]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2loc.c
change minsym representation
[thirdparty/binutils-gdb.git] / gdb / dwarf2loc.c
1 /* DWARF 2 location expression support for GDB.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "ui-out.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "inferior.h"
29 #include "ax.h"
30 #include "ax-gdb.h"
31 #include "regcache.h"
32 #include "objfiles.h"
33 #include "exceptions.h"
34 #include "block.h"
35 #include "gdbcmd.h"
36
37 #include "dwarf2.h"
38 #include "dwarf2expr.h"
39 #include "dwarf2loc.h"
40 #include "dwarf2-frame.h"
41
42 #include <string.h>
43 #include "gdb_assert.h"
44
45 extern int dwarf2_always_disassemble;
46
47 static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
48 const gdb_byte **start, size_t *length);
49
50 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
51
52 static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
53 struct frame_info *frame,
54 const gdb_byte *data,
55 size_t size,
56 struct dwarf2_per_cu_data *per_cu,
57 LONGEST byte_offset);
58
59 /* Until these have formal names, we define these here.
60 ref: http://gcc.gnu.org/wiki/DebugFission
61 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
62 and is then followed by data specific to that entry. */
63
64 enum debug_loc_kind
65 {
66 /* Indicates the end of the list of entries. */
67 DEBUG_LOC_END_OF_LIST = 0,
68
69 /* This is followed by an unsigned LEB128 number that is an index into
70 .debug_addr and specifies the base address for all following entries. */
71 DEBUG_LOC_BASE_ADDRESS = 1,
72
73 /* This is followed by two unsigned LEB128 numbers that are indices into
74 .debug_addr and specify the beginning and ending addresses, and then
75 a normal location expression as in .debug_loc. */
76 DEBUG_LOC_START_END = 2,
77
78 /* This is followed by an unsigned LEB128 number that is an index into
79 .debug_addr and specifies the beginning address, and a 4 byte unsigned
80 number that specifies the length, and then a normal location expression
81 as in .debug_loc. */
82 DEBUG_LOC_START_LENGTH = 3,
83
84 /* An internal value indicating there is insufficient data. */
85 DEBUG_LOC_BUFFER_OVERFLOW = -1,
86
87 /* An internal value indicating an invalid kind of entry was found. */
88 DEBUG_LOC_INVALID_ENTRY = -2
89 };
90
91 /* Helper function which throws an error if a synthetic pointer is
92 invalid. */
93
94 static void
95 invalid_synthetic_pointer (void)
96 {
97 error (_("access outside bounds of object "
98 "referenced via synthetic pointer"));
99 }
100
101 /* Decode the addresses in a non-dwo .debug_loc entry.
102 A pointer to the next byte to examine is returned in *NEW_PTR.
103 The encoded low,high addresses are return in *LOW,*HIGH.
104 The result indicates the kind of entry found. */
105
106 static enum debug_loc_kind
107 decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
108 const gdb_byte **new_ptr,
109 CORE_ADDR *low, CORE_ADDR *high,
110 enum bfd_endian byte_order,
111 unsigned int addr_size,
112 int signed_addr_p)
113 {
114 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
115
116 if (buf_end - loc_ptr < 2 * addr_size)
117 return DEBUG_LOC_BUFFER_OVERFLOW;
118
119 if (signed_addr_p)
120 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 if (signed_addr_p)
126 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
127 else
128 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
129 loc_ptr += addr_size;
130
131 *new_ptr = loc_ptr;
132
133 /* A base-address-selection entry. */
134 if ((*low & base_mask) == base_mask)
135 return DEBUG_LOC_BASE_ADDRESS;
136
137 /* An end-of-list entry. */
138 if (*low == 0 && *high == 0)
139 return DEBUG_LOC_END_OF_LIST;
140
141 return DEBUG_LOC_START_END;
142 }
143
144 /* Decode the addresses in .debug_loc.dwo entry.
145 A pointer to the next byte to examine is returned in *NEW_PTR.
146 The encoded low,high addresses are return in *LOW,*HIGH.
147 The result indicates the kind of entry found. */
148
149 static enum debug_loc_kind
150 decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
151 const gdb_byte *loc_ptr,
152 const gdb_byte *buf_end,
153 const gdb_byte **new_ptr,
154 CORE_ADDR *low, CORE_ADDR *high,
155 enum bfd_endian byte_order)
156 {
157 uint64_t low_index, high_index;
158
159 if (loc_ptr == buf_end)
160 return DEBUG_LOC_BUFFER_OVERFLOW;
161
162 switch (*loc_ptr++)
163 {
164 case DEBUG_LOC_END_OF_LIST:
165 *new_ptr = loc_ptr;
166 return DEBUG_LOC_END_OF_LIST;
167 case DEBUG_LOC_BASE_ADDRESS:
168 *low = 0;
169 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
170 if (loc_ptr == NULL)
171 return DEBUG_LOC_BUFFER_OVERFLOW;
172 *high = dwarf2_read_addr_index (per_cu, high_index);
173 *new_ptr = loc_ptr;
174 return DEBUG_LOC_BASE_ADDRESS;
175 case DEBUG_LOC_START_END:
176 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
177 if (loc_ptr == NULL)
178 return DEBUG_LOC_BUFFER_OVERFLOW;
179 *low = dwarf2_read_addr_index (per_cu, low_index);
180 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
181 if (loc_ptr == NULL)
182 return DEBUG_LOC_BUFFER_OVERFLOW;
183 *high = dwarf2_read_addr_index (per_cu, high_index);
184 *new_ptr = loc_ptr;
185 return DEBUG_LOC_START_END;
186 case DEBUG_LOC_START_LENGTH:
187 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
188 if (loc_ptr == NULL)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *low = dwarf2_read_addr_index (per_cu, low_index);
191 if (loc_ptr + 4 > buf_end)
192 return DEBUG_LOC_BUFFER_OVERFLOW;
193 *high = *low;
194 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
195 *new_ptr = loc_ptr + 4;
196 return DEBUG_LOC_START_LENGTH;
197 default:
198 return DEBUG_LOC_INVALID_ENTRY;
199 }
200 }
201
202 /* A function for dealing with location lists. Given a
203 symbol baton (BATON) and a pc value (PC), find the appropriate
204 location expression, set *LOCEXPR_LENGTH, and return a pointer
205 to the beginning of the expression. Returns NULL on failure.
206
207 For now, only return the first matching location expression; there
208 can be more than one in the list. */
209
210 const gdb_byte *
211 dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
212 size_t *locexpr_length, CORE_ADDR pc)
213 {
214 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
215 struct gdbarch *gdbarch = get_objfile_arch (objfile);
216 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
217 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
218 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
219 /* Adjust base_address for relocatable objects. */
220 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
221 CORE_ADDR base_address = baton->base_address + base_offset;
222 const gdb_byte *loc_ptr, *buf_end;
223
224 loc_ptr = baton->data;
225 buf_end = baton->data + baton->size;
226
227 while (1)
228 {
229 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
230 int length;
231 enum debug_loc_kind kind;
232 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
233
234 if (baton->from_dwo)
235 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
236 loc_ptr, buf_end, &new_ptr,
237 &low, &high, byte_order);
238 else
239 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
240 &low, &high,
241 byte_order, addr_size,
242 signed_addr_p);
243 loc_ptr = new_ptr;
244 switch (kind)
245 {
246 case DEBUG_LOC_END_OF_LIST:
247 *locexpr_length = 0;
248 return NULL;
249 case DEBUG_LOC_BASE_ADDRESS:
250 base_address = high + base_offset;
251 continue;
252 case DEBUG_LOC_START_END:
253 case DEBUG_LOC_START_LENGTH:
254 break;
255 case DEBUG_LOC_BUFFER_OVERFLOW:
256 case DEBUG_LOC_INVALID_ENTRY:
257 error (_("dwarf2_find_location_expression: "
258 "Corrupted DWARF expression."));
259 default:
260 gdb_assert_not_reached ("bad debug_loc_kind");
261 }
262
263 /* Otherwise, a location expression entry.
264 If the entry is from a DWO, don't add base address: the entry is
265 from .debug_addr which has absolute addresses. */
266 if (! baton->from_dwo)
267 {
268 low += base_address;
269 high += base_address;
270 }
271
272 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
273 loc_ptr += 2;
274
275 if (low == high && pc == low)
276 {
277 /* This is entry PC record present only at entry point
278 of a function. Verify it is really the function entry point. */
279
280 struct block *pc_block = block_for_pc (pc);
281 struct symbol *pc_func = NULL;
282
283 if (pc_block)
284 pc_func = block_linkage_function (pc_block);
285
286 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
287 {
288 *locexpr_length = length;
289 return loc_ptr;
290 }
291 }
292
293 if (pc >= low && pc < high)
294 {
295 *locexpr_length = length;
296 return loc_ptr;
297 }
298
299 loc_ptr += length;
300 }
301 }
302
303 /* This is the baton used when performing dwarf2 expression
304 evaluation. */
305 struct dwarf_expr_baton
306 {
307 struct frame_info *frame;
308 struct dwarf2_per_cu_data *per_cu;
309 };
310
311 /* Helper functions for dwarf2_evaluate_loc_desc. */
312
313 /* Using the frame specified in BATON, return the value of register
314 REGNUM, treated as a pointer. */
315 static CORE_ADDR
316 dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
317 {
318 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
319 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
320 CORE_ADDR result;
321 int regnum;
322
323 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
324 result = address_from_register (builtin_type (gdbarch)->builtin_data_ptr,
325 regnum, debaton->frame);
326 return result;
327 }
328
329 /* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
330
331 static struct value *
332 dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
333 {
334 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
335 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
336 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
337
338 return value_from_register (type, regnum, debaton->frame);
339 }
340
341 /* Read memory at ADDR (length LEN) into BUF. */
342
343 static void
344 dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
345 {
346 read_memory (addr, buf, len);
347 }
348
349 /* Using the frame specified in BATON, find the location expression
350 describing the frame base. Return a pointer to it in START and
351 its length in LENGTH. */
352 static void
353 dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
354 {
355 /* FIXME: cagney/2003-03-26: This code should be using
356 get_frame_base_address(), and then implement a dwarf2 specific
357 this_base method. */
358 struct symbol *framefunc;
359 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
360 struct block *bl = get_frame_block (debaton->frame, NULL);
361
362 if (bl == NULL)
363 error (_("frame address is not available."));
364
365 /* Use block_linkage_function, which returns a real (not inlined)
366 function, instead of get_frame_function, which may return an
367 inlined function. */
368 framefunc = block_linkage_function (bl);
369
370 /* If we found a frame-relative symbol then it was certainly within
371 some function associated with a frame. If we can't find the frame,
372 something has gone wrong. */
373 gdb_assert (framefunc != NULL);
374
375 dwarf_expr_frame_base_1 (framefunc,
376 get_frame_address_in_block (debaton->frame),
377 start, length);
378 }
379
380 /* Implement find_frame_base_location method for LOC_BLOCK functions using
381 DWARF expression for its DW_AT_frame_base. */
382
383 static void
384 locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
385 const gdb_byte **start, size_t *length)
386 {
387 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
388
389 *length = symbaton->size;
390 *start = symbaton->data;
391 }
392
393 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
394 function uses DWARF expression for its DW_AT_frame_base. */
395
396 const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
397 {
398 locexpr_find_frame_base_location
399 };
400
401 /* Implement find_frame_base_location method for LOC_BLOCK functions using
402 DWARF location list for its DW_AT_frame_base. */
403
404 static void
405 loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
406 const gdb_byte **start, size_t *length)
407 {
408 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
409
410 *start = dwarf2_find_location_expression (symbaton, length, pc);
411 }
412
413 /* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
414 function uses DWARF location list for its DW_AT_frame_base. */
415
416 const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
417 {
418 loclist_find_frame_base_location
419 };
420
421 static void
422 dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
423 const gdb_byte **start, size_t *length)
424 {
425 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
426 {
427 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
428
429 ops_block->find_frame_base_location (framefunc, pc, start, length);
430 }
431 else
432 *length = 0;
433
434 if (*length == 0)
435 error (_("Could not find the frame base for \"%s\"."),
436 SYMBOL_NATURAL_NAME (framefunc));
437 }
438
439 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
440 the frame in BATON. */
441
442 static CORE_ADDR
443 dwarf_expr_frame_cfa (void *baton)
444 {
445 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
446
447 return dwarf2_frame_cfa (debaton->frame);
448 }
449
450 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
451 the frame in BATON. */
452
453 static CORE_ADDR
454 dwarf_expr_frame_pc (void *baton)
455 {
456 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
457
458 return get_frame_address_in_block (debaton->frame);
459 }
460
461 /* Using the objfile specified in BATON, find the address for the
462 current thread's thread-local storage with offset OFFSET. */
463 static CORE_ADDR
464 dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
465 {
466 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
467 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
468
469 return target_translate_tls_address (objfile, offset);
470 }
471
472 /* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
473 current CU (as is PER_CU). State of the CTX is not affected by the
474 call and return. */
475
476 static void
477 per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
478 struct dwarf2_per_cu_data *per_cu,
479 CORE_ADDR (*get_frame_pc) (void *baton),
480 void *baton)
481 {
482 struct dwarf2_locexpr_baton block;
483
484 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
485
486 /* DW_OP_call_ref is currently not supported. */
487 gdb_assert (block.per_cu == per_cu);
488
489 dwarf_expr_eval (ctx, block.data, block.size);
490 }
491
492 /* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
493
494 static void
495 dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
496 {
497 struct dwarf_expr_baton *debaton = ctx->baton;
498
499 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
500 ctx->funcs->get_frame_pc, ctx->baton);
501 }
502
503 /* Callback function for dwarf2_evaluate_loc_desc. */
504
505 static struct type *
506 dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
507 cu_offset die_offset)
508 {
509 struct dwarf_expr_baton *debaton = ctx->baton;
510
511 return dwarf2_get_die_type (die_offset, debaton->per_cu);
512 }
513
514 /* See dwarf2loc.h. */
515
516 unsigned int entry_values_debug = 0;
517
518 /* Helper to set entry_values_debug. */
519
520 static void
521 show_entry_values_debug (struct ui_file *file, int from_tty,
522 struct cmd_list_element *c, const char *value)
523 {
524 fprintf_filtered (file,
525 _("Entry values and tail call frames debugging is %s.\n"),
526 value);
527 }
528
529 /* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
530 CALLER_FRAME (for registers) can be NULL if it is not known. This function
531 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
532
533 static CORE_ADDR
534 call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
535 struct call_site *call_site,
536 struct frame_info *caller_frame)
537 {
538 switch (FIELD_LOC_KIND (call_site->target))
539 {
540 case FIELD_LOC_KIND_DWARF_BLOCK:
541 {
542 struct dwarf2_locexpr_baton *dwarf_block;
543 struct value *val;
544 struct type *caller_core_addr_type;
545 struct gdbarch *caller_arch;
546
547 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
548 if (dwarf_block == NULL)
549 {
550 struct bound_minimal_symbol msym;
551
552 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
553 throw_error (NO_ENTRY_VALUE_ERROR,
554 _("DW_AT_GNU_call_site_target is not specified "
555 "at %s in %s"),
556 paddress (call_site_gdbarch, call_site->pc),
557 (msym.minsym == NULL ? "???"
