]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2-frame.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / dwarf2-frame.c
1 /* Frame unwinder for frames with DWARF Call Frame Information.
2
3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "dwarf2expr.h"
24 #include "dwarf2.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbtypes.h"
30 #include "symtab.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "record.h"
35
36 #include "complaints.h"
37 #include "dwarf2-frame.h"
38 #include "ax.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame-tailcall.h"
41
42 struct comp_unit;
43
44 /* Call Frame Information (CFI). */
45
46 /* Common Information Entry (CIE). */
47
48 struct dwarf2_cie
49 {
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
70
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
74 /* Encoding of addresses. */
75 gdb_byte encoding;
76
77 /* Target address size in bytes. */
78 int addr_size;
79
80 /* Target pointer size in bytes. */
81 int ptr_size;
82
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
89 /* The version recorded in the CIE. */
90 unsigned char version;
91
92 /* The segment size. */
93 unsigned char segment_size;
94 };
95
96 struct dwarf2_cie_table
97 {
98 int num_entries;
99 struct dwarf2_cie **entries;
100 };
101
102 /* Frame Description Entry (FDE). */
103
104 struct dwarf2_fde
105 {
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
116 const gdb_byte *instructions;
117 const gdb_byte *end;
118
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
122 };
123
124 struct dwarf2_fde_table
125 {
126 int num_entries;
127 struct dwarf2_fde **entries;
128 };
129
130 /* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133 struct comp_unit
134 {
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
140 /* Pointer to the .debug_frame section loaded into memory. */
141 const gdb_byte *dwarf_frame_buffer;
142
143 /* Length of the loaded .debug_frame section. */
144 bfd_size_type dwarf_frame_size;
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154 };
155
156 static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
158
159 static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
161
162 static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
163 int ptr_len, const gdb_byte *buf,
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
166 \f
167
168 enum cfa_how_kind
169 {
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173 };
174
175 struct dwarf2_frame_state_reg_info
176 {
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187 };
188
189 /* Structure describing a frame state. */
190
191 struct dwarf2_frame_state
192 {
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
195 struct dwarf2_frame_state_reg_info regs;
196
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
218 };
219
220 /* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222 #define cfa_exp_len cfa_reg
223
224 /* Assert that the register set RS is large enough to store gdbarch_num_regs
225 columns. If necessary, enlarge the register set. */
226
227 static void
228 dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230 {
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
241 rs->num_regs = num_regs;
242 }
243
244 /* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247 static struct dwarf2_frame_state_reg *
248 dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249 {
250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257 }
258
259 /* Release the memory allocated to register set RS. */
260
261 static void
262 dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263 {
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271 }
272
273 /* Release the memory allocated to the frame state FS. */
274
275 static void
276 dwarf2_frame_state_free (void *p)
277 {
278 struct dwarf2_frame_state *fs = p;
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285 }
286 \f
287
288 /* Helper functions for execute_stack_op. */
289
290 static CORE_ADDR
291 read_addr_from_reg (void *baton, int reg)
292 {
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
295 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
296
297 return address_from_register (regnum, this_frame);
298 }
299
300 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302 static struct value *
303 get_reg_value (void *baton, struct type *type, int reg)
304 {
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
307 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
308
309 return value_from_register (type, regnum, this_frame);
310 }
311
312 static void
313 read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
314 {
315 read_memory (addr, buf, len);
316 }
317
318 /* Execute the required actions for both the DW_CFA_restore and
319 DW_CFA_restore_extended instructions. */
320 static void
321 dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323 {
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
339 complaint (&symfile_complaints, _("\
340 incomplete CFI data; DW_CFA_restore unspecified\n\
341 register %s (#%d) at %s"),
342 gdbarch_register_name
343 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
344 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
345 paddress (gdbarch, fs->pc));
346 }
347
348 /* Virtual method table for execute_stack_op below. */
349
350 static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
351 {
352 read_addr_from_reg,
353 get_reg_value,
354 read_mem,
355 ctx_no_get_frame_base,
356 ctx_no_get_frame_cfa,
357 ctx_no_get_frame_pc,
358 ctx_no_get_tls_address,
359 ctx_no_dwarf_call,
360 ctx_no_get_base_type,
361 ctx_no_push_dwarf_reg_entry_value,
362 ctx_no_get_addr_index
363 };
364
365 static CORE_ADDR
366 execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
367 CORE_ADDR offset, struct frame_info *this_frame,
368 CORE_ADDR initial, int initial_in_stack_memory)
369 {
370 struct dwarf_expr_context *ctx;
371 CORE_ADDR result;
372 struct cleanup *old_chain;
373
374 ctx = new_dwarf_expr_context ();
375 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
376 make_cleanup_value_free_to_mark (value_mark ());
377
378 ctx->gdbarch = get_frame_arch (this_frame);
379 ctx->addr_size = addr_size;
380 ctx->ref_addr_size = -1;
381 ctx->offset = offset;
382 ctx->baton = this_frame;
383 ctx->funcs = &dwarf2_frame_ctx_funcs;
384
385 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
386 dwarf_expr_eval (ctx, exp, len);
387
388 if (ctx->location == DWARF_VALUE_MEMORY)
389 result = dwarf_expr_fetch_address (ctx, 0);
390 else if (ctx->location == DWARF_VALUE_REGISTER)
391 result = read_addr_from_reg (this_frame,
392 value_as_long (dwarf_expr_fetch (ctx, 0)));
393 else
394 {
395 /* This is actually invalid DWARF, but if we ever do run across
396 it somehow, we might as well support it. So, instead, report
397 it as unimplemented. */
398 error (_("\
399 Not implemented: computing unwound register using explicit value operator"));
400 }
401
402 do_cleanups (old_chain);
403
404 return result;
405 }
406 \f
407
408 /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
409 PC. Modify FS state accordingly. Return current INSN_PTR where the
410 execution has stopped, one can resume it on the next call. */
411
412 static const gdb_byte *
413 execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
414 const gdb_byte *insn_end, struct gdbarch *gdbarch,
415 CORE_ADDR pc, struct dwarf2_frame_state *fs)
416 {
417 int eh_frame_p = fde->eh_frame_p;
418 unsigned int bytes_read;
419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
420
421 while (insn_ptr < insn_end && fs->pc <= pc)
422 {
423 gdb_byte insn = *insn_ptr++;
424 uint64_t utmp, reg;
425 int64_t offset;
426
427 if ((insn & 0xc0) == DW_CFA_advance_loc)
428 fs->pc += (insn & 0x3f) * fs->code_align;
429 else if ((insn & 0xc0) == DW_CFA_offset)
430 {
431 reg = insn & 0x3f;
432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
433 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
434 offset = utmp * fs->data_align;
435 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
436 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
437 fs->regs.reg[reg].loc.offset = offset;
438 }
439 else if ((insn & 0xc0) == DW_CFA_restore)
440 {
441 reg = insn & 0x3f;
442 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
443 }
444 else
445 {
446 switch (insn)
447 {
448 case DW_CFA_set_loc:
449 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
450 fde->cie->ptr_size, insn_ptr,
451 &bytes_read, fde->initial_location);
452 /* Apply the objfile offset for relocatable objects. */
453 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
454 SECT_OFF_TEXT (fde->cie->unit->objfile));
455 insn_ptr += bytes_read;
456 break;
457
458 case DW_CFA_advance_loc1:
459 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
460 fs->pc += utmp * fs->code_align;
461 insn_ptr++;
462 break;
463 case DW_CFA_advance_loc2:
464 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
465 fs->pc += utmp * fs->code_align;
466 insn_ptr += 2;
467 break;
468 case DW_CFA_advance_loc4:
469 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 4;
472 break;
473
474 case DW_CFA_offset_extended:
