]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
[gdb/symtab] Don't create duplicate psymtab for forward-imported CU
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 /* When reading a variant or variant part, we track a bit more
1086 information about the field, and store it in an object of this
1087 type. */
1088
1089 struct variant_field
1090 {
1091 /* If we see a DW_TAG_variant, then this will be the discriminant
1092 value. */
1093 ULONGEST discriminant_value;
1094 /* If we see a DW_TAG_variant, then this will be set if this is the
1095 default branch. */
1096 bool default_branch;
1097 /* While reading a DW_TAG_variant_part, this will be set if this
1098 field is the discriminant. */
1099 bool is_discriminant;
1100 };
1101
1102 struct nextfield
1103 {
1104 int accessibility = 0;
1105 int virtuality = 0;
1106 /* Extra information to describe a variant or variant part. */
1107 struct variant_field variant {};
1108 struct field field {};
1109 };
1110
1111 struct fnfieldlist
1112 {
1113 const char *name = nullptr;
1114 std::vector<struct fn_field> fnfields;
1115 };
1116
1117 /* The routines that read and process dies for a C struct or C++ class
1118 pass lists of data member fields and lists of member function fields
1119 in an instance of a field_info structure, as defined below. */
1120 struct field_info
1121 {
1122 /* List of data member and baseclasses fields. */
1123 std::vector<struct nextfield> fields;
1124 std::vector<struct nextfield> baseclasses;
1125
1126 /* Set if the accessibility of one of the fields is not public. */
1127 int non_public_fields = 0;
1128
1129 /* Member function fieldlist array, contains name of possibly overloaded
1130 member function, number of overloaded member functions and a pointer
1131 to the head of the member function field chain. */
1132 std::vector<struct fnfieldlist> fnfieldlists;
1133
1134 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1135 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1136 std::vector<struct decl_field> typedef_field_list;
1137
1138 /* Nested types defined by this class and the number of elements in this
1139 list. */
1140 std::vector<struct decl_field> nested_types_list;
1141
1142 /* Return the total number of fields (including baseclasses). */
1143 int nfields () const
1144 {
1145 return fields.size () + baseclasses.size ();
1146 }
1147 };
1148
1149 /* Loaded secondary compilation units are kept in memory until they
1150 have not been referenced for the processing of this many
1151 compilation units. Set this to zero to disable caching. Cache
1152 sizes of up to at least twenty will improve startup time for
1153 typical inter-CU-reference binaries, at an obvious memory cost. */
1154 static int dwarf_max_cache_age = 5;
1155 static void
1156 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1157 struct cmd_list_element *c, const char *value)
1158 {
1159 fprintf_filtered (file, _("The upper bound on the age of cached "
1160 "DWARF compilation units is %s.\n"),
1161 value);
1162 }
1163 \f
1164 /* local function prototypes */
1165
1166 static void dwarf2_find_base_address (struct die_info *die,
1167 struct dwarf2_cu *cu);
1168
1169 static dwarf2_psymtab *create_partial_symtab
1170 (struct dwarf2_per_cu_data *per_cu, const char *name);
1171
1172 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1173 const gdb_byte *info_ptr,
1174 struct die_info *type_unit_die);
1175
1176 static void dwarf2_build_psymtabs_hard
1177 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1178
1179 static void scan_partial_symbols (struct partial_die_info *,
1180 CORE_ADDR *, CORE_ADDR *,
1181 int, struct dwarf2_cu *);
1182
1183 static void add_partial_symbol (struct partial_die_info *,
1184 struct dwarf2_cu *);
1185
1186 static void add_partial_namespace (struct partial_die_info *pdi,
1187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1188 int set_addrmap, struct dwarf2_cu *cu);
1189
1190 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1191 CORE_ADDR *highpc, int set_addrmap,
1192 struct dwarf2_cu *cu);
1193
1194 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1195 struct dwarf2_cu *cu);
1196
1197 static void add_partial_subprogram (struct partial_die_info *pdi,
1198 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1199 int need_pc, struct dwarf2_cu *cu);
1200
1201 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1202
1203 static struct partial_die_info *load_partial_dies
1204 (const struct die_reader_specs *, const gdb_byte *, int);
1205
1206 /* A pair of partial_die_info and compilation unit. */
1207 struct cu_partial_die_info
1208 {
1209 /* The compilation unit of the partial_die_info. */
1210 struct dwarf2_cu *cu;
1211 /* A partial_die_info. */
1212 struct partial_die_info *pdi;
1213
1214 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1215 : cu (cu),
1216 pdi (pdi)
1217 { /* Nothing. */ }
1218
1219 private:
1220 cu_partial_die_info () = delete;
1221 };
1222
1223 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1224 struct dwarf2_cu *);
1225
1226 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1227 struct attribute *, struct attr_abbrev *,
1228 const gdb_byte *, bool *need_reprocess);
1229
1230 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1231 struct attribute *attr);
1232
1233 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1234
1235 static sect_offset read_abbrev_offset
1236 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1237 struct dwarf2_section_info *, sect_offset);
1238
1239 static const char *read_indirect_string
1240 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1241 const struct comp_unit_head *, unsigned int *);
1242
1243 static const char *read_indirect_string_at_offset
1244 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1245
1246 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1247 const gdb_byte *,
1248 unsigned int *);
1249
1250 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1251 ULONGEST str_index);
1252
1253 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1254 ULONGEST str_index);
1255
1256 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1257
1258 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1259 struct dwarf2_cu *);
1260
1261 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1262 struct dwarf2_cu *cu);
1263
1264 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1265
1266 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1267 struct dwarf2_cu *cu);
1268
1269 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1270
1271 static struct die_info *die_specification (struct die_info *die,
1272 struct dwarf2_cu **);
1273
1274 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1275 struct dwarf2_cu *cu);
1276
1277 static void dwarf_decode_lines (struct line_header *, const char *,
1278 struct dwarf2_cu *, dwarf2_psymtab *,
1279 CORE_ADDR, int decode_mapping);
1280
1281 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1282 const char *);
1283
1284 static struct symbol *new_symbol (struct die_info *, struct type *,
1285 struct dwarf2_cu *, struct symbol * = NULL);
1286
1287 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1288 struct dwarf2_cu *);
1289
1290 static void dwarf2_const_value_attr (const struct attribute *attr,
1291 struct type *type,
1292 const char *name,
1293 struct obstack *obstack,
1294 struct dwarf2_cu *cu, LONGEST *value,
1295 const gdb_byte **bytes,
1296 struct dwarf2_locexpr_baton **baton);
1297
1298 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1299
1300 static int need_gnat_info (struct dwarf2_cu *);
1301
1302 static struct type *die_descriptive_type (struct die_info *,
1303 struct dwarf2_cu *);
1304
1305 static void set_descriptive_type (struct type *, struct die_info *,
1306 struct dwarf2_cu *);
1307
1308 static struct type *die_containing_type (struct die_info *,
1309 struct dwarf2_cu *);
1310
1311 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1312 struct dwarf2_cu *);
1313
1314 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1315
1316 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1317
1318 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1319
1320 static char *typename_concat (struct obstack *obs, const char *prefix,
1321 const char *suffix, int physname,
1322 struct dwarf2_cu *cu);
1323
1324 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1325
1326 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1327
1328 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1329
1330 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1331
1332 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1333
1334 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1335
1336 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1337 struct dwarf2_cu *, dwarf2_psymtab *);
1338
1339 /* Return the .debug_loclists section to use for cu. */
1340 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1341
1342 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1343 values. Keep the items ordered with increasing constraints compliance. */
1344 enum pc_bounds_kind
1345 {
1346 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1347 PC_BOUNDS_NOT_PRESENT,
1348
1349 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1350 were present but they do not form a valid range of PC addresses. */
1351 PC_BOUNDS_INVALID,
1352
1353 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1354 PC_BOUNDS_RANGES,
1355
1356 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1357 PC_BOUNDS_HIGH_LOW,
1358 };
1359
1360 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1361 CORE_ADDR *, CORE_ADDR *,
1362 struct dwarf2_cu *,
1363 dwarf2_psymtab *);
1364
1365 static void get_scope_pc_bounds (struct die_info *,
1366 CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *);
1368
1369 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1370 CORE_ADDR, struct dwarf2_cu *);
1371
1372 static void dwarf2_add_field (struct field_info *, struct die_info *,
1373 struct dwarf2_cu *);
1374
1375 static void dwarf2_attach_fields_to_type (struct field_info *,
1376 struct type *, struct dwarf2_cu *);
1377
1378 static void dwarf2_add_member_fn (struct field_info *,
1379 struct die_info *, struct type *,
1380 struct dwarf2_cu *);
1381
1382 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1383 struct type *,
1384 struct dwarf2_cu *);
1385
1386 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1387
1388 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1389
1390 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1391
1392 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1393
1394 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1395
1396 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1397
1398 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1399
1400 static struct type *read_module_type (struct die_info *die,
1401 struct dwarf2_cu *cu);
1402
1403 static const char *namespace_name (struct die_info *die,
1404 int *is_anonymous, struct dwarf2_cu *);
1405
1406 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1407
1408 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1409
1410 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1411 struct dwarf2_cu *);
1412
1413 static struct die_info *read_die_and_siblings_1
1414 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1415 struct die_info *);
1416
1417 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1418 const gdb_byte *info_ptr,
1419 const gdb_byte **new_info_ptr,
1420 struct die_info *parent);
1421
1422 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1423 struct die_info **, const gdb_byte *,
1424 int);
1425
1426 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1427 struct die_info **, const gdb_byte *);
1428
1429 static void process_die (struct die_info *, struct dwarf2_cu *);
1430
1431 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1432 struct objfile *);
1433
1434 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1435
1436 static const char *dwarf2_full_name (const char *name,
1437 struct die_info *die,
1438 struct dwarf2_cu *cu);
1439
1440 static const char *dwarf2_physname (const char *name, struct die_info *die,
1441 struct dwarf2_cu *cu);
1442
1443 static struct die_info *dwarf2_extension (struct die_info *die,
1444 struct dwarf2_cu **);
1445
1446 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1447
1448 static void dump_die_for_error (struct die_info *);
1449
1450 static void dump_die_1 (struct ui_file *, int level, int max_level,
1451 struct die_info *);
1452
1453 /*static*/ void dump_die (struct die_info *, int max_level);
1454
1455 static void store_in_ref_table (struct die_info *,
1456 struct dwarf2_cu *);
1457
1458 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1459 const struct attribute *,
1460 struct dwarf2_cu **);
1461
1462 static struct die_info *follow_die_ref (struct die_info *,
1463 const struct attribute *,
1464 struct dwarf2_cu **);
1465
1466 static struct die_info *follow_die_sig (struct die_info *,
1467 const struct attribute *,
1468 struct dwarf2_cu **);
1469
1470 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1471 struct dwarf2_cu *);
1472
1473 static struct type *get_DW_AT_signature_type (struct die_info *,
1474 const struct attribute *,
1475 struct dwarf2_cu *);
1476
1477 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1478
1479 static void read_signatured_type (struct signatured_type *);
1480
1481 static int attr_to_dynamic_prop (const struct attribute *attr,
1482 struct die_info *die, struct dwarf2_cu *cu,
1483 struct dynamic_prop *prop, struct type *type);
1484
1485 /* memory allocation interface */
1486
1487 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1488
1489 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1490
1491 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1492
1493 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1494 struct dwarf2_loclist_baton *baton,
1495 const struct attribute *attr);
1496
1497 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1498 struct symbol *sym,
1499 struct dwarf2_cu *cu,
1500 int is_block);
1501
1502 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1503 const gdb_byte *info_ptr,
1504 struct abbrev_info *abbrev);
1505
1506 static hashval_t partial_die_hash (const void *item);
1507
1508 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1509
1510 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1511 (sect_offset sect_off, unsigned int offset_in_dwz,
1512 struct dwarf2_per_objfile *dwarf2_per_objfile);
1513
1514 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1515 struct die_info *comp_unit_die,
1516 enum language pretend_language);
1517
1518 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1519
1520 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1521
1522 static struct type *set_die_type (struct die_info *, struct type *,
1523 struct dwarf2_cu *);
1524
1525 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1526
1527 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1528
1529 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1530 enum language);
1531
1532 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1533 enum language);
1534
1535 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1536 enum language);
1537
1538 static void dwarf2_add_dependence (struct dwarf2_cu *,
1539 struct dwarf2_per_cu_data *);
1540
1541 static void dwarf2_mark (struct dwarf2_cu *);
1542
1543 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1544
1545 static struct type *get_die_type_at_offset (sect_offset,
1546 struct dwarf2_per_cu_data *);
1547
1548 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1549
1550 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1551 enum language pretend_language);
1552
1553 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1554
1555 /* Class, the destructor of which frees all allocated queue entries. This
1556 will only have work to do if an error was thrown while processing the
1557 dwarf. If no error was thrown then the queue entries should have all
1558 been processed, and freed, as we went along. */
1559
1560 class dwarf2_queue_guard
1561 {
1562 public:
1563 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1564 : m_per_objfile (per_objfile)
1565 {
1566 }
1567
1568 /* Free any entries remaining on the queue. There should only be
1569 entries left if we hit an error while processing the dwarf. */
1570 ~dwarf2_queue_guard ()
1571 {
1572 /* Ensure that no memory is allocated by the queue. */
1573 std::queue<dwarf2_queue_item> empty;
1574 std::swap (m_per_objfile->queue, empty);
1575 }
1576
1577 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1578
1579 private:
1580 dwarf2_per_objfile *m_per_objfile;
1581 };
1582
1583 dwarf2_queue_item::~dwarf2_queue_item ()
1584 {
1585 /* Anything still marked queued is likely to be in an
1586 inconsistent state, so discard it. */
1587 if (per_cu->queued)
1588 {
1589 if (per_cu->cu != NULL)
1590 free_one_cached_comp_unit (per_cu);
1591 per_cu->queued = 0;
1592 }
1593 }
1594
1595 /* The return type of find_file_and_directory. Note, the enclosed
1596 string pointers are only valid while this object is valid. */
1597
1598 struct file_and_directory
1599 {
1600 /* The filename. This is never NULL. */
1601 const char *name;
1602
1603 /* The compilation directory. NULL if not known. If we needed to
1604 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1605 points directly to the DW_AT_comp_dir string attribute owned by
1606 the obstack that owns the DIE. */
1607 const char *comp_dir;
1608
1609 /* If we needed to build a new string for comp_dir, this is what
1610 owns the storage. */
1611 std::string comp_dir_storage;
1612 };
1613
1614 static file_and_directory find_file_and_directory (struct die_info *die,
1615 struct dwarf2_cu *cu);
1616
1617 static htab_up allocate_signatured_type_table ();
1618
1619 static htab_up allocate_dwo_unit_table ();
1620
1621 static struct dwo_unit *lookup_dwo_unit_in_dwp
1622 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1623 struct dwp_file *dwp_file, const char *comp_dir,
1624 ULONGEST signature, int is_debug_types);
1625
1626 static struct dwp_file *get_dwp_file
1627 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1628
1629 static struct dwo_unit *lookup_dwo_comp_unit
1630 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1631
1632 static struct dwo_unit *lookup_dwo_type_unit
1633 (struct signatured_type *, const char *, const char *);
1634
1635 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1636
1637 /* A unique pointer to a dwo_file. */
1638
1639 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1640
1641 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1642
1643 static void check_producer (struct dwarf2_cu *cu);
1644
1645 static void free_line_header_voidp (void *arg);
1646 \f
1647 /* Various complaints about symbol reading that don't abort the process. */
1648
1649 static void
1650 dwarf2_debug_line_missing_file_complaint (void)
1651 {
1652 complaint (_(".debug_line section has line data without a file"));
1653 }
1654
1655 static void
1656 dwarf2_debug_line_missing_end_sequence_complaint (void)
1657 {
1658 complaint (_(".debug_line section has line "
1659 "program sequence without an end"));
1660 }
1661
1662 static void
1663 dwarf2_complex_location_expr_complaint (void)
1664 {
1665 complaint (_("location expression too complex"));
1666 }
1667
1668 static void
1669 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1670 int arg3)
1671 {
1672 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1673 arg1, arg2, arg3);
1674 }
1675
1676 static void
1677 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1678 {
1679 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1680 arg1, arg2);
1681 }
1682
1683 /* Hash function for line_header_hash. */
1684
1685 static hashval_t
1686 line_header_hash (const struct line_header *ofs)
1687 {
1688 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1689 }
1690
1691 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1692
1693 static hashval_t
1694 line_header_hash_voidp (const void *item)
1695 {
1696 const struct line_header *ofs = (const struct line_header *) item;
1697
1698 return line_header_hash (ofs);
1699 }
1700
1701 /* Equality function for line_header_hash. */
1702
1703 static int
1704 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1705 {
1706 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1707 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1708
1709 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1710 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1711 }
1712
1713 \f
1714
1715 /* See declaration. */
1716
1717 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1718 const dwarf2_debug_sections *names,
1719 bool can_copy_)
1720 : objfile (objfile_),
1721 can_copy (can_copy_)
1722 {
1723 if (names == NULL)
1724 names = &dwarf2_elf_names;
1725
1726 bfd *obfd = objfile->obfd;
1727
1728 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1729 locate_sections (obfd, sec, *names);
1730 }
1731
1732 dwarf2_per_objfile::~dwarf2_per_objfile ()
1733 {
1734 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1735 free_cached_comp_units ();
1736
1737 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1738 per_cu->imported_symtabs_free ();
1739
1740 for (signatured_type *sig_type : all_type_units)
1741 sig_type->per_cu.imported_symtabs_free ();
1742
1743 /* Everything else should be on the objfile obstack. */
1744 }
1745
1746 /* See declaration. */
1747
1748 void
1749 dwarf2_per_objfile::free_cached_comp_units ()
1750 {
1751 dwarf2_per_cu_data *per_cu = read_in_chain;
1752 dwarf2_per_cu_data **last_chain = &read_in_chain;
1753 while (per_cu != NULL)
1754 {
1755 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1756
1757 delete per_cu->cu;
1758 *last_chain = next_cu;
1759 per_cu = next_cu;
1760 }
1761 }
1762
1763 /* A helper class that calls free_cached_comp_units on
1764 destruction. */
1765
1766 class free_cached_comp_units
1767 {
1768 public:
1769
1770 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1771 : m_per_objfile (per_objfile)
1772 {
1773 }
1774
1775 ~free_cached_comp_units ()
1776 {
1777 m_per_objfile->free_cached_comp_units ();
1778 }
1779
1780 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1781
1782 private:
1783
1784 dwarf2_per_objfile *m_per_objfile;
1785 };
1786
1787 /* Try to locate the sections we need for DWARF 2 debugging
1788 information and return true if we have enough to do something.
1789 NAMES points to the dwarf2 section names, or is NULL if the standard
1790 ELF names are used. CAN_COPY is true for formats where symbol
1791 interposition is possible and so symbol values must follow copy
1792 relocation rules. */
1793
1794 int
1795 dwarf2_has_info (struct objfile *objfile,
1796 const struct dwarf2_debug_sections *names,
1797 bool can_copy)
1798 {
1799 if (objfile->flags & OBJF_READNEVER)
1800 return 0;
1801
1802 struct dwarf2_per_objfile *dwarf2_per_objfile
1803 = get_dwarf2_per_objfile (objfile);
1804
1805 if (dwarf2_per_objfile == NULL)
1806 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1807 names,
1808 can_copy);
1809
1810 return (!dwarf2_per_objfile->info.is_virtual
1811 && dwarf2_per_objfile->info.s.section != NULL
1812 && !dwarf2_per_objfile->abbrev.is_virtual
1813 && dwarf2_per_objfile->abbrev.s.section != NULL);
1814 }
1815
1816 /* When loading sections, we look either for uncompressed section or for
1817 compressed section names. */
1818
1819 static int
1820 section_is_p (const char *section_name,
1821 const struct dwarf2_section_names *names)
1822 {
1823 if (names->normal != NULL
1824 && strcmp (section_name, names->normal) == 0)
1825 return 1;
1826 if (names->compressed != NULL
1827 && strcmp (section_name, names->compressed) == 0)
1828 return 1;
1829 return 0;
1830 }
1831
1832 /* See declaration. */
1833
1834 void
1835 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1836 const dwarf2_debug_sections &names)
1837 {
1838 flagword aflag = bfd_section_flags (sectp);
1839
1840 if ((aflag & SEC_HAS_CONTENTS) == 0)
1841 {
1842 }
1843 else if (elf_section_data (sectp)->this_hdr.sh_size
1844 > bfd_get_file_size (abfd))
1845 {
1846 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1847 warning (_("Discarding section %s which has a section size (%s"
1848 ") larger than the file size [in module %s]"),
1849 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1850 bfd_get_filename (abfd));
1851 }
1852 else if (section_is_p (sectp->name, &names.info))
1853 {
1854 this->info.s.section = sectp;
1855 this->info.size = bfd_section_size (sectp);
1856 }
1857 else if (section_is_p (sectp->name, &names.abbrev))
1858 {
1859 this->abbrev.s.section = sectp;
1860 this->abbrev.size = bfd_section_size (sectp);
1861 }
1862 else if (section_is_p (sectp->name, &names.line))
1863 {
1864 this->line.s.section = sectp;
1865 this->line.size = bfd_section_size (sectp);
1866 }
1867 else if (section_is_p (sectp->name, &names.loc))
1868 {
1869 this->loc.s.section = sectp;
1870 this->loc.size = bfd_section_size (sectp);
1871 }
1872 else if (section_is_p (sectp->name, &names.loclists))
1873 {
1874 this->loclists.s.section = sectp;
1875 this->loclists.size = bfd_section_size (sectp);
1876 }
1877 else if (section_is_p (sectp->name, &names.macinfo))
1878 {
1879 this->macinfo.s.section = sectp;
1880 this->macinfo.size = bfd_section_size (sectp);
1881 }
1882 else if (section_is_p (sectp->name, &names.macro))
1883 {
1884 this->macro.s.section = sectp;
1885 this->macro.size = bfd_section_size (sectp);
1886 }
1887 else if (section_is_p (sectp->name, &names.str))
1888 {
1889 this->str.s.section = sectp;
1890 this->str.size = bfd_section_size (sectp);
1891 }
1892 else if (section_is_p (sectp->name, &names.str_offsets))
1893 {
1894 this->str_offsets.s.section = sectp;
1895 this->str_offsets.size = bfd_section_size (sectp);
1896 }
1897 else if (section_is_p (sectp->name, &names.line_str))
1898 {
1899 this->line_str.s.section = sectp;
1900 this->line_str.size = bfd_section_size (sectp);
1901 }
1902 else if (section_is_p (sectp->name, &names.addr))
1903 {
1904 this->addr.s.section = sectp;
1905 this->addr.size = bfd_section_size (sectp);
1906 }
1907 else if (section_is_p (sectp->name, &names.frame))
1908 {
1909 this->frame.s.section = sectp;
1910 this->frame.size = bfd_section_size (sectp);
1911 }
1912 else if (section_is_p (sectp->name, &names.eh_frame))
1913 {
1914 this->eh_frame.s.section = sectp;
1915 this->eh_frame.size = bfd_section_size (sectp);
1916 }
1917 else if (section_is_p (sectp->name, &names.ranges))
1918 {
1919 this->ranges.s.section = sectp;
1920 this->ranges.size = bfd_section_size (sectp);
1921 }
1922 else if (section_is_p (sectp->name, &names.rnglists))
1923 {
1924 this->rnglists.s.section = sectp;
1925 this->rnglists.size = bfd_section_size (sectp);
1926 }
1927 else if (section_is_p (sectp->name, &names.types))
1928 {
1929 struct dwarf2_section_info type_section;
1930
1931 memset (&type_section, 0, sizeof (type_section));
1932 type_section.s.section = sectp;
1933 type_section.size = bfd_section_size (sectp);
1934
1935 this->types.push_back (type_section);
1936 }
1937 else if (section_is_p (sectp->name, &names.gdb_index))
1938 {
1939 this->gdb_index.s.section = sectp;
1940 this->gdb_index.size = bfd_section_size (sectp);
1941 }
1942 else if (section_is_p (sectp->name, &names.debug_names))
1943 {
1944 this->debug_names.s.section = sectp;
1945 this->debug_names.size = bfd_section_size (sectp);
1946 }
1947 else if (section_is_p (sectp->name, &names.debug_aranges))
1948 {
1949 this->debug_aranges.s.section = sectp;
1950 this->debug_aranges.size = bfd_section_size (sectp);
1951 }
1952
1953 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1954 && bfd_section_vma (sectp) == 0)
1955 this->has_section_at_zero = true;
1956 }
1957
1958 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1959 SECTION_NAME. */
1960
1961 void
1962 dwarf2_get_section_info (struct objfile *objfile,
1963 enum dwarf2_section_enum sect,
1964 asection **sectp, const gdb_byte **bufp,
1965 bfd_size_type *sizep)
1966 {
1967 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1968 struct dwarf2_section_info *info;
1969
1970 /* We may see an objfile without any DWARF, in which case we just
1971 return nothing. */
1972 if (data == NULL)
1973 {
1974 *sectp = NULL;
1975 *bufp = NULL;
1976 *sizep = 0;
1977 return;
1978 }
1979 switch (sect)
1980 {
1981 case DWARF2_DEBUG_FRAME:
1982 info = &data->frame;
1983 break;
1984 case DWARF2_EH_FRAME:
1985 info = &data->eh_frame;
1986 break;
1987 default:
1988 gdb_assert_not_reached ("unexpected section");
1989 }
1990
1991 info->read (objfile);
1992
1993 *sectp = info->get_bfd_section ();
1994 *bufp = info->buffer;
1995 *sizep = info->size;
1996 }
1997
1998 /* A helper function to find the sections for a .dwz file. */
1999
2000 static void
2001 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2002 {
2003 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2004
2005 /* Note that we only support the standard ELF names, because .dwz
2006 is ELF-only (at the time of writing). */
2007 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2008 {
2009 dwz_file->abbrev.s.section = sectp;
2010 dwz_file->abbrev.size = bfd_section_size (sectp);
2011 }
2012 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2013 {
2014 dwz_file->info.s.section = sectp;
2015 dwz_file->info.size = bfd_section_size (sectp);
2016 }
2017 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2018 {
2019 dwz_file->str.s.section = sectp;
2020 dwz_file->str.size = bfd_section_size (sectp);
2021 }
2022 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2023 {
2024 dwz_file->line.s.section = sectp;
2025 dwz_file->line.size = bfd_section_size (sectp);
2026 }
2027 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2028 {
2029 dwz_file->macro.s.section = sectp;
2030 dwz_file->macro.size = bfd_section_size (sectp);
2031 }
2032 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2033 {
2034 dwz_file->gdb_index.s.section = sectp;
2035 dwz_file->gdb_index.size = bfd_section_size (sectp);
2036 }
2037 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2038 {
2039 dwz_file->debug_names.s.section = sectp;
2040 dwz_file->debug_names.size = bfd_section_size (sectp);
2041 }
2042 }
2043
2044 /* See dwarf2read.h. */
2045
2046 struct dwz_file *
2047 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2048 {
2049 const char *filename;
2050 bfd_size_type buildid_len_arg;
2051 size_t buildid_len;
2052 bfd_byte *buildid;
2053
2054 if (dwarf2_per_objfile->dwz_file != NULL)
2055 return dwarf2_per_objfile->dwz_file.get ();
2056
2057 bfd_set_error (bfd_error_no_error);
2058 gdb::unique_xmalloc_ptr<char> data
2059 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2060 &buildid_len_arg, &buildid));
2061 if (data == NULL)
2062 {
2063 if (bfd_get_error () == bfd_error_no_error)
2064 return NULL;
2065 error (_("could not read '.gnu_debugaltlink' section: %s"),
2066 bfd_errmsg (bfd_get_error ()));
2067 }
2068
2069 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2070
2071 buildid_len = (size_t) buildid_len_arg;
2072
2073 filename = data.get ();
2074
2075 std::string abs_storage;
2076 if (!IS_ABSOLUTE_PATH (filename))
2077 {
2078 gdb::unique_xmalloc_ptr<char> abs
2079 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2080
2081 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2082 filename = abs_storage.c_str ();
2083 }
2084
2085 /* First try the file name given in the section. If that doesn't
2086 work, try to use the build-id instead. */
2087 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2088 if (dwz_bfd != NULL)
2089 {
2090 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2091 dwz_bfd.reset (nullptr);
2092 }
2093
2094 if (dwz_bfd == NULL)
2095 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2096
2097 if (dwz_bfd == nullptr)
2098 {
2099 gdb::unique_xmalloc_ptr<char> alt_filename;
2100 const char *origname = dwarf2_per_objfile->objfile->original_name;
2101
2102 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2103 buildid_len,
2104 origname,
2105 &alt_filename));
2106
2107 if (fd.get () >= 0)
2108 {
2109 /* File successfully retrieved from server. */
2110 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2111
2112 if (dwz_bfd == nullptr)
2113 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2114 alt_filename.get ());
2115 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2116 dwz_bfd.reset (nullptr);
2117 }
2118 }
2119
2120 if (dwz_bfd == NULL)
2121 error (_("could not find '.gnu_debugaltlink' file for %s"),
2122 objfile_name (dwarf2_per_objfile->objfile));
2123
2124 std::unique_ptr<struct dwz_file> result
2125 (new struct dwz_file (std::move (dwz_bfd)));
2126
2127 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2128 result.get ());
2129
2130 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2131 result->dwz_bfd.get ());
2132 dwarf2_per_objfile->dwz_file = std::move (result);
2133 return dwarf2_per_objfile->dwz_file.get ();
2134 }
2135 \f
2136 /* DWARF quick_symbols_functions support. */
2137
2138 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2139 unique line tables, so we maintain a separate table of all .debug_line
2140 derived entries to support the sharing.
2141 All the quick functions need is the list of file names. We discard the
2142 line_header when we're done and don't need to record it here. */
2143 struct quick_file_names
2144 {
2145 /* The data used to construct the hash key. */
2146 struct stmt_list_hash hash;
2147
2148 /* The number of entries in file_names, real_names. */
2149 unsigned int num_file_names;
2150
2151 /* The file names from the line table, after being run through
2152 file_full_name. */
2153 const char **file_names;
2154
2155 /* The file names from the line table after being run through
2156 gdb_realpath. These are computed lazily. */
2157 const char **real_names;
2158 };
2159
2160 /* When using the index (and thus not using psymtabs), each CU has an
2161 object of this type. This is used to hold information needed by
2162 the various "quick" methods. */
2163 struct dwarf2_per_cu_quick_data
2164 {
2165 /* The file table. This can be NULL if there was no file table
2166 or it's currently not read in.
2167 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2168 struct quick_file_names *file_names;
2169
2170 /* The corresponding symbol table. This is NULL if symbols for this
2171 CU have not yet been read. */
2172 struct compunit_symtab *compunit_symtab;
2173
2174 /* A temporary mark bit used when iterating over all CUs in
2175 expand_symtabs_matching. */
2176 unsigned int mark : 1;
2177
2178 /* True if we've tried to read the file table and found there isn't one.
2179 There will be no point in trying to read it again next time. */
2180 unsigned int no_file_data : 1;
2181 };
2182
2183 /* Utility hash function for a stmt_list_hash. */
2184
2185 static hashval_t
2186 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2187 {
2188 hashval_t v = 0;
2189
2190 if (stmt_list_hash->dwo_unit != NULL)
2191 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2192 v += to_underlying (stmt_list_hash->line_sect_off);
2193 return v;
2194 }
2195
2196 /* Utility equality function for a stmt_list_hash. */
2197
2198 static int
2199 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2200 const struct stmt_list_hash *rhs)
2201 {
2202 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2203 return 0;
2204 if (lhs->dwo_unit != NULL
2205 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2206 return 0;
2207
2208 return lhs->line_sect_off == rhs->line_sect_off;
2209 }
2210
2211 /* Hash function for a quick_file_names. */
2212
2213 static hashval_t
2214 hash_file_name_entry (const void *e)
2215 {
2216 const struct quick_file_names *file_data
2217 = (const struct quick_file_names *) e;
2218
2219 return hash_stmt_list_entry (&file_data->hash);
2220 }
2221
2222 /* Equality function for a quick_file_names. */
2223
2224 static int
2225 eq_file_name_entry (const void *a, const void *b)
2226 {
2227 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2228 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2229
2230 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2231 }
2232
2233 /* Delete function for a quick_file_names. */
2234
2235 static void
2236 delete_file_name_entry (void *e)
2237 {
2238 struct quick_file_names *file_data = (struct quick_file_names *) e;
2239 int i;
2240
2241 for (i = 0; i < file_data->num_file_names; ++i)
2242 {
2243 xfree ((void*) file_data->file_names[i]);
2244 if (file_data->real_names)
2245 xfree ((void*) file_data->real_names[i]);
2246 }
2247
2248 /* The space for the struct itself lives on objfile_obstack,
2249 so we don't free it here. */
2250 }
2251
2252 /* Create a quick_file_names hash table. */
2253
2254 static htab_up
2255 create_quick_file_names_table (unsigned int nr_initial_entries)
2256 {
2257 return htab_up (htab_create_alloc (nr_initial_entries,
2258 hash_file_name_entry, eq_file_name_entry,
2259 delete_file_name_entry, xcalloc, xfree));
2260 }
2261
2262 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2263 have to be created afterwards. You should call age_cached_comp_units after
2264 processing PER_CU->CU. dw2_setup must have been already called. */
2265
2266 static void
2267 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2268 {
2269 if (per_cu->is_debug_types)
2270 load_full_type_unit (per_cu);
2271 else
2272 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2273
2274 if (per_cu->cu == NULL)
2275 return; /* Dummy CU. */
2276
2277 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2278 }
2279
2280 /* Read in the symbols for PER_CU. */
2281
2282 static void
2283 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2284 {
2285 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2286
2287 /* Skip type_unit_groups, reading the type units they contain
2288 is handled elsewhere. */
2289 if (per_cu->type_unit_group_p ())
2290 return;
2291
2292 /* The destructor of dwarf2_queue_guard frees any entries left on
2293 the queue. After this point we're guaranteed to leave this function
2294 with the dwarf queue empty. */
2295 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2296
2297 if (dwarf2_per_objfile->using_index
2298 ? per_cu->v.quick->compunit_symtab == NULL
2299 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2300 {
2301 queue_comp_unit (per_cu, language_minimal);
2302 load_cu (per_cu, skip_partial);
2303
2304 /* If we just loaded a CU from a DWO, and we're working with an index
2305 that may badly handle TUs, load all the TUs in that DWO as well.
2306 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2307 if (!per_cu->is_debug_types
2308 && per_cu->cu != NULL
2309 && per_cu->cu->dwo_unit != NULL
2310 && dwarf2_per_objfile->index_table != NULL
2311 && dwarf2_per_objfile->index_table->version <= 7
2312 /* DWP files aren't supported yet. */
2313 && get_dwp_file (dwarf2_per_objfile) == NULL)
2314 queue_and_load_all_dwo_tus (per_cu);
2315 }
2316
2317 process_queue (dwarf2_per_objfile);
2318
2319 /* Age the cache, releasing compilation units that have not
2320 been used recently. */
2321 age_cached_comp_units (dwarf2_per_objfile);
2322 }
2323
2324 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2325 the objfile from which this CU came. Returns the resulting symbol
2326 table. */
2327
2328 static struct compunit_symtab *
2329 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2330 {
2331 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2332
2333 gdb_assert (dwarf2_per_objfile->using_index);
2334 if (!per_cu->v.quick->compunit_symtab)
2335 {
2336 free_cached_comp_units freer (dwarf2_per_objfile);
2337 scoped_restore decrementer = increment_reading_symtab ();
2338 dw2_do_instantiate_symtab (per_cu, skip_partial);
2339 process_cu_includes (dwarf2_per_objfile);
2340 }
2341
2342 return per_cu->v.quick->compunit_symtab;
2343 }
2344
2345 /* See declaration. */
2346
2347 dwarf2_per_cu_data *
2348 dwarf2_per_objfile::get_cutu (int index)
2349 {
2350 if (index >= this->all_comp_units.size ())
2351 {
2352 index -= this->all_comp_units.size ();
2353 gdb_assert (index < this->all_type_units.size ());
2354 return &this->all_type_units[index]->per_cu;
2355 }
2356
2357 return this->all_comp_units[index];
2358 }
2359
2360 /* See declaration. */
2361
2362 dwarf2_per_cu_data *
2363 dwarf2_per_objfile::get_cu (int index)
2364 {
2365 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2366
2367 return this->all_comp_units[index];
2368 }
2369
2370 /* See declaration. */
2371
2372 signatured_type *
2373 dwarf2_per_objfile::get_tu (int index)
2374 {
2375 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2376
2377 return this->all_type_units[index];
2378 }
2379
2380 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2381 objfile_obstack, and constructed with the specified field
2382 values. */
2383
2384 static dwarf2_per_cu_data *
2385 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2386 struct dwarf2_section_info *section,
2387 int is_dwz,
2388 sect_offset sect_off, ULONGEST length)
2389 {
2390 struct objfile *objfile = dwarf2_per_objfile->objfile;
2391 dwarf2_per_cu_data *the_cu
2392 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2393 struct dwarf2_per_cu_data);
2394 the_cu->sect_off = sect_off;
2395 the_cu->length = length;
2396 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2397 the_cu->section = section;
2398 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_quick_data);
2400 the_cu->is_dwz = is_dwz;
2401 return the_cu;
2402 }
2403
2404 /* A helper for create_cus_from_index that handles a given list of
2405 CUs. */
2406
2407 static void
2408 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2409 const gdb_byte *cu_list, offset_type n_elements,
2410 struct dwarf2_section_info *section,
2411 int is_dwz)
2412 {
2413 for (offset_type i = 0; i < n_elements; i += 2)
2414 {
2415 gdb_static_assert (sizeof (ULONGEST) >= 8);
2416
2417 sect_offset sect_off
2418 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2419 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2420 cu_list += 2 * 8;
2421
2422 dwarf2_per_cu_data *per_cu
2423 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2424 sect_off, length);
2425 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2426 }
2427 }
2428
2429 /* Read the CU list from the mapped index, and use it to create all
2430 the CU objects for this objfile. */
2431
2432 static void
2433 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2434 const gdb_byte *cu_list, offset_type cu_list_elements,
2435 const gdb_byte *dwz_list, offset_type dwz_elements)
2436 {
2437 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2438 dwarf2_per_objfile->all_comp_units.reserve
2439 ((cu_list_elements + dwz_elements) / 2);
2440
2441 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2442 &dwarf2_per_objfile->info, 0);
2443
2444 if (dwz_elements == 0)
2445 return;
2446
2447 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2448 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2449 &dwz->info, 1);
2450 }
2451
2452 /* Create the signatured type hash table from the index. */
2453
2454 static void
2455 create_signatured_type_table_from_index
2456 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2457 struct dwarf2_section_info *section,
2458 const gdb_byte *bytes,
2459 offset_type elements)
2460 {
2461 struct objfile *objfile = dwarf2_per_objfile->objfile;
2462
2463 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2464 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2465
2466 htab_up sig_types_hash = allocate_signatured_type_table ();
2467
2468 for (offset_type i = 0; i < elements; i += 3)
2469 {
2470 struct signatured_type *sig_type;
2471 ULONGEST signature;
2472 void **slot;
2473 cu_offset type_offset_in_tu;
2474
2475 gdb_static_assert (sizeof (ULONGEST) >= 8);
2476 sect_offset sect_off
2477 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2478 type_offset_in_tu
2479 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2480 BFD_ENDIAN_LITTLE);
2481 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2482 bytes += 3 * 8;
2483
2484 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2485 struct signatured_type);
2486 sig_type->signature = signature;
2487 sig_type->type_offset_in_tu = type_offset_in_tu;
2488 sig_type->per_cu.is_debug_types = 1;
2489 sig_type->per_cu.section = section;
2490 sig_type->per_cu.sect_off = sect_off;
2491 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2492 sig_type->per_cu.v.quick
2493 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2494 struct dwarf2_per_cu_quick_data);
2495
2496 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2497 *slot = sig_type;
2498
2499 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2500 }
2501
2502 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2503 }
2504
2505 /* Create the signatured type hash table from .debug_names. */
2506
2507 static void
2508 create_signatured_type_table_from_debug_names
2509 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2510 const mapped_debug_names &map,
2511 struct dwarf2_section_info *section,
2512 struct dwarf2_section_info *abbrev_section)
2513 {
2514 struct objfile *objfile = dwarf2_per_objfile->objfile;
2515
2516 section->read (objfile);
2517 abbrev_section->read (objfile);
2518
2519 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2520 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2521
2522 htab_up sig_types_hash = allocate_signatured_type_table ();
2523
2524 for (uint32_t i = 0; i < map.tu_count; ++i)
2525 {
2526 struct signatured_type *sig_type;
2527 void **slot;
2528
2529 sect_offset sect_off
2530 = (sect_offset) (extract_unsigned_integer
2531 (map.tu_table_reordered + i * map.offset_size,
2532 map.offset_size,
2533 map.dwarf5_byte_order));
2534
2535 comp_unit_head cu_header;
2536 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2537 abbrev_section,
2538 section->buffer + to_underlying (sect_off),
2539 rcuh_kind::TYPE);
2540
2541 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2542 struct signatured_type);
2543 sig_type->signature = cu_header.signature;
2544 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2545 sig_type->per_cu.is_debug_types = 1;
2546 sig_type->per_cu.section = section;
2547 sig_type->per_cu.sect_off = sect_off;
2548 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2549 sig_type->per_cu.v.quick
2550 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2551 struct dwarf2_per_cu_quick_data);
2552
2553 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2554 *slot = sig_type;
2555
2556 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2557 }
2558
2559 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2560 }
2561
2562 /* Read the address map data from the mapped index, and use it to
2563 populate the objfile's psymtabs_addrmap. */
2564
2565 static void
2566 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2567 struct mapped_index *index)
2568 {
2569 struct objfile *objfile = dwarf2_per_objfile->objfile;
2570 struct gdbarch *gdbarch = objfile->arch ();
2571 const gdb_byte *iter, *end;
2572 struct addrmap *mutable_map;
2573 CORE_ADDR baseaddr;
2574
2575 auto_obstack temp_obstack;
2576
2577 mutable_map = addrmap_create_mutable (&temp_obstack);
2578
2579 iter = index->address_table.data ();
2580 end = iter + index->address_table.size ();
2581
2582 baseaddr = objfile->text_section_offset ();
2583
2584 while (iter < end)
2585 {
2586 ULONGEST hi, lo, cu_index;
2587 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2588 iter += 8;
2589 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2590 iter += 8;
2591 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2592 iter += 4;
2593
2594 if (lo > hi)
2595 {
2596 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2597 hex_string (lo), hex_string (hi));
2598 continue;
2599 }
2600
2601 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2602 {
2603 complaint (_(".gdb_index address table has invalid CU number %u"),
2604 (unsigned) cu_index);
2605 continue;
2606 }
2607
2608 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2609 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2610 addrmap_set_empty (mutable_map, lo, hi - 1,
2611 dwarf2_per_objfile->get_cu (cu_index));
2612 }
2613
2614 objfile->partial_symtabs->psymtabs_addrmap
2615 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2616 }
2617
2618 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2619 populate the objfile's psymtabs_addrmap. */
2620
2621 static void
2622 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2623 struct dwarf2_section_info *section)
2624 {
2625 struct objfile *objfile = dwarf2_per_objfile->objfile;
2626 bfd *abfd = objfile->obfd;
2627 struct gdbarch *gdbarch = objfile->arch ();
2628 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2629
2630 auto_obstack temp_obstack;
2631 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2632
2633 std::unordered_map<sect_offset,
2634 dwarf2_per_cu_data *,
2635 gdb::hash_enum<sect_offset>>
2636 debug_info_offset_to_per_cu;
2637 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2638 {
2639 const auto insertpair
2640 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2641 if (!insertpair.second)
2642 {
2643 warning (_("Section .debug_aranges in %s has duplicate "
2644 "debug_info_offset %s, ignoring .debug_aranges."),
2645 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2646 return;
2647 }
2648 }
2649
2650 section->read (objfile);
2651
2652 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2653
2654 const gdb_byte *addr = section->buffer;
2655
2656 while (addr < section->buffer + section->size)
2657 {
2658 const gdb_byte *const entry_addr = addr;
2659 unsigned int bytes_read;
2660
2661 const LONGEST entry_length = read_initial_length (abfd, addr,
2662 &bytes_read);
2663 addr += bytes_read;
2664
2665 const gdb_byte *const entry_end = addr + entry_length;
2666 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2667 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2668 if (addr + entry_length > section->buffer + section->size)
2669 {
2670 warning (_("Section .debug_aranges in %s entry at offset %s "
2671 "length %s exceeds section length %s, "
2672 "ignoring .debug_aranges."),
2673 objfile_name (objfile),
2674 plongest (entry_addr - section->buffer),
2675 plongest (bytes_read + entry_length),
2676 pulongest (section->size));
2677 return;
2678 }
2679
2680 /* The version number. */
2681 const uint16_t version = read_2_bytes (abfd, addr);
2682 addr += 2;
2683 if (version != 2)
2684 {
2685 warning (_("Section .debug_aranges in %s entry at offset %s "
2686 "has unsupported version %d, ignoring .debug_aranges."),
2687 objfile_name (objfile),
2688 plongest (entry_addr - section->buffer), version);
2689 return;
2690 }
2691
2692 const uint64_t debug_info_offset
2693 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2694 addr += offset_size;
2695 const auto per_cu_it
2696 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2697 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2698 {
2699 warning (_("Section .debug_aranges in %s entry at offset %s "
2700 "debug_info_offset %s does not exists, "
2701 "ignoring .debug_aranges."),
2702 objfile_name (objfile),
2703 plongest (entry_addr - section->buffer),
2704 pulongest (debug_info_offset));
2705 return;
2706 }
2707 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2708
2709 const uint8_t address_size = *addr++;
2710 if (address_size < 1 || address_size > 8)
2711 {
2712 warning (_("Section .debug_aranges in %s entry at offset %s "
2713 "address_size %u is invalid, ignoring .debug_aranges."),
2714 objfile_name (objfile),
2715 plongest (entry_addr - section->buffer), address_size);
2716 return;
2717 }
2718
2719 const uint8_t segment_selector_size = *addr++;
2720 if (segment_selector_size != 0)
2721 {
2722 warning (_("Section .debug_aranges in %s entry at offset %s "
2723 "segment_selector_size %u is not supported, "
2724 "ignoring .debug_aranges."),
2725 objfile_name (objfile),
2726 plongest (entry_addr - section->buffer),
2727 segment_selector_size);
2728 return;
2729 }
2730
2731 /* Must pad to an alignment boundary that is twice the address
2732 size. It is undocumented by the DWARF standard but GCC does
2733 use it. */
2734 for (size_t padding = ((-(addr - section->buffer))
2735 & (2 * address_size - 1));
2736 padding > 0; padding--)
2737 if (*addr++ != 0)
2738 {
2739 warning (_("Section .debug_aranges in %s entry at offset %s "
2740 "padding is not zero, ignoring .debug_aranges."),
2741 objfile_name (objfile),
2742 plongest (entry_addr - section->buffer));
2743 return;
2744 }
2745
2746 for (;;)
2747 {
2748 if (addr + 2 * address_size > entry_end)
2749 {
2750 warning (_("Section .debug_aranges in %s entry at offset %s "
2751 "address list is not properly terminated, "
2752 "ignoring .debug_aranges."),
2753 objfile_name (objfile),
2754 plongest (entry_addr - section->buffer));
2755 return;
2756 }
2757 ULONGEST start = extract_unsigned_integer (addr, address_size,
2758 dwarf5_byte_order);
2759 addr += address_size;
2760 ULONGEST length = extract_unsigned_integer (addr, address_size,
2761 dwarf5_byte_order);
2762 addr += address_size;
2763 if (start == 0 && length == 0)
2764 break;
2765 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2766 {
2767 /* Symbol was eliminated due to a COMDAT group. */
2768 continue;
2769 }
2770 ULONGEST end = start + length;
2771 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2772 - baseaddr);
2773 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2774 - baseaddr);
2775 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2776 }
2777 }
2778
2779 objfile->partial_symtabs->psymtabs_addrmap
2780 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2781 }
2782
2783 /* Find a slot in the mapped index INDEX for the object named NAME.
2784 If NAME is found, set *VEC_OUT to point to the CU vector in the
2785 constant pool and return true. If NAME cannot be found, return
2786 false. */
2787
2788 static bool
2789 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2790 offset_type **vec_out)
2791 {
2792 offset_type hash;
2793 offset_type slot, step;
2794 int (*cmp) (const char *, const char *);
2795
2796 gdb::unique_xmalloc_ptr<char> without_params;
2797 if (current_language->la_language == language_cplus
2798 || current_language->la_language == language_fortran
2799 || current_language->la_language == language_d)
2800 {
2801 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2802 not contain any. */
2803
2804 if (strchr (name, '(') != NULL)
2805 {
2806 without_params = cp_remove_params (name);
2807
2808 if (without_params != NULL)
2809 name = without_params.get ();
2810 }
2811 }
2812
2813 /* Index version 4 did not support case insensitive searches. But the
2814 indices for case insensitive languages are built in lowercase, therefore
2815 simulate our NAME being searched is also lowercased. */
2816 hash = mapped_index_string_hash ((index->version == 4
2817 && case_sensitivity == case_sensitive_off
2818 ? 5 : index->version),
2819 name);
2820
2821 slot = hash & (index->symbol_table.size () - 1);
2822 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2823 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2824
2825 for (;;)
2826 {
2827 const char *str;
2828
2829 const auto &bucket = index->symbol_table[slot];
2830 if (bucket.name == 0 && bucket.vec == 0)
2831 return false;
2832
2833 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2834 if (!cmp (name, str))
2835 {
2836 *vec_out = (offset_type *) (index->constant_pool
2837 + MAYBE_SWAP (bucket.vec));
2838 return true;
2839 }
2840
2841 slot = (slot + step) & (index->symbol_table.size () - 1);
2842 }
2843 }
2844
2845 /* A helper function that reads the .gdb_index from BUFFER and fills
2846 in MAP. FILENAME is the name of the file containing the data;
2847 it is used for error reporting. DEPRECATED_OK is true if it is
2848 ok to use deprecated sections.
2849
2850 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2851 out parameters that are filled in with information about the CU and
2852 TU lists in the section.
2853
2854 Returns true if all went well, false otherwise. */
2855
2856 static bool
2857 read_gdb_index_from_buffer (const char *filename,
2858 bool deprecated_ok,
2859 gdb::array_view<const gdb_byte> buffer,
2860 struct mapped_index *map,
2861 const gdb_byte **cu_list,
2862 offset_type *cu_list_elements,
2863 const gdb_byte **types_list,
2864 offset_type *types_list_elements)
2865 {
2866 const gdb_byte *addr = &buffer[0];
2867
2868 /* Version check. */
2869 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2870 /* Versions earlier than 3 emitted every copy of a psymbol. This
2871 causes the index to behave very poorly for certain requests. Version 3
2872 contained incomplete addrmap. So, it seems better to just ignore such
2873 indices. */
2874 if (version < 4)
2875 {
2876 static int warning_printed = 0;
2877 if (!warning_printed)
2878 {
2879 warning (_("Skipping obsolete .gdb_index section in %s."),
2880 filename);
2881 warning_printed = 1;
2882 }
2883 return 0;
2884 }
2885 /* Index version 4 uses a different hash function than index version
2886 5 and later.
2887
2888 Versions earlier than 6 did not emit psymbols for inlined
2889 functions. Using these files will cause GDB not to be able to
2890 set breakpoints on inlined functions by name, so we ignore these
2891 indices unless the user has done
2892 "set use-deprecated-index-sections on". */
2893 if (version < 6 && !deprecated_ok)
2894 {
2895 static int warning_printed = 0;
2896 if (!warning_printed)
2897 {
2898 warning (_("\
2899 Skipping deprecated .gdb_index section in %s.\n\
2900 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2901 to use the section anyway."),
2902 filename);
2903 warning_printed = 1;
2904 }
2905 return 0;
2906 }
2907 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2908 of the TU (for symbols coming from TUs),
2909 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2910 Plus gold-generated indices can have duplicate entries for global symbols,
2911 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2912 These are just performance bugs, and we can't distinguish gdb-generated
2913 indices from gold-generated ones, so issue no warning here. */
2914
2915 /* Indexes with higher version than the one supported by GDB may be no
2916 longer backward compatible. */
2917 if (version > 8)
2918 return 0;
2919
2920 map->version = version;
2921
2922 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2923
2924 int i = 0;
2925 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2926 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2927 / 8);
2928 ++i;
2929
2930 *types_list = addr + MAYBE_SWAP (metadata[i]);
2931 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2932 - MAYBE_SWAP (metadata[i]))
2933 / 8);
2934 ++i;
2935
2936 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2937 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2938 map->address_table
2939 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2940 ++i;
2941
2942 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2943 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2944 map->symbol_table
2945 = gdb::array_view<mapped_index::symbol_table_slot>
2946 ((mapped_index::symbol_table_slot *) symbol_table,
2947 (mapped_index::symbol_table_slot *) symbol_table_end);
2948
2949 ++i;
2950 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2951
2952 return 1;
2953 }
2954
2955 /* Callback types for dwarf2_read_gdb_index. */
2956
2957 typedef gdb::function_view
2958 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2959 get_gdb_index_contents_ftype;
2960 typedef gdb::function_view
2961 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2962 get_gdb_index_contents_dwz_ftype;
2963
2964 /* Read .gdb_index. If everything went ok, initialize the "quick"
2965 elements of all the CUs and return 1. Otherwise, return 0. */
2966
2967 static int
2968 dwarf2_read_gdb_index
2969 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2970 get_gdb_index_contents_ftype get_gdb_index_contents,
2971 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
2972 {
2973 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2974 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2975 struct dwz_file *dwz;
2976 struct objfile *objfile = dwarf2_per_objfile->objfile;
2977
2978 gdb::array_view<const gdb_byte> main_index_contents
2979 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
2980
2981 if (main_index_contents.empty ())
2982 return 0;
2983
2984 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
2985 if (!read_gdb_index_from_buffer (objfile_name (objfile),
2986 use_deprecated_index_sections,
2987 main_index_contents, map.get (), &cu_list,
2988 &cu_list_elements, &types_list,
2989 &types_list_elements))
2990 return 0;
2991
2992 /* Don't use the index if it's empty. */
2993 if (map->symbol_table.empty ())
2994 return 0;
2995
2996 /* If there is a .dwz file, read it so we can get its CU list as
2997 well. */
2998 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2999 if (dwz != NULL)
3000 {
3001 struct mapped_index dwz_map;
3002 const gdb_byte *dwz_types_ignore;
3003 offset_type dwz_types_elements_ignore;
3004
3005 gdb::array_view<const gdb_byte> dwz_index_content
3006 = get_gdb_index_contents_dwz (objfile, dwz);
3007
3008 if (dwz_index_content.empty ())
3009 return 0;
3010
3011 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3012 1, dwz_index_content, &dwz_map,
3013 &dwz_list, &dwz_list_elements,
3014 &dwz_types_ignore,
3015 &dwz_types_elements_ignore))
3016 {
3017 warning (_("could not read '.gdb_index' section from %s; skipping"),
3018 bfd_get_filename (dwz->dwz_bfd.get ()));
3019 return 0;
3020 }
3021 }
3022
3023 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3024 dwz_list, dwz_list_elements);
3025
3026 if (types_list_elements)
3027 {
3028 /* We can only handle a single .debug_types when we have an
3029 index. */
3030 if (dwarf2_per_objfile->types.size () != 1)
3031 return 0;
3032
3033 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3034
3035 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3036 types_list, types_list_elements);
3037 }
3038
3039 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3040
3041 dwarf2_per_objfile->index_table = std::move (map);
3042 dwarf2_per_objfile->using_index = 1;
3043 dwarf2_per_objfile->quick_file_names_table =
3044 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3045
3046 return 1;
3047 }
3048
3049 /* die_reader_func for dw2_get_file_names. */
3050
3051 static void
3052 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3053 const gdb_byte *info_ptr,
3054 struct die_info *comp_unit_die)
3055 {
3056 struct dwarf2_cu *cu = reader->cu;
3057 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3058 struct dwarf2_per_objfile *dwarf2_per_objfile
3059 = cu->per_cu->dwarf2_per_objfile;
3060 struct objfile *objfile = dwarf2_per_objfile->objfile;
3061 struct dwarf2_per_cu_data *lh_cu;
3062 struct attribute *attr;
3063 void **slot;
3064 struct quick_file_names *qfn;
3065
3066 gdb_assert (! this_cu->is_debug_types);
3067
3068 /* Our callers never want to match partial units -- instead they
3069 will match the enclosing full CU. */
3070 if (comp_unit_die->tag == DW_TAG_partial_unit)
3071 {
3072 this_cu->v.quick->no_file_data = 1;
3073 return;
3074 }
3075
3076 lh_cu = this_cu;
3077 slot = NULL;
3078
3079 line_header_up lh;
3080 sect_offset line_offset {};
3081
3082 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3083 if (attr != nullptr)
3084 {
3085 struct quick_file_names find_entry;
3086
3087 line_offset = (sect_offset) DW_UNSND (attr);
3088
3089 /* We may have already read in this line header (TU line header sharing).
3090 If we have we're done. */
3091 find_entry.hash.dwo_unit = cu->dwo_unit;
3092 find_entry.hash.line_sect_off = line_offset;
3093 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3094 &find_entry, INSERT);
3095 if (*slot != NULL)
3096 {
3097 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3098 return;
3099 }
3100
3101 lh = dwarf_decode_line_header (line_offset, cu);
3102 }
3103 if (lh == NULL)
3104 {
3105 lh_cu->v.quick->no_file_data = 1;
3106 return;
3107 }
3108
3109 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3110 qfn->hash.dwo_unit = cu->dwo_unit;
3111 qfn->hash.line_sect_off = line_offset;
3112 gdb_assert (slot != NULL);
3113 *slot = qfn;
3114
3115 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3116
3117 int offset = 0;
3118 if (strcmp (fnd.name, "<unknown>") != 0)
3119 ++offset;
3120
3121 qfn->num_file_names = offset + lh->file_names_size ();
3122 qfn->file_names =
3123 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3124 if (offset != 0)
3125 qfn->file_names[0] = xstrdup (fnd.name);
3126 for (int i = 0; i < lh->file_names_size (); ++i)
3127 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3128 fnd.comp_dir).release ();
3129 qfn->real_names = NULL;
3130
3131 lh_cu->v.quick->file_names = qfn;
3132 }
3133
3134 /* A helper for the "quick" functions which attempts to read the line
3135 table for THIS_CU. */
3136
3137 static struct quick_file_names *
3138 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3139 {
3140 /* This should never be called for TUs. */
3141 gdb_assert (! this_cu->is_debug_types);
3142 /* Nor type unit groups. */
3143 gdb_assert (! this_cu->type_unit_group_p ());
3144
3145 if (this_cu->v.quick->file_names != NULL)
3146 return this_cu->v.quick->file_names;
3147 /* If we know there is no line data, no point in looking again. */
3148 if (this_cu->v.quick->no_file_data)
3149 return NULL;
3150
3151 cutu_reader reader (this_cu);
3152 if (!reader.dummy_p)
3153 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3154
3155 if (this_cu->v.quick->no_file_data)
3156 return NULL;
3157 return this_cu->v.quick->file_names;
3158 }
3159
3160 /* A helper for the "quick" functions which computes and caches the
3161 real path for a given file name from the line table. */
3162
3163 static const char *
3164 dw2_get_real_path (struct objfile *objfile,
3165 struct quick_file_names *qfn, int index)
3166 {
3167 if (qfn->real_names == NULL)
3168 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3169 qfn->num_file_names, const char *);
3170
3171 if (qfn->real_names[index] == NULL)
3172 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3173
3174 return qfn->real_names[index];
3175 }
3176
3177 static struct symtab *
3178 dw2_find_last_source_symtab (struct objfile *objfile)
3179 {
3180 struct dwarf2_per_objfile *dwarf2_per_objfile
3181 = get_dwarf2_per_objfile (objfile);
3182 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3183 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3184
3185 if (cust == NULL)
3186 return NULL;
3187
3188 return compunit_primary_filetab (cust);
3189 }
3190
3191 /* Traversal function for dw2_forget_cached_source_info. */
3192
3193 static int
3194 dw2_free_cached_file_names (void **slot, void *info)
3195 {
3196 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3197
3198 if (file_data->real_names)
3199 {
3200 int i;
3201
3202 for (i = 0; i < file_data->num_file_names; ++i)
3203 {
3204 xfree ((void*) file_data->real_names[i]);
3205 file_data->real_names[i] = NULL;
3206 }
3207 }
3208
3209 return 1;
3210 }
3211
3212 static void
3213 dw2_forget_cached_source_info (struct objfile *objfile)
3214 {
3215 struct dwarf2_per_objfile *dwarf2_per_objfile
3216 = get_dwarf2_per_objfile (objfile);
3217
3218 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3219 dw2_free_cached_file_names, NULL);
3220 }
3221
3222 /* Helper function for dw2_map_symtabs_matching_filename that expands
3223 the symtabs and calls the iterator. */
3224
3225 static int
3226 dw2_map_expand_apply (struct objfile *objfile,
3227 struct dwarf2_per_cu_data *per_cu,
3228 const char *name, const char *real_path,
3229 gdb::function_view<bool (symtab *)> callback)
3230 {
3231 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3232
3233 /* Don't visit already-expanded CUs. */
3234 if (per_cu->v.quick->compunit_symtab)
3235 return 0;
3236
3237 /* This may expand more than one symtab, and we want to iterate over
3238 all of them. */
3239 dw2_instantiate_symtab (per_cu, false);
3240
3241 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3242 last_made, callback);
3243 }
3244
3245 /* Implementation of the map_symtabs_matching_filename method. */
3246
3247 static bool
3248 dw2_map_symtabs_matching_filename
3249 (struct objfile *objfile, const char *name, const char *real_path,
3250 gdb::function_view<bool (symtab *)> callback)
3251 {
3252 const char *name_basename = lbasename (name);
3253 struct dwarf2_per_objfile *dwarf2_per_objfile
3254 = get_dwarf2_per_objfile (objfile);
3255
3256 /* The rule is CUs specify all the files, including those used by
3257 any TU, so there's no need to scan TUs here. */
3258
3259 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3260 {
3261 /* We only need to look at symtabs not already expanded. */
3262 if (per_cu->v.quick->compunit_symtab)
3263 continue;
3264
3265 quick_file_names *file_data = dw2_get_file_names (per_cu);
3266 if (file_data == NULL)
3267 continue;
3268
3269 for (int j = 0; j < file_data->num_file_names; ++j)
3270 {
3271 const char *this_name = file_data->file_names[j];
3272 const char *this_real_name;
3273
3274 if (compare_filenames_for_search (this_name, name))
3275 {
3276 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3277 callback))
3278 return true;
3279 continue;
3280 }
3281
3282 /* Before we invoke realpath, which can get expensive when many
3283 files are involved, do a quick comparison of the basenames. */
3284 if (! basenames_may_differ
3285 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3286 continue;
3287
3288 this_real_name = dw2_get_real_path (objfile, file_data, j);
3289 if (compare_filenames_for_search (this_real_name, name))
3290 {
3291 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3292 callback))
3293 return true;
3294 continue;
3295 }
3296
3297 if (real_path != NULL)
3298 {
3299 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3300 gdb_assert (IS_ABSOLUTE_PATH (name));
3301 if (this_real_name != NULL
3302 && FILENAME_CMP (real_path, this_real_name) == 0)
3303 {
3304 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3305 callback))
3306 return true;
3307 continue;
3308 }
3309 }
3310 }
3311 }
3312
3313 return false;
3314 }
3315
3316 /* Struct used to manage iterating over all CUs looking for a symbol. */
3317
3318 struct dw2_symtab_iterator
3319 {
3320 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3321 struct dwarf2_per_objfile *dwarf2_per_objfile;
3322 /* If set, only look for symbols that match that block. Valid values are
3323 GLOBAL_BLOCK and STATIC_BLOCK. */
3324 gdb::optional<block_enum> block_index;
3325 /* The kind of symbol we're looking for. */
3326 domain_enum domain;
3327 /* The list of CUs from the index entry of the symbol,
3328 or NULL if not found. */
3329 offset_type *vec;
3330 /* The next element in VEC to look at. */
3331 int next;
3332 /* The number of elements in VEC, or zero if there is no match. */
3333 int length;
3334 /* Have we seen a global version of the symbol?
3335 If so we can ignore all further global instances.
3336 This is to work around gold/15646, inefficient gold-generated
3337 indices. */
3338 int global_seen;
3339 };
3340
3341 /* Initialize the index symtab iterator ITER. */
3342
3343 static void
3344 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3345 struct dwarf2_per_objfile *dwarf2_per_objfile,
3346 gdb::optional<block_enum> block_index,
3347 domain_enum domain,
3348 const char *name)
3349 {
3350 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3351 iter->block_index = block_index;
3352 iter->domain = domain;
3353 iter->next = 0;
3354 iter->global_seen = 0;
3355
3356 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3357
3358 /* index is NULL if OBJF_READNOW. */
3359 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3360 iter->length = MAYBE_SWAP (*iter->vec);
3361 else
3362 {
3363 iter->vec = NULL;
3364 iter->length = 0;
3365 }
3366 }
3367
3368 /* Return the next matching CU or NULL if there are no more. */
3369
3370 static struct dwarf2_per_cu_data *
3371 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3372 {
3373 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3374
3375 for ( ; iter->next < iter->length; ++iter->next)
3376 {
3377 offset_type cu_index_and_attrs =
3378 MAYBE_SWAP (iter->vec[iter->next + 1]);
3379 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3380 gdb_index_symbol_kind symbol_kind =
3381 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3382 /* Only check the symbol attributes if they're present.
3383 Indices prior to version 7 don't record them,
3384 and indices >= 7 may elide them for certain symbols
3385 (gold does this). */
3386 int attrs_valid =
3387 (dwarf2_per_objfile->index_table->version >= 7
3388 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3389
3390 /* Don't crash on bad data. */
3391 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3392 + dwarf2_per_objfile->all_type_units.size ()))
3393 {
3394 complaint (_(".gdb_index entry has bad CU index"
3395 " [in module %s]"),
3396 objfile_name (dwarf2_per_objfile->objfile));
3397 continue;
3398 }
3399
3400 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3401
3402 /* Skip if already read in. */
3403 if (per_cu->v.quick->compunit_symtab)
3404 continue;
3405
3406 /* Check static vs global. */
3407 if (attrs_valid)
3408 {
3409 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3410
3411 if (iter->block_index.has_value ())
3412 {
3413 bool want_static = *iter->block_index == STATIC_BLOCK;
3414
3415 if (is_static != want_static)
3416 continue;
3417 }
3418
3419 /* Work around gold/15646. */
3420 if (!is_static && iter->global_seen)
3421 continue;
3422 if (!is_static)
3423 iter->global_seen = 1;
3424 }
3425
3426 /* Only check the symbol's kind if it has one. */
3427 if (attrs_valid)
3428 {
3429 switch (iter->domain)
3430 {
3431 case VAR_DOMAIN:
3432 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3433 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3434 /* Some types are also in VAR_DOMAIN. */
3435 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3436 continue;
3437 break;
3438 case STRUCT_DOMAIN:
3439 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3440 continue;
3441 break;
3442 case LABEL_DOMAIN:
3443 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3444 continue;
3445 break;
3446 case MODULE_DOMAIN:
3447 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3448 continue;
3449 break;
3450 default:
3451 break;
3452 }
3453 }
3454
3455 ++iter->next;
3456 return per_cu;
3457 }
3458
3459 return NULL;
3460 }
3461
3462 static struct compunit_symtab *
3463 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3464 const char *name, domain_enum domain)
3465 {
3466 struct compunit_symtab *stab_best = NULL;
3467 struct dwarf2_per_objfile *dwarf2_per_objfile
3468 = get_dwarf2_per_objfile (objfile);
3469
3470 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3471
3472 struct dw2_symtab_iterator iter;
3473 struct dwarf2_per_cu_data *per_cu;
3474
3475 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3476
3477 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3478 {
3479 struct symbol *sym, *with_opaque = NULL;
3480 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3481 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3482 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3483
3484 sym = block_find_symbol (block, name, domain,
3485 block_find_non_opaque_type_preferred,
3486 &with_opaque);
3487
3488 /* Some caution must be observed with overloaded functions
3489 and methods, since the index will not contain any overload
3490 information (but NAME might contain it). */
3491
3492 if (sym != NULL
3493 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3494 return stab;
3495 if (with_opaque != NULL
3496 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3497 stab_best = stab;
3498
3499 /* Keep looking through other CUs. */
3500 }
3501
3502 return stab_best;
3503 }
3504
3505 static void
3506 dw2_print_stats (struct objfile *objfile)
3507 {
3508 struct dwarf2_per_objfile *dwarf2_per_objfile
3509 = get_dwarf2_per_objfile (objfile);
3510 int total = (dwarf2_per_objfile->all_comp_units.size ()
3511 + dwarf2_per_objfile->all_type_units.size ());
3512 int count = 0;
3513
3514 for (int i = 0; i < total; ++i)
3515 {
3516 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3517
3518 if (!per_cu->v.quick->compunit_symtab)
3519 ++count;
3520 }
3521 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3522 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3523 }
3524
3525 /* This dumps minimal information about the index.
3526 It is called via "mt print objfiles".
3527 One use is to verify .gdb_index has been loaded by the
3528 gdb.dwarf2/gdb-index.exp testcase. */
3529
3530 static void
3531 dw2_dump (struct objfile *objfile)
3532 {
3533 struct dwarf2_per_objfile *dwarf2_per_objfile
3534 = get_dwarf2_per_objfile (objfile);
3535
3536 gdb_assert (dwarf2_per_objfile->using_index);
3537 printf_filtered (".gdb_index:");
3538 if (dwarf2_per_objfile->index_table != NULL)
3539 {
3540 printf_filtered (" version %d\n",
3541 dwarf2_per_objfile->index_table->version);
3542 }
3543 else
3544 printf_filtered (" faked for \"readnow\"\n");
3545 printf_filtered ("\n");
3546 }
3547
3548 static void
3549 dw2_expand_symtabs_for_function (struct objfile *objfile,
3550 const char *func_name)
3551 {
3552 struct dwarf2_per_objfile *dwarf2_per_objfile
3553 = get_dwarf2_per_objfile (objfile);
3554
3555 struct dw2_symtab_iterator iter;
3556 struct dwarf2_per_cu_data *per_cu;
3557
3558 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3559
3560 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3561 dw2_instantiate_symtab (per_cu, false);
3562
3563 }
3564
3565 static void
3566 dw2_expand_all_symtabs (struct objfile *objfile)
3567 {
3568 struct dwarf2_per_objfile *dwarf2_per_objfile
3569 = get_dwarf2_per_objfile (objfile);
3570 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3571 + dwarf2_per_objfile->all_type_units.size ());
3572
3573 for (int i = 0; i < total_units; ++i)
3574 {
3575 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3576
3577 /* We don't want to directly expand a partial CU, because if we
3578 read it with the wrong language, then assertion failures can
3579 be triggered later on. See PR symtab/23010. So, tell
3580 dw2_instantiate_symtab to skip partial CUs -- any important
3581 partial CU will be read via DW_TAG_imported_unit anyway. */
3582 dw2_instantiate_symtab (per_cu, true);
3583 }
3584 }
3585
3586 static void
3587 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3588 const char *fullname)
3589 {
3590 struct dwarf2_per_objfile *dwarf2_per_objfile
3591 = get_dwarf2_per_objfile (objfile);
3592
3593 /* We don't need to consider type units here.
3594 This is only called for examining code, e.g. expand_line_sal.
3595 There can be an order of magnitude (or more) more type units
3596 than comp units, and we avoid them if we can. */
3597
3598 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3599 {
3600 /* We only need to look at symtabs not already expanded. */
3601 if (per_cu->v.quick->compunit_symtab)
3602 continue;
3603
3604 quick_file_names *file_data = dw2_get_file_names (per_cu);
3605 if (file_data == NULL)
3606 continue;
3607
3608 for (int j = 0; j < file_data->num_file_names; ++j)
3609 {
3610 const char *this_fullname = file_data->file_names[j];
3611
3612 if (filename_cmp (this_fullname, fullname) == 0)
3613 {
3614 dw2_instantiate_symtab (per_cu, false);
3615 break;
3616 }
3617 }
3618 }
3619 }
3620
3621 static void
3622 dw2_map_matching_symbols
3623 (struct objfile *objfile,
3624 const lookup_name_info &name, domain_enum domain,
3625 int global,
3626 gdb::function_view<symbol_found_callback_ftype> callback,
3627 symbol_compare_ftype *ordered_compare)
3628 {
3629 /* Used for Ada. */
3630 struct dwarf2_per_objfile *dwarf2_per_objfile
3631 = get_dwarf2_per_objfile (objfile);
3632
3633 if (dwarf2_per_objfile->index_table != nullptr)
3634 {
3635 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3636 here though if the current language is Ada for a non-Ada objfile
3637 using GNU index. As Ada does not look for non-Ada symbols this
3638 function should just return. */
3639 return;
3640 }
3641
3642 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3643 inline psym_map_matching_symbols here, assuming all partial symtabs have
3644 been read in. */
3645 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3646
3647 for (compunit_symtab *cust : objfile->compunits ())
3648 {
3649 const struct block *block;
3650
3651 if (cust == NULL)
3652 continue;
3653 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3654 if (!iterate_over_symbols_terminated (block, name,
3655 domain, callback))
3656 return;
3657 }
3658 }
3659
3660 /* Starting from a search name, return the string that finds the upper
3661 bound of all strings that start with SEARCH_NAME in a sorted name
3662 list. Returns the empty string to indicate that the upper bound is
3663 the end of the list. */
3664
3665 static std::string
3666 make_sort_after_prefix_name (const char *search_name)
3667 {
3668 /* When looking to complete "func", we find the upper bound of all
3669 symbols that start with "func" by looking for where we'd insert
3670 the closest string that would follow "func" in lexicographical
3671 order. Usually, that's "func"-with-last-character-incremented,
3672 i.e. "fund". Mind non-ASCII characters, though. Usually those
3673 will be UTF-8 multi-byte sequences, but we can't be certain.
3674 Especially mind the 0xff character, which is a valid character in
3675 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3676 rule out compilers allowing it in identifiers. Note that
3677 conveniently, strcmp/strcasecmp are specified to compare
3678 characters interpreted as unsigned char. So what we do is treat
3679 the whole string as a base 256 number composed of a sequence of
3680 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3681 to 0, and carries 1 to the following more-significant position.
3682 If the very first character in SEARCH_NAME ends up incremented
3683 and carries/overflows, then the upper bound is the end of the
3684 list. The string after the empty string is also the empty
3685 string.
3686
3687 Some examples of this operation:
3688
3689 SEARCH_NAME => "+1" RESULT
3690
3691 "abc" => "abd"
3692 "ab\xff" => "ac"
3693 "\xff" "a" "\xff" => "\xff" "b"
3694 "\xff" => ""
3695 "\xff\xff" => ""
3696 "" => ""
3697
3698 Then, with these symbols for example:
3699
3700 func
3701 func1
3702 fund
3703
3704 completing "func" looks for symbols between "func" and
3705 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3706 which finds "func" and "func1", but not "fund".
3707
3708 And with:
3709
3710 funcÿ (Latin1 'ÿ' [0xff])
3711 funcÿ1
3712 fund
3713
3714 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3715 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3716
3717 And with:
3718
3719 ÿÿ (Latin1 'ÿ' [0xff])
3720 ÿÿ1
3721
3722 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3723 the end of the list.
3724 */
3725 std::string after = search_name;
3726 while (!after.empty () && (unsigned char) after.back () == 0xff)
3727 after.pop_back ();
3728 if (!after.empty ())
3729 after.back () = (unsigned char) after.back () + 1;
3730 return after;
3731 }
3732
3733 /* See declaration. */
3734
3735 std::pair<std::vector<name_component>::const_iterator,
3736 std::vector<name_component>::const_iterator>
3737 mapped_index_base::find_name_components_bounds
3738 (const lookup_name_info &lookup_name_without_params, language lang) const
3739 {
3740 auto *name_cmp
3741 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3742
3743 const char *lang_name
3744 = lookup_name_without_params.language_lookup_name (lang);
3745
3746 /* Comparison function object for lower_bound that matches against a
3747 given symbol name. */
3748 auto lookup_compare_lower = [&] (const name_component &elem,
3749 const char *name)
3750 {
3751 const char *elem_qualified = this->symbol_name_at (elem.idx);
3752 const char *elem_name = elem_qualified + elem.name_offset;
3753 return name_cmp (elem_name, name) < 0;
3754 };
3755
3756 /* Comparison function object for upper_bound that matches against a
3757 given symbol name. */
3758 auto lookup_compare_upper = [&] (const char *name,
3759 const name_component &elem)
3760 {
3761 const char *elem_qualified = this->symbol_name_at (elem.idx);
3762 const char *elem_name = elem_qualified + elem.name_offset;
3763 return name_cmp (name, elem_name) < 0;
3764 };
3765
3766 auto begin = this->name_components.begin ();
3767 auto end = this->name_components.end ();
3768
3769 /* Find the lower bound. */
3770 auto lower = [&] ()
3771 {
3772 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3773 return begin;
3774 else
3775 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3776 } ();
3777
3778 /* Find the upper bound. */
3779 auto upper = [&] ()
3780 {
3781 if (lookup_name_without_params.completion_mode ())
3782 {
3783 /* In completion mode, we want UPPER to point past all
3784 symbols names that have the same prefix. I.e., with
3785 these symbols, and completing "func":
3786
3787 function << lower bound
3788 function1
3789 other_function << upper bound
3790
3791 We find the upper bound by looking for the insertion
3792 point of "func"-with-last-character-incremented,
3793 i.e. "fund". */
3794 std::string after = make_sort_after_prefix_name (lang_name);
3795 if (after.empty ())
3796 return end;
3797 return std::lower_bound (lower, end, after.c_str (),
3798 lookup_compare_lower);
3799 }
3800 else
3801 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3802 } ();
3803
3804 return {lower, upper};
3805 }
3806
3807 /* See declaration. */
3808
3809 void
3810 mapped_index_base::build_name_components ()
3811 {
3812 if (!this->name_components.empty ())
3813 return;
3814
3815 this->name_components_casing = case_sensitivity;
3816 auto *name_cmp
3817 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3818
3819 /* The code below only knows how to break apart components of C++
3820 symbol names (and other languages that use '::' as
3821 namespace/module separator) and Ada symbol names. */
3822 auto count = this->symbol_name_count ();
3823 for (offset_type idx = 0; idx < count; idx++)
3824 {
3825 if (this->symbol_name_slot_invalid (idx))
3826 continue;
3827
3828 const char *name = this->symbol_name_at (idx);
3829
3830 /* Add each name component to the name component table. */
3831 unsigned int previous_len = 0;
3832
3833 if (strstr (name, "::") != nullptr)
3834 {
3835 for (unsigned int current_len = cp_find_first_component (name);
3836 name[current_len] != '\0';
3837 current_len += cp_find_first_component (name + current_len))
3838 {
3839 gdb_assert (name[current_len] == ':');
3840 this->name_components.push_back ({previous_len, idx});
3841 /* Skip the '::'. */
3842 current_len += 2;
3843 previous_len = current_len;
3844 }
3845 }
3846 else
3847 {
3848 /* Handle the Ada encoded (aka mangled) form here. */
3849 for (const char *iter = strstr (name, "__");
3850 iter != nullptr;
3851 iter = strstr (iter, "__"))
3852 {
3853 this->name_components.push_back ({previous_len, idx});
3854 iter += 2;
3855 previous_len = iter - name;
3856 }
3857 }
3858
3859 this->name_components.push_back ({previous_len, idx});
3860 }
3861
3862 /* Sort name_components elements by name. */
3863 auto name_comp_compare = [&] (const name_component &left,
3864 const name_component &right)
3865 {
3866 const char *left_qualified = this->symbol_name_at (left.idx);
3867 const char *right_qualified = this->symbol_name_at (right.idx);
3868
3869 const char *left_name = left_qualified + left.name_offset;
3870 const char *right_name = right_qualified + right.name_offset;
3871
3872 return name_cmp (left_name, right_name) < 0;
3873 };
3874
3875 std::sort (this->name_components.begin (),
3876 this->name_components.end (),
3877 name_comp_compare);
3878 }
3879
3880 /* Helper for dw2_expand_symtabs_matching that works with a
3881 mapped_index_base instead of the containing objfile. This is split
3882 to a separate function in order to be able to unit test the
3883 name_components matching using a mock mapped_index_base. For each
3884 symbol name that matches, calls MATCH_CALLBACK, passing it the
3885 symbol's index in the mapped_index_base symbol table. */
3886
3887 static void
3888 dw2_expand_symtabs_matching_symbol
3889 (mapped_index_base &index,
3890 const lookup_name_info &lookup_name_in,
3891 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3892 enum search_domain kind,
3893 gdb::function_view<bool (offset_type)> match_callback)
3894 {
3895 lookup_name_info lookup_name_without_params
3896 = lookup_name_in.make_ignore_params ();
3897
3898 /* Build the symbol name component sorted vector, if we haven't
3899 yet. */
3900 index.build_name_components ();
3901
3902 /* The same symbol may appear more than once in the range though.
3903 E.g., if we're looking for symbols that complete "w", and we have
3904 a symbol named "w1::w2", we'll find the two name components for
3905 that same symbol in the range. To be sure we only call the
3906 callback once per symbol, we first collect the symbol name
3907 indexes that matched in a temporary vector and ignore
3908 duplicates. */
3909 std::vector<offset_type> matches;
3910
3911 struct name_and_matcher
3912 {
3913 symbol_name_matcher_ftype *matcher;
3914 const std::string &name;
3915
3916 bool operator== (const name_and_matcher &other) const
3917 {
3918 return matcher == other.matcher && name == other.name;
3919 }
3920 };
3921
3922 /* A vector holding all the different symbol name matchers, for all
3923 languages. */
3924 std::vector<name_and_matcher> matchers;
3925
3926 for (int i = 0; i < nr_languages; i++)
3927 {
3928 enum language lang_e = (enum language) i;
3929
3930 const language_defn *lang = language_def (lang_e);
3931 symbol_name_matcher_ftype *name_matcher
3932 = get_symbol_name_matcher (lang, lookup_name_without_params);
3933
3934 name_and_matcher key {
3935 name_matcher,
3936 lookup_name_without_params.language_lookup_name (lang_e)
3937 };
3938
3939 /* Don't insert the same comparison routine more than once.