558 : MSYMBOL_PRINT_NAME (msym.minsym)));
559
560 }
561 if (caller_frame == NULL)
562 {
563 struct bound_minimal_symbol msym;
564
565 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
566 throw_error (NO_ENTRY_VALUE_ERROR,
567 _("DW_AT_GNU_call_site_target DWARF block resolving "
568 "requires known frame which is currently not "
569 "available at %s in %s"),
570 paddress (call_site_gdbarch, call_site->pc),
571 (msym.minsym == NULL ? "???"
572 : MSYMBOL_PRINT_NAME (msym.minsym)));
573
574 }
575 caller_arch = get_frame_arch (caller_frame);
576 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
577 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
578 dwarf_block->data, dwarf_block->size,
579 dwarf_block->per_cu);
580 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
581 location. */
582 if (VALUE_LVAL (val) == lval_memory)
583 return value_address (val);
584 else
585 return value_as_address (val);
586 }
587
588 case FIELD_LOC_KIND_PHYSNAME:
589 {
590 const char *physname;
591 struct minimal_symbol *msym;
592
593 physname = FIELD_STATIC_PHYSNAME (call_site->target);
594
595 /* Handle both the mangled and demangled PHYSNAME. */
596 msym = lookup_minimal_symbol (physname, NULL, NULL);
597 if (msym == NULL)
598 {
599 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1).minsym;
600 throw_error (NO_ENTRY_VALUE_ERROR,
601 _("Cannot find function \"%s\" for a call site target "
602 "at %s in %s"),
603 physname, paddress (call_site_gdbarch, call_site->pc),
604 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
605
606 }
607 return MSYMBOL_VALUE_ADDRESS (msym);
608 }
609
610 case FIELD_LOC_KIND_PHYSADDR:
611 return FIELD_STATIC_PHYSADDR (call_site->target);
612
613 default:
614 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
615 }
616 }
617
618 /* Convert function entry point exact address ADDR to the function which is
619 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
620 NO_ENTRY_VALUE_ERROR otherwise. */
621
622 static struct symbol *
623 func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
624 {
625 struct symbol *sym = find_pc_function (addr);
626 struct type *type;
627
628 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
629 throw_error (NO_ENTRY_VALUE_ERROR,
630 _("DW_TAG_GNU_call_site resolving failed to find function "
631 "name for address %s"),
632 paddress (gdbarch, addr));
633
634 type = SYMBOL_TYPE (sym);
635 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
636 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
637
638 return sym;
639 }
640
641 /* Verify function with entry point exact address ADDR can never call itself
642 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
643 can call itself via tail calls.
644
645 If a funtion can tail call itself its entry value based parameters are
646 unreliable. There is no verification whether the value of some/all
647 parameters is unchanged through the self tail call, we expect if there is
648 a self tail call all the parameters can be modified. */
649
650 static void
651 func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
652 {
653 struct obstack addr_obstack;
654 struct cleanup *old_chain;
655 CORE_ADDR addr;
656
657 /* Track here CORE_ADDRs which were already visited. */
658 htab_t addr_hash;
659
660 /* The verification is completely unordered. Track here function addresses
661 which still need to be iterated. */
662 VEC (CORE_ADDR) *todo = NULL;
663
664 obstack_init (&addr_obstack);
665 old_chain = make_cleanup_obstack_free (&addr_obstack);
666 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
667 &addr_obstack, hashtab_obstack_allocate,
668 NULL);
669 make_cleanup_htab_delete (addr_hash);
670
671 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
672
673 VEC_safe_push (CORE_ADDR, todo, verify_addr);
674 while (!VEC_empty (CORE_ADDR, todo))
675 {
676 struct symbol *func_sym;
677 struct call_site *call_site;
678
679 addr = VEC_pop (CORE_ADDR, todo);
680
681 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
682
683 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
684 call_site; call_site = call_site->tail_call_next)
685 {
686 CORE_ADDR target_addr;
687 void **slot;
688
689 /* CALLER_FRAME with registers is not available for tail-call jumped
690 frames. */
691 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
692
693 if (target_addr == verify_addr)
694 {
695 struct bound_minimal_symbol msym;
696
697 msym = lookup_minimal_symbol_by_pc (verify_addr);
698 throw_error (NO_ENTRY_VALUE_ERROR,
699 _("DW_OP_GNU_entry_value resolving has found "
700 "function \"%s\" at %s can call itself via tail "
701 "calls"),
702 (msym.minsym == NULL ? "???"
703 : MSYMBOL_PRINT_NAME (msym.minsym)),
704 paddress (gdbarch, verify_addr));
705 }
706
707 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
708 if (*slot == NULL)
709 {
710 *slot = obstack_copy (&addr_obstack, &target_addr,
711 sizeof (target_addr));
712 VEC_safe_push (CORE_ADDR, todo, target_addr);
713 }
714 }
715 }
716
717 do_cleanups (old_chain);
718 }
719
720 /* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
721 ENTRY_VALUES_DEBUG. */
722
723 static void
724 tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
725 {
726 CORE_ADDR addr = call_site->pc;
727 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
728
729 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
730 (msym.minsym == NULL ? "???"
731 : MSYMBOL_PRINT_NAME (msym.minsym)));
732
733 }
734
735 /* vec.h needs single word type name, typedef it. */
736 typedef struct call_site *call_sitep;
737
738 /* Define VEC (call_sitep) functions. */
739 DEF_VEC_P (call_sitep);
740
741 /* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
742 only top callers and bottom callees which are present in both. GDBARCH is
743 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
744 no remaining possibilities to provide unambiguous non-trivial result.
745 RESULTP should point to NULL on the first (initialization) call. Caller is
746 responsible for xfree of any RESULTP data. */
747
748 static void
749 chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
750 VEC (call_sitep) *chain)
751 {
752 struct call_site_chain *result = *resultp;
753 long length = VEC_length (call_sitep, chain);
754 int callers, callees, idx;
755
756 if (result == NULL)
757 {
758 /* Create the initial chain containing all the passed PCs. */
759
760 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
761 * (length - 1));
762 result->length = length;
763 result->callers = result->callees = length;
764 if (!VEC_empty (call_sitep, chain))
765 memcpy (result->call_site, VEC_address (call_sitep, chain),
766 sizeof (*result->call_site) * length);
767 *resultp = result;
768
769 if (entry_values_debug)
770 {
771 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
772 for (idx = 0; idx < length; idx++)
773 tailcall_dump (gdbarch, result->call_site[idx]);
774 fputc_unfiltered ('\n', gdb_stdlog);
775 }
776
777 return;
778 }
779
780 if (entry_values_debug)
781 {
782 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
783 for (idx = 0; idx < length; idx++)
784 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
785 fputc_unfiltered ('\n', gdb_stdlog);
786 }
787
788 /* Intersect callers. */
789
790 callers = min (result->callers, length);
791 for (idx = 0; idx < callers; idx++)
792 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
793 {
794 result->callers = idx;
795 break;
796 }
797
798 /* Intersect callees. */
799
800 callees = min (result->callees, length);
801 for (idx = 0; idx < callees; idx++)
802 if (result->call_site[result->length - 1 - idx]
803 != VEC_index (call_sitep, chain, length - 1 - idx))
804 {
805 result->callees = idx;
806 break;
807 }
808
809 if (entry_values_debug)
810 {
811 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
812 for (idx = 0; idx < result->callers; idx++)
813 tailcall_dump (gdbarch, result->call_site[idx]);
814 fputs_unfiltered (" |", gdb_stdlog);
815 for (idx = 0; idx < result->callees; idx++)
816 tailcall_dump (gdbarch, result->call_site[result->length
817 - result->callees + idx]);
818 fputc_unfiltered ('\n', gdb_stdlog);
819 }
820
821 if (result->callers == 0 && result->callees == 0)
822 {
823 /* There are no common callers or callees. It could be also a direct
824 call (which has length 0) with ambiguous possibility of an indirect
825 call - CALLERS == CALLEES == 0 is valid during the first allocation
826 but any subsequence processing of such entry means ambiguity. */
827 xfree (result);
828 *resultp = NULL;
829 return;
830 }
831
832 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
833 PC again. In such case there must be two different code paths to reach
834 it, therefore some of the former determined intermediate PCs must differ
835 and the unambiguous chain gets shortened. */
836 gdb_assert (result->callers + result->callees < result->length);
837 }
838
839 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
840 assumed frames between them use GDBARCH. Use depth first search so we can
841 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
842 would have needless GDB stack overhead. Caller is responsible for xfree of
843 the returned result. Any unreliability results in thrown
844 NO_ENTRY_VALUE_ERROR. */
845
846 static struct call_site_chain *
847 call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
848 CORE_ADDR callee_pc)
849 {
850 CORE_ADDR save_callee_pc = callee_pc;
851 struct obstack addr_obstack;
852 struct cleanup *back_to_retval, *back_to_workdata;
853 struct call_site_chain *retval = NULL;
854 struct call_site *call_site;
855
856 /* Mark CALL_SITEs so we do not visit the same ones twice. */
857 htab_t addr_hash;
858
859 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
860 call_site nor any possible call_site at CALLEE_PC's function is there.
861 Any CALL_SITE in CHAIN will be iterated to its siblings - via
862 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
863 VEC (call_sitep) *chain = NULL;
864
865 /* We are not interested in the specific PC inside the callee function. */
866 callee_pc = get_pc_function_start (callee_pc);
867 if (callee_pc == 0)
868 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
869 paddress (gdbarch, save_callee_pc));
870
871 back_to_retval = make_cleanup (free_current_contents, &retval);
872
873 obstack_init (&addr_obstack);
874 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
875 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
876 &addr_obstack, hashtab_obstack_allocate,
877 NULL);
878 make_cleanup_htab_delete (addr_hash);
879
880 make_cleanup (VEC_cleanup (call_sitep), &chain);
881
882 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
883 at the target's function. All the possible tail call sites in the
884 target's function will get iterated as already pushed into CHAIN via their
885 TAIL_CALL_NEXT. */
886 call_site = call_site_for_pc (gdbarch, caller_pc);
887
888 while (call_site)
889 {
890 CORE_ADDR target_func_addr;
891 struct call_site *target_call_site;
892
893 /* CALLER_FRAME with registers is not available for tail-call jumped
894 frames. */
895 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
896
897 if (target_func_addr == callee_pc)
898 {
899 chain_candidate (gdbarch, &retval, chain);
900 if (retval == NULL)
901 break;
902
903 /* There is no way to reach CALLEE_PC again as we would prevent
904 entering it twice as being already marked in ADDR_HASH. */
905 target_call_site = NULL;
906 }
907 else
908 {
909 struct symbol *target_func;
910
911 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
912 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
913 }
914
915 do
916 {
917 /* Attempt to visit TARGET_CALL_SITE. */
918
919 if (target_call_site)
920 {
921 void **slot;
922
923 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
924 if (*slot == NULL)
925 {
926 /* Successfully entered TARGET_CALL_SITE. */
927
928 *slot = &target_call_site->pc;
929 VEC_safe_push (call_sitep, chain, target_call_site);
930 break;
931 }
932 }
933
934 /* Backtrack (without revisiting the originating call_site). Try the
935 callers's sibling; if there isn't any try the callers's callers's
936 sibling etc. */
937
938 target_call_site = NULL;
939 while (!VEC_empty (call_sitep, chain))
940 {
941 call_site = VEC_pop (call_sitep, chain);
942
943 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
944 NO_INSERT) != NULL);
945 htab_remove_elt (addr_hash, &call_site->pc);
946
947 target_call_site = call_site->tail_call_next;
948 if (target_call_site)
949 break;
950 }
951 }
952 while (target_call_site);
953
954 if (VEC_empty (call_sitep, chain))
955 call_site = NULL;
956 else
957 call_site = VEC_last (call_sitep, chain);
958 }
959
960 if (retval == NULL)
961 {
962 struct bound_minimal_symbol msym_caller, msym_callee;
963
964 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
965 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
966 throw_error (NO_ENTRY_VALUE_ERROR,
967 _("There are no unambiguously determinable intermediate "
968 "callers or callees between caller function \"%s\" at %s "
969 "and callee function \"%s\" at %s"),
970 (msym_caller.minsym == NULL
971 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
972 paddress (gdbarch, caller_pc),
973 (msym_callee.minsym == NULL
974 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
975 paddress (gdbarch, callee_pc));
976 }
977
978 do_cleanups (back_to_workdata);
979 discard_cleanups (back_to_retval);
980 return retval;
981 }
982
983 /* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
984 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
985 constructed return NULL. Caller is responsible for xfree of the returned
986 result. */
987
988 struct call_site_chain *
989 call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
990 CORE_ADDR callee_pc)
991 {
992 volatile struct gdb_exception e;
993 struct call_site_chain *retval = NULL;
994
995 TRY_CATCH (e, RETURN_MASK_ERROR)
996 {
997 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
998 }
999 if (e.reason < 0)
1000 {
1001 if (e.error == NO_ENTRY_VALUE_ERROR)
1002 {
1003 if (entry_values_debug)
1004 exception_print (gdb_stdout, e);
1005
1006 return NULL;
1007 }
1008 else
1009 throw_exception (e);
1010 }
1011 return retval;
1012 }
1013
1014 /* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1015
1016 static int
1017 call_site_parameter_matches (struct call_site_parameter *parameter,
1018 enum call_site_parameter_kind kind,
1019 union call_site_parameter_u kind_u)
1020 {
1021 if (kind == parameter->kind)
1022 switch (kind)
1023 {
1024 case CALL_SITE_PARAMETER_DWARF_REG:
1025 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1026 case CALL_SITE_PARAMETER_FB_OFFSET:
1027 return kind_u.fb_offset == parameter->u.fb_offset;
1028 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1029 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
1030 }
1031 return 0;
1032 }
1033
1034 /* Fetch call_site_parameter from caller matching KIND and KIND_U.