475 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
476 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
478 offset = utmp * fs->data_align;
479 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
480 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
481 fs->regs.reg[reg].loc.offset = offset;
482 break;
483
484 case DW_CFA_restore_extended:
485 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
486 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
487 break;
488
489 case DW_CFA_undefined:
490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
491 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
492 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
493 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
494 break;
495
496 case DW_CFA_same_value:
497 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
498 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
499 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
500 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
501 break;
502
503 case DW_CFA_register:
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
505 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
507 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
508 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
509 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
510 fs->regs.reg[reg].loc.reg = utmp;
511 break;
512
513 case DW_CFA_remember_state:
514 {
515 struct dwarf2_frame_state_reg_info *new_rs;
516
517 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
518 *new_rs = fs->regs;
519 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
520 fs->regs.prev = new_rs;
521 }
522 break;
523
524 case DW_CFA_restore_state:
525 {
526 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
527
528 if (old_rs == NULL)
529 {
530 complaint (&symfile_complaints, _("\
531 bad CFI data; mismatched DW_CFA_restore_state at %s"),
532 paddress (gdbarch, fs->pc));
533 }
534 else
535 {
536 xfree (fs->regs.reg);
537 fs->regs = *old_rs;
538 xfree (old_rs);
539 }
540 }
541 break;
542
543 case DW_CFA_def_cfa:
544 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
545 fs->regs.cfa_reg = reg;
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
547
548 if (fs->armcc_cfa_offsets_sf)
549 utmp *= fs->data_align;
550
551 fs->regs.cfa_offset = utmp;
552 fs->regs.cfa_how = CFA_REG_OFFSET;
553 break;
554
555 case DW_CFA_def_cfa_register:
556 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
557 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
558 eh_frame_p);
559 fs->regs.cfa_how = CFA_REG_OFFSET;
560 break;
561
562 case DW_CFA_def_cfa_offset:
563 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
564
565 if (fs->armcc_cfa_offsets_sf)
566 utmp *= fs->data_align;
567
568 fs->regs.cfa_offset = utmp;
569 /* cfa_how deliberately not set. */
570 break;
571
572 case DW_CFA_nop:
573 break;
574
575 case DW_CFA_def_cfa_expression:
576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
577 fs->regs.cfa_exp_len = utmp;
578 fs->regs.cfa_exp = insn_ptr;
579 fs->regs.cfa_how = CFA_EXP;
580 insn_ptr += fs->regs.cfa_exp_len;
581 break;
582
583 case DW_CFA_expression:
584 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
585 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
586 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
587 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
588 fs->regs.reg[reg].loc.exp = insn_ptr;
589 fs->regs.reg[reg].exp_len = utmp;
590 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
591 insn_ptr += utmp;
592 break;
593
594 case DW_CFA_offset_extended_sf:
595 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
596 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
597 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
598 offset *= fs->data_align;
599 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
600 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
601 fs->regs.reg[reg].loc.offset = offset;
602 break;
603
604 case DW_CFA_val_offset:
605 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
606 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
608 offset = utmp * fs->data_align;
609 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
610 fs->regs.reg[reg].loc.offset = offset;
611 break;
612
613 case DW_CFA_val_offset_sf:
614 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
615 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
616 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
617 offset *= fs->data_align;
618 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
619 fs->regs.reg[reg].loc.offset = offset;
620 break;
621
622 case DW_CFA_val_expression:
623 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
624 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
626 fs->regs.reg[reg].loc.exp = insn_ptr;
627 fs->regs.reg[reg].exp_len = utmp;
628 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
629 insn_ptr += utmp;
630 break;
631
632 case DW_CFA_def_cfa_sf:
633 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
634 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
635 eh_frame_p);
636 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
637 fs->regs.cfa_offset = offset * fs->data_align;
638 fs->regs.cfa_how = CFA_REG_OFFSET;
639 break;
640
641 case DW_CFA_def_cfa_offset_sf:
642 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
643 fs->regs.cfa_offset = offset * fs->data_align;
644 /* cfa_how deliberately not set. */
645 break;
646
647 case DW_CFA_GNU_window_save:
648 /* This is SPARC-specific code, and contains hard-coded
649 constants for the register numbering scheme used by
650 GCC. Rather than having a architecture-specific
651 operation that's only ever used by a single
652 architecture, we provide the implementation here.
653 Incidentally that's what GCC does too in its
654 unwinder. */
655 {
656 int size = register_size (gdbarch, 0);
657
658 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
659 for (reg = 8; reg < 16; reg++)
660 {
661 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
662 fs->regs.reg[reg].loc.reg = reg + 16;
663 }
664 for (reg = 16; reg < 32; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
667 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
668 }
669 }
670 break;
671
672 case DW_CFA_GNU_args_size:
673 /* Ignored. */
674 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
675 break;
676
677 case DW_CFA_GNU_negative_offset_extended:
678 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
679 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
681 offset = utmp * fs->data_align;
682 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
683 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
684 fs->regs.reg[reg].loc.offset = -offset;
685 break;
686
687 default:
688 internal_error (__FILE__, __LINE__,
689 _("Unknown CFI encountered."));
690 }
691 }
692 }
693
694 if (fs->initial.reg == NULL)
695 {
696 /* Don't allow remember/restore between CIE and FDE programs. */
697 dwarf2_frame_state_free_regs (fs->regs.prev);
698 fs->regs.prev = NULL;
699 }
700
701 return insn_ptr;
702 }
703 \f
704
705 /* Architecture-specific operations. */
706
707 /* Per-architecture data key. */
708 static struct gdbarch_data *dwarf2_frame_data;
709
710 struct dwarf2_frame_ops
711 {
712 /* Pre-initialize the register state REG for register REGNUM. */
713 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
714 struct frame_info *);
715
716 /* Check whether the THIS_FRAME is a signal trampoline. */
717 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
718
719 /* Convert .eh_frame register number to DWARF register number, or
720 adjust .debug_frame register number. */
721 int (*adjust_regnum) (struct gdbarch *, int, int);
722 };
723
724 /* Default architecture-specific register state initialization
725 function. */
726
727 static void
728 dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
729 struct dwarf2_frame_state_reg *reg,
730 struct frame_info *this_frame)
731 {
732 /* If we have a register that acts as a program counter, mark it as
733 a destination for the return address. If we have a register that
734 serves as the stack pointer, arrange for it to be filled with the
735 call frame address (CFA). The other registers are marked as
736 unspecified.
737
738 We copy the return address to the program counter, since many
739 parts in GDB assume that it is possible to get the return address
740 by unwinding the program counter register. However, on ISA's
741 with a dedicated return address register, the CFI usually only
742 contains information to unwind that return address register.
743
744 The reason we're treating the stack pointer special here is
745 because in many cases GCC doesn't emit CFI for the stack pointer
746 and implicitly assumes that it is equal to the CFA. This makes
747 some sense since the DWARF specification (version 3, draft 8,
748 p. 102) says that:
749
750 "Typically, the CFA is defined to be the value of the stack
751 pointer at the call site in the previous frame (which may be
752 different from its value on entry to the current frame)."