3940 Note that we do this linear walk. This is not a problem in
3941 practice because the number of supported languages is
3942 low. */
3943 if (std::find (matchers.begin (), matchers.end (), key)
3944 != matchers.end ())
3945 continue;
3946 matchers.push_back (std::move (key));
3947
3948 auto bounds
3949 = index.find_name_components_bounds (lookup_name_without_params,
3950 lang_e);
3951
3952 /* Now for each symbol name in range, check to see if we have a name
3953 match, and if so, call the MATCH_CALLBACK callback. */
3954
3955 for (; bounds.first != bounds.second; ++bounds.first)
3956 {
3957 const char *qualified = index.symbol_name_at (bounds.first->idx);
3958
3959 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3960 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3961 continue;
3962
3963 matches.push_back (bounds.first->idx);
3964 }
3965 }
3966
3967 std::sort (matches.begin (), matches.end ());
3968
3969 /* Finally call the callback, once per match. */
3970 ULONGEST prev = -1;
3971 for (offset_type idx : matches)
3972 {
3973 if (prev != idx)
3974 {
3975 if (!match_callback (idx))
3976 break;
3977 prev = idx;
3978 }
3979 }
3980
3981 /* Above we use a type wider than idx's for 'prev', since 0 and
3982 (offset_type)-1 are both possible values. */
3983 static_assert (sizeof (prev) > sizeof (offset_type), "");
3984 }
3985
3986 #if GDB_SELF_TEST
3987
3988 namespace selftests { namespace dw2_expand_symtabs_matching {
3989
3990 /* A mock .gdb_index/.debug_names-like name index table, enough to
3991 exercise dw2_expand_symtabs_matching_symbol, which works with the
3992 mapped_index_base interface. Builds an index from the symbol list
3993 passed as parameter to the constructor. */
3994 class mock_mapped_index : public mapped_index_base
3995 {
3996 public:
3997 mock_mapped_index (gdb::array_view<const char *> symbols)
3998 : m_symbol_table (symbols)
3999 {}
4000
4001 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4002
4003 /* Return the number of names in the symbol table. */
4004 size_t symbol_name_count () const override
4005 {
4006 return m_symbol_table.size ();
4007 }
4008
4009 /* Get the name of the symbol at IDX in the symbol table. */
4010 const char *symbol_name_at (offset_type idx) const override
4011 {
4012 return m_symbol_table[idx];
4013 }
4014
4015 private:
4016 gdb::array_view<const char *> m_symbol_table;
4017 };
4018
4019 /* Convenience function that converts a NULL pointer to a "<null>"
4020 string, to pass to print routines. */
4021
4022 static const char *
4023 string_or_null (const char *str)
4024 {
4025 return str != NULL ? str : "<null>";
4026 }
4027
4028 /* Check if a lookup_name_info built from
4029 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4030 index. EXPECTED_LIST is the list of expected matches, in expected
4031 matching order. If no match expected, then an empty list is
4032 specified. Returns true on success. On failure prints a warning
4033 indicating the file:line that failed, and returns false. */
4034
4035 static bool
4036 check_match (const char *file, int line,
4037 mock_mapped_index &mock_index,
4038 const char *name, symbol_name_match_type match_type,
4039 bool completion_mode,
4040 std::initializer_list<const char *> expected_list)
4041 {
4042 lookup_name_info lookup_name (name, match_type, completion_mode);
4043
4044 bool matched = true;
4045
4046 auto mismatch = [&] (const char *expected_str,
4047 const char *got)
4048 {
4049 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4050 "expected=\"%s\", got=\"%s\"\n"),
4051 file, line,
4052 (match_type == symbol_name_match_type::FULL
4053 ? "FULL" : "WILD"),
4054 name, string_or_null (expected_str), string_or_null (got));
4055 matched = false;
4056 };
4057
4058 auto expected_it = expected_list.begin ();
4059 auto expected_end = expected_list.end ();
4060
4061 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4062 NULL, ALL_DOMAIN,
4063 [&] (offset_type idx)
4064 {
4065 const char *matched_name = mock_index.symbol_name_at (idx);
4066 const char *expected_str
4067 = expected_it == expected_end ? NULL : *expected_it++;
4068
4069 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4070 mismatch (expected_str, matched_name);
4071 return true;
4072 });
4073
4074 const char *expected_str
4075 = expected_it == expected_end ? NULL : *expected_it++;
4076 if (expected_str != NULL)
4077 mismatch (expected_str, NULL);
4078
4079 return matched;
4080 }
4081
4082 /* The symbols added to the mock mapped_index for testing (in
4083 canonical form). */
4084 static const char *test_symbols[] = {
4085 "function",
4086 "std::bar",
4087 "std::zfunction",
4088 "std::zfunction2",
4089 "w1::w2",
4090 "ns::foo<char*>",
4091 "ns::foo<int>",
4092 "ns::foo<long>",
4093 "ns2::tmpl<int>::foo2",
4094 "(anonymous namespace)::A::B::C",
4095
4096 /* These are used to check that the increment-last-char in the
4097 matching algorithm for completion doesn't match "t1_fund" when
4098 completing "t1_func". */
4099 "t1_func",
4100 "t1_func1",
4101 "t1_fund",
4102 "t1_fund1",
4103
4104 /* A UTF-8 name with multi-byte sequences to make sure that
4105 cp-name-parser understands this as a single identifier ("função"
4106 is "function" in PT). */
4107 u8"u8função",
4108
4109 /* \377 (0xff) is Latin1 'ÿ'. */
4110 "yfunc\377",
4111
4112 /* \377 (0xff) is Latin1 'ÿ'. */
4113 "\377",
4114 "\377\377123",
4115
4116 /* A name with all sorts of complications. Starts with "z" to make
4117 it easier for the completion tests below. */
4118 #define Z_SYM_NAME \
4119 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4120 "::tuple<(anonymous namespace)::ui*, " \
4121 "std::default_delete<(anonymous namespace)::ui>, void>"
4122
4123 Z_SYM_NAME
4124 };
4125
4126 /* Returns true if the mapped_index_base::find_name_component_bounds
4127 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4128 in completion mode. */
4129
4130 static bool
4131 check_find_bounds_finds (mapped_index_base &index,
4132 const char *search_name,
4133 gdb::array_view<const char *> expected_syms)
4134 {
4135 lookup_name_info lookup_name (search_name,
4136 symbol_name_match_type::FULL, true);
4137
4138 auto bounds = index.find_name_components_bounds (lookup_name,
4139 language_cplus);
4140
4141 size_t distance = std::distance (bounds.first, bounds.second);
4142 if (distance != expected_syms.size ())
4143 return false;
4144
4145 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4146 {
4147 auto nc_elem = bounds.first + exp_elem;
4148 const char *qualified = index.symbol_name_at (nc_elem->idx);
4149 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4150 return false;
4151 }
4152
4153 return true;
4154 }
4155
4156 /* Test the lower-level mapped_index::find_name_component_bounds
4157 method. */
4158
4159 static void
4160 test_mapped_index_find_name_component_bounds ()
4161 {
4162 mock_mapped_index mock_index (test_symbols);
4163
4164 mock_index.build_name_components ();
4165
4166 /* Test the lower-level mapped_index::find_name_component_bounds
4167 method in completion mode. */
4168 {
4169 static const char *expected_syms[] = {
4170 "t1_func",
4171 "t1_func1",
4172 };
4173
4174 SELF_CHECK (check_find_bounds_finds (mock_index,
4175 "t1_func", expected_syms));
4176 }
4177
4178 /* Check that the increment-last-char in the name matching algorithm
4179 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4180 {
4181 static const char *expected_syms1[] = {
4182 "\377",
4183 "\377\377123",
4184 };
4185 SELF_CHECK (check_find_bounds_finds (mock_index,
4186 "\377", expected_syms1));
4187
4188 static const char *expected_syms2[] = {
4189 "\377\377123",
4190 };
4191 SELF_CHECK (check_find_bounds_finds (mock_index,
4192 "\377\377", expected_syms2));
4193 }
4194 }
4195
4196 /* Test dw2_expand_symtabs_matching_symbol. */
4197
4198 static void
4199 test_dw2_expand_symtabs_matching_symbol ()
4200 {
4201 mock_mapped_index mock_index (test_symbols);
4202
4203 /* We let all tests run until the end even if some fails, for debug
4204 convenience. */
4205 bool any_mismatch = false;
4206
4207 /* Create the expected symbols list (an initializer_list). Needed
4208 because lists have commas, and we need to pass them to CHECK,
4209 which is a macro. */
4210 #define EXPECT(...) { __VA_ARGS__ }
4211
4212 /* Wrapper for check_match that passes down the current
4213 __FILE__/__LINE__. */
4214 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4215 any_mismatch |= !check_match (__FILE__, __LINE__, \
4216 mock_index, \
4217 NAME, MATCH_TYPE, COMPLETION_MODE, \
4218 EXPECTED_LIST)
4219
4220 /* Identity checks. */
4221 for (const char *sym : test_symbols)
4222 {
4223 /* Should be able to match all existing symbols. */
4224 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4225 EXPECT (sym));
4226
4227 /* Should be able to match all existing symbols with
4228 parameters. */
4229 std::string with_params = std::string (sym) + "(int)";
4230 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4231 EXPECT (sym));
4232
4233 /* Should be able to match all existing symbols with
4234 parameters and qualifiers. */
4235 with_params = std::string (sym) + " ( int ) const";
4236 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4237 EXPECT (sym));
4238
4239 /* This should really find sym, but cp-name-parser.y doesn't
4240 know about lvalue/rvalue qualifiers yet. */
4241 with_params = std::string (sym) + " ( int ) &&";
4242 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4243 {});
4244 }
4245
4246 /* Check that the name matching algorithm for completion doesn't get
4247 confused with Latin1 'ÿ' / 0xff. */
4248 {
4249 static const char str[] = "\377";
4250 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4251 EXPECT ("\377", "\377\377123"));
4252 }
4253
4254 /* Check that the increment-last-char in the matching algorithm for
4255 completion doesn't match "t1_fund" when completing "t1_func". */
4256 {
4257 static const char str[] = "t1_func";
4258 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4259 EXPECT ("t1_func", "t1_func1"));
4260 }
4261
4262 /* Check that completion mode works at each prefix of the expected
4263 symbol name. */
4264 {
4265 static const char str[] = "function(int)";
4266 size_t len = strlen (str);
4267 std::string lookup;
4268
4269 for (size_t i = 1; i < len; i++)
4270 {
4271 lookup.assign (str, i);
4272 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4273 EXPECT ("function"));
4274 }
4275 }
4276
4277 /* While "w" is a prefix of both components, the match function
4278 should still only be called once. */
4279 {
4280 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4281 EXPECT ("w1::w2"));
4282 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4283 EXPECT ("w1::w2"));
4284 }
4285
4286 /* Same, with a "complicated" symbol. */
4287 {
4288 static const char str[] = Z_SYM_NAME;
4289 size_t len = strlen (str);
4290 std::string lookup;
4291
4292 for (size_t i = 1; i < len; i++)
4293 {
4294 lookup.assign (str, i);
4295 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4296 EXPECT (Z_SYM_NAME));
4297 }
4298 }
4299
4300 /* In FULL mode, an incomplete symbol doesn't match. */
4301 {
4302 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4303 {});
4304 }
4305
4306 /* A complete symbol with parameters matches any overload, since the
4307 index has no overload info. */
4308 {
4309 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4310 EXPECT ("std::zfunction", "std::zfunction2"));
4311 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4312 EXPECT ("std::zfunction", "std::zfunction2"));
4313 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4314 EXPECT ("std::zfunction", "std::zfunction2"));
4315 }
4316
4317 /* Check that whitespace is ignored appropriately. A symbol with a
4318 template argument list. */
4319 {
4320 static const char expected[] = "ns::foo<int>";
4321 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4322 EXPECT (expected));
4323 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4324 EXPECT (expected));
4325 }
4326
4327 /* Check that whitespace is ignored appropriately. A symbol with a
4328 template argument list that includes a pointer. */
4329 {
4330 static const char expected[] = "ns::foo<char*>";
4331 /* Try both completion and non-completion modes. */
4332 static const bool completion_mode[2] = {false, true};
4333 for (size_t i = 0; i < 2; i++)
4334 {
4335 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4336 completion_mode[i], EXPECT (expected));
4337 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4338 completion_mode[i], EXPECT (expected));
4339
4340 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4341 completion_mode[i], EXPECT (expected));
4342 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4343 completion_mode[i], EXPECT (expected));
4344 }
4345 }
4346
4347 {
4348 /* Check method qualifiers are ignored. */
4349 static const char expected[] = "ns::foo<char*>";
4350 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4351 symbol_name_match_type::FULL, true, EXPECT (expected));
4352 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4353 symbol_name_match_type::FULL, true, EXPECT (expected));
4354 CHECK_MATCH ("foo < char * > ( int ) const",
4355 symbol_name_match_type::WILD, true, EXPECT (expected));
4356 CHECK_MATCH ("foo < char * > ( int ) &&",
4357 symbol_name_match_type::WILD, true, EXPECT (expected));
4358 }
4359
4360 /* Test lookup names that don't match anything. */
4361 {
4362 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4363 {});
4364
4365 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4366 {});
4367 }
4368
4369 /* Some wild matching tests, exercising "(anonymous namespace)",
4370 which should not be confused with a parameter list. */
4371 {
4372 static const char *syms[] = {
4373 "A::B::C",
4374 "B::C",
4375 "C",
4376 "A :: B :: C ( int )",
4377 "B :: C ( int )",
4378 "C ( int )",
4379 };
4380
4381 for (const char *s : syms)
4382 {
4383 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4384 EXPECT ("(anonymous namespace)::A::B::C"));
4385 }
4386 }
4387
4388 {
4389 static const char expected[] = "ns2::tmpl<int>::foo2";
4390 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4391 EXPECT (expected));
4392 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4393 EXPECT (expected));
4394 }
4395
4396 SELF_CHECK (!any_mismatch);
4397
4398 #undef EXPECT
4399 #undef CHECK_MATCH
4400 }
4401
4402 static void
4403 run_test ()
4404 {
4405 test_mapped_index_find_name_component_bounds ();
4406 test_dw2_expand_symtabs_matching_symbol ();
4407 }
4408
4409 }} // namespace selftests::dw2_expand_symtabs_matching
4410
4411 #endif /* GDB_SELF_TEST */
4412
4413 /* If FILE_MATCHER is NULL or if PER_CU has
4414 dwarf2_per_cu_quick_data::MARK set (see
4415 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4416 EXPANSION_NOTIFY on it. */
4417
4418 static void
4419 dw2_expand_symtabs_matching_one
4420 (struct dwarf2_per_cu_data *per_cu,
4421 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4422 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4423 {
4424 if (file_matcher == NULL || per_cu->v.quick->mark)
4425 {
4426 bool symtab_was_null
4427 = (per_cu->v.quick->compunit_symtab == NULL);
4428
4429 dw2_instantiate_symtab (per_cu, false);
4430
4431 if (expansion_notify != NULL
4432 && symtab_was_null
4433 && per_cu->v.quick->compunit_symtab != NULL)
4434 expansion_notify (per_cu->v.quick->compunit_symtab);
4435 }
4436 }
4437
4438 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4439 matched, to expand corresponding CUs that were marked. IDX is the
4440 index of the symbol name that matched. */
4441
4442 static void
4443 dw2_expand_marked_cus
4444 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4445 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4446 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4447 search_domain kind)
4448 {
4449 offset_type *vec, vec_len, vec_idx;
4450 bool global_seen = false;
4451 mapped_index &index = *dwarf2_per_objfile->index_table;
4452
4453 vec = (offset_type *) (index.constant_pool
4454 + MAYBE_SWAP (index.symbol_table[idx].vec));
4455 vec_len = MAYBE_SWAP (vec[0]);
4456 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4457 {
4458 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4459 /* This value is only valid for index versions >= 7. */
4460 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4461 gdb_index_symbol_kind symbol_kind =
4462 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4463 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4464 /* Only check the symbol attributes if they're present.
4465 Indices prior to version 7 don't record them,
4466 and indices >= 7 may elide them for certain symbols
4467 (gold does this). */
4468 int attrs_valid =
4469 (index.version >= 7
4470 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4471
4472 /* Work around gold/15646. */
4473 if (attrs_valid)
4474 {
4475 if (!is_static && global_seen)
4476 continue;
4477 if (!is_static)
4478 global_seen = true;
4479 }
4480
4481 /* Only check the symbol's kind if it has one. */
4482 if (attrs_valid)
4483 {
4484 switch (kind)
4485 {
4486 case VARIABLES_DOMAIN:
4487 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4488 continue;
4489 break;
4490 case FUNCTIONS_DOMAIN:
4491 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4492 continue;
4493 break;
4494 case TYPES_DOMAIN:
4495 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4496 continue;
4497 break;
4498 case MODULES_DOMAIN:
4499 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4500 continue;
4501 break;
4502 default:
4503 break;
4504 }
4505 }
4506
4507 /* Don't crash on bad data. */
4508 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4509 + dwarf2_per_objfile->all_type_units.size ()))
4510 {
4511 complaint (_(".gdb_index entry has bad CU index"
4512 " [in module %s]"),
4513 objfile_name (dwarf2_per_objfile->objfile));
4514 continue;
4515 }
4516
4517 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4518 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4519 expansion_notify);
4520 }
4521 }
4522
4523 /* If FILE_MATCHER is non-NULL, set all the
4524 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4525 that match FILE_MATCHER. */
4526
4527 static void
4528 dw_expand_symtabs_matching_file_matcher
4529 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4530 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4531 {
4532 if (file_matcher == NULL)
4533 return;
4534
4535 objfile *const objfile = dwarf2_per_objfile->objfile;
4536
4537 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4538 htab_eq_pointer,
4539 NULL, xcalloc, xfree));
4540 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4541 htab_eq_pointer,
4542 NULL, xcalloc, xfree));
4543
4544 /* The rule is CUs specify all the files, including those used by
4545 any TU, so there's no need to scan TUs here. */
4546
4547 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4548 {
4549 QUIT;
4550
4551 per_cu->v.quick->mark = 0;
4552
4553 /* We only need to look at symtabs not already expanded. */
4554 if (per_cu->v.quick->compunit_symtab)
4555 continue;
4556
4557 quick_file_names *file_data = dw2_get_file_names (per_cu);
4558 if (file_data == NULL)
4559 continue;
4560
4561 if (htab_find (visited_not_found.get (), file_data) != NULL)
4562 continue;
4563 else if (htab_find (visited_found.get (), file_data) != NULL)
4564 {
4565 per_cu->v.quick->mark = 1;
4566 continue;
4567 }
4568
4569 for (int j = 0; j < file_data->num_file_names; ++j)
4570 {
4571 const char *this_real_name;
4572
4573 if (file_matcher (file_data->file_names[j], false))
4574 {
4575 per_cu->v.quick->mark = 1;
4576 break;
4577 }
4578
4579 /* Before we invoke realpath, which can get expensive when many
4580 files are involved, do a quick comparison of the basenames. */
4581 if (!basenames_may_differ
4582 && !file_matcher (lbasename (file_data->file_names[j]),
4583 true))
4584 continue;
4585
4586 this_real_name = dw2_get_real_path (objfile, file_data, j);
4587 if (file_matcher (this_real_name, false))
4588 {
4589 per_cu->v.quick->mark = 1;
4590 break;
4591 }
4592 }
4593
4594 void **slot = htab_find_slot (per_cu->v.quick->mark
4595 ? visited_found.get ()
4596 : visited_not_found.get (),
4597 file_data, INSERT);
4598 *slot = file_data;
4599 }
4600 }
4601
4602 static void
4603 dw2_expand_symtabs_matching
4604 (struct objfile *objfile,
4605 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4606 const lookup_name_info *lookup_name,
4607 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4608 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4609 enum search_domain kind)
4610 {
4611 struct dwarf2_per_objfile *dwarf2_per_objfile
4612 = get_dwarf2_per_objfile (objfile);
4613
4614 /* index_table is NULL if OBJF_READNOW. */
4615 if (!dwarf2_per_objfile->index_table)
4616 return;
4617
4618 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4619
4620 if (symbol_matcher == NULL && lookup_name == NULL)
4621 {
4622 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4623 {
4624 QUIT;
4625
4626 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4627 expansion_notify);
4628 }
4629 return;
4630 }
4631
4632 mapped_index &index = *dwarf2_per_objfile->index_table;
4633
4634 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4635 symbol_matcher,
4636 kind, [&] (offset_type idx)
4637 {
4638 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4639 expansion_notify, kind);
4640 return true;
4641 });
4642 }
4643
4644 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4645 symtab. */
4646
4647 static struct compunit_symtab *
4648 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4649 CORE_ADDR pc)
4650 {
4651 int i;
4652
4653 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4654 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4655 return cust;
4656
4657 if (cust->includes == NULL)
4658 return NULL;
4659
4660 for (i = 0; cust->includes[i]; ++i)
4661 {
4662 struct compunit_symtab *s = cust->includes[i];
4663
4664 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4665 if (s != NULL)
4666 return s;
4667 }
4668
4669 return NULL;
4670 }
4671
4672 static struct compunit_symtab *
4673 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4674 struct bound_minimal_symbol msymbol,
4675 CORE_ADDR pc,
4676 struct obj_section *section,
4677 int warn_if_readin)
4678 {
4679 struct dwarf2_per_cu_data *data;
4680 struct compunit_symtab *result;
4681
4682 if (!objfile->partial_symtabs->psymtabs_addrmap)
4683 return NULL;
4684
4685 CORE_ADDR baseaddr = objfile->text_section_offset ();
4686 data = (struct dwarf2_per_cu_data *) addrmap_find
4687 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4688 if (!data)
4689 return NULL;
4690
4691 if (warn_if_readin && data->v.quick->compunit_symtab)
4692 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4693 paddress (objfile->arch (), pc));
4694
4695 result
4696 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4697 false),
4698 pc);
4699 gdb_assert (result != NULL);
4700 return result;
4701 }
4702
4703 static void
4704 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4705 void *data, int need_fullname)
4706 {
4707 struct dwarf2_per_objfile *dwarf2_per_objfile
4708 = get_dwarf2_per_objfile (objfile);
4709
4710 if (!dwarf2_per_objfile->filenames_cache)
4711 {
4712 dwarf2_per_objfile->filenames_cache.emplace ();
4713
4714 htab_up visited (htab_create_alloc (10,
4715 htab_hash_pointer, htab_eq_pointer,
4716 NULL, xcalloc, xfree));
4717
4718 /* The rule is CUs specify all the files, including those used
4719 by any TU, so there's no need to scan TUs here. We can
4720 ignore file names coming from already-expanded CUs. */
4721
4722 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4723 {
4724 if (per_cu->v.quick->compunit_symtab)
4725 {
4726 void **slot = htab_find_slot (visited.get (),
4727 per_cu->v.quick->file_names,
4728 INSERT);
4729
4730 *slot = per_cu->v.quick->file_names;
4731 }
4732 }
4733
4734 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4735 {
4736 /* We only need to look at symtabs not already expanded. */
4737 if (per_cu->v.quick->compunit_symtab)
4738 continue;
4739
4740 quick_file_names *file_data = dw2_get_file_names (per_cu);
4741 if (file_data == NULL)
4742 continue;
4743
4744 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4745 if (*slot)
4746 {
4747 /* Already visited. */
4748 continue;
4749 }
4750 *slot = file_data;
4751
4752 for (int j = 0; j < file_data->num_file_names; ++j)
4753 {
4754 const char *filename = file_data->file_names[j];
4755 dwarf2_per_objfile->filenames_cache->seen (filename);
4756 }
4757 }
4758 }
4759
4760 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4761 {
4762 gdb::unique_xmalloc_ptr<char> this_real_name;
4763
4764 if (need_fullname)
4765 this_real_name = gdb_realpath (filename);
4766 (*fun) (filename, this_real_name.get (), data);
4767 });
4768 }
4769
4770 static int
4771 dw2_has_symbols (struct objfile *objfile)
4772 {
4773 return 1;
4774 }
4775
4776 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4777 {
4778 dw2_has_symbols,
4779 dw2_find_last_source_symtab,
4780 dw2_forget_cached_source_info,
4781 dw2_map_symtabs_matching_filename,
4782 dw2_lookup_symbol,
4783 NULL,
4784 dw2_print_stats,
4785 dw2_dump,
4786 dw2_expand_symtabs_for_function,
4787 dw2_expand_all_symtabs,
4788 dw2_expand_symtabs_with_fullname,
4789 dw2_map_matching_symbols,
4790 dw2_expand_symtabs_matching,
4791 dw2_find_pc_sect_compunit_symtab,
4792 NULL,
4793 dw2_map_symbol_filenames
4794 };
4795
4796 /* DWARF-5 debug_names reader. */
4797
4798 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4799 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4800
4801 /* A helper function that reads the .debug_names section in SECTION
4802 and fills in MAP. FILENAME is the name of the file containing the
4803 section; it is used for error reporting.
4804
4805 Returns true if all went well, false otherwise. */
4806
4807 static bool
4808 read_debug_names_from_section (struct objfile *objfile,
4809 const char *filename,
4810 struct dwarf2_section_info *section,
4811 mapped_debug_names &map)
4812 {
4813 if (section->empty ())
4814 return false;
4815
4816 /* Older elfutils strip versions could keep the section in the main
4817 executable while splitting it for the separate debug info file. */
4818 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4819 return false;
4820
4821 section->read (objfile);
4822
4823 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4824
4825 const gdb_byte *addr = section->buffer;
4826
4827 bfd *const abfd = section->get_bfd_owner ();
4828
4829 unsigned int bytes_read;
4830 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4831 addr += bytes_read;
4832
4833 map.dwarf5_is_dwarf64 = bytes_read != 4;
4834 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4835 if (bytes_read + length != section->size)
4836 {
4837 /* There may be multiple per-CU indices. */
4838 warning (_("Section .debug_names in %s length %s does not match "
4839 "section length %s, ignoring .debug_names."),
4840 filename, plongest (bytes_read + length),
4841 pulongest (section->size));
4842 return false;
4843 }
4844
4845 /* The version number. */
4846 uint16_t version = read_2_bytes (abfd, addr);
4847 addr += 2;
4848 if (version != 5)
4849 {
4850 warning (_("Section .debug_names in %s has unsupported version %d, "
4851 "ignoring .debug_names."),
4852 filename, version);
4853 return false;
4854 }
4855
4856 /* Padding. */
4857 uint16_t padding = read_2_bytes (abfd, addr);
4858 addr += 2;
4859 if (padding != 0)
4860 {
4861 warning (_("Section .debug_names in %s has unsupported padding %d, "
4862 "ignoring .debug_names."),
4863 filename, padding);
4864 return false;
4865 }
4866
4867 /* comp_unit_count - The number of CUs in the CU list. */
4868 map.cu_count = read_4_bytes (abfd, addr);
4869 addr += 4;
4870
4871 /* local_type_unit_count - The number of TUs in the local TU
4872 list. */
4873 map.tu_count = read_4_bytes (abfd, addr);
4874 addr += 4;
4875
4876 /* foreign_type_unit_count - The number of TUs in the foreign TU
4877 list. */
4878 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4879 addr += 4;
4880 if (foreign_tu_count != 0)
4881 {
4882 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4883 "ignoring .debug_names."),
4884 filename, static_cast<unsigned long> (foreign_tu_count));
4885 return false;
4886 }
4887
4888 /* bucket_count - The number of hash buckets in the hash lookup
4889 table. */
4890 map.bucket_count = read_4_bytes (abfd, addr);
4891 addr += 4;
4892
4893 /* name_count - The number of unique names in the index. */
4894 map.name_count = read_4_bytes (abfd, addr);
4895 addr += 4;
4896
4897 /* abbrev_table_size - The size in bytes of the abbreviations
4898 table. */
4899 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* augmentation_string_size - The size in bytes of the augmentation
4903 string. This value is rounded up to a multiple of 4. */
4904 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4905 addr += 4;
4906 map.augmentation_is_gdb = ((augmentation_string_size
4907 == sizeof (dwarf5_augmentation))
4908 && memcmp (addr, dwarf5_augmentation,
4909 sizeof (dwarf5_augmentation)) == 0);
4910 augmentation_string_size += (-augmentation_string_size) & 3;
4911 addr += augmentation_string_size;
4912
4913 /* List of CUs */
4914 map.cu_table_reordered = addr;
4915 addr += map.cu_count * map.offset_size;
4916
4917 /* List of Local TUs */
4918 map.tu_table_reordered = addr;
4919 addr += map.tu_count * map.offset_size;
4920
4921 /* Hash Lookup Table */
4922 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4923 addr += map.bucket_count * 4;
4924 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4925 addr += map.name_count * 4;
4926
4927 /* Name Table */
4928 map.name_table_string_offs_reordered = addr;
4929 addr += map.name_count * map.offset_size;
4930 map.name_table_entry_offs_reordered = addr;
4931 addr += map.name_count * map.offset_size;
4932
4933 const gdb_byte *abbrev_table_start = addr;
4934 for (;;)
4935 {
4936 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4937 addr += bytes_read;
4938 if (index_num == 0)
4939 break;
4940
4941 const auto insertpair
4942 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4943 if (!insertpair.second)
4944 {
4945 warning (_("Section .debug_names in %s has duplicate index %s, "
4946 "ignoring .debug_names."),
4947 filename, pulongest (index_num));
4948 return false;
4949 }
4950 mapped_debug_names::index_val &indexval = insertpair.first->second;
4951 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4952 addr += bytes_read;
4953
4954 for (;;)
4955 {
4956 mapped_debug_names::index_val::attr attr;
4957 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4958 addr += bytes_read;
4959 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4960 addr += bytes_read;
4961 if (attr.form == DW_FORM_implicit_const)
4962 {
4963 attr.implicit_const = read_signed_leb128 (abfd, addr,
4964 &bytes_read);
4965 addr += bytes_read;
4966 }
4967 if (attr.dw_idx == 0 && attr.form == 0)
4968 break;
4969 indexval.attr_vec.push_back (std::move (attr));
4970 }
4971 }
4972 if (addr != abbrev_table_start + abbrev_table_size)
4973 {
4974 warning (_("Section .debug_names in %s has abbreviation_table "
4975 "of size %s vs. written as %u, ignoring .debug_names."),
4976 filename, plongest (addr - abbrev_table_start),
4977 abbrev_table_size);
4978 return false;
4979 }
4980 map.entry_pool = addr;
4981
4982 return true;
4983 }
4984
4985 /* A helper for create_cus_from_debug_names that handles the MAP's CU
4986 list. */
4987
4988 static void
4989 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
4990 const mapped_debug_names &map,
4991 dwarf2_section_info &section,
4992 bool is_dwz)
4993 {
4994 sect_offset sect_off_prev;
4995 for (uint32_t i = 0; i <= map.cu_count; ++i)
4996 {
4997 sect_offset sect_off_next;
4998 if (i < map.cu_count)
4999 {
5000 sect_off_next
5001 = (sect_offset) (extract_unsigned_integer
5002 (map.cu_table_reordered + i * map.offset_size,
5003 map.offset_size,
5004 map.dwarf5_byte_order));
5005 }
5006 else
5007 sect_off_next = (sect_offset) section.size;
5008 if (i >= 1)
5009 {
5010 const ULONGEST length = sect_off_next - sect_off_prev;
5011 dwarf2_per_cu_data *per_cu
5012 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5013 sect_off_prev, length);
5014 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5015 }
5016 sect_off_prev = sect_off_next;
5017 }
5018 }
5019
5020 /* Read the CU list from the mapped index, and use it to create all
5021 the CU objects for this dwarf2_per_objfile. */
5022
5023 static void
5024 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5025 const mapped_debug_names &map,
5026 const mapped_debug_names &dwz_map)
5027 {
5028 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5029 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5030
5031 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5032 dwarf2_per_objfile->info,
5033 false /* is_dwz */);
5034
5035 if (dwz_map.cu_count == 0)
5036 return;
5037
5038 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5039 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5040 true /* is_dwz */);
5041 }
5042
5043 /* Read .debug_names. If everything went ok, initialize the "quick"
5044 elements of all the CUs and return true. Otherwise, return false. */
5045
5046 static bool
5047 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5048 {
5049 std::unique_ptr<mapped_debug_names> map
5050 (new mapped_debug_names (dwarf2_per_objfile));
5051 mapped_debug_names dwz_map (dwarf2_per_objfile);
5052 struct objfile *objfile = dwarf2_per_objfile->objfile;
5053
5054 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5055 &dwarf2_per_objfile->debug_names,
5056 *map))
5057 return false;
5058
5059 /* Don't use the index if it's empty. */
5060 if (map->name_count == 0)
5061 return false;
5062
5063 /* If there is a .dwz file, read it so we can get its CU list as
5064 well. */
5065 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5066 if (dwz != NULL)
5067 {
5068 if (!read_debug_names_from_section (objfile,
5069 bfd_get_filename (dwz->dwz_bfd.get ()),
5070 &dwz->debug_names, dwz_map))
5071 {
5072 warning (_("could not read '.debug_names' section from %s; skipping"),
5073 bfd_get_filename (dwz->dwz_bfd.get ()));
5074 return false;
5075 }
5076 }
5077
5078 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5079
5080 if (map->tu_count != 0)
5081 {
5082 /* We can only handle a single .debug_types when we have an
5083 index. */
5084 if (dwarf2_per_objfile->types.size () != 1)
5085 return false;
5086
5087 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5088
5089 create_signatured_type_table_from_debug_names
5090 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5091 }
5092
5093 create_addrmap_from_aranges (dwarf2_per_objfile,
5094 &dwarf2_per_objfile->debug_aranges);
5095
5096 dwarf2_per_objfile->debug_names_table = std::move (map);
5097 dwarf2_per_objfile->using_index = 1;
5098 dwarf2_per_objfile->quick_file_names_table =
5099 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5100
5101 return true;
5102 }
5103
5104 /* Type used to manage iterating over all CUs looking for a symbol for
5105 .debug_names. */
5106
5107 class dw2_debug_names_iterator
5108 {
5109 public:
5110 dw2_debug_names_iterator (const mapped_debug_names &map,
5111 gdb::optional<block_enum> block_index,
5112 domain_enum domain,
5113 const char *name)
5114 : m_map (map), m_block_index (block_index), m_domain (domain),
5115 m_addr (find_vec_in_debug_names (map, name))
5116 {}
5117
5118 dw2_debug_names_iterator (const mapped_debug_names &map,
5119 search_domain search, uint32_t namei)
5120 : m_map (map),
5121 m_search (search),
5122 m_addr (find_vec_in_debug_names (map, namei))
5123 {}
5124
5125 dw2_debug_names_iterator (const mapped_debug_names &map,
5126 block_enum block_index, domain_enum domain,
5127 uint32_t namei)
5128 : m_map (map), m_block_index (block_index), m_domain (domain),
5129 m_addr (find_vec_in_debug_names (map, namei))
5130 {}
5131
5132 /* Return the next matching CU or NULL if there are no more. */
5133 dwarf2_per_cu_data *next ();
5134
5135 private:
5136 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5137 const char *name);
5138 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5139 uint32_t namei);
5140
5141 /* The internalized form of .debug_names. */
5142 const mapped_debug_names &m_map;
5143
5144 /* If set, only look for symbols that match that block. Valid values are
5145 GLOBAL_BLOCK and STATIC_BLOCK. */
5146 const gdb::optional<block_enum> m_block_index;
5147
5148 /* The kind of symbol we're looking for. */
5149 const domain_enum m_domain = UNDEF_DOMAIN;
5150 const search_domain m_search = ALL_DOMAIN;
5151
5152 /* The list of CUs from the index entry of the symbol, or NULL if
5153 not found. */
5154 const gdb_byte *m_addr;
5155 };
5156
5157 const char *
5158 mapped_debug_names::namei_to_name (uint32_t namei) const
5159 {
5160 const ULONGEST namei_string_offs
5161 = extract_unsigned_integer ((name_table_string_offs_reordered
5162 + namei * offset_size),
5163 offset_size,
5164 dwarf5_byte_order);
5165 return read_indirect_string_at_offset (dwarf2_per_objfile,
5166 namei_string_offs);
5167 }
5168
5169 /* Find a slot in .debug_names for the object named NAME. If NAME is
5170 found, return pointer to its pool data. If NAME cannot be found,
5171 return NULL. */
5172
5173 const gdb_byte *
5174 dw2_debug_names_iterator::find_vec_in_debug_names
5175 (const mapped_debug_names &map, const char *name)
5176 {
5177 int (*cmp) (const char *, const char *);
5178
5179 gdb::unique_xmalloc_ptr<char> without_params;
5180 if (current_language->la_language == language_cplus
5181 || current_language->la_language == language_fortran
5182 || current_language->la_language == language_d)
5183 {
5184 /* NAME is already canonical. Drop any qualifiers as
5185 .debug_names does not contain any. */
5186
5187 if (strchr (name, '(') != NULL)
5188 {
5189 without_params = cp_remove_params (name);
5190 if (without_params != NULL)
5191 name = without_params.get ();
5192 }
5193 }
5194
5195 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5196
5197 const uint32_t full_hash = dwarf5_djb_hash (name);
5198 uint32_t namei
5199 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5200 (map.bucket_table_reordered
5201 + (full_hash % map.bucket_count)), 4,
5202 map.dwarf5_byte_order);
5203 if (namei == 0)
5204 return NULL;
5205 --namei;
5206 if (namei >= map.name_count)
5207 {
5208 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5209 "[in module %s]"),
5210 namei, map.name_count,
5211 objfile_name (map.dwarf2_per_objfile->objfile));
5212 return NULL;
5213 }
5214
5215 for (;;)
5216 {
5217 const uint32_t namei_full_hash
5218 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5219 (map.hash_table_reordered + namei), 4,
5220 map.dwarf5_byte_order);
5221 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5222 return NULL;
5223
5224 if (full_hash == namei_full_hash)
5225 {
5226 const char *const namei_string = map.namei_to_name (namei);
5227
5228 #if 0 /* An expensive sanity check. */
5229 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5230 {
5231 complaint (_("Wrong .debug_names hash for string at index %u "
5232 "[in module %s]"),
5233 namei, objfile_name (dwarf2_per_objfile->objfile));
5234 return NULL;
5235 }
5236 #endif
5237
5238 if (cmp (namei_string, name) == 0)
5239 {
5240 const ULONGEST namei_entry_offs
5241 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5242 + namei * map.offset_size),
5243 map.offset_size, map.dwarf5_byte_order);
5244 return map.entry_pool + namei_entry_offs;
5245 }
5246 }
5247
5248 ++namei;
5249 if (namei >= map.name_count)
5250 return NULL;
5251 }
5252 }
5253
5254 const gdb_byte *
5255 dw2_debug_names_iterator::find_vec_in_debug_names
5256 (const mapped_debug_names &map, uint32_t namei)
5257 {
5258 if (namei >= map.name_count)
5259 {
5260 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5261 "[in module %s]"),
5262 namei, map.name_count,
5263 objfile_name (map.dwarf2_per_objfile->objfile));
5264 return NULL;
5265 }
5266
5267 const ULONGEST namei_entry_offs
5268 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5269 + namei * map.offset_size),
5270 map.offset_size, map.dwarf5_byte_order);
5271 return map.entry_pool + namei_entry_offs;
5272 }
5273
5274 /* See dw2_debug_names_iterator. */
5275
5276 dwarf2_per_cu_data *
5277 dw2_debug_names_iterator::next ()
5278 {
5279 if (m_addr == NULL)
5280 return NULL;
5281
5282 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5283 struct objfile *objfile = dwarf2_per_objfile->objfile;
5284 bfd *const abfd = objfile->obfd;
5285
5286 again:
5287
5288 unsigned int bytes_read;
5289 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5290 m_addr += bytes_read;
5291 if (abbrev == 0)
5292 return NULL;
5293
5294 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5295 if (indexval_it == m_map.abbrev_map.cend ())
5296 {
5297 complaint (_("Wrong .debug_names undefined abbrev code %s "
5298 "[in module %s]"),
5299 pulongest (abbrev), objfile_name (objfile));
5300 return NULL;
5301 }
5302 const mapped_debug_names::index_val &indexval = indexval_it->second;
5303 enum class symbol_linkage {
5304 unknown,
5305 static_,
5306 extern_,
5307 } symbol_linkage_ = symbol_linkage::unknown;
5308 dwarf2_per_cu_data *per_cu = NULL;
5309 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5310 {
5311 ULONGEST ull;
5312 switch (attr.form)
5313 {
5314 case DW_FORM_implicit_const:
5315 ull = attr.implicit_const;
5316 break;
5317 case DW_FORM_flag_present:
5318 ull = 1;
5319 break;
5320 case DW_FORM_udata:
5321 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5322 m_addr += bytes_read;
5323 break;
5324 default:
5325 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5326 dwarf_form_name (attr.form),
5327 objfile_name (objfile));
5328 return NULL;
5329 }
5330 switch (attr.dw_idx)
5331 {
5332 case DW_IDX_compile_unit:
5333 /* Don't crash on bad data. */
5334 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5335 {
5336 complaint (_(".debug_names entry has bad CU index %s"
5337 " [in module %s]"),
5338 pulongest (ull),
5339 objfile_name (dwarf2_per_objfile->objfile));
5340 continue;
5341 }
5342 per_cu = dwarf2_per_objfile->get_cutu (ull);
5343 break;
5344 case DW_IDX_type_unit:
5345 /* Don't crash on bad data. */
5346 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5347 {
5348 complaint (_(".debug_names entry has bad TU index %s"
5349 " [in module %s]"),
5350 pulongest (ull),
5351 objfile_name (dwarf2_per_objfile->objfile));
5352 continue;
5353 }
5354 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5355 break;
5356 case DW_IDX_GNU_internal:
5357 if (!m_map.augmentation_is_gdb)
5358 break;
5359 symbol_linkage_ = symbol_linkage::static_;
5360 break;
5361 case DW_IDX_GNU_external:
5362 if (!m_map.augmentation_is_gdb)
5363 break;
5364 symbol_linkage_ = symbol_linkage::extern_;
5365 break;
5366 }
5367 }
5368
5369 /* Skip if already read in. */
5370 if (per_cu->v.quick->compunit_symtab)
5371 goto again;
5372
5373 /* Check static vs global. */
5374 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5375 {
5376 const bool want_static = *m_block_index == STATIC_BLOCK;
5377 const bool symbol_is_static =
5378 symbol_linkage_ == symbol_linkage::static_;
5379 if (want_static != symbol_is_static)
5380 goto again;
5381 }
5382
5383 /* Match dw2_symtab_iter_next, symbol_kind
5384 and debug_names::psymbol_tag. */
5385 switch (m_domain)
5386 {
5387 case VAR_DOMAIN:
5388 switch (indexval.dwarf_tag)
5389 {
5390 case DW_TAG_variable:
5391 case DW_TAG_subprogram:
5392 /* Some types are also in VAR_DOMAIN. */
5393 case DW_TAG_typedef:
5394 case DW_TAG_structure_type:
5395 break;
5396 default:
5397 goto again;
5398 }
5399 break;
5400 case STRUCT_DOMAIN:
5401 switch (indexval.dwarf_tag)
5402 {
5403 case DW_TAG_typedef:
5404 case DW_TAG_structure_type:
5405 break;
5406 default:
5407 goto again;
5408 }
5409 break;
5410 case LABEL_DOMAIN:
5411 switch (indexval.dwarf_tag)
5412 {
5413 case 0:
5414 case DW_TAG_variable:
5415 break;
5416 default:
5417 goto again;
5418 }
5419 break;
5420 case MODULE_DOMAIN:
5421 switch (indexval.dwarf_tag)
5422 {
5423 case DW_TAG_module:
5424 break;
5425 default:
5426 goto again;
5427 }
5428 break;
5429 default:
5430 break;
5431 }
5432
5433 /* Match dw2_expand_symtabs_matching, symbol_kind and
5434 debug_names::psymbol_tag. */
5435 switch (m_search)
5436 {
5437 case VARIABLES_DOMAIN:
5438 switch (indexval.dwarf_tag)
5439 {
5440 case DW_TAG_variable:
5441 break;
5442 default:
5443 goto again;
5444 }
5445 break;
5446 case FUNCTIONS_DOMAIN:
5447 switch (indexval.dwarf_tag)
5448 {
5449 case DW_TAG_subprogram:
5450 break;
5451 default:
5452 goto again;
5453 }
5454 break;
5455 case TYPES_DOMAIN:
5456 switch (indexval.dwarf_tag)
5457 {
5458 case DW_TAG_typedef:
5459 case DW_TAG_structure_type:
5460 break;
5461 default:
5462 goto again;
5463 }
5464 break;
5465 case MODULES_DOMAIN:
5466 switch (indexval.dwarf_tag)
5467 {
5468 case DW_TAG_module:
5469 break;
5470 default:
5471 goto again;
5472 }
5473 default:
5474 break;
5475 }
5476
5477 return per_cu;
5478 }
5479
5480 static struct compunit_symtab *
5481 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5482 const char *name, domain_enum domain)
5483 {
5484 struct dwarf2_per_objfile *dwarf2_per_objfile
5485 = get_dwarf2_per_objfile (objfile);
5486
5487 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5488 if (!mapp)
5489 {
5490 /* index is NULL if OBJF_READNOW. */
5491 return NULL;
5492 }
5493 const auto &map = *mapp;
5494
5495 dw2_debug_names_iterator iter (map, block_index, domain, name);
5496
5497 struct compunit_symtab *stab_best = NULL;
5498 struct dwarf2_per_cu_data *per_cu;
5499 while ((per_cu = iter.next ()) != NULL)
5500 {
5501 struct symbol *sym, *with_opaque = NULL;
5502 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5503 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5504 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5505
5506 sym = block_find_symbol (block, name, domain,
5507 block_find_non_opaque_type_preferred,
5508 &with_opaque);
5509
5510 /* Some caution must be observed with overloaded functions and
5511 methods, since the index will not contain any overload
5512 information (but NAME might contain it). */
5513
5514 if (sym != NULL
5515 && strcmp_iw (sym->search_name (), name) == 0)
5516 return stab;
5517 if (with_opaque != NULL
5518 && strcmp_iw (with_opaque->search_name (), name) == 0)
5519 stab_best = stab;
5520
5521 /* Keep looking through other CUs. */
5522 }
5523
5524 return stab_best;
5525 }
5526
5527 /* This dumps minimal information about .debug_names. It is called
5528 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5529 uses this to verify that .debug_names has been loaded. */
5530
5531 static void
5532 dw2_debug_names_dump (struct objfile *objfile)
5533 {
5534 struct dwarf2_per_objfile *dwarf2_per_objfile
5535 = get_dwarf2_per_objfile (objfile);
5536
5537 gdb_assert (dwarf2_per_objfile->using_index);
5538 printf_filtered (".debug_names:");
5539 if (dwarf2_per_objfile->debug_names_table)
5540 printf_filtered (" exists\n");
5541 else
5542 printf_filtered (" faked for \"readnow\"\n");
5543 printf_filtered ("\n");
5544 }
5545
5546 static void
5547 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5548 const char *func_name)
5549 {
5550 struct dwarf2_per_objfile *dwarf2_per_objfile
5551 = get_dwarf2_per_objfile (objfile);
5552
5553 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5554 if (dwarf2_per_objfile->debug_names_table)
5555 {
5556 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5557
5558 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5559
5560 struct dwarf2_per_cu_data *per_cu;
5561 while ((per_cu = iter.next ()) != NULL)
5562 dw2_instantiate_symtab (per_cu, false);
5563 }
5564 }
5565
5566 static void
5567 dw2_debug_names_map_matching_symbols
5568 (struct objfile *objfile,
5569 const lookup_name_info &name, domain_enum domain,
5570 int global,
5571 gdb::function_view<symbol_found_callback_ftype> callback,
5572 symbol_compare_ftype *ordered_compare)
5573 {
5574 struct dwarf2_per_objfile *dwarf2_per_objfile
5575 = get_dwarf2_per_objfile (objfile);
5576
5577 /* debug_names_table is NULL if OBJF_READNOW. */
5578 if (!dwarf2_per_objfile->debug_names_table)
5579 return;
5580
5581 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5582 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5583
5584 const char *match_name = name.ada ().lookup_name ().c_str ();
5585 auto matcher = [&] (const char *symname)
5586 {
5587 if (ordered_compare == nullptr)
5588 return true;
5589 return ordered_compare (symname, match_name) == 0;
5590 };
5591
5592 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5593 [&] (offset_type namei)
5594 {
5595 /* The name was matched, now expand corresponding CUs that were
5596 marked. */
5597 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5598
5599 struct dwarf2_per_cu_data *per_cu;
5600 while ((per_cu = iter.next ()) != NULL)
5601 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5602 return true;
5603 });
5604
5605 /* It's a shame we couldn't do this inside the
5606 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5607 that have already been expanded. Instead, this loop matches what
5608 the psymtab code does. */
5609 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5610 {
5611 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5612 if (cust != nullptr)
5613 {
5614 const struct block *block
5615 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5616 if (!iterate_over_symbols_terminated (block, name,
5617 domain, callback))
5618 break;
5619 }
5620 }
5621 }
5622
5623 static void
5624 dw2_debug_names_expand_symtabs_matching
5625 (struct objfile *objfile,
5626 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5627 const lookup_name_info *lookup_name,
5628 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5629 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5630 enum search_domain kind)
5631 {
5632 struct dwarf2_per_objfile *dwarf2_per_objfile
5633 = get_dwarf2_per_objfile (objfile);
5634
5635 /* debug_names_table is NULL if OBJF_READNOW. */
5636 if (!dwarf2_per_objfile->debug_names_table)
5637 return;
5638
5639 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5640
5641 if (symbol_matcher == NULL && lookup_name == NULL)
5642 {
5643 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5644 {
5645 QUIT;
5646
5647 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5648 expansion_notify);
5649 }
5650 return;
5651 }
5652
5653 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5654
5655 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5656 symbol_matcher,
5657 kind, [&] (offset_type namei)
5658 {
5659 /* The name was matched, now expand corresponding CUs that were
5660 marked. */
5661 dw2_debug_names_iterator iter (map, kind, namei);
5662
5663 struct dwarf2_per_cu_data *per_cu;
5664 while ((per_cu = iter.next ()) != NULL)
5665 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5666 expansion_notify);
5667 return true;
5668 });
5669 }
5670
5671 const struct quick_symbol_functions dwarf2_debug_names_functions =
5672 {
5673 dw2_has_symbols,
5674 dw2_find_last_source_symtab,
5675 dw2_forget_cached_source_info,
5676 dw2_map_symtabs_matching_filename,
5677 dw2_debug_names_lookup_symbol,
5678 NULL,
5679 dw2_print_stats,
5680 dw2_debug_names_dump,
5681 dw2_debug_names_expand_symtabs_for_function,
5682 dw2_expand_all_symtabs,
5683 dw2_expand_symtabs_with_fullname,
5684 dw2_debug_names_map_matching_symbols,
5685 dw2_debug_names_expand_symtabs_matching,
5686 dw2_find_pc_sect_compunit_symtab,
5687 NULL,
5688 dw2_map_symbol_filenames
5689 };
5690
5691 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5692 to either a dwarf2_per_objfile or dwz_file object. */
5693
5694 template <typename T>
5695 static gdb::array_view<const gdb_byte>
5696 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5697 {
5698 dwarf2_section_info *section = &section_owner->gdb_index;
5699
5700 if (section->empty ())
5701 return {};
5702
5703 /* Older elfutils strip versions could keep the section in the main
5704 executable while splitting it for the separate debug info file. */
5705 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5706 return {};
5707
5708 section->read (obj);
5709
5710 /* dwarf2_section_info::size is a bfd_size_type, while
5711 gdb::array_view works with size_t. On 32-bit hosts, with
5712 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5713 is 32-bit. So we need an explicit narrowing conversion here.
5714 This is fine, because it's impossible to allocate or mmap an
5715 array/buffer larger than what size_t can represent. */
5716 return gdb::make_array_view (section->buffer, section->size);
5717 }
5718
5719 /* Lookup the index cache for the contents of the index associated to
5720 DWARF2_OBJ. */
5721
5722 static gdb::array_view<const gdb_byte>
5723 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5724 {
5725 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5726 if (build_id == nullptr)
5727 return {};
5728
5729 return global_index_cache.lookup_gdb_index (build_id,
5730 &dwarf2_obj->index_cache_res);
5731 }
5732
5733 /* Same as the above, but for DWZ. */
5734
5735 static gdb::array_view<const gdb_byte>
5736 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5737 {
5738 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5739 if (build_id == nullptr)
5740 return {};
5741
5742 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5743 }
5744
5745 /* See symfile.h. */
5746
5747 bool
5748 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5749 {
5750 struct dwarf2_per_objfile *dwarf2_per_objfile
5751 = get_dwarf2_per_objfile (objfile);
5752
5753 /* If we're about to read full symbols, don't bother with the
5754 indices. In this case we also don't care if some other debug
5755 format is making psymtabs, because they are all about to be
5756 expanded anyway. */
5757 if ((objfile->flags & OBJF_READNOW))
5758 {
5759 dwarf2_per_objfile->using_index = 1;
5760 create_all_comp_units (dwarf2_per_objfile);
5761 create_all_type_units (dwarf2_per_objfile);
5762 dwarf2_per_objfile->quick_file_names_table
5763 = create_quick_file_names_table
5764 (dwarf2_per_objfile->all_comp_units.size ());
5765
5766 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5767 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5768 {
5769 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5770
5771 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5772 struct dwarf2_per_cu_quick_data);
5773 }
5774
5775 /* Return 1 so that gdb sees the "quick" functions. However,
5776 these functions will be no-ops because we will have expanded
5777 all symtabs. */
5778 *index_kind = dw_index_kind::GDB_INDEX;
5779 return true;
5780 }
5781
5782 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5783 {
5784 *index_kind = dw_index_kind::DEBUG_NAMES;
5785 return true;
5786 }
5787
5788 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5789 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5790 get_gdb_index_contents_from_section<dwz_file>))
5791 {
5792 *index_kind = dw_index_kind::GDB_INDEX;
5793 return true;
5794 }
5795
5796 /* ... otherwise, try to find the index in the index cache. */
5797 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5798 get_gdb_index_contents_from_cache,
5799 get_gdb_index_contents_from_cache_dwz))
5800 {
5801 global_index_cache.hit ();
5802 *index_kind = dw_index_kind::GDB_INDEX;
5803 return true;
5804 }
5805
5806 global_index_cache.miss ();
5807 return false;
5808 }
5809
5810 \f
5811
5812 /* Build a partial symbol table. */
5813
5814 void
5815 dwarf2_build_psymtabs (struct objfile *objfile)
5816 {
5817 struct dwarf2_per_objfile *dwarf2_per_objfile
5818 = get_dwarf2_per_objfile (objfile);
5819
5820 init_psymbol_list (objfile, 1024);
5821
5822 try
5823 {
5824 /* This isn't really ideal: all the data we allocate on the
5825 objfile's obstack is still uselessly kept around. However,
5826 freeing it seems unsafe. */
5827 psymtab_discarder psymtabs (objfile);
5828 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5829 psymtabs.keep ();
5830
5831 /* (maybe) store an index in the cache. */
5832 global_index_cache.store (dwarf2_per_objfile);
5833 }
5834 catch (const gdb_exception_error &except)
5835 {
5836 exception_print (gdb_stderr, except);
5837 }
5838 }
5839
5840 /* Find the base address of the compilation unit for range lists and
5841 location lists. It will normally be specified by DW_AT_low_pc.
5842 In DWARF-3 draft 4, the base address could be overridden by
5843 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5844 compilation units with discontinuous ranges. */
5845
5846 static void
5847 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5848 {
5849 struct attribute *attr;
5850
5851 cu->base_address.reset ();
5852
5853 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5854 if (attr != nullptr)
5855 cu->base_address = attr->value_as_address ();
5856 else
5857 {
5858 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5859 if (attr != nullptr)
5860 cu->base_address = attr->value_as_address ();
5861 }
5862 }
5863
5864 /* Helper function that returns the proper abbrev section for
5865 THIS_CU. */
5866
5867 static struct dwarf2_section_info *
5868 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5869 {
5870 struct dwarf2_section_info *abbrev;
5871 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5872
5873 if (this_cu->is_dwz)
5874 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5875 else
5876 abbrev = &dwarf2_per_objfile->abbrev;
5877
5878 return abbrev;
5879 }
5880
5881 /* Fetch the abbreviation table offset from a comp or type unit header. */
5882
5883 static sect_offset
5884 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5885 struct dwarf2_section_info *section,
5886 sect_offset sect_off)
5887 {
5888 bfd *abfd = section->get_bfd_owner ();
5889 const gdb_byte *info_ptr;
5890 unsigned int initial_length_size, offset_size;
5891 uint16_t version;
5892
5893 section->read (dwarf2_per_objfile->objfile);
5894 info_ptr = section->buffer + to_underlying (sect_off);
5895 read_initial_length (abfd, info_ptr, &initial_length_size);
5896 offset_size = initial_length_size == 4 ? 4 : 8;
5897 info_ptr += initial_length_size;
5898
5899 version = read_2_bytes (abfd, info_ptr);
5900 info_ptr += 2;
5901 if (version >= 5)
5902 {
5903 /* Skip unit type and address size. */
5904 info_ptr += 2;
5905 }
5906
5907 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5908 }
5909
5910 /* A partial symtab that is used only for include files. */
5911 struct dwarf2_include_psymtab : public partial_symtab
5912 {
5913 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5914 : partial_symtab (filename, objfile)
5915 {
5916 }
5917
5918 void read_symtab (struct objfile *objfile) override
5919 {
5920 /* It's an include file, no symbols to read for it.
5921 Everything is in the includer symtab. */
5922
5923 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5924 expansion of the includer psymtab. We use the dependencies[0] field to
5925 model the includer. But if we go the regular route of calling
5926 expand_psymtab here, and having expand_psymtab call expand_dependencies
5927 to expand the includer, we'll only use expand_psymtab on the includer
5928 (making it a non-toplevel psymtab), while if we expand the includer via
5929 another path, we'll use read_symtab (making it a toplevel psymtab).
5930 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
5931 psymtab, and trigger read_symtab on the includer here directly. */
5932 includer ()->read_symtab (objfile);
5933 }
5934
5935 void expand_psymtab (struct objfile *objfile) override
5936 {
5937 /* This is not called by read_symtab, and should not be called by any
5938 expand_dependencies. */
5939 gdb_assert (false);
5940 }
5941
5942 bool readin_p () const override
5943 {
5944 return includer ()->readin_p ();
5945 }
5946
5947 struct compunit_symtab *get_compunit_symtab () const override
5948 {
5949 return nullptr;
5950 }
5951
5952 private:
5953 partial_symtab *includer () const
5954 {
5955 /* An include psymtab has exactly one dependency: the psymtab that
5956 includes it. */
5957 gdb_assert (this->number_of_dependencies == 1);
5958 return this->dependencies[0];
5959 }
5960 };
5961
5962 /* Allocate a new partial symtab for file named NAME and mark this new
5963 partial symtab as being an include of PST. */
5964
5965 static void
5966 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
5967 struct objfile *objfile)
5968 {
5969 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
5970
5971 if (!IS_ABSOLUTE_PATH (subpst->filename))
5972 {
5973 /* It shares objfile->objfile_obstack. */
5974 subpst->dirname = pst->dirname;
5975 }
5976
5977 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
5978 subpst->dependencies[0] = pst;
5979 subpst->number_of_dependencies = 1;
5980 }
5981
5982 /* Read the Line Number Program data and extract the list of files
5983 included by the source file represented by PST. Build an include
5984 partial symtab for each of these included files. */
5985
5986 static void
5987 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
5988 struct die_info *die,
5989 dwarf2_psymtab *pst)
5990 {
5991 line_header_up lh;
5992 struct attribute *attr;
5993
5994 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5995 if (attr != nullptr)
5996 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
5997 if (lh == NULL)
5998 return; /* No linetable, so no includes. */
5999
6000 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6001 that we pass in the raw text_low here; that is ok because we're
6002 only decoding the line table to make include partial symtabs, and
6003 so the addresses aren't really used. */
6004 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6005 pst->raw_text_low (), 1);
6006 }
6007
6008 static hashval_t
6009 hash_signatured_type (const void *item)
6010 {
6011 const struct signatured_type *sig_type
6012 = (const struct signatured_type *) item;
6013
6014 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6015 return sig_type->signature;
6016 }
6017
6018 static int
6019 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6020 {
6021 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6022 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6023
6024 return lhs->signature == rhs->signature;
6025 }
6026
6027 /* Allocate a hash table for signatured types. */
6028
6029 static htab_up
6030 allocate_signatured_type_table ()
6031 {
6032 return htab_up (htab_create_alloc (41,
6033 hash_signatured_type,
6034 eq_signatured_type,
6035 NULL, xcalloc, xfree));
6036 }
6037
6038 /* A helper function to add a signatured type CU to a table. */
6039
6040 static int
6041 add_signatured_type_cu_to_table (void **slot, void *datum)
6042 {
6043 struct signatured_type *sigt = (struct signatured_type *) *slot;
6044 std::vector<signatured_type *> *all_type_units
6045 = (std::vector<signatured_type *> *) datum;
6046
6047 all_type_units->push_back (sigt);
6048
6049 return 1;
6050 }
6051
6052 /* A helper for create_debug_types_hash_table. Read types from SECTION
6053 and fill them into TYPES_HTAB. It will process only type units,
6054 therefore DW_UT_type. */
6055
6056 static void
6057 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6058 struct dwo_file *dwo_file,
6059 dwarf2_section_info *section, htab_up &types_htab,
6060 rcuh_kind section_kind)
6061 {
6062 struct objfile *objfile = dwarf2_per_objfile->objfile;
6063 struct dwarf2_section_info *abbrev_section;
6064 bfd *abfd;
6065 const gdb_byte *info_ptr, *end_ptr;
6066
6067 abbrev_section = (dwo_file != NULL
6068 ? &dwo_file->sections.abbrev
6069 : &dwarf2_per_objfile->abbrev);
6070
6071 if (dwarf_read_debug)
6072 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6073 section->get_name (),
6074 abbrev_section->get_file_name ());
6075
6076 section->read (objfile);
6077 info_ptr = section->buffer;
6078
6079 if (info_ptr == NULL)
6080 return;
6081
6082 /* We can't set abfd until now because the section may be empty or
6083 not present, in which case the bfd is unknown. */
6084 abfd = section->get_bfd_owner ();
6085
6086 /* We don't use cutu_reader here because we don't need to read
6087 any dies: the signature is in the header. */
6088
6089 end_ptr = info_ptr + section->size;
6090 while (info_ptr < end_ptr)
6091 {
6092 struct signatured_type *sig_type;
6093 struct dwo_unit *dwo_tu;
6094 void **slot;
6095 const gdb_byte *ptr = info_ptr;
6096 struct comp_unit_head header;
6097 unsigned int length;
6098
6099 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6100
6101 /* Initialize it due to a false compiler warning. */
6102 header.signature = -1;
6103 header.type_cu_offset_in_tu = (cu_offset) -1;
6104
6105 /* We need to read the type's signature in order to build the hash
6106 table, but we don't need anything else just yet. */
6107
6108 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6109 abbrev_section, ptr, section_kind);
6110
6111 length = header.get_length ();
6112
6113 /* Skip dummy type units. */
6114 if (ptr >= info_ptr + length
6115 || peek_abbrev_code (abfd, ptr) == 0
6116 || header.unit_type != DW_UT_type)
6117 {
6118 info_ptr += length;
6119 continue;
6120 }
6121
6122 if (types_htab == NULL)
6123 {
6124 if (dwo_file)
6125 types_htab = allocate_dwo_unit_table ();
6126 else
6127 types_htab = allocate_signatured_type_table ();
6128 }
6129
6130 if (dwo_file)
6131 {
6132 sig_type = NULL;
6133 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6134 struct dwo_unit);
6135 dwo_tu->dwo_file = dwo_file;
6136 dwo_tu->signature = header.signature;
6137 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6138 dwo_tu->section = section;
6139 dwo_tu->sect_off = sect_off;
6140 dwo_tu->length = length;
6141 }
6142 else
6143 {
6144 /* N.B.: type_offset is not usable if this type uses a DWO file.
6145 The real type_offset is in the DWO file. */
6146 dwo_tu = NULL;
6147 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6148 struct signatured_type);
6149 sig_type->signature = header.signature;
6150 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6151 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6152 sig_type->per_cu.is_debug_types = 1;
6153 sig_type->per_cu.section = section;
6154 sig_type->per_cu.sect_off = sect_off;
6155 sig_type->per_cu.length = length;
6156 }
6157
6158 slot = htab_find_slot (types_htab.get (),
6159 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6160 INSERT);
6161 gdb_assert (slot != NULL);
6162 if (*slot != NULL)
6163 {
6164 sect_offset dup_sect_off;
6165
6166 if (dwo_file)
6167 {
6168 const struct dwo_unit *dup_tu
6169 = (const struct dwo_unit *) *slot;
6170
6171 dup_sect_off = dup_tu->sect_off;
6172 }
6173 else
6174 {
6175 const struct signatured_type *dup_tu
6176 = (const struct signatured_type *) *slot;
6177
6178 dup_sect_off = dup_tu->per_cu.sect_off;
6179 }
6180
6181 complaint (_("debug type entry at offset %s is duplicate to"
6182 " the entry at offset %s, signature %s"),
6183 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6184 hex_string (header.signature));
6185 }
6186 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6187
6188 if (dwarf_read_debug > 1)
6189 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6190 sect_offset_str (sect_off),
6191 hex_string (header.signature));
6192
6193 info_ptr += length;
6194 }
6195 }
6196
6197 /* Create the hash table of all entries in the .debug_types
6198 (or .debug_types.dwo) section(s).
6199 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6200 otherwise it is NULL.
6201
6202 The result is a pointer to the hash table or NULL if there are no types.
6203
6204 Note: This function processes DWO files only, not DWP files. */
6205
6206 static void
6207 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6208 struct dwo_file *dwo_file,
6209 gdb::array_view<dwarf2_section_info> type_sections,
6210 htab_up &types_htab)
6211 {
6212 for (dwarf2_section_info &section : type_sections)
6213 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6214 types_htab, rcuh_kind::TYPE);
6215 }
6216
6217 /* Create the hash table of all entries in the .debug_types section,
6218 and initialize all_type_units.
6219 The result is zero if there is an error (e.g. missing .debug_types section),
6220 otherwise non-zero. */
6221
6222 static int
6223 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6224 {
6225 htab_up types_htab;
6226
6227 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6228 &dwarf2_per_objfile->info, types_htab,
6229 rcuh_kind::COMPILE);
6230 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6231 dwarf2_per_objfile->types, types_htab);
6232 if (types_htab == NULL)
6233 {
6234 dwarf2_per_objfile->signatured_types = NULL;
6235 return 0;
6236 }
6237
6238 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6239
6240 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6241 dwarf2_per_objfile->all_type_units.reserve
6242 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6243
6244 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6245 add_signatured_type_cu_to_table,
6246 &dwarf2_per_objfile->all_type_units);
6247
6248 return 1;
6249 }
6250
6251 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6252 If SLOT is non-NULL, it is the entry to use in the hash table.
6253 Otherwise we find one. */
6254
6255 static struct signatured_type *
6256 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6257 void **slot)
6258 {
6259 struct objfile *objfile = dwarf2_per_objfile->objfile;
6260
6261 if (dwarf2_per_objfile->all_type_units.size ()
6262 == dwarf2_per_objfile->all_type_units.capacity ())
6263 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6264
6265 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6266 struct signatured_type);
6267
6268 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6269 sig_type->signature = sig;
6270 sig_type->per_cu.is_debug_types = 1;
6271 if (dwarf2_per_objfile->using_index)
6272 {
6273 sig_type->per_cu.v.quick =
6274 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6275 struct dwarf2_per_cu_quick_data);
6276 }
6277
6278 if (slot == NULL)
6279 {
6280 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6281 sig_type, INSERT);
6282 }
6283 gdb_assert (*slot == NULL);
6284 *slot = sig_type;
6285 /* The rest of sig_type must be filled in by the caller. */
6286 return sig_type;
6287 }
6288
6289 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6290 Fill in SIG_ENTRY with DWO_ENTRY. */
6291
6292 static void
6293 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6294 struct signatured_type *sig_entry,
6295 struct dwo_unit *dwo_entry)
6296 {
6297 /* Make sure we're not clobbering something we don't expect to. */
6298 gdb_assert (! sig_entry->per_cu.queued);
6299 gdb_assert (sig_entry->per_cu.cu == NULL);
6300 if (dwarf2_per_objfile->using_index)
6301 {
6302 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6303 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6304 }
6305 else
6306 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6307 gdb_assert (sig_entry->signature == dwo_entry->signature);
6308 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6309 gdb_assert (sig_entry->type_unit_group == NULL);
6310 gdb_assert (sig_entry->dwo_unit == NULL);
6311
6312 sig_entry->per_cu.section = dwo_entry->section;
6313 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6314 sig_entry->per_cu.length = dwo_entry->length;
6315 sig_entry->per_cu.reading_dwo_directly = 1;
6316 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6317 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6318 sig_entry->dwo_unit = dwo_entry;
6319 }
6320
6321 /* Subroutine of lookup_signatured_type.
6322 If we haven't read the TU yet, create the signatured_type data structure
6323 for a TU to be read in directly from a DWO file, bypassing the stub.
6324 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6325 using .gdb_index, then when reading a CU we want to stay in the DWO file
6326 containing that CU. Otherwise we could end up reading several other DWO
6327 files (due to comdat folding) to process the transitive closure of all the
6328 mentioned TUs, and that can be slow. The current DWO file will have every
6329 type signature that it needs.
6330 We only do this for .gdb_index because in the psymtab case we already have
6331 to read all the DWOs to build the type unit groups. */
6332
6333 static struct signatured_type *
6334 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6335 {
6336 struct dwarf2_per_objfile *dwarf2_per_objfile
6337 = cu->per_cu->dwarf2_per_objfile;
6338 struct dwo_file *dwo_file;
6339 struct dwo_unit find_dwo_entry, *dwo_entry;
6340 struct signatured_type find_sig_entry, *sig_entry;
6341 void **slot;
6342
6343 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6344
6345 /* If TU skeletons have been removed then we may not have read in any
6346 TUs yet. */
6347 if (dwarf2_per_objfile->signatured_types == NULL)
6348 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6349
6350 /* We only ever need to read in one copy of a signatured type.
6351 Use the global signatured_types array to do our own comdat-folding
6352 of types. If this is the first time we're reading this TU, and
6353 the TU has an entry in .gdb_index, replace the recorded data from
6354 .gdb_index with this TU. */
6355
6356 find_sig_entry.signature = sig;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6358 &find_sig_entry, INSERT);
6359 sig_entry = (struct signatured_type *) *slot;
6360
6361 /* We can get here with the TU already read, *or* in the process of being
6362 read. Don't reassign the global entry to point to this DWO if that's
6363 the case. Also note that if the TU is already being read, it may not
6364 have come from a DWO, the program may be a mix of Fission-compiled
6365 code and non-Fission-compiled code. */
6366
6367 /* Have we already tried to read this TU?
6368 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6369 needn't exist in the global table yet). */
6370 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6371 return sig_entry;
6372
6373 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6374 dwo_unit of the TU itself. */
6375 dwo_file = cu->dwo_unit->dwo_file;
6376
6377 /* Ok, this is the first time we're reading this TU. */
6378 if (dwo_file->tus == NULL)
6379 return NULL;
6380 find_dwo_entry.signature = sig;
6381 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6382 &find_dwo_entry);
6383 if (dwo_entry == NULL)
6384 return NULL;
6385
6386 /* If the global table doesn't have an entry for this TU, add one. */
6387 if (sig_entry == NULL)
6388 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6389
6390 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6391 sig_entry->per_cu.tu_read = 1;
6392 return sig_entry;
6393 }
6394
6395 /* Subroutine of lookup_signatured_type.
6396 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6397 then try the DWP file. If the TU stub (skeleton) has been removed then
6398 it won't be in .gdb_index. */
6399
6400 static struct signatured_type *
6401 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6402 {
6403 struct dwarf2_per_objfile *dwarf2_per_objfile
6404 = cu->per_cu->dwarf2_per_objfile;
6405 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6406 struct dwo_unit *dwo_entry;
6407 struct signatured_type find_sig_entry, *sig_entry;
6408 void **slot;
6409
6410 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6411 gdb_assert (dwp_file != NULL);
6412
6413 /* If TU skeletons have been removed then we may not have read in any
6414 TUs yet. */
6415 if (dwarf2_per_objfile->signatured_types == NULL)
6416 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6417
6418 find_sig_entry.signature = sig;
6419 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6420 &find_sig_entry, INSERT);
6421 sig_entry = (struct signatured_type *) *slot;
6422
6423 /* Have we already tried to read this TU?
6424 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6425 needn't exist in the global table yet). */
6426 if (sig_entry != NULL)
6427 return sig_entry;
6428
6429 if (dwp_file->tus == NULL)
6430 return NULL;
6431 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6432 sig, 1 /* is_debug_types */);
6433 if (dwo_entry == NULL)
6434 return NULL;
6435
6436 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6437 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6438
6439 return sig_entry;
6440 }
6441
6442 /* Lookup a signature based type for DW_FORM_ref_sig8.
6443 Returns NULL if signature SIG is not present in the table.
6444 It is up to the caller to complain about this. */
6445
6446 static struct signatured_type *
6447 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6448 {
6449 struct dwarf2_per_objfile *dwarf2_per_objfile
6450 = cu->per_cu->dwarf2_per_objfile;
6451
6452 if (cu->dwo_unit
6453 && dwarf2_per_objfile->using_index)
6454 {
6455 /* We're in a DWO/DWP file, and we're using .gdb_index.
6456 These cases require special processing. */
6457 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6458 return lookup_dwo_signatured_type (cu, sig);
6459 else
6460 return lookup_dwp_signatured_type (cu, sig);
6461 }
6462 else
6463 {
6464 struct signatured_type find_entry, *entry;
6465
6466 if (dwarf2_per_objfile->signatured_types == NULL)
6467 return NULL;
6468 find_entry.signature = sig;
6469 entry = ((struct signatured_type *)
6470 htab_find (dwarf2_per_objfile->signatured_types.get (),
6471 &find_entry));
6472 return entry;
6473 }
6474 }
6475
6476 /* Low level DIE reading support. */
6477
6478 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6479
6480 static void
6481 init_cu_die_reader (struct die_reader_specs *reader,
6482 struct dwarf2_cu *cu,
6483 struct dwarf2_section_info *section,
6484 struct dwo_file *dwo_file,
6485 struct abbrev_table *abbrev_table)
6486 {
6487 gdb_assert (section->readin && section->buffer != NULL);
6488 reader->abfd = section->get_bfd_owner ();
6489 reader->cu = cu;
6490 reader->dwo_file = dwo_file;
6491 reader->die_section = section;
6492 reader->buffer = section->buffer;
6493 reader->buffer_end = section->buffer + section->size;
6494 reader->abbrev_table = abbrev_table;
6495 }
6496
6497 /* Subroutine of cutu_reader to simplify it.
6498 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6499 There's just a lot of work to do, and cutu_reader is big enough
6500 already.
6501
6502 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6503 from it to the DIE in the DWO. If NULL we are skipping the stub.
6504 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6505 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6506 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6507 STUB_COMP_DIR may be non-NULL.
6508 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6509 are filled in with the info of the DIE from the DWO file.
6510 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6511 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6512 kept around for at least as long as *RESULT_READER.
6513
6514 The result is non-zero if a valid (non-dummy) DIE was found. */
6515
6516 static int
6517 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6518 struct dwo_unit *dwo_unit,
6519 struct die_info *stub_comp_unit_die,
6520 const char *stub_comp_dir,
6521 struct die_reader_specs *result_reader,
6522 const gdb_byte **result_info_ptr,
6523 struct die_info **result_comp_unit_die,
6524 abbrev_table_up *result_dwo_abbrev_table)
6525 {
6526 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6527 struct objfile *objfile = dwarf2_per_objfile->objfile;
6528 struct dwarf2_cu *cu = this_cu->cu;
6529 bfd *abfd;
6530 const gdb_byte *begin_info_ptr, *info_ptr;
6531 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6532 int i,num_extra_attrs;
6533 struct dwarf2_section_info *dwo_abbrev_section;
6534 struct die_info *comp_unit_die;
6535
6536 /* At most one of these may be provided. */
6537 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6538
6539 /* These attributes aren't processed until later:
6540 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6541 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6542 referenced later. However, these attributes are found in the stub
6543 which we won't have later. In order to not impose this complication
6544 on the rest of the code, we read them here and copy them to the
6545 DWO CU/TU die. */
6546
6547 stmt_list = NULL;
6548 low_pc = NULL;
6549 high_pc = NULL;
6550 ranges = NULL;
6551 comp_dir = NULL;
6552
6553 if (stub_comp_unit_die != NULL)
6554 {
6555 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6556 DWO file. */
6557 if (! this_cu->is_debug_types)
6558 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6559 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6560 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6561 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6562 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6563
6564 cu->addr_base = stub_comp_unit_die->addr_base ();
6565
6566 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6567 here (if needed). We need the value before we can process
6568 DW_AT_ranges. */
6569 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6570 }
6571 else if (stub_comp_dir != NULL)
6572 {
6573 /* Reconstruct the comp_dir attribute to simplify the code below. */
6574 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6575 comp_dir->name = DW_AT_comp_dir;
6576 comp_dir->form = DW_FORM_string;
6577 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6578 DW_STRING (comp_dir) = stub_comp_dir;
6579 }
6580
6581 /* Set up for reading the DWO CU/TU. */
6582 cu->dwo_unit = dwo_unit;
6583 dwarf2_section_info *section = dwo_unit->section;
6584 section->read (objfile);
6585 abfd = section->get_bfd_owner ();
6586 begin_info_ptr = info_ptr = (section->buffer
6587 + to_underlying (dwo_unit->sect_off));
6588 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6589
6590 if (this_cu->is_debug_types)
6591 {
6592 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6593
6594 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6595 &cu->header, section,
6596 dwo_abbrev_section,
6597 info_ptr, rcuh_kind::TYPE);
6598 /* This is not an assert because it can be caused by bad debug info. */
6599 if (sig_type->signature != cu->header.signature)
6600 {
6601 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6602 " TU at offset %s [in module %s]"),
6603 hex_string (sig_type->signature),
6604 hex_string (cu->header.signature),
6605 sect_offset_str (dwo_unit->sect_off),
6606 bfd_get_filename (abfd));
6607 }
6608 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6609 /* For DWOs coming from DWP files, we don't know the CU length
6610 nor the type's offset in the TU until now. */
6611 dwo_unit->length = cu->header.get_length ();
6612 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6613
6614 /* Establish the type offset that can be used to lookup the type.
6615 For DWO files, we don't know it until now. */
6616 sig_type->type_offset_in_section
6617 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6618 }
6619 else
6620 {
6621 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6622 &cu->header, section,
6623 dwo_abbrev_section,
6624 info_ptr, rcuh_kind::COMPILE);
6625 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6626 /* For DWOs coming from DWP files, we don't know the CU length
6627 until now. */
6628 dwo_unit->length = cu->header.get_length ();
6629 }
6630
6631 *result_dwo_abbrev_table
6632 = abbrev_table::read (objfile, dwo_abbrev_section,
6633 cu->header.abbrev_sect_off);
6634 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6635 result_dwo_abbrev_table->get ());
6636
6637 /* Read in the die, but leave space to copy over the attributes
6638 from the stub. This has the benefit of simplifying the rest of
6639 the code - all the work to maintain the illusion of a single
6640 DW_TAG_{compile,type}_unit DIE is done here. */
6641 num_extra_attrs = ((stmt_list != NULL)
6642 + (low_pc != NULL)
6643 + (high_pc != NULL)
6644 + (ranges != NULL)
6645 + (comp_dir != NULL));
6646 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6647 num_extra_attrs);
6648
6649 /* Copy over the attributes from the stub to the DIE we just read in. */
6650 comp_unit_die = *result_comp_unit_die;
6651 i = comp_unit_die->num_attrs;
6652 if (stmt_list != NULL)
6653 comp_unit_die->attrs[i++] = *stmt_list;
6654 if (low_pc != NULL)
6655 comp_unit_die->attrs[i++] = *low_pc;
6656 if (high_pc != NULL)
6657 comp_unit_die->attrs[i++] = *high_pc;
6658 if (ranges != NULL)
6659 comp_unit_die->attrs[i++] = *ranges;
6660 if (comp_dir != NULL)
6661 comp_unit_die->attrs[i++] = *comp_dir;
6662 comp_unit_die->num_attrs += num_extra_attrs;
6663
6664 if (dwarf_die_debug)
6665 {
6666 fprintf_unfiltered (gdb_stdlog,
6667 "Read die from %s@0x%x of %s:\n",
6668 section->get_name (),
6669 (unsigned) (begin_info_ptr - section->buffer),
6670 bfd_get_filename (abfd));
6671 dump_die (comp_unit_die, dwarf_die_debug);
6672 }
6673
6674 /* Skip dummy compilation units. */
6675 if (info_ptr >= begin_info_ptr + dwo_unit->length
6676 || peek_abbrev_code (abfd, info_ptr) == 0)
6677 return 0;
6678
6679 *result_info_ptr = info_ptr;
6680 return 1;
6681 }
6682
6683 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6684 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6685 signature is part of the header. */
6686 static gdb::optional<ULONGEST>
6687 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6688 {
6689 if (cu->header.version >= 5)
6690 return cu->header.signature;
6691 struct attribute *attr;
6692 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6693 if (attr == nullptr)
6694 return gdb::optional<ULONGEST> ();
6695 return DW_UNSND (attr);
6696 }
6697
6698 /* Subroutine of cutu_reader to simplify it.
6699 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6700 Returns NULL if the specified DWO unit cannot be found. */
6701
6702 static struct dwo_unit *
6703 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6704 struct die_info *comp_unit_die,
6705 const char *dwo_name)
6706 {
6707 struct dwarf2_cu *cu = this_cu->cu;
6708 struct dwo_unit *dwo_unit;
6709 const char *comp_dir;
6710
6711 gdb_assert (cu != NULL);
6712
6713 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6714 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6715 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6716
6717 if (this_cu->is_debug_types)
6718 {
6719 struct signatured_type *sig_type;
6720
6721 /* Since this_cu is the first member of struct signatured_type,
6722 we can go from a pointer to one to a pointer to the other. */
6723 sig_type = (struct signatured_type *) this_cu;
6724 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6725 }
6726 else
6727 {
6728 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6729 if (!signature.has_value ())
6730 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6731 " [in module %s]"),
6732 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6733 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6734 *signature);
6735 }
6736
6737 return dwo_unit;
6738 }
6739
6740 /* Subroutine of cutu_reader to simplify it.
6741 See it for a description of the parameters.
6742 Read a TU directly from a DWO file, bypassing the stub. */
6743
6744 void
6745 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6746 int use_existing_cu)
6747 {
6748 struct signatured_type *sig_type;
6749
6750 /* Verify we can do the following downcast, and that we have the
6751 data we need. */
6752 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6753 sig_type = (struct signatured_type *) this_cu;
6754 gdb_assert (sig_type->dwo_unit != NULL);
6755
6756 if (use_existing_cu && this_cu->cu != NULL)
6757 {
6758 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6759 /* There's no need to do the rereading_dwo_cu handling that
6760 cutu_reader does since we don't read the stub. */
6761 }
6762 else
6763 {
6764 /* If !use_existing_cu, this_cu->cu must be NULL. */
6765 gdb_assert (this_cu->cu == NULL);
6766 m_new_cu.reset (new dwarf2_cu (this_cu));
6767 }
6768
6769 /* A future optimization, if needed, would be to use an existing
6770 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6771 could share abbrev tables. */
6772
6773 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6774 NULL /* stub_comp_unit_die */,
6775 sig_type->dwo_unit->dwo_file->comp_dir,
6776 this, &info_ptr,
6777 &comp_unit_die,
6778 &m_dwo_abbrev_table) == 0)
6779 {
6780 /* Dummy die. */
6781 dummy_p = true;
6782 }
6783 }
6784
6785 /* Initialize a CU (or TU) and read its DIEs.
6786 If the CU defers to a DWO file, read the DWO file as well.
6787
6788 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6789 Otherwise the table specified in the comp unit header is read in and used.
6790 This is an optimization for when we already have the abbrev table.
6791
6792 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6793 Otherwise, a new CU is allocated with xmalloc. */
6794
6795 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6796 struct abbrev_table *abbrev_table,
6797 int use_existing_cu,
6798 bool skip_partial)
6799 : die_reader_specs {},
6800 m_this_cu (this_cu)
6801 {
6802 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6803 struct objfile *objfile = dwarf2_per_objfile->objfile;
6804 struct dwarf2_section_info *section = this_cu->section;
6805 bfd *abfd = section->get_bfd_owner ();
6806 struct dwarf2_cu *cu;
6807 const gdb_byte *begin_info_ptr;
6808 struct signatured_type *sig_type = NULL;
6809 struct dwarf2_section_info *abbrev_section;
6810 /* Non-zero if CU currently points to a DWO file and we need to
6811 reread it. When this happens we need to reread the skeleton die
6812 before we can reread the DWO file (this only applies to CUs, not TUs). */
6813 int rereading_dwo_cu = 0;
6814
6815 if (dwarf_die_debug)
6816 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6817 this_cu->is_debug_types ? "type" : "comp",
6818 sect_offset_str (this_cu->sect_off));
6819
6820 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6821 file (instead of going through the stub), short-circuit all of this. */
6822 if (this_cu->reading_dwo_directly)
6823 {
6824 /* Narrow down the scope of possibilities to have to understand. */
6825 gdb_assert (this_cu->is_debug_types);
6826 gdb_assert (abbrev_table == NULL);
6827 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6828 return;
6829 }
6830
6831 /* This is cheap if the section is already read in. */
6832 section->read (objfile);
6833
6834 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6835
6836 abbrev_section = get_abbrev_section_for_cu (this_cu);
6837
6838 if (use_existing_cu && this_cu->cu != NULL)
6839 {
6840 cu = this_cu->cu;
6841 /* If this CU is from a DWO file we need to start over, we need to
6842 refetch the attributes from the skeleton CU.
6843 This could be optimized by retrieving those attributes from when we
6844 were here the first time: the previous comp_unit_die was stored in
6845 comp_unit_obstack. But there's no data yet that we need this
6846 optimization. */
6847 if (cu->dwo_unit != NULL)
6848 rereading_dwo_cu = 1;
6849 }
6850 else
6851 {
6852 /* If !use_existing_cu, this_cu->cu must be NULL. */
6853 gdb_assert (this_cu->cu == NULL);
6854 m_new_cu.reset (new dwarf2_cu (this_cu));
6855 cu = m_new_cu.get ();
6856 }
6857
6858 /* Get the header. */
6859 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6860 {
6861 /* We already have the header, there's no need to read it in again. */
6862 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6863 }
6864 else
6865 {
6866 if (this_cu->is_debug_types)
6867 {
6868 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6869 &cu->header, section,
6870 abbrev_section, info_ptr,
6871 rcuh_kind::TYPE);
6872
6873 /* Since per_cu is the first member of struct signatured_type,
6874 we can go from a pointer to one to a pointer to the other. */
6875 sig_type = (struct signatured_type *) this_cu;
6876 gdb_assert (sig_type->signature == cu->header.signature);
6877 gdb_assert (sig_type->type_offset_in_tu
6878 == cu->header.type_cu_offset_in_tu);
6879 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6880
6881 /* LENGTH has not been set yet for type units if we're
6882 using .gdb_index. */
6883 this_cu->length = cu->header.get_length ();
6884
6885 /* Establish the type offset that can be used to lookup the type. */
6886 sig_type->type_offset_in_section =
6887 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6888
6889 this_cu->dwarf_version = cu->header.version;
6890 }
6891 else
6892 {
6893 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6894 &cu->header, section,
6895 abbrev_section,
6896 info_ptr,
6897 rcuh_kind::COMPILE);
6898
6899 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6900 gdb_assert (this_cu->length == cu->header.get_length ());
6901 this_cu->dwarf_version = cu->header.version;
6902 }
6903 }
6904
6905 /* Skip dummy compilation units. */
6906 if (info_ptr >= begin_info_ptr + this_cu->length
6907 || peek_abbrev_code (abfd, info_ptr) == 0)
6908 {
6909 dummy_p = true;
6910 return;
6911 }
6912
6913 /* If we don't have them yet, read the abbrevs for this compilation unit.
