]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2expr.h
Update copyright year range in all GDB files
[thirdparty/binutils-gdb.git] / gdb / dwarf2expr.h
1 /* DWARF 2 Expression Evaluator.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 Contributed by Daniel Berlin <dan@dberlin.org>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (DWARF2EXPR_H)
23 #define DWARF2EXPR_H
24
25 #include "leb128.h"
26 #include "gdbtypes.h"
27
28 /* The location of a value. */
29 enum dwarf_value_location
30 {
31 /* The piece is in memory.
32 The value on the dwarf stack is its address. */
33 DWARF_VALUE_MEMORY,
34
35 /* The piece is in a register.
36 The value on the dwarf stack is the register number. */
37 DWARF_VALUE_REGISTER,
38
39 /* The piece is on the dwarf stack. */
40 DWARF_VALUE_STACK,
41
42 /* The piece is a literal. */
43 DWARF_VALUE_LITERAL,
44
45 /* The piece was optimized out. */
46 DWARF_VALUE_OPTIMIZED_OUT,
47
48 /* The piece is an implicit pointer. */
49 DWARF_VALUE_IMPLICIT_POINTER
50 };
51
52 /* A piece of an object, as recorded by DW_OP_piece or DW_OP_bit_piece. */
53 struct dwarf_expr_piece
54 {
55 enum dwarf_value_location location;
56
57 union
58 {
59 struct
60 {
61 /* This piece's address, for DWARF_VALUE_MEMORY pieces. */
62 CORE_ADDR addr;
63 /* Non-zero if the piece is known to be in memory and on
64 the program's stack. */
65 bool in_stack_memory;
66 } mem;
67
68 /* The piece's register number, for DWARF_VALUE_REGISTER pieces. */
69 int regno;
70
71 /* The piece's literal value, for DWARF_VALUE_STACK pieces. */
72 struct value *value;
73
74 struct
75 {
76 /* A pointer to the data making up this piece,
77 for DWARF_VALUE_LITERAL pieces. */
78 const gdb_byte *data;
79 /* The length of the available data. */
80 ULONGEST length;
81 } literal;
82
83 /* Used for DWARF_VALUE_IMPLICIT_POINTER. */
84 struct
85 {
86 /* The referent DIE from DW_OP_implicit_pointer. */
87 sect_offset die_sect_off;
88 /* The byte offset into the resulting data. */
89 LONGEST offset;
90 } ptr;
91 } v;
92
93 /* The length of the piece, in bits. */
94 ULONGEST size;
95 /* The piece offset, in bits. */
96 ULONGEST offset;
97 };
98
99 /* The dwarf expression stack. */
100
101 struct dwarf_stack_value
102 {
103 dwarf_stack_value (struct value *value_, int in_stack_memory_)
104 : value (value_), in_stack_memory (in_stack_memory_)
105 {}
106
107 struct value *value;
108
109 /* True if the piece is in memory and is known to be on the program's stack.
110 It is always ok to set this to zero. This is used, for example, to
111 optimize memory access from the target. It can vastly speed up backtraces
112 on long latency connections when "set stack-cache on". */
113 bool in_stack_memory;
114 };
115
116 /* The expression evaluator works with a dwarf_expr_context, describing
117 its current state and its callbacks. */
118 struct dwarf_expr_context
119 {
120 dwarf_expr_context ();
121 virtual ~dwarf_expr_context () = default;
122
123 void push_address (CORE_ADDR value, bool in_stack_memory);
124 void eval (const gdb_byte *addr, size_t len);
125 struct value *fetch (int n);
126 CORE_ADDR fetch_address (int n);
127 bool fetch_in_stack_memory (int n);
128
129 /* The stack of values. */
130 std::vector<dwarf_stack_value> stack;
131
132 /* Target architecture to use for address operations. */
133 struct gdbarch *gdbarch;
134
135 /* Target address size in bytes. */
136 int addr_size;
137
138 /* DW_FORM_ref_addr size in bytes. If -1 DWARF is executed from a frame
139 context and operations depending on DW_FORM_ref_addr are not allowed. */
140 int ref_addr_size;
141
142 /* Offset used to relocate DW_OP_addr and DW_OP_GNU_addr_index arguments. */
143 CORE_ADDR offset;
144
145 /* The current depth of dwarf expression recursion, via DW_OP_call*,
146 DW_OP_fbreg, DW_OP_push_object_address, etc., and the maximum
147 depth we'll tolerate before raising an error. */
148 int recursion_depth, max_recursion_depth;
149
150 /* Location of the value. */
151 enum dwarf_value_location location;
152
153 /* For DWARF_VALUE_LITERAL, the current literal value's length and
154 data. For DWARF_VALUE_IMPLICIT_POINTER, LEN is the offset of the
155 target DIE of sect_offset kind. */
156 ULONGEST len;
157 const gdb_byte *data;
158
159 /* Initialization status of variable: Non-zero if variable has been
160 initialized; zero otherwise. */
161 int initialized;
162
163 /* A vector of pieces.
164
165 Each time DW_OP_piece is executed, we add a new element to the
166 end of this array, recording the current top of the stack, the
167 current location, and the size given as the operand to
168 DW_OP_piece. We then pop the top value from the stack, reset the
169 location, and resume evaluation.
170
171 The Dwarf spec doesn't say whether DW_OP_piece pops the top value
172 from the stack. We do, ensuring that clients of this interface
173 expecting to see a value left on the top of the stack (say, code
174 evaluating frame base expressions or CFA's specified with
175 DW_CFA_def_cfa_expression) will get an error if the expression
176 actually marks all the values it computes as pieces.