753
754 However, this isn't true for all platforms supported by GCC
755 (e.g. IBM S/390 and zSeries). Those architectures should provide
756 their own architecture-specific initialization function. */
757
758 if (regnum == gdbarch_pc_regnum (gdbarch))
759 reg->how = DWARF2_FRAME_REG_RA;
760 else if (regnum == gdbarch_sp_regnum (gdbarch))
761 reg->how = DWARF2_FRAME_REG_CFA;
762 }
763
764 /* Return a default for the architecture-specific operations. */
765
766 static void *
767 dwarf2_frame_init (struct obstack *obstack)
768 {
769 struct dwarf2_frame_ops *ops;
770
771 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
772 ops->init_reg = dwarf2_frame_default_init_reg;
773 return ops;
774 }
775
776 /* Set the architecture-specific register state initialization
777 function for GDBARCH to INIT_REG. */
778
779 void
780 dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
781 void (*init_reg) (struct gdbarch *, int,
782 struct dwarf2_frame_state_reg *,
783 struct frame_info *))
784 {
785 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
786
787 ops->init_reg = init_reg;
788 }
789
790 /* Pre-initialize the register state REG for register REGNUM. */
791
792 static void
793 dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
794 struct dwarf2_frame_state_reg *reg,
795 struct frame_info *this_frame)
796 {
797 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
798
799 ops->init_reg (gdbarch, regnum, reg, this_frame);
800 }
801
802 /* Set the architecture-specific signal trampoline recognition
803 function for GDBARCH to SIGNAL_FRAME_P. */
804
805 void
806 dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
807 int (*signal_frame_p) (struct gdbarch *,
808 struct frame_info *))
809 {
810 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
811
812 ops->signal_frame_p = signal_frame_p;
813 }
814
815 /* Query the architecture-specific signal frame recognizer for
816 THIS_FRAME. */
817
818 static int
819 dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
820 struct frame_info *this_frame)
821 {
822 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
823
824 if (ops->signal_frame_p == NULL)
825 return 0;
826 return ops->signal_frame_p (gdbarch, this_frame);
827 }
828
829 /* Set the architecture-specific adjustment of .eh_frame and .debug_frame
830 register numbers. */
831
832 void
833 dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
834 int (*adjust_regnum) (struct gdbarch *,
835 int, int))
836 {
837 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
838
839 ops->adjust_regnum = adjust_regnum;
840 }
841
842 /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
843 register. */
844
845 static int
846 dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
847 int regnum, int eh_frame_p)
848 {
849 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
850
851 if (ops->adjust_regnum == NULL)
852 return regnum;
853 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
854 }
855
856 static void
857 dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
858 struct dwarf2_fde *fde)
859 {
860 struct compunit_symtab *cust;
861
862 cust = find_pc_compunit_symtab (fs->pc);
863 if (cust == NULL)
864 return;
865
866 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
867 {
868 if (fde->cie->version == 1)
869 fs->armcc_cfa_offsets_sf = 1;
870
871 if (fde->cie->version == 1)
872 fs->armcc_cfa_offsets_reversed = 1;
873
874 /* The reversed offset problem is present in some compilers
875 using DWARF3, but it was eventually fixed. Check the ARM
876 defined augmentations, which are in the format "armcc" followed
877 by a list of one-character options. The "+" option means
878 this problem is fixed (no quirk needed). If the armcc
879 augmentation is missing, the quirk is needed. */
880 if (fde->cie->version == 3
881 && (!startswith (fde->cie->augmentation, "armcc")
882 || strchr (fde->cie->augmentation + 5, '+') == NULL))
883 fs->armcc_cfa_offsets_reversed = 1;
884
885 return;
886 }
887 }
888 \f
889
890 /* See dwarf2-frame.h. */
891
892 int
893 dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
894 struct dwarf2_per_cu_data *data,
895 int *regnum_out, LONGEST *offset_out,
896 CORE_ADDR *text_offset_out,
897 const gdb_byte **cfa_start_out,
898 const gdb_byte **cfa_end_out)
899 {
900 struct dwarf2_fde *fde;
901 CORE_ADDR text_offset;
902 struct dwarf2_frame_state fs;
903 int addr_size;
904
905 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
906
907 fs.pc = pc;
908
909 /* Find the correct FDE. */
910 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
911 if (fde == NULL)
912 error (_("Could not compute CFA; needed to translate this expression"));
913
914 /* Extract any interesting information from the CIE. */
915 fs.data_align = fde->cie->data_alignment_factor;
916 fs.code_align = fde->cie->code_alignment_factor;
917 fs.retaddr_column = fde->cie->return_address_register;
918 addr_size = fde->cie->addr_size;
919
920 /* Check for "quirks" - known bugs in producers. */
921 dwarf2_frame_find_quirks (&fs, fde);
922
923 /* First decode all the insns in the CIE. */
924 execute_cfa_program (fde, fde->cie->initial_instructions,
925 fde->cie->end, gdbarch, pc, &fs);
926
927 /* Save the initialized register set. */
928 fs.initial = fs.regs;
929 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
930
931 /* Then decode the insns in the FDE up to our target PC. */
932 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
933
934 /* Calculate the CFA. */
935 switch (fs.regs.cfa_how)
936 {
937 case CFA_REG_OFFSET:
938 {
939 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
940
941 if (regnum == -1)
942 error (_("Unable to access DWARF register number %d"),
943 (int) fs.regs.cfa_reg); /* FIXME */
944
945 *regnum_out = regnum;
946 if (fs.armcc_cfa_offsets_reversed)
947 *offset_out = -fs.regs.cfa_offset;
948 else
949 *offset_out = fs.regs.cfa_offset;
950 return 1;
951 }
952
953 case CFA_EXP:
954 *text_offset_out = text_offset;
955 *cfa_start_out = fs.regs.cfa_exp;
956 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
957 return 0;
958
959 default:
960 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
961 }
962 }
963
964 \f
965 struct dwarf2_frame_cache
966 {
967 /* DWARF Call Frame Address. */
968 CORE_ADDR cfa;
969
970 /* Set if the return address column was marked as unavailable
971 (required non-collected memory or registers to compute). */
972 int unavailable_retaddr;
973
974 /* Set if the return address column was marked as undefined. */
975 int undefined_retaddr;
976
977 /* Saved registers, indexed by GDB register number, not by DWARF
978 register number. */
979 struct dwarf2_frame_state_reg *reg;
980
981 /* Return address register. */
982 struct dwarf2_frame_state_reg retaddr_reg;
983
984 /* Target address size in bytes. */
985 int addr_size;
986
987 /* The .text offset. */
988 CORE_ADDR text_offset;
989
990 /* True if we already checked whether this frame is the bottom frame
991 of a virtual tail call frame chain. */
992 int checked_tailcall_bottom;
993
994 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
995 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
996 involved. Non-bottom frames of a virtual tail call frames chain use
997 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
998 them. */
999 void *tailcall_cache;
1000
1001 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1002 base to get the SP, to simulate the return address pushed on the
1003 stack. */
1004 LONGEST entry_cfa_sp_offset;
1005 int entry_cfa_sp_offset_p;
1006 };
1007
1008 /* A cleanup that sets a pointer to NULL. */
1009
1010 static void
1011 clear_pointer_cleanup (void *arg)
1012 {
1013 void **ptr = arg;
1014
1015 *ptr = NULL;
1016 }
1017
1018 static struct dwarf2_frame_cache *
1019 dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
1020 {
1021 struct cleanup *reset_cache_cleanup, *old_chain;
1022 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1023 const int num_regs = gdbarch_num_regs (gdbarch)
1024 + gdbarch_num_pseudo_regs (gdbarch);
1025 struct dwarf2_frame_cache *cache;
1026 struct dwarf2_frame_state *fs;
1027 struct dwarf2_fde *fde;
1028 CORE_ADDR entry_pc;
1029 const gdb_byte *instr;
1030
1031 if (*this_cache)
1032 return *this_cache;
1033
1034 /* Allocate a new cache. */
1035 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1036 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
1037 *this_cache = cache;
1038 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
1039
1040 /* Allocate and initialize the frame state. */
1041 fs = XCNEW (struct dwarf2_frame_state);
1042 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1043
1044 /* Unwind the PC.
