;
12935 }
12936
12937 concrete_child = concrete_child->sibling;
12938 abstract_child = abstract_child->sibling;
12939 }
12940
12941 /* Walk the origin's children in parallel to the concrete children.
12942 This helps match an origin child in case the debug info misses
12943 DW_AT_abstract_origin attributes. Keep in mind that the abstract
12944 origin tree may not have the same tree structure as the concrete
12945 DIE, though. */
12946 die_info *corresponding_abstract_child
12947 = are_isomorphic ? origin_die->child : nullptr;
12948
12949 std::vector<sect_offset> offsets;
12950
12951 for (child_die = die->child;
12952 child_die && child_die->tag;
12953 child_die = child_die->sibling)
12954 {
12955 struct die_info *child_origin_die;
12956 struct dwarf2_cu *child_origin_cu;
12957
12958 /* We are trying to process concrete instance entries:
12959 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12960 it's not relevant to our analysis here. i.e. detecting DIEs that are
12961 present in the abstract instance but not referenced in the concrete
12962 one. */
12963 if (child_die->tag == DW_TAG_call_site
12964 || child_die->tag == DW_TAG_GNU_call_site)
12965 {
12966 if (are_isomorphic)
12967 corresponding_abstract_child
12968 = corresponding_abstract_child->sibling;
12969 continue;
12970 }
12971
12972 /* For each CHILD_DIE, find the corresponding child of
12973 ORIGIN_DIE. If there is more than one layer of
12974 DW_AT_abstract_origin, follow them all; there shouldn't be,
12975 but GCC versions at least through 4.4 generate this (GCC PR
12976 40573). */
12977 child_origin_die = child_die;
12978 child_origin_cu = cu;
12979 while (1)
12980 {
12981 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12982 child_origin_cu);
12983 if (attr == NULL)
12984 break;
12985 child_origin_die = follow_die_ref (child_origin_die, attr,
12986 &child_origin_cu);
12987 }
12988
12989 /* If missing DW_AT_abstract_origin, try the corresponding child
12990 of the origin. Clang emits such lexical scopes. */
12991 if (child_origin_die == child_die
12992 && dwarf2_attr (child_die, DW_AT_abstract_origin, cu) == nullptr
12993 && are_isomorphic
12994 && child_die->tag == DW_TAG_lexical_block)
12995 child_origin_die = corresponding_abstract_child;
12996
12997 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12998 counterpart may exist. */
12999 if (child_origin_die != child_die)
13000 {
13001 if (child_die->tag != child_origin_die->tag
13002 && !(child_die->tag == DW_TAG_inlined_subroutine
13003 && child_origin_die->tag == DW_TAG_subprogram))
13004 complaint (_("Child DIE %s and its abstract origin %s have "
13005 "different tags"),
13006 sect_offset_str (child_die->sect_off),
13007 sect_offset_str (child_origin_die->sect_off));
13008 if (child_origin_die->parent != origin_die)
13009 complaint (_("Child DIE %s and its abstract origin %s have "
13010 "different parents"),
13011 sect_offset_str (child_die->sect_off),
13012 sect_offset_str (child_origin_die->sect_off));
13013 else
13014 offsets.push_back (child_origin_die->sect_off);
13015 }
13016
13017 if (are_isomorphic)
13018 corresponding_abstract_child = corresponding_abstract_child->sibling;
13019 }
13020 std::sort (offsets.begin (), offsets.end ());
13021 sect_offset *offsets_end = offsets.data () + offsets.size ();
13022 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13023 if (offsetp[-1] == *offsetp)
13024 complaint (_("Multiple children of DIE %s refer "
13025 "to DIE %s as their abstract origin"),
13026 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13027
13028 offsetp = offsets.data ();
13029 origin_child_die = origin_die->child;
13030 while (origin_child_die && origin_child_die->tag)
13031 {
13032 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13033 while (offsetp < offsets_end
13034 && *offsetp < origin_child_die->sect_off)
13035 offsetp++;
13036 if (offsetp >= offsets_end
13037 || *offsetp > origin_child_die->sect_off)
13038 {
13039 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13040 Check whether we're already processing ORIGIN_CHILD_DIE.
13041 This can happen with mutually referenced abstract_origins.
13042 PR 16581. */
13043 if (!origin_child_die->in_process)
13044 process_die (origin_child_die, origin_cu);
13045 }
13046 origin_child_die = origin_child_die->sibling;
13047 }
13048 origin_cu->list_in_scope = origin_previous_list_in_scope;
13049
13050 if (cu != origin_cu)
13051 compute_delayed_physnames (origin_cu);
13052 }
13053
13054 static void
13055 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13056 {
13057 struct objfile *objfile = cu->per_objfile->objfile;
13058 struct gdbarch *gdbarch = objfile->arch ();
13059 struct context_stack *newobj;
13060 CORE_ADDR lowpc;
13061 CORE_ADDR highpc;
13062 struct die_info *child_die;
13063 struct attribute *attr, *call_line, *call_file;
13064 const char *name;
13065 CORE_ADDR baseaddr;
13066 struct block *block;
13067 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13068 std::vector<struct symbol *> template_args;
13069 struct template_symbol *templ_func = NULL;
13070
13071 if (inlined_func)
13072 {
13073 /* If we do not have call site information, we can't show the
13074 caller of this inlined function. That's too confusing, so
13075 only use the scope for local variables. */
13076 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13077 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13078 if (call_line == NULL || call_file == NULL)
13079 {
13080 read_lexical_block_scope (die, cu);
13081 return;
13082 }
13083 }
13084
13085 baseaddr = objfile->text_section_offset ();
13086
13087 name = dwarf2_name (die, cu);
13088
13089 /* Ignore functions with missing or empty names. These are actually
13090 illegal according to the DWARF standard. */
13091 if (name == NULL)
13092 {
13093 complaint (_("missing name for subprogram DIE at %s"),
13094 sect_offset_str (die->sect_off));
13095 return;
13096 }
13097
13098 /* Ignore functions with missing or invalid low and high pc attributes. */
13099 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13100 <= PC_BOUNDS_INVALID)
13101 {
13102 attr = dwarf2_attr (die, DW_AT_external, cu);
13103 if (attr == nullptr || !attr->as_boolean ())
13104 complaint (_("cannot get low and high bounds "
13105 "for subprogram DIE at %s"),
13106 sect_offset_str (die->sect_off));
13107 return;
13108 }
13109
13110 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13111 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13112
13113 /* If we have any template arguments, then we must allocate a
13114 different sort of symbol. */
13115 for (child_die = die->child; child_die; child_die = child_die->sibling)
13116 {
13117 if (child_die->tag == DW_TAG_template_type_param
13118 || child_die->tag == DW_TAG_template_value_param)
13119 {
13120 templ_func = new (&objfile->objfile_obstack) template_symbol;
13121 templ_func->subclass = SYMBOL_TEMPLATE;
13122 break;
13123 }
13124 }
13125
13126 gdb_assert (cu->get_builder () != nullptr);
13127 newobj = cu->get_builder ()->push_context (0, lowpc);
13128 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13129 (struct symbol *) templ_func);
13130
13131 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13132 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13133 cu->per_cu->lang);
13134
13135 /* If there is a location expression for DW_AT_frame_base, record
13136 it. */
13137 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13138 if (attr != nullptr)
13139 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13140
13141 /* If there is a location for the static link, record it. */
13142 newobj->static_link = NULL;
13143 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13144 if (attr != nullptr)
13145 {
13146 newobj->static_link
13147 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13148 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13149 cu->addr_type ());
13150 }
13151
13152 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13153
13154 if (die->child != NULL)
13155 {
13156 child_die = die->child;
13157 while (child_die && child_die->tag)
13158 {
13159 if (child_die->tag == DW_TAG_template_type_param
13160 || child_die->tag == DW_TAG_template_value_param)
13161 {
13162 struct symbol *arg = new_symbol (child_die, NULL, cu);
13163
13164 if (arg != NULL)
13165 template_args.push_back (arg);
13166 }
13167 else
13168 process_die (child_die, cu);
13169 child_die = child_die->sibling;
13170 }
13171 }
13172
13173 inherit_abstract_dies (die, cu);
13174
13175 /* If we have a DW_AT_specification, we might need to import using
13176 directives from the context of the specification DIE. See the
13177 comment in determine_prefix. */
13178 if (cu->per_cu->lang == language_cplus
13179 && dwarf2_attr (die, DW_AT_specification, cu))
13180 {
13181 struct dwarf2_cu *spec_cu = cu;
13182 struct die_info *spec_die = die_specification (die, &spec_cu);
13183
13184 while (spec_die)
13185 {
13186 child_die = spec_die->child;
13187 while (child_die && child_die->tag)
13188 {
13189 if (child_die->tag == DW_TAG_imported_module)
13190 process_die (child_die, spec_cu);
13191 child_die = child_die->sibling;
13192 }
13193
13194 /* In some cases, GCC generates specification DIEs that
13195 themselves contain DW_AT_specification attributes. */
13196 spec_die = die_specification (spec_die, &spec_cu);
13197 }
13198 }
13199
13200 struct context_stack cstk = cu->get_builder ()->pop_context ();
13201 /* Make a block for the local symbols within. */
13202 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13203 cstk.static_link, lowpc, highpc);
13204
13205 /* For C++, set the block's scope. */
13206 if ((cu->per_cu->lang == language_cplus
13207 || cu->per_cu->lang == language_fortran
13208 || cu->per_cu->lang == language_d
13209 || cu->per_cu->lang == language_rust)
13210 && cu->processing_has_namespace_info)
13211 block_set_scope (block, determine_prefix (die, cu),
13212 &objfile->objfile_obstack);
13213
13214 /* If we have address ranges, record them. */
13215 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13216
13217 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13218
13219 /* Attach template arguments to function. */
13220 if (!template_args.empty ())
13221 {
13222 gdb_assert (templ_func != NULL);
13223
13224 templ_func->n_template_arguments = template_args.size ();
13225 templ_func->template_arguments
13226 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13227 templ_func->n_template_arguments);
13228 memcpy (templ_func->template_arguments,
13229 template_args.data (),
13230 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13231
13232 /* Make sure that the symtab is set on the new symbols. Even
13233 though they don't appear in this symtab directly, other parts
13234 of gdb assume that symbols do, and this is reasonably
13235 true. */
13236 for (symbol *sym : template_args)
13237 symbol_set_symtab (sym, symbol_symtab (templ_func));
13238 }
13239
13240 /* In C++, we can have functions nested inside functions (e.g., when
13241 a function declares a class that has methods). This means that
13242 when we finish processing a function scope, we may need to go
13243 back to building a containing block's symbol lists. */
13244 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13245 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13246
13247 /* If we've finished processing a top-level function, subsequent
13248 symbols go in the file symbol list. */
13249 if (cu->get_builder ()->outermost_context_p ())
13250 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13251 }
13252
13253 /* Process all the DIES contained within a lexical block scope. Start
13254 a new scope, process the dies, and then close the scope. */
13255
13256 static void
13257 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13258 {
13259 struct objfile *objfile = cu->per_objfile->objfile;
13260 struct gdbarch *gdbarch = objfile->arch ();
13261 CORE_ADDR lowpc, highpc;
13262 struct die_info *child_die;
13263 CORE_ADDR baseaddr;
13264
13265 baseaddr = objfile->text_section_offset ();
13266
13267 /* Ignore blocks with missing or invalid low and high pc attributes. */
13268 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13269 as multiple lexical blocks? Handling children in a sane way would
13270 be nasty. Might be easier to properly extend generic blocks to
13271 describe ranges. */
13272 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13273 {
13274 case PC_BOUNDS_NOT_PRESENT:
13275 /* DW_TAG_lexical_block has no attributes, process its children as if
13276 there was no wrapping by that DW_TAG_lexical_block.
13277 GCC does no longer produces such DWARF since GCC r224161. */
13278 for (child_die = die->child;
13279 child_die != NULL && child_die->tag;
13280 child_die = child_die->sibling)
13281 {
13282 /* We might already be processing this DIE. This can happen
13283 in an unusual circumstance -- where a subroutine A
13284 appears lexically in another subroutine B, but A actually
13285 inlines B. The recursion is broken here, rather than in
13286 inherit_abstract_dies, because it seems better to simply
13287 drop concrete children here. */
13288 if (!child_die->in_process)
13289 process_die (child_die, cu);
13290 }
13291 return;
13292 case PC_BOUNDS_INVALID:
13293 return;
13294 }
13295 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13296 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13297
13298 cu->get_builder ()->push_context (0, lowpc);
13299 if (die->child != NULL)
13300 {
13301 child_die = die->child;
13302 while (child_die && child_die->tag)
13303 {
13304 process_die (child_die, cu);
13305 child_die = child_die->sibling;
13306 }
13307 }
13308 inherit_abstract_dies (die, cu);
13309 struct context_stack cstk = cu->get_builder ()->pop_context ();
13310
13311 if (*cu->get_builder ()->get_local_symbols () != NULL
13312 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13313 {
13314 struct block *block
13315 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13316 cstk.start_addr, highpc);
13317
13318 /* Note that recording ranges after traversing children, as we
13319 do here, means that recording a parent's ranges entails
13320 walking across all its children's ranges as they appear in
13321 the address map, which is quadratic behavior.
13322
13323 It would be nicer to record the parent's ranges before
13324 traversing its children, simply overriding whatever you find
13325 there. But since we don't even decide whether to create a
13326 block until after we've traversed its children, that's hard
13327 to do. */
13328 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13329 }
13330 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13331 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13332 }
13333
13334 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13335
13336 static void
13337 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13338 {
13339 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13340 struct objfile *objfile = per_objfile->objfile;
13341 struct gdbarch *gdbarch = objfile->arch ();
13342 CORE_ADDR pc, baseaddr;
13343 struct attribute *attr;
13344 struct call_site *call_site, call_site_local;
13345 void **slot;
13346 int nparams;
13347 struct die_info *child_die;
13348
13349 baseaddr = objfile->text_section_offset ();
13350
13351 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13352 if (attr == NULL)
13353 {
13354 /* This was a pre-DWARF-5 GNU extension alias
13355 for DW_AT_call_return_pc. */
13356 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13357 }
13358 if (!attr)
13359 {
13360 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13361 "DIE %s [in module %s]"),
13362 sect_offset_str (die->sect_off), objfile_name (objfile));
13363 return;
13364 }
13365 pc = attr->as_address () + baseaddr;
13366 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13367
13368 if (cu->call_site_htab == NULL)
13369 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13370 NULL, &objfile->objfile_obstack,
13371 hashtab_obstack_allocate, NULL);
13372 call_site_local.pc = pc;
13373 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13374 if (*slot != NULL)
13375 {
13376 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13377 "DIE %s [in module %s]"),
13378 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13379 objfile_name (objfile));
13380 return;
13381 }
13382
13383 /* Count parameters at the caller. */
13384
13385 nparams = 0;
13386 for (child_die = die->child; child_die && child_die->tag;
13387 child_die = child_die->sibling)
13388 {
13389 if (child_die->tag != DW_TAG_call_site_parameter
13390 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13391 {
13392 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13393 "DW_TAG_call_site child DIE %s [in module %s]"),
13394 child_die->tag, sect_offset_str (child_die->sect_off),
13395 objfile_name (objfile));
13396 continue;
13397 }
13398
13399 nparams++;
13400 }
13401
13402 call_site
13403 = ((struct call_site *)
13404 obstack_alloc (&objfile->objfile_obstack,
13405 sizeof (*call_site)
13406 + (sizeof (*call_site->parameter) * (nparams - 1))));
13407 *slot = call_site;
13408 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13409 call_site->pc = pc;
13410
13411 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13412 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13413 {
13414 struct die_info *func_die;
13415
13416 /* Skip also over DW_TAG_inlined_subroutine. */
13417 for (func_die = die->parent;
13418 func_die && func_die->tag != DW_TAG_subprogram
13419 && func_die->tag != DW_TAG_subroutine_type;
13420 func_die = func_die->parent);
13421
13422 /* DW_AT_call_all_calls is a superset
13423 of DW_AT_call_all_tail_calls. */
13424 if (func_die
13425 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13426 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13427 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13428 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13429 {
13430 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13431 not complete. But keep CALL_SITE for look ups via call_site_htab,
13432 both the initial caller containing the real return address PC and
13433 the final callee containing the current PC of a chain of tail
13434 calls do not need to have the tail call list complete. But any
13435 function candidate for a virtual tail call frame searched via
13436 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13437 determined unambiguously. */
13438 }
13439 else
13440 {
13441 struct type *func_type = NULL;
13442
13443 if (func_die)
13444 func_type = get_die_type (func_die, cu);
13445 if (func_type != NULL)
13446 {
13447 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13448
13449 /* Enlist this call site to the function. */
13450 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13451 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13452 }
13453 else
13454 complaint (_("Cannot find function owning DW_TAG_call_site "
13455 "DIE %s [in module %s]"),
13456 sect_offset_str (die->sect_off), objfile_name (objfile));
13457 }
13458 }
13459
13460 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13461 if (attr == NULL)
13462 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13463 if (attr == NULL)
13464 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13465 if (attr == NULL)
13466 {
13467 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13468 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13469 }
13470 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13471 if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0))
13472 /* Keep NULL DWARF_BLOCK. */;
13473 else if (attr->form_is_block ())
13474 {
13475 struct dwarf2_locexpr_baton *dlbaton;
13476 struct dwarf_block *block = attr->as_block ();
13477
13478 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13479 dlbaton->data = block->data;
13480 dlbaton->size = block->size;
13481 dlbaton->per_objfile = per_objfile;
13482 dlbaton->per_cu = cu->per_cu;
13483
13484 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13485 }
13486 else if (attr->form_is_ref ())
13487 {
13488 struct dwarf2_cu *target_cu = cu;
13489 struct die_info *target_die;
13490
13491 target_die = follow_die_ref (die, attr, &target_cu);
13492 gdb_assert (target_cu->per_objfile->objfile == objfile);
13493 if (die_is_declaration (target_die, target_cu))
13494 {
13495 const char *target_physname;
13496
13497 /* Prefer the mangled name; otherwise compute the demangled one. */
13498 target_physname = dw2_linkage_name (target_die, target_cu);
13499 if (target_physname == NULL)
13500 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13501 if (target_physname == NULL)
13502 complaint (_("DW_AT_call_target target DIE has invalid "
13503 "physname, for referencing DIE %s [in module %s]"),
13504 sect_offset_str (die->sect_off), objfile_name (objfile));
13505 else
13506 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13507 }
13508 else
13509 {
13510 CORE_ADDR lowpc;
13511
13512 /* DW_AT_entry_pc should be preferred. */
13513 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13514 <= PC_BOUNDS_INVALID)
13515 complaint (_("DW_AT_call_target target DIE has invalid "
13516 "low pc, for referencing DIE %s [in module %s]"),
13517 sect_offset_str (die->sect_off), objfile_name (objfile));
13518 else
13519 {
13520 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13521 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13522 }
13523 }
13524 }
13525 else
13526 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13527 "block nor reference, for DIE %s [in module %s]"),
13528 sect_offset_str (die->sect_off), objfile_name (objfile));
13529
13530 call_site->per_cu = cu->per_cu;
13531 call_site->per_objfile = per_objfile;
13532
13533 for (child_die = die->child;
13534 child_die && child_die->tag;
13535 child_die = child_die->sibling)
13536 {
13537 struct call_site_parameter *parameter;
13538 struct attribute *loc, *origin;
13539
13540 if (child_die->tag != DW_TAG_call_site_parameter
13541 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13542 {
13543 /* Already printed the complaint above. */
13544 continue;
13545 }
13546
13547 gdb_assert (call_site->parameter_count < nparams);
13548 parameter = &call_site->parameter[call_site->parameter_count];
13549
13550 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13551 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13552 register is contained in DW_AT_call_value. */
13553
13554 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13555 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13556 if (origin == NULL)
13557 {
13558 /* This was a pre-DWARF-5 GNU extension alias
13559 for DW_AT_call_parameter. */
13560 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13561 }
13562 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13563 {
13564 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13565
13566 sect_offset sect_off = origin->get_ref_die_offset ();
13567 if (!cu->header.offset_in_cu_p (sect_off))
13568 {
13569 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13570 binding can be done only inside one CU. Such referenced DIE
13571 therefore cannot be even moved to DW_TAG_partial_unit. */
13572 complaint (_("DW_AT_call_parameter offset is not in CU for "
13573 "DW_TAG_call_site child DIE %s [in module %s]"),
13574 sect_offset_str (child_die->sect_off),
13575 objfile_name (objfile));
13576 continue;
13577 }
13578 parameter->u.param_cu_off
13579 = (cu_offset) (sect_off - cu->header.sect_off);
13580 }
13581 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13582 {
13583 complaint (_("No DW_FORM_block* DW_AT_location for "
13584 "DW_TAG_call_site child DIE %s [in module %s]"),
13585 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13586 continue;
13587 }
13588 else
13589 {
13590 struct dwarf_block *block = loc->as_block ();
13591
13592 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13593 (block->data, &block->data[block->size]);
13594 if (parameter->u.dwarf_reg != -1)
13595 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13596 else if (dwarf_block_to_sp_offset (gdbarch, block->data,
13597 &block->data[block->size],
13598 &parameter->u.fb_offset))
13599 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13600 else
13601 {
13602 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13603 "for DW_FORM_block* DW_AT_location is supported for "
13604 "DW_TAG_call_site child DIE %s "
13605 "[in module %s]"),
13606 sect_offset_str (child_die->sect_off),
13607 objfile_name (objfile));
13608 continue;
13609 }
13610 }
13611
13612 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13613 if (attr == NULL)
13614 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13615 if (attr == NULL || !attr->form_is_block ())
13616 {
13617 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13618 "DW_TAG_call_site child DIE %s [in module %s]"),
13619 sect_offset_str (child_die->sect_off),
13620 objfile_name (objfile));
13621 continue;
13622 }
13623
13624 struct dwarf_block *block = attr->as_block ();
13625 parameter->value = block->data;
13626 parameter->value_size = block->size;
13627
13628 /* Parameters are not pre-cleared by memset above. */
13629 parameter->data_value = NULL;
13630 parameter->data_value_size = 0;
13631 call_site->parameter_count++;
13632
13633 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13634 if (attr == NULL)
13635 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13636 if (attr != nullptr)
13637 {
13638 if (!attr->form_is_block ())
13639 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13640 "DW_TAG_call_site child DIE %s [in module %s]"),
13641 sect_offset_str (child_die->sect_off),
13642 objfile_name (objfile));
13643 else
13644 {
13645 block = attr->as_block ();
13646 parameter->data_value = block->data;
13647 parameter->data_value_size = block->size;
13648 }
13649 }
13650 }
13651 }
13652
13653 /* Helper function for read_variable. If DIE represents a virtual
13654 table, then return the type of the concrete object that is
13655 associated with the virtual table. Otherwise, return NULL. */
13656
13657 static struct type *
13658 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13659 {
13660 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13661 if (attr == NULL)
13662 return NULL;
13663
13664 /* Find the type DIE. */
13665 struct die_info *type_die = NULL;
13666 struct dwarf2_cu *type_cu = cu;
13667
13668 if (attr->form_is_ref ())
13669 type_die = follow_die_ref (die, attr, &type_cu);
13670 if (type_die == NULL)
13671 return NULL;
13672
13673 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13674 return NULL;
13675 return die_containing_type (type_die, type_cu);
13676 }
13677
13678 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13679
13680 static void
13681 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13682 {
13683 struct rust_vtable_symbol *storage = NULL;
13684
13685 if (cu->per_cu->lang == language_rust)
13686 {
13687 struct type *containing_type = rust_containing_type (die, cu);
13688
13689 if (containing_type != NULL)
13690 {
13691 struct objfile *objfile = cu->per_objfile->objfile;
13692
13693 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13694 storage->concrete_type = containing_type;
13695 storage->subclass = SYMBOL_RUST_VTABLE;
13696 }
13697 }
13698
13699 struct symbol *res = new_symbol (die, NULL, cu, storage);
13700 struct attribute *abstract_origin
13701 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13702 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13703 if (res == NULL && loc && abstract_origin)
13704 {
13705 /* We have a variable without a name, but with a location and an abstract
13706 origin. This may be a concrete instance of an abstract variable
13707 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13708 later. */
13709 struct dwarf2_cu *origin_cu = cu;
13710 struct die_info *origin_die
13711 = follow_die_ref (die, abstract_origin, &origin_cu);
13712 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13713 per_objfile->per_bfd->abstract_to_concrete
13714 [origin_die->sect_off].push_back (die->sect_off);
13715 }
13716 }
13717
13718 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13719 reading .debug_rnglists.
13720 Callback's type should be:
13721 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13722 Return true if the attributes are present and valid, otherwise,
13723 return false. */
13724
13725 template <typename Callback>
13726 static bool
13727 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13728 dwarf_tag tag, Callback &&callback)
13729 {
13730 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13731 struct objfile *objfile = per_objfile->objfile;
13732 bfd *obfd = objfile->obfd;
13733 /* Base address selection entry. */
13734 gdb::optional<CORE_ADDR> base;
13735 const gdb_byte *buffer;
13736 bool overflow = false;
13737 ULONGEST addr_index;
13738 struct dwarf2_section_info *rnglists_section;
13739
13740 base = cu->base_address;
13741 rnglists_section = cu_debug_rnglists_section (cu, tag);
13742 rnglists_section->read (objfile);
13743
13744 if (offset >= rnglists_section->size)
13745 {
13746 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13747 offset);
13748 return false;
13749 }
13750 buffer = rnglists_section->buffer + offset;
13751
13752 while (1)
13753 {
13754 /* Initialize it due to a false compiler warning. */
13755 CORE_ADDR range_beginning = 0, range_end = 0;
13756 const gdb_byte *buf_end = (rnglists_section->buffer
13757 + rnglists_section->size);
13758 unsigned int bytes_read;
13759
13760 if (buffer == buf_end)
13761 {
13762 overflow = true;
13763 break;
13764 }
13765 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13766 switch (rlet)
13767 {
13768 case DW_RLE_end_of_list:
13769 break;
13770 case DW_RLE_base_address:
13771 if (buffer + cu->header.addr_size > buf_end)
13772 {
13773 overflow = true;
13774 break;
13775 }
13776 base = cu->header.read_address (obfd, buffer, &bytes_read);
13777 buffer += bytes_read;
13778 break;
13779 case DW_RLE_base_addressx:
13780 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13781 buffer += bytes_read;
13782 base = read_addr_index (cu, addr_index);
13783 break;
13784 case DW_RLE_start_length:
13785 if (buffer + cu->header.addr_size > buf_end)
13786 {
13787 overflow = true;
13788 break;
13789 }
13790 range_beginning = cu->header.read_address (obfd, buffer,
13791 &bytes_read);
13792 buffer += bytes_read;
13793 range_end = (range_beginning
13794 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13795 buffer += bytes_read;
13796 if (buffer > buf_end)
13797 {
13798 overflow = true;
13799 break;
13800 }
13801 break;
13802 case DW_RLE_startx_length:
13803 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13804 buffer += bytes_read;
13805 range_beginning = read_addr_index (cu, addr_index);
13806 if (buffer > buf_end)
13807 {
13808 overflow = true;
13809 break;
13810 }
13811 range_end = (range_beginning
13812 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13813 buffer += bytes_read;
13814 break;
13815 case DW_RLE_offset_pair:
13816 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13817 buffer += bytes_read;
13818 if (buffer > buf_end)
13819 {
13820 overflow = true;
13821 break;
13822 }
13823 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13824 buffer += bytes_read;
13825 if (buffer > buf_end)
13826 {
13827 overflow = true;
13828 break;
13829 }
13830 break;
13831 case DW_RLE_start_end:
13832 if (buffer + 2 * cu->header.addr_size > buf_end)
13833 {
13834 overflow = true;
13835 break;
13836 }
13837 range_beginning = cu->header.read_address (obfd, buffer,
13838 &bytes_read);
13839 buffer += bytes_read;
13840 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13841 buffer += bytes_read;
13842 break;
13843 case DW_RLE_startx_endx:
13844 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13845 buffer += bytes_read;
13846 range_beginning = read_addr_index (cu, addr_index);
13847 if (buffer > buf_end)
13848 {
13849 overflow = true;
13850 break;
13851 }
13852 addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13853 buffer += bytes_read;
13854 range_end = read_addr_index (cu, addr_index);
13855 break;
13856 default:
13857 complaint (_("Invalid .debug_rnglists data (no base address)"));
13858 return false;
13859 }
13860 if (rlet == DW_RLE_end_of_list || overflow)
13861 break;
13862 if (rlet == DW_RLE_base_address)
13863 continue;
13864
13865 if (range_beginning > range_end)
13866 {
13867 /* Inverted range entries are invalid. */
13868 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13869 return false;
13870 }
13871
13872 /* Empty range entries have no effect. */
13873 if (range_beginning == range_end)
13874 continue;
13875
13876 /* Only DW_RLE_offset_pair needs the base address added. */
13877 if (rlet == DW_RLE_offset_pair)
13878 {
13879 if (!base.has_value ())
13880 {
13881 /* We have no valid base address for the DW_RLE_offset_pair. */
13882 complaint (_("Invalid .debug_rnglists data (no base address for "
13883 "DW_RLE_offset_pair)"));
13884 return false;
13885 }
13886
13887 range_beginning += *base;
13888 range_end += *base;
13889 }
13890
13891 /* A not-uncommon case of bad debug info.
13892 Don't pollute the addrmap with bad data. */
13893 if (range_beginning == 0
13894 && !per_objfile->per_bfd->has_section_at_zero)
13895 {
13896 complaint (_(".debug_rnglists entry has start address of zero"
13897 " [in module %s]"), objfile_name (objfile));
13898 continue;
13899 }
13900
13901 callback (range_beginning, range_end);
13902 }
13903
13904 if (overflow)
13905 {
13906 complaint (_("Offset %d is not terminated "
13907 "for DW_AT_ranges attribute"),
13908 offset);
13909 return false;
13910 }
13911
13912 return true;
13913 }
13914
13915 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13916 Callback's type should be:
13917 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13918 Return 1 if the attributes are present and valid, otherwise, return 0. */
13919
13920 template <typename Callback>
13921 static int
13922 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag,
13923 Callback &&callback)
13924 {
13925 dwarf2_per_objfile *per_objfile = cu->per_objfile;
13926 struct objfile *objfile = per_objfile->objfile;
13927 struct comp_unit_head *cu_header = &cu->header;
13928 bfd *obfd = objfile->obfd;
13929 unsigned int addr_size = cu_header->addr_size;
13930 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13931 /* Base address selection entry. */
13932 gdb::optional<CORE_ADDR> base;
13933 unsigned int dummy;
13934 const gdb_byte *buffer;
13935
13936 if (cu_header->version >= 5)
13937 return dwarf2_rnglists_process (offset, cu, tag, callback);
13938
13939 base = cu->base_address;
13940
13941 per_objfile->per_bfd->ranges.read (objfile);
13942 if (offset >= per_objfile->per_bfd->ranges.size)
13943 {
13944 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13945 offset);
13946 return 0;
13947 }
13948 buffer = per_objfile->per_bfd->ranges.buffer + offset;
13949
13950 while (1)
13951 {
13952 CORE_ADDR range_beginning, range_end;
13953
13954 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13955 buffer += addr_size;
13956 range_end = cu->header.read_address (obfd, buffer, &dummy);
13957 buffer += addr_size;
13958 offset += 2 * addr_size;
13959
13960 /* An end of list marker is a pair of zero addresses. */
13961 if (range_beginning == 0 && range_end == 0)
13962 /* Found the end of list entry. */
13963 break;
13964
13965 /* Each base address selection entry is a pair of 2 values.
13966 The first is the largest possible address, the second is
13967 the base address. Check for a base address here. */
13968 if ((range_beginning & mask) == mask)
13969 {
13970 /* If we found the largest possible address, then we already
13971 have the base address in range_end. */
13972 base = range_end;
13973 continue;
13974 }
13975
13976 if (!base.has_value ())
13977 {
13978 /* We have no valid base address for the ranges
13979 data. */
13980 complaint (_("Invalid .debug_ranges data (no base address)"));
13981 return 0;
13982 }
13983
13984 if (range_beginning > range_end)
13985 {
13986 /* Inverted range entries are invalid. */
13987 complaint (_("Invalid .debug_ranges data (inverted range)"));
13988 return 0;
13989 }
13990
13991 /* Empty range entries have no effect. */
13992 if (range_beginning == range_end)
13993 continue;
13994
13995 range_beginning += *base;
13996 range_end += *base;
13997
13998 /* A not-uncommon case of bad debug info.
13999 Don't pollute the addrmap with bad data. */
14000 if (range_beginning == 0
14001 && !per_objfile->per_bfd->has_section_at_zero)
14002 {
14003 complaint (_(".debug_ranges entry has start address of zero"
14004 " [in module %s]"), objfile_name (objfile));
14005 continue;
14006 }
14007
14008 callback (range_beginning, range_end);
14009 }
14010
14011 return 1;
14012 }
14013
14014 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14015 Return 1 if the attributes are present and valid, otherwise, return 0.
14016 If RANGES_PST is not NULL we should set up the `psymtabs_addrmap'. */
14017
14018 static int
14019 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14020 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14021 dwarf2_psymtab *ranges_pst, dwarf_tag tag)
14022 {
14023 struct objfile *objfile = cu->per_objfile->objfile;
14024 dwarf2_per_bfd *per_bfd = cu->per_objfile->per_bfd;
14025 struct gdbarch *gdbarch = objfile->arch ();
14026 const CORE_ADDR baseaddr = objfile->text_section_offset ();
14027 int low_set = 0;
14028 CORE_ADDR low = 0;
14029 CORE_ADDR high = 0;
14030 int retval;
14031
14032 retval = dwarf2_ranges_process (offset, cu, tag,
14033 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14034 {
14035 if (ranges_pst != NULL)
14036 {
14037 CORE_ADDR lowpc;
14038 CORE_ADDR highpc;
14039
14040 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14041 range_beginning + baseaddr)
14042 - baseaddr);
14043 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14044 range_end + baseaddr)
14045 - baseaddr);
14046 addrmap_set_empty (per_bfd->partial_symtabs->psymtabs_addrmap,
14047 lowpc, highpc - 1, ranges_pst);
14048 }
14049
14050 /* FIXME: This is recording everything as a low-high
14051 segment of consecutive addresses. We should have a
14052 data structure for discontiguous block ranges
14053 instead. */
14054 if (! low_set)
14055 {
14056 low = range_beginning;
14057 high = range_end;
14058 low_set = 1;
14059 }
14060 else
14061 {
14062 if (range_beginning < low)
14063 low = range_beginning;
14064 if (range_end > high)
14065 high = range_end;
14066 }
14067 });
14068 if (!retval)
14069 return 0;
14070
14071 if (! low_set)
14072 /* If the first entry is an end-of-list marker, the range
14073 describes an empty scope, i.e. no instructions. */
14074 return 0;
14075
14076 if (low_return)
14077 *low_return = low;
14078 if (high_return)
14079 *high_return = high;
14080 return 1;
14081 }
14082
14083 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14084 definition for the return value. *LOWPC and *HIGHPC are set iff
14085 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14086
14087 static enum pc_bounds_kind
14088 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14089 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14090 dwarf2_psymtab *pst)
14091 {
14092 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14093 struct attribute *attr;
14094 struct attribute *attr_high;
14095 CORE_ADDR low = 0;
14096 CORE_ADDR high = 0;
14097 enum pc_bounds_kind ret;
14098
14099 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14100 if (attr_high)
14101 {
14102 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14103 if (attr != nullptr)
14104 {
14105 low = attr->as_address ();
14106 high = attr_high->as_address ();
14107 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14108 high += low;
14109 }
14110 else
14111 /* Found high w/o low attribute. */
14112 return PC_BOUNDS_INVALID;
14113
14114 /* Found consecutive range of addresses. */
14115 ret = PC_BOUNDS_HIGH_LOW;
14116 }
14117 else
14118 {
14119 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14120 if (attr != nullptr && attr->form_is_unsigned ())
14121 {
14122 /* Offset in the .debug_ranges or .debug_rnglist section (depending
14123 on DWARF version). */
14124 ULONGEST ranges_offset = attr->as_unsigned ();
14125
14126 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14127 this value. */
14128 if (die->tag != DW_TAG_compile_unit)
14129 ranges_offset += cu->gnu_ranges_base;
14130
14131 /* Value of the DW_AT_ranges attribute is the offset in the
14132 .debug_ranges section. */
14133 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst,
14134 die->tag))
14135 return PC_BOUNDS_INVALID;
14136 /* Found discontinuous range of addresses. */
14137 ret = PC_BOUNDS_RANGES;
14138 }
14139 else
14140 return PC_BOUNDS_NOT_PRESENT;
14141 }
14142
14143 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14144 if (high <= low)
14145 return PC_BOUNDS_INVALID;
14146
14147 /* When using the GNU linker, .gnu.linkonce. sections are used to
14148 eliminate duplicate copies of functions and vtables and such.
14149 The linker will arbitrarily choose one and discard the others.
14150 The AT_*_pc values for such functions refer to local labels in
14151 these sections. If the section from that file was discarded, the
14152 labels are not in the output, so the relocs get a value of 0.
14153 If this is a discarded function, mark the pc bounds as invalid,
14154 so that GDB will ignore it. */
14155 if (low == 0 && !per_objfile->per_bfd->has_section_at_zero)
14156 return PC_BOUNDS_INVALID;
14157
14158 *lowpc = low;
14159 if (highpc)
14160 *highpc = high;
14161 return ret;
14162 }
14163
14164 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14165 its low and high PC addresses. Do nothing if these addresses could not
14166 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14167 and HIGHPC to the high address if greater than HIGHPC. */
14168
14169 static void
14170 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14171 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14172 struct dwarf2_cu *cu)
14173 {
14174 CORE_ADDR low, high;
14175 struct die_info *child = die->child;
14176
14177 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14178 {
14179 *lowpc = std::min (*lowpc, low);
14180 *highpc = std::max (*highpc, high);
14181 }
14182
14183 /* If the language does not allow nested subprograms (either inside
14184 subprograms or lexical blocks), we're done. */
14185 if (cu->per_cu->lang != language_ada)
14186 return;
14187
14188 /* Check all the children of the given DIE. If it contains nested
14189 subprograms, then check their pc bounds. Likewise, we need to
14190 check lexical blocks as well, as they may also contain subprogram
14191 definitions. */
14192 while (child && child->tag)
14193 {
14194 if (child->tag == DW_TAG_subprogram
14195 || child->tag == DW_TAG_lexical_block)
14196 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14197 child = child->sibling;
14198 }
14199 }
14200
14201 /* Get the low and high pc's represented by the scope DIE, and store
14202 them in *LOWPC and *HIGHPC. If the correct values can't be
14203 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14204
14205 static void
14206 get_scope_pc_bounds (struct die_info *die,
14207 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14208 struct dwarf2_cu *cu)
14209 {
14210 CORE_ADDR best_low = (CORE_ADDR) -1;
14211 CORE_ADDR best_high = (CORE_ADDR) 0;
14212 CORE_ADDR current_low, current_high;
14213
14214 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14215 >= PC_BOUNDS_RANGES)
14216 {
14217 best_low = current_low;
14218 best_high = current_high;
14219 }
14220 else
14221 {
14222 struct die_info *child = die->child;
14223
14224 while (child && child->tag)
14225 {
14226 switch (child->tag) {
14227 case DW_TAG_subprogram:
14228 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14229 break;
14230 case DW_TAG_namespace:
14231 case DW_TAG_module:
14232 /* FIXME: carlton/2004-01-16: Should we do this for
14233 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14234 that current GCC's always emit the DIEs corresponding
14235 to definitions of methods of classes as children of a
14236 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14237 the DIEs giving the declarations, which could be
14238 anywhere). But I don't see any reason why the
14239 standards says that they have to be there. */
14240 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14241
14242 if (current_low != ((CORE_ADDR) -1))
14243 {
14244 best_low = std::min (best_low, current_low);
14245 best_high = std::max (best_high, current_high);
14246 }
14247 break;
14248 default:
14249 /* Ignore. */
14250 break;
14251 }
14252
14253 child = child->sibling;
14254 }
14255 }
14256
14257 *lowpc = best_low;
14258 *highpc = best_high;
14259 }
14260
14261 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14262 in DIE. */
14263
14264 static void
14265 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14266 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14267 {
14268 struct objfile *objfile = cu->per_objfile->objfile;
14269 struct gdbarch *gdbarch = objfile->arch ();
14270 struct attribute *attr;
14271 struct attribute *attr_high;
14272
14273 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14274 if (attr_high)
14275 {
14276 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14277 if (attr != nullptr)
14278 {
14279 CORE_ADDR low = attr->as_address ();
14280 CORE_ADDR high = attr_high->as_address ();
14281
14282 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14283 high += low;
14284
14285 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14286 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14287 cu->get_builder ()->record_block_range (block, low, high - 1);
14288 }
14289 }
14290
14291 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14292 if (attr != nullptr && attr->form_is_unsigned ())
14293 {
14294 /* Offset in the .debug_ranges or .debug_rnglist section (depending
14295 on DWARF version). */
14296 ULONGEST ranges_offset = attr->as_unsigned ();
14297
14298 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
14299 this value. */
14300 if (die->tag != DW_TAG_compile_unit)
14301 ranges_offset += cu->gnu_ranges_base;
14302
14303 std::vector<blockrange> blockvec;
14304 dwarf2_ranges_process (ranges_offset, cu, die->tag,
14305 [&] (CORE_ADDR start, CORE_ADDR end)
14306 {
14307 start += baseaddr;
14308 end += baseaddr;
14309 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14310 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14311 cu->get_builder ()->record_block_range (block, start, end - 1);
14312 blockvec.emplace_back (start, end);
14313 });
14314
14315 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14316 }
14317 }
14318
14319 /* Check whether the producer field indicates either of GCC < 4.6, or the
14320 Intel C/C++ compiler, and cache the result in CU. */
14321
14322 static void
14323 check_producer (struct dwarf2_cu *cu)
14324 {
14325 int major, minor;
14326
14327 if (cu->producer == NULL)
14328 {
14329 /* For unknown compilers expect their behavior is DWARF version
14330 compliant.
14331
14332 GCC started to support .debug_types sections by -gdwarf-4 since
14333 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14334 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14335 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14336 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14337 }
14338 else if (producer_is_gcc (cu->producer, &major, &minor))
14339 {
14340 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14341 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14342 }
14343 else if (producer_is_icc (cu->producer, &major, &minor))
14344 {
14345 cu->producer_is_icc = true;
14346 cu->producer_is_icc_lt_14 = major < 14;
14347 }
14348 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14349 cu->producer_is_codewarrior = true;
14350 else
14351 {
14352 /* For other non-GCC compilers, expect their behavior is DWARF version
14353 compliant. */
14354 }
14355
14356 cu->checked_producer = true;
14357 }
14358
14359 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14360 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14361 during 4.6.0 experimental. */
14362
14363 static bool
14364 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14365 {
14366 if (!cu->checked_producer)
14367 check_producer (cu);
14368
14369 return cu->producer_is_gxx_lt_4_6;
14370 }
14371
14372
14373 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14374 with incorrect is_stmt attributes. */
14375
14376 static bool
14377 producer_is_codewarrior (struct dwarf2_cu *cu)
14378 {
14379 if (!cu->checked_producer)
14380 check_producer (cu);
14381
14382 return cu->producer_is_codewarrior;
14383 }
14384
14385 /* Return the accessibility of DIE, as given by DW_AT_accessibility.
14386 If that attribute is not available, return the appropriate
14387 default. */
14388
14389 static enum dwarf_access_attribute
14390 dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14391 {
14392 attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14393 if (attr != nullptr)
14394 {
14395 LONGEST value = attr->constant_value (-1);
14396 if (value == DW_ACCESS_public
14397 || value == DW_ACCESS_protected
14398 || value == DW_ACCESS_private)
14399 return (dwarf_access_attribute) value;
14400 complaint (_("Unhandled DW_AT_accessibility value (%s)"),
14401 plongest (value));
14402 }
14403
14404 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14405 {
14406 /* The default DWARF 2 accessibility for members is public, the default
14407 accessibility for inheritance is private. */
14408
14409 if (die->tag != DW_TAG_inheritance)
14410 return DW_ACCESS_public;
14411 else
14412 return DW_ACCESS_private;
14413 }
14414 else
14415 {
14416 /* DWARF 3+ defines the default accessibility a different way. The same
14417 rules apply now for DW_TAG_inheritance as for the members and it only
14418 depends on the container kind. */
14419
14420 if (die->parent->tag == DW_TAG_class_type)
14421 return DW_ACCESS_private;
14422 else
14423 return DW_ACCESS_public;
14424 }
14425 }
14426
14427 /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset. Set
14428 *OFFSET to the byte offset. If the attribute was not found return
14429 0, otherwise return 1. If it was found but could not properly be
14430 handled, set *OFFSET to 0. */
14431
14432 static int
14433 handle_member_location (struct die_info *die, struct dwarf2_cu *cu,
14434 LONGEST *offset)
14435 {
14436 struct attribute *attr;
14437
14438 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14439 if (attr != NULL)
14440 {
14441 *offset = 0;
14442
14443 /* Note that we do not check for a section offset first here.