6914 And if we need to read them now, make sure they're freed when we're
6915 done. */
6916 if (abbrev_table != NULL)
6917 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6918 else
6919 {
6920 m_abbrev_table_holder
6921 = abbrev_table::read (objfile, abbrev_section,
6922 cu->header.abbrev_sect_off);
6923 abbrev_table = m_abbrev_table_holder.get ();
6924 }
6925
6926 /* Read the top level CU/TU die. */
6927 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
6928 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
6929
6930 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
6931 {
6932 dummy_p = true;
6933 return;
6934 }
6935
6936 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
6937 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
6938 table from the DWO file and pass the ownership over to us. It will be
6939 referenced from READER, so we must make sure to free it after we're done
6940 with READER.
6941
6942 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
6943 DWO CU, that this test will fail (the attribute will not be present). */
6944 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6945 if (dwo_name != nullptr)
6946 {
6947 struct dwo_unit *dwo_unit;
6948 struct die_info *dwo_comp_unit_die;
6949
6950 if (comp_unit_die->has_children)
6951 {
6952 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
6953 " has children (offset %s) [in module %s]"),
6954 sect_offset_str (this_cu->sect_off),
6955 bfd_get_filename (abfd));
6956 }
6957 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
6958 if (dwo_unit != NULL)
6959 {
6960 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
6961 comp_unit_die, NULL,
6962 this, &info_ptr,
6963 &dwo_comp_unit_die,
6964 &m_dwo_abbrev_table) == 0)
6965 {
6966 /* Dummy die. */
6967 dummy_p = true;
6968 return;
6969 }
6970 comp_unit_die = dwo_comp_unit_die;
6971 }
6972 else
6973 {
6974 /* Yikes, we couldn't find the rest of the DIE, we only have
6975 the stub. A complaint has already been logged. There's
6976 not much more we can do except pass on the stub DIE to
6977 die_reader_func. We don't want to throw an error on bad
6978 debug info. */
6979 }
6980 }
6981 }
6982
6983 void
6984 cutu_reader::keep ()
6985 {
6986 /* Done, clean up. */
6987 gdb_assert (!dummy_p);
6988 if (m_new_cu != NULL)
6989 {
6990 struct dwarf2_per_objfile *dwarf2_per_objfile
6991 = m_this_cu->dwarf2_per_objfile;
6992 /* Link this CU into read_in_chain. */
6993 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
6994 dwarf2_per_objfile->read_in_chain = m_this_cu;
6995 /* The chain owns it now. */
6996 m_new_cu.release ();
6997 }
6998 }
6999
7000 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7001 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7002 assumed to have already done the lookup to find the DWO file).
7003
7004 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7005 THIS_CU->is_debug_types, but nothing else.
7006
7007 We fill in THIS_CU->length.
7008
7009 THIS_CU->cu is always freed when done.
7010 This is done in order to not leave THIS_CU->cu in a state where we have
7011 to care whether it refers to the "main" CU or the DWO CU.
7012
7013 When parent_cu is passed, it is used to provide a default value for
7014 str_offsets_base and addr_base from the parent. */
7015
7016 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7017 struct dwarf2_cu *parent_cu,
7018 struct dwo_file *dwo_file)
7019 : die_reader_specs {},
7020 m_this_cu (this_cu)
7021 {
7022 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7023 struct objfile *objfile = dwarf2_per_objfile->objfile;
7024 struct dwarf2_section_info *section = this_cu->section;
7025 bfd *abfd = section->get_bfd_owner ();
7026 struct dwarf2_section_info *abbrev_section;
7027 const gdb_byte *begin_info_ptr, *info_ptr;
7028
7029 if (dwarf_die_debug)
7030 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7031 this_cu->is_debug_types ? "type" : "comp",
7032 sect_offset_str (this_cu->sect_off));
7033
7034 gdb_assert (this_cu->cu == NULL);
7035
7036 abbrev_section = (dwo_file != NULL
7037 ? &dwo_file->sections.abbrev
7038 : get_abbrev_section_for_cu (this_cu));
7039
7040 /* This is cheap if the section is already read in. */
7041 section->read (objfile);
7042
7043 m_new_cu.reset (new dwarf2_cu (this_cu));
7044
7045 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7046 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7047 &m_new_cu->header, section,
7048 abbrev_section, info_ptr,
7049 (this_cu->is_debug_types
7050 ? rcuh_kind::TYPE
7051 : rcuh_kind::COMPILE));
7052
7053 if (parent_cu != nullptr)
7054 {
7055 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7056 m_new_cu->addr_base = parent_cu->addr_base;
7057 }
7058 this_cu->length = m_new_cu->header.get_length ();
7059
7060 /* Skip dummy compilation units. */
7061 if (info_ptr >= begin_info_ptr + this_cu->length
7062 || peek_abbrev_code (abfd, info_ptr) == 0)
7063 {
7064 dummy_p = true;
7065 return;
7066 }
7067
7068 m_abbrev_table_holder
7069 = abbrev_table::read (objfile, abbrev_section,
7070 m_new_cu->header.abbrev_sect_off);
7071
7072 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7073 m_abbrev_table_holder.get ());
7074 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7075 }
7076
7077 \f
7078 /* Type Unit Groups.
7079
7080 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7081 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7082 so that all types coming from the same compilation (.o file) are grouped
7083 together. A future step could be to put the types in the same symtab as
7084 the CU the types ultimately came from. */
7085
7086 static hashval_t
7087 hash_type_unit_group (const void *item)
7088 {
7089 const struct type_unit_group *tu_group
7090 = (const struct type_unit_group *) item;
7091
7092 return hash_stmt_list_entry (&tu_group->hash);
7093 }
7094
7095 static int
7096 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7097 {
7098 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7099 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7100
7101 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7102 }
7103
7104 /* Allocate a hash table for type unit groups. */
7105
7106 static htab_up
7107 allocate_type_unit_groups_table ()
7108 {
7109 return htab_up (htab_create_alloc (3,
7110 hash_type_unit_group,
7111 eq_type_unit_group,
7112 NULL, xcalloc, xfree));
7113 }
7114
7115 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7116 partial symtabs. We combine several TUs per psymtab to not let the size
7117 of any one psymtab grow too big. */
7118 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7119 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7120
7121 /* Helper routine for get_type_unit_group.
7122 Create the type_unit_group object used to hold one or more TUs. */
7123
7124 static struct type_unit_group *
7125 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7126 {
7127 struct dwarf2_per_objfile *dwarf2_per_objfile
7128 = cu->per_cu->dwarf2_per_objfile;
7129 struct objfile *objfile = dwarf2_per_objfile->objfile;
7130 struct dwarf2_per_cu_data *per_cu;
7131 struct type_unit_group *tu_group;
7132
7133 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7134 struct type_unit_group);
7135 per_cu = &tu_group->per_cu;
7136 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7137
7138 if (dwarf2_per_objfile->using_index)
7139 {
7140 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7141 struct dwarf2_per_cu_quick_data);
7142 }
7143 else
7144 {
7145 unsigned int line_offset = to_underlying (line_offset_struct);
7146 dwarf2_psymtab *pst;
7147 std::string name;
7148
7149 /* Give the symtab a useful name for debug purposes. */
7150 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7151 name = string_printf ("<type_units_%d>",
7152 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7153 else
7154 name = string_printf ("<type_units_at_0x%x>", line_offset);
7155
7156 pst = create_partial_symtab (per_cu, name.c_str ());
7157 pst->anonymous = true;
7158 }
7159
7160 tu_group->hash.dwo_unit = cu->dwo_unit;
7161 tu_group->hash.line_sect_off = line_offset_struct;
7162
7163 return tu_group;
7164 }
7165
7166 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7167 STMT_LIST is a DW_AT_stmt_list attribute. */
7168
7169 static struct type_unit_group *
7170 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7171 {
7172 struct dwarf2_per_objfile *dwarf2_per_objfile
7173 = cu->per_cu->dwarf2_per_objfile;
7174 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7175 struct type_unit_group *tu_group;
7176 void **slot;
7177 unsigned int line_offset;
7178 struct type_unit_group type_unit_group_for_lookup;
7179
7180 if (dwarf2_per_objfile->type_unit_groups == NULL)
7181 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7182
7183 /* Do we need to create a new group, or can we use an existing one? */
7184
7185 if (stmt_list)
7186 {
7187 line_offset = DW_UNSND (stmt_list);
7188 ++tu_stats->nr_symtab_sharers;
7189 }
7190 else
7191 {
7192 /* Ugh, no stmt_list. Rare, but we have to handle it.
7193 We can do various things here like create one group per TU or
7194 spread them over multiple groups to split up the expansion work.
7195 To avoid worst case scenarios (too many groups or too large groups)
7196 we, umm, group them in bunches. */
7197 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7198 | (tu_stats->nr_stmt_less_type_units
7199 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7200 ++tu_stats->nr_stmt_less_type_units;
7201 }
7202
7203 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7204 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7205 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7206 &type_unit_group_for_lookup, INSERT);
7207 if (*slot != NULL)
7208 {
7209 tu_group = (struct type_unit_group *) *slot;
7210 gdb_assert (tu_group != NULL);
7211 }
7212 else
7213 {
7214 sect_offset line_offset_struct = (sect_offset) line_offset;
7215 tu_group = create_type_unit_group (cu, line_offset_struct);
7216 *slot = tu_group;
7217 ++tu_stats->nr_symtabs;
7218 }
7219
7220 return tu_group;
7221 }
7222 \f
7223 /* Partial symbol tables. */
7224
7225 /* Create a psymtab named NAME and assign it to PER_CU.
7226
7227 The caller must fill in the following details:
7228 dirname, textlow, texthigh. */
7229
7230 static dwarf2_psymtab *
7231 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7232 {
7233 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7234 dwarf2_psymtab *pst;
7235
7236 pst = new dwarf2_psymtab (name, objfile, per_cu);
7237
7238 pst->psymtabs_addrmap_supported = true;
7239
7240 /* This is the glue that links PST into GDB's symbol API. */
7241 per_cu->v.psymtab = pst;
7242
7243 return pst;
7244 }
7245
7246 /* DIE reader function for process_psymtab_comp_unit. */
7247
7248 static void
7249 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7250 const gdb_byte *info_ptr,
7251 struct die_info *comp_unit_die,
7252 enum language pretend_language)
7253 {
7254 struct dwarf2_cu *cu = reader->cu;
7255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7256 struct gdbarch *gdbarch = objfile->arch ();
7257 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7258 CORE_ADDR baseaddr;
7259 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7260 dwarf2_psymtab *pst;
7261 enum pc_bounds_kind cu_bounds_kind;
7262 const char *filename;
7263
7264 gdb_assert (! per_cu->is_debug_types);
7265
7266 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7267
7268 /* Allocate a new partial symbol table structure. */
7269 gdb::unique_xmalloc_ptr<char> debug_filename;
7270 static const char artificial[] = "<artificial>";
7271 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7272 if (filename == NULL)
7273 filename = "";
7274 else if (strcmp (filename, artificial) == 0)
7275 {
7276 debug_filename.reset (concat (artificial, "@",
7277 sect_offset_str (per_cu->sect_off),
7278 (char *) NULL));
7279 filename = debug_filename.get ();
7280 }
7281
7282 pst = create_partial_symtab (per_cu, filename);
7283
7284 /* This must be done before calling dwarf2_build_include_psymtabs. */
7285 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7286
7287 baseaddr = objfile->text_section_offset ();
7288
7289 dwarf2_find_base_address (comp_unit_die, cu);
7290
7291 /* Possibly set the default values of LOWPC and HIGHPC from
7292 `DW_AT_ranges'. */
7293 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7294 &best_highpc, cu, pst);
7295 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7296 {
7297 CORE_ADDR low
7298 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7299 - baseaddr);
7300 CORE_ADDR high
7301 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7302 - baseaddr - 1);
7303 /* Store the contiguous range if it is not empty; it can be
7304 empty for CUs with no code. */
7305 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7306 low, high, pst);
7307 }
7308
7309 /* Check if comp unit has_children.
7310 If so, read the rest of the partial symbols from this comp unit.
7311 If not, there's no more debug_info for this comp unit. */
7312 if (comp_unit_die->has_children)
7313 {
7314 struct partial_die_info *first_die;
7315 CORE_ADDR lowpc, highpc;
7316
7317 lowpc = ((CORE_ADDR) -1);
7318 highpc = ((CORE_ADDR) 0);
7319
7320 first_die = load_partial_dies (reader, info_ptr, 1);
7321
7322 scan_partial_symbols (first_die, &lowpc, &highpc,
7323 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7324
7325 /* If we didn't find a lowpc, set it to highpc to avoid
7326 complaints from `maint check'. */
7327 if (lowpc == ((CORE_ADDR) -1))
7328 lowpc = highpc;
7329
7330 /* If the compilation unit didn't have an explicit address range,
7331 then use the information extracted from its child dies. */
7332 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7333 {
7334 best_lowpc = lowpc;
7335 best_highpc = highpc;
7336 }
7337 }
7338 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7339 best_lowpc + baseaddr)
7340 - baseaddr);
7341 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7342 best_highpc + baseaddr)
7343 - baseaddr);
7344
7345 end_psymtab_common (objfile, pst);
7346
7347 if (!cu->per_cu->imported_symtabs_empty ())
7348 {
7349 int i;
7350 int len = cu->per_cu->imported_symtabs_size ();
7351
7352 /* Fill in 'dependencies' here; we fill in 'users' in a
7353 post-pass. */
7354 pst->number_of_dependencies = len;
7355 pst->dependencies
7356 = objfile->partial_symtabs->allocate_dependencies (len);
7357 for (i = 0; i < len; ++i)
7358 {
7359 pst->dependencies[i]
7360 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7361 }
7362
7363 cu->per_cu->imported_symtabs_free ();
7364 }
7365
7366 /* Get the list of files included in the current compilation unit,
7367 and build a psymtab for each of them. */
7368 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7369
7370 if (dwarf_read_debug)
7371 fprintf_unfiltered (gdb_stdlog,
7372 "Psymtab for %s unit @%s: %s - %s"
7373 ", %d global, %d static syms\n",
7374 per_cu->is_debug_types ? "type" : "comp",
7375 sect_offset_str (per_cu->sect_off),
7376 paddress (gdbarch, pst->text_low (objfile)),
7377 paddress (gdbarch, pst->text_high (objfile)),
7378 pst->n_global_syms, pst->n_static_syms);
7379 }
7380
7381 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7382 Process compilation unit THIS_CU for a psymtab. */
7383
7384 static void
7385 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7386 bool want_partial_unit,
7387 enum language pretend_language)
7388 {
7389 /* If this compilation unit was already read in, free the
7390 cached copy in order to read it in again. This is
7391 necessary because we skipped some symbols when we first
7392 read in the compilation unit (see load_partial_dies).
7393 This problem could be avoided, but the benefit is unclear. */
7394 if (this_cu->cu != NULL)
7395 free_one_cached_comp_unit (this_cu);
7396
7397 cutu_reader reader (this_cu, NULL, 0, false);
7398
7399 switch (reader.comp_unit_die->tag)
7400 {
7401 case DW_TAG_compile_unit:
7402 this_cu->unit_type = DW_UT_compile;
7403 break;
7404 case DW_TAG_partial_unit:
7405 this_cu->unit_type = DW_UT_partial;
7406 break;
7407 default:
7408 abort ();
7409 }
7410
7411 if (reader.dummy_p)
7412 {
7413 /* Nothing. */
7414 }
7415 else if (this_cu->is_debug_types)
7416 build_type_psymtabs_reader (&reader, reader.info_ptr,
7417 reader.comp_unit_die);
7418 else if (want_partial_unit
7419 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7420 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7421 reader.comp_unit_die,
7422 pretend_language);
7423
7424 this_cu->lang = this_cu->cu->language;
7425
7426 /* Age out any secondary CUs. */
7427 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7428 }
7429
7430 /* Reader function for build_type_psymtabs. */
7431
7432 static void
7433 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7434 const gdb_byte *info_ptr,
7435 struct die_info *type_unit_die)
7436 {
7437 struct dwarf2_per_objfile *dwarf2_per_objfile
7438 = reader->cu->per_cu->dwarf2_per_objfile;
7439 struct objfile *objfile = dwarf2_per_objfile->objfile;
7440 struct dwarf2_cu *cu = reader->cu;
7441 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7442 struct signatured_type *sig_type;
7443 struct type_unit_group *tu_group;
7444 struct attribute *attr;
7445 struct partial_die_info *first_die;
7446 CORE_ADDR lowpc, highpc;
7447 dwarf2_psymtab *pst;
7448
7449 gdb_assert (per_cu->is_debug_types);
7450 sig_type = (struct signatured_type *) per_cu;
7451
7452 if (! type_unit_die->has_children)
7453 return;
7454
7455 attr = type_unit_die->attr (DW_AT_stmt_list);
7456 tu_group = get_type_unit_group (cu, attr);
7457
7458 if (tu_group->tus == nullptr)
7459 tu_group->tus = new std::vector<signatured_type *>;
7460 tu_group->tus->push_back (sig_type);
7461
7462 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7463 pst = create_partial_symtab (per_cu, "");
7464 pst->anonymous = true;
7465
7466 first_die = load_partial_dies (reader, info_ptr, 1);
7467
7468 lowpc = (CORE_ADDR) -1;
7469 highpc = (CORE_ADDR) 0;
7470 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7471
7472 end_psymtab_common (objfile, pst);
7473 }
7474
7475 /* Struct used to sort TUs by their abbreviation table offset. */
7476
7477 struct tu_abbrev_offset
7478 {
7479 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7480 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7481 {}
7482
7483 signatured_type *sig_type;
7484 sect_offset abbrev_offset;
7485 };
7486
7487 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7488
7489 static bool
7490 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7491 const struct tu_abbrev_offset &b)
7492 {
7493 return a.abbrev_offset < b.abbrev_offset;
7494 }
7495
7496 /* Efficiently read all the type units.
7497 This does the bulk of the work for build_type_psymtabs.
7498
7499 The efficiency is because we sort TUs by the abbrev table they use and
7500 only read each abbrev table once. In one program there are 200K TUs
7501 sharing 8K abbrev tables.
7502
7503 The main purpose of this function is to support building the
7504 dwarf2_per_objfile->type_unit_groups table.
7505 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7506 can collapse the search space by grouping them by stmt_list.
7507 The savings can be significant, in the same program from above the 200K TUs
7508 share 8K stmt_list tables.
7509
7510 FUNC is expected to call get_type_unit_group, which will create the
7511 struct type_unit_group if necessary and add it to
7512 dwarf2_per_objfile->type_unit_groups. */
7513
7514 static void
7515 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7516 {
7517 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7518 abbrev_table_up abbrev_table;
7519 sect_offset abbrev_offset;
7520
7521 /* It's up to the caller to not call us multiple times. */
7522 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7523
7524 if (dwarf2_per_objfile->all_type_units.empty ())
7525 return;
7526
7527 /* TUs typically share abbrev tables, and there can be way more TUs than
7528 abbrev tables. Sort by abbrev table to reduce the number of times we
7529 read each abbrev table in.
7530 Alternatives are to punt or to maintain a cache of abbrev tables.
7531 This is simpler and efficient enough for now.
7532
7533 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7534 symtab to use). Typically TUs with the same abbrev offset have the same
7535 stmt_list value too so in practice this should work well.
7536
7537 The basic algorithm here is:
7538
7539 sort TUs by abbrev table
7540 for each TU with same abbrev table:
7541 read abbrev table if first user
7542 read TU top level DIE
7543 [IWBN if DWO skeletons had DW_AT_stmt_list]
7544 call FUNC */
7545
7546 if (dwarf_read_debug)
7547 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7548
7549 /* Sort in a separate table to maintain the order of all_type_units
7550 for .gdb_index: TU indices directly index all_type_units. */
7551 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7552 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7553
7554 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7555 sorted_by_abbrev.emplace_back
7556 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7557 sig_type->per_cu.section,
7558 sig_type->per_cu.sect_off));
7559
7560 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7561 sort_tu_by_abbrev_offset);
7562
7563 abbrev_offset = (sect_offset) ~(unsigned) 0;
7564
7565 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7566 {
7567 /* Switch to the next abbrev table if necessary. */
7568 if (abbrev_table == NULL
7569 || tu.abbrev_offset != abbrev_offset)
7570 {
7571 abbrev_offset = tu.abbrev_offset;
7572 abbrev_table =
7573 abbrev_table::read (dwarf2_per_objfile->objfile,
7574 &dwarf2_per_objfile->abbrev,
7575 abbrev_offset);
7576 ++tu_stats->nr_uniq_abbrev_tables;
7577 }
7578
7579 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7580 0, false);
7581 if (!reader.dummy_p)
7582 build_type_psymtabs_reader (&reader, reader.info_ptr,
7583 reader.comp_unit_die);
7584 }
7585 }
7586
7587 /* Print collected type unit statistics. */
7588
7589 static void
7590 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7591 {
7592 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7593
7594 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7595 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7596 dwarf2_per_objfile->all_type_units.size ());
7597 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7598 tu_stats->nr_uniq_abbrev_tables);
7599 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7600 tu_stats->nr_symtabs);
7601 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7602 tu_stats->nr_symtab_sharers);
7603 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7604 tu_stats->nr_stmt_less_type_units);
7605 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7606 tu_stats->nr_all_type_units_reallocs);
7607 }
7608
7609 /* Traversal function for build_type_psymtabs. */
7610
7611 static int
7612 build_type_psymtab_dependencies (void **slot, void *info)
7613 {
7614 struct dwarf2_per_objfile *dwarf2_per_objfile
7615 = (struct dwarf2_per_objfile *) info;
7616 struct objfile *objfile = dwarf2_per_objfile->objfile;
7617 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7618 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7619 dwarf2_psymtab *pst = per_cu->v.psymtab;
7620 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7621 int i;
7622
7623 gdb_assert (len > 0);
7624 gdb_assert (per_cu->type_unit_group_p ());
7625
7626 pst->number_of_dependencies = len;
7627 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7628 for (i = 0; i < len; ++i)
7629 {
7630 struct signatured_type *iter = tu_group->tus->at (i);
7631 gdb_assert (iter->per_cu.is_debug_types);
7632 pst->dependencies[i] = iter->per_cu.v.psymtab;
7633 iter->type_unit_group = tu_group;
7634 }
7635
7636 delete tu_group->tus;
7637 tu_group->tus = nullptr;
7638
7639 return 1;
7640 }
7641
7642 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7643 Build partial symbol tables for the .debug_types comp-units. */
7644
7645 static void
7646 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7647 {
7648 if (! create_all_type_units (dwarf2_per_objfile))
7649 return;
7650
7651 build_type_psymtabs_1 (dwarf2_per_objfile);
7652 }
7653
7654 /* Traversal function for process_skeletonless_type_unit.
7655 Read a TU in a DWO file and build partial symbols for it. */
7656
7657 static int
7658 process_skeletonless_type_unit (void **slot, void *info)
7659 {
7660 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7661 struct dwarf2_per_objfile *dwarf2_per_objfile
7662 = (struct dwarf2_per_objfile *) info;
7663 struct signatured_type find_entry, *entry;
7664
7665 /* If this TU doesn't exist in the global table, add it and read it in. */
7666
7667 if (dwarf2_per_objfile->signatured_types == NULL)
7668 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7669
7670 find_entry.signature = dwo_unit->signature;
7671 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7672 &find_entry, INSERT);
7673 /* If we've already seen this type there's nothing to do. What's happening
7674 is we're doing our own version of comdat-folding here. */
7675 if (*slot != NULL)
7676 return 1;
7677
7678 /* This does the job that create_all_type_units would have done for
7679 this TU. */
7680 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7681 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7682 *slot = entry;
7683
7684 /* This does the job that build_type_psymtabs_1 would have done. */
7685 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7686 if (!reader.dummy_p)
7687 build_type_psymtabs_reader (&reader, reader.info_ptr,
7688 reader.comp_unit_die);
7689
7690 return 1;
7691 }
7692
7693 /* Traversal function for process_skeletonless_type_units. */
7694
7695 static int
7696 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7697 {
7698 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7699
7700 if (dwo_file->tus != NULL)
7701 htab_traverse_noresize (dwo_file->tus.get (),
7702 process_skeletonless_type_unit, info);
7703
7704 return 1;
7705 }
7706
7707 /* Scan all TUs of DWO files, verifying we've processed them.
7708 This is needed in case a TU was emitted without its skeleton.
7709 Note: This can't be done until we know what all the DWO files are. */
7710
7711 static void
7712 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7713 {
7714 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7715 if (get_dwp_file (dwarf2_per_objfile) == NULL
7716 && dwarf2_per_objfile->dwo_files != NULL)
7717 {
7718 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7719 process_dwo_file_for_skeletonless_type_units,
7720 dwarf2_per_objfile);
7721 }
7722 }
7723
7724 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7725
7726 static void
7727 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7728 {
7729 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7730 {
7731 dwarf2_psymtab *pst = per_cu->v.psymtab;
7732
7733 if (pst == NULL)
7734 continue;
7735
7736 for (int j = 0; j < pst->number_of_dependencies; ++j)
7737 {
7738 /* Set the 'user' field only if it is not already set. */
7739 if (pst->dependencies[j]->user == NULL)
7740 pst->dependencies[j]->user = pst;
7741 }
7742 }
7743 }
7744
7745 /* Build the partial symbol table by doing a quick pass through the
7746 .debug_info and .debug_abbrev sections. */
7747
7748 static void
7749 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7750 {
7751 struct objfile *objfile = dwarf2_per_objfile->objfile;
7752
7753 if (dwarf_read_debug)
7754 {
7755 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7756 objfile_name (objfile));
7757 }
7758
7759 scoped_restore restore_reading_psyms
7760 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7761 true);
7762
7763 dwarf2_per_objfile->info.read (objfile);
7764
7765 /* Any cached compilation units will be linked by the per-objfile
7766 read_in_chain. Make sure to free them when we're done. */
7767 free_cached_comp_units freer (dwarf2_per_objfile);
7768
7769 build_type_psymtabs (dwarf2_per_objfile);
7770
7771 create_all_comp_units (dwarf2_per_objfile);
7772
7773 /* Create a temporary address map on a temporary obstack. We later
7774 copy this to the final obstack. */
7775 auto_obstack temp_obstack;
7776
7777 scoped_restore save_psymtabs_addrmap
7778 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7779 addrmap_create_mutable (&temp_obstack));
7780
7781 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7782 {
7783 if (per_cu->v.psymtab != NULL)
7784 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7785 continue;
7786 process_psymtab_comp_unit (per_cu, false, language_minimal);
7787 }
7788
7789 /* This has to wait until we read the CUs, we need the list of DWOs. */
7790 process_skeletonless_type_units (dwarf2_per_objfile);
7791
7792 /* Now that all TUs have been processed we can fill in the dependencies. */
7793 if (dwarf2_per_objfile->type_unit_groups != NULL)
7794 {
7795 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7796 build_type_psymtab_dependencies, dwarf2_per_objfile);
7797 }
7798
7799 if (dwarf_read_debug)
7800 print_tu_stats (dwarf2_per_objfile);
7801
7802 set_partial_user (dwarf2_per_objfile);
7803
7804 objfile->partial_symtabs->psymtabs_addrmap
7805 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7806 objfile->partial_symtabs->obstack ());
7807 /* At this point we want to keep the address map. */
7808 save_psymtabs_addrmap.release ();
7809
7810 if (dwarf_read_debug)
7811 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7812 objfile_name (objfile));
7813 }
7814
7815 /* Load the partial DIEs for a secondary CU into memory.
7816 This is also used when rereading a primary CU with load_all_dies. */
7817
7818 static void
7819 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7820 {
7821 cutu_reader reader (this_cu, NULL, 1, false);
7822
7823 if (!reader.dummy_p)
7824 {
7825 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7826 language_minimal);
7827
7828 /* Check if comp unit has_children.
7829 If so, read the rest of the partial symbols from this comp unit.
7830 If not, there's no more debug_info for this comp unit. */
7831 if (reader.comp_unit_die->has_children)
7832 load_partial_dies (&reader, reader.info_ptr, 0);
7833
7834 reader.keep ();
7835 }
7836 }
7837
7838 static void
7839 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7840 struct dwarf2_section_info *section,
7841 struct dwarf2_section_info *abbrev_section,
7842 unsigned int is_dwz)
7843 {
7844 const gdb_byte *info_ptr;
7845 struct objfile *objfile = dwarf2_per_objfile->objfile;
7846
7847 if (dwarf_read_debug)
7848 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7849 section->get_name (),
7850 section->get_file_name ());
7851
7852 section->read (objfile);
7853
7854 info_ptr = section->buffer;
7855
7856 while (info_ptr < section->buffer + section->size)
7857 {
7858 struct dwarf2_per_cu_data *this_cu;
7859
7860 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7861
7862 comp_unit_head cu_header;
7863 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7864 abbrev_section, info_ptr,
7865 rcuh_kind::COMPILE);
7866
7867 /* Save the compilation unit for later lookup. */
7868 if (cu_header.unit_type != DW_UT_type)
7869 {
7870 this_cu = XOBNEW (&objfile->objfile_obstack,
7871 struct dwarf2_per_cu_data);
7872 memset (this_cu, 0, sizeof (*this_cu));
7873 }
7874 else
7875 {
7876 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7877 struct signatured_type);
7878 memset (sig_type, 0, sizeof (*sig_type));
7879 sig_type->signature = cu_header.signature;
7880 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7881 this_cu = &sig_type->per_cu;
7882 }
7883 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7884 this_cu->sect_off = sect_off;
7885 this_cu->length = cu_header.length + cu_header.initial_length_size;
7886 this_cu->is_dwz = is_dwz;
7887 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7888 this_cu->section = section;
7889
7890 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7891
7892 info_ptr = info_ptr + this_cu->length;
7893 }
7894 }
7895
7896 /* Create a list of all compilation units in OBJFILE.
7897 This is only done for -readnow and building partial symtabs. */
7898
7899 static void
7900 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7901 {
7902 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7903 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7904 &dwarf2_per_objfile->abbrev, 0);
7905
7906 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7907 if (dwz != NULL)
7908 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7909 1);
7910 }
7911
7912 /* Process all loaded DIEs for compilation unit CU, starting at
7913 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7914 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7915 DW_AT_ranges). See the comments of add_partial_subprogram on how
7916 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7917
7918 static void
7919 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7920 CORE_ADDR *highpc, int set_addrmap,
7921 struct dwarf2_cu *cu)
7922 {
7923 struct partial_die_info *pdi;
7924
7925 /* Now, march along the PDI's, descending into ones which have
7926 interesting children but skipping the children of the other ones,
7927 until we reach the end of the compilation unit. */
7928
7929 pdi = first_die;
7930
7931 while (pdi != NULL)
7932 {
7933 pdi->fixup (cu);
7934
7935 /* Anonymous namespaces or modules have no name but have interesting
7936 children, so we need to look at them. Ditto for anonymous
7937 enums. */
7938
7939 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
7940 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
7941 || pdi->tag == DW_TAG_imported_unit
7942 || pdi->tag == DW_TAG_inlined_subroutine)
7943 {
7944 switch (pdi->tag)
7945 {
7946 case DW_TAG_subprogram:
7947 case DW_TAG_inlined_subroutine:
7948 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7949 break;
7950 case DW_TAG_constant:
7951 case DW_TAG_variable:
7952 case DW_TAG_typedef:
7953 case DW_TAG_union_type:
7954 if (!pdi->is_declaration)
7955 {
7956 add_partial_symbol (pdi, cu);
7957 }
7958 break;
7959 case DW_TAG_class_type:
7960 case DW_TAG_interface_type:
7961 case DW_TAG_structure_type:
7962 if (!pdi->is_declaration)
7963 {
7964 add_partial_symbol (pdi, cu);
7965 }
7966 if ((cu->language == language_rust
7967 || cu->language == language_cplus) && pdi->has_children)
7968 scan_partial_symbols (pdi->die_child, lowpc, highpc,
7969 set_addrmap, cu);
7970 break;
7971 case DW_TAG_enumeration_type:
7972 if (!pdi->is_declaration)
7973 add_partial_enumeration (pdi, cu);
7974 break;
7975 case DW_TAG_base_type:
7976 case DW_TAG_subrange_type:
7977 /* File scope base type definitions are added to the partial
7978 symbol table. */
7979 add_partial_symbol (pdi, cu);
7980 break;
7981 case DW_TAG_namespace:
7982 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
7983 break;
7984 case DW_TAG_module:
7985 if (!pdi->is_declaration)
7986 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
7987 break;
7988 case DW_TAG_imported_unit:
7989 {
7990 struct dwarf2_per_cu_data *per_cu;
7991
7992 /* For now we don't handle imported units in type units. */
7993 if (cu->per_cu->is_debug_types)
7994 {
7995 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7996 " supported in type units [in module %s]"),
7997 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
7998 }
7999
8000 per_cu = dwarf2_find_containing_comp_unit
8001 (pdi->d.sect_off, pdi->is_dwz,
8002 cu->per_cu->dwarf2_per_objfile);
8003
8004 /* Go read the partial unit, if needed. */
8005 if (per_cu->v.psymtab == NULL)
8006 process_psymtab_comp_unit (per_cu, true, cu->language);
8007
8008 cu->per_cu->imported_symtabs_push (per_cu);
8009 }
8010 break;
8011 case DW_TAG_imported_declaration:
8012 add_partial_symbol (pdi, cu);
8013 break;
8014 default:
8015 break;
8016 }
8017 }
8018
8019 /* If the die has a sibling, skip to the sibling. */
8020
8021 pdi = pdi->die_sibling;
8022 }
8023 }
8024
8025 /* Functions used to compute the fully scoped name of a partial DIE.
8026
8027 Normally, this is simple. For C++, the parent DIE's fully scoped
8028 name is concatenated with "::" and the partial DIE's name.
8029 Enumerators are an exception; they use the scope of their parent
8030 enumeration type, i.e. the name of the enumeration type is not
8031 prepended to the enumerator.
8032
8033 There are two complexities. One is DW_AT_specification; in this
8034 case "parent" means the parent of the target of the specification,
8035 instead of the direct parent of the DIE. The other is compilers
8036 which do not emit DW_TAG_namespace; in this case we try to guess
8037 the fully qualified name of structure types from their members'
8038 linkage names. This must be done using the DIE's children rather
8039 than the children of any DW_AT_specification target. We only need
8040 to do this for structures at the top level, i.e. if the target of
8041 any DW_AT_specification (if any; otherwise the DIE itself) does not
8042 have a parent. */
8043
8044 /* Compute the scope prefix associated with PDI's parent, in
8045 compilation unit CU. The result will be allocated on CU's
8046 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8047 field. NULL is returned if no prefix is necessary. */
8048 static const char *
8049 partial_die_parent_scope (struct partial_die_info *pdi,
8050 struct dwarf2_cu *cu)
8051 {
8052 const char *grandparent_scope;
8053 struct partial_die_info *parent, *real_pdi;
8054
8055 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8056 then this means the parent of the specification DIE. */
8057
8058 real_pdi = pdi;
8059 while (real_pdi->has_specification)
8060 {
8061 auto res = find_partial_die (real_pdi->spec_offset,
8062 real_pdi->spec_is_dwz, cu);
8063 real_pdi = res.pdi;
8064 cu = res.cu;
8065 }
8066
8067 parent = real_pdi->die_parent;
8068 if (parent == NULL)
8069 return NULL;
8070
8071 if (parent->scope_set)
8072 return parent->scope;
8073
8074 parent->fixup (cu);
8075
8076 grandparent_scope = partial_die_parent_scope (parent, cu);
8077
8078 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8079 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8080 Work around this problem here. */
8081 if (cu->language == language_cplus
8082 && parent->tag == DW_TAG_namespace
8083 && strcmp (parent->name, "::") == 0
8084 && grandparent_scope == NULL)
8085 {
8086 parent->scope = NULL;
8087 parent->scope_set = 1;
8088 return NULL;
8089 }
8090
8091 /* Nested subroutines in Fortran get a prefix. */
8092 if (pdi->tag == DW_TAG_enumerator)
8093 /* Enumerators should not get the name of the enumeration as a prefix. */
8094 parent->scope = grandparent_scope;
8095 else if (parent->tag == DW_TAG_namespace
8096 || parent->tag == DW_TAG_module
8097 || parent->tag == DW_TAG_structure_type
8098 || parent->tag == DW_TAG_class_type
8099 || parent->tag == DW_TAG_interface_type
8100 || parent->tag == DW_TAG_union_type
8101 || parent->tag == DW_TAG_enumeration_type
8102 || (cu->language == language_fortran
8103 && parent->tag == DW_TAG_subprogram
8104 && pdi->tag == DW_TAG_subprogram))
8105 {
8106 if (grandparent_scope == NULL)
8107 parent->scope = parent->name;
8108 else
8109 parent->scope = typename_concat (&cu->comp_unit_obstack,
8110 grandparent_scope,
8111 parent->name, 0, cu);
8112 }
8113 else
8114 {
8115 /* FIXME drow/2004-04-01: What should we be doing with
8116 function-local names? For partial symbols, we should probably be
8117 ignoring them. */
8118 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8119 dwarf_tag_name (parent->tag),
8120 sect_offset_str (pdi->sect_off));
8121 parent->scope = grandparent_scope;
8122 }
8123
8124 parent->scope_set = 1;
8125 return parent->scope;
8126 }
8127
8128 /* Return the fully scoped name associated with PDI, from compilation unit
8129 CU. The result will be allocated with malloc. */
8130
8131 static gdb::unique_xmalloc_ptr<char>
8132 partial_die_full_name (struct partial_die_info *pdi,
8133 struct dwarf2_cu *cu)
8134 {
8135 const char *parent_scope;
8136
8137 /* If this is a template instantiation, we can not work out the
8138 template arguments from partial DIEs. So, unfortunately, we have
8139 to go through the full DIEs. At least any work we do building
8140 types here will be reused if full symbols are loaded later. */
8141 if (pdi->has_template_arguments)
8142 {
8143 pdi->fixup (cu);
8144
8145 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8146 {
8147 struct die_info *die;
8148 struct attribute attr;
8149 struct dwarf2_cu *ref_cu = cu;
8150
8151 /* DW_FORM_ref_addr is using section offset. */
8152 attr.name = (enum dwarf_attribute) 0;
8153 attr.form = DW_FORM_ref_addr;
8154 attr.u.unsnd = to_underlying (pdi->sect_off);
8155 die = follow_die_ref (NULL, &attr, &ref_cu);
8156
8157 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8158 }
8159 }
8160
8161 parent_scope = partial_die_parent_scope (pdi, cu);
8162 if (parent_scope == NULL)
8163 return NULL;
8164 else
8165 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8166 pdi->name, 0, cu));
8167 }
8168
8169 static void
8170 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8171 {
8172 struct dwarf2_per_objfile *dwarf2_per_objfile
8173 = cu->per_cu->dwarf2_per_objfile;
8174 struct objfile *objfile = dwarf2_per_objfile->objfile;
8175 struct gdbarch *gdbarch = objfile->arch ();
8176 CORE_ADDR addr = 0;
8177 const char *actual_name = NULL;
8178 CORE_ADDR baseaddr;
8179
8180 baseaddr = objfile->text_section_offset ();
8181
8182 gdb::unique_xmalloc_ptr<char> built_actual_name
8183 = partial_die_full_name (pdi, cu);
8184 if (built_actual_name != NULL)
8185 actual_name = built_actual_name.get ();
8186
8187 if (actual_name == NULL)
8188 actual_name = pdi->name;
8189
8190 switch (pdi->tag)
8191 {
8192 case DW_TAG_inlined_subroutine:
8193 case DW_TAG_subprogram:
8194 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8195 - baseaddr);
8196 if (pdi->is_external
8197 || cu->language == language_ada
8198 || (cu->language == language_fortran
8199 && pdi->die_parent != NULL
8200 && pdi->die_parent->tag == DW_TAG_subprogram))
8201 {
8202 /* Normally, only "external" DIEs are part of the global scope.
8203 But in Ada and Fortran, we want to be able to access nested
8204 procedures globally. So all Ada and Fortran subprograms are
8205 stored in the global scope. */
8206 add_psymbol_to_list (actual_name,
8207 built_actual_name != NULL,
8208 VAR_DOMAIN, LOC_BLOCK,
8209 SECT_OFF_TEXT (objfile),
8210 psymbol_placement::GLOBAL,
8211 addr,
8212 cu->language, objfile);
8213 }
8214 else
8215 {
8216 add_psymbol_to_list (actual_name,
8217 built_actual_name != NULL,
8218 VAR_DOMAIN, LOC_BLOCK,
8219 SECT_OFF_TEXT (objfile),
8220 psymbol_placement::STATIC,
8221 addr, cu->language, objfile);
8222 }
8223
8224 if (pdi->main_subprogram && actual_name != NULL)
8225 set_objfile_main_name (objfile, actual_name, cu->language);
8226 break;
8227 case DW_TAG_constant:
8228 add_psymbol_to_list (actual_name,
8229 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8230 -1, (pdi->is_external
8231 ? psymbol_placement::GLOBAL
8232 : psymbol_placement::STATIC),
8233 0, cu->language, objfile);
8234 break;
8235 case DW_TAG_variable:
8236 if (pdi->d.locdesc)
8237 addr = decode_locdesc (pdi->d.locdesc, cu);
8238
8239 if (pdi->d.locdesc
8240 && addr == 0
8241 && !dwarf2_per_objfile->has_section_at_zero)
8242 {
8243 /* A global or static variable may also have been stripped
8244 out by the linker if unused, in which case its address
8245 will be nullified; do not add such variables into partial
8246 symbol table then. */
8247 }
8248 else if (pdi->is_external)
8249 {
8250 /* Global Variable.
8251 Don't enter into the minimal symbol tables as there is
8252 a minimal symbol table entry from the ELF symbols already.
8253 Enter into partial symbol table if it has a location
8254 descriptor or a type.
8255 If the location descriptor is missing, new_symbol will create
8256 a LOC_UNRESOLVED symbol, the address of the variable will then
8257 be determined from the minimal symbol table whenever the variable
8258 is referenced.
8259 The address for the partial symbol table entry is not
8260 used by GDB, but it comes in handy for debugging partial symbol
8261 table building. */
8262
8263 if (pdi->d.locdesc || pdi->has_type)
8264 add_psymbol_to_list (actual_name,
8265 built_actual_name != NULL,
8266 VAR_DOMAIN, LOC_STATIC,
8267 SECT_OFF_TEXT (objfile),
8268 psymbol_placement::GLOBAL,
8269 addr, cu->language, objfile);
8270 }
8271 else
8272 {
8273 int has_loc = pdi->d.locdesc != NULL;
8274
8275 /* Static Variable. Skip symbols whose value we cannot know (those
8276 without location descriptors or constant values). */
8277 if (!has_loc && !pdi->has_const_value)
8278 return;
8279
8280 add_psymbol_to_list (actual_name,
8281 built_actual_name != NULL,
8282 VAR_DOMAIN, LOC_STATIC,
8283 SECT_OFF_TEXT (objfile),
8284 psymbol_placement::STATIC,
8285 has_loc ? addr : 0,
8286 cu->language, objfile);
8287 }
8288 break;
8289 case DW_TAG_typedef:
8290 case DW_TAG_base_type:
8291 case DW_TAG_subrange_type:
8292 add_psymbol_to_list (actual_name,
8293 built_actual_name != NULL,
8294 VAR_DOMAIN, LOC_TYPEDEF, -1,
8295 psymbol_placement::STATIC,
8296 0, cu->language, objfile);
8297 break;
8298 case DW_TAG_imported_declaration:
8299 case DW_TAG_namespace:
8300 add_psymbol_to_list (actual_name,
8301 built_actual_name != NULL,
8302 VAR_DOMAIN, LOC_TYPEDEF, -1,
8303 psymbol_placement::GLOBAL,
8304 0, cu->language, objfile);
8305 break;
8306 case DW_TAG_module:
8307 /* With Fortran 77 there might be a "BLOCK DATA" module
8308 available without any name. If so, we skip the module as it
8309 doesn't bring any value. */
8310 if (actual_name != nullptr)
8311 add_psymbol_to_list (actual_name,
8312 built_actual_name != NULL,
8313 MODULE_DOMAIN, LOC_TYPEDEF, -1,
8314 psymbol_placement::GLOBAL,
8315 0, cu->language, objfile);
8316 break;
8317 case DW_TAG_class_type:
8318 case DW_TAG_interface_type:
8319 case DW_TAG_structure_type:
8320 case DW_TAG_union_type:
8321 case DW_TAG_enumeration_type:
8322 /* Skip external references. The DWARF standard says in the section
8323 about "Structure, Union, and Class Type Entries": "An incomplete
8324 structure, union or class type is represented by a structure,
8325 union or class entry that does not have a byte size attribute
8326 and that has a DW_AT_declaration attribute." */
8327 if (!pdi->has_byte_size && pdi->is_declaration)
8328 return;
8329
8330 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8331 static vs. global. */
8332 add_psymbol_to_list (actual_name,
8333 built_actual_name != NULL,
8334 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
8335 cu->language == language_cplus
8336 ? psymbol_placement::GLOBAL
8337 : psymbol_placement::STATIC,
8338 0, cu->language, objfile);
8339
8340 break;
8341 case DW_TAG_enumerator:
8342 add_psymbol_to_list (actual_name,
8343 built_actual_name != NULL,
8344 VAR_DOMAIN, LOC_CONST, -1,
8345 cu->language == language_cplus
8346 ? psymbol_placement::GLOBAL
8347 : psymbol_placement::STATIC,
8348 0, cu->language, objfile);
8349 break;
8350 default:
8351 break;
8352 }
8353 }
8354
8355 /* Read a partial die corresponding to a namespace; also, add a symbol
8356 corresponding to that namespace to the symbol table. NAMESPACE is
8357 the name of the enclosing namespace. */
8358
8359 static void
8360 add_partial_namespace (struct partial_die_info *pdi,
8361 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8362 int set_addrmap, struct dwarf2_cu *cu)
8363 {
8364 /* Add a symbol for the namespace. */
8365
8366 add_partial_symbol (pdi, cu);
8367
8368 /* Now scan partial symbols in that namespace. */
8369
8370 if (pdi->has_children)
8371 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8372 }
8373
8374 /* Read a partial die corresponding to a Fortran module. */
8375
8376 static void
8377 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8378 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8379 {
8380 /* Add a symbol for the namespace. */
8381
8382 add_partial_symbol (pdi, cu);
8383
8384 /* Now scan partial symbols in that module. */
8385
8386 if (pdi->has_children)
8387 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8388 }
8389
8390 /* Read a partial die corresponding to a subprogram or an inlined
8391 subprogram and create a partial symbol for that subprogram.
8392 When the CU language allows it, this routine also defines a partial
8393 symbol for each nested subprogram that this subprogram contains.
8394 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8395 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8396
8397 PDI may also be a lexical block, in which case we simply search
8398 recursively for subprograms defined inside that lexical block.
8399 Again, this is only performed when the CU language allows this
8400 type of definitions. */
8401
8402 static void
8403 add_partial_subprogram (struct partial_die_info *pdi,
8404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8405 int set_addrmap, struct dwarf2_cu *cu)
8406 {
8407 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8408 {
8409 if (pdi->has_pc_info)
8410 {
8411 if (pdi->lowpc < *lowpc)
8412 *lowpc = pdi->lowpc;
8413 if (pdi->highpc > *highpc)
8414 *highpc = pdi->highpc;
8415 if (set_addrmap)
8416 {
8417 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8418 struct gdbarch *gdbarch = objfile->arch ();
8419 CORE_ADDR baseaddr;
8420 CORE_ADDR this_highpc;
8421 CORE_ADDR this_lowpc;
8422
8423 baseaddr = objfile->text_section_offset ();
8424 this_lowpc
8425 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8426 pdi->lowpc + baseaddr)
8427 - baseaddr);
8428 this_highpc
8429 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8430 pdi->highpc + baseaddr)
8431 - baseaddr);
8432 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8433 this_lowpc, this_highpc - 1,
8434 cu->per_cu->v.psymtab);
8435 }
8436 }
8437
8438 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8439 {
8440 if (!pdi->is_declaration)
8441 /* Ignore subprogram DIEs that do not have a name, they are
8442 illegal. Do not emit a complaint at this point, we will
8443 do so when we convert this psymtab into a symtab. */
8444 if (pdi->name)
8445 add_partial_symbol (pdi, cu);
8446 }
8447 }
8448
8449 if (! pdi->has_children)
8450 return;
8451
8452 if (cu->language == language_ada || cu->language == language_fortran)
8453 {
8454 pdi = pdi->die_child;
8455 while (pdi != NULL)
8456 {
8457 pdi->fixup (cu);
8458 if (pdi->tag == DW_TAG_subprogram
8459 || pdi->tag == DW_TAG_inlined_subroutine
8460 || pdi->tag == DW_TAG_lexical_block)
8461 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8462 pdi = pdi->die_sibling;
8463 }
8464 }
8465 }
8466
8467 /* Read a partial die corresponding to an enumeration type. */
8468
8469 static void
8470 add_partial_enumeration (struct partial_die_info *enum_pdi,
8471 struct dwarf2_cu *cu)
8472 {
8473 struct partial_die_info *pdi;
8474
8475 if (enum_pdi->name != NULL)
8476 add_partial_symbol (enum_pdi, cu);
8477
8478 pdi = enum_pdi->die_child;
8479 while (pdi)
8480 {
8481 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8482 complaint (_("malformed enumerator DIE ignored"));
8483 else
8484 add_partial_symbol (pdi, cu);
8485 pdi = pdi->die_sibling;
8486 }
8487 }
8488
8489 /* Return the initial uleb128 in the die at INFO_PTR. */
8490
8491 static unsigned int
8492 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8493 {
8494 unsigned int bytes_read;
8495
8496 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8497 }
8498
8499 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8500 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8501
8502 Return the corresponding abbrev, or NULL if the number is zero (indicating
8503 an empty DIE). In either case *BYTES_READ will be set to the length of
8504 the initial number. */
8505
8506 static struct abbrev_info *
8507 peek_die_abbrev (const die_reader_specs &reader,
8508 const gdb_byte *info_ptr, unsigned int *bytes_read)
8509 {
8510 dwarf2_cu *cu = reader.cu;
8511 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8512 unsigned int abbrev_number
8513 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8514
8515 if (abbrev_number == 0)
8516 return NULL;
8517
8518 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8519 if (!abbrev)
8520 {
8521 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8522 " at offset %s [in module %s]"),
8523 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8524 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8525 }
8526
8527 return abbrev;
8528 }
8529
8530 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8531 Returns a pointer to the end of a series of DIEs, terminated by an empty
8532 DIE. Any children of the skipped DIEs will also be skipped. */
8533
8534 static const gdb_byte *
8535 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8536 {
8537 while (1)
8538 {
8539 unsigned int bytes_read;
8540 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8541
8542 if (abbrev == NULL)
8543 return info_ptr + bytes_read;
8544 else
8545 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8546 }
8547 }
8548
8549 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8550 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8551 abbrev corresponding to that skipped uleb128 should be passed in
8552 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8553 children. */
8554
8555 static const gdb_byte *
8556 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8557 struct abbrev_info *abbrev)
8558 {
8559 unsigned int bytes_read;
8560 struct attribute attr;
8561 bfd *abfd = reader->abfd;
8562 struct dwarf2_cu *cu = reader->cu;
8563 const gdb_byte *buffer = reader->buffer;
8564 const gdb_byte *buffer_end = reader->buffer_end;
8565 unsigned int form, i;
8566
8567 for (i = 0; i < abbrev->num_attrs; i++)
8568 {
8569 /* The only abbrev we care about is DW_AT_sibling. */
8570 if (abbrev->attrs[i].name == DW_AT_sibling)
8571 {
8572 bool ignored;
8573 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8574 &ignored);
8575 if (attr.form == DW_FORM_ref_addr)
8576 complaint (_("ignoring absolute DW_AT_sibling"));
8577 else
8578 {
8579 sect_offset off = attr.get_ref_die_offset ();
8580 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8581
8582 if (sibling_ptr < info_ptr)
8583 complaint (_("DW_AT_sibling points backwards"));
8584 else if (sibling_ptr > reader->buffer_end)
8585 reader->die_section->overflow_complaint ();
8586 else
8587 return sibling_ptr;
8588 }
8589 }
8590
8591 /* If it isn't DW_AT_sibling, skip this attribute. */
8592 form = abbrev->attrs[i].form;
8593 skip_attribute:
8594 switch (form)
8595 {
8596 case DW_FORM_ref_addr:
8597 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8598 and later it is offset sized. */
8599 if (cu->header.version == 2)
8600 info_ptr += cu->header.addr_size;
8601 else
8602 info_ptr += cu->header.offset_size;
8603 break;
8604 case DW_FORM_GNU_ref_alt:
8605 info_ptr += cu->header.offset_size;
8606 break;
8607 case DW_FORM_addr:
8608 info_ptr += cu->header.addr_size;
8609 break;
8610 case DW_FORM_data1:
8611 case DW_FORM_ref1:
8612 case DW_FORM_flag:
8613 case DW_FORM_strx1:
8614 info_ptr += 1;
8615 break;
8616 case DW_FORM_flag_present:
8617 case DW_FORM_implicit_const:
8618 break;
8619 case DW_FORM_data2:
8620 case DW_FORM_ref2:
8621 case DW_FORM_strx2:
8622 info_ptr += 2;
8623 break;
8624 case DW_FORM_strx3:
8625 info_ptr += 3;
8626 break;
8627 case DW_FORM_data4:
8628 case DW_FORM_ref4:
8629 case DW_FORM_strx4:
8630 info_ptr += 4;
8631 break;
8632 case DW_FORM_data8:
8633 case DW_FORM_ref8:
8634 case DW_FORM_ref_sig8:
8635 info_ptr += 8;
8636 break;
8637 case DW_FORM_data16:
8638 info_ptr += 16;
8639 break;
8640 case DW_FORM_string:
8641 read_direct_string (abfd, info_ptr, &bytes_read);
8642 info_ptr += bytes_read;
8643 break;
8644 case DW_FORM_sec_offset:
8645 case DW_FORM_strp:
8646 case DW_FORM_GNU_strp_alt:
8647 info_ptr += cu->header.offset_size;
8648 break;
8649 case DW_FORM_exprloc:
8650 case DW_FORM_block:
8651 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8652 info_ptr += bytes_read;
8653 break;
8654 case DW_FORM_block1:
8655 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8656 break;
8657 case DW_FORM_block2:
8658 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8659 break;
8660 case DW_FORM_block4:
8661 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8662 break;
8663 case DW_FORM_addrx:
8664 case DW_FORM_strx:
8665 case DW_FORM_sdata:
8666 case DW_FORM_udata:
8667 case DW_FORM_ref_udata:
8668 case DW_FORM_GNU_addr_index:
8669 case DW_FORM_GNU_str_index:
8670 case DW_FORM_rnglistx:
8671 case DW_FORM_loclistx:
8672 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8673 break;
8674 case DW_FORM_indirect:
8675 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8676 info_ptr += bytes_read;
8677 /* We need to continue parsing from here, so just go back to
8678 the top. */
8679 goto skip_attribute;
8680
8681 default:
8682 error (_("Dwarf Error: Cannot handle %s "
8683 "in DWARF reader [in module %s]"),
8684 dwarf_form_name (form),
8685 bfd_get_filename (abfd));
8686 }
8687 }
8688
8689 if (abbrev->has_children)
8690 return skip_children (reader, info_ptr);
8691 else
8692 return info_ptr;
8693 }
8694
8695 /* Locate ORIG_PDI's sibling.
8696 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8697
8698 static const gdb_byte *
8699 locate_pdi_sibling (const struct die_reader_specs *reader,
8700 struct partial_die_info *orig_pdi,
8701 const gdb_byte *info_ptr)
8702 {
8703 /* Do we know the sibling already? */
8704
8705 if (orig_pdi->sibling)
8706 return orig_pdi->sibling;
8707
8708 /* Are there any children to deal with? */
8709
8710 if (!orig_pdi->has_children)
8711 return info_ptr;
8712
8713 /* Skip the children the long way. */
8714
8715 return skip_children (reader, info_ptr);
8716 }
8717
8718 /* Expand this partial symbol table into a full symbol table. SELF is
8719 not NULL. */
8720
8721 void
8722 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8723 {
8724 struct dwarf2_per_objfile *dwarf2_per_objfile
8725 = get_dwarf2_per_objfile (objfile);
8726
8727 gdb_assert (!readin);
8728 /* If this psymtab is constructed from a debug-only objfile, the
8729 has_section_at_zero flag will not necessarily be correct. We
8730 can get the correct value for this flag by looking at the data
8731 associated with the (presumably stripped) associated objfile. */
8732 if (objfile->separate_debug_objfile_backlink)
8733 {
8734 struct dwarf2_per_objfile *dpo_backlink
8735 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8736
8737 dwarf2_per_objfile->has_section_at_zero
8738 = dpo_backlink->has_section_at_zero;
8739 }
8740
8741 expand_psymtab (objfile);
8742
8743 process_cu_includes (dwarf2_per_objfile);
8744 }
8745 \f
8746 /* Reading in full CUs. */
8747
8748 /* Add PER_CU to the queue. */
8749
8750 static void
8751 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8752 enum language pretend_language)
8753 {
8754 per_cu->queued = 1;
8755 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8756 }
8757
8758 /* If PER_CU is not yet queued, add it to the queue.
8759 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8760 dependency.
8761 The result is non-zero if PER_CU was queued, otherwise the result is zero
8762 meaning either PER_CU is already queued or it is already loaded.
8763
8764 N.B. There is an invariant here that if a CU is queued then it is loaded.
8765 The caller is required to load PER_CU if we return non-zero. */
8766
8767 static int
8768 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8769 struct dwarf2_per_cu_data *per_cu,
8770 enum language pretend_language)
8771 {
8772 /* We may arrive here during partial symbol reading, if we need full
8773 DIEs to process an unusual case (e.g. template arguments). Do
8774 not queue PER_CU, just tell our caller to load its DIEs. */
8775 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8776 {
8777 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8778 return 1;
8779 return 0;
8780 }
8781
8782 /* Mark the dependence relation so that we don't flush PER_CU
8783 too early. */
8784 if (dependent_cu != NULL)
8785 dwarf2_add_dependence (dependent_cu, per_cu);
8786
8787 /* If it's already on the queue, we have nothing to do. */
8788 if (per_cu->queued)
8789 return 0;
8790
8791 /* If the compilation unit is already loaded, just mark it as
8792 used. */
8793 if (per_cu->cu != NULL)
8794 {
8795 per_cu->cu->last_used = 0;
8796 return 0;
8797 }
8798
8799 /* Add it to the queue. */
8800 queue_comp_unit (per_cu, pretend_language);
8801
8802 return 1;
8803 }
8804
8805 /* Process the queue. */
8806
8807 static void
8808 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8809 {
8810 if (dwarf_read_debug)
8811 {
8812 fprintf_unfiltered (gdb_stdlog,
8813 "Expanding one or more symtabs of objfile %s ...\n",
8814 objfile_name (dwarf2_per_objfile->objfile));
8815 }
8816
8817 /* The queue starts out with one item, but following a DIE reference
8818 may load a new CU, adding it to the end of the queue. */
8819 while (!dwarf2_per_objfile->queue.empty ())
8820 {
8821 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8822
8823 if ((dwarf2_per_objfile->using_index
8824 ? !item.per_cu->v.quick->compunit_symtab
8825 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8826 /* Skip dummy CUs. */
8827 && item.per_cu->cu != NULL)
8828 {
8829 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8830 unsigned int debug_print_threshold;
8831 char buf[100];
8832
8833 if (per_cu->is_debug_types)
8834 {
8835 struct signatured_type *sig_type =
8836 (struct signatured_type *) per_cu;
8837
8838 sprintf (buf, "TU %s at offset %s",
8839 hex_string (sig_type->signature),
8840 sect_offset_str (per_cu->sect_off));
8841 /* There can be 100s of TUs.
8842 Only print them in verbose mode. */
8843 debug_print_threshold = 2;
8844 }
8845 else
8846 {
8847 sprintf (buf, "CU at offset %s",
8848 sect_offset_str (per_cu->sect_off));
8849 debug_print_threshold = 1;
8850 }
8851
8852 if (dwarf_read_debug >= debug_print_threshold)
8853 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8854
8855 if (per_cu->is_debug_types)
8856 process_full_type_unit (per_cu, item.pretend_language);
8857 else
8858 process_full_comp_unit (per_cu, item.pretend_language);
8859
8860 if (dwarf_read_debug >= debug_print_threshold)
8861 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8862 }
8863
8864 item.per_cu->queued = 0;
8865 dwarf2_per_objfile->queue.pop ();
8866 }
8867
8868 if (dwarf_read_debug)
8869 {
8870 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8871 objfile_name (dwarf2_per_objfile->objfile));
8872 }
8873 }
8874
8875 /* Read in full symbols for PST, and anything it depends on. */
8876
8877 void
8878 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8879 {
8880 gdb_assert (!readin);
8881
8882 expand_dependencies (objfile);
8883
8884 dw2_do_instantiate_symtab (per_cu_data, false);
8885 gdb_assert (get_compunit_symtab () != nullptr);
8886 }
8887
8888 /* Trivial hash function for die_info: the hash value of a DIE
8889 is its offset in .debug_info for this objfile. */
8890
8891 static hashval_t
8892 die_hash (const void *item)
8893 {
8894 const struct die_info *die = (const struct die_info *) item;
8895
8896 return to_underlying (die->sect_off);
8897 }
8898
8899 /* Trivial comparison function for die_info structures: two DIEs
8900 are equal if they have the same offset. */
8901
8902 static int
8903 die_eq (const void *item_lhs, const void *item_rhs)
8904 {
8905 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8906 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8907
8908 return die_lhs->sect_off == die_rhs->sect_off;
8909 }
8910
8911 /* Load the DIEs associated with PER_CU into memory. */
8912
8913 static void
8914 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8915 bool skip_partial,
8916 enum language pretend_language)
8917 {
8918 gdb_assert (! this_cu->is_debug_types);
8919
8920 cutu_reader reader (this_cu, NULL, 1, skip_partial);
8921 if (reader.dummy_p)
8922 return;
8923
8924 struct dwarf2_cu *cu = reader.cu;
8925 const gdb_byte *info_ptr = reader.info_ptr;
8926
8927 gdb_assert (cu->die_hash == NULL);
8928 cu->die_hash =
8929 htab_create_alloc_ex (cu->header.length / 12,
8930 die_hash,
8931 die_eq,
8932 NULL,
8933 &cu->comp_unit_obstack,
8934 hashtab_obstack_allocate,
8935 dummy_obstack_deallocate);
8936
8937 if (reader.comp_unit_die->has_children)
8938 reader.comp_unit_die->child
8939 = read_die_and_siblings (&reader, reader.info_ptr,
8940 &info_ptr, reader.comp_unit_die);
8941 cu->dies = reader.comp_unit_die;
8942 /* comp_unit_die is not stored in die_hash, no need. */
8943
8944 /* We try not to read any attributes in this function, because not
8945 all CUs needed for references have been loaded yet, and symbol
8946 table processing isn't initialized. But we have to set the CU language,
8947 or we won't be able to build types correctly.
8948 Similarly, if we do not read the producer, we can not apply
8949 producer-specific interpretation. */
8950 prepare_one_comp_unit (cu, cu->dies, pretend_language);
8951
8952 reader.keep ();
8953 }
8954
8955 /* Add a DIE to the delayed physname list. */
8956
8957 static void
8958 add_to_method_list (struct type *type, int fnfield_index, int index,
8959 const char *name, struct die_info *die,
8960 struct dwarf2_cu *cu)
8961 {
8962 struct delayed_method_info mi;
8963 mi.type = type;
8964 mi.fnfield_index = fnfield_index;
8965 mi.index = index;
8966 mi.name = name;
8967 mi.die = die;
8968 cu->method_list.push_back (mi);
8969 }
8970
8971 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
8972 "const" / "volatile". If so, decrements LEN by the length of the
8973 modifier and return true. Otherwise return false. */
8974
8975 template<size_t N>
8976 static bool
8977 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
8978 {
8979 size_t mod_len = sizeof (mod) - 1;
8980 if (len > mod_len && startswith (physname + (len - mod_len), mod))
8981 {
8982 len -= mod_len;
8983 return true;
8984 }
8985 return false;
8986 }
8987
8988 /* Compute the physnames of any methods on the CU's method list.
8989
8990 The computation of method physnames is delayed in order to avoid the
8991 (bad) condition that one of the method's formal parameters is of an as yet
8992 incomplete type. */
8993
8994 static void
8995 compute_delayed_physnames (struct dwarf2_cu *cu)
8996 {
8997 /* Only C++ delays computing physnames. */
8998 if (cu->method_list.empty ())
8999 return;
9000 gdb_assert (cu->language == language_cplus);
9001
9002 for (const delayed_method_info &mi : cu->method_list)
9003 {
9004 const char *physname;
9005 struct fn_fieldlist *fn_flp
9006 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9007 physname = dwarf2_physname (mi.name, mi.die, cu);
9008 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9009 = physname ? physname : "";
9010
9011 /* Since there's no tag to indicate whether a method is a
9012 const/volatile overload, extract that information out of the
9013 demangled name. */
9014 if (physname != NULL)
9015 {
9016 size_t len = strlen (physname);
9017
9018 while (1)
9019 {
9020 if (physname[len] == ')') /* shortcut */
9021 break;
9022 else if (check_modifier (physname, len, " const"))
9023 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9024 else if (check_modifier (physname, len, " volatile"))
9025 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9026 else
9027 break;
9028 }
9029 }
9030 }
9031
9032 /* The list is no longer needed. */
9033 cu->method_list.clear ();
9034 }
9035
9036 /* Go objects should be embedded in a DW_TAG_module DIE,
9037 and it's not clear if/how imported objects will appear.
9038 To keep Go support simple until that's worked out,
9039 go back through what we've read and create something usable.
9040 We could do this while processing each DIE, and feels kinda cleaner,
9041 but that way is more invasive.
9042 This is to, for example, allow the user to type "p var" or "b main"
9043 without having to specify the package name, and allow lookups
9044 of module.object to work in contexts that use the expression
9045 parser. */
9046
9047 static void
9048 fixup_go_packaging (struct dwarf2_cu *cu)
9049 {
9050 gdb::unique_xmalloc_ptr<char> package_name;
9051 struct pending *list;
9052 int i;
9053
9054 for (list = *cu->get_builder ()->get_global_symbols ();
9055 list != NULL;
9056 list = list->next)
9057 {
9058 for (i = 0; i < list->nsyms; ++i)
9059 {
9060 struct symbol *sym = list->symbol[i];
9061
9062 if (sym->language () == language_go
9063 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9064 {
9065 gdb::unique_xmalloc_ptr<char> this_package_name
9066 (go_symbol_package_name (sym));
9067
9068 if (this_package_name == NULL)
9069 continue;
9070 if (package_name == NULL)
9071 package_name = std::move (this_package_name);
9072 else
9073 {
9074 struct objfile *objfile
9075 = cu->per_cu->dwarf2_per_objfile->objfile;
9076 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9077 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9078 (symbol_symtab (sym) != NULL
9079 ? symtab_to_filename_for_display
9080 (symbol_symtab (sym))
9081 : objfile_name (objfile)),
9082 this_package_name.get (), package_name.get ());
9083 }
9084 }
9085 }
9086 }
9087
9088 if (package_name != NULL)
9089 {
9090 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9091 const char *saved_package_name = objfile->intern (package_name.get ());
9092 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9093 saved_package_name);
9094 struct symbol *sym;
9095
9096 sym = allocate_symbol (objfile);
9097 sym->set_language (language_go, &objfile->objfile_obstack);
9098 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9099 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9100 e.g., "main" finds the "main" module and not C's main(). */
9101 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9102 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9103 SYMBOL_TYPE (sym) = type;
9104
9105 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9106 }
9107 }
9108
9109 /* Allocate a fully-qualified name consisting of the two parts on the
9110 obstack. */
9111
9112 static const char *
9113 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9114 {
9115 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9116 }
9117
9118 /* A helper that allocates a struct discriminant_info to attach to a
9119 union type. */
9120
9121 static struct discriminant_info *
9122 alloc_discriminant_info (struct type *type, int discriminant_index,
9123 int default_index)
9124 {
9125 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9126 gdb_assert (discriminant_index == -1
9127 || (discriminant_index >= 0
9128 && discriminant_index < TYPE_NFIELDS (type)));
9129 gdb_assert (default_index == -1
9130 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9131
9132 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9133
9134 struct discriminant_info *disc
9135 = ((struct discriminant_info *)
9136 TYPE_ZALLOC (type,
9137 offsetof (struct discriminant_info, discriminants)
9138 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9139 disc->default_index = default_index;
9140 disc->discriminant_index = discriminant_index;
9141
9142 struct dynamic_prop prop;
9143 prop.kind = PROP_UNDEFINED;
9144 prop.data.baton = disc;
9145
9146 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9147
9148 return disc;
9149 }
9150
9151 /* Some versions of rustc emitted enums in an unusual way.
9152
9153 Ordinary enums were emitted as unions. The first element of each
9154 structure in the union was named "RUST$ENUM$DISR". This element
9155 held the discriminant.
9156
9157 These versions of Rust also implemented the "non-zero"
9158 optimization. When the enum had two values, and one is empty and
9159 the other holds a pointer that cannot be zero, the pointer is used
9160 as the discriminant, with a zero value meaning the empty variant.
9161 Here, the union's first member is of the form
9162 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9163 where the fieldnos are the indices of the fields that should be
9164 traversed in order to find the field (which may be several fields deep)
9165 and the variantname is the name of the variant of the case when the
9166 field is zero.
9167
9168 This function recognizes whether TYPE is of one of these forms,
9169 and, if so, smashes it to be a variant type. */
9170
9171 static void
9172 quirk_rust_enum (struct type *type, struct objfile *objfile)
9173 {
9174 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9175
9176 /* We don't need to deal with empty enums. */
9177 if (TYPE_NFIELDS (type) == 0)
9178 return;
9179
9180 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9181 if (TYPE_NFIELDS (type) == 1
9182 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9183 {
9184 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9185
9186 /* Decode the field name to find the offset of the
9187 discriminant. */
9188 ULONGEST bit_offset = 0;
9189 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9190 while (name[0] >= '0' && name[0] <= '9')
9191 {
9192 char *tail;
9193 unsigned long index = strtoul (name, &tail, 10);
9194 name = tail;
9195 if (*name != '$'
9196 || index >= TYPE_NFIELDS (field_type)
9197 || (TYPE_FIELD_LOC_KIND (field_type, index)
9198 != FIELD_LOC_KIND_BITPOS))
9199 {
9200 complaint (_("Could not parse Rust enum encoding string \"%s\""
9201 "[in module %s]"),
9202 TYPE_FIELD_NAME (type, 0),
9203 objfile_name (objfile));
9204 return;
9205 }
9206 ++name;
9207
9208 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9209 field_type = TYPE_FIELD_TYPE (field_type, index);
9210 }
9211
9212 /* Make a union to hold the variants. */
9213 struct type *union_type = alloc_type (objfile);
9214 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9215 TYPE_NFIELDS (union_type) = 3;
9216 TYPE_FIELDS (union_type)
9217 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9218 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9219 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9220
9221 /* Put the discriminant must at index 0. */
9222 TYPE_FIELD_TYPE (union_type, 0) = field_type;
9223 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9224 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9225 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
9226
9227 /* The order of fields doesn't really matter, so put the real
9228 field at index 1 and the data-less field at index 2. */
9229 struct discriminant_info *disc
9230 = alloc_discriminant_info (union_type, 0, 1);
9231 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
9232 TYPE_FIELD_NAME (union_type, 1)
9233 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
9234 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
9235 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9236 TYPE_FIELD_NAME (union_type, 1));
9237
9238 const char *dataless_name
9239 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9240 name);
9241 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9242 dataless_name);
9243 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
9244 /* NAME points into the original discriminant name, which
9245 already has the correct lifetime. */
9246 TYPE_FIELD_NAME (union_type, 2) = name;
9247 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
9248 disc->discriminants[2] = 0;
9249
9250 /* Smash this type to be a structure type. We have to do this
9251 because the type has already been recorded. */
9252 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9253 TYPE_NFIELDS (type) = 1;
9254 TYPE_FIELDS (type)
9255 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
9256
9257 /* Install the variant part. */
9258 TYPE_FIELD_TYPE (type, 0) = union_type;
9259 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9260 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9261 }
9262 /* A union with a single anonymous field is probably an old-style
9263 univariant enum. */
9264 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9265 {
9266 /* Smash this type to be a structure type. We have to do this
9267 because the type has already been recorded. */
9268 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9269
9270 /* Make a union to hold the variants. */
9271 struct type *union_type = alloc_type (objfile);
9272 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9273 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
9274 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9275 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9276 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
9277
9278 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
9279 const char *variant_name
9280 = rust_last_path_segment (TYPE_NAME (field_type));
9281 TYPE_FIELD_NAME (union_type, 0) = variant_name;
9282 TYPE_NAME (field_type)
9283 = rust_fully_qualify (&objfile->objfile_obstack,
9284 TYPE_NAME (type), variant_name);
9285
9286 /* Install the union in the outer struct type. */
9287 TYPE_NFIELDS (type) = 1;
9288 TYPE_FIELDS (type)
9289 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
9290 TYPE_FIELD_TYPE (type, 0) = union_type;
9291 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9292 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9293
9294 alloc_discriminant_info (union_type, -1, 0);
9295 }
9296 else
9297 {
9298 struct type *disr_type = nullptr;
9299 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9300 {
9301 disr_type = TYPE_FIELD_TYPE (type, i);
9302
9303 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
9304 {
9305 /* All fields of a true enum will be structs. */
9306 return;
9307 }
9308 else if (TYPE_NFIELDS (disr_type) == 0)
9309 {
9310 /* Could be data-less variant, so keep going. */
9311 disr_type = nullptr;
9312 }
9313 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9314 "RUST$ENUM$DISR") != 0)
9315 {
9316 /* Not a Rust enum. */
9317 return;
9318 }
9319 else
9320 {
9321 /* Found one. */
9322 break;
9323 }
9324 }
9325
9326 /* If we got here without a discriminant, then it's probably
9327 just a union. */
9328 if (disr_type == nullptr)
9329 return;
9330
9331 /* Smash this type to be a structure type. We have to do this
9332 because the type has already been recorded. */
9333 TYPE_CODE (type) = TYPE_CODE_STRUCT;
9334
9335 /* Make a union to hold the variants. */
9336 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9337 struct type *union_type = alloc_type (objfile);
9338 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9339 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
9340 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
9341 set_type_align (union_type, TYPE_RAW_ALIGN (type));
9342 TYPE_FIELDS (union_type)
9343 = (struct field *) TYPE_ZALLOC (union_type,
9344 (TYPE_NFIELDS (union_type)
9345 * sizeof (struct field)));
9346
9347 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
9348 TYPE_NFIELDS (type) * sizeof (struct field));
9349
9350 /* Install the discriminant at index 0 in the union. */
9351 TYPE_FIELD (union_type, 0) = *disr_field;
9352 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
9353 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
9354
9355 /* Install the union in the outer struct type. */
9356 TYPE_FIELD_TYPE (type, 0) = union_type;
9357 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
9358 TYPE_NFIELDS (type) = 1;
9359
9360 /* Set the size and offset of the union type. */
9361 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
9362
9363 /* We need a way to find the correct discriminant given a
9364 variant name. For convenience we build a map here. */
9365 struct type *enum_type = FIELD_TYPE (*disr_field);
9366 std::unordered_map<std::string, ULONGEST> discriminant_map;
9367 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9368 {
9369 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9370 {
9371 const char *name
9372 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9373 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9374 }
9375 }
9376
9377 int n_fields = TYPE_NFIELDS (union_type);
9378 struct discriminant_info *disc
9379 = alloc_discriminant_info (union_type, 0, -1);
9380 /* Skip the discriminant here. */
9381 for (int i = 1; i < n_fields; ++i)
9382 {
9383 /* Find the final word in the name of this variant's type.
9384 That name can be used to look up the correct
9385 discriminant. */
9386 const char *variant_name
9387 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
9388 i)));
9389
9390 auto iter = discriminant_map.find (variant_name);
9391 if (iter != discriminant_map.end ())
9392 disc->discriminants[i] = iter->second;
9393
9394 /* Remove the discriminant field, if it exists. */
9395 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
9396 if (TYPE_NFIELDS (sub_type) > 0)
9397 {
9398 --TYPE_NFIELDS (sub_type);
9399 ++TYPE_FIELDS (sub_type);
9400 }
9401 TYPE_FIELD_NAME (union_type, i) = variant_name;
9402 TYPE_NAME (sub_type)
9403 = rust_fully_qualify (&objfile->objfile_obstack,
9404 TYPE_NAME (type), variant_name);
9405 }
9406 }
9407 }
9408
9409 /* Rewrite some Rust unions to be structures with variants parts. */
9410
9411 static void
9412 rust_union_quirks (struct dwarf2_cu *cu)
9413 {
9414 gdb_assert (cu->language == language_rust);
9415 for (type *type_ : cu->rust_unions)
9416 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9417 /* We don't need this any more. */
9418 cu->rust_unions.clear ();
9419 }
9420
9421 /* Return the symtab for PER_CU. This works properly regardless of
9422 whether we're using the index or psymtabs. */
9423
9424 static struct compunit_symtab *
9425 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9426 {
9427 return (per_cu->dwarf2_per_objfile->using_index
9428 ? per_cu->v.quick->compunit_symtab
9429 : per_cu->v.psymtab->compunit_symtab);
9430 }
9431
9432 /* A helper function for computing the list of all symbol tables
9433 included by PER_CU. */
9434
9435 static void
9436 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9437 htab_t all_children, htab_t all_type_symtabs,
9438 struct dwarf2_per_cu_data *per_cu,
9439 struct compunit_symtab *immediate_parent)
9440 {
9441 void **slot;
9442 struct compunit_symtab *cust;
9443
9444 slot = htab_find_slot (all_children, per_cu, INSERT);
9445 if (*slot != NULL)
9446 {
9447 /* This inclusion and its children have been processed. */
9448 return;
9449 }
9450
9451 *slot = per_cu;
9452 /* Only add a CU if it has a symbol table. */
9453 cust = get_compunit_symtab (per_cu);
9454 if (cust != NULL)
9455 {
9456 /* If this is a type unit only add its symbol table if we haven't
9457 seen it yet (type unit per_cu's can share symtabs). */
9458 if (per_cu->is_debug_types)
9459 {
9460 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9461 if (*slot == NULL)
9462 {
9463 *slot = cust;
9464 result->push_back (cust);
9465 if (cust->user == NULL)
9466 cust->user = immediate_parent;
9467 }
9468 }
9469 else
9470 {
9471 result->push_back (cust);
9472 if (cust->user == NULL)
9473 cust->user = immediate_parent;
9474 }
9475 }
9476
9477 if (!per_cu->imported_symtabs_empty ())
9478 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9479 {
9480 recursively_compute_inclusions (result, all_children,
9481 all_type_symtabs, ptr, cust);
9482 }
9483 }
9484
9485 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9486 PER_CU. */
9487
9488 static void
9489 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9490 {
9491 gdb_assert (! per_cu->is_debug_types);
9492
9493 if (!per_cu->imported_symtabs_empty ())
9494 {
9495 int len;
9496 std::vector<compunit_symtab *> result_symtabs;
9497 htab_t all_children, all_type_symtabs;
9498 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9499
9500 /* If we don't have a symtab, we can just skip this case. */
9501 if (cust == NULL)
9502 return;
9503
9504 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9505 NULL, xcalloc, xfree);
9506 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9507 NULL, xcalloc, xfree);
9508
9509 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9510 {
9511 recursively_compute_inclusions (&result_symtabs, all_children,
9512 all_type_symtabs, ptr, cust);
9513 }
9514
9515 /* Now we have a transitive closure of all the included symtabs. */
9516 len = result_symtabs.size ();
9517 cust->includes
9518 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9519 struct compunit_symtab *, len + 1);
9520 memcpy (cust->includes, result_symtabs.data (),
9521 len * sizeof (compunit_symtab *));
9522 cust->includes[len] = NULL;
9523
9524 htab_delete (all_children);
9525 htab_delete (all_type_symtabs);
9526 }
9527 }
9528
9529 /* Compute the 'includes' field for the symtabs of all the CUs we just
9530 read. */
9531
9532 static void
9533 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9534 {
9535 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9536 {
9537 if (! iter->is_debug_types)
9538 compute_compunit_symtab_includes (iter);
9539 }
9540
9541 dwarf2_per_objfile->just_read_cus.clear ();
9542 }
9543
9544 /* Generate full symbol information for PER_CU, whose DIEs have
9545 already been loaded into memory. */
9546
9547 static void
9548 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9549 enum language pretend_language)
9550 {
9551 struct dwarf2_cu *cu = per_cu->cu;
9552 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9553 struct objfile *objfile = dwarf2_per_objfile->objfile;
9554 struct gdbarch *gdbarch = objfile->arch ();
9555 CORE_ADDR lowpc, highpc;
9556 struct compunit_symtab *cust;
9557 CORE_ADDR baseaddr;
9558 struct block *static_block;
9559 CORE_ADDR addr;
9560
9561 baseaddr = objfile->text_section_offset ();
9562
9563 /* Clear the list here in case something was left over. */
9564 cu->method_list.clear ();
9565
9566 cu->language = pretend_language;
9567 cu->language_defn = language_def (cu->language);
9568
9569 /* Do line number decoding in read_file_scope () */
9570 process_die (cu->dies, cu);
9571
9572 /* For now fudge the Go package. */
9573 if (cu->language == language_go)
9574 fixup_go_packaging (cu);
9575
9576 /* Now that we have processed all the DIEs in the CU, all the types
9577 should be complete, and it should now be safe to compute all of the
9578 physnames. */
9579 compute_delayed_physnames (cu);
9580
9581 if (cu->language == language_rust)
9582 rust_union_quirks (cu);
9583
9584 /* Some compilers don't define a DW_AT_high_pc attribute for the
9585 compilation unit. If the DW_AT_high_pc is missing, synthesize
9586 it, by scanning the DIE's below the compilation unit. */
9587 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9588
9589 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9590 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9591
9592 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9593 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9594 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9595 addrmap to help ensure it has an accurate map of pc values belonging to
9596 this comp unit. */
9597 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9598
9599 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9600 SECT_OFF_TEXT (objfile),
9601 0);
9602
9603 if (cust != NULL)
9604 {
9605 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9606
9607 /* Set symtab language to language from DW_AT_language. If the
9608 compilation is from a C file generated by language preprocessors, do
9609 not set the language if it was already deduced by start_subfile. */
9610 if (!(cu->language == language_c
9611 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9612 COMPUNIT_FILETABS (cust)->language = cu->language;
9613
9614 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9615 produce DW_AT_location with location lists but it can be possibly
9616 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9617 there were bugs in prologue debug info, fixed later in GCC-4.5
9618 by "unwind info for epilogues" patch (which is not directly related).
9619
9620 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9621 needed, it would be wrong due to missing DW_AT_producer there.