1045
1046 Note that if the next frame is never supposed to return (i.e. a call
1047 to abort), the compiler might optimize away the instruction at
1048 its return address. As a result the return address will
1049 point at some random instruction, and the CFI for that
1050 instruction is probably worthless to us. GCC's unwinder solves
1051 this problem by substracting 1 from the return address to get an
1052 address in the middle of a presumed call instruction (or the
1053 instruction in the associated delay slot). This should only be
1054 done for "normal" frames and not for resume-type frames (signal
1055 handlers, sentinel frames, dummy frames). The function
1056 get_frame_address_in_block does just this. It's not clear how
1057 reliable the method is though; there is the potential for the
1058 register state pre-call being different to that on return. */
1059 fs->pc = get_frame_address_in_block (this_frame);
1060
1061 /* Find the correct FDE. */
1062 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
1063 gdb_assert (fde != NULL);
1064
1065 /* Extract any interesting information from the CIE. */
1066 fs->data_align = fde->cie->data_alignment_factor;
1067 fs->code_align = fde->cie->code_alignment_factor;
1068 fs->retaddr_column = fde->cie->return_address_register;
1069 cache->addr_size = fde->cie->addr_size;
1070
1071 /* Check for "quirks" - known bugs in producers. */
1072 dwarf2_frame_find_quirks (fs, fde);
1073
1074 /* First decode all the insns in the CIE. */
1075 execute_cfa_program (fde, fde->cie->initial_instructions,
1076 fde->cie->end, gdbarch,
1077 get_frame_address_in_block (this_frame), fs);
1078
1079 /* Save the initialized register set. */
1080 fs->initial = fs->regs;
1081 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1082
1083 if (get_frame_func_if_available (this_frame, &entry_pc))
1084 {
1085 /* Decode the insns in the FDE up to the entry PC. */
1086 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1087 entry_pc, fs);
1088
1089 if (fs->regs.cfa_how == CFA_REG_OFFSET
1090 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1091 == gdbarch_sp_regnum (gdbarch)))
1092 {
1093 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1094 cache->entry_cfa_sp_offset_p = 1;
1095 }
1096 }
1097 else
1098 instr = fde->instructions;
1099
1100 /* Then decode the insns in the FDE up to our target PC. */
1101 execute_cfa_program (fde, instr, fde->end, gdbarch,
1102 get_frame_address_in_block (this_frame), fs);
1103
1104 TRY
1105 {
1106 /* Calculate the CFA. */
1107 switch (fs->regs.cfa_how)
1108 {
1109 case CFA_REG_OFFSET:
1110 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
1111 if (fs->armcc_cfa_offsets_reversed)
1112 cache->cfa -= fs->regs.cfa_offset;
1113 else
1114 cache->cfa += fs->regs.cfa_offset;
1115 break;
1116
1117 case CFA_EXP:
1118 cache->cfa =
1119 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1120 cache->addr_size, cache->text_offset,
1121 this_frame, 0, 0);
1122 break;
1123
1124 default:
1125 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1126 }
1127 }
1128 CATCH (ex, RETURN_MASK_ERROR)
1129 {
1130 if (ex.error == NOT_AVAILABLE_ERROR)
1131 {
1132 cache->unavailable_retaddr = 1;
1133 do_cleanups (old_chain);
1134 discard_cleanups (reset_cache_cleanup);
1135 return cache;
1136 }
1137
1138 throw_exception (ex);
1139 }
1140 END_CATCH
1141
1142 /* Initialize the register state. */
1143 {
1144 int regnum;
1145
1146 for (regnum = 0; regnum < num_regs; regnum++)
1147 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
1148 }
1149
1150 /* Go through the DWARF2 CFI generated table and save its register
1151 location information in the cache. Note that we don't skip the
1152 return address column; it's perfectly all right for it to
1153 correspond to a real register. If it doesn't correspond to a
1154 real register, or if we shouldn't treat it as such,
1155 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
1156 the range [0, gdbarch_num_regs). */
1157 {
1158 int column; /* CFI speak for "register number". */
1159
1160 for (column = 0; column < fs->regs.num_regs; column++)
1161 {
1162 /* Use the GDB register number as the destination index. */
1163 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
1164
1165 /* If there's no corresponding GDB register, ignore it. */
1166 if (regnum < 0 || regnum >= num_regs)
1167 continue;
1168
1169 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
1170 of all debug info registers. If it doesn't, complain (but
1171 not too loudly). It turns out that GCC assumes that an
1172 unspecified register implies "same value" when CFI (draft
1173 7) specifies nothing at all. Such a register could equally
1174 be interpreted as "undefined". Also note that this check
1175 isn't sufficient; it only checks that all registers in the
1176 range [0 .. max column] are specified, and won't detect
1177 problems when a debug info register falls outside of the
1178 table. We need a way of iterating through all the valid
1179 DWARF2 register numbers. */
1180 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
1181 {
1182 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
1183 complaint (&symfile_complaints, _("\
1184 incomplete CFI data; unspecified registers (e.g., %s) at %s"),
1185 gdbarch_register_name (gdbarch, regnum),
1186 paddress (gdbarch, fs->pc));
1187 }
1188 else
1189 cache->reg[regnum] = fs->regs.reg[column];
1190 }
1191 }
1192
1193 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1194 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
1195 {
1196 int regnum;
1197
1198 for (regnum = 0; regnum < num_regs; regnum++)
1199 {
1200 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1201 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
1202 {
1203 struct dwarf2_frame_state_reg *retaddr_reg =
1204 &fs->regs.reg[fs->retaddr_column];
1205
1206 /* It seems rather bizarre to specify an "empty" column as
1207 the return adress column. However, this is exactly
1208 what GCC does on some targets. It turns out that GCC
1209 assumes that the return address can be found in the
1210 register corresponding to the return address column.
1211 Incidentally, that's how we should treat a return
1212 address column specifying "same value" too. */
1213 if (fs->retaddr_column < fs->regs.num_regs
1214 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1215 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
1216 {
1217 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1218 cache->reg[regnum] = *retaddr_reg;
1219 else
1220 cache->retaddr_reg = *retaddr_reg;
1221 }
1222 else
1223 {
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1225 {
1226 cache->reg[regnum].loc.reg = fs->retaddr_column;
1227 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1228 }
1229 else
1230 {
1231 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1232 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1233 }
1234 }
1235 }
1236 }
1237 }
1238
1239 if (fs->retaddr_column < fs->regs.num_regs
1240 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1241 cache->undefined_retaddr = 1;
1242
1243 do_cleanups (old_chain);
1244 discard_cleanups (reset_cache_cleanup);
1245 return cache;
1246 }
1247
1248 static enum unwind_stop_reason
1249 dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1250 void **this_cache)
1251 {
1252 struct dwarf2_frame_cache *cache
1253 = dwarf2_frame_cache (this_frame, this_cache);
1254
1255 if (cache->unavailable_retaddr)
1256 return UNWIND_UNAVAILABLE;
1257
1258 if (cache->undefined_retaddr)
1259 return UNWIND_OUTERMOST;
1260
1261 return UNWIND_NO_REASON;
1262 }
1263
1264 static void
1265 dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1266 struct frame_id *this_id)
1267 {
1268 struct dwarf2_frame_cache *cache =
1269 dwarf2_frame_cache (this_frame, this_cache);
1270
1271 if (cache->unavailable_retaddr)
1272 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1273 else if (cache->undefined_retaddr)
1274 return;
1275 else
1276 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
1277 }
1278
1279 static struct value *
1280 dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1281 int regnum)
1282 {
1283 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1284 struct dwarf2_frame_cache *cache =
1285 dwarf2_frame_cache (this_frame, this_cache);
1286 CORE_ADDR addr;
1287 int realnum;
1288
1289 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1290 call frame chain. */
1291 if (!cache->checked_tailcall_bottom)
1292 {
1293 cache->checked_tailcall_bottom = 1;
1294 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1295 (cache->entry_cfa_sp_offset_p
1296 ? &cache->entry_cfa_sp_offset : NULL));
1297 }
1298
1299 /* Non-bottom frames of a virtual tail call frames chain use
1300 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1301 them. If dwarf2_tailcall_prev_register_first does not have specific value
1302 unwind the register, tail call frames are assumed to have the register set
1303 of the top caller. */
1304 if (cache->tailcall_cache)
1305 {
1306 struct value *val;
1307
1308 val = dwarf2_tailcall_prev_register_first (this_frame,
1309 &cache->tailcall_cache,
1310 regnum);
1311 if (val)
1312 return val;
1313 }
1314
1315 switch (cache->reg[regnum].how)
1316 {
1317 case DWARF2_FRAME_REG_UNDEFINED:
1318 /* If CFI explicitly specified that the value isn't defined,
1319 mark it as optimized away; the value isn't available. */
1320 return frame_unwind_got_optimized (this_frame, regnum);
1321
1322 case DWARF2_FRAME_REG_SAVED_OFFSET:
1323 addr = cache->cfa + cache->reg[regnum].loc.offset;
1324 return frame_unwind_got_memory (this_frame, regnum, addr);
1325
1326 case DWARF2_FRAME_REG_SAVED_REG:
1327 realnum
1328 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1329 return frame_unwind_got_register (this_frame, regnum, realnum);
1330
1331 case DWARF2_FRAME_REG_SAVED_EXP:
1332 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1333 cache->reg[regnum].exp_len,
1334 cache->addr_size, cache->text_offset,
1335 this_frame, cache->cfa, 1);
1336 return frame_unwind_got_memory (this_frame, regnum, addr);
1337
1338 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
1339 addr = cache->cfa + cache->reg[regnum].loc.offset;
1340 return frame_unwind_got_constant (this_frame, regnum, addr);
1341
1342 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
1343 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1344 cache->reg[regnum].exp_len,
1345 cache->addr_size, cache->text_offset,
1346 this_frame, cache->cfa, 1);
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
1348
1349 case DWARF2_FRAME_REG_UNSPECIFIED:
1350 /* GCC, in its infinite wisdom decided to not provide unwind
1351 information for registers that are "same value". Since
1352 DWARF2 (3 draft 7) doesn't define such behavior, said
1353 registers are actually undefined (which is different to CFI
1354 "undefined"). Code above issues a complaint about this.