14444 This is because DW_AT_data_member_location is new in DWARF 4,
14445 so if we see it, we can assume that a constant form is really
14446 a constant and not a section offset. */
14447 if (attr->form_is_constant ())
14448 *offset = attr->constant_value (0);
14449 else if (attr->form_is_section_offset ())
14450 dwarf2_complex_location_expr_complaint ();
14451 else if (attr->form_is_block ())
14452 *offset = decode_locdesc (attr->as_block (), cu);
14453 else
14454 dwarf2_complex_location_expr_complaint ();
14455
14456 return 1;
14457 }
14458 else
14459 {
14460 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14461 if (attr != nullptr)
14462 {
14463 *offset = attr->constant_value (0);
14464 return 1;
14465 }
14466 }
14467
14468 return 0;
14469 }
14470
14471 /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset and
14472 store the results in FIELD. */
14473
14474 static void
14475 handle_member_location (struct die_info *die, struct dwarf2_cu *cu,
14476 struct field *field)
14477 {
14478 struct attribute *attr;
14479
14480 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14481 if (attr != NULL)
14482 {
14483 if (attr->form_is_constant ())
14484 {
14485 LONGEST offset = attr->constant_value (0);
14486 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14487 }
14488 else if (attr->form_is_section_offset ())
14489 dwarf2_complex_location_expr_complaint ();
14490 else if (attr->form_is_block ())
14491 {
14492 bool handled;
14493 CORE_ADDR offset = decode_locdesc (attr->as_block (), cu, &handled);
14494 if (handled)
14495 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14496 else
14497 {
14498 dwarf2_per_objfile *per_objfile = cu->per_objfile;
14499 struct objfile *objfile = per_objfile->objfile;
14500 struct dwarf2_locexpr_baton *dlbaton
14501 = XOBNEW (&objfile->objfile_obstack,
14502 struct dwarf2_locexpr_baton);
14503 dlbaton->data = attr->as_block ()->data;
14504 dlbaton->size = attr->as_block ()->size;
14505 /* When using this baton, we want to compute the address
14506 of the field, not the value. This is why
14507 is_reference is set to false here. */
14508 dlbaton->is_reference = false;
14509 dlbaton->per_objfile = per_objfile;
14510 dlbaton->per_cu = cu->per_cu;
14511
14512 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14513 }
14514 }
14515 else
14516 dwarf2_complex_location_expr_complaint ();
14517 }
14518 else
14519 {
14520 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14521 if (attr != nullptr)
14522 SET_FIELD_BITPOS (*field, attr->constant_value (0));
14523 }
14524 }
14525
14526 /* Add an aggregate field to the field list. */
14527
14528 static void
14529 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14530 struct dwarf2_cu *cu)
14531 {
14532 struct objfile *objfile = cu->per_objfile->objfile;
14533 struct gdbarch *gdbarch = objfile->arch ();
14534 struct nextfield *new_field;
14535 struct attribute *attr;
14536 struct field *fp;
14537 const char *fieldname = "";
14538
14539 if (die->tag == DW_TAG_inheritance)
14540 {
14541 fip->baseclasses.emplace_back ();
14542 new_field = &fip->baseclasses.back ();
14543 }
14544 else
14545 {
14546 fip->fields.emplace_back ();
14547 new_field = &fip->fields.back ();
14548 }
14549
14550 new_field->offset = die->sect_off;
14551
14552 new_field->accessibility = dwarf2_access_attribute (die, cu);
14553 if (new_field->accessibility != DW_ACCESS_public)
14554 fip->non_public_fields = true;
14555
14556 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14557 if (attr != nullptr)
14558 new_field->virtuality = attr->as_virtuality ();
14559 else
14560 new_field->virtuality = DW_VIRTUALITY_none;
14561
14562 fp = &new_field->field;
14563
14564 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14565 {
14566 /* Data member other than a C++ static data member. */
14567
14568 /* Get type of field. */
14569 fp->set_type (die_type (die, cu));
14570
14571 SET_FIELD_BITPOS (*fp, 0);
14572
14573 /* Get bit size of field (zero if none). */
14574 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14575 if (attr != nullptr)
14576 {
14577 FIELD_BITSIZE (*fp) = attr->constant_value (0);
14578 }
14579 else
14580 {
14581 FIELD_BITSIZE (*fp) = 0;
14582 }
14583
14584 /* Get bit offset of field. */
14585 handle_member_location (die, cu, fp);
14586 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14587 if (attr != nullptr && attr->form_is_constant ())
14588 {
14589 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14590 {
14591 /* For big endian bits, the DW_AT_bit_offset gives the
14592 additional bit offset from the MSB of the containing
14593 anonymous object to the MSB of the field. We don't
14594 have to do anything special since we don't need to
14595 know the size of the anonymous object. */
14596 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14597 + attr->constant_value (0)));
14598 }
14599 else
14600 {
14601 /* For little endian bits, compute the bit offset to the
14602 MSB of the anonymous object, subtract off the number of
14603 bits from the MSB of the field to the MSB of the
14604 object, and then subtract off the number of bits of
14605 the field itself. The result is the bit offset of
14606 the LSB of the field. */
14607 int anonymous_size;
14608 int bit_offset = attr->constant_value (0);
14609
14610 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14611 if (attr != nullptr && attr->form_is_constant ())
14612 {
14613 /* The size of the anonymous object containing
14614 the bit field is explicit, so use the
14615 indicated size (in bytes). */
14616 anonymous_size = attr->constant_value (0);
14617 }
14618 else
14619 {
14620 /* The size of the anonymous object containing
14621 the bit field must be inferred from the type
14622 attribute of the data member containing the
14623 bit field. */
14624 anonymous_size = TYPE_LENGTH (fp->type ());
14625 }
14626 SET_FIELD_BITPOS (*fp,
14627 (FIELD_BITPOS (*fp)
14628 + anonymous_size * bits_per_byte
14629 - bit_offset - FIELD_BITSIZE (*fp)));
14630 }
14631 }
14632
14633 /* Get name of field. */
14634 fieldname = dwarf2_name (die, cu);
14635 if (fieldname == NULL)
14636 fieldname = "";
14637
14638 /* The name is already allocated along with this objfile, so we don't
14639 need to duplicate it for the type. */
14640 fp->set_name (fieldname);
14641
14642 /* Change accessibility for artificial fields (e.g. virtual table
14643 pointer or virtual base class pointer) to private. */
14644 if (dwarf2_attr (die, DW_AT_artificial, cu))
14645 {
14646 FIELD_ARTIFICIAL (*fp) = 1;
14647 new_field->accessibility = DW_ACCESS_private;
14648 fip->non_public_fields = true;
14649 }
14650 }
14651 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14652 {
14653 /* C++ static member. */
14654
14655 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14656 is a declaration, but all versions of G++ as of this writing
14657 (so through at least 3.2.1) incorrectly generate
14658 DW_TAG_variable tags. */
14659
14660 const char *physname;
14661
14662 /* Get name of field. */
14663 fieldname = dwarf2_name (die, cu);
14664 if (fieldname == NULL)
14665 return;
14666
14667 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14668 if (attr
14669 /* Only create a symbol if this is an external value.
14670 new_symbol checks this and puts the value in the global symbol
14671 table, which we want. If it is not external, new_symbol
14672 will try to put the value in cu->list_in_scope which is wrong. */
14673 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14674 {
14675 /* A static const member, not much different than an enum as far as
14676 we're concerned, except that we can support more types. */
14677 new_symbol (die, NULL, cu);
14678 }
14679
14680 /* Get physical name. */
14681 physname = dwarf2_physname (fieldname, die, cu);
14682
14683 /* The name is already allocated along with this objfile, so we don't
14684 need to duplicate it for the type. */
14685 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14686 fp->set_type (die_type (die, cu));
14687 fp->set_name (fieldname);
14688 }
14689 else if (die->tag == DW_TAG_inheritance)
14690 {
14691 /* C++ base class field. */
14692 handle_member_location (die, cu, fp);
14693 FIELD_BITSIZE (*fp) = 0;
14694 fp->set_type (die_type (die, cu));
14695 fp->set_name (fp->type ()->name ());
14696 }
14697 else
14698 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14699 }
14700
14701 /* Can the type given by DIE define another type? */
14702
14703 static bool
14704 type_can_define_types (const struct die_info *die)
14705 {
14706 switch (die->tag)
14707 {
14708 case DW_TAG_typedef:
14709 case DW_TAG_class_type:
14710 case DW_TAG_structure_type:
14711 case DW_TAG_union_type:
14712 case DW_TAG_enumeration_type:
14713 return true;
14714
14715 default:
14716 return false;
14717 }
14718 }
14719
14720 /* Add a type definition defined in the scope of the FIP's class. */
14721
14722 static void
14723 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14724 struct dwarf2_cu *cu)
14725 {
14726 struct decl_field fp;
14727 memset (&fp, 0, sizeof (fp));
14728
14729 gdb_assert (type_can_define_types (die));
14730
14731 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14732 fp.name = dwarf2_name (die, cu);
14733 fp.type = read_type_die (die, cu);
14734
14735 /* Save accessibility. */
14736 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
14737 switch (accessibility)
14738 {
14739 case DW_ACCESS_public:
14740 /* The assumed value if neither private nor protected. */
14741 break;
14742 case DW_ACCESS_private:
14743 fp.is_private = 1;
14744 break;
14745 case DW_ACCESS_protected:
14746 fp.is_protected = 1;
14747 break;
14748 }
14749
14750 if (die->tag == DW_TAG_typedef)
14751 fip->typedef_field_list.push_back (fp);
14752 else
14753 fip->nested_types_list.push_back (fp);
14754 }
14755
14756 /* A convenience typedef that's used when finding the discriminant
14757 field for a variant part. */
14758 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14759 offset_map_type;
14760
14761 /* Compute the discriminant range for a given variant. OBSTACK is
14762 where the results will be stored. VARIANT is the variant to
14763 process. IS_UNSIGNED indicates whether the discriminant is signed
14764 or unsigned. */
14765
14766 static const gdb::array_view<discriminant_range>
14767 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14768 bool is_unsigned)
14769 {
14770 std::vector<discriminant_range> ranges;
14771
14772 if (variant.default_branch)
14773 return {};
14774
14775 if (variant.discr_list_data == nullptr)
14776 {
14777 discriminant_range r
14778 = {variant.discriminant_value, variant.discriminant_value};
14779 ranges.push_back (r);
14780 }
14781 else
14782 {
14783 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14784 variant.discr_list_data->size);
14785 while (!data.empty ())
14786 {
14787 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14788 {
14789 complaint (_("invalid discriminant marker: %d"), data[0]);
14790 break;
14791 }
14792 bool is_range = data[0] == DW_DSC_range;
14793 data = data.slice (1);
14794
14795 ULONGEST low, high;
14796 unsigned int bytes_read;
14797
14798 if (data.empty ())
14799 {
14800 complaint (_("DW_AT_discr_list missing low value"));
14801 break;
14802 }
14803 if (is_unsigned)
14804 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14805 else
14806 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14807 &bytes_read);
14808 data = data.slice (bytes_read);
14809
14810 if (is_range)
14811 {
14812 if (data.empty ())
14813 {
14814 complaint (_("DW_AT_discr_list missing high value"));
14815 break;
14816 }
14817 if (is_unsigned)
14818 high = read_unsigned_leb128 (nullptr, data.data (),
14819 &bytes_read);
14820 else
14821 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14822 &bytes_read);
14823 data = data.slice (bytes_read);
14824 }
14825 else
14826 high = low;
14827
14828 ranges.push_back ({ low, high });
14829 }
14830 }
14831
14832 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14833 ranges.size ());
14834 std::copy (ranges.begin (), ranges.end (), result);
14835 return gdb::array_view<discriminant_range> (result, ranges.size ());
14836 }
14837
14838 static const gdb::array_view<variant_part> create_variant_parts
14839 (struct obstack *obstack,
14840 const offset_map_type &offset_map,
14841 struct field_info *fi,
14842 const std::vector<variant_part_builder> &variant_parts);
14843
14844 /* Fill in a "struct variant" for a given variant field. RESULT is
14845 the variant to fill in. OBSTACK is where any needed allocations
14846 will be done. OFFSET_MAP holds the mapping from section offsets to
14847 fields for the type. FI describes the fields of the type we're
14848 processing. FIELD is the variant field we're converting. */
14849
14850 static void
14851 create_one_variant (variant &result, struct obstack *obstack,
14852 const offset_map_type &offset_map,
14853 struct field_info *fi, const variant_field &field)
14854 {
14855 result.discriminants = convert_variant_range (obstack, field, false);
14856 result.first_field = field.first_field + fi->baseclasses.size ();
14857 result.last_field = field.last_field + fi->baseclasses.size ();
14858 result.parts = create_variant_parts (obstack, offset_map, fi,
14859 field.variant_parts);
14860 }
14861
14862 /* Fill in a "struct variant_part" for a given variant part. RESULT
14863 is the variant part to fill in. OBSTACK is where any needed
14864 allocations will be done. OFFSET_MAP holds the mapping from
14865 section offsets to fields for the type. FI describes the fields of
14866 the type we're processing. BUILDER is the variant part to be
14867 converted. */
14868
14869 static void
14870 create_one_variant_part (variant_part &result,
14871 struct obstack *obstack,
14872 const offset_map_type &offset_map,
14873 struct field_info *fi,
14874 const variant_part_builder &builder)
14875 {
14876 auto iter = offset_map.find (builder.discriminant_offset);
14877 if (iter == offset_map.end ())
14878 {
14879 result.discriminant_index = -1;
14880 /* Doesn't matter. */
14881 result.is_unsigned = false;
14882 }
14883 else
14884 {
14885 result.discriminant_index = iter->second;
14886 result.is_unsigned
14887 = fi->fields[result.discriminant_index].field.type ()->is_unsigned ();
14888 }
14889
14890 size_t n = builder.variants.size ();
14891 variant *output = new (obstack) variant[n];
14892 for (size_t i = 0; i < n; ++i)
14893 create_one_variant (output[i], obstack, offset_map, fi,
14894 builder.variants[i]);
14895
14896 result.variants = gdb::array_view<variant> (output, n);
14897 }
14898
14899 /* Create a vector of variant parts that can be attached to a type.
14900 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14901 holds the mapping from section offsets to fields for the type. FI
14902 describes the fields of the type we're processing. VARIANT_PARTS
14903 is the vector to convert. */
14904
14905 static const gdb::array_view<variant_part>
14906 create_variant_parts (struct obstack *obstack,
14907 const offset_map_type &offset_map,
14908 struct field_info *fi,
14909 const std::vector<variant_part_builder> &variant_parts)
14910 {
14911 if (variant_parts.empty ())
14912 return {};
14913
14914 size_t n = variant_parts.size ();
14915 variant_part *result = new (obstack) variant_part[n];
14916 for (size_t i = 0; i < n; ++i)
14917 create_one_variant_part (result[i], obstack, offset_map, fi,
14918 variant_parts[i]);
14919
14920 return gdb::array_view<variant_part> (result, n);
14921 }
14922
14923 /* Compute the variant part vector for FIP, attaching it to TYPE when
14924 done. */
14925
14926 static void
14927 add_variant_property (struct field_info *fip, struct type *type,
14928 struct dwarf2_cu *cu)
14929 {
14930 /* Map section offsets of fields to their field index. Note the
14931 field index here does not take the number of baseclasses into
14932 account. */
14933 offset_map_type offset_map;
14934 for (int i = 0; i < fip->fields.size (); ++i)
14935 offset_map[fip->fields[i].offset] = i;
14936
14937 struct objfile *objfile = cu->per_objfile->objfile;
14938 gdb::array_view<variant_part> parts
14939 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14940 fip->variant_parts);
14941
14942 struct dynamic_prop prop;
14943 prop.set_variant_parts ((gdb::array_view<variant_part> *)
14944 obstack_copy (&objfile->objfile_obstack, &parts,
14945 sizeof (parts)));
14946
14947 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14948 }
14949
14950 /* Create the vector of fields, and attach it to the type. */
14951
14952 static void
14953 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14954 struct dwarf2_cu *cu)
14955 {
14956 int nfields = fip->nfields ();
14957
14958 /* Record the field count, allocate space for the array of fields,
14959 and create blank accessibility bitfields if necessary. */
14960 type->set_num_fields (nfields);
14961 type->set_fields
14962 ((struct field *) TYPE_ZALLOC (type, sizeof (struct field) * nfields));
14963
14964 if (fip->non_public_fields && cu->per_cu->lang != language_ada)
14965 {
14966 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14967
14968 TYPE_FIELD_PRIVATE_BITS (type) =
14969 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14970 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14971
14972 TYPE_FIELD_PROTECTED_BITS (type) =
14973 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14974 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14975
14976 TYPE_FIELD_IGNORE_BITS (type) =
14977 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14978 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14979 }
14980
14981 /* If the type has baseclasses, allocate and clear a bit vector for
14982 TYPE_FIELD_VIRTUAL_BITS. */
14983 if (!fip->baseclasses.empty () && cu->per_cu->lang != language_ada)
14984 {
14985 int num_bytes = B_BYTES (fip->baseclasses.size ());
14986 unsigned char *pointer;
14987
14988 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14989 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14990 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14991 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14992 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14993 }
14994
14995 if (!fip->variant_parts.empty ())
14996 add_variant_property (fip, type, cu);
14997
14998 /* Copy the saved-up fields into the field vector. */
14999 for (int i = 0; i < nfields; ++i)
15000 {
15001 struct nextfield &field
15002 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15003 : fip->fields[i - fip->baseclasses.size ()]);
15004
15005 type->field (i) = field.field;
15006 switch (field.accessibility)
15007 {
15008 case DW_ACCESS_private:
15009 if (cu->per_cu->lang != language_ada)
15010 SET_TYPE_FIELD_PRIVATE (type, i);
15011 break;
15012
15013 case DW_ACCESS_protected:
15014 if (cu->per_cu->lang != language_ada)
15015 SET_TYPE_FIELD_PROTECTED (type, i);
15016 break;
15017
15018 case DW_ACCESS_public:
15019 break;
15020
15021 default:
15022 /* Unknown accessibility. Complain and treat it as public. */
15023 {
15024 complaint (_("unsupported accessibility %d"),
15025 field.accessibility);
15026 }
15027 break;
15028 }
15029 if (i < fip->baseclasses.size ())
15030 {
15031 switch (field.virtuality)
15032 {
15033 case DW_VIRTUALITY_virtual:
15034 case DW_VIRTUALITY_pure_virtual:
15035 if (cu->per_cu->lang == language_ada)
15036 error (_("unexpected virtuality in component of Ada type"));
15037 SET_TYPE_FIELD_VIRTUAL (type, i);
15038 break;
15039 }
15040 }
15041 }
15042 }
15043
15044 /* Return true if this member function is a constructor, false
15045 otherwise. */
15046
15047 static int
15048 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15049 {
15050 const char *fieldname;
15051 const char *type_name;
15052 int len;
15053
15054 if (die->parent == NULL)
15055 return 0;
15056
15057 if (die->parent->tag != DW_TAG_structure_type
15058 && die->parent->tag != DW_TAG_union_type
15059 && die->parent->tag != DW_TAG_class_type)
15060 return 0;
15061
15062 fieldname = dwarf2_name (die, cu);
15063 type_name = dwarf2_name (die->parent, cu);
15064 if (fieldname == NULL || type_name == NULL)
15065 return 0;
15066
15067 len = strlen (fieldname);
15068 return (strncmp (fieldname, type_name, len) == 0
15069 && (type_name[len] == '\0' || type_name[len] == '<'));
15070 }
15071
15072 /* Add a member function to the proper fieldlist. */
15073
15074 static void
15075 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15076 struct type *type, struct dwarf2_cu *cu)
15077 {
15078 struct objfile *objfile = cu->per_objfile->objfile;
15079 struct attribute *attr;
15080 int i;
15081 struct fnfieldlist *flp = nullptr;
15082 struct fn_field *fnp;
15083 const char *fieldname;
15084 struct type *this_type;
15085
15086 if (cu->per_cu->lang == language_ada)
15087 error (_("unexpected member function in Ada type"));
15088
15089 /* Get name of member function. */
15090 fieldname = dwarf2_name (die, cu);
15091 if (fieldname == NULL)
15092 return;
15093
15094 /* Look up member function name in fieldlist. */
15095 for (i = 0; i < fip->fnfieldlists.size (); i++)
15096 {
15097 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15098 {
15099 flp = &fip->fnfieldlists[i];
15100 break;
15101 }
15102 }
15103
15104 /* Create a new fnfieldlist if necessary. */
15105 if (flp == nullptr)
15106 {
15107 fip->fnfieldlists.emplace_back ();
15108 flp = &fip->fnfieldlists.back ();
15109 flp->name = fieldname;
15110 i = fip->fnfieldlists.size () - 1;
15111 }
15112
15113 /* Create a new member function field and add it to the vector of
15114 fnfieldlists. */
15115 flp->fnfields.emplace_back ();
15116 fnp = &flp->fnfields.back ();
15117
15118 /* Delay processing of the physname until later. */
15119 if (cu->per_cu->lang == language_cplus)
15120 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15121 die, cu);
15122 else
15123 {
15124 const char *physname = dwarf2_physname (fieldname, die, cu);
15125 fnp->physname = physname ? physname : "";
15126 }
15127
15128 fnp->type = alloc_type (objfile);
15129 this_type = read_type_die (die, cu);
15130 if (this_type && this_type->code () == TYPE_CODE_FUNC)
15131 {
15132 int nparams = this_type->num_fields ();
15133
15134 /* TYPE is the domain of this method, and THIS_TYPE is the type
15135 of the method itself (TYPE_CODE_METHOD). */
15136 smash_to_method_type (fnp->type, type,
15137 TYPE_TARGET_TYPE (this_type),
15138 this_type->fields (),
15139 this_type->num_fields (),
15140 this_type->has_varargs ());
15141
15142 /* Handle static member functions.
15143 Dwarf2 has no clean way to discern C++ static and non-static
15144 member functions. G++ helps GDB by marking the first
15145 parameter for non-static member functions (which is the this
15146 pointer) as artificial. We obtain this information from
15147 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15148 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15149 fnp->voffset = VOFFSET_STATIC;
15150 }
15151 else
15152 complaint (_("member function type missing for '%s'"),
15153 dwarf2_full_name (fieldname, die, cu));
15154
15155 /* Get fcontext from DW_AT_containing_type if present. */
15156 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15157 fnp->fcontext = die_containing_type (die, cu);
15158
15159 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15160 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15161
15162 /* Get accessibility. */
15163 dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu);
15164 switch (accessibility)
15165 {
15166 case DW_ACCESS_private:
15167 fnp->is_private = 1;
15168 break;
15169 case DW_ACCESS_protected:
15170 fnp->is_protected = 1;
15171 break;
15172 }
15173
15174 /* Check for artificial methods. */
15175 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15176 if (attr && attr->as_boolean ())
15177 fnp->is_artificial = 1;
15178
15179 /* Check for defaulted methods. */
15180 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15181 if (attr != nullptr)
15182 fnp->defaulted = attr->defaulted ();
15183
15184 /* Check for deleted methods. */
15185 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15186 if (attr != nullptr && attr->as_boolean ())
15187 fnp->is_deleted = 1;
15188
15189 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15190
15191 /* Get index in virtual function table if it is a virtual member
15192 function. For older versions of GCC, this is an offset in the
15193 appropriate virtual table, as specified by DW_AT_containing_type.
15194 For everyone else, it is an expression to be evaluated relative
15195 to the object address. */
15196
15197 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15198 if (attr != nullptr)
15199 {
15200 if (attr->form_is_block () && attr->as_block ()->size > 0)
15201 {
15202 struct dwarf_block *block = attr->as_block ();
15203
15204 if (block->data[0] == DW_OP_constu)
15205 {
15206 /* Old-style GCC. */
15207 fnp->voffset = decode_locdesc (block, cu) + 2;
15208 }
15209 else if (block->data[0] == DW_OP_deref
15210 || (block->size > 1
15211 && block->data[0] == DW_OP_deref_size
15212 && block->data[1] == cu->header.addr_size))
15213 {
15214 fnp->voffset = decode_locdesc (block, cu);
15215 if ((fnp->voffset % cu->header.addr_size) != 0)
15216 dwarf2_complex_location_expr_complaint ();
15217 else
15218 fnp->voffset /= cu->header.addr_size;
15219 fnp->voffset += 2;
15220 }
15221 else
15222 dwarf2_complex_location_expr_complaint ();
15223
15224 if (!fnp->fcontext)
15225 {
15226 /* If there is no `this' field and no DW_AT_containing_type,
15227 we cannot actually find a base class context for the
15228 vtable! */
15229 if (this_type->num_fields () == 0
15230 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15231 {
15232 complaint (_("cannot determine context for virtual member "
15233 "function \"%s\" (offset %s)"),
15234 fieldname, sect_offset_str (die->sect_off));
15235 }
15236 else
15237 {
15238 fnp->fcontext
15239 = TYPE_TARGET_TYPE (this_type->field (0).type ());
15240 }
15241 }
15242 }
15243 else if (attr->form_is_section_offset ())
15244 {
15245 dwarf2_complex_location_expr_complaint ();
15246 }
15247 else
15248 {
15249 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15250 fieldname);
15251 }
15252 }
15253 else
15254 {
15255 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15256 if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none)
15257 {
15258 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15259 complaint (_("Member function \"%s\" (offset %s) is virtual "
15260 "but the vtable offset is not specified"),
15261 fieldname, sect_offset_str (die->sect_off));
15262 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15263 TYPE_CPLUS_DYNAMIC (type) = 1;
15264 }
15265 }
15266 }
15267
15268 /* Create the vector of member function fields, and attach it to the type. */
15269
15270 static void
15271 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15272 struct dwarf2_cu *cu)
15273 {
15274 if (cu->per_cu->lang == language_ada)
15275 error (_("unexpected member functions in Ada type"));
15276
15277 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15278 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15279 TYPE_ALLOC (type,
15280 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15281
15282 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15283 {
15284 struct fnfieldlist &nf = fip->fnfieldlists[i];
15285 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15286
15287 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15288 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15289 fn_flp->fn_fields = (struct fn_field *)
15290 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15291
15292 for (int k = 0; k < nf.fnfields.size (); ++k)
15293 fn_flp->fn_fields[k] = nf.fnfields[k];
15294 }
15295
15296 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15297 }
15298
15299 /* Returns non-zero if NAME is the name of a vtable member in CU's
15300 language, zero otherwise. */
15301 static int
15302 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15303 {
15304 static const char vptr[] = "_vptr";
15305
15306 /* Look for the C++ form of the vtable. */
15307 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15308 return 1;
15309
15310 return 0;
15311 }
15312
15313 /* GCC outputs unnamed structures that are really pointers to member
15314 functions, with the ABI-specified layout. If TYPE describes
15315 such a structure, smash it into a member function type.
15316
15317 GCC shouldn't do this; it should just output pointer to member DIEs.
15318 This is GCC PR debug/28767. */
15319
15320 static void
15321 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15322 {
15323 struct type *pfn_type, *self_type, *new_type;
15324
15325 /* Check for a structure with no name and two children. */
15326 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15327 return;
15328
15329 /* Check for __pfn and __delta members. */
15330 if (type->field (0).name () == NULL
15331 || strcmp (type->field (0).name (), "__pfn") != 0
15332 || type->field (1).name () == NULL
15333 || strcmp (type->field (1).name (), "__delta") != 0)
15334 return;
15335
15336 /* Find the type of the method. */
15337 pfn_type = type->field (0).type ();
15338 if (pfn_type == NULL
15339 || pfn_type->code () != TYPE_CODE_PTR
15340 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15341 return;
15342
15343 /* Look for the "this" argument. */
15344 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15345 if (pfn_type->num_fields () == 0
15346 /* || pfn_type->field (0).type () == NULL */
15347 || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR)
15348 return;
15349
15350 self_type = TYPE_TARGET_TYPE (pfn_type->field (0).type ());
15351 new_type = alloc_type (objfile);
15352 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15353 pfn_type->fields (), pfn_type->num_fields (),
15354 pfn_type->has_varargs ());
15355 smash_to_methodptr_type (type, new_type);
15356 }
15357
15358 /* Helper for quirk_ada_thick_pointer. If TYPE is an array type that
15359 requires rewriting, then copy it and return the updated copy.
15360 Otherwise return nullptr. */
15361
15362 static struct type *
15363 rewrite_array_type (struct type *type)
15364 {
15365 if (type->code () != TYPE_CODE_ARRAY)
15366 return nullptr;
15367
15368 struct type *index_type = type->index_type ();
15369 range_bounds *current_bounds = index_type->bounds ();
15370
15371 /* Handle multi-dimensional arrays. */
15372 struct type *new_target = rewrite_array_type (TYPE_TARGET_TYPE (type));
15373 if (new_target == nullptr)
15374 {
15375 /* Maybe we don't need to rewrite this array. */
15376 if (current_bounds->low.kind () == PROP_CONST
15377 && current_bounds->high.kind () == PROP_CONST)
15378 return nullptr;
15379 }
15380
15381 /* Either the target type was rewritten, or the bounds have to be
15382 updated. Either way we want to copy the type and update
15383 everything. */
15384 struct type *copy = copy_type (type);
15385 int nfields = copy->num_fields ();
15386 field *new_fields
15387 = ((struct field *) TYPE_ZALLOC (copy,
15388 nfields * sizeof (struct field)));
15389 memcpy (new_fields, copy->fields (), nfields * sizeof (struct field));
15390 copy->set_fields (new_fields);
15391 if (new_target != nullptr)
15392 TYPE_TARGET_TYPE (copy) = new_target;
15393
15394 struct type *index_copy = copy_type (index_type);
15395 range_bounds *bounds
15396 = (struct range_bounds *) TYPE_ZALLOC (index_copy,
15397 sizeof (range_bounds));
15398 *bounds = *current_bounds;
15399 bounds->low.set_const_val (1);
15400 bounds->high.set_const_val (0);
15401 index_copy->set_bounds (bounds);
15402 copy->set_index_type (index_copy);
15403
15404 return copy;
15405 }
15406
15407 /* While some versions of GCC will generate complicated DWARF for an
15408 array (see quirk_ada_thick_pointer), more recent versions were
15409 modified to emit an explicit thick pointer structure. However, in
15410 this case, the array still has DWARF expressions for its ranges,
15411 and these must be ignored. */
15412
15413 static void
15414 quirk_ada_thick_pointer_struct (struct die_info *die, struct dwarf2_cu *cu,
15415 struct type *type)
15416 {
15417 gdb_assert (cu->per_cu->lang == language_ada);
15418
15419 /* Check for a structure with two children. */
15420 if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2)
15421 return;
15422
15423 /* Check for P_ARRAY and P_BOUNDS members. */
15424 if (type->field (0).name () == NULL
15425 || strcmp (type->field (0).name (), "P_ARRAY") != 0
15426 || type->field (1).name () == NULL
15427 || strcmp (type->field (1).name (), "P_BOUNDS") != 0)
15428 return;
15429
15430 /* Make sure we're looking at a pointer to an array. */
15431 if (type->field (0).type ()->code () != TYPE_CODE_PTR)
15432 return;
15433
15434 /* The Ada code already knows how to handle these types, so all that
15435 we need to do is turn the bounds into static bounds. However, we
15436 don't want to rewrite existing array or index types in-place,
15437 because those may be referenced in other contexts where this
15438 rewriting is undesirable. */
15439 struct type *new_ary_type
15440 = rewrite_array_type (TYPE_TARGET_TYPE (type->field (0).type ()));
15441 if (new_ary_type != nullptr)
15442 type->field (0).set_type (lookup_pointer_type (new_ary_type));
15443 }
15444
15445 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15446 appropriate error checking and issuing complaints if there is a
15447 problem. */
15448
15449 static ULONGEST
15450 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15451 {
15452 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15453
15454 if (attr == nullptr)
15455 return 0;
15456
15457 if (!attr->form_is_constant ())
15458 {
15459 complaint (_("DW_AT_alignment must have constant form"
15460 " - DIE at %s [in module %s]"),
15461 sect_offset_str (die->sect_off),
15462 objfile_name (cu->per_objfile->objfile));
15463 return 0;
15464 }
15465
15466 LONGEST val = attr->constant_value (0);
15467 if (val < 0)
15468 {
15469 complaint (_("DW_AT_alignment value must not be negative"
15470 " - DIE at %s [in module %s]"),
15471 sect_offset_str (die->sect_off),
15472 objfile_name (cu->per_objfile->objfile));
15473 return 0;
15474 }
15475 ULONGEST align = val;
15476
15477 if (align == 0)
15478 {
15479 complaint (_("DW_AT_alignment value must not be zero"
15480 " - DIE at %s [in module %s]"),
15481 sect_offset_str (die->sect_off),
15482 objfile_name (cu->per_objfile->objfile));
15483 return 0;
15484 }
15485 if ((align & (align - 1)) != 0)
15486 {
15487 complaint (_("DW_AT_alignment value must be a power of 2"
15488 " - DIE at %s [in module %s]"),
15489 sect_offset_str (die->sect_off),
15490 objfile_name (cu->per_objfile->objfile));
15491 return 0;
15492 }
15493
15494 return align;
15495 }
15496
15497 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15498 the alignment for TYPE. */
15499
15500 static void
15501 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15502 struct type *type)
15503 {
15504 if (!set_type_align (type, get_alignment (cu, die)))
15505 complaint (_("DW_AT_alignment value too large"
15506 " - DIE at %s [in module %s]"),
15507 sect_offset_str (die->sect_off),
15508 objfile_name (cu->per_objfile->objfile));
15509 }
15510
15511 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15512 constant for a type, according to DWARF5 spec, Table 5.5. */
15513
15514 static bool
15515 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15516 {
15517 switch (value)
15518 {
15519 case DW_CC_normal:
15520 case DW_CC_pass_by_reference:
15521 case DW_CC_pass_by_value:
15522 return true;
15523
15524 default:
15525 complaint (_("unrecognized DW_AT_calling_convention value "
15526 "(%s) for a type"), pulongest (value));
15527 return false;
15528 }
15529 }
15530
15531 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15532 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15533 also according to GNU-specific values (see include/dwarf2.h). */
15534
15535 static bool
15536 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15537 {
15538 switch (value)
15539 {
15540 case DW_CC_normal:
15541 case DW_CC_program:
15542 case DW_CC_nocall:
15543 return true;
15544
15545 case DW_CC_GNU_renesas_sh:
15546 case DW_CC_GNU_borland_fastcall_i386:
15547 case DW_CC_GDB_IBM_OpenCL:
15548 return true;
15549
15550 default:
15551 complaint (_("unrecognized DW_AT_calling_convention value "
15552 "(%s) for a subroutine"), pulongest (value));
15553 return false;
15554 }
15555 }
15556
15557 /* Called when we find the DIE that starts a structure or union scope
15558 (definition) to create a type for the structure or union. Fill in
15559 the type's name and general properties; the members will not be
15560 processed until process_structure_scope. A symbol table entry for
15561 the type will also not be done until process_structure_scope (assuming
15562 the type has a name).
15563
15564 NOTE: we need to call these functions regardless of whether or not the
15565 DIE has a DW_AT_name attribute, since it might be an anonymous
15566 structure or union. This gets the type entered into our set of
15567 user defined types. */
15568
15569 static struct type *
15570 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15571 {
15572 struct objfile *objfile = cu->per_objfile->objfile;
15573 struct type *type;
15574 struct attribute *attr;
15575 const char *name;
15576
15577 /* If the definition of this type lives in .debug_types, read that type.
15578 Don't follow DW_AT_specification though, that will take us back up
15579 the chain and we want to go down. */
15580 attr = die->attr (DW_AT_signature);
15581 if (attr != nullptr)
15582 {
15583 type = get_DW_AT_signature_type (die, attr, cu);
15584
15585 /* The type's CU may not be the same as CU.
15586 Ensure TYPE is recorded with CU in die_type_hash. */
15587 return set_die_type (die, type, cu);
15588 }
15589
15590 type = alloc_type (objfile);
15591 INIT_CPLUS_SPECIFIC (type);
15592
15593 name = dwarf2_name (die, cu);
15594 if (name != NULL)
15595 {
15596 if (cu->per_cu->lang == language_cplus
15597 || cu->per_cu->lang == language_d
15598 || cu->per_cu->lang == language_rust)
15599 {
15600 const char *full_name = dwarf2_full_name (name, die, cu);
15601
15602 /* dwarf2_full_name might have already finished building the DIE's
15603 type. If so, there is no need to continue. */
15604 if (get_die_type (die, cu) != NULL)
15605 return get_die_type (die, cu);
15606
15607 type->set_name (full_name);
15608 }
15609 else
15610 {
15611 /* The name is already allocated along with this objfile, so
15612 we don't need to duplicate it for the type. */
15613 type->set_name (name);
15614 }
15615 }
15616
15617 if (die->tag == DW_TAG_structure_type)
15618 {
15619 type->set_code (TYPE_CODE_STRUCT);
15620 }
15621 else if (die->tag == DW_TAG_union_type)
15622 {
15623 type->set_code (TYPE_CODE_UNION);
15624 }
15625 else
15626 {
15627 type->set_code (TYPE_CODE_STRUCT);
15628 }
15629
15630 if (cu->per_cu->lang == language_cplus && die->tag == DW_TAG_class_type)
15631 type->set_is_declared_class (true);
15632
15633 /* Store the calling convention in the type if it's available in
15634 the die. Otherwise the calling convention remains set to
15635 the default value DW_CC_normal. */
15636 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15637 if (attr != nullptr
15638 && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0)))
15639 {
15640 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15641 TYPE_CPLUS_CALLING_CONVENTION (type)
15642 = (enum dwarf_calling_convention) (attr->constant_value (0));
15643 }
15644
15645 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15646 if (attr != nullptr)
15647 {
15648 if (attr->form_is_constant ())
15649 TYPE_LENGTH (type) = attr->constant_value (0);
15650 else
15651 {
15652 struct dynamic_prop prop;
15653 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
15654 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15655 TYPE_LENGTH (type) = 0;
15656 }
15657 }
15658 else
15659 {
15660 TYPE_LENGTH (type) = 0;
15661 }
15662
15663 maybe_set_alignment (cu, die, type);
15664
15665 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15666 {
15667 /* ICC<14 does not output the required DW_AT_declaration on
15668 incomplete types, but gives them a size of zero. */
15669 type->set_is_stub (true);
15670 }
15671 else
15672 type->set_stub_is_supported (true);
15673
15674 if (die_is_declaration (die, cu))
15675 type->set_is_stub (true);
15676 else if (attr == NULL && die->child == NULL
15677 && producer_is_realview (cu->producer))
15678 /* RealView does not output the required DW_AT_declaration
15679 on incomplete types. */
15680 type->set_is_stub (true);
15681
15682 /* We need to add the type field to the die immediately so we don't
15683 infinitely recurse when dealing with pointers to the structure
15684 type within the structure itself. */
15685 set_die_type (die, type, cu);
15686
15687 /* set_die_type should be already done. */
15688 set_descriptive_type (type, die, cu);
15689
15690 return type;
15691 }
15692
15693 static void handle_struct_member_die
15694 (struct die_info *child_die,
15695 struct type *type,
15696 struct field_info *fi,
15697 std::vector<struct symbol *> *template_args,
15698 struct dwarf2_cu *cu);
15699
15700 /* A helper for handle_struct_member_die that handles
15701 DW_TAG_variant_part. */
15702
15703 static void
15704 handle_variant_part (struct die_info *die, struct type *type,
15705 struct field_info *fi,
15706 std::vector<struct symbol *> *template_args,
15707 struct dwarf2_cu *cu)
15708 {
15709 variant_part_builder *new_part;
15710 if (fi->current_variant_part == nullptr)
15711 {
15712 fi->variant_parts.emplace_back ();
15713 new_part = &fi->variant_parts.back ();
15714 }
15715 else if (!fi->current_variant_part->processing_variant)
15716 {
15717 complaint (_("nested DW_TAG_variant_part seen "
15718 "- DIE at %s [in module %s]"),
15719 sect_offset_str (die->sect_off),
15720 objfile_name (cu->per_objfile->objfile));
15721 return;
15722 }
15723 else
15724 {
15725 variant_field &current = fi->current_variant_part->variants.back ();
15726 current.variant_parts.emplace_back ();
15727 new_part = &current.variant_parts.back ();
15728 }
15729
15730 /* When we recurse, we want callees to add to this new variant
15731 part. */
15732 scoped_restore save_current_variant_part
15733 = make_scoped_restore (&fi->current_variant_part, new_part);
15734
15735 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15736 if (discr == NULL)
15737 {
15738 /* It's a univariant form, an extension we support. */
15739 }
15740 else if (discr->form_is_ref ())
15741 {
15742 struct dwarf2_cu *target_cu = cu;
15743 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15744
15745 new_part->discriminant_offset = target_die->sect_off;
15746 }
15747 else
15748 {
15749 complaint (_("DW_AT_discr does not have DIE reference form"
15750 " - DIE at %s [in module %s]"),
15751 sect_offset_str (die->sect_off),
15752 objfile_name (cu->per_objfile->objfile));
15753 }
15754
15755 for (die_info *child_die = die->child;
15756 child_die != NULL;
15757 child_die = child_die->sibling)
15758 handle_struct_member_die (child_die, type, fi, template_args, cu);
15759 }
15760
15761 /* A helper for handle_struct_member_die that handles
15762 DW_TAG_variant. */
15763
15764 static void
15765 handle_variant (struct die_info *die, struct type *type,
15766 struct field_info *fi,
15767 std::vector<struct symbol *> *template_args,
15768 struct dwarf2_cu *cu)
15769 {
15770 if (fi->current_variant_part == nullptr)
15771 {
15772 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15773 "- DIE at %s [in module %s]"),
15774 sect_offset_str (die->sect_off),
15775 objfile_name (cu->per_objfile->objfile));
15776 return;
15777 }
15778 if (fi->current_variant_part->processing_variant)
15779 {
15780 complaint (_("nested DW_TAG_variant seen "
15781 "- DIE at %s [in module %s]"),
15782 sect_offset_str (die->sect_off),
15783 objfile_name (cu->per_objfile->objfile));
15784 return;
15785 }
15786
15787 scoped_restore save_processing_variant
15788 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15789 true);
15790
15791 fi->current_variant_part->variants.emplace_back ();
15792 variant_field &variant = fi->current_variant_part->variants.back ();
15793 variant.first_field = fi->fields.size ();
15794
15795 /* In a variant we want to get the discriminant and also add a
15796 field for our sole member child. */
15797 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15798 if (discr == nullptr || !discr->form_is_constant ())
15799 {
15800 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15801 if (discr == nullptr || discr->as_block ()->size == 0)
15802 variant.default_branch = true;
15803 else
15804 variant.discr_list_data = discr->as_block ();
15805 }
15806 else
15807 variant.discriminant_value = discr->constant_value (0);
15808
15809 for (die_info *variant_child = die->child;
15810 variant_child != NULL;
15811 variant_child = variant_child->sibling)
15812 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15813
15814 variant.last_field = fi->fields.size ();
15815 }
15816
15817 /* A helper for process_structure_scope that handles a single member
15818 DIE. */
15819
15820 static void
15821 handle_struct_member_die (struct die_info *child_die, struct type *type,
15822 struct field_info *fi,
15823 std::vector<struct symbol *> *template_args,
15824 struct dwarf2_cu *cu)
15825 {
15826 if (child_die->tag == DW_TAG_member
15827 || child_die->tag == DW_TAG_variable)
15828 {
15829 /* NOTE: carlton/2002-11-05: A C++ static data member
15830 should be a DW_TAG_member that is a declaration, but
15831 all versions of G++ as of this writing (so through at
15832 least 3.2.1) incorrectly generate DW_TAG_variable
15833 tags for them instead. */
15834 dwarf2_add_field (fi, child_die, cu);
15835 }
15836 else if (child_die->tag == DW_TAG_subprogram)
15837 {
15838 /* Rust doesn't have member functions in the C++ sense.
15839 However, it does emit ordinary functions as children
15840 of a struct DIE. */
15841 if (cu->per_cu->lang == language_rust)
15842 read_func_scope (child_die, cu);
15843 else
15844 {
15845 /* C++ member function. */
15846 dwarf2_add_member_fn (fi, child_die, type, cu);
15847 }
15848 }
15849 else if (child_die->tag == DW_TAG_inheritance)
15850 {
15851 /* C++ base class field. */
15852 dwarf2_add_field (fi, child_die, cu);
15853 }
15854 else if (type_can_define_types (child_die))
15855 dwarf2_add_type_defn (fi, child_die, cu);
15856 else if (child_die->tag == DW_TAG_template_type_param
15857 || child_die->tag == DW_TAG_template_value_param)
15858 {
15859 struct symbol *arg = new_symbol (child_die, NULL, cu);
15860
15861 if (arg != NULL)
15862 template_args->push_back (arg);
15863 }
15864 else if (child_die->tag == DW_TAG_variant_part)
15865 handle_variant_part (child_die, type, fi, template_args, cu);
15866 else if (child_die->tag == DW_TAG_variant)
15867 handle_variant (child_die, type, fi, template_args, cu);
15868 }
15869
15870 /* Finish creating a structure or union type, including filling in
15871 its members and creating a symbol for it. */
15872
15873 static void
15874 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15875 {
15876 struct objfile *objfile = cu->per_objfile->objfile;
15877 struct die_info *child_die;
15878 struct type *type;
15879
15880 type = get_die_type (die, cu);
15881 if (type == NULL)
15882 type = read_structure_type (die, cu);
15883
15884 bool has_template_parameters = false;
15885 if (die->child != NULL && ! die_is_declaration (die, cu))
15886 {
15887 struct field_info fi;
15888 std::vector<struct symbol *> template_args;
15889
15890 child_die = die->child;
15891
15892 while (child_die && child_die->tag)
15893 {
15894 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15895 child_die = child_die->sibling;
15896 }
15897
15898 /* Attach template arguments to type. */
15899 if (!template_args.empty ())
15900 {
15901 has_template_parameters = true;
15902 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15903 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15904 TYPE_TEMPLATE_ARGUMENTS (type)
15905 = XOBNEWVEC (&objfile->objfile_obstack,
15906 struct symbol *,
15907 TYPE_N_TEMPLATE_ARGUMENTS (type));
15908 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15909 template_args.data (),
15910 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15911 * sizeof (struct symbol *)));
15912 }
15913
15914 /* Attach fields and member functions to the type. */
15915 if (fi.nfields () > 0)
15916 dwarf2_attach_fields_to_type (&fi, type, cu);
15917 if (!fi.fnfieldlists.empty ())
15918 {
15919 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15920
15921 /* Get the type which refers to the base class (possibly this
15922 class itself) which contains the vtable pointer for the current
15923 class from the DW_AT_containing_type attribute. This use of
15924 DW_AT_containing_type is a GNU extension. */
15925
15926 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15927 {
15928 struct type *t = die_containing_type (die, cu);
15929
15930 set_type_vptr_basetype (type, t);
15931 if (type == t)
15932 {
15933 int i;
15934
15935 /* Our own class provides vtbl ptr. */
15936 for (i = t->num_fields () - 1;
15937 i >= TYPE_N_BASECLASSES (t);
15938 --i)
15939 {
15940 const char *fieldname = t->field (i).name ();
15941
15942 if (is_vtable_name (fieldname, cu))
15943 {
15944 set_type_vptr_fieldno (type, i);
15945 break;
15946 }
15947 }
15948
15949 /* Complain if virtual function table field not found. */
15950 if (i < TYPE_N_BASECLASSES (t))
15951 complaint (_("virtual function table pointer "
15952 "not found when defining class '%s'"),
15953 type->name () ? type->name () : "");
15954 }
15955 else
15956 {
15957 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15958 }
15959 }
15960 else if (cu->producer
15961 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15962 {
15963 /* The IBM XLC compiler does not provide direct indication
15964 of the containing type, but the vtable pointer is
15965 always named __vfp. */
15966
15967 int i;
15968
15969 for (i = type->num_fields () - 1;
15970 i >= TYPE_N_BASECLASSES (type);
15971 --i)
15972 {
15973 if (strcmp (type->field (i).name (), "__vfp") == 0)
15974 {
15975 set_type_vptr_fieldno (type, i);
15976 set_type_vptr_basetype (type, type);
15977 break;
15978 }
15979 }
15980 }
15981 }
15982
15983 /* Copy fi.typedef_field_list linked list elements content into the
15984 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15985 if (!fi.typedef_field_list.empty ())
15986 {
15987 int count = fi.typedef_field_list.size ();
15988
15989 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15990 TYPE_TYPEDEF_FIELD_ARRAY (type)
15991 = ((struct decl_field *)
15992 TYPE_ALLOC (type,
15993 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15994 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15995
15996 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15997 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15998 }
15999
16000 /* Copy fi.nested_types_list linked list elements content into the
16001 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16002 if (!fi.nested_types_list.empty ()
16003 && cu->per_cu->lang != language_ada)
16004 {
16005 int count = fi.nested_types_list.size ();
16006
16007 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16008 TYPE_NESTED_TYPES_ARRAY (type)
16009 = ((struct decl_field *)
16010 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16011 TYPE_NESTED_TYPES_COUNT (type) = count;
16012
16013 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16014 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16015 }
16016 }
16017
16018 quirk_gcc_member_function_pointer (type, objfile);
16019 if (cu->per_cu->lang == language_rust && die->tag == DW_TAG_union_type)
16020 cu->rust_unions.push_back (type);
16021 else if (cu->per_cu->lang == language_ada)
16022 quirk_ada_thick_pointer_struct (die, cu, type);
16023
16024 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16025 snapshots) has been known to create a die giving a declaration
16026 for a class that has, as a child, a die giving a definition for a
16027 nested class. So we have to process our children even if the
16028 current die is a declaration. Normally, of course, a declaration
16029 won't have any children at all. */
16030
16031 child_die = die->child;
16032
16033 while (child_die != NULL && child_die->tag)
16034 {
16035 if (child_die->tag == DW_TAG_member
16036 || child_die->tag == DW_TAG_variable
16037 || child_die->tag == DW_TAG_inheritance
16038 || child_die->tag == DW_TAG_template_value_param
16039 || child_die->tag == DW_TAG_template_type_param)
16040 {
16041 /* Do nothing. */
16042 }
16043 else
16044 process_die (child_die, cu);
16045
16046 child_die = child_die->sibling;
16047 }
16048
16049 /* Do not consider external references. According to the DWARF standard,
16050 these DIEs are identified by the fact that they have no byte_size
16051 attribute, and a declaration attribute. */
16052 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16053 || !die_is_declaration (die, cu)
16054 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
16055 {
16056 struct symbol *sym = new_symbol (die, type, cu);
16057
16058 if (has_template_parameters)
16059 {
16060 struct symtab *symtab;
16061 if (sym != nullptr)
16062 symtab = symbol_symtab (sym);
16063 else if (cu->line_header != nullptr)
16064 {
16065 /* Any related symtab will do. */
16066 symtab
16067 = cu->line_header->file_names ()[0].symtab;
16068 }
16069 else
16070 {
16071 symtab = nullptr;
16072 complaint (_("could not find suitable "
16073 "symtab for template parameter"
16074 " - DIE at %s [in module %s]"),
16075 sect_offset_str (die->sect_off),
16076 objfile_name (objfile));
16077 }
16078
16079 if (symtab != nullptr)
16080 {
16081 /* Make sure that the symtab is set on the new symbols.