9622
9623 Still one can confuse GDB by using non-standard GCC compilation
9624 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9625 */
9626 if (cu->has_loclist && gcc_4_minor >= 5)
9627 cust->locations_valid = 1;
9628
9629 if (gcc_4_minor >= 5)
9630 cust->epilogue_unwind_valid = 1;
9631
9632 cust->call_site_htab = cu->call_site_htab;
9633 }
9634
9635 if (dwarf2_per_objfile->using_index)
9636 per_cu->v.quick->compunit_symtab = cust;
9637 else
9638 {
9639 dwarf2_psymtab *pst = per_cu->v.psymtab;
9640 pst->compunit_symtab = cust;
9641 pst->readin = true;
9642 }
9643
9644 /* Push it for inclusion processing later. */
9645 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9646
9647 /* Not needed any more. */
9648 cu->reset_builder ();
9649 }
9650
9651 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9652 already been loaded into memory. */
9653
9654 static void
9655 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9656 enum language pretend_language)
9657 {
9658 struct dwarf2_cu *cu = per_cu->cu;
9659 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9660 struct objfile *objfile = dwarf2_per_objfile->objfile;
9661 struct compunit_symtab *cust;
9662 struct signatured_type *sig_type;
9663
9664 gdb_assert (per_cu->is_debug_types);
9665 sig_type = (struct signatured_type *) per_cu;
9666
9667 /* Clear the list here in case something was left over. */
9668 cu->method_list.clear ();
9669
9670 cu->language = pretend_language;
9671 cu->language_defn = language_def (cu->language);
9672
9673 /* The symbol tables are set up in read_type_unit_scope. */
9674 process_die (cu->dies, cu);
9675
9676 /* For now fudge the Go package. */
9677 if (cu->language == language_go)
9678 fixup_go_packaging (cu);
9679
9680 /* Now that we have processed all the DIEs in the CU, all the types
9681 should be complete, and it should now be safe to compute all of the
9682 physnames. */
9683 compute_delayed_physnames (cu);
9684
9685 if (cu->language == language_rust)
9686 rust_union_quirks (cu);
9687
9688 /* TUs share symbol tables.
9689 If this is the first TU to use this symtab, complete the construction
9690 of it with end_expandable_symtab. Otherwise, complete the addition of
9691 this TU's symbols to the existing symtab. */
9692 if (sig_type->type_unit_group->compunit_symtab == NULL)
9693 {
9694 buildsym_compunit *builder = cu->get_builder ();
9695 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9696 sig_type->type_unit_group->compunit_symtab = cust;
9697
9698 if (cust != NULL)
9699 {
9700 /* Set symtab language to language from DW_AT_language. If the
9701 compilation is from a C file generated by language preprocessors,
9702 do not set the language if it was already deduced by
9703 start_subfile. */
9704 if (!(cu->language == language_c
9705 && COMPUNIT_FILETABS (cust)->language != language_c))
9706 COMPUNIT_FILETABS (cust)->language = cu->language;
9707 }
9708 }
9709 else
9710 {
9711 cu->get_builder ()->augment_type_symtab ();
9712 cust = sig_type->type_unit_group->compunit_symtab;
9713 }
9714
9715 if (dwarf2_per_objfile->using_index)
9716 per_cu->v.quick->compunit_symtab = cust;
9717 else
9718 {
9719 dwarf2_psymtab *pst = per_cu->v.psymtab;
9720 pst->compunit_symtab = cust;
9721 pst->readin = true;
9722 }
9723
9724 /* Not needed any more. */
9725 cu->reset_builder ();
9726 }
9727
9728 /* Process an imported unit DIE. */
9729
9730 static void
9731 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9732 {
9733 struct attribute *attr;
9734
9735 /* For now we don't handle imported units in type units. */
9736 if (cu->per_cu->is_debug_types)
9737 {
9738 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9739 " supported in type units [in module %s]"),
9740 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9741 }
9742
9743 attr = dwarf2_attr (die, DW_AT_import, cu);
9744 if (attr != NULL)
9745 {
9746 sect_offset sect_off = attr->get_ref_die_offset ();
9747 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9748 dwarf2_per_cu_data *per_cu
9749 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9750 cu->per_cu->dwarf2_per_objfile);
9751
9752 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9753 into another compilation unit, at root level. Regard this as a hint,
9754 and ignore it. */
9755 if (die->parent && die->parent->parent == NULL
9756 && per_cu->unit_type == DW_UT_compile
9757 && per_cu->lang == language_cplus)
9758 return;
9759
9760 /* If necessary, add it to the queue and load its DIEs. */
9761 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9762 load_full_comp_unit (per_cu, false, cu->language);
9763
9764 cu->per_cu->imported_symtabs_push (per_cu);
9765 }
9766 }
9767
9768 /* RAII object that represents a process_die scope: i.e.,
9769 starts/finishes processing a DIE. */
9770 class process_die_scope
9771 {
9772 public:
9773 process_die_scope (die_info *die, dwarf2_cu *cu)
9774 : m_die (die), m_cu (cu)
9775 {
9776 /* We should only be processing DIEs not already in process. */
9777 gdb_assert (!m_die->in_process);
9778 m_die->in_process = true;
9779 }
9780
9781 ~process_die_scope ()
9782 {
9783 m_die->in_process = false;
9784
9785 /* If we're done processing the DIE for the CU that owns the line
9786 header, we don't need the line header anymore. */
9787 if (m_cu->line_header_die_owner == m_die)
9788 {
9789 delete m_cu->line_header;
9790 m_cu->line_header = NULL;
9791 m_cu->line_header_die_owner = NULL;
9792 }
9793 }
9794
9795 private:
9796 die_info *m_die;
9797 dwarf2_cu *m_cu;
9798 };
9799
9800 /* Process a die and its children. */
9801
9802 static void
9803 process_die (struct die_info *die, struct dwarf2_cu *cu)
9804 {
9805 process_die_scope scope (die, cu);
9806
9807 switch (die->tag)
9808 {
9809 case DW_TAG_padding:
9810 break;
9811 case DW_TAG_compile_unit:
9812 case DW_TAG_partial_unit:
9813 read_file_scope (die, cu);
9814 break;
9815 case DW_TAG_type_unit:
9816 read_type_unit_scope (die, cu);
9817 break;
9818 case DW_TAG_subprogram:
9819 /* Nested subprograms in Fortran get a prefix. */
9820 if (cu->language == language_fortran
9821 && die->parent != NULL
9822 && die->parent->tag == DW_TAG_subprogram)
9823 cu->processing_has_namespace_info = true;
9824 /* Fall through. */
9825 case DW_TAG_inlined_subroutine:
9826 read_func_scope (die, cu);
9827 break;
9828 case DW_TAG_lexical_block:
9829 case DW_TAG_try_block:
9830 case DW_TAG_catch_block:
9831 read_lexical_block_scope (die, cu);
9832 break;
9833 case DW_TAG_call_site:
9834 case DW_TAG_GNU_call_site:
9835 read_call_site_scope (die, cu);
9836 break;
9837 case DW_TAG_class_type:
9838 case DW_TAG_interface_type:
9839 case DW_TAG_structure_type:
9840 case DW_TAG_union_type:
9841 process_structure_scope (die, cu);
9842 break;
9843 case DW_TAG_enumeration_type:
9844 process_enumeration_scope (die, cu);
9845 break;
9846
9847 /* These dies have a type, but processing them does not create
9848 a symbol or recurse to process the children. Therefore we can
9849 read them on-demand through read_type_die. */
9850 case DW_TAG_subroutine_type:
9851 case DW_TAG_set_type:
9852 case DW_TAG_array_type:
9853 case DW_TAG_pointer_type:
9854 case DW_TAG_ptr_to_member_type:
9855 case DW_TAG_reference_type:
9856 case DW_TAG_rvalue_reference_type:
9857 case DW_TAG_string_type:
9858 break;
9859
9860 case DW_TAG_base_type:
9861 case DW_TAG_subrange_type:
9862 case DW_TAG_typedef:
9863 /* Add a typedef symbol for the type definition, if it has a
9864 DW_AT_name. */
9865 new_symbol (die, read_type_die (die, cu), cu);
9866 break;
9867 case DW_TAG_common_block:
9868 read_common_block (die, cu);
9869 break;
9870 case DW_TAG_common_inclusion:
9871 break;
9872 case DW_TAG_namespace:
9873 cu->processing_has_namespace_info = true;
9874 read_namespace (die, cu);
9875 break;
9876 case DW_TAG_module:
9877 cu->processing_has_namespace_info = true;
9878 read_module (die, cu);
9879 break;
9880 case DW_TAG_imported_declaration:
9881 cu->processing_has_namespace_info = true;
9882 if (read_namespace_alias (die, cu))
9883 break;
9884 /* The declaration is not a global namespace alias. */
9885 /* Fall through. */
9886 case DW_TAG_imported_module:
9887 cu->processing_has_namespace_info = true;
9888 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9889 || cu->language != language_fortran))
9890 complaint (_("Tag '%s' has unexpected children"),
9891 dwarf_tag_name (die->tag));
9892 read_import_statement (die, cu);
9893 break;
9894
9895 case DW_TAG_imported_unit:
9896 process_imported_unit_die (die, cu);
9897 break;
9898
9899 case DW_TAG_variable:
9900 read_variable (die, cu);
9901 break;
9902
9903 default:
9904 new_symbol (die, NULL, cu);
9905 break;
9906 }
9907 }
9908 \f
9909 /* DWARF name computation. */
9910
9911 /* A helper function for dwarf2_compute_name which determines whether DIE
9912 needs to have the name of the scope prepended to the name listed in the
9913 die. */
9914
9915 static int
9916 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
9917 {
9918 struct attribute *attr;
9919
9920 switch (die->tag)
9921 {
9922 case DW_TAG_namespace:
9923 case DW_TAG_typedef:
9924 case DW_TAG_class_type:
9925 case DW_TAG_interface_type:
9926 case DW_TAG_structure_type:
9927 case DW_TAG_union_type:
9928 case DW_TAG_enumeration_type:
9929 case DW_TAG_enumerator:
9930 case DW_TAG_subprogram:
9931 case DW_TAG_inlined_subroutine:
9932 case DW_TAG_member:
9933 case DW_TAG_imported_declaration:
9934 return 1;
9935
9936 case DW_TAG_variable:
9937 case DW_TAG_constant:
9938 /* We only need to prefix "globally" visible variables. These include
9939 any variable marked with DW_AT_external or any variable that
9940 lives in a namespace. [Variables in anonymous namespaces
9941 require prefixing, but they are not DW_AT_external.] */
9942
9943 if (dwarf2_attr (die, DW_AT_specification, cu))
9944 {
9945 struct dwarf2_cu *spec_cu = cu;
9946
9947 return die_needs_namespace (die_specification (die, &spec_cu),
9948 spec_cu);
9949 }
9950
9951 attr = dwarf2_attr (die, DW_AT_external, cu);
9952 if (attr == NULL && die->parent->tag != DW_TAG_namespace
9953 && die->parent->tag != DW_TAG_module)
9954 return 0;
9955 /* A variable in a lexical block of some kind does not need a
9956 namespace, even though in C++ such variables may be external
9957 and have a mangled name. */
9958 if (die->parent->tag == DW_TAG_lexical_block
9959 || die->parent->tag == DW_TAG_try_block
9960 || die->parent->tag == DW_TAG_catch_block
9961 || die->parent->tag == DW_TAG_subprogram)
9962 return 0;
9963 return 1;
9964
9965 default:
9966 return 0;
9967 }
9968 }
9969
9970 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
9971 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9972 defined for the given DIE. */
9973
9974 static struct attribute *
9975 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
9976 {
9977 struct attribute *attr;
9978
9979 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
9980 if (attr == NULL)
9981 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
9982
9983 return attr;
9984 }
9985
9986 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
9987 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
9988 defined for the given DIE. */
9989
9990 static const char *
9991 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
9992 {
9993 const char *linkage_name;
9994
9995 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
9996 if (linkage_name == NULL)
9997 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
9998
9999 return linkage_name;
10000 }
10001
10002 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10003 compute the physname for the object, which include a method's:
10004 - formal parameters (C++),
10005 - receiver type (Go),
10006
10007 The term "physname" is a bit confusing.
10008 For C++, for example, it is the demangled name.
10009 For Go, for example, it's the mangled name.
10010
10011 For Ada, return the DIE's linkage name rather than the fully qualified
10012 name. PHYSNAME is ignored..
10013
10014 The result is allocated on the objfile_obstack and canonicalized. */
10015
10016 static const char *
10017 dwarf2_compute_name (const char *name,
10018 struct die_info *die, struct dwarf2_cu *cu,
10019 int physname)
10020 {
10021 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10022
10023 if (name == NULL)
10024 name = dwarf2_name (die, cu);
10025
10026 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10027 but otherwise compute it by typename_concat inside GDB.
10028 FIXME: Actually this is not really true, or at least not always true.
10029 It's all very confusing. compute_and_set_names doesn't try to demangle
10030 Fortran names because there is no mangling standard. So new_symbol
10031 will set the demangled name to the result of dwarf2_full_name, and it is
10032 the demangled name that GDB uses if it exists. */
10033 if (cu->language == language_ada
10034 || (cu->language == language_fortran && physname))
10035 {
10036 /* For Ada unit, we prefer the linkage name over the name, as
10037 the former contains the exported name, which the user expects
10038 to be able to reference. Ideally, we want the user to be able
10039 to reference this entity using either natural or linkage name,
10040 but we haven't started looking at this enhancement yet. */
10041 const char *linkage_name = dw2_linkage_name (die, cu);
10042
10043 if (linkage_name != NULL)
10044 return linkage_name;
10045 }
10046
10047 /* These are the only languages we know how to qualify names in. */
10048 if (name != NULL
10049 && (cu->language == language_cplus
10050 || cu->language == language_fortran || cu->language == language_d
10051 || cu->language == language_rust))
10052 {
10053 if (die_needs_namespace (die, cu))
10054 {
10055 const char *prefix;
10056 const char *canonical_name = NULL;
10057
10058 string_file buf;
10059
10060 prefix = determine_prefix (die, cu);
10061 if (*prefix != '\0')
10062 {
10063 gdb::unique_xmalloc_ptr<char> prefixed_name
10064 (typename_concat (NULL, prefix, name, physname, cu));
10065
10066 buf.puts (prefixed_name.get ());
10067 }
10068 else
10069 buf.puts (name);
10070
10071 /* Template parameters may be specified in the DIE's DW_AT_name, or
10072 as children with DW_TAG_template_type_param or
10073 DW_TAG_value_type_param. If the latter, add them to the name
10074 here. If the name already has template parameters, then
10075 skip this step; some versions of GCC emit both, and
10076 it is more efficient to use the pre-computed name.
10077
10078 Something to keep in mind about this process: it is very
10079 unlikely, or in some cases downright impossible, to produce
10080 something that will match the mangled name of a function.
10081 If the definition of the function has the same debug info,
10082 we should be able to match up with it anyway. But fallbacks
10083 using the minimal symbol, for instance to find a method
10084 implemented in a stripped copy of libstdc++, will not work.
10085 If we do not have debug info for the definition, we will have to
10086 match them up some other way.
10087
10088 When we do name matching there is a related problem with function
10089 templates; two instantiated function templates are allowed to
10090 differ only by their return types, which we do not add here. */
10091
10092 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10093 {
10094 struct attribute *attr;
10095 struct die_info *child;
10096 int first = 1;
10097
10098 die->building_fullname = 1;
10099
10100 for (child = die->child; child != NULL; child = child->sibling)
10101 {
10102 struct type *type;
10103 LONGEST value;
10104 const gdb_byte *bytes;
10105 struct dwarf2_locexpr_baton *baton;
10106 struct value *v;
10107
10108 if (child->tag != DW_TAG_template_type_param
10109 && child->tag != DW_TAG_template_value_param)
10110 continue;
10111
10112 if (first)
10113 {
10114 buf.puts ("<");
10115 first = 0;
10116 }
10117 else
10118 buf.puts (", ");
10119
10120 attr = dwarf2_attr (child, DW_AT_type, cu);
10121 if (attr == NULL)
10122 {
10123 complaint (_("template parameter missing DW_AT_type"));
10124 buf.puts ("UNKNOWN_TYPE");
10125 continue;
10126 }
10127 type = die_type (child, cu);
10128
10129 if (child->tag == DW_TAG_template_type_param)
10130 {
10131 c_print_type (type, "", &buf, -1, 0, cu->language,
10132 &type_print_raw_options);
10133 continue;
10134 }
10135
10136 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10137 if (attr == NULL)
10138 {
10139 complaint (_("template parameter missing "
10140 "DW_AT_const_value"));
10141 buf.puts ("UNKNOWN_VALUE");
10142 continue;
10143 }
10144
10145 dwarf2_const_value_attr (attr, type, name,
10146 &cu->comp_unit_obstack, cu,
10147 &value, &bytes, &baton);
10148
10149 if (TYPE_NOSIGN (type))
10150 /* GDB prints characters as NUMBER 'CHAR'. If that's
10151 changed, this can use value_print instead. */
10152 c_printchar (value, type, &buf);
10153 else
10154 {
10155 struct value_print_options opts;
10156
10157 if (baton != NULL)
10158 v = dwarf2_evaluate_loc_desc (type, NULL,
10159 baton->data,
10160 baton->size,
10161 baton->per_cu);
10162 else if (bytes != NULL)
10163 {
10164 v = allocate_value (type);
10165 memcpy (value_contents_writeable (v), bytes,
10166 TYPE_LENGTH (type));
10167 }
10168 else
10169 v = value_from_longest (type, value);
10170
10171 /* Specify decimal so that we do not depend on
10172 the radix. */
10173 get_formatted_print_options (&opts, 'd');
10174 opts.raw = 1;
10175 value_print (v, &buf, &opts);
10176 release_value (v);
10177 }
10178 }
10179
10180 die->building_fullname = 0;
10181
10182 if (!first)
10183 {
10184 /* Close the argument list, with a space if necessary
10185 (nested templates). */
10186 if (!buf.empty () && buf.string ().back () == '>')
10187 buf.puts (" >");
10188 else
10189 buf.puts (">");
10190 }
10191 }
10192
10193 /* For C++ methods, append formal parameter type
10194 information, if PHYSNAME. */
10195
10196 if (physname && die->tag == DW_TAG_subprogram
10197 && cu->language == language_cplus)
10198 {
10199 struct type *type = read_type_die (die, cu);
10200
10201 c_type_print_args (type, &buf, 1, cu->language,
10202 &type_print_raw_options);
10203
10204 if (cu->language == language_cplus)
10205 {
10206 /* Assume that an artificial first parameter is
10207 "this", but do not crash if it is not. RealView
10208 marks unnamed (and thus unused) parameters as
10209 artificial; there is no way to differentiate
10210 the two cases. */
10211 if (TYPE_NFIELDS (type) > 0
10212 && TYPE_FIELD_ARTIFICIAL (type, 0)
10213 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10214 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10215 0))))
10216 buf.puts (" const");
10217 }
10218 }
10219
10220 const std::string &intermediate_name = buf.string ();
10221
10222 if (cu->language == language_cplus)
10223 canonical_name
10224 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10225 objfile);
10226
10227 /* If we only computed INTERMEDIATE_NAME, or if
10228 INTERMEDIATE_NAME is already canonical, then we need to
10229 intern it. */
10230 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10231 name = objfile->intern (intermediate_name);
10232 else
10233 name = canonical_name;
10234 }
10235 }
10236
10237 return name;
10238 }
10239
10240 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10241 If scope qualifiers are appropriate they will be added. The result
10242 will be allocated on the storage_obstack, or NULL if the DIE does
10243 not have a name. NAME may either be from a previous call to
10244 dwarf2_name or NULL.
10245
10246 The output string will be canonicalized (if C++). */
10247
10248 static const char *
10249 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10250 {
10251 return dwarf2_compute_name (name, die, cu, 0);
10252 }
10253
10254 /* Construct a physname for the given DIE in CU. NAME may either be
10255 from a previous call to dwarf2_name or NULL. The result will be
10256 allocated on the objfile_objstack or NULL if the DIE does not have a
10257 name.
10258
10259 The output string will be canonicalized (if C++). */
10260
10261 static const char *
10262 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10263 {
10264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10265 const char *retval, *mangled = NULL, *canon = NULL;
10266 int need_copy = 1;
10267
10268 /* In this case dwarf2_compute_name is just a shortcut not building anything
10269 on its own. */
10270 if (!die_needs_namespace (die, cu))
10271 return dwarf2_compute_name (name, die, cu, 1);
10272
10273 mangled = dw2_linkage_name (die, cu);
10274
10275 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10276 See https://github.com/rust-lang/rust/issues/32925. */
10277 if (cu->language == language_rust && mangled != NULL
10278 && strchr (mangled, '{') != NULL)
10279 mangled = NULL;
10280
10281 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10282 has computed. */
10283 gdb::unique_xmalloc_ptr<char> demangled;
10284 if (mangled != NULL)
10285 {
10286
10287 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10288 {
10289 /* Do nothing (do not demangle the symbol name). */
10290 }
10291 else if (cu->language == language_go)
10292 {
10293 /* This is a lie, but we already lie to the caller new_symbol.
10294 new_symbol assumes we return the mangled name.
10295 This just undoes that lie until things are cleaned up. */
10296 }
10297 else
10298 {
10299 /* Use DMGL_RET_DROP for C++ template functions to suppress
10300 their return type. It is easier for GDB users to search
10301 for such functions as `name(params)' than `long name(params)'.
10302 In such case the minimal symbol names do not match the full
10303 symbol names but for template functions there is never a need
10304 to look up their definition from their declaration so
10305 the only disadvantage remains the minimal symbol variant
10306 `long name(params)' does not have the proper inferior type. */
10307 demangled.reset (gdb_demangle (mangled,
10308 (DMGL_PARAMS | DMGL_ANSI
10309 | DMGL_RET_DROP)));
10310 }
10311 if (demangled)
10312 canon = demangled.get ();
10313 else
10314 {
10315 canon = mangled;
10316 need_copy = 0;
10317 }
10318 }
10319
10320 if (canon == NULL || check_physname)
10321 {
10322 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10323
10324 if (canon != NULL && strcmp (physname, canon) != 0)
10325 {
10326 /* It may not mean a bug in GDB. The compiler could also
10327 compute DW_AT_linkage_name incorrectly. But in such case
10328 GDB would need to be bug-to-bug compatible. */
10329
10330 complaint (_("Computed physname <%s> does not match demangled <%s> "
10331 "(from linkage <%s>) - DIE at %s [in module %s]"),
10332 physname, canon, mangled, sect_offset_str (die->sect_off),
10333 objfile_name (objfile));
10334
10335 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10336 is available here - over computed PHYSNAME. It is safer
10337 against both buggy GDB and buggy compilers. */
10338
10339 retval = canon;
10340 }
10341 else
10342 {
10343 retval = physname;
10344 need_copy = 0;
10345 }
10346 }
10347 else
10348 retval = canon;
10349
10350 if (need_copy)
10351 retval = objfile->intern (retval);
10352
10353 return retval;
10354 }
10355
10356 /* Inspect DIE in CU for a namespace alias. If one exists, record
10357 a new symbol for it.
10358
10359 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10360
10361 static int
10362 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10363 {
10364 struct attribute *attr;
10365
10366 /* If the die does not have a name, this is not a namespace
10367 alias. */
10368 attr = dwarf2_attr (die, DW_AT_name, cu);
10369 if (attr != NULL)
10370 {
10371 int num;
10372 struct die_info *d = die;
10373 struct dwarf2_cu *imported_cu = cu;
10374
10375 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10376 keep inspecting DIEs until we hit the underlying import. */
10377 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10378 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10379 {
10380 attr = dwarf2_attr (d, DW_AT_import, cu);
10381 if (attr == NULL)
10382 break;
10383
10384 d = follow_die_ref (d, attr, &imported_cu);
10385 if (d->tag != DW_TAG_imported_declaration)
10386 break;
10387 }
10388
10389 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10390 {
10391 complaint (_("DIE at %s has too many recursively imported "
10392 "declarations"), sect_offset_str (d->sect_off));
10393 return 0;
10394 }
10395
10396 if (attr != NULL)
10397 {
10398 struct type *type;
10399 sect_offset sect_off = attr->get_ref_die_offset ();
10400
10401 type = get_die_type_at_offset (sect_off, cu->per_cu);
10402 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
10403 {
10404 /* This declaration is a global namespace alias. Add
10405 a symbol for it whose type is the aliased namespace. */
10406 new_symbol (die, type, cu);
10407 return 1;
10408 }
10409 }
10410 }
10411
10412 return 0;
10413 }
10414
10415 /* Return the using directives repository (global or local?) to use in the
10416 current context for CU.
10417
10418 For Ada, imported declarations can materialize renamings, which *may* be
10419 global. However it is impossible (for now?) in DWARF to distinguish
10420 "external" imported declarations and "static" ones. As all imported
10421 declarations seem to be static in all other languages, make them all CU-wide
10422 global only in Ada. */
10423
10424 static struct using_direct **
10425 using_directives (struct dwarf2_cu *cu)
10426 {
10427 if (cu->language == language_ada
10428 && cu->get_builder ()->outermost_context_p ())
10429 return cu->get_builder ()->get_global_using_directives ();
10430 else
10431 return cu->get_builder ()->get_local_using_directives ();
10432 }
10433
10434 /* Read the import statement specified by the given die and record it. */
10435
10436 static void
10437 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10438 {
10439 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10440 struct attribute *import_attr;
10441 struct die_info *imported_die, *child_die;
10442 struct dwarf2_cu *imported_cu;
10443 const char *imported_name;
10444 const char *imported_name_prefix;
10445 const char *canonical_name;
10446 const char *import_alias;
10447 const char *imported_declaration = NULL;
10448 const char *import_prefix;
10449 std::vector<const char *> excludes;
10450
10451 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10452 if (import_attr == NULL)
10453 {
10454 complaint (_("Tag '%s' has no DW_AT_import"),
10455 dwarf_tag_name (die->tag));
10456 return;
10457 }
10458
10459 imported_cu = cu;
10460 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10461 imported_name = dwarf2_name (imported_die, imported_cu);
10462 if (imported_name == NULL)
10463 {
10464 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10465
10466 The import in the following code:
10467 namespace A
10468 {
10469 typedef int B;
10470 }
10471
10472 int main ()
10473 {
10474 using A::B;
10475 B b;
10476 return b;
10477 }
10478
10479 ...
10480 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10481 <52> DW_AT_decl_file : 1
10482 <53> DW_AT_decl_line : 6
10483 <54> DW_AT_import : <0x75>
10484 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10485 <59> DW_AT_name : B
10486 <5b> DW_AT_decl_file : 1
10487 <5c> DW_AT_decl_line : 2
10488 <5d> DW_AT_type : <0x6e>
10489 ...
10490 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10491 <76> DW_AT_byte_size : 4
10492 <77> DW_AT_encoding : 5 (signed)
10493
10494 imports the wrong die ( 0x75 instead of 0x58 ).
10495 This case will be ignored until the gcc bug is fixed. */
10496 return;
10497 }
10498
10499 /* Figure out the local name after import. */
10500 import_alias = dwarf2_name (die, cu);
10501
10502 /* Figure out where the statement is being imported to. */
10503 import_prefix = determine_prefix (die, cu);
10504
10505 /* Figure out what the scope of the imported die is and prepend it
10506 to the name of the imported die. */
10507 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10508
10509 if (imported_die->tag != DW_TAG_namespace
10510 && imported_die->tag != DW_TAG_module)
10511 {
10512 imported_declaration = imported_name;
10513 canonical_name = imported_name_prefix;
10514 }
10515 else if (strlen (imported_name_prefix) > 0)
10516 canonical_name = obconcat (&objfile->objfile_obstack,
10517 imported_name_prefix,
10518 (cu->language == language_d ? "." : "::"),
10519 imported_name, (char *) NULL);
10520 else
10521 canonical_name = imported_name;
10522
10523 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10524 for (child_die = die->child; child_die && child_die->tag;
10525 child_die = child_die->sibling)
10526 {
10527 /* DWARF-4: A Fortran use statement with a “rename list” may be
10528 represented by an imported module entry with an import attribute
10529 referring to the module and owned entries corresponding to those
10530 entities that are renamed as part of being imported. */
10531
10532 if (child_die->tag != DW_TAG_imported_declaration)
10533 {
10534 complaint (_("child DW_TAG_imported_declaration expected "
10535 "- DIE at %s [in module %s]"),
10536 sect_offset_str (child_die->sect_off),
10537 objfile_name (objfile));
10538 continue;
10539 }
10540
10541 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10542 if (import_attr == NULL)
10543 {
10544 complaint (_("Tag '%s' has no DW_AT_import"),
10545 dwarf_tag_name (child_die->tag));
10546 continue;
10547 }
10548
10549 imported_cu = cu;
10550 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10551 &imported_cu);
10552 imported_name = dwarf2_name (imported_die, imported_cu);
10553 if (imported_name == NULL)
10554 {
10555 complaint (_("child DW_TAG_imported_declaration has unknown "
10556 "imported name - DIE at %s [in module %s]"),
10557 sect_offset_str (child_die->sect_off),
10558 objfile_name (objfile));
10559 continue;
10560 }
10561
10562 excludes.push_back (imported_name);
10563
10564 process_die (child_die, cu);
10565 }
10566
10567 add_using_directive (using_directives (cu),
10568 import_prefix,
10569 canonical_name,
10570 import_alias,
10571 imported_declaration,
10572 excludes,
10573 0,
10574 &objfile->objfile_obstack);
10575 }
10576
10577 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10578 types, but gives them a size of zero. Starting with version 14,
10579 ICC is compatible with GCC. */
10580
10581 static bool
10582 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10583 {
10584 if (!cu->checked_producer)
10585 check_producer (cu);
10586
10587 return cu->producer_is_icc_lt_14;
10588 }
10589
10590 /* ICC generates a DW_AT_type for C void functions. This was observed on
10591 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10592 which says that void functions should not have a DW_AT_type. */
10593
10594 static bool
10595 producer_is_icc (struct dwarf2_cu *cu)
10596 {
10597 if (!cu->checked_producer)
10598 check_producer (cu);
10599
10600 return cu->producer_is_icc;
10601 }
10602
10603 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10604 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10605 this, it was first present in GCC release 4.3.0. */
10606
10607 static bool
10608 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10609 {
10610 if (!cu->checked_producer)
10611 check_producer (cu);
10612
10613 return cu->producer_is_gcc_lt_4_3;
10614 }
10615
10616 static file_and_directory
10617 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10618 {
10619 file_and_directory res;
10620
10621 /* Find the filename. Do not use dwarf2_name here, since the filename
10622 is not a source language identifier. */
10623 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10624 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10625
10626 if (res.comp_dir == NULL
10627 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10628 && IS_ABSOLUTE_PATH (res.name))
10629 {
10630 res.comp_dir_storage = ldirname (res.name);
10631 if (!res.comp_dir_storage.empty ())
10632 res.comp_dir = res.comp_dir_storage.c_str ();
10633 }
10634 if (res.comp_dir != NULL)
10635 {
10636 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10637 directory, get rid of it. */
10638 const char *cp = strchr (res.comp_dir, ':');
10639
10640 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10641 res.comp_dir = cp + 1;
10642 }
10643
10644 if (res.name == NULL)
10645 res.name = "<unknown>";
10646
10647 return res;
10648 }
10649
10650 /* Handle DW_AT_stmt_list for a compilation unit.
10651 DIE is the DW_TAG_compile_unit die for CU.
10652 COMP_DIR is the compilation directory. LOWPC is passed to
10653 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10654
10655 static void
10656 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10657 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10658 {
10659 struct dwarf2_per_objfile *dwarf2_per_objfile
10660 = cu->per_cu->dwarf2_per_objfile;
10661 struct attribute *attr;
10662 struct line_header line_header_local;
10663 hashval_t line_header_local_hash;
10664 void **slot;
10665 int decode_mapping;
10666
10667 gdb_assert (! cu->per_cu->is_debug_types);
10668
10669 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10670 if (attr == NULL)
10671 return;
10672
10673 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10674
10675 /* The line header hash table is only created if needed (it exists to
10676 prevent redundant reading of the line table for partial_units).
10677 If we're given a partial_unit, we'll need it. If we're given a
10678 compile_unit, then use the line header hash table if it's already
10679 created, but don't create one just yet. */
10680
10681 if (dwarf2_per_objfile->line_header_hash == NULL
10682 && die->tag == DW_TAG_partial_unit)
10683 {
10684 dwarf2_per_objfile->line_header_hash
10685 .reset (htab_create_alloc (127, line_header_hash_voidp,
10686 line_header_eq_voidp,
10687 free_line_header_voidp,
10688 xcalloc, xfree));
10689 }
10690
10691 line_header_local.sect_off = line_offset;
10692 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10693 line_header_local_hash = line_header_hash (&line_header_local);
10694 if (dwarf2_per_objfile->line_header_hash != NULL)
10695 {
10696 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10697 &line_header_local,
10698 line_header_local_hash, NO_INSERT);
10699
10700 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10701 is not present in *SLOT (since if there is something in *SLOT then
10702 it will be for a partial_unit). */
10703 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10704 {
10705 gdb_assert (*slot != NULL);
10706 cu->line_header = (struct line_header *) *slot;
10707 return;
10708 }
10709 }
10710
10711 /* dwarf_decode_line_header does not yet provide sufficient information.
10712 We always have to call also dwarf_decode_lines for it. */
10713 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10714 if (lh == NULL)
10715 return;
10716
10717 cu->line_header = lh.release ();
10718 cu->line_header_die_owner = die;
10719
10720 if (dwarf2_per_objfile->line_header_hash == NULL)
10721 slot = NULL;
10722 else
10723 {
10724 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10725 &line_header_local,
10726 line_header_local_hash, INSERT);
10727 gdb_assert (slot != NULL);
10728 }
10729 if (slot != NULL && *slot == NULL)
10730 {
10731 /* This newly decoded line number information unit will be owned
10732 by line_header_hash hash table. */
10733 *slot = cu->line_header;
10734 cu->line_header_die_owner = NULL;
10735 }
10736 else
10737 {
10738 /* We cannot free any current entry in (*slot) as that struct line_header
10739 may be already used by multiple CUs. Create only temporary decoded
10740 line_header for this CU - it may happen at most once for each line
10741 number information unit. And if we're not using line_header_hash
10742 then this is what we want as well. */
10743 gdb_assert (die->tag != DW_TAG_partial_unit);
10744 }
10745 decode_mapping = (die->tag != DW_TAG_partial_unit);
10746 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10747 decode_mapping);
10748
10749 }
10750
10751 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10752
10753 static void
10754 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10755 {
10756 struct dwarf2_per_objfile *dwarf2_per_objfile
10757 = cu->per_cu->dwarf2_per_objfile;
10758 struct objfile *objfile = dwarf2_per_objfile->objfile;
10759 struct gdbarch *gdbarch = objfile->arch ();
10760 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10761 CORE_ADDR highpc = ((CORE_ADDR) 0);
10762 struct attribute *attr;
10763 struct die_info *child_die;
10764 CORE_ADDR baseaddr;
10765
10766 prepare_one_comp_unit (cu, die, cu->language);
10767 baseaddr = objfile->text_section_offset ();
10768
10769 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10770
10771 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10772 from finish_block. */
10773 if (lowpc == ((CORE_ADDR) -1))
10774 lowpc = highpc;
10775 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10776
10777 file_and_directory fnd = find_file_and_directory (die, cu);
10778
10779 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10780 standardised yet. As a workaround for the language detection we fall
10781 back to the DW_AT_producer string. */
10782 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10783 cu->language = language_opencl;
10784
10785 /* Similar hack for Go. */
10786 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10787 set_cu_language (DW_LANG_Go, cu);
10788
10789 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10790
10791 /* Decode line number information if present. We do this before
10792 processing child DIEs, so that the line header table is available
10793 for DW_AT_decl_file. */
10794 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10795
10796 /* Process all dies in compilation unit. */
10797 if (die->child != NULL)
10798 {
10799 child_die = die->child;
10800 while (child_die && child_die->tag)
10801 {
10802 process_die (child_die, cu);
10803 child_die = child_die->sibling;
10804 }
10805 }
10806
10807 /* Decode macro information, if present. Dwarf 2 macro information
10808 refers to information in the line number info statement program
10809 header, so we can only read it if we've read the header
10810 successfully. */
10811 attr = dwarf2_attr (die, DW_AT_macros, cu);
10812 if (attr == NULL)
10813 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10814 if (attr && cu->line_header)
10815 {
10816 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10817 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10818
10819 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10820 }
10821 else
10822 {
10823 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10824 if (attr && cu->line_header)
10825 {
10826 unsigned int macro_offset = DW_UNSND (attr);
10827
10828 dwarf_decode_macros (cu, macro_offset, 0);
10829 }
10830 }
10831 }
10832
10833 void
10834 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10835 {
10836 struct type_unit_group *tu_group;
10837 int first_time;
10838 struct attribute *attr;
10839 unsigned int i;
10840 struct signatured_type *sig_type;
10841
10842 gdb_assert (per_cu->is_debug_types);
10843 sig_type = (struct signatured_type *) per_cu;
10844
10845 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10846
10847 /* If we're using .gdb_index (includes -readnow) then
10848 per_cu->type_unit_group may not have been set up yet. */
10849 if (sig_type->type_unit_group == NULL)
10850 sig_type->type_unit_group = get_type_unit_group (this, attr);
10851 tu_group = sig_type->type_unit_group;
10852
10853 /* If we've already processed this stmt_list there's no real need to
10854 do it again, we could fake it and just recreate the part we need
10855 (file name,index -> symtab mapping). If data shows this optimization
10856 is useful we can do it then. */
10857 first_time = tu_group->compunit_symtab == NULL;
10858
10859 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10860 debug info. */
10861 line_header_up lh;
10862 if (attr != NULL)
10863 {
10864 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10865 lh = dwarf_decode_line_header (line_offset, this);
10866 }
10867 if (lh == NULL)
10868 {
10869 if (first_time)
10870 start_symtab ("", NULL, 0);
10871 else
10872 {
10873 gdb_assert (tu_group->symtabs == NULL);
10874 gdb_assert (m_builder == nullptr);
10875 struct compunit_symtab *cust = tu_group->compunit_symtab;
10876 m_builder.reset (new struct buildsym_compunit
10877 (COMPUNIT_OBJFILE (cust), "",
10878 COMPUNIT_DIRNAME (cust),
10879 compunit_language (cust),
10880 0, cust));
10881 }
10882 return;
10883 }
10884
10885 line_header = lh.release ();
10886 line_header_die_owner = die;
10887
10888 if (first_time)
10889 {
10890 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10891
10892 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10893 still initializing it, and our caller (a few levels up)
10894 process_full_type_unit still needs to know if this is the first
10895 time. */
10896
10897 tu_group->symtabs
10898 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10899 struct symtab *, line_header->file_names_size ());
10900
10901 auto &file_names = line_header->file_names ();
10902 for (i = 0; i < file_names.size (); ++i)
10903 {
10904 file_entry &fe = file_names[i];
10905 dwarf2_start_subfile (this, fe.name,
10906 fe.include_dir (line_header));
10907 buildsym_compunit *b = get_builder ();
10908 if (b->get_current_subfile ()->symtab == NULL)
10909 {
10910 /* NOTE: start_subfile will recognize when it's been
10911 passed a file it has already seen. So we can't
10912 assume there's a simple mapping from
10913 cu->line_header->file_names to subfiles, plus
10914 cu->line_header->file_names may contain dups. */
10915 b->get_current_subfile ()->symtab
10916 = allocate_symtab (cust, b->get_current_subfile ()->name);
10917 }
10918
10919 fe.symtab = b->get_current_subfile ()->symtab;
10920 tu_group->symtabs[i] = fe.symtab;
10921 }
10922 }
10923 else
10924 {
10925 gdb_assert (m_builder == nullptr);
10926 struct compunit_symtab *cust = tu_group->compunit_symtab;
10927 m_builder.reset (new struct buildsym_compunit
10928 (COMPUNIT_OBJFILE (cust), "",
10929 COMPUNIT_DIRNAME (cust),
10930 compunit_language (cust),
10931 0, cust));
10932
10933 auto &file_names = line_header->file_names ();
10934 for (i = 0; i < file_names.size (); ++i)
10935 {
10936 file_entry &fe = file_names[i];
10937 fe.symtab = tu_group->symtabs[i];
10938 }
10939 }
10940
10941 /* The main symtab is allocated last. Type units don't have DW_AT_name
10942 so they don't have a "real" (so to speak) symtab anyway.
10943 There is later code that will assign the main symtab to all symbols
10944 that don't have one. We need to handle the case of a symbol with a
10945 missing symtab (DW_AT_decl_file) anyway. */
10946 }
10947
10948 /* Process DW_TAG_type_unit.
10949 For TUs we want to skip the first top level sibling if it's not the
10950 actual type being defined by this TU. In this case the first top
10951 level sibling is there to provide context only. */
10952
10953 static void
10954 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
10955 {
10956 struct die_info *child_die;
10957
10958 prepare_one_comp_unit (cu, die, language_minimal);
10959
10960 /* Initialize (or reinitialize) the machinery for building symtabs.
10961 We do this before processing child DIEs, so that the line header table
10962 is available for DW_AT_decl_file. */
10963 cu->setup_type_unit_groups (die);
10964
10965 if (die->child != NULL)
10966 {
10967 child_die = die->child;
10968 while (child_die && child_die->tag)
10969 {
10970 process_die (child_die, cu);
10971 child_die = child_die->sibling;
10972 }
10973 }
10974 }
10975 \f
10976 /* DWO/DWP files.
10977
10978 http://gcc.gnu.org/wiki/DebugFission
10979 http://gcc.gnu.org/wiki/DebugFissionDWP
10980
10981 To simplify handling of both DWO files ("object" files with the DWARF info)
10982 and DWP files (a file with the DWOs packaged up into one file), we treat
10983 DWP files as having a collection of virtual DWO files. */
10984
10985 static hashval_t
10986 hash_dwo_file (const void *item)
10987 {
10988 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
10989 hashval_t hash;
10990
10991 hash = htab_hash_string (dwo_file->dwo_name);
10992 if (dwo_file->comp_dir != NULL)
10993 hash += htab_hash_string (dwo_file->comp_dir);
10994 return hash;
10995 }
10996
10997 static int
10998 eq_dwo_file (const void *item_lhs, const void *item_rhs)
10999 {
11000 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11001 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11002
11003 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11004 return 0;
11005 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11006 return lhs->comp_dir == rhs->comp_dir;
11007 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11008 }
11009
11010 /* Allocate a hash table for DWO files. */
11011
11012 static htab_up
11013 allocate_dwo_file_hash_table ()
11014 {
11015 auto delete_dwo_file = [] (void *item)
11016 {
11017 struct dwo_file *dwo_file = (struct dwo_file *) item;
11018
11019 delete dwo_file;
11020 };
11021
11022 return htab_up (htab_create_alloc (41,
11023 hash_dwo_file,
11024 eq_dwo_file,
11025 delete_dwo_file,
11026 xcalloc, xfree));
11027 }
11028
11029 /* Lookup DWO file DWO_NAME. */
11030
11031 static void **
11032 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11033 const char *dwo_name,
11034 const char *comp_dir)
11035 {
11036 struct dwo_file find_entry;
11037 void **slot;
11038
11039 if (dwarf2_per_objfile->dwo_files == NULL)
11040 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11041
11042 find_entry.dwo_name = dwo_name;
11043 find_entry.comp_dir = comp_dir;
11044 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11045 INSERT);
11046
11047 return slot;
11048 }
11049
11050 static hashval_t
11051 hash_dwo_unit (const void *item)
11052 {
11053 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11054
11055 /* This drops the top 32 bits of the id, but is ok for a hash. */
11056 return dwo_unit->signature;
11057 }
11058
11059 static int
11060 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11061 {
11062 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11063 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11064
11065 /* The signature is assumed to be unique within the DWO file.
11066 So while object file CU dwo_id's always have the value zero,
11067 that's OK, assuming each object file DWO file has only one CU,
11068 and that's the rule for now. */
11069 return lhs->signature == rhs->signature;
11070 }
11071
11072 /* Allocate a hash table for DWO CUs,TUs.
11073 There is one of these tables for each of CUs,TUs for each DWO file. */
11074
11075 static htab_up
11076 allocate_dwo_unit_table ()
11077 {
11078 /* Start out with a pretty small number.
11079 Generally DWO files contain only one CU and maybe some TUs. */
11080 return htab_up (htab_create_alloc (3,
11081 hash_dwo_unit,
11082 eq_dwo_unit,
11083 NULL, xcalloc, xfree));
11084 }
11085
11086 /* die_reader_func for create_dwo_cu. */
11087
11088 static void
11089 create_dwo_cu_reader (const struct die_reader_specs *reader,
11090 const gdb_byte *info_ptr,
11091 struct die_info *comp_unit_die,
11092 struct dwo_file *dwo_file,
11093 struct dwo_unit *dwo_unit)
11094 {
11095 struct dwarf2_cu *cu = reader->cu;
11096 sect_offset sect_off = cu->per_cu->sect_off;
11097 struct dwarf2_section_info *section = cu->per_cu->section;
11098
11099 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11100 if (!signature.has_value ())
11101 {
11102 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11103 " its dwo_id [in module %s]"),
11104 sect_offset_str (sect_off), dwo_file->dwo_name);
11105 return;
11106 }
11107
11108 dwo_unit->dwo_file = dwo_file;
11109 dwo_unit->signature = *signature;
11110 dwo_unit->section = section;
11111 dwo_unit->sect_off = sect_off;
11112 dwo_unit->length = cu->per_cu->length;
11113
11114 if (dwarf_read_debug)
11115 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11116 sect_offset_str (sect_off),
11117 hex_string (dwo_unit->signature));
11118 }
11119
11120 /* Create the dwo_units for the CUs in a DWO_FILE.
11121 Note: This function processes DWO files only, not DWP files. */
11122
11123 static void
11124 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11125 dwarf2_cu *cu, struct dwo_file &dwo_file,
11126 dwarf2_section_info &section, htab_up &cus_htab)
11127 {
11128 struct objfile *objfile = dwarf2_per_objfile->objfile;
11129 const gdb_byte *info_ptr, *end_ptr;
11130
11131 section.read (objfile);
11132 info_ptr = section.buffer;
11133
11134 if (info_ptr == NULL)
11135 return;
11136
11137 if (dwarf_read_debug)
11138 {
11139 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11140 section.get_name (),
11141 section.get_file_name ());
11142 }
11143
11144 end_ptr = info_ptr + section.size;
11145 while (info_ptr < end_ptr)
11146 {
11147 struct dwarf2_per_cu_data per_cu;
11148 struct dwo_unit read_unit {};
11149 struct dwo_unit *dwo_unit;
11150 void **slot;
11151 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11152
11153 memset (&per_cu, 0, sizeof (per_cu));
11154 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11155 per_cu.is_debug_types = 0;
11156 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11157 per_cu.section = &section;
11158
11159 cutu_reader reader (&per_cu, cu, &dwo_file);
11160 if (!reader.dummy_p)
11161 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11162 &dwo_file, &read_unit);
11163 info_ptr += per_cu.length;
11164
11165 // If the unit could not be parsed, skip it.
11166 if (read_unit.dwo_file == NULL)
11167 continue;
11168
11169 if (cus_htab == NULL)
11170 cus_htab = allocate_dwo_unit_table ();
11171
11172 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11173 *dwo_unit = read_unit;
11174 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11175 gdb_assert (slot != NULL);
11176 if (*slot != NULL)
11177 {
11178 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11179 sect_offset dup_sect_off = dup_cu->sect_off;
11180
11181 complaint (_("debug cu entry at offset %s is duplicate to"
11182 " the entry at offset %s, signature %s"),
11183 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11184 hex_string (dwo_unit->signature));
11185 }
11186 *slot = (void *)dwo_unit;
11187 }
11188 }
11189
11190 /* DWP file .debug_{cu,tu}_index section format:
11191 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11192
11193 DWP Version 1:
11194
11195 Both index sections have the same format, and serve to map a 64-bit
11196 signature to a set of section numbers. Each section begins with a header,
11197 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11198 indexes, and a pool of 32-bit section numbers. The index sections will be
11199 aligned at 8-byte boundaries in the file.
11200
11201 The index section header consists of:
11202
11203 V, 32 bit version number
11204 -, 32 bits unused
11205 N, 32 bit number of compilation units or type units in the index
11206 M, 32 bit number of slots in the hash table
11207
11208 Numbers are recorded using the byte order of the application binary.
11209
11210 The hash table begins at offset 16 in the section, and consists of an array
11211 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11212 order of the application binary). Unused slots in the hash table are 0.
11213 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11214
11215 The parallel table begins immediately after the hash table
11216 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11217 array of 32-bit indexes (using the byte order of the application binary),
11218 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11219 table contains a 32-bit index into the pool of section numbers. For unused
11220 hash table slots, the corresponding entry in the parallel table will be 0.
11221
11222 The pool of section numbers begins immediately following the hash table
11223 (at offset 16 + 12 * M from the beginning of the section). The pool of
11224 section numbers consists of an array of 32-bit words (using the byte order
11225 of the application binary). Each item in the array is indexed starting
11226 from 0. The hash table entry provides the index of the first section
11227 number in the set. Additional section numbers in the set follow, and the
11228 set is terminated by a 0 entry (section number 0 is not used in ELF).
11229
11230 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11231 section must be the first entry in the set, and the .debug_abbrev.dwo must
11232 be the second entry. Other members of the set may follow in any order.
11233
11234 ---
11235
11236 DWP Version 2:
11237
11238 DWP Version 2 combines all the .debug_info, etc. sections into one,
11239 and the entries in the index tables are now offsets into these sections.
11240 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11241 section.
11242
11243 Index Section Contents:
11244 Header
11245 Hash Table of Signatures dwp_hash_table.hash_table
11246 Parallel Table of Indices dwp_hash_table.unit_table
11247 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11248 Table of Section Sizes dwp_hash_table.v2.sizes
11249
11250 The index section header consists of:
11251
11252 V, 32 bit version number
11253 L, 32 bit number of columns in the table of section offsets
11254 N, 32 bit number of compilation units or type units in the index
11255 M, 32 bit number of slots in the hash table
11256
11257 Numbers are recorded using the byte order of the application binary.
11258
11259 The hash table has the same format as version 1.
11260 The parallel table of indices has the same format as version 1,
11261 except that the entries are origin-1 indices into the table of sections
11262 offsets and the table of section sizes.
11263
11264 The table of offsets begins immediately following the parallel table
11265 (at offset 16 + 12 * M from the beginning of the section). The table is
11266 a two-dimensional array of 32-bit words (using the byte order of the
11267 application binary), with L columns and N+1 rows, in row-major order.
11268 Each row in the array is indexed starting from 0. The first row provides
11269 a key to the remaining rows: each column in this row provides an identifier
11270 for a debug section, and the offsets in the same column of subsequent rows
11271 refer to that section. The section identifiers are:
11272
11273 DW_SECT_INFO 1 .debug_info.dwo
11274 DW_SECT_TYPES 2 .debug_types.dwo
11275 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11276 DW_SECT_LINE 4 .debug_line.dwo
11277 DW_SECT_LOC 5 .debug_loc.dwo
11278 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11279 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11280 DW_SECT_MACRO 8 .debug_macro.dwo
11281
11282 The offsets provided by the CU and TU index sections are the base offsets
11283 for the contributions made by each CU or TU to the corresponding section
11284 in the package file. Each CU and TU header contains an abbrev_offset
11285 field, used to find the abbreviations table for that CU or TU within the
11286 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11287 be interpreted as relative to the base offset given in the index section.
11288 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11289 should be interpreted as relative to the base offset for .debug_line.dwo,
11290 and offsets into other debug sections obtained from DWARF attributes should
11291 also be interpreted as relative to the corresponding base offset.
11292
11293 The table of sizes begins immediately following the table of offsets.
11294 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11295 with L columns and N rows, in row-major order. Each row in the array is
11296 indexed starting from 1 (row 0 is shared by the two tables).
11297
11298 ---
11299
11300 Hash table lookup is handled the same in version 1 and 2:
11301
11302 We assume that N and M will not exceed 2^32 - 1.
11303 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11304
11305 Given a 64-bit compilation unit signature or a type signature S, an entry
11306 in the hash table is located as follows:
11307
11308 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11309 the low-order k bits all set to 1.
11310
11311 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11312
11313 3) If the hash table entry at index H matches the signature, use that
11314 entry. If the hash table entry at index H is unused (all zeroes),
11315 terminate the search: the signature is not present in the table.
11316
11317 4) Let H = (H + H') modulo M. Repeat at Step 3.
11318
11319 Because M > N and H' and M are relatively prime, the search is guaranteed
11320 to stop at an unused slot or find the match. */
11321
11322 /* Create a hash table to map DWO IDs to their CU/TU entry in
11323 .debug_{info,types}.dwo in DWP_FILE.
11324 Returns NULL if there isn't one.
11325 Note: This function processes DWP files only, not DWO files. */
11326
11327 static struct dwp_hash_table *
11328 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11329 struct dwp_file *dwp_file, int is_debug_types)
11330 {
11331 struct objfile *objfile = dwarf2_per_objfile->objfile;
11332 bfd *dbfd = dwp_file->dbfd.get ();
11333 const gdb_byte *index_ptr, *index_end;
11334 struct dwarf2_section_info *index;
11335 uint32_t version, nr_columns, nr_units, nr_slots;
11336 struct dwp_hash_table *htab;
11337
11338 if (is_debug_types)
11339 index = &dwp_file->sections.tu_index;
11340 else
11341 index = &dwp_file->sections.cu_index;
11342
11343 if (index->empty ())
11344 return NULL;
11345 index->read (objfile);
11346
11347 index_ptr = index->buffer;
11348 index_end = index_ptr + index->size;
11349
11350 version = read_4_bytes (dbfd, index_ptr);
11351 index_ptr += 4;
11352 if (version == 2)
11353 nr_columns = read_4_bytes (dbfd, index_ptr);
11354 else
11355 nr_columns = 0;
11356 index_ptr += 4;
11357 nr_units = read_4_bytes (dbfd, index_ptr);
11358 index_ptr += 4;
11359 nr_slots = read_4_bytes (dbfd, index_ptr);
11360 index_ptr += 4;
11361
11362 if (version != 1 && version != 2)
11363 {
11364 error (_("Dwarf Error: unsupported DWP file version (%s)"
11365 " [in module %s]"),
11366 pulongest (version), dwp_file->name);
11367 }
11368 if (nr_slots != (nr_slots & -nr_slots))
11369 {
11370 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11371 " is not power of 2 [in module %s]"),
11372 pulongest (nr_slots), dwp_file->name);
11373 }
11374
11375 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11376 htab->version = version;
11377 htab->nr_columns = nr_columns;
11378 htab->nr_units = nr_units;
11379 htab->nr_slots = nr_slots;
11380 htab->hash_table = index_ptr;
11381 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11382
11383 /* Exit early if the table is empty. */
11384 if (nr_slots == 0 || nr_units == 0
11385 || (version == 2 && nr_columns == 0))
11386 {
11387 /* All must be zero. */
11388 if (nr_slots != 0 || nr_units != 0
11389 || (version == 2 && nr_columns != 0))
11390 {
11391 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11392 " all zero [in modules %s]"),
11393 dwp_file->name);
11394 }
11395 return htab;
11396 }
11397
11398 if (version == 1)
11399 {
11400 htab->section_pool.v1.indices =
11401 htab->unit_table + sizeof (uint32_t) * nr_slots;
11402 /* It's harder to decide whether the section is too small in v1.
11403 V1 is deprecated anyway so we punt. */
11404 }
11405 else
11406 {
11407 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11408 int *ids = htab->section_pool.v2.section_ids;
11409 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11410 /* Reverse map for error checking. */
11411 int ids_seen[DW_SECT_MAX + 1];
11412 int i;
11413
11414 if (nr_columns < 2)
11415 {
11416 error (_("Dwarf Error: bad DWP hash table, too few columns"
11417 " in section table [in module %s]"),
11418 dwp_file->name);
11419 }
11420 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11421 {
11422 error (_("Dwarf Error: bad DWP hash table, too many columns"
11423 " in section table [in module %s]"),
11424 dwp_file->name);
11425 }
11426 memset (ids, 255, sizeof_ids);
11427 memset (ids_seen, 255, sizeof (ids_seen));
11428 for (i = 0; i < nr_columns; ++i)
11429 {
11430 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11431
11432 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11433 {
11434 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11435 " in section table [in module %s]"),
11436 id, dwp_file->name);
11437 }
11438 if (ids_seen[id] != -1)
11439 {
11440 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11441 " id %d in section table [in module %s]"),
11442 id, dwp_file->name);
11443 }
11444 ids_seen[id] = i;
11445 ids[i] = id;
11446 }
11447 /* Must have exactly one info or types section. */
11448 if (((ids_seen[DW_SECT_INFO] != -1)
11449 + (ids_seen[DW_SECT_TYPES] != -1))
11450 != 1)
11451 {
11452 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11453 " DWO info/types section [in module %s]"),
11454 dwp_file->name);
11455 }
11456 /* Must have an abbrev section. */
11457 if (ids_seen[DW_SECT_ABBREV] == -1)
11458 {
11459 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11460 " section [in module %s]"),
11461 dwp_file->name);
11462 }
11463 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11464 htab->section_pool.v2.sizes =
11465 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11466 * nr_units * nr_columns);
11467 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11468 * nr_units * nr_columns))
11469 > index_end)
11470 {
11471 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11472 " [in module %s]"),
11473 dwp_file->name);
11474 }
11475 }
11476
11477 return htab;
11478 }
11479
11480 /* Update SECTIONS with the data from SECTP.
11481
11482 This function is like the other "locate" section routines that are
11483 passed to bfd_map_over_sections, but in this context the sections to
11484 read comes from the DWP V1 hash table, not the full ELF section table.
11485
11486 The result is non-zero for success, or zero if an error was found. */
11487
11488 static int
11489 locate_v1_virtual_dwo_sections (asection *sectp,
11490 struct virtual_v1_dwo_sections *sections)
11491 {
11492 const struct dwop_section_names *names = &dwop_section_names;
11493
11494 if (section_is_p (sectp->name, &names->abbrev_dwo))
11495 {
11496 /* There can be only one. */
11497 if (sections->abbrev.s.section != NULL)
11498 return 0;
11499 sections->abbrev.s.section = sectp;
11500 sections->abbrev.size = bfd_section_size (sectp);
11501 }
11502 else if (section_is_p (sectp->name, &names->info_dwo)
11503 || section_is_p (sectp->name, &names->types_dwo))
11504 {
11505 /* There can be only one. */
11506 if (sections->info_or_types.s.section != NULL)
11507 return 0;
11508 sections->info_or_types.s.section = sectp;
11509 sections->info_or_types.size = bfd_section_size (sectp);
11510 }
11511 else if (section_is_p (sectp->name, &names->line_dwo))
11512 {
11513 /* There can be only one. */
11514 if (sections->line.s.section != NULL)
11515 return 0;
11516 sections->line.s.section = sectp;
11517 sections->line.size = bfd_section_size (sectp);
11518 }
11519 else if (section_is_p (sectp->name, &names->loc_dwo))
11520 {
11521 /* There can be only one. */
11522 if (sections->loc.s.section != NULL)
11523 return 0;
11524 sections->loc.s.section = sectp;
11525 sections->loc.size = bfd_section_size (sectp);
11526 }
11527 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11528 {
11529 /* There can be only one. */
11530 if (sections->macinfo.s.section != NULL)
11531 return 0;
11532 sections->macinfo.s.section = sectp;
11533 sections->macinfo.size = bfd_section_size (sectp);
11534 }
11535 else if (section_is_p (sectp->name, &names->macro_dwo))
11536 {
11537 /* There can be only one. */
11538 if (sections->macro.s.section != NULL)
11539 return 0;
11540 sections->macro.s.section = sectp;
11541 sections->macro.size = bfd_section_size (sectp);
11542 }
11543 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11544 {
11545 /* There can be only one. */
11546 if (sections->str_offsets.s.section != NULL)
11547 return 0;
11548 sections->str_offsets.s.section = sectp;
11549 sections->str_offsets.size = bfd_section_size (sectp);
11550 }
11551 else
11552 {
11553 /* No other kind of section is valid. */
11554 return 0;
11555 }
11556
11557 return 1;
11558 }
11559
11560 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11561 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11562 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11563 This is for DWP version 1 files. */
11564
11565 static struct dwo_unit *
11566 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11567 struct dwp_file *dwp_file,
11568 uint32_t unit_index,
11569 const char *comp_dir,
11570 ULONGEST signature, int is_debug_types)
11571 {
11572 struct objfile *objfile = dwarf2_per_objfile->objfile;
11573 const struct dwp_hash_table *dwp_htab =
11574 is_debug_types ? dwp_file->tus : dwp_file->cus;
11575 bfd *dbfd = dwp_file->dbfd.get ();
11576 const char *kind = is_debug_types ? "TU" : "CU";
11577 struct dwo_file *dwo_file;
11578 struct dwo_unit *dwo_unit;
11579 struct virtual_v1_dwo_sections sections;
11580 void **dwo_file_slot;
11581 int i;
11582
11583 gdb_assert (dwp_file->version == 1);
11584
11585 if (dwarf_read_debug)
11586 {
11587 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11588 kind,
11589 pulongest (unit_index), hex_string (signature),
11590 dwp_file->name);
11591 }
11592
11593 /* Fetch the sections of this DWO unit.
11594 Put a limit on the number of sections we look for so that bad data
11595 doesn't cause us to loop forever. */
11596
11597 #define MAX_NR_V1_DWO_SECTIONS \
11598 (1 /* .debug_info or .debug_types */ \
11599 + 1 /* .debug_abbrev */ \
11600 + 1 /* .debug_line */ \
11601 + 1 /* .debug_loc */ \
11602 + 1 /* .debug_str_offsets */ \
11603 + 1 /* .debug_macro or .debug_macinfo */ \
11604 + 1 /* trailing zero */)
11605
11606 memset (&sections, 0, sizeof (sections));
11607
11608 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11609 {
11610 asection *sectp;
11611 uint32_t section_nr =
11612 read_4_bytes (dbfd,
11613 dwp_htab->section_pool.v1.indices
11614 + (unit_index + i) * sizeof (uint32_t));
11615
11616 if (section_nr == 0)
11617 break;
11618 if (section_nr >= dwp_file->num_sections)
11619 {
11620 error (_("Dwarf Error: bad DWP hash table, section number too large"
11621 " [in module %s]"),
11622 dwp_file->name);
11623 }
11624
11625 sectp = dwp_file->elf_sections[section_nr];
11626 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11627 {
11628 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11629 " [in module %s]"),
11630 dwp_file->name);
11631 }
11632 }
11633
11634 if (i < 2
11635 || sections.info_or_types.empty ()
11636 || sections.abbrev.empty ())
11637 {
11638 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11639 " [in module %s]"),
11640 dwp_file->name);
11641 }
11642 if (i == MAX_NR_V1_DWO_SECTIONS)
11643 {
11644 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11645 " [in module %s]"),
11646 dwp_file->name);
11647 }
11648
11649 /* It's easier for the rest of the code if we fake a struct dwo_file and
11650 have dwo_unit "live" in that. At least for now.
11651
11652 The DWP file can be made up of a random collection of CUs and TUs.
11653 However, for each CU + set of TUs that came from the same original DWO
11654 file, we can combine them back into a virtual DWO file to save space
11655 (fewer struct dwo_file objects to allocate). Remember that for really
11656 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11657
11658 std::string virtual_dwo_name =
11659 string_printf ("virtual-dwo/%d-%d-%d-%d",
11660 sections.abbrev.get_id (),
11661 sections.line.get_id (),
11662 sections.loc.get_id (),
11663 sections.str_offsets.get_id ());
11664 /* Can we use an existing virtual DWO file? */
11665 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11666 virtual_dwo_name.c_str (),
11667 comp_dir);
11668 /* Create one if necessary. */
11669 if (*dwo_file_slot == NULL)
11670 {
11671 if (dwarf_read_debug)
11672 {
11673 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11674 virtual_dwo_name.c_str ());
11675 }
11676 dwo_file = new struct dwo_file;
11677 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11678 dwo_file->comp_dir = comp_dir;
11679 dwo_file->sections.abbrev = sections.abbrev;
11680 dwo_file->sections.line = sections.line;
11681 dwo_file->sections.loc = sections.loc;
11682 dwo_file->sections.macinfo = sections.macinfo;
11683 dwo_file->sections.macro = sections.macro;
11684 dwo_file->sections.str_offsets = sections.str_offsets;
11685 /* The "str" section is global to the entire DWP file. */
11686 dwo_file->sections.str = dwp_file->sections.str;
11687 /* The info or types section is assigned below to dwo_unit,
11688 there's no need to record it in dwo_file.
11689 Also, we can't simply record type sections in dwo_file because
11690 we record a pointer into the vector in dwo_unit. As we collect more
11691 types we'll grow the vector and eventually have to reallocate space
11692 for it, invalidating all copies of pointers into the previous
11693 contents. */
11694 *dwo_file_slot = dwo_file;
11695 }
11696 else
11697 {
11698 if (dwarf_read_debug)
11699 {
11700 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11701 virtual_dwo_name.c_str ());
11702 }
11703 dwo_file = (struct dwo_file *) *dwo_file_slot;
11704 }
11705
11706 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11707 dwo_unit->dwo_file = dwo_file;
11708 dwo_unit->signature = signature;
11709 dwo_unit->section =
11710 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11711 *dwo_unit->section = sections.info_or_types;
11712 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11713
11714 return dwo_unit;
11715 }
11716
11717 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11718 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11719 piece within that section used by a TU/CU, return a virtual section
11720 of just that piece. */
11721
11722 static struct dwarf2_section_info
11723 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11724 struct dwarf2_section_info *section,
11725 bfd_size_type offset, bfd_size_type size)
11726 {
11727 struct dwarf2_section_info result;
11728 asection *sectp;
11729
11730 gdb_assert (section != NULL);
11731 gdb_assert (!section->is_virtual);
11732
11733 memset (&result, 0, sizeof (result));
11734 result.s.containing_section = section;
11735 result.is_virtual = true;
11736
11737 if (size == 0)
11738 return result;
11739
11740 sectp = section->get_bfd_section ();
11741
11742 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11743 bounds of the real section. This is a pretty-rare event, so just
11744 flag an error (easier) instead of a warning and trying to cope. */
11745 if (sectp == NULL
11746 || offset + size > bfd_section_size (sectp))
11747 {
11748 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11749 " in section %s [in module %s]"),
11750 sectp ? bfd_section_name (sectp) : "<unknown>",
11751 objfile_name (dwarf2_per_objfile->objfile));
11752 }
11753
11754 result.virtual_offset = offset;
11755 result.size = size;
11756 return result;
11757 }
11758
11759 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11760 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11761 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11762 This is for DWP version 2 files. */
11763
11764 static struct dwo_unit *
11765 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11766 struct dwp_file *dwp_file,
11767 uint32_t unit_index,
11768 const char *comp_dir,
11769 ULONGEST signature, int is_debug_types)
11770 {
11771 struct objfile *objfile = dwarf2_per_objfile->objfile;
11772 const struct dwp_hash_table *dwp_htab =
11773 is_debug_types ? dwp_file->tus : dwp_file->cus;
11774 bfd *dbfd = dwp_file->dbfd.get ();
11775 const char *kind = is_debug_types ? "TU" : "CU";
11776 struct dwo_file *dwo_file;
11777 struct dwo_unit *dwo_unit;
11778 struct virtual_v2_dwo_sections sections;
11779 void **dwo_file_slot;
11780 int i;
11781
11782 gdb_assert (dwp_file->version == 2);
11783
11784 if (dwarf_read_debug)
11785 {
11786 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11787 kind,
11788 pulongest (unit_index), hex_string (signature),
11789 dwp_file->name);
11790 }
11791
11792 /* Fetch the section offsets of this DWO unit. */
11793
11794 memset (&sections, 0, sizeof (sections));
11795
11796 for (i = 0; i < dwp_htab->nr_columns; ++i)
11797 {
11798 uint32_t offset = read_4_bytes (dbfd,
11799 dwp_htab->section_pool.v2.offsets
11800 + (((unit_index - 1) * dwp_htab->nr_columns
11801 + i)
11802 * sizeof (uint32_t)));
11803 uint32_t size = read_4_bytes (dbfd,
11804 dwp_htab->section_pool.v2.sizes
11805 + (((unit_index - 1) * dwp_htab->nr_columns
11806 + i)
11807 * sizeof (uint32_t)));
11808
11809 switch (dwp_htab->section_pool.v2.section_ids[i])
11810 {
11811 case DW_SECT_INFO:
11812 case DW_SECT_TYPES:
11813 sections.info_or_types_offset = offset;
11814 sections.info_or_types_size = size;
11815 break;
11816 case DW_SECT_ABBREV:
11817 sections.abbrev_offset = offset;
11818 sections.abbrev_size = size;
11819 break;
11820 case DW_SECT_LINE:
11821 sections.line_offset = offset;
11822 sections.line_size = size;
11823 break;
11824 case DW_SECT_LOC:
11825 sections.loc_offset = offset;
11826 sections.loc_size = size;
11827 break;
11828 case DW_SECT_STR_OFFSETS:
11829 sections.str_offsets_offset = offset;
11830 sections.str_offsets_size = size;
11831 break;
11832 case DW_SECT_MACINFO:
11833 sections.macinfo_offset = offset;
11834 sections.macinfo_size = size;
11835 break;
11836 case DW_SECT_MACRO:
11837 sections.macro_offset = offset;
11838 sections.macro_size = size;
11839 break;
11840 }
11841 }
11842
11843 /* It's easier for the rest of the code if we fake a struct dwo_file and
11844 have dwo_unit "live" in that. At least for now.
11845
11846 The DWP file can be made up of a random collection of CUs and TUs.
11847 However, for each CU + set of TUs that came from the same original DWO
11848 file, we can combine them back into a virtual DWO file to save space
11849 (fewer struct dwo_file objects to allocate). Remember that for really
11850 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11851
11852 std::string virtual_dwo_name =
11853 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11854 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11855 (long) (sections.line_size ? sections.line_offset : 0),
11856 (long) (sections.loc_size ? sections.loc_offset : 0),
11857 (long) (sections.str_offsets_size
11858 ? sections.str_offsets_offset : 0));
11859 /* Can we use an existing virtual DWO file? */
11860 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11861 virtual_dwo_name.c_str (),
11862 comp_dir);
11863 /* Create one if necessary. */
11864 if (*dwo_file_slot == NULL)
11865 {
11866 if (dwarf_read_debug)
11867 {
11868 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11869 virtual_dwo_name.c_str ());
11870 }
11871 dwo_file = new struct dwo_file;
11872 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11873 dwo_file->comp_dir = comp_dir;
11874 dwo_file->sections.abbrev =
11875 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11876 sections.abbrev_offset, sections.abbrev_size);
11877 dwo_file->sections.line =
11878 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11879 sections.line_offset, sections.line_size);
11880 dwo_file->sections.loc =
11881 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11882 sections.loc_offset, sections.loc_size);
11883 dwo_file->sections.macinfo =
11884 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11885 sections.macinfo_offset, sections.macinfo_size);
11886 dwo_file->sections.macro =
11887 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11888 sections.macro_offset, sections.macro_size);
11889 dwo_file->sections.str_offsets =
11890 create_dwp_v2_section (dwarf2_per_objfile,
11891 &dwp_file->sections.str_offsets,
11892 sections.str_offsets_offset,
11893 sections.str_offsets_size);
11894 /* The "str" section is global to the entire DWP file. */
11895 dwo_file->sections.str = dwp_file->sections.str;
11896 /* The info or types section is assigned below to dwo_unit,
11897 there's no need to record it in dwo_file.
11898 Also, we can't simply record type sections in dwo_file because
11899 we record a pointer into the vector in dwo_unit. As we collect more
11900 types we'll grow the vector and eventually have to reallocate space
11901 for it, invalidating all copies of pointers into the previous
11902 contents. */
11903 *dwo_file_slot = dwo_file;
11904 }
11905 else
11906 {
11907 if (dwarf_read_debug)
11908 {
11909 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11910 virtual_dwo_name.c_str ());
11911 }
11912 dwo_file = (struct dwo_file *) *dwo_file_slot;
11913 }
11914
11915 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11916 dwo_unit->dwo_file = dwo_file;
11917 dwo_unit->signature = signature;
11918 dwo_unit->section =
11919 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11920 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
11921 is_debug_types
11922 ? &dwp_file->sections.types
11923 : &dwp_file->sections.info,
11924 sections.info_or_types_offset,
11925 sections.info_or_types_size);
11926 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11927
11928 return dwo_unit;
11929 }
11930
11931 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
11932 Returns NULL if the signature isn't found. */
11933
11934 static struct dwo_unit *
11935 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
11936 struct dwp_file *dwp_file, const char *comp_dir,
11937 ULONGEST signature, int is_debug_types)
11938 {
11939 const struct dwp_hash_table *dwp_htab =
11940 is_debug_types ? dwp_file->tus : dwp_file->cus;
11941 bfd *dbfd = dwp_file->dbfd.get ();
11942 uint32_t mask = dwp_htab->nr_slots - 1;
11943 uint32_t hash = signature & mask;
11944 uint32_t hash2 = ((signature >> 32) & mask) | 1;
11945 unsigned int i;
11946 void **slot;
11947 struct dwo_unit find_dwo_cu;
11948
11949 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
11950 find_dwo_cu.signature = signature;
11951 slot = htab_find_slot (is_debug_types
11952 ? dwp_file->loaded_tus.get ()
11953 : dwp_file->loaded_cus.get (),
11954 &find_dwo_cu, INSERT);
11955
11956 if (*slot != NULL)
11957 return (struct dwo_unit *) *slot;
11958
11959 /* Use a for loop so that we don't loop forever on bad debug info. */
11960 for (i = 0; i < dwp_htab->nr_slots; ++i)
11961 {
11962 ULONGEST signature_in_table;
11963
11964 signature_in_table =
11965 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
11966 if (signature_in_table == signature)
11967 {
11968 uint32_t unit_index =
11969 read_4_bytes (dbfd,
11970 dwp_htab->unit_table + hash * sizeof (uint32_t));
11971
11972 if (dwp_file->version == 1)
11973 {
11974 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
11975 dwp_file, unit_index,
11976 comp_dir, signature,
11977 is_debug_types);
11978 }
11979 else
11980 {
11981 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
11982 dwp_file, unit_index,
11983 comp_dir, signature,
11984 is_debug_types);
11985 }
11986 return (struct dwo_unit *) *slot;
11987 }
11988 if (signature_in_table == 0)
11989 return NULL;
11990 hash = (hash + hash2) & mask;
11991 }
11992
11993 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
11994 " [in module %s]"),
11995 dwp_file->name);
11996 }
11997
11998 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
11999 Open the file specified by FILE_NAME and hand it off to BFD for
12000 preliminary analysis. Return a newly initialized bfd *, which
12001 includes a canonicalized copy of FILE_NAME.
12002 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12003 SEARCH_CWD is true if the current directory is to be searched.
12004 It will be searched before debug-file-directory.
12005 If successful, the file is added to the bfd include table of the
12006 objfile's bfd (see gdb_bfd_record_inclusion).
12007 If unable to find/open the file, return NULL.
12008 NOTE: This function is derived from symfile_bfd_open. */
12009
12010 static gdb_bfd_ref_ptr
12011 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12012 const char *file_name, int is_dwp, int search_cwd)
12013 {
12014 int desc;
12015 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12016 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12017 to debug_file_directory. */
12018 const char *search_path;
12019 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12020
12021 gdb::unique_xmalloc_ptr<char> search_path_holder;
12022 if (search_cwd)
12023 {
12024 if (*debug_file_directory != '\0')
12025 {
12026 search_path_holder.reset (concat (".", dirname_separator_string,
12027 debug_file_directory,
12028 (char *) NULL));
12029 search_path = search_path_holder.get ();
12030 }
12031 else
12032 search_path = ".";
12033 }
12034 else
12035 search_path = debug_file_directory;
12036
12037 openp_flags flags = OPF_RETURN_REALPATH;
12038 if (is_dwp)
12039 flags |= OPF_SEARCH_IN_PATH;
12040
12041 gdb::unique_xmalloc_ptr<char> absolute_name;
12042 desc = openp (search_path, flags, file_name,
12043 O_RDONLY | O_BINARY, &absolute_name);
12044 if (desc < 0)
12045 return NULL;
12046
12047 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12048 gnutarget, desc));
12049 if (sym_bfd == NULL)
12050 return NULL;
12051 bfd_set_cacheable (sym_bfd.get (), 1);
12052
12053 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12054 return NULL;
12055
12056 /* Success. Record the bfd as having been included by the objfile's bfd.
12057 This is important because things like demangled_names_hash lives in the
12058 objfile's per_bfd space and may have references to things like symbol
12059 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12060 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12061
12062 return sym_bfd;
12063 }
12064
12065 /* Try to open DWO file FILE_NAME.
12066 COMP_DIR is the DW_AT_comp_dir attribute.
12067 The result is the bfd handle of the file.
12068 If there is a problem finding or opening the file, return NULL.
12069 Upon success, the canonicalized path of the file is stored in the bfd,
12070 same as symfile_bfd_open. */
12071
12072 static gdb_bfd_ref_ptr
12073 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12074 const char *file_name, const char *comp_dir)
12075 {
12076 if (IS_ABSOLUTE_PATH (file_name))
12077 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12078 0 /*is_dwp*/, 0 /*search_cwd*/);
12079
12080 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12081
12082 if (comp_dir != NULL)
12083 {
12084 gdb::unique_xmalloc_ptr<char> path_to_try
12085 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12086
12087 /* NOTE: If comp_dir is a relative path, this will also try the
12088 search path, which seems useful. */
12089 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12090 path_to_try.get (),
12091 0 /*is_dwp*/,
12092 1 /*search_cwd*/));
12093 if (abfd != NULL)
12094 return abfd;
12095 }
12096
12097 /* That didn't work, try debug-file-directory, which, despite its name,
12098 is a list of paths. */
12099
12100 if (*debug_file_directory == '\0')
12101 return NULL;
12102
12103 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12104 0 /*is_dwp*/, 1 /*search_cwd*/);
12105 }
12106
12107 /* This function is mapped across the sections and remembers the offset and
12108 size of each of the DWO debugging sections we are interested in. */
12109
12110 static void
12111 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12112 {
12113 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12114 const struct dwop_section_names *names = &dwop_section_names;
12115
12116 if (section_is_p (sectp->name, &names->abbrev_dwo))
12117 {
12118 dwo_sections->abbrev.s.section = sectp;
12119 dwo_sections->abbrev.size = bfd_section_size (sectp);
12120 }
12121 else if (section_is_p (sectp->name, &names->info_dwo))
12122 {
12123 dwo_sections->info.s.section = sectp;
12124 dwo_sections->info.size = bfd_section_size (sectp);
12125 }
12126 else if (section_is_p (sectp->name, &names->line_dwo))
12127 {
12128 dwo_sections->line.s.section = sectp;
12129 dwo_sections->line.size = bfd_section_size (sectp);
12130 }
12131 else if (section_is_p (sectp->name, &names->loc_dwo))
12132 {
12133 dwo_sections->loc.s.section = sectp;
12134 dwo_sections->loc.size = bfd_section_size (sectp);
12135 }
12136 else if (section_is_p (sectp->name, &names->loclists_dwo))
12137 {
12138 dwo_sections->loclists.s.section = sectp;
12139 dwo_sections->loclists.size = bfd_section_size (sectp);
12140 }
12141 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12142 {
12143 dwo_sections->macinfo.s.section = sectp;
12144 dwo_sections->macinfo.size = bfd_section_size (sectp);
12145 }
12146 else if (section_is_p (sectp->name, &names->macro_dwo))
12147 {
12148 dwo_sections->macro.s.section = sectp;
12149 dwo_sections->macro.size = bfd_section_size (sectp);
12150 }
12151 else if (section_is_p (sectp->name, &names->str_dwo))
12152 {
12153 dwo_sections->str.s.section = sectp;
12154 dwo_sections->str.size = bfd_section_size (sectp);
12155 }
12156 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12157 {
12158 dwo_sections->str_offsets.s.section = sectp;
12159 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12160 }
12161 else if (section_is_p (sectp->name, &names->types_dwo))
12162 {
12163 struct dwarf2_section_info type_section;
12164
12165 memset (&type_section, 0, sizeof (type_section));
12166 type_section.s.section = sectp;
12167 type_section.size = bfd_section_size (sectp);
12168 dwo_sections->types.push_back (type_section);
12169 }
12170 }
12171
12172 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12173 by PER_CU. This is for the non-DWP case.
12174 The result is NULL if DWO_NAME can't be found. */
12175
12176 static struct dwo_file *
12177 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12178 const char *dwo_name, const char *comp_dir)
12179 {
12180 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12181
12182 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12183 if (dbfd == NULL)
12184 {
12185 if (dwarf_read_debug)
12186 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12187 return NULL;
12188 }
12189
12190 dwo_file_up dwo_file (new struct dwo_file);
12191 dwo_file->dwo_name = dwo_name;
12192 dwo_file->comp_dir = comp_dir;
12193 dwo_file->dbfd = std::move (dbfd);
12194
12195 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12196 &dwo_file->sections);
12197
12198 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12199 dwo_file->sections.info, dwo_file->cus);
12200
12201 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12202 dwo_file->sections.types, dwo_file->tus);
12203
12204 if (dwarf_read_debug)
12205 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12206
12207 return dwo_file.release ();
12208 }
12209
12210 /* This function is mapped across the sections and remembers the offset and
12211 size of each of the DWP debugging sections common to version 1 and 2 that
12212 we are interested in. */
12213
12214 static void
12215 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12216 void *dwp_file_ptr)
12217 {
12218 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12219 const struct dwop_section_names *names = &dwop_section_names;
12220 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12221
12222 /* Record the ELF section number for later lookup: this is what the
12223 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12224 gdb_assert (elf_section_nr < dwp_file->num_sections);
12225 dwp_file->elf_sections[elf_section_nr] = sectp;
12226
12227 /* Look for specific sections that we need. */
12228 if (section_is_p (sectp->name, &names->str_dwo))
12229 {
12230 dwp_file->sections.str.s.section = sectp;
12231 dwp_file->sections.str.size = bfd_section_size (sectp);
12232 }
12233 else if (section_is_p (sectp->name, &names->cu_index))
12234 {
12235 dwp_file->sections.cu_index.s.section = sectp;
12236 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12237 }
12238 else if (section_is_p (sectp->name, &names->tu_index))
12239 {
12240 dwp_file->sections.tu_index.s.section = sectp;
12241 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12242 }
12243 }
12244
12245 /* This function is mapped across the sections and remembers the offset and
12246 size of each of the DWP version 2 debugging sections that we are interested
12247 in. This is split into a separate function because we don't know if we
12248 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12249
12250 static void
12251 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12252 {
12253 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12254 const struct dwop_section_names *names = &dwop_section_names;
12255 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12256
12257 /* Record the ELF section number for later lookup: this is what the
12258 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12259 gdb_assert (elf_section_nr < dwp_file->num_sections);
12260 dwp_file->elf_sections[elf_section_nr] = sectp;
12261
12262 /* Look for specific sections that we need. */
12263 if (section_is_p (sectp->name, &names->abbrev_dwo))
12264 {
12265 dwp_file->sections.abbrev.s.section = sectp;
12266 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12267 }
12268 else if (section_is_p (sectp->name, &names->info_dwo))
12269 {
12270 dwp_file->sections.info.s.section = sectp;
12271 dwp_file->sections.info.size = bfd_section_size (sectp);
12272 }
12273 else if (section_is_p (sectp->name, &names->line_dwo))
12274 {
12275 dwp_file->sections.line.s.section = sectp;
12276 dwp_file->sections.line.size = bfd_section_size (sectp);
12277 }
12278 else if (section_is_p (sectp->name, &names->loc_dwo))
12279 {
12280 dwp_file->sections.loc.s.section = sectp;
12281 dwp_file->sections.loc.size = bfd_section_size (sectp);
12282 }
12283 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12284 {
12285 dwp_file->sections.macinfo.s.section = sectp;
12286 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12287 }
12288 else if (section_is_p (sectp->name, &names->macro_dwo))
12289 {
12290 dwp_file->sections.macro.s.section = sectp;
12291 dwp_file->sections.macro.size = bfd_section_size (sectp);
12292 }
12293 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12294 {
12295 dwp_file->sections.str_offsets.s.section = sectp;
12296 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12297 }
12298 else if (section_is_p (sectp->name, &names->types_dwo))
12299 {
12300 dwp_file->sections.types.s.section = sectp;
12301 dwp_file->sections.types.size = bfd_section_size (sectp);
12302 }
12303 }
12304
12305 /* Hash function for dwp_file loaded CUs/TUs. */
12306
12307 static hashval_t
12308 hash_dwp_loaded_cutus (const void *item)
12309 {
12310 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12311
12312 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12313 return dwo_unit->signature;
12314 }
12315
12316 /* Equality function for dwp_file loaded CUs/TUs. */
12317
12318 static int
12319 eq_dwp_loaded_cutus (const void *a, const void *b)
12320 {
12321 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12322 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12323
12324 return dua->signature == dub->signature;
12325 }
12326
12327 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12328
12329 static htab_up
12330 allocate_dwp_loaded_cutus_table ()
12331 {
12332 return htab_up (htab_create_alloc (3,
12333 hash_dwp_loaded_cutus,
12334 eq_dwp_loaded_cutus,
12335 NULL, xcalloc, xfree));
12336 }
12337
12338 /* Try to open DWP file FILE_NAME.