1355 Here just fudge the books, assume GCC, and that the value is
1356 more inner on the stack. */
1357 return frame_unwind_got_register (this_frame, regnum, regnum);
1358
1359 case DWARF2_FRAME_REG_SAME_VALUE:
1360 return frame_unwind_got_register (this_frame, regnum, regnum);
1361
1362 case DWARF2_FRAME_REG_CFA:
1363 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
1364
1365 case DWARF2_FRAME_REG_CFA_OFFSET:
1366 addr = cache->cfa + cache->reg[regnum].loc.offset;
1367 return frame_unwind_got_address (this_frame, regnum, addr);
1368
1369 case DWARF2_FRAME_REG_RA_OFFSET:
1370 addr = cache->reg[regnum].loc.offset;
1371 regnum = gdbarch_dwarf2_reg_to_regnum
1372 (gdbarch, cache->retaddr_reg.loc.reg);
1373 addr += get_frame_register_unsigned (this_frame, regnum);
1374 return frame_unwind_got_address (this_frame, regnum, addr);
1375
1376 case DWARF2_FRAME_REG_FN:
1377 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1378
1379 default:
1380 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
1381 }
1382 }
1383
1384 /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1385 call frames chain. */
1386
1387 static void
1388 dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1389 {
1390 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1391
1392 if (cache->tailcall_cache)
1393 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1394 }
1395
1396 static int
1397 dwarf2_frame_sniffer (const struct frame_unwind *self,
1398 struct frame_info *this_frame, void **this_cache)
1399 {
1400 /* Grab an address that is guarenteed to reside somewhere within the
1401 function. get_frame_pc(), with a no-return next function, can
1402 end up returning something past the end of this function's body.
1403 If the frame we're sniffing for is a signal frame whose start
1404 address is placed on the stack by the OS, its FDE must
1405 extend one byte before its start address or we could potentially
1406 select the FDE of the previous function. */
1407 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1408 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
1409
1410 if (!fde)
1411 return 0;
1412
1413 /* On some targets, signal trampolines may have unwind information.
1414 We need to recognize them so that we set the frame type
1415 correctly. */
1416
1417 if (fde->cie->signal_frame
1418 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1419 this_frame))
1420 return self->type == SIGTRAMP_FRAME;
1421
1422 if (self->type != NORMAL_FRAME)
1423 return 0;
1424
1425 return 1;
1426 }
1427
1428 static const struct frame_unwind dwarf2_frame_unwind =
1429 {
1430 NORMAL_FRAME,
1431 dwarf2_frame_unwind_stop_reason,
1432 dwarf2_frame_this_id,
1433 dwarf2_frame_prev_register,
1434 NULL,
1435 dwarf2_frame_sniffer,
1436 dwarf2_frame_dealloc_cache
1437 };
1438
1439 static const struct frame_unwind dwarf2_signal_frame_unwind =
1440 {
1441 SIGTRAMP_FRAME,
1442 dwarf2_frame_unwind_stop_reason,
1443 dwarf2_frame_this_id,
1444 dwarf2_frame_prev_register,
1445 NULL,
1446 dwarf2_frame_sniffer,
1447
1448 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1449 NULL
1450 };
1451
1452 /* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1453
1454 void
1455 dwarf2_append_unwinders (struct gdbarch *gdbarch)
1456 {
1457 /* TAILCALL_FRAME must be first to find the record by
1458 dwarf2_tailcall_sniffer_first. */
1459 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1460
1461 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
1463 }
1464 \f
1465
1466 /* There is no explicitly defined relationship between the CFA and the
1467 location of frame's local variables and arguments/parameters.
1468 Therefore, frame base methods on this page should probably only be
1469 used as a last resort, just to avoid printing total garbage as a
1470 response to the "info frame" command. */
1471
1472 static CORE_ADDR
1473 dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1474 {
1475 struct dwarf2_frame_cache *cache =
1476 dwarf2_frame_cache (this_frame, this_cache);
1477
1478 return cache->cfa;
1479 }
1480
1481 static const struct frame_base dwarf2_frame_base =
1482 {
1483 &dwarf2_frame_unwind,
1484 dwarf2_frame_base_address,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address
1487 };
1488
1489 const struct frame_base *
1490 dwarf2_frame_base_sniffer (struct frame_info *this_frame)
1491 {
1492 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1493
1494 if (dwarf2_frame_find_fde (&block_addr, NULL))
1495 return &dwarf2_frame_base;
1496
1497 return NULL;
1498 }
1499
1500 /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1501 the DWARF unwinder. This is used to implement
1502 DW_OP_call_frame_cfa. */
1503
1504 CORE_ADDR
1505 dwarf2_frame_cfa (struct frame_info *this_frame)
1506 {
1507 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1508 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1509 throw_error (NOT_AVAILABLE_ERROR,
1510 _("cfa not available for record btrace target"));
1511
1512 while (get_frame_type (this_frame) == INLINE_FRAME)
1513 this_frame = get_prev_frame (this_frame);
1514 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1515 throw_error (NOT_AVAILABLE_ERROR,
1516 _("can't compute CFA for this frame: "
1517 "required registers or memory are unavailable"));
1518
1519 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1520 throw_error (NOT_AVAILABLE_ERROR,
1521 _("can't compute CFA for this frame: "
1522 "frame base not available"));
1523
1524 return get_frame_base (this_frame);
1525 }
1526 \f
1527 const struct objfile_data *dwarf2_frame_objfile_data;
1528
1529 static unsigned int
1530 read_1_byte (bfd *abfd, const gdb_byte *buf)
1531 {
1532 return bfd_get_8 (abfd, buf);
1533 }
1534
1535 static unsigned int
1536 read_4_bytes (bfd *abfd, const gdb_byte *buf)
1537 {
1538 return bfd_get_32 (abfd, buf);
1539 }
1540
1541 static ULONGEST
1542 read_8_bytes (bfd *abfd, const gdb_byte *buf)
1543 {
1544 return bfd_get_64 (abfd, buf);
1545 }
1546
1547 static ULONGEST
1548 read_initial_length (bfd *abfd, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr)
1550 {
1551 LONGEST result;
1552
1553 result = bfd_get_32 (abfd, buf);
1554 if (result == 0xffffffff)
1555 {
1556 result = bfd_get_64 (abfd, buf + 4);
1557 *bytes_read_ptr = 12;
1558 }
1559 else
1560 *bytes_read_ptr = 4;
1561
1562 return result;
1563 }
1564 \f
1565
1566 /* Pointer encoding helper functions. */
1567
1568 /* GCC supports exception handling based on DWARF2 CFI. However, for
1569 technical reasons, it encodes addresses in its FDE's in a different
1570 way. Several "pointer encodings" are supported. The encoding
1571 that's used for a particular FDE is determined by the 'R'
1572 augmentation in the associated CIE. The argument of this
1573 augmentation is a single byte.