16082 Even though they don't appear in this symtab directly,
16083 other parts of gdb assume that symbols do, and this is
16084 reasonably true. */
16085 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16086 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16087 }
16088 }
16089 }
16090 }
16091
16092 /* Assuming DIE is an enumeration type, and TYPE is its associated
16093 type, update TYPE using some information only available in DIE's
16094 children. In particular, the fields are computed. */
16095
16096 static void
16097 update_enumeration_type_from_children (struct die_info *die,
16098 struct type *type,
16099 struct dwarf2_cu *cu)
16100 {
16101 struct die_info *child_die;
16102 int unsigned_enum = 1;
16103 int flag_enum = 1;
16104
16105 auto_obstack obstack;
16106 std::vector<struct field> fields;
16107
16108 for (child_die = die->child;
16109 child_die != NULL && child_die->tag;
16110 child_die = child_die->sibling)
16111 {
16112 struct attribute *attr;
16113 LONGEST value;
16114 const gdb_byte *bytes;
16115 struct dwarf2_locexpr_baton *baton;
16116 const char *name;
16117
16118 if (child_die->tag != DW_TAG_enumerator)
16119 continue;
16120
16121 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16122 if (attr == NULL)
16123 continue;
16124
16125 name = dwarf2_name (child_die, cu);
16126 if (name == NULL)
16127 name = "<anonymous enumerator>";
16128
16129 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16130 &value, &bytes, &baton);
16131 if (value < 0)
16132 {
16133 unsigned_enum = 0;
16134 flag_enum = 0;
16135 }
16136 else
16137 {
16138 if (count_one_bits_ll (value) >= 2)
16139 flag_enum = 0;
16140 }
16141
16142 fields.emplace_back ();
16143 struct field &field = fields.back ();
16144 field.set_name (dwarf2_physname (name, child_die, cu));
16145 SET_FIELD_ENUMVAL (field, value);
16146 }
16147
16148 if (!fields.empty ())
16149 {
16150 type->set_num_fields (fields.size ());
16151 type->set_fields
16152 ((struct field *)
16153 TYPE_ALLOC (type, sizeof (struct field) * fields.size ()));
16154 memcpy (type->fields (), fields.data (),
16155 sizeof (struct field) * fields.size ());
16156 }
16157
16158 if (unsigned_enum)
16159 type->set_is_unsigned (true);
16160
16161 if (flag_enum)
16162 type->set_is_flag_enum (true);
16163 }
16164
16165 /* Given a DW_AT_enumeration_type die, set its type. We do not
16166 complete the type's fields yet, or create any symbols. */
16167
16168 static struct type *
16169 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16170 {
16171 struct objfile *objfile = cu->per_objfile->objfile;
16172 struct type *type;
16173 struct attribute *attr;
16174 const char *name;
16175
16176 /* If the definition of this type lives in .debug_types, read that type.
16177 Don't follow DW_AT_specification though, that will take us back up
16178 the chain and we want to go down. */
16179 attr = die->attr (DW_AT_signature);
16180 if (attr != nullptr)
16181 {
16182 type = get_DW_AT_signature_type (die, attr, cu);
16183
16184 /* The type's CU may not be the same as CU.
16185 Ensure TYPE is recorded with CU in die_type_hash. */
16186 return set_die_type (die, type, cu);
16187 }
16188
16189 type = alloc_type (objfile);
16190
16191 type->set_code (TYPE_CODE_ENUM);
16192 name = dwarf2_full_name (NULL, die, cu);
16193 if (name != NULL)
16194 type->set_name (name);
16195
16196 attr = dwarf2_attr (die, DW_AT_type, cu);
16197 if (attr != NULL)
16198 {
16199 struct type *underlying_type = die_type (die, cu);
16200
16201 TYPE_TARGET_TYPE (type) = underlying_type;
16202 }
16203
16204 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16205 if (attr != nullptr)
16206 {
16207 TYPE_LENGTH (type) = attr->constant_value (0);
16208 }
16209 else
16210 {
16211 TYPE_LENGTH (type) = 0;
16212 }
16213
16214 maybe_set_alignment (cu, die, type);
16215
16216 /* The enumeration DIE can be incomplete. In Ada, any type can be
16217 declared as private in the package spec, and then defined only
16218 inside the package body. Such types are known as Taft Amendment
16219 Types. When another package uses such a type, an incomplete DIE
16220 may be generated by the compiler. */
16221 if (die_is_declaration (die, cu))
16222 type->set_is_stub (true);
16223
16224 /* If this type has an underlying type that is not a stub, then we
16225 may use its attributes. We always use the "unsigned" attribute
16226 in this situation, because ordinarily we guess whether the type
16227 is unsigned -- but the guess can be wrong and the underlying type
16228 can tell us the reality. However, we defer to a local size
16229 attribute if one exists, because this lets the compiler override
16230 the underlying type if needed. */
16231 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_TARGET_TYPE (type)->is_stub ())
16232 {
16233 struct type *underlying_type = TYPE_TARGET_TYPE (type);
16234 underlying_type = check_typedef (underlying_type);
16235
16236 type->set_is_unsigned (underlying_type->is_unsigned ());
16237
16238 if (TYPE_LENGTH (type) == 0)
16239 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
16240
16241 if (TYPE_RAW_ALIGN (type) == 0
16242 && TYPE_RAW_ALIGN (underlying_type) != 0)
16243 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
16244 }
16245
16246 type->set_is_declared_class (dwarf2_flag_true_p (die, DW_AT_enum_class, cu));
16247
16248 set_die_type (die, type, cu);
16249
16250 /* Finish the creation of this type by using the enum's children.
16251 Note that, as usual, this must come after set_die_type to avoid
16252 infinite recursion when trying to compute the names of the
16253 enumerators. */
16254 update_enumeration_type_from_children (die, type, cu);
16255
16256 return type;
16257 }
16258
16259 /* Given a pointer to a die which begins an enumeration, process all
16260 the dies that define the members of the enumeration, and create the
16261 symbol for the enumeration type.
16262
16263 NOTE: We reverse the order of the element list. */
16264
16265 static void
16266 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16267 {
16268 struct type *this_type;
16269
16270 this_type = get_die_type (die, cu);
16271 if (this_type == NULL)
16272 this_type = read_enumeration_type (die, cu);
16273
16274 if (die->child != NULL)
16275 {
16276 struct die_info *child_die;
16277 const char *name;
16278
16279 child_die = die->child;
16280 while (child_die && child_die->tag)
16281 {
16282 if (child_die->tag != DW_TAG_enumerator)
16283 {
16284 process_die (child_die, cu);
16285 }
16286 else
16287 {
16288 name = dwarf2_name (child_die, cu);
16289 if (name)
16290 new_symbol (child_die, this_type, cu);
16291 }
16292
16293 child_die = child_die->sibling;
16294 }
16295 }
16296
16297 /* If we are reading an enum from a .debug_types unit, and the enum
16298 is a declaration, and the enum is not the signatured type in the
16299 unit, then we do not want to add a symbol for it. Adding a
16300 symbol would in some cases obscure the true definition of the
16301 enum, giving users an incomplete type when the definition is
16302 actually available. Note that we do not want to do this for all
16303 enums which are just declarations, because C++0x allows forward
16304 enum declarations. */
16305 if (cu->per_cu->is_debug_types
16306 && die_is_declaration (die, cu))
16307 {
16308 struct signatured_type *sig_type;
16309
16310 sig_type = (struct signatured_type *) cu->per_cu;
16311 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16312 if (sig_type->type_offset_in_section != die->sect_off)
16313 return;
16314 }
16315
16316 new_symbol (die, this_type, cu);
16317 }
16318
16319 /* Helper function for quirk_ada_thick_pointer that examines a bounds
16320 expression for an index type and finds the corresponding field
16321 offset in the hidden "P_BOUNDS" structure. Returns true on success
16322 and updates *FIELD, false if it fails to recognize an
16323 expression. */
16324
16325 static bool
16326 recognize_bound_expression (struct die_info *die, enum dwarf_attribute name,
16327 int *bounds_offset, struct field *field,
16328 struct dwarf2_cu *cu)
16329 {
16330 struct attribute *attr = dwarf2_attr (die, name, cu);
16331 if (attr == nullptr || !attr->form_is_block ())
16332 return false;
16333
16334 const struct dwarf_block *block = attr->as_block ();
16335 const gdb_byte *start = block->data;
16336 const gdb_byte *end = block->data + block->size;
16337
16338 /* The expression to recognize generally looks like:
16339
16340 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16341 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16342
16343 However, the second "plus_uconst" may be missing:
16344
16345 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16346 DW_OP_deref_size: 4)
16347
16348 This happens when the field is at the start of the structure.
16349
16350 Also, the final deref may not be sized:
16351
16352 (DW_OP_push_object_address; DW_OP_plus_uconst: 4; DW_OP_deref;
16353 DW_OP_deref)
16354
16355 This happens when the size of the index type happens to be the
16356 same as the architecture's word size. This can occur with or
16357 without the second plus_uconst. */
16358
16359 if (end - start < 2)
16360 return false;
16361 if (*start++ != DW_OP_push_object_address)
16362 return false;
16363 if (*start++ != DW_OP_plus_uconst)
16364 return false;
16365
16366 uint64_t this_bound_off;
16367 start = gdb_read_uleb128 (start, end, &this_bound_off);
16368 if (start == nullptr || (int) this_bound_off != this_bound_off)
16369 return false;
16370 /* Update *BOUNDS_OFFSET if needed, or alternatively verify that it
16371 is consistent among all bounds. */
16372 if (*bounds_offset == -1)
16373 *bounds_offset = this_bound_off;
16374 else if (*bounds_offset != this_bound_off)
16375 return false;
16376
16377 if (start == end || *start++ != DW_OP_deref)
16378 return false;
16379
16380 int offset = 0;
16381 if (start ==end)
16382 return false;
16383 else if (*start == DW_OP_deref_size || *start == DW_OP_deref)
16384 {
16385 /* This means an offset of 0. */
16386 }
16387 else if (*start++ != DW_OP_plus_uconst)
16388 return false;
16389 else
16390 {
16391 /* The size is the parameter to DW_OP_plus_uconst. */
16392 uint64_t val;
16393 start = gdb_read_uleb128 (start, end, &val);
16394 if (start == nullptr)
16395 return false;
16396 if ((int) val != val)
16397 return false;
16398 offset = val;
16399 }
16400
16401 if (start == end)
16402 return false;
16403
16404 uint64_t size;
16405 if (*start == DW_OP_deref_size)
16406 {
16407 start = gdb_read_uleb128 (start + 1, end, &size);
16408 if (start == nullptr)
16409 return false;
16410 }
16411 else if (*start == DW_OP_deref)
16412 {
16413 size = cu->header.addr_size;
16414 ++start;
16415 }
16416 else
16417 return false;
16418
16419 SET_FIELD_BITPOS (*field, 8 * offset);
16420 if (size != TYPE_LENGTH (field->type ()))
16421 FIELD_BITSIZE (*field) = 8 * size;
16422
16423 return true;
16424 }
16425
16426 /* With -fgnat-encodings=minimal, gcc will emit some unusual DWARF for
16427 some kinds of Ada arrays:
16428
16429 <1><11db>: Abbrev Number: 7 (DW_TAG_array_type)
16430 <11dc> DW_AT_name : (indirect string, offset: 0x1bb8): string
16431 <11e0> DW_AT_data_location: 2 byte block: 97 6
16432 (DW_OP_push_object_address; DW_OP_deref)
16433 <11e3> DW_AT_type : <0x1173>
16434 <11e7> DW_AT_sibling : <0x1201>
16435 <2><11eb>: Abbrev Number: 8 (DW_TAG_subrange_type)
16436 <11ec> DW_AT_type : <0x1206>
16437 <11f0> DW_AT_lower_bound : 6 byte block: 97 23 8 6 94 4
16438 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16439 DW_OP_deref_size: 4)
16440 <11f7> DW_AT_upper_bound : 8 byte block: 97 23 8 6 23 4 94 4
16441 (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref;
16442 DW_OP_plus_uconst: 4; DW_OP_deref_size: 4)
16443
16444 This actually represents a "thick pointer", which is a structure
16445 with two elements: one that is a pointer to the array data, and one
16446 that is a pointer to another structure; this second structure holds
16447 the array bounds.
16448
16449 This returns a new type on success, or nullptr if this didn't
16450 recognize the type. */
16451
16452 static struct type *
16453 quirk_ada_thick_pointer (struct die_info *die, struct dwarf2_cu *cu,
16454 struct type *type)
16455 {
16456 struct attribute *attr = dwarf2_attr (die, DW_AT_data_location, cu);
16457 /* So far we've only seen this with block form. */
16458 if (attr == nullptr || !attr->form_is_block ())
16459 return nullptr;
16460
16461 /* Note that this will fail if the structure layout is changed by
16462 the compiler. However, we have no good way to recognize some
16463 other layout, because we don't know what expression the compiler
16464 might choose to emit should this happen. */
16465 struct dwarf_block *blk = attr->as_block ();
16466 if (blk->size != 2
16467 || blk->data[0] != DW_OP_push_object_address
16468 || blk->data[1] != DW_OP_deref)
16469 return nullptr;
16470
16471 int bounds_offset = -1;
16472 int max_align = -1;
16473 std::vector<struct field> range_fields;
16474 for (struct die_info *child_die = die->child;
16475 child_die;
16476 child_die = child_die->sibling)
16477 {
16478 if (child_die->tag == DW_TAG_subrange_type)
16479 {
16480 struct type *underlying = read_subrange_index_type (child_die, cu);
16481
16482 int this_align = type_align (underlying);
16483 if (this_align > max_align)
16484 max_align = this_align;
16485
16486 range_fields.emplace_back ();
16487 range_fields.emplace_back ();
16488
16489 struct field &lower = range_fields[range_fields.size () - 2];
16490 struct field &upper = range_fields[range_fields.size () - 1];
16491
16492 lower.set_type (underlying);
16493 FIELD_ARTIFICIAL (lower) = 1;
16494
16495 upper.set_type (underlying);
16496 FIELD_ARTIFICIAL (upper) = 1;
16497
16498 if (!recognize_bound_expression (child_die, DW_AT_lower_bound,
16499 &bounds_offset, &lower, cu)
16500 || !recognize_bound_expression (child_die, DW_AT_upper_bound,
16501 &bounds_offset, &upper, cu))
16502 return nullptr;
16503 }
16504 }
16505
16506 /* This shouldn't really happen, but double-check that we found
16507 where the bounds are stored. */
16508 if (bounds_offset == -1)
16509 return nullptr;
16510
16511 struct objfile *objfile = cu->per_objfile->objfile;
16512 for (int i = 0; i < range_fields.size (); i += 2)
16513 {
16514 char name[20];
16515
16516 /* Set the name of each field in the bounds. */
16517 xsnprintf (name, sizeof (name), "LB%d", i / 2);
16518 range_fields[i].set_name (objfile->intern (name));
16519 xsnprintf (name, sizeof (name), "UB%d", i / 2);
16520 range_fields[i + 1].set_name (objfile->intern (name));
16521 }
16522
16523 struct type *bounds = alloc_type (objfile);
16524 bounds->set_code (TYPE_CODE_STRUCT);
16525
16526 bounds->set_num_fields (range_fields.size ());
16527 bounds->set_fields
16528 ((struct field *) TYPE_ALLOC (bounds, (bounds->num_fields ()
16529 * sizeof (struct field))));
16530 memcpy (bounds->fields (), range_fields.data (),
16531 bounds->num_fields () * sizeof (struct field));
16532
16533 int last_fieldno = range_fields.size () - 1;
16534 int bounds_size = (TYPE_FIELD_BITPOS (bounds, last_fieldno) / 8
16535 + TYPE_LENGTH (bounds->field (last_fieldno).type ()));
16536 TYPE_LENGTH (bounds) = align_up (bounds_size, max_align);
16537
16538 /* Rewrite the existing array type in place. Specifically, we
16539 remove any dynamic properties we might have read, and we replace
16540 the index types. */
16541 struct type *iter = type;
16542 for (int i = 0; i < range_fields.size (); i += 2)
16543 {
16544 gdb_assert (iter->code () == TYPE_CODE_ARRAY);
16545 iter->main_type->dyn_prop_list = nullptr;
16546 iter->set_index_type
16547 (create_static_range_type (NULL, bounds->field (i).type (), 1, 0));
16548 iter = TYPE_TARGET_TYPE (iter);
16549 }
16550
16551 struct type *result = alloc_type (objfile);
16552 result->set_code (TYPE_CODE_STRUCT);
16553
16554 result->set_num_fields (2);
16555 result->set_fields
16556 ((struct field *) TYPE_ZALLOC (result, (result->num_fields ()
16557 * sizeof (struct field))));
16558
16559 /* The names are chosen to coincide with what the compiler does with
16560 -fgnat-encodings=all, which the Ada code in gdb already
16561 understands. */
16562 result->field (0).set_name ("P_ARRAY");
16563 result->field (0).set_type (lookup_pointer_type (type));
16564
16565 result->field (1).set_name ("P_BOUNDS");
16566 result->field (1).set_type (lookup_pointer_type (bounds));
16567 SET_FIELD_BITPOS (result->field (1), 8 * bounds_offset);
16568
16569 result->set_name (type->name ());
16570 TYPE_LENGTH (result) = (TYPE_LENGTH (result->field (0).type ())
16571 + TYPE_LENGTH (result->field (1).type ()));
16572
16573 return result;
16574 }
16575
16576 /* Extract all information from a DW_TAG_array_type DIE and put it in
16577 the DIE's type field. For now, this only handles one dimensional
16578 arrays. */
16579
16580 static struct type *
16581 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16582 {
16583 struct objfile *objfile = cu->per_objfile->objfile;
16584 struct die_info *child_die;
16585 struct type *type;
16586 struct type *element_type, *range_type, *index_type;
16587 struct attribute *attr;
16588 const char *name;
16589 struct dynamic_prop *byte_stride_prop = NULL;
16590 unsigned int bit_stride = 0;
16591
16592 element_type = die_type (die, cu);
16593
16594 /* The die_type call above may have already set the type for this DIE. */
16595 type = get_die_type (die, cu);
16596 if (type)
16597 return type;
16598
16599 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16600 if (attr != NULL)
16601 {
16602 int stride_ok;
16603 struct type *prop_type = cu->addr_sized_int_type (false);
16604
16605 byte_stride_prop
16606 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16607 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16608 prop_type);
16609 if (!stride_ok)
16610 {
16611 complaint (_("unable to read array DW_AT_byte_stride "
16612 " - DIE at %s [in module %s]"),
16613 sect_offset_str (die->sect_off),
16614 objfile_name (cu->per_objfile->objfile));
16615 /* Ignore this attribute. We will likely not be able to print
16616 arrays of this type correctly, but there is little we can do
16617 to help if we cannot read the attribute's value. */
16618 byte_stride_prop = NULL;
16619 }
16620 }
16621
16622 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16623 if (attr != NULL)
16624 bit_stride = attr->constant_value (0);
16625
16626 /* Irix 6.2 native cc creates array types without children for
16627 arrays with unspecified length. */
16628 if (die->child == NULL)
16629 {
16630 index_type = objfile_type (objfile)->builtin_int;
16631 range_type = create_static_range_type (NULL, index_type, 0, -1);
16632 type = create_array_type_with_stride (NULL, element_type, range_type,
16633 byte_stride_prop, bit_stride);
16634 return set_die_type (die, type, cu);
16635 }
16636
16637 std::vector<struct type *> range_types;
16638 child_die = die->child;
16639 while (child_die && child_die->tag)
16640 {
16641 if (child_die->tag == DW_TAG_subrange_type)
16642 {
16643 struct type *child_type = read_type_die (child_die, cu);
16644
16645 if (child_type != NULL)
16646 {
16647 /* The range type was succesfully read. Save it for the
16648 array type creation. */
16649 range_types.push_back (child_type);
16650 }
16651 }
16652 child_die = child_die->sibling;
16653 }
16654
16655 if (range_types.empty ())
16656 {
16657 complaint (_("unable to find array range - DIE at %s [in module %s]"),
16658 sect_offset_str (die->sect_off),
16659 objfile_name (cu->per_objfile->objfile));
16660 return NULL;
16661 }
16662
16663 /* Dwarf2 dimensions are output from left to right, create the
16664 necessary array types in backwards order. */
16665
16666 type = element_type;
16667
16668 if (read_array_order (die, cu) == DW_ORD_col_major)
16669 {
16670 int i = 0;
16671
16672 while (i < range_types.size ())
16673 {
16674 type = create_array_type_with_stride (NULL, type, range_types[i++],
16675 byte_stride_prop, bit_stride);
16676 bit_stride = 0;
16677 byte_stride_prop = nullptr;
16678 }
16679 }
16680 else
16681 {
16682 size_t ndim = range_types.size ();
16683 while (ndim-- > 0)
16684 {
16685 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16686 byte_stride_prop, bit_stride);
16687 bit_stride = 0;
16688 byte_stride_prop = nullptr;
16689 }
16690 }
16691
16692 gdb_assert (type != element_type);
16693
16694 /* Understand Dwarf2 support for vector types (like they occur on
16695 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16696 array type. This is not part of the Dwarf2/3 standard yet, but a
16697 custom vendor extension. The main difference between a regular
16698 array and the vector variant is that vectors are passed by value
16699 to functions. */
16700 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16701 if (attr != nullptr)
16702 make_vector_type (type);
16703
16704 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16705 implementation may choose to implement triple vectors using this
16706 attribute. */
16707 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16708 if (attr != nullptr && attr->form_is_unsigned ())
16709 {
16710 if (attr->as_unsigned () >= TYPE_LENGTH (type))
16711 TYPE_LENGTH (type) = attr->as_unsigned ();
16712 else
16713 complaint (_("DW_AT_byte_size for array type smaller "
16714 "than the total size of elements"));
16715 }
16716
16717 name = dwarf2_name (die, cu);
16718 if (name)
16719 type->set_name (name);
16720
16721 maybe_set_alignment (cu, die, type);
16722
16723 struct type *replacement_type = nullptr;
16724 if (cu->per_cu->lang == language_ada)
16725 {
16726 replacement_type = quirk_ada_thick_pointer (die, cu, type);
16727 if (replacement_type != nullptr)
16728 type = replacement_type;
16729 }
16730
16731 /* Install the type in the die. */
16732 set_die_type (die, type, cu, replacement_type != nullptr);
16733
16734 /* set_die_type should be already done. */
16735 set_descriptive_type (type, die, cu);
16736
16737 return type;
16738 }
16739
16740 static enum dwarf_array_dim_ordering
16741 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16742 {
16743 struct attribute *attr;
16744
16745 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16746
16747 if (attr != nullptr)
16748 {
16749 LONGEST val = attr->constant_value (-1);
16750 if (val == DW_ORD_row_major || val == DW_ORD_col_major)
16751 return (enum dwarf_array_dim_ordering) val;
16752 }
16753
16754 /* GNU F77 is a special case, as at 08/2004 array type info is the
16755 opposite order to the dwarf2 specification, but data is still
16756 laid out as per normal fortran.
16757
16758 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16759 version checking. */
16760
16761 if (cu->per_cu->lang == language_fortran
16762 && cu->producer && strstr (cu->producer, "GNU F77"))
16763 {
16764 return DW_ORD_row_major;
16765 }
16766
16767 switch (cu->language_defn->array_ordering ())
16768 {
16769 case array_column_major:
16770 return DW_ORD_col_major;
16771 case array_row_major:
16772 default:
16773 return DW_ORD_row_major;
16774 };
16775 }
16776
16777 /* Extract all information from a DW_TAG_set_type DIE and put it in
16778 the DIE's type field. */
16779
16780 static struct type *
16781 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16782 {
16783 struct type *domain_type, *set_type;
16784 struct attribute *attr;
16785
16786 domain_type = die_type (die, cu);
16787
16788 /* The die_type call above may have already set the type for this DIE. */
16789 set_type = get_die_type (die, cu);
16790 if (set_type)
16791 return set_type;
16792
16793 set_type = create_set_type (NULL, domain_type);
16794
16795 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16796 if (attr != nullptr && attr->form_is_unsigned ())
16797 TYPE_LENGTH (set_type) = attr->as_unsigned ();
16798
16799 maybe_set_alignment (cu, die, set_type);
16800
16801 return set_die_type (die, set_type, cu);
16802 }
16803
16804 /* A helper for read_common_block that creates a locexpr baton.
16805 SYM is the symbol which we are marking as computed.
16806 COMMON_DIE is the DIE for the common block.
16807 COMMON_LOC is the location expression attribute for the common
16808 block itself.
16809 MEMBER_LOC is the location expression attribute for the particular
16810 member of the common block that we are processing.
16811 CU is the CU from which the above come. */
16812
16813 static void
16814 mark_common_block_symbol_computed (struct symbol *sym,
16815 struct die_info *common_die,
16816 struct attribute *common_loc,
16817 struct attribute *member_loc,
16818 struct dwarf2_cu *cu)
16819 {
16820 dwarf2_per_objfile *per_objfile = cu->per_objfile;
16821 struct objfile *objfile = per_objfile->objfile;
16822 struct dwarf2_locexpr_baton *baton;
16823 gdb_byte *ptr;
16824 unsigned int cu_off;
16825 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16826 LONGEST offset = 0;
16827
16828 gdb_assert (common_loc && member_loc);
16829 gdb_assert (common_loc->form_is_block ());
16830 gdb_assert (member_loc->form_is_block ()
16831 || member_loc->form_is_constant ());
16832
16833 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16834 baton->per_objfile = per_objfile;
16835 baton->per_cu = cu->per_cu;
16836 gdb_assert (baton->per_cu);
16837
16838 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16839
16840 if (member_loc->form_is_constant ())
16841 {
16842 offset = member_loc->constant_value (0);
16843 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16844 }
16845 else
16846 baton->size += member_loc->as_block ()->size;
16847
16848 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16849 baton->data = ptr;
16850
16851 *ptr++ = DW_OP_call4;
16852 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16853 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16854 ptr += 4;
16855
16856 if (member_loc->form_is_constant ())
16857 {
16858 *ptr++ = DW_OP_addr;
16859 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16860 ptr += cu->header.addr_size;
16861 }
16862 else
16863 {
16864 /* We have to copy the data here, because DW_OP_call4 will only
16865 use a DW_AT_location attribute. */
16866 struct dwarf_block *block = member_loc->as_block ();
16867 memcpy (ptr, block->data, block->size);
16868 ptr += block->size;
16869 }
16870
16871 *ptr++ = DW_OP_plus;
16872 gdb_assert (ptr - baton->data == baton->size);
16873
16874 SYMBOL_LOCATION_BATON (sym) = baton;
16875 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16876 }
16877
16878 /* Create appropriate locally-scoped variables for all the
16879 DW_TAG_common_block entries. Also create a struct common_block
16880 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16881 is used to separate the common blocks name namespace from regular
16882 variable names. */
16883
16884 static void
16885 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16886 {
16887 struct attribute *attr;
16888
16889 attr = dwarf2_attr (die, DW_AT_location, cu);
16890 if (attr != nullptr)
16891 {
16892 /* Support the .debug_loc offsets. */
16893 if (attr->form_is_block ())
16894 {
16895 /* Ok. */
16896 }
16897 else if (attr->form_is_section_offset ())
16898 {
16899 dwarf2_complex_location_expr_complaint ();
16900 attr = NULL;
16901 }
16902 else
16903 {
16904 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16905 "common block member");
16906 attr = NULL;
16907 }
16908 }
16909
16910 if (die->child != NULL)
16911 {
16912 struct objfile *objfile = cu->per_objfile->objfile;
16913 struct die_info *child_die;
16914 size_t n_entries = 0, size;
16915 struct common_block *common_block;
16916 struct symbol *sym;
16917
16918 for (child_die = die->child;
16919 child_die && child_die->tag;
16920 child_die = child_die->sibling)
16921 ++n_entries;
16922
16923 size = (sizeof (struct common_block)
16924 + (n_entries - 1) * sizeof (struct symbol *));
16925 common_block
16926 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16927 size);
16928 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16929 common_block->n_entries = 0;
16930
16931 for (child_die = die->child;
16932 child_die && child_die->tag;
16933 child_die = child_die->sibling)
16934 {
16935 /* Create the symbol in the DW_TAG_common_block block in the current
16936 symbol scope. */
16937 sym = new_symbol (child_die, NULL, cu);
16938 if (sym != NULL)
16939 {
16940 struct attribute *member_loc;
16941
16942 common_block->contents[common_block->n_entries++] = sym;
16943
16944 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16945 cu);
16946 if (member_loc)
16947 {
16948 /* GDB has handled this for a long time, but it is
16949 not specified by DWARF. It seems to have been
16950 emitted by gfortran at least as recently as:
16951 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16952 complaint (_("Variable in common block has "
16953 "DW_AT_data_member_location "
16954 "- DIE at %s [in module %s]"),
16955 sect_offset_str (child_die->sect_off),
16956 objfile_name (objfile));
16957
16958 if (member_loc->form_is_section_offset ())
16959 dwarf2_complex_location_expr_complaint ();
16960 else if (member_loc->form_is_constant ()
16961 || member_loc->form_is_block ())
16962 {
16963 if (attr != nullptr)
16964 mark_common_block_symbol_computed (sym, die, attr,
16965 member_loc, cu);
16966 }
16967 else
16968 dwarf2_complex_location_expr_complaint ();
16969 }
16970 }
16971 }
16972
16973 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16974 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16975 }
16976 }
16977
16978 /* Create a type for a C++ namespace. */
16979
16980 static struct type *
16981 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16982 {
16983 struct objfile *objfile = cu->per_objfile->objfile;
16984 const char *previous_prefix, *name;
16985 int is_anonymous;
16986 struct type *type;
16987
16988 /* For extensions, reuse the type of the original namespace. */
16989 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16990 {
16991 struct die_info *ext_die;
16992 struct dwarf2_cu *ext_cu = cu;
16993
16994 ext_die = dwarf2_extension (die, &ext_cu);
16995 type = read_type_die (ext_die, ext_cu);
16996
16997 /* EXT_CU may not be the same as CU.
16998 Ensure TYPE is recorded with CU in die_type_hash. */
16999 return set_die_type (die, type, cu);
17000 }
17001
17002 name = namespace_name (die, &is_anonymous, cu);
17003
17004 /* Now build the name of the current namespace. */
17005
17006 previous_prefix = determine_prefix (die, cu);
17007 if (previous_prefix[0] != '\0')
17008 name = typename_concat (&objfile->objfile_obstack,
17009 previous_prefix, name, 0, cu);
17010
17011 /* Create the type. */
17012 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
17013
17014 return set_die_type (die, type, cu);
17015 }
17016
17017 /* Read a namespace scope. */
17018
17019 static void
17020 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
17021 {
17022 struct objfile *objfile = cu->per_objfile->objfile;
17023 int is_anonymous;
17024
17025 /* Add a symbol associated to this if we haven't seen the namespace
17026 before. Also, add a using directive if it's an anonymous
17027 namespace. */
17028
17029 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
17030 {
17031 struct type *type;
17032
17033 type = read_type_die (die, cu);
17034 new_symbol (die, type, cu);
17035
17036 namespace_name (die, &is_anonymous, cu);
17037 if (is_anonymous)
17038 {
17039 const char *previous_prefix = determine_prefix (die, cu);
17040
17041 std::vector<const char *> excludes;
17042 add_using_directive (using_directives (cu),
17043 previous_prefix, type->name (), NULL,
17044 NULL, excludes, 0, &objfile->objfile_obstack);
17045 }
17046 }
17047
17048 if (die->child != NULL)
17049 {
17050 struct die_info *child_die = die->child;
17051
17052 while (child_die && child_die->tag)
17053 {
17054 process_die (child_die, cu);
17055 child_die = child_die->sibling;
17056 }
17057 }
17058 }
17059
17060 /* Read a Fortran module as type. This DIE can be only a declaration used for
17061 imported module. Still we need that type as local Fortran "use ... only"
17062 declaration imports depend on the created type in determine_prefix. */
17063
17064 static struct type *
17065 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
17066 {
17067 struct objfile *objfile = cu->per_objfile->objfile;
17068 const char *module_name;
17069 struct type *type;
17070
17071 module_name = dwarf2_name (die, cu);
17072 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17073
17074 return set_die_type (die, type, cu);
17075 }
17076
17077 /* Read a Fortran module. */
17078
17079 static void
17080 read_module (struct die_info *die, struct dwarf2_cu *cu)
17081 {
17082 struct die_info *child_die = die->child;
17083 struct type *type;
17084
17085 type = read_type_die (die, cu);
17086 new_symbol (die, type, cu);
17087
17088 while (child_die && child_die->tag)
17089 {
17090 process_die (child_die, cu);
17091 child_die = child_die->sibling;
17092 }
17093 }
17094
17095 /* Return the name of the namespace represented by DIE. Set
17096 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17097 namespace. */
17098
17099 static const char *
17100 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17101 {
17102 struct die_info *current_die;
17103 const char *name = NULL;
17104
17105 /* Loop through the extensions until we find a name. */
17106
17107 for (current_die = die;
17108 current_die != NULL;
17109 current_die = dwarf2_extension (die, &cu))
17110 {
17111 /* We don't use dwarf2_name here so that we can detect the absence
17112 of a name -> anonymous namespace. */
17113 name = dwarf2_string_attr (die, DW_AT_name, cu);
17114
17115 if (name != NULL)
17116 break;
17117 }
17118
17119 /* Is it an anonymous namespace? */
17120
17121 *is_anonymous = (name == NULL);
17122 if (*is_anonymous)
17123 name = CP_ANONYMOUS_NAMESPACE_STR;
17124
17125 return name;
17126 }
17127
17128 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17129 the user defined type vector. */
17130
17131 static struct type *
17132 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17133 {
17134 struct gdbarch *gdbarch = cu->per_objfile->objfile->arch ();
17135 struct comp_unit_head *cu_header = &cu->header;
17136 struct type *type;
17137 struct attribute *attr_byte_size;
17138 struct attribute *attr_address_class;
17139 int byte_size, addr_class;
17140 struct type *target_type;
17141
17142 target_type = die_type (die, cu);
17143
17144 /* The die_type call above may have already set the type for this DIE. */
17145 type = get_die_type (die, cu);
17146 if (type)
17147 return type;
17148
17149 type = lookup_pointer_type (target_type);
17150
17151 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17152 if (attr_byte_size)
17153 byte_size = attr_byte_size->constant_value (cu_header->addr_size);
17154 else
17155 byte_size = cu_header->addr_size;
17156
17157 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17158 if (attr_address_class)
17159 addr_class = attr_address_class->constant_value (DW_ADDR_none);
17160 else
17161 addr_class = DW_ADDR_none;
17162
17163 ULONGEST alignment = get_alignment (cu, die);
17164
17165 /* If the pointer size, alignment, or address class is different
17166 than the default, create a type variant marked as such and set
17167 the length accordingly. */
17168 if (TYPE_LENGTH (type) != byte_size
17169 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17170 && alignment != TYPE_RAW_ALIGN (type))
17171 || addr_class != DW_ADDR_none)
17172 {
17173 if (gdbarch_address_class_type_flags_p (gdbarch))
17174 {
17175 type_instance_flags type_flags
17176 = gdbarch_address_class_type_flags (gdbarch, byte_size,
17177 addr_class);
17178 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17179 == 0);
17180 type = make_type_with_address_space (type, type_flags);
17181 }
17182 else if (TYPE_LENGTH (type) != byte_size)
17183 {
17184 complaint (_("invalid pointer size %d"), byte_size);
17185 }
17186 else if (TYPE_RAW_ALIGN (type) != alignment)
17187 {
17188 complaint (_("Invalid DW_AT_alignment"
17189 " - DIE at %s [in module %s]"),
17190 sect_offset_str (die->sect_off),
17191 objfile_name (cu->per_objfile->objfile));
17192 }
17193 else
17194 {
17195 /* Should we also complain about unhandled address classes? */
17196 }
17197 }
17198
17199 TYPE_LENGTH (type) = byte_size;
17200 set_type_align (type, alignment);
17201 return set_die_type (die, type, cu);
17202 }
17203
17204 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17205 the user defined type vector. */
17206
17207 static struct type *
17208 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17209 {
17210 struct type *type;
17211 struct type *to_type;
17212 struct type *domain;
17213
17214 to_type = die_type (die, cu);
17215 domain = die_containing_type (die, cu);
17216
17217 /* The calls above may have already set the type for this DIE. */
17218 type = get_die_type (die, cu);
17219 if (type)
17220 return type;
17221
17222 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
17223 type = lookup_methodptr_type (to_type);
17224 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
17225 {
17226 struct type *new_type = alloc_type (cu->per_objfile->objfile);
17227
17228 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17229 to_type->fields (), to_type->num_fields (),
17230 to_type->has_varargs ());
17231 type = lookup_methodptr_type (new_type);
17232 }
17233 else
17234 type = lookup_memberptr_type (to_type, domain);
17235
17236 return set_die_type (die, type, cu);
17237 }
17238
17239 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17240 the user defined type vector. */
17241
17242 static struct type *
17243 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17244 enum type_code refcode)
17245 {
17246 struct comp_unit_head *cu_header = &cu->header;
17247 struct type *type, *target_type;
17248 struct attribute *attr;
17249
17250 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17251
17252 target_type = die_type (die, cu);
17253
17254 /* The die_type call above may have already set the type for this DIE. */
17255 type = get_die_type (die, cu);
17256 if (type)
17257 return type;
17258
17259 type = lookup_reference_type (target_type, refcode);
17260 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17261 if (attr != nullptr)
17262 {
17263 TYPE_LENGTH (type) = attr->constant_value (cu_header->addr_size);
17264 }
17265 else
17266 {
17267 TYPE_LENGTH (type) = cu_header->addr_size;
17268 }
17269 maybe_set_alignment (cu, die, type);
17270 return set_die_type (die, type, cu);
17271 }
17272
17273 /* Add the given cv-qualifiers to the element type of the array. GCC
17274 outputs DWARF type qualifiers that apply to an array, not the
17275 element type. But GDB relies on the array element type to carry
17276 the cv-qualifiers. This mimics section 6.7.3 of the C99
17277 specification. */
17278
17279 static struct type *
17280 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17281 struct type *base_type, int cnst, int voltl)
17282 {
17283 struct type *el_type, *inner_array;
17284
17285 base_type = copy_type (base_type);
17286 inner_array = base_type;
17287
17288 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
17289 {
17290 TYPE_TARGET_TYPE (inner_array) =
17291 copy_type (TYPE_TARGET_TYPE (inner_array));
17292 inner_array = TYPE_TARGET_TYPE (inner_array);
17293 }
17294
17295 el_type = TYPE_TARGET_TYPE (inner_array);
17296 cnst |= TYPE_CONST (el_type);
17297 voltl |= TYPE_VOLATILE (el_type);
17298 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17299
17300 return set_die_type (die, base_type, cu);
17301 }
17302
17303 static struct type *
17304 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17305 {
17306 struct type *base_type, *cv_type;
17307
17308 base_type = die_type (die, cu);
17309
17310 /* The die_type call above may have already set the type for this DIE. */
17311 cv_type = get_die_type (die, cu);
17312 if (cv_type)
17313 return cv_type;
17314
17315 /* In case the const qualifier is applied to an array type, the element type
17316 is so qualified, not the array type (section 6.7.3 of C99). */
17317 if (base_type->code () == TYPE_CODE_ARRAY)
17318 return add_array_cv_type (die, cu, base_type, 1, 0);
17319
17320 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17321 return set_die_type (die, cv_type, cu);
17322 }
17323
17324 static struct type *
17325 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17326 {
17327 struct type *base_type, *cv_type;
17328
17329 base_type = die_type (die, cu);
17330
17331 /* The die_type call above may have already set the type for this DIE. */
17332 cv_type = get_die_type (die, cu);
17333 if (cv_type)
17334 return cv_type;
17335
17336 /* In case the volatile qualifier is applied to an array type, the
17337 element type is so qualified, not the array type (section 6.7.3
17338 of C99). */
17339 if (base_type->code () == TYPE_CODE_ARRAY)
17340 return add_array_cv_type (die, cu, base_type, 0, 1);
17341
17342 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17343 return set_die_type (die, cv_type, cu);
17344 }
17345
17346 /* Handle DW_TAG_restrict_type. */
17347
17348 static struct type *
17349 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17350 {
17351 struct type *base_type, *cv_type;
17352
17353 base_type = die_type (die, cu);
17354
17355 /* The die_type call above may have already set the type for this DIE. */
17356 cv_type = get_die_type (die, cu);
17357 if (cv_type)
17358 return cv_type;
17359
17360 cv_type = make_restrict_type (base_type);
17361 return set_die_type (die, cv_type, cu);
17362 }
17363
17364 /* Handle DW_TAG_atomic_type. */
17365
17366 static struct type *
17367 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17368 {
17369 struct type *base_type, *cv_type;
17370
17371 base_type = die_type (die, cu);
17372
17373 /* The die_type call above may have already set the type for this DIE. */
17374 cv_type = get_die_type (die, cu);
17375 if (cv_type)
17376 return cv_type;
17377
17378 cv_type = make_atomic_type (base_type);
17379 return set_die_type (die, cv_type, cu);
17380 }
17381
17382 /* Extract all information from a DW_TAG_string_type DIE and add to
17383 the user defined type vector. It isn't really a user defined type,
17384 but it behaves like one, with other DIE's using an AT_user_def_type
17385 attribute to reference it. */
17386
17387 static struct type *
17388 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17389 {
17390 struct objfile *objfile = cu->per_objfile->objfile;
17391 struct gdbarch *gdbarch = objfile->arch ();
17392 struct type *type, *range_type, *index_type, *char_type;
17393 struct attribute *attr;
17394 struct dynamic_prop prop;
17395 bool length_is_constant = true;
17396 LONGEST length;
17397
17398 /* There are a couple of places where bit sizes might be made use of
17399 when parsing a DW_TAG_string_type, however, no producer that we know
17400 of make use of these. Handling bit sizes that are a multiple of the
17401 byte size is easy enough, but what about other bit sizes? Lets deal
17402 with that problem when we have to. Warn about these attributes being
17403 unsupported, then parse the type and ignore them like we always
17404 have. */
17405 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17406 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17407 {
17408 static bool warning_printed = false;
17409 if (!warning_printed)
17410 {
17411 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17412 "currently supported on DW_TAG_string_type."));
17413 warning_printed = true;
17414 }
17415 }
17416
17417 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17418 if (attr != nullptr && !attr->form_is_constant ())
17419 {
17420 /* The string length describes the location at which the length of
17421 the string can be found. The size of the length field can be
17422 specified with one of the attributes below. */
17423 struct type *prop_type;
17424 struct attribute *len
17425 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17426 if (len == nullptr)
17427 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17428 if (len != nullptr && len->form_is_constant ())
17429 {
17430 /* Pass 0 as the default as we know this attribute is constant
17431 and the default value will not be returned. */
17432 LONGEST sz = len->constant_value (0);
17433 prop_type = cu->per_objfile->int_type (sz, true);
17434 }
17435 else
17436 {
17437 /* If the size is not specified then we assume it is the size of
17438 an address on this target. */
17439 prop_type = cu->addr_sized_int_type (true);
17440 }
17441
17442 /* Convert the attribute into a dynamic property. */
17443 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17444 length = 1;
17445 else
17446 length_is_constant = false;
17447 }
17448 else if (attr != nullptr)
17449 {
17450 /* This DW_AT_string_length just contains the length with no
17451 indirection. There's no need to create a dynamic property in this
17452 case. Pass 0 for the default value as we know it will not be
17453 returned in this case. */
17454 length = attr->constant_value (0);
17455 }
17456 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17457 {
17458 /* We don't currently support non-constant byte sizes for strings. */
17459 length = attr->constant_value (1);
17460 }
17461 else
17462 {
17463 /* Use 1 as a fallback length if we have nothing else. */
17464 length = 1;
17465 }
17466
17467 index_type = objfile_type (objfile)->builtin_int;
17468 if (length_is_constant)
17469 range_type = create_static_range_type (NULL, index_type, 1, length);
17470 else
17471 {
17472 struct dynamic_prop low_bound;
17473
17474 low_bound.set_const_val (1);
17475 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17476 }
17477 char_type = language_string_char_type (cu->language_defn, gdbarch);
17478 type = create_string_type (NULL, char_type, range_type);
17479
17480 return set_die_type (die, type, cu);
17481 }
17482
17483 /* Assuming that DIE corresponds to a function, returns nonzero
17484 if the function is prototyped. */
17485
17486 static int
17487 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17488 {
17489 struct attribute *attr;
17490
17491 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17492 if (attr && attr->as_boolean ())
17493 return 1;
17494
17495 /* The DWARF standard implies that the DW_AT_prototyped attribute
17496 is only meaningful for C, but the concept also extends to other
17497 languages that allow unprototyped functions (Eg: Objective C).
17498 For all other languages, assume that functions are always
17499 prototyped. */
17500 if (cu->per_cu->lang != language_c
17501 && cu->per_cu->lang != language_objc
17502 && cu->per_cu->lang != language_opencl)
17503 return 1;
17504
17505 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17506 prototyped and unprototyped functions; default to prototyped,
17507 since that is more common in modern code (and RealView warns
17508 about unprototyped functions). */
17509 if (producer_is_realview (cu->producer))
17510 return 1;
17511
17512 return 0;
17513 }
17514
17515 /* Handle DIES due to C code like:
17516
17517 struct foo
17518 {
17519 int (*funcp)(int a, long l);
17520 int b;
17521 };
17522
17523 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17524
17525 static struct type *
17526 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17527 {
17528 struct objfile *objfile = cu->per_objfile->objfile;
17529 struct type *type; /* Type that this function returns. */
17530 struct type *ftype; /* Function that returns above type. */
17531 struct attribute *attr;
17532
17533 type = die_type (die, cu);
17534
17535 /* The die_type call above may have already set the type for this DIE. */
17536 ftype = get_die_type (die, cu);
17537 if (ftype)
17538 return ftype;
17539
17540 ftype = lookup_function_type (type);
17541
17542 if (prototyped_function_p (die, cu))
17543 ftype->set_is_prototyped (true);
17544
17545 /* Store the calling convention in the type if it's available in
17546 the subroutine die. Otherwise set the calling convention to
17547 the default value DW_CC_normal. */
17548 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17549 if (attr != nullptr
17550 && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0)))
17551 TYPE_CALLING_CONVENTION (ftype)
17552 = (enum dwarf_calling_convention) attr->constant_value (0);
17553 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17554 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17555 else
17556 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17557
17558 /* Record whether the function returns normally to its caller or not
17559 if the DWARF producer set that information. */
17560 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17561 if (attr && attr->as_boolean ())
17562 TYPE_NO_RETURN (ftype) = 1;
17563
17564 /* We need to add the subroutine type to the die immediately so
17565 we don't infinitely recurse when dealing with parameters
17566 declared as the same subroutine type. */
17567 set_die_type (die, ftype, cu);
17568
17569 if (die->child != NULL)
17570 {
17571 struct type *void_type = objfile_type (objfile)->builtin_void;
17572 struct die_info *child_die;
17573 int nparams, iparams;
17574
17575 /* Count the number of parameters.