12339 The result is the bfd handle of the file.
12340 If there is a problem finding or opening the file, return NULL.
12341 Upon success, the canonicalized path of the file is stored in the bfd,
12342 same as symfile_bfd_open. */
12343
12344 static gdb_bfd_ref_ptr
12345 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12346 const char *file_name)
12347 {
12348 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12349 1 /*is_dwp*/,
12350 1 /*search_cwd*/));
12351 if (abfd != NULL)
12352 return abfd;
12353
12354 /* Work around upstream bug 15652.
12355 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12356 [Whether that's a "bug" is debatable, but it is getting in our way.]
12357 We have no real idea where the dwp file is, because gdb's realpath-ing
12358 of the executable's path may have discarded the needed info.
12359 [IWBN if the dwp file name was recorded in the executable, akin to
12360 .gnu_debuglink, but that doesn't exist yet.]
12361 Strip the directory from FILE_NAME and search again. */
12362 if (*debug_file_directory != '\0')
12363 {
12364 /* Don't implicitly search the current directory here.
12365 If the user wants to search "." to handle this case,
12366 it must be added to debug-file-directory. */
12367 return try_open_dwop_file (dwarf2_per_objfile,
12368 lbasename (file_name), 1 /*is_dwp*/,
12369 0 /*search_cwd*/);
12370 }
12371
12372 return NULL;
12373 }
12374
12375 /* Initialize the use of the DWP file for the current objfile.
12376 By convention the name of the DWP file is ${objfile}.dwp.
12377 The result is NULL if it can't be found. */
12378
12379 static std::unique_ptr<struct dwp_file>
12380 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12381 {
12382 struct objfile *objfile = dwarf2_per_objfile->objfile;
12383
12384 /* Try to find first .dwp for the binary file before any symbolic links
12385 resolving. */
12386
12387 /* If the objfile is a debug file, find the name of the real binary
12388 file and get the name of dwp file from there. */
12389 std::string dwp_name;
12390 if (objfile->separate_debug_objfile_backlink != NULL)
12391 {
12392 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12393 const char *backlink_basename = lbasename (backlink->original_name);
12394
12395 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12396 }
12397 else
12398 dwp_name = objfile->original_name;
12399
12400 dwp_name += ".dwp";
12401
12402 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12403 if (dbfd == NULL
12404 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12405 {
12406 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12407 dwp_name = objfile_name (objfile);
12408 dwp_name += ".dwp";
12409 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12410 }
12411
12412 if (dbfd == NULL)
12413 {
12414 if (dwarf_read_debug)
12415 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12416 return std::unique_ptr<dwp_file> ();
12417 }
12418
12419 const char *name = bfd_get_filename (dbfd.get ());
12420 std::unique_ptr<struct dwp_file> dwp_file
12421 (new struct dwp_file (name, std::move (dbfd)));
12422
12423 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12424 dwp_file->elf_sections =
12425 OBSTACK_CALLOC (&objfile->objfile_obstack,
12426 dwp_file->num_sections, asection *);
12427
12428 bfd_map_over_sections (dwp_file->dbfd.get (),
12429 dwarf2_locate_common_dwp_sections,
12430 dwp_file.get ());
12431
12432 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12433 0);
12434
12435 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12436 1);
12437
12438 /* The DWP file version is stored in the hash table. Oh well. */
12439 if (dwp_file->cus && dwp_file->tus
12440 && dwp_file->cus->version != dwp_file->tus->version)
12441 {
12442 /* Technically speaking, we should try to limp along, but this is
12443 pretty bizarre. We use pulongest here because that's the established
12444 portability solution (e.g, we cannot use %u for uint32_t). */
12445 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12446 " TU version %s [in DWP file %s]"),
12447 pulongest (dwp_file->cus->version),
12448 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12449 }
12450
12451 if (dwp_file->cus)
12452 dwp_file->version = dwp_file->cus->version;
12453 else if (dwp_file->tus)
12454 dwp_file->version = dwp_file->tus->version;
12455 else
12456 dwp_file->version = 2;
12457
12458 if (dwp_file->version == 2)
12459 bfd_map_over_sections (dwp_file->dbfd.get (),
12460 dwarf2_locate_v2_dwp_sections,
12461 dwp_file.get ());
12462
12463 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12464 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12465
12466 if (dwarf_read_debug)
12467 {
12468 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12469 fprintf_unfiltered (gdb_stdlog,
12470 " %s CUs, %s TUs\n",
12471 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12472 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12473 }
12474
12475 return dwp_file;
12476 }
12477
12478 /* Wrapper around open_and_init_dwp_file, only open it once. */
12479
12480 static struct dwp_file *
12481 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12482 {
12483 if (! dwarf2_per_objfile->dwp_checked)
12484 {
12485 dwarf2_per_objfile->dwp_file
12486 = open_and_init_dwp_file (dwarf2_per_objfile);
12487 dwarf2_per_objfile->dwp_checked = 1;
12488 }
12489 return dwarf2_per_objfile->dwp_file.get ();
12490 }
12491
12492 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12493 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12494 or in the DWP file for the objfile, referenced by THIS_UNIT.
12495 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12496 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12497
12498 This is called, for example, when wanting to read a variable with a
12499 complex location. Therefore we don't want to do file i/o for every call.
12500 Therefore we don't want to look for a DWO file on every call.
12501 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12502 then we check if we've already seen DWO_NAME, and only THEN do we check
12503 for a DWO file.
12504
12505 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12506 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12507
12508 static struct dwo_unit *
12509 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12510 const char *dwo_name, const char *comp_dir,
12511 ULONGEST signature, int is_debug_types)
12512 {
12513 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12514 struct objfile *objfile = dwarf2_per_objfile->objfile;
12515 const char *kind = is_debug_types ? "TU" : "CU";
12516 void **dwo_file_slot;
12517 struct dwo_file *dwo_file;
12518 struct dwp_file *dwp_file;
12519
12520 /* First see if there's a DWP file.
12521 If we have a DWP file but didn't find the DWO inside it, don't
12522 look for the original DWO file. It makes gdb behave differently
12523 depending on whether one is debugging in the build tree. */
12524
12525 dwp_file = get_dwp_file (dwarf2_per_objfile);
12526 if (dwp_file != NULL)
12527 {
12528 const struct dwp_hash_table *dwp_htab =
12529 is_debug_types ? dwp_file->tus : dwp_file->cus;
12530
12531 if (dwp_htab != NULL)
12532 {
12533 struct dwo_unit *dwo_cutu =
12534 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12535 signature, is_debug_types);
12536
12537 if (dwo_cutu != NULL)
12538 {
12539 if (dwarf_read_debug)
12540 {
12541 fprintf_unfiltered (gdb_stdlog,
12542 "Virtual DWO %s %s found: @%s\n",
12543 kind, hex_string (signature),
12544 host_address_to_string (dwo_cutu));
12545 }
12546 return dwo_cutu;
12547 }
12548 }
12549 }
12550 else
12551 {
12552 /* No DWP file, look for the DWO file. */
12553
12554 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12555 dwo_name, comp_dir);
12556 if (*dwo_file_slot == NULL)
12557 {
12558 /* Read in the file and build a table of the CUs/TUs it contains. */
12559 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12560 }
12561 /* NOTE: This will be NULL if unable to open the file. */
12562 dwo_file = (struct dwo_file *) *dwo_file_slot;
12563
12564 if (dwo_file != NULL)
12565 {
12566 struct dwo_unit *dwo_cutu = NULL;
12567
12568 if (is_debug_types && dwo_file->tus)
12569 {
12570 struct dwo_unit find_dwo_cutu;
12571
12572 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12573 find_dwo_cutu.signature = signature;
12574 dwo_cutu
12575 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12576 &find_dwo_cutu);
12577 }
12578 else if (!is_debug_types && dwo_file->cus)
12579 {
12580 struct dwo_unit find_dwo_cutu;
12581
12582 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12583 find_dwo_cutu.signature = signature;
12584 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12585 &find_dwo_cutu);
12586 }
12587
12588 if (dwo_cutu != NULL)
12589 {
12590 if (dwarf_read_debug)
12591 {
12592 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12593 kind, dwo_name, hex_string (signature),
12594 host_address_to_string (dwo_cutu));
12595 }
12596 return dwo_cutu;
12597 }
12598 }
12599 }
12600
12601 /* We didn't find it. This could mean a dwo_id mismatch, or
12602 someone deleted the DWO/DWP file, or the search path isn't set up
12603 correctly to find the file. */
12604
12605 if (dwarf_read_debug)
12606 {
12607 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12608 kind, dwo_name, hex_string (signature));
12609 }
12610
12611 /* This is a warning and not a complaint because it can be caused by
12612 pilot error (e.g., user accidentally deleting the DWO). */
12613 {
12614 /* Print the name of the DWP file if we looked there, helps the user
12615 better diagnose the problem. */
12616 std::string dwp_text;
12617
12618 if (dwp_file != NULL)
12619 dwp_text = string_printf (" [in DWP file %s]",
12620 lbasename (dwp_file->name));
12621
12622 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12623 " [in module %s]"),
12624 kind, dwo_name, hex_string (signature),
12625 dwp_text.c_str (),
12626 this_unit->is_debug_types ? "TU" : "CU",
12627 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12628 }
12629 return NULL;
12630 }
12631
12632 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12633 See lookup_dwo_cutu_unit for details. */
12634
12635 static struct dwo_unit *
12636 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12637 const char *dwo_name, const char *comp_dir,
12638 ULONGEST signature)
12639 {
12640 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12641 }
12642
12643 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12644 See lookup_dwo_cutu_unit for details. */
12645
12646 static struct dwo_unit *
12647 lookup_dwo_type_unit (struct signatured_type *this_tu,
12648 const char *dwo_name, const char *comp_dir)
12649 {
12650 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12651 }
12652
12653 /* Traversal function for queue_and_load_all_dwo_tus. */
12654
12655 static int
12656 queue_and_load_dwo_tu (void **slot, void *info)
12657 {
12658 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12659 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12660 ULONGEST signature = dwo_unit->signature;
12661 struct signatured_type *sig_type =
12662 lookup_dwo_signatured_type (per_cu->cu, signature);
12663
12664 if (sig_type != NULL)
12665 {
12666 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12667
12668 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12669 a real dependency of PER_CU on SIG_TYPE. That is detected later
12670 while processing PER_CU. */
12671 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12672 load_full_type_unit (sig_cu);
12673 per_cu->imported_symtabs_push (sig_cu);
12674 }
12675
12676 return 1;
12677 }
12678
12679 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12680 The DWO may have the only definition of the type, though it may not be
12681 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12682 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12683
12684 static void
12685 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12686 {
12687 struct dwo_unit *dwo_unit;
12688 struct dwo_file *dwo_file;
12689
12690 gdb_assert (!per_cu->is_debug_types);
12691 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12692 gdb_assert (per_cu->cu != NULL);
12693
12694 dwo_unit = per_cu->cu->dwo_unit;
12695 gdb_assert (dwo_unit != NULL);
12696
12697 dwo_file = dwo_unit->dwo_file;
12698 if (dwo_file->tus != NULL)
12699 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12700 per_cu);
12701 }
12702
12703 /* Read in various DIEs. */
12704
12705 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12706 Inherit only the children of the DW_AT_abstract_origin DIE not being
12707 already referenced by DW_AT_abstract_origin from the children of the
12708 current DIE. */
12709
12710 static void
12711 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12712 {
12713 struct die_info *child_die;
12714 sect_offset *offsetp;
12715 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12716 struct die_info *origin_die;
12717 /* Iterator of the ORIGIN_DIE children. */
12718 struct die_info *origin_child_die;
12719 struct attribute *attr;
12720 struct dwarf2_cu *origin_cu;
12721 struct pending **origin_previous_list_in_scope;
12722
12723 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12724 if (!attr)
12725 return;
12726
12727 /* Note that following die references may follow to a die in a
12728 different cu. */
12729
12730 origin_cu = cu;
12731 origin_die = follow_die_ref (die, attr, &origin_cu);
12732
12733 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12734 symbols in. */
12735 origin_previous_list_in_scope = origin_cu->list_in_scope;
12736 origin_cu->list_in_scope = cu->list_in_scope;
12737
12738 if (die->tag != origin_die->tag
12739 && !(die->tag == DW_TAG_inlined_subroutine
12740 && origin_die->tag == DW_TAG_subprogram))
12741 complaint (_("DIE %s and its abstract origin %s have different tags"),
12742 sect_offset_str (die->sect_off),
12743 sect_offset_str (origin_die->sect_off));
12744
12745 std::vector<sect_offset> offsets;
12746
12747 for (child_die = die->child;
12748 child_die && child_die->tag;
12749 child_die = child_die->sibling)
12750 {
12751 struct die_info *child_origin_die;
12752 struct dwarf2_cu *child_origin_cu;
12753
12754 /* We are trying to process concrete instance entries:
12755 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12756 it's not relevant to our analysis here. i.e. detecting DIEs that are
12757 present in the abstract instance but not referenced in the concrete
12758 one. */
12759 if (child_die->tag == DW_TAG_call_site
12760 || child_die->tag == DW_TAG_GNU_call_site)
12761 continue;
12762
12763 /* For each CHILD_DIE, find the corresponding child of
12764 ORIGIN_DIE. If there is more than one layer of
12765 DW_AT_abstract_origin, follow them all; there shouldn't be,
12766 but GCC versions at least through 4.4 generate this (GCC PR
12767 40573). */
12768 child_origin_die = child_die;
12769 child_origin_cu = cu;
12770 while (1)
12771 {
12772 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12773 child_origin_cu);
12774 if (attr == NULL)
12775 break;
12776 child_origin_die = follow_die_ref (child_origin_die, attr,
12777 &child_origin_cu);
12778 }
12779
12780 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12781 counterpart may exist. */
12782 if (child_origin_die != child_die)
12783 {
12784 if (child_die->tag != child_origin_die->tag
12785 && !(child_die->tag == DW_TAG_inlined_subroutine
12786 && child_origin_die->tag == DW_TAG_subprogram))
12787 complaint (_("Child DIE %s and its abstract origin %s have "
12788 "different tags"),
12789 sect_offset_str (child_die->sect_off),
12790 sect_offset_str (child_origin_die->sect_off));
12791 if (child_origin_die->parent != origin_die)
12792 complaint (_("Child DIE %s and its abstract origin %s have "
12793 "different parents"),
12794 sect_offset_str (child_die->sect_off),
12795 sect_offset_str (child_origin_die->sect_off));
12796 else
12797 offsets.push_back (child_origin_die->sect_off);
12798 }
12799 }
12800 std::sort (offsets.begin (), offsets.end ());
12801 sect_offset *offsets_end = offsets.data () + offsets.size ();
12802 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12803 if (offsetp[-1] == *offsetp)
12804 complaint (_("Multiple children of DIE %s refer "
12805 "to DIE %s as their abstract origin"),
12806 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12807
12808 offsetp = offsets.data ();
12809 origin_child_die = origin_die->child;
12810 while (origin_child_die && origin_child_die->tag)
12811 {
12812 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12813 while (offsetp < offsets_end
12814 && *offsetp < origin_child_die->sect_off)
12815 offsetp++;
12816 if (offsetp >= offsets_end
12817 || *offsetp > origin_child_die->sect_off)
12818 {
12819 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12820 Check whether we're already processing ORIGIN_CHILD_DIE.
12821 This can happen with mutually referenced abstract_origins.
12822 PR 16581. */
12823 if (!origin_child_die->in_process)
12824 process_die (origin_child_die, origin_cu);
12825 }
12826 origin_child_die = origin_child_die->sibling;
12827 }
12828 origin_cu->list_in_scope = origin_previous_list_in_scope;
12829
12830 if (cu != origin_cu)
12831 compute_delayed_physnames (origin_cu);
12832 }
12833
12834 static void
12835 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12836 {
12837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12838 struct gdbarch *gdbarch = objfile->arch ();
12839 struct context_stack *newobj;
12840 CORE_ADDR lowpc;
12841 CORE_ADDR highpc;
12842 struct die_info *child_die;
12843 struct attribute *attr, *call_line, *call_file;
12844 const char *name;
12845 CORE_ADDR baseaddr;
12846 struct block *block;
12847 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12848 std::vector<struct symbol *> template_args;
12849 struct template_symbol *templ_func = NULL;
12850
12851 if (inlined_func)
12852 {
12853 /* If we do not have call site information, we can't show the
12854 caller of this inlined function. That's too confusing, so
12855 only use the scope for local variables. */
12856 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12857 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12858 if (call_line == NULL || call_file == NULL)
12859 {
12860 read_lexical_block_scope (die, cu);
12861 return;
12862 }
12863 }
12864
12865 baseaddr = objfile->text_section_offset ();
12866
12867 name = dwarf2_name (die, cu);
12868
12869 /* Ignore functions with missing or empty names. These are actually
12870 illegal according to the DWARF standard. */
12871 if (name == NULL)
12872 {
12873 complaint (_("missing name for subprogram DIE at %s"),
12874 sect_offset_str (die->sect_off));
12875 return;
12876 }
12877
12878 /* Ignore functions with missing or invalid low and high pc attributes. */
12879 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12880 <= PC_BOUNDS_INVALID)
12881 {
12882 attr = dwarf2_attr (die, DW_AT_external, cu);
12883 if (!attr || !DW_UNSND (attr))
12884 complaint (_("cannot get low and high bounds "
12885 "for subprogram DIE at %s"),
12886 sect_offset_str (die->sect_off));
12887 return;
12888 }
12889
12890 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12891 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12892
12893 /* If we have any template arguments, then we must allocate a
12894 different sort of symbol. */
12895 for (child_die = die->child; child_die; child_die = child_die->sibling)
12896 {
12897 if (child_die->tag == DW_TAG_template_type_param
12898 || child_die->tag == DW_TAG_template_value_param)
12899 {
12900 templ_func = allocate_template_symbol (objfile);
12901 templ_func->subclass = SYMBOL_TEMPLATE;
12902 break;
12903 }
12904 }
12905
12906 newobj = cu->get_builder ()->push_context (0, lowpc);
12907 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12908 (struct symbol *) templ_func);
12909
12910 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12911 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12912 cu->language);
12913
12914 /* If there is a location expression for DW_AT_frame_base, record
12915 it. */
12916 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
12917 if (attr != nullptr)
12918 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
12919
12920 /* If there is a location for the static link, record it. */
12921 newobj->static_link = NULL;
12922 attr = dwarf2_attr (die, DW_AT_static_link, cu);
12923 if (attr != nullptr)
12924 {
12925 newobj->static_link
12926 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
12927 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
12928 cu->per_cu->addr_type ());
12929 }
12930
12931 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
12932
12933 if (die->child != NULL)
12934 {
12935 child_die = die->child;
12936 while (child_die && child_die->tag)
12937 {
12938 if (child_die->tag == DW_TAG_template_type_param
12939 || child_die->tag == DW_TAG_template_value_param)
12940 {
12941 struct symbol *arg = new_symbol (child_die, NULL, cu);
12942
12943 if (arg != NULL)
12944 template_args.push_back (arg);
12945 }
12946 else
12947 process_die (child_die, cu);
12948 child_die = child_die->sibling;
12949 }
12950 }
12951
12952 inherit_abstract_dies (die, cu);
12953
12954 /* If we have a DW_AT_specification, we might need to import using
12955 directives from the context of the specification DIE. See the
12956 comment in determine_prefix. */
12957 if (cu->language == language_cplus
12958 && dwarf2_attr (die, DW_AT_specification, cu))
12959 {
12960 struct dwarf2_cu *spec_cu = cu;
12961 struct die_info *spec_die = die_specification (die, &spec_cu);
12962
12963 while (spec_die)
12964 {
12965 child_die = spec_die->child;
12966 while (child_die && child_die->tag)
12967 {
12968 if (child_die->tag == DW_TAG_imported_module)
12969 process_die (child_die, spec_cu);
12970 child_die = child_die->sibling;
12971 }
12972
12973 /* In some cases, GCC generates specification DIEs that
12974 themselves contain DW_AT_specification attributes. */
12975 spec_die = die_specification (spec_die, &spec_cu);
12976 }
12977 }
12978
12979 struct context_stack cstk = cu->get_builder ()->pop_context ();
12980 /* Make a block for the local symbols within. */
12981 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
12982 cstk.static_link, lowpc, highpc);
12983
12984 /* For C++, set the block's scope. */
12985 if ((cu->language == language_cplus
12986 || cu->language == language_fortran
12987 || cu->language == language_d
12988 || cu->language == language_rust)
12989 && cu->processing_has_namespace_info)
12990 block_set_scope (block, determine_prefix (die, cu),
12991 &objfile->objfile_obstack);
12992
12993 /* If we have address ranges, record them. */
12994 dwarf2_record_block_ranges (die, block, baseaddr, cu);
12995
12996 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
12997
12998 /* Attach template arguments to function. */
12999 if (!template_args.empty ())
13000 {
13001 gdb_assert (templ_func != NULL);
13002
13003 templ_func->n_template_arguments = template_args.size ();
13004 templ_func->template_arguments
13005 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13006 templ_func->n_template_arguments);
13007 memcpy (templ_func->template_arguments,
13008 template_args.data (),
13009 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13010
13011 /* Make sure that the symtab is set on the new symbols. Even
13012 though they don't appear in this symtab directly, other parts
13013 of gdb assume that symbols do, and this is reasonably
13014 true. */
13015 for (symbol *sym : template_args)
13016 symbol_set_symtab (sym, symbol_symtab (templ_func));
13017 }
13018
13019 /* In C++, we can have functions nested inside functions (e.g., when
13020 a function declares a class that has methods). This means that
13021 when we finish processing a function scope, we may need to go
13022 back to building a containing block's symbol lists. */
13023 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13024 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13025
13026 /* If we've finished processing a top-level function, subsequent
13027 symbols go in the file symbol list. */
13028 if (cu->get_builder ()->outermost_context_p ())
13029 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13030 }
13031
13032 /* Process all the DIES contained within a lexical block scope. Start
13033 a new scope, process the dies, and then close the scope. */
13034
13035 static void
13036 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13037 {
13038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13039 struct gdbarch *gdbarch = objfile->arch ();
13040 CORE_ADDR lowpc, highpc;
13041 struct die_info *child_die;
13042 CORE_ADDR baseaddr;
13043
13044 baseaddr = objfile->text_section_offset ();
13045
13046 /* Ignore blocks with missing or invalid low and high pc attributes. */
13047 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13048 as multiple lexical blocks? Handling children in a sane way would
13049 be nasty. Might be easier to properly extend generic blocks to
13050 describe ranges. */
13051 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13052 {
13053 case PC_BOUNDS_NOT_PRESENT:
13054 /* DW_TAG_lexical_block has no attributes, process its children as if
13055 there was no wrapping by that DW_TAG_lexical_block.
13056 GCC does no longer produces such DWARF since GCC r224161. */
13057 for (child_die = die->child;
13058 child_die != NULL && child_die->tag;
13059 child_die = child_die->sibling)
13060 process_die (child_die, cu);
13061 return;
13062 case PC_BOUNDS_INVALID:
13063 return;
13064 }
13065 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13066 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13067
13068 cu->get_builder ()->push_context (0, lowpc);
13069 if (die->child != NULL)
13070 {
13071 child_die = die->child;
13072 while (child_die && child_die->tag)
13073 {
13074 process_die (child_die, cu);
13075 child_die = child_die->sibling;
13076 }
13077 }
13078 inherit_abstract_dies (die, cu);
13079 struct context_stack cstk = cu->get_builder ()->pop_context ();
13080
13081 if (*cu->get_builder ()->get_local_symbols () != NULL
13082 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13083 {
13084 struct block *block
13085 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13086 cstk.start_addr, highpc);
13087
13088 /* Note that recording ranges after traversing children, as we
13089 do here, means that recording a parent's ranges entails
13090 walking across all its children's ranges as they appear in
13091 the address map, which is quadratic behavior.
13092
13093 It would be nicer to record the parent's ranges before
13094 traversing its children, simply overriding whatever you find
13095 there. But since we don't even decide whether to create a
13096 block until after we've traversed its children, that's hard
13097 to do. */
13098 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13099 }
13100 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13101 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13102 }
13103
13104 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13105
13106 static void
13107 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13108 {
13109 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13110 struct gdbarch *gdbarch = objfile->arch ();
13111 CORE_ADDR pc, baseaddr;
13112 struct attribute *attr;
13113 struct call_site *call_site, call_site_local;
13114 void **slot;
13115 int nparams;
13116 struct die_info *child_die;
13117
13118 baseaddr = objfile->text_section_offset ();
13119
13120 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13121 if (attr == NULL)
13122 {
13123 /* This was a pre-DWARF-5 GNU extension alias
13124 for DW_AT_call_return_pc. */
13125 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13126 }
13127 if (!attr)
13128 {
13129 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13130 "DIE %s [in module %s]"),
13131 sect_offset_str (die->sect_off), objfile_name (objfile));
13132 return;
13133 }
13134 pc = attr->value_as_address () + baseaddr;
13135 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13136
13137 if (cu->call_site_htab == NULL)
13138 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13139 NULL, &objfile->objfile_obstack,
13140 hashtab_obstack_allocate, NULL);
13141 call_site_local.pc = pc;
13142 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13143 if (*slot != NULL)
13144 {
13145 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13146 "DIE %s [in module %s]"),
13147 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13148 objfile_name (objfile));
13149 return;
13150 }
13151
13152 /* Count parameters at the caller. */
13153
13154 nparams = 0;
13155 for (child_die = die->child; child_die && child_die->tag;
13156 child_die = child_die->sibling)
13157 {
13158 if (child_die->tag != DW_TAG_call_site_parameter
13159 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13160 {
13161 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13162 "DW_TAG_call_site child DIE %s [in module %s]"),
13163 child_die->tag, sect_offset_str (child_die->sect_off),
13164 objfile_name (objfile));
13165 continue;
13166 }
13167
13168 nparams++;
13169 }
13170
13171 call_site
13172 = ((struct call_site *)
13173 obstack_alloc (&objfile->objfile_obstack,
13174 sizeof (*call_site)
13175 + (sizeof (*call_site->parameter) * (nparams - 1))));
13176 *slot = call_site;
13177 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13178 call_site->pc = pc;
13179
13180 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13181 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13182 {
13183 struct die_info *func_die;
13184
13185 /* Skip also over DW_TAG_inlined_subroutine. */
13186 for (func_die = die->parent;
13187 func_die && func_die->tag != DW_TAG_subprogram
13188 && func_die->tag != DW_TAG_subroutine_type;
13189 func_die = func_die->parent);
13190
13191 /* DW_AT_call_all_calls is a superset
13192 of DW_AT_call_all_tail_calls. */
13193 if (func_die
13194 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13195 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13196 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13197 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13198 {
13199 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13200 not complete. But keep CALL_SITE for look ups via call_site_htab,
13201 both the initial caller containing the real return address PC and
13202 the final callee containing the current PC of a chain of tail
13203 calls do not need to have the tail call list complete. But any
13204 function candidate for a virtual tail call frame searched via
13205 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13206 determined unambiguously. */
13207 }
13208 else
13209 {
13210 struct type *func_type = NULL;
13211
13212 if (func_die)
13213 func_type = get_die_type (func_die, cu);
13214 if (func_type != NULL)
13215 {
13216 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
13217
13218 /* Enlist this call site to the function. */
13219 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13220 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13221 }
13222 else
13223 complaint (_("Cannot find function owning DW_TAG_call_site "
13224 "DIE %s [in module %s]"),
13225 sect_offset_str (die->sect_off), objfile_name (objfile));
13226 }
13227 }
13228
13229 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13230 if (attr == NULL)
13231 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13232 if (attr == NULL)
13233 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13234 if (attr == NULL)
13235 {
13236 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13237 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13238 }
13239 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13240 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13241 /* Keep NULL DWARF_BLOCK. */;
13242 else if (attr->form_is_block ())
13243 {
13244 struct dwarf2_locexpr_baton *dlbaton;
13245
13246 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13247 dlbaton->data = DW_BLOCK (attr)->data;
13248 dlbaton->size = DW_BLOCK (attr)->size;
13249 dlbaton->per_cu = cu->per_cu;
13250
13251 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13252 }
13253 else if (attr->form_is_ref ())
13254 {
13255 struct dwarf2_cu *target_cu = cu;
13256 struct die_info *target_die;
13257
13258 target_die = follow_die_ref (die, attr, &target_cu);
13259 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13260 if (die_is_declaration (target_die, target_cu))
13261 {
13262 const char *target_physname;
13263
13264 /* Prefer the mangled name; otherwise compute the demangled one. */
13265 target_physname = dw2_linkage_name (target_die, target_cu);
13266 if (target_physname == NULL)
13267 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13268 if (target_physname == NULL)
13269 complaint (_("DW_AT_call_target target DIE has invalid "
13270 "physname, for referencing DIE %s [in module %s]"),
13271 sect_offset_str (die->sect_off), objfile_name (objfile));
13272 else
13273 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13274 }
13275 else
13276 {
13277 CORE_ADDR lowpc;
13278
13279 /* DW_AT_entry_pc should be preferred. */
13280 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13281 <= PC_BOUNDS_INVALID)
13282 complaint (_("DW_AT_call_target target DIE has invalid "
13283 "low pc, for referencing DIE %s [in module %s]"),
13284 sect_offset_str (die->sect_off), objfile_name (objfile));
13285 else
13286 {
13287 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13288 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13289 }
13290 }
13291 }
13292 else
13293 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13294 "block nor reference, for DIE %s [in module %s]"),
13295 sect_offset_str (die->sect_off), objfile_name (objfile));
13296
13297 call_site->per_cu = cu->per_cu;
13298
13299 for (child_die = die->child;
13300 child_die && child_die->tag;
13301 child_die = child_die->sibling)
13302 {
13303 struct call_site_parameter *parameter;
13304 struct attribute *loc, *origin;
13305
13306 if (child_die->tag != DW_TAG_call_site_parameter
13307 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13308 {
13309 /* Already printed the complaint above. */
13310 continue;
13311 }
13312
13313 gdb_assert (call_site->parameter_count < nparams);
13314 parameter = &call_site->parameter[call_site->parameter_count];
13315
13316 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13317 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13318 register is contained in DW_AT_call_value. */
13319
13320 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13321 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13322 if (origin == NULL)
13323 {
13324 /* This was a pre-DWARF-5 GNU extension alias
13325 for DW_AT_call_parameter. */
13326 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13327 }
13328 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13329 {
13330 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13331
13332 sect_offset sect_off = origin->get_ref_die_offset ();
13333 if (!cu->header.offset_in_cu_p (sect_off))
13334 {
13335 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13336 binding can be done only inside one CU. Such referenced DIE
13337 therefore cannot be even moved to DW_TAG_partial_unit. */
13338 complaint (_("DW_AT_call_parameter offset is not in CU for "
13339 "DW_TAG_call_site child DIE %s [in module %s]"),
13340 sect_offset_str (child_die->sect_off),
13341 objfile_name (objfile));
13342 continue;
13343 }
13344 parameter->u.param_cu_off
13345 = (cu_offset) (sect_off - cu->header.sect_off);
13346 }
13347 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13348 {
13349 complaint (_("No DW_FORM_block* DW_AT_location for "
13350 "DW_TAG_call_site child DIE %s [in module %s]"),
13351 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13352 continue;
13353 }
13354 else
13355 {
13356 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13357 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13358 if (parameter->u.dwarf_reg != -1)
13359 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13360 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13361 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13362 &parameter->u.fb_offset))
13363 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13364 else
13365 {
13366 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13367 "for DW_FORM_block* DW_AT_location is supported for "
13368 "DW_TAG_call_site child DIE %s "
13369 "[in module %s]"),
13370 sect_offset_str (child_die->sect_off),
13371 objfile_name (objfile));
13372 continue;
13373 }
13374 }
13375
13376 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13377 if (attr == NULL)
13378 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13379 if (attr == NULL || !attr->form_is_block ())
13380 {
13381 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13382 "DW_TAG_call_site child DIE %s [in module %s]"),
13383 sect_offset_str (child_die->sect_off),
13384 objfile_name (objfile));
13385 continue;
13386 }
13387 parameter->value = DW_BLOCK (attr)->data;
13388 parameter->value_size = DW_BLOCK (attr)->size;
13389
13390 /* Parameters are not pre-cleared by memset above. */
13391 parameter->data_value = NULL;
13392 parameter->data_value_size = 0;
13393 call_site->parameter_count++;
13394
13395 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13396 if (attr == NULL)
13397 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13398 if (attr != nullptr)
13399 {
13400 if (!attr->form_is_block ())
13401 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13402 "DW_TAG_call_site child DIE %s [in module %s]"),
13403 sect_offset_str (child_die->sect_off),
13404 objfile_name (objfile));
13405 else
13406 {
13407 parameter->data_value = DW_BLOCK (attr)->data;
13408 parameter->data_value_size = DW_BLOCK (attr)->size;
13409 }
13410 }
13411 }
13412 }
13413
13414 /* Helper function for read_variable. If DIE represents a virtual
13415 table, then return the type of the concrete object that is
13416 associated with the virtual table. Otherwise, return NULL. */
13417
13418 static struct type *
13419 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13420 {
13421 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13422 if (attr == NULL)
13423 return NULL;
13424
13425 /* Find the type DIE. */
13426 struct die_info *type_die = NULL;
13427 struct dwarf2_cu *type_cu = cu;
13428
13429 if (attr->form_is_ref ())
13430 type_die = follow_die_ref (die, attr, &type_cu);
13431 if (type_die == NULL)
13432 return NULL;
13433
13434 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13435 return NULL;
13436 return die_containing_type (type_die, type_cu);
13437 }
13438
13439 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13440
13441 static void
13442 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13443 {
13444 struct rust_vtable_symbol *storage = NULL;
13445
13446 if (cu->language == language_rust)
13447 {
13448 struct type *containing_type = rust_containing_type (die, cu);
13449
13450 if (containing_type != NULL)
13451 {
13452 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13453
13454 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
13455 initialize_objfile_symbol (storage);
13456 storage->concrete_type = containing_type;
13457 storage->subclass = SYMBOL_RUST_VTABLE;
13458 }
13459 }
13460
13461 struct symbol *res = new_symbol (die, NULL, cu, storage);
13462 struct attribute *abstract_origin
13463 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13464 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13465 if (res == NULL && loc && abstract_origin)
13466 {
13467 /* We have a variable without a name, but with a location and an abstract
13468 origin. This may be a concrete instance of an abstract variable
13469 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13470 later. */
13471 struct dwarf2_cu *origin_cu = cu;
13472 struct die_info *origin_die
13473 = follow_die_ref (die, abstract_origin, &origin_cu);
13474 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13475 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13476 }
13477 }
13478
13479 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13480 reading .debug_rnglists.
13481 Callback's type should be:
13482 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13483 Return true if the attributes are present and valid, otherwise,
13484 return false. */
13485
13486 template <typename Callback>
13487 static bool
13488 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13489 Callback &&callback)
13490 {
13491 struct dwarf2_per_objfile *dwarf2_per_objfile
13492 = cu->per_cu->dwarf2_per_objfile;
13493 struct objfile *objfile = dwarf2_per_objfile->objfile;
13494 bfd *obfd = objfile->obfd;
13495 /* Base address selection entry. */
13496 gdb::optional<CORE_ADDR> base;
13497 const gdb_byte *buffer;
13498 CORE_ADDR baseaddr;
13499 bool overflow = false;
13500
13501 base = cu->base_address;
13502
13503 dwarf2_per_objfile->rnglists.read (objfile);
13504 if (offset >= dwarf2_per_objfile->rnglists.size)
13505 {
13506 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13507 offset);
13508 return false;
13509 }
13510 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13511
13512 baseaddr = objfile->text_section_offset ();
13513
13514 while (1)
13515 {
13516 /* Initialize it due to a false compiler warning. */
13517 CORE_ADDR range_beginning = 0, range_end = 0;
13518 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13519 + dwarf2_per_objfile->rnglists.size);
13520 unsigned int bytes_read;
13521
13522 if (buffer == buf_end)
13523 {
13524 overflow = true;
13525 break;
13526 }
13527 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13528 switch (rlet)
13529 {
13530 case DW_RLE_end_of_list:
13531 break;
13532 case DW_RLE_base_address:
13533 if (buffer + cu->header.addr_size > buf_end)
13534 {
13535 overflow = true;
13536 break;
13537 }
13538 base = cu->header.read_address (obfd, buffer, &bytes_read);
13539 buffer += bytes_read;
13540 break;
13541 case DW_RLE_start_length:
13542 if (buffer + cu->header.addr_size > buf_end)
13543 {
13544 overflow = true;
13545 break;
13546 }
13547 range_beginning = cu->header.read_address (obfd, buffer,
13548 &bytes_read);
13549 buffer += bytes_read;
13550 range_end = (range_beginning
13551 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13552 buffer += bytes_read;
13553 if (buffer > buf_end)
13554 {
13555 overflow = true;
13556 break;
13557 }
13558 break;
13559 case DW_RLE_offset_pair:
13560 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13561 buffer += bytes_read;
13562 if (buffer > buf_end)
13563 {
13564 overflow = true;
13565 break;
13566 }
13567 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13568 buffer += bytes_read;
13569 if (buffer > buf_end)
13570 {
13571 overflow = true;
13572 break;
13573 }
13574 break;
13575 case DW_RLE_start_end:
13576 if (buffer + 2 * cu->header.addr_size > buf_end)
13577 {
13578 overflow = true;
13579 break;
13580 }
13581 range_beginning = cu->header.read_address (obfd, buffer,
13582 &bytes_read);
13583 buffer += bytes_read;
13584 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13585 buffer += bytes_read;
13586 break;
13587 default:
13588 complaint (_("Invalid .debug_rnglists data (no base address)"));
13589 return false;
13590 }
13591 if (rlet == DW_RLE_end_of_list || overflow)
13592 break;
13593 if (rlet == DW_RLE_base_address)
13594 continue;
13595
13596 if (!base.has_value ())
13597 {
13598 /* We have no valid base address for the ranges
13599 data. */
13600 complaint (_("Invalid .debug_rnglists data (no base address)"));
13601 return false;
13602 }
13603
13604 if (range_beginning > range_end)
13605 {
13606 /* Inverted range entries are invalid. */
13607 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13608 return false;
13609 }
13610
13611 /* Empty range entries have no effect. */
13612 if (range_beginning == range_end)
13613 continue;
13614
13615 range_beginning += *base;
13616 range_end += *base;
13617
13618 /* A not-uncommon case of bad debug info.
13619 Don't pollute the addrmap with bad data. */
13620 if (range_beginning + baseaddr == 0
13621 && !dwarf2_per_objfile->has_section_at_zero)
13622 {
13623 complaint (_(".debug_rnglists entry has start address of zero"
13624 " [in module %s]"), objfile_name (objfile));
13625 continue;
13626 }
13627
13628 callback (range_beginning, range_end);
13629 }
13630
13631 if (overflow)
13632 {
13633 complaint (_("Offset %d is not terminated "
13634 "for DW_AT_ranges attribute"),
13635 offset);
13636 return false;
13637 }
13638
13639 return true;
13640 }
13641
13642 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13643 Callback's type should be:
13644 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13645 Return 1 if the attributes are present and valid, otherwise, return 0. */
13646
13647 template <typename Callback>
13648 static int
13649 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13650 Callback &&callback)
13651 {
13652 struct dwarf2_per_objfile *dwarf2_per_objfile
13653 = cu->per_cu->dwarf2_per_objfile;
13654 struct objfile *objfile = dwarf2_per_objfile->objfile;
13655 struct comp_unit_head *cu_header = &cu->header;
13656 bfd *obfd = objfile->obfd;
13657 unsigned int addr_size = cu_header->addr_size;
13658 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13659 /* Base address selection entry. */
13660 gdb::optional<CORE_ADDR> base;
13661 unsigned int dummy;
13662 const gdb_byte *buffer;
13663 CORE_ADDR baseaddr;
13664
13665 if (cu_header->version >= 5)
13666 return dwarf2_rnglists_process (offset, cu, callback);
13667
13668 base = cu->base_address;
13669
13670 dwarf2_per_objfile->ranges.read (objfile);
13671 if (offset >= dwarf2_per_objfile->ranges.size)
13672 {
13673 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13674 offset);
13675 return 0;
13676 }
13677 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13678
13679 baseaddr = objfile->text_section_offset ();
13680
13681 while (1)
13682 {
13683 CORE_ADDR range_beginning, range_end;
13684
13685 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13686 buffer += addr_size;
13687 range_end = cu->header.read_address (obfd, buffer, &dummy);
13688 buffer += addr_size;
13689 offset += 2 * addr_size;
13690
13691 /* An end of list marker is a pair of zero addresses. */
13692 if (range_beginning == 0 && range_end == 0)
13693 /* Found the end of list entry. */
13694 break;
13695
13696 /* Each base address selection entry is a pair of 2 values.
13697 The first is the largest possible address, the second is
13698 the base address. Check for a base address here. */
13699 if ((range_beginning & mask) == mask)
13700 {
13701 /* If we found the largest possible address, then we already
13702 have the base address in range_end. */
13703 base = range_end;
13704 continue;
13705 }
13706
13707 if (!base.has_value ())
13708 {
13709 /* We have no valid base address for the ranges
13710 data. */
13711 complaint (_("Invalid .debug_ranges data (no base address)"));
13712 return 0;
13713 }
13714
13715 if (range_beginning > range_end)
13716 {
13717 /* Inverted range entries are invalid. */
13718 complaint (_("Invalid .debug_ranges data (inverted range)"));
13719 return 0;
13720 }
13721
13722 /* Empty range entries have no effect. */
13723 if (range_beginning == range_end)
13724 continue;
13725
13726 range_beginning += *base;
13727 range_end += *base;
13728
13729 /* A not-uncommon case of bad debug info.
13730 Don't pollute the addrmap with bad data. */
13731 if (range_beginning + baseaddr == 0
13732 && !dwarf2_per_objfile->has_section_at_zero)
13733 {
13734 complaint (_(".debug_ranges entry has start address of zero"
13735 " [in module %s]"), objfile_name (objfile));
13736 continue;
13737 }
13738
13739 callback (range_beginning, range_end);
13740 }
13741
13742 return 1;
13743 }
13744
13745 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13746 Return 1 if the attributes are present and valid, otherwise, return 0.
13747 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13748
13749 static int
13750 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13751 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13752 dwarf2_psymtab *ranges_pst)
13753 {
13754 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13755 struct gdbarch *gdbarch = objfile->arch ();
13756 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13757 int low_set = 0;
13758 CORE_ADDR low = 0;
13759 CORE_ADDR high = 0;
13760 int retval;
13761
13762 retval = dwarf2_ranges_process (offset, cu,
13763 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13764 {
13765 if (ranges_pst != NULL)
13766 {
13767 CORE_ADDR lowpc;
13768 CORE_ADDR highpc;
13769
13770 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13771 range_beginning + baseaddr)
13772 - baseaddr);
13773 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13774 range_end + baseaddr)
13775 - baseaddr);
13776 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13777 lowpc, highpc - 1, ranges_pst);
13778 }
13779
13780 /* FIXME: This is recording everything as a low-high
13781 segment of consecutive addresses. We should have a
13782 data structure for discontiguous block ranges
13783 instead. */
13784 if (! low_set)
13785 {
13786 low = range_beginning;
13787 high = range_end;
13788 low_set = 1;
13789 }
13790 else
13791 {
13792 if (range_beginning < low)
13793 low = range_beginning;
13794 if (range_end > high)
13795 high = range_end;
13796 }
13797 });
13798 if (!retval)
13799 return 0;
13800
13801 if (! low_set)
13802 /* If the first entry is an end-of-list marker, the range
13803 describes an empty scope, i.e. no instructions. */
13804 return 0;
13805
13806 if (low_return)
13807 *low_return = low;
13808 if (high_return)
13809 *high_return = high;
13810 return 1;
13811 }
13812
13813 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13814 definition for the return value. *LOWPC and *HIGHPC are set iff
13815 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13816
13817 static enum pc_bounds_kind
13818 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13819 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13820 dwarf2_psymtab *pst)
13821 {
13822 struct dwarf2_per_objfile *dwarf2_per_objfile
13823 = cu->per_cu->dwarf2_per_objfile;
13824 struct attribute *attr;
13825 struct attribute *attr_high;
13826 CORE_ADDR low = 0;
13827 CORE_ADDR high = 0;
13828 enum pc_bounds_kind ret;
13829
13830 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13831 if (attr_high)
13832 {
13833 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13834 if (attr != nullptr)
13835 {
13836 low = attr->value_as_address ();
13837 high = attr_high->value_as_address ();
13838 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13839 high += low;
13840 }
13841 else
13842 /* Found high w/o low attribute. */
13843 return PC_BOUNDS_INVALID;
13844
13845 /* Found consecutive range of addresses. */
13846 ret = PC_BOUNDS_HIGH_LOW;
13847 }
13848 else
13849 {
13850 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13851 if (attr != NULL)
13852 {
13853 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13854 We take advantage of the fact that DW_AT_ranges does not appear
13855 in DW_TAG_compile_unit of DWO files. */
13856 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13857 unsigned int ranges_offset = (DW_UNSND (attr)
13858 + (need_ranges_base
13859 ? cu->ranges_base
13860 : 0));
13861
13862 /* Value of the DW_AT_ranges attribute is the offset in the
13863 .debug_ranges section. */
13864 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13865 return PC_BOUNDS_INVALID;
13866 /* Found discontinuous range of addresses. */
13867 ret = PC_BOUNDS_RANGES;
13868 }
13869 else
13870 return PC_BOUNDS_NOT_PRESENT;
13871 }
13872
13873 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13874 if (high <= low)
13875 return PC_BOUNDS_INVALID;
13876
13877 /* When using the GNU linker, .gnu.linkonce. sections are used to
13878 eliminate duplicate copies of functions and vtables and such.
13879 The linker will arbitrarily choose one and discard the others.
13880 The AT_*_pc values for such functions refer to local labels in
13881 these sections. If the section from that file was discarded, the
13882 labels are not in the output, so the relocs get a value of 0.
13883 If this is a discarded function, mark the pc bounds as invalid,
13884 so that GDB will ignore it. */
13885 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13886 return PC_BOUNDS_INVALID;
13887
13888 *lowpc = low;
13889 if (highpc)
13890 *highpc = high;
13891 return ret;
13892 }
13893
13894 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13895 its low and high PC addresses. Do nothing if these addresses could not
13896 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13897 and HIGHPC to the high address if greater than HIGHPC. */
13898
13899 static void
13900 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13901 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13902 struct dwarf2_cu *cu)
13903 {
13904 CORE_ADDR low, high;
13905 struct die_info *child = die->child;
13906
13907 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
13908 {
13909 *lowpc = std::min (*lowpc, low);
13910 *highpc = std::max (*highpc, high);
13911 }
13912
13913 /* If the language does not allow nested subprograms (either inside
13914 subprograms or lexical blocks), we're done. */
13915 if (cu->language != language_ada)
13916 return;
13917
13918 /* Check all the children of the given DIE. If it contains nested
13919 subprograms, then check their pc bounds. Likewise, we need to
13920 check lexical blocks as well, as they may also contain subprogram
13921 definitions. */
13922 while (child && child->tag)
13923 {
13924 if (child->tag == DW_TAG_subprogram
13925 || child->tag == DW_TAG_lexical_block)
13926 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
13927 child = child->sibling;
13928 }
13929 }
13930
13931 /* Get the low and high pc's represented by the scope DIE, and store
13932 them in *LOWPC and *HIGHPC. If the correct values can't be
13933 determined, set *LOWPC to -1 and *HIGHPC to 0. */
13934
13935 static void
13936 get_scope_pc_bounds (struct die_info *die,
13937 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13938 struct dwarf2_cu *cu)
13939 {
13940 CORE_ADDR best_low = (CORE_ADDR) -1;
13941 CORE_ADDR best_high = (CORE_ADDR) 0;
13942 CORE_ADDR current_low, current_high;
13943
13944 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
13945 >= PC_BOUNDS_RANGES)
13946 {
13947 best_low = current_low;
13948 best_high = current_high;
13949 }
13950 else
13951 {
13952 struct die_info *child = die->child;
13953
13954 while (child && child->tag)
13955 {
13956 switch (child->tag) {
13957 case DW_TAG_subprogram:
13958 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
13959 break;
13960 case DW_TAG_namespace:
13961 case DW_TAG_module:
13962 /* FIXME: carlton/2004-01-16: Should we do this for
13963 DW_TAG_class_type/DW_TAG_structure_type, too? I think
13964 that current GCC's always emit the DIEs corresponding
13965 to definitions of methods of classes as children of a
13966 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
13967 the DIEs giving the declarations, which could be
13968 anywhere). But I don't see any reason why the
13969 standards says that they have to be there. */
13970 get_scope_pc_bounds (child, &current_low, &current_high, cu);
13971
13972 if (current_low != ((CORE_ADDR) -1))
13973 {
13974 best_low = std::min (best_low, current_low);
13975 best_high = std::max (best_high, current_high);
13976 }
13977 break;
13978 default:
13979 /* Ignore. */
13980 break;
13981 }
13982
13983 child = child->sibling;
13984 }
13985 }
13986
13987 *lowpc = best_low;
13988 *highpc = best_high;
13989 }
13990
13991 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
13992 in DIE. */
13993
13994 static void
13995 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
13996 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
13997 {
13998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13999 struct gdbarch *gdbarch = objfile->arch ();
14000 struct attribute *attr;
14001 struct attribute *attr_high;
14002
14003 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14004 if (attr_high)
14005 {
14006 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14007 if (attr != nullptr)
14008 {
14009 CORE_ADDR low = attr->value_as_address ();
14010 CORE_ADDR high = attr_high->value_as_address ();
14011
14012 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14013 high += low;
14014
14015 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14016 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14017 cu->get_builder ()->record_block_range (block, low, high - 1);
14018 }
14019 }
14020
14021 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14022 if (attr != nullptr)
14023 {
14024 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14025 We take advantage of the fact that DW_AT_ranges does not appear
14026 in DW_TAG_compile_unit of DWO files. */
14027 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14028
14029 /* The value of the DW_AT_ranges attribute is the offset of the
14030 address range list in the .debug_ranges section. */
14031 unsigned long offset = (DW_UNSND (attr)
14032 + (need_ranges_base ? cu->ranges_base : 0));
14033
14034 std::vector<blockrange> blockvec;
14035 dwarf2_ranges_process (offset, cu,
14036 [&] (CORE_ADDR start, CORE_ADDR end)
14037 {
14038 start += baseaddr;
14039 end += baseaddr;
14040 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14041 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14042 cu->get_builder ()->record_block_range (block, start, end - 1);
14043 blockvec.emplace_back (start, end);
14044 });
14045
14046 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14047 }
14048 }
14049
14050 /* Check whether the producer field indicates either of GCC < 4.6, or the
14051 Intel C/C++ compiler, and cache the result in CU. */
14052
14053 static void
14054 check_producer (struct dwarf2_cu *cu)
14055 {
14056 int major, minor;
14057
14058 if (cu->producer == NULL)
14059 {
14060 /* For unknown compilers expect their behavior is DWARF version
14061 compliant.
14062
14063 GCC started to support .debug_types sections by -gdwarf-4 since
14064 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14065 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14066 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14067 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14068 }
14069 else if (producer_is_gcc (cu->producer, &major, &minor))
14070 {
14071 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14072 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14073 }
14074 else if (producer_is_icc (cu->producer, &major, &minor))
14075 {
14076 cu->producer_is_icc = true;
14077 cu->producer_is_icc_lt_14 = major < 14;
14078 }
14079 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14080 cu->producer_is_codewarrior = true;
14081 else
14082 {
14083 /* For other non-GCC compilers, expect their behavior is DWARF version
14084 compliant. */
14085 }
14086
14087 cu->checked_producer = true;
14088 }
14089
14090 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14091 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14092 during 4.6.0 experimental. */
14093
14094 static bool
14095 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14096 {
14097 if (!cu->checked_producer)
14098 check_producer (cu);
14099
14100 return cu->producer_is_gxx_lt_4_6;
14101 }
14102
14103
14104 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14105 with incorrect is_stmt attributes. */
14106
14107 static bool
14108 producer_is_codewarrior (struct dwarf2_cu *cu)
14109 {
14110 if (!cu->checked_producer)
14111 check_producer (cu);
14112
14113 return cu->producer_is_codewarrior;
14114 }
14115
14116 /* Return the default accessibility type if it is not overridden by
14117 DW_AT_accessibility. */
14118
14119 static enum dwarf_access_attribute
14120 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14121 {
14122 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14123 {
14124 /* The default DWARF 2 accessibility for members is public, the default
14125 accessibility for inheritance is private. */
14126
14127 if (die->tag != DW_TAG_inheritance)
14128 return DW_ACCESS_public;
14129 else
14130 return DW_ACCESS_private;
14131 }
14132 else
14133 {
14134 /* DWARF 3+ defines the default accessibility a different way. The same
14135 rules apply now for DW_TAG_inheritance as for the members and it only
14136 depends on the container kind. */
14137
14138 if (die->parent->tag == DW_TAG_class_type)
14139 return DW_ACCESS_private;
14140 else
14141 return DW_ACCESS_public;
14142 }
14143 }
14144
14145 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14146 offset. If the attribute was not found return 0, otherwise return
14147 1. If it was found but could not properly be handled, set *OFFSET
14148 to 0. */
14149
14150 static int
14151 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14152 LONGEST *offset)
14153 {
14154 struct attribute *attr;
14155
14156 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14157 if (attr != NULL)
14158 {
14159 *offset = 0;
14160
14161 /* Note that we do not check for a section offset first here.
14162 This is because DW_AT_data_member_location is new in DWARF 4,
14163 so if we see it, we can assume that a constant form is really
14164 a constant and not a section offset. */
14165 if (attr->form_is_constant ())
14166 *offset = attr->constant_value (0);
14167 else if (attr->form_is_section_offset ())
14168 dwarf2_complex_location_expr_complaint ();
14169 else if (attr->form_is_block ())
14170 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14171 else
14172 dwarf2_complex_location_expr_complaint ();
14173
14174 return 1;
14175 }
14176
14177 return 0;
14178 }
14179
14180 /* Add an aggregate field to the field list. */
14181
14182 static void
14183 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14184 struct dwarf2_cu *cu)
14185 {
14186 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14187 struct gdbarch *gdbarch = objfile->arch ();
14188 struct nextfield *new_field;
14189 struct attribute *attr;
14190 struct field *fp;
14191 const char *fieldname = "";
14192
14193 if (die->tag == DW_TAG_inheritance)
14194 {
14195 fip->baseclasses.emplace_back ();
14196 new_field = &fip->baseclasses.back ();
14197 }
14198 else
14199 {
14200 fip->fields.emplace_back ();
14201 new_field = &fip->fields.back ();
14202 }
14203
14204 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14205 if (attr != nullptr)
14206 new_field->accessibility = DW_UNSND (attr);
14207 else
14208 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14209 if (new_field->accessibility != DW_ACCESS_public)
14210 fip->non_public_fields = 1;
14211
14212 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14213 if (attr != nullptr)
14214 new_field->virtuality = DW_UNSND (attr);
14215 else
14216 new_field->virtuality = DW_VIRTUALITY_none;
14217
14218 fp = &new_field->field;
14219
14220 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14221 {
14222 LONGEST offset;
14223
14224 /* Data member other than a C++ static data member. */
14225
14226 /* Get type of field. */
14227 fp->type = die_type (die, cu);
14228
14229 SET_FIELD_BITPOS (*fp, 0);
14230
14231 /* Get bit size of field (zero if none). */
14232 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14233 if (attr != nullptr)
14234 {
14235 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14236 }
14237 else
14238 {
14239 FIELD_BITSIZE (*fp) = 0;
14240 }
14241
14242 /* Get bit offset of field. */
14243 if (handle_data_member_location (die, cu, &offset))
14244 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14245 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14246 if (attr != nullptr)
14247 {
14248 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14249 {
14250 /* For big endian bits, the DW_AT_bit_offset gives the
14251 additional bit offset from the MSB of the containing
14252 anonymous object to the MSB of the field. We don't
14253 have to do anything special since we don't need to
14254 know the size of the anonymous object. */
14255 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14256 }
14257 else
14258 {
14259 /* For little endian bits, compute the bit offset to the
14260 MSB of the anonymous object, subtract off the number of
14261 bits from the MSB of the field to the MSB of the
14262 object, and then subtract off the number of bits of
14263 the field itself. The result is the bit offset of
14264 the LSB of the field. */
14265 int anonymous_size;
14266 int bit_offset = DW_UNSND (attr);
14267
14268 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14269 if (attr != nullptr)
14270 {
14271 /* The size of the anonymous object containing
14272 the bit field is explicit, so use the
14273 indicated size (in bytes). */
14274 anonymous_size = DW_UNSND (attr);
14275 }
14276 else
14277 {
14278 /* The size of the anonymous object containing
14279 the bit field must be inferred from the type
14280 attribute of the data member containing the
14281 bit field. */
14282 anonymous_size = TYPE_LENGTH (fp->type);
14283 }
14284 SET_FIELD_BITPOS (*fp,
14285 (FIELD_BITPOS (*fp)
14286 + anonymous_size * bits_per_byte
14287 - bit_offset - FIELD_BITSIZE (*fp)));
14288 }
14289 }
14290 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14291 if (attr != NULL)
14292 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14293 + attr->constant_value (0)));
14294
14295 /* Get name of field. */
14296 fieldname = dwarf2_name (die, cu);
14297 if (fieldname == NULL)
14298 fieldname = "";
14299
14300 /* The name is already allocated along with this objfile, so we don't
14301 need to duplicate it for the type. */
14302 fp->name = fieldname;
14303
14304 /* Change accessibility for artificial fields (e.g. virtual table
14305 pointer or virtual base class pointer) to private. */
14306 if (dwarf2_attr (die, DW_AT_artificial, cu))
14307 {
14308 FIELD_ARTIFICIAL (*fp) = 1;
14309 new_field->accessibility = DW_ACCESS_private;
14310 fip->non_public_fields = 1;
14311 }
14312 }
14313 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14314 {
14315 /* C++ static member. */
14316
14317 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14318 is a declaration, but all versions of G++ as of this writing
14319 (so through at least 3.2.1) incorrectly generate
14320 DW_TAG_variable tags. */
14321
14322 const char *physname;
14323
14324 /* Get name of field. */
14325 fieldname = dwarf2_name (die, cu);
14326 if (fieldname == NULL)
14327 return;
14328
14329 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14330 if (attr
14331 /* Only create a symbol if this is an external value.
14332 new_symbol checks this and puts the value in the global symbol
14333 table, which we want. If it is not external, new_symbol
14334 will try to put the value in cu->list_in_scope which is wrong. */
14335 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14336 {
14337 /* A static const member, not much different than an enum as far as
14338 we're concerned, except that we can support more types. */
14339 new_symbol (die, NULL, cu);
14340 }
14341
14342 /* Get physical name. */
14343 physname = dwarf2_physname (fieldname, die, cu);
14344
14345 /* The name is already allocated along with this objfile, so we don't
14346 need to duplicate it for the type. */
14347 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14348 FIELD_TYPE (*fp) = die_type (die, cu);
14349 FIELD_NAME (*fp) = fieldname;
14350 }
14351 else if (die->tag == DW_TAG_inheritance)
14352 {
14353 LONGEST offset;
14354
14355 /* C++ base class field. */
14356 if (handle_data_member_location (die, cu, &offset))
14357 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
14358 FIELD_BITSIZE (*fp) = 0;
14359 FIELD_TYPE (*fp) = die_type (die, cu);
14360 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14361 }
14362 else if (die->tag == DW_TAG_variant_part)
14363 {
14364 /* process_structure_scope will treat this DIE as a union. */
14365 process_structure_scope (die, cu);
14366
14367 /* The variant part is relative to the start of the enclosing
14368 structure. */
14369 SET_FIELD_BITPOS (*fp, 0);
14370 fp->type = get_die_type (die, cu);
14371 fp->artificial = 1;
14372 fp->name = "<<variant>>";
14373
14374 /* Normally a DW_TAG_variant_part won't have a size, but our
14375 representation requires one, so set it to the maximum of the
14376 child sizes, being sure to account for the offset at which
14377 each child is seen. */
14378 if (TYPE_LENGTH (fp->type) == 0)
14379 {
14380 unsigned max = 0;
14381 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
14382 {
14383 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
14384 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
14385 if (len > max)
14386 max = len;
14387 }
14388 TYPE_LENGTH (fp->type) = max;
14389 }
14390 }
14391 else
14392 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14393 }
14394
14395 /* Can the type given by DIE define another type? */
14396
14397 static bool
14398 type_can_define_types (const struct die_info *die)
14399 {
14400 switch (die->tag)
14401 {
14402 case DW_TAG_typedef:
14403 case DW_TAG_class_type:
14404 case DW_TAG_structure_type:
14405 case DW_TAG_union_type:
14406 case DW_TAG_enumeration_type:
14407 return true;
14408
14409 default:
14410 return false;
14411 }
14412 }
14413
14414 /* Add a type definition defined in the scope of the FIP's class. */
14415
14416 static void
14417 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14418 struct dwarf2_cu *cu)
14419 {
14420 struct decl_field fp;
14421 memset (&fp, 0, sizeof (fp));
14422
14423 gdb_assert (type_can_define_types (die));
14424
14425 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14426 fp.name = dwarf2_name (die, cu);
14427 fp.type = read_type_die (die, cu);
14428
14429 /* Save accessibility. */
14430 enum dwarf_access_attribute accessibility;
14431 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14432 if (attr != NULL)
14433 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14434 else
14435 accessibility = dwarf2_default_access_attribute (die, cu);
14436 switch (accessibility)
14437 {
14438 case DW_ACCESS_public:
14439 /* The assumed value if neither private nor protected. */
14440 break;
14441 case DW_ACCESS_private:
14442 fp.is_private = 1;
14443 break;
14444 case DW_ACCESS_protected:
14445 fp.is_protected = 1;
14446 break;
14447 default:
14448 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14449 }
14450
14451 if (die->tag == DW_TAG_typedef)
14452 fip->typedef_field_list.push_back (fp);
14453 else
14454 fip->nested_types_list.push_back (fp);
14455 }
14456
14457 /* Create the vector of fields, and attach it to the type. */
14458
14459 static void
14460 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14461 struct dwarf2_cu *cu)
14462 {
14463 int nfields = fip->nfields ();
14464
14465 /* Record the field count, allocate space for the array of fields,
14466 and create blank accessibility bitfields if necessary. */
14467 TYPE_NFIELDS (type) = nfields;
14468 TYPE_FIELDS (type) = (struct field *)
14469 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14470
14471 if (fip->non_public_fields && cu->language != language_ada)
14472 {
14473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14474
14475 TYPE_FIELD_PRIVATE_BITS (type) =
14476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14478
14479 TYPE_FIELD_PROTECTED_BITS (type) =
14480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14482
14483 TYPE_FIELD_IGNORE_BITS (type) =
14484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14486 }
14487
14488 /* If the type has baseclasses, allocate and clear a bit vector for
14489 TYPE_FIELD_VIRTUAL_BITS. */
14490 if (!fip->baseclasses.empty () && cu->language != language_ada)
14491 {
14492 int num_bytes = B_BYTES (fip->baseclasses.size ());
14493 unsigned char *pointer;
14494
14495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14496 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14499 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14500 }
14501
14502 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
14503 {
14504 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
14505
14506 for (int index = 0; index < nfields; ++index)
14507 {
14508 struct nextfield &field = fip->fields[index];
14509
14510 if (field.variant.is_discriminant)
14511 di->discriminant_index = index;
14512 else if (field.variant.default_branch)
14513 di->default_index = index;
14514 else
14515 di->discriminants[index] = field.variant.discriminant_value;
14516 }
14517 }
14518
14519 /* Copy the saved-up fields into the field vector. */
14520 for (int i = 0; i < nfields; ++i)
14521 {
14522 struct nextfield &field
14523 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14524 : fip->fields[i - fip->baseclasses.size ()]);
14525
14526 TYPE_FIELD (type, i) = field.field;
14527 switch (field.accessibility)
14528 {
14529 case DW_ACCESS_private:
14530 if (cu->language != language_ada)
14531 SET_TYPE_FIELD_PRIVATE (type, i);
14532 break;
14533
14534 case DW_ACCESS_protected:
14535 if (cu->language != language_ada)
14536 SET_TYPE_FIELD_PROTECTED (type, i);
14537 break;
14538
14539 case DW_ACCESS_public:
14540 break;
14541
14542 default:
14543 /* Unknown accessibility. Complain and treat it as public. */
14544 {
14545 complaint (_("unsupported accessibility %d"),
14546 field.accessibility);
14547 }
14548 break;
14549 }
14550 if (i < fip->baseclasses.size ())
14551 {
14552 switch (field.virtuality)
14553 {
14554 case DW_VIRTUALITY_virtual:
14555 case DW_VIRTUALITY_pure_virtual:
14556 if (cu->language == language_ada)
14557 error (_("unexpected virtuality in component of Ada type"));
14558 SET_TYPE_FIELD_VIRTUAL (type, i);
14559 break;
14560 }
14561 }
14562 }
14563 }
14564
14565 /* Return true if this member function is a constructor, false
14566 otherwise. */
14567
14568 static int
14569 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14570 {
14571 const char *fieldname;
14572 const char *type_name;
14573 int len;
14574
14575 if (die->parent == NULL)
14576 return 0;
14577
14578 if (die->parent->tag != DW_TAG_structure_type
14579 && die->parent->tag != DW_TAG_union_type
14580 && die->parent->tag != DW_TAG_class_type)
14581 return 0;
14582
14583 fieldname = dwarf2_name (die, cu);
14584 type_name = dwarf2_name (die->parent, cu);
14585 if (fieldname == NULL || type_name == NULL)
14586 return 0;
14587
14588 len = strlen (fieldname);
14589 return (strncmp (fieldname, type_name, len) == 0
14590 && (type_name[len] == '\0' || type_name[len] == '<'));
14591 }
14592
14593 /* Check if the given VALUE is a recognized enum
14594 dwarf_defaulted_attribute constant according to DWARF5 spec,
14595 Table 7.24. */
14596
14597 static bool
14598 is_valid_DW_AT_defaulted (ULONGEST value)
14599 {
14600 switch (value)
14601 {
14602 case DW_DEFAULTED_no:
14603 case DW_DEFAULTED_in_class:
14604 case DW_DEFAULTED_out_of_class:
14605 return true;
14606 }
14607
14608 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14609 return false;
14610 }
14611
14612 /* Add a member function to the proper fieldlist. */
14613
14614 static void
14615 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14616 struct type *type, struct dwarf2_cu *cu)
14617 {
14618 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14619 struct attribute *attr;
14620 int i;
14621 struct fnfieldlist *flp = nullptr;
14622 struct fn_field *fnp;
14623 const char *fieldname;
14624 struct type *this_type;
14625 enum dwarf_access_attribute accessibility;
14626
14627 if (cu->language == language_ada)
14628 error (_("unexpected member function in Ada type"));
14629
14630 /* Get name of member function. */
14631 fieldname = dwarf2_name (die, cu);
14632 if (fieldname == NULL)
14633 return;
14634
14635 /* Look up member function name in fieldlist. */
14636 for (i = 0; i < fip->fnfieldlists.size (); i++)
14637 {
14638 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14639 {
14640 flp = &fip->fnfieldlists[i];
14641 break;
14642 }
14643 }
14644
14645 /* Create a new fnfieldlist if necessary. */
14646 if (flp == nullptr)
14647 {
14648 fip->fnfieldlists.emplace_back ();
14649 flp = &fip->fnfieldlists.back ();
14650 flp->name = fieldname;
14651 i = fip->fnfieldlists.size () - 1;
14652 }
14653
14654 /* Create a new member function field and add it to the vector of
14655 fnfieldlists. */
14656 flp->fnfields.emplace_back ();
14657 fnp = &flp->fnfields.back ();
14658
14659 /* Delay processing of the physname until later. */
14660 if (cu->language == language_cplus)
14661 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14662 die, cu);
14663 else
14664 {
14665 const char *physname = dwarf2_physname (fieldname, die, cu);
14666 fnp->physname = physname ? physname : "";
14667 }
14668
14669 fnp->type = alloc_type (objfile);
14670 this_type = read_type_die (die, cu);
14671 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
14672 {
14673 int nparams = TYPE_NFIELDS (this_type);
14674
14675 /* TYPE is the domain of this method, and THIS_TYPE is the type
14676 of the method itself (TYPE_CODE_METHOD). */
14677 smash_to_method_type (fnp->type, type,
14678 TYPE_TARGET_TYPE (this_type),
14679 TYPE_FIELDS (this_type),
14680 TYPE_NFIELDS (this_type),
14681 TYPE_VARARGS (this_type));
14682
14683 /* Handle static member functions.
14684 Dwarf2 has no clean way to discern C++ static and non-static
14685 member functions. G++ helps GDB by marking the first
14686 parameter for non-static member functions (which is the this
14687 pointer) as artificial. We obtain this information from
14688 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14689 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14690 fnp->voffset = VOFFSET_STATIC;
14691 }
14692 else
14693 complaint (_("member function type missing for '%s'"),
14694 dwarf2_full_name (fieldname, die, cu));
14695
14696 /* Get fcontext from DW_AT_containing_type if present. */
14697 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14698 fnp->fcontext = die_containing_type (die, cu);
14699
14700 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14701 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14702
14703 /* Get accessibility. */
14704 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14705 if (attr != nullptr)
14706 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14707 else
14708 accessibility = dwarf2_default_access_attribute (die, cu);
14709 switch (accessibility)
14710 {
14711 case DW_ACCESS_private:
14712 fnp->is_private = 1;
14713 break;
14714 case DW_ACCESS_protected:
14715 fnp->is_protected = 1;
14716 break;
14717 }
14718
14719 /* Check for artificial methods. */
14720 attr = dwarf2_attr (die, DW_AT_artificial, cu);
14721 if (attr && DW_UNSND (attr) != 0)
14722 fnp->is_artificial = 1;
14723
14724 /* Check for defaulted methods. */
14725 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
14726 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
14727 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
14728
14729 /* Check for deleted methods. */
14730 attr = dwarf2_attr (die, DW_AT_deleted, cu);
14731 if (attr != nullptr && DW_UNSND (attr) != 0)
14732 fnp->is_deleted = 1;
14733
14734 fnp->is_constructor = dwarf2_is_constructor (die, cu);
14735
14736 /* Get index in virtual function table if it is a virtual member
14737 function. For older versions of GCC, this is an offset in the
14738 appropriate virtual table, as specified by DW_AT_containing_type.
14739 For everyone else, it is an expression to be evaluated relative
14740 to the object address. */
14741
14742 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
14743 if (attr != nullptr)
14744 {
14745 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
14746 {
14747 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
14748 {
14749 /* Old-style GCC. */
14750 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
14751 }
14752 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
14753 || (DW_BLOCK (attr)->size > 1
14754 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
14755 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
14756 {
14757 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
14758 if ((fnp->voffset % cu->header.addr_size) != 0)
14759 dwarf2_complex_location_expr_complaint ();
14760 else
14761 fnp->voffset /= cu->header.addr_size;
14762 fnp->voffset += 2;
14763 }
14764 else
14765 dwarf2_complex_location_expr_complaint ();
14766
14767 if (!fnp->fcontext)
14768 {
14769 /* If there is no `this' field and no DW_AT_containing_type,
14770 we cannot actually find a base class context for the
14771 vtable! */
14772 if (TYPE_NFIELDS (this_type) == 0
14773 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
14774 {
14775 complaint (_("cannot determine context for virtual member "
14776 "function \"%s\" (offset %s)"),
14777 fieldname, sect_offset_str (die->sect_off));
14778 }
14779 else
14780 {
14781 fnp->fcontext
14782 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
14783 }
14784 }
14785 }
14786 else if (attr->form_is_section_offset ())
14787 {
14788 dwarf2_complex_location_expr_complaint ();
14789 }
14790 else
14791 {
14792 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
14793 fieldname);
14794 }
14795 }
14796 else
14797 {
14798 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14799 if (attr && DW_UNSND (attr))
14800 {
14801 /* GCC does this, as of 2008-08-25; PR debug/37237. */
14802 complaint (_("Member function \"%s\" (offset %s) is virtual "
14803 "but the vtable offset is not specified"),
14804 fieldname, sect_offset_str (die->sect_off));
14805 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14806 TYPE_CPLUS_DYNAMIC (type) = 1;
14807 }
14808 }
14809 }
14810
14811 /* Create the vector of member function fields, and attach it to the type. */
14812
14813 static void
14814 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
14815 struct dwarf2_cu *cu)
14816 {
14817 if (cu->language == language_ada)
14818 error (_("unexpected member functions in Ada type"));
14819
14820 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14821 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
14822 TYPE_ALLOC (type,
14823 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
14824
14825 for (int i = 0; i < fip->fnfieldlists.size (); i++)
14826 {
14827 struct fnfieldlist &nf = fip->fnfieldlists[i];
14828 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
14829
14830 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
14831 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
14832 fn_flp->fn_fields = (struct fn_field *)
14833 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
14834
14835 for (int k = 0; k < nf.fnfields.size (); ++k)
14836 fn_flp->fn_fields[k] = nf.fnfields[k];
14837 }
14838
14839 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
14840 }
14841
14842 /* Returns non-zero if NAME is the name of a vtable member in CU's
14843 language, zero otherwise. */
14844 static int
14845 is_vtable_name (const char *name, struct dwarf2_cu *cu)
14846 {
14847 static const char vptr[] = "_vptr";
14848
14849 /* Look for the C++ form of the vtable. */
14850 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
14851 return 1;
14852
14853 return 0;
14854 }
14855
14856 /* GCC outputs unnamed structures that are really pointers to member
14857 functions, with the ABI-specified layout. If TYPE describes
14858 such a structure, smash it into a member function type.
14859
14860 GCC shouldn't do this; it should just output pointer to member DIEs.
14861 This is GCC PR debug/28767. */
14862
14863 static void
14864 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
14865 {
14866 struct type *pfn_type, *self_type, *new_type;
14867
14868 /* Check for a structure with no name and two children. */
14869 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
14870 return;
14871
14872 /* Check for __pfn and __delta members. */
14873 if (TYPE_FIELD_NAME (type, 0) == NULL
14874 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
14875 || TYPE_FIELD_NAME (type, 1) == NULL
14876 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
14877 return;
14878
14879 /* Find the type of the method. */
14880 pfn_type = TYPE_FIELD_TYPE (type, 0);
14881 if (pfn_type == NULL
14882 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
14883 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
14884 return;
14885
14886 /* Look for the "this" argument. */
14887 pfn_type = TYPE_TARGET_TYPE (pfn_type);
14888 if (TYPE_NFIELDS (pfn_type) == 0
14889 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
14890 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
14891 return;
14892
14893 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
14894 new_type = alloc_type (objfile);
14895 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
14896 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
14897 TYPE_VARARGS (pfn_type));
14898 smash_to_methodptr_type (type, new_type);
14899 }
14900
14901 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
14902 appropriate error checking and issuing complaints if there is a
14903 problem. */
14904
14905 static ULONGEST
14906 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
14907 {
14908 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
14909
14910 if (attr == nullptr)
14911 return 0;
14912
14913 if (!attr->form_is_constant ())
14914 {
14915 complaint (_("DW_AT_alignment must have constant form"
14916 " - DIE at %s [in module %s]"),
14917 sect_offset_str (die->sect_off),
14918 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14919 return 0;
14920 }
14921
14922 ULONGEST align;
14923 if (attr->form == DW_FORM_sdata)
14924 {
14925 LONGEST val = DW_SND (attr);
14926 if (val < 0)
14927 {
14928 complaint (_("DW_AT_alignment value must not be negative"
14929 " - DIE at %s [in module %s]"),
14930 sect_offset_str (die->sect_off),
14931 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14932 return 0;
14933 }
14934 align = val;
14935 }
14936 else
14937 align = DW_UNSND (attr);
14938
14939 if (align == 0)
14940 {
14941 complaint (_("DW_AT_alignment value must not be zero"
14942 " - DIE at %s [in module %s]"),
14943 sect_offset_str (die->sect_off),
14944 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14945 return 0;
14946 }
14947 if ((align & (align - 1)) != 0)
14948 {
14949 complaint (_("DW_AT_alignment value must be a power of 2"
14950 " - DIE at %s [in module %s]"),
14951 sect_offset_str (die->sect_off),
14952 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14953 return 0;
14954 }
14955
14956 return align;
14957 }
14958
14959 /* If the DIE has a DW_AT_alignment attribute, use its value to set
14960 the alignment for TYPE. */
14961
14962 static void
14963 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
14964 struct type *type)
14965 {
14966 if (!set_type_align (type, get_alignment (cu, die)))
14967 complaint (_("DW_AT_alignment value too large"
14968 " - DIE at %s [in module %s]"),
14969 sect_offset_str (die->sect_off),
14970 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
14971 }
14972
14973 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14974 constant for a type, according to DWARF5 spec, Table 5.5. */
14975
14976 static bool
14977 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
14978 {
14979 switch (value)
14980 {
14981 case DW_CC_normal:
14982 case DW_CC_pass_by_reference:
14983 case DW_CC_pass_by_value:
14984 return true;
14985
14986 default:
14987 complaint (_("unrecognized DW_AT_calling_convention value "
14988 "(%s) for a type"), pulongest (value));
14989 return false;
14990 }
14991 }
14992
14993 /* Check if the given VALUE is a valid enum dwarf_calling_convention
14994 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
14995 also according to GNU-specific values (see include/dwarf2.h). */
14996
14997 static bool
14998 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
14999 {
15000 switch (value)
15001 {
15002 case DW_CC_normal:
15003 case DW_CC_program:
15004 case DW_CC_nocall:
15005 return true;
15006
15007 case DW_CC_GNU_renesas_sh:
15008 case DW_CC_GNU_borland_fastcall_i386:
15009 case DW_CC_GDB_IBM_OpenCL:
15010 return true;
15011
15012 default:
15013 complaint (_("unrecognized DW_AT_calling_convention value "
15014 "(%s) for a subroutine"), pulongest (value));
15015 return false;
15016 }
15017 }
15018
15019 /* Called when we find the DIE that starts a structure or union scope
15020 (definition) to create a type for the structure or union. Fill in
15021 the type's name and general properties; the members will not be
15022 processed until process_structure_scope. A symbol table entry for
15023 the type will also not be done until process_structure_scope (assuming
15024 the type has a name).
15025
15026 NOTE: we need to call these functions regardless of whether or not the
15027 DIE has a DW_AT_name attribute, since it might be an anonymous
15028 structure or union. This gets the type entered into our set of
15029 user defined types. */
15030
15031 static struct type *
15032 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15033 {
15034 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15035 struct type *type;
15036 struct attribute *attr;
15037 const char *name;
15038
15039 /* If the definition of this type lives in .debug_types, read that type.
15040 Don't follow DW_AT_specification though, that will take us back up
15041 the chain and we want to go down. */
15042 attr = die->attr (DW_AT_signature);
15043 if (attr != nullptr)
15044 {
15045 type = get_DW_AT_signature_type (die, attr, cu);
15046
15047 /* The type's CU may not be the same as CU.
15048 Ensure TYPE is recorded with CU in die_type_hash. */
15049 return set_die_type (die, type, cu);
15050 }
15051
15052 type = alloc_type (objfile);
15053 INIT_CPLUS_SPECIFIC (type);
15054
15055 name = dwarf2_name (die, cu);
15056 if (name != NULL)
15057 {
15058 if (cu->language == language_cplus
15059 || cu->language == language_d
15060 || cu->language == language_rust)
15061 {
15062 const char *full_name = dwarf2_full_name (name, die, cu);
15063
15064 /* dwarf2_full_name might have already finished building the DIE's
15065 type. If so, there is no need to continue. */
15066 if (get_die_type (die, cu) != NULL)
15067 return get_die_type (die, cu);
15068
15069 TYPE_NAME (type) = full_name;
15070 }
15071 else
15072 {
15073 /* The name is already allocated along with this objfile, so
15074 we don't need to duplicate it for the type. */
15075 TYPE_NAME (type) = name;
15076 }
15077 }
15078
15079 if (die->tag == DW_TAG_structure_type)
15080 {
15081 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15082 }
15083 else if (die->tag == DW_TAG_union_type)
15084 {
15085 TYPE_CODE (type) = TYPE_CODE_UNION;
15086 }
15087 else if (die->tag == DW_TAG_variant_part)
15088 {
15089 TYPE_CODE (type) = TYPE_CODE_UNION;
15090 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15091 }
15092 else
15093 {
15094 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15095 }
15096
15097 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15098 TYPE_DECLARED_CLASS (type) = 1;
15099
15100 /* Store the calling convention in the type if it's available in
15101 the die. Otherwise the calling convention remains set to
15102 the default value DW_CC_normal. */
15103 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15104 if (attr != nullptr
15105 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15106 {
15107 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15108 TYPE_CPLUS_CALLING_CONVENTION (type)
15109 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15110 }
15111
15112 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15113 if (attr != nullptr)
15114 {
15115 if (attr->form_is_constant ())
15116 TYPE_LENGTH (type) = DW_UNSND (attr);
15117 else
15118 {
15119 /* For the moment, dynamic type sizes are not supported
15120 by GDB's struct type. The actual size is determined
15121 on-demand when resolving the type of a given object,
15122 so set the type's length to zero for now. Otherwise,
15123 we record an expression as the length, and that expression
15124 could lead to a very large value, which could eventually
15125 lead to us trying to allocate that much memory when creating
15126 a value of that type. */
15127 TYPE_LENGTH (type) = 0;
15128 }
15129 }
15130 else
15131 {
15132 TYPE_LENGTH (type) = 0;
15133 }
15134
15135 maybe_set_alignment (cu, die, type);
15136
15137 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15138 {
15139 /* ICC<14 does not output the required DW_AT_declaration on
15140 incomplete types, but gives them a size of zero. */
15141 TYPE_STUB (type) = 1;
15142 }
15143 else
15144 TYPE_STUB_SUPPORTED (type) = 1;
15145
15146 if (die_is_declaration (die, cu))
15147 TYPE_STUB (type) = 1;
15148 else if (attr == NULL && die->child == NULL
15149 && producer_is_realview (cu->producer))
15150 /* RealView does not output the required DW_AT_declaration
15151 on incomplete types. */
15152 TYPE_STUB (type) = 1;
15153
15154 /* We need to add the type field to the die immediately so we don't
15155 infinitely recurse when dealing with pointers to the structure
15156 type within the structure itself. */
15157 set_die_type (die, type, cu);
15158
15159 /* set_die_type should be already done. */
15160 set_descriptive_type (type, die, cu);
15161
15162 return type;
15163 }
15164
15165 /* A helper for process_structure_scope that handles a single member
15166 DIE. */
15167
15168 static void
15169 handle_struct_member_die (struct die_info *child_die, struct type *type,
15170 struct field_info *fi,
15171 std::vector<struct symbol *> *template_args,
15172 struct dwarf2_cu *cu)
15173 {
15174 if (child_die->tag == DW_TAG_member
15175 || child_die->tag == DW_TAG_variable
15176 || child_die->tag == DW_TAG_variant_part)
15177 {
15178 /* NOTE: carlton/2002-11-05: A C++ static data member
15179 should be a DW_TAG_member that is a declaration, but
15180 all versions of G++ as of this writing (so through at
15181 least 3.2.1) incorrectly generate DW_TAG_variable
15182 tags for them instead. */
15183 dwarf2_add_field (fi, child_die, cu);
15184 }
15185 else if (child_die->tag == DW_TAG_subprogram)
15186 {
15187 /* Rust doesn't have member functions in the C++ sense.
15188 However, it does emit ordinary functions as children
15189 of a struct DIE. */
15190 if (cu->language == language_rust)
15191 read_func_scope (child_die, cu);
15192 else
15193 {
15194 /* C++ member function. */
15195 dwarf2_add_member_fn (fi, child_die, type, cu);
15196 }
15197 }
15198 else if (child_die->tag == DW_TAG_inheritance)
15199 {
15200 /* C++ base class field. */
15201 dwarf2_add_field (fi, child_die, cu);
15202 }
15203 else if (type_can_define_types (child_die))
15204 dwarf2_add_type_defn (fi, child_die, cu);
15205 else if (child_die->tag == DW_TAG_template_type_param
15206 || child_die->tag == DW_TAG_template_value_param)
15207 {
15208 struct symbol *arg = new_symbol (child_die, NULL, cu);
15209
15210 if (arg != NULL)
15211 template_args->push_back (arg);
15212 }
15213 else if (child_die->tag == DW_TAG_variant)
15214 {
15215 /* In a variant we want to get the discriminant and also add a
15216 field for our sole member child. */
15217 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15218
15219 for (die_info *variant_child = child_die->child;
15220 variant_child != NULL;
15221 variant_child = variant_child->sibling)
15222 {
15223 if (variant_child->tag == DW_TAG_member)
15224 {
15225 handle_struct_member_die (variant_child, type, fi,
15226 template_args, cu);
15227 /* Only handle the one. */
15228 break;
15229 }
15230 }
15231
15232 /* We don't handle this but we might as well report it if we see
15233 it. */
15234 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15235 complaint (_("DW_AT_discr_list is not supported yet"
15236 " - DIE at %s [in module %s]"),
15237 sect_offset_str (child_die->sect_off),
15238 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15239
15240 /* The first field was just added, so we can stash the
15241 discriminant there. */
15242 gdb_assert (!fi->fields.empty ());
15243 if (discr == NULL)
15244 fi->fields.back ().variant.default_branch = true;
15245 else
15246 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15247 }
15248 }
15249
15250 /* Finish creating a structure or union type, including filling in
15251 its members and creating a symbol for it. */
15252
15253 static void
15254 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15255 {
15256 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15257 struct die_info *child_die;
15258 struct type *type;
15259
15260 type = get_die_type (die, cu);
15261 if (type == NULL)
15262 type = read_structure_type (die, cu);
15263
15264 /* When reading a DW_TAG_variant_part, we need to notice when we
15265 read the discriminant member, so we can record it later in the
15266 discriminant_info. */
15267 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
15268 sect_offset discr_offset {};
15269 bool has_template_parameters = false;
15270
15271 if (is_variant_part)
15272 {
15273 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15274 if (discr == NULL)
15275 {
15276 /* Maybe it's a univariant form, an extension we support.