1574
1575 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1576 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1577 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1578 address should be interpreted (absolute, relative to the current
1579 position in the FDE, ...). Bit 7, indicates that the address
1580 should be dereferenced. */
1581
1582 static gdb_byte
1583 encoding_for_size (unsigned int size)
1584 {
1585 switch (size)
1586 {
1587 case 2:
1588 return DW_EH_PE_udata2;
1589 case 4:
1590 return DW_EH_PE_udata4;
1591 case 8:
1592 return DW_EH_PE_udata8;
1593 default:
1594 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
1595 }
1596 }
1597
1598 static CORE_ADDR
1599 read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
1600 int ptr_len, const gdb_byte *buf,
1601 unsigned int *bytes_read_ptr,
1602 CORE_ADDR func_base)
1603 {
1604 ptrdiff_t offset;
1605 CORE_ADDR base;
1606
1607 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1608 FDE's. */
1609 if (encoding & DW_EH_PE_indirect)
1610 internal_error (__FILE__, __LINE__,
1611 _("Unsupported encoding: DW_EH_PE_indirect"));
1612
1613 *bytes_read_ptr = 0;
1614
1615 switch (encoding & 0x70)
1616 {
1617 case DW_EH_PE_absptr:
1618 base = 0;
1619 break;
1620 case DW_EH_PE_pcrel:
1621 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
1622 base += (buf - unit->dwarf_frame_buffer);
1623 break;
1624 case DW_EH_PE_datarel:
1625 base = unit->dbase;
1626 break;
1627 case DW_EH_PE_textrel:
1628 base = unit->tbase;
1629 break;
1630 case DW_EH_PE_funcrel:
1631 base = func_base;
1632 break;
1633 case DW_EH_PE_aligned:
1634 base = 0;
1635 offset = buf - unit->dwarf_frame_buffer;
1636 if ((offset % ptr_len) != 0)
1637 {
1638 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1639 buf += *bytes_read_ptr;
1640 }
1641 break;
1642 default:
1643 internal_error (__FILE__, __LINE__,
1644 _("Invalid or unsupported encoding"));
1645 }
1646
1647 if ((encoding & 0x07) == 0x00)
1648 {
1649 encoding |= encoding_for_size (ptr_len);
1650 if (bfd_get_sign_extend_vma (unit->abfd))
1651 encoding |= DW_EH_PE_signed;
1652 }
1653
1654 switch (encoding & 0x0f)
1655 {
1656 case DW_EH_PE_uleb128:
1657 {
1658 uint64_t value;
1659 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1660
1661 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
1662 return base + value;
1663 }
1664 case DW_EH_PE_udata2:
1665 *bytes_read_ptr += 2;
1666 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1667 case DW_EH_PE_udata4:
1668 *bytes_read_ptr += 4;
1669 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1670 case DW_EH_PE_udata8:
1671 *bytes_read_ptr += 8;
1672 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
1673 case DW_EH_PE_sleb128:
1674 {
1675 int64_t value;
1676 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
1677
1678 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
1679 return base + value;
1680 }
1681 case DW_EH_PE_sdata2:
1682 *bytes_read_ptr += 2;
1683 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1684 case DW_EH_PE_sdata4:
1685 *bytes_read_ptr += 4;
1686 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1687 case DW_EH_PE_sdata8:
1688 *bytes_read_ptr += 8;
1689 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1690 default:
1691 internal_error (__FILE__, __LINE__,
1692 _("Invalid or unsupported encoding"));
1693 }
1694 }
1695 \f
1696
1697 static int
1698 bsearch_cie_cmp (const void *key, const void *element)
1699 {
1700 ULONGEST cie_pointer = *(ULONGEST *) key;
1701 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
1702
1703 if (cie_pointer == cie->cie_pointer)
1704 return 0;
1705
1706 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1707 }
1708
1709 /* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1710 static struct dwarf2_cie *
1711 find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1712 {
1713 struct dwarf2_cie **p_cie;
1714
1715 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1716 bsearch be non-NULL. */
1717 if (cie_table->entries == NULL)
1718 {
1719 gdb_assert (cie_table->num_entries == 0);
1720 return NULL;
1721 }
1722
1723 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1724 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1725 if (p_cie != NULL)
1726 return *p_cie;
1727 return NULL;
1728 }
1729
1730 /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
1731 static void
1732 add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
1733 {
1734 const int n = cie_table->num_entries;
1735
1736 gdb_assert (n < 1
1737 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1738
1739 cie_table->entries
1740 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
1741 cie_table->entries[n] = cie;
1742 cie_table->num_entries = n + 1;
1743 }
1744
1745 static int
1746 bsearch_fde_cmp (const void *key, const void *element)
1747 {
1748 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1749 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
1750
1751 if (seek_pc < fde->initial_location)
1752 return -1;
1753 if (seek_pc < fde->initial_location + fde->address_range)
1754 return 0;
1755 return 1;
1756 }
1757
1758 /* Find the FDE for *PC. Return a pointer to the FDE, and store the
1759 inital location associated with it into *PC. */
1760
1761 static struct dwarf2_fde *
1762 dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
1763 {
1764 struct objfile *objfile;
1765
1766 ALL_OBJFILES (objfile)
1767 {
1768 struct dwarf2_fde_table *fde_table;
1769 struct dwarf2_fde **p_fde;
1770 CORE_ADDR offset;
1771 CORE_ADDR seek_pc;
1772
1773 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1774 if (fde_table == NULL)
1775 {
1776 dwarf2_build_frame_info (objfile);
1777 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1778 }
1779 gdb_assert (fde_table != NULL);
1780
1781 if (fde_table->num_entries == 0)
1782 continue;
1783
1784 gdb_assert (objfile->section_offsets);
1785 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1786
1787 gdb_assert (fde_table->num_entries > 0);
1788 if (*pc < offset + fde_table->entries[0]->initial_location)
1789 continue;
1790
1791 seek_pc = *pc - offset;
1792 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1793 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1794 if (p_fde != NULL)
1795 {
1796 *pc = (*p_fde)->initial_location + offset;
1797 if (out_offset)
1798 *out_offset = offset;
1799 return *p_fde;
1800 }
1801 }
1802 return NULL;
1803 }
1804
1805 /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
1806 static void
1807 add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
1808 {
1809 if (fde->address_range == 0)
1810 /* Discard useless FDEs. */
1811 return;
1812
1813 fde_table->num_entries += 1;
1814 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1815 fde_table->num_entries);
1816 fde_table->entries[fde_table->num_entries - 1] = fde;
1817 }
1818
1819 #define DW64_CIE_ID 0xffffffffffffffffULL
1820
1821 /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1822 or any of them. */
1823
1824 enum eh_frame_type
1825 {
1826 EH_CIE_TYPE_ID = 1 << 0,
1827 EH_FDE_TYPE_ID = 1 << 1,
1828 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1829 };
1830
1831 static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1832 const gdb_byte *start,
1833 int eh_frame_p,
1834 struct dwarf2_cie_table *cie_table,
1835 struct dwarf2_fde_table *fde_table,
1836 enum eh_frame_type entry_type);
1837
1838 /* Decode the next CIE or FDE, entry_type specifies the expected type.
1839 Return NULL if invalid input, otherwise the next byte to be processed. */
1840
1841 static const gdb_byte *
1842 decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1843 int eh_frame_p,
1844 struct dwarf2_cie_table *cie_table,
1845 struct dwarf2_fde_table *fde_table,
1846 enum eh_frame_type entry_type)
1847 {
1848 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
1849 const gdb_byte *buf, *end;
1850 LONGEST length;
1851 unsigned int bytes_read;
1852 int dwarf64_p;
1853 ULONGEST cie_id;
1854 ULONGEST cie_pointer;
1855 int64_t sleb128;
1856 uint64_t uleb128;
1857
1858 buf = start;
1859 length = read_initial_length (unit->abfd, buf, &bytes_read);
1860 buf += bytes_read;
1861 end = buf + length;
1862
1863 /* Are we still within the section? */
1864 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1865 return NULL;
1866
1867 if (length == 0)
1868 return end;
1869
1870 /* Distinguish between 32 and 64-bit encoded frame info. */
1871 dwarf64_p = (bytes_read == 12);
1872
1873 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
1874 if (eh_frame_p)
1875 cie_id = 0;
1876 else if (dwarf64_p)
1877 cie_id = DW64_CIE_ID;
1878 else
1879 cie_id = DW_CIE_ID;
1880
1881 if (dwarf64_p)
1882 {
1883 cie_pointer = read_8_bytes (unit->abfd, buf);
1884 buf += 8;
1885 }
1886 else
1887 {
1888 cie_pointer = read_4_bytes (unit->abfd, buf);
1889 buf += 4;
1890 }
1891
1892 if (cie_pointer == cie_id)
1893 {
1894 /* This is a CIE. */
1895 struct dwarf2_cie *cie;
1896 char *augmentation;
1897 unsigned int cie_version;
1898
1899 /* Check that a CIE was expected. */
1900 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1901 error (_("Found a CIE when not expecting it."));
1902
1903 /* Record the offset into the .debug_frame section of this CIE. */
1904 cie_pointer = start - unit->dwarf_frame_buffer;
1905
1906 /* Check whether we've already read it. */
1907 if (find_cie (cie_table, cie_pointer))
1908 return end;
1909
1910 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
1911 cie->initial_instructions = NULL;
1912 cie->cie_pointer = cie_pointer;
1913
1914 /* The encoding for FDE's in a normal .debug_frame section
1915 depends on the target address size. */
1916 cie->encoding = DW_EH_PE_absptr;
1917
1918 /* We'll determine the final value later, but we need to
1919 initialize it conservatively. */
1920 cie->signal_frame = 0;
1921
1922 /* Check version number. */
1923 cie_version = read_1_byte (unit->abfd, buf);