17576 FIXME: GDB currently ignores vararg functions, but knows about
17577 vararg member functions. */
17578 nparams = 0;
17579 child_die = die->child;
17580 while (child_die && child_die->tag)
17581 {
17582 if (child_die->tag == DW_TAG_formal_parameter)
17583 nparams++;
17584 else if (child_die->tag == DW_TAG_unspecified_parameters)
17585 ftype->set_has_varargs (true);
17586
17587 child_die = child_die->sibling;
17588 }
17589
17590 /* Allocate storage for parameters and fill them in. */
17591 ftype->set_num_fields (nparams);
17592 ftype->set_fields
17593 ((struct field *) TYPE_ZALLOC (ftype, nparams * sizeof (struct field)));
17594
17595 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17596 even if we error out during the parameters reading below. */
17597 for (iparams = 0; iparams < nparams; iparams++)
17598 ftype->field (iparams).set_type (void_type);
17599
17600 iparams = 0;
17601 child_die = die->child;
17602 while (child_die && child_die->tag)
17603 {
17604 if (child_die->tag == DW_TAG_formal_parameter)
17605 {
17606 struct type *arg_type;
17607
17608 /* DWARF version 2 has no clean way to discern C++
17609 static and non-static member functions. G++ helps
17610 GDB by marking the first parameter for non-static
17611 member functions (which is the this pointer) as
17612 artificial. We pass this information to
17613 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17614
17615 DWARF version 3 added DW_AT_object_pointer, which GCC
17616 4.5 does not yet generate. */
17617 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17618 if (attr != nullptr)
17619 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = attr->as_boolean ();
17620 else
17621 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17622 arg_type = die_type (child_die, cu);
17623
17624 /* RealView does not mark THIS as const, which the testsuite
17625 expects. GCC marks THIS as const in method definitions,
17626 but not in the class specifications (GCC PR 43053). */
17627 if (cu->per_cu->lang == language_cplus
17628 && !TYPE_CONST (arg_type)
17629 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17630 {
17631 int is_this = 0;
17632 struct dwarf2_cu *arg_cu = cu;
17633 const char *name = dwarf2_name (child_die, cu);
17634
17635 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17636 if (attr != nullptr)
17637 {
17638 /* If the compiler emits this, use it. */
17639 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17640 is_this = 1;
17641 }
17642 else if (name && strcmp (name, "this") == 0)
17643 /* Function definitions will have the argument names. */
17644 is_this = 1;
17645 else if (name == NULL && iparams == 0)
17646 /* Declarations may not have the names, so like
17647 elsewhere in GDB, assume an artificial first
17648 argument is "this". */
17649 is_this = 1;
17650
17651 if (is_this)
17652 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17653 arg_type, 0);
17654 }
17655
17656 ftype->field (iparams).set_type (arg_type);
17657 iparams++;
17658 }
17659 child_die = child_die->sibling;
17660 }
17661 }
17662
17663 return ftype;
17664 }
17665
17666 static struct type *
17667 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17668 {
17669 struct objfile *objfile = cu->per_objfile->objfile;
17670 const char *name = NULL;
17671 struct type *this_type, *target_type;
17672
17673 name = dwarf2_full_name (NULL, die, cu);
17674 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17675 this_type->set_target_is_stub (true);
17676 set_die_type (die, this_type, cu);
17677 target_type = die_type (die, cu);
17678 if (target_type != this_type)
17679 TYPE_TARGET_TYPE (this_type) = target_type;
17680 else
17681 {
17682 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17683 spec and cause infinite loops in GDB. */
17684 complaint (_("Self-referential DW_TAG_typedef "
17685 "- DIE at %s [in module %s]"),
17686 sect_offset_str (die->sect_off), objfile_name (objfile));
17687 TYPE_TARGET_TYPE (this_type) = NULL;
17688 }
17689 if (name == NULL)
17690 {
17691 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17692 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17693 Handle these by just returning the target type, rather than
17694 constructing an anonymous typedef type and trying to handle this
17695 elsewhere. */
17696 set_die_type (die, target_type, cu);
17697 return target_type;
17698 }
17699 return this_type;
17700 }
17701
17702 /* Helper for get_dwarf2_rational_constant that computes the value of
17703 a given gmp_mpz given an attribute. */
17704
17705 static void
17706 get_mpz (struct dwarf2_cu *cu, gdb_mpz *value, struct attribute *attr)
17707 {
17708 /* GCC will sometimes emit a 16-byte constant value as a DWARF
17709 location expression that pushes an implicit value. */
17710 if (attr->form == DW_FORM_exprloc)
17711 {
17712 dwarf_block *blk = attr->as_block ();
17713 if (blk->size > 0 && blk->data[0] == DW_OP_implicit_value)
17714 {
17715 uint64_t len;
17716 const gdb_byte *ptr = safe_read_uleb128 (blk->data + 1,
17717 blk->data + blk->size,
17718 &len);
17719 if (ptr - blk->data + len <= blk->size)
17720 {
17721 mpz_import (value->val, len,
17722 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17723 1, 0, 0, ptr);
17724 return;
17725 }
17726 }
17727
17728 /* On failure set it to 1. */
17729 *value = gdb_mpz (1);
17730 }
17731 else if (attr->form_is_block ())
17732 {
17733 dwarf_block *blk = attr->as_block ();
17734 mpz_import (value->val, blk->size,
17735 bfd_big_endian (cu->per_objfile->objfile->obfd) ? 1 : -1,
17736 1, 0, 0, blk->data);
17737 }
17738 else
17739 *value = gdb_mpz (attr->constant_value (1));
17740 }
17741
17742 /* Assuming DIE is a rational DW_TAG_constant, read the DIE's
17743 numerator and denominator into NUMERATOR and DENOMINATOR (resp).
17744
17745 If the numerator and/or numerator attribute is missing,
17746 a complaint is filed, and NUMERATOR and DENOMINATOR are left
17747 untouched. */
17748
17749 static void
17750 get_dwarf2_rational_constant (struct die_info *die, struct dwarf2_cu *cu,
17751 gdb_mpz *numerator, gdb_mpz *denominator)
17752 {
17753 struct attribute *num_attr, *denom_attr;
17754
17755 num_attr = dwarf2_attr (die, DW_AT_GNU_numerator, cu);
17756 if (num_attr == nullptr)
17757 complaint (_("DW_AT_GNU_numerator missing in %s DIE at %s"),
17758 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17759
17760 denom_attr = dwarf2_attr (die, DW_AT_GNU_denominator, cu);
17761 if (denom_attr == nullptr)
17762 complaint (_("DW_AT_GNU_denominator missing in %s DIE at %s"),
17763 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17764
17765 if (num_attr == nullptr || denom_attr == nullptr)
17766 return;
17767
17768 get_mpz (cu, numerator, num_attr);
17769 get_mpz (cu, denominator, denom_attr);
17770 }
17771
17772 /* Same as get_dwarf2_rational_constant, but extracting an unsigned
17773 rational constant, rather than a signed one.
17774
17775 If the rational constant has a negative value, a complaint
17776 is filed, and NUMERATOR and DENOMINATOR are left untouched. */
17777
17778 static void
17779 get_dwarf2_unsigned_rational_constant (struct die_info *die,
17780 struct dwarf2_cu *cu,
17781 gdb_mpz *numerator,
17782 gdb_mpz *denominator)
17783 {
17784 gdb_mpz num (1);
17785 gdb_mpz denom (1);
17786
17787 get_dwarf2_rational_constant (die, cu, &num, &denom);
17788 if (mpz_sgn (num.val) == -1 && mpz_sgn (denom.val) == -1)
17789 {
17790 mpz_neg (num.val, num.val);
17791 mpz_neg (denom.val, denom.val);
17792 }
17793 else if (mpz_sgn (num.val) == -1)
17794 {
17795 complaint (_("unexpected negative value for DW_AT_GNU_numerator"
17796 " in DIE at %s"),
17797 sect_offset_str (die->sect_off));
17798 return;
17799 }
17800 else if (mpz_sgn (denom.val) == -1)
17801 {
17802 complaint (_("unexpected negative value for DW_AT_GNU_denominator"
17803 " in DIE at %s"),
17804 sect_offset_str (die->sect_off));
17805 return;
17806 }
17807
17808 *numerator = std::move (num);
17809 *denominator = std::move (denom);
17810 }
17811
17812 /* Assuming that ENCODING is a string whose contents starting at the
17813 K'th character is "_nn" where "nn" is a decimal number, scan that
17814 number and set RESULT to the value. K is updated to point to the
17815 character immediately following the number.
17816
17817 If the string does not conform to the format described above, false
17818 is returned, and K may or may not be changed. */
17819
17820 static bool
17821 ada_get_gnat_encoded_number (const char *encoding, int &k, gdb_mpz *result)
17822 {
17823 /* The next character should be an underscore ('_') followed
17824 by a digit. */
17825 if (encoding[k] != '_' || !isdigit (encoding[k + 1]))
17826 return false;
17827
17828 /* Skip the underscore. */
17829 k++;
17830 int start = k;
17831
17832 /* Determine the number of digits for our number. */
17833 while (isdigit (encoding[k]))
17834 k++;
17835 if (k == start)
17836 return false;
17837
17838 std::string copy (&encoding[start], k - start);
17839 if (mpz_set_str (result->val, copy.c_str (), 10) == -1)
17840 return false;
17841
17842 return true;
17843 }
17844
17845 /* Scan two numbers from ENCODING at OFFSET, assuming the string is of
17846 the form _NN_DD, where NN and DD are decimal numbers. Set NUM and
17847 DENOM, update OFFSET, and return true on success. Return false on
17848 failure. */
17849
17850 static bool
17851 ada_get_gnat_encoded_ratio (const char *encoding, int &offset,
17852 gdb_mpz *num, gdb_mpz *denom)
17853 {
17854 if (!ada_get_gnat_encoded_number (encoding, offset, num))
17855 return false;
17856 return ada_get_gnat_encoded_number (encoding, offset, denom);
17857 }
17858
17859 /* Assuming DIE corresponds to a fixed point type, finish the creation
17860 of the corresponding TYPE by setting its type-specific data. CU is
17861 the DIE's CU. SUFFIX is the "XF" type name suffix coming from GNAT
17862 encodings. It is nullptr if the GNAT encoding should be
17863 ignored. */
17864
17865 static void
17866 finish_fixed_point_type (struct type *type, const char *suffix,
17867 struct die_info *die, struct dwarf2_cu *cu)
17868 {
17869 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT
17870 && TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FIXED_POINT);
17871
17872 /* If GNAT encodings are preferred, don't examine the
17873 attributes. */
17874 struct attribute *attr = nullptr;
17875 if (suffix == nullptr)
17876 {
17877 attr = dwarf2_attr (die, DW_AT_binary_scale, cu);
17878 if (attr == nullptr)
17879 attr = dwarf2_attr (die, DW_AT_decimal_scale, cu);
17880 if (attr == nullptr)
17881 attr = dwarf2_attr (die, DW_AT_small, cu);
17882 }
17883
17884 /* Numerator and denominator of our fixed-point type's scaling factor.
17885 The default is a scaling factor of 1, which we use as a fallback
17886 when we are not able to decode it (problem with the debugging info,
17887 unsupported forms, bug in GDB, etc...). Using that as the default
17888 allows us to at least print the unscaled value, which might still
17889 be useful to a user. */
17890 gdb_mpz scale_num (1);
17891 gdb_mpz scale_denom (1);
17892
17893 if (attr == nullptr)
17894 {
17895 int offset = 0;
17896 if (suffix != nullptr
17897 && ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17898 &scale_denom)
17899 /* The number might be encoded as _nn_dd_nn_dd, where the
17900 second ratio is the 'small value. In this situation, we
17901 want the second value. */
17902 && (suffix[offset] != '_'
17903 || ada_get_gnat_encoded_ratio (suffix, offset, &scale_num,
17904 &scale_denom)))
17905 {
17906 /* Found it. */
17907 }
17908 else
17909 {
17910 /* Scaling factor not found. Assume a scaling factor of 1,
17911 and hope for the best. At least the user will be able to
17912 see the encoded value. */
17913 scale_num = 1;
17914 scale_denom = 1;
17915 complaint (_("no scale found for fixed-point type (DIE at %s)"),
17916 sect_offset_str (die->sect_off));
17917 }
17918 }
17919 else if (attr->name == DW_AT_binary_scale)
17920 {
17921 LONGEST scale_exp = attr->constant_value (0);
17922 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17923
17924 mpz_mul_2exp (num_or_denom->val, num_or_denom->val, std::abs (scale_exp));
17925 }
17926 else if (attr->name == DW_AT_decimal_scale)
17927 {
17928 LONGEST scale_exp = attr->constant_value (0);
17929 gdb_mpz *num_or_denom = scale_exp > 0 ? &scale_num : &scale_denom;
17930
17931 mpz_ui_pow_ui (num_or_denom->val, 10, std::abs (scale_exp));
17932 }
17933 else if (attr->name == DW_AT_small)
17934 {
17935 struct die_info *scale_die;
17936 struct dwarf2_cu *scale_cu = cu;
17937
17938 scale_die = follow_die_ref (die, attr, &scale_cu);
17939 if (scale_die->tag == DW_TAG_constant)
17940 get_dwarf2_unsigned_rational_constant (scale_die, scale_cu,
17941 &scale_num, &scale_denom);
17942 else
17943 complaint (_("%s DIE not supported as target of DW_AT_small attribute"
17944 " (DIE at %s)"),
17945 dwarf_tag_name (die->tag), sect_offset_str (die->sect_off));
17946 }
17947 else
17948 {
17949 complaint (_("unsupported scale attribute %s for fixed-point type"
17950 " (DIE at %s)"),
17951 dwarf_attr_name (attr->name),
17952 sect_offset_str (die->sect_off));
17953 }
17954
17955 gdb_mpq &scaling_factor = type->fixed_point_info ().scaling_factor;
17956 mpz_set (mpq_numref (scaling_factor.val), scale_num.val);
17957 mpz_set (mpq_denref (scaling_factor.val), scale_denom.val);
17958 mpq_canonicalize (scaling_factor.val);
17959 }
17960
17961 /* The gnat-encoding suffix for fixed point. */
17962
17963 #define GNAT_FIXED_POINT_SUFFIX "___XF_"
17964
17965 /* If NAME encodes an Ada fixed-point type, return a pointer to the
17966 "XF" suffix of the name. The text after this is what encodes the
17967 'small and 'delta information. Otherwise, return nullptr. */
17968
17969 static const char *
17970 gnat_encoded_fixed_point_type_info (const char *name)
17971 {
17972 return strstr (name, GNAT_FIXED_POINT_SUFFIX);
17973 }
17974
17975 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17976 (which may be different from NAME) to the architecture back-end to allow
17977 it to guess the correct format if necessary. */
17978
17979 static struct type *
17980 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17981 const char *name_hint, enum bfd_endian byte_order)
17982 {
17983 struct gdbarch *gdbarch = objfile->arch ();
17984 const struct floatformat **format;
17985 struct type *type;
17986
17987 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17988 if (format)
17989 type = init_float_type (objfile, bits, name, format, byte_order);
17990 else
17991 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17992
17993 return type;
17994 }
17995
17996 /* Allocate an integer type of size BITS and name NAME. */
17997
17998 static struct type *
17999 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
18000 int bits, int unsigned_p, const char *name)
18001 {
18002 struct type *type;
18003
18004 /* Versions of Intel's C Compiler generate an integer type called "void"
18005 instead of using DW_TAG_unspecified_type. This has been seen on
18006 at least versions 14, 17, and 18. */
18007 if (bits == 0 && producer_is_icc (cu) && name != nullptr
18008 && strcmp (name, "void") == 0)
18009 type = objfile_type (objfile)->builtin_void;
18010 else
18011 type = init_integer_type (objfile, bits, unsigned_p, name);
18012
18013 return type;
18014 }
18015
18016 /* Return true if DIE has a DW_AT_small attribute whose value is
18017 a constant rational, where both the numerator and denominator
18018 are equal to zero.
18019
18020 CU is the DIE's Compilation Unit. */
18021
18022 static bool
18023 has_zero_over_zero_small_attribute (struct die_info *die,
18024 struct dwarf2_cu *cu)
18025 {
18026 struct attribute *attr = dwarf2_attr (die, DW_AT_small, cu);
18027 if (attr == nullptr)
18028 return false;
18029
18030 struct dwarf2_cu *scale_cu = cu;
18031 struct die_info *scale_die
18032 = follow_die_ref (die, attr, &scale_cu);
18033
18034 if (scale_die->tag != DW_TAG_constant)
18035 return false;
18036
18037 gdb_mpz num (1), denom (1);
18038 get_dwarf2_rational_constant (scale_die, cu, &num, &denom);
18039 return mpz_sgn (num.val) == 0 && mpz_sgn (denom.val) == 0;
18040 }
18041
18042 /* Initialise and return a floating point type of size BITS suitable for
18043 use as a component of a complex number. The NAME_HINT is passed through
18044 when initialising the floating point type and is the name of the complex
18045 type.
18046
18047 As DWARF doesn't currently provide an explicit name for the components
18048 of a complex number, but it can be helpful to have these components
18049 named, we try to select a suitable name based on the size of the
18050 component. */
18051 static struct type *
18052 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
18053 struct objfile *objfile,
18054 int bits, const char *name_hint,
18055 enum bfd_endian byte_order)
18056 {
18057 gdbarch *gdbarch = objfile->arch ();
18058 struct type *tt = nullptr;
18059
18060 /* Try to find a suitable floating point builtin type of size BITS.
18061 We're going to use the name of this type as the name for the complex
18062 target type that we are about to create. */
18063 switch (cu->per_cu->lang)
18064 {
18065 case language_fortran:
18066 switch (bits)
18067 {
18068 case 32:
18069 tt = builtin_f_type (gdbarch)->builtin_real;
18070 break;
18071 case 64:
18072 tt = builtin_f_type (gdbarch)->builtin_real_s8;
18073 break;
18074 case 96: /* The x86-32 ABI specifies 96-bit long double. */
18075 case 128:
18076 tt = builtin_f_type (gdbarch)->builtin_real_s16;
18077 break;
18078 }
18079 break;
18080 default:
18081 switch (bits)
18082 {
18083 case 32:
18084 tt = builtin_type (gdbarch)->builtin_float;
18085 break;
18086 case 64:
18087 tt = builtin_type (gdbarch)->builtin_double;
18088 break;
18089 case 96: /* The x86-32 ABI specifies 96-bit long double. */
18090 case 128:
18091 tt = builtin_type (gdbarch)->builtin_long_double;
18092 break;
18093 }
18094 break;
18095 }
18096
18097 /* If the type we found doesn't match the size we were looking for, then
18098 pretend we didn't find a type at all, the complex target type we
18099 create will then be nameless. */
18100 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
18101 tt = nullptr;
18102
18103 const char *name = (tt == nullptr) ? nullptr : tt->name ();
18104 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
18105 }
18106
18107 /* Find a representation of a given base type and install
18108 it in the TYPE field of the die. */
18109
18110 static struct type *
18111 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
18112 {
18113 struct objfile *objfile = cu->per_objfile->objfile;
18114 struct type *type;
18115 struct attribute *attr;
18116 int encoding = 0, bits = 0;
18117 const char *name;
18118 gdbarch *arch;
18119
18120 attr = dwarf2_attr (die, DW_AT_encoding, cu);
18121 if (attr != nullptr && attr->form_is_constant ())
18122 encoding = attr->constant_value (0);
18123 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18124 if (attr != nullptr)
18125 bits = attr->constant_value (0) * TARGET_CHAR_BIT;
18126 name = dwarf2_name (die, cu);
18127 if (!name)
18128 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
18129
18130 arch = objfile->arch ();
18131 enum bfd_endian byte_order = gdbarch_byte_order (arch);
18132
18133 attr = dwarf2_attr (die, DW_AT_endianity, cu);
18134 if (attr != nullptr && attr->form_is_constant ())
18135 {
18136 int endianity = attr->constant_value (0);
18137
18138 switch (endianity)
18139 {
18140 case DW_END_big:
18141 byte_order = BFD_ENDIAN_BIG;
18142 break;
18143 case DW_END_little:
18144 byte_order = BFD_ENDIAN_LITTLE;
18145 break;
18146 default:
18147 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
18148 break;
18149 }
18150 }
18151
18152 if ((encoding == DW_ATE_signed_fixed || encoding == DW_ATE_unsigned_fixed)
18153 && cu->per_cu->lang == language_ada
18154 && has_zero_over_zero_small_attribute (die, cu))
18155 {
18156 /* brobecker/2018-02-24: This is a fixed point type for which
18157 the scaling factor is represented as fraction whose value
18158 does not make sense (zero divided by zero), so we should
18159 normally never see these. However, there is a small category
18160 of fixed point types for which GNAT is unable to provide
18161 the scaling factor via the standard DWARF mechanisms, and
18162 for which the info is provided via the GNAT encodings instead.
18163 This is likely what this DIE is about. */
18164 encoding = (encoding == DW_ATE_signed_fixed
18165 ? DW_ATE_signed
18166 : DW_ATE_unsigned);
18167 }
18168
18169 /* With GNAT encodings, fixed-point information will be encoded in
18170 the type name. Note that this can also occur with the above
18171 zero-over-zero case, which is why this is a separate "if" rather
18172 than an "else if". */
18173 const char *gnat_encoding_suffix = nullptr;
18174 if ((encoding == DW_ATE_signed || encoding == DW_ATE_unsigned)
18175 && cu->per_cu->lang == language_ada
18176 && name != nullptr)
18177 {
18178 gnat_encoding_suffix = gnat_encoded_fixed_point_type_info (name);
18179 if (gnat_encoding_suffix != nullptr)
18180 {
18181 gdb_assert (startswith (gnat_encoding_suffix,
18182 GNAT_FIXED_POINT_SUFFIX));
18183 name = obstack_strndup (&cu->per_objfile->objfile->objfile_obstack,
18184 name, gnat_encoding_suffix - name);
18185 /* Use -1 here so that SUFFIX points at the "_" after the
18186 "XF". */
18187 gnat_encoding_suffix += strlen (GNAT_FIXED_POINT_SUFFIX) - 1;
18188
18189 encoding = (encoding == DW_ATE_signed
18190 ? DW_ATE_signed_fixed
18191 : DW_ATE_unsigned_fixed);
18192 }
18193 }
18194
18195 switch (encoding)
18196 {
18197 case DW_ATE_address:
18198 /* Turn DW_ATE_address into a void * pointer. */
18199 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
18200 type = init_pointer_type (objfile, bits, name, type);
18201 break;
18202 case DW_ATE_boolean:
18203 type = init_boolean_type (objfile, bits, 1, name);
18204 break;
18205 case DW_ATE_complex_float:
18206 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
18207 byte_order);
18208 if (type->code () == TYPE_CODE_ERROR)
18209 {
18210 if (name == nullptr)
18211 {
18212 struct obstack *obstack
18213 = &cu->per_objfile->objfile->objfile_obstack;
18214 name = obconcat (obstack, "_Complex ", type->name (),
18215 nullptr);
18216 }
18217 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18218 }
18219 else
18220 type = init_complex_type (name, type);
18221 break;
18222 case DW_ATE_decimal_float:
18223 type = init_decfloat_type (objfile, bits, name);
18224 break;
18225 case DW_ATE_float:
18226 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
18227 break;
18228 case DW_ATE_signed:
18229 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18230 break;
18231 case DW_ATE_unsigned:
18232 if (cu->per_cu->lang == language_fortran
18233 && name
18234 && startswith (name, "character("))
18235 type = init_character_type (objfile, bits, 1, name);
18236 else
18237 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18238 break;
18239 case DW_ATE_signed_char:
18240 if (cu->per_cu->lang == language_ada
18241 || cu->per_cu->lang == language_m2
18242 || cu->per_cu->lang == language_pascal
18243 || cu->per_cu->lang == language_fortran)
18244 type = init_character_type (objfile, bits, 0, name);
18245 else
18246 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
18247 break;
18248 case DW_ATE_unsigned_char:
18249 if (cu->per_cu->lang == language_ada
18250 || cu->per_cu->lang == language_m2
18251 || cu->per_cu->lang == language_pascal
18252 || cu->per_cu->lang == language_fortran
18253 || cu->per_cu->lang == language_rust)
18254 type = init_character_type (objfile, bits, 1, name);
18255 else
18256 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18257 break;
18258 case DW_ATE_UTF:
18259 {
18260 if (bits == 16)
18261 type = builtin_type (arch)->builtin_char16;
18262 else if (bits == 32)
18263 type = builtin_type (arch)->builtin_char32;
18264 else
18265 {
18266 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
18267 bits);
18268 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
18269 }
18270 return set_die_type (die, type, cu);
18271 }
18272 break;
18273 case DW_ATE_signed_fixed:
18274 type = init_fixed_point_type (objfile, bits, 0, name);
18275 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18276 break;
18277 case DW_ATE_unsigned_fixed:
18278 type = init_fixed_point_type (objfile, bits, 1, name);
18279 finish_fixed_point_type (type, gnat_encoding_suffix, die, cu);
18280 break;
18281
18282 default:
18283 complaint (_("unsupported DW_AT_encoding: '%s'"),
18284 dwarf_type_encoding_name (encoding));
18285 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
18286 break;
18287 }
18288
18289 if (name && strcmp (name, "char") == 0)
18290 type->set_has_no_signedness (true);
18291
18292 maybe_set_alignment (cu, die, type);
18293
18294 type->set_endianity_is_not_default (gdbarch_byte_order (arch) != byte_order);
18295
18296 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT)
18297 {
18298 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
18299 if (attr != nullptr && attr->as_unsigned () <= 8 * TYPE_LENGTH (type))
18300 {
18301 unsigned real_bit_size = attr->as_unsigned ();
18302 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
18303 /* Only use the attributes if they make sense together. */
18304 if (attr == nullptr
18305 || (attr->as_unsigned () + real_bit_size
18306 <= 8 * TYPE_LENGTH (type)))
18307 {
18308 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size
18309 = real_bit_size;
18310 if (attr != nullptr)
18311 TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset
18312 = attr->as_unsigned ();
18313 }
18314 }
18315 }
18316
18317 return set_die_type (die, type, cu);
18318 }
18319
18320 /* A helper function that returns the name of DIE, if it refers to a
18321 variable declaration. */
18322
18323 static const char *
18324 var_decl_name (struct die_info *die, struct dwarf2_cu *cu)
18325 {
18326 if (die->tag != DW_TAG_variable)
18327 return nullptr;
18328
18329 attribute *attr = dwarf2_attr (die, DW_AT_declaration, cu);
18330 if (attr == nullptr || !attr->as_boolean ())
18331 return nullptr;
18332
18333 attr = dwarf2_attr (die, DW_AT_name, cu);
18334 if (attr == nullptr)
18335 return nullptr;
18336 return attr->as_string ();
18337 }
18338
18339 /* Parse dwarf attribute if it's a block, reference or constant and put the
18340 resulting value of the attribute into struct bound_prop.
18341 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
18342
18343 static int
18344 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
18345 struct dwarf2_cu *cu, struct dynamic_prop *prop,
18346 struct type *default_type)
18347 {
18348 struct dwarf2_property_baton *baton;
18349 dwarf2_per_objfile *per_objfile = cu->per_objfile;
18350 struct objfile *objfile = per_objfile->objfile;
18351 struct obstack *obstack = &objfile->objfile_obstack;
18352
18353 gdb_assert (default_type != NULL);
18354
18355 if (attr == NULL || prop == NULL)
18356 return 0;
18357
18358 if (attr->form_is_block ())
18359 {
18360 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18361 baton->property_type = default_type;
18362 baton->locexpr.per_cu = cu->per_cu;
18363 baton->locexpr.per_objfile = per_objfile;
18364
18365 struct dwarf_block *block;
18366 if (attr->form == DW_FORM_data16)
18367 {
18368 size_t data_size = 16;
18369 block = XOBNEW (obstack, struct dwarf_block);
18370 block->size = (data_size
18371 + 2 /* Extra bytes for DW_OP and arg. */);
18372 gdb_byte *data = XOBNEWVEC (obstack, gdb_byte, block->size);
18373 data[0] = DW_OP_implicit_value;
18374 data[1] = data_size;
18375 memcpy (&data[2], attr->as_block ()->data, data_size);
18376 block->data = data;
18377 }
18378 else
18379 block = attr->as_block ();
18380
18381 baton->locexpr.size = block->size;
18382 baton->locexpr.data = block->data;
18383 switch (attr->name)
18384 {
18385 case DW_AT_string_length:
18386 baton->locexpr.is_reference = true;
18387 break;
18388 default:
18389 baton->locexpr.is_reference = false;
18390 break;
18391 }
18392
18393 prop->set_locexpr (baton);
18394 gdb_assert (prop->baton () != NULL);
18395 }
18396 else if (attr->form_is_ref ())
18397 {
18398 struct dwarf2_cu *target_cu = cu;
18399 struct die_info *target_die;
18400 struct attribute *target_attr;
18401
18402 target_die = follow_die_ref (die, attr, &target_cu);
18403 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
18404 if (target_attr == NULL)
18405 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
18406 target_cu);
18407 if (target_attr == nullptr)
18408 target_attr = dwarf2_attr (target_die, DW_AT_data_bit_offset,
18409 target_cu);
18410 if (target_attr == NULL)
18411 {
18412 const char *name = var_decl_name (target_die, target_cu);
18413 if (name != nullptr)
18414 {
18415 prop->set_variable_name (name);
18416 return 1;
18417 }
18418 return 0;
18419 }
18420
18421 switch (target_attr->name)
18422 {
18423 case DW_AT_location:
18424 if (target_attr->form_is_section_offset ())
18425 {
18426 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18427 baton->property_type = die_type (target_die, target_cu);
18428 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
18429 prop->set_loclist (baton);
18430 gdb_assert (prop->baton () != NULL);
18431 }
18432 else if (target_attr->form_is_block ())
18433 {
18434 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18435 baton->property_type = die_type (target_die, target_cu);
18436 baton->locexpr.per_cu = cu->per_cu;
18437 baton->locexpr.per_objfile = per_objfile;
18438 struct dwarf_block *block = target_attr->as_block ();
18439 baton->locexpr.size = block->size;
18440 baton->locexpr.data = block->data;
18441 baton->locexpr.is_reference = true;
18442 prop->set_locexpr (baton);
18443 gdb_assert (prop->baton () != NULL);
18444 }
18445 else
18446 {
18447 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18448 "dynamic property");
18449 return 0;
18450 }
18451 break;
18452 case DW_AT_data_member_location:
18453 case DW_AT_data_bit_offset:
18454 {
18455 LONGEST offset;
18456
18457 if (!handle_member_location (target_die, target_cu, &offset))
18458 return 0;
18459
18460 baton = XOBNEW (obstack, struct dwarf2_property_baton);
18461 baton->property_type = read_type_die (target_die->parent,
18462 target_cu);
18463 baton->offset_info.offset = offset;
18464 baton->offset_info.type = die_type (target_die, target_cu);
18465 prop->set_addr_offset (baton);
18466 break;
18467 }
18468 }
18469 }
18470 else if (attr->form_is_constant ())
18471 prop->set_const_val (attr->constant_value (0));
18472 else
18473 {
18474 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
18475 dwarf2_name (die, cu));
18476 return 0;
18477 }
18478
18479 return 1;
18480 }
18481
18482 /* See read.h. */
18483
18484 struct type *
18485 dwarf2_per_objfile::int_type (int size_in_bytes, bool unsigned_p) const
18486 {
18487 struct type *int_type;
18488
18489 /* Helper macro to examine the various builtin types. */
18490 #define TRY_TYPE(F) \
18491 int_type = (unsigned_p \
18492 ? objfile_type (objfile)->builtin_unsigned_ ## F \
18493 : objfile_type (objfile)->builtin_ ## F); \
18494 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
18495 return int_type
18496
18497 TRY_TYPE (char);
18498 TRY_TYPE (short);
18499 TRY_TYPE (int);
18500 TRY_TYPE (long);
18501 TRY_TYPE (long_long);
18502
18503 #undef TRY_TYPE
18504
18505 gdb_assert_not_reached ("unable to find suitable integer type");
18506 }
18507
18508 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18509 present (which is valid) then compute the default type based on the
18510 compilation units address size. */
18511
18512 static struct type *
18513 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18514 {
18515 struct type *index_type = die_type (die, cu);
18516
18517 /* Dwarf-2 specifications explicitly allows to create subrange types
18518 without specifying a base type.
18519 In that case, the base type must be set to the type of
18520 the lower bound, upper bound or count, in that order, if any of these
18521 three attributes references an object that has a type.
18522 If no base type is found, the Dwarf-2 specifications say that
18523 a signed integer type of size equal to the size of an address should
18524 be used.
18525 For the following C code: `extern char gdb_int [];'
18526 GCC produces an empty range DIE.
18527 FIXME: muller/2010-05-28: Possible references to object for low bound,
18528 high bound or count are not yet handled by this code. */
18529 if (index_type->code () == TYPE_CODE_VOID)
18530 index_type = cu->addr_sized_int_type (false);
18531
18532 return index_type;
18533 }
18534
18535 /* Read the given DW_AT_subrange DIE. */
18536
18537 static struct type *
18538 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18539 {
18540 struct type *base_type, *orig_base_type;
18541 struct type *range_type;
18542 struct attribute *attr;
18543 struct dynamic_prop low, high;
18544 int low_default_is_valid;
18545 int high_bound_is_count = 0;
18546 const char *name;
18547 ULONGEST negative_mask;
18548
18549 orig_base_type = read_subrange_index_type (die, cu);
18550
18551 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18552 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18553 creating the range type, but we use the result of check_typedef
18554 when examining properties of the type. */
18555 base_type = check_typedef (orig_base_type);
18556
18557 /* The die_type call above may have already set the type for this DIE. */
18558 range_type = get_die_type (die, cu);
18559 if (range_type)
18560 return range_type;
18561
18562 high.set_const_val (0);
18563
18564 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18565 omitting DW_AT_lower_bound. */
18566 switch (cu->per_cu->lang)
18567 {
18568 case language_c:
18569 case language_cplus:
18570 low.set_const_val (0);
18571 low_default_is_valid = 1;
18572 break;
18573 case language_fortran:
18574 low.set_const_val (1);
18575 low_default_is_valid = 1;
18576 break;
18577 case language_d:
18578 case language_objc:
18579 case language_rust:
18580 low.set_const_val (0);
18581 low_default_is_valid = (cu->header.version >= 4);
18582 break;
18583 case language_ada:
18584 case language_m2:
18585 case language_pascal:
18586 low.set_const_val (1);
18587 low_default_is_valid = (cu->header.version >= 4);
18588 break;
18589 default:
18590 low.set_const_val (0);
18591 low_default_is_valid = 0;
18592 break;
18593 }
18594
18595 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18596 if (attr != nullptr)
18597 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18598 else if (!low_default_is_valid)
18599 complaint (_("Missing DW_AT_lower_bound "
18600 "- DIE at %s [in module %s]"),
18601 sect_offset_str (die->sect_off),
18602 objfile_name (cu->per_objfile->objfile));
18603
18604 struct attribute *attr_ub, *attr_count;
18605 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18606 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18607 {
18608 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18609 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18610 {
18611 /* If bounds are constant do the final calculation here. */
18612 if (low.kind () == PROP_CONST && high.kind () == PROP_CONST)
18613 high.set_const_val (low.const_val () + high.const_val () - 1);
18614 else
18615 high_bound_is_count = 1;
18616 }
18617 else
18618 {
18619 if (attr_ub != NULL)
18620 complaint (_("Unresolved DW_AT_upper_bound "
18621 "- DIE at %s [in module %s]"),
18622 sect_offset_str (die->sect_off),
18623 objfile_name (cu->per_objfile->objfile));
18624 if (attr_count != NULL)
18625 complaint (_("Unresolved DW_AT_count "
18626 "- DIE at %s [in module %s]"),
18627 sect_offset_str (die->sect_off),
18628 objfile_name (cu->per_objfile->objfile));
18629 }
18630 }
18631
18632 LONGEST bias = 0;
18633 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18634 if (bias_attr != nullptr && bias_attr->form_is_constant ())
18635 bias = bias_attr->constant_value (0);
18636
18637 /* Normally, the DWARF producers are expected to use a signed
18638 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18639 But this is unfortunately not always the case, as witnessed
18640 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18641 is used instead. To work around that ambiguity, we treat
18642 the bounds as signed, and thus sign-extend their values, when
18643 the base type is signed. */
18644 negative_mask =
18645 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18646 if (low.kind () == PROP_CONST
18647 && !base_type->is_unsigned () && (low.const_val () & negative_mask))
18648 low.set_const_val (low.const_val () | negative_mask);
18649 if (high.kind () == PROP_CONST
18650 && !base_type->is_unsigned () && (high.const_val () & negative_mask))
18651 high.set_const_val (high.const_val () | negative_mask);
18652
18653 /* Check for bit and byte strides. */
18654 struct dynamic_prop byte_stride_prop;
18655 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18656 if (attr_byte_stride != nullptr)
18657 {
18658 struct type *prop_type = cu->addr_sized_int_type (false);
18659 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18660 prop_type);
18661 }
18662
18663 struct dynamic_prop bit_stride_prop;
18664 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18665 if (attr_bit_stride != nullptr)
18666 {
18667 /* It only makes sense to have either a bit or byte stride. */
18668 if (attr_byte_stride != nullptr)
18669 {
18670 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18671 "- DIE at %s [in module %s]"),
18672 sect_offset_str (die->sect_off),
18673 objfile_name (cu->per_objfile->objfile));
18674 attr_bit_stride = nullptr;
18675 }
18676 else
18677 {
18678 struct type *prop_type = cu->addr_sized_int_type (false);
18679 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18680 prop_type);
18681 }
18682 }
18683
18684 if (attr_byte_stride != nullptr
18685 || attr_bit_stride != nullptr)
18686 {
18687 bool byte_stride_p = (attr_byte_stride != nullptr);
18688 struct dynamic_prop *stride
18689 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18690
18691 range_type
18692 = create_range_type_with_stride (NULL, orig_base_type, &low,
18693 &high, bias, stride, byte_stride_p);
18694 }
18695 else
18696 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18697
18698 if (high_bound_is_count)
18699 range_type->bounds ()->flag_upper_bound_is_count = 1;
18700
18701 /* Ada expects an empty array on no boundary attributes. */
18702 if (attr == NULL && cu->per_cu->lang != language_ada)
18703 range_type->bounds ()->high.set_undefined ();
18704
18705 name = dwarf2_name (die, cu);
18706 if (name)
18707 range_type->set_name (name);
18708
18709 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18710 if (attr != nullptr)
18711 TYPE_LENGTH (range_type) = attr->constant_value (0);
18712
18713 maybe_set_alignment (cu, die, range_type);
18714
18715 set_die_type (die, range_type, cu);
18716
18717 /* set_die_type should be already done. */
18718 set_descriptive_type (range_type, die, cu);
18719
18720 return range_type;
18721 }
18722
18723 static struct type *
18724 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18725 {
18726 struct type *type;
18727
18728 type = init_type (cu->per_objfile->objfile, TYPE_CODE_VOID, 0, NULL);
18729 type->set_name (dwarf2_name (die, cu));
18730
18731 /* In Ada, an unspecified type is typically used when the description
18732 of the type is deferred to a different unit. When encountering
18733 such a type, we treat it as a stub, and try to resolve it later on,
18734 when needed. */
18735 if (cu->per_cu->lang == language_ada)
18736 type->set_is_stub (true);
18737
18738 return set_die_type (die, type, cu);
18739 }
18740
18741 /* Read a single die and all its descendents. Set the die's sibling
18742 field to NULL; set other fields in the die correctly, and set all
18743 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18744 location of the info_ptr after reading all of those dies. PARENT
18745 is the parent of the die in question. */
18746
18747 static struct die_info *
18748 read_die_and_children (const struct die_reader_specs *reader,
18749 const gdb_byte *info_ptr,
18750 const gdb_byte **new_info_ptr,
18751 struct die_info *parent)
18752 {
18753 struct die_info *die;
18754 const gdb_byte *cur_ptr;
18755
18756 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
18757 if (die == NULL)
18758 {
18759 *new_info_ptr = cur_ptr;
18760 return NULL;
18761 }
18762 store_in_ref_table (die, reader->cu);
18763
18764 if (die->has_children)
18765 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18766 else
18767 {
18768 die->child = NULL;
18769 *new_info_ptr = cur_ptr;
18770 }
18771
18772 die->sibling = NULL;
18773 die->parent = parent;
18774 return die;
18775 }
18776
18777 /* Read a die, all of its descendents, and all of its siblings; set
18778 all of the fields of all of the dies correctly. Arguments are as
18779 in read_die_and_children. */
18780
18781 static struct die_info *
18782 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18783 const gdb_byte *info_ptr,
18784 const gdb_byte **new_info_ptr,
18785 struct die_info *parent)
18786 {
18787 struct die_info *first_die, *last_sibling;
18788 const gdb_byte *cur_ptr;
18789
18790 cur_ptr = info_ptr;
18791 first_die = last_sibling = NULL;
18792
18793 while (1)
18794 {
18795 struct die_info *die
18796 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18797
18798 if (die == NULL)
18799 {
18800 *new_info_ptr = cur_ptr;
18801 return first_die;
18802 }
18803
18804 if (!first_die)
18805 first_die = die;
18806 else
18807 last_sibling->sibling = die;
18808
18809 last_sibling = die;
18810 }
18811 }
18812
18813 /* Read a die, all of its descendents, and all of its siblings; set
18814 all of the fields of all of the dies correctly. Arguments are as
18815 in read_die_and_children.
18816 This the main entry point for reading a DIE and all its children. */
18817
18818 static struct die_info *
18819 read_die_and_siblings (const struct die_reader_specs *reader,
18820 const gdb_byte *info_ptr,
18821 const gdb_byte **new_info_ptr,
18822 struct die_info *parent)
18823 {
18824 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18825 new_info_ptr, parent);
18826
18827 if (dwarf_die_debug)
18828 {
18829 fprintf_unfiltered (gdb_stdlog,
18830 "Read die from %s@0x%x of %s:\n",
18831 reader->die_section->get_name (),
18832 (unsigned) (info_ptr - reader->die_section->buffer),
18833 bfd_get_filename (reader->abfd));
18834 dump_die (die, dwarf_die_debug);
18835 }
18836
18837 return die;
18838 }
18839
18840 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18841 attributes.
18842 The caller is responsible for filling in the extra attributes
18843 and updating (*DIEP)->num_attrs.
18844 Set DIEP to point to a newly allocated die with its information,
18845 except for its child, sibling, and parent fields. */
18846
18847 static const gdb_byte *
18848 read_full_die_1 (const struct die_reader_specs *reader,
18849 struct die_info **diep, const gdb_byte *info_ptr,
18850 int num_extra_attrs)
18851 {
18852 unsigned int abbrev_number, bytes_read, i;
18853 const struct abbrev_info *abbrev;
18854 struct die_info *die;
18855 struct dwarf2_cu *cu = reader->cu;
18856 bfd *abfd = reader->abfd;
18857
18858 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18859 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18860 info_ptr += bytes_read;
18861 if (!abbrev_number)
18862 {
18863 *diep = NULL;
18864 return info_ptr;
18865 }
18866
18867 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18868 if (!abbrev)
18869 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18870 abbrev_number,
18871 bfd_get_filename (abfd));
18872
18873 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18874 die->sect_off = sect_off;
18875 die->tag = abbrev->tag;
18876 die->abbrev = abbrev_number;
18877 die->has_children = abbrev->has_children;
18878
18879 /* Make the result usable.
18880 The caller needs to update num_attrs after adding the extra
18881 attributes. */
18882 die->num_attrs = abbrev->num_attrs;
18883
18884 bool any_need_reprocess = false;
18885 for (i = 0; i < abbrev->num_attrs; ++i)
18886 {
18887 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18888 info_ptr);
18889 if (die->attrs[i].requires_reprocessing_p ())
18890 any_need_reprocess = true;
18891 }
18892
18893 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
18894 if (attr != nullptr && attr->form_is_unsigned ())
18895 cu->str_offsets_base = attr->as_unsigned ();
18896
18897 attr = die->attr (DW_AT_loclists_base);
18898 if (attr != nullptr)
18899 cu->loclist_base = attr->as_unsigned ();
18900
18901 auto maybe_addr_base = die->addr_base ();
18902 if (maybe_addr_base.has_value ())
18903 cu->addr_base = *maybe_addr_base;
18904
18905 attr = die->attr (DW_AT_rnglists_base);
18906 if (attr != nullptr)
18907 cu->rnglists_base = attr->as_unsigned ();
18908
18909 if (any_need_reprocess)
18910 {
18911 for (i = 0; i < abbrev->num_attrs; ++i)
18912 {
18913 if (die->attrs[i].requires_reprocessing_p ())
18914 read_attribute_reprocess (reader, &die->attrs[i], die->tag);
18915 }
18916 }
18917 *diep = die;
18918 return info_ptr;
18919 }
18920
18921 /* Read a die and all its attributes.
18922 Set DIEP to point to a newly allocated die with its information,
18923 except for its child, sibling, and parent fields. */
18924
18925 static const gdb_byte *
18926 read_full_die (const struct die_reader_specs *reader,
18927 struct die_info **diep, const gdb_byte *info_ptr)
18928 {
18929 const gdb_byte *result;
18930
18931 result = read_full_die_1 (reader, diep, info_ptr, 0);
18932
18933 if (dwarf_die_debug)
18934 {
18935 fprintf_unfiltered (gdb_stdlog,
18936 "Read die from %s@0x%x of %s:\n",
18937 reader->die_section->get_name (),
18938 (unsigned) (info_ptr - reader->die_section->buffer),
18939 bfd_get_filename (reader->abfd));
18940 dump_die (*diep, dwarf_die_debug);
18941 }
18942
18943 return result;
18944 }
18945 \f
18946
18947 /* Returns nonzero if TAG represents a type that we might generate a partial
18948 symbol for. */
18949
18950 static int
18951 is_type_tag_for_partial (int tag, enum language lang)
18952 {
18953 switch (tag)
18954 {
18955 #if 0
18956 /* Some types that would be reasonable to generate partial symbols for,
18957 that we don't at present. Note that normally this does not
18958 matter, mainly because C compilers don't give names to these
18959 types, but instead emit DW_TAG_typedef. */
18960 case DW_TAG_file_type:
18961 case DW_TAG_ptr_to_member_type:
18962 case DW_TAG_set_type:
18963 case DW_TAG_string_type:
18964 case DW_TAG_subroutine_type:
18965 #endif
18966
18967 /* GNAT may emit an array with a name, but no typedef, so we
18968 need to make a symbol in this case. */
18969 case DW_TAG_array_type:
18970 return lang == language_ada;
18971
18972 case DW_TAG_base_type:
18973 case DW_TAG_class_type:
18974 case DW_TAG_interface_type:
18975 case DW_TAG_enumeration_type:
18976 case DW_TAG_structure_type:
18977 case DW_TAG_subrange_type:
18978 case DW_TAG_typedef:
18979 case DW_TAG_union_type:
18980 return 1;
18981 default:
18982 return 0;
18983 }
18984 }
18985
18986 /* Load all DIEs that are interesting for partial symbols into memory. */
18987
18988 static struct partial_die_info *
18989 load_partial_dies (const struct die_reader_specs *reader,
18990 const gdb_byte *info_ptr, int building_psymtab)
18991 {
18992 struct dwarf2_cu *cu = reader->cu;
18993 struct objfile *objfile = cu->per_objfile->objfile;
18994 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18995 unsigned int bytes_read;
18996 unsigned int load_all = 0;
18997 int nesting_level = 1;
18998
18999 parent_die = NULL;
19000 last_die = NULL;
19001
19002 gdb_assert (cu->per_cu != NULL);
19003 if (cu->load_all_dies)
19004 load_all = 1;
19005
19006 cu->partial_dies
19007 = htab_create_alloc_ex (cu->header.length / 12,
19008 partial_die_hash,
19009 partial_die_eq,
19010 NULL,
19011 &cu->comp_unit_obstack,
19012 hashtab_obstack_allocate,
19013 dummy_obstack_deallocate);
19014
19015 while (1)
19016 {
19017 const abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr,
19018 &bytes_read);
19019
19020 /* A NULL abbrev means the end of a series of children. */
19021 if (abbrev == NULL)
19022 {
19023 if (--nesting_level == 0)
19024 return first_die;
19025
19026 info_ptr += bytes_read;
19027 last_die = parent_die;
19028 parent_die = parent_die->die_parent;
19029 continue;
19030 }
19031
19032 /* Check for template arguments. We never save these; if
19033 they're seen, we just mark the parent, and go on our way. */
19034 if (parent_die != NULL
19035 && cu->per_cu->lang == language_cplus
19036 && (abbrev->tag == DW_TAG_template_type_param
19037 || abbrev->tag == DW_TAG_template_value_param))
19038 {
19039 parent_die->has_template_arguments = 1;
19040
19041 if (!load_all)
19042 {
19043 /* We don't need a partial DIE for the template argument. */
19044 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19045 continue;
19046 }
19047 }
19048
19049 /* We only recurse into c++ subprograms looking for template arguments.