15277 In this case arrange not to check the offset. */
15278 is_variant_part = false;
15279 }
15280 else if (discr->form_is_ref ())
15281 {
15282 struct dwarf2_cu *target_cu = cu;
15283 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15284
15285 discr_offset = target_die->sect_off;
15286 }
15287 else
15288 {
15289 complaint (_("DW_AT_discr does not have DIE reference form"
15290 " - DIE at %s [in module %s]"),
15291 sect_offset_str (die->sect_off),
15292 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15293 is_variant_part = false;
15294 }
15295 }
15296
15297 if (die->child != NULL && ! die_is_declaration (die, cu))
15298 {
15299 struct field_info fi;
15300 std::vector<struct symbol *> template_args;
15301
15302 child_die = die->child;
15303
15304 while (child_die && child_die->tag)
15305 {
15306 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15307
15308 if (is_variant_part && discr_offset == child_die->sect_off)
15309 fi.fields.back ().variant.is_discriminant = true;
15310
15311 child_die = child_die->sibling;
15312 }
15313
15314 /* Attach template arguments to type. */
15315 if (!template_args.empty ())
15316 {
15317 has_template_parameters = true;
15318 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15319 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15320 TYPE_TEMPLATE_ARGUMENTS (type)
15321 = XOBNEWVEC (&objfile->objfile_obstack,
15322 struct symbol *,
15323 TYPE_N_TEMPLATE_ARGUMENTS (type));
15324 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15325 template_args.data (),
15326 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15327 * sizeof (struct symbol *)));
15328 }
15329
15330 /* Attach fields and member functions to the type. */
15331 if (fi.nfields () > 0)
15332 dwarf2_attach_fields_to_type (&fi, type, cu);
15333 if (!fi.fnfieldlists.empty ())
15334 {
15335 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15336
15337 /* Get the type which refers to the base class (possibly this
15338 class itself) which contains the vtable pointer for the current
15339 class from the DW_AT_containing_type attribute. This use of
15340 DW_AT_containing_type is a GNU extension. */
15341
15342 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15343 {
15344 struct type *t = die_containing_type (die, cu);
15345
15346 set_type_vptr_basetype (type, t);
15347 if (type == t)
15348 {
15349 int i;
15350
15351 /* Our own class provides vtbl ptr. */
15352 for (i = TYPE_NFIELDS (t) - 1;
15353 i >= TYPE_N_BASECLASSES (t);
15354 --i)
15355 {
15356 const char *fieldname = TYPE_FIELD_NAME (t, i);
15357
15358 if (is_vtable_name (fieldname, cu))
15359 {
15360 set_type_vptr_fieldno (type, i);
15361 break;
15362 }
15363 }
15364
15365 /* Complain if virtual function table field not found. */
15366 if (i < TYPE_N_BASECLASSES (t))
15367 complaint (_("virtual function table pointer "
15368 "not found when defining class '%s'"),
15369 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15370 }
15371 else
15372 {
15373 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15374 }
15375 }
15376 else if (cu->producer
15377 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15378 {
15379 /* The IBM XLC compiler does not provide direct indication
15380 of the containing type, but the vtable pointer is
15381 always named __vfp. */
15382
15383 int i;
15384
15385 for (i = TYPE_NFIELDS (type) - 1;
15386 i >= TYPE_N_BASECLASSES (type);
15387 --i)
15388 {
15389 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15390 {
15391 set_type_vptr_fieldno (type, i);
15392 set_type_vptr_basetype (type, type);
15393 break;
15394 }
15395 }
15396 }
15397 }
15398
15399 /* Copy fi.typedef_field_list linked list elements content into the
15400 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15401 if (!fi.typedef_field_list.empty ())
15402 {
15403 int count = fi.typedef_field_list.size ();
15404
15405 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15406 TYPE_TYPEDEF_FIELD_ARRAY (type)
15407 = ((struct decl_field *)
15408 TYPE_ALLOC (type,
15409 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15410 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15411
15412 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15413 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15414 }
15415
15416 /* Copy fi.nested_types_list linked list elements content into the
15417 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15418 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15419 {
15420 int count = fi.nested_types_list.size ();
15421
15422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15423 TYPE_NESTED_TYPES_ARRAY (type)
15424 = ((struct decl_field *)
15425 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15426 TYPE_NESTED_TYPES_COUNT (type) = count;
15427
15428 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15429 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15430 }
15431 }
15432
15433 quirk_gcc_member_function_pointer (type, objfile);
15434 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15435 cu->rust_unions.push_back (type);
15436
15437 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15438 snapshots) has been known to create a die giving a declaration
15439 for a class that has, as a child, a die giving a definition for a
15440 nested class. So we have to process our children even if the
15441 current die is a declaration. Normally, of course, a declaration
15442 won't have any children at all. */
15443
15444 child_die = die->child;
15445
15446 while (child_die != NULL && child_die->tag)
15447 {
15448 if (child_die->tag == DW_TAG_member
15449 || child_die->tag == DW_TAG_variable
15450 || child_die->tag == DW_TAG_inheritance
15451 || child_die->tag == DW_TAG_template_value_param
15452 || child_die->tag == DW_TAG_template_type_param)
15453 {
15454 /* Do nothing. */
15455 }
15456 else
15457 process_die (child_die, cu);
15458
15459 child_die = child_die->sibling;
15460 }
15461
15462 /* Do not consider external references. According to the DWARF standard,
15463 these DIEs are identified by the fact that they have no byte_size
15464 attribute, and a declaration attribute. */
15465 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15466 || !die_is_declaration (die, cu))
15467 {
15468 struct symbol *sym = new_symbol (die, type, cu);
15469
15470 if (has_template_parameters)
15471 {
15472 struct symtab *symtab;
15473 if (sym != nullptr)
15474 symtab = symbol_symtab (sym);
15475 else if (cu->line_header != nullptr)
15476 {
15477 /* Any related symtab will do. */
15478 symtab
15479 = cu->line_header->file_names ()[0].symtab;
15480 }
15481 else
15482 {
15483 symtab = nullptr;
15484 complaint (_("could not find suitable "
15485 "symtab for template parameter"
15486 " - DIE at %s [in module %s]"),
15487 sect_offset_str (die->sect_off),
15488 objfile_name (objfile));
15489 }
15490
15491 if (symtab != nullptr)
15492 {
15493 /* Make sure that the symtab is set on the new symbols.
15494 Even though they don't appear in this symtab directly,
15495 other parts of gdb assume that symbols do, and this is
15496 reasonably true. */
15497 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15498 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15499 }
15500 }
15501 }
15502 }
15503
15504 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
15505 update TYPE using some information only available in DIE's children. */
15506
15507 static void
15508 update_enumeration_type_from_children (struct die_info *die,
15509 struct type *type,
15510 struct dwarf2_cu *cu)
15511 {
15512 struct die_info *child_die;
15513 int unsigned_enum = 1;
15514 int flag_enum = 1;
15515
15516 auto_obstack obstack;
15517
15518 for (child_die = die->child;
15519 child_die != NULL && child_die->tag;
15520 child_die = child_die->sibling)
15521 {
15522 struct attribute *attr;
15523 LONGEST value;
15524 const gdb_byte *bytes;
15525 struct dwarf2_locexpr_baton *baton;
15526 const char *name;
15527
15528 if (child_die->tag != DW_TAG_enumerator)
15529 continue;
15530
15531 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15532 if (attr == NULL)
15533 continue;
15534
15535 name = dwarf2_name (child_die, cu);
15536 if (name == NULL)
15537 name = "<anonymous enumerator>";
15538
15539 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15540 &value, &bytes, &baton);
15541 if (value < 0)
15542 {
15543 unsigned_enum = 0;
15544 flag_enum = 0;
15545 }
15546 else
15547 {
15548 if (count_one_bits_ll (value) >= 2)
15549 flag_enum = 0;
15550 }
15551
15552 /* If we already know that the enum type is neither unsigned, nor
15553 a flag type, no need to look at the rest of the enumerates. */
15554 if (!unsigned_enum && !flag_enum)
15555 break;
15556 }
15557
15558 if (unsigned_enum)
15559 TYPE_UNSIGNED (type) = 1;
15560 if (flag_enum)
15561 TYPE_FLAG_ENUM (type) = 1;
15562 }
15563
15564 /* Given a DW_AT_enumeration_type die, set its type. We do not
15565 complete the type's fields yet, or create any symbols. */
15566
15567 static struct type *
15568 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15569 {
15570 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15571 struct type *type;
15572 struct attribute *attr;
15573 const char *name;
15574
15575 /* If the definition of this type lives in .debug_types, read that type.
15576 Don't follow DW_AT_specification though, that will take us back up
15577 the chain and we want to go down. */
15578 attr = die->attr (DW_AT_signature);
15579 if (attr != nullptr)
15580 {
15581 type = get_DW_AT_signature_type (die, attr, cu);
15582
15583 /* The type's CU may not be the same as CU.
15584 Ensure TYPE is recorded with CU in die_type_hash. */
15585 return set_die_type (die, type, cu);
15586 }
15587
15588 type = alloc_type (objfile);
15589
15590 TYPE_CODE (type) = TYPE_CODE_ENUM;
15591 name = dwarf2_full_name (NULL, die, cu);
15592 if (name != NULL)
15593 TYPE_NAME (type) = name;
15594
15595 attr = dwarf2_attr (die, DW_AT_type, cu);
15596 if (attr != NULL)
15597 {
15598 struct type *underlying_type = die_type (die, cu);
15599
15600 TYPE_TARGET_TYPE (type) = underlying_type;
15601 }
15602
15603 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15604 if (attr != nullptr)
15605 {
15606 TYPE_LENGTH (type) = DW_UNSND (attr);
15607 }
15608 else
15609 {
15610 TYPE_LENGTH (type) = 0;
15611 }
15612
15613 maybe_set_alignment (cu, die, type);
15614
15615 /* The enumeration DIE can be incomplete. In Ada, any type can be
15616 declared as private in the package spec, and then defined only
15617 inside the package body. Such types are known as Taft Amendment
15618 Types. When another package uses such a type, an incomplete DIE
15619 may be generated by the compiler. */
15620 if (die_is_declaration (die, cu))
15621 TYPE_STUB (type) = 1;
15622
15623 /* Finish the creation of this type by using the enum's children.
15624 We must call this even when the underlying type has been provided
15625 so that we can determine if we're looking at a "flag" enum. */
15626 update_enumeration_type_from_children (die, type, cu);
15627
15628 /* If this type has an underlying type that is not a stub, then we
15629 may use its attributes. We always use the "unsigned" attribute
15630 in this situation, because ordinarily we guess whether the type
15631 is unsigned -- but the guess can be wrong and the underlying type
15632 can tell us the reality. However, we defer to a local size
15633 attribute if one exists, because this lets the compiler override
15634 the underlying type if needed. */
15635 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15636 {
15637 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15638 underlying_type = check_typedef (underlying_type);
15639 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15640 if (TYPE_LENGTH (type) == 0)
15641 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15642 if (TYPE_RAW_ALIGN (type) == 0
15643 && TYPE_RAW_ALIGN (underlying_type) != 0)
15644 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15645 }
15646
15647 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15648
15649 return set_die_type (die, type, cu);
15650 }
15651
15652 /* Given a pointer to a die which begins an enumeration, process all
15653 the dies that define the members of the enumeration, and create the
15654 symbol for the enumeration type.
15655
15656 NOTE: We reverse the order of the element list. */
15657
15658 static void
15659 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
15660 {
15661 struct type *this_type;
15662
15663 this_type = get_die_type (die, cu);
15664 if (this_type == NULL)
15665 this_type = read_enumeration_type (die, cu);
15666
15667 if (die->child != NULL)
15668 {
15669 struct die_info *child_die;
15670 struct symbol *sym;
15671 std::vector<struct field> fields;
15672 const char *name;
15673
15674 child_die = die->child;
15675 while (child_die && child_die->tag)
15676 {
15677 if (child_die->tag != DW_TAG_enumerator)
15678 {
15679 process_die (child_die, cu);
15680 }
15681 else
15682 {
15683 name = dwarf2_name (child_die, cu);
15684 if (name)
15685 {
15686 sym = new_symbol (child_die, this_type, cu);
15687
15688 fields.emplace_back ();
15689 struct field &field = fields.back ();
15690
15691 FIELD_NAME (field) = sym->linkage_name ();
15692 FIELD_TYPE (field) = NULL;
15693 SET_FIELD_ENUMVAL (field, SYMBOL_VALUE (sym));
15694 FIELD_BITSIZE (field) = 0;
15695 }
15696 }
15697
15698 child_die = child_die->sibling;
15699 }
15700
15701 if (!fields.empty ())
15702 {
15703 TYPE_NFIELDS (this_type) = fields.size ();
15704 TYPE_FIELDS (this_type) = (struct field *)
15705 TYPE_ALLOC (this_type, sizeof (struct field) * fields.size ());
15706 memcpy (TYPE_FIELDS (this_type), fields.data (),
15707 sizeof (struct field) * fields.size ());
15708 }
15709 }
15710
15711 /* If we are reading an enum from a .debug_types unit, and the enum
15712 is a declaration, and the enum is not the signatured type in the
15713 unit, then we do not want to add a symbol for it. Adding a
15714 symbol would in some cases obscure the true definition of the
15715 enum, giving users an incomplete type when the definition is
15716 actually available. Note that we do not want to do this for all
15717 enums which are just declarations, because C++0x allows forward
15718 enum declarations. */
15719 if (cu->per_cu->is_debug_types
15720 && die_is_declaration (die, cu))
15721 {
15722 struct signatured_type *sig_type;
15723
15724 sig_type = (struct signatured_type *) cu->per_cu;
15725 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
15726 if (sig_type->type_offset_in_section != die->sect_off)
15727 return;
15728 }
15729
15730 new_symbol (die, this_type, cu);
15731 }
15732
15733 /* Extract all information from a DW_TAG_array_type DIE and put it in
15734 the DIE's type field. For now, this only handles one dimensional
15735 arrays. */
15736
15737 static struct type *
15738 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
15739 {
15740 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15741 struct die_info *child_die;
15742 struct type *type;
15743 struct type *element_type, *range_type, *index_type;
15744 struct attribute *attr;
15745 const char *name;
15746 struct dynamic_prop *byte_stride_prop = NULL;
15747 unsigned int bit_stride = 0;
15748
15749 element_type = die_type (die, cu);
15750
15751 /* The die_type call above may have already set the type for this DIE. */
15752 type = get_die_type (die, cu);
15753 if (type)
15754 return type;
15755
15756 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
15757 if (attr != NULL)
15758 {
15759 int stride_ok;
15760 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
15761
15762 byte_stride_prop
15763 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
15764 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
15765 prop_type);
15766 if (!stride_ok)
15767 {
15768 complaint (_("unable to read array DW_AT_byte_stride "
15769 " - DIE at %s [in module %s]"),
15770 sect_offset_str (die->sect_off),
15771 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15772 /* Ignore this attribute. We will likely not be able to print
15773 arrays of this type correctly, but there is little we can do
15774 to help if we cannot read the attribute's value. */
15775 byte_stride_prop = NULL;
15776 }
15777 }
15778
15779 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
15780 if (attr != NULL)
15781 bit_stride = DW_UNSND (attr);
15782
15783 /* Irix 6.2 native cc creates array types without children for
15784 arrays with unspecified length. */
15785 if (die->child == NULL)
15786 {
15787 index_type = objfile_type (objfile)->builtin_int;
15788 range_type = create_static_range_type (NULL, index_type, 0, -1);
15789 type = create_array_type_with_stride (NULL, element_type, range_type,
15790 byte_stride_prop, bit_stride);
15791 return set_die_type (die, type, cu);
15792 }
15793
15794 std::vector<struct type *> range_types;
15795 child_die = die->child;
15796 while (child_die && child_die->tag)
15797 {
15798 if (child_die->tag == DW_TAG_subrange_type)
15799 {
15800 struct type *child_type = read_type_die (child_die, cu);
15801
15802 if (child_type != NULL)
15803 {
15804 /* The range type was succesfully read. Save it for the
15805 array type creation. */
15806 range_types.push_back (child_type);
15807 }
15808 }
15809 child_die = child_die->sibling;
15810 }
15811
15812 /* Dwarf2 dimensions are output from left to right, create the
15813 necessary array types in backwards order. */
15814
15815 type = element_type;
15816
15817 if (read_array_order (die, cu) == DW_ORD_col_major)
15818 {
15819 int i = 0;
15820
15821 while (i < range_types.size ())
15822 type = create_array_type_with_stride (NULL, type, range_types[i++],
15823 byte_stride_prop, bit_stride);
15824 }
15825 else
15826 {
15827 size_t ndim = range_types.size ();
15828 while (ndim-- > 0)
15829 type = create_array_type_with_stride (NULL, type, range_types[ndim],
15830 byte_stride_prop, bit_stride);
15831 }
15832
15833 /* Understand Dwarf2 support for vector types (like they occur on
15834 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
15835 array type. This is not part of the Dwarf2/3 standard yet, but a
15836 custom vendor extension. The main difference between a regular
15837 array and the vector variant is that vectors are passed by value
15838 to functions. */
15839 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
15840 if (attr != nullptr)
15841 make_vector_type (type);
15842
15843 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
15844 implementation may choose to implement triple vectors using this
15845 attribute. */
15846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15847 if (attr != nullptr)
15848 {
15849 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
15850 TYPE_LENGTH (type) = DW_UNSND (attr);
15851 else
15852 complaint (_("DW_AT_byte_size for array type smaller "
15853 "than the total size of elements"));
15854 }
15855
15856 name = dwarf2_name (die, cu);
15857 if (name)
15858 TYPE_NAME (type) = name;
15859
15860 maybe_set_alignment (cu, die, type);
15861
15862 /* Install the type in the die. */
15863 set_die_type (die, type, cu);
15864
15865 /* set_die_type should be already done. */
15866 set_descriptive_type (type, die, cu);
15867
15868 return type;
15869 }
15870
15871 static enum dwarf_array_dim_ordering
15872 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
15873 {
15874 struct attribute *attr;
15875
15876 attr = dwarf2_attr (die, DW_AT_ordering, cu);
15877
15878 if (attr != nullptr)
15879 return (enum dwarf_array_dim_ordering) DW_SND (attr);
15880
15881 /* GNU F77 is a special case, as at 08/2004 array type info is the
15882 opposite order to the dwarf2 specification, but data is still
15883 laid out as per normal fortran.
15884
15885 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
15886 version checking. */
15887
15888 if (cu->language == language_fortran
15889 && cu->producer && strstr (cu->producer, "GNU F77"))
15890 {
15891 return DW_ORD_row_major;
15892 }
15893
15894 switch (cu->language_defn->la_array_ordering)
15895 {
15896 case array_column_major:
15897 return DW_ORD_col_major;
15898 case array_row_major:
15899 default:
15900 return DW_ORD_row_major;
15901 };
15902 }
15903
15904 /* Extract all information from a DW_TAG_set_type DIE and put it in
15905 the DIE's type field. */
15906
15907 static struct type *
15908 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
15909 {
15910 struct type *domain_type, *set_type;
15911 struct attribute *attr;
15912
15913 domain_type = die_type (die, cu);
15914
15915 /* The die_type call above may have already set the type for this DIE. */
15916 set_type = get_die_type (die, cu);
15917 if (set_type)
15918 return set_type;
15919
15920 set_type = create_set_type (NULL, domain_type);
15921
15922 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15923 if (attr != nullptr)
15924 TYPE_LENGTH (set_type) = DW_UNSND (attr);
15925
15926 maybe_set_alignment (cu, die, set_type);
15927
15928 return set_die_type (die, set_type, cu);
15929 }
15930
15931 /* A helper for read_common_block that creates a locexpr baton.
15932 SYM is the symbol which we are marking as computed.
15933 COMMON_DIE is the DIE for the common block.
15934 COMMON_LOC is the location expression attribute for the common
15935 block itself.
15936 MEMBER_LOC is the location expression attribute for the particular
15937 member of the common block that we are processing.
15938 CU is the CU from which the above come. */
15939
15940 static void
15941 mark_common_block_symbol_computed (struct symbol *sym,
15942 struct die_info *common_die,
15943 struct attribute *common_loc,
15944 struct attribute *member_loc,
15945 struct dwarf2_cu *cu)
15946 {
15947 struct dwarf2_per_objfile *dwarf2_per_objfile
15948 = cu->per_cu->dwarf2_per_objfile;
15949 struct objfile *objfile = dwarf2_per_objfile->objfile;
15950 struct dwarf2_locexpr_baton *baton;
15951 gdb_byte *ptr;
15952 unsigned int cu_off;
15953 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
15954 LONGEST offset = 0;
15955
15956 gdb_assert (common_loc && member_loc);
15957 gdb_assert (common_loc->form_is_block ());
15958 gdb_assert (member_loc->form_is_block ()
15959 || member_loc->form_is_constant ());
15960
15961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
15962 baton->per_cu = cu->per_cu;
15963 gdb_assert (baton->per_cu);
15964
15965 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
15966
15967 if (member_loc->form_is_constant ())
15968 {
15969 offset = member_loc->constant_value (0);
15970 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
15971 }
15972 else
15973 baton->size += DW_BLOCK (member_loc)->size;
15974
15975 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
15976 baton->data = ptr;
15977
15978 *ptr++ = DW_OP_call4;
15979 cu_off = common_die->sect_off - cu->per_cu->sect_off;
15980 store_unsigned_integer (ptr, 4, byte_order, cu_off);
15981 ptr += 4;
15982
15983 if (member_loc->form_is_constant ())
15984 {
15985 *ptr++ = DW_OP_addr;
15986 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
15987 ptr += cu->header.addr_size;
15988 }
15989 else
15990 {
15991 /* We have to copy the data here, because DW_OP_call4 will only
15992 use a DW_AT_location attribute. */
15993 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
15994 ptr += DW_BLOCK (member_loc)->size;
15995 }
15996
15997 *ptr++ = DW_OP_plus;
15998 gdb_assert (ptr - baton->data == baton->size);
15999
16000 SYMBOL_LOCATION_BATON (sym) = baton;
16001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16002 }
16003
16004 /* Create appropriate locally-scoped variables for all the
16005 DW_TAG_common_block entries. Also create a struct common_block
16006 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16007 is used to separate the common blocks name namespace from regular
16008 variable names. */
16009
16010 static void
16011 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16012 {
16013 struct attribute *attr;
16014
16015 attr = dwarf2_attr (die, DW_AT_location, cu);
16016 if (attr != nullptr)
16017 {
16018 /* Support the .debug_loc offsets. */
16019 if (attr->form_is_block ())
16020 {
16021 /* Ok. */
16022 }
16023 else if (attr->form_is_section_offset ())
16024 {
16025 dwarf2_complex_location_expr_complaint ();
16026 attr = NULL;
16027 }
16028 else
16029 {
16030 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16031 "common block member");
16032 attr = NULL;
16033 }
16034 }
16035
16036 if (die->child != NULL)
16037 {
16038 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16039 struct die_info *child_die;
16040 size_t n_entries = 0, size;
16041 struct common_block *common_block;
16042 struct symbol *sym;
16043
16044 for (child_die = die->child;
16045 child_die && child_die->tag;
16046 child_die = child_die->sibling)
16047 ++n_entries;
16048
16049 size = (sizeof (struct common_block)
16050 + (n_entries - 1) * sizeof (struct symbol *));
16051 common_block
16052 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16053 size);
16054 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16055 common_block->n_entries = 0;
16056
16057 for (child_die = die->child;
16058 child_die && child_die->tag;
16059 child_die = child_die->sibling)
16060 {
16061 /* Create the symbol in the DW_TAG_common_block block in the current
16062 symbol scope. */
16063 sym = new_symbol (child_die, NULL, cu);
16064 if (sym != NULL)
16065 {
16066 struct attribute *member_loc;
16067
16068 common_block->contents[common_block->n_entries++] = sym;
16069
16070 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16071 cu);
16072 if (member_loc)
16073 {
16074 /* GDB has handled this for a long time, but it is
16075 not specified by DWARF. It seems to have been
16076 emitted by gfortran at least as recently as:
16077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16078 complaint (_("Variable in common block has "
16079 "DW_AT_data_member_location "
16080 "- DIE at %s [in module %s]"),
16081 sect_offset_str (child_die->sect_off),
16082 objfile_name (objfile));
16083
16084 if (member_loc->form_is_section_offset ())
16085 dwarf2_complex_location_expr_complaint ();
16086 else if (member_loc->form_is_constant ()
16087 || member_loc->form_is_block ())
16088 {
16089 if (attr != nullptr)
16090 mark_common_block_symbol_computed (sym, die, attr,
16091 member_loc, cu);
16092 }
16093 else
16094 dwarf2_complex_location_expr_complaint ();
16095 }
16096 }
16097 }
16098
16099 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16100 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16101 }
16102 }
16103
16104 /* Create a type for a C++ namespace. */
16105
16106 static struct type *
16107 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16108 {
16109 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16110 const char *previous_prefix, *name;
16111 int is_anonymous;
16112 struct type *type;
16113
16114 /* For extensions, reuse the type of the original namespace. */
16115 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16116 {
16117 struct die_info *ext_die;
16118 struct dwarf2_cu *ext_cu = cu;
16119
16120 ext_die = dwarf2_extension (die, &ext_cu);
16121 type = read_type_die (ext_die, ext_cu);
16122
16123 /* EXT_CU may not be the same as CU.
16124 Ensure TYPE is recorded with CU in die_type_hash. */
16125 return set_die_type (die, type, cu);
16126 }
16127
16128 name = namespace_name (die, &is_anonymous, cu);
16129
16130 /* Now build the name of the current namespace. */
16131
16132 previous_prefix = determine_prefix (die, cu);
16133 if (previous_prefix[0] != '\0')
16134 name = typename_concat (&objfile->objfile_obstack,
16135 previous_prefix, name, 0, cu);
16136
16137 /* Create the type. */
16138 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16139
16140 return set_die_type (die, type, cu);
16141 }
16142
16143 /* Read a namespace scope. */
16144
16145 static void
16146 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16147 {
16148 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16149 int is_anonymous;
16150
16151 /* Add a symbol associated to this if we haven't seen the namespace
16152 before. Also, add a using directive if it's an anonymous
16153 namespace. */
16154
16155 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16156 {
16157 struct type *type;
16158
16159 type = read_type_die (die, cu);
16160 new_symbol (die, type, cu);
16161
16162 namespace_name (die, &is_anonymous, cu);
16163 if (is_anonymous)
16164 {
16165 const char *previous_prefix = determine_prefix (die, cu);
16166
16167 std::vector<const char *> excludes;
16168 add_using_directive (using_directives (cu),
16169 previous_prefix, TYPE_NAME (type), NULL,
16170 NULL, excludes, 0, &objfile->objfile_obstack);
16171 }
16172 }
16173
16174 if (die->child != NULL)
16175 {
16176 struct die_info *child_die = die->child;
16177
16178 while (child_die && child_die->tag)
16179 {
16180 process_die (child_die, cu);
16181 child_die = child_die->sibling;
16182 }
16183 }
16184 }
16185
16186 /* Read a Fortran module as type. This DIE can be only a declaration used for
16187 imported module. Still we need that type as local Fortran "use ... only"
16188 declaration imports depend on the created type in determine_prefix. */
16189
16190 static struct type *
16191 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16192 {
16193 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16194 const char *module_name;
16195 struct type *type;
16196
16197 module_name = dwarf2_name (die, cu);
16198 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16199
16200 return set_die_type (die, type, cu);
16201 }
16202
16203 /* Read a Fortran module. */
16204
16205 static void
16206 read_module (struct die_info *die, struct dwarf2_cu *cu)
16207 {
16208 struct die_info *child_die = die->child;
16209 struct type *type;
16210
16211 type = read_type_die (die, cu);
16212 new_symbol (die, type, cu);
16213
16214 while (child_die && child_die->tag)
16215 {
16216 process_die (child_die, cu);
16217 child_die = child_die->sibling;
16218 }
16219 }
16220
16221 /* Return the name of the namespace represented by DIE. Set
16222 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16223 namespace. */
16224
16225 static const char *
16226 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16227 {
16228 struct die_info *current_die;
16229 const char *name = NULL;
16230
16231 /* Loop through the extensions until we find a name. */
16232
16233 for (current_die = die;
16234 current_die != NULL;
16235 current_die = dwarf2_extension (die, &cu))
16236 {
16237 /* We don't use dwarf2_name here so that we can detect the absence
16238 of a name -> anonymous namespace. */
16239 name = dwarf2_string_attr (die, DW_AT_name, cu);
16240
16241 if (name != NULL)
16242 break;
16243 }
16244
16245 /* Is it an anonymous namespace? */
16246
16247 *is_anonymous = (name == NULL);
16248 if (*is_anonymous)
16249 name = CP_ANONYMOUS_NAMESPACE_STR;
16250
16251 return name;
16252 }
16253
16254 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16255 the user defined type vector. */
16256
16257 static struct type *
16258 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16259 {
16260 struct gdbarch *gdbarch
16261 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16262 struct comp_unit_head *cu_header = &cu->header;
16263 struct type *type;
16264 struct attribute *attr_byte_size;
16265 struct attribute *attr_address_class;
16266 int byte_size, addr_class;
16267 struct type *target_type;
16268
16269 target_type = die_type (die, cu);
16270
16271 /* The die_type call above may have already set the type for this DIE. */
16272 type = get_die_type (die, cu);
16273 if (type)
16274 return type;
16275
16276 type = lookup_pointer_type (target_type);
16277
16278 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16279 if (attr_byte_size)
16280 byte_size = DW_UNSND (attr_byte_size);
16281 else
16282 byte_size = cu_header->addr_size;
16283
16284 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16285 if (attr_address_class)
16286 addr_class = DW_UNSND (attr_address_class);
16287 else
16288 addr_class = DW_ADDR_none;
16289
16290 ULONGEST alignment = get_alignment (cu, die);
16291
16292 /* If the pointer size, alignment, or address class is different
16293 than the default, create a type variant marked as such and set
16294 the length accordingly. */
16295 if (TYPE_LENGTH (type) != byte_size
16296 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16297 && alignment != TYPE_RAW_ALIGN (type))
16298 || addr_class != DW_ADDR_none)
16299 {
16300 if (gdbarch_address_class_type_flags_p (gdbarch))
16301 {
16302 int type_flags;
16303
16304 type_flags = gdbarch_address_class_type_flags
16305 (gdbarch, byte_size, addr_class);
16306 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16307 == 0);
16308 type = make_type_with_address_space (type, type_flags);
16309 }
16310 else if (TYPE_LENGTH (type) != byte_size)
16311 {
16312 complaint (_("invalid pointer size %d"), byte_size);
16313 }
16314 else if (TYPE_RAW_ALIGN (type) != alignment)
16315 {
16316 complaint (_("Invalid DW_AT_alignment"
16317 " - DIE at %s [in module %s]"),
16318 sect_offset_str (die->sect_off),
16319 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16320 }
16321 else
16322 {
16323 /* Should we also complain about unhandled address classes? */
16324 }
16325 }
16326
16327 TYPE_LENGTH (type) = byte_size;
16328 set_type_align (type, alignment);
16329 return set_die_type (die, type, cu);
16330 }
16331
16332 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16333 the user defined type vector. */
16334
16335 static struct type *
16336 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16337 {
16338 struct type *type;
16339 struct type *to_type;
16340 struct type *domain;
16341
16342 to_type = die_type (die, cu);
16343 domain = die_containing_type (die, cu);
16344
16345 /* The calls above may have already set the type for this DIE. */
16346 type = get_die_type (die, cu);
16347 if (type)
16348 return type;
16349
16350 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
16351 type = lookup_methodptr_type (to_type);
16352 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
16353 {
16354 struct type *new_type
16355 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16356
16357 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16358 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16359 TYPE_VARARGS (to_type));
16360 type = lookup_methodptr_type (new_type);
16361 }
16362 else
16363 type = lookup_memberptr_type (to_type, domain);
16364
16365 return set_die_type (die, type, cu);
16366 }
16367
16368 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16369 the user defined type vector. */
16370
16371 static struct type *
16372 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16373 enum type_code refcode)
16374 {
16375 struct comp_unit_head *cu_header = &cu->header;
16376 struct type *type, *target_type;
16377 struct attribute *attr;
16378
16379 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16380
16381 target_type = die_type (die, cu);
16382
16383 /* The die_type call above may have already set the type for this DIE. */
16384 type = get_die_type (die, cu);
16385 if (type)
16386 return type;
16387
16388 type = lookup_reference_type (target_type, refcode);
16389 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16390 if (attr != nullptr)
16391 {
16392 TYPE_LENGTH (type) = DW_UNSND (attr);
16393 }
16394 else
16395 {
16396 TYPE_LENGTH (type) = cu_header->addr_size;
16397 }
16398 maybe_set_alignment (cu, die, type);
16399 return set_die_type (die, type, cu);
16400 }
16401
16402 /* Add the given cv-qualifiers to the element type of the array. GCC
16403 outputs DWARF type qualifiers that apply to an array, not the
16404 element type. But GDB relies on the array element type to carry
16405 the cv-qualifiers. This mimics section 6.7.3 of the C99
16406 specification. */
16407
16408 static struct type *
16409 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16410 struct type *base_type, int cnst, int voltl)
16411 {
16412 struct type *el_type, *inner_array;
16413
16414 base_type = copy_type (base_type);
16415 inner_array = base_type;
16416
16417 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
16418 {
16419 TYPE_TARGET_TYPE (inner_array) =
16420 copy_type (TYPE_TARGET_TYPE (inner_array));
16421 inner_array = TYPE_TARGET_TYPE (inner_array);
16422 }
16423
16424 el_type = TYPE_TARGET_TYPE (inner_array);
16425 cnst |= TYPE_CONST (el_type);
16426 voltl |= TYPE_VOLATILE (el_type);
16427 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16428
16429 return set_die_type (die, base_type, cu);
16430 }
16431
16432 static struct type *
16433 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16434 {
16435 struct type *base_type, *cv_type;
16436
16437 base_type = die_type (die, cu);
16438
16439 /* The die_type call above may have already set the type for this DIE. */
16440 cv_type = get_die_type (die, cu);
16441 if (cv_type)
16442 return cv_type;
16443
16444 /* In case the const qualifier is applied to an array type, the element type
16445 is so qualified, not the array type (section 6.7.3 of C99). */
16446 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16447 return add_array_cv_type (die, cu, base_type, 1, 0);
16448
16449 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16450 return set_die_type (die, cv_type, cu);
16451 }
16452
16453 static struct type *
16454 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16455 {
16456 struct type *base_type, *cv_type;
16457
16458 base_type = die_type (die, cu);
16459
16460 /* The die_type call above may have already set the type for this DIE. */
16461 cv_type = get_die_type (die, cu);
16462 if (cv_type)
16463 return cv_type;
16464
16465 /* In case the volatile qualifier is applied to an array type, the
16466 element type is so qualified, not the array type (section 6.7.3
16467 of C99). */
16468 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
16469 return add_array_cv_type (die, cu, base_type, 0, 1);
16470
16471 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16472 return set_die_type (die, cv_type, cu);
16473 }
16474
16475 /* Handle DW_TAG_restrict_type. */
16476
16477 static struct type *
16478 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16479 {
16480 struct type *base_type, *cv_type;
16481
16482 base_type = die_type (die, cu);
16483
16484 /* The die_type call above may have already set the type for this DIE. */
16485 cv_type = get_die_type (die, cu);
16486 if (cv_type)
16487 return cv_type;
16488
16489 cv_type = make_restrict_type (base_type);
16490 return set_die_type (die, cv_type, cu);
16491 }
16492
16493 /* Handle DW_TAG_atomic_type. */
16494
16495 static struct type *
16496 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16497 {
16498 struct type *base_type, *cv_type;
16499
16500 base_type = die_type (die, cu);
16501
16502 /* The die_type call above may have already set the type for this DIE. */
16503 cv_type = get_die_type (die, cu);
16504 if (cv_type)
16505 return cv_type;
16506
16507 cv_type = make_atomic_type (base_type);
16508 return set_die_type (die, cv_type, cu);
16509 }
16510
16511 /* Extract all information from a DW_TAG_string_type DIE and add to
16512 the user defined type vector. It isn't really a user defined type,
16513 but it behaves like one, with other DIE's using an AT_user_def_type
16514 attribute to reference it. */
16515
16516 static struct type *
16517 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16518 {
16519 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16520 struct gdbarch *gdbarch = objfile->arch ();
16521 struct type *type, *range_type, *index_type, *char_type;
16522 struct attribute *attr;
16523 struct dynamic_prop prop;
16524 bool length_is_constant = true;
16525 LONGEST length;
16526
16527 /* There are a couple of places where bit sizes might be made use of
16528 when parsing a DW_TAG_string_type, however, no producer that we know
16529 of make use of these. Handling bit sizes that are a multiple of the
16530 byte size is easy enough, but what about other bit sizes? Lets deal
16531 with that problem when we have to. Warn about these attributes being
16532 unsupported, then parse the type and ignore them like we always
16533 have. */
16534 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16535 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16536 {
16537 static bool warning_printed = false;
16538 if (!warning_printed)
16539 {
16540 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16541 "currently supported on DW_TAG_string_type."));
16542 warning_printed = true;
16543 }
16544 }
16545
16546 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16547 if (attr != nullptr && !attr->form_is_constant ())
16548 {
16549 /* The string length describes the location at which the length of
16550 the string can be found. The size of the length field can be
16551 specified with one of the attributes below. */
16552 struct type *prop_type;
16553 struct attribute *len
16554 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16555 if (len == nullptr)
16556 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16557 if (len != nullptr && len->form_is_constant ())
16558 {
16559 /* Pass 0 as the default as we know this attribute is constant
16560 and the default value will not be returned. */
16561 LONGEST sz = len->constant_value (0);
16562 prop_type = cu->per_cu->int_type (sz, true);
16563 }
16564 else
16565 {
16566 /* If the size is not specified then we assume it is the size of
16567 an address on this target. */
16568 prop_type = cu->per_cu->addr_sized_int_type (true);
16569 }
16570
16571 /* Convert the attribute into a dynamic property. */
16572 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16573 length = 1;
16574 else
16575 length_is_constant = false;
16576 }
16577 else if (attr != nullptr)
16578 {
16579 /* This DW_AT_string_length just contains the length with no
16580 indirection. There's no need to create a dynamic property in this
16581 case. Pass 0 for the default value as we know it will not be
16582 returned in this case. */
16583 length = attr->constant_value (0);
16584 }
16585 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16586 {
16587 /* We don't currently support non-constant byte sizes for strings. */
16588 length = attr->constant_value (1);
16589 }
16590 else
16591 {
16592 /* Use 1 as a fallback length if we have nothing else. */
16593 length = 1;
16594 }
16595
16596 index_type = objfile_type (objfile)->builtin_int;
16597 if (length_is_constant)
16598 range_type = create_static_range_type (NULL, index_type, 1, length);
16599 else
16600 {
16601 struct dynamic_prop low_bound;
16602
16603 low_bound.kind = PROP_CONST;
16604 low_bound.data.const_val = 1;
16605 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16606 }
16607 char_type = language_string_char_type (cu->language_defn, gdbarch);
16608 type = create_string_type (NULL, char_type, range_type);
16609
16610 return set_die_type (die, type, cu);
16611 }
16612
16613 /* Assuming that DIE corresponds to a function, returns nonzero
16614 if the function is prototyped. */
16615
16616 static int
16617 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16618 {
16619 struct attribute *attr;
16620
16621 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16622 if (attr && (DW_UNSND (attr) != 0))
16623 return 1;
16624
16625 /* The DWARF standard implies that the DW_AT_prototyped attribute
16626 is only meaningful for C, but the concept also extends to other
16627 languages that allow unprototyped functions (Eg: Objective C).
16628 For all other languages, assume that functions are always
16629 prototyped. */
16630 if (cu->language != language_c
16631 && cu->language != language_objc
16632 && cu->language != language_opencl)
16633 return 1;
16634
16635 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16636 prototyped and unprototyped functions; default to prototyped,
16637 since that is more common in modern code (and RealView warns
16638 about unprototyped functions). */
16639 if (producer_is_realview (cu->producer))
16640 return 1;
16641
16642 return 0;
16643 }
16644
16645 /* Handle DIES due to C code like:
16646
16647 struct foo
16648 {
16649 int (*funcp)(int a, long l);
16650 int b;
16651 };
16652
16653 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16654
16655 static struct type *
16656 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16657 {
16658 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16659 struct type *type; /* Type that this function returns. */
16660 struct type *ftype; /* Function that returns above type. */
16661 struct attribute *attr;
16662
16663 type = die_type (die, cu);
16664
16665 /* The die_type call above may have already set the type for this DIE. */
16666 ftype = get_die_type (die, cu);
16667 if (ftype)
16668 return ftype;
16669
16670 ftype = lookup_function_type (type);
16671
16672 if (prototyped_function_p (die, cu))
16673 TYPE_PROTOTYPED (ftype) = 1;
16674
16675 /* Store the calling convention in the type if it's available in
16676 the subroutine die. Otherwise set the calling convention to
16677 the default value DW_CC_normal. */
16678 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
16679 if (attr != nullptr
16680 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
16681 TYPE_CALLING_CONVENTION (ftype)
16682 = (enum dwarf_calling_convention) (DW_UNSND (attr));
16683 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
16684 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
16685 else
16686 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
16687
16688 /* Record whether the function returns normally to its caller or not
16689 if the DWARF producer set that information. */
16690 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
16691 if (attr && (DW_UNSND (attr) != 0))
16692 TYPE_NO_RETURN (ftype) = 1;
16693
16694 /* We need to add the subroutine type to the die immediately so
16695 we don't infinitely recurse when dealing with parameters
16696 declared as the same subroutine type. */
16697 set_die_type (die, ftype, cu);
16698
16699 if (die->child != NULL)
16700 {
16701 struct type *void_type = objfile_type (objfile)->builtin_void;
16702 struct die_info *child_die;
16703 int nparams, iparams;
16704
16705 /* Count the number of parameters.
16706 FIXME: GDB currently ignores vararg functions, but knows about
16707 vararg member functions. */
16708 nparams = 0;
16709 child_die = die->child;
16710 while (child_die && child_die->tag)
16711 {
16712 if (child_die->tag == DW_TAG_formal_parameter)
16713 nparams++;
16714 else if (child_die->tag == DW_TAG_unspecified_parameters)
16715 TYPE_VARARGS (ftype) = 1;
16716 child_die = child_die->sibling;
16717 }
16718
16719 /* Allocate storage for parameters and fill them in. */
16720 TYPE_NFIELDS (ftype) = nparams;
16721 TYPE_FIELDS (ftype) = (struct field *)
16722 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
16723
16724 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
16725 even if we error out during the parameters reading below. */
16726 for (iparams = 0; iparams < nparams; iparams++)
16727 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
16728
16729 iparams = 0;
16730 child_die = die->child;
16731 while (child_die && child_die->tag)
16732 {
16733 if (child_die->tag == DW_TAG_formal_parameter)
16734 {
16735 struct type *arg_type;
16736
16737 /* DWARF version 2 has no clean way to discern C++
16738 static and non-static member functions. G++ helps
16739 GDB by marking the first parameter for non-static
16740 member functions (which is the this pointer) as
16741 artificial. We pass this information to
16742 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
16743
16744 DWARF version 3 added DW_AT_object_pointer, which GCC
16745 4.5 does not yet generate. */
16746 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
16747 if (attr != nullptr)
16748 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
16749 else
16750 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
16751 arg_type = die_type (child_die, cu);
16752
16753 /* RealView does not mark THIS as const, which the testsuite
16754 expects. GCC marks THIS as const in method definitions,
16755 but not in the class specifications (GCC PR 43053). */
16756 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
16757 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
16758 {
16759 int is_this = 0;
16760 struct dwarf2_cu *arg_cu = cu;
16761 const char *name = dwarf2_name (child_die, cu);
16762
16763 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
16764 if (attr != nullptr)
16765 {
16766 /* If the compiler emits this, use it. */
16767 if (follow_die_ref (die, attr, &arg_cu) == child_die)
16768 is_this = 1;
16769 }
16770 else if (name && strcmp (name, "this") == 0)
16771 /* Function definitions will have the argument names. */
16772 is_this = 1;
16773 else if (name == NULL && iparams == 0)
16774 /* Declarations may not have the names, so like
16775 elsewhere in GDB, assume an artificial first
16776 argument is "this". */
16777 is_this = 1;
16778
16779 if (is_this)
16780 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
16781 arg_type, 0);
16782 }
16783
16784 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
16785 iparams++;
16786 }
16787 child_die = child_die->sibling;
16788 }
16789 }
16790
16791 return ftype;
16792 }
16793
16794 static struct type *
16795 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
16796 {
16797 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16798 const char *name = NULL;
16799 struct type *this_type, *target_type;
16800
16801 name = dwarf2_full_name (NULL, die, cu);
16802 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
16803 TYPE_TARGET_STUB (this_type) = 1;
16804 set_die_type (die, this_type, cu);
16805 target_type = die_type (die, cu);
16806 if (target_type != this_type)
16807 TYPE_TARGET_TYPE (this_type) = target_type;
16808 else
16809 {
16810 /* Self-referential typedefs are, it seems, not allowed by the DWARF
16811 spec and cause infinite loops in GDB. */
16812 complaint (_("Self-referential DW_TAG_typedef "
16813 "- DIE at %s [in module %s]"),
16814 sect_offset_str (die->sect_off), objfile_name (objfile));
16815 TYPE_TARGET_TYPE (this_type) = NULL;
16816 }
16817 if (name == NULL)
16818 {
16819 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
16820 anonymous typedefs, which is, strictly speaking, invalid DWARF.
16821 Handle these by just returning the target type, rather than
16822 constructing an anonymous typedef type and trying to handle this
16823 elsewhere. */
16824 set_die_type (die, target_type, cu);
16825 return target_type;
16826 }
16827 return this_type;
16828 }
16829
16830 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
16831 (which may be different from NAME) to the architecture back-end to allow
16832 it to guess the correct format if necessary. */
16833
16834 static struct type *
16835 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
16836 const char *name_hint, enum bfd_endian byte_order)
16837 {
16838 struct gdbarch *gdbarch = objfile->arch ();
16839 const struct floatformat **format;
16840 struct type *type;
16841
16842 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
16843 if (format)
16844 type = init_float_type (objfile, bits, name, format, byte_order);
16845 else
16846 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
16847
16848 return type;
16849 }
16850
16851 /* Allocate an integer type of size BITS and name NAME. */
16852
16853 static struct type *
16854 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
16855 int bits, int unsigned_p, const char *name)
16856 {
16857 struct type *type;
16858
16859 /* Versions of Intel's C Compiler generate an integer type called "void"
16860 instead of using DW_TAG_unspecified_type. This has been seen on
16861 at least versions 14, 17, and 18. */
16862 if (bits == 0 && producer_is_icc (cu) && name != nullptr
16863 && strcmp (name, "void") == 0)
16864 type = objfile_type (objfile)->builtin_void;
16865 else
16866 type = init_integer_type (objfile, bits, unsigned_p, name);
16867
16868 return type;
16869 }
16870
16871 /* Initialise and return a floating point type of size BITS suitable for
16872 use as a component of a complex number. The NAME_HINT is passed through
16873 when initialising the floating point type and is the name of the complex
16874 type.
16875
16876 As DWARF doesn't currently provide an explicit name for the components
16877 of a complex number, but it can be helpful to have these components
16878 named, we try to select a suitable name based on the size of the
16879 component. */
16880 static struct type *
16881 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
16882 struct objfile *objfile,
16883 int bits, const char *name_hint,
16884 enum bfd_endian byte_order)
16885 {
16886 gdbarch *gdbarch = objfile->arch ();
16887 struct type *tt = nullptr;
16888
16889 /* Try to find a suitable floating point builtin type of size BITS.
16890 We're going to use the name of this type as the name for the complex
16891 target type that we are about to create. */
16892 switch (cu->language)
16893 {
16894 case language_fortran:
16895 switch (bits)
16896 {
16897 case 32:
16898 tt = builtin_f_type (gdbarch)->builtin_real;
16899 break;
16900 case 64:
16901 tt = builtin_f_type (gdbarch)->builtin_real_s8;
16902 break;
16903 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16904 case 128:
16905 tt = builtin_f_type (gdbarch)->builtin_real_s16;
16906 break;
16907 }
16908 break;
16909 default:
16910 switch (bits)
16911 {
16912 case 32:
16913 tt = builtin_type (gdbarch)->builtin_float;
16914 break;
16915 case 64:
16916 tt = builtin_type (gdbarch)->builtin_double;
16917 break;
16918 case 96: /* The x86-32 ABI specifies 96-bit long double. */
16919 case 128:
16920 tt = builtin_type (gdbarch)->builtin_long_double;
16921 break;
16922 }
16923 break;
16924 }
16925
16926 /* If the type we found doesn't match the size we were looking for, then
16927 pretend we didn't find a type at all, the complex target type we
16928 create will then be nameless. */
16929 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
16930 tt = nullptr;
16931
16932 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
16933 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
16934 }
16935
16936 /* Find a representation of a given base type and install
16937 it in the TYPE field of the die. */
16938
16939 static struct type *
16940 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
16941 {
16942 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16943 struct type *type;
16944 struct attribute *attr;
16945 int encoding = 0, bits = 0;
16946 const char *name;
16947 gdbarch *arch;
16948
16949 attr = dwarf2_attr (die, DW_AT_encoding, cu);
16950 if (attr != nullptr)
16951 encoding = DW_UNSND (attr);
16952 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16953 if (attr != nullptr)
16954 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
16955 name = dwarf2_name (die, cu);
16956 if (!name)
16957 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
16958
16959 arch = objfile->arch ();
16960 enum bfd_endian byte_order = gdbarch_byte_order (arch);
16961
16962 attr = dwarf2_attr (die, DW_AT_endianity, cu);
16963 if (attr)
16964 {
16965 int endianity = DW_UNSND (attr);
16966
16967 switch (endianity)
16968 {
16969 case DW_END_big:
16970 byte_order = BFD_ENDIAN_BIG;
16971 break;
16972 case DW_END_little:
16973 byte_order = BFD_ENDIAN_LITTLE;
16974 break;
16975 default:
16976 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
16977 break;
16978 }
16979 }
16980
16981 switch (encoding)
16982 {
16983 case DW_ATE_address:
16984 /* Turn DW_ATE_address into a void * pointer. */
16985 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
16986 type = init_pointer_type (objfile, bits, name, type);
16987 break;
16988 case DW_ATE_boolean:
16989 type = init_boolean_type (objfile, bits, 1, name);
16990 break;
16991 case DW_ATE_complex_float:
16992 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
16993 byte_order);
16994 if (TYPE_CODE (type) == TYPE_CODE_ERROR)
16995 {
16996 if (name == nullptr)
16997 {
16998 struct obstack *obstack
16999 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17000 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17001 nullptr);
17002 }
17003 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17004 }
17005 else
17006 type = init_complex_type (name, type);
17007 break;
17008 case DW_ATE_decimal_float:
17009 type = init_decfloat_type (objfile, bits, name);
17010 break;
17011 case DW_ATE_float:
17012 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17013 break;
17014 case DW_ATE_signed:
17015 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17016 break;
17017 case DW_ATE_unsigned:
17018 if (cu->language == language_fortran
17019 && name
17020 && startswith (name, "character("))
17021 type = init_character_type (objfile, bits, 1, name);
17022 else
17023 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17024 break;
17025 case DW_ATE_signed_char:
17026 if (cu->language == language_ada || cu->language == language_m2
17027 || cu->language == language_pascal
17028 || cu->language == language_fortran)
17029 type = init_character_type (objfile, bits, 0, name);
17030 else
17031 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17032 break;
17033 case DW_ATE_unsigned_char:
17034 if (cu->language == language_ada || cu->language == language_m2
17035 || cu->language == language_pascal
17036 || cu->language == language_fortran
17037 || cu->language == language_rust)
17038 type = init_character_type (objfile, bits, 1, name);
17039 else
17040 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17041 break;
17042 case DW_ATE_UTF:
17043 {
17044 if (bits == 16)
17045 type = builtin_type (arch)->builtin_char16;
17046 else if (bits == 32)
17047 type = builtin_type (arch)->builtin_char32;
17048 else
17049 {
17050 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17051 bits);
17052 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17053 }
17054 return set_die_type (die, type, cu);
17055 }
17056 break;
17057
17058 default:
17059 complaint (_("unsupported DW_AT_encoding: '%s'"),
17060 dwarf_type_encoding_name (encoding));
17061 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17062 break;
17063 }
17064
17065 if (name && strcmp (name, "char") == 0)
17066 TYPE_NOSIGN (type) = 1;
17067
17068 maybe_set_alignment (cu, die, type);
17069
17070 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17071
17072 return set_die_type (die, type, cu);
17073 }
17074
17075 /* Parse dwarf attribute if it's a block, reference or constant and put the
17076 resulting value of the attribute into struct bound_prop.
17077 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17078
17079 static int
17080 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17081 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17082 struct type *default_type)
17083 {
17084 struct dwarf2_property_baton *baton;
17085 struct obstack *obstack
17086 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17087
17088 gdb_assert (default_type != NULL);
17089
17090 if (attr == NULL || prop == NULL)
17091 return 0;
17092
17093 if (attr->form_is_block ())
17094 {
17095 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17096 baton->property_type = default_type;
17097 baton->locexpr.per_cu = cu->per_cu;
17098 baton->locexpr.size = DW_BLOCK (attr)->size;
17099 baton->locexpr.data = DW_BLOCK (attr)->data;
17100 switch (attr->name)
17101 {
17102 case DW_AT_string_length:
17103 baton->locexpr.is_reference = true;
17104 break;
17105 default:
17106 baton->locexpr.is_reference = false;
17107 break;
17108 }
17109 prop->data.baton = baton;
17110 prop->kind = PROP_LOCEXPR;
17111 gdb_assert (prop->data.baton != NULL);
17112 }
17113 else if (attr->form_is_ref ())
17114 {
17115 struct dwarf2_cu *target_cu = cu;
17116 struct die_info *target_die;
17117 struct attribute *target_attr;
17118
17119 target_die = follow_die_ref (die, attr, &target_cu);
17120 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17121 if (target_attr == NULL)
17122 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17123 target_cu);
17124 if (target_attr == NULL)
17125 return 0;
17126
17127 switch (target_attr->name)
17128 {
17129 case DW_AT_location:
17130 if (target_attr->form_is_section_offset ())
17131 {
17132 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17133 baton->property_type = die_type (target_die, target_cu);
17134 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17135 prop->data.baton = baton;
17136 prop->kind = PROP_LOCLIST;
17137 gdb_assert (prop->data.baton != NULL);
17138 }
17139 else if (target_attr->form_is_block ())
17140 {
17141 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17142 baton->property_type = die_type (target_die, target_cu);
17143 baton->locexpr.per_cu = cu->per_cu;
17144 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17145 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17146 baton->locexpr.is_reference = true;
17147 prop->data.baton = baton;
17148 prop->kind = PROP_LOCEXPR;
17149 gdb_assert (prop->data.baton != NULL);
17150 }
17151 else
17152 {
17153 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17154 "dynamic property");
17155 return 0;
17156 }
17157 break;
17158 case DW_AT_data_member_location:
17159 {
17160 LONGEST offset;
17161
17162 if (!handle_data_member_location (target_die, target_cu,
17163 &offset))
17164 return 0;
17165
17166 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17167 baton->property_type = read_type_die (target_die->parent,
17168 target_cu);
17169 baton->offset_info.offset = offset;
17170 baton->offset_info.type = die_type (target_die, target_cu);
17171 prop->data.baton = baton;
17172 prop->kind = PROP_ADDR_OFFSET;
17173 break;
17174 }
17175 }
17176 }
17177 else if (attr->form_is_constant ())
17178 {
17179 prop->data.const_val = attr->constant_value (0);
17180 prop->kind = PROP_CONST;
17181 }
17182 else
17183 {
17184 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17185 dwarf2_name (die, cu));
17186 return 0;
17187 }
17188
17189 return 1;
17190 }
17191
17192 /* See read.h. */
17193
17194 struct type *
17195 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17196 {
17197 struct objfile *objfile = dwarf2_per_objfile->objfile;
17198 struct type *int_type;
17199
17200 /* Helper macro to examine the various builtin types. */
17201 #define TRY_TYPE(F) \
17202 int_type = (unsigned_p \
17203 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17204 : objfile_type (objfile)->builtin_ ## F); \
17205 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17206 return int_type
17207
17208 TRY_TYPE (char);
17209 TRY_TYPE (short);
17210 TRY_TYPE (int);
17211 TRY_TYPE (long);
17212 TRY_TYPE (long_long);
17213
17214 #undef TRY_TYPE
17215
17216 gdb_assert_not_reached ("unable to find suitable integer type");
17217 }
17218
17219 /* See read.h. */
17220
17221 struct type *
17222 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17223 {
17224 int addr_size = this->addr_size ();
17225 return int_type (addr_size, unsigned_p);
17226 }
17227
17228 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17229 present (which is valid) then compute the default type based on the
17230 compilation units address size. */
17231
17232 static struct type *
17233 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17234 {
17235 struct type *index_type = die_type (die, cu);
17236
17237 /* Dwarf-2 specifications explicitly allows to create subrange types
17238 without specifying a base type.
17239 In that case, the base type must be set to the type of
17240 the lower bound, upper bound or count, in that order, if any of these
17241 three attributes references an object that has a type.
17242 If no base type is found, the Dwarf-2 specifications say that
17243 a signed integer type of size equal to the size of an address should
17244 be used.
17245 For the following C code: `extern char gdb_int [];'
17246 GCC produces an empty range DIE.
17247 FIXME: muller/2010-05-28: Possible references to object for low bound,
17248 high bound or count are not yet handled by this code. */
17249 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
17250 index_type = cu->per_cu->addr_sized_int_type (false);
17251
17252 return index_type;
17253 }
17254
17255 /* Read the given DW_AT_subrange DIE. */
17256
17257 static struct type *
17258 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17259 {
17260 struct type *base_type, *orig_base_type;
17261 struct type *range_type;
17262 struct attribute *attr;
17263 struct dynamic_prop low, high;
17264 int low_default_is_valid;
17265 int high_bound_is_count = 0;
17266 const char *name;
17267 ULONGEST negative_mask;
17268
17269 orig_base_type = read_subrange_index_type (die, cu);
17270
17271 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17272 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17273 creating the range type, but we use the result of check_typedef
17274 when examining properties of the type. */
17275 base_type = check_typedef (orig_base_type);
17276
17277 /* The die_type call above may have already set the type for this DIE. */
17278 range_type = get_die_type (die, cu);
17279 if (range_type)
17280 return range_type;
17281
17282 low.kind = PROP_CONST;
17283 high.kind = PROP_CONST;
17284 high.data.const_val = 0;
17285
17286 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17287 omitting DW_AT_lower_bound. */
17288 switch (cu->language)
17289 {
17290 case language_c:
17291 case language_cplus:
17292 low.data.const_val = 0;
17293 low_default_is_valid = 1;
17294 break;
17295 case language_fortran:
17296 low.data.const_val = 1;
17297 low_default_is_valid = 1;
17298 break;
17299 case language_d:
17300 case language_objc:
17301 case language_rust:
17302 low.data.const_val = 0;
17303 low_default_is_valid = (cu->header.version >= 4);
17304 break;
17305 case language_ada:
17306 case language_m2:
17307 case language_pascal:
17308 low.data.const_val = 1;
17309 low_default_is_valid = (cu->header.version >= 4);
17310 break;
17311 default:
17312 low.data.const_val = 0;
17313 low_default_is_valid = 0;
17314 break;
17315 }
17316
17317 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17318 if (attr != nullptr)
17319 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17320 else if (!low_default_is_valid)
17321 complaint (_("Missing DW_AT_lower_bound "
17322 "- DIE at %s [in module %s]"),
17323 sect_offset_str (die->sect_off),
17324 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17325
17326 struct attribute *attr_ub, *attr_count;
17327 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17328 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17329 {
17330 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17331 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17332 {
17333 /* If bounds are constant do the final calculation here. */
17334 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17335 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17336 else
17337 high_bound_is_count = 1;
17338 }
17339 else
17340 {
17341 if (attr_ub != NULL)
17342 complaint (_("Unresolved DW_AT_upper_bound "
17343 "- DIE at %s [in module %s]"),
17344 sect_offset_str (die->sect_off),
17345 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17346 if (attr_count != NULL)
17347 complaint (_("Unresolved DW_AT_count "
17348 "- DIE at %s [in module %s]"),
17349 sect_offset_str (die->sect_off),
17350 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17351 }
17352 }
17353
17354 LONGEST bias = 0;
17355 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17356 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17357 bias = bias_attr->constant_value (0);
17358
17359 /* Normally, the DWARF producers are expected to use a signed
17360 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17361 But this is unfortunately not always the case, as witnessed
17362 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17363 is used instead. To work around that ambiguity, we treat
17364 the bounds as signed, and thus sign-extend their values, when
17365 the base type is signed. */
17366 negative_mask =
17367 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17368 if (low.kind == PROP_CONST
17369 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17370 low.data.const_val |= negative_mask;
17371 if (high.kind == PROP_CONST
17372 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17373 high.data.const_val |= negative_mask;
17374
17375 /* Check for bit and byte strides. */
17376 struct dynamic_prop byte_stride_prop;
17377 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17378 if (attr_byte_stride != nullptr)
17379 {
17380 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17381 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17382 prop_type);
17383 }
17384
17385 struct dynamic_prop bit_stride_prop;
17386 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17387 if (attr_bit_stride != nullptr)
17388 {
17389 /* It only makes sense to have either a bit or byte stride. */
17390 if (attr_byte_stride != nullptr)
17391 {
17392 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17393 "- DIE at %s [in module %s]"),
17394 sect_offset_str (die->sect_off),
17395 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17396 attr_bit_stride = nullptr;
17397 }
17398 else
17399 {
17400 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17401 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17402 prop_type);
17403 }
17404 }
17405
17406 if (attr_byte_stride != nullptr
17407 || attr_bit_stride != nullptr)
17408 {
17409 bool byte_stride_p = (attr_byte_stride != nullptr);
17410 struct dynamic_prop *stride
17411 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17412
17413 range_type
17414 = create_range_type_with_stride (NULL, orig_base_type, &low,
17415 &high, bias, stride, byte_stride_p);
17416 }
17417 else
17418 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17419
17420 if (high_bound_is_count)
17421 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17422
17423 /* Ada expects an empty array on no boundary attributes. */
17424 if (attr == NULL && cu->language != language_ada)
17425 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17426
17427 name = dwarf2_name (die, cu);
17428 if (name)
17429 TYPE_NAME (range_type) = name;
17430
17431 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17432 if (attr != nullptr)
17433 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17434
17435 maybe_set_alignment (cu, die, range_type);
17436
17437 set_die_type (die, range_type, cu);
17438
17439 /* set_die_type should be already done. */
17440 set_descriptive_type (range_type, die, cu);
17441
17442 return range_type;
17443 }
17444
17445 static struct type *
17446 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17447 {
17448 struct type *type;
17449
17450 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17451 NULL);
17452 TYPE_NAME (type) = dwarf2_name (die, cu);
17453
17454 /* In Ada, an unspecified type is typically used when the description
17455 of the type is deferred to a different unit. When encountering
17456 such a type, we treat it as a stub, and try to resolve it later on,
17457 when needed. */
17458 if (cu->language == language_ada)
17459 TYPE_STUB (type) = 1;
17460
17461 return set_die_type (die, type, cu);
17462 }
17463
17464 /* Read a single die and all its descendents. Set the die's sibling
17465 field to NULL; set other fields in the die correctly, and set all
17466 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17467 location of the info_ptr after reading all of those dies. PARENT
17468 is the parent of the die in question. */
17469
17470 static struct die_info *
17471 read_die_and_children (const struct die_reader_specs *reader,
17472 const gdb_byte *info_ptr,
17473 const gdb_byte **new_info_ptr,
17474 struct die_info *parent)
17475 {
17476 struct die_info *die;
17477 const gdb_byte *cur_ptr;
17478
17479 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17480 if (die == NULL)
17481 {
17482 *new_info_ptr = cur_ptr;
17483 return NULL;
17484 }
17485 store_in_ref_table (die, reader->cu);
17486
17487 if (die->has_children)
17488 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17489 else
17490 {
17491 die->child = NULL;
17492 *new_info_ptr = cur_ptr;
17493 }
17494
17495 die->sibling = NULL;
17496 die->parent = parent;
17497 return die;
17498 }
17499
17500 /* Read a die, all of its descendents, and all of its siblings; set
17501 all of the fields of all of the dies correctly. Arguments are as
17502 in read_die_and_children. */
17503
17504 static struct die_info *
17505 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17506 const gdb_byte *info_ptr,
17507 const gdb_byte **new_info_ptr,
17508 struct die_info *parent)
17509 {
17510 struct die_info *first_die, *last_sibling;
17511 const gdb_byte *cur_ptr;
17512
17513 cur_ptr = info_ptr;
17514 first_die = last_sibling = NULL;
17515
17516 while (1)
17517 {
17518 struct die_info *die
17519 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17520
17521 if (die == NULL)
17522 {
17523 *new_info_ptr = cur_ptr;
17524 return first_die;
17525 }
17526
17527 if (!first_die)
17528 first_die = die;
17529 else
17530 last_sibling->sibling = die;
17531
17532 last_sibling = die;
17533 }
17534 }
17535
17536 /* Read a die, all of its descendents, and all of its siblings; set
17537 all of the fields of all of the dies correctly. Arguments are as
17538 in read_die_and_children.
17539 This the main entry point for reading a DIE and all its children. */
17540
17541 static struct die_info *
17542 read_die_and_siblings (const struct die_reader_specs *reader,
17543 const gdb_byte *info_ptr,
17544 const gdb_byte **new_info_ptr,
17545 struct die_info *parent)
17546 {
17547 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17548 new_info_ptr, parent);
17549
17550 if (dwarf_die_debug)
17551 {
17552 fprintf_unfiltered (gdb_stdlog,
17553 "Read die from %s@0x%x of %s:\n",
17554 reader->die_section->get_name (),
17555 (unsigned) (info_ptr - reader->die_section->buffer),
17556 bfd_get_filename (reader->abfd));
17557 dump_die (die, dwarf_die_debug);
17558 }
17559
17560 return die;
17561 }
17562
17563 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17564 attributes.
17565 The caller is responsible for filling in the extra attributes
17566 and updating (*DIEP)->num_attrs.
17567 Set DIEP to point to a newly allocated die with its information,
17568 except for its child, sibling, and parent fields. */
17569
17570 static const gdb_byte *
17571 read_full_die_1 (const struct die_reader_specs *reader,
17572 struct die_info **diep, const gdb_byte *info_ptr,
17573 int num_extra_attrs)
17574 {
17575 unsigned int abbrev_number, bytes_read, i;
17576 struct abbrev_info *abbrev;
17577 struct die_info *die;
17578 struct dwarf2_cu *cu = reader->cu;
17579 bfd *abfd = reader->abfd;
17580
17581 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17582 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17583 info_ptr += bytes_read;
17584 if (!abbrev_number)
17585 {
17586 *diep = NULL;
17587 return info_ptr;
17588 }
17589
17590 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17591 if (!abbrev)
17592 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17593 abbrev_number,
17594 bfd_get_filename (abfd));
17595
17596 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17597 die->sect_off = sect_off;
17598 die->tag = abbrev->tag;
17599 die->abbrev = abbrev_number;
17600 die->has_children = abbrev->has_children;
17601
17602 /* Make the result usable.
17603 The caller needs to update num_attrs after adding the extra
17604 attributes. */
17605 die->num_attrs = abbrev->num_attrs;
17606
17607 std::vector<int> indexes_that_need_reprocess;
17608 for (i = 0; i < abbrev->num_attrs; ++i)
17609 {
17610 bool need_reprocess;
17611 info_ptr =
17612 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17613 info_ptr, &need_reprocess);
17614 if (need_reprocess)
17615 indexes_that_need_reprocess.push_back (i);
17616 }
17617
17618 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17619 if (attr != nullptr)
17620 cu->str_offsets_base = DW_UNSND (attr);
17621
17622 attr = die->attr (DW_AT_loclists_base);
17623 if (attr != nullptr)
17624 cu->loclist_base = DW_UNSND (attr);
17625
17626 auto maybe_addr_base = die->addr_base ();
17627 if (maybe_addr_base.has_value ())
17628 cu->addr_base = *maybe_addr_base;
17629 for (int index : indexes_that_need_reprocess)
17630 read_attribute_reprocess (reader, &die->attrs[index]);
17631 *diep = die;
17632 return info_ptr;
17633 }
17634
17635 /* Read a die and all its attributes.
17636 Set DIEP to point to a newly allocated die with its information,
17637 except for its child, sibling, and parent fields. */
17638
17639 static const gdb_byte *
17640 read_full_die (const struct die_reader_specs *reader,
17641 struct die_info **diep, const gdb_byte *info_ptr)
17642 {
17643 const gdb_byte *result;
17644
17645 result = read_full_die_1 (reader, diep, info_ptr, 0);
17646
17647 if (dwarf_die_debug)
17648 {
17649 fprintf_unfiltered (gdb_stdlog,
17650 "Read die from %s@0x%x of %s:\n",
17651 reader->die_section->get_name (),
17652 (unsigned) (info_ptr - reader->die_section->buffer),
17653 bfd_get_filename (reader->abfd));
17654 dump_die (*diep, dwarf_die_debug);
17655 }
17656
17657 return result;
17658 }
17659 \f
17660
17661 /* Returns nonzero if TAG represents a type that we might generate a partial
17662 symbol for. */
17663
17664 static int
17665 is_type_tag_for_partial (int tag)
17666 {
17667 switch (tag)
17668 {
17669 #if 0
17670 /* Some types that would be reasonable to generate partial symbols for,
17671 that we don't at present. */
17672 case DW_TAG_array_type:
17673 case DW_TAG_file_type:
17674 case DW_TAG_ptr_to_member_type:
17675 case DW_TAG_set_type:
17676 case DW_TAG_string_type:
17677 case DW_TAG_subroutine_type:
17678 #endif
17679 case DW_TAG_base_type:
17680 case DW_TAG_class_type:
17681 case DW_TAG_interface_type:
17682 case DW_TAG_enumeration_type:
17683 case DW_TAG_structure_type:
17684 case DW_TAG_subrange_type:
17685 case DW_TAG_typedef:
17686 case DW_TAG_union_type:
17687 return 1;
17688 default:
17689 return 0;
17690 }
17691 }
17692
17693 /* Load all DIEs that are interesting for partial symbols into memory. */
17694
17695 static struct partial_die_info *
17696 load_partial_dies (const struct die_reader_specs *reader,
17697 const gdb_byte *info_ptr, int building_psymtab)
17698 {
17699 struct dwarf2_cu *cu = reader->cu;
17700 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17701 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
17702 unsigned int bytes_read;
17703 unsigned int load_all = 0;
17704 int nesting_level = 1;
17705
17706 parent_die = NULL;
17707 last_die = NULL;
17708
17709 gdb_assert (cu->per_cu != NULL);
17710 if (cu->per_cu->load_all_dies)
17711 load_all = 1;
17712
17713 cu->partial_dies
17714 = htab_create_alloc_ex (cu->header.length / 12,
17715 partial_die_hash,
17716 partial_die_eq,
17717 NULL,
17718 &cu->comp_unit_obstack,
17719 hashtab_obstack_allocate,
17720 dummy_obstack_deallocate);
17721
17722 while (1)
17723 {
17724 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
17725
17726 /* A NULL abbrev means the end of a series of children. */
17727 if (abbrev == NULL)
17728 {
17729 if (--nesting_level == 0)
17730 return first_die;
17731
17732 info_ptr += bytes_read;
17733 last_die = parent_die;
17734 parent_die = parent_die->die_parent;
17735 continue;
17736 }
17737
17738 /* Check for template arguments. We never save these; if
17739 they're seen, we just mark the parent, and go on our way. */
17740 if (parent_die != NULL
17741 && cu->language == language_cplus
17742 && (abbrev->tag == DW_TAG_template_type_param
17743 || abbrev->tag == DW_TAG_template_value_param))
17744 {
17745 parent_die->has_template_arguments = 1;
17746
17747 if (!load_all)
17748 {
17749 /* We don't need a partial DIE for the template argument. */
17750 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17751 continue;
17752 }
17753 }
17754
17755 /* We only recurse into c++ subprograms looking for template arguments.
17756 Skip their other children. */
17757 if (!load_all
17758 && cu->language == language_cplus
17759 && parent_die != NULL
17760 && parent_die->tag == DW_TAG_subprogram)
17761 {
17762 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17763 continue;
17764 }
17765
17766 /* Check whether this DIE is interesting enough to save. Normally
17767 we would not be interested in members here, but there may be
17768 later variables referencing them via DW_AT_specification (for
17769 static members). */
17770 if (!load_all
17771 && !is_type_tag_for_partial (abbrev->tag)
17772 && abbrev->tag != DW_TAG_constant
17773 && abbrev->tag != DW_TAG_enumerator
17774 && abbrev->tag != DW_TAG_subprogram
17775 && abbrev->tag != DW_TAG_inlined_subroutine
17776 && abbrev->tag != DW_TAG_lexical_block
17777 && abbrev->tag != DW_TAG_variable
17778 && abbrev->tag != DW_TAG_namespace
17779 && abbrev->tag != DW_TAG_module
17780 && abbrev->tag != DW_TAG_member
17781 && abbrev->tag != DW_TAG_imported_unit
17782 && abbrev->tag != DW_TAG_imported_declaration)
17783 {
17784 /* Otherwise we skip to the next sibling, if any. */
17785 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
17786 continue;
17787 }
17788
17789 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
17790 abbrev);
17791
17792 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
17793
17794 /* This two-pass algorithm for processing partial symbols has a
17795 high cost in cache pressure. Thus, handle some simple cases
17796 here which cover the majority of C partial symbols. DIEs
17797 which neither have specification tags in them, nor could have
17798 specification tags elsewhere pointing at them, can simply be
17799 processed and discarded.
17800
17801 This segment is also optional; scan_partial_symbols and
17802 add_partial_symbol will handle these DIEs if we chain
17803 them in normally. When compilers which do not emit large
17804 quantities of duplicate debug information are more common,
17805 this code can probably be removed. */
17806
17807 /* Any complete simple types at the top level (pretty much all
17808 of them, for a language without namespaces), can be processed
17809 directly. */
17810 if (parent_die == NULL
17811 && pdi.has_specification == 0
17812 && pdi.is_declaration == 0
17813 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
17814 || pdi.tag == DW_TAG_base_type
17815 || pdi.tag == DW_TAG_subrange_type))
17816 {
17817 if (building_psymtab && pdi.name != NULL)
17818 add_psymbol_to_list (pdi.name, false,
17819 VAR_DOMAIN, LOC_TYPEDEF, -1,
17820 psymbol_placement::STATIC,
17821 0, cu->language, objfile);
17822 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17823 continue;
17824 }
17825
17826 /* The exception for DW_TAG_typedef with has_children above is
17827 a workaround of GCC PR debug/47510. In the case of this complaint
17828 type_name_or_error will error on such types later.
17829
17830 GDB skipped children of DW_TAG_typedef by the shortcut above and then
17831 it could not find the child DIEs referenced later, this is checked
17832 above. In correct DWARF DW_TAG_typedef should have no children. */
17833
17834 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
17835 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
17836 "- DIE at %s [in module %s]"),
17837 sect_offset_str (pdi.sect_off), objfile_name (objfile));
17838
17839 /* If we're at the second level, and we're an enumerator, and
17840 our parent has no specification (meaning possibly lives in a
17841 namespace elsewhere), then we can add the partial symbol now
17842 instead of queueing it. */
17843 if (pdi.tag == DW_TAG_enumerator
17844 && parent_die != NULL
17845 && parent_die->die_parent == NULL
17846 && parent_die->tag == DW_TAG_enumeration_type
17847 && parent_die->has_specification == 0)
17848 {
17849 if (pdi.name == NULL)
17850 complaint (_("malformed enumerator DIE ignored"));
17851 else if (building_psymtab)
17852 add_psymbol_to_list (pdi.name, false,
17853 VAR_DOMAIN, LOC_CONST, -1,
17854 cu->language == language_cplus
17855 ? psymbol_placement::GLOBAL
17856 : psymbol_placement::STATIC,
17857 0, cu->language, objfile);
17858
17859 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
17860 continue;
17861 }
17862
17863 struct partial_die_info *part_die
17864 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
17865
17866 /* We'll save this DIE so link it in. */
17867 part_die->die_parent = parent_die;
17868 part_die->die_sibling = NULL;
17869 part_die->die_child = NULL;
17870
17871 if (last_die && last_die == parent_die)
17872 last_die->die_child = part_die;
17873 else if (last_die)
17874 last_die->die_sibling = part_die;
17875
17876 last_die = part_die;
17877
17878 if (first_die == NULL)
17879 first_die = part_die;
17880
17881 /* Maybe add the DIE to the hash table. Not all DIEs that we
17882 find interesting need to be in the hash table, because we
17883 also have the parent/sibling/child chains; only those that we
17884 might refer to by offset later during partial symbol reading.
17885
17886 For now this means things that might have be the target of a
17887 DW_AT_specification, DW_AT_abstract_origin, or
17888 DW_AT_extension. DW_AT_extension will refer only to
17889 namespaces; DW_AT_abstract_origin refers to functions (and
17890 many things under the function DIE, but we do not recurse
17891 into function DIEs during partial symbol reading) and
17892 possibly variables as well; DW_AT_specification refers to
17893 declarations. Declarations ought to have the DW_AT_declaration
17894 flag. It happens that GCC forgets to put it in sometimes, but
17895 only for functions, not for types.
17896
17897 Adding more things than necessary to the hash table is harmless
17898 except for the performance cost. Adding too few will result in
17899 wasted time in find_partial_die, when we reread the compilation
17900 unit with load_all_dies set. */
17901
17902 if (load_all
17903 || abbrev->tag == DW_TAG_constant
17904 || abbrev->tag == DW_TAG_subprogram
17905 || abbrev->tag == DW_TAG_variable
17906 || abbrev->tag == DW_TAG_namespace
17907 || part_die->is_declaration)
17908 {
17909 void **slot;
17910
17911 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
17912 to_underlying (part_die->sect_off),
17913 INSERT);
17914 *slot = part_die;
17915 }
17916
17917 /* For some DIEs we want to follow their children (if any). For C
17918 we have no reason to follow the children of structures; for other
17919 languages we have to, so that we can get at method physnames
17920 to infer fully qualified class names, for DW_AT_specification,
17921 and for C++ template arguments. For C++, we also look one level
17922 inside functions to find template arguments (if the name of the
17923 function does not already contain the template arguments).
17924
17925 For Ada and Fortran, we need to scan the children of subprograms
17926 and lexical blocks as well because these languages allow the
17927 definition of nested entities that could be interesting for the
17928 debugger, such as nested subprograms for instance. */
17929 if (last_die->has_children
17930 && (load_all
17931 || last_die->tag == DW_TAG_namespace
17932 || last_die->tag == DW_TAG_module
17933 || last_die->tag == DW_TAG_enumeration_type
17934 || (cu->language == language_cplus
17935 && last_die->tag == DW_TAG_subprogram
17936 && (last_die->name == NULL
17937 || strchr (last_die->name, '<') == NULL))
17938 || (cu->language != language_c
17939 && (last_die->tag == DW_TAG_class_type
17940 || last_die->tag == DW_TAG_interface_type
17941 || last_die->tag == DW_TAG_structure_type
17942 || last_die->tag == DW_TAG_union_type))
17943 || ((cu->language == language_ada
17944 || cu->language == language_fortran)
17945 && (last_die->tag == DW_TAG_subprogram
17946 || last_die->tag == DW_TAG_lexical_block))))
17947 {
17948 nesting_level++;
17949 parent_die = last_die;
17950 continue;
17951 }
17952
17953 /* Otherwise we skip to the next sibling, if any. */
17954 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
17955
17956 /* Back to the top, do it again. */
17957 }
17958 }
17959
17960 partial_die_info::partial_die_info (sect_offset sect_off_,
17961 struct abbrev_info *abbrev)
17962 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
17963 {
17964 }
17965
17966 /* Read a minimal amount of information into the minimal die structure.
17967 INFO_PTR should point just after the initial uleb128 of a DIE. */
17968
17969 const gdb_byte *
17970 partial_die_info::read (const struct die_reader_specs *reader,
17971 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
17972 {
17973 struct dwarf2_cu *cu = reader->cu;
17974 struct dwarf2_per_objfile *dwarf2_per_objfile
17975 = cu->per_cu->dwarf2_per_objfile;
17976 unsigned int i;
17977 int has_low_pc_attr = 0;
17978 int has_high_pc_attr = 0;
17979 int high_pc_relative = 0;
17980
17981 for (i = 0; i < abbrev.num_attrs; ++i)
17982 {
17983 attribute attr;
17984 bool need_reprocess;
17985 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
17986 info_ptr, &need_reprocess);
17987 /* String and address offsets that need to do the reprocessing have
17988 already been read at this point, so there is no need to wait until
17989 the loop terminates to do the reprocessing. */
17990 if (need_reprocess)
17991 read_attribute_reprocess (reader, &attr);
17992 /* Store the data if it is of an attribute we want to keep in a
17993 partial symbol table. */
17994 switch (attr.name)
17995 {
17996 case DW_AT_name:
17997 switch (tag)
17998 {
17999 case DW_TAG_compile_unit:
18000 case DW_TAG_partial_unit:
18001 case DW_TAG_type_unit:
18002 /* Compilation units have a DW_AT_name that is a filename, not
18003 a source language identifier. */
18004 case DW_TAG_enumeration_type:
18005 case DW_TAG_enumerator:
18006 /* These tags always have simple identifiers already; no need
18007 to canonicalize them. */
18008 name = DW_STRING (&attr);
18009 break;
18010 default:
18011 {
18012 struct objfile *objfile = dwarf2_per_objfile->objfile;
18013
18014 name
18015 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18016 }
18017 break;
18018 }
18019 break;
18020 case DW_AT_linkage_name:
18021 case DW_AT_MIPS_linkage_name:
18022 /* Note that both forms of linkage name might appear. We
18023 assume they will be the same, and we only store the last
18024 one we see. */
18025 linkage_name = DW_STRING (&attr);
18026 break;
18027 case DW_AT_low_pc:
18028 has_low_pc_attr = 1;
18029 lowpc = attr.value_as_address ();
18030 break;
18031 case DW_AT_high_pc:
18032 has_high_pc_attr = 1;
18033 highpc = attr.value_as_address ();
18034 if (cu->header.version >= 4 && attr.form_is_constant ())
18035 high_pc_relative = 1;
18036 break;
18037 case DW_AT_location:
18038 /* Support the .debug_loc offsets. */
18039 if (attr.form_is_block ())
18040 {
18041 d.locdesc = DW_BLOCK (&attr);
18042 }
18043 else if (attr.form_is_section_offset ())
18044 {
18045 dwarf2_complex_location_expr_complaint ();
18046 }
18047 else
18048 {
18049 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18050 "partial symbol information");
18051 }
18052 break;
18053 case DW_AT_external:
18054 is_external = DW_UNSND (&attr);
18055 break;
18056 case DW_AT_declaration:
18057 is_declaration = DW_UNSND (&attr);
18058 break;
18059 case DW_AT_type:
18060 has_type = 1;
18061 break;
18062 case DW_AT_abstract_origin:
18063 case DW_AT_specification:
18064 case DW_AT_extension:
18065 has_specification = 1;
18066 spec_offset = attr.get_ref_die_offset ();
18067 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18068 || cu->per_cu->is_dwz);
18069 break;
18070 case DW_AT_sibling:
18071 /* Ignore absolute siblings, they might point outside of
18072 the current compile unit. */
18073 if (attr.form == DW_FORM_ref_addr)
18074 complaint (_("ignoring absolute DW_AT_sibling"));
18075 else
18076 {
18077 const gdb_byte *buffer = reader->buffer;
18078 sect_offset off = attr.get_ref_die_offset ();
18079 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18080
18081 if (sibling_ptr < info_ptr)
18082 complaint (_("DW_AT_sibling points backwards"));
18083 else if (sibling_ptr > reader->buffer_end)
18084 reader->die_section->overflow_complaint ();
18085 else
18086 sibling = sibling_ptr;
18087 }
18088 break;
18089 case DW_AT_byte_size:
18090 has_byte_size = 1;
18091 break;
18092 case DW_AT_const_value:
18093 has_const_value = 1;
18094 break;
18095 case DW_AT_calling_convention:
18096 /* DWARF doesn't provide a way to identify a program's source-level
18097 entry point. DW_AT_calling_convention attributes are only meant
18098 to describe functions' calling conventions.
