]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
2011-01-05 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support.
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
20
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
28
29 #include "defs.h"
30 #include "bfd.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "dwarf2.h"
35 #include "buildsym.h"
36 #include "demangle.h"
37 #include "expression.h"
38 #include "filenames.h" /* for DOSish file names */
39 #include "macrotab.h"
40 #include "language.h"
41 #include "complaints.h"
42 #include "bcache.h"
43 #include "dwarf2expr.h"
44 #include "dwarf2loc.h"
45 #include "cp-support.h"
46 #include "hashtab.h"
47 #include "command.h"
48 #include "gdbcmd.h"
49 #include "block.h"
50 #include "addrmap.h"
51 #include "typeprint.h"
52 #include "jv-lang.h"
53 #include "psympriv.h"
54 #include "exceptions.h"
55 #include "gdb_stat.h"
56 #include "completer.h"
57 #include "vec.h"
58 #include "c-lang.h"
59 #include "valprint.h"
60
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_assert.h"
64 #include <sys/types.h>
65 #ifdef HAVE_ZLIB_H
66 #include <zlib.h>
67 #endif
68 #ifdef HAVE_MMAP
69 #include <sys/mman.h>
70 #ifndef MAP_FAILED
71 #define MAP_FAILED ((void *) -1)
72 #endif
73 #endif
74
75 typedef struct symbol *symbolp;
76 DEF_VEC_P (symbolp);
77
78 #if 0
79 /* .debug_info header for a compilation unit
80 Because of alignment constraints, this structure has padding and cannot
81 be mapped directly onto the beginning of the .debug_info section. */
82 typedef struct comp_unit_header
83 {
84 unsigned int length; /* length of the .debug_info
85 contribution */
86 unsigned short version; /* version number -- 2 for DWARF
87 version 2 */
88 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
89 unsigned char addr_size; /* byte size of an address -- 4 */
90 }
91 _COMP_UNIT_HEADER;
92 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
93 #endif
94
95 /* .debug_line statement program prologue
96 Because of alignment constraints, this structure has padding and cannot
97 be mapped directly onto the beginning of the .debug_info section. */
98 typedef struct statement_prologue
99 {
100 unsigned int total_length; /* byte length of the statement
101 information */
102 unsigned short version; /* version number -- 2 for DWARF
103 version 2 */
104 unsigned int prologue_length; /* # bytes between prologue &
105 stmt program */
106 unsigned char minimum_instruction_length; /* byte size of
107 smallest instr */
108 unsigned char default_is_stmt; /* initial value of is_stmt
109 register */
110 char line_base;
111 unsigned char line_range;
112 unsigned char opcode_base; /* number assigned to first special
113 opcode */
114 unsigned char *standard_opcode_lengths;
115 }
116 _STATEMENT_PROLOGUE;
117
118 /* When non-zero, dump DIEs after they are read in. */
119 static int dwarf2_die_debug = 0;
120
121 static int pagesize;
122
123 /* When set, the file that we're processing is known to have debugging
124 info for C++ namespaces. GCC 3.3.x did not produce this information,
125 but later versions do. */
126
127 static int processing_has_namespace_info;
128
129 static const struct objfile_data *dwarf2_objfile_data_key;
130
131 struct dwarf2_section_info
132 {
133 asection *asection;
134 gdb_byte *buffer;
135 bfd_size_type size;
136 int was_mmapped;
137 /* True if we have tried to read this section. */
138 int readin;
139 };
140
141 /* All offsets in the index are of this type. It must be
142 architecture-independent. */
143 typedef uint32_t offset_type;
144
145 DEF_VEC_I (offset_type);
146
147 /* A description of the mapped index. The file format is described in
148 a comment by the code that writes the index. */
149 struct mapped_index
150 {
151 /* The total length of the buffer. */
152 off_t total_size;
153 /* A pointer to the address table data. */
154 const gdb_byte *address_table;
155 /* Size of the address table data in bytes. */
156 offset_type address_table_size;
157 /* The symbol table, implemented as a hash table. */
158 const offset_type *symbol_table;
159 /* Size in slots, each slot is 2 offset_types. */
160 offset_type symbol_table_slots;
161 /* A pointer to the constant pool. */
162 const char *constant_pool;
163 };
164
165 struct dwarf2_per_objfile
166 {
167 struct dwarf2_section_info info;
168 struct dwarf2_section_info abbrev;
169 struct dwarf2_section_info line;
170 struct dwarf2_section_info loc;
171 struct dwarf2_section_info macinfo;
172 struct dwarf2_section_info str;
173 struct dwarf2_section_info ranges;
174 struct dwarf2_section_info types;
175 struct dwarf2_section_info frame;
176 struct dwarf2_section_info eh_frame;
177 struct dwarf2_section_info gdb_index;
178
179 /* Back link. */
180 struct objfile *objfile;
181
182 /* A list of all the compilation units. This is used to locate
183 the target compilation unit of a particular reference. */
184 struct dwarf2_per_cu_data **all_comp_units;
185
186 /* The number of compilation units in ALL_COMP_UNITS. */
187 int n_comp_units;
188
189 /* The number of .debug_types-related CUs. */
190 int n_type_comp_units;
191
192 /* The .debug_types-related CUs. */
193 struct dwarf2_per_cu_data **type_comp_units;
194
195 /* A chain of compilation units that are currently read in, so that
196 they can be freed later. */
197 struct dwarf2_per_cu_data *read_in_chain;
198
199 /* A table mapping .debug_types signatures to its signatured_type entry.