19050 Skip their other children. */
19051 if (!load_all
19052 && cu->per_cu->lang == language_cplus
19053 && parent_die != NULL
19054 && parent_die->tag == DW_TAG_subprogram
19055 && abbrev->tag != DW_TAG_inlined_subroutine)
19056 {
19057 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19058 continue;
19059 }
19060
19061 /* Check whether this DIE is interesting enough to save. Normally
19062 we would not be interested in members here, but there may be
19063 later variables referencing them via DW_AT_specification (for
19064 static members). */
19065 if (!load_all
19066 && !is_type_tag_for_partial (abbrev->tag, cu->per_cu->lang)
19067 && abbrev->tag != DW_TAG_constant
19068 && abbrev->tag != DW_TAG_enumerator
19069 && abbrev->tag != DW_TAG_subprogram
19070 && abbrev->tag != DW_TAG_inlined_subroutine
19071 && abbrev->tag != DW_TAG_lexical_block
19072 && abbrev->tag != DW_TAG_variable
19073 && abbrev->tag != DW_TAG_namespace
19074 && abbrev->tag != DW_TAG_module
19075 && abbrev->tag != DW_TAG_member
19076 && abbrev->tag != DW_TAG_imported_unit
19077 && abbrev->tag != DW_TAG_imported_declaration)
19078 {
19079 /* Otherwise we skip to the next sibling, if any. */
19080 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
19081 continue;
19082 }
19083
19084 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
19085 abbrev);
19086
19087 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
19088
19089 /* This two-pass algorithm for processing partial symbols has a
19090 high cost in cache pressure. Thus, handle some simple cases
19091 here which cover the majority of C partial symbols. DIEs
19092 which neither have specification tags in them, nor could have
19093 specification tags elsewhere pointing at them, can simply be
19094 processed and discarded.
19095
19096 This segment is also optional; scan_partial_symbols and
19097 add_partial_symbol will handle these DIEs if we chain
19098 them in normally. When compilers which do not emit large
19099 quantities of duplicate debug information are more common,
19100 this code can probably be removed. */
19101
19102 /* Any complete simple types at the top level (pretty much all
19103 of them, for a language without namespaces), can be processed
19104 directly. */
19105 if (parent_die == NULL
19106 && pdi.has_specification == 0
19107 && pdi.is_declaration == 0
19108 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
19109 || pdi.tag == DW_TAG_base_type
19110 || pdi.tag == DW_TAG_array_type
19111 || pdi.tag == DW_TAG_subrange_type))
19112 {
19113 if (building_psymtab && pdi.raw_name != NULL)
19114 add_partial_symbol (&pdi, cu);
19115
19116 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
19117 continue;
19118 }
19119
19120 /* The exception for DW_TAG_typedef with has_children above is
19121 a workaround of GCC PR debug/47510. In the case of this complaint
19122 type_name_or_error will error on such types later.
19123
19124 GDB skipped children of DW_TAG_typedef by the shortcut above and then
19125 it could not find the child DIEs referenced later, this is checked
19126 above. In correct DWARF DW_TAG_typedef should have no children. */
19127
19128 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
19129 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
19130 "- DIE at %s [in module %s]"),
19131 sect_offset_str (pdi.sect_off), objfile_name (objfile));
19132
19133 /* If we're at the second level, and we're an enumerator, and
19134 our parent has no specification (meaning possibly lives in a
19135 namespace elsewhere), then we can add the partial symbol now
19136 instead of queueing it. */
19137 if (pdi.tag == DW_TAG_enumerator
19138 && parent_die != NULL
19139 && parent_die->die_parent == NULL
19140 && parent_die->tag == DW_TAG_enumeration_type
19141 && parent_die->has_specification == 0)
19142 {
19143 if (pdi.raw_name == NULL)
19144 complaint (_("malformed enumerator DIE ignored"));
19145 else if (building_psymtab)
19146 add_partial_symbol (&pdi, cu);
19147
19148 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
19149 continue;
19150 }
19151
19152 struct partial_die_info *part_die
19153 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
19154
19155 /* We'll save this DIE so link it in. */
19156 part_die->die_parent = parent_die;
19157 part_die->die_sibling = NULL;
19158 part_die->die_child = NULL;
19159
19160 if (last_die && last_die == parent_die)
19161 last_die->die_child = part_die;
19162 else if (last_die)
19163 last_die->die_sibling = part_die;
19164
19165 last_die = part_die;
19166
19167 if (first_die == NULL)
19168 first_die = part_die;
19169
19170 /* Maybe add the DIE to the hash table. Not all DIEs that we
19171 find interesting need to be in the hash table, because we
19172 also have the parent/sibling/child chains; only those that we
19173 might refer to by offset later during partial symbol reading.
19174
19175 For now this means things that might have be the target of a
19176 DW_AT_specification, DW_AT_abstract_origin, or
19177 DW_AT_extension. DW_AT_extension will refer only to
19178 namespaces; DW_AT_abstract_origin refers to functions (and
19179 many things under the function DIE, but we do not recurse
19180 into function DIEs during partial symbol reading) and
19181 possibly variables as well; DW_AT_specification refers to
19182 declarations. Declarations ought to have the DW_AT_declaration
19183 flag. It happens that GCC forgets to put it in sometimes, but
19184 only for functions, not for types.
19185
19186 Adding more things than necessary to the hash table is harmless
19187 except for the performance cost. Adding too few will result in
19188 wasted time in find_partial_die, when we reread the compilation
19189 unit with load_all_dies set. */
19190
19191 if (load_all
19192 || abbrev->tag == DW_TAG_constant
19193 || abbrev->tag == DW_TAG_subprogram
19194 || abbrev->tag == DW_TAG_variable
19195 || abbrev->tag == DW_TAG_namespace
19196 || part_die->is_declaration)
19197 {
19198 void **slot;
19199
19200 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
19201 to_underlying (part_die->sect_off),
19202 INSERT);
19203 *slot = part_die;
19204 }
19205
19206 /* For some DIEs we want to follow their children (if any). For C
19207 we have no reason to follow the children of structures; for other
19208 languages we have to, so that we can get at method physnames
19209 to infer fully qualified class names, for DW_AT_specification,
19210 and for C++ template arguments. For C++, we also look one level
19211 inside functions to find template arguments (if the name of the
19212 function does not already contain the template arguments).
19213
19214 For Ada and Fortran, we need to scan the children of subprograms
19215 and lexical blocks as well because these languages allow the
19216 definition of nested entities that could be interesting for the
19217 debugger, such as nested subprograms for instance. */
19218 if (last_die->has_children
19219 && (load_all
19220 || last_die->tag == DW_TAG_namespace
19221 || last_die->tag == DW_TAG_module
19222 || last_die->tag == DW_TAG_enumeration_type
19223 || (cu->per_cu->lang == language_cplus
19224 && last_die->tag == DW_TAG_subprogram
19225 && (last_die->raw_name == NULL
19226 || strchr (last_die->raw_name, '<') == NULL))
19227 || (cu->per_cu->lang != language_c
19228 && (last_die->tag == DW_TAG_class_type
19229 || last_die->tag == DW_TAG_interface_type
19230 || last_die->tag == DW_TAG_structure_type
19231 || last_die->tag == DW_TAG_union_type))
19232 || ((cu->per_cu->lang == language_ada
19233 || cu->per_cu->lang == language_fortran)
19234 && (last_die->tag == DW_TAG_subprogram
19235 || last_die->tag == DW_TAG_lexical_block))))
19236 {
19237 nesting_level++;
19238 parent_die = last_die;
19239 continue;
19240 }
19241
19242 /* Otherwise we skip to the next sibling, if any. */
19243 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
19244
19245 /* Back to the top, do it again. */
19246 }
19247 }
19248
19249 partial_die_info::partial_die_info (sect_offset sect_off_,
19250 const struct abbrev_info *abbrev)
19251 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
19252 {
19253 }
19254
19255 /* See class definition. */
19256
19257 const char *
19258 partial_die_info::name (dwarf2_cu *cu)
19259 {
19260 if (!canonical_name && raw_name != nullptr)
19261 {
19262 struct objfile *objfile = cu->per_objfile->objfile;
19263 raw_name = dwarf2_canonicalize_name (raw_name, cu, objfile);
19264 canonical_name = 1;
19265 }
19266
19267 return raw_name;
19268 }
19269
19270 /* Read a minimal amount of information into the minimal die structure.
19271 INFO_PTR should point just after the initial uleb128 of a DIE. */
19272
19273 const gdb_byte *
19274 partial_die_info::read (const struct die_reader_specs *reader,
19275 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
19276 {
19277 struct dwarf2_cu *cu = reader->cu;
19278 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19279 unsigned int i;
19280 int has_low_pc_attr = 0;
19281 int has_high_pc_attr = 0;
19282 int high_pc_relative = 0;
19283
19284 for (i = 0; i < abbrev.num_attrs; ++i)
19285 {
19286 attribute attr;
19287 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
19288 /* String and address offsets that need to do the reprocessing have
19289 already been read at this point, so there is no need to wait until
19290 the loop terminates to do the reprocessing. */
19291 if (attr.requires_reprocessing_p ())
19292 read_attribute_reprocess (reader, &attr, tag);
19293 /* Store the data if it is of an attribute we want to keep in a
19294 partial symbol table. */
19295 switch (attr.name)
19296 {
19297 case DW_AT_name:
19298 switch (tag)
19299 {
19300 case DW_TAG_compile_unit:
19301 case DW_TAG_partial_unit:
19302 case DW_TAG_type_unit:
19303 /* Compilation units have a DW_AT_name that is a filename, not
19304 a source language identifier. */
19305 case DW_TAG_enumeration_type:
19306 case DW_TAG_enumerator:
19307 /* These tags always have simple identifiers already; no need
19308 to canonicalize them. */
19309 canonical_name = 1;
19310 raw_name = attr.as_string ();
19311 break;
19312 default:
19313 canonical_name = 0;
19314 raw_name = attr.as_string ();
19315 break;
19316 }
19317 break;
19318 case DW_AT_linkage_name:
19319 case DW_AT_MIPS_linkage_name:
19320 /* Note that both forms of linkage name might appear. We
19321 assume they will be the same, and we only store the last
19322 one we see. */
19323 linkage_name = attr.as_string ();
19324 break;
19325 case DW_AT_low_pc:
19326 has_low_pc_attr = 1;
19327 lowpc = attr.as_address ();
19328 break;
19329 case DW_AT_high_pc:
19330 has_high_pc_attr = 1;
19331 highpc = attr.as_address ();
19332 if (cu->header.version >= 4 && attr.form_is_constant ())
19333 high_pc_relative = 1;
19334 break;
19335 case DW_AT_location:
19336 /* Support the .debug_loc offsets. */
19337 if (attr.form_is_block ())
19338 {
19339 d.locdesc = attr.as_block ();
19340 }
19341 else if (attr.form_is_section_offset ())
19342 {
19343 dwarf2_complex_location_expr_complaint ();
19344 }
19345 else
19346 {
19347 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
19348 "partial symbol information");
19349 }
19350 break;
19351 case DW_AT_external:
19352 is_external = attr.as_boolean ();
19353 break;
19354 case DW_AT_declaration:
19355 is_declaration = attr.as_boolean ();
19356 break;
19357 case DW_AT_type:
19358 has_type = 1;
19359 break;
19360 case DW_AT_abstract_origin:
19361 case DW_AT_specification:
19362 case DW_AT_extension:
19363 has_specification = 1;
19364 spec_offset = attr.get_ref_die_offset ();
19365 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19366 || cu->per_cu->is_dwz);
19367 break;
19368 case DW_AT_sibling:
19369 /* Ignore absolute siblings, they might point outside of
19370 the current compile unit. */
19371 if (attr.form == DW_FORM_ref_addr)
19372 complaint (_("ignoring absolute DW_AT_sibling"));
19373 else
19374 {
19375 const gdb_byte *buffer = reader->buffer;
19376 sect_offset off = attr.get_ref_die_offset ();
19377 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19378
19379 if (sibling_ptr < info_ptr)
19380 complaint (_("DW_AT_sibling points backwards"));
19381 else if (sibling_ptr > reader->buffer_end)
19382 reader->die_section->overflow_complaint ();
19383 else
19384 sibling = sibling_ptr;
19385 }
19386 break;
19387 case DW_AT_byte_size:
19388 has_byte_size = 1;
19389 break;
19390 case DW_AT_const_value:
19391 has_const_value = 1;
19392 break;
19393 case DW_AT_calling_convention:
19394 /* DWARF doesn't provide a way to identify a program's source-level
19395 entry point. DW_AT_calling_convention attributes are only meant
19396 to describe functions' calling conventions.
19397
19398 However, because it's a necessary piece of information in
19399 Fortran, and before DWARF 4 DW_CC_program was the only
19400 piece of debugging information whose definition refers to
19401 a 'main program' at all, several compilers marked Fortran
19402 main programs with DW_CC_program --- even when those
19403 functions use the standard calling conventions.
19404
19405 Although DWARF now specifies a way to provide this
19406 information, we support this practice for backward
19407 compatibility. */
19408 if (attr.constant_value (0) == DW_CC_program
19409 && cu->per_cu->lang == language_fortran)
19410 main_subprogram = 1;
19411 break;
19412 case DW_AT_inline:
19413 {
19414 LONGEST value = attr.constant_value (-1);
19415 if (value == DW_INL_inlined
19416 || value == DW_INL_declared_inlined)
19417 may_be_inlined = 1;
19418 }
19419 break;
19420
19421 case DW_AT_import:
19422 if (tag == DW_TAG_imported_unit)
19423 {
19424 d.sect_off = attr.get_ref_die_offset ();
19425 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19426 || cu->per_cu->is_dwz);
19427 }
19428 break;
19429
19430 case DW_AT_main_subprogram:
19431 main_subprogram = attr.as_boolean ();
19432 break;
19433
19434 case DW_AT_ranges:
19435 {
19436 /* Offset in the .debug_ranges or .debug_rnglist section (depending
19437 on DWARF version). */
19438 ranges_offset = attr.as_unsigned ();
19439
19440 /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add
19441 this value. */
19442 if (tag != DW_TAG_compile_unit)
19443 ranges_offset += cu->gnu_ranges_base;
19444
19445 has_range_info = 1;
19446 }
19447 break;
19448
19449 default:
19450 break;
19451 }
19452 }
19453
19454 /* For Ada, if both the name and the linkage name appear, we prefer
19455 the latter. This lets "catch exception" work better, regardless
19456 of the order in which the name and linkage name were emitted.
19457 Really, though, this is just a workaround for the fact that gdb
19458 doesn't store both the name and the linkage name. */
19459 if (cu->per_cu->lang == language_ada && linkage_name != nullptr)
19460 raw_name = linkage_name;
19461
19462 if (high_pc_relative)
19463 highpc += lowpc;
19464
19465 if (has_low_pc_attr && has_high_pc_attr)
19466 {
19467 /* When using the GNU linker, .gnu.linkonce. sections are used to
19468 eliminate duplicate copies of functions and vtables and such.
19469 The linker will arbitrarily choose one and discard the others.
19470 The AT_*_pc values for such functions refer to local labels in
19471 these sections. If the section from that file was discarded, the
19472 labels are not in the output, so the relocs get a value of 0.
19473 If this is a discarded function, mark the pc bounds as invalid,
19474 so that GDB will ignore it. */
19475 if (lowpc == 0 && !per_objfile->per_bfd->has_section_at_zero)
19476 {
19477 struct objfile *objfile = per_objfile->objfile;
19478 struct gdbarch *gdbarch = objfile->arch ();
19479
19480 complaint (_("DW_AT_low_pc %s is zero "
19481 "for DIE at %s [in module %s]"),
19482 paddress (gdbarch, lowpc),
19483 sect_offset_str (sect_off),
19484 objfile_name (objfile));
19485 }
19486 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19487 else if (lowpc >= highpc)
19488 {
19489 struct objfile *objfile = per_objfile->objfile;
19490 struct gdbarch *gdbarch = objfile->arch ();
19491
19492 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19493 "for DIE at %s [in module %s]"),
19494 paddress (gdbarch, lowpc),
19495 paddress (gdbarch, highpc),
19496 sect_offset_str (sect_off),
19497 objfile_name (objfile));
19498 }
19499 else
19500 has_pc_info = 1;
19501 }
19502
19503 return info_ptr;
19504 }
19505
19506 /* Find a cached partial DIE at OFFSET in CU. */
19507
19508 struct partial_die_info *
19509 dwarf2_cu::find_partial_die (sect_offset sect_off)
19510 {
19511 struct partial_die_info *lookup_die = NULL;
19512 struct partial_die_info part_die (sect_off);
19513
19514 lookup_die = ((struct partial_die_info *)
19515 htab_find_with_hash (partial_dies, &part_die,
19516 to_underlying (sect_off)));
19517
19518 return lookup_die;
19519 }
19520
19521 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19522 except in the case of .debug_types DIEs which do not reference
19523 outside their CU (they do however referencing other types via
19524 DW_FORM_ref_sig8). */
19525
19526 static const struct cu_partial_die_info
19527 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19528 {
19529 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19530 struct objfile *objfile = per_objfile->objfile;
19531 struct partial_die_info *pd = NULL;
19532
19533 if (offset_in_dwz == cu->per_cu->is_dwz
19534 && cu->header.offset_in_cu_p (sect_off))
19535 {
19536 pd = cu->find_partial_die (sect_off);
19537 if (pd != NULL)
19538 return { cu, pd };
19539 /* We missed recording what we needed.
19540 Load all dies and try again. */
19541 }
19542 else
19543 {
19544 /* TUs don't reference other CUs/TUs (except via type signatures). */
19545 if (cu->per_cu->is_debug_types)
19546 {
19547 error (_("Dwarf Error: Type Unit at offset %s contains"
19548 " external reference to offset %s [in module %s].\n"),
19549 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19550 bfd_get_filename (objfile->obfd));
19551 }
19552 dwarf2_per_cu_data *per_cu
19553 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19554 per_objfile);
19555
19556 cu = per_objfile->get_cu (per_cu);
19557 if (cu == NULL || cu->partial_dies == NULL)
19558 load_partial_comp_unit (per_cu, per_objfile, nullptr);
19559
19560 cu = per_objfile->get_cu (per_cu);
19561
19562 cu->last_used = 0;
19563 pd = cu->find_partial_die (sect_off);
19564 }
19565
19566 /* If we didn't find it, and not all dies have been loaded,
19567 load them all and try again. */
19568
19569 if (pd == NULL && cu->load_all_dies == 0)
19570 {
19571 cu->load_all_dies = 1;
19572
19573 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19574 THIS_CU->cu may already be in use. So we can't just free it and
19575 replace its DIEs with the ones we read in. Instead, we leave those
19576 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19577 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19578 set. */
19579 load_partial_comp_unit (cu->per_cu, per_objfile, cu);
19580
19581 pd = cu->find_partial_die (sect_off);
19582 }
19583
19584 if (pd == NULL)
19585 error (_("Dwarf Error: Cannot find DIE at %s [from module %s]\n"),
19586 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19587 return { cu, pd };
19588 }
19589
19590 /* See if we can figure out if the class lives in a namespace. We do
19591 this by looking for a member function; its demangled name will
19592 contain namespace info, if there is any. */
19593
19594 static void
19595 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19596 struct dwarf2_cu *cu)
19597 {
19598 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19599 what template types look like, because the demangler
19600 frequently doesn't give the same name as the debug info. We
19601 could fix this by only using the demangled name to get the
19602 prefix (but see comment in read_structure_type). */
19603
19604 struct partial_die_info *real_pdi;
19605 struct partial_die_info *child_pdi;
19606
19607 /* If this DIE (this DIE's specification, if any) has a parent, then
19608 we should not do this. We'll prepend the parent's fully qualified
19609 name when we create the partial symbol. */
19610
19611 real_pdi = struct_pdi;
19612 while (real_pdi->has_specification)
19613 {
19614 auto res = find_partial_die (real_pdi->spec_offset,
19615 real_pdi->spec_is_dwz, cu);
19616 real_pdi = res.pdi;
19617 cu = res.cu;
19618 }
19619
19620 if (real_pdi->die_parent != NULL)
19621 return;
19622
19623 for (child_pdi = struct_pdi->die_child;
19624 child_pdi != NULL;
19625 child_pdi = child_pdi->die_sibling)
19626 {
19627 if (child_pdi->tag == DW_TAG_subprogram
19628 && child_pdi->linkage_name != NULL)
19629 {
19630 gdb::unique_xmalloc_ptr<char> actual_class_name
19631 (cu->language_defn->class_name_from_physname
19632 (child_pdi->linkage_name));
19633 if (actual_class_name != NULL)
19634 {
19635 struct objfile *objfile = cu->per_objfile->objfile;
19636 struct_pdi->raw_name = objfile->intern (actual_class_name.get ());
19637 struct_pdi->canonical_name = 1;
19638 }
19639 break;
19640 }
19641 }
19642 }
19643
19644 /* Return true if a DIE with TAG may have the DW_AT_const_value
19645 attribute. */
19646
19647 static bool
19648 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
19649 {
19650 switch (tag)
19651 {
19652 case DW_TAG_constant:
19653 case DW_TAG_enumerator:
19654 case DW_TAG_formal_parameter:
19655 case DW_TAG_template_value_param:
19656 case DW_TAG_variable:
19657 return true;
19658 }
19659
19660 return false;
19661 }
19662
19663 void
19664 partial_die_info::fixup (struct dwarf2_cu *cu)
19665 {
19666 /* Once we've fixed up a die, there's no point in doing so again.
19667 This also avoids a memory leak if we were to call
19668 guess_partial_die_structure_name multiple times. */
19669 if (fixup_called)
19670 return;
19671
19672 /* If we found a reference attribute and the DIE has no name, try
19673 to find a name in the referred to DIE. */
19674
19675 if (raw_name == NULL && has_specification)
19676 {
19677 struct partial_die_info *spec_die;
19678
19679 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19680 spec_die = res.pdi;
19681 cu = res.cu;
19682
19683 spec_die->fixup (cu);
19684
19685 if (spec_die->raw_name)
19686 {
19687 raw_name = spec_die->raw_name;
19688 canonical_name = spec_die->canonical_name;
19689
19690 /* Copy DW_AT_external attribute if it is set. */
19691 if (spec_die->is_external)
19692 is_external = spec_die->is_external;
19693 }
19694 }
19695
19696 if (!has_const_value && has_specification
19697 && can_have_DW_AT_const_value_p (tag))
19698 {
19699 struct partial_die_info *spec_die;
19700
19701 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19702 spec_die = res.pdi;
19703 cu = res.cu;
19704
19705 spec_die->fixup (cu);
19706
19707 if (spec_die->has_const_value)
19708 {
19709 /* Copy DW_AT_const_value attribute if it is set. */
19710 has_const_value = spec_die->has_const_value;
19711 }
19712 }
19713
19714 /* Set default names for some unnamed DIEs. */
19715
19716 if (raw_name == NULL && tag == DW_TAG_namespace)
19717 {
19718 raw_name = CP_ANONYMOUS_NAMESPACE_STR;
19719 canonical_name = 1;
19720 }
19721
19722 /* If there is no parent die to provide a namespace, and there are
19723 children, see if we can determine the namespace from their linkage
19724 name. */
19725 if (cu->per_cu->lang == language_cplus
19726 && !cu->per_objfile->per_bfd->types.empty ()
19727 && die_parent == NULL
19728 && has_children
19729 && (tag == DW_TAG_class_type
19730 || tag == DW_TAG_structure_type
19731 || tag == DW_TAG_union_type))
19732 guess_partial_die_structure_name (this, cu);
19733
19734 /* GCC might emit a nameless struct or union that has a linkage
19735 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19736 if (raw_name == NULL
19737 && (tag == DW_TAG_class_type
19738 || tag == DW_TAG_interface_type
19739 || tag == DW_TAG_structure_type
19740 || tag == DW_TAG_union_type)
19741 && linkage_name != NULL)
19742 {
19743 gdb::unique_xmalloc_ptr<char> demangled
19744 (gdb_demangle (linkage_name, DMGL_TYPES));
19745 if (demangled != nullptr)
19746 {
19747 const char *base;
19748
19749 /* Strip any leading namespaces/classes, keep only the base name.
19750 DW_AT_name for named DIEs does not contain the prefixes. */
19751 base = strrchr (demangled.get (), ':');
19752 if (base && base > demangled.get () && base[-1] == ':')
19753 base++;
19754 else
19755 base = demangled.get ();
19756
19757 struct objfile *objfile = cu->per_objfile->objfile;
19758 raw_name = objfile->intern (base);
19759 canonical_name = 1;
19760 }
19761 }
19762
19763 fixup_called = 1;
19764 }
19765
19766 /* Read the .debug_loclists or .debug_rnglists header (they are the same format)
19767 contents from the given SECTION in the HEADER.
19768
19769 HEADER_OFFSET is the offset of the header in the section. */
19770 static void
19771 read_loclists_rnglists_header (struct loclists_rnglists_header *header,
19772 struct dwarf2_section_info *section,
19773 sect_offset header_offset)
19774 {
19775 unsigned int bytes_read;
19776 bfd *abfd = section->get_bfd_owner ();
19777 const gdb_byte *info_ptr = section->buffer + to_underlying (header_offset);
19778
19779 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
19780 info_ptr += bytes_read;
19781
19782 header->version = read_2_bytes (abfd, info_ptr);
19783 info_ptr += 2;
19784
19785 header->addr_size = read_1_byte (abfd, info_ptr);
19786 info_ptr += 1;
19787
19788 header->segment_collector_size = read_1_byte (abfd, info_ptr);
19789 info_ptr += 1;
19790
19791 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
19792 }
19793
19794 /* Return the DW_AT_loclists_base value for the CU. */
19795 static ULONGEST
19796 lookup_loclist_base (struct dwarf2_cu *cu)
19797 {
19798 /* For the .dwo unit, the loclist_base points to the first offset following
19799 the header. The header consists of the following entities-
19800 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
19801 bit format)
19802 2. version (2 bytes)
19803 3. address size (1 byte)
19804 4. segment selector size (1 byte)
19805 5. offset entry count (4 bytes)
19806 These sizes are derived as per the DWARFv5 standard. */
19807 if (cu->dwo_unit != nullptr)
19808 {
19809 if (cu->header.initial_length_size == 4)
19810 return LOCLIST_HEADER_SIZE32;
19811 return LOCLIST_HEADER_SIZE64;
19812 }
19813 return cu->loclist_base;
19814 }
19815
19816 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
19817 array of offsets in the .debug_loclists section. */
19818
19819 static sect_offset
19820 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
19821 {
19822 dwarf2_per_objfile *per_objfile = cu->per_objfile;
19823 struct objfile *objfile = per_objfile->objfile;
19824 bfd *abfd = objfile->obfd;
19825 ULONGEST loclist_header_size =
19826 (cu->header.initial_length_size == 4 ? LOCLIST_HEADER_SIZE32
19827 : LOCLIST_HEADER_SIZE64);
19828 ULONGEST loclist_base = lookup_loclist_base (cu);
19829
19830 /* Offset in .debug_loclists of the offset for LOCLIST_INDEX. */
19831 ULONGEST start_offset =
19832 loclist_base + loclist_index * cu->header.offset_size;
19833
19834 /* Get loclists section. */
19835 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
19836
19837 /* Read the loclists section content. */
19838 section->read (objfile);
19839 if (section->buffer == NULL)
19840 error (_("DW_FORM_loclistx used without .debug_loclists "
19841 "section [in module %s]"), objfile_name (objfile));
19842
19843 /* DW_AT_loclists_base points after the .debug_loclists contribution header,
19844 so if loclist_base is smaller than the header size, we have a problem. */
19845 if (loclist_base < loclist_header_size)
19846 error (_("DW_AT_loclists_base is smaller than header size [in module %s]"),
19847 objfile_name (objfile));
19848
19849 /* Read the header of the loclists contribution. */
19850 struct loclists_rnglists_header header;
19851 read_loclists_rnglists_header (&header, section,
19852 (sect_offset) (loclist_base - loclist_header_size));
19853
19854 /* Verify the loclist index is valid. */
19855 if (loclist_index >= header.offset_entry_count)
19856 error (_("DW_FORM_loclistx pointing outside of "
19857 ".debug_loclists offset array [in module %s]"),
19858 objfile_name (objfile));
19859
19860 /* Validate that reading won't go beyond the end of the section. */
19861 if (start_offset + cu->header.offset_size > section->size)
19862 error (_("Reading DW_FORM_loclistx index beyond end of"
19863 ".debug_loclists section [in module %s]"),
19864 objfile_name (objfile));
19865
19866 const gdb_byte *info_ptr = section->buffer + start_offset;
19867
19868 if (cu->header.offset_size == 4)
19869 return (sect_offset) (bfd_get_32 (abfd, info_ptr) + loclist_base);
19870 else
19871 return (sect_offset) (bfd_get_64 (abfd, info_ptr) + loclist_base);
19872 }
19873
19874 /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the
19875 array of offsets in the .debug_rnglists section. */
19876
19877 static sect_offset
19878 read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index,
19879 dwarf_tag tag)
19880 {
19881 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
19882 struct objfile *objfile = dwarf2_per_objfile->objfile;
19883 bfd *abfd = objfile->obfd;
19884 ULONGEST rnglist_header_size =
19885 (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32
19886 : RNGLIST_HEADER_SIZE64);
19887
19888 /* When reading a DW_FORM_rnglistx from a DWO, we read from the DWO's
19889 .debug_rnglists.dwo section. The rnglists base given in the skeleton
19890 doesn't apply. */
19891 ULONGEST rnglist_base =
19892 (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->rnglists_base;
19893
19894 /* Offset in .debug_rnglists of the offset for RNGLIST_INDEX. */
19895 ULONGEST start_offset =
19896 rnglist_base + rnglist_index * cu->header.offset_size;
19897
19898 /* Get rnglists section. */
19899 struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag);
19900
19901 /* Read the rnglists section content. */
19902 section->read (objfile);
19903 if (section->buffer == nullptr)
19904 error (_("DW_FORM_rnglistx used without .debug_rnglists section "
19905 "[in module %s]"),
19906 objfile_name (objfile));
19907
19908 /* DW_AT_rnglists_base points after the .debug_rnglists contribution header,
19909 so if rnglist_base is smaller than the header size, we have a problem. */
19910 if (rnglist_base < rnglist_header_size)
19911 error (_("DW_AT_rnglists_base is smaller than header size [in module %s]"),
19912 objfile_name (objfile));
19913
19914 /* Read the header of the rnglists contribution. */
19915 struct loclists_rnglists_header header;
19916 read_loclists_rnglists_header (&header, section,
19917 (sect_offset) (rnglist_base - rnglist_header_size));
19918
19919 /* Verify the rnglist index is valid. */
19920 if (rnglist_index >= header.offset_entry_count)
19921 error (_("DW_FORM_rnglistx index pointing outside of "
19922 ".debug_rnglists offset array [in module %s]"),
19923 objfile_name (objfile));
19924
19925 /* Validate that reading won't go beyond the end of the section. */
19926 if (start_offset + cu->header.offset_size > section->size)
19927 error (_("Reading DW_FORM_rnglistx index beyond end of"
19928 ".debug_rnglists section [in module %s]"),
19929 objfile_name (objfile));
19930
19931 const gdb_byte *info_ptr = section->buffer + start_offset;
19932
19933 if (cu->header.offset_size == 4)
19934 return (sect_offset) (read_4_bytes (abfd, info_ptr) + rnglist_base);
19935 else
19936 return (sect_offset) (read_8_bytes (abfd, info_ptr) + rnglist_base);
19937 }
19938
19939 /* Process the attributes that had to be skipped in the first round. These
19940 attributes are the ones that need str_offsets_base or addr_base attributes.
19941 They could not have been processed in the first round, because at the time
19942 the values of str_offsets_base or addr_base may not have been known. */
19943 static void
19944 read_attribute_reprocess (const struct die_reader_specs *reader,
19945 struct attribute *attr, dwarf_tag tag)
19946 {
19947 struct dwarf2_cu *cu = reader->cu;
19948 switch (attr->form)
19949 {
19950 case DW_FORM_addrx:
19951 case DW_FORM_GNU_addr_index:
19952 attr->set_address (read_addr_index (cu,
19953 attr->as_unsigned_reprocess ()));
19954 break;
19955 case DW_FORM_loclistx:
19956 {
19957 sect_offset loclists_sect_off
19958 = read_loclist_index (cu, attr->as_unsigned_reprocess ());
19959
19960 attr->set_unsigned (to_underlying (loclists_sect_off));
19961 }
19962 break;
19963 case DW_FORM_rnglistx:
19964 {
19965 sect_offset rnglists_sect_off
19966 = read_rnglist_index (cu, attr->as_unsigned_reprocess (), tag);
19967
19968 attr->set_unsigned (to_underlying (rnglists_sect_off));
19969 }
19970 break;
19971 case DW_FORM_strx:
19972 case DW_FORM_strx1:
19973 case DW_FORM_strx2:
19974 case DW_FORM_strx3:
19975 case DW_FORM_strx4:
19976 case DW_FORM_GNU_str_index:
19977 {
19978 unsigned int str_index = attr->as_unsigned_reprocess ();
19979 gdb_assert (!attr->canonical_string_p ());
19980 if (reader->dwo_file != NULL)
19981 attr->set_string_noncanonical (read_dwo_str_index (reader,
19982 str_index));
19983 else
19984 attr->set_string_noncanonical (read_stub_str_index (cu,
19985 str_index));
19986 break;
19987 }
19988 default:
19989 gdb_assert_not_reached (_("Unexpected DWARF form."));
19990 }
19991 }
19992
19993 /* Read an attribute value described by an attribute form. */
19994
19995 static const gdb_byte *
19996 read_attribute_value (const struct die_reader_specs *reader,
19997 struct attribute *attr, unsigned form,
19998 LONGEST implicit_const, const gdb_byte *info_ptr)
19999 {
20000 struct dwarf2_cu *cu = reader->cu;
20001 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20002 struct objfile *objfile = per_objfile->objfile;
20003 bfd *abfd = reader->abfd;
20004 struct comp_unit_head *cu_header = &cu->header;
20005 unsigned int bytes_read;
20006 struct dwarf_block *blk;
20007
20008 attr->form = (enum dwarf_form) form;
20009 switch (form)
20010 {
20011 case DW_FORM_ref_addr:
20012 if (cu_header->version == 2)
20013 attr->set_unsigned (cu_header->read_address (abfd, info_ptr,
20014 &bytes_read));
20015 else
20016 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20017 &bytes_read));
20018 info_ptr += bytes_read;
20019 break;
20020 case DW_FORM_GNU_ref_alt:
20021 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20022 &bytes_read));
20023 info_ptr += bytes_read;
20024 break;
20025 case DW_FORM_addr:
20026 {
20027 struct gdbarch *gdbarch = objfile->arch ();
20028 CORE_ADDR addr = cu_header->read_address (abfd, info_ptr, &bytes_read);
20029 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
20030 attr->set_address (addr);
20031 info_ptr += bytes_read;
20032 }
20033 break;
20034 case DW_FORM_block2:
20035 blk = dwarf_alloc_block (cu);
20036 blk->size = read_2_bytes (abfd, info_ptr);
20037 info_ptr += 2;
20038 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20039 info_ptr += blk->size;
20040 attr->set_block (blk);
20041 break;
20042 case DW_FORM_block4:
20043 blk = dwarf_alloc_block (cu);
20044 blk->size = read_4_bytes (abfd, info_ptr);
20045 info_ptr += 4;
20046 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20047 info_ptr += blk->size;
20048 attr->set_block (blk);
20049 break;
20050 case DW_FORM_data2:
20051 attr->set_unsigned (read_2_bytes (abfd, info_ptr));
20052 info_ptr += 2;
20053 break;
20054 case DW_FORM_data4:
20055 attr->set_unsigned (read_4_bytes (abfd, info_ptr));
20056 info_ptr += 4;
20057 break;
20058 case DW_FORM_data8:
20059 attr->set_unsigned (read_8_bytes (abfd, info_ptr));
20060 info_ptr += 8;
20061 break;
20062 case DW_FORM_data16:
20063 blk = dwarf_alloc_block (cu);
20064 blk->size = 16;
20065 blk->data = read_n_bytes (abfd, info_ptr, 16);
20066 info_ptr += 16;
20067 attr->set_block (blk);
20068 break;
20069 case DW_FORM_sec_offset:
20070 attr->set_unsigned (cu_header->read_offset (abfd, info_ptr,
20071 &bytes_read));
20072 info_ptr += bytes_read;
20073 break;
20074 case DW_FORM_loclistx:
20075 {
20076 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20077 &bytes_read));
20078 info_ptr += bytes_read;
20079 }
20080 break;
20081 case DW_FORM_string:
20082 attr->set_string_noncanonical (read_direct_string (abfd, info_ptr,
20083 &bytes_read));
20084 info_ptr += bytes_read;
20085 break;
20086 case DW_FORM_strp:
20087 if (!cu->per_cu->is_dwz)
20088 {
20089 attr->set_string_noncanonical
20090 (read_indirect_string (per_objfile,
20091 abfd, info_ptr, cu_header,
20092 &bytes_read));
20093 info_ptr += bytes_read;
20094 break;
20095 }
20096 /* FALLTHROUGH */
20097 case DW_FORM_line_strp:
20098 if (!cu->per_cu->is_dwz)
20099 {
20100 attr->set_string_noncanonical
20101 (per_objfile->read_line_string (info_ptr, cu_header,
20102 &bytes_read));
20103 info_ptr += bytes_read;
20104 break;
20105 }
20106 /* FALLTHROUGH */
20107 case DW_FORM_GNU_strp_alt:
20108 {
20109 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
20110 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
20111 &bytes_read);
20112
20113 attr->set_string_noncanonical
20114 (dwz->read_string (objfile, str_offset));
20115 info_ptr += bytes_read;
20116 }
20117 break;
20118 case DW_FORM_exprloc:
20119 case DW_FORM_block:
20120 blk = dwarf_alloc_block (cu);
20121 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20122 info_ptr += bytes_read;
20123 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20124 info_ptr += blk->size;
20125 attr->set_block (blk);
20126 break;
20127 case DW_FORM_block1:
20128 blk = dwarf_alloc_block (cu);
20129 blk->size = read_1_byte (abfd, info_ptr);
20130 info_ptr += 1;
20131 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
20132 info_ptr += blk->size;
20133 attr->set_block (blk);
20134 break;
20135 case DW_FORM_data1:
20136 case DW_FORM_flag:
20137 attr->set_unsigned (read_1_byte (abfd, info_ptr));
20138 info_ptr += 1;
20139 break;
20140 case DW_FORM_flag_present:
20141 attr->set_unsigned (1);
20142 break;
20143 case DW_FORM_sdata:
20144 attr->set_signed (read_signed_leb128 (abfd, info_ptr, &bytes_read));
20145 info_ptr += bytes_read;
20146 break;
20147 case DW_FORM_rnglistx:
20148 {
20149 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20150 &bytes_read));
20151 info_ptr += bytes_read;
20152 }
20153 break;
20154 case DW_FORM_udata:
20155 attr->set_unsigned (read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
20156 info_ptr += bytes_read;
20157 break;
20158 case DW_FORM_ref1:
20159 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20160 + read_1_byte (abfd, info_ptr)));
20161 info_ptr += 1;
20162 break;
20163 case DW_FORM_ref2:
20164 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20165 + read_2_bytes (abfd, info_ptr)));
20166 info_ptr += 2;
20167 break;
20168 case DW_FORM_ref4:
20169 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20170 + read_4_bytes (abfd, info_ptr)));
20171 info_ptr += 4;
20172 break;
20173 case DW_FORM_ref8:
20174 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20175 + read_8_bytes (abfd, info_ptr)));
20176 info_ptr += 8;
20177 break;
20178 case DW_FORM_ref_sig8:
20179 attr->set_signature (read_8_bytes (abfd, info_ptr));
20180 info_ptr += 8;
20181 break;
20182 case DW_FORM_ref_udata:
20183 attr->set_unsigned ((to_underlying (cu_header->sect_off)
20184 + read_unsigned_leb128 (abfd, info_ptr,
20185 &bytes_read)));
20186 info_ptr += bytes_read;
20187 break;
20188 case DW_FORM_indirect:
20189 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20190 info_ptr += bytes_read;
20191 if (form == DW_FORM_implicit_const)
20192 {
20193 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
20194 info_ptr += bytes_read;
20195 }
20196 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
20197 info_ptr);
20198 break;
20199 case DW_FORM_implicit_const:
20200 attr->set_signed (implicit_const);
20201 break;
20202 case DW_FORM_addrx:
20203 case DW_FORM_GNU_addr_index:
20204 attr->set_unsigned_reprocess (read_unsigned_leb128 (abfd, info_ptr,
20205 &bytes_read));
20206 info_ptr += bytes_read;
20207 break;
20208 case DW_FORM_strx:
20209 case DW_FORM_strx1:
20210 case DW_FORM_strx2:
20211 case DW_FORM_strx3:
20212 case DW_FORM_strx4:
20213 case DW_FORM_GNU_str_index:
20214 {
20215 ULONGEST str_index;
20216 if (form == DW_FORM_strx1)
20217 {
20218 str_index = read_1_byte (abfd, info_ptr);
20219 info_ptr += 1;
20220 }
20221 else if (form == DW_FORM_strx2)
20222 {
20223 str_index = read_2_bytes (abfd, info_ptr);
20224 info_ptr += 2;
20225 }
20226 else if (form == DW_FORM_strx3)
20227 {
20228 str_index = read_3_bytes (abfd, info_ptr);
20229 info_ptr += 3;
20230 }
20231 else if (form == DW_FORM_strx4)
20232 {
20233 str_index = read_4_bytes (abfd, info_ptr);
20234 info_ptr += 4;
20235 }
20236 else
20237 {
20238 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
20239 info_ptr += bytes_read;
20240 }
20241 attr->set_unsigned_reprocess (str_index);
20242 }
20243 break;
20244 default:
20245 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
20246 dwarf_form_name (form),
20247 bfd_get_filename (abfd));
20248 }
20249
20250 /* Super hack. */
20251 if (cu->per_cu->is_dwz && attr->form_is_ref ())
20252 attr->form = DW_FORM_GNU_ref_alt;
20253
20254 /* We have seen instances where the compiler tried to emit a byte
20255 size attribute of -1 which ended up being encoded as an unsigned
20256 0xffffffff. Although 0xffffffff is technically a valid size value,
20257 an object of this size seems pretty unlikely so we can relatively
20258 safely treat these cases as if the size attribute was invalid and
20259 treat them as zero by default. */
20260 if (attr->name == DW_AT_byte_size
20261 && form == DW_FORM_data4
20262 && attr->as_unsigned () >= 0xffffffff)
20263 {
20264 complaint
20265 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
20266 hex_string (attr->as_unsigned ()));
20267 attr->set_unsigned (0);
20268 }
20269
20270 return info_ptr;
20271 }
20272
20273 /* Read an attribute described by an abbreviated attribute. */
20274
20275 static const gdb_byte *
20276 read_attribute (const struct die_reader_specs *reader,
20277 struct attribute *attr, const struct attr_abbrev *abbrev,
20278 const gdb_byte *info_ptr)
20279 {
20280 attr->name = abbrev->name;
20281 attr->string_is_canonical = 0;
20282 attr->requires_reprocessing = 0;
20283 return read_attribute_value (reader, attr, abbrev->form,
20284 abbrev->implicit_const, info_ptr);
20285 }
20286
20287 /* Return pointer to string at .debug_str offset STR_OFFSET. */
20288
20289 static const char *
20290 read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile,
20291 LONGEST str_offset)
20292 {
20293 return per_objfile->per_bfd->str.read_string (per_objfile->objfile,
20294 str_offset, "DW_FORM_strp");
20295 }
20296
20297 /* Return pointer to string at .debug_str offset as read from BUF.
20298 BUF is assumed to be in a compilation unit described by CU_HEADER.
20299 Return *BYTES_READ_PTR count of bytes read from BUF. */
20300
20301 static const char *
20302 read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd,
20303 const gdb_byte *buf,
20304 const struct comp_unit_head *cu_header,
20305 unsigned int *bytes_read_ptr)
20306 {
20307 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20308
20309 return read_indirect_string_at_offset (per_objfile, str_offset);
20310 }
20311
20312 /* See read.h. */
20313
20314 const char *
20315 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
20316 const struct comp_unit_head *cu_header,
20317 unsigned int *bytes_read_ptr)
20318 {
20319 bfd *abfd = objfile->obfd;
20320 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
20321
20322 return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
20323 }
20324
20325 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20326 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
20327 ADDR_SIZE is the size of addresses from the CU header. */
20328
20329 static CORE_ADDR
20330 read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index,
20331 gdb::optional<ULONGEST> addr_base, int addr_size)
20332 {
20333 struct objfile *objfile = per_objfile->objfile;
20334 bfd *abfd = objfile->obfd;
20335 const gdb_byte *info_ptr;
20336 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
20337
20338 per_objfile->per_bfd->addr.read (objfile);
20339 if (per_objfile->per_bfd->addr.buffer == NULL)
20340 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20341 objfile_name (objfile));
20342 if (addr_base_or_zero + addr_index * addr_size
20343 >= per_objfile->per_bfd->addr.size)
20344 error (_("DW_FORM_addr_index pointing outside of "
20345 ".debug_addr section [in module %s]"),
20346 objfile_name (objfile));
20347 info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero
20348 + addr_index * addr_size);
20349 if (addr_size == 4)
20350 return bfd_get_32 (abfd, info_ptr);
20351 else
20352 return bfd_get_64 (abfd, info_ptr);
20353 }
20354
20355 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20356
20357 static CORE_ADDR
20358 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20359 {
20360 return read_addr_index_1 (cu->per_objfile, addr_index,
20361 cu->addr_base, cu->header.addr_size);
20362 }
20363
20364 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20365
20366 static CORE_ADDR
20367 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20368 unsigned int *bytes_read)
20369 {
20370 bfd *abfd = cu->per_objfile->objfile->obfd;
20371 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20372
20373 return read_addr_index (cu, addr_index);
20374 }
20375
20376 /* See read.h. */
20377
20378 CORE_ADDR
20379 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu,
20380 dwarf2_per_objfile *per_objfile,
20381 unsigned int addr_index)
20382 {
20383 struct dwarf2_cu *cu = per_objfile->get_cu (per_cu);
20384 gdb::optional<ULONGEST> addr_base;
20385 int addr_size;
20386
20387 /* We need addr_base and addr_size.
20388 If we don't have PER_CU->cu, we have to get it.
20389 Nasty, but the alternative is storing the needed info in PER_CU,
20390 which at this point doesn't seem justified: it's not clear how frequently
20391 it would get used and it would increase the size of every PER_CU.
20392 Entry points like dwarf2_per_cu_addr_size do a similar thing
20393 so we're not in uncharted territory here.
20394 Alas we need to be a bit more complicated as addr_base is contained
20395 in the DIE.