177
178 If an expression never uses DW_OP_piece, num_pieces will be zero.
179 (It would be nice to present these cases as expressions yielding
180 a single piece, so that callers need not distinguish between the
181 no-DW_OP_piece and one-DW_OP_piece cases. But expressions with
182 no DW_OP_piece operations have no value to place in a piece's
183 'size' field; the size comes from the surrounding data. So the
184 two cases need to be handled separately.) */
185 std::vector<dwarf_expr_piece> pieces;
186
187 /* Return the value of register number REGNUM (a DWARF register number),
188 read as an address. */
189 virtual CORE_ADDR read_addr_from_reg (int regnum) = 0;
190
191 /* Return a value of type TYPE, stored in register number REGNUM
192 of the frame associated to the given BATON.
193
194 REGNUM is a DWARF register number. */
195 virtual struct value *get_reg_value (struct type *type, int regnum) = 0;
196
197 /* Read LENGTH bytes at ADDR into BUF. */
198 virtual void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t length) = 0;
199
200 /* Return the location expression for the frame base attribute, in
201 START and LENGTH. The result must be live until the current
202 expression evaluation is complete. */
203 virtual void get_frame_base (const gdb_byte **start, size_t *length) = 0;
204
205 /* Return the CFA for the frame. */
206 virtual CORE_ADDR get_frame_cfa () = 0;
207
208 /* Return the PC for the frame. */
209 virtual CORE_ADDR get_frame_pc ()
210 {
211 error (_("%s is invalid in this context"), "DW_OP_implicit_pointer");
212 }
213
214 /* Return the thread-local storage address for
215 DW_OP_GNU_push_tls_address or DW_OP_form_tls_address. */
216 virtual CORE_ADDR get_tls_address (CORE_ADDR offset) = 0;
217
218 /* Execute DW_AT_location expression for the DWARF expression
219 subroutine in the DIE at DIE_CU_OFF in the CU. Do not touch
220 STACK while it being passed to and returned from the called DWARF
221 subroutine. */
222 virtual void dwarf_call (cu_offset die_cu_off) = 0;
223
224 /* Return the base type given by the indicated DIE at DIE_CU_OFF.
225 This can throw an exception if the DIE is invalid or does not
226 represent a base type. SIZE is non-zero if this function should
227 verify that the resulting type has the correct size. */
228 virtual struct type *get_base_type (cu_offset die_cu_off, int size)
229 {
230 /* Anything will do. */
231 return builtin_type (this->gdbarch)->builtin_int;
232 }
233
234 /* Push on DWARF stack an entry evaluated for DW_TAG_call_site's
235 parameter matching KIND and KIND_U at the caller of specified BATON.
236 If DEREF_SIZE is not -1 then use DW_AT_call_data_value instead of
237 DW_AT_call_value. */
238 virtual void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
239 union call_site_parameter_u kind_u,
240 int deref_size) = 0;
241
242 /* Return the address indexed by DW_OP_GNU_addr_index.
243 This can throw an exception if the index is out of range. */
244 virtual CORE_ADDR get_addr_index (unsigned int index) = 0;
245
246 /* Return the `object address' for DW_OP_push_object_address. */
247 virtual CORE_ADDR get_object_address () = 0;
248
249 private:
250
251 struct type *address_type () const;
252 void push (struct value *value, bool in_stack_memory);
253 bool stack_empty_p () const;
254 void add_piece (ULONGEST size, ULONGEST offset);
255 void execute_stack_op (const gdb_byte *op_ptr, const gdb_byte *op_end);
256 void pop ();
257 };
258
259 void dwarf_expr_require_composition (const gdb_byte *, const gdb_byte *,
260 const char *);
261
262 int dwarf_block_to_dwarf_reg (const gdb_byte *buf, const gdb_byte *buf_end);
263
264 int dwarf_block_to_dwarf_reg_deref (const gdb_byte *buf,
265 const gdb_byte *buf_end,
266 CORE_ADDR *deref_size_return);
267
268 int dwarf_block_to_fb_offset (const gdb_byte *buf, const gdb_byte *buf_end,
269 CORE_ADDR *fb_offset_return);
270
271 int dwarf_block_to_sp_offset (struct gdbarch *gdbarch, const gdb_byte *buf,
272 const gdb_byte *buf_end,
273 CORE_ADDR *sp_offset_return);
274
275 /* Wrappers around the leb128 reader routines to simplify them for our
276 purposes. */
277
278 static inline const gdb_byte *
279 gdb_read_uleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
280 uint64_t *r)
281 {
282 size_t bytes_read = read_uleb128_to_uint64 (buf, buf_end, r);
283
284 if (bytes_read == 0)
285 return NULL;
286 return buf + bytes_read;
287 }
288
289 static inline const gdb_byte *
290 gdb_read_sleb128 (const gdb_byte *buf, const gdb_byte *buf_end,
291 int64_t *r)
292 {
293 size_t bytes_read = read_sleb128_to_int64 (buf, buf_end, r);
294
295 if (bytes_read == 0)
296 return NULL;
297 return buf + bytes_read;
298 }
299
300 static inline const gdb_byte *
301 gdb_skip_leb128 (const gdb_byte *buf, const gdb_byte *buf_end)
302 {
303 size_t bytes_read = skip_leb128 (buf, buf_end);
304
305 if (bytes_read == 0)
306 return NULL;
307 return buf + bytes_read;
308 }
309
310 extern const gdb_byte *safe_read_uleb128 (const gdb_byte *buf,
311 const gdb_byte *buf_end,
312 uint64_t *r);
313
314 extern const gdb_byte *safe_read_sleb128 (const gdb_byte *buf,
315 const gdb_byte *buf_end,
316 int64_t *r);
317
318 extern const gdb_byte *safe_skip_leb128 (const gdb_byte *buf,
319 const gdb_byte *buf_end);
320
321 #endif /* dwarf2expr.h */