1035 FRAME is for callee.
1036
1037 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1038 otherwise. */
1039
1040 static struct call_site_parameter *
1041 dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1042 enum call_site_parameter_kind kind,
1043 union call_site_parameter_u kind_u,
1044 struct dwarf2_per_cu_data **per_cu_return)
1045 {
1046 CORE_ADDR func_addr, caller_pc;
1047 struct gdbarch *gdbarch;
1048 struct frame_info *caller_frame;
1049 struct call_site *call_site;
1050 int iparams;
1051 /* Initialize it just to avoid a GCC false warning. */
1052 struct call_site_parameter *parameter = NULL;
1053 CORE_ADDR target_addr;
1054
1055 while (get_frame_type (frame) == INLINE_FRAME)
1056 {
1057 frame = get_prev_frame (frame);
1058 gdb_assert (frame != NULL);
1059 }
1060
1061 func_addr = get_frame_func (frame);
1062 gdbarch = get_frame_arch (frame);
1063 caller_frame = get_prev_frame (frame);
1064 if (gdbarch != frame_unwind_arch (frame))
1065 {
1066 struct bound_minimal_symbol msym
1067 = lookup_minimal_symbol_by_pc (func_addr);
1068 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1069
1070 throw_error (NO_ENTRY_VALUE_ERROR,
1071 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1072 "(of %s (%s)) does not match caller gdbarch %s"),
1073 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1074 paddress (gdbarch, func_addr),
1075 (msym.minsym == NULL ? "???"
1076 : MSYMBOL_PRINT_NAME (msym.minsym)),
1077 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1078 }
1079
1080 if (caller_frame == NULL)
1081 {
1082 struct bound_minimal_symbol msym
1083 = lookup_minimal_symbol_by_pc (func_addr);
1084
1085 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1086 "requires caller of %s (%s)"),
1087 paddress (gdbarch, func_addr),
1088 (msym.minsym == NULL ? "???"
1089 : MSYMBOL_PRINT_NAME (msym.minsym)));
1090 }
1091 caller_pc = get_frame_pc (caller_frame);
1092 call_site = call_site_for_pc (gdbarch, caller_pc);
1093
1094 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1095 if (target_addr != func_addr)
1096 {
1097 struct minimal_symbol *target_msym, *func_msym;
1098
1099 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1100 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
1101 throw_error (NO_ENTRY_VALUE_ERROR,
1102 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1103 "but the called frame is for %s at %s"),
1104 (target_msym == NULL ? "???"
1105 : MSYMBOL_PRINT_NAME (target_msym)),
1106 paddress (gdbarch, target_addr),
1107 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
1108 paddress (gdbarch, func_addr));
1109 }
1110
1111 /* No entry value based parameters would be reliable if this function can
1112 call itself via tail calls. */
1113 func_verify_no_selftailcall (gdbarch, func_addr);
1114
1115 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1116 {
1117 parameter = &call_site->parameter[iparams];
1118 if (call_site_parameter_matches (parameter, kind, kind_u))
1119 break;
1120 }
1121 if (iparams == call_site->parameter_count)
1122 {
1123 struct minimal_symbol *msym
1124 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
1125
1126 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1127 determine its value. */
1128 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1129 "at DW_TAG_GNU_call_site %s at %s"),
1130 paddress (gdbarch, caller_pc),
1131 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
1132 }
1133
1134 *per_cu_return = call_site->per_cu;
1135 return parameter;
1136 }
1137
1138 /* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1139 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1140 DW_AT_GNU_call_site_data_value (dereferenced) block.
1141
1142 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1143 struct value.
1144
1145 Function always returns non-NULL, non-optimized out value. It throws
1146 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1147
1148 static struct value *
1149 dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
1150 CORE_ADDR deref_size, struct type *type,
1151 struct frame_info *caller_frame,
1152 struct dwarf2_per_cu_data *per_cu)
1153 {
1154 const gdb_byte *data_src;
1155 gdb_byte *data;
1156 size_t size;
1157
1158 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1159 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1160
1161 /* DEREF_SIZE size is not verified here. */
1162 if (data_src == NULL)
1163 throw_error (NO_ENTRY_VALUE_ERROR,
1164 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1165
1166 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1167 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1168 DWARF block. */
1169 data = alloca (size + 1);
1170 memcpy (data, data_src, size);
1171 data[size] = DW_OP_stack_value;
1172
1173 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
1174 }
1175
1176 /* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1177 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1178 frame. CTX must be of dwarf_expr_ctx_funcs kind.
1179
1180 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1181 can be more simple as it does not support cross-CU DWARF executions. */
1182
1183 static void
1184 dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
1185 enum call_site_parameter_kind kind,
1186 union call_site_parameter_u kind_u,
1187 int deref_size)
1188 {
1189 struct dwarf_expr_baton *debaton;
1190 struct frame_info *frame, *caller_frame;
1191 struct dwarf2_per_cu_data *caller_per_cu;
1192 struct dwarf_expr_baton baton_local;
1193 struct dwarf_expr_context saved_ctx;
1194 struct call_site_parameter *parameter;
1195 const gdb_byte *data_src;
1196 size_t size;
1197
1198 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1199 debaton = ctx->baton;
1200 frame = debaton->frame;
1201 caller_frame = get_prev_frame (frame);
1202
1203 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1204 &caller_per_cu);
1205 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1206 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1207
1208 /* DEREF_SIZE size is not verified here. */
1209 if (data_src == NULL)
1210 throw_error (NO_ENTRY_VALUE_ERROR,
1211 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
1212
1213 baton_local.frame = caller_frame;
1214 baton_local.per_cu = caller_per_cu;
1215
1216 saved_ctx.gdbarch = ctx->gdbarch;
1217 saved_ctx.addr_size = ctx->addr_size;
1218 saved_ctx.offset = ctx->offset;
1219 saved_ctx.baton = ctx->baton;
1220 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1221 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1222 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1223 ctx->baton = &baton_local;
1224
1225 dwarf_expr_eval (ctx, data_src, size);
1226
1227 ctx->gdbarch = saved_ctx.gdbarch;
1228 ctx->addr_size = saved_ctx.addr_size;
1229 ctx->offset = saved_ctx.offset;
1230 ctx->baton = saved_ctx.baton;
1231 }
1232
1233 /* Callback function for dwarf2_evaluate_loc_desc.
1234 Fetch the address indexed by DW_OP_GNU_addr_index. */
1235
1236 static CORE_ADDR
1237 dwarf_expr_get_addr_index (void *baton, unsigned int index)
1238 {
1239 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1240
1241 return dwarf2_read_addr_index (debaton->per_cu, index);
1242 }
1243
1244 /* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1245 the indirect method on it, that is use its stored target value, the sole
1246 purpose of entry_data_value_funcs.. */
1247
1248 static struct value *
1249 entry_data_value_coerce_ref (const struct value *value)
1250 {
1251 struct type *checked_type = check_typedef (value_type (value));
1252 struct value *target_val;
1253
1254 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1255 return NULL;
1256
1257 target_val = value_computed_closure (value);
1258 value_incref (target_val);
1259 return target_val;
1260 }
1261
1262 /* Implement copy_closure. */
1263
1264 static void *
1265 entry_data_value_copy_closure (const struct value *v)
1266 {
1267 struct value *target_val = value_computed_closure (v);
1268
1269 value_incref (target_val);
1270 return target_val;
1271 }
1272
1273 /* Implement free_closure. */
1274
1275 static void
1276 entry_data_value_free_closure (struct value *v)
1277 {
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_free (target_val);
1281 }
1282
1283 /* Vector for methods for an entry value reference where the referenced value
1284 is stored in the caller. On the first dereference use
1285 DW_AT_GNU_call_site_data_value in the caller. */
1286
1287 static const struct lval_funcs entry_data_value_funcs =
1288 {
1289 NULL, /* read */
1290 NULL, /* write */
1291 NULL, /* check_validity */
1292 NULL, /* check_any_valid */
1293 NULL, /* indirect */
1294 entry_data_value_coerce_ref,
1295 NULL, /* check_synthetic_pointer */
1296 entry_data_value_copy_closure,
1297 entry_data_value_free_closure
1298 };
1299
1300 /* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1301 are used to match DW_AT_location at the caller's
1302 DW_TAG_GNU_call_site_parameter.
1303
1304 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1305 cannot resolve the parameter for any reason. */
1306
1307 static struct value *
1308 value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
1309 enum call_site_parameter_kind kind,
1310 union call_site_parameter_u kind_u)
1311 {
1312 struct type *checked_type = check_typedef (type);
1313 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
1314 struct frame_info *caller_frame = get_prev_frame (frame);
1315 struct value *outer_val, *target_val, *val;
1316 struct call_site_parameter *parameter;
1317 struct dwarf2_per_cu_data *caller_per_cu;
1318 CORE_ADDR addr;
1319
1320 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
1321 &caller_per_cu);
1322
1323 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1324 type, caller_frame,
1325 caller_per_cu);
1326
1327 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1328 used and it is not available do not fall back to OUTER_VAL - dereferencing
1329 TYPE_CODE_REF with non-entry data value would give current value - not the
1330 entry value. */
1331
1332 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1333 || TYPE_TARGET_TYPE (checked_type) == NULL)
1334 return outer_val;
1335
1336 target_val = dwarf_entry_parameter_to_value (parameter,
1337 TYPE_LENGTH (target_type),
1338 target_type, caller_frame,
1339 caller_per_cu);
1340
1341 /* value_as_address dereferences TYPE_CODE_REF. */
1342 addr = extract_typed_address (value_contents (outer_val), checked_type);
1343
1344 /* The target entry value has artificial address of the entry value
1345 reference. */
1346 VALUE_LVAL (target_val) = lval_memory;
1347 set_value_address (target_val, addr);
1348
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
1359 }
1360
1361 /* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368 static struct value *
1369 value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371 {
1372 union call_site_parameter_u kind_u;
1373
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
1378
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389 }
1390
1391 struct piece_closure
1392 {
1393 /* Reference count. */
1394 int refc;
1395
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
1404
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407 };
1408
1409 /* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412 static struct piece_closure *
1413 allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
1415 int addr_size)
1416 {
1417 struct piece_closure *c = XCNEW (struct piece_closure);
1418 int i;
1419
1420 c->refc = 1;
1421 c->per_cu = per_cu;
1422 c->n_pieces = n_pieces;
1423 c->addr_size = addr_size;
1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
1430
1431 return c;
1432 }
1433
1434 /* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445 static unsigned int
1446 extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449 {
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475 }
1476
1477 /* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488 static unsigned int
1489 extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491 {
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512 }
1513
1514 /* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524 static void
1525 insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528 {
1529 unsigned int mask;
1530
1531 gdb_assert (dest_offset_bits + nbits <= 8);
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548 }
1549
1550 /* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559 static void
1560 copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564 {
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604 }
1605
1606 static void
1607 read_pieced_value (struct value *v)
1608 {
1609 int i;
1610 long offset = 0;
1611 ULONGEST bits_to_skip;
1612 gdb_byte *contents;
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
1616 size_t type_len;
1617 size_t buffer_size = 0;
1618 gdb_byte *buffer = NULL;
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
1627
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
1630 contents = value_contents_raw (v);
1631 bits_to_skip = 8 * value_offset (v);
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
1639
1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
1645 const gdb_byte *intermediate_buffer;
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1651 {
1652 bits_to_skip -= this_size_bits;
1653 continue;
1654 }
1655 if (bits_to_skip > 0)
1656 {
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
1661 }
1662 else
1663 {
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
1666 }
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
1669
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
1680 switch (p->location)
1681 {
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1686 int reg_offset = source_offset;
1687
1688 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1689 && this_size < register_size (arch, gdb_regnum))
1690 {
1691 /* Big-endian, and we want less than full size. */
1692 reg_offset = register_size (arch, gdb_regnum) - this_size;
1693 /* We want the lower-order THIS_SIZE_BITS of the bytes
1694 we extract from the register. */
1695 source_offset_bits += 8 * this_size - this_size_bits;
1696 }
1697
1698 if (gdb_regnum != -1)
1699 {
1700 int optim, unavail;
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
1710 set_value_optimized_out (v, 1);
1711 if (unavail)
1712 mark_value_bits_unavailable (v, offset, this_size_bits);
1713 }
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
1718 paddress (arch, p->v.regno));
1719 }
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
1732 size_t n = this_size;
1733
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
1742 else
1743 {
1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
1745
1746 intermediate_buffer = val_bytes + source_offset;
1747 }
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
1760 intermediate_buffer = p->v.literal.data + source_offset;
1761 }
1762 break;
1763
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
1769 case DWARF_VALUE_OPTIMIZED_OUT:
1770 set_value_optimized_out (v, 1);
1771 break;
1772
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
1775 }
1776
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
1784 }
1785
1786 do_cleanups (cleanup);
1787 }
1788
1789 static void
1790 write_pieced_value (struct value *to, struct value *from)
1791 {
1792 int i;
1793 long offset = 0;
1794 ULONGEST bits_to_skip;
1795 const gdb_byte *contents;
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
1799 size_t type_len;
1800 size_t buffer_size = 0;
1801 gdb_byte *buffer = NULL;
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
1805
1806 if (frame == NULL)
1807 {
1808 set_value_optimized_out (to, 1);
1809 return;
1810 }
1811
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
1814 contents = value_contents (from);
1815 bits_to_skip = 8 * value_offset (to);
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
1831
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
1834 {
1835 bits_to_skip -= this_size_bits;
1836 continue;
1837 }
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
1841 {
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
1846 }
1847 else
1848 {
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
1870 }
1871
1872 switch (p->location)
1873 {
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
1878 int reg_offset = dest_offset;
1879
1880 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1881 && this_size <= register_size (arch, gdb_regnum))
1882 /* Big-endian, and we want less than full size. */
1883 reg_offset = register_size (arch, gdb_regnum) - this_size;
1884
1885 if (gdb_regnum != -1)
1886 {
1887 if (need_bitwise)
1888 {
1889 int optim, unavail;
1890
1891 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1892 this_size, buffer,
1893 &optim, &unavail))
1894 {
1895 if (optim)
1896 throw_error (OPTIMIZED_OUT_ERROR,
1897 _("Can't do read-modify-write to "
1898 "update bitfield; containing word "
1899 "has been optimized out"));
1900 if (unavail)
1901 throw_error (NOT_AVAILABLE_ERROR,
1902 _("Can't do read-modify-write to update "
1903 "bitfield; containing word "
1904 "is unavailable"));
1905 }
1906 copy_bitwise (buffer, dest_offset_bits,
1907 contents, source_offset_bits,
1908 this_size_bits,
1909 bits_big_endian);
1910 }
1911
1912 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1913 this_size, source_buffer);
1914 }
1915 else
1916 {
1917 error (_("Unable to write to DWARF register number %s"),
1918 paddress (arch, p->v.regno));
1919 }
1920 }
1921 break;
1922 case DWARF_VALUE_MEMORY:
1923 if (need_bitwise)
1924 {
1925 /* Only the first and last bytes can possibly have any
1926 bits reused. */
1927 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1928 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
1929 buffer + this_size - 1, 1);
1930 copy_bitwise (buffer, dest_offset_bits,
1931 contents, source_offset_bits,
1932 this_size_bits,
1933 bits_big_endian);
1934 }
1935
1936 write_memory (p->v.mem.addr + dest_offset,
1937 source_buffer, this_size);
1938 break;
1939 default:
1940 set_value_optimized_out (to, 1);
1941 break;
1942 }
1943 offset += this_size_bits;
1944 }
1945
1946 do_cleanups (cleanup);
1947 }
1948
1949 /* A helper function that checks bit validity in a pieced value.