20396
20397 We don't need to read the entire CU(/TU).
20398 We just need the header and top level die.
20399
20400 IWBN to use the aging mechanism to let us lazily later discard the CU.
20401 For now we skip this optimization. */
20402
20403 if (cu != NULL)
20404 {
20405 addr_base = cu->addr_base;
20406 addr_size = cu->header.addr_size;
20407 }
20408 else
20409 {
20410 cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false);
20411 addr_base = reader.cu->addr_base;
20412 addr_size = reader.cu->header.addr_size;
20413 }
20414
20415 return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size);
20416 }
20417
20418 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
20419 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
20420 DWO file. */
20421
20422 static const char *
20423 read_str_index (struct dwarf2_cu *cu,
20424 struct dwarf2_section_info *str_section,
20425 struct dwarf2_section_info *str_offsets_section,
20426 ULONGEST str_offsets_base, ULONGEST str_index)
20427 {
20428 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20429 struct objfile *objfile = per_objfile->objfile;
20430 const char *objf_name = objfile_name (objfile);
20431 bfd *abfd = objfile->obfd;
20432 const gdb_byte *info_ptr;
20433 ULONGEST str_offset;
20434 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20435
20436 str_section->read (objfile);
20437 str_offsets_section->read (objfile);
20438 if (str_section->buffer == NULL)
20439 error (_("%s used without %s section"
20440 " in CU at offset %s [in module %s]"),
20441 form_name, str_section->get_name (),
20442 sect_offset_str (cu->header.sect_off), objf_name);
20443 if (str_offsets_section->buffer == NULL)
20444 error (_("%s used without %s section"
20445 " in CU at offset %s [in module %s]"),
20446 form_name, str_section->get_name (),
20447 sect_offset_str (cu->header.sect_off), objf_name);
20448 info_ptr = (str_offsets_section->buffer
20449 + str_offsets_base
20450 + str_index * cu->header.offset_size);
20451 if (cu->header.offset_size == 4)
20452 str_offset = bfd_get_32 (abfd, info_ptr);
20453 else
20454 str_offset = bfd_get_64 (abfd, info_ptr);
20455 if (str_offset >= str_section->size)
20456 error (_("Offset from %s pointing outside of"
20457 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20458 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20459 return (const char *) (str_section->buffer + str_offset);
20460 }
20461
20462 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
20463
20464 static const char *
20465 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20466 {
20467 ULONGEST str_offsets_base = reader->cu->header.version >= 5
20468 ? reader->cu->header.addr_size : 0;
20469 return read_str_index (reader->cu,
20470 &reader->dwo_file->sections.str,
20471 &reader->dwo_file->sections.str_offsets,
20472 str_offsets_base, str_index);
20473 }
20474
20475 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
20476
20477 static const char *
20478 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
20479 {
20480 struct objfile *objfile = cu->per_objfile->objfile;
20481 const char *objf_name = objfile_name (objfile);
20482 static const char form_name[] = "DW_FORM_GNU_str_index";
20483 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
20484
20485 if (!cu->str_offsets_base.has_value ())
20486 error (_("%s used in Fission stub without %s"
20487 " in CU at offset 0x%lx [in module %s]"),
20488 form_name, str_offsets_attr_name,
20489 (long) cu->header.offset_size, objf_name);
20490
20491 return read_str_index (cu,
20492 &cu->per_objfile->per_bfd->str,
20493 &cu->per_objfile->per_bfd->str_offsets,
20494 *cu->str_offsets_base, str_index);
20495 }
20496
20497 /* Return the length of an LEB128 number in BUF. */
20498
20499 static int
20500 leb128_size (const gdb_byte *buf)
20501 {
20502 const gdb_byte *begin = buf;
20503 gdb_byte byte;
20504
20505 while (1)
20506 {
20507 byte = *buf++;
20508 if ((byte & 128) == 0)
20509 return buf - begin;
20510 }
20511 }
20512
20513 static enum language
20514 dwarf_lang_to_enum_language (unsigned int lang)
20515 {
20516 enum language language;
20517
20518 switch (lang)
20519 {
20520 case DW_LANG_C89:
20521 case DW_LANG_C99:
20522 case DW_LANG_C11:
20523 case DW_LANG_C:
20524 case DW_LANG_UPC:
20525 language = language_c;
20526 break;
20527 case DW_LANG_Java:
20528 case DW_LANG_C_plus_plus:
20529 case DW_LANG_C_plus_plus_11:
20530 case DW_LANG_C_plus_plus_14:
20531 language = language_cplus;
20532 break;
20533 case DW_LANG_D:
20534 language = language_d;
20535 break;
20536 case DW_LANG_Fortran77:
20537 case DW_LANG_Fortran90:
20538 case DW_LANG_Fortran95:
20539 case DW_LANG_Fortran03:
20540 case DW_LANG_Fortran08:
20541 language = language_fortran;
20542 break;
20543 case DW_LANG_Go:
20544 language = language_go;
20545 break;
20546 case DW_LANG_Mips_Assembler:
20547 language = language_asm;
20548 break;
20549 case DW_LANG_Ada83:
20550 case DW_LANG_Ada95:
20551 language = language_ada;
20552 break;
20553 case DW_LANG_Modula2:
20554 language = language_m2;
20555 break;
20556 case DW_LANG_Pascal83:
20557 language = language_pascal;
20558 break;
20559 case DW_LANG_ObjC:
20560 language = language_objc;
20561 break;
20562 case DW_LANG_Rust:
20563 case DW_LANG_Rust_old:
20564 language = language_rust;
20565 break;
20566 case DW_LANG_OpenCL:
20567 language = language_opencl;
20568 break;
20569 case DW_LANG_Cobol74:
20570 case DW_LANG_Cobol85:
20571 default:
20572 language = language_minimal;
20573 break;
20574 }
20575
20576 return language;
20577 }
20578
20579 /* Return the named attribute or NULL if not there. */
20580
20581 static struct attribute *
20582 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20583 {
20584 for (;;)
20585 {
20586 unsigned int i;
20587 struct attribute *spec = NULL;
20588
20589 for (i = 0; i < die->num_attrs; ++i)
20590 {
20591 if (die->attrs[i].name == name)
20592 return &die->attrs[i];
20593 if (die->attrs[i].name == DW_AT_specification
20594 || die->attrs[i].name == DW_AT_abstract_origin)
20595 spec = &die->attrs[i];
20596 }
20597
20598 if (!spec)
20599 break;
20600
20601 die = follow_die_ref (die, spec, &cu);
20602 }
20603
20604 return NULL;
20605 }
20606
20607 /* Return the string associated with a string-typed attribute, or NULL if it
20608 is either not found or is of an incorrect type. */
20609
20610 static const char *
20611 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20612 {
20613 struct attribute *attr;
20614 const char *str = NULL;
20615
20616 attr = dwarf2_attr (die, name, cu);
20617
20618 if (attr != NULL)
20619 {
20620 str = attr->as_string ();
20621 if (str == nullptr)
20622 complaint (_("string type expected for attribute %s for "
20623 "DIE at %s in module %s"),
20624 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20625 objfile_name (cu->per_objfile->objfile));
20626 }
20627
20628 return str;
20629 }
20630
20631 /* Return the dwo name or NULL if not present. If present, it is in either
20632 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20633 static const char *
20634 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20635 {
20636 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20637 if (dwo_name == nullptr)
20638 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20639 return dwo_name;
20640 }
20641
20642 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20643 and holds a non-zero value. This function should only be used for
20644 DW_FORM_flag or DW_FORM_flag_present attributes. */
20645
20646 static int
20647 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20648 {
20649 struct attribute *attr = dwarf2_attr (die, name, cu);
20650
20651 return attr != nullptr && attr->as_boolean ();
20652 }
20653
20654 static int
20655 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20656 {
20657 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20658 which value is non-zero. However, we have to be careful with
20659 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20660 (via dwarf2_flag_true_p) follows this attribute. So we may
20661 end up accidently finding a declaration attribute that belongs
20662 to a different DIE referenced by the specification attribute,
20663 even though the given DIE does not have a declaration attribute. */
20664 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20665 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20666 }
20667
20668 /* Return the die giving the specification for DIE, if there is
20669 one. *SPEC_CU is the CU containing DIE on input, and the CU
20670 containing the return value on output. If there is no
20671 specification, but there is an abstract origin, that is
20672 returned. */
20673
20674 static struct die_info *
20675 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20676 {
20677 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20678 *spec_cu);
20679
20680 if (spec_attr == NULL)
20681 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20682
20683 if (spec_attr == NULL)
20684 return NULL;
20685 else
20686 return follow_die_ref (die, spec_attr, spec_cu);
20687 }
20688
20689 /* A convenience function to find the proper .debug_line section for a CU. */
20690
20691 static struct dwarf2_section_info *
20692 get_debug_line_section (struct dwarf2_cu *cu)
20693 {
20694 struct dwarf2_section_info *section;
20695 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20696
20697 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20698 DWO file. */
20699 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20700 section = &cu->dwo_unit->dwo_file->sections.line;
20701 else if (cu->per_cu->is_dwz)
20702 {
20703 dwz_file *dwz = dwarf2_get_dwz_file (per_objfile->per_bfd, true);
20704
20705 section = &dwz->line;
20706 }
20707 else
20708 section = &per_objfile->per_bfd->line;
20709
20710 return section;
20711 }
20712
20713 /* Read the statement program header starting at OFFSET in
20714 .debug_line, or .debug_line.dwo. Return a pointer
20715 to a struct line_header, allocated using xmalloc.
20716 Returns NULL if there is a problem reading the header, e.g., if it
20717 has a version we don't understand.
20718
20719 NOTE: the strings in the include directory and file name tables of
20720 the returned object point into the dwarf line section buffer,
20721 and must not be freed. */
20722
20723 static line_header_up
20724 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20725 {
20726 struct dwarf2_section_info *section;
20727 dwarf2_per_objfile *per_objfile = cu->per_objfile;
20728
20729 section = get_debug_line_section (cu);
20730 section->read (per_objfile->objfile);
20731 if (section->buffer == NULL)
20732 {
20733 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20734 complaint (_("missing .debug_line.dwo section"));
20735 else
20736 complaint (_("missing .debug_line section"));
20737 return 0;
20738 }
20739
20740 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
20741 per_objfile, section, &cu->header);
20742 }
20743
20744 /* Subroutine of dwarf_decode_lines to simplify it.
20745 Return the file name for the given file_entry.
20746 CU_INFO describes the CU's DW_AT_name and DW_AT_comp_dir.
20747 If space for the result is malloc'd, *NAME_HOLDER will be set.
20748 Returns NULL if FILE_INDEX should be ignored, i.e., it is
20749 equivalent to CU_INFO. */
20750
20751 static const char *
20752 compute_include_file_name (const struct line_header *lh, const file_entry &fe,
20753 const file_and_directory &cu_info,
20754 gdb::unique_xmalloc_ptr<char> *name_holder)
20755 {
20756 const char *include_name = fe.name;
20757 const char *include_name_to_compare = include_name;
20758
20759 const char *dir_name = fe.include_dir (lh);
20760
20761 gdb::unique_xmalloc_ptr<char> hold_compare;
20762 if (!IS_ABSOLUTE_PATH (include_name)
20763 && (dir_name != NULL || cu_info.comp_dir != NULL))
20764 {
20765 /* Avoid creating a duplicate name for CU_INFO.
20766 We do this by comparing INCLUDE_NAME and CU_INFO.
20767 Before we do the comparison, however, we need to account
20768 for DIR_NAME and COMP_DIR.
20769 First prepend dir_name (if non-NULL). If we still don't
20770 have an absolute path prepend comp_dir (if non-NULL).
20771 However, the directory we record in the include-file's
20772 psymtab does not contain COMP_DIR (to match the
20773 corresponding symtab(s)).
20774
20775 Example:
20776
20777 bash$ cd /tmp
20778 bash$ gcc -g ./hello.c
20779 include_name = "hello.c"
20780 dir_name = "."
20781 DW_AT_comp_dir = comp_dir = "/tmp"
20782 DW_AT_name = "./hello.c"
20783
20784 */
20785
20786 if (dir_name != NULL)
20787 {
20788 name_holder->reset (concat (dir_name, SLASH_STRING,
20789 include_name, (char *) NULL));
20790 include_name = name_holder->get ();
20791 include_name_to_compare = include_name;
20792 }
20793 if (!IS_ABSOLUTE_PATH (include_name) && cu_info.comp_dir != nullptr)
20794 {
20795 hold_compare.reset (concat (cu_info.comp_dir, SLASH_STRING,
20796 include_name, (char *) NULL));
20797 include_name_to_compare = hold_compare.get ();
20798 }
20799 }
20800
20801 gdb::unique_xmalloc_ptr<char> copied_name;
20802 const char *cu_filename = cu_info.name;
20803 if (!IS_ABSOLUTE_PATH (cu_filename) && cu_info.comp_dir != nullptr)
20804 {
20805 copied_name.reset (concat (cu_info.comp_dir, SLASH_STRING,
20806 cu_filename, (char *) NULL));
20807 cu_filename = copied_name.get ();
20808 }
20809
20810 if (FILENAME_CMP (include_name_to_compare, cu_filename) == 0)
20811 return nullptr;
20812 return include_name;
20813 }
20814
20815 /* State machine to track the state of the line number program. */
20816
20817 class lnp_state_machine
20818 {
20819 public:
20820 /* Initialize a machine state for the start of a line number
20821 program. */
20822 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20823 bool record_lines_p);
20824
20825 file_entry *current_file ()
20826 {
20827 /* lh->file_names is 0-based, but the file name numbers in the
20828 statement program are 1-based. */
20829 return m_line_header->file_name_at (m_file);
20830 }
20831
20832 /* Record the line in the state machine. END_SEQUENCE is true if
20833 we're processing the end of a sequence. */
20834 void record_line (bool end_sequence);
20835
20836 /* Check ADDRESS is -1, or zero and less than UNRELOCATED_LOWPC, and if true
20837 nop-out rest of the lines in this sequence. */
20838 void check_line_address (struct dwarf2_cu *cu,
20839 const gdb_byte *line_ptr,
20840 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20841
20842 void handle_set_discriminator (unsigned int discriminator)
20843 {
20844 m_discriminator = discriminator;
20845 m_line_has_non_zero_discriminator |= discriminator != 0;
20846 }
20847
20848 /* Handle DW_LNE_set_address. */
20849 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20850 {
20851 m_op_index = 0;
20852 address += baseaddr;
20853 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20854 }
20855
20856 /* Handle DW_LNS_advance_pc. */
20857 void handle_advance_pc (CORE_ADDR adjust);
20858
20859 /* Handle a special opcode. */
20860 void handle_special_opcode (unsigned char op_code);
20861
20862 /* Handle DW_LNS_advance_line. */
20863 void handle_advance_line (int line_delta)
20864 {
20865 advance_line (line_delta);
20866 }
20867
20868 /* Handle DW_LNS_set_file. */
20869 void handle_set_file (file_name_index file);
20870
20871 /* Handle DW_LNS_negate_stmt. */
20872 void handle_negate_stmt ()
20873 {
20874 m_is_stmt = !m_is_stmt;
20875 }
20876
20877 /* Handle DW_LNS_const_add_pc. */
20878 void handle_const_add_pc ();
20879
20880 /* Handle DW_LNS_fixed_advance_pc. */
20881 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20882 {
20883 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20884 m_op_index = 0;
20885 }
20886
20887 /* Handle DW_LNS_copy. */
20888 void handle_copy ()
20889 {
20890 record_line (false);
20891 m_discriminator = 0;
20892 }
20893
20894 /* Handle DW_LNE_end_sequence. */
20895 void handle_end_sequence ()
20896 {
20897 m_currently_recording_lines = true;
20898 }
20899
20900 private:
20901 /* Advance the line by LINE_DELTA. */
20902 void advance_line (int line_delta)
20903 {
20904 m_line += line_delta;
20905
20906 if (line_delta != 0)
20907 m_line_has_non_zero_discriminator = m_discriminator != 0;
20908 }
20909
20910 struct dwarf2_cu *m_cu;
20911
20912 gdbarch *m_gdbarch;
20913
20914 /* True if we're recording lines.
20915 Otherwise we're building partial symtabs and are just interested in
20916 finding include files mentioned by the line number program. */
20917 bool m_record_lines_p;
20918
20919 /* The line number header. */
20920 line_header *m_line_header;
20921
20922 /* These are part of the standard DWARF line number state machine,
20923 and initialized according to the DWARF spec. */
20924
20925 unsigned char m_op_index = 0;
20926 /* The line table index of the current file. */
20927 file_name_index m_file = 1;
20928 unsigned int m_line = 1;
20929
20930 /* These are initialized in the constructor. */
20931
20932 CORE_ADDR m_address;
20933 bool m_is_stmt;
20934 unsigned int m_discriminator;
20935
20936 /* Additional bits of state we need to track. */
20937
20938 /* The last file that we called dwarf2_start_subfile for.
20939 This is only used for TLLs. */
20940 unsigned int m_last_file = 0;
20941 /* The last file a line number was recorded for. */
20942 struct subfile *m_last_subfile = NULL;
20943
20944 /* The address of the last line entry. */
20945 CORE_ADDR m_last_address;
20946
20947 /* Set to true when a previous line at the same address (using
20948 m_last_address) had m_is_stmt true. This is reset to false when a
20949 line entry at a new address (m_address different to m_last_address) is
20950 processed. */
20951 bool m_stmt_at_address = false;
20952
20953 /* When true, record the lines we decode. */
20954 bool m_currently_recording_lines = false;
20955
20956 /* The last line number that was recorded, used to coalesce
20957 consecutive entries for the same line. This can happen, for
20958 example, when discriminators are present. PR 17276. */
20959 unsigned int m_last_line = 0;
20960 bool m_line_has_non_zero_discriminator = false;
20961 };
20962
20963 void
20964 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20965 {
20966 CORE_ADDR addr_adj = (((m_op_index + adjust)
20967 / m_line_header->maximum_ops_per_instruction)
20968 * m_line_header->minimum_instruction_length);
20969 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20970 m_op_index = ((m_op_index + adjust)
20971 % m_line_header->maximum_ops_per_instruction);
20972 }
20973
20974 void
20975 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20976 {
20977 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20978 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
20979 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
20980 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
20981 / m_line_header->maximum_ops_per_instruction)
20982 * m_line_header->minimum_instruction_length);
20983 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20984 m_op_index = ((m_op_index + adj_opcode_d)
20985 % m_line_header->maximum_ops_per_instruction);
20986
20987 int line_delta = m_line_header->line_base + adj_opcode_r;
20988 advance_line (line_delta);
20989 record_line (false);
20990 m_discriminator = 0;
20991 }
20992
20993 void
20994 lnp_state_machine::handle_set_file (file_name_index file)
20995 {
20996 m_file = file;
20997
20998 const file_entry *fe = current_file ();
20999 if (fe == NULL)
21000 dwarf2_debug_line_missing_file_complaint ();
21001 else if (m_record_lines_p)
21002 {
21003 const char *dir = fe->include_dir (m_line_header);
21004
21005 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21006 m_line_has_non_zero_discriminator = m_discriminator != 0;
21007 dwarf2_start_subfile (m_cu, fe->name, dir);
21008 }
21009 }
21010
21011 void
21012 lnp_state_machine::handle_const_add_pc ()
21013 {
21014 CORE_ADDR adjust
21015 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21016
21017 CORE_ADDR addr_adj
21018 = (((m_op_index + adjust)
21019 / m_line_header->maximum_ops_per_instruction)
21020 * m_line_header->minimum_instruction_length);
21021
21022 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21023 m_op_index = ((m_op_index + adjust)
21024 % m_line_header->maximum_ops_per_instruction);
21025 }
21026
21027 /* Return non-zero if we should add LINE to the line number table.
21028 LINE is the line to add, LAST_LINE is the last line that was added,
21029 LAST_SUBFILE is the subfile for LAST_LINE.
21030 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21031 had a non-zero discriminator.
21032
21033 We have to be careful in the presence of discriminators.
21034 E.g., for this line:
21035
21036 for (i = 0; i < 100000; i++);
21037
21038 clang can emit four line number entries for that one line,
21039 each with a different discriminator.
21040 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21041
21042 However, we want gdb to coalesce all four entries into one.
21043 Otherwise the user could stepi into the middle of the line and
21044 gdb would get confused about whether the pc really was in the
21045 middle of the line.
21046
21047 Things are further complicated by the fact that two consecutive
21048 line number entries for the same line is a heuristic used by gcc
21049 to denote the end of the prologue. So we can't just discard duplicate
21050 entries, we have to be selective about it. The heuristic we use is
21051 that we only collapse consecutive entries for the same line if at least
21052 one of those entries has a non-zero discriminator. PR 17276.
21053
21054 Note: Addresses in the line number state machine can never go backwards
21055 within one sequence, thus this coalescing is ok. */
21056
21057 static int
21058 dwarf_record_line_p (struct dwarf2_cu *cu,
21059 unsigned int line, unsigned int last_line,
21060 int line_has_non_zero_discriminator,
21061 struct subfile *last_subfile)
21062 {
21063 if (cu->get_builder ()->get_current_subfile () != last_subfile)
21064 return 1;
21065 if (line != last_line)
21066 return 1;
21067 /* Same line for the same file that we've seen already.
21068 As a last check, for pr 17276, only record the line if the line
21069 has never had a non-zero discriminator. */
21070 if (!line_has_non_zero_discriminator)
21071 return 1;
21072 return 0;
21073 }
21074
21075 /* Use the CU's builder to record line number LINE beginning at
21076 address ADDRESS in the line table of subfile SUBFILE. */
21077
21078 static void
21079 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21080 unsigned int line, CORE_ADDR address, bool is_stmt,
21081 struct dwarf2_cu *cu)
21082 {
21083 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21084
21085 if (dwarf_line_debug)
21086 {
21087 fprintf_unfiltered (gdb_stdlog,
21088 "Recording line %u, file %s, address %s\n",
21089 line, lbasename (subfile->name),
21090 paddress (gdbarch, address));
21091 }
21092
21093 if (cu != nullptr)
21094 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
21095 }
21096
21097 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21098 Mark the end of a set of line number records.
21099 The arguments are the same as for dwarf_record_line_1.
21100 If SUBFILE is NULL the request is ignored. */
21101
21102 static void
21103 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21104 CORE_ADDR address, struct dwarf2_cu *cu)
21105 {
21106 if (subfile == NULL)
21107 return;
21108
21109 if (dwarf_line_debug)
21110 {
21111 fprintf_unfiltered (gdb_stdlog,
21112 "Finishing current line, file %s, address %s\n",
21113 lbasename (subfile->name),
21114 paddress (gdbarch, address));
21115 }
21116
21117 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
21118 }
21119
21120 void
21121 lnp_state_machine::record_line (bool end_sequence)
21122 {
21123 if (dwarf_line_debug)
21124 {
21125 fprintf_unfiltered (gdb_stdlog,
21126 "Processing actual line %u: file %u,"
21127 " address %s, is_stmt %u, discrim %u%s\n",
21128 m_line, m_file,
21129 paddress (m_gdbarch, m_address),
21130 m_is_stmt, m_discriminator,
21131 (end_sequence ? "\t(end sequence)" : ""));
21132 }
21133
21134 file_entry *fe = current_file ();
21135
21136 if (fe == NULL)
21137 dwarf2_debug_line_missing_file_complaint ();
21138 /* For now we ignore lines not starting on an instruction boundary.
21139 But not when processing end_sequence for compatibility with the
21140 previous version of the code. */
21141 else if (m_op_index == 0 || end_sequence)
21142 {
21143 fe->included_p = true;
21144 if (m_record_lines_p)
21145 {
21146 /* When we switch files we insert an end maker in the first file,
21147 switch to the second file and add a new line entry. The
21148 problem is that the end marker inserted in the first file will
21149 discard any previous line entries at the same address. If the
21150 line entries in the first file are marked as is-stmt, while
21151 the new line in the second file is non-stmt, then this means
21152 the end marker will discard is-stmt lines so we can have a
21153 non-stmt line. This means that there are less addresses at
21154 which the user can insert a breakpoint.
21155
21156 To improve this we track the last address in m_last_address,
21157 and whether we have seen an is-stmt at this address. Then
21158 when switching files, if we have seen a stmt at the current
21159 address, and we are switching to create a non-stmt line, then
21160 discard the new line. */
21161 bool file_changed
21162 = m_last_subfile != m_cu->get_builder ()->get_current_subfile ();
21163 bool ignore_this_line
21164 = ((file_changed && !end_sequence && m_last_address == m_address
21165 && !m_is_stmt && m_stmt_at_address)
21166 || (!end_sequence && m_line == 0));
21167
21168 if ((file_changed && !ignore_this_line) || end_sequence)
21169 {
21170 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21171 m_currently_recording_lines ? m_cu : nullptr);
21172 }
21173
21174 if (!end_sequence && !ignore_this_line)
21175 {
21176 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
21177
21178 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21179 m_line_has_non_zero_discriminator,
21180 m_last_subfile))
21181 {
21182 buildsym_compunit *builder = m_cu->get_builder ();
21183 dwarf_record_line_1 (m_gdbarch,
21184 builder->get_current_subfile (),
21185 m_line, m_address, is_stmt,
21186 m_currently_recording_lines ? m_cu : nullptr);
21187 }
21188 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21189 m_last_line = m_line;
21190 }
21191 }
21192 }
21193
21194 /* Track whether we have seen any m_is_stmt true at m_address in case we
21195 have multiple line table entries all at m_address. */
21196 if (m_last_address != m_address)
21197 {
21198 m_stmt_at_address = false;
21199 m_last_address = m_address;
21200 }
21201 m_stmt_at_address |= m_is_stmt;
21202 }
21203
21204 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21205 line_header *lh, bool record_lines_p)
21206 {
21207 m_cu = cu;
21208 m_gdbarch = arch;
21209 m_record_lines_p = record_lines_p;
21210 m_line_header = lh;
21211
21212 m_currently_recording_lines = true;
21213
21214 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21215 was a line entry for it so that the backend has a chance to adjust it
21216 and also record it in case it needs it. This is currently used by MIPS
21217 code, cf. `mips_adjust_dwarf2_line'. */
21218 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21219 m_is_stmt = lh->default_is_stmt;
21220 m_discriminator = 0;
21221
21222 m_last_address = m_address;
21223 m_stmt_at_address = false;
21224 }
21225
21226 void
21227 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21228 const gdb_byte *line_ptr,
21229 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21230 {
21231 /* Linkers resolve a symbolic relocation referencing a GC'd function to 0 or
21232 -1. If ADDRESS is 0, ignoring the opcode will err if the text section is
21233 located at 0x0. In this case, additionally check that if
21234 ADDRESS < UNRELOCATED_LOWPC. */
21235
21236 if ((address == 0 && address < unrelocated_lowpc)
21237 || address == (CORE_ADDR) -1)
21238 {
21239 /* This line table is for a function which has been
21240 GCd by the linker. Ignore it. PR gdb/12528 */
21241
21242 struct objfile *objfile = cu->per_objfile->objfile;
21243 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21244
21245 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21246 line_offset, objfile_name (objfile));
21247 m_currently_recording_lines = false;
21248 /* Note: m_currently_recording_lines is left as false until we see
21249 DW_LNE_end_sequence. */
21250 }
21251 }
21252
21253 /* Subroutine of dwarf_decode_lines to simplify it.
21254 Process the line number information in LH.
21255 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21256 program in order to set included_p for every referenced header. */
21257
21258 static void
21259 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21260 const int decode_for_pst_p, CORE_ADDR lowpc)
21261 {
21262 const gdb_byte *line_ptr, *extended_end;
21263 const gdb_byte *line_end;
21264 unsigned int bytes_read, extended_len;
21265 unsigned char op_code, extended_op;
21266 CORE_ADDR baseaddr;
21267 struct objfile *objfile = cu->per_objfile->objfile;
21268 bfd *abfd = objfile->obfd;
21269 struct gdbarch *gdbarch = objfile->arch ();
21270 /* True if we're recording line info (as opposed to building partial
21271 symtabs and just interested in finding include files mentioned by
21272 the line number program). */
21273 bool record_lines_p = !decode_for_pst_p;
21274
21275 baseaddr = objfile->text_section_offset ();
21276
21277 line_ptr = lh->statement_program_start;
21278 line_end = lh->statement_program_end;
21279
21280 /* Read the statement sequences until there's nothing left. */
21281 while (line_ptr < line_end)
21282 {
21283 /* The DWARF line number program state machine. Reset the state
21284 machine at the start of each sequence. */
21285 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21286 bool end_sequence = false;
21287
21288 if (record_lines_p)
21289 {
21290 /* Start a subfile for the current file of the state
21291 machine. */
21292 const file_entry *fe = state_machine.current_file ();
21293
21294 if (fe != NULL)
21295 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21296 }
21297
21298 /* Decode the table. */
21299 while (line_ptr < line_end && !end_sequence)
21300 {
21301 op_code = read_1_byte (abfd, line_ptr);
21302 line_ptr += 1;
21303
21304 if (op_code >= lh->opcode_base)
21305 {
21306 /* Special opcode. */
21307 state_machine.handle_special_opcode (op_code);
21308 }
21309 else switch (op_code)
21310 {
21311 case DW_LNS_extended_op:
21312 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21313 &bytes_read);
21314 line_ptr += bytes_read;
21315 extended_end = line_ptr + extended_len;
21316 extended_op = read_1_byte (abfd, line_ptr);
21317 line_ptr += 1;
21318 if (DW_LNE_lo_user <= extended_op
21319 && extended_op <= DW_LNE_hi_user)
21320 {
21321 /* Vendor extension, ignore. */
21322 line_ptr = extended_end;
21323 break;
21324 }
21325 switch (extended_op)
21326 {
21327 case DW_LNE_end_sequence:
21328 state_machine.handle_end_sequence ();
21329 end_sequence = true;
21330 break;
21331 case DW_LNE_set_address:
21332 {
21333 CORE_ADDR address
21334 = cu->header.read_address (abfd, line_ptr, &bytes_read);
21335 line_ptr += bytes_read;
21336
21337 state_machine.check_line_address (cu, line_ptr,
21338 lowpc - baseaddr, address);
21339 state_machine.handle_set_address (baseaddr, address);
21340 }
21341 break;
21342 case DW_LNE_define_file:
21343 {
21344 const char *cur_file;
21345 unsigned int mod_time, length;
21346 dir_index dindex;
21347
21348 cur_file = read_direct_string (abfd, line_ptr,
21349 &bytes_read);
21350 line_ptr += bytes_read;
21351 dindex = (dir_index)
21352 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21353 line_ptr += bytes_read;
21354 mod_time =
21355 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21356 line_ptr += bytes_read;
21357 length =
21358 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21359 line_ptr += bytes_read;
21360 lh->add_file_name (cur_file, dindex, mod_time, length);
21361 }
21362 break;
21363 case DW_LNE_set_discriminator:
21364 {
21365 /* The discriminator is not interesting to the
21366 debugger; just ignore it. We still need to
21367 check its value though:
21368 if there are consecutive entries for the same
21369 (non-prologue) line we want to coalesce them.
21370 PR 17276. */
21371 unsigned int discr
21372 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21373 line_ptr += bytes_read;
21374
21375 state_machine.handle_set_discriminator (discr);
21376 }
21377 break;
21378 default:
21379 complaint (_("mangled .debug_line section"));
21380 return;
21381 }
21382 /* Make sure that we parsed the extended op correctly. If e.g.
21383 we expected a different address size than the producer used,
21384 we may have read the wrong number of bytes. */
21385 if (line_ptr != extended_end)
21386 {
21387 complaint (_("mangled .debug_line section"));
21388 return;
21389 }
21390 break;
21391 case DW_LNS_copy:
21392 state_machine.handle_copy ();
21393 break;
21394 case DW_LNS_advance_pc:
21395 {
21396 CORE_ADDR adjust
21397 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21398 line_ptr += bytes_read;
21399
21400 state_machine.handle_advance_pc (adjust);
21401 }
21402 break;
21403 case DW_LNS_advance_line:
21404 {
21405 int line_delta
21406 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21407 line_ptr += bytes_read;
21408
21409 state_machine.handle_advance_line (line_delta);
21410 }
21411 break;
21412 case DW_LNS_set_file:
21413 {
21414 file_name_index file
21415 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21416 &bytes_read);
21417 line_ptr += bytes_read;
21418
21419 state_machine.handle_set_file (file);
21420 }
21421 break;
21422 case DW_LNS_set_column:
21423 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21424 line_ptr += bytes_read;
21425 break;
21426 case DW_LNS_negate_stmt:
21427 state_machine.handle_negate_stmt ();
21428 break;
21429 case DW_LNS_set_basic_block:
21430 break;
21431 /* Add to the address register of the state machine the
21432 address increment value corresponding to special opcode
21433 255. I.e., this value is scaled by the minimum
21434 instruction length since special opcode 255 would have
21435 scaled the increment. */
21436 case DW_LNS_const_add_pc:
21437 state_machine.handle_const_add_pc ();
21438 break;
21439 case DW_LNS_fixed_advance_pc:
21440 {
21441 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21442 line_ptr += 2;
21443
21444 state_machine.handle_fixed_advance_pc (addr_adj);
21445 }
21446 break;
21447 default:
21448 {
21449 /* Unknown standard opcode, ignore it. */
21450 int i;
21451
21452 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21453 {
21454 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21455 line_ptr += bytes_read;
21456 }
21457 }
21458 }
21459 }
21460
21461 if (!end_sequence)
21462 dwarf2_debug_line_missing_end_sequence_complaint ();
21463
21464 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21465 in which case we still finish recording the last line). */
21466 state_machine.record_line (true);
21467 }
21468 }
21469
21470 /* Decode the Line Number Program (LNP) for the given line_header
21471 structure and CU. The actual information extracted and the type
21472 of structures created from the LNP depends on the value of PST.
21473
21474 1. If PST is NULL, then this procedure uses the data from the program
21475 to create all necessary symbol tables, and their linetables.
21476
21477 2. If PST is not NULL, this procedure reads the program to determine
21478 the list of files included by the unit represented by PST, and
21479 builds all the associated partial symbol tables.
21480
21481 FND holds the CU file name and directory, if known.
21482 It is used for relative paths in the line table.
21483
21484 NOTE: It is important that psymtabs have the same file name (via
21485 strcmp) as the corresponding symtab. Since the directory is not
21486 used in the name of the symtab we don't use it in the name of the
21487 psymtabs we create. E.g. expand_line_sal requires this when
21488 finding psymtabs to expand. A good testcase for this is
21489 mb-inline.exp.
21490
21491 LOWPC is the lowest address in CU (or 0 if not known).
21492
21493 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21494 for its PC<->lines mapping information. Otherwise only the filename
21495 table is read in. */
21496
21497 static void
21498 dwarf_decode_lines (struct line_header *lh, const file_and_directory &fnd,
21499 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
21500 CORE_ADDR lowpc, int decode_mapping)
21501 {
21502 struct objfile *objfile = cu->per_objfile->objfile;
21503 const int decode_for_pst_p = (pst != NULL);
21504
21505 if (decode_mapping)
21506 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21507
21508 if (decode_for_pst_p)
21509 {
21510 /* Now that we're done scanning the Line Header Program, we can
21511 create the psymtab of each included file. */
21512 for (auto &file_entry : lh->file_names ())
21513 if (file_entry.included_p)
21514 {
21515 gdb::unique_xmalloc_ptr<char> name_holder;
21516 const char *include_name =
21517 compute_include_file_name (lh, file_entry, fnd, &name_holder);
21518 if (include_name != NULL)
21519 dwarf2_create_include_psymtab
21520 (cu->per_objfile->per_bfd, include_name, pst,
21521 cu->per_objfile->per_bfd->partial_symtabs.get (),
21522 objfile->per_bfd);
21523 }
21524 }
21525 else
21526 {
21527 /* Make sure a symtab is created for every file, even files
21528 which contain only variables (i.e. no code with associated
21529 line numbers). */
21530 buildsym_compunit *builder = cu->get_builder ();
21531 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21532
21533 for (auto &fe : lh->file_names ())
21534 {
21535 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21536 if (builder->get_current_subfile ()->symtab == NULL)
21537 {
21538 builder->get_current_subfile ()->symtab
21539 = allocate_symtab (cust,
21540 builder->get_current_subfile ()->name);
21541 }
21542 fe.symtab = builder->get_current_subfile ()->symtab;
21543 }
21544 }
21545 }
21546
21547 /* Start a subfile for DWARF. FILENAME is the name of the file and
21548 DIRNAME the name of the source directory which contains FILENAME
21549 or NULL if not known.
21550 This routine tries to keep line numbers from identical absolute and
21551 relative file names in a common subfile.
21552
21553 Using the `list' example from the GDB testsuite, which resides in
21554 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21555 of /srcdir/list0.c yields the following debugging information for list0.c:
21556
21557 DW_AT_name: /srcdir/list0.c
21558 DW_AT_comp_dir: /compdir
21559 files.files[0].name: list0.h
21560 files.files[0].dir: /srcdir
21561 files.files[1].name: list0.c
21562 files.files[1].dir: /srcdir
21563
21564 The line number information for list0.c has to end up in a single
21565 subfile, so that `break /srcdir/list0.c:1' works as expected.
21566 start_subfile will ensure that this happens provided that we pass the
21567 concatenation of files.files[1].dir and files.files[1].name as the
21568 subfile's name. */
21569
21570 static void
21571 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21572 const char *dirname)
21573 {
21574 gdb::unique_xmalloc_ptr<char> copy;
21575
21576 /* In order not to lose the line information directory,
21577 we concatenate it to the filename when it makes sense.
21578 Note that the Dwarf3 standard says (speaking of filenames in line
21579 information): ``The directory index is ignored for file names
21580 that represent full path names''. Thus ignoring dirname in the
21581 `else' branch below isn't an issue. */
21582
21583 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21584 {
21585 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
21586 filename = copy.get ();
21587 }
21588
21589 cu->get_builder ()->start_subfile (filename);
21590 }
21591
21592 static void
21593 var_decode_location (struct attribute *attr, struct symbol *sym,
21594 struct dwarf2_cu *cu)
21595 {
21596 struct objfile *objfile = cu->per_objfile->objfile;
21597 struct comp_unit_head *cu_header = &cu->header;
21598
21599 /* NOTE drow/2003-01-30: There used to be a comment and some special
21600 code here to turn a symbol with DW_AT_external and a
21601 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21602 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21603 with some versions of binutils) where shared libraries could have
21604 relocations against symbols in their debug information - the
21605 minimal symbol would have the right address, but the debug info
21606 would not. It's no longer necessary, because we will explicitly
21607 apply relocations when we read in the debug information now. */
21608
21609 /* A DW_AT_location attribute with no contents indicates that a
21610 variable has been optimized away. */
21611 if (attr->form_is_block () && attr->as_block ()->size == 0)
21612 {
21613 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21614 return;
21615 }
21616
21617 /* Handle one degenerate form of location expression specially, to
21618 preserve GDB's previous behavior when section offsets are
21619 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21620 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21621
21622 if (attr->form_is_block ())
21623 {
21624 struct dwarf_block *block = attr->as_block ();
21625
21626 if ((block->data[0] == DW_OP_addr
21627 && block->size == 1 + cu_header->addr_size)
21628 || ((block->data[0] == DW_OP_GNU_addr_index
21629 || block->data[0] == DW_OP_addrx)
21630 && (block->size
21631 == 1 + leb128_size (&block->data[1]))))
21632 {
21633 unsigned int dummy;
21634
21635 if (block->data[0] == DW_OP_addr)
21636 SET_SYMBOL_VALUE_ADDRESS
21637 (sym, cu->header.read_address (objfile->obfd,
21638 block->data + 1,
21639 &dummy));
21640 else
21641 SET_SYMBOL_VALUE_ADDRESS
21642 (sym, read_addr_index_from_leb128 (cu, block->data + 1,
21643 &dummy));
21644 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21645 fixup_symbol_section (sym, objfile);
21646 SET_SYMBOL_VALUE_ADDRESS
21647 (sym,
21648 SYMBOL_VALUE_ADDRESS (sym)
21649 + objfile->section_offsets[sym->section_index ()]);
21650 return;
21651 }
21652 }
21653
21654 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21655 expression evaluator, and use LOC_COMPUTED only when necessary
21656 (i.e. when the value of a register or memory location is
21657 referenced, or a thread-local block, etc.). Then again, it might
21658 not be worthwhile. I'm assuming that it isn't unless performance
21659 or memory numbers show me otherwise. */
21660
21661 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21662
21663 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21664 cu->has_loclist = true;
21665 }
21666
21667 /* Given a pointer to a DWARF information entry, figure out if we need
21668 to make a symbol table entry for it, and if so, create a new entry
21669 and return a pointer to it.
21670 If TYPE is NULL, determine symbol type from the die, otherwise
21671 used the passed type.
21672 If SPACE is not NULL, use it to hold the new symbol. If it is
21673 NULL, allocate a new symbol on the objfile's obstack. */
21674
21675 static struct symbol *
21676 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21677 struct symbol *space)
21678 {
21679 dwarf2_per_objfile *per_objfile = cu->per_objfile;
21680 struct objfile *objfile = per_objfile->objfile;
21681 struct gdbarch *gdbarch = objfile->arch ();
21682 struct symbol *sym = NULL;
21683 const char *name;
21684 struct attribute *attr = NULL;
21685 struct attribute *attr2 = NULL;
21686 CORE_ADDR baseaddr;
21687 struct pending **list_to_add = NULL;
21688
21689 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21690
21691 baseaddr = objfile->text_section_offset ();
21692
21693 name = dwarf2_name (die, cu);
21694 if (name)
21695 {
21696 int suppress_add = 0;
21697
21698 if (space)
21699 sym = space;
21700 else
21701 sym = new (&objfile->objfile_obstack) symbol;
21702 OBJSTAT (objfile, n_syms++);
21703
21704 /* Cache this symbol's name and the name's demangled form (if any). */
21705 sym->set_language (cu->per_cu->lang, &objfile->objfile_obstack);
21706 /* Fortran does not have mangling standard and the mangling does differ
21707 between gfortran, iFort etc. */
21708 const char *physname
21709 = (cu->per_cu->lang == language_fortran
21710 ? dwarf2_full_name (name, die, cu)
21711 : dwarf2_physname (name, die, cu));
21712 const char *linkagename = dw2_linkage_name (die, cu);
21713
21714 if (linkagename == nullptr || cu->per_cu->lang == language_ada)
21715 sym->set_linkage_name (physname);
21716 else
21717 {
21718 sym->set_demangled_name (physname, &objfile->objfile_obstack);
21719 sym->set_linkage_name (linkagename);
21720 }
21721
21722 /* Handle DW_AT_artificial. */
21723 attr = dwarf2_attr (die, DW_AT_artificial, cu);
21724 if (attr != nullptr)
21725 sym->artificial = attr->as_boolean ();
21726
21727 /* Default assumptions.
21728 Use the passed type or decode it from the die. */
21729 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21730 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21731 if (type != NULL)
21732 SYMBOL_TYPE (sym) = type;
21733 else
21734 SYMBOL_TYPE (sym) = die_type (die, cu);
21735 attr = dwarf2_attr (die,
21736 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21737 cu);
21738 if (attr != nullptr)
21739 SYMBOL_LINE (sym) = attr->constant_value (0);
21740
21741 attr = dwarf2_attr (die,
21742 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21743 cu);
21744 if (attr != nullptr && attr->is_nonnegative ())
21745 {
21746 file_name_index file_index
21747 = (file_name_index) attr->as_nonnegative ();
21748 struct file_entry *fe;
21749
21750 if (cu->line_header != NULL)
21751 fe = cu->line_header->file_name_at (file_index);
21752 else
21753 fe = NULL;
21754
21755 if (fe == NULL)
21756 complaint (_("file index out of range"));
21757 else
21758 symbol_set_symtab (sym, fe->symtab);
21759 }
21760
21761 switch (die->tag)
21762 {
21763 case DW_TAG_label:
21764 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21765 if (attr != nullptr)
21766 {
21767 CORE_ADDR addr;
21768
21769 addr = attr->as_address ();
21770 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21771 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21772 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21773 }
21774 else
21775 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21776 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21777 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21778 add_symbol_to_list (sym, cu->list_in_scope);
21779 break;
21780 case DW_TAG_subprogram:
21781 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21782 finish_block. */
21783 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21784 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21785 if ((attr2 != nullptr && attr2->as_boolean ())
21786 || cu->per_cu->lang == language_ada
21787 || cu->per_cu->lang == language_fortran)
21788 {
21789 /* Subprograms marked external are stored as a global symbol.
21790 Ada and Fortran subprograms, whether marked external or
21791 not, are always stored as a global symbol, because we want
21792 to be able to access them globally. For instance, we want
21793 to be able to break on a nested subprogram without having
21794 to specify the context. */
21795 list_to_add = cu->get_builder ()->get_global_symbols ();
21796 }
21797 else
21798 {
21799 list_to_add = cu->list_in_scope;
21800 }
21801 break;
21802 case DW_TAG_inlined_subroutine:
21803 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21804 finish_block. */
21805 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21806 SYMBOL_INLINED (sym) = 1;
21807 list_to_add = cu->list_in_scope;
21808 break;
21809 case DW_TAG_template_value_param:
21810 suppress_add = 1;
21811 /* Fall through. */
21812 case DW_TAG_constant:
21813 case DW_TAG_variable:
21814 case DW_TAG_member:
21815 /* Compilation with minimal debug info may result in
21816 variables with missing type entries. Change the
21817 misleading `void' type to something sensible. */
21818 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
21819 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21820
21821 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21822 /* In the case of DW_TAG_member, we should only be called for
21823 static const members. */
21824 if (die->tag == DW_TAG_member)
21825 {
21826 /* dwarf2_add_field uses die_is_declaration,
21827 so we do the same. */
21828 gdb_assert (die_is_declaration (die, cu));
21829 gdb_assert (attr);
21830 }
21831 if (attr != nullptr)
21832 {
21833 dwarf2_const_value (attr, sym, cu);
21834 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21835 if (!suppress_add)
21836 {
21837 if (attr2 != nullptr && attr2->as_boolean ())
21838 list_to_add = cu->get_builder ()->get_global_symbols ();
21839 else
21840 list_to_add = cu->list_in_scope;
21841 }
21842 break;
21843 }
21844 attr = dwarf2_attr (die, DW_AT_location, cu);
21845 if (attr != nullptr)
21846 {
21847 var_decode_location (attr, sym, cu);
21848 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21849
21850 /* Fortran explicitly imports any global symbols to the local
21851 scope by DW_TAG_common_block. */
21852 if (cu->per_cu->lang == language_fortran && die->parent
21853 && die->parent->tag == DW_TAG_common_block)
21854 attr2 = NULL;
21855
21856 if (SYMBOL_CLASS (sym) == LOC_STATIC
21857 && SYMBOL_VALUE_ADDRESS (sym) == 0
21858 && !per_objfile->per_bfd->has_section_at_zero)
21859 {
21860 /* When a static variable is eliminated by the linker,
21861 the corresponding debug information is not stripped
21862 out, but the variable address is set to null;
21863 do not add such variables into symbol table. */
21864 }
21865 else if (attr2 != nullptr && attr2->as_boolean ())
21866 {
21867 if (SYMBOL_CLASS (sym) == LOC_STATIC
21868 && (objfile->flags & OBJF_MAINLINE) == 0
21869 && per_objfile->per_bfd->can_copy)
21870 {
21871 /* A global static variable might be subject to
21872 copy relocation. We first check for a local
21873 minsym, though, because maybe the symbol was
21874 marked hidden, in which case this would not
21875 apply. */
21876 bound_minimal_symbol found
21877 = (lookup_minimal_symbol_linkage
21878 (sym->linkage_name (), objfile));
21879 if (found.minsym != nullptr)
21880 sym->maybe_copied = 1;
21881 }
21882
21883 /* A variable with DW_AT_external is never static,
21884 but it may be block-scoped. */
21885 list_to_add
21886 = ((cu->list_in_scope
21887 == cu->get_builder ()->get_file_symbols ())
21888 ? cu->get_builder ()->get_global_symbols ()
21889 : cu->list_in_scope);
21890 }
21891 else
21892 list_to_add = cu->list_in_scope;
21893 }
21894 else
21895 {
21896 /* We do not know the address of this symbol.
21897 If it is an external symbol and we have type information
21898 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21899 The address of the variable will then be determined from
21900 the minimal symbol table whenever the variable is
21901 referenced. */
21902 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21903
21904 /* Fortran explicitly imports any global symbols to the local
21905 scope by DW_TAG_common_block. */
21906 if (cu->per_cu->lang == language_fortran && die->parent
21907 && die->parent->tag == DW_TAG_common_block)
21908 {
21909 /* SYMBOL_CLASS doesn't matter here because
21910 read_common_block is going to reset it. */
21911 if (!suppress_add)
21912 list_to_add = cu->list_in_scope;
21913 }
21914 else if (attr2 != nullptr && attr2->as_boolean ()
21915 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21916 {
21917 /* A variable with DW_AT_external is never static, but it
21918 may be block-scoped. */
21919 list_to_add
21920 = ((cu->list_in_scope
21921 == cu->get_builder ()->get_file_symbols ())
21922 ? cu->get_builder ()->get_global_symbols ()
21923 : cu->list_in_scope);
21924
21925 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21926 }
21927 else if (!die_is_declaration (die, cu))
21928 {
21929 /* Use the default LOC_OPTIMIZED_OUT class. */
21930 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21931 if (!suppress_add)
21932 list_to_add = cu->list_in_scope;
21933 }
21934 }
21935 break;
21936 case DW_TAG_formal_parameter:
21937 {
21938 /* If we are inside a function, mark this as an argument. If
21939 not, we might be looking at an argument to an inlined function
21940 when we do not have enough information to show inlined frames;
21941 pretend it's a local variable in that case so that the user can
21942 still see it. */
21943 struct context_stack *curr
21944 = cu->get_builder ()->get_current_context_stack ();
21945 if (curr != nullptr && curr->name != nullptr)
21946 SYMBOL_IS_ARGUMENT (sym) = 1;
21947 attr = dwarf2_attr (die, DW_AT_location, cu);
21948 if (attr != nullptr)
21949 {
21950 var_decode_location (attr, sym, cu);
21951 }
21952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21953 if (attr != nullptr)
21954 {
21955 dwarf2_const_value (attr, sym, cu);
21956 }
21957
21958 list_to_add = cu->list_in_scope;
21959 }
21960 break;
21961 case DW_TAG_unspecified_parameters:
21962 /* From varargs functions; gdb doesn't seem to have any
21963 interest in this information, so just ignore it for now.