18099
18100 However, because it's a necessary piece of information in
18101 Fortran, and before DWARF 4 DW_CC_program was the only
18102 piece of debugging information whose definition refers to
18103 a 'main program' at all, several compilers marked Fortran
18104 main programs with DW_CC_program --- even when those
18105 functions use the standard calling conventions.
18106
18107 Although DWARF now specifies a way to provide this
18108 information, we support this practice for backward
18109 compatibility. */
18110 if (DW_UNSND (&attr) == DW_CC_program
18111 && cu->language == language_fortran)
18112 main_subprogram = 1;
18113 break;
18114 case DW_AT_inline:
18115 if (DW_UNSND (&attr) == DW_INL_inlined
18116 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18117 may_be_inlined = 1;
18118 break;
18119
18120 case DW_AT_import:
18121 if (tag == DW_TAG_imported_unit)
18122 {
18123 d.sect_off = attr.get_ref_die_offset ();
18124 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18125 || cu->per_cu->is_dwz);
18126 }
18127 break;
18128
18129 case DW_AT_main_subprogram:
18130 main_subprogram = DW_UNSND (&attr);
18131 break;
18132
18133 case DW_AT_ranges:
18134 {
18135 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18136 but that requires a full DIE, so instead we just
18137 reimplement it. */
18138 int need_ranges_base = tag != DW_TAG_compile_unit;
18139 unsigned int ranges_offset = (DW_UNSND (&attr)
18140 + (need_ranges_base
18141 ? cu->ranges_base
18142 : 0));
18143
18144 /* Value of the DW_AT_ranges attribute is the offset in the
18145 .debug_ranges section. */
18146 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18147 nullptr))
18148 has_pc_info = 1;
18149 }
18150 break;
18151
18152 default:
18153 break;
18154 }
18155 }
18156
18157 /* For Ada, if both the name and the linkage name appear, we prefer
18158 the latter. This lets "catch exception" work better, regardless
18159 of the order in which the name and linkage name were emitted.
18160 Really, though, this is just a workaround for the fact that gdb
18161 doesn't store both the name and the linkage name. */
18162 if (cu->language == language_ada && linkage_name != nullptr)
18163 name = linkage_name;
18164
18165 if (high_pc_relative)
18166 highpc += lowpc;
18167
18168 if (has_low_pc_attr && has_high_pc_attr)
18169 {
18170 /* When using the GNU linker, .gnu.linkonce. sections are used to
18171 eliminate duplicate copies of functions and vtables and such.
18172 The linker will arbitrarily choose one and discard the others.
18173 The AT_*_pc values for such functions refer to local labels in
18174 these sections. If the section from that file was discarded, the
18175 labels are not in the output, so the relocs get a value of 0.
18176 If this is a discarded function, mark the pc bounds as invalid,
18177 so that GDB will ignore it. */
18178 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18179 {
18180 struct objfile *objfile = dwarf2_per_objfile->objfile;
18181 struct gdbarch *gdbarch = objfile->arch ();
18182
18183 complaint (_("DW_AT_low_pc %s is zero "
18184 "for DIE at %s [in module %s]"),
18185 paddress (gdbarch, lowpc),
18186 sect_offset_str (sect_off),
18187 objfile_name (objfile));
18188 }
18189 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18190 else if (lowpc >= highpc)
18191 {
18192 struct objfile *objfile = dwarf2_per_objfile->objfile;
18193 struct gdbarch *gdbarch = objfile->arch ();
18194
18195 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18196 "for DIE at %s [in module %s]"),
18197 paddress (gdbarch, lowpc),
18198 paddress (gdbarch, highpc),
18199 sect_offset_str (sect_off),
18200 objfile_name (objfile));
18201 }
18202 else
18203 has_pc_info = 1;
18204 }
18205
18206 return info_ptr;
18207 }
18208
18209 /* Find a cached partial DIE at OFFSET in CU. */
18210
18211 struct partial_die_info *
18212 dwarf2_cu::find_partial_die (sect_offset sect_off)
18213 {
18214 struct partial_die_info *lookup_die = NULL;
18215 struct partial_die_info part_die (sect_off);
18216
18217 lookup_die = ((struct partial_die_info *)
18218 htab_find_with_hash (partial_dies, &part_die,
18219 to_underlying (sect_off)));
18220
18221 return lookup_die;
18222 }
18223
18224 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18225 except in the case of .debug_types DIEs which do not reference
18226 outside their CU (they do however referencing other types via
18227 DW_FORM_ref_sig8). */
18228
18229 static const struct cu_partial_die_info
18230 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18231 {
18232 struct dwarf2_per_objfile *dwarf2_per_objfile
18233 = cu->per_cu->dwarf2_per_objfile;
18234 struct objfile *objfile = dwarf2_per_objfile->objfile;
18235 struct dwarf2_per_cu_data *per_cu = NULL;
18236 struct partial_die_info *pd = NULL;
18237
18238 if (offset_in_dwz == cu->per_cu->is_dwz
18239 && cu->header.offset_in_cu_p (sect_off))
18240 {
18241 pd = cu->find_partial_die (sect_off);
18242 if (pd != NULL)
18243 return { cu, pd };
18244 /* We missed recording what we needed.
18245 Load all dies and try again. */
18246 per_cu = cu->per_cu;
18247 }
18248 else
18249 {
18250 /* TUs don't reference other CUs/TUs (except via type signatures). */
18251 if (cu->per_cu->is_debug_types)
18252 {
18253 error (_("Dwarf Error: Type Unit at offset %s contains"
18254 " external reference to offset %s [in module %s].\n"),
18255 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18256 bfd_get_filename (objfile->obfd));
18257 }
18258 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18259 dwarf2_per_objfile);
18260
18261 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18262 load_partial_comp_unit (per_cu);
18263
18264 per_cu->cu->last_used = 0;
18265 pd = per_cu->cu->find_partial_die (sect_off);
18266 }
18267
18268 /* If we didn't find it, and not all dies have been loaded,
18269 load them all and try again. */
18270
18271 if (pd == NULL && per_cu->load_all_dies == 0)
18272 {
18273 per_cu->load_all_dies = 1;
18274
18275 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18276 THIS_CU->cu may already be in use. So we can't just free it and
18277 replace its DIEs with the ones we read in. Instead, we leave those
18278 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18279 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18280 set. */
18281 load_partial_comp_unit (per_cu);
18282
18283 pd = per_cu->cu->find_partial_die (sect_off);
18284 }
18285
18286 if (pd == NULL)
18287 internal_error (__FILE__, __LINE__,
18288 _("could not find partial DIE %s "
18289 "in cache [from module %s]\n"),
18290 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18291 return { per_cu->cu, pd };
18292 }
18293
18294 /* See if we can figure out if the class lives in a namespace. We do
18295 this by looking for a member function; its demangled name will
18296 contain namespace info, if there is any. */
18297
18298 static void
18299 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18300 struct dwarf2_cu *cu)
18301 {
18302 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18303 what template types look like, because the demangler
18304 frequently doesn't give the same name as the debug info. We
18305 could fix this by only using the demangled name to get the
18306 prefix (but see comment in read_structure_type). */
18307
18308 struct partial_die_info *real_pdi;
18309 struct partial_die_info *child_pdi;
18310
18311 /* If this DIE (this DIE's specification, if any) has a parent, then
18312 we should not do this. We'll prepend the parent's fully qualified
18313 name when we create the partial symbol. */
18314
18315 real_pdi = struct_pdi;
18316 while (real_pdi->has_specification)
18317 {
18318 auto res = find_partial_die (real_pdi->spec_offset,
18319 real_pdi->spec_is_dwz, cu);
18320 real_pdi = res.pdi;
18321 cu = res.cu;
18322 }
18323
18324 if (real_pdi->die_parent != NULL)
18325 return;
18326
18327 for (child_pdi = struct_pdi->die_child;
18328 child_pdi != NULL;
18329 child_pdi = child_pdi->die_sibling)
18330 {
18331 if (child_pdi->tag == DW_TAG_subprogram
18332 && child_pdi->linkage_name != NULL)
18333 {
18334 gdb::unique_xmalloc_ptr<char> actual_class_name
18335 (language_class_name_from_physname (cu->language_defn,
18336 child_pdi->linkage_name));
18337 if (actual_class_name != NULL)
18338 {
18339 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18340 struct_pdi->name = objfile->intern (actual_class_name.get ());
18341 }
18342 break;
18343 }
18344 }
18345 }
18346
18347 /* Return true if a DIE with TAG may have the DW_AT_const_value
18348 attribute. */
18349
18350 static bool
18351 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18352 {
18353 switch (tag)
18354 {
18355 case DW_TAG_constant:
18356 case DW_TAG_enumerator:
18357 case DW_TAG_formal_parameter:
18358 case DW_TAG_template_value_param:
18359 case DW_TAG_variable:
18360 return true;
18361 }
18362
18363 return false;
18364 }
18365
18366 void
18367 partial_die_info::fixup (struct dwarf2_cu *cu)
18368 {
18369 /* Once we've fixed up a die, there's no point in doing so again.
18370 This also avoids a memory leak if we were to call
18371 guess_partial_die_structure_name multiple times. */
18372 if (fixup_called)
18373 return;
18374
18375 /* If we found a reference attribute and the DIE has no name, try
18376 to find a name in the referred to DIE. */
18377
18378 if (name == NULL && has_specification)
18379 {
18380 struct partial_die_info *spec_die;
18381
18382 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18383 spec_die = res.pdi;
18384 cu = res.cu;
18385
18386 spec_die->fixup (cu);
18387
18388 if (spec_die->name)
18389 {
18390 name = spec_die->name;
18391
18392 /* Copy DW_AT_external attribute if it is set. */
18393 if (spec_die->is_external)
18394 is_external = spec_die->is_external;
18395 }
18396 }
18397
18398 if (!has_const_value && has_specification
18399 && can_have_DW_AT_const_value_p (tag))
18400 {
18401 struct partial_die_info *spec_die;
18402
18403 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18404 spec_die = res.pdi;
18405 cu = res.cu;
18406
18407 spec_die->fixup (cu);
18408
18409 if (spec_die->has_const_value)
18410 {
18411 /* Copy DW_AT_const_value attribute if it is set. */
18412 has_const_value = spec_die->has_const_value;
18413 }
18414 }
18415
18416 /* Set default names for some unnamed DIEs. */
18417
18418 if (name == NULL && tag == DW_TAG_namespace)
18419 name = CP_ANONYMOUS_NAMESPACE_STR;
18420
18421 /* If there is no parent die to provide a namespace, and there are
18422 children, see if we can determine the namespace from their linkage
18423 name. */
18424 if (cu->language == language_cplus
18425 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18426 && die_parent == NULL
18427 && has_children
18428 && (tag == DW_TAG_class_type
18429 || tag == DW_TAG_structure_type
18430 || tag == DW_TAG_union_type))
18431 guess_partial_die_structure_name (this, cu);
18432
18433 /* GCC might emit a nameless struct or union that has a linkage
18434 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18435 if (name == NULL
18436 && (tag == DW_TAG_class_type
18437 || tag == DW_TAG_interface_type
18438 || tag == DW_TAG_structure_type
18439 || tag == DW_TAG_union_type)
18440 && linkage_name != NULL)
18441 {
18442 gdb::unique_xmalloc_ptr<char> demangled
18443 (gdb_demangle (linkage_name, DMGL_TYPES));
18444 if (demangled != nullptr)
18445 {
18446 const char *base;
18447
18448 /* Strip any leading namespaces/classes, keep only the base name.
18449 DW_AT_name for named DIEs does not contain the prefixes. */
18450 base = strrchr (demangled.get (), ':');
18451 if (base && base > demangled.get () && base[-1] == ':')
18452 base++;
18453 else
18454 base = demangled.get ();
18455
18456 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18457 name = objfile->intern (base);
18458 }
18459 }
18460
18461 fixup_called = 1;
18462 }
18463
18464 /* Read the .debug_loclists header contents from the given SECTION in the
18465 HEADER. */
18466 static void
18467 read_loclist_header (struct loclist_header *header,
18468 struct dwarf2_section_info *section)
18469 {
18470 unsigned int bytes_read;
18471 bfd *abfd = section->get_bfd_owner ();
18472 const gdb_byte *info_ptr = section->buffer;
18473 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18474 info_ptr += bytes_read;
18475 header->version = read_2_bytes (abfd, info_ptr);
18476 info_ptr += 2;
18477 header->addr_size = read_1_byte (abfd, info_ptr);
18478 info_ptr += 1;
18479 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18480 info_ptr += 1;
18481 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18482 }
18483
18484 /* Return the DW_AT_loclists_base value for the CU. */
18485 static ULONGEST
18486 lookup_loclist_base (struct dwarf2_cu *cu)
18487 {
18488 /* For the .dwo unit, the loclist_base points to the first offset following
18489 the header. The header consists of the following entities-
18490 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18491 bit format)
18492 2. version (2 bytes)
18493 3. address size (1 byte)
18494 4. segment selector size (1 byte)
18495 5. offset entry count (4 bytes)
18496 These sizes are derived as per the DWARFv5 standard. */
18497 if (cu->dwo_unit != nullptr)
18498 {
18499 if (cu->header.initial_length_size == 4)
18500 return LOCLIST_HEADER_SIZE32;
18501 return LOCLIST_HEADER_SIZE64;
18502 }
18503 return cu->loclist_base;
18504 }
18505
18506 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18507 array of offsets in the .debug_loclists section. */
18508 static CORE_ADDR
18509 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18510 {
18511 struct dwarf2_per_objfile *dwarf2_per_objfile
18512 = cu->per_cu->dwarf2_per_objfile;
18513 struct objfile *objfile = dwarf2_per_objfile->objfile;
18514 bfd *abfd = objfile->obfd;
18515 ULONGEST loclist_base = lookup_loclist_base (cu);
18516 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18517
18518 section->read (objfile);
18519 if (section->buffer == NULL)
18520 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18521 "section [in module %s]"), objfile_name (objfile));
18522 struct loclist_header header;
18523 read_loclist_header (&header, section);
18524 if (loclist_index >= header.offset_entry_count)
18525 complaint (_("DW_FORM_loclistx pointing outside of "
18526 ".debug_loclists offset array [in module %s]"),
18527 objfile_name (objfile));
18528 if (loclist_base + loclist_index * cu->header.offset_size
18529 >= section->size)
18530 complaint (_("DW_FORM_loclistx pointing outside of "
18531 ".debug_loclists section [in module %s]"),
18532 objfile_name (objfile));
18533 const gdb_byte *info_ptr
18534 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18535
18536 if (cu->header.offset_size == 4)
18537 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18538 else
18539 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18540 }
18541
18542 /* Process the attributes that had to be skipped in the first round. These
18543 attributes are the ones that need str_offsets_base or addr_base attributes.
18544 They could not have been processed in the first round, because at the time
18545 the values of str_offsets_base or addr_base may not have been known. */
18546 static void
18547 read_attribute_reprocess (const struct die_reader_specs *reader,
18548 struct attribute *attr)
18549 {
18550 struct dwarf2_cu *cu = reader->cu;
18551 switch (attr->form)
18552 {
18553 case DW_FORM_addrx:
18554 case DW_FORM_GNU_addr_index:
18555 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18556 break;
18557 case DW_FORM_loclistx:
18558 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18559 break;
18560 case DW_FORM_strx:
18561 case DW_FORM_strx1:
18562 case DW_FORM_strx2:
18563 case DW_FORM_strx3:
18564 case DW_FORM_strx4:
18565 case DW_FORM_GNU_str_index:
18566 {
18567 unsigned int str_index = DW_UNSND (attr);
18568 if (reader->dwo_file != NULL)
18569 {
18570 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18571 DW_STRING_IS_CANONICAL (attr) = 0;
18572 }
18573 else
18574 {
18575 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18576 DW_STRING_IS_CANONICAL (attr) = 0;
18577 }
18578 break;
18579 }
18580 default:
18581 gdb_assert_not_reached (_("Unexpected DWARF form."));
18582 }
18583 }
18584
18585 /* Read an attribute value described by an attribute form. */
18586
18587 static const gdb_byte *
18588 read_attribute_value (const struct die_reader_specs *reader,
18589 struct attribute *attr, unsigned form,
18590 LONGEST implicit_const, const gdb_byte *info_ptr,
18591 bool *need_reprocess)
18592 {
18593 struct dwarf2_cu *cu = reader->cu;
18594 struct dwarf2_per_objfile *dwarf2_per_objfile
18595 = cu->per_cu->dwarf2_per_objfile;
18596 struct objfile *objfile = dwarf2_per_objfile->objfile;
18597 bfd *abfd = reader->abfd;
18598 struct comp_unit_head *cu_header = &cu->header;
18599 unsigned int bytes_read;
18600 struct dwarf_block *blk;
18601 *need_reprocess = false;
18602
18603 attr->form = (enum dwarf_form) form;
18604 switch (form)
18605 {
18606 case DW_FORM_ref_addr:
18607 if (cu->header.version == 2)
18608 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18609 &bytes_read);
18610 else
18611 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18612 &bytes_read);
18613 info_ptr += bytes_read;
18614 break;
18615 case DW_FORM_GNU_ref_alt:
18616 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18617 info_ptr += bytes_read;
18618 break;
18619 case DW_FORM_addr:
18620 {
18621 struct gdbarch *gdbarch = objfile->arch ();
18622 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18623 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18624 info_ptr += bytes_read;
18625 }
18626 break;
18627 case DW_FORM_block2:
18628 blk = dwarf_alloc_block (cu);
18629 blk->size = read_2_bytes (abfd, info_ptr);
18630 info_ptr += 2;
18631 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18632 info_ptr += blk->size;
18633 DW_BLOCK (attr) = blk;
18634 break;
18635 case DW_FORM_block4:
18636 blk = dwarf_alloc_block (cu);
18637 blk->size = read_4_bytes (abfd, info_ptr);
18638 info_ptr += 4;
18639 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18640 info_ptr += blk->size;
18641 DW_BLOCK (attr) = blk;
18642 break;
18643 case DW_FORM_data2:
18644 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18645 info_ptr += 2;
18646 break;
18647 case DW_FORM_data4:
18648 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18649 info_ptr += 4;
18650 break;
18651 case DW_FORM_data8:
18652 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18653 info_ptr += 8;
18654 break;
18655 case DW_FORM_data16:
18656 blk = dwarf_alloc_block (cu);
18657 blk->size = 16;
18658 blk->data = read_n_bytes (abfd, info_ptr, 16);
18659 info_ptr += 16;
18660 DW_BLOCK (attr) = blk;
18661 break;
18662 case DW_FORM_sec_offset:
18663 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18664 info_ptr += bytes_read;
18665 break;
18666 case DW_FORM_loclistx:
18667 {
18668 *need_reprocess = true;
18669 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18670 info_ptr += bytes_read;
18671 }
18672 break;
18673 case DW_FORM_string:
18674 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
18675 DW_STRING_IS_CANONICAL (attr) = 0;
18676 info_ptr += bytes_read;
18677 break;
18678 case DW_FORM_strp:
18679 if (!cu->per_cu->is_dwz)
18680 {
18681 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
18682 abfd, info_ptr, cu_header,
18683 &bytes_read);
18684 DW_STRING_IS_CANONICAL (attr) = 0;
18685 info_ptr += bytes_read;
18686 break;
18687 }
18688 /* FALLTHROUGH */
18689 case DW_FORM_line_strp:
18690 if (!cu->per_cu->is_dwz)
18691 {
18692 DW_STRING (attr)
18693 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
18694 &bytes_read);
18695 DW_STRING_IS_CANONICAL (attr) = 0;
18696 info_ptr += bytes_read;
18697 break;
18698 }
18699 /* FALLTHROUGH */
18700 case DW_FORM_GNU_strp_alt:
18701 {
18702 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
18703 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
18704 &bytes_read);
18705
18706 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
18707 DW_STRING_IS_CANONICAL (attr) = 0;
18708 info_ptr += bytes_read;
18709 }
18710 break;
18711 case DW_FORM_exprloc:
18712 case DW_FORM_block:
18713 blk = dwarf_alloc_block (cu);
18714 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18715 info_ptr += bytes_read;
18716 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18717 info_ptr += blk->size;
18718 DW_BLOCK (attr) = blk;
18719 break;
18720 case DW_FORM_block1:
18721 blk = dwarf_alloc_block (cu);
18722 blk->size = read_1_byte (abfd, info_ptr);
18723 info_ptr += 1;
18724 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18725 info_ptr += blk->size;
18726 DW_BLOCK (attr) = blk;
18727 break;
18728 case DW_FORM_data1:
18729 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18730 info_ptr += 1;
18731 break;
18732 case DW_FORM_flag:
18733 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
18734 info_ptr += 1;
18735 break;
18736 case DW_FORM_flag_present:
18737 DW_UNSND (attr) = 1;
18738 break;
18739 case DW_FORM_sdata:
18740 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18741 info_ptr += bytes_read;
18742 break;
18743 case DW_FORM_udata:
18744 case DW_FORM_rnglistx:
18745 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18746 info_ptr += bytes_read;
18747 break;
18748 case DW_FORM_ref1:
18749 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18750 + read_1_byte (abfd, info_ptr));
18751 info_ptr += 1;
18752 break;
18753 case DW_FORM_ref2:
18754 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18755 + read_2_bytes (abfd, info_ptr));
18756 info_ptr += 2;
18757 break;
18758 case DW_FORM_ref4:
18759 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18760 + read_4_bytes (abfd, info_ptr));
18761 info_ptr += 4;
18762 break;
18763 case DW_FORM_ref8:
18764 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18765 + read_8_bytes (abfd, info_ptr));
18766 info_ptr += 8;
18767 break;
18768 case DW_FORM_ref_sig8:
18769 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
18770 info_ptr += 8;
18771 break;
18772 case DW_FORM_ref_udata:
18773 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
18774 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
18775 info_ptr += bytes_read;
18776 break;
18777 case DW_FORM_indirect:
18778 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18779 info_ptr += bytes_read;
18780 if (form == DW_FORM_implicit_const)
18781 {
18782 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
18783 info_ptr += bytes_read;
18784 }
18785 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
18786 info_ptr, need_reprocess);
18787 break;
18788 case DW_FORM_implicit_const:
18789 DW_SND (attr) = implicit_const;
18790 break;
18791 case DW_FORM_addrx:
18792 case DW_FORM_GNU_addr_index:
18793 *need_reprocess = true;
18794 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18795 info_ptr += bytes_read;
18796 break;
18797 case DW_FORM_strx:
18798 case DW_FORM_strx1:
18799 case DW_FORM_strx2:
18800 case DW_FORM_strx3:
18801 case DW_FORM_strx4:
18802 case DW_FORM_GNU_str_index:
18803 {
18804 ULONGEST str_index;
18805 if (form == DW_FORM_strx1)
18806 {
18807 str_index = read_1_byte (abfd, info_ptr);
18808 info_ptr += 1;
18809 }
18810 else if (form == DW_FORM_strx2)
18811 {
18812 str_index = read_2_bytes (abfd, info_ptr);
18813 info_ptr += 2;
18814 }
18815 else if (form == DW_FORM_strx3)
18816 {
18817 str_index = read_3_bytes (abfd, info_ptr);
18818 info_ptr += 3;
18819 }
18820 else if (form == DW_FORM_strx4)
18821 {
18822 str_index = read_4_bytes (abfd, info_ptr);
18823 info_ptr += 4;
18824 }
18825 else
18826 {
18827 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18828 info_ptr += bytes_read;
18829 }
18830 *need_reprocess = true;
18831 DW_UNSND (attr) = str_index;
18832 }
18833 break;
18834 default:
18835 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
18836 dwarf_form_name (form),
18837 bfd_get_filename (abfd));
18838 }
18839
18840 /* Super hack. */
18841 if (cu->per_cu->is_dwz && attr->form_is_ref ())
18842 attr->form = DW_FORM_GNU_ref_alt;
18843
18844 /* We have seen instances where the compiler tried to emit a byte
18845 size attribute of -1 which ended up being encoded as an unsigned
18846 0xffffffff. Although 0xffffffff is technically a valid size value,
18847 an object of this size seems pretty unlikely so we can relatively
18848 safely treat these cases as if the size attribute was invalid and
18849 treat them as zero by default. */
18850 if (attr->name == DW_AT_byte_size
18851 && form == DW_FORM_data4
18852 && DW_UNSND (attr) >= 0xffffffff)
18853 {
18854 complaint
18855 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
18856 hex_string (DW_UNSND (attr)));
18857 DW_UNSND (attr) = 0;
18858 }
18859
18860 return info_ptr;
18861 }
18862
18863 /* Read an attribute described by an abbreviated attribute. */
18864
18865 static const gdb_byte *
18866 read_attribute (const struct die_reader_specs *reader,
18867 struct attribute *attr, struct attr_abbrev *abbrev,
18868 const gdb_byte *info_ptr, bool *need_reprocess)
18869 {
18870 attr->name = abbrev->name;
18871 return read_attribute_value (reader, attr, abbrev->form,
18872 abbrev->implicit_const, info_ptr,
18873 need_reprocess);
18874 }
18875
18876 /* Return pointer to string at .debug_str offset STR_OFFSET. */
18877
18878 static const char *
18879 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
18880 LONGEST str_offset)
18881 {
18882 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
18883 str_offset, "DW_FORM_strp");
18884 }
18885
18886 /* Return pointer to string at .debug_str offset as read from BUF.
18887 BUF is assumed to be in a compilation unit described by CU_HEADER.
18888 Return *BYTES_READ_PTR count of bytes read from BUF. */
18889
18890 static const char *
18891 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
18892 const gdb_byte *buf,
18893 const struct comp_unit_head *cu_header,
18894 unsigned int *bytes_read_ptr)
18895 {
18896 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18897
18898 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
18899 }
18900
18901 /* See read.h. */
18902
18903 const char *
18904 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
18905 const struct comp_unit_head *cu_header,
18906 unsigned int *bytes_read_ptr)
18907 {
18908 bfd *abfd = objfile->obfd;
18909 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
18910
18911 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
18912 }
18913
18914 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
18915 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
18916 ADDR_SIZE is the size of addresses from the CU header. */
18917
18918 static CORE_ADDR
18919 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
18920 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
18921 int addr_size)
18922 {
18923 struct objfile *objfile = dwarf2_per_objfile->objfile;
18924 bfd *abfd = objfile->obfd;
18925 const gdb_byte *info_ptr;
18926 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
18927
18928 dwarf2_per_objfile->addr.read (objfile);
18929 if (dwarf2_per_objfile->addr.buffer == NULL)
18930 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
18931 objfile_name (objfile));
18932 if (addr_base_or_zero + addr_index * addr_size
18933 >= dwarf2_per_objfile->addr.size)
18934 error (_("DW_FORM_addr_index pointing outside of "
18935 ".debug_addr section [in module %s]"),
18936 objfile_name (objfile));
18937 info_ptr = (dwarf2_per_objfile->addr.buffer
18938 + addr_base_or_zero + addr_index * addr_size);
18939 if (addr_size == 4)
18940 return bfd_get_32 (abfd, info_ptr);
18941 else
18942 return bfd_get_64 (abfd, info_ptr);
18943 }
18944
18945 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
18946
18947 static CORE_ADDR
18948 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
18949 {
18950 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
18951 cu->addr_base, cu->header.addr_size);
18952 }
18953
18954 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
18955
18956 static CORE_ADDR
18957 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
18958 unsigned int *bytes_read)
18959 {
18960 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
18961 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
18962
18963 return read_addr_index (cu, addr_index);
18964 }
18965
18966 /* See read.h. */
18967
18968 CORE_ADDR
18969 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
18970 {
18971 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
18972 struct dwarf2_cu *cu = per_cu->cu;
18973 gdb::optional<ULONGEST> addr_base;
18974 int addr_size;
18975
18976 /* We need addr_base and addr_size.
18977 If we don't have PER_CU->cu, we have to get it.
18978 Nasty, but the alternative is storing the needed info in PER_CU,
18979 which at this point doesn't seem justified: it's not clear how frequently
18980 it would get used and it would increase the size of every PER_CU.
18981 Entry points like dwarf2_per_cu_addr_size do a similar thing
18982 so we're not in uncharted territory here.
18983 Alas we need to be a bit more complicated as addr_base is contained
18984 in the DIE.
18985
18986 We don't need to read the entire CU(/TU).
18987 We just need the header and top level die.
18988
18989 IWBN to use the aging mechanism to let us lazily later discard the CU.
18990 For now we skip this optimization. */
18991
18992 if (cu != NULL)
18993 {
18994 addr_base = cu->addr_base;
18995 addr_size = cu->header.addr_size;
18996 }
18997 else
18998 {
18999 cutu_reader reader (per_cu, NULL, 0, false);
19000 addr_base = reader.cu->addr_base;
19001 addr_size = reader.cu->header.addr_size;
19002 }
19003
19004 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19005 addr_size);
19006 }
19007
19008 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19009 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19010 DWO file. */
19011
19012 static const char *
19013 read_str_index (struct dwarf2_cu *cu,
19014 struct dwarf2_section_info *str_section,
19015 struct dwarf2_section_info *str_offsets_section,
19016 ULONGEST str_offsets_base, ULONGEST str_index)
19017 {
19018 struct dwarf2_per_objfile *dwarf2_per_objfile
19019 = cu->per_cu->dwarf2_per_objfile;
19020 struct objfile *objfile = dwarf2_per_objfile->objfile;
19021 const char *objf_name = objfile_name (objfile);
19022 bfd *abfd = objfile->obfd;
19023 const gdb_byte *info_ptr;
19024 ULONGEST str_offset;
19025 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19026
19027 str_section->read (objfile);
19028 str_offsets_section->read (objfile);
19029 if (str_section->buffer == NULL)
19030 error (_("%s used without %s section"
19031 " in CU at offset %s [in module %s]"),
19032 form_name, str_section->get_name (),
19033 sect_offset_str (cu->header.sect_off), objf_name);
19034 if (str_offsets_section->buffer == NULL)
19035 error (_("%s used without %s section"
19036 " in CU at offset %s [in module %s]"),
19037 form_name, str_section->get_name (),
19038 sect_offset_str (cu->header.sect_off), objf_name);
19039 info_ptr = (str_offsets_section->buffer
19040 + str_offsets_base
19041 + str_index * cu->header.offset_size);
19042 if (cu->header.offset_size == 4)
19043 str_offset = bfd_get_32 (abfd, info_ptr);
19044 else
19045 str_offset = bfd_get_64 (abfd, info_ptr);
19046 if (str_offset >= str_section->size)
19047 error (_("Offset from %s pointing outside of"
19048 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19049 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19050 return (const char *) (str_section->buffer + str_offset);
19051 }
19052
19053 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19054
19055 static const char *
19056 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19057 {
19058 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19059 ? reader->cu->header.addr_size : 0;
19060 return read_str_index (reader->cu,
19061 &reader->dwo_file->sections.str,
19062 &reader->dwo_file->sections.str_offsets,
19063 str_offsets_base, str_index);
19064 }
19065
19066 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19067
19068 static const char *
19069 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19070 {
19071 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19072 const char *objf_name = objfile_name (objfile);
19073 static const char form_name[] = "DW_FORM_GNU_str_index";
19074 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19075
19076 if (!cu->str_offsets_base.has_value ())
19077 error (_("%s used in Fission stub without %s"
19078 " in CU at offset 0x%lx [in module %s]"),
19079 form_name, str_offsets_attr_name,
19080 (long) cu->header.offset_size, objf_name);
19081
19082 return read_str_index (cu,
19083 &cu->per_cu->dwarf2_per_objfile->str,
19084 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19085 *cu->str_offsets_base, str_index);
19086 }
19087
19088 /* Return the length of an LEB128 number in BUF. */
19089
19090 static int
19091 leb128_size (const gdb_byte *buf)
19092 {
19093 const gdb_byte *begin = buf;
19094 gdb_byte byte;
19095
19096 while (1)
19097 {
19098 byte = *buf++;
19099 if ((byte & 128) == 0)
19100 return buf - begin;
19101 }
19102 }
19103
19104 static void
19105 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19106 {
19107 switch (lang)
19108 {
19109 case DW_LANG_C89:
19110 case DW_LANG_C99:
19111 case DW_LANG_C11:
19112 case DW_LANG_C:
19113 case DW_LANG_UPC:
19114 cu->language = language_c;
19115 break;
19116 case DW_LANG_Java:
19117 case DW_LANG_C_plus_plus:
19118 case DW_LANG_C_plus_plus_11:
19119 case DW_LANG_C_plus_plus_14:
19120 cu->language = language_cplus;
19121 break;
19122 case DW_LANG_D:
19123 cu->language = language_d;
19124 break;
19125 case DW_LANG_Fortran77:
19126 case DW_LANG_Fortran90:
19127 case DW_LANG_Fortran95:
19128 case DW_LANG_Fortran03:
19129 case DW_LANG_Fortran08:
19130 cu->language = language_fortran;
19131 break;
19132 case DW_LANG_Go:
19133 cu->language = language_go;
19134 break;
19135 case DW_LANG_Mips_Assembler:
19136 cu->language = language_asm;
19137 break;
19138 case DW_LANG_Ada83:
19139 case DW_LANG_Ada95:
19140 cu->language = language_ada;
19141 break;
19142 case DW_LANG_Modula2:
19143 cu->language = language_m2;
19144 break;
19145 case DW_LANG_Pascal83:
19146 cu->language = language_pascal;
19147 break;
19148 case DW_LANG_ObjC:
19149 cu->language = language_objc;
19150 break;
19151 case DW_LANG_Rust:
19152 case DW_LANG_Rust_old:
19153 cu->language = language_rust;
19154 break;
19155 case DW_LANG_Cobol74:
19156 case DW_LANG_Cobol85:
19157 default:
19158 cu->language = language_minimal;
19159 break;
19160 }
19161 cu->language_defn = language_def (cu->language);
19162 }
19163
19164 /* Return the named attribute or NULL if not there. */
19165
19166 static struct attribute *
19167 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19168 {
19169 for (;;)
19170 {
19171 unsigned int i;
19172 struct attribute *spec = NULL;
19173
19174 for (i = 0; i < die->num_attrs; ++i)
19175 {
19176 if (die->attrs[i].name == name)
19177 return &die->attrs[i];
19178 if (die->attrs[i].name == DW_AT_specification
19179 || die->attrs[i].name == DW_AT_abstract_origin)
19180 spec = &die->attrs[i];
19181 }
19182
19183 if (!spec)
19184 break;
19185
19186 die = follow_die_ref (die, spec, &cu);
19187 }
19188
19189 return NULL;
19190 }
19191
19192 /* Return the string associated with a string-typed attribute, or NULL if it
19193 is either not found or is of an incorrect type. */
19194
19195 static const char *
19196 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19197 {
19198 struct attribute *attr;
19199 const char *str = NULL;
19200
19201 attr = dwarf2_attr (die, name, cu);
19202
19203 if (attr != NULL)
19204 {
19205 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
19206 || attr->form == DW_FORM_string
19207 || attr->form == DW_FORM_strx
19208 || attr->form == DW_FORM_strx1
19209 || attr->form == DW_FORM_strx2
19210 || attr->form == DW_FORM_strx3
19211 || attr->form == DW_FORM_strx4
19212 || attr->form == DW_FORM_GNU_str_index
19213 || attr->form == DW_FORM_GNU_strp_alt)
19214 str = DW_STRING (attr);
19215 else
19216 complaint (_("string type expected for attribute %s for "
19217 "DIE at %s in module %s"),
19218 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19219 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19220 }
19221
19222 return str;
19223 }
19224
19225 /* Return the dwo name or NULL if not present. If present, it is in either
19226 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19227 static const char *
19228 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19229 {
19230 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19231 if (dwo_name == nullptr)
19232 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19233 return dwo_name;
19234 }
19235
19236 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19237 and holds a non-zero value. This function should only be used for
19238 DW_FORM_flag or DW_FORM_flag_present attributes. */
19239
19240 static int
19241 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19242 {
19243 struct attribute *attr = dwarf2_attr (die, name, cu);
19244
19245 return (attr && DW_UNSND (attr));
19246 }
19247
19248 static int
19249 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19250 {
19251 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19252 which value is non-zero. However, we have to be careful with
19253 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19254 (via dwarf2_flag_true_p) follows this attribute. So we may
19255 end up accidently finding a declaration attribute that belongs
19256 to a different DIE referenced by the specification attribute,
19257 even though the given DIE does not have a declaration attribute. */
19258 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19259 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19260 }
19261
19262 /* Return the die giving the specification for DIE, if there is
19263 one. *SPEC_CU is the CU containing DIE on input, and the CU
19264 containing the return value on output. If there is no
19265 specification, but there is an abstract origin, that is
19266 returned. */
19267
19268 static struct die_info *
19269 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19270 {
19271 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19272 *spec_cu);
19273
19274 if (spec_attr == NULL)
19275 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19276
19277 if (spec_attr == NULL)
19278 return NULL;
19279 else
19280 return follow_die_ref (die, spec_attr, spec_cu);
19281 }
19282
19283 /* Stub for free_line_header to match void * callback types. */
19284
19285 static void
19286 free_line_header_voidp (void *arg)
19287 {
19288 struct line_header *lh = (struct line_header *) arg;
19289
19290 delete lh;
19291 }
19292
19293 /* A convenience function to find the proper .debug_line section for a CU. */
19294
19295 static struct dwarf2_section_info *
19296 get_debug_line_section (struct dwarf2_cu *cu)
19297 {
19298 struct dwarf2_section_info *section;
19299 struct dwarf2_per_objfile *dwarf2_per_objfile
19300 = cu->per_cu->dwarf2_per_objfile;
19301
19302 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19303 DWO file. */
19304 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19305 section = &cu->dwo_unit->dwo_file->sections.line;
19306 else if (cu->per_cu->is_dwz)
19307 {
19308 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19309
19310 section = &dwz->line;
19311 }
19312 else
19313 section = &dwarf2_per_objfile->line;
19314
19315 return section;
19316 }
19317
19318 /* Read the statement program header starting at OFFSET in
19319 .debug_line, or .debug_line.dwo. Return a pointer
19320 to a struct line_header, allocated using xmalloc.
19321 Returns NULL if there is a problem reading the header, e.g., if it
19322 has a version we don't understand.
19323
19324 NOTE: the strings in the include directory and file name tables of
19325 the returned object point into the dwarf line section buffer,
19326 and must not be freed. */
19327
19328 static line_header_up
19329 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19330 {
19331 struct dwarf2_section_info *section;
19332 struct dwarf2_per_objfile *dwarf2_per_objfile
19333 = cu->per_cu->dwarf2_per_objfile;
19334
19335 section = get_debug_line_section (cu);
19336 section->read (dwarf2_per_objfile->objfile);
19337 if (section->buffer == NULL)
19338 {
19339 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19340 complaint (_("missing .debug_line.dwo section"));
19341 else
19342 complaint (_("missing .debug_line section"));
19343 return 0;
19344 }
19345
19346 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19347 dwarf2_per_objfile, section,
19348 &cu->header);
19349 }
19350
19351 /* Subroutine of dwarf_decode_lines to simplify it.
19352 Return the file name of the psymtab for the given file_entry.
19353 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19354 If space for the result is malloc'd, *NAME_HOLDER will be set.
19355 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19356
19357 static const char *
19358 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19359 const dwarf2_psymtab *pst,
19360 const char *comp_dir,
19361 gdb::unique_xmalloc_ptr<char> *name_holder)
19362 {
19363 const char *include_name = fe.name;
19364 const char *include_name_to_compare = include_name;
19365 const char *pst_filename;
19366 int file_is_pst;
19367
19368 const char *dir_name = fe.include_dir (lh);
19369
19370 gdb::unique_xmalloc_ptr<char> hold_compare;
19371 if (!IS_ABSOLUTE_PATH (include_name)
19372 && (dir_name != NULL || comp_dir != NULL))
19373 {
19374 /* Avoid creating a duplicate psymtab for PST.
19375 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19376 Before we do the comparison, however, we need to account
19377 for DIR_NAME and COMP_DIR.
19378 First prepend dir_name (if non-NULL). If we still don't
19379 have an absolute path prepend comp_dir (if non-NULL).
19380 However, the directory we record in the include-file's
19381 psymtab does not contain COMP_DIR (to match the
19382 corresponding symtab(s)).
19383
19384 Example:
19385
19386 bash$ cd /tmp
19387 bash$ gcc -g ./hello.c
19388 include_name = "hello.c"
19389 dir_name = "."
19390 DW_AT_comp_dir = comp_dir = "/tmp"
19391 DW_AT_name = "./hello.c"
19392
19393 */
19394
19395 if (dir_name != NULL)
19396 {
19397 name_holder->reset (concat (dir_name, SLASH_STRING,
19398 include_name, (char *) NULL));
19399 include_name = name_holder->get ();
19400 include_name_to_compare = include_name;
19401 }
19402 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19403 {
19404 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19405 include_name, (char *) NULL));
19406 include_name_to_compare = hold_compare.get ();
19407 }
19408 }
19409
19410 pst_filename = pst->filename;
19411 gdb::unique_xmalloc_ptr<char> copied_name;
19412 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19413 {
19414 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19415 pst_filename, (char *) NULL));
19416 pst_filename = copied_name.get ();
19417 }
19418
19419 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19420
19421 if (file_is_pst)
19422 return NULL;
19423 return include_name;
19424 }
19425
19426 /* State machine to track the state of the line number program. */
19427
19428 class lnp_state_machine
19429 {
19430 public:
19431 /* Initialize a machine state for the start of a line number
19432 program. */
19433 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19434 bool record_lines_p);
19435
19436 file_entry *current_file ()
19437 {
19438 /* lh->file_names is 0-based, but the file name numbers in the
19439 statement program are 1-based. */
19440 return m_line_header->file_name_at (m_file);
19441 }
19442
19443 /* Record the line in the state machine. END_SEQUENCE is true if
19444 we're processing the end of a sequence. */
19445 void record_line (bool end_sequence);
19446
19447 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19448 nop-out rest of the lines in this sequence. */
19449 void check_line_address (struct dwarf2_cu *cu,
19450 const gdb_byte *line_ptr,
19451 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19452
19453 void handle_set_discriminator (unsigned int discriminator)
19454 {
19455 m_discriminator = discriminator;
19456 m_line_has_non_zero_discriminator |= discriminator != 0;
19457 }
19458
19459 /* Handle DW_LNE_set_address. */
19460 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19461 {
19462 m_op_index = 0;
19463 address += baseaddr;
19464 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19465 }
19466
19467 /* Handle DW_LNS_advance_pc. */
19468 void handle_advance_pc (CORE_ADDR adjust);
19469
19470 /* Handle a special opcode. */
19471 void handle_special_opcode (unsigned char op_code);
19472
19473 /* Handle DW_LNS_advance_line. */
19474 void handle_advance_line (int line_delta)
19475 {
19476 advance_line (line_delta);
19477 }
19478
19479 /* Handle DW_LNS_set_file. */
19480 void handle_set_file (file_name_index file);
19481
19482 /* Handle DW_LNS_negate_stmt. */
19483 void handle_negate_stmt ()
19484 {
19485 m_is_stmt = !m_is_stmt;
19486 }
19487
19488 /* Handle DW_LNS_const_add_pc. */
19489 void handle_const_add_pc ();
19490
19491 /* Handle DW_LNS_fixed_advance_pc. */
19492 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19493 {
19494 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19495 m_op_index = 0;
19496 }
19497
19498 /* Handle DW_LNS_copy. */
19499 void handle_copy ()
19500 {
19501 record_line (false);
19502 m_discriminator = 0;
19503 }
19504
19505 /* Handle DW_LNE_end_sequence. */
19506 void handle_end_sequence ()
19507 {
19508 m_currently_recording_lines = true;
19509 }
19510
19511 private:
19512 /* Advance the line by LINE_DELTA. */
19513 void advance_line (int line_delta)
19514 {
19515 m_line += line_delta;
19516
19517 if (line_delta != 0)
19518 m_line_has_non_zero_discriminator = m_discriminator != 0;
19519 }
19520
19521 struct dwarf2_cu *m_cu;
19522
19523 gdbarch *m_gdbarch;
19524
19525 /* True if we're recording lines.
19526 Otherwise we're building partial symtabs and are just interested in
19527 finding include files mentioned by the line number program. */
19528 bool m_record_lines_p;
19529
19530 /* The line number header. */
19531 line_header *m_line_header;
19532
19533 /* These are part of the standard DWARF line number state machine,
19534 and initialized according to the DWARF spec. */
19535
19536 unsigned char m_op_index = 0;
19537 /* The line table index of the current file. */
19538 file_name_index m_file = 1;
19539 unsigned int m_line = 1;
19540
19541 /* These are initialized in the constructor. */
19542
19543 CORE_ADDR m_address;
19544 bool m_is_stmt;
19545 unsigned int m_discriminator;
19546
19547 /* Additional bits of state we need to track. */
19548
19549 /* The last file that we called dwarf2_start_subfile for.
19550 This is only used for TLLs. */
19551 unsigned int m_last_file = 0;
19552 /* The last file a line number was recorded for. */
19553 struct subfile *m_last_subfile = NULL;
19554
19555 /* When true, record the lines we decode. */
19556 bool m_currently_recording_lines = false;
19557
19558 /* The last line number that was recorded, used to coalesce
19559 consecutive entries for the same line. This can happen, for
19560 example, when discriminators are present. PR 17276. */
19561 unsigned int m_last_line = 0;
19562 bool m_line_has_non_zero_discriminator = false;
19563 };
19564
19565 void
19566 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19567 {
19568 CORE_ADDR addr_adj = (((m_op_index + adjust)
19569 / m_line_header->maximum_ops_per_instruction)
19570 * m_line_header->minimum_instruction_length);
19571 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19572 m_op_index = ((m_op_index + adjust)
19573 % m_line_header->maximum_ops_per_instruction);
19574 }
19575
19576 void
19577 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19578 {
19579 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19580 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19581 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19582 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19583 / m_line_header->maximum_ops_per_instruction)
19584 * m_line_header->minimum_instruction_length);
19585 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19586 m_op_index = ((m_op_index + adj_opcode_d)
19587 % m_line_header->maximum_ops_per_instruction);
19588
19589 int line_delta = m_line_header->line_base + adj_opcode_r;
19590 advance_line (line_delta);
19591 record_line (false);
19592 m_discriminator = 0;
19593 }
19594
19595 void
19596 lnp_state_machine::handle_set_file (file_name_index file)
19597 {
19598 m_file = file;
19599
19600 const file_entry *fe = current_file ();
19601 if (fe == NULL)
19602 dwarf2_debug_line_missing_file_complaint ();
19603 else if (m_record_lines_p)
19604 {
19605 const char *dir = fe->include_dir (m_line_header);
19606
19607 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19608 m_line_has_non_zero_discriminator = m_discriminator != 0;
19609 dwarf2_start_subfile (m_cu, fe->name, dir);
19610 }
19611 }
19612
19613 void
19614 lnp_state_machine::handle_const_add_pc ()
19615 {
19616 CORE_ADDR adjust
19617 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19618
19619 CORE_ADDR addr_adj
19620 = (((m_op_index + adjust)
19621 / m_line_header->maximum_ops_per_instruction)
19622 * m_line_header->minimum_instruction_length);
19623
19624 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19625 m_op_index = ((m_op_index + adjust)
19626 % m_line_header->maximum_ops_per_instruction);
19627 }
19628
19629 /* Return non-zero if we should add LINE to the line number table.
19630 LINE is the line to add, LAST_LINE is the last line that was added,
19631 LAST_SUBFILE is the subfile for LAST_LINE.
19632 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19633 had a non-zero discriminator.
19634
19635 We have to be careful in the presence of discriminators.
19636 E.g., for this line:
19637
19638 for (i = 0; i < 100000; i++);
19639
19640 clang can emit four line number entries for that one line,
19641 each with a different discriminator.
19642 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19643
19644 However, we want gdb to coalesce all four entries into one.
19645 Otherwise the user could stepi into the middle of the line and
19646 gdb would get confused about whether the pc really was in the
19647 middle of the line.
19648
19649 Things are further complicated by the fact that two consecutive
19650 line number entries for the same line is a heuristic used by gcc
19651 to denote the end of the prologue. So we can't just discard duplicate
19652 entries, we have to be selective about it. The heuristic we use is
19653 that we only collapse consecutive entries for the same line if at least
19654 one of those entries has a non-zero discriminator. PR 17276.
19655
19656 Note: Addresses in the line number state machine can never go backwards
19657 within one sequence, thus this coalescing is ok. */
19658
19659 static int
19660 dwarf_record_line_p (struct dwarf2_cu *cu,
19661 unsigned int line, unsigned int last_line,
19662 int line_has_non_zero_discriminator,
19663 struct subfile *last_subfile)
19664 {
19665 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19666 return 1;
19667 if (line != last_line)
19668 return 1;
19669 /* Same line for the same file that we've seen already.
19670 As a last check, for pr 17276, only record the line if the line
19671 has never had a non-zero discriminator. */
19672 if (!line_has_non_zero_discriminator)
19673 return 1;
19674 return 0;
19675 }
19676
19677 /* Use the CU's builder to record line number LINE beginning at
19678 address ADDRESS in the line table of subfile SUBFILE. */
19679
19680 static void
19681 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
19682 unsigned int line, CORE_ADDR address, bool is_stmt,
19683 struct dwarf2_cu *cu)
19684 {
19685 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
19686
19687 if (dwarf_line_debug)
19688 {
19689 fprintf_unfiltered (gdb_stdlog,
19690 "Recording line %u, file %s, address %s\n",
19691 line, lbasename (subfile->name),
19692 paddress (gdbarch, address));
19693 }
19694
19695 if (cu != nullptr)
19696 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
19697 }
19698
19699 /* Subroutine of dwarf_decode_lines_1 to simplify it.
19700 Mark the end of a set of line number records.
19701 The arguments are the same as for dwarf_record_line_1.
19702 If SUBFILE is NULL the request is ignored. */
19703
19704 static void
19705 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
19706 CORE_ADDR address, struct dwarf2_cu *cu)
19707 {
19708 if (subfile == NULL)
19709 return;
19710
19711 if (dwarf_line_debug)
19712 {
19713 fprintf_unfiltered (gdb_stdlog,
19714 "Finishing current line, file %s, address %s\n",
19715 lbasename (subfile->name),
19716 paddress (gdbarch, address));
19717 }
19718
19719 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
19720 }
19721
19722 void
19723 lnp_state_machine::record_line (bool end_sequence)
19724 {
19725 if (dwarf_line_debug)
19726 {
19727 fprintf_unfiltered (gdb_stdlog,
19728 "Processing actual line %u: file %u,"
19729 " address %s, is_stmt %u, discrim %u%s\n",
19730 m_line, m_file,
19731 paddress (m_gdbarch, m_address),
19732 m_is_stmt, m_discriminator,
19733 (end_sequence ? "\t(end sequence)" : ""));
19734 }
19735
19736 file_entry *fe = current_file ();
19737
19738 if (fe == NULL)
19739 dwarf2_debug_line_missing_file_complaint ();
19740 /* For now we ignore lines not starting on an instruction boundary.
19741 But not when processing end_sequence for compatibility with the
19742 previous version of the code. */
19743 else if (m_op_index == 0 || end_sequence)
19744 {
19745 fe->included_p = 1;
19746 if (m_record_lines_p)
19747 {
19748 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
19749 || end_sequence)
19750 {
19751 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
19752 m_currently_recording_lines ? m_cu : nullptr);
19753 }
19754
19755 if (!end_sequence)
19756 {
19757 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
19758
19759 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
19760 m_line_has_non_zero_discriminator,
19761 m_last_subfile))
19762 {
19763 buildsym_compunit *builder = m_cu->get_builder ();
19764 dwarf_record_line_1 (m_gdbarch,
19765 builder->get_current_subfile (),
19766 m_line, m_address, is_stmt,
19767 m_currently_recording_lines ? m_cu : nullptr);
19768 }
19769 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19770 m_last_line = m_line;
19771 }
19772 }
19773 }
19774 }
19775
19776 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
19777 line_header *lh, bool record_lines_p)
19778 {
19779 m_cu = cu;
19780 m_gdbarch = arch;
19781 m_record_lines_p = record_lines_p;
19782 m_line_header = lh;
19783
19784 m_currently_recording_lines = true;
19785
19786 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
19787 was a line entry for it so that the backend has a chance to adjust it
19788 and also record it in case it needs it. This is currently used by MIPS
19789 code, cf. `mips_adjust_dwarf2_line'. */
19790 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
19791 m_is_stmt = lh->default_is_stmt;
19792 m_discriminator = 0;
19793 }
19794
19795 void
19796 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
19797 const gdb_byte *line_ptr,
19798 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
19799 {
19800 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
19801 the pc range of the CU. However, we restrict the test to only ADDRESS
19802 values of zero to preserve GDB's previous behaviour which is to handle
19803 the specific case of a function being GC'd by the linker. */
19804
19805 if (address == 0 && address < unrelocated_lowpc)
19806 {
19807 /* This line table is for a function which has been
19808 GCd by the linker. Ignore it. PR gdb/12528 */
19809
19810 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19811 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
19812
19813 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
19814 line_offset, objfile_name (objfile));
19815 m_currently_recording_lines = false;
19816 /* Note: m_currently_recording_lines is left as false until we see
19817 DW_LNE_end_sequence. */
19818 }
19819 }
19820
19821 /* Subroutine of dwarf_decode_lines to simplify it.
19822 Process the line number information in LH.
19823 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
19824 program in order to set included_p for every referenced header. */
19825
19826 static void
19827 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
19828 const int decode_for_pst_p, CORE_ADDR lowpc)
19829 {
19830 const gdb_byte *line_ptr, *extended_end;
19831 const gdb_byte *line_end;
19832 unsigned int bytes_read, extended_len;
19833 unsigned char op_code, extended_op;
19834 CORE_ADDR baseaddr;
19835 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19836 bfd *abfd = objfile->obfd;
19837 struct gdbarch *gdbarch = objfile->arch ();
19838 /* True if we're recording line info (as opposed to building partial
19839 symtabs and just interested in finding include files mentioned by
19840 the line number program). */
19841 bool record_lines_p = !decode_for_pst_p;
19842
19843 baseaddr = objfile->text_section_offset ();
19844
19845 line_ptr = lh->statement_program_start;
19846 line_end = lh->statement_program_end;
19847
19848 /* Read the statement sequences until there's nothing left. */
19849 while (line_ptr < line_end)
19850 {
19851 /* The DWARF line number program state machine. Reset the state
19852 machine at the start of each sequence. */
19853 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
19854 bool end_sequence = false;
19855
19856 if (record_lines_p)
19857 {
19858 /* Start a subfile for the current file of the state
19859 machine. */
19860 const file_entry *fe = state_machine.current_file ();
19861
19862 if (fe != NULL)
19863 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
19864 }
19865
19866 /* Decode the table. */
19867 while (line_ptr < line_end && !end_sequence)
19868 {
19869 op_code = read_1_byte (abfd, line_ptr);
19870 line_ptr += 1;
19871
19872 if (op_code >= lh->opcode_base)
19873 {
19874 /* Special opcode. */
19875 state_machine.handle_special_opcode (op_code);
19876 }
19877 else switch (op_code)
19878 {
19879 case DW_LNS_extended_op:
19880 extended_len = read_unsigned_leb128 (abfd, line_ptr,
19881 &bytes_read);
19882 line_ptr += bytes_read;
19883 extended_end = line_ptr + extended_len;
19884 extended_op = read_1_byte (abfd, line_ptr);
19885 line_ptr += 1;
19886 switch (extended_op)
19887 {
19888 case DW_LNE_end_sequence:
19889 state_machine.handle_end_sequence ();
19890 end_sequence = true;
19891 break;
19892 case DW_LNE_set_address:
19893 {
19894 CORE_ADDR address
19895 = cu->header.read_address (abfd, line_ptr, &bytes_read);
19896 line_ptr += bytes_read;
19897
19898 state_machine.check_line_address (cu, line_ptr,
19899 lowpc - baseaddr, address);
19900 state_machine.handle_set_address (baseaddr, address);
19901 }
19902 break;
19903 case DW_LNE_define_file:
19904 {
19905 const char *cur_file;
19906 unsigned int mod_time, length;
19907 dir_index dindex;
19908
19909 cur_file = read_direct_string (abfd, line_ptr,
19910 &bytes_read);
19911 line_ptr += bytes_read;
19912 dindex = (dir_index)
19913 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19914 line_ptr += bytes_read;
19915 mod_time =
19916 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19917 line_ptr += bytes_read;
19918 length =
19919 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19920 line_ptr += bytes_read;
19921 lh->add_file_name (cur_file, dindex, mod_time, length);
19922 }
19923 break;
19924 case DW_LNE_set_discriminator:
19925 {
19926 /* The discriminator is not interesting to the
19927 debugger; just ignore it. We still need to
19928 check its value though:
19929 if there are consecutive entries for the same
19930 (non-prologue) line we want to coalesce them.
19931 PR 17276. */
19932 unsigned int discr
19933 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19934 line_ptr += bytes_read;
19935
19936 state_machine.handle_set_discriminator (discr);
19937 }
19938 break;
19939 default:
19940 complaint (_("mangled .debug_line section"));
19941 return;
19942 }
19943 /* Make sure that we parsed the extended op correctly. If e.g.
19944 we expected a different address size than the producer used,
19945 we may have read the wrong number of bytes. */
19946 if (line_ptr != extended_end)
19947 {
19948 complaint (_("mangled .debug_line section"));
19949 return;
19950 }
19951 break;
19952 case DW_LNS_copy:
19953 state_machine.handle_copy ();
19954 break;
19955 case DW_LNS_advance_pc:
19956 {
19957 CORE_ADDR adjust
19958 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19959 line_ptr += bytes_read;
19960
19961 state_machine.handle_advance_pc (adjust);
19962 }
19963 break;
19964 case DW_LNS_advance_line:
19965 {
19966 int line_delta
19967 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
19968 line_ptr += bytes_read;
19969
19970 state_machine.handle_advance_line (line_delta);
19971 }
19972 break;
19973 case DW_LNS_set_file:
19974 {
19975 file_name_index file
19976 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
19977 &bytes_read);
19978 line_ptr += bytes_read;
19979
19980 state_machine.handle_set_file (file);
19981 }
19982 break;
19983 case DW_LNS_set_column:
19984 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
19985 line_ptr += bytes_read;
19986 break;
19987 case DW_LNS_negate_stmt:
19988 state_machine.handle_negate_stmt ();
19989 break;
19990 case DW_LNS_set_basic_block:
19991 break;
19992 /* Add to the address register of the state machine the
19993 address increment value corresponding to special opcode
19994 255. I.e., this value is scaled by the minimum
19995 instruction length since special opcode 255 would have
19996 scaled the increment. */
19997 case DW_LNS_const_add_pc:
19998 state_machine.handle_const_add_pc ();
19999 break;
20000 case DW_LNS_fixed_advance_pc:
20001 {
20002 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20003 line_ptr += 2;
20004
20005 state_machine.handle_fixed_advance_pc (addr_adj);
20006 }
20007 break;
20008 default:
20009 {
20010 /* Unknown standard opcode, ignore it. */
20011 int i;
20012
20013 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20014 {
20015 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20016 line_ptr += bytes_read;
20017 }
20018 }
20019 }
20020 }
20021
20022 if (!end_sequence)
20023 dwarf2_debug_line_missing_end_sequence_complaint ();
20024
20025 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20026 in which case we still finish recording the last line). */
20027 state_machine.record_line (true);
20028 }
20029 }
20030
20031 /* Decode the Line Number Program (LNP) for the given line_header
20032 structure and CU. The actual information extracted and the type
20033 of structures created from the LNP depends on the value of PST.
20034
20035 1. If PST is NULL, then this procedure uses the data from the program
20036 to create all necessary symbol tables, and their linetables.
20037
20038 2. If PST is not NULL, this procedure reads the program to determine
20039 the list of files included by the unit represented by PST, and
20040 builds all the associated partial symbol tables.
20041
20042 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20043 It is used for relative paths in the line table.
20044 NOTE: When processing partial symtabs (pst != NULL),
20045 comp_dir == pst->dirname.
20046
20047 NOTE: It is important that psymtabs have the same file name (via strcmp)
20048 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20049 symtab we don't use it in the name of the psymtabs we create.
20050 E.g. expand_line_sal requires this when finding psymtabs to expand.
20051 A good testcase for this is mb-inline.exp.
20052
20053 LOWPC is the lowest address in CU (or 0 if not known).
20054
20055 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20056 for its PC<->lines mapping information. Otherwise only the filename
20057 table is read in. */
20058
20059 static void
20060 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20061 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20062 CORE_ADDR lowpc, int decode_mapping)
20063 {
20064 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20065 const int decode_for_pst_p = (pst != NULL);
20066
20067 if (decode_mapping)
20068 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20069
20070 if (decode_for_pst_p)
20071 {
20072 /* Now that we're done scanning the Line Header Program, we can
20073 create the psymtab of each included file. */
20074 for (auto &file_entry : lh->file_names ())
20075 if (file_entry.included_p == 1)
20076 {
20077 gdb::unique_xmalloc_ptr<char> name_holder;
20078 const char *include_name =
20079 psymtab_include_file_name (lh, file_entry, pst,
20080 comp_dir, &name_holder);
20081 if (include_name != NULL)
20082 dwarf2_create_include_psymtab (include_name, pst, objfile);
20083 }
20084 }
20085 else
20086 {
20087 /* Make sure a symtab is created for every file, even files
20088 which contain only variables (i.e. no code with associated
20089 line numbers). */
20090 buildsym_compunit *builder = cu->get_builder ();
20091 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20092
20093 for (auto &fe : lh->file_names ())
20094 {
20095 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20096 if (builder->get_current_subfile ()->symtab == NULL)
20097 {
20098 builder->get_current_subfile ()->symtab
20099 = allocate_symtab (cust,
20100 builder->get_current_subfile ()->name);
20101 }
20102 fe.symtab = builder->get_current_subfile ()->symtab;
20103 }
20104 }
20105 }
20106
20107 /* Start a subfile for DWARF. FILENAME is the name of the file and
20108 DIRNAME the name of the source directory which contains FILENAME
20109 or NULL if not known.
20110 This routine tries to keep line numbers from identical absolute and
20111 relative file names in a common subfile.
20112
20113 Using the `list' example from the GDB testsuite, which resides in
20114 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20115 of /srcdir/list0.c yields the following debugging information for list0.c:
20116
20117 DW_AT_name: /srcdir/list0.c
20118 DW_AT_comp_dir: /compdir
20119 files.files[0].name: list0.h
20120 files.files[0].dir: /srcdir
20121 files.files[1].name: list0.c
20122 files.files[1].dir: /srcdir
20123
20124 The line number information for list0.c has to end up in a single
20125 subfile, so that `break /srcdir/list0.c:1' works as expected.
20126 start_subfile will ensure that this happens provided that we pass the
20127 concatenation of files.files[1].dir and files.files[1].name as the
20128 subfile's name. */
20129
20130 static void
20131 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20132 const char *dirname)
20133 {
20134 gdb::unique_xmalloc_ptr<char> copy;
20135
20136 /* In order not to lose the line information directory,
20137 we concatenate it to the filename when it makes sense.
20138 Note that the Dwarf3 standard says (speaking of filenames in line
20139 information): ``The directory index is ignored for file names
20140 that represent full path names''. Thus ignoring dirname in the
20141 `else' branch below isn't an issue. */
20142
20143 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20144 {
20145 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20146 filename = copy.get ();
20147 }
20148
20149 cu->get_builder ()->start_subfile (filename);
20150 }
20151
20152 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20153 buildsym_compunit constructor. */
20154
20155 struct compunit_symtab *
20156 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20157 CORE_ADDR low_pc)
20158 {
20159 gdb_assert (m_builder == nullptr);
20160
20161 m_builder.reset (new struct buildsym_compunit
20162 (per_cu->dwarf2_per_objfile->objfile,
20163 name, comp_dir, language, low_pc));
20164
20165 list_in_scope = get_builder ()->get_file_symbols ();
20166
20167 get_builder ()->record_debugformat ("DWARF 2");
20168 get_builder ()->record_producer (producer);
20169
20170 processing_has_namespace_info = false;
20171
20172 return get_builder ()->get_compunit_symtab ();
20173 }
20174
20175 static void
20176 var_decode_location (struct attribute *attr, struct symbol *sym,
20177 struct dwarf2_cu *cu)
20178 {
20179 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20180 struct comp_unit_head *cu_header = &cu->header;
20181
20182 /* NOTE drow/2003-01-30: There used to be a comment and some special
20183 code here to turn a symbol with DW_AT_external and a
20184 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20185 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20186 with some versions of binutils) where shared libraries could have
20187 relocations against symbols in their debug information - the
20188 minimal symbol would have the right address, but the debug info
20189 would not. It's no longer necessary, because we will explicitly
20190 apply relocations when we read in the debug information now. */
20191
20192 /* A DW_AT_location attribute with no contents indicates that a
20193 variable has been optimized away. */
20194 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20195 {
20196 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20197 return;
20198 }
20199
20200 /* Handle one degenerate form of location expression specially, to
20201 preserve GDB's previous behavior when section offsets are
20202 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20203 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20204
20205 if (attr->form_is_block ()
20206 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20207 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20208 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20209 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20210 && (DW_BLOCK (attr)->size
20211 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20212 {
20213 unsigned int dummy;
20214
20215 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20216 SET_SYMBOL_VALUE_ADDRESS
20217 (sym, cu->header.read_address (objfile->obfd,
20218 DW_BLOCK (attr)->data + 1,
20219 &dummy));
20220 else
20221 SET_SYMBOL_VALUE_ADDRESS
20222 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20223 &dummy));
20224 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20225 fixup_symbol_section (sym, objfile);
20226 SET_SYMBOL_VALUE_ADDRESS
20227 (sym,
20228 SYMBOL_VALUE_ADDRESS (sym)
20229 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20230 return;
20231 }
20232
20233 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20234 expression evaluator, and use LOC_COMPUTED only when necessary
20235 (i.e. when the value of a register or memory location is
20236 referenced, or a thread-local block, etc.). Then again, it might
20237 not be worthwhile. I'm assuming that it isn't unless performance
20238 or memory numbers show me otherwise. */
20239
20240 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20241
20242 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20243 cu->has_loclist = true;
20244 }
20245
20246 /* Given a pointer to a DWARF information entry, figure out if we need
20247 to make a symbol table entry for it, and if so, create a new entry
20248 and return a pointer to it.
20249 If TYPE is NULL, determine symbol type from the die, otherwise
20250 used the passed type.
20251 If SPACE is not NULL, use it to hold the new symbol. If it is
20252 NULL, allocate a new symbol on the objfile's obstack. */
20253
20254 static struct symbol *
20255 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20256 struct symbol *space)
20257 {
20258 struct dwarf2_per_objfile *dwarf2_per_objfile
20259 = cu->per_cu->dwarf2_per_objfile;
20260 struct objfile *objfile = dwarf2_per_objfile->objfile;
20261 struct gdbarch *gdbarch = objfile->arch ();
20262 struct symbol *sym = NULL;
20263 const char *name;
20264 struct attribute *attr = NULL;
20265 struct attribute *attr2 = NULL;
20266 CORE_ADDR baseaddr;
20267 struct pending **list_to_add = NULL;
20268
20269 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20270
20271 baseaddr = objfile->text_section_offset ();
20272
20273 name = dwarf2_name (die, cu);
20274 if (name)
20275 {
20276 const char *linkagename;
20277 int suppress_add = 0;
20278
20279 if (space)
20280 sym = space;
20281 else
20282 sym = allocate_symbol (objfile);
20283 OBJSTAT (objfile, n_syms++);
20284
20285 /* Cache this symbol's name and the name's demangled form (if any). */
20286 sym->set_language (cu->language, &objfile->objfile_obstack);
20287 linkagename = dwarf2_physname (name, die, cu);
20288 sym->compute_and_set_names (linkagename, false, objfile->per_bfd);
20289
20290 /* Fortran does not have mangling standard and the mangling does differ
20291 between gfortran, iFort etc. */
20292 if (cu->language == language_fortran
20293 && symbol_get_demangled_name (sym) == NULL)
20294 symbol_set_demangled_name (sym,
20295 dwarf2_full_name (name, die, cu),
20296 NULL);
20297
20298 /* Default assumptions.
20299 Use the passed type or decode it from the die. */
20300 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20301 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20302 if (type != NULL)
20303 SYMBOL_TYPE (sym) = type;
20304 else
20305 SYMBOL_TYPE (sym) = die_type (die, cu);
20306 attr = dwarf2_attr (die,
20307 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20308 cu);
20309 if (attr != nullptr)
20310 {
20311 SYMBOL_LINE (sym) = DW_UNSND (attr);
20312 }
20313
20314 attr = dwarf2_attr (die,
20315 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20316 cu);
20317 if (attr != nullptr)
20318 {
20319 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20320 struct file_entry *fe;
20321
20322 if (cu->line_header != NULL)
20323 fe = cu->line_header->file_name_at (file_index);
20324 else
20325 fe = NULL;
20326
20327 if (fe == NULL)
20328 complaint (_("file index out of range"));
20329 else
20330 symbol_set_symtab (sym, fe->symtab);
20331 }
20332
20333 switch (die->tag)
20334 {
20335 case DW_TAG_label:
20336 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20337 if (attr != nullptr)
20338 {
20339 CORE_ADDR addr;
20340
20341 addr = attr->value_as_address ();
20342 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20343 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20344 }
20345 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20346 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20347 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20348 add_symbol_to_list (sym, cu->list_in_scope);
20349 break;
20350 case DW_TAG_subprogram:
20351 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20352 finish_block. */
20353 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20354 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20355 if ((attr2 && (DW_UNSND (attr2) != 0))
20356 || cu->language == language_ada
20357 || cu->language == language_fortran)
20358 {
20359 /* Subprograms marked external are stored as a global symbol.
20360 Ada and Fortran subprograms, whether marked external or
20361 not, are always stored as a global symbol, because we want
20362 to be able to access them globally. For instance, we want
20363 to be able to break on a nested subprogram without having
20364 to specify the context. */
20365 list_to_add = cu->get_builder ()->get_global_symbols ();
20366 }
20367 else
20368 {
20369 list_to_add = cu->list_in_scope;
20370 }
20371 break;
20372 case DW_TAG_inlined_subroutine:
20373 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20374 finish_block. */
20375 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20376 SYMBOL_INLINED (sym) = 1;
20377 list_to_add = cu->list_in_scope;
20378 break;
20379 case DW_TAG_template_value_param:
20380 suppress_add = 1;
20381 /* Fall through. */
20382 case DW_TAG_constant:
20383 case DW_TAG_variable:
20384 case DW_TAG_member:
20385 /* Compilation with minimal debug info may result in
20386 variables with missing type entries. Change the
20387 misleading `void' type to something sensible. */
20388 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
20389 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20390
20391 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20392 /* In the case of DW_TAG_member, we should only be called for
20393 static const members. */
20394 if (die->tag == DW_TAG_member)
20395 {
20396 /* dwarf2_add_field uses die_is_declaration,
20397 so we do the same. */
20398 gdb_assert (die_is_declaration (die, cu));
20399 gdb_assert (attr);
20400 }
20401 if (attr != nullptr)
20402 {
20403 dwarf2_const_value (attr, sym, cu);
20404 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20405 if (!suppress_add)
20406 {
20407 if (attr2 && (DW_UNSND (attr2) != 0))
20408 list_to_add = cu->get_builder ()->get_global_symbols ();
20409 else
20410 list_to_add = cu->list_in_scope;
20411 }
20412 break;
20413 }
20414 attr = dwarf2_attr (die, DW_AT_location, cu);
20415 if (attr != nullptr)
20416 {
20417 var_decode_location (attr, sym, cu);
20418 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20419
20420 /* Fortran explicitly imports any global symbols to the local
20421 scope by DW_TAG_common_block. */
20422 if (cu->language == language_fortran && die->parent
20423 && die->parent->tag == DW_TAG_common_block)
20424 attr2 = NULL;
20425
20426 if (SYMBOL_CLASS (sym) == LOC_STATIC
20427 && SYMBOL_VALUE_ADDRESS (sym) == 0
20428 && !dwarf2_per_objfile->has_section_at_zero)
20429 {
20430 /* When a static variable is eliminated by the linker,
20431 the corresponding debug information is not stripped
20432 out, but the variable address is set to null;
20433 do not add such variables into symbol table. */
20434 }
20435 else if (attr2 && (DW_UNSND (attr2) != 0))
20436 {
20437 if (SYMBOL_CLASS (sym) == LOC_STATIC
20438 && (objfile->flags & OBJF_MAINLINE) == 0
20439 && dwarf2_per_objfile->can_copy)
20440 {
20441 /* A global static variable might be subject to
20442 copy relocation. We first check for a local
20443 minsym, though, because maybe the symbol was
20444 marked hidden, in which case this would not
20445 apply. */
20446 bound_minimal_symbol found
20447 = (lookup_minimal_symbol_linkage
20448 (sym->linkage_name (), objfile));
20449 if (found.minsym != nullptr)
20450 sym->maybe_copied = 1;
20451 }
20452
20453 /* A variable with DW_AT_external is never static,
20454 but it may be block-scoped. */
20455 list_to_add
20456 = ((cu->list_in_scope
20457 == cu->get_builder ()->get_file_symbols ())
20458 ? cu->get_builder ()->get_global_symbols ()
20459 : cu->list_in_scope);
20460 }
20461 else
20462 list_to_add = cu->list_in_scope;
20463 }
20464 else
20465 {
20466 /* We do not know the address of this symbol.
20467 If it is an external symbol and we have type information
20468 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20469 The address of the variable will then be determined from
20470 the minimal symbol table whenever the variable is
20471 referenced. */
20472 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20473
20474 /* Fortran explicitly imports any global symbols to the local
20475 scope by DW_TAG_common_block. */
20476 if (cu->language == language_fortran && die->parent
20477 && die->parent->tag == DW_TAG_common_block)
20478 {
20479 /* SYMBOL_CLASS doesn't matter here because
20480 read_common_block is going to reset it. */
20481 if (!suppress_add)
20482 list_to_add = cu->list_in_scope;
20483 }
20484 else if (attr2 && (DW_UNSND (attr2) != 0)
20485 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20486 {
20487 /* A variable with DW_AT_external is never static, but it
20488 may be block-scoped. */
20489 list_to_add
20490 = ((cu->list_in_scope
20491 == cu->get_builder ()->get_file_symbols ())
20492 ? cu->get_builder ()->get_global_symbols ()
20493 : cu->list_in_scope);
20494
20495 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20496 }
20497 else if (!die_is_declaration (die, cu))
20498 {
20499 /* Use the default LOC_OPTIMIZED_OUT class. */
20500 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20501 if (!suppress_add)
20502 list_to_add = cu->list_in_scope;
20503 }
20504 }
20505 break;
20506 case DW_TAG_formal_parameter:
20507 {
20508 /* If we are inside a function, mark this as an argument. If
20509 not, we might be looking at an argument to an inlined function
20510 when we do not have enough information to show inlined frames;
20511 pretend it's a local variable in that case so that the user can
20512 still see it. */
20513 struct context_stack *curr
20514 = cu->get_builder ()->get_current_context_stack ();
20515 if (curr != nullptr && curr->name != nullptr)
20516 SYMBOL_IS_ARGUMENT (sym) = 1;
20517 attr = dwarf2_attr (die, DW_AT_location, cu);
20518 if (attr != nullptr)
20519 {
20520 var_decode_location (attr, sym, cu);
20521 }
20522 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20523 if (attr != nullptr)
20524 {
20525 dwarf2_const_value (attr, sym, cu);
20526 }
20527
20528 list_to_add = cu->list_in_scope;
20529 }
20530 break;
20531 case DW_TAG_unspecified_parameters:
20532 /* From varargs functions; gdb doesn't seem to have any
20533 interest in this information, so just ignore it for now.
20534 (FIXME?) */
20535 break;
20536 case DW_TAG_template_type_param:
20537 suppress_add = 1;
20538 /* Fall through. */
20539 case DW_TAG_class_type:
20540 case DW_TAG_interface_type:
20541 case DW_TAG_structure_type:
20542 case DW_TAG_union_type:
20543 case DW_TAG_set_type:
20544 case DW_TAG_enumeration_type:
20545 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20546 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20547
20548 {
20549 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20550 really ever be static objects: otherwise, if you try
20551 to, say, break of a class's method and you're in a file
20552 which doesn't mention that class, it won't work unless
20553 the check for all static symbols in lookup_symbol_aux
20554 saves you. See the OtherFileClass tests in
20555 gdb.c++/namespace.exp. */
20556
20557 if (!suppress_add)
20558 {
20559 buildsym_compunit *builder = cu->get_builder ();
20560 list_to_add
20561 = (cu->list_in_scope == builder->get_file_symbols ()
20562 && cu->language == language_cplus
20563 ? builder->get_global_symbols ()
20564 : cu->list_in_scope);
20565
20566 /* The semantics of C++ state that "struct foo {
20567 ... }" also defines a typedef for "foo". */
20568 if (cu->language == language_cplus
20569 || cu->language == language_ada
20570 || cu->language == language_d
20571 || cu->language == language_rust)
20572 {
20573 /* The symbol's name is already allocated along
20574 with this objfile, so we don't need to
20575 duplicate it for the type. */
20576 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20577 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20578 }
20579 }
20580 }
20581 break;
20582 case DW_TAG_typedef:
20583 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20584 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20585 list_to_add = cu->list_in_scope;
20586 break;
20587 case DW_TAG_base_type:
20588 case DW_TAG_subrange_type:
20589 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20590 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20591 list_to_add = cu->list_in_scope;
20592 break;
20593 case DW_TAG_enumerator:
20594 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20595 if (attr != nullptr)
20596 {
20597 dwarf2_const_value (attr, sym, cu);
20598 }
20599 {
20600 /* NOTE: carlton/2003-11-10: See comment above in the
20601 DW_TAG_class_type, etc. block. */
20602
20603 list_to_add
20604 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20605 && cu->language == language_cplus
20606 ? cu->get_builder ()->get_global_symbols ()
20607 : cu->list_in_scope);
20608 }
20609 break;
20610 case DW_TAG_imported_declaration:
20611 case DW_TAG_namespace:
20612 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20613 list_to_add = cu->get_builder ()->get_global_symbols ();
20614 break;
20615 case DW_TAG_module:
20616 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20617 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20618 list_to_add = cu->get_builder ()->get_global_symbols ();
20619 break;
20620 case DW_TAG_common_block:
20621 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20622 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20623 add_symbol_to_list (sym, cu->list_in_scope);
20624 break;
20625 default:
20626 /* Not a tag we recognize. Hopefully we aren't processing
20627 trash data, but since we must specifically ignore things
20628 we don't recognize, there is nothing else we should do at
20629 this point. */
20630 complaint (_("unsupported tag: '%s'"),
20631 dwarf_tag_name (die->tag));
20632 break;
20633 }
20634
20635 if (suppress_add)
20636 {
20637 sym->hash_next = objfile->template_symbols;
20638 objfile->template_symbols = sym;
20639 list_to_add = NULL;
20640 }
20641
20642 if (list_to_add != NULL)
20643 add_symbol_to_list (sym, list_to_add);
20644
20645 /* For the benefit of old versions of GCC, check for anonymous
20646 namespaces based on the demangled name. */
20647 if (!cu->processing_has_namespace_info
20648 && cu->language == language_cplus)
20649 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20650 }
20651 return (sym);
20652 }
20653
20654 /* Given an attr with a DW_FORM_dataN value in host byte order,
20655 zero-extend it as appropriate for the symbol's type. The DWARF
20656 standard (v4) is not entirely clear about the meaning of using
20657 DW_FORM_dataN for a constant with a signed type, where the type is
20658 wider than the data. The conclusion of a discussion on the DWARF
20659 list was that this is unspecified. We choose to always zero-extend
20660 because that is the interpretation long in use by GCC. */
20661
20662 static gdb_byte *
20663 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20664 struct dwarf2_cu *cu, LONGEST *value, int bits)
20665 {
20666 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20667 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20668 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
20669 LONGEST l = DW_UNSND (attr);
20670
20671 if (bits < sizeof (*value) * 8)
20672 {
20673 l &= ((LONGEST) 1 << bits) - 1;
20674 *value = l;
20675 }
20676 else if (bits == sizeof (*value) * 8)
20677 *value = l;
20678 else
20679 {
20680 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
20681 store_unsigned_integer (bytes, bits / 8, byte_order, l);
20682 return bytes;
20683 }
20684
20685 return NULL;
20686 }
20687
20688 /* Read a constant value from an attribute. Either set *VALUE, or if
20689 the value does not fit in *VALUE, set *BYTES - either already
20690 allocated on the objfile obstack, or newly allocated on OBSTACK,
20691 or, set *BATON, if we translated the constant to a location
20692 expression. */
20693
20694 static void
20695 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
20696 const char *name, struct obstack *obstack,
20697 struct dwarf2_cu *cu,
20698 LONGEST *value, const gdb_byte **bytes,
20699 struct dwarf2_locexpr_baton **baton)
20700 {
20701 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20702 struct comp_unit_head *cu_header = &cu->header;
20703 struct dwarf_block *blk;
20704 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
20705 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20706
20707 *value = 0;
20708 *bytes = NULL;
20709 *baton = NULL;
20710
20711 switch (attr->form)
20712 {
20713 case DW_FORM_addr:
20714 case DW_FORM_addrx:
20715 case DW_FORM_GNU_addr_index:
20716 {
20717 gdb_byte *data;
20718
20719 if (TYPE_LENGTH (type) != cu_header->addr_size)
20720 dwarf2_const_value_length_mismatch_complaint (name,
20721 cu_header->addr_size,
20722 TYPE_LENGTH (type));
20723 /* Symbols of this form are reasonably rare, so we just
20724 piggyback on the existing location code rather than writing
20725 a new implementation of symbol_computed_ops. */
20726 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
20727 (*baton)->per_cu = cu->per_cu;
20728 gdb_assert ((*baton)->per_cu);
20729
20730 (*baton)->size = 2 + cu_header->addr_size;
20731 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
20732 (*baton)->data = data;
20733
20734 data[0] = DW_OP_addr;
20735 store_unsigned_integer (&data[1], cu_header->addr_size,
20736 byte_order, DW_ADDR (attr));
20737 data[cu_header->addr_size + 1] = DW_OP_stack_value;
20738 }
20739 break;
20740 case DW_FORM_string:
20741 case DW_FORM_strp:
20742 case DW_FORM_strx:
20743 case DW_FORM_GNU_str_index:
20744 case DW_FORM_GNU_strp_alt:
20745 /* DW_STRING is already allocated on the objfile obstack, point
20746 directly to it. */
20747 *bytes = (const gdb_byte *) DW_STRING (attr);
20748 break;
20749 case DW_FORM_block1:
20750 case DW_FORM_block2:
20751 case DW_FORM_block4:
20752 case DW_FORM_block:
20753 case DW_FORM_exprloc:
20754 case DW_FORM_data16:
20755 blk = DW_BLOCK (attr);
20756 if (TYPE_LENGTH (type) != blk->size)
20757 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
20758 TYPE_LENGTH (type));
20759 *bytes = blk->data;
20760 break;
20761
20762 /* The DW_AT_const_value attributes are supposed to carry the
20763 symbol's value "represented as it would be on the target
20764 architecture." By the time we get here, it's already been
20765 converted to host endianness, so we just need to sign- or
20766 zero-extend it as appropriate. */
20767 case DW_FORM_data1:
20768 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
20769 break;
20770 case DW_FORM_data2:
20771 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
20772 break;
20773 case DW_FORM_data4:
20774 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
20775 break;
20776 case DW_FORM_data8:
20777 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
20778 break;
20779
20780 case DW_FORM_sdata:
20781 case DW_FORM_implicit_const:
20782 *value = DW_SND (attr);
20783 break;
20784
20785 case DW_FORM_udata:
20786 *value = DW_UNSND (attr);
20787 break;
20788
20789 default:
20790 complaint (_("unsupported const value attribute form: '%s'"),
20791 dwarf_form_name (attr->form));
20792 *value = 0;
20793 break;
20794 }
20795 }
20796
20797
20798 /* Copy constant value from an attribute to a symbol. */
20799
20800 static void
20801 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
20802 struct dwarf2_cu *cu)
20803 {
20804 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20805 LONGEST value;
20806 const gdb_byte *bytes;
20807 struct dwarf2_locexpr_baton *baton;
20808
20809 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
20810 sym->print_name (),
20811 &objfile->objfile_obstack, cu,
20812 &value, &bytes, &baton);
20813
20814 if (baton != NULL)
20815 {
20816 SYMBOL_LOCATION_BATON (sym) = baton;
20817 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
20818 }
20819 else if (bytes != NULL)
20820 {
20821 SYMBOL_VALUE_BYTES (sym) = bytes;
20822 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
20823 }
20824 else
20825 {
20826 SYMBOL_VALUE (sym) = value;
20827 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
20828 }
20829 }
20830
20831 /* Return the type of the die in question using its DW_AT_type attribute. */
20832
20833 static struct type *
20834 die_type (struct die_info *die, struct dwarf2_cu *cu)
20835 {
20836 struct attribute *type_attr;
20837
20838 type_attr = dwarf2_attr (die, DW_AT_type, cu);
20839 if (!type_attr)
20840 {
20841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20842 /* A missing DW_AT_type represents a void type. */
20843 return objfile_type (objfile)->builtin_void;
20844 }
20845
20846 return lookup_die_type (die, type_attr, cu);
20847 }
20848
20849 /* True iff CU's producer generates GNAT Ada auxiliary information
20850 that allows to find parallel types through that information instead
20851 of having to do expensive parallel lookups by type name. */
20852
20853 static int
20854 need_gnat_info (struct dwarf2_cu *cu)
20855 {
20856 /* Assume that the Ada compiler was GNAT, which always produces
20857 the auxiliary information. */
20858 return (cu->language == language_ada);
20859 }
20860
20861 /* Return the auxiliary type of the die in question using its
20862 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
20863 attribute is not present. */
20864
20865 static struct type *
20866 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
20867 {
20868 struct attribute *type_attr;
20869
20870 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
20871 if (!type_attr)
20872 return NULL;
20873
20874 return lookup_die_type (die, type_attr, cu);
20875 }
20876
20877 /* If DIE has a descriptive_type attribute, then set the TYPE's
20878 descriptive type accordingly. */
20879
20880 static void
20881 set_descriptive_type (struct type *type, struct die_info *die,
20882 struct dwarf2_cu *cu)
20883 {
20884 struct type *descriptive_type = die_descriptive_type (die, cu);
20885
20886 if (descriptive_type)
20887 {
20888 ALLOCATE_GNAT_AUX_TYPE (type);
20889 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
20890 }
20891 }
20892
20893 /* Return the containing type of the die in question using its
20894 DW_AT_containing_type attribute. */
20895
20896 static struct type *
20897 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
20898 {
20899 struct attribute *type_attr;
20900 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20901
20902 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
20903 if (!type_attr)
20904 error (_("Dwarf Error: Problem turning containing type into gdb type "
20905 "[in module %s]"), objfile_name (objfile));
20906
20907 return lookup_die_type (die, type_attr, cu);
20908 }
20909
20910 /* Return an error marker type to use for the ill formed type in DIE/CU. */
20911
20912 static struct type *
20913 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
20914 {
20915 struct dwarf2_per_objfile *dwarf2_per_objfile
20916 = cu->per_cu->dwarf2_per_objfile;
20917 struct objfile *objfile = dwarf2_per_objfile->objfile;
20918 char *saved;
20919
20920 std::string message
20921 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
20922 objfile_name (objfile),
20923 sect_offset_str (cu->header.sect_off),
20924 sect_offset_str (die->sect_off));
20925 saved = obstack_strdup (&objfile->objfile_obstack, message);
20926
20927 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
20928 }
20929
20930 /* Look up the type of DIE in CU using its type attribute ATTR.