1950 CHECK_FOR indicates the kind of validity checking.
1951 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1952 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1953 optimized out.
1954 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1955 implicit pointer. */
1956
1957 static int
1958 check_pieced_value_bits (const struct value *value, int bit_offset,
1959 int bit_length,
1960 enum dwarf_value_location check_for)
1961 {
1962 struct piece_closure *c
1963 = (struct piece_closure *) value_computed_closure (value);
1964 int i;
1965 int validity = (check_for == DWARF_VALUE_MEMORY
1966 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
1967
1968 bit_offset += 8 * value_offset (value);
1969 if (value_bitsize (value))
1970 bit_offset += value_bitpos (value);
1971
1972 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1973 {
1974 struct dwarf_expr_piece *p = &c->pieces[i];
1975 size_t this_size_bits = p->size;
1976
1977 if (bit_offset > 0)
1978 {
1979 if (bit_offset >= this_size_bits)
1980 {
1981 bit_offset -= this_size_bits;
1982 continue;
1983 }
1984
1985 bit_length -= this_size_bits - bit_offset;
1986 bit_offset = 0;
1987 }
1988 else
1989 bit_length -= this_size_bits;
1990
1991 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1992 {
1993 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1994 return 0;
1995 }
1996 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1997 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
1998 {
1999 if (validity)
2000 return 0;
2001 }
2002 else
2003 {
2004 if (!validity)
2005 return 1;
2006 }
2007 }
2008
2009 return validity;
2010 }
2011
2012 static int
2013 check_pieced_value_validity (const struct value *value, int bit_offset,
2014 int bit_length)
2015 {
2016 return check_pieced_value_bits (value, bit_offset, bit_length,
2017 DWARF_VALUE_MEMORY);
2018 }
2019
2020 static int
2021 check_pieced_value_invalid (const struct value *value)
2022 {
2023 return check_pieced_value_bits (value, 0,
2024 8 * TYPE_LENGTH (value_type (value)),
2025 DWARF_VALUE_OPTIMIZED_OUT);
2026 }
2027
2028 /* An implementation of an lval_funcs method to see whether a value is
2029 a synthetic pointer. */
2030
2031 static int
2032 check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2033 int bit_length)
2034 {
2035 return check_pieced_value_bits (value, bit_offset, bit_length,
2036 DWARF_VALUE_IMPLICIT_POINTER);
2037 }
2038
2039 /* A wrapper function for get_frame_address_in_block. */
2040
2041 static CORE_ADDR
2042 get_frame_address_in_block_wrapper (void *baton)
2043 {
2044 return get_frame_address_in_block (baton);
2045 }
2046
2047 /* An implementation of an lval_funcs method to indirect through a
2048 pointer. This handles the synthetic pointer case when needed. */
2049
2050 static struct value *
2051 indirect_pieced_value (struct value *value)
2052 {
2053 struct piece_closure *c
2054 = (struct piece_closure *) value_computed_closure (value);
2055 struct type *type;
2056 struct frame_info *frame;
2057 struct dwarf2_locexpr_baton baton;
2058 int i, bit_offset, bit_length;
2059 struct dwarf_expr_piece *piece = NULL;
2060 LONGEST byte_offset;
2061
2062 type = check_typedef (value_type (value));
2063 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2064 return NULL;
2065
2066 bit_length = 8 * TYPE_LENGTH (type);
2067 bit_offset = 8 * value_offset (value);
2068 if (value_bitsize (value))
2069 bit_offset += value_bitpos (value);
2070
2071 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2072 {
2073 struct dwarf_expr_piece *p = &c->pieces[i];
2074 size_t this_size_bits = p->size;
2075
2076 if (bit_offset > 0)
2077 {
2078 if (bit_offset >= this_size_bits)
2079 {
2080 bit_offset -= this_size_bits;
2081 continue;
2082 }
2083
2084 bit_length -= this_size_bits - bit_offset;
2085 bit_offset = 0;
2086 }
2087 else
2088 bit_length -= this_size_bits;
2089
2090 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2091 return NULL;
2092
2093 if (bit_length != 0)
2094 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2095
2096 piece = p;
2097 break;
2098 }
2099
2100 frame = get_selected_frame (_("No frame selected."));
2101
2102 /* This is an offset requested by GDB, such as value subscripts.
2103 However, due to how synthetic pointers are implemented, this is
2104 always presented to us as a pointer type. This means we have to
2105 sign-extend it manually as appropriate. */
2106 byte_offset = value_as_address (value);
2107 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2108 byte_offset = gdb_sign_extend (byte_offset,
2109 8 * TYPE_LENGTH (value_type (value)));
2110 byte_offset += piece->v.ptr.offset;
2111
2112 gdb_assert (piece);
2113 baton
2114 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2115 get_frame_address_in_block_wrapper,
2116 frame);
2117
2118 if (baton.data != NULL)
2119 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2120 baton.data, baton.size, baton.per_cu,
2121 byte_offset);
2122
2123 {
2124 struct obstack temp_obstack;
2125 struct cleanup *cleanup;
2126 const gdb_byte *bytes;
2127 LONGEST len;
2128 struct value *result;
2129
2130 obstack_init (&temp_obstack);
2131 cleanup = make_cleanup_obstack_free (&temp_obstack);
2132
2133 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2134 &temp_obstack, &len);
2135 if (bytes == NULL)
2136 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2137 else
2138 {
2139 if (byte_offset < 0
2140 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2141 invalid_synthetic_pointer ();
2142 bytes += byte_offset;
2143 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2144 }
2145
2146 do_cleanups (cleanup);
2147 return result;
2148 }
2149 }
2150
2151 static void *
2152 copy_pieced_value_closure (const struct value *v)
2153 {
2154 struct piece_closure *c
2155 = (struct piece_closure *) value_computed_closure (v);
2156
2157 ++c->refc;
2158 return c;
2159 }
2160
2161 static void
2162 free_pieced_value_closure (struct value *v)
2163 {
2164 struct piece_closure *c
2165 = (struct piece_closure *) value_computed_closure (v);
2166
2167 --c->refc;
2168 if (c->refc == 0)
2169 {
2170 int i;
2171
2172 for (i = 0; i < c->n_pieces; ++i)
2173 if (c->pieces[i].location == DWARF_VALUE_STACK)
2174 value_free (c->pieces[i].v.value);
2175
2176 xfree (c->pieces);
2177 xfree (c);
2178 }
2179 }
2180
2181 /* Functions for accessing a variable described by DW_OP_piece. */
2182 static const struct lval_funcs pieced_value_funcs = {
2183 read_pieced_value,
2184 write_pieced_value,
2185 check_pieced_value_validity,
2186 check_pieced_value_invalid,
2187 indirect_pieced_value,
2188 NULL, /* coerce_ref */
2189 check_pieced_synthetic_pointer,
2190 copy_pieced_value_closure,
2191 free_pieced_value_closure
2192 };
2193
2194 /* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2195
2196 static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2197 {
2198 dwarf_expr_read_addr_from_reg,
2199 dwarf_expr_get_reg_value,
2200 dwarf_expr_read_mem,
2201 dwarf_expr_frame_base,
2202 dwarf_expr_frame_cfa,
2203 dwarf_expr_frame_pc,
2204 dwarf_expr_tls_address,
2205 dwarf_expr_dwarf_call,
2206 dwarf_expr_get_base_type,
2207 dwarf_expr_push_dwarf_reg_entry_value,
2208 dwarf_expr_get_addr_index
2209 };
2210
2211 /* Evaluate a location description, starting at DATA and with length
2212 SIZE, to find the current location of variable of TYPE in the
2213 context of FRAME. BYTE_OFFSET is applied after the contents are
2214 computed. */
2215
2216 static struct value *
2217 dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
2218 const gdb_byte *data, size_t size,
2219 struct dwarf2_per_cu_data *per_cu,
2220 LONGEST byte_offset)
2221 {
2222 struct value *retval;
2223 struct dwarf_expr_baton baton;
2224 struct dwarf_expr_context *ctx;
2225 struct cleanup *old_chain, *value_chain;
2226 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2227 volatile struct gdb_exception ex;
2228
2229 if (byte_offset < 0)
2230 invalid_synthetic_pointer ();
2231
2232 if (size == 0)
2233 return allocate_optimized_out_value (type);
2234
2235 baton.frame = frame;
2236 baton.per_cu = per_cu;
2237
2238 ctx = new_dwarf_expr_context ();
2239 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2240 value_chain = make_cleanup_value_free_to_mark (value_mark ());
2241
2242 ctx->gdbarch = get_objfile_arch (objfile);
2243 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2244 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2245 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2246 ctx->baton = &baton;
2247 ctx->funcs = &dwarf_expr_ctx_funcs;
2248
2249 TRY_CATCH (ex, RETURN_MASK_ERROR)
2250 {
2251 dwarf_expr_eval (ctx, data, size);
2252 }
2253 if (ex.reason < 0)
2254 {
2255 if (ex.error == NOT_AVAILABLE_ERROR)
2256 {
2257 do_cleanups (old_chain);
2258 retval = allocate_value (type);
2259 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2260 return retval;
2261 }
2262 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2263 {
2264 if (entry_values_debug)
2265 exception_print (gdb_stdout, ex);
2266 do_cleanups (old_chain);
2267 return allocate_optimized_out_value (type);
2268 }
2269 else
2270 throw_exception (ex);
2271 }
2272
2273 if (ctx->num_pieces > 0)
2274 {
2275 struct piece_closure *c;
2276 struct frame_id frame_id = get_frame_id (frame);
2277 ULONGEST bit_size = 0;
2278 int i;
2279
2280 for (i = 0; i < ctx->num_pieces; ++i)
2281 bit_size += ctx->pieces[i].size;
2282 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2283 invalid_synthetic_pointer ();
2284
2285 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
2286 ctx->addr_size);
2287 /* We must clean up the value chain after creating the piece
2288 closure but before allocating the result. */
2289 do_cleanups (value_chain);
2290 retval = allocate_computed_value (type, &pieced_value_funcs, c);
2291 VALUE_FRAME_ID (retval) = frame_id;
2292 set_value_offset (retval, byte_offset);
2293 }
2294 else
2295 {
2296 switch (ctx->location)
2297 {
2298 case DWARF_VALUE_REGISTER:
2299 {
2300 struct gdbarch *arch = get_frame_arch (frame);
2301 int dwarf_regnum
2302 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
2303 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
2304
2305 if (byte_offset != 0)
2306 error (_("cannot use offset on synthetic pointer to register"));
2307 do_cleanups (value_chain);
2308 if (gdb_regnum == -1)
2309 error (_("Unable to access DWARF register number %d"),
2310 dwarf_regnum);
2311 retval = value_from_register (type, gdb_regnum, frame);
2312 if (value_optimized_out (retval))
2313 {
2314 /* This means the register has undefined value / was
2315 not saved. As we're computing the location of some
2316 variable etc. in the program, not a value for
2317 inspecting a register ($pc, $sp, etc.), return a
2318 generic optimized out value instead, so that we show
2319 <optimized out> instead of <not saved>. */
2320 do_cleanups (value_chain);
2321 retval = allocate_optimized_out_value (type);
2322 }
2323 }
2324 break;
2325
2326 case DWARF_VALUE_MEMORY:
2327 {
2328 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
2329 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
2330
2331 do_cleanups (value_chain);
2332 retval = value_at_lazy (type, address + byte_offset);
2333 if (in_stack_memory)
2334 set_value_stack (retval, 1);
2335 }
2336 break;
2337
2338 case DWARF_VALUE_STACK:
2339 {
2340 struct value *value = dwarf_expr_fetch (ctx, 0);
2341 gdb_byte *contents;
2342 const gdb_byte *val_bytes;
2343 size_t n = TYPE_LENGTH (value_type (value));
2344
2345 if (byte_offset + TYPE_LENGTH (type) > n)
2346 invalid_synthetic_pointer ();
2347
2348 val_bytes = value_contents_all (value);
2349 val_bytes += byte_offset;
2350 n -= byte_offset;
2351
2352 /* Preserve VALUE because we are going to free values back