21964 (FIXME?) */
21965 break;
21966 case DW_TAG_template_type_param:
21967 suppress_add = 1;
21968 /* Fall through. */
21969 case DW_TAG_class_type:
21970 case DW_TAG_interface_type:
21971 case DW_TAG_structure_type:
21972 case DW_TAG_union_type:
21973 case DW_TAG_set_type:
21974 case DW_TAG_enumeration_type:
21975 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21976 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21977
21978 {
21979 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21980 really ever be static objects: otherwise, if you try
21981 to, say, break of a class's method and you're in a file
21982 which doesn't mention that class, it won't work unless
21983 the check for all static symbols in lookup_symbol_aux
21984 saves you. See the OtherFileClass tests in
21985 gdb.c++/namespace.exp. */
21986
21987 if (!suppress_add)
21988 {
21989 buildsym_compunit *builder = cu->get_builder ();
21990 list_to_add
21991 = (cu->list_in_scope == builder->get_file_symbols ()
21992 && cu->per_cu->lang == language_cplus
21993 ? builder->get_global_symbols ()
21994 : cu->list_in_scope);
21995
21996 /* The semantics of C++ state that "struct foo {
21997 ... }" also defines a typedef for "foo". */
21998 if (cu->per_cu->lang == language_cplus
21999 || cu->per_cu->lang == language_ada
22000 || cu->per_cu->lang == language_d
22001 || cu->per_cu->lang == language_rust)
22002 {
22003 /* The symbol's name is already allocated along
22004 with this objfile, so we don't need to
22005 duplicate it for the type. */
22006 if (SYMBOL_TYPE (sym)->name () == 0)
22007 SYMBOL_TYPE (sym)->set_name (sym->search_name ());
22008 }
22009 }
22010 }
22011 break;
22012 case DW_TAG_typedef:
22013 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22014 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22015 list_to_add = cu->list_in_scope;
22016 break;
22017 case DW_TAG_array_type:
22018 case DW_TAG_base_type:
22019 case DW_TAG_subrange_type:
22020 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22021 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22022 list_to_add = cu->list_in_scope;
22023 break;
22024 case DW_TAG_enumerator:
22025 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22026 if (attr != nullptr)
22027 {
22028 dwarf2_const_value (attr, sym, cu);
22029 }
22030 {
22031 /* NOTE: carlton/2003-11-10: See comment above in the
22032 DW_TAG_class_type, etc. block. */
22033
22034 list_to_add
22035 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
22036 && cu->per_cu->lang == language_cplus
22037 ? cu->get_builder ()->get_global_symbols ()
22038 : cu->list_in_scope);
22039 }
22040 break;
22041 case DW_TAG_imported_declaration:
22042 case DW_TAG_namespace:
22043 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22044 list_to_add = cu->get_builder ()->get_global_symbols ();
22045 break;
22046 case DW_TAG_module:
22047 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22048 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
22049 list_to_add = cu->get_builder ()->get_global_symbols ();
22050 break;
22051 case DW_TAG_common_block:
22052 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
22053 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
22054 add_symbol_to_list (sym, cu->list_in_scope);
22055 break;
22056 default:
22057 /* Not a tag we recognize. Hopefully we aren't processing
22058 trash data, but since we must specifically ignore things
22059 we don't recognize, there is nothing else we should do at
22060 this point. */
22061 complaint (_("unsupported tag: '%s'"),
22062 dwarf_tag_name (die->tag));
22063 break;
22064 }
22065
22066 if (suppress_add)
22067 {
22068 sym->hash_next = objfile->template_symbols;
22069 objfile->template_symbols = sym;
22070 list_to_add = NULL;
22071 }
22072
22073 if (list_to_add != NULL)
22074 add_symbol_to_list (sym, list_to_add);
22075
22076 /* For the benefit of old versions of GCC, check for anonymous
22077 namespaces based on the demangled name. */
22078 if (!cu->processing_has_namespace_info
22079 && cu->per_cu->lang == language_cplus)
22080 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
22081 }
22082 return (sym);
22083 }
22084
22085 /* Given an attr with a DW_FORM_dataN value in host byte order,
22086 zero-extend it as appropriate for the symbol's type. The DWARF
22087 standard (v4) is not entirely clear about the meaning of using
22088 DW_FORM_dataN for a constant with a signed type, where the type is
22089 wider than the data. The conclusion of a discussion on the DWARF
22090 list was that this is unspecified. We choose to always zero-extend
22091 because that is the interpretation long in use by GCC. */
22092
22093 static gdb_byte *
22094 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22095 struct dwarf2_cu *cu, LONGEST *value, int bits)
22096 {
22097 struct objfile *objfile = cu->per_objfile->objfile;
22098 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22099 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22100 LONGEST l = attr->constant_value (0);
22101
22102 if (bits < sizeof (*value) * 8)
22103 {
22104 l &= ((LONGEST) 1 << bits) - 1;
22105 *value = l;
22106 }
22107 else if (bits == sizeof (*value) * 8)
22108 *value = l;
22109 else
22110 {
22111 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22112 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22113 return bytes;
22114 }
22115
22116 return NULL;
22117 }
22118
22119 /* Read a constant value from an attribute. Either set *VALUE, or if
22120 the value does not fit in *VALUE, set *BYTES - either already
22121 allocated on the objfile obstack, or newly allocated on OBSTACK,
22122 or, set *BATON, if we translated the constant to a location
22123 expression. */
22124
22125 static void
22126 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22127 const char *name, struct obstack *obstack,
22128 struct dwarf2_cu *cu,
22129 LONGEST *value, const gdb_byte **bytes,
22130 struct dwarf2_locexpr_baton **baton)
22131 {
22132 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22133 struct objfile *objfile = per_objfile->objfile;
22134 struct comp_unit_head *cu_header = &cu->header;
22135 struct dwarf_block *blk;
22136 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22137 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22138
22139 *value = 0;
22140 *bytes = NULL;
22141 *baton = NULL;
22142
22143 switch (attr->form)
22144 {
22145 case DW_FORM_addr:
22146 case DW_FORM_addrx:
22147 case DW_FORM_GNU_addr_index:
22148 {
22149 gdb_byte *data;
22150
22151 if (TYPE_LENGTH (type) != cu_header->addr_size)
22152 dwarf2_const_value_length_mismatch_complaint (name,
22153 cu_header->addr_size,
22154 TYPE_LENGTH (type));
22155 /* Symbols of this form are reasonably rare, so we just
22156 piggyback on the existing location code rather than writing
22157 a new implementation of symbol_computed_ops. */
22158 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22159 (*baton)->per_objfile = per_objfile;
22160 (*baton)->per_cu = cu->per_cu;
22161 gdb_assert ((*baton)->per_cu);
22162
22163 (*baton)->size = 2 + cu_header->addr_size;
22164 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22165 (*baton)->data = data;
22166
22167 data[0] = DW_OP_addr;
22168 store_unsigned_integer (&data[1], cu_header->addr_size,
22169 byte_order, attr->as_address ());
22170 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22171 }
22172 break;
22173 case DW_FORM_string:
22174 case DW_FORM_strp:
22175 case DW_FORM_strx:
22176 case DW_FORM_GNU_str_index:
22177 case DW_FORM_GNU_strp_alt:
22178 /* The string is already allocated on the objfile obstack, point
22179 directly to it. */
22180 *bytes = (const gdb_byte *) attr->as_string ();
22181 break;
22182 case DW_FORM_block1:
22183 case DW_FORM_block2:
22184 case DW_FORM_block4:
22185 case DW_FORM_block:
22186 case DW_FORM_exprloc:
22187 case DW_FORM_data16:
22188 blk = attr->as_block ();
22189 if (TYPE_LENGTH (type) != blk->size)
22190 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22191 TYPE_LENGTH (type));
22192 *bytes = blk->data;
22193 break;
22194
22195 /* The DW_AT_const_value attributes are supposed to carry the
22196 symbol's value "represented as it would be on the target
22197 architecture." By the time we get here, it's already been
22198 converted to host endianness, so we just need to sign- or
22199 zero-extend it as appropriate. */
22200 case DW_FORM_data1:
22201 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22202 break;
22203 case DW_FORM_data2:
22204 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22205 break;
22206 case DW_FORM_data4:
22207 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22208 break;
22209 case DW_FORM_data8:
22210 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22211 break;
22212
22213 case DW_FORM_sdata:
22214 case DW_FORM_implicit_const:
22215 *value = attr->as_signed ();
22216 break;
22217
22218 case DW_FORM_udata:
22219 *value = attr->as_unsigned ();
22220 break;
22221
22222 default:
22223 complaint (_("unsupported const value attribute form: '%s'"),
22224 dwarf_form_name (attr->form));
22225 *value = 0;
22226 break;
22227 }
22228 }
22229
22230
22231 /* Copy constant value from an attribute to a symbol. */
22232
22233 static void
22234 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22235 struct dwarf2_cu *cu)
22236 {
22237 struct objfile *objfile = cu->per_objfile->objfile;
22238 LONGEST value;
22239 const gdb_byte *bytes;
22240 struct dwarf2_locexpr_baton *baton;
22241
22242 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22243 sym->print_name (),
22244 &objfile->objfile_obstack, cu,
22245 &value, &bytes, &baton);
22246
22247 if (baton != NULL)
22248 {
22249 SYMBOL_LOCATION_BATON (sym) = baton;
22250 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22251 }
22252 else if (bytes != NULL)
22253 {
22254 SYMBOL_VALUE_BYTES (sym) = bytes;
22255 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22256 }
22257 else
22258 {
22259 SYMBOL_VALUE (sym) = value;
22260 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22261 }
22262 }
22263
22264 /* Return the type of the die in question using its DW_AT_type attribute. */
22265
22266 static struct type *
22267 die_type (struct die_info *die, struct dwarf2_cu *cu)
22268 {
22269 struct attribute *type_attr;
22270
22271 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22272 if (!type_attr)
22273 {
22274 struct objfile *objfile = cu->per_objfile->objfile;
22275 /* A missing DW_AT_type represents a void type. */
22276 return objfile_type (objfile)->builtin_void;
22277 }
22278
22279 return lookup_die_type (die, type_attr, cu);
22280 }
22281
22282 /* True iff CU's producer generates GNAT Ada auxiliary information
22283 that allows to find parallel types through that information instead
22284 of having to do expensive parallel lookups by type name. */
22285
22286 static int
22287 need_gnat_info (struct dwarf2_cu *cu)
22288 {
22289 /* Assume that the Ada compiler was GNAT, which always produces
22290 the auxiliary information. */
22291 return (cu->per_cu->lang == language_ada);
22292 }
22293
22294 /* Return the auxiliary type of the die in question using its
22295 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22296 attribute is not present. */
22297
22298 static struct type *
22299 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22300 {
22301 struct attribute *type_attr;
22302
22303 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22304 if (!type_attr)
22305 return NULL;
22306
22307 return lookup_die_type (die, type_attr, cu);
22308 }
22309
22310 /* If DIE has a descriptive_type attribute, then set the TYPE's
22311 descriptive type accordingly. */
22312
22313 static void
22314 set_descriptive_type (struct type *type, struct die_info *die,
22315 struct dwarf2_cu *cu)
22316 {
22317 struct type *descriptive_type = die_descriptive_type (die, cu);
22318
22319 if (descriptive_type)
22320 {
22321 ALLOCATE_GNAT_AUX_TYPE (type);
22322 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22323 }
22324 }
22325
22326 /* Return the containing type of the die in question using its
22327 DW_AT_containing_type attribute. */
22328
22329 static struct type *
22330 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22331 {
22332 struct attribute *type_attr;
22333 struct objfile *objfile = cu->per_objfile->objfile;
22334
22335 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22336 if (!type_attr)
22337 error (_("Dwarf Error: Problem turning containing type into gdb type "
22338 "[in module %s]"), objfile_name (objfile));
22339
22340 return lookup_die_type (die, type_attr, cu);
22341 }
22342
22343 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22344
22345 static struct type *
22346 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22347 {
22348 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22349 struct objfile *objfile = per_objfile->objfile;
22350 char *saved;
22351
22352 std::string message
22353 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22354 objfile_name (objfile),
22355 sect_offset_str (cu->header.sect_off),
22356 sect_offset_str (die->sect_off));
22357 saved = obstack_strdup (&objfile->objfile_obstack, message);
22358
22359 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22360 }
22361
22362 /* Look up the type of DIE in CU using its type attribute ATTR.
22363 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22364 DW_AT_containing_type.
22365 If there is no type substitute an error marker. */
22366
22367 static struct type *
22368 lookup_die_type (struct die_info *die, const struct attribute *attr,
22369 struct dwarf2_cu *cu)
22370 {
22371 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22372 struct objfile *objfile = per_objfile->objfile;
22373 struct type *this_type;
22374
22375 gdb_assert (attr->name == DW_AT_type
22376 || attr->name == DW_AT_GNAT_descriptive_type
22377 || attr->name == DW_AT_containing_type);
22378
22379 /* First see if we have it cached. */
22380
22381 if (attr->form == DW_FORM_GNU_ref_alt)
22382 {
22383 struct dwarf2_per_cu_data *per_cu;
22384 sect_offset sect_off = attr->get_ref_die_offset ();
22385
22386 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile);
22387 this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile);
22388 }
22389 else if (attr->form_is_ref ())
22390 {
22391 sect_offset sect_off = attr->get_ref_die_offset ();
22392
22393 this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile);
22394 }
22395 else if (attr->form == DW_FORM_ref_sig8)
22396 {
22397 ULONGEST signature = attr->as_signature ();
22398
22399 return get_signatured_type (die, signature, cu);
22400 }
22401 else
22402 {
22403 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22404 " at %s [in module %s]"),
22405 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22406 objfile_name (objfile));
22407 return build_error_marker_type (cu, die);
22408 }
22409
22410 /* If not cached we need to read it in. */
22411
22412 if (this_type == NULL)
22413 {
22414 struct die_info *type_die = NULL;
22415 struct dwarf2_cu *type_cu = cu;
22416
22417 if (attr->form_is_ref ())
22418 type_die = follow_die_ref (die, attr, &type_cu);
22419 if (type_die == NULL)
22420 return build_error_marker_type (cu, die);
22421 /* If we find the type now, it's probably because the type came
22422 from an inter-CU reference and the type's CU got expanded before
22423 ours. */
22424 this_type = read_type_die (type_die, type_cu);
22425 }
22426
22427 /* If we still don't have a type use an error marker. */
22428
22429 if (this_type == NULL)
22430 return build_error_marker_type (cu, die);
22431
22432 return this_type;
22433 }
22434
22435 /* Return the type in DIE, CU.
22436 Returns NULL for invalid types.
22437
22438 This first does a lookup in die_type_hash,
22439 and only reads the die in if necessary.
22440
22441 NOTE: This can be called when reading in partial or full symbols. */
22442
22443 static struct type *
22444 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22445 {
22446 struct type *this_type;
22447
22448 this_type = get_die_type (die, cu);
22449 if (this_type)
22450 return this_type;
22451
22452 return read_type_die_1 (die, cu);
22453 }
22454
22455 /* Read the type in DIE, CU.
22456 Returns NULL for invalid types. */
22457
22458 static struct type *
22459 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22460 {
22461 struct type *this_type = NULL;
22462
22463 switch (die->tag)
22464 {
22465 case DW_TAG_class_type:
22466 case DW_TAG_interface_type:
22467 case DW_TAG_structure_type:
22468 case DW_TAG_union_type:
22469 this_type = read_structure_type (die, cu);
22470 break;
22471 case DW_TAG_enumeration_type:
22472 this_type = read_enumeration_type (die, cu);
22473 break;
22474 case DW_TAG_subprogram:
22475 case DW_TAG_subroutine_type:
22476 case DW_TAG_inlined_subroutine:
22477 this_type = read_subroutine_type (die, cu);
22478 break;
22479 case DW_TAG_array_type:
22480 this_type = read_array_type (die, cu);
22481 break;
22482 case DW_TAG_set_type:
22483 this_type = read_set_type (die, cu);
22484 break;
22485 case DW_TAG_pointer_type:
22486 this_type = read_tag_pointer_type (die, cu);
22487 break;
22488 case DW_TAG_ptr_to_member_type:
22489 this_type = read_tag_ptr_to_member_type (die, cu);
22490 break;
22491 case DW_TAG_reference_type:
22492 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22493 break;
22494 case DW_TAG_rvalue_reference_type:
22495 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22496 break;
22497 case DW_TAG_const_type:
22498 this_type = read_tag_const_type (die, cu);
22499 break;
22500 case DW_TAG_volatile_type:
22501 this_type = read_tag_volatile_type (die, cu);
22502 break;
22503 case DW_TAG_restrict_type:
22504 this_type = read_tag_restrict_type (die, cu);
22505 break;
22506 case DW_TAG_string_type:
22507 this_type = read_tag_string_type (die, cu);
22508 break;
22509 case DW_TAG_typedef:
22510 this_type = read_typedef (die, cu);
22511 break;
22512 case DW_TAG_subrange_type:
22513 this_type = read_subrange_type (die, cu);
22514 break;
22515 case DW_TAG_base_type:
22516 this_type = read_base_type (die, cu);
22517 break;
22518 case DW_TAG_unspecified_type:
22519 this_type = read_unspecified_type (die, cu);
22520 break;
22521 case DW_TAG_namespace:
22522 this_type = read_namespace_type (die, cu);
22523 break;
22524 case DW_TAG_module:
22525 this_type = read_module_type (die, cu);
22526 break;
22527 case DW_TAG_atomic_type:
22528 this_type = read_tag_atomic_type (die, cu);
22529 break;
22530 default:
22531 complaint (_("unexpected tag in read_type_die: '%s'"),
22532 dwarf_tag_name (die->tag));
22533 break;
22534 }
22535
22536 return this_type;
22537 }
22538
22539 /* See if we can figure out if the class lives in a namespace. We do
22540 this by looking for a member function; its demangled name will
22541 contain namespace info, if there is any.
22542 Return the computed name or NULL.
22543 Space for the result is allocated on the objfile's obstack.
22544 This is the full-die version of guess_partial_die_structure_name.
22545 In this case we know DIE has no useful parent. */
22546
22547 static const char *
22548 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22549 {
22550 struct die_info *spec_die;
22551 struct dwarf2_cu *spec_cu;
22552 struct die_info *child;
22553 struct objfile *objfile = cu->per_objfile->objfile;
22554
22555 spec_cu = cu;
22556 spec_die = die_specification (die, &spec_cu);
22557 if (spec_die != NULL)
22558 {
22559 die = spec_die;
22560 cu = spec_cu;
22561 }
22562
22563 for (child = die->child;
22564 child != NULL;
22565 child = child->sibling)
22566 {
22567 if (child->tag == DW_TAG_subprogram)
22568 {
22569 const char *linkage_name = dw2_linkage_name (child, cu);
22570
22571 if (linkage_name != NULL)
22572 {
22573 gdb::unique_xmalloc_ptr<char> actual_name
22574 (cu->language_defn->class_name_from_physname (linkage_name));
22575 const char *name = NULL;
22576
22577 if (actual_name != NULL)
22578 {
22579 const char *die_name = dwarf2_name (die, cu);
22580
22581 if (die_name != NULL
22582 && strcmp (die_name, actual_name.get ()) != 0)
22583 {
22584 /* Strip off the class name from the full name.
22585 We want the prefix. */
22586 int die_name_len = strlen (die_name);
22587 int actual_name_len = strlen (actual_name.get ());
22588 const char *ptr = actual_name.get ();
22589
22590 /* Test for '::' as a sanity check. */
22591 if (actual_name_len > die_name_len + 2
22592 && ptr[actual_name_len - die_name_len - 1] == ':')
22593 name = obstack_strndup (
22594 &objfile->per_bfd->storage_obstack,
22595 ptr, actual_name_len - die_name_len - 2);
22596 }
22597 }
22598 return name;
22599 }
22600 }
22601 }
22602
22603 return NULL;
22604 }
22605
22606 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22607 prefix part in such case. See
22608 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22609
22610 static const char *
22611 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22612 {
22613 struct attribute *attr;
22614 const char *base;
22615
22616 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22617 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22618 return NULL;
22619
22620 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22621 return NULL;
22622
22623 attr = dw2_linkage_name_attr (die, cu);
22624 const char *attr_name = attr->as_string ();
22625 if (attr == NULL || attr_name == NULL)
22626 return NULL;
22627
22628 /* dwarf2_name had to be already called. */
22629 gdb_assert (attr->canonical_string_p ());
22630
22631 /* Strip the base name, keep any leading namespaces/classes. */
22632 base = strrchr (attr_name, ':');
22633 if (base == NULL || base == attr_name || base[-1] != ':')
22634 return "";
22635
22636 struct objfile *objfile = cu->per_objfile->objfile;
22637 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22638 attr_name,
22639 &base[-1] - attr_name);
22640 }
22641
22642 /* Return the name of the namespace/class that DIE is defined within,
22643 or "" if we can't tell. The caller should not xfree the result.
22644
22645 For example, if we're within the method foo() in the following
22646 code:
22647
22648 namespace N {
22649 class C {
22650 void foo () {
22651 }
22652 };
22653 }
22654
22655 then determine_prefix on foo's die will return "N::C". */
22656
22657 static const char *
22658 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22659 {
22660 dwarf2_per_objfile *per_objfile = cu->per_objfile;
22661 struct die_info *parent, *spec_die;
22662 struct dwarf2_cu *spec_cu;
22663 struct type *parent_type;
22664 const char *retval;
22665
22666 if (cu->per_cu->lang != language_cplus
22667 && cu->per_cu->lang != language_fortran
22668 && cu->per_cu->lang != language_d
22669 && cu->per_cu->lang != language_rust)
22670 return "";
22671
22672 retval = anonymous_struct_prefix (die, cu);
22673 if (retval)
22674 return retval;
22675
22676 /* We have to be careful in the presence of DW_AT_specification.
22677 For example, with GCC 3.4, given the code
22678
22679 namespace N {
22680 void foo() {
22681 // Definition of N::foo.
22682 }
22683 }
22684
22685 then we'll have a tree of DIEs like this:
22686
22687 1: DW_TAG_compile_unit
22688 2: DW_TAG_namespace // N
22689 3: DW_TAG_subprogram // declaration of N::foo
22690 4: DW_TAG_subprogram // definition of N::foo
22691 DW_AT_specification // refers to die #3
22692
22693 Thus, when processing die #4, we have to pretend that we're in
22694 the context of its DW_AT_specification, namely the contex of die
22695 #3. */
22696 spec_cu = cu;
22697 spec_die = die_specification (die, &spec_cu);
22698 if (spec_die == NULL)
22699 parent = die->parent;
22700 else
22701 {
22702 parent = spec_die->parent;
22703 cu = spec_cu;
22704 }
22705
22706 if (parent == NULL)
22707 return "";
22708 else if (parent->building_fullname)
22709 {
22710 const char *name;
22711 const char *parent_name;
22712
22713 /* It has been seen on RealView 2.2 built binaries,
22714 DW_TAG_template_type_param types actually _defined_ as
22715 children of the parent class:
22716
22717 enum E {};
22718 template class <class Enum> Class{};
22719 Class<enum E> class_e;
22720
22721 1: DW_TAG_class_type (Class)
22722 2: DW_TAG_enumeration_type (E)
22723 3: DW_TAG_enumerator (enum1:0)
22724 3: DW_TAG_enumerator (enum2:1)
22725 ...
22726 2: DW_TAG_template_type_param
22727 DW_AT_type DW_FORM_ref_udata (E)
22728
22729 Besides being broken debug info, it can put GDB into an
22730 infinite loop. Consider:
22731
22732 When we're building the full name for Class<E>, we'll start
22733 at Class, and go look over its template type parameters,
22734 finding E. We'll then try to build the full name of E, and
22735 reach here. We're now trying to build the full name of E,
22736 and look over the parent DIE for containing scope. In the
22737 broken case, if we followed the parent DIE of E, we'd again
22738 find Class, and once again go look at its template type
22739 arguments, etc., etc. Simply don't consider such parent die
22740 as source-level parent of this die (it can't be, the language
22741 doesn't allow it), and break the loop here. */
22742 name = dwarf2_name (die, cu);
22743 parent_name = dwarf2_name (parent, cu);
22744 complaint (_("template param type '%s' defined within parent '%s'"),
22745 name ? name : "<unknown>",
22746 parent_name ? parent_name : "<unknown>");
22747 return "";
22748 }
22749 else
22750 switch (parent->tag)
22751 {
22752 case DW_TAG_namespace:
22753 parent_type = read_type_die (parent, cu);
22754 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22755 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22756 Work around this problem here. */
22757 if (cu->per_cu->lang == language_cplus
22758 && strcmp (parent_type->name (), "::") == 0)
22759 return "";
22760 /* We give a name to even anonymous namespaces. */
22761 return parent_type->name ();
22762 case DW_TAG_class_type:
22763 case DW_TAG_interface_type:
22764 case DW_TAG_structure_type:
22765 case DW_TAG_union_type:
22766 case DW_TAG_module:
22767 parent_type = read_type_die (parent, cu);
22768 if (parent_type->name () != NULL)
22769 return parent_type->name ();
22770 else
22771 /* An anonymous structure is only allowed non-static data
22772 members; no typedefs, no member functions, et cetera.
22773 So it does not need a prefix. */
22774 return "";
22775 case DW_TAG_compile_unit:
22776 case DW_TAG_partial_unit:
22777 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22778 if (cu->per_cu->lang == language_cplus
22779 && !per_objfile->per_bfd->types.empty ()
22780 && die->child != NULL
22781 && (die->tag == DW_TAG_class_type
22782 || die->tag == DW_TAG_structure_type
22783 || die->tag == DW_TAG_union_type))
22784 {
22785 const char *name = guess_full_die_structure_name (die, cu);
22786 if (name != NULL)
22787 return name;
22788 }
22789 return "";
22790 case DW_TAG_subprogram:
22791 /* Nested subroutines in Fortran get a prefix with the name
22792 of the parent's subroutine. */
22793 if (cu->per_cu->lang == language_fortran)
22794 {
22795 if ((die->tag == DW_TAG_subprogram)
22796 && (dwarf2_name (parent, cu) != NULL))
22797 return dwarf2_name (parent, cu);
22798 }
22799 return "";
22800 case DW_TAG_enumeration_type:
22801 parent_type = read_type_die (parent, cu);
22802 if (parent_type->is_declared_class ())
22803 {
22804 if (parent_type->name () != NULL)
22805 return parent_type->name ();
22806 return "";
22807 }
22808 /* Fall through. */
22809 default:
22810 return determine_prefix (parent, cu);
22811 }
22812 }
22813
22814 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22815 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22816 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22817 an obconcat, otherwise allocate storage for the result. The CU argument is
22818 used to determine the language and hence, the appropriate separator. */
22819
22820 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22821
22822 static char *
22823 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22824 int physname, struct dwarf2_cu *cu)
22825 {
22826 const char *lead = "";
22827 const char *sep;
22828
22829 if (suffix == NULL || suffix[0] == '\0'
22830 || prefix == NULL || prefix[0] == '\0')
22831 sep = "";
22832 else if (cu->per_cu->lang == language_d)
22833 {
22834 /* For D, the 'main' function could be defined in any module, but it
22835 should never be prefixed. */
22836 if (strcmp (suffix, "D main") == 0)
22837 {
22838 prefix = "";
22839 sep = "";
22840 }
22841 else
22842 sep = ".";
22843 }
22844 else if (cu->per_cu->lang == language_fortran && physname)
22845 {
22846 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22847 DW_AT_MIPS_linkage_name is preferred and used instead. */
22848
22849 lead = "__";
22850 sep = "_MOD_";
22851 }
22852 else
22853 sep = "::";
22854
22855 if (prefix == NULL)
22856 prefix = "";
22857 if (suffix == NULL)
22858 suffix = "";
22859
22860 if (obs == NULL)
22861 {
22862 char *retval
22863 = ((char *)
22864 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22865
22866 strcpy (retval, lead);
22867 strcat (retval, prefix);
22868 strcat (retval, sep);
22869 strcat (retval, suffix);
22870 return retval;
22871 }
22872 else
22873 {
22874 /* We have an obstack. */
22875 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22876 }
22877 }
22878
22879 /* Get name of a die, return NULL if not found. */
22880
22881 static const char *
22882 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22883 struct objfile *objfile)
22884 {
22885 if (name && cu->per_cu->lang == language_cplus)
22886 {
22887 gdb::unique_xmalloc_ptr<char> canon_name
22888 = cp_canonicalize_string (name);
22889
22890 if (canon_name != nullptr)
22891 name = objfile->intern (canon_name.get ());
22892 }
22893
22894 return name;
22895 }
22896
22897 /* Get name of a die, return NULL if not found.
22898 Anonymous namespaces are converted to their magic string. */
22899
22900 static const char *
22901 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22902 {
22903 struct attribute *attr;
22904 struct objfile *objfile = cu->per_objfile->objfile;
22905
22906 attr = dwarf2_attr (die, DW_AT_name, cu);
22907 const char *attr_name = attr == nullptr ? nullptr : attr->as_string ();
22908 if (attr_name == nullptr
22909 && die->tag != DW_TAG_namespace
22910 && die->tag != DW_TAG_class_type
22911 && die->tag != DW_TAG_interface_type
22912 && die->tag != DW_TAG_structure_type
22913 && die->tag != DW_TAG_union_type)
22914 return NULL;
22915
22916 switch (die->tag)
22917 {
22918 case DW_TAG_compile_unit:
22919 case DW_TAG_partial_unit:
22920 /* Compilation units have a DW_AT_name that is a filename, not
22921 a source language identifier. */
22922 case DW_TAG_enumeration_type:
22923 case DW_TAG_enumerator:
22924 /* These tags always have simple identifiers already; no need
22925 to canonicalize them. */
22926 return attr_name;
22927
22928 case DW_TAG_namespace:
22929 if (attr_name != nullptr)
22930 return attr_name;
22931 return CP_ANONYMOUS_NAMESPACE_STR;
22932
22933 case DW_TAG_class_type:
22934 case DW_TAG_interface_type:
22935 case DW_TAG_structure_type:
22936 case DW_TAG_union_type:
22937 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22938 structures or unions. These were of the form "._%d" in GCC 4.1,
22939 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22940 and GCC 4.4. We work around this problem by ignoring these. */
22941 if (attr_name != nullptr
22942 && (startswith (attr_name, "._")
22943 || startswith (attr_name, "<anonymous")))
22944 return NULL;
22945
22946 /* GCC might emit a nameless typedef that has a linkage name. See
22947 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22948 if (!attr || attr_name == NULL)
22949 {
22950 attr = dw2_linkage_name_attr (die, cu);
22951 attr_name = attr == nullptr ? nullptr : attr->as_string ();
22952 if (attr == NULL || attr_name == NULL)
22953 return NULL;
22954
22955 /* Avoid demangling attr_name the second time on a second
22956 call for the same DIE. */
22957 if (!attr->canonical_string_p ())
22958 {
22959 gdb::unique_xmalloc_ptr<char> demangled
22960 (gdb_demangle (attr_name, DMGL_TYPES));
22961 if (demangled == nullptr)
22962 return nullptr;
22963
22964 attr->set_string_canonical (objfile->intern (demangled.get ()));
22965 attr_name = attr->as_string ();
22966 }
22967
22968 /* Strip any leading namespaces/classes, keep only the
22969 base name. DW_AT_name for named DIEs does not
22970 contain the prefixes. */
22971 const char *base = strrchr (attr_name, ':');
22972 if (base && base > attr_name && base[-1] == ':')
22973 return &base[1];
22974 else
22975 return attr_name;
22976 }
22977 break;
22978
22979 default:
22980 break;
22981 }
22982
22983 if (!attr->canonical_string_p ())
22984 attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu,
22985 objfile));
22986 return attr->as_string ();
22987 }
22988
22989 /* Return the die that this die in an extension of, or NULL if there
22990 is none. *EXT_CU is the CU containing DIE on input, and the CU
22991 containing the return value on output. */
22992
22993 static struct die_info *
22994 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22995 {
22996 struct attribute *attr;
22997
22998 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22999 if (attr == NULL)
23000 return NULL;
23001
23002 return follow_die_ref (die, attr, ext_cu);
23003 }
23004
23005 static void
23006 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23007 {
23008 unsigned int i;
23009
23010 print_spaces (indent, f);
23011 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23012 dwarf_tag_name (die->tag), die->abbrev,
23013 sect_offset_str (die->sect_off));
23014
23015 if (die->parent != NULL)
23016 {
23017 print_spaces (indent, f);
23018 fprintf_unfiltered (f, " parent at offset: %s\n",
23019 sect_offset_str (die->parent->sect_off));
23020 }
23021
23022 print_spaces (indent, f);
23023 fprintf_unfiltered (f, " has children: %s\n",
23024 dwarf_bool_name (die->child != NULL));
23025
23026 print_spaces (indent, f);
23027 fprintf_unfiltered (f, " attributes:\n");
23028
23029 for (i = 0; i < die->num_attrs; ++i)
23030 {
23031 print_spaces (indent, f);
23032 fprintf_unfiltered (f, " %s (%s) ",
23033 dwarf_attr_name (die->attrs[i].name),
23034 dwarf_form_name (die->attrs[i].form));
23035
23036 switch (die->attrs[i].form)
23037 {
23038 case DW_FORM_addr:
23039 case DW_FORM_addrx:
23040 case DW_FORM_GNU_addr_index:
23041 fprintf_unfiltered (f, "address: ");
23042 fputs_filtered (hex_string (die->attrs[i].as_address ()), f);
23043 break;
23044 case DW_FORM_block2:
23045 case DW_FORM_block4:
23046 case DW_FORM_block:
23047 case DW_FORM_block1:
23048 fprintf_unfiltered (f, "block: size %s",
23049 pulongest (die->attrs[i].as_block ()->size));
23050 break;
23051 case DW_FORM_exprloc:
23052 fprintf_unfiltered (f, "expression: size %s",
23053 pulongest (die->attrs[i].as_block ()->size));
23054 break;
23055 case DW_FORM_data16:
23056 fprintf_unfiltered (f, "constant of 16 bytes");
23057 break;
23058 case DW_FORM_ref_addr:
23059 fprintf_unfiltered (f, "ref address: ");
23060 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
23061 break;
23062 case DW_FORM_GNU_ref_alt:
23063 fprintf_unfiltered (f, "alt ref address: ");
23064 fputs_filtered (hex_string (die->attrs[i].as_unsigned ()), f);
23065 break;
23066 case DW_FORM_ref1:
23067 case DW_FORM_ref2:
23068 case DW_FORM_ref4:
23069 case DW_FORM_ref8:
23070 case DW_FORM_ref_udata:
23071 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23072 (long) (die->attrs[i].as_unsigned ()));
23073 break;
23074 case DW_FORM_data1:
23075 case DW_FORM_data2:
23076 case DW_FORM_data4:
23077 case DW_FORM_data8:
23078 case DW_FORM_udata:
23079 fprintf_unfiltered (f, "constant: %s",
23080 pulongest (die->attrs[i].as_unsigned ()));
23081 break;
23082 case DW_FORM_sec_offset:
23083 fprintf_unfiltered (f, "section offset: %s",
23084 pulongest (die->attrs[i].as_unsigned ()));
23085 break;
23086 case DW_FORM_ref_sig8:
23087 fprintf_unfiltered (f, "signature: %s",
23088 hex_string (die->attrs[i].as_signature ()));
23089 break;
23090 case DW_FORM_string:
23091 case DW_FORM_strp:
23092 case DW_FORM_line_strp:
23093 case DW_FORM_strx:
23094 case DW_FORM_GNU_str_index:
23095 case DW_FORM_GNU_strp_alt:
23096 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23097 die->attrs[i].as_string ()
23098 ? die->attrs[i].as_string () : "",
23099 die->attrs[i].canonical_string_p () ? "is" : "not");
23100 break;
23101 case DW_FORM_flag:
23102 if (die->attrs[i].as_boolean ())
23103 fprintf_unfiltered (f, "flag: TRUE");
23104 else
23105 fprintf_unfiltered (f, "flag: FALSE");
23106 break;
23107 case DW_FORM_flag_present:
23108 fprintf_unfiltered (f, "flag: TRUE");
23109 break;
23110 case DW_FORM_indirect:
23111 /* The reader will have reduced the indirect form to
23112 the "base form" so this form should not occur. */
23113 fprintf_unfiltered (f,
23114 "unexpected attribute form: DW_FORM_indirect");
23115 break;
23116 case DW_FORM_sdata:
23117 case DW_FORM_implicit_const:
23118 fprintf_unfiltered (f, "constant: %s",
23119 plongest (die->attrs[i].as_signed ()));
23120 break;
23121 default:
23122 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23123 die->attrs[i].form);
23124 break;
23125 }
23126 fprintf_unfiltered (f, "\n");
23127 }
23128 }
23129
23130 static void
23131 dump_die_for_error (struct die_info *die)
23132 {
23133 dump_die_shallow (gdb_stderr, 0, die);
23134 }
23135
23136 static void
23137 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23138 {
23139 int indent = level * 4;
23140
23141 gdb_assert (die != NULL);
23142
23143 if (level >= max_level)
23144 return;
23145
23146 dump_die_shallow (f, indent, die);
23147
23148 if (die->child != NULL)
23149 {
23150 print_spaces (indent, f);
23151 fprintf_unfiltered (f, " Children:");
23152 if (level + 1 < max_level)
23153 {
23154 fprintf_unfiltered (f, "\n");
23155 dump_die_1 (f, level + 1, max_level, die->child);
23156 }
23157 else
23158 {
23159 fprintf_unfiltered (f,
23160 " [not printed, max nesting level reached]\n");
23161 }
23162 }
23163
23164 if (die->sibling != NULL && level > 0)
23165 {
23166 dump_die_1 (f, level, max_level, die->sibling);
23167 }
23168 }
23169
23170 /* This is called from the pdie macro in gdbinit.in.
23171 It's not static so gcc will keep a copy callable from gdb. */
23172
23173 void
23174 dump_die (struct die_info *die, int max_level)
23175 {
23176 dump_die_1 (gdb_stdlog, 0, max_level, die);
23177 }
23178
23179 static void
23180 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23181 {
23182 void **slot;
23183
23184 slot = htab_find_slot_with_hash (cu->die_hash, die,
23185 to_underlying (die->sect_off),
23186 INSERT);
23187
23188 *slot = die;
23189 }
23190
23191 /* Follow reference or signature attribute ATTR of SRC_DIE.
23192 On entry *REF_CU is the CU of SRC_DIE.
23193 On exit *REF_CU is the CU of the result. */
23194
23195 static struct die_info *
23196 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23197 struct dwarf2_cu **ref_cu)
23198 {
23199 struct die_info *die;
23200
23201 if (attr->form_is_ref ())
23202 die = follow_die_ref (src_die, attr, ref_cu);
23203 else if (attr->form == DW_FORM_ref_sig8)
23204 die = follow_die_sig (src_die, attr, ref_cu);
23205 else
23206 {
23207 dump_die_for_error (src_die);
23208 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23209 objfile_name ((*ref_cu)->per_objfile->objfile));
23210 }
23211
23212 return die;
23213 }
23214
23215 /* Follow reference OFFSET.
23216 On entry *REF_CU is the CU of the source die referencing OFFSET.
23217 On exit *REF_CU is the CU of the result.
23218 Returns NULL if OFFSET is invalid. */
23219
23220 static struct die_info *
23221 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23222 struct dwarf2_cu **ref_cu)
23223 {
23224 struct die_info temp_die;
23225 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23226 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23227
23228 gdb_assert (cu->per_cu != NULL);
23229
23230 target_cu = cu;
23231
23232 dwarf_read_debug_printf_v ("source CU offset: %s, target offset: %s, "
23233 "source CU contains target offset: %d",
23234 sect_offset_str (cu->per_cu->sect_off),
23235 sect_offset_str (sect_off),
23236 cu->header.offset_in_cu_p (sect_off));
23237
23238 if (cu->per_cu->is_debug_types)
23239 {
23240 /* .debug_types CUs cannot reference anything outside their CU.
23241 If they need to, they have to reference a signatured type via
23242 DW_FORM_ref_sig8. */
23243 if (!cu->header.offset_in_cu_p (sect_off))
23244 return NULL;
23245 }
23246 else if (offset_in_dwz != cu->per_cu->is_dwz
23247 || !cu->header.offset_in_cu_p (sect_off))
23248 {
23249 struct dwarf2_per_cu_data *per_cu;
23250
23251 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23252 per_objfile);
23253
23254 dwarf_read_debug_printf_v ("target CU offset: %s, "
23255 "target CU DIEs loaded: %d",
23256 sect_offset_str (per_cu->sect_off),
23257 per_objfile->get_cu (per_cu) != nullptr);
23258
23259 /* If necessary, add it to the queue and load its DIEs.
23260
23261 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23262 it doesn't mean they are currently loaded. Since we require them
23263 to be loaded, we must check for ourselves. */
23264 if (maybe_queue_comp_unit (cu, per_cu, per_objfile, cu->per_cu->lang)
23265 || per_objfile->get_cu (per_cu) == nullptr)
23266 load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu),
23267 false, cu->per_cu->lang);
23268
23269 target_cu = per_objfile->get_cu (per_cu);
23270 gdb_assert (target_cu != nullptr);
23271 }
23272 else if (cu->dies == NULL)
23273 {
23274 /* We're loading full DIEs during partial symbol reading. */
23275 gdb_assert (per_objfile->per_bfd->reading_partial_symbols);
23276 load_full_comp_unit (cu->per_cu, per_objfile, cu, false,
23277 language_minimal);
23278 }
23279
23280 *ref_cu = target_cu;
23281 temp_die.sect_off = sect_off;
23282
23283 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23284 &temp_die,
23285 to_underlying (sect_off));
23286 }
23287
23288 /* Follow reference attribute ATTR of SRC_DIE.
23289 On entry *REF_CU is the CU of SRC_DIE.
23290 On exit *REF_CU is the CU of the result. */
23291
23292 static struct die_info *
23293 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23294 struct dwarf2_cu **ref_cu)
23295 {
23296 sect_offset sect_off = attr->get_ref_die_offset ();
23297 struct dwarf2_cu *cu = *ref_cu;
23298 struct die_info *die;
23299
23300 die = follow_die_offset (sect_off,
23301 (attr->form == DW_FORM_GNU_ref_alt
23302 || cu->per_cu->is_dwz),
23303 ref_cu);
23304 if (!die)
23305 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23306 "at %s [in module %s]"),
23307 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23308 objfile_name (cu->per_objfile->objfile));
23309
23310 return die;
23311 }
23312
23313 /* See read.h. */
23314
23315 struct dwarf2_locexpr_baton
23316 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23317 dwarf2_per_cu_data *per_cu,
23318 dwarf2_per_objfile *per_objfile,
23319 gdb::function_view<CORE_ADDR ()> get_frame_pc,
23320 bool resolve_abstract_p)
23321 {
23322 struct die_info *die;
23323 struct attribute *attr;
23324 struct dwarf2_locexpr_baton retval;
23325 struct objfile *objfile = per_objfile->objfile;
23326
23327 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23328 if (cu == nullptr)
23329 cu = load_cu (per_cu, per_objfile, false);
23330
23331 if (cu == nullptr)
23332 {
23333 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23334 Instead just throw an error, not much else we can do. */
23335 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23336 sect_offset_str (sect_off), objfile_name (objfile));
23337 }
23338
23339 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23340 if (!die)
23341 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23342 sect_offset_str (sect_off), objfile_name (objfile));
23343
23344 attr = dwarf2_attr (die, DW_AT_location, cu);
23345 if (!attr && resolve_abstract_p
23346 && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off)
23347 != per_objfile->per_bfd->abstract_to_concrete.end ()))
23348 {
23349 CORE_ADDR pc = get_frame_pc ();
23350 CORE_ADDR baseaddr = objfile->text_section_offset ();
23351 struct gdbarch *gdbarch = objfile->arch ();
23352
23353 for (const auto &cand_off
23354 : per_objfile->per_bfd->abstract_to_concrete[die->sect_off])
23355 {
23356 struct dwarf2_cu *cand_cu = cu;
23357 struct die_info *cand
23358 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23359 if (!cand
23360 || !cand->parent
23361 || cand->parent->tag != DW_TAG_subprogram)
23362 continue;
23363
23364 CORE_ADDR pc_low, pc_high;
23365 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23366 if (pc_low == ((CORE_ADDR) -1))
23367 continue;
23368 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23369 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23370 if (!(pc_low <= pc && pc < pc_high))
23371 continue;
23372
23373 die = cand;
23374 attr = dwarf2_attr (die, DW_AT_location, cu);
23375 break;
23376 }
23377 }
23378
23379 if (!attr)
23380 {
23381 /* DWARF: "If there is no such attribute, then there is no effect.".