1924 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
1925 return NULL;
1926 cie->version = cie_version;
1927 buf += 1;
1928
1929 /* Interpret the interesting bits of the augmentation. */
1930 cie->augmentation = augmentation = (char *) buf;
1931 buf += (strlen (augmentation) + 1);
1932
1933 /* Ignore armcc augmentations. We only use them for quirks,
1934 and that doesn't happen until later. */
1935 if (startswith (augmentation, "armcc"))
1936 augmentation += strlen (augmentation);
1937
1938 /* The GCC 2.x "eh" augmentation has a pointer immediately
1939 following the augmentation string, so it must be handled
1940 first. */
1941 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1942 {
1943 /* Skip. */
1944 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1945 augmentation += 2;
1946 }
1947
1948 if (cie->version >= 4)
1949 {
1950 /* FIXME: check that this is the same as from the CU header. */
1951 cie->addr_size = read_1_byte (unit->abfd, buf);
1952 ++buf;
1953 cie->segment_size = read_1_byte (unit->abfd, buf);
1954 ++buf;
1955 }
1956 else
1957 {
1958 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
1959 cie->segment_size = 0;
1960 }
1961 /* Address values in .eh_frame sections are defined to have the
1962 target's pointer size. Watchout: This breaks frame info for
1963 targets with pointer size < address size, unless a .debug_frame
1964 section exists as well. */
1965 if (eh_frame_p)
1966 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1967 else
1968 cie->ptr_size = cie->addr_size;
1969
1970 buf = gdb_read_uleb128 (buf, end, &uleb128);
1971 if (buf == NULL)
1972 return NULL;
1973 cie->code_alignment_factor = uleb128;
1974
1975 buf = gdb_read_sleb128 (buf, end, &sleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->data_alignment_factor = sleb128;
1979
1980 if (cie_version == 1)
1981 {
1982 cie->return_address_register = read_1_byte (unit->abfd, buf);
1983 ++buf;
1984 }
1985 else
1986 {
1987 buf = gdb_read_uleb128 (buf, end, &uleb128);
1988 if (buf == NULL)
1989 return NULL;
1990 cie->return_address_register = uleb128;
1991 }
1992
1993 cie->return_address_register
1994 = dwarf2_frame_adjust_regnum (gdbarch,
1995 cie->return_address_register,
1996 eh_frame_p);
1997
1998 cie->saw_z_augmentation = (*augmentation == 'z');
1999 if (cie->saw_z_augmentation)
2000 {
2001 uint64_t length;
2002
2003 buf = gdb_read_uleb128 (buf, end, &length);
2004 if (buf == NULL)
2005 return NULL;
2006 cie->initial_instructions = buf + length;
2007 augmentation++;
2008 }
2009
2010 while (*augmentation)
2011 {
2012 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2013 if (*augmentation == 'L')
2014 {
2015 /* Skip. */
2016 buf++;
2017 augmentation++;
2018 }
2019
2020 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2021 else if (*augmentation == 'R')
2022 {
2023 cie->encoding = *buf++;
2024 augmentation++;
2025 }
2026
2027 /* "P" indicates a personality routine in the CIE augmentation. */
2028 else if (*augmentation == 'P')
2029 {
2030 /* Skip. Avoid indirection since we throw away the result. */
2031 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
2032 read_encoded_value (unit, encoding, cie->ptr_size,
2033 buf, &bytes_read, 0);
2034 buf += bytes_read;
2035 augmentation++;
2036 }
2037
2038 /* "S" indicates a signal frame, such that the return
2039 address must not be decremented to locate the call frame
2040 info for the previous frame; it might even be the first
2041 instruction of a function, so decrementing it would take
2042 us to a different function. */
2043 else if (*augmentation == 'S')
2044 {
2045 cie->signal_frame = 1;
2046 augmentation++;
2047 }
2048
2049 /* Otherwise we have an unknown augmentation. Assume that either
2050 there is no augmentation data, or we saw a 'z' prefix. */
2051 else
2052 {
2053 if (cie->initial_instructions)
2054 buf = cie->initial_instructions;
2055 break;
2056 }
2057 }
2058
2059 cie->initial_instructions = buf;
2060 cie->end = end;
2061 cie->unit = unit;
2062
2063 add_cie (cie_table, cie);
2064 }
2065 else
2066 {
2067 /* This is a FDE. */
2068 struct dwarf2_fde *fde;
2069 CORE_ADDR addr;
2070
2071 /* Check that an FDE was expected. */
2072 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2073 error (_("Found an FDE when not expecting it."));
2074
2075 /* In an .eh_frame section, the CIE pointer is the delta between the
2076 address within the FDE where the CIE pointer is stored and the
2077 address of the CIE. Convert it to an offset into the .eh_frame
2078 section. */
2079 if (eh_frame_p)
2080 {
2081 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2082 cie_pointer -= (dwarf64_p ? 8 : 4);
2083 }
2084
2085 /* In either case, validate the result is still within the section. */
2086 if (cie_pointer >= unit->dwarf_frame_size)
2087 return NULL;
2088
2089 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
2090 fde->cie = find_cie (cie_table, cie_pointer);
2091 if (fde->cie == NULL)
2092 {
2093 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
2094 eh_frame_p, cie_table, fde_table,
2095 EH_CIE_TYPE_ID);
2096 fde->cie = find_cie (cie_table, cie_pointer);
2097 }
2098
2099 gdb_assert (fde->cie != NULL);
2100
2101 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2102 buf, &bytes_read, 0);
2103 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
2104 buf += bytes_read;
2105
2106 fde->address_range =
2107 read_encoded_value (unit, fde->cie->encoding & 0x0f,
2108 fde->cie->ptr_size, buf, &bytes_read, 0);
2109 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2110 fde->address_range = addr - fde->initial_location;
2111 buf += bytes_read;
2112
2113 /* A 'z' augmentation in the CIE implies the presence of an
2114 augmentation field in the FDE as well. The only thing known
2115 to be in here at present is the LSDA entry for EH. So we
2116 can skip the whole thing. */
2117 if (fde->cie->saw_z_augmentation)
2118 {
2119 uint64_t length;
2120
2121 buf = gdb_read_uleb128 (buf, end, &length);
2122 if (buf == NULL)
2123 return NULL;
2124 buf += length;
2125 if (buf > end)
2126 return NULL;
2127 }
2128
2129 fde->instructions = buf;
2130 fde->end = end;
2131
2132 fde->eh_frame_p = eh_frame_p;
2133
2134 add_fde (fde_table, fde);
2135 }
2136
2137 return end;
2138 }
2139
2140 /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2141 expect an FDE or a CIE. */
2142
2143 static const gdb_byte *
2144 decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2145 int eh_frame_p,
2146 struct dwarf2_cie_table *cie_table,
2147 struct dwarf2_fde_table *fde_table,
2148 enum eh_frame_type entry_type)
2149 {
2150 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
2151 const gdb_byte *ret;
2152 ptrdiff_t start_offset;
2153
2154 while (1)
2155 {
2156 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
2157 cie_table, fde_table, entry_type);
2158 if (ret != NULL)
2159 break;
2160
2161 /* We have corrupt input data of some form. */
2162
2163 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2164 and mismatches wrt padding and alignment of debug sections. */
2165 /* Note that there is no requirement in the standard for any
2166 alignment at all in the frame unwind sections. Testing for
2167 alignment before trying to interpret data would be incorrect.
2168
2169 However, GCC traditionally arranged for frame sections to be
2170 sized such that the FDE length and CIE fields happen to be
2171 aligned (in theory, for performance). This, unfortunately,
2172 was done with .align directives, which had the side effect of
2173 forcing the section to be aligned by the linker.
2174
2175 This becomes a problem when you have some other producer that
2176 creates frame sections that are not as strictly aligned. That
2177 produces a hole in the frame info that gets filled by the
2178 linker with zeros.
2179
2180 The GCC behaviour is arguably a bug, but it's effectively now
2181 part of the ABI, so we're now stuck with it, at least at the
2182 object file level. A smart linker may decide, in the process
2183 of compressing duplicate CIE information, that it can rewrite
2184 the entire output section without this extra padding. */
2185
2186 start_offset = start - unit->dwarf_frame_buffer;
2187 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2188 {
2189 start += 4 - (start_offset & 3);
2190 workaround = ALIGN4;
2191 continue;
2192 }
2193 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2194 {
2195 start += 8 - (start_offset & 7);
2196 workaround = ALIGN8;
2197 continue;
2198 }
2199
2200 /* Nothing left to try. Arrange to return as if we've consumed
2201 the entire input section. Hopefully we'll get valid info from
2202 the other of .debug_frame/.eh_frame. */
2203 workaround = FAIL;
2204 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2205 break;
2206 }
2207
2208 switch (workaround)
2209 {
2210 case NONE:
2211 break;
2212
2213 case ALIGN4:
2214 complaint (&symfile_complaints, _("\
2215 Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
2216 unit->dwarf_frame_section->owner->filename,
2217 unit->dwarf_frame_section->name);
2218 break;
2219
2220 case ALIGN8:
2221 complaint (&symfile_complaints, _("\
2222 Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
2223 unit->dwarf_frame_section->owner->filename,
2224 unit->dwarf_frame_section->name);
2225 break;
2226
2227 default:
2228 complaint (&symfile_complaints,
2229 _("Corrupt data in %s:%s"),
2230 unit->dwarf_frame_section->owner->filename,
2231 unit->dwarf_frame_section->name);
2232 break;
2233 }
2234
2235 return ret;
2236 }
2237 \f
2238 static int
2239 qsort_fde_cmp (const void *a, const void *b)
2240 {
2241 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2242 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
2243
2244 if (aa->initial_location == bb->initial_location)
2245 {
2246 if (aa->address_range != bb->address_range
2247 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2248 /* Linker bug, e.g. gold/10400.