2353 to the mark, but we still need the value contents
2354 below. */
2355 value_incref (value);
2356 do_cleanups (value_chain);
2357 make_cleanup_value_free (value);
2358
2359 retval = allocate_value (type);
2360 contents = value_contents_raw (retval);
2361 if (n > TYPE_LENGTH (type))
2362 {
2363 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2364
2365 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2366 val_bytes += n - TYPE_LENGTH (type);
2367 n = TYPE_LENGTH (type);
2368 }
2369 memcpy (contents, val_bytes, n);
2370 }
2371 break;
2372
2373 case DWARF_VALUE_LITERAL:
2374 {
2375 bfd_byte *contents;
2376 const bfd_byte *ldata;
2377 size_t n = ctx->len;
2378
2379 if (byte_offset + TYPE_LENGTH (type) > n)
2380 invalid_synthetic_pointer ();
2381
2382 do_cleanups (value_chain);
2383 retval = allocate_value (type);
2384 contents = value_contents_raw (retval);
2385
2386 ldata = ctx->data + byte_offset;
2387 n -= byte_offset;
2388
2389 if (n > TYPE_LENGTH (type))
2390 {
2391 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2392
2393 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2394 ldata += n - TYPE_LENGTH (type);
2395 n = TYPE_LENGTH (type);
2396 }
2397 memcpy (contents, ldata, n);
2398 }
2399 break;
2400
2401 case DWARF_VALUE_OPTIMIZED_OUT:
2402 do_cleanups (value_chain);
2403 retval = allocate_optimized_out_value (type);
2404 break;
2405
2406 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2407 operation by execute_stack_op. */
2408 case DWARF_VALUE_IMPLICIT_POINTER:
2409 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2410 it can only be encountered when making a piece. */
2411 default:
2412 internal_error (__FILE__, __LINE__, _("invalid location type"));
2413 }
2414 }
2415
2416 set_value_initialized (retval, ctx->initialized);
2417
2418 do_cleanups (old_chain);
2419
2420 return retval;
2421 }
2422
2423 /* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2424 passes 0 as the byte_offset. */
2425
2426 struct value *
2427 dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
2428 const gdb_byte *data, size_t size,
2429 struct dwarf2_per_cu_data *per_cu)
2430 {
2431 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2432 }
2433
2434 \f
2435 /* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2436
2437 struct needs_frame_baton
2438 {
2439 int needs_frame;
2440 struct dwarf2_per_cu_data *per_cu;
2441 };
2442
2443 /* Reads from registers do require a frame. */
2444 static CORE_ADDR
2445 needs_frame_read_addr_from_reg (void *baton, int regnum)
2446 {
2447 struct needs_frame_baton *nf_baton = baton;
2448
2449 nf_baton->needs_frame = 1;
2450 return 1;
2451 }
2452
2453 /* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2454 Reads from registers do require a frame. */
2455
2456 static struct value *
2457 needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2458 {
2459 struct needs_frame_baton *nf_baton = baton;
2460
2461 nf_baton->needs_frame = 1;
2462 return value_zero (type, not_lval);
2463 }
2464
2465 /* Reads from memory do not require a frame. */
2466 static void
2467 needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
2468 {
2469 memset (buf, 0, len);
2470 }
2471
2472 /* Frame-relative accesses do require a frame. */
2473 static void
2474 needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
2475 {
2476 static gdb_byte lit0 = DW_OP_lit0;
2477 struct needs_frame_baton *nf_baton = baton;
2478
2479 *start = &lit0;
2480 *length = 1;
2481
2482 nf_baton->needs_frame = 1;
2483 }
2484
2485 /* CFA accesses require a frame. */
2486
2487 static CORE_ADDR
2488 needs_frame_frame_cfa (void *baton)
2489 {
2490 struct needs_frame_baton *nf_baton = baton;
2491
2492 nf_baton->needs_frame = 1;
2493 return 1;
2494 }
2495
2496 /* Thread-local accesses do require a frame. */
2497 static CORE_ADDR
2498 needs_frame_tls_address (void *baton, CORE_ADDR offset)
2499 {
2500 struct needs_frame_baton *nf_baton = baton;
2501
2502 nf_baton->needs_frame = 1;
2503 return 1;
2504 }
2505
2506 /* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2507
2508 static void
2509 needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
2510 {
2511 struct needs_frame_baton *nf_baton = ctx->baton;
2512
2513 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
2514 ctx->funcs->get_frame_pc, ctx->baton);
2515 }
2516
2517 /* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2518
2519 static void
2520 needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
2521 enum call_site_parameter_kind kind,
2522 union call_site_parameter_u kind_u, int deref_size)
2523 {
2524 struct needs_frame_baton *nf_baton = ctx->baton;
2525
2526 nf_baton->needs_frame = 1;
2527
2528 /* The expression may require some stub values on DWARF stack. */
2529 dwarf_expr_push_address (ctx, 0, 0);
2530 }
2531
2532 /* DW_OP_GNU_addr_index doesn't require a frame. */
2533
2534 static CORE_ADDR
2535 needs_get_addr_index (void *baton, unsigned int index)
2536 {
2537 /* Nothing to do. */
2538 return 1;
2539 }
2540
2541 /* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2542
2543 static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2544 {
2545 needs_frame_read_addr_from_reg,
2546 needs_frame_get_reg_value,
2547 needs_frame_read_mem,
2548 needs_frame_frame_base,
2549 needs_frame_frame_cfa,
2550 needs_frame_frame_cfa, /* get_frame_pc */
2551 needs_frame_tls_address,
2552 needs_frame_dwarf_call,
2553 NULL, /* get_base_type */
2554 needs_dwarf_reg_entry_value,
2555 needs_get_addr_index
2556 };
2557
2558 /* Return non-zero iff the location expression at DATA (length SIZE)
2559 requires a frame to evaluate. */
2560
2561 static int
2562 dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
2563 struct dwarf2_per_cu_data *per_cu)
2564 {
2565 struct needs_frame_baton baton;
2566 struct dwarf_expr_context *ctx;
2567 int in_reg;
2568 struct cleanup *old_chain;
2569 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
2570
2571 baton.needs_frame = 0;
2572 baton.per_cu = per_cu;
2573
2574 ctx = new_dwarf_expr_context ();
2575 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
2576 make_cleanup_value_free_to_mark (value_mark ());
2577
2578 ctx->gdbarch = get_objfile_arch (objfile);
2579 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
2580 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2581 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
2582 ctx->baton = &baton;
2583 ctx->funcs = &needs_frame_ctx_funcs;
2584
2585 dwarf_expr_eval (ctx, data, size);
2586
2587 in_reg = ctx->location == DWARF_VALUE_REGISTER;
2588
2589 if (ctx->num_pieces > 0)
2590 {
2591 int i;
2592
2593 /* If the location has several pieces, and any of them are in
2594 registers, then we will need a frame to fetch them from. */
2595 for (i = 0; i < ctx->num_pieces; i++)
2596 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
2597 in_reg = 1;
2598 }
2599
2600 do_cleanups (old_chain);
2601
2602 return baton.needs_frame || in_reg;
2603 }
2604
2605 /* A helper function that throws an unimplemented error mentioning a
2606 given DWARF operator. */
2607
2608 static void
2609 unimplemented (unsigned int op)
2610 {
2611 const char *name = get_DW_OP_name (op);
2612
2613 if (name)
2614 error (_("DWARF operator %s cannot be translated to an agent expression"),
2615 name);
2616 else
2617 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2618 "to an agent expression"),
2619 op);
2620 }
2621
2622 /* A helper function to convert a DWARF register to an arch register.
2623 ARCH is the architecture.
2624 DWARF_REG is the register.
2625 This will throw an exception if the DWARF register cannot be
2626 translated to an architecture register. */
2627
2628 static int
2629 translate_register (struct gdbarch *arch, int dwarf_reg)
2630 {
2631 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2632 if (reg == -1)
2633 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2634 return reg;
2635 }
2636
2637 /* A helper function that emits an access to memory. ARCH is the
2638 target architecture. EXPR is the expression which we are building.
2639 NBITS is the number of bits we want to read. This emits the
2640 opcodes needed to read the memory and then extract the desired
2641 bits. */
2642
2643 static void
2644 access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
2645 {
2646 ULONGEST nbytes = (nbits + 7) / 8;
2647
2648 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
2649
2650 if (expr->tracing)
2651 ax_trace_quick (expr, nbytes);
2652
2653 if (nbits <= 8)
2654 ax_simple (expr, aop_ref8);
2655 else if (nbits <= 16)
2656 ax_simple (expr, aop_ref16);
2657 else if (nbits <= 32)
2658 ax_simple (expr, aop_ref32);
2659 else
2660 ax_simple (expr, aop_ref64);
2661
2662 /* If we read exactly the number of bytes we wanted, we're done. */
2663 if (8 * nbytes == nbits)
2664 return;
2665
2666 if (gdbarch_bits_big_endian (arch))
2667 {
2668 /* On a bits-big-endian machine, we want the high-order
2669 NBITS. */
2670 ax_const_l (expr, 8 * nbytes - nbits);
2671 ax_simple (expr, aop_rsh_unsigned);
2672 }
2673 else
2674 {
2675 /* On a bits-little-endian box, we want the low-order NBITS. */
2676 ax_zero_ext (expr, nbits);
2677 }
2678 }
2679
2680 /* A helper function to return the frame's PC. */
2681
2682 static CORE_ADDR
2683 get_ax_pc (void *baton)
2684 {
2685 struct agent_expr *expr = baton;
2686
2687 return expr->scope;
2688 }
2689
2690 /* Compile a DWARF location expression to an agent expression.
2691
2692 EXPR is the agent expression we are building.
2693 LOC is the agent value we modify.
2694 ARCH is the architecture.
2695 ADDR_SIZE is the size of addresses, in bytes.
2696 OP_PTR is the start of the location expression.
2697 OP_END is one past the last byte of the location expression.
2698
2699 This will throw an exception for various kinds of errors -- for
2700 example, if the expression cannot be compiled, or if the expression
2701 is invalid. */
2702
2703 void
2704 dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2705 struct gdbarch *arch, unsigned int addr_size,
2706 const gdb_byte *op_ptr, const gdb_byte *op_end,
2707 struct dwarf2_per_cu_data *per_cu)
2708 {
2709 struct cleanup *cleanups;
2710 int i, *offsets;
2711 VEC(int) *dw_labels = NULL, *patches = NULL;
2712 const gdb_byte * const base = op_ptr;
2713 const gdb_byte *previous_piece = op_ptr;
2714 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2715 ULONGEST bits_collected = 0;
2716 unsigned int addr_size_bits = 8 * addr_size;
2717 int bits_big_endian = gdbarch_bits_big_endian (arch);
2718
2719 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2720 cleanups = make_cleanup (xfree, offsets);
2721
2722 for (i = 0; i < op_end - op_ptr; ++i)
2723 offsets[i] = -1;
2724
2725 make_cleanup (VEC_cleanup (int), &dw_labels);
2726 make_cleanup (VEC_cleanup (int), &patches);
2727
2728 /* By default we are making an address. */
2729 loc->kind = axs_lvalue_memory;
2730
2731 while (op_ptr < op_end)
2732 {
2733 enum dwarf_location_atom op = *op_ptr;
2734 uint64_t uoffset, reg;
2735 int64_t offset;
2736 int i;
2737
2738 offsets[op_ptr - base] = expr->len;
2739 ++op_ptr;
2740
2741 /* Our basic approach to code generation is to map DWARF
2742 operations directly to AX operations. However, there are
2743 some differences.
2744
2745 First, DWARF works on address-sized units, but AX always uses
2746 LONGEST. For most operations we simply ignore this
2747 difference; instead we generate sign extensions as needed
2748 before division and comparison operations. It would be nice
2749 to omit the sign extensions, but there is no way to determine
2750 the size of the target's LONGEST. (This code uses the size
2751 of the host LONGEST in some cases -- that is a bug but it is
2752 difficult to fix.)