23382 DATA is ignored if SIZE is 0. */
23383
23384 retval.data = NULL;
23385 retval.size = 0;
23386 }
23387 else if (attr->form_is_section_offset ())
23388 {
23389 struct dwarf2_loclist_baton loclist_baton;
23390 CORE_ADDR pc = get_frame_pc ();
23391 size_t size;
23392
23393 fill_in_loclist_baton (cu, &loclist_baton, attr);
23394
23395 retval.data = dwarf2_find_location_expression (&loclist_baton,
23396 &size, pc);
23397 retval.size = size;
23398 }
23399 else
23400 {
23401 if (!attr->form_is_block ())
23402 error (_("Dwarf Error: DIE at %s referenced in module %s "
23403 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23404 sect_offset_str (sect_off), objfile_name (objfile));
23405
23406 struct dwarf_block *block = attr->as_block ();
23407 retval.data = block->data;
23408 retval.size = block->size;
23409 }
23410 retval.per_objfile = per_objfile;
23411 retval.per_cu = cu->per_cu;
23412
23413 per_objfile->age_comp_units ();
23414
23415 return retval;
23416 }
23417
23418 /* See read.h. */
23419
23420 struct dwarf2_locexpr_baton
23421 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23422 dwarf2_per_cu_data *per_cu,
23423 dwarf2_per_objfile *per_objfile,
23424 gdb::function_view<CORE_ADDR ()> get_frame_pc)
23425 {
23426 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23427
23428 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile,
23429 get_frame_pc);
23430 }
23431
23432 /* Write a constant of a given type as target-ordered bytes into
23433 OBSTACK. */
23434
23435 static const gdb_byte *
23436 write_constant_as_bytes (struct obstack *obstack,
23437 enum bfd_endian byte_order,
23438 struct type *type,
23439 ULONGEST value,
23440 LONGEST *len)
23441 {
23442 gdb_byte *result;
23443
23444 *len = TYPE_LENGTH (type);
23445 result = (gdb_byte *) obstack_alloc (obstack, *len);
23446 store_unsigned_integer (result, *len, byte_order, value);
23447
23448 return result;
23449 }
23450
23451 /* See read.h. */
23452
23453 const gdb_byte *
23454 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23455 dwarf2_per_cu_data *per_cu,
23456 dwarf2_per_objfile *per_objfile,
23457 obstack *obstack,
23458 LONGEST *len)
23459 {
23460 struct die_info *die;
23461 struct attribute *attr;
23462 const gdb_byte *result = NULL;
23463 struct type *type;
23464 LONGEST value;
23465 enum bfd_endian byte_order;
23466 struct objfile *objfile = per_objfile->objfile;
23467
23468 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23469 if (cu == nullptr)
23470 cu = load_cu (per_cu, per_objfile, false);
23471
23472 if (cu == nullptr)
23473 {
23474 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23475 Instead just throw an error, not much else we can do. */
23476 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23477 sect_offset_str (sect_off), objfile_name (objfile));
23478 }
23479
23480 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23481 if (!die)
23482 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23483 sect_offset_str (sect_off), objfile_name (objfile));
23484
23485 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23486 if (attr == NULL)
23487 return NULL;
23488
23489 byte_order = (bfd_big_endian (objfile->obfd)
23490 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23491
23492 switch (attr->form)
23493 {
23494 case DW_FORM_addr:
23495 case DW_FORM_addrx:
23496 case DW_FORM_GNU_addr_index:
23497 {
23498 gdb_byte *tem;
23499
23500 *len = cu->header.addr_size;
23501 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23502 store_unsigned_integer (tem, *len, byte_order, attr->as_address ());
23503 result = tem;
23504 }
23505 break;
23506 case DW_FORM_string:
23507 case DW_FORM_strp:
23508 case DW_FORM_strx:
23509 case DW_FORM_GNU_str_index:
23510 case DW_FORM_GNU_strp_alt:
23511 /* The string is already allocated on the objfile obstack, point
23512 directly to it. */
23513 {
23514 const char *attr_name = attr->as_string ();
23515 result = (const gdb_byte *) attr_name;
23516 *len = strlen (attr_name);
23517 }
23518 break;
23519 case DW_FORM_block1:
23520 case DW_FORM_block2:
23521 case DW_FORM_block4:
23522 case DW_FORM_block:
23523 case DW_FORM_exprloc:
23524 case DW_FORM_data16:
23525 {
23526 struct dwarf_block *block = attr->as_block ();
23527 result = block->data;
23528 *len = block->size;
23529 }
23530 break;
23531
23532 /* The DW_AT_const_value attributes are supposed to carry the
23533 symbol's value "represented as it would be on the target
23534 architecture." By the time we get here, it's already been
23535 converted to host endianness, so we just need to sign- or
23536 zero-extend it as appropriate. */
23537 case DW_FORM_data1:
23538 type = die_type (die, cu);
23539 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23540 if (result == NULL)
23541 result = write_constant_as_bytes (obstack, byte_order,
23542 type, value, len);
23543 break;
23544 case DW_FORM_data2:
23545 type = die_type (die, cu);
23546 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23547 if (result == NULL)
23548 result = write_constant_as_bytes (obstack, byte_order,
23549 type, value, len);
23550 break;
23551 case DW_FORM_data4:
23552 type = die_type (die, cu);
23553 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23554 if (result == NULL)
23555 result = write_constant_as_bytes (obstack, byte_order,
23556 type, value, len);
23557 break;
23558 case DW_FORM_data8:
23559 type = die_type (die, cu);
23560 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23561 if (result == NULL)
23562 result = write_constant_as_bytes (obstack, byte_order,
23563 type, value, len);
23564 break;
23565
23566 case DW_FORM_sdata:
23567 case DW_FORM_implicit_const:
23568 type = die_type (die, cu);
23569 result = write_constant_as_bytes (obstack, byte_order,
23570 type, attr->as_signed (), len);
23571 break;
23572
23573 case DW_FORM_udata:
23574 type = die_type (die, cu);
23575 result = write_constant_as_bytes (obstack, byte_order,
23576 type, attr->as_unsigned (), len);
23577 break;
23578
23579 default:
23580 complaint (_("unsupported const value attribute form: '%s'"),
23581 dwarf_form_name (attr->form));
23582 break;
23583 }
23584
23585 return result;
23586 }
23587
23588 /* See read.h. */
23589
23590 struct type *
23591 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23592 dwarf2_per_cu_data *per_cu,
23593 dwarf2_per_objfile *per_objfile,
23594 const char **var_name)
23595 {
23596 struct die_info *die;
23597
23598 dwarf2_cu *cu = per_objfile->get_cu (per_cu);
23599 if (cu == nullptr)
23600 cu = load_cu (per_cu, per_objfile, false);
23601
23602 if (cu == nullptr)
23603 return nullptr;
23604
23605 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23606 if (!die)
23607 return NULL;
23608
23609 if (var_name != nullptr)
23610 *var_name = var_decl_name (die, cu);
23611 return die_type (die, cu);
23612 }
23613
23614 /* See read.h. */
23615
23616 struct type *
23617 dwarf2_get_die_type (cu_offset die_offset,
23618 dwarf2_per_cu_data *per_cu,
23619 dwarf2_per_objfile *per_objfile)
23620 {
23621 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23622 return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile);
23623 }
23624
23625 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23626 On entry *REF_CU is the CU of SRC_DIE.
23627 On exit *REF_CU is the CU of the result.
23628 Returns NULL if the referenced DIE isn't found. */
23629
23630 static struct die_info *
23631 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23632 struct dwarf2_cu **ref_cu)
23633 {
23634 struct die_info temp_die;
23635 struct dwarf2_cu *sig_cu;
23636 struct die_info *die;
23637 dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile;
23638
23639
23640 /* While it might be nice to assert sig_type->type == NULL here,
23641 we can get here for DW_AT_imported_declaration where we need
23642 the DIE not the type. */
23643
23644 /* If necessary, add it to the queue and load its DIEs.
23645
23646 Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs,
23647 it doesn't mean they are currently loaded. Since we require them
23648 to be loaded, we must check for ourselves. */
23649 if (maybe_queue_comp_unit (*ref_cu, sig_type, per_objfile,
23650 language_minimal)
23651 || per_objfile->get_cu (sig_type) == nullptr)
23652 read_signatured_type (sig_type, per_objfile);
23653
23654 sig_cu = per_objfile->get_cu (sig_type);
23655 gdb_assert (sig_cu != NULL);
23656 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23657 temp_die.sect_off = sig_type->type_offset_in_section;
23658 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23659 to_underlying (temp_die.sect_off));
23660 if (die)
23661 {
23662 /* For .gdb_index version 7 keep track of included TUs.
23663 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23664 if (per_objfile->per_bfd->index_table != NULL
23665 && per_objfile->per_bfd->index_table->version <= 7)
23666 {
23667 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23668 }
23669
23670 *ref_cu = sig_cu;
23671 return die;
23672 }
23673
23674 return NULL;
23675 }
23676
23677 /* Follow signatured type referenced by ATTR in SRC_DIE.
23678 On entry *REF_CU is the CU of SRC_DIE.
23679 On exit *REF_CU is the CU of the result.
23680 The result is the DIE of the type.
23681 If the referenced type cannot be found an error is thrown. */
23682
23683 static struct die_info *
23684 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23685 struct dwarf2_cu **ref_cu)
23686 {
23687 ULONGEST signature = attr->as_signature ();
23688 struct signatured_type *sig_type;
23689 struct die_info *die;
23690
23691 gdb_assert (attr->form == DW_FORM_ref_sig8);
23692
23693 sig_type = lookup_signatured_type (*ref_cu, signature);
23694 /* sig_type will be NULL if the signatured type is missing from
23695 the debug info. */
23696 if (sig_type == NULL)
23697 {
23698 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23699 " from DIE at %s [in module %s]"),
23700 hex_string (signature), sect_offset_str (src_die->sect_off),
23701 objfile_name ((*ref_cu)->per_objfile->objfile));
23702 }
23703
23704 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23705 if (die == NULL)
23706 {
23707 dump_die_for_error (src_die);
23708 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23709 " from DIE at %s [in module %s]"),
23710 hex_string (signature), sect_offset_str (src_die->sect_off),
23711 objfile_name ((*ref_cu)->per_objfile->objfile));
23712 }
23713
23714 return die;
23715 }
23716
23717 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23718 reading in and processing the type unit if necessary. */
23719
23720 static struct type *
23721 get_signatured_type (struct die_info *die, ULONGEST signature,
23722 struct dwarf2_cu *cu)
23723 {
23724 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23725 struct signatured_type *sig_type;
23726 struct dwarf2_cu *type_cu;
23727 struct die_info *type_die;
23728 struct type *type;
23729
23730 sig_type = lookup_signatured_type (cu, signature);
23731 /* sig_type will be NULL if the signatured type is missing from
23732 the debug info. */
23733 if (sig_type == NULL)
23734 {
23735 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23736 " from DIE at %s [in module %s]"),
23737 hex_string (signature), sect_offset_str (die->sect_off),
23738 objfile_name (per_objfile->objfile));
23739 return build_error_marker_type (cu, die);
23740 }
23741
23742 /* If we already know the type we're done. */
23743 type = per_objfile->get_type_for_signatured_type (sig_type);
23744 if (type != nullptr)
23745 return type;
23746
23747 type_cu = cu;
23748 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23749 if (type_die != NULL)
23750 {
23751 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23752 is created. This is important, for example, because for c++ classes
23753 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23754 type = read_type_die (type_die, type_cu);
23755 if (type == NULL)
23756 {
23757 complaint (_("Dwarf Error: Cannot build signatured type %s"
23758 " referenced from DIE at %s [in module %s]"),
23759 hex_string (signature), sect_offset_str (die->sect_off),
23760 objfile_name (per_objfile->objfile));
23761 type = build_error_marker_type (cu, die);
23762 }
23763 }
23764 else
23765 {
23766 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23767 " from DIE at %s [in module %s]"),
23768 hex_string (signature), sect_offset_str (die->sect_off),
23769 objfile_name (per_objfile->objfile));
23770 type = build_error_marker_type (cu, die);
23771 }
23772
23773 per_objfile->set_type_for_signatured_type (sig_type, type);
23774
23775 return type;
23776 }
23777
23778 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23779 reading in and processing the type unit if necessary. */
23780
23781 static struct type *
23782 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23783 struct dwarf2_cu *cu) /* ARI: editCase function */
23784 {
23785 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23786 if (attr->form_is_ref ())
23787 {
23788 struct dwarf2_cu *type_cu = cu;
23789 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23790
23791 return read_type_die (type_die, type_cu);
23792 }
23793 else if (attr->form == DW_FORM_ref_sig8)
23794 {
23795 return get_signatured_type (die, attr->as_signature (), cu);
23796 }
23797 else
23798 {
23799 dwarf2_per_objfile *per_objfile = cu->per_objfile;
23800
23801 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23802 " at %s [in module %s]"),
23803 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23804 objfile_name (per_objfile->objfile));
23805 return build_error_marker_type (cu, die);
23806 }
23807 }
23808
23809 /* Load the DIEs associated with type unit PER_CU into memory. */
23810
23811 static void
23812 load_full_type_unit (dwarf2_per_cu_data *per_cu,
23813 dwarf2_per_objfile *per_objfile)
23814 {
23815 struct signatured_type *sig_type;
23816
23817 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23818 gdb_assert (! per_cu->type_unit_group_p ());
23819
23820 /* We have the per_cu, but we need the signatured_type.
23821 Fortunately this is an easy translation. */
23822 gdb_assert (per_cu->is_debug_types);
23823 sig_type = (struct signatured_type *) per_cu;
23824
23825 gdb_assert (per_objfile->get_cu (per_cu) == nullptr);
23826
23827 read_signatured_type (sig_type, per_objfile);
23828
23829 gdb_assert (per_objfile->get_cu (per_cu) != nullptr);
23830 }
23831
23832 /* Read in a signatured type and build its CU and DIEs.
23833 If the type is a stub for the real type in a DWO file,
23834 read in the real type from the DWO file as well. */
23835
23836 static void
23837 read_signatured_type (signatured_type *sig_type,
23838 dwarf2_per_objfile *per_objfile)
23839 {
23840 gdb_assert (sig_type->is_debug_types);
23841 gdb_assert (per_objfile->get_cu (sig_type) == nullptr);
23842
23843 cutu_reader reader (sig_type, per_objfile, nullptr, nullptr, false);
23844
23845 if (!reader.dummy_p)
23846 {
23847 struct dwarf2_cu *cu = reader.cu;
23848 const gdb_byte *info_ptr = reader.info_ptr;
23849
23850 gdb_assert (cu->die_hash == NULL);
23851 cu->die_hash =
23852 htab_create_alloc_ex (cu->header.length / 12,
23853 die_hash,
23854 die_eq,
23855 NULL,
23856 &cu->comp_unit_obstack,
23857 hashtab_obstack_allocate,
23858 dummy_obstack_deallocate);
23859
23860 if (reader.comp_unit_die->has_children)
23861 reader.comp_unit_die->child
23862 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
23863 reader.comp_unit_die);
23864 cu->dies = reader.comp_unit_die;
23865 /* comp_unit_die is not stored in die_hash, no need. */
23866
23867 /* We try not to read any attributes in this function, because
23868 not all CUs needed for references have been loaded yet, and
23869 symbol table processing isn't initialized. But we have to
23870 set the CU language, or we won't be able to build types
23871 correctly. Similarly, if we do not read the producer, we can
23872 not apply producer-specific interpretation. */
23873 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23874
23875 reader.keep ();
23876 }
23877
23878 sig_type->tu_read = 1;
23879 }
23880
23881 /* Decode simple location descriptions.
23882 Given a pointer to a dwarf block that defines a location, compute
23883 the location and return the value. If COMPUTED is non-null, it is
23884 set to true to indicate that decoding was successful, and false
23885 otherwise. If COMPUTED is null, then this function may emit a
23886 complaint. */
23887
23888 static CORE_ADDR
23889 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
23890 {
23891 struct objfile *objfile = cu->per_objfile->objfile;
23892 size_t i;
23893 size_t size = blk->size;
23894 const gdb_byte *data = blk->data;
23895 CORE_ADDR stack[64];
23896 int stacki;
23897 unsigned int bytes_read, unsnd;
23898 gdb_byte op;
23899
23900 if (computed != nullptr)
23901 *computed = false;
23902
23903 i = 0;
23904 stacki = 0;
23905 stack[stacki] = 0;
23906 stack[++stacki] = 0;
23907
23908 while (i < size)
23909 {
23910 op = data[i++];
23911 switch (op)
23912 {
23913 case DW_OP_lit0:
23914 case DW_OP_lit1:
23915 case DW_OP_lit2:
23916 case DW_OP_lit3:
23917 case DW_OP_lit4:
23918 case DW_OP_lit5:
23919 case DW_OP_lit6:
23920 case DW_OP_lit7:
23921 case DW_OP_lit8:
23922 case DW_OP_lit9:
23923 case DW_OP_lit10:
23924 case DW_OP_lit11:
23925 case DW_OP_lit12:
23926 case DW_OP_lit13:
23927 case DW_OP_lit14:
23928 case DW_OP_lit15:
23929 case DW_OP_lit16:
23930 case DW_OP_lit17:
23931 case DW_OP_lit18:
23932 case DW_OP_lit19:
23933 case DW_OP_lit20:
23934 case DW_OP_lit21:
23935 case DW_OP_lit22:
23936 case DW_OP_lit23:
23937 case DW_OP_lit24:
23938 case DW_OP_lit25:
23939 case DW_OP_lit26:
23940 case DW_OP_lit27:
23941 case DW_OP_lit28:
23942 case DW_OP_lit29:
23943 case DW_OP_lit30:
23944 case DW_OP_lit31:
23945 stack[++stacki] = op - DW_OP_lit0;
23946 break;
23947
23948 case DW_OP_reg0:
23949 case DW_OP_reg1:
23950 case DW_OP_reg2:
23951 case DW_OP_reg3:
23952 case DW_OP_reg4:
23953 case DW_OP_reg5:
23954 case DW_OP_reg6:
23955 case DW_OP_reg7:
23956 case DW_OP_reg8:
23957 case DW_OP_reg9:
23958 case DW_OP_reg10:
23959 case DW_OP_reg11:
23960 case DW_OP_reg12:
23961 case DW_OP_reg13:
23962 case DW_OP_reg14:
23963 case DW_OP_reg15:
23964 case DW_OP_reg16:
23965 case DW_OP_reg17:
23966 case DW_OP_reg18:
23967 case DW_OP_reg19:
23968 case DW_OP_reg20:
23969 case DW_OP_reg21:
23970 case DW_OP_reg22:
23971 case DW_OP_reg23:
23972 case DW_OP_reg24:
23973 case DW_OP_reg25:
23974 case DW_OP_reg26:
23975 case DW_OP_reg27:
23976 case DW_OP_reg28:
23977 case DW_OP_reg29:
23978 case DW_OP_reg30:
23979 case DW_OP_reg31:
23980 stack[++stacki] = op - DW_OP_reg0;
23981 if (i < size)
23982 {
23983 if (computed == nullptr)
23984 dwarf2_complex_location_expr_complaint ();
23985 else
23986 return 0;
23987 }
23988 break;
23989
23990 case DW_OP_regx:
23991 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23992 i += bytes_read;
23993 stack[++stacki] = unsnd;
23994 if (i < size)
23995 {
23996 if (computed == nullptr)
23997 dwarf2_complex_location_expr_complaint ();
23998 else
23999 return 0;
24000 }
24001 break;
24002
24003 case DW_OP_addr:
24004 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
24005 &bytes_read);
24006 i += bytes_read;
24007 break;
24008
24009 case DW_OP_const1u:
24010 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24011 i += 1;
24012 break;
24013
24014 case DW_OP_const1s:
24015 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24016 i += 1;
24017 break;
24018
24019 case DW_OP_const2u:
24020 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24021 i += 2;
24022 break;
24023
24024 case DW_OP_const2s:
24025 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24026 i += 2;
24027 break;
24028
24029 case DW_OP_const4u:
24030 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24031 i += 4;
24032 break;
24033
24034 case DW_OP_const4s:
24035 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24036 i += 4;
24037 break;
24038
24039 case DW_OP_const8u:
24040 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24041 i += 8;
24042 break;
24043
24044 case DW_OP_constu:
24045 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24046 &bytes_read);
24047 i += bytes_read;
24048 break;
24049
24050 case DW_OP_consts:
24051 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24052 i += bytes_read;
24053 break;
24054
24055 case DW_OP_dup:
24056 stack[stacki + 1] = stack[stacki];
24057 stacki++;
24058 break;
24059
24060 case DW_OP_plus:
24061 stack[stacki - 1] += stack[stacki];
24062 stacki--;
24063 break;
24064
24065 case DW_OP_plus_uconst:
24066 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24067 &bytes_read);
24068 i += bytes_read;
24069 break;
24070
24071 case DW_OP_minus:
24072 stack[stacki - 1] -= stack[stacki];
24073 stacki--;
24074 break;
24075
24076 case DW_OP_deref:
24077 /* If we're not the last op, then we definitely can't encode
24078 this using GDB's address_class enum. This is valid for partial
24079 global symbols, although the variable's address will be bogus
24080 in the psymtab. */
24081 if (i < size)
24082 {
24083 if (computed == nullptr)
24084 dwarf2_complex_location_expr_complaint ();
24085 else
24086 return 0;
24087 }
24088 break;
24089
24090 case DW_OP_GNU_push_tls_address:
24091 case DW_OP_form_tls_address:
24092 /* The top of the stack has the offset from the beginning
24093 of the thread control block at which the variable is located. */
24094 /* Nothing should follow this operator, so the top of stack would
24095 be returned. */
24096 /* This is valid for partial global symbols, but the variable's
24097 address will be bogus in the psymtab. Make it always at least
24098 non-zero to not look as a variable garbage collected by linker
24099 which have DW_OP_addr 0. */
24100 if (i < size)
24101 {
24102 if (computed == nullptr)
24103 dwarf2_complex_location_expr_complaint ();
24104 else
24105 return 0;
24106 }
24107 stack[stacki]++;
24108 break;
24109
24110 case DW_OP_GNU_uninit:
24111 if (computed != nullptr)
24112 return 0;
24113 break;
24114
24115 case DW_OP_addrx:
24116 case DW_OP_GNU_addr_index:
24117 case DW_OP_GNU_const_index:
24118 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24119 &bytes_read);
24120 i += bytes_read;
24121 break;
24122
24123 default:
24124 if (computed == nullptr)
24125 {
24126 const char *name = get_DW_OP_name (op);
24127
24128 if (name)
24129 complaint (_("unsupported stack op: '%s'"),
24130 name);
24131 else
24132 complaint (_("unsupported stack op: '%02x'"),
24133 op);
24134 }
24135
24136 return (stack[stacki]);
24137 }
24138
24139 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24140 outside of the allocated space. Also enforce minimum>0. */
24141 if (stacki >= ARRAY_SIZE (stack) - 1)
24142 {
24143 if (computed == nullptr)
24144 complaint (_("location description stack overflow"));
24145 return 0;
24146 }
24147
24148 if (stacki <= 0)
24149 {
24150 if (computed == nullptr)
24151 complaint (_("location description stack underflow"));
24152 return 0;
24153 }
24154 }
24155
24156 if (computed != nullptr)
24157 *computed = true;
24158 return (stack[stacki]);
24159 }
24160
24161 /* memory allocation interface */
24162
24163 static struct dwarf_block *
24164 dwarf_alloc_block (struct dwarf2_cu *cu)
24165 {
24166 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24167 }
24168
24169 static struct die_info *
24170 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24171 {
24172 struct die_info *die;
24173 size_t size = sizeof (struct die_info);
24174
24175 if (num_attrs > 1)
24176 size += (num_attrs - 1) * sizeof (struct attribute);
24177
24178 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24179 memset (die, 0, sizeof (struct die_info));
24180 return (die);
24181 }
24182
24183 \f
24184
24185 /* Macro support. */
24186
24187 /* An overload of dwarf_decode_macros that finds the correct section
24188 and ensures it is read in before calling the other overload. */
24189
24190 static void
24191 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24192 int section_is_gnu)
24193 {
24194 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24195 struct objfile *objfile = per_objfile->objfile;
24196 const struct line_header *lh = cu->line_header;
24197 unsigned int offset_size = cu->header.offset_size;
24198 struct dwarf2_section_info *section;
24199 const char *section_name;
24200
24201 if (cu->dwo_unit != nullptr)
24202 {
24203 if (section_is_gnu)
24204 {
24205 section = &cu->dwo_unit->dwo_file->sections.macro;
24206 section_name = ".debug_macro.dwo";
24207 }
24208 else
24209 {
24210 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24211 section_name = ".debug_macinfo.dwo";
24212 }
24213 }
24214 else
24215 {
24216 if (section_is_gnu)
24217 {
24218 section = &per_objfile->per_bfd->macro;
24219 section_name = ".debug_macro";
24220 }
24221 else
24222 {
24223 section = &per_objfile->per_bfd->macinfo;
24224 section_name = ".debug_macinfo";
24225 }
24226 }
24227
24228 section->read (objfile);
24229 if (section->buffer == nullptr)
24230 {
24231 complaint (_("missing %s section"), section_name);
24232 return;
24233 }
24234
24235 buildsym_compunit *builder = cu->get_builder ();
24236
24237 struct dwarf2_section_info *str_offsets_section;
24238 struct dwarf2_section_info *str_section;
24239 gdb::optional<ULONGEST> str_offsets_base;
24240
24241 if (cu->dwo_unit != nullptr)
24242 {
24243 str_offsets_section = &cu->dwo_unit->dwo_file
24244 ->sections.str_offsets;
24245 str_section = &cu->dwo_unit->dwo_file->sections.str;
24246 str_offsets_base = cu->header.addr_size;
24247 }
24248 else
24249 {
24250 str_offsets_section = &per_objfile->per_bfd->str_offsets;
24251 str_section = &per_objfile->per_bfd->str;
24252 str_offsets_base = cu->str_offsets_base;
24253 }
24254
24255 dwarf_decode_macros (per_objfile, builder, section, lh,
24256 offset_size, offset, str_section, str_offsets_section,
24257 str_offsets_base, section_is_gnu);
24258 }
24259
24260 /* Return the .debug_loc section to use for CU.
24261 For DWO files use .debug_loc.dwo. */
24262
24263 static struct dwarf2_section_info *
24264 cu_debug_loc_section (struct dwarf2_cu *cu)
24265 {
24266 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24267
24268 if (cu->dwo_unit)
24269 {
24270 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24271
24272 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24273 }
24274 return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists
24275 : &per_objfile->per_bfd->loc);
24276 }
24277
24278 /* Return the .debug_rnglists section to use for CU. */
24279 static struct dwarf2_section_info *
24280 cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag)
24281 {
24282 if (cu->header.version < 5)
24283 error (_(".debug_rnglists section cannot be used in DWARF %d"),
24284 cu->header.version);
24285 struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile;
24286
24287 /* Make sure we read the .debug_rnglists section from the file that
24288 contains the DW_AT_ranges attribute we are reading. Normally that
24289 would be the .dwo file, if there is one. However for DW_TAG_compile_unit
24290 or DW_TAG_skeleton unit, we always want to read from objfile/linked
24291 program. */
24292 if (cu->dwo_unit != nullptr
24293 && tag != DW_TAG_compile_unit
24294 && tag != DW_TAG_skeleton_unit)
24295 {
24296 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24297
24298 if (sections->rnglists.size > 0)
24299 return &sections->rnglists;
24300 else
24301 error (_(".debug_rnglists section is missing from .dwo file."));
24302 }
24303 return &dwarf2_per_objfile->per_bfd->rnglists;
24304 }
24305
24306 /* A helper function that fills in a dwarf2_loclist_baton. */
24307
24308 static void
24309 fill_in_loclist_baton (struct dwarf2_cu *cu,
24310 struct dwarf2_loclist_baton *baton,
24311 const struct attribute *attr)
24312 {
24313 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24314 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24315
24316 section->read (per_objfile->objfile);
24317
24318 baton->per_objfile = per_objfile;
24319 baton->per_cu = cu->per_cu;
24320 gdb_assert (baton->per_cu);
24321 /* We don't know how long the location list is, but make sure we
24322 don't run off the edge of the section. */
24323 baton->size = section->size - attr->as_unsigned ();
24324 baton->data = section->buffer + attr->as_unsigned ();
24325 if (cu->base_address.has_value ())
24326 baton->base_address = *cu->base_address;
24327 else
24328 baton->base_address = 0;
24329 baton->from_dwo = cu->dwo_unit != NULL;
24330 }
24331
24332 static void
24333 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24334 struct dwarf2_cu *cu, int is_block)
24335 {
24336 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24337 struct objfile *objfile = per_objfile->objfile;
24338 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24339
24340 if (attr->form_is_section_offset ()
24341 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24342 the section. If so, fall through to the complaint in the
24343 other branch. */
24344 && attr->as_unsigned () < section->get_size (objfile))
24345 {
24346 struct dwarf2_loclist_baton *baton;
24347
24348 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24349
24350 fill_in_loclist_baton (cu, baton, attr);
24351
24352 if (!cu->base_address.has_value ())
24353 complaint (_("Location list used without "
24354 "specifying the CU base address."));
24355
24356 SYMBOL_ACLASS_INDEX (sym) = (is_block
24357 ? dwarf2_loclist_block_index
24358 : dwarf2_loclist_index);
24359 SYMBOL_LOCATION_BATON (sym) = baton;
24360 }
24361 else
24362 {
24363 struct dwarf2_locexpr_baton *baton;
24364
24365 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24366 baton->per_objfile = per_objfile;
24367 baton->per_cu = cu->per_cu;
24368 gdb_assert (baton->per_cu);
24369
24370 if (attr->form_is_block ())
24371 {
24372 /* Note that we're just copying the block's data pointer
24373 here, not the actual data. We're still pointing into the
24374 info_buffer for SYM's objfile; right now we never release
24375 that buffer, but when we do clean up properly this may
24376 need to change. */
24377 struct dwarf_block *block = attr->as_block ();
24378 baton->size = block->size;
24379 baton->data = block->data;
24380 }
24381 else
24382 {
24383 dwarf2_invalid_attrib_class_complaint ("location description",
24384 sym->natural_name ());
24385 baton->size = 0;
24386 }
24387
24388 SYMBOL_ACLASS_INDEX (sym) = (is_block
24389 ? dwarf2_locexpr_block_index
24390 : dwarf2_locexpr_index);
24391 SYMBOL_LOCATION_BATON (sym) = baton;
24392 }
24393 }
24394
24395 /* See read.h. */
24396
24397 const comp_unit_head *
24398 dwarf2_per_cu_data::get_header () const
24399 {
24400 if (!m_header_read_in)
24401 {
24402 const gdb_byte *info_ptr
24403 = this->section->buffer + to_underlying (this->sect_off);
24404
24405 memset (&m_header, 0, sizeof (m_header));
24406
24407 read_comp_unit_head (&m_header, info_ptr, this->section,
24408 rcuh_kind::COMPILE);
24409
24410 m_header_read_in = true;
24411 }
24412
24413 return &m_header;
24414 }
24415
24416 /* See read.h. */
24417
24418 int
24419 dwarf2_per_cu_data::addr_size () const
24420 {
24421 return this->get_header ()->addr_size;
24422 }
24423
24424 /* See read.h. */
24425
24426 int
24427 dwarf2_per_cu_data::offset_size () const
24428 {
24429 return this->get_header ()->offset_size;
24430 }
24431
24432 /* See read.h. */
24433
24434 int
24435 dwarf2_per_cu_data::ref_addr_size () const
24436 {
24437 const comp_unit_head *header = this->get_header ();
24438
24439 if (header->version == 2)
24440 return header->addr_size;
24441 else
24442 return header->offset_size;
24443 }
24444
24445 /* A helper function for dwarf2_find_containing_comp_unit that returns
24446 the index of the result, and that searches a vector. It will
24447 return a result even if the offset in question does not actually
24448 occur in any CU. This is separate so that it can be unit
24449 tested. */
24450
24451 static int
24452 dwarf2_find_containing_comp_unit
24453 (sect_offset sect_off,
24454 unsigned int offset_in_dwz,
24455 const std::vector<dwarf2_per_cu_data_up> &all_comp_units)
24456 {
24457 int low, high;
24458
24459 low = 0;
24460 high = all_comp_units.size () - 1;
24461 while (high > low)
24462 {
24463 struct dwarf2_per_cu_data *mid_cu;
24464 int mid = low + (high - low) / 2;
24465
24466 mid_cu = all_comp_units[mid].get ();
24467 if (mid_cu->is_dwz > offset_in_dwz
24468 || (mid_cu->is_dwz == offset_in_dwz
24469 && mid_cu->sect_off + mid_cu->length > sect_off))
24470 high = mid;
24471 else
24472 low = mid + 1;
24473 }
24474 gdb_assert (low == high);
24475 return low;
24476 }
24477
24478 /* Locate the .debug_info compilation unit from CU's objfile which contains
24479 the DIE at OFFSET. Raises an error on failure. */
24480
24481 static struct dwarf2_per_cu_data *
24482 dwarf2_find_containing_comp_unit (sect_offset sect_off,
24483 unsigned int offset_in_dwz,
24484 dwarf2_per_objfile *per_objfile)
24485 {
24486 int low = dwarf2_find_containing_comp_unit
24487 (sect_off, offset_in_dwz, per_objfile->per_bfd->all_comp_units);
24488 dwarf2_per_cu_data *this_cu
24489 = per_objfile->per_bfd->all_comp_units[low].get ();
24490
24491 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
24492 {
24493 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
24494 error (_("Dwarf Error: could not find partial DIE containing "
24495 "offset %s [in module %s]"),
24496 sect_offset_str (sect_off),
24497 bfd_get_filename (per_objfile->objfile->obfd));
24498
24499 gdb_assert (per_objfile->per_bfd->all_comp_units[low-1]->sect_off
24500 <= sect_off);
24501 return per_objfile->per_bfd->all_comp_units[low - 1].get ();
24502 }
24503 else
24504 {
24505 if (low == per_objfile->per_bfd->all_comp_units.size () - 1
24506 && sect_off >= this_cu->sect_off + this_cu->length)
24507 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
24508 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
24509 return this_cu;
24510 }
24511 }
24512
24513 #if GDB_SELF_TEST
24514
24515 namespace selftests {
24516 namespace find_containing_comp_unit {
24517
24518 static void
24519 run_test ()
24520 {
24521 dwarf2_per_cu_data_up one (new dwarf2_per_cu_data);
24522 dwarf2_per_cu_data *one_ptr = one.get ();
24523 dwarf2_per_cu_data_up two (new dwarf2_per_cu_data);
24524 dwarf2_per_cu_data *two_ptr = two.get ();
24525 dwarf2_per_cu_data_up three (new dwarf2_per_cu_data);
24526 dwarf2_per_cu_data *three_ptr = three.get ();
24527 dwarf2_per_cu_data_up four (new dwarf2_per_cu_data);
24528 dwarf2_per_cu_data *four_ptr = four.get ();
24529
24530 one->length = 5;
24531 two->sect_off = sect_offset (one->length);
24532 two->length = 7;
24533
24534 three->length = 5;
24535 three->is_dwz = 1;
24536 four->sect_off = sect_offset (three->length);
24537 four->length = 7;
24538 four->is_dwz = 1;
24539
24540 std::vector<dwarf2_per_cu_data_up> units;
24541 units.push_back (std::move (one));
24542 units.push_back (std::move (two));
24543 units.push_back (std::move (three));
24544 units.push_back (std::move (four));
24545
24546 int result;
24547
24548 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
24549 SELF_CHECK (units[result].get () == one_ptr);
24550 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
24551 SELF_CHECK (units[result].get () == one_ptr);
24552 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
24553 SELF_CHECK (units[result].get () == two_ptr);
24554
24555 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
24556 SELF_CHECK (units[result].get () == three_ptr);
24557 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
24558 SELF_CHECK (units[result].get () == three_ptr);
24559 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
24560 SELF_CHECK (units[result].get () == four_ptr);
24561 }
24562
24563 }
24564 }
24565
24566 #endif /* GDB_SELF_TEST */
24567
24568 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
24569
24570 static void
24571 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
24572 enum language pretend_language)
24573 {
24574 struct attribute *attr;
24575
24576 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
24577
24578 /* Set the language we're debugging. */
24579 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
24580 if (cu->producer != nullptr
24581 && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
24582 {
24583 /* The XLCL doesn't generate DW_LANG_OpenCL because this
24584 attribute is not standardised yet. As a workaround for the
24585 language detection we fall back to the DW_AT_producer
24586 string. */
24587 cu->per_cu->lang = language_opencl;
24588 }
24589 else if (cu->producer != nullptr
24590 && strstr (cu->producer, "GNU Go ") != NULL)
24591 {
24592 /* Similar hack for Go. */
24593 cu->per_cu->lang = language_go;
24594 }
24595 else if (attr != nullptr)
24596 cu->per_cu->lang = dwarf_lang_to_enum_language (attr->constant_value (0));
24597 else
24598 cu->per_cu->lang = pretend_language;
24599 cu->language_defn = language_def (cu->per_cu->lang);
24600 }
24601
24602 /* See read.h. */
24603
24604 dwarf2_cu *
24605 dwarf2_per_objfile::get_cu (dwarf2_per_cu_data *per_cu)
24606 {
24607 auto it = m_dwarf2_cus.find (per_cu);
24608 if (it == m_dwarf2_cus.end ())
24609 return nullptr;
24610
24611 return it->second;
24612 }
24613
24614 /* See read.h. */
24615
24616 void
24617 dwarf2_per_objfile::set_cu (dwarf2_per_cu_data *per_cu, dwarf2_cu *cu)
24618 {
24619 gdb_assert (this->get_cu (per_cu) == nullptr);
24620
24621 m_dwarf2_cus[per_cu] = cu;
24622 }
24623
24624 /* See read.h. */
24625
24626 void
24627 dwarf2_per_objfile::age_comp_units ()
24628 {
24629 dwarf_read_debug_printf_v ("running");
24630
24631 /* This is not expected to be called in the middle of CU expansion. There is
24632 an invariant that if a CU is in the CUs-to-expand queue, its DIEs are
24633 loaded in memory. Calling age_comp_units while the queue is in use could
24634 make us free the DIEs for a CU that is in the queue and therefore break
24635 that invariant. */
24636 gdb_assert (!this->per_bfd->queue.has_value ());
24637
24638 /* Start by clearing all marks. */
24639 for (auto pair : m_dwarf2_cus)
24640 pair.second->clear_mark ();
24641
24642 /* Traverse all CUs, mark them and their dependencies if used recently
24643 enough. */
24644 for (auto pair : m_dwarf2_cus)
24645 {
24646 dwarf2_cu *cu = pair.second;
24647
24648 cu->last_used++;
24649 if (cu->last_used <= dwarf_max_cache_age)
24650 cu->mark ();
24651 }
24652
24653 /* Delete all CUs still not marked. */
24654 for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();)
24655 {
24656 dwarf2_cu *cu = it->second;
24657
24658 if (!cu->is_marked ())
24659 {
24660 dwarf_read_debug_printf_v ("deleting old CU %s",
24661 sect_offset_str (cu->per_cu->sect_off));
24662 delete cu;
24663 it = m_dwarf2_cus.erase (it);
24664 }
24665 else
24666 it++;
24667 }
24668 }
24669
24670 /* See read.h. */
24671
24672 void
24673 dwarf2_per_objfile::remove_cu (dwarf2_per_cu_data *per_cu)
24674 {
24675 auto it = m_dwarf2_cus.find (per_cu);
24676 if (it == m_dwarf2_cus.end ())
24677 return;
24678
24679 delete it->second;
24680
24681 m_dwarf2_cus.erase (it);
24682 }
24683
24684 dwarf2_per_objfile::~dwarf2_per_objfile ()
24685 {
24686 remove_all_cus ();
24687 }
24688
24689 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
24690 We store these in a hash table separate from the DIEs, and preserve them
24691 when the DIEs are flushed out of cache.
24692
24693 The CU "per_cu" pointer is needed because offset alone is not enough to
24694 uniquely identify the type. A file may have multiple .debug_types sections,
24695 or the type may come from a DWO file. Furthermore, while it's more logical
24696 to use per_cu->section+offset, with Fission the section with the data is in
24697 the DWO file but we don't know that section at the point we need it.
24698 We have to use something in dwarf2_per_cu_data (or the pointer to it)
24699 because we can enter the lookup routine, get_die_type_at_offset, from
24700 outside this file, and thus won't necessarily have PER_CU->cu.
24701 Fortunately, PER_CU is stable for the life of the objfile. */
24702
24703 struct dwarf2_per_cu_offset_and_type
24704 {
24705 const struct dwarf2_per_cu_data *per_cu;
24706 sect_offset sect_off;
24707 struct type *type;
24708 };
24709
24710 /* Hash function for a dwarf2_per_cu_offset_and_type. */
24711
24712 static hashval_t
24713 per_cu_offset_and_type_hash (const void *item)
24714 {
24715 const struct dwarf2_per_cu_offset_and_type *ofs
24716 = (const struct dwarf2_per_cu_offset_and_type *) item;
24717
24718 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
24719 }
24720
24721 /* Equality function for a dwarf2_per_cu_offset_and_type. */
24722
24723 static int
24724 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
24725 {
24726 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
24727 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
24728 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
24729 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
24730
24731 return (ofs_lhs->per_cu == ofs_rhs->per_cu
24732 && ofs_lhs->sect_off == ofs_rhs->sect_off);
24733 }
24734
24735 /* Set the type associated with DIE to TYPE. Save it in CU's hash
24736 table if necessary. For convenience, return TYPE.
24737
24738 The DIEs reading must have careful ordering to:
24739 * Not cause infinite loops trying to read in DIEs as a prerequisite for
24740 reading current DIE.
24741 * Not trying to dereference contents of still incompletely read in types
24742 while reading in other DIEs.
24743 * Enable referencing still incompletely read in types just by a pointer to
24744 the type without accessing its fields.
24745
24746 Therefore caller should follow these rules:
24747 * Try to fetch any prerequisite types we may need to build this DIE type
24748 before building the type and calling set_die_type.
24749 * After building type call set_die_type for current DIE as soon as
24750 possible before fetching more types to complete the current type.
24751 * Make the type as complete as possible before fetching more types. */
24752
24753 static struct type *
24754 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
24755 bool skip_data_location)
24756 {
24757 dwarf2_per_objfile *per_objfile = cu->per_objfile;
24758 struct dwarf2_per_cu_offset_and_type **slot, ofs;
24759 struct objfile *objfile = per_objfile->objfile;
24760 struct attribute *attr;
24761 struct dynamic_prop prop;
24762
24763 /* For Ada types, make sure that the gnat-specific data is always
24764 initialized (if not already set). There are a few types where
24765 we should not be doing so, because the type-specific area is
24766 already used to hold some other piece of info (eg: TYPE_CODE_FLT
24767 where the type-specific area is used to store the floatformat).
24768 But this is not a problem, because the gnat-specific information
24769 is actually not needed for these types. */
24770 if (need_gnat_info (cu)
24771 && type->code () != TYPE_CODE_FUNC
24772 && type->code () != TYPE_CODE_FLT
24773 && type->code () != TYPE_CODE_METHODPTR
24774 && type->code () != TYPE_CODE_MEMBERPTR
24775 && type->code () != TYPE_CODE_METHOD
24776 && type->code () != TYPE_CODE_FIXED_POINT
24777 && !HAVE_GNAT_AUX_INFO (type))
24778 INIT_GNAT_SPECIFIC (type);
24779
24780 /* Read DW_AT_allocated and set in type. */
24781 attr = dwarf2_attr (die, DW_AT_allocated, cu);
24782 if (attr != NULL)
24783 {
24784 struct type *prop_type = cu->addr_sized_int_type (false);
24785 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24786 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
24787 }
24788
24789 /* Read DW_AT_associated and set in type. */
24790 attr = dwarf2_attr (die, DW_AT_associated, cu);
24791 if (attr != NULL)
24792 {
24793 struct type *prop_type = cu->addr_sized_int_type (false);
24794 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
24795 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
24796 }
24797
24798 /* Read DW_AT_data_location and set in type. */
24799 if (!skip_data_location)
24800 {
24801 attr = dwarf2_attr (die, DW_AT_data_location, cu);
24802 if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ()))
24803 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
24804 }
24805
24806 if (per_objfile->die_type_hash == NULL)
24807 per_objfile->die_type_hash
24808 = htab_up (htab_create_alloc (127,
24809 per_cu_offset_and_type_hash,
24810 per_cu_offset_and_type_eq,
24811 NULL, xcalloc, xfree));
24812
24813 ofs.per_cu = cu->per_cu;
24814 ofs.sect_off = die->sect_off;
24815 ofs.type = type;
24816 slot = (struct dwarf2_per_cu_offset_and_type **)
24817 htab_find_slot (per_objfile->die_type_hash.get (), &ofs, INSERT);
24818 if (*slot)
24819 complaint (_("A problem internal to GDB: DIE %s has type already set"),
24820 sect_offset_str (die->sect_off));
24821 *slot = XOBNEW (&objfile->objfile_obstack,
24822 struct dwarf2_per_cu_offset_and_type);
24823 **slot = ofs;
24824 return type;
24825 }
24826
24827 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
24828 or return NULL if the die does not have a saved type. */
24829
24830 static struct type *
24831 get_die_type_at_offset (sect_offset sect_off,
24832 dwarf2_per_cu_data *per_cu,
24833 dwarf2_per_objfile *per_objfile)
24834 {
24835 struct dwarf2_per_cu_offset_and_type *slot, ofs;
24836
24837 if (per_objfile->die_type_hash == NULL)
24838 return NULL;
24839
24840 ofs.per_cu = per_cu;
24841 ofs.sect_off = sect_off;
24842 slot = ((struct dwarf2_per_cu_offset_and_type *)
24843 htab_find (per_objfile->die_type_hash.get (), &ofs));
24844 if (slot)
24845 return slot->type;
24846 else
24847 return NULL;
24848 }
24849
24850 /* Look up the type for DIE in CU in die_type_hash,
24851 or return NULL if DIE does not have a saved type. */
24852
24853 static struct type *
24854 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
24855 {
24856 return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile);
24857 }
24858
24859 /* Trivial hash function for partial_die_info: the hash value of a DIE
24860 is its offset in .debug_info for this objfile. */
24861
24862 static hashval_t
24863 partial_die_hash (const void *item)
24864 {
24865 const struct partial_die_info *part_die
24866 = (const struct partial_die_info *) item;
24867
24868 return to_underlying (part_die->sect_off);
24869 }
24870
24871 /* Trivial comparison function for partial_die_info structures: two DIEs
24872 are equal if they have the same offset. */
24873
24874 static int
24875 partial_die_eq (const void *item_lhs, const void *item_rhs)
24876 {
24877 const struct partial_die_info *part_die_lhs
24878 = (const struct partial_die_info *) item_lhs;
24879 const struct partial_die_info *part_die_rhs
24880 = (const struct partial_die_info *) item_rhs;
24881
24882 return part_die_lhs->sect_off == part_die_rhs->sect_off;
24883 }
24884
24885 struct cmd_list_element *set_dwarf_cmdlist;
24886 struct cmd_list_element *show_dwarf_cmdlist;
24887
24888 static void
24889 show_check_physname (struct ui_file *file, int from_tty,
24890 struct cmd_list_element *c, const char *value)
24891 {
24892 fprintf_filtered (file,
24893 _("Whether to check \"physname\" is %s.\n"),
24894 value);
24895 }
24896
24897 void _initialize_dwarf2_read ();
24898 void
24899 _initialize_dwarf2_read ()
24900 {
24901 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
24902 Set DWARF specific variables.\n\
24903 Configure DWARF variables such as the cache size."),
24904 &set_dwarf_cmdlist,
24905 0/*allow-unknown*/, &maintenance_set_cmdlist);
24906
24907 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
24908 Show DWARF specific variables.\n\
24909 Show DWARF variables such as the cache size."),
24910 &show_dwarf_cmdlist,
24911 0/*allow-unknown*/, &maintenance_show_cmdlist);
24912
24913 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
24914 &dwarf_max_cache_age, _("\
24915 Set the upper bound on the age of cached DWARF compilation units."), _("\
24916 Show the upper bound on the age of cached DWARF compilation units."), _("\
24917 A higher limit means that cached compilation units will be stored\n\
24918 in memory longer, and more total memory will be used. Zero disables\n\
24919 caching, which can slow down startup."),
24920 NULL,
24921 show_dwarf_max_cache_age,
24922 &set_dwarf_cmdlist,
24923 &show_dwarf_cmdlist);
24924
24925 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
24926 Set debugging of the DWARF reader."), _("\
24927 Show debugging of the DWARF reader."), _("\
24928 When enabled (non-zero), debugging messages are printed during DWARF\n\
24929 reading and symtab expansion. A value of 1 (one) provides basic\n\
24930 information. A value greater than 1 provides more verbose information."),
24931 NULL,
24932 NULL,
24933 &setdebuglist, &showdebuglist);
24934
24935 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
24936 Set debugging of the DWARF DIE reader."), _("\
24937 Show debugging of the DWARF DIE reader."), _("\
24938 When enabled (non-zero), DIEs are dumped after they are read in.\n\
24939 The value is the maximum depth to print."),
24940 NULL,
24941 NULL,
24942 &setdebuglist, &showdebuglist);
24943
24944 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
24945 Set debugging of the dwarf line reader."), _("\
24946 Show debugging of the dwarf line reader."), _("\
24947 When enabled (non-zero), line number entries are dumped as they are read in.\n\
24948 A value of 1 (one) provides basic information.\n\
24949 A value greater than 1 provides more verbose information."),
24950 NULL,
24951 NULL,
24952 &setdebuglist, &showdebuglist);
24953
24954 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
24955 Set cross-checking of \"physname\" code against demangler."), _("\
24956 Show cross-checking of \"physname\" code against demangler."), _("\
24957 When enabled, GDB's internal \"physname\" code is checked against\n\
24958 the demangler."),
24959 NULL, show_check_physname,
24960 &setdebuglist, &showdebuglist);
24961
24962 add_setshow_boolean_cmd ("use-deprecated-index-sections",
24963 no_class, &use_deprecated_index_sections, _("\
24964 Set whether to use deprecated gdb_index sections."), _("\
24965 Show whether to use deprecated gdb_index sections."), _("\
24966 When enabled, deprecated .gdb_index sections are used anyway.\n\
24967 Normally they are ignored either because of a missing feature or\n\
24968 performance issue.\n\
24969 Warning: This option must be enabled before gdb reads the file."),
24970 NULL,
24971 NULL,
24972 &setlist, &showlist);
24973
24974 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
24975 &dwarf2_locexpr_funcs);
24976 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
24977 &dwarf2_loclist_funcs);
24978
24979 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
24980 &dwarf2_block_frame_base_locexpr_funcs);
24981 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
24982 &dwarf2_block_frame_base_loclist_funcs);
24983
24984 #if GDB_SELF_TEST
24985 selftests::register_test ("dw2_expand_symtabs_matching",
24986 selftests::dw2_expand_symtabs_matching::run_test);
24987 selftests::register_test ("dwarf2_find_containing_comp_unit",
24988 selftests::find_containing_comp_unit::run_test);
24989 #endif
24990 }