2249 Work around it by keeping stable sort order. */
2250 return (a < b) ? -1 : 1;
2251 else
2252 /* Put eh_frame entries after debug_frame ones. */
2253 return aa->eh_frame_p - bb->eh_frame_p;
2254 }
2255
2256 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2257 }
2258
2259 void
2260 dwarf2_build_frame_info (struct objfile *objfile)
2261 {
2262 struct comp_unit *unit;
2263 const gdb_byte *frame_ptr;
2264 struct dwarf2_cie_table cie_table;
2265 struct dwarf2_fde_table fde_table;
2266 struct dwarf2_fde_table *fde_table2;
2267
2268 cie_table.num_entries = 0;
2269 cie_table.entries = NULL;
2270
2271 fde_table.num_entries = 0;
2272 fde_table.entries = NULL;
2273
2274 /* Build a minimal decoding of the DWARF2 compilation unit. */
2275 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2276 sizeof (struct comp_unit));
2277 unit->abfd = objfile->obfd;
2278 unit->objfile = objfile;
2279 unit->dbase = 0;
2280 unit->tbase = 0;
2281
2282 if (objfile->separate_debug_objfile_backlink == NULL)
2283 {
2284 /* Do not read .eh_frame from separate file as they must be also
2285 present in the main file. */
2286 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2287 &unit->dwarf_frame_section,
2288 &unit->dwarf_frame_buffer,
2289 &unit->dwarf_frame_size);
2290 if (unit->dwarf_frame_size)
2291 {
2292 asection *got, *txt;
2293
2294 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2295 that is used for the i386/amd64 target, which currently is
2296 the only target in GCC that supports/uses the
2297 DW_EH_PE_datarel encoding. */
2298 got = bfd_get_section_by_name (unit->abfd, ".got");
2299 if (got)
2300 unit->dbase = got->vma;
2301
2302 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2303 so far. */
2304 txt = bfd_get_section_by_name (unit->abfd, ".text");
2305 if (txt)
2306 unit->tbase = txt->vma;
2307
2308 TRY
2309 {
2310 frame_ptr = unit->dwarf_frame_buffer;
2311 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2312 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2313 &cie_table, &fde_table,
2314 EH_CIE_OR_FDE_TYPE_ID);
2315 }
2316
2317 CATCH (e, RETURN_MASK_ERROR)
2318 {
2319 warning (_("skipping .eh_frame info of %s: %s"),
2320 objfile_name (objfile), e.message);
2321
2322 if (fde_table.num_entries != 0)
2323 {
2324 xfree (fde_table.entries);
2325 fde_table.entries = NULL;
2326 fde_table.num_entries = 0;
2327 }
2328 /* The cie_table is discarded by the next if. */
2329 }
2330 END_CATCH
2331
2332 if (cie_table.num_entries != 0)
2333 {
2334 /* Reinit cie_table: debug_frame has different CIEs. */
2335 xfree (cie_table.entries);
2336 cie_table.num_entries = 0;
2337 cie_table.entries = NULL;
2338 }
2339 }
2340 }
2341
2342 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
2343 &unit->dwarf_frame_section,
2344 &unit->dwarf_frame_buffer,
2345 &unit->dwarf_frame_size);
2346 if (unit->dwarf_frame_size)
2347 {
2348 int num_old_fde_entries = fde_table.num_entries;
2349
2350 TRY
2351 {
2352 frame_ptr = unit->dwarf_frame_buffer;
2353 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2354 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2355 &cie_table, &fde_table,
2356 EH_CIE_OR_FDE_TYPE_ID);
2357 }
2358 CATCH (e, RETURN_MASK_ERROR)
2359 {
2360 warning (_("skipping .debug_frame info of %s: %s"),
2361 objfile_name (objfile), e.message);
2362
2363 if (fde_table.num_entries != 0)
2364 {
2365 fde_table.num_entries = num_old_fde_entries;
2366 if (num_old_fde_entries == 0)
2367 {
2368 xfree (fde_table.entries);
2369 fde_table.entries = NULL;
2370 }
2371 else
2372 {
2373 fde_table.entries
2374 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2375 fde_table.num_entries);
2376 }
2377 }
2378 fde_table.num_entries = num_old_fde_entries;
2379 /* The cie_table is discarded by the next if. */
2380 }
2381 END_CATCH
2382 }
2383
2384 /* Discard the cie_table, it is no longer needed. */
2385 if (cie_table.num_entries != 0)
2386 {
2387 xfree (cie_table.entries);
2388 cie_table.entries = NULL; /* Paranoia. */
2389 cie_table.num_entries = 0; /* Paranoia. */
2390 }
2391
2392 /* Copy fde_table to obstack: it is needed at runtime. */
2393 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
2394
2395 if (fde_table.num_entries == 0)
2396 {
2397 fde_table2->entries = NULL;
2398 fde_table2->num_entries = 0;
2399 }
2400 else
2401 {
2402 struct dwarf2_fde *fde_prev = NULL;
2403 struct dwarf2_fde *first_non_zero_fde = NULL;
2404 int i;
2405
2406 /* Prepare FDE table for lookups. */
2407 qsort (fde_table.entries, fde_table.num_entries,
2408 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2409
2410 /* Check for leftovers from --gc-sections. The GNU linker sets
2411 the relevant symbols to zero, but doesn't zero the FDE *end*
2412 ranges because there's no relocation there. It's (offset,
2413 length), not (start, end). On targets where address zero is
2414 just another valid address this can be a problem, since the
2415 FDEs appear to be non-empty in the output --- we could pick
2416 out the wrong FDE. To work around this, when overlaps are
2417 detected, we prefer FDEs that do not start at zero.
2418
2419 Start by finding the first FDE with non-zero start. Below
2420 we'll discard all FDEs that start at zero and overlap this
2421 one. */
2422 for (i = 0; i < fde_table.num_entries; i++)
2423 {
2424 struct dwarf2_fde *fde = fde_table.entries[i];
2425
2426 if (fde->initial_location != 0)
2427 {
2428 first_non_zero_fde = fde;
2429 break;
2430 }
2431 }
2432
2433 /* Since we'll be doing bsearch, squeeze out identical (except
2434 for eh_frame_p) fde entries so bsearch result is predictable.
2435 Also discard leftovers from --gc-sections. */
2436 fde_table2->num_entries = 0;
2437 for (i = 0; i < fde_table.num_entries; i++)
2438 {
2439 struct dwarf2_fde *fde = fde_table.entries[i];
2440
2441 if (fde->initial_location == 0
2442 && first_non_zero_fde != NULL
2443 && (first_non_zero_fde->initial_location
2444 < fde->initial_location + fde->address_range))
2445 continue;
2446
2447 if (fde_prev != NULL
2448 && fde_prev->initial_location == fde->initial_location)
2449 continue;
2450
2451 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2452 sizeof (fde_table.entries[0]));
2453 ++fde_table2->num_entries;
2454 fde_prev = fde;
2455 }
2456 fde_table2->entries
2457 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
2458
2459 /* Discard the original fde_table. */
2460 xfree (fde_table.entries);
2461 }
2462
2463 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
2464 }
2465
2466 /* Provide a prototype to silence -Wmissing-prototypes. */
2467 void _initialize_dwarf2_frame (void);
2468
2469 void
2470 _initialize_dwarf2_frame (void)
2471 {
2472 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
2473 dwarf2_frame_objfile_data = register_objfile_data ();
2474 }