2753
2754 Second, some DWARF operations cannot be translated to AX.
2755 For these we simply fail. See
2756 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2757 switch (op)
2758 {
2759 case DW_OP_lit0:
2760 case DW_OP_lit1:
2761 case DW_OP_lit2:
2762 case DW_OP_lit3:
2763 case DW_OP_lit4:
2764 case DW_OP_lit5:
2765 case DW_OP_lit6:
2766 case DW_OP_lit7:
2767 case DW_OP_lit8:
2768 case DW_OP_lit9:
2769 case DW_OP_lit10:
2770 case DW_OP_lit11:
2771 case DW_OP_lit12:
2772 case DW_OP_lit13:
2773 case DW_OP_lit14:
2774 case DW_OP_lit15:
2775 case DW_OP_lit16:
2776 case DW_OP_lit17:
2777 case DW_OP_lit18:
2778 case DW_OP_lit19:
2779 case DW_OP_lit20:
2780 case DW_OP_lit21:
2781 case DW_OP_lit22:
2782 case DW_OP_lit23:
2783 case DW_OP_lit24:
2784 case DW_OP_lit25:
2785 case DW_OP_lit26:
2786 case DW_OP_lit27:
2787 case DW_OP_lit28:
2788 case DW_OP_lit29:
2789 case DW_OP_lit30:
2790 case DW_OP_lit31:
2791 ax_const_l (expr, op - DW_OP_lit0);
2792 break;
2793
2794 case DW_OP_addr:
2795 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
2796 op_ptr += addr_size;
2797 /* Some versions of GCC emit DW_OP_addr before
2798 DW_OP_GNU_push_tls_address. In this case the value is an
2799 index, not an address. We don't support things like
2800 branching between the address and the TLS op. */
2801 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
2802 uoffset += dwarf2_per_cu_text_offset (per_cu);
2803 ax_const_l (expr, uoffset);
2804 break;
2805
2806 case DW_OP_const1u:
2807 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2808 op_ptr += 1;
2809 break;
2810 case DW_OP_const1s:
2811 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2812 op_ptr += 1;
2813 break;
2814 case DW_OP_const2u:
2815 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2816 op_ptr += 2;
2817 break;
2818 case DW_OP_const2s:
2819 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2820 op_ptr += 2;
2821 break;
2822 case DW_OP_const4u:
2823 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2824 op_ptr += 4;
2825 break;
2826 case DW_OP_const4s:
2827 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2828 op_ptr += 4;
2829 break;
2830 case DW_OP_const8u:
2831 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2832 op_ptr += 8;
2833 break;
2834 case DW_OP_const8s:
2835 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2836 op_ptr += 8;
2837 break;
2838 case DW_OP_constu:
2839 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
2840 ax_const_l (expr, uoffset);
2841 break;
2842 case DW_OP_consts:
2843 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2844 ax_const_l (expr, offset);
2845 break;
2846
2847 case DW_OP_reg0:
2848 case DW_OP_reg1:
2849 case DW_OP_reg2:
2850 case DW_OP_reg3:
2851 case DW_OP_reg4:
2852 case DW_OP_reg5:
2853 case DW_OP_reg6:
2854 case DW_OP_reg7:
2855 case DW_OP_reg8:
2856 case DW_OP_reg9:
2857 case DW_OP_reg10:
2858 case DW_OP_reg11:
2859 case DW_OP_reg12:
2860 case DW_OP_reg13:
2861 case DW_OP_reg14:
2862 case DW_OP_reg15:
2863 case DW_OP_reg16:
2864 case DW_OP_reg17:
2865 case DW_OP_reg18:
2866 case DW_OP_reg19:
2867 case DW_OP_reg20:
2868 case DW_OP_reg21:
2869 case DW_OP_reg22:
2870 case DW_OP_reg23:
2871 case DW_OP_reg24:
2872 case DW_OP_reg25:
2873 case DW_OP_reg26:
2874 case DW_OP_reg27:
2875 case DW_OP_reg28:
2876 case DW_OP_reg29:
2877 case DW_OP_reg30:
2878 case DW_OP_reg31:
2879 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2880 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2881 loc->kind = axs_lvalue_register;
2882 break;
2883
2884 case DW_OP_regx:
2885 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2886 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2887 loc->u.reg = translate_register (arch, reg);
2888 loc->kind = axs_lvalue_register;
2889 break;
2890
2891 case DW_OP_implicit_value:
2892 {
2893 uint64_t len;
2894
2895 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
2896 if (op_ptr + len > op_end)
2897 error (_("DW_OP_implicit_value: too few bytes available."));
2898 if (len > sizeof (ULONGEST))
2899 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
2900 (int) len);
2901
2902 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
2903 byte_order));
2904 op_ptr += len;
2905 dwarf_expr_require_composition (op_ptr, op_end,
2906 "DW_OP_implicit_value");
2907
2908 loc->kind = axs_rvalue;
2909 }
2910 break;
2911
2912 case DW_OP_stack_value:
2913 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
2914 loc->kind = axs_rvalue;
2915 break;
2916
2917 case DW_OP_breg0:
2918 case DW_OP_breg1:
2919 case DW_OP_breg2:
2920 case DW_OP_breg3:
2921 case DW_OP_breg4:
2922 case DW_OP_breg5:
2923 case DW_OP_breg6:
2924 case DW_OP_breg7:
2925 case DW_OP_breg8:
2926 case DW_OP_breg9:
2927 case DW_OP_breg10:
2928 case DW_OP_breg11:
2929 case DW_OP_breg12:
2930 case DW_OP_breg13:
2931 case DW_OP_breg14:
2932 case DW_OP_breg15:
2933 case DW_OP_breg16:
2934 case DW_OP_breg17:
2935 case DW_OP_breg18:
2936 case DW_OP_breg19:
2937 case DW_OP_breg20:
2938 case DW_OP_breg21:
2939 case DW_OP_breg22:
2940 case DW_OP_breg23:
2941 case DW_OP_breg24:
2942 case DW_OP_breg25:
2943 case DW_OP_breg26:
2944 case DW_OP_breg27:
2945 case DW_OP_breg28:
2946 case DW_OP_breg29:
2947 case DW_OP_breg30:
2948 case DW_OP_breg31:
2949 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2950 i = translate_register (arch, op - DW_OP_breg0);
2951 ax_reg (expr, i);
2952 if (offset != 0)
2953 {
2954 ax_const_l (expr, offset);
2955 ax_simple (expr, aop_add);
2956 }
2957 break;
2958 case DW_OP_bregx:
2959 {
2960 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
2961 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2962 i = translate_register (arch, reg);
2963 ax_reg (expr, i);
2964 if (offset != 0)
2965 {
2966 ax_const_l (expr, offset);
2967 ax_simple (expr, aop_add);
2968 }
2969 }
2970 break;
2971 case DW_OP_fbreg:
2972 {
2973 const gdb_byte *datastart;
2974 size_t datalen;
2975 struct block *b;
2976 struct symbol *framefunc;
2977
2978 b = block_for_pc (expr->scope);
2979
2980 if (!b)
2981 error (_("No block found for address"));
2982
2983 framefunc = block_linkage_function (b);
2984
2985 if (!framefunc)
2986 error (_("No function found for block"));
2987
2988 dwarf_expr_frame_base_1 (framefunc, expr->scope,
2989 &datastart, &datalen);
2990
2991 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
2992 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
2993 datastart + datalen, per_cu);
2994 if (loc->kind == axs_lvalue_register)
2995 require_rvalue (expr, loc);
2996
2997 if (offset != 0)
2998 {
2999 ax_const_l (expr, offset);
3000 ax_simple (expr, aop_add);
3001 }
3002
3003 loc->kind = axs_lvalue_memory;
3004 }
3005 break;
3006
3007 case DW_OP_dup:
3008 ax_simple (expr, aop_dup);
3009 break;
3010
3011 case DW_OP_drop:
3012 ax_simple (expr, aop_pop);
3013 break;
3014
3015 case DW_OP_pick:
3016 offset = *op_ptr++;
3017 ax_pick (expr, offset);
3018 break;
3019
3020 case DW_OP_swap:
3021 ax_simple (expr, aop_swap);
3022 break;
3023
3024 case DW_OP_over:
3025 ax_pick (expr, 1);
3026 break;
3027
3028 case DW_OP_rot:
3029 ax_simple (expr, aop_rot);
3030 break;
3031
3032 case DW_OP_deref:
3033 case DW_OP_deref_size:
3034 {
3035 int size;
3036
3037 if (op == DW_OP_deref_size)
3038 size = *op_ptr++;
3039 else
3040 size = addr_size;
3041
3042 if (size != 1 && size != 2 && size != 4 && size != 8)
3043 error (_("Unsupported size %d in %s"),
3044 size, get_DW_OP_name (op));
3045 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3046 }
3047 break;
3048
3049 case DW_OP_abs:
3050 /* Sign extend the operand. */
3051 ax_ext (expr, addr_size_bits);
3052 ax_simple (expr, aop_dup);
3053 ax_const_l (expr, 0);
3054 ax_simple (expr, aop_less_signed);
3055 ax_simple (expr, aop_log_not);
3056 i = ax_goto (expr, aop_if_goto);
3057 /* We have to emit 0 - X. */
3058 ax_const_l (expr, 0);
3059 ax_simple (expr, aop_swap);
3060 ax_simple (expr, aop_sub);
3061 ax_label (expr, i, expr->len);
3062 break;
3063
3064 case DW_OP_neg:
3065 /* No need to sign extend here. */
3066 ax_const_l (expr, 0);
3067 ax_simple (expr, aop_swap);
3068 ax_simple (expr, aop_sub);
3069 break;
3070
3071 case DW_OP_not:
3072 /* Sign extend the operand. */
3073 ax_ext (expr, addr_size_bits);
3074 ax_simple (expr, aop_bit_not);
3075 break;
3076
3077 case DW_OP_plus_uconst:
3078 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3079 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3080 but we micro-optimize anyhow. */
3081 if (reg != 0)
3082 {
3083 ax_const_l (expr, reg);
3084 ax_simple (expr, aop_add);
3085 }
3086 break;
3087
3088 case DW_OP_and:
3089 ax_simple (expr, aop_bit_and);
3090 break;
3091
3092 case DW_OP_div:
3093 /* Sign extend the operands. */
3094 ax_ext (expr, addr_size_bits);
3095 ax_simple (expr, aop_swap);
3096 ax_ext (expr, addr_size_bits);
3097 ax_simple (expr, aop_swap);
3098 ax_simple (expr, aop_div_signed);
3099 break;
3100
3101 case DW_OP_minus:
3102 ax_simple (expr, aop_sub);
3103 break;
3104
3105 case DW_OP_mod:
3106 ax_simple (expr, aop_rem_unsigned);
3107 break;
3108
3109 case DW_OP_mul:
3110 ax_simple (expr, aop_mul);
3111 break;
3112
3113 case DW_OP_or:
3114 ax_simple (expr, aop_bit_or);
3115 break;
3116
3117 case DW_OP_plus:
3118 ax_simple (expr, aop_add);
3119 break;
3120
3121 case DW_OP_shl:
3122 ax_simple (expr, aop_lsh);
3123 break;
3124
3125 case DW_OP_shr:
3126 ax_simple (expr, aop_rsh_unsigned);
3127 break;
3128
3129 case DW_OP_shra:
3130 ax_simple (expr, aop_rsh_signed);
3131 break;
3132
3133 case DW_OP_xor:
3134 ax_simple (expr, aop_bit_xor);
3135 break;
3136
3137 case DW_OP_le:
3138 /* Sign extend the operands. */
3139 ax_ext (expr, addr_size_bits);
3140 ax_simple (expr, aop_swap);
3141 ax_ext (expr, addr_size_bits);
3142 /* Note no swap here: A <= B is !(B < A). */
3143 ax_simple (expr, aop_less_signed);
3144 ax_simple (expr, aop_log_not);
3145 break;
3146
3147 case DW_OP_ge:
3148 /* Sign extend the operands. */
3149 ax_ext (expr, addr_size_bits);
3150 ax_simple (expr, aop_swap);
3151 ax_ext (expr, addr_size_bits);
3152 ax_simple (expr, aop_swap);
3153 /* A >= B is !(A < B). */
3154 ax_simple (expr, aop_less_signed);
3155 ax_simple (expr, aop_log_not);
3156 break;
3157
3158 case DW_OP_eq:
3159 /* Sign extend the operands. */
3160 ax_ext (expr, addr_size_bits);
3161 ax_simple (expr, aop_swap);
3162 ax_ext (expr, addr_size_bits);
3163 /* No need for a second swap here. */
3164 ax_simple (expr, aop_equal);
3165 break;
3166
3167 case DW_OP_lt:
3168 /* Sign extend the operands. */
3169 ax_ext (expr, addr_size_bits);
3170 ax_simple (expr, aop_swap);
3171 ax_ext (expr, addr_size_bits);
3172 ax_simple (expr, aop_swap);
3173 ax_simple (expr, aop_less_signed);
3174 break;
3175
3176 case DW_OP_gt:
3177 /* Sign extend the operands. */
3178 ax_ext (expr, addr_size_bits);
3179 ax_simple (expr, aop_swap);
3180 ax_ext (expr, addr_size_bits);
3181 /* Note no swap here: A > B is B < A. */
3182 ax_simple (expr, aop_less_signed);
3183 break;
3184
3185 case DW_OP_ne:
3186 /* Sign extend the operands. */
3187 ax_ext (expr, addr_size_bits);
3188 ax_simple (expr, aop_swap);
3189 ax_ext (expr, addr_size_bits);
3190 /* No need for a swap here. */
3191 ax_simple (expr, aop_equal);
3192 ax_simple (expr, aop_log_not);
3193 break;
3194
3195 case DW_OP_call_frame_cfa:
3196 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3197 loc->kind = axs_lvalue_memory;
3198 break;
3199
3200 case DW_OP_GNU_push_tls_address:
3201 unimplemented (op);
3202 break;
3203
3204 case DW_OP_skip:
3205 offset = extract_signed_integer (op_ptr, 2, byte_order);
3206 op_ptr += 2;
3207 i = ax_goto (expr, aop_goto);
3208 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3209 VEC_safe_push (int, patches, i);
3210 break;
3211
3212 case DW_OP_bra:
3213 offset = extract_signed_integer (op_ptr, 2, byte_order);
3214 op_ptr += 2;
3215 /* Zero extend the operand. */
3216 ax_zero_ext (expr, addr_size_bits);
3217 i = ax_goto (expr, aop_if_goto);
3218 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3219 VEC_safe_push (int, patches, i);
3220 break;
3221
3222 case DW_OP_nop:
3223 break;
3224
3225 case DW_OP_piece:
3226 case DW_OP_bit_piece:
3227 {
3228 uint64_t size, offset;
3229
3230 if (op_ptr - 1 == previous_piece)
3231 error (_("Cannot translate empty pieces to agent expressions"));
3232 previous_piece = op_ptr - 1;
3233
3234 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3235 if (op == DW_OP_piece)
3236 {
3237 size *= 8;
3238 offset = 0;
3239 }
3240 else
3241 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
3242
3243 if (bits_collected + size > 8 * sizeof (LONGEST))
3244 error (_("Expression pieces exceed word size"));
3245
3246 /* Access the bits. */
3247 switch (loc->kind)
3248 {
3249 case axs_lvalue_register:
3250 ax_reg (expr, loc->u.reg);
3251 break;
3252
3253 case axs_lvalue_memory:
3254 /* Offset the pointer, if needed. */
3255 if (offset > 8)
3256 {
3257 ax_const_l (expr, offset / 8);
3258 ax_simple (expr, aop_add);
3259 offset %= 8;
3260 }
3261 access_memory (arch, expr, size);
3262 break;
3263 }
3264
3265 /* For a bits-big-endian target, shift up what we already
3266 have. For a bits-little-endian target, shift up the
3267 new data. Note that there is a potential bug here if
3268 the DWARF expression leaves multiple values on the
3269 stack. */
3270 if (bits_collected > 0)
3271 {
3272 if (bits_big_endian)
3273 {
3274 ax_simple (expr, aop_swap);
3275 ax_const_l (expr, size);
3276 ax_simple (expr, aop_lsh);
3277 /* We don't need a second swap here, because
3278 aop_bit_or is symmetric. */
3279 }
3280 else
3281 {
3282 ax_const_l (expr, size);
3283 ax_simple (expr, aop_lsh);
3284 }
3285 ax_simple (expr, aop_bit_or);
3286 }
3287
3288 bits_collected += size;
3289 loc->kind = axs_rvalue;
3290 }
3291 break;
3292
3293 case DW_OP_GNU_uninit:
3294 unimplemented (op);
3295
3296 case DW_OP_call2:
3297 case DW_OP_call4:
3298 {
3299 struct dwarf2_locexpr_baton block;
3300 int size = (op == DW_OP_call2 ? 2 : 4);
3301 cu_offset offset;
3302
3303 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3304 op_ptr += size;
3305
3306 offset.cu_off = uoffset;
3307 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3308 get_ax_pc, expr);
3309
3310 /* DW_OP_call_ref is currently not supported. */
3311 gdb_assert (block.per_cu == per_cu);
3312
3313 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3314 block.data, block.data + block.size,