20931 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
20932 DW_AT_containing_type.
20933 If there is no type substitute an error marker. */
20934
20935 static struct type *
20936 lookup_die_type (struct die_info *die, const struct attribute *attr,
20937 struct dwarf2_cu *cu)
20938 {
20939 struct dwarf2_per_objfile *dwarf2_per_objfile
20940 = cu->per_cu->dwarf2_per_objfile;
20941 struct objfile *objfile = dwarf2_per_objfile->objfile;
20942 struct type *this_type;
20943
20944 gdb_assert (attr->name == DW_AT_type
20945 || attr->name == DW_AT_GNAT_descriptive_type
20946 || attr->name == DW_AT_containing_type);
20947
20948 /* First see if we have it cached. */
20949
20950 if (attr->form == DW_FORM_GNU_ref_alt)
20951 {
20952 struct dwarf2_per_cu_data *per_cu;
20953 sect_offset sect_off = attr->get_ref_die_offset ();
20954
20955 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
20956 dwarf2_per_objfile);
20957 this_type = get_die_type_at_offset (sect_off, per_cu);
20958 }
20959 else if (attr->form_is_ref ())
20960 {
20961 sect_offset sect_off = attr->get_ref_die_offset ();
20962
20963 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
20964 }
20965 else if (attr->form == DW_FORM_ref_sig8)
20966 {
20967 ULONGEST signature = DW_SIGNATURE (attr);
20968
20969 return get_signatured_type (die, signature, cu);
20970 }
20971 else
20972 {
20973 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
20974 " at %s [in module %s]"),
20975 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
20976 objfile_name (objfile));
20977 return build_error_marker_type (cu, die);
20978 }
20979
20980 /* If not cached we need to read it in. */
20981
20982 if (this_type == NULL)
20983 {
20984 struct die_info *type_die = NULL;
20985 struct dwarf2_cu *type_cu = cu;
20986
20987 if (attr->form_is_ref ())
20988 type_die = follow_die_ref (die, attr, &type_cu);
20989 if (type_die == NULL)
20990 return build_error_marker_type (cu, die);
20991 /* If we find the type now, it's probably because the type came
20992 from an inter-CU reference and the type's CU got expanded before
20993 ours. */
20994 this_type = read_type_die (type_die, type_cu);
20995 }
20996
20997 /* If we still don't have a type use an error marker. */
20998
20999 if (this_type == NULL)
21000 return build_error_marker_type (cu, die);
21001
21002 return this_type;
21003 }
21004
21005 /* Return the type in DIE, CU.
21006 Returns NULL for invalid types.
21007
21008 This first does a lookup in die_type_hash,
21009 and only reads the die in if necessary.
21010
21011 NOTE: This can be called when reading in partial or full symbols. */
21012
21013 static struct type *
21014 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21015 {
21016 struct type *this_type;
21017
21018 this_type = get_die_type (die, cu);
21019 if (this_type)
21020 return this_type;
21021
21022 return read_type_die_1 (die, cu);
21023 }
21024
21025 /* Read the type in DIE, CU.
21026 Returns NULL for invalid types. */
21027
21028 static struct type *
21029 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21030 {
21031 struct type *this_type = NULL;
21032
21033 switch (die->tag)
21034 {
21035 case DW_TAG_class_type:
21036 case DW_TAG_interface_type:
21037 case DW_TAG_structure_type:
21038 case DW_TAG_union_type:
21039 this_type = read_structure_type (die, cu);
21040 break;
21041 case DW_TAG_enumeration_type:
21042 this_type = read_enumeration_type (die, cu);
21043 break;
21044 case DW_TAG_subprogram:
21045 case DW_TAG_subroutine_type:
21046 case DW_TAG_inlined_subroutine:
21047 this_type = read_subroutine_type (die, cu);
21048 break;
21049 case DW_TAG_array_type:
21050 this_type = read_array_type (die, cu);
21051 break;
21052 case DW_TAG_set_type:
21053 this_type = read_set_type (die, cu);
21054 break;
21055 case DW_TAG_pointer_type:
21056 this_type = read_tag_pointer_type (die, cu);
21057 break;
21058 case DW_TAG_ptr_to_member_type:
21059 this_type = read_tag_ptr_to_member_type (die, cu);
21060 break;
21061 case DW_TAG_reference_type:
21062 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21063 break;
21064 case DW_TAG_rvalue_reference_type:
21065 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21066 break;
21067 case DW_TAG_const_type:
21068 this_type = read_tag_const_type (die, cu);
21069 break;
21070 case DW_TAG_volatile_type:
21071 this_type = read_tag_volatile_type (die, cu);
21072 break;
21073 case DW_TAG_restrict_type:
21074 this_type = read_tag_restrict_type (die, cu);
21075 break;
21076 case DW_TAG_string_type:
21077 this_type = read_tag_string_type (die, cu);
21078 break;
21079 case DW_TAG_typedef:
21080 this_type = read_typedef (die, cu);
21081 break;
21082 case DW_TAG_subrange_type:
21083 this_type = read_subrange_type (die, cu);
21084 break;
21085 case DW_TAG_base_type:
21086 this_type = read_base_type (die, cu);
21087 break;
21088 case DW_TAG_unspecified_type:
21089 this_type = read_unspecified_type (die, cu);
21090 break;
21091 case DW_TAG_namespace:
21092 this_type = read_namespace_type (die, cu);
21093 break;
21094 case DW_TAG_module:
21095 this_type = read_module_type (die, cu);
21096 break;
21097 case DW_TAG_atomic_type:
21098 this_type = read_tag_atomic_type (die, cu);
21099 break;
21100 default:
21101 complaint (_("unexpected tag in read_type_die: '%s'"),
21102 dwarf_tag_name (die->tag));
21103 break;
21104 }
21105
21106 return this_type;
21107 }
21108
21109 /* See if we can figure out if the class lives in a namespace. We do
21110 this by looking for a member function; its demangled name will
21111 contain namespace info, if there is any.
21112 Return the computed name or NULL.
21113 Space for the result is allocated on the objfile's obstack.
21114 This is the full-die version of guess_partial_die_structure_name.
21115 In this case we know DIE has no useful parent. */
21116
21117 static const char *
21118 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21119 {
21120 struct die_info *spec_die;
21121 struct dwarf2_cu *spec_cu;
21122 struct die_info *child;
21123 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21124
21125 spec_cu = cu;
21126 spec_die = die_specification (die, &spec_cu);
21127 if (spec_die != NULL)
21128 {
21129 die = spec_die;
21130 cu = spec_cu;
21131 }
21132
21133 for (child = die->child;
21134 child != NULL;
21135 child = child->sibling)
21136 {
21137 if (child->tag == DW_TAG_subprogram)
21138 {
21139 const char *linkage_name = dw2_linkage_name (child, cu);
21140
21141 if (linkage_name != NULL)
21142 {
21143 gdb::unique_xmalloc_ptr<char> actual_name
21144 (language_class_name_from_physname (cu->language_defn,
21145 linkage_name));
21146 const char *name = NULL;
21147
21148 if (actual_name != NULL)
21149 {
21150 const char *die_name = dwarf2_name (die, cu);
21151
21152 if (die_name != NULL
21153 && strcmp (die_name, actual_name.get ()) != 0)
21154 {
21155 /* Strip off the class name from the full name.
21156 We want the prefix. */
21157 int die_name_len = strlen (die_name);
21158 int actual_name_len = strlen (actual_name.get ());
21159 const char *ptr = actual_name.get ();
21160
21161 /* Test for '::' as a sanity check. */
21162 if (actual_name_len > die_name_len + 2
21163 && ptr[actual_name_len - die_name_len - 1] == ':')
21164 name = obstack_strndup (
21165 &objfile->per_bfd->storage_obstack,
21166 ptr, actual_name_len - die_name_len - 2);
21167 }
21168 }
21169 return name;
21170 }
21171 }
21172 }
21173
21174 return NULL;
21175 }
21176
21177 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21178 prefix part in such case. See
21179 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21180
21181 static const char *
21182 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21183 {
21184 struct attribute *attr;
21185 const char *base;
21186
21187 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21188 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21189 return NULL;
21190
21191 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21192 return NULL;
21193
21194 attr = dw2_linkage_name_attr (die, cu);
21195 if (attr == NULL || DW_STRING (attr) == NULL)
21196 return NULL;
21197
21198 /* dwarf2_name had to be already called. */
21199 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21200
21201 /* Strip the base name, keep any leading namespaces/classes. */
21202 base = strrchr (DW_STRING (attr), ':');
21203 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21204 return "";
21205
21206 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21207 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21208 DW_STRING (attr),
21209 &base[-1] - DW_STRING (attr));
21210 }
21211
21212 /* Return the name of the namespace/class that DIE is defined within,
21213 or "" if we can't tell. The caller should not xfree the result.
21214
21215 For example, if we're within the method foo() in the following
21216 code:
21217
21218 namespace N {
21219 class C {
21220 void foo () {
21221 }
21222 };
21223 }
21224
21225 then determine_prefix on foo's die will return "N::C". */
21226
21227 static const char *
21228 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21229 {
21230 struct dwarf2_per_objfile *dwarf2_per_objfile
21231 = cu->per_cu->dwarf2_per_objfile;
21232 struct die_info *parent, *spec_die;
21233 struct dwarf2_cu *spec_cu;
21234 struct type *parent_type;
21235 const char *retval;
21236
21237 if (cu->language != language_cplus
21238 && cu->language != language_fortran && cu->language != language_d
21239 && cu->language != language_rust)
21240 return "";
21241
21242 retval = anonymous_struct_prefix (die, cu);
21243 if (retval)
21244 return retval;
21245
21246 /* We have to be careful in the presence of DW_AT_specification.
21247 For example, with GCC 3.4, given the code
21248
21249 namespace N {
21250 void foo() {
21251 // Definition of N::foo.
21252 }
21253 }
21254
21255 then we'll have a tree of DIEs like this:
21256
21257 1: DW_TAG_compile_unit
21258 2: DW_TAG_namespace // N
21259 3: DW_TAG_subprogram // declaration of N::foo
21260 4: DW_TAG_subprogram // definition of N::foo
21261 DW_AT_specification // refers to die #3
21262
21263 Thus, when processing die #4, we have to pretend that we're in
21264 the context of its DW_AT_specification, namely the contex of die
21265 #3. */
21266 spec_cu = cu;
21267 spec_die = die_specification (die, &spec_cu);
21268 if (spec_die == NULL)
21269 parent = die->parent;
21270 else
21271 {
21272 parent = spec_die->parent;
21273 cu = spec_cu;
21274 }
21275
21276 if (parent == NULL)
21277 return "";
21278 else if (parent->building_fullname)
21279 {
21280 const char *name;
21281 const char *parent_name;
21282
21283 /* It has been seen on RealView 2.2 built binaries,
21284 DW_TAG_template_type_param types actually _defined_ as
21285 children of the parent class:
21286
21287 enum E {};
21288 template class <class Enum> Class{};
21289 Class<enum E> class_e;
21290
21291 1: DW_TAG_class_type (Class)
21292 2: DW_TAG_enumeration_type (E)
21293 3: DW_TAG_enumerator (enum1:0)
21294 3: DW_TAG_enumerator (enum2:1)
21295 ...
21296 2: DW_TAG_template_type_param
21297 DW_AT_type DW_FORM_ref_udata (E)
21298
21299 Besides being broken debug info, it can put GDB into an
21300 infinite loop. Consider:
21301
21302 When we're building the full name for Class<E>, we'll start
21303 at Class, and go look over its template type parameters,
21304 finding E. We'll then try to build the full name of E, and
21305 reach here. We're now trying to build the full name of E,
21306 and look over the parent DIE for containing scope. In the
21307 broken case, if we followed the parent DIE of E, we'd again
21308 find Class, and once again go look at its template type
21309 arguments, etc., etc. Simply don't consider such parent die
21310 as source-level parent of this die (it can't be, the language
21311 doesn't allow it), and break the loop here. */
21312 name = dwarf2_name (die, cu);
21313 parent_name = dwarf2_name (parent, cu);
21314 complaint (_("template param type '%s' defined within parent '%s'"),
21315 name ? name : "<unknown>",
21316 parent_name ? parent_name : "<unknown>");
21317 return "";
21318 }
21319 else
21320 switch (parent->tag)
21321 {
21322 case DW_TAG_namespace:
21323 parent_type = read_type_die (parent, cu);
21324 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21325 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21326 Work around this problem here. */
21327 if (cu->language == language_cplus
21328 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21329 return "";
21330 /* We give a name to even anonymous namespaces. */
21331 return TYPE_NAME (parent_type);
21332 case DW_TAG_class_type:
21333 case DW_TAG_interface_type:
21334 case DW_TAG_structure_type:
21335 case DW_TAG_union_type:
21336 case DW_TAG_module:
21337 parent_type = read_type_die (parent, cu);
21338 if (TYPE_NAME (parent_type) != NULL)
21339 return TYPE_NAME (parent_type);
21340 else
21341 /* An anonymous structure is only allowed non-static data
21342 members; no typedefs, no member functions, et cetera.
21343 So it does not need a prefix. */
21344 return "";
21345 case DW_TAG_compile_unit:
21346 case DW_TAG_partial_unit:
21347 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21348 if (cu->language == language_cplus
21349 && !dwarf2_per_objfile->types.empty ()
21350 && die->child != NULL
21351 && (die->tag == DW_TAG_class_type
21352 || die->tag == DW_TAG_structure_type
21353 || die->tag == DW_TAG_union_type))
21354 {
21355 const char *name = guess_full_die_structure_name (die, cu);
21356 if (name != NULL)
21357 return name;
21358 }
21359 return "";
21360 case DW_TAG_subprogram:
21361 /* Nested subroutines in Fortran get a prefix with the name
21362 of the parent's subroutine. */
21363 if (cu->language == language_fortran)
21364 {
21365 if ((die->tag == DW_TAG_subprogram)
21366 && (dwarf2_name (parent, cu) != NULL))
21367 return dwarf2_name (parent, cu);
21368 }
21369 return determine_prefix (parent, cu);
21370 case DW_TAG_enumeration_type:
21371 parent_type = read_type_die (parent, cu);
21372 if (TYPE_DECLARED_CLASS (parent_type))
21373 {
21374 if (TYPE_NAME (parent_type) != NULL)
21375 return TYPE_NAME (parent_type);
21376 return "";
21377 }
21378 /* Fall through. */
21379 default:
21380 return determine_prefix (parent, cu);
21381 }
21382 }
21383
21384 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21385 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21386 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21387 an obconcat, otherwise allocate storage for the result. The CU argument is
21388 used to determine the language and hence, the appropriate separator. */
21389
21390 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21391
21392 static char *
21393 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21394 int physname, struct dwarf2_cu *cu)
21395 {
21396 const char *lead = "";
21397 const char *sep;
21398
21399 if (suffix == NULL || suffix[0] == '\0'
21400 || prefix == NULL || prefix[0] == '\0')
21401 sep = "";
21402 else if (cu->language == language_d)
21403 {
21404 /* For D, the 'main' function could be defined in any module, but it
21405 should never be prefixed. */
21406 if (strcmp (suffix, "D main") == 0)
21407 {
21408 prefix = "";
21409 sep = "";
21410 }
21411 else
21412 sep = ".";
21413 }
21414 else if (cu->language == language_fortran && physname)
21415 {
21416 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21417 DW_AT_MIPS_linkage_name is preferred and used instead. */
21418
21419 lead = "__";
21420 sep = "_MOD_";
21421 }
21422 else
21423 sep = "::";
21424
21425 if (prefix == NULL)
21426 prefix = "";
21427 if (suffix == NULL)
21428 suffix = "";
21429
21430 if (obs == NULL)
21431 {
21432 char *retval
21433 = ((char *)
21434 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21435
21436 strcpy (retval, lead);
21437 strcat (retval, prefix);
21438 strcat (retval, sep);
21439 strcat (retval, suffix);
21440 return retval;
21441 }
21442 else
21443 {
21444 /* We have an obstack. */
21445 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21446 }
21447 }
21448
21449 /* Get name of a die, return NULL if not found. */
21450
21451 static const char *
21452 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21453 struct objfile *objfile)
21454 {
21455 if (name && cu->language == language_cplus)
21456 {
21457 std::string canon_name = cp_canonicalize_string (name);
21458
21459 if (!canon_name.empty ())
21460 {
21461 if (canon_name != name)
21462 name = objfile->intern (canon_name);
21463 }
21464 }
21465
21466 return name;
21467 }
21468
21469 /* Get name of a die, return NULL if not found.
21470 Anonymous namespaces are converted to their magic string. */
21471
21472 static const char *
21473 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21474 {
21475 struct attribute *attr;
21476 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21477
21478 attr = dwarf2_attr (die, DW_AT_name, cu);
21479 if ((!attr || !DW_STRING (attr))
21480 && die->tag != DW_TAG_namespace
21481 && die->tag != DW_TAG_class_type
21482 && die->tag != DW_TAG_interface_type
21483 && die->tag != DW_TAG_structure_type
21484 && die->tag != DW_TAG_union_type)
21485 return NULL;
21486
21487 switch (die->tag)
21488 {
21489 case DW_TAG_compile_unit:
21490 case DW_TAG_partial_unit:
21491 /* Compilation units have a DW_AT_name that is a filename, not
21492 a source language identifier. */
21493 case DW_TAG_enumeration_type:
21494 case DW_TAG_enumerator:
21495 /* These tags always have simple identifiers already; no need
21496 to canonicalize them. */
21497 return DW_STRING (attr);
21498
21499 case DW_TAG_namespace:
21500 if (attr != NULL && DW_STRING (attr) != NULL)
21501 return DW_STRING (attr);
21502 return CP_ANONYMOUS_NAMESPACE_STR;
21503
21504 case DW_TAG_class_type:
21505 case DW_TAG_interface_type:
21506 case DW_TAG_structure_type:
21507 case DW_TAG_union_type:
21508 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21509 structures or unions. These were of the form "._%d" in GCC 4.1,
21510 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21511 and GCC 4.4. We work around this problem by ignoring these. */
21512 if (attr && DW_STRING (attr)
21513 && (startswith (DW_STRING (attr), "._")
21514 || startswith (DW_STRING (attr), "<anonymous")))
21515 return NULL;
21516
21517 /* GCC might emit a nameless typedef that has a linkage name. See
21518 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21519 if (!attr || DW_STRING (attr) == NULL)
21520 {
21521 attr = dw2_linkage_name_attr (die, cu);
21522 if (attr == NULL || DW_STRING (attr) == NULL)
21523 return NULL;
21524
21525 /* Avoid demangling DW_STRING (attr) the second time on a second
21526 call for the same DIE. */
21527 if (!DW_STRING_IS_CANONICAL (attr))
21528 {
21529 gdb::unique_xmalloc_ptr<char> demangled
21530 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21531 if (demangled == nullptr)
21532 return nullptr;
21533
21534 DW_STRING (attr) = objfile->intern (demangled.get ());
21535 DW_STRING_IS_CANONICAL (attr) = 1;
21536 }
21537
21538 /* Strip any leading namespaces/classes, keep only the base name.
21539 DW_AT_name for named DIEs does not contain the prefixes. */
21540 const char *base = strrchr (DW_STRING (attr), ':');
21541 if (base && base > DW_STRING (attr) && base[-1] == ':')
21542 return &base[1];
21543 else
21544 return DW_STRING (attr);
21545 }
21546 break;
21547
21548 default:
21549 break;
21550 }
21551
21552 if (!DW_STRING_IS_CANONICAL (attr))
21553 {
21554 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21555 objfile);
21556 DW_STRING_IS_CANONICAL (attr) = 1;
21557 }
21558 return DW_STRING (attr);
21559 }
21560
21561 /* Return the die that this die in an extension of, or NULL if there
21562 is none. *EXT_CU is the CU containing DIE on input, and the CU
21563 containing the return value on output. */
21564
21565 static struct die_info *
21566 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21567 {
21568 struct attribute *attr;
21569
21570 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21571 if (attr == NULL)
21572 return NULL;
21573
21574 return follow_die_ref (die, attr, ext_cu);
21575 }
21576
21577 static void
21578 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21579 {
21580 unsigned int i;
21581
21582 print_spaces (indent, f);
21583 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21584 dwarf_tag_name (die->tag), die->abbrev,
21585 sect_offset_str (die->sect_off));
21586
21587 if (die->parent != NULL)
21588 {
21589 print_spaces (indent, f);
21590 fprintf_unfiltered (f, " parent at offset: %s\n",
21591 sect_offset_str (die->parent->sect_off));
21592 }
21593
21594 print_spaces (indent, f);
21595 fprintf_unfiltered (f, " has children: %s\n",
21596 dwarf_bool_name (die->child != NULL));
21597
21598 print_spaces (indent, f);
21599 fprintf_unfiltered (f, " attributes:\n");
21600
21601 for (i = 0; i < die->num_attrs; ++i)
21602 {
21603 print_spaces (indent, f);
21604 fprintf_unfiltered (f, " %s (%s) ",
21605 dwarf_attr_name (die->attrs[i].name),
21606 dwarf_form_name (die->attrs[i].form));
21607
21608 switch (die->attrs[i].form)
21609 {
21610 case DW_FORM_addr:
21611 case DW_FORM_addrx:
21612 case DW_FORM_GNU_addr_index:
21613 fprintf_unfiltered (f, "address: ");
21614 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21615 break;
21616 case DW_FORM_block2:
21617 case DW_FORM_block4:
21618 case DW_FORM_block:
21619 case DW_FORM_block1:
21620 fprintf_unfiltered (f, "block: size %s",
21621 pulongest (DW_BLOCK (&die->attrs[i])->size));
21622 break;
21623 case DW_FORM_exprloc:
21624 fprintf_unfiltered (f, "expression: size %s",
21625 pulongest (DW_BLOCK (&die->attrs[i])->size));
21626 break;
21627 case DW_FORM_data16:
21628 fprintf_unfiltered (f, "constant of 16 bytes");
21629 break;
21630 case DW_FORM_ref_addr:
21631 fprintf_unfiltered (f, "ref address: ");
21632 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21633 break;
21634 case DW_FORM_GNU_ref_alt:
21635 fprintf_unfiltered (f, "alt ref address: ");
21636 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21637 break;
21638 case DW_FORM_ref1:
21639 case DW_FORM_ref2:
21640 case DW_FORM_ref4:
21641 case DW_FORM_ref8:
21642 case DW_FORM_ref_udata:
21643 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21644 (long) (DW_UNSND (&die->attrs[i])));
21645 break;
21646 case DW_FORM_data1:
21647 case DW_FORM_data2:
21648 case DW_FORM_data4:
21649 case DW_FORM_data8:
21650 case DW_FORM_udata:
21651 case DW_FORM_sdata:
21652 fprintf_unfiltered (f, "constant: %s",
21653 pulongest (DW_UNSND (&die->attrs[i])));
21654 break;
21655 case DW_FORM_sec_offset:
21656 fprintf_unfiltered (f, "section offset: %s",
21657 pulongest (DW_UNSND (&die->attrs[i])));
21658 break;
21659 case DW_FORM_ref_sig8:
21660 fprintf_unfiltered (f, "signature: %s",
21661 hex_string (DW_SIGNATURE (&die->attrs[i])));
21662 break;
21663 case DW_FORM_string:
21664 case DW_FORM_strp:
21665 case DW_FORM_line_strp:
21666 case DW_FORM_strx:
21667 case DW_FORM_GNU_str_index:
21668 case DW_FORM_GNU_strp_alt:
21669 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21670 DW_STRING (&die->attrs[i])
21671 ? DW_STRING (&die->attrs[i]) : "",
21672 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
21673 break;
21674 case DW_FORM_flag:
21675 if (DW_UNSND (&die->attrs[i]))
21676 fprintf_unfiltered (f, "flag: TRUE");
21677 else
21678 fprintf_unfiltered (f, "flag: FALSE");
21679 break;
21680 case DW_FORM_flag_present:
21681 fprintf_unfiltered (f, "flag: TRUE");
21682 break;
21683 case DW_FORM_indirect:
21684 /* The reader will have reduced the indirect form to
21685 the "base form" so this form should not occur. */
21686 fprintf_unfiltered (f,
21687 "unexpected attribute form: DW_FORM_indirect");
21688 break;
21689 case DW_FORM_implicit_const:
21690 fprintf_unfiltered (f, "constant: %s",
21691 plongest (DW_SND (&die->attrs[i])));
21692 break;
21693 default:
21694 fprintf_unfiltered (f, "unsupported attribute form: %d.",
21695 die->attrs[i].form);
21696 break;
21697 }
21698 fprintf_unfiltered (f, "\n");
21699 }
21700 }
21701
21702 static void
21703 dump_die_for_error (struct die_info *die)
21704 {
21705 dump_die_shallow (gdb_stderr, 0, die);
21706 }
21707
21708 static void
21709 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
21710 {
21711 int indent = level * 4;
21712
21713 gdb_assert (die != NULL);
21714
21715 if (level >= max_level)
21716 return;
21717
21718 dump_die_shallow (f, indent, die);
21719
21720 if (die->child != NULL)
21721 {
21722 print_spaces (indent, f);
21723 fprintf_unfiltered (f, " Children:");
21724 if (level + 1 < max_level)
21725 {
21726 fprintf_unfiltered (f, "\n");
21727 dump_die_1 (f, level + 1, max_level, die->child);
21728 }
21729 else
21730 {
21731 fprintf_unfiltered (f,
21732 " [not printed, max nesting level reached]\n");
21733 }
21734 }
21735
21736 if (die->sibling != NULL && level > 0)
21737 {
21738 dump_die_1 (f, level, max_level, die->sibling);
21739 }
21740 }
21741
21742 /* This is called from the pdie macro in gdbinit.in.
21743 It's not static so gcc will keep a copy callable from gdb. */
21744
21745 void
21746 dump_die (struct die_info *die, int max_level)
21747 {
21748 dump_die_1 (gdb_stdlog, 0, max_level, die);
21749 }
21750
21751 static void
21752 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
21753 {
21754 void **slot;
21755
21756 slot = htab_find_slot_with_hash (cu->die_hash, die,
21757 to_underlying (die->sect_off),
21758 INSERT);
21759
21760 *slot = die;
21761 }
21762
21763 /* Follow reference or signature attribute ATTR of SRC_DIE.
21764 On entry *REF_CU is the CU of SRC_DIE.
21765 On exit *REF_CU is the CU of the result. */
21766
21767 static struct die_info *
21768 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
21769 struct dwarf2_cu **ref_cu)
21770 {
21771 struct die_info *die;
21772
21773 if (attr->form_is_ref ())
21774 die = follow_die_ref (src_die, attr, ref_cu);
21775 else if (attr->form == DW_FORM_ref_sig8)
21776 die = follow_die_sig (src_die, attr, ref_cu);
21777 else
21778 {
21779 dump_die_for_error (src_die);
21780 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
21781 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
21782 }
21783
21784 return die;
21785 }
21786
21787 /* Follow reference OFFSET.
21788 On entry *REF_CU is the CU of the source die referencing OFFSET.
21789 On exit *REF_CU is the CU of the result.
21790 Returns NULL if OFFSET is invalid. */
21791
21792 static struct die_info *
21793 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
21794 struct dwarf2_cu **ref_cu)
21795 {
21796 struct die_info temp_die;
21797 struct dwarf2_cu *target_cu, *cu = *ref_cu;
21798 struct dwarf2_per_objfile *dwarf2_per_objfile
21799 = cu->per_cu->dwarf2_per_objfile;
21800
21801 gdb_assert (cu->per_cu != NULL);
21802
21803 target_cu = cu;
21804
21805 if (cu->per_cu->is_debug_types)
21806 {
21807 /* .debug_types CUs cannot reference anything outside their CU.
21808 If they need to, they have to reference a signatured type via
21809 DW_FORM_ref_sig8. */
21810 if (!cu->header.offset_in_cu_p (sect_off))
21811 return NULL;
21812 }
21813 else if (offset_in_dwz != cu->per_cu->is_dwz
21814 || !cu->header.offset_in_cu_p (sect_off))
21815 {
21816 struct dwarf2_per_cu_data *per_cu;
21817
21818 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
21819 dwarf2_per_objfile);
21820
21821 /* If necessary, add it to the queue and load its DIEs. */
21822 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
21823 load_full_comp_unit (per_cu, false, cu->language);
21824
21825 target_cu = per_cu->cu;
21826 }
21827 else if (cu->dies == NULL)
21828 {
21829 /* We're loading full DIEs during partial symbol reading. */
21830 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
21831 load_full_comp_unit (cu->per_cu, false, language_minimal);
21832 }
21833
21834 *ref_cu = target_cu;
21835 temp_die.sect_off = sect_off;
21836
21837 if (target_cu != cu)
21838 target_cu->ancestor = cu;
21839
21840 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
21841 &temp_die,
21842 to_underlying (sect_off));
21843 }
21844
21845 /* Follow reference attribute ATTR of SRC_DIE.
21846 On entry *REF_CU is the CU of SRC_DIE.
21847 On exit *REF_CU is the CU of the result. */
21848
21849 static struct die_info *
21850 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
21851 struct dwarf2_cu **ref_cu)
21852 {
21853 sect_offset sect_off = attr->get_ref_die_offset ();
21854 struct dwarf2_cu *cu = *ref_cu;
21855 struct die_info *die;
21856
21857 die = follow_die_offset (sect_off,
21858 (attr->form == DW_FORM_GNU_ref_alt
21859 || cu->per_cu->is_dwz),
21860 ref_cu);
21861 if (!die)
21862 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
21863 "at %s [in module %s]"),
21864 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
21865 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
21866
21867 return die;
21868 }
21869
21870 /* See read.h. */
21871
21872 struct dwarf2_locexpr_baton
21873 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
21874 dwarf2_per_cu_data *per_cu,
21875 CORE_ADDR (*get_frame_pc) (void *baton),
21876 void *baton, bool resolve_abstract_p)
21877 {
21878 struct dwarf2_cu *cu;
21879 struct die_info *die;
21880 struct attribute *attr;
21881 struct dwarf2_locexpr_baton retval;
21882 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
21883 struct objfile *objfile = dwarf2_per_objfile->objfile;
21884
21885 if (per_cu->cu == NULL)
21886 load_cu (per_cu, false);
21887 cu = per_cu->cu;
21888 if (cu == NULL)
21889 {
21890 /* We shouldn't get here for a dummy CU, but don't crash on the user.
21891 Instead just throw an error, not much else we can do. */
21892 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
21893 sect_offset_str (sect_off), objfile_name (objfile));
21894 }
21895
21896 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
21897 if (!die)
21898 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
21899 sect_offset_str (sect_off), objfile_name (objfile));
21900
21901 attr = dwarf2_attr (die, DW_AT_location, cu);
21902 if (!attr && resolve_abstract_p
21903 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
21904 != dwarf2_per_objfile->abstract_to_concrete.end ()))
21905 {
21906 CORE_ADDR pc = (*get_frame_pc) (baton);
21907 CORE_ADDR baseaddr = objfile->text_section_offset ();
21908 struct gdbarch *gdbarch = objfile->arch ();
21909
21910 for (const auto &cand_off
21911 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
21912 {
21913 struct dwarf2_cu *cand_cu = cu;
21914 struct die_info *cand
21915 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
21916 if (!cand
21917 || !cand->parent
21918 || cand->parent->tag != DW_TAG_subprogram)
21919 continue;
21920
21921 CORE_ADDR pc_low, pc_high;
21922 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
21923 if (pc_low == ((CORE_ADDR) -1))
21924 continue;
21925 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
21926 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
21927 if (!(pc_low <= pc && pc < pc_high))
21928 continue;
21929
21930 die = cand;
21931 attr = dwarf2_attr (die, DW_AT_location, cu);
21932 break;
21933 }
21934 }
21935
21936 if (!attr)
21937 {
21938 /* DWARF: "If there is no such attribute, then there is no effect.".
21939 DATA is ignored if SIZE is 0. */
21940
21941 retval.data = NULL;
21942 retval.size = 0;
21943 }
21944 else if (attr->form_is_section_offset ())
21945 {
21946 struct dwarf2_loclist_baton loclist_baton;
21947 CORE_ADDR pc = (*get_frame_pc) (baton);
21948 size_t size;
21949
21950 fill_in_loclist_baton (cu, &loclist_baton, attr);
21951
21952 retval.data = dwarf2_find_location_expression (&loclist_baton,
21953 &size, pc);
21954 retval.size = size;
21955 }
21956 else
21957 {
21958 if (!attr->form_is_block ())
21959 error (_("Dwarf Error: DIE at %s referenced in module %s "
21960 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
21961 sect_offset_str (sect_off), objfile_name (objfile));
21962
21963 retval.data = DW_BLOCK (attr)->data;
21964 retval.size = DW_BLOCK (attr)->size;
21965 }
21966 retval.per_cu = cu->per_cu;
21967
21968 age_cached_comp_units (dwarf2_per_objfile);
21969
21970 return retval;
21971 }
21972
21973 /* See read.h. */
21974
21975 struct dwarf2_locexpr_baton
21976 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
21977 dwarf2_per_cu_data *per_cu,
21978 CORE_ADDR (*get_frame_pc) (void *baton),
21979 void *baton)
21980 {
21981 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
21982
21983 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
21984 }
21985
21986 /* Write a constant of a given type as target-ordered bytes into
21987 OBSTACK. */
21988
21989 static const gdb_byte *
21990 write_constant_as_bytes (struct obstack *obstack,
21991 enum bfd_endian byte_order,
21992 struct type *type,
21993 ULONGEST value,
21994 LONGEST *len)
21995 {
21996 gdb_byte *result;
21997
21998 *len = TYPE_LENGTH (type);
21999 result = (gdb_byte *) obstack_alloc (obstack, *len);
22000 store_unsigned_integer (result, *len, byte_order, value);
22001
22002 return result;
22003 }
22004
22005 /* See read.h. */
22006
22007 const gdb_byte *
22008 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22009 dwarf2_per_cu_data *per_cu,
22010 obstack *obstack,
22011 LONGEST *len)
22012 {
22013 struct dwarf2_cu *cu;
22014 struct die_info *die;
22015 struct attribute *attr;
22016 const gdb_byte *result = NULL;
22017 struct type *type;
22018 LONGEST value;
22019 enum bfd_endian byte_order;
22020 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22021
22022 if (per_cu->cu == NULL)
22023 load_cu (per_cu, false);
22024 cu = per_cu->cu;
22025 if (cu == NULL)
22026 {
22027 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22028 Instead just throw an error, not much else we can do. */
22029 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22030 sect_offset_str (sect_off), objfile_name (objfile));
22031 }
22032
22033 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22034 if (!die)
22035 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22036 sect_offset_str (sect_off), objfile_name (objfile));
22037
22038 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22039 if (attr == NULL)
22040 return NULL;
22041
22042 byte_order = (bfd_big_endian (objfile->obfd)
22043 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22044
22045 switch (attr->form)
22046 {
22047 case DW_FORM_addr:
22048 case DW_FORM_addrx:
22049 case DW_FORM_GNU_addr_index:
22050 {
22051 gdb_byte *tem;
22052
22053 *len = cu->header.addr_size;
22054 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22055 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22056 result = tem;
22057 }
22058 break;
22059 case DW_FORM_string:
22060 case DW_FORM_strp:
22061 case DW_FORM_strx:
22062 case DW_FORM_GNU_str_index:
22063 case DW_FORM_GNU_strp_alt:
22064 /* DW_STRING is already allocated on the objfile obstack, point
22065 directly to it. */
22066 result = (const gdb_byte *) DW_STRING (attr);
22067 *len = strlen (DW_STRING (attr));
22068 break;
22069 case DW_FORM_block1:
22070 case DW_FORM_block2:
22071 case DW_FORM_block4:
22072 case DW_FORM_block:
22073 case DW_FORM_exprloc:
22074 case DW_FORM_data16:
22075 result = DW_BLOCK (attr)->data;
22076 *len = DW_BLOCK (attr)->size;
22077 break;
22078
22079 /* The DW_AT_const_value attributes are supposed to carry the
22080 symbol's value "represented as it would be on the target
22081 architecture." By the time we get here, it's already been
22082 converted to host endianness, so we just need to sign- or
22083 zero-extend it as appropriate. */
22084 case DW_FORM_data1:
22085 type = die_type (die, cu);
22086 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22087 if (result == NULL)
22088 result = write_constant_as_bytes (obstack, byte_order,
22089 type, value, len);
22090 break;
22091 case DW_FORM_data2:
22092 type = die_type (die, cu);
22093 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22094 if (result == NULL)
22095 result = write_constant_as_bytes (obstack, byte_order,
22096 type, value, len);
22097 break;
22098 case DW_FORM_data4:
22099 type = die_type (die, cu);
22100 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22101 if (result == NULL)
22102 result = write_constant_as_bytes (obstack, byte_order,
22103 type, value, len);
22104 break;
22105 case DW_FORM_data8:
22106 type = die_type (die, cu);
22107 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22108 if (result == NULL)
22109 result = write_constant_as_bytes (obstack, byte_order,
22110 type, value, len);
22111 break;
22112
22113 case DW_FORM_sdata:
22114 case DW_FORM_implicit_const:
22115 type = die_type (die, cu);
22116 result = write_constant_as_bytes (obstack, byte_order,
22117 type, DW_SND (attr), len);
22118 break;
22119
22120 case DW_FORM_udata:
22121 type = die_type (die, cu);
22122 result = write_constant_as_bytes (obstack, byte_order,
22123 type, DW_UNSND (attr), len);
22124 break;
22125
22126 default:
22127 complaint (_("unsupported const value attribute form: '%s'"),
22128 dwarf_form_name (attr->form));
22129 break;
22130 }
22131
22132 return result;
22133 }
22134
22135 /* See read.h. */
22136
22137 struct type *
22138 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22139 dwarf2_per_cu_data *per_cu)
22140 {
22141 struct dwarf2_cu *cu;
22142 struct die_info *die;
22143
22144 if (per_cu->cu == NULL)
22145 load_cu (per_cu, false);
22146 cu = per_cu->cu;
22147 if (!cu)
22148 return NULL;
22149
22150 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22151 if (!die)
22152 return NULL;
22153
22154 return die_type (die, cu);
22155 }
22156
22157 /* See read.h. */
22158
22159 struct type *
22160 dwarf2_get_die_type (cu_offset die_offset,
22161 struct dwarf2_per_cu_data *per_cu)
22162 {
22163 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22164 return get_die_type_at_offset (die_offset_sect, per_cu);
22165 }
22166
22167 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22168 On entry *REF_CU is the CU of SRC_DIE.
22169 On exit *REF_CU is the CU of the result.
22170 Returns NULL if the referenced DIE isn't found. */
22171
22172 static struct die_info *
22173 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22174 struct dwarf2_cu **ref_cu)
22175 {
22176 struct die_info temp_die;
22177 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22178 struct die_info *die;
22179
22180 /* While it might be nice to assert sig_type->type == NULL here,
22181 we can get here for DW_AT_imported_declaration where we need
22182 the DIE not the type. */
22183
22184 /* If necessary, add it to the queue and load its DIEs. */
22185
22186 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22187 read_signatured_type (sig_type);
22188
22189 sig_cu = sig_type->per_cu.cu;
22190 gdb_assert (sig_cu != NULL);
22191 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22192 temp_die.sect_off = sig_type->type_offset_in_section;
22193 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22194 to_underlying (temp_die.sect_off));
22195 if (die)
22196 {
22197 struct dwarf2_per_objfile *dwarf2_per_objfile
22198 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22199
22200 /* For .gdb_index version 7 keep track of included TUs.
22201 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22202 if (dwarf2_per_objfile->index_table != NULL
22203 && dwarf2_per_objfile->index_table->version <= 7)
22204 {
22205 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22206 }
22207
22208 *ref_cu = sig_cu;
22209 if (sig_cu != cu)
22210 sig_cu->ancestor = cu;
22211
22212 return die;
22213 }
22214
22215 return NULL;
22216 }
22217
22218 /* Follow signatured type referenced by ATTR in SRC_DIE.
22219 On entry *REF_CU is the CU of SRC_DIE.
22220 On exit *REF_CU is the CU of the result.
22221 The result is the DIE of the type.
22222 If the referenced type cannot be found an error is thrown. */
22223
22224 static struct die_info *
22225 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22226 struct dwarf2_cu **ref_cu)
22227 {
22228 ULONGEST signature = DW_SIGNATURE (attr);
22229 struct signatured_type *sig_type;
22230 struct die_info *die;
22231
22232 gdb_assert (attr->form == DW_FORM_ref_sig8);
22233
22234 sig_type = lookup_signatured_type (*ref_cu, signature);
22235 /* sig_type will be NULL if the signatured type is missing from
22236 the debug info. */
22237 if (sig_type == NULL)
22238 {
22239 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22240 " from DIE at %s [in module %s]"),
22241 hex_string (signature), sect_offset_str (src_die->sect_off),
22242 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22243 }
22244
22245 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22246 if (die == NULL)
22247 {
22248 dump_die_for_error (src_die);
22249 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22250 " from DIE at %s [in module %s]"),
22251 hex_string (signature), sect_offset_str (src_die->sect_off),
22252 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22253 }
22254
22255 return die;
22256 }
22257
22258 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22259 reading in and processing the type unit if necessary. */
22260
22261 static struct type *
22262 get_signatured_type (struct die_info *die, ULONGEST signature,
22263 struct dwarf2_cu *cu)
22264 {
22265 struct dwarf2_per_objfile *dwarf2_per_objfile
22266 = cu->per_cu->dwarf2_per_objfile;
22267 struct signatured_type *sig_type;
22268 struct dwarf2_cu *type_cu;
22269 struct die_info *type_die;
22270 struct type *type;
22271
22272 sig_type = lookup_signatured_type (cu, signature);
22273 /* sig_type will be NULL if the signatured type is missing from
22274 the debug info. */
22275 if (sig_type == NULL)
22276 {
22277 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22278 " from DIE at %s [in module %s]"),
22279 hex_string (signature), sect_offset_str (die->sect_off),
22280 objfile_name (dwarf2_per_objfile->objfile));
22281 return build_error_marker_type (cu, die);
22282 }
22283
22284 /* If we already know the type we're done. */
22285 if (sig_type->type != NULL)
22286 return sig_type->type;
22287
22288 type_cu = cu;
22289 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22290 if (type_die != NULL)
22291 {
22292 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22293 is created. This is important, for example, because for c++ classes
22294 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22295 type = read_type_die (type_die, type_cu);
22296 if (type == NULL)
22297 {
22298 complaint (_("Dwarf Error: Cannot build signatured type %s"
22299 " referenced from DIE at %s [in module %s]"),
22300 hex_string (signature), sect_offset_str (die->sect_off),
22301 objfile_name (dwarf2_per_objfile->objfile));
22302 type = build_error_marker_type (cu, die);
22303 }
22304 }
22305 else
22306 {
22307 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22308 " from DIE at %s [in module %s]"),
22309 hex_string (signature), sect_offset_str (die->sect_off),
22310 objfile_name (dwarf2_per_objfile->objfile));
22311 type = build_error_marker_type (cu, die);
22312 }
22313 sig_type->type = type;
22314
22315 return type;
22316 }
22317
22318 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22319 reading in and processing the type unit if necessary. */
22320
22321 static struct type *
22322 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22323 struct dwarf2_cu *cu) /* ARI: editCase function */
22324 {
22325 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22326 if (attr->form_is_ref ())
22327 {
22328 struct dwarf2_cu *type_cu = cu;
22329 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22330
22331 return read_type_die (type_die, type_cu);
22332 }
22333 else if (attr->form == DW_FORM_ref_sig8)
22334 {
22335 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22336 }
22337 else
22338 {
22339 struct dwarf2_per_objfile *dwarf2_per_objfile
22340 = cu->per_cu->dwarf2_per_objfile;
22341
22342 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22343 " at %s [in module %s]"),
22344 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22345 objfile_name (dwarf2_per_objfile->objfile));
22346 return build_error_marker_type (cu, die);
22347 }
22348 }
22349
22350 /* Load the DIEs associated with type unit PER_CU into memory. */
22351
22352 static void
22353 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22354 {
22355 struct signatured_type *sig_type;
22356
22357 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22358 gdb_assert (! per_cu->type_unit_group_p ());
22359
22360 /* We have the per_cu, but we need the signatured_type.
22361 Fortunately this is an easy translation. */
22362 gdb_assert (per_cu->is_debug_types);
22363 sig_type = (struct signatured_type *) per_cu;
22364
22365 gdb_assert (per_cu->cu == NULL);
22366
22367 read_signatured_type (sig_type);
22368
22369 gdb_assert (per_cu->cu != NULL);
22370 }
22371
22372 /* Read in a signatured type and build its CU and DIEs.
22373 If the type is a stub for the real type in a DWO file,
22374 read in the real type from the DWO file as well. */
22375
22376 static void
22377 read_signatured_type (struct signatured_type *sig_type)
22378 {
22379 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22380
22381 gdb_assert (per_cu->is_debug_types);
22382 gdb_assert (per_cu->cu == NULL);
22383
22384 cutu_reader reader (per_cu, NULL, 0, false);
22385
22386 if (!reader.dummy_p)
22387 {
22388 struct dwarf2_cu *cu = reader.cu;
22389 const gdb_byte *info_ptr = reader.info_ptr;
22390
22391 gdb_assert (cu->die_hash == NULL);
22392 cu->die_hash =
22393 htab_create_alloc_ex (cu->header.length / 12,
22394 die_hash,
22395 die_eq,
22396 NULL,
22397 &cu->comp_unit_obstack,
22398 hashtab_obstack_allocate,
22399 dummy_obstack_deallocate);
22400
22401 if (reader.comp_unit_die->has_children)
22402 reader.comp_unit_die->child
22403 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22404 reader.comp_unit_die);
22405 cu->dies = reader.comp_unit_die;
22406 /* comp_unit_die is not stored in die_hash, no need. */
22407
22408 /* We try not to read any attributes in this function, because
22409 not all CUs needed for references have been loaded yet, and
22410 symbol table processing isn't initialized. But we have to
22411 set the CU language, or we won't be able to build types
22412 correctly. Similarly, if we do not read the producer, we can
22413 not apply producer-specific interpretation. */
22414 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22415
22416 reader.keep ();
22417 }
22418
22419 sig_type->per_cu.tu_read = 1;
22420 }
22421
22422 /* Decode simple location descriptions.
22423 Given a pointer to a dwarf block that defines a location, compute
22424 the location and return the value.
22425
22426 NOTE drow/2003-11-18: This function is called in two situations
22427 now: for the address of static or global variables (partial symbols
22428 only) and for offsets into structures which are expected to be
22429 (more or less) constant. The partial symbol case should go away,
22430 and only the constant case should remain. That will let this
22431 function complain more accurately. A few special modes are allowed
22432 without complaint for global variables (for instance, global
22433 register values and thread-local values).
22434
22435 A location description containing no operations indicates that the
22436 object is optimized out. The return value is 0 for that case.
22437 FIXME drow/2003-11-16: No callers check for this case any more; soon all
22438 callers will only want a very basic result and this can become a
22439 complaint.
22440
22441 Note that stack[0] is unused except as a default error return. */
22442
22443 static CORE_ADDR
22444 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
22445 {
22446 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22447 size_t i;
22448 size_t size = blk->size;
22449 const gdb_byte *data = blk->data;
22450 CORE_ADDR stack[64];
22451 int stacki;
22452 unsigned int bytes_read, unsnd;
22453 gdb_byte op;
22454
22455 i = 0;
22456 stacki = 0;
22457 stack[stacki] = 0;
22458 stack[++stacki] = 0;
22459
22460 while (i < size)
22461 {
22462 op = data[i++];
22463 switch (op)
22464 {
22465 case DW_OP_lit0:
22466 case DW_OP_lit1:
22467 case DW_OP_lit2:
22468 case DW_OP_lit3:
22469 case DW_OP_lit4:
22470 case DW_OP_lit5:
22471 case DW_OP_lit6:
22472 case DW_OP_lit7:
22473 case DW_OP_lit8:
22474 case DW_OP_lit9:
22475 case DW_OP_lit10:
22476 case DW_OP_lit11:
22477 case DW_OP_lit12:
22478 case DW_OP_lit13:
22479 case DW_OP_lit14:
22480 case DW_OP_lit15:
22481 case DW_OP_lit16:
22482 case DW_OP_lit17:
22483 case DW_OP_lit18:
22484 case DW_OP_lit19:
22485 case DW_OP_lit20:
22486 case DW_OP_lit21:
22487 case DW_OP_lit22:
22488 case DW_OP_lit23:
22489 case DW_OP_lit24:
22490 case DW_OP_lit25:
22491 case DW_OP_lit26:
22492 case DW_OP_lit27:
22493 case DW_OP_lit28:
22494 case DW_OP_lit29:
22495 case DW_OP_lit30:
22496 case DW_OP_lit31:
22497 stack[++stacki] = op - DW_OP_lit0;
22498 break;
22499
22500 case DW_OP_reg0:
22501 case DW_OP_reg1:
22502 case DW_OP_reg2:
22503 case DW_OP_reg3:
22504 case DW_OP_reg4:
22505 case DW_OP_reg5:
22506 case DW_OP_reg6:
22507 case DW_OP_reg7:
22508 case DW_OP_reg8:
22509 case DW_OP_reg9:
22510 case DW_OP_reg10:
22511 case DW_OP_reg11:
22512 case DW_OP_reg12:
22513 case DW_OP_reg13:
22514 case DW_OP_reg14:
22515 case DW_OP_reg15:
22516 case DW_OP_reg16:
22517 case DW_OP_reg17:
22518 case DW_OP_reg18:
22519 case DW_OP_reg19:
22520 case DW_OP_reg20:
22521 case DW_OP_reg21:
22522 case DW_OP_reg22:
22523 case DW_OP_reg23:
22524 case DW_OP_reg24:
22525 case DW_OP_reg25:
22526 case DW_OP_reg26:
22527 case DW_OP_reg27:
22528 case DW_OP_reg28:
22529 case DW_OP_reg29:
22530 case DW_OP_reg30:
22531 case DW_OP_reg31:
22532 stack[++stacki] = op - DW_OP_reg0;
22533 if (i < size)
22534 dwarf2_complex_location_expr_complaint ();
22535 break;
22536
22537 case DW_OP_regx:
22538 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22539 i += bytes_read;
22540 stack[++stacki] = unsnd;
22541 if (i < size)
22542 dwarf2_complex_location_expr_complaint ();
22543 break;
22544
22545 case DW_OP_addr:
22546 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22547 &bytes_read);
22548 i += bytes_read;
22549 break;
22550
22551 case DW_OP_const1u:
22552 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22553 i += 1;
22554 break;
22555
22556 case DW_OP_const1s:
22557 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22558 i += 1;
22559 break;
22560
22561 case DW_OP_const2u:
22562 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22563 i += 2;
22564 break;
22565
22566 case DW_OP_const2s:
22567 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22568 i += 2;
22569 break;
22570
22571 case DW_OP_const4u:
22572 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22573 i += 4;
22574 break;
22575
22576 case DW_OP_const4s:
22577 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22578 i += 4;
22579 break;
22580
22581 case DW_OP_const8u:
22582 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22583 i += 8;
22584 break;
22585
22586 case DW_OP_constu:
22587 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22588 &bytes_read);
22589 i += bytes_read;
22590 break;
22591
22592 case DW_OP_consts:
22593 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22594 i += bytes_read;
22595 break;
22596
22597 case DW_OP_dup:
22598 stack[stacki + 1] = stack[stacki];
22599 stacki++;
22600 break;
22601
22602 case DW_OP_plus:
22603 stack[stacki - 1] += stack[stacki];
22604 stacki--;
22605 break;
22606
22607 case DW_OP_plus_uconst:
22608 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22609 &bytes_read);
22610 i += bytes_read;
22611 break;
22612
22613 case DW_OP_minus:
22614 stack[stacki - 1] -= stack[stacki];
22615 stacki--;
22616 break;
22617
22618 case DW_OP_deref:
22619 /* If we're not the last op, then we definitely can't encode
22620 this using GDB's address_class enum. This is valid for partial
22621 global symbols, although the variable's address will be bogus
22622 in the psymtab. */
22623 if (i < size)
22624 dwarf2_complex_location_expr_complaint ();
22625 break;
22626
22627 case DW_OP_GNU_push_tls_address:
22628 case DW_OP_form_tls_address:
22629 /* The top of the stack has the offset from the beginning
22630 of the thread control block at which the variable is located. */
22631 /* Nothing should follow this operator, so the top of stack would
22632 be returned. */
22633 /* This is valid for partial global symbols, but the variable's
22634 address will be bogus in the psymtab. Make it always at least
22635 non-zero to not look as a variable garbage collected by linker
22636 which have DW_OP_addr 0. */
22637 if (i < size)
22638 dwarf2_complex_location_expr_complaint ();
22639 stack[stacki]++;
22640 break;
22641
22642 case DW_OP_GNU_uninit:
22643 break;
22644
22645 case DW_OP_addrx:
22646 case DW_OP_GNU_addr_index:
22647 case DW_OP_GNU_const_index:
22648 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22649 &bytes_read);
22650 i += bytes_read;
22651 break;
22652
22653 default:
22654 {
22655 const char *name = get_DW_OP_name (op);
22656
22657 if (name)
22658 complaint (_("unsupported stack op: '%s'"),
22659 name);
22660 else
22661 complaint (_("unsupported stack op: '%02x'"),
22662 op);
22663 }
22664
22665 return (stack[stacki]);
22666 }
22667
22668 /* Enforce maximum stack depth of SIZE-1 to avoid writing
22669 outside of the allocated space. Also enforce minimum>0. */
22670 if (stacki >= ARRAY_SIZE (stack) - 1)
22671 {
22672 complaint (_("location description stack overflow"));
22673 return 0;
22674 }
22675
22676 if (stacki <= 0)
22677 {
22678 complaint (_("location description stack underflow"));
22679 return 0;
22680 }
22681 }
22682 return (stack[stacki]);
22683 }
22684
22685 /* memory allocation interface */
22686
22687 static struct dwarf_block *
22688 dwarf_alloc_block (struct dwarf2_cu *cu)
22689 {
22690 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
22691 }
22692
22693 static struct die_info *
22694 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
22695 {
22696 struct die_info *die;
22697 size_t size = sizeof (struct die_info);
22698
22699 if (num_attrs > 1)
22700 size += (num_attrs - 1) * sizeof (struct attribute);
22701
22702 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
22703 memset (die, 0, sizeof (struct die_info));
22704 return (die);
22705 }
22706
22707 \f
22708
22709 /* Macro support. */
22710
22711 /* An overload of dwarf_decode_macros that finds the correct section
22712 and ensures it is read in before calling the other overload. */
22713
22714 static void
22715 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
22716 int section_is_gnu)
22717 {
22718 struct dwarf2_per_objfile *dwarf2_per_objfile
22719 = cu->per_cu->dwarf2_per_objfile;
22720 struct objfile *objfile = dwarf2_per_objfile->objfile;
22721 const struct line_header *lh = cu->line_header;
22722 unsigned int offset_size = cu->header.offset_size;
22723 struct dwarf2_section_info *section;
22724 const char *section_name;
22725
22726 if (cu->dwo_unit != nullptr)
22727 {
22728 if (section_is_gnu)
22729 {
22730 section = &cu->dwo_unit->dwo_file->sections.macro;
22731 section_name = ".debug_macro.dwo";
22732 }
22733 else
22734 {
22735 section = &cu->dwo_unit->dwo_file->sections.macinfo;
22736 section_name = ".debug_macinfo.dwo";
22737 }
22738 }
22739 else
22740 {
22741 if (section_is_gnu)
22742 {
22743 section = &dwarf2_per_objfile->macro;
22744 section_name = ".debug_macro";
22745 }
22746 else
22747 {
22748 section = &dwarf2_per_objfile->macinfo;
22749 section_name = ".debug_macinfo";
22750 }
22751 }
22752
22753 section->read (objfile);
22754 if (section->buffer == nullptr)
22755 {
22756 complaint (_("missing %s section"), section_name);
22757 return;
22758 }
22759
22760 buildsym_compunit *builder = cu->get_builder ();
22761
22762 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
22763 offset_size, offset, section_is_gnu);
22764 }
22765
22766 /* Return the .debug_loc section to use for CU.
22767 For DWO files use .debug_loc.dwo. */
22768
22769 static struct dwarf2_section_info *
22770 cu_debug_loc_section (struct dwarf2_cu *cu)
22771 {
22772 struct dwarf2_per_objfile *dwarf2_per_objfile
22773 = cu->per_cu->dwarf2_per_objfile;
22774
22775 if (cu->dwo_unit)
22776 {
22777 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
22778
22779 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
22780 }
22781 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
22782 : &dwarf2_per_objfile->loc);
22783 }
22784
22785 /* A helper function that fills in a dwarf2_loclist_baton. */
22786
22787 static void
22788 fill_in_loclist_baton (struct dwarf2_cu *cu,
22789 struct dwarf2_loclist_baton *baton,
22790 const struct attribute *attr)
22791 {
22792 struct dwarf2_per_objfile *dwarf2_per_objfile
22793 = cu->per_cu->dwarf2_per_objfile;
22794 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22795
22796 section->read (dwarf2_per_objfile->objfile);
22797
22798 baton->per_cu = cu->per_cu;
22799 gdb_assert (baton->per_cu);
22800 /* We don't know how long the location list is, but make sure we
22801 don't run off the edge of the section. */
22802 baton->size = section->size - DW_UNSND (attr);
22803 baton->data = section->buffer + DW_UNSND (attr);
22804 if (cu->base_address.has_value ())
22805 baton->base_address = *cu->base_address;
22806 else
22807 baton->base_address = 0;
22808 baton->from_dwo = cu->dwo_unit != NULL;
22809 }
22810
22811 static void
22812 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
22813 struct dwarf2_cu *cu, int is_block)
22814 {
22815 struct dwarf2_per_objfile *dwarf2_per_objfile
22816 = cu->per_cu->dwarf2_per_objfile;
22817 struct objfile *objfile = dwarf2_per_objfile->objfile;
22818 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
22819
22820 if (attr->form_is_section_offset ()
22821 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
22822 the section. If so, fall through to the complaint in the
22823 other branch. */
22824 && DW_UNSND (attr) < section->get_size (objfile))
22825 {
22826 struct dwarf2_loclist_baton *baton;
22827
22828 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
22829
22830 fill_in_loclist_baton (cu, baton, attr);
22831
22832 if (!cu->base_address.has_value ())
22833 complaint (_("Location list used without "
22834 "specifying the CU base address."));
22835
22836 SYMBOL_ACLASS_INDEX (sym) = (is_block
22837 ? dwarf2_loclist_block_index
22838 : dwarf2_loclist_index);
22839 SYMBOL_LOCATION_BATON (sym) = baton;
22840 }
22841 else
22842 {
22843 struct dwarf2_locexpr_baton *baton;
22844
22845 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
22846 baton->per_cu = cu->per_cu;
22847 gdb_assert (baton->per_cu);
22848
22849 if (attr->form_is_block ())
22850 {
22851 /* Note that we're just copying the block's data pointer
22852 here, not the actual data. We're still pointing into the
22853 info_buffer for SYM's objfile; right now we never release
22854 that buffer, but when we do clean up properly this may
22855 need to change. */
22856 baton->size = DW_BLOCK (attr)->size;
22857 baton->data = DW_BLOCK (attr)->data;
22858 }
22859 else
22860 {
22861 dwarf2_invalid_attrib_class_complaint ("location description",
22862 sym->natural_name ());
22863 baton->size = 0;
22864 }
22865
22866 SYMBOL_ACLASS_INDEX (sym) = (is_block
22867 ? dwarf2_locexpr_block_index
22868 : dwarf2_locexpr_index);
22869 SYMBOL_LOCATION_BATON (sym) = baton;
22870 }
22871 }
22872
22873 /* See read.h. */
22874
22875 struct objfile *
22876 dwarf2_per_cu_data::objfile () const
22877 {
22878 struct objfile *objfile = dwarf2_per_objfile->objfile;
22879
22880 /* Return the master objfile, so that we can report and look up the
22881 correct file containing this variable. */
22882 if (objfile->separate_debug_objfile_backlink)
22883 objfile = objfile->separate_debug_objfile_backlink;
22884
22885 return objfile;
22886 }
22887
22888 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22889 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22890 CU_HEADERP first. */
22891
22892 static const struct comp_unit_head *
22893 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22894 const struct dwarf2_per_cu_data *per_cu)
22895 {
22896 const gdb_byte *info_ptr;
22897
22898 if (per_cu->cu)
22899 return &per_cu->cu->header;
22900
22901 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
22902
22903 memset (cu_headerp, 0, sizeof (*cu_headerp));
22904 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
22905 rcuh_kind::COMPILE);
22906
22907 return cu_headerp;
22908 }
22909
22910 /* See read.h. */
22911
22912 int
22913 dwarf2_per_cu_data::addr_size () const
22914 {
22915 struct comp_unit_head cu_header_local;
22916 const struct comp_unit_head *cu_headerp;
22917
22918 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22919
22920 return cu_headerp->addr_size;
22921 }
22922
22923 /* See read.h. */
22924
22925 int
22926 dwarf2_per_cu_data::offset_size () const
22927 {
22928 struct comp_unit_head cu_header_local;
22929 const struct comp_unit_head *cu_headerp;
22930
22931 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22932
22933 return cu_headerp->offset_size;
22934 }
22935
22936 /* See read.h. */
22937
22938 int
22939 dwarf2_per_cu_data::ref_addr_size () const
22940 {
22941 struct comp_unit_head cu_header_local;
22942 const struct comp_unit_head *cu_headerp;
22943
22944 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
22945
22946 if (cu_headerp->version == 2)
22947 return cu_headerp->addr_size;
22948 else
22949 return cu_headerp->offset_size;
22950 }
22951
22952 /* See read.h. */
22953
22954 CORE_ADDR
22955 dwarf2_per_cu_data::text_offset () const
22956 {
22957 struct objfile *objfile = dwarf2_per_objfile->objfile;
22958
22959 return objfile->text_section_offset ();
22960 }
22961
22962 /* See read.h. */
22963
22964 struct type *
22965 dwarf2_per_cu_data::addr_type () const
22966 {
22967 struct objfile *objfile = dwarf2_per_objfile->objfile;
22968 struct type *void_type = objfile_type (objfile)->builtin_void;
22969 struct type *addr_type = lookup_pointer_type (void_type);
22970 int addr_size = this->addr_size ();
22971
22972 if (TYPE_LENGTH (addr_type) == addr_size)
22973 return addr_type;
22974
22975 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
22976 return addr_type;
22977 }
22978
22979 /* A helper function for dwarf2_find_containing_comp_unit that returns
22980 the index of the result, and that searches a vector. It will
22981 return a result even if the offset in question does not actually
22982 occur in any CU. This is separate so that it can be unit
22983 tested. */
22984
22985 static int
22986 dwarf2_find_containing_comp_unit
22987 (sect_offset sect_off,
22988 unsigned int offset_in_dwz,
22989 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
22990 {
22991 int low, high;
22992
22993 low = 0;
22994 high = all_comp_units.size () - 1;
22995 while (high > low)
22996 {
22997 struct dwarf2_per_cu_data *mid_cu;
22998 int mid = low + (high - low) / 2;
22999
23000 mid_cu = all_comp_units[mid];
23001 if (mid_cu->is_dwz > offset_in_dwz
23002 || (mid_cu->is_dwz == offset_in_dwz
23003 && mid_cu->sect_off + mid_cu->length > sect_off))
23004 high = mid;
23005 else
23006 low = mid + 1;
23007 }
23008 gdb_assert (low == high);
23009 return low;
23010 }
23011
23012 /* Locate the .debug_info compilation unit from CU's objfile which contains
23013 the DIE at OFFSET. Raises an error on failure. */
23014
23015 static struct dwarf2_per_cu_data *
23016 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23017 unsigned int offset_in_dwz,
23018 struct dwarf2_per_objfile *dwarf2_per_objfile)
23019 {
23020 int low
23021 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23022 dwarf2_per_objfile->all_comp_units);
23023 struct dwarf2_per_cu_data *this_cu
23024 = dwarf2_per_objfile->all_comp_units[low];
23025
23026 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23027 {
23028 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23029 error (_("Dwarf Error: could not find partial DIE containing "
23030 "offset %s [in module %s]"),
23031 sect_offset_str (sect_off),
23032 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23033
23034 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23035 <= sect_off);
23036 return dwarf2_per_objfile->all_comp_units[low-1];
23037 }
23038 else
23039 {
23040 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23041 && sect_off >= this_cu->sect_off + this_cu->length)
23042 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23043 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23044 return this_cu;
23045 }
23046 }
23047
23048 #if GDB_SELF_TEST
23049
23050 namespace selftests {
23051 namespace find_containing_comp_unit {
23052
23053 static void
23054 run_test ()
23055 {
23056 struct dwarf2_per_cu_data one {};
23057 struct dwarf2_per_cu_data two {};
23058 struct dwarf2_per_cu_data three {};
23059 struct dwarf2_per_cu_data four {};
23060
23061 one.length = 5;
23062 two.sect_off = sect_offset (one.length);
23063 two.length = 7;
23064
23065 three.length = 5;
23066 three.is_dwz = 1;
23067 four.sect_off = sect_offset (three.length);
23068 four.length = 7;
23069 four.is_dwz = 1;
23070
23071 std::vector<dwarf2_per_cu_data *> units;
23072 units.push_back (&one);
23073 units.push_back (&two);
23074 units.push_back (&three);
23075 units.push_back (&four);
23076
23077 int result;
23078
23079 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23080 SELF_CHECK (units[result] == &one);
23081 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23082 SELF_CHECK (units[result] == &one);
23083 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23084 SELF_CHECK (units[result] == &two);
23085
23086 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23087 SELF_CHECK (units[result] == &three);
23088 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23089 SELF_CHECK (units[result] == &three);
23090 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23091 SELF_CHECK (units[result] == &four);
23092 }
23093
23094 }
23095 }
23096
23097 #endif /* GDB_SELF_TEST */
23098
23099 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23100
23101 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23102 : per_cu (per_cu_),
23103 mark (false),
23104 has_loclist (false),
23105 checked_producer (false),
23106 producer_is_gxx_lt_4_6 (false),
23107 producer_is_gcc_lt_4_3 (false),
23108 producer_is_icc (false),
23109 producer_is_icc_lt_14 (false),
23110 producer_is_codewarrior (false),
23111 processing_has_namespace_info (false)
23112 {
23113 per_cu->cu = this;
23114 }
23115
23116 /* Destroy a dwarf2_cu. */
23117
23118 dwarf2_cu::~dwarf2_cu ()
23119 {
23120 per_cu->cu = NULL;
23121 }
23122
23123 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23124
23125 static void
23126 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23127 enum language pretend_language)
23128 {
23129 struct attribute *attr;
23130
23131 /* Set the language we're debugging. */
23132 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23133 if (attr != nullptr)
23134 set_cu_language (DW_UNSND (attr), cu);
23135 else
23136 {
23137 cu->language = pretend_language;
23138 cu->language_defn = language_def (cu->language);
23139 }
23140
23141 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23142 }
23143
23144 /* Increase the age counter on each cached compilation unit, and free
23145 any that are too old. */
23146
23147 static void
23148 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23149 {
23150 struct dwarf2_per_cu_data *per_cu, **last_chain;
23151
23152 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23153 per_cu = dwarf2_per_objfile->read_in_chain;
23154 while (per_cu != NULL)
23155 {
23156 per_cu->cu->last_used ++;
23157 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23158 dwarf2_mark (per_cu->cu);
23159 per_cu = per_cu->cu->read_in_chain;
23160 }
23161
23162 per_cu = dwarf2_per_objfile->read_in_chain;
23163 last_chain = &dwarf2_per_objfile->read_in_chain;
23164 while (per_cu != NULL)
23165 {
23166 struct dwarf2_per_cu_data *next_cu;
23167
23168 next_cu = per_cu->cu->read_in_chain;
23169
23170 if (!per_cu->cu->mark)
23171 {
23172 delete per_cu->cu;
23173 *last_chain = next_cu;
23174 }
23175 else
23176 last_chain = &per_cu->cu->read_in_chain;
23177
23178 per_cu = next_cu;
23179 }
23180 }
23181
23182 /* Remove a single compilation unit from the cache. */
23183
23184 static void
23185 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23186 {
23187 struct dwarf2_per_cu_data *per_cu, **last_chain;
23188 struct dwarf2_per_objfile *dwarf2_per_objfile
23189 = target_per_cu->dwarf2_per_objfile;
23190
23191 per_cu = dwarf2_per_objfile->read_in_chain;
23192 last_chain = &dwarf2_per_objfile->read_in_chain;
23193 while (per_cu != NULL)
23194 {
23195 struct dwarf2_per_cu_data *next_cu;
23196
23197 next_cu = per_cu->cu->read_in_chain;
23198
23199 if (per_cu == target_per_cu)
23200 {
23201 delete per_cu->cu;
23202 per_cu->cu = NULL;
23203 *last_chain = next_cu;
23204 break;
23205 }
23206 else
23207 last_chain = &per_cu->cu->read_in_chain;
23208
23209 per_cu = next_cu;
23210 }
23211 }
23212
23213 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23214 We store these in a hash table separate from the DIEs, and preserve them
23215 when the DIEs are flushed out of cache.
23216
23217 The CU "per_cu" pointer is needed because offset alone is not enough to
23218 uniquely identify the type. A file may have multiple .debug_types sections,
23219 or the type may come from a DWO file. Furthermore, while it's more logical
23220 to use per_cu->section+offset, with Fission the section with the data is in
23221 the DWO file but we don't know that section at the point we need it.
23222 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23223 because we can enter the lookup routine, get_die_type_at_offset, from
23224 outside this file, and thus won't necessarily have PER_CU->cu.
23225 Fortunately, PER_CU is stable for the life of the objfile. */
23226
23227 struct dwarf2_per_cu_offset_and_type
23228 {
23229 const struct dwarf2_per_cu_data *per_cu;
23230 sect_offset sect_off;
23231 struct type *type;
23232 };
23233
23234 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23235
23236 static hashval_t
23237 per_cu_offset_and_type_hash (const void *item)
23238 {
23239 const struct dwarf2_per_cu_offset_and_type *ofs
23240 = (const struct dwarf2_per_cu_offset_and_type *) item;
23241
23242 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23243 }
23244
23245 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23246
23247 static int
23248 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23249 {
23250 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23251 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23252 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23253 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23254
23255 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23256 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23257 }
23258
23259 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23260 table if necessary. For convenience, return TYPE.
23261
23262 The DIEs reading must have careful ordering to:
23263 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23264 reading current DIE.
23265 * Not trying to dereference contents of still incompletely read in types
23266 while reading in other DIEs.
23267 * Enable referencing still incompletely read in types just by a pointer to
23268 the type without accessing its fields.
23269
23270 Therefore caller should follow these rules:
23271 * Try to fetch any prerequisite types we may need to build this DIE type
23272 before building the type and calling set_die_type.
23273 * After building type call set_die_type for current DIE as soon as
23274 possible before fetching more types to complete the current type.
23275 * Make the type as complete as possible before fetching more types. */
23276
23277 static struct type *
23278 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23279 {
23280 struct dwarf2_per_objfile *dwarf2_per_objfile
23281 = cu->per_cu->dwarf2_per_objfile;
23282 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23283 struct objfile *objfile = dwarf2_per_objfile->objfile;
23284 struct attribute *attr;
23285 struct dynamic_prop prop;
23286
23287 /* For Ada types, make sure that the gnat-specific data is always
23288 initialized (if not already set). There are a few types where
23289 we should not be doing so, because the type-specific area is
23290 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23291 where the type-specific area is used to store the floatformat).
23292 But this is not a problem, because the gnat-specific information
23293 is actually not needed for these types. */
23294 if (need_gnat_info (cu)
23295 && TYPE_CODE (type) != TYPE_CODE_FUNC
23296 && TYPE_CODE (type) != TYPE_CODE_FLT
23297 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
23298 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
23299 && TYPE_CODE (type) != TYPE_CODE_METHOD
23300 && !HAVE_GNAT_AUX_INFO (type))
23301 INIT_GNAT_SPECIFIC (type);
23302
23303 /* Read DW_AT_allocated and set in type. */
23304 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23305 if (attr != NULL && attr->form_is_block ())
23306 {
23307 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23308 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23309 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
23310 }
23311 else if (attr != NULL)
23312 {
23313 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23314 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23315 sect_offset_str (die->sect_off));
23316 }
23317
23318 /* Read DW_AT_associated and set in type. */
23319 attr = dwarf2_attr (die, DW_AT_associated, cu);
23320 if (attr != NULL && attr->form_is_block ())
23321 {
23322 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23323 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23324 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
23325 }
23326 else if (attr != NULL)
23327 {
23328 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23329 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23330 sect_offset_str (die->sect_off));
23331 }
23332
23333 /* Read DW_AT_data_location and set in type. */
23334 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23335 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23336 cu->per_cu->addr_type ()))
23337 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
23338
23339 if (dwarf2_per_objfile->die_type_hash == NULL)
23340 dwarf2_per_objfile->die_type_hash
23341 = htab_up (htab_create_alloc (127,
23342 per_cu_offset_and_type_hash,
23343 per_cu_offset_and_type_eq,
23344 NULL, xcalloc, xfree));
23345
23346 ofs.per_cu = cu->per_cu;
23347 ofs.sect_off = die->sect_off;
23348 ofs.type = type;
23349 slot = (struct dwarf2_per_cu_offset_and_type **)
23350 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23351 if (*slot)
23352 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23353 sect_offset_str (die->sect_off));
23354 *slot = XOBNEW (&objfile->objfile_obstack,
23355 struct dwarf2_per_cu_offset_and_type);
23356 **slot = ofs;
23357 return type;
23358 }
23359
23360 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23361 or return NULL if the die does not have a saved type. */
23362
23363 static struct type *
23364 get_die_type_at_offset (sect_offset sect_off,
23365 struct dwarf2_per_cu_data *per_cu)
23366 {
23367 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23368 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23369
23370 if (dwarf2_per_objfile->die_type_hash == NULL)
23371 return NULL;
23372
23373 ofs.per_cu = per_cu;
23374 ofs.sect_off = sect_off;
23375 slot = ((struct dwarf2_per_cu_offset_and_type *)
23376 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23377 if (slot)
23378 return slot->type;
23379 else
23380 return NULL;
23381 }
23382
23383 /* Look up the type for DIE in CU in die_type_hash,
23384 or return NULL if DIE does not have a saved type. */
23385
23386 static struct type *
23387 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23388 {
23389 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23390 }
23391
23392 /* Add a dependence relationship from CU to REF_PER_CU. */
23393
23394 static void
23395 dwarf2_add_dependence (struct dwarf2_cu *cu,
23396 struct dwarf2_per_cu_data *ref_per_cu)
23397 {
23398 void **slot;
23399
23400 if (cu->dependencies == NULL)
23401 cu->dependencies
23402 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23403 NULL, &cu->comp_unit_obstack,
23404 hashtab_obstack_allocate,
23405 dummy_obstack_deallocate);
23406
23407 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23408 if (*slot == NULL)
23409 *slot = ref_per_cu;
23410 }
23411
23412 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23413 Set the mark field in every compilation unit in the
23414 cache that we must keep because we are keeping CU. */
23415
23416 static int
23417 dwarf2_mark_helper (void **slot, void *data)
23418 {
23419 struct dwarf2_per_cu_data *per_cu;
23420
23421 per_cu = (struct dwarf2_per_cu_data *) *slot;
23422
23423 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23424 reading of the chain. As such dependencies remain valid it is not much
23425 useful to track and undo them during QUIT cleanups. */
23426 if (per_cu->cu == NULL)
23427 return 1;
23428
23429 if (per_cu->cu->mark)
23430 return 1;
23431 per_cu->cu->mark = true;
23432
23433 if (per_cu->cu->dependencies != NULL)
23434 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23435
23436 return 1;
23437 }
23438
23439 /* Set the mark field in CU and in every other compilation unit in the
23440 cache that we must keep because we are keeping CU. */
23441
23442 static void
23443 dwarf2_mark (struct dwarf2_cu *cu)
23444 {
23445 if (cu->mark)
23446 return;
23447 cu->mark = true;
23448 if (cu->dependencies != NULL)
23449 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23450 }
23451
23452 static void
23453 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23454 {
23455 while (per_cu)
23456 {
23457 per_cu->cu->mark = false;
23458 per_cu = per_cu->cu->read_in_chain;
23459 }
23460 }
23461
23462 /* Trivial hash function for partial_die_info: the hash value of a DIE
23463 is its offset in .debug_info for this objfile. */
23464
23465 static hashval_t
23466 partial_die_hash (const void *item)
23467 {
23468 const struct partial_die_info *part_die
23469 = (const struct partial_die_info *) item;
23470
23471 return to_underlying (part_die->sect_off);
23472 }
23473
23474 /* Trivial comparison function for partial_die_info structures: two DIEs
23475 are equal if they have the same offset. */
23476
23477 static int
23478 partial_die_eq (const void *item_lhs, const void *item_rhs)
23479 {
23480 const struct partial_die_info *part_die_lhs
23481 = (const struct partial_die_info *) item_lhs;
23482 const struct partial_die_info *part_die_rhs
23483 = (const struct partial_die_info *) item_rhs;
23484
23485 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23486 }
23487
23488 struct cmd_list_element *set_dwarf_cmdlist;
23489 struct cmd_list_element *show_dwarf_cmdlist;
23490
23491 static void
23492 show_check_physname (struct ui_file *file, int from_tty,
23493 struct cmd_list_element *c, const char *value)
23494 {
23495 fprintf_filtered (file,
23496 _("Whether to check \"physname\" is %s.\n"),
23497 value);
23498 }
23499
23500 void _initialize_dwarf2_read ();
23501 void
23502 _initialize_dwarf2_read ()
23503 {
23504 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23505 Set DWARF specific variables.\n\
23506 Configure DWARF variables such as the cache size."),
23507 &set_dwarf_cmdlist, "maintenance set dwarf ",
23508 0/*allow-unknown*/, &maintenance_set_cmdlist);
23509
23510 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23511 Show DWARF specific variables.\n\
23512 Show DWARF variables such as the cache size."),
23513 &show_dwarf_cmdlist, "maintenance show dwarf ",
23514 0/*allow-unknown*/, &maintenance_show_cmdlist);
23515
23516 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23517 &dwarf_max_cache_age, _("\
23518 Set the upper bound on the age of cached DWARF compilation units."), _("\
23519 Show the upper bound on the age of cached DWARF compilation units."), _("\
23520 A higher limit means that cached compilation units will be stored\n\
23521 in memory longer, and more total memory will be used. Zero disables\n\
23522 caching, which can slow down startup."),
23523 NULL,
23524 show_dwarf_max_cache_age,
23525 &set_dwarf_cmdlist,
23526 &show_dwarf_cmdlist);
23527
23528 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23529 Set debugging of the DWARF reader."), _("\
23530 Show debugging of the DWARF reader."), _("\
23531 When enabled (non-zero), debugging messages are printed during DWARF\n\
23532 reading and symtab expansion. A value of 1 (one) provides basic\n\
23533 information. A value greater than 1 provides more verbose information."),
23534 NULL,
23535 NULL,
23536 &setdebuglist, &showdebuglist);
23537
23538 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23539 Set debugging of the DWARF DIE reader."), _("\
23540 Show debugging of the DWARF DIE reader."), _("\
23541 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23542 The value is the maximum depth to print."),
23543 NULL,
23544 NULL,
23545 &setdebuglist, &showdebuglist);
23546
23547 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23548 Set debugging of the dwarf line reader."), _("\
23549 Show debugging of the dwarf line reader."), _("\
23550 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23551 A value of 1 (one) provides basic information.\n\
23552 A value greater than 1 provides more verbose information."),
23553 NULL,
23554 NULL,
23555 &setdebuglist, &showdebuglist);
23556
23557 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23558 Set cross-checking of \"physname\" code against demangler."), _("\
23559 Show cross-checking of \"physname\" code against demangler."), _("\
23560 When enabled, GDB's internal \"physname\" code is checked against\n\
23561 the demangler."),
23562 NULL, show_check_physname,
23563 &setdebuglist, &showdebuglist);
23564
23565 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23566 no_class, &use_deprecated_index_sections, _("\
23567 Set whether to use deprecated gdb_index sections."), _("\
23568 Show whether to use deprecated gdb_index sections."), _("\
23569 When enabled, deprecated .gdb_index sections are used anyway.\n\
23570 Normally they are ignored either because of a missing feature or\n\
23571 performance issue.\n\
23572 Warning: This option must be enabled before gdb reads the file."),
23573 NULL,
23574 NULL,
23575 &setlist, &showlist);
23576
23577 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23578 &dwarf2_locexpr_funcs);
23579 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23580 &dwarf2_loclist_funcs);
23581
23582 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23583 &dwarf2_block_frame_base_locexpr_funcs);
23584 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23585 &dwarf2_block_frame_base_loclist_funcs);
23586
23587 #if GDB_SELF_TEST
23588 selftests::register_test ("dw2_expand_symtabs_matching",
23589 selftests::dw2_expand_symtabs_matching::run_test);
23590 selftests::register_test ("dwarf2_find_containing_comp_unit",
23591 selftests::find_containing_comp_unit::run_test);
23592 #endif
23593 }