3315 per_cu);
3316 }
3317 break;
3318
3319 case DW_OP_call_ref:
3320 unimplemented (op);
3321
3322 default:
3323 unimplemented (op);
3324 }
3325 }
3326
3327 /* Patch all the branches we emitted. */
3328 for (i = 0; i < VEC_length (int, patches); ++i)
3329 {
3330 int targ = offsets[VEC_index (int, dw_labels, i)];
3331 if (targ == -1)
3332 internal_error (__FILE__, __LINE__, _("invalid label"));
3333 ax_label (expr, VEC_index (int, patches, i), targ);
3334 }
3335
3336 do_cleanups (cleanups);
3337 }
3338
3339 \f
3340 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3341 evaluator to calculate the location. */
3342 static struct value *
3343 locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3344 {
3345 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3346 struct value *val;
3347
3348 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3349 dlbaton->size, dlbaton->per_cu);
3350
3351 return val;
3352 }
3353
3354 /* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3355 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3356 will be thrown. */
3357
3358 static struct value *
3359 locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3360 {
3361 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3362
3363 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3364 dlbaton->size);
3365 }
3366
3367 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
3368 static int
3369 locexpr_read_needs_frame (struct symbol *symbol)
3370 {
3371 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3372
3373 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3374 dlbaton->per_cu);
3375 }
3376
3377 /* Return true if DATA points to the end of a piece. END is one past
3378 the last byte in the expression. */
3379
3380 static int
3381 piece_end_p (const gdb_byte *data, const gdb_byte *end)
3382 {
3383 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3384 }
3385
3386 /* Helper for locexpr_describe_location_piece that finds the name of a
3387 DWARF register. */
3388
3389 static const char *
3390 locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3391 {
3392 int regnum;
3393
3394 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3395 return gdbarch_register_name (gdbarch, regnum);
3396 }
3397
3398 /* Nicely describe a single piece of a location, returning an updated
3399 position in the bytecode sequence. This function cannot recognize
3400 all locations; if a location is not recognized, it simply returns
3401 DATA. If there is an error during reading, e.g. we run off the end
3402 of the buffer, an error is thrown. */
3403
3404 static const gdb_byte *
3405 locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3406 CORE_ADDR addr, struct objfile *objfile,
3407 struct dwarf2_per_cu_data *per_cu,
3408 const gdb_byte *data, const gdb_byte *end,
3409 unsigned int addr_size)
3410 {
3411 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3412 size_t leb128_size;
3413
3414 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3415 {
3416 fprintf_filtered (stream, _("a variable in $%s"),
3417 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
3418 data += 1;
3419 }
3420 else if (data[0] == DW_OP_regx)
3421 {
3422 uint64_t reg;
3423
3424 data = safe_read_uleb128 (data + 1, end, &reg);
3425 fprintf_filtered (stream, _("a variable in $%s"),
3426 locexpr_regname (gdbarch, reg));
3427 }
3428 else if (data[0] == DW_OP_fbreg)
3429 {
3430 struct block *b;
3431 struct symbol *framefunc;
3432 int frame_reg = 0;
3433 int64_t frame_offset;
3434 const gdb_byte *base_data, *new_data, *save_data = data;
3435 size_t base_size;
3436 int64_t base_offset = 0;
3437
3438 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
3439 if (!piece_end_p (new_data, end))
3440 return data;
3441 data = new_data;
3442
3443 b = block_for_pc (addr);
3444
3445 if (!b)
3446 error (_("No block found for address for symbol \"%s\"."),
3447 SYMBOL_PRINT_NAME (symbol));
3448
3449 framefunc = block_linkage_function (b);
3450
3451 if (!framefunc)
3452 error (_("No function found for block for symbol \"%s\"."),
3453 SYMBOL_PRINT_NAME (symbol));
3454
3455 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3456
3457 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3458 {
3459 const gdb_byte *buf_end;
3460
3461 frame_reg = base_data[0] - DW_OP_breg0;
3462 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3463 &base_offset);
3464 if (buf_end != base_data + base_size)
3465 error (_("Unexpected opcode after "
3466 "DW_OP_breg%u for symbol \"%s\"."),
3467 frame_reg, SYMBOL_PRINT_NAME (symbol));
3468 }
3469 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3470 {
3471 /* The frame base is just the register, with no offset. */
3472 frame_reg = base_data[0] - DW_OP_reg0;
3473 base_offset = 0;
3474 }
3475 else
3476 {
3477 /* We don't know what to do with the frame base expression,
3478 so we can't trace this variable; give up. */
3479 return save_data;
3480 }
3481
3482 fprintf_filtered (stream,
3483 _("a variable at frame base reg $%s offset %s+%s"),
3484 locexpr_regname (gdbarch, frame_reg),
3485 plongest (base_offset), plongest (frame_offset));
3486 }
3487 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3488 && piece_end_p (data, end))
3489 {
3490 int64_t offset;
3491
3492 data = safe_read_sleb128 (data + 1, end, &offset);
3493
3494 fprintf_filtered (stream,
3495 _("a variable at offset %s from base reg $%s"),
3496 plongest (offset),
3497 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
3498 }
3499
3500 /* The location expression for a TLS variable looks like this (on a
3501 64-bit LE machine):
3502
3503 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3504 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
3505
3506 0x3 is the encoding for DW_OP_addr, which has an operand as long
3507 as the size of an address on the target machine (here is 8
3508 bytes). Note that more recent version of GCC emit DW_OP_const4u
3509 or DW_OP_const8u, depending on address size, rather than
3510 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3511 The operand represents the offset at which the variable is within
3512 the thread local storage. */
3513
3514 else if (data + 1 + addr_size < end
3515 && (data[0] == DW_OP_addr
3516 || (addr_size == 4 && data[0] == DW_OP_const4u)
3517 || (addr_size == 8 && data[0] == DW_OP_const8u))
3518 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3519 && piece_end_p (data + 2 + addr_size, end))
3520 {
3521 ULONGEST offset;
3522 offset = extract_unsigned_integer (data + 1, addr_size,
3523 gdbarch_byte_order (gdbarch));
3524
3525 fprintf_filtered (stream,
3526 _("a thread-local variable at offset 0x%s "
3527 "in the thread-local storage for `%s'"),
3528 phex_nz (offset, addr_size), objfile_name (objfile));
3529
3530 data += 1 + addr_size + 1;
3531 }
3532
3533 /* With -gsplit-dwarf a TLS variable can also look like this:
3534 DW_AT_location : 3 byte block: fc 4 e0
3535 (DW_OP_GNU_const_index: 4;
3536 DW_OP_GNU_push_tls_address) */
3537 else if (data + 3 <= end
3538 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3539 && data[0] == DW_OP_GNU_const_index
3540 && leb128_size > 0
3541 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3542 && piece_end_p (data + 2 + leb128_size, end))
3543 {
3544 uint64_t offset;
3545
3546 data = safe_read_uleb128 (data + 1, end, &offset);
3547 offset = dwarf2_read_addr_index (per_cu, offset);
3548 fprintf_filtered (stream,
3549 _("a thread-local variable at offset 0x%s "
3550 "in the thread-local storage for `%s'"),
3551 phex_nz (offset, addr_size), objfile_name (objfile));
3552 ++data;
3553 }
3554
3555 else if (data[0] >= DW_OP_lit0
3556 && data[0] <= DW_OP_lit31
3557 && data + 1 < end
3558 && data[1] == DW_OP_stack_value)
3559 {
3560 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3561 data += 2;
3562 }
3563
3564 return data;
3565 }
3566
3567 /* Disassemble an expression, stopping at the end of a piece or at the
3568 end of the expression. Returns a pointer to the next unread byte
3569 in the input expression. If ALL is nonzero, then this function
3570 will keep going until it reaches the end of the expression.
3571 If there is an error during reading, e.g. we run off the end
3572 of the buffer, an error is thrown. */
3573
3574 static const gdb_byte *
3575 disassemble_dwarf_expression (struct ui_file *stream,
3576 struct gdbarch *arch, unsigned int addr_size,
3577 int offset_size, const gdb_byte *start,
3578 const gdb_byte *data, const gdb_byte *end,
3579 int indent, int all,
3580 struct dwarf2_per_cu_data *per_cu)
3581 {
3582 while (data < end
3583 && (all
3584 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3585 {
3586 enum dwarf_location_atom op = *data++;
3587 uint64_t ul;
3588 int64_t l;
3589 const char *name;
3590
3591 name = get_DW_OP_name (op);
3592
3593 if (!name)
3594 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
3595 op, (long) (data - 1 - start));
3596 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3597 (long) (data - 1 - start), name);
3598
3599 switch (op)
3600 {
3601 case DW_OP_addr:
3602 ul = extract_unsigned_integer (data, addr_size,
3603 gdbarch_byte_order (arch));
3604 data += addr_size;
3605 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3606 break;
3607
3608 case DW_OP_const1u:
3609 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3610 data += 1;
3611 fprintf_filtered (stream, " %s", pulongest (ul));
3612 break;
3613 case DW_OP_const1s:
3614 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3615 data += 1;
3616 fprintf_filtered (stream, " %s", plongest (l));
3617 break;
3618 case DW_OP_const2u:
3619 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3620 data += 2;
3621 fprintf_filtered (stream, " %s", pulongest (ul));
3622 break;
3623 case DW_OP_const2s:
3624 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3625 data += 2;
3626 fprintf_filtered (stream, " %s", plongest (l));
3627 break;
3628 case DW_OP_const4u:
3629 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3630 data += 4;
3631 fprintf_filtered (stream, " %s", pulongest (ul));
3632 break;
3633 case DW_OP_const4s:
3634 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3635 data += 4;
3636 fprintf_filtered (stream, " %s", plongest (l));
3637 break;
3638 case DW_OP_const8u:
3639 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3640 data += 8;
3641 fprintf_filtered (stream, " %s", pulongest (ul));
3642 break;
3643 case DW_OP_const8s:
3644 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3645 data += 8;
3646 fprintf_filtered (stream, " %s", plongest (l));
3647 break;
3648 case DW_OP_constu:
3649 data = safe_read_uleb128 (data, end, &ul);
3650 fprintf_filtered (stream, " %s", pulongest (ul));
3651 break;
3652 case DW_OP_consts:
3653 data = safe_read_sleb128 (data, end, &l);
3654 fprintf_filtered (stream, " %s", plongest (l));
3655 break;
3656
3657 case DW_OP_reg0:
3658 case DW_OP_reg1:
3659 case DW_OP_reg2:
3660 case DW_OP_reg3:
3661 case DW_OP_reg4:
3662 case DW_OP_reg5:
3663 case DW_OP_reg6:
3664 case DW_OP_reg7:
3665 case DW_OP_reg8:
3666 case DW_OP_reg9:
3667 case DW_OP_reg10:
3668 case DW_OP_reg11:
3669 case DW_OP_reg12:
3670 case DW_OP_reg13:
3671 case DW_OP_reg14:
3672 case DW_OP_reg15:
3673 case DW_OP_reg16:
3674 case DW_OP_reg17:
3675 case DW_OP_reg18:
3676 case DW_OP_reg19:
3677 case DW_OP_reg20:
3678 case DW_OP_reg21:
3679 case DW_OP_reg22:
3680 case DW_OP_reg23:
3681 case DW_OP_reg24:
3682 case DW_OP_reg25:
3683 case DW_OP_reg26:
3684 case DW_OP_reg27:
3685 case DW_OP_reg28:
3686 case DW_OP_reg29:
3687 case DW_OP_reg30:
3688 case DW_OP_reg31:
3689 fprintf_filtered (stream, " [$%s]",
3690 locexpr_regname (arch, op - DW_OP_reg0));
3691 break;
3692
3693 case DW_OP_regx:
3694 data = safe_read_uleb128 (data, end, &ul);
3695 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
3696 locexpr_regname (arch, (int) ul));
3697 break;
3698
3699 case DW_OP_implicit_value:
3700 data = safe_read_uleb128 (data, end, &ul);
3701 data += ul;
3702 fprintf_filtered (stream, " %s", pulongest (ul));
3703 break;
3704
3705 case DW_OP_breg0:
3706 case DW_OP_breg1:
3707 case DW_OP_breg2:
3708 case DW_OP_breg3:
3709 case DW_OP_breg4:
3710 case DW_OP_breg5:
3711 case DW_OP_breg6:
3712 case DW_OP_breg7:
3713 case DW_OP_breg8:
3714 case DW_OP_breg9:
3715 case DW_OP_breg10:
3716 case DW_OP_breg11:
3717 case DW_OP_breg12:
3718 case DW_OP_breg13:
3719 case DW_OP_breg14:
3720 case DW_OP_breg15:
3721 case DW_OP_breg16:
3722 case DW_OP_breg17:
3723 case DW_OP_breg18:
3724 case DW_OP_breg19:
3725 case DW_OP_breg20:
3726 case DW_OP_breg21:
3727 case DW_OP_breg22:
3728 case DW_OP_breg23:
3729 case DW_OP_breg24:
3730 case DW_OP_breg25:
3731 case DW_OP_breg26:
3732 case DW_OP_breg27:
3733 case DW_OP_breg28:
3734 case DW_OP_breg29:
3735 case DW_OP_breg30:
3736 case DW_OP_breg31:
3737 data = safe_read_sleb128 (data, end, &l);
3738 fprintf_filtered (stream, " %s [$%s]", plongest (l),
3739 locexpr_regname (arch, op - DW_OP_breg0));
3740 break;
3741
3742 case DW_OP_bregx:
3743 data = safe_read_uleb128 (data, end, &ul);
3744 data = safe_read_sleb128 (data, end, &l);
3745 fprintf_filtered (stream, " register %s [$%s] offset %s",
3746 pulongest (ul),
3747 locexpr_regname (arch, (int) ul),
3748 plongest (l));
3749 break;
3750
3751 case DW_OP_fbreg:
3752 data = safe_read_sleb128 (data, end, &l);
3753 fprintf_filtered (stream, " %s", plongest (l));
3754 break;
3755
3756 case DW_OP_xderef_size:
3757 case DW_OP_deref_size:
3758 case DW_OP_pick:
3759 fprintf_filtered (stream, " %d", *data);
3760 ++data;
3761 break;
3762
3763 case DW_OP_plus_uconst:
3764 data = safe_read_uleb128 (data, end, &ul);
3765 fprintf_filtered (stream, " %s", pulongest (ul));
3766 break;
3767
3768 case DW_OP_skip:
3769 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3770 data += 2;
3771 fprintf_filtered (stream, " to %ld",
3772 (long) (data + l - start));
3773 break;
3774
3775 case DW_OP_bra:
3776 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3777 data += 2;
3778 fprintf_filtered (stream, " %ld",
3779 (long) (data + l - start));
3780 break;
3781
3782 case DW_OP_call2:
3783 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3784 data += 2;
3785 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3786 break;
3787
3788 case DW_OP_call4:
3789 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3790 data += 4;
3791 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3792 break;
3793
3794 case DW_OP_call_ref:
3795 ul = extract_unsigned_integer (data, offset_size,
3796 gdbarch_byte_order (arch));
3797 data += offset_size;
3798 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3799 break;
3800
3801 case DW_OP_piece:
3802 data = safe_read_uleb128 (data, end, &ul);
3803 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3804 break;
3805
3806 case DW_OP_bit_piece:
3807 {
3808 uint64_t offset;
3809
3810 data = safe_read_uleb128 (data, end, &ul);
3811 data = safe_read_uleb128 (data, end, &offset);
3812 fprintf_filtered (stream, " size %s offset %s (bits)",
3813 pulongest (ul), pulongest (offset));
3814 }
3815 break;
3816
3817 case DW_OP_GNU_implicit_pointer:
3818 {
3819 ul = extract_unsigned_integer (data, offset_size,
3820 gdbarch_byte_order (arch));
3821 data += offset_size;
3822
3823 data = safe_read_sleb128 (data, end, &l);
3824
3825 fprintf_filtered (stream, " DIE %s offset %s",
3826 phex_nz (ul, offset_size),
3827 plongest (l));
3828 }
3829 break;
3830
3831 case DW_OP_GNU_deref_type:
3832 {
3833 int addr_size = *data++;
3834 cu_offset offset;
3835 struct type *type;
3836
3837 data = safe_read_uleb128 (data, end, &ul);
3838 offset.cu_off = ul;
3839 type = dwarf2_get_die_type (offset, per_cu);
3840 fprintf_filtered (stream, "<");
3841 type_print (type, "", stream, -1);
3842 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
3843 addr_size);
3844 }
3845 break;
3846
3847 case DW_OP_GNU_const_type:
3848 {
3849 cu_offset type_die;
3850 struct type *type;
3851
3852 data = safe_read_uleb128 (data, end, &ul);
3853 type_die.cu_off = ul;
3854 type = dwarf2_get_die_type (type_die, per_cu);
3855 fprintf_filtered (stream, "<");
3856 type_print (type, "", stream, -1);
3857 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3858 }
3859 break;
3860
3861 case DW_OP_GNU_regval_type:
3862 {
3863 uint64_t reg;
3864 cu_offset type_die;
3865 struct type *type;
3866
3867 data = safe_read_uleb128 (data, end, &reg);
3868 data = safe_read_uleb128 (data, end, &ul);
3869 type_die.cu_off = ul;
3870
3871 type = dwarf2_get_die_type (type_die, per_cu);
3872 fprintf_filtered (stream, "<");
3873 type_print (type, "", stream, -1);
3874 fprintf_filtered (stream, " [0x%s]> [$%s]",
3875 phex_nz (type_die.cu_off, 0),
3876 locexpr_regname (arch, reg));
3877 }
3878 break;
3879
3880 case DW_OP_GNU_convert:
3881 case DW_OP_GNU_reinterpret:
3882 {
3883 cu_offset type_die;
3884
3885 data = safe_read_uleb128 (data, end, &ul);
3886 type_die.cu_off = ul;
3887
3888 if (type_die.cu_off == 0)
3889 fprintf_filtered (stream, "<0>");
3890 else
3891 {
3892 struct type *type;
3893
3894 type = dwarf2_get_die_type (type_die, per_cu);
3895 fprintf_filtered (stream, "<");
3896 type_print (type, "", stream, -1);
3897 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
3898 }
3899 }
3900 break;
3901
3902 case DW_OP_GNU_entry_value:
3903 data = safe_read_uleb128 (data, end, &ul);
3904 fputc_filtered ('\n', stream);
3905 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
3906 start, data, data + ul, indent + 2,
3907 all, per_cu);
3908 data += ul;
3909 continue;
3910
3911 case DW_OP_GNU_parameter_ref:
3912 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3913 data += 4;
3914 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3915 break;
3916
3917 case DW_OP_GNU_addr_index:
3918 data = safe_read_uleb128 (data, end, &ul);
3919 ul = dwarf2_read_addr_index (per_cu, ul);
3920 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
3921 break;
3922 case DW_OP_GNU_const_index:
3923 data = safe_read_uleb128 (data, end, &ul);
3924 ul = dwarf2_read_addr_index (per_cu, ul);
3925 fprintf_filtered (stream, " %s", pulongest (ul));
3926 break;
3927 }
3928
3929 fprintf_filtered (stream, "\n");
3930 }
3931
3932 return data;
3933 }
3934
3935 /* Describe a single location, which may in turn consist of multiple
3936 pieces. */
3937
3938 static void
3939 locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
3940 struct ui_file *stream,
3941 const gdb_byte *data, size_t size,
3942 struct objfile *objfile, unsigned int addr_size,
3943 int offset_size, struct dwarf2_per_cu_data *per_cu)
3944 {
3945 const gdb_byte *end = data + size;
3946 int first_piece = 1, bad = 0;
3947
3948 while (data < end)
3949 {
3950 const gdb_byte *here = data;
3951 int disassemble = 1;
3952
3953 if (first_piece)
3954 first_piece = 0;
3955 else
3956 fprintf_filtered (stream, _(", and "));
3957
3958 if (!dwarf2_always_disassemble)
3959 {
3960 data = locexpr_describe_location_piece (symbol, stream,
3961 addr, objfile, per_cu,
3962 data, end, addr_size);
3963 /* If we printed anything, or if we have an empty piece,
3964 then don't disassemble. */
3965 if (data != here
3966 || data[0] == DW_OP_piece
3967 || data[0] == DW_OP_bit_piece)
3968 disassemble = 0;
3969 }
3970 if (disassemble)
3971 {
3972 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
3973 data = disassemble_dwarf_expression (stream,
3974 get_objfile_arch (objfile),
3975 addr_size, offset_size, data,
3976 data, end, 0,
3977 dwarf2_always_disassemble,
3978 per_cu);
3979 }
3980
3981 if (data < end)
3982 {
3983 int empty = data == here;
3984
3985 if (disassemble)
3986 fprintf_filtered (stream, " ");
3987 if (data[0] == DW_OP_piece)
3988 {
3989 uint64_t bytes;
3990
3991 data = safe_read_uleb128 (data + 1, end, &bytes);
3992
3993 if (empty)
3994 fprintf_filtered (stream, _("an empty %s-byte piece"),
3995 pulongest (bytes));
3996 else
3997 fprintf_filtered (stream, _(" [%s-byte piece]"),
3998 pulongest (bytes));
3999 }
4000 else if (data[0] == DW_OP_bit_piece)
4001 {
4002 uint64_t bits, offset;
4003
4004 data = safe_read_uleb128 (data + 1, end, &bits);
4005 data = safe_read_uleb128 (data, end, &offset);
4006
4007 if (empty)
4008 fprintf_filtered (stream,
4009 _("an empty %s-bit piece"),
4010 pulongest (bits));
4011 else
4012 fprintf_filtered (stream,
4013 _(" [%s-bit piece, offset %s bits]"),
4014 pulongest (bits), pulongest (offset));
4015 }
4016 else
4017 {
4018 bad = 1;
4019 break;
4020 }
4021 }
4022 }
4023
4024 if (bad || data > end)
4025 error (_("Corrupted DWARF2 expression for \"%s\"."),
4026 SYMBOL_PRINT_NAME (symbol));
4027 }
4028
4029 /* Print a natural-language description of SYMBOL to STREAM. This
4030 version is for a symbol with a single location. */
4031
4032 static void
4033 locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4034 struct ui_file *stream)
4035 {
4036 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4037 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4038 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4039 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4040
4041 locexpr_describe_location_1 (symbol, addr, stream,
4042 dlbaton->data, dlbaton->size,
4043 objfile, addr_size, offset_size,
4044 dlbaton->per_cu);
4045 }
4046
4047 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4048 any necessary bytecode in AX. */
4049
4050 static void
4051 locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4052 struct agent_expr *ax, struct axs_value *value)
4053 {
4054 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4055 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4056
4057 if (dlbaton->size == 0)
4058 value->optimized_out = 1;
4059 else
4060 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4061 dlbaton->data, dlbaton->data + dlbaton->size,
4062 dlbaton->per_cu);
4063 }
4064
4065 /* The set of location functions used with the DWARF-2 expression
4066 evaluator. */
4067 const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4068 locexpr_read_variable,
4069 locexpr_read_variable_at_entry,
4070 locexpr_read_needs_frame,
4071 locexpr_describe_location,
4072 0, /* location_has_loclist */
4073 locexpr_tracepoint_var_ref
4074 };
4075
4076
4077 /* Wrapper functions for location lists. These generally find
4078 the appropriate location expression and call something above. */
4079
4080 /* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4081 evaluator to calculate the location. */
4082 static struct value *
4083 loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4084 {
4085 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4086 struct value *val;
4087 const gdb_byte *data;
4088 size_t size;
4089 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
4090
4091 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4092 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4093 dlbaton->per_cu);
4094
4095 return val;
4096 }
4097
4098 /* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4099 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4100 will be thrown.
4101
4102 Function always returns non-NULL value, it may be marked optimized out if
4103 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4104 if it cannot resolve the parameter for any reason. */
4105
4106 static struct value *
4107 loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4108 {
4109 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4110 const gdb_byte *data;
4111 size_t size;
4112 CORE_ADDR pc;
4113
4114 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4115 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4116
4117 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4118 if (data == NULL)
4119 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4120
4121 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4122 }
4123
4124 /* Return non-zero iff we need a frame to evaluate SYMBOL. */
4125 static int
4126 loclist_read_needs_frame (struct symbol *symbol)
4127 {
4128 /* If there's a location list, then assume we need to have a frame
4129 to choose the appropriate location expression. With tracking of
4130 global variables this is not necessarily true, but such tracking
4131 is disabled in GCC at the moment until we figure out how to
4132 represent it. */
4133
4134 return 1;
4135 }
4136
4137 /* Print a natural-language description of SYMBOL to STREAM. This
4138 version applies when there is a list of different locations, each
4139 with a specified address range. */
4140
4141 static void
4142 loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4143 struct ui_file *stream)
4144 {
4145 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4146 const gdb_byte *loc_ptr, *buf_end;
4147 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4149 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4150 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4151 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
4152 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
4153 /* Adjust base_address for relocatable objects. */
4154 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
4155 CORE_ADDR base_address = dlbaton->base_address + base_offset;
4156 int done = 0;
4157
4158 loc_ptr = dlbaton->data;
4159 buf_end = dlbaton->data + dlbaton->size;
4160
4161 fprintf_filtered (stream, _("multi-location:\n"));
4162
4163 /* Iterate through locations until we run out. */
4164 while (!done)
4165 {
4166 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4167 int length;
4168 enum debug_loc_kind kind;
4169 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4170
4171 if (dlbaton->from_dwo)
4172 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4173 loc_ptr, buf_end, &new_ptr,
4174 &low, &high, byte_order);
4175 else
4176 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4177 &low, &high,
4178 byte_order, addr_size,
4179 signed_addr_p);
4180 loc_ptr = new_ptr;
4181 switch (kind)
4182 {
4183 case DEBUG_LOC_END_OF_LIST:
4184 done = 1;
4185 continue;
4186 case DEBUG_LOC_BASE_ADDRESS:
4187 base_address = high + base_offset;
4188 fprintf_filtered (stream, _(" Base address %s"),
4189 paddress (gdbarch, base_address));
4190 continue;
4191 case DEBUG_LOC_START_END:
4192 case DEBUG_LOC_START_LENGTH:
4193 break;
4194 case DEBUG_LOC_BUFFER_OVERFLOW:
4195 case DEBUG_LOC_INVALID_ENTRY:
4196 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4197 SYMBOL_PRINT_NAME (symbol));
4198 default:
4199 gdb_assert_not_reached ("bad debug_loc_kind");
4200 }
4201
4202 /* Otherwise, a location expression entry. */
4203 low += base_address;
4204 high += base_address;
4205
4206 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4207 loc_ptr += 2;
4208
4209 /* (It would improve readability to print only the minimum
4210 necessary digits of the second number of the range.) */
4211 fprintf_filtered (stream, _(" Range %s-%s: "),
4212 paddress (gdbarch, low), paddress (gdbarch, high));
4213
4214 /* Now describe this particular location. */
4215 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
4216 objfile, addr_size, offset_size,
4217 dlbaton->per_cu);
4218
4219 fprintf_filtered (stream, "\n");
4220
4221 loc_ptr += length;
4222 }
4223 }
4224
4225 /* Describe the location of SYMBOL as an agent value in VALUE, generating
4226 any necessary bytecode in AX. */
4227 static void
4228 loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4229 struct agent_expr *ax, struct axs_value *value)
4230 {
4231 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4232 const gdb_byte *data;
4233 size_t size;
4234 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4235
4236 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
4237 if (size == 0)
4238 value->optimized_out = 1;
4239 else
4240 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4241 dlbaton->per_cu);
4242 }
4243
4244 /* The set of location functions used with the DWARF-2 expression
4245 evaluator and location lists. */
4246 const struct symbol_computed_ops dwarf2_loclist_funcs = {
4247 loclist_read_variable,
4248 loclist_read_variable_at_entry,
4249 loclist_read_needs_frame,
4250 loclist_describe_location,
4251 1, /* location_has_loclist */
4252 loclist_tracepoint_var_ref
4253 };
4254
4255 /* Provide a prototype to silence -Wmissing-prototypes. */
4256 extern initialize_file_ftype _initialize_dwarf2loc;
4257
4258 void
4259 _initialize_dwarf2loc (void)
4260 {
4261 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4262 &entry_values_debug,
4263 _("Set entry values and tail call frames "
4264 "debugging."),
4265 _("Show entry values and tail call frames "
4266 "debugging."),
4267 _("When non-zero, the process of determining "
4268 "parameter values from function entry point "
4269 "and tail call frames will be printed."),
4270 NULL,
4271 show_entry_values_debug,
4272 &setdebuglist, &showdebuglist);
4273 }