200 This is NULL if the .debug_types section hasn't been read in yet. */
201 htab_t signatured_types;
202
203 /* A flag indicating wether this objfile has a section loaded at a
204 VMA of 0. */
205 int has_section_at_zero;
206
207 /* True if we are using the mapped index,
208 or we are faking it for OBJF_READNOW's sake. */
209 unsigned char using_index;
210
211 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
212 struct mapped_index *index_table;
213
214 /* When using index_table, this keeps track of all quick_file_names entries.
215 TUs can share line table entries with CUs or other TUs, and there can be
216 a lot more TUs than unique line tables, so we maintain a separate table
217 of all line table entries to support the sharing. */
218 htab_t quick_file_names_table;
219
220 /* Set during partial symbol reading, to prevent queueing of full
221 symbols. */
222 int reading_partial_symbols;
223
224 /* Table mapping type .debug_info DIE offsets to types.
225 This is NULL if not allocated yet.
226 It (currently) makes sense to allocate debug_types_type_hash lazily.
227 To keep things simple we allocate both lazily. */
228 htab_t debug_info_type_hash;
229
230 /* Table mapping type .debug_types DIE offsets to types.
231 This is NULL if not allocated yet. */
232 htab_t debug_types_type_hash;
233 };
234
235 static struct dwarf2_per_objfile *dwarf2_per_objfile;
236
237 /* names of the debugging sections */
238
239 /* Note that if the debugging section has been compressed, it might
240 have a name like .zdebug_info. */
241
242 #define INFO_SECTION "debug_info"
243 #define ABBREV_SECTION "debug_abbrev"
244 #define LINE_SECTION "debug_line"
245 #define LOC_SECTION "debug_loc"
246 #define MACINFO_SECTION "debug_macinfo"
247 #define STR_SECTION "debug_str"
248 #define RANGES_SECTION "debug_ranges"
249 #define TYPES_SECTION "debug_types"
250 #define FRAME_SECTION "debug_frame"
251 #define EH_FRAME_SECTION "eh_frame"
252 #define GDB_INDEX_SECTION "gdb_index"
253
254 /* local data types */
255
256 /* We hold several abbreviation tables in memory at the same time. */
257 #ifndef ABBREV_HASH_SIZE
258 #define ABBREV_HASH_SIZE 121
259 #endif
260
261 /* The data in a compilation unit header, after target2host
262 translation, looks like this. */
263 struct comp_unit_head
264 {
265 unsigned int length;
266 short version;
267 unsigned char addr_size;
268 unsigned char signed_addr_p;
269 unsigned int abbrev_offset;
270
271 /* Size of file offsets; either 4 or 8. */
272 unsigned int offset_size;
273
274 /* Size of the length field; either 4 or 12. */
275 unsigned int initial_length_size;
276
277 /* Offset to the first byte of this compilation unit header in the
278 .debug_info section, for resolving relative reference dies. */
279 unsigned int offset;
280
281 /* Offset to first die in this cu from the start of the cu.
282 This will be the first byte following the compilation unit header. */
283 unsigned int first_die_offset;
284 };
285
286 /* Type used for delaying computation of method physnames.
287 See comments for compute_delayed_physnames. */
288 struct delayed_method_info
289 {
290 /* The type to which the method is attached, i.e., its parent class. */
291 struct type *type;
292
293 /* The index of the method in the type's function fieldlists. */
294 int fnfield_index;
295
296 /* The index of the method in the fieldlist. */
297 int index;
298
299 /* The name of the DIE. */
300 const char *name;
301
302 /* The DIE associated with this method. */
303 struct die_info *die;
304 };
305
306 typedef struct delayed_method_info delayed_method_info;
307 DEF_VEC_O (delayed_method_info);
308
309 /* Internal state when decoding a particular compilation unit. */
310 struct dwarf2_cu
311 {
312 /* The objfile containing this compilation unit. */
313 struct objfile *objfile;
314
315 /* The header of the compilation unit. */
316 struct comp_unit_head header;
317
318 /* Base address of this compilation unit. */
319 CORE_ADDR base_address;
320
321 /* Non-zero if base_address has been set. */
322 int base_known;
323
324 struct function_range *first_fn, *last_fn, *cached_fn;
325
326 /* The language we are debugging. */
327 enum language language;
328 const struct language_defn *language_defn;
329
330 const char *producer;
331
332 /* The generic symbol table building routines have separate lists for
333 file scope symbols and all all other scopes (local scopes). So
334 we need to select the right one to pass to add_symbol_to_list().
335 We do it by keeping a pointer to the correct list in list_in_scope.
336
337 FIXME: The original dwarf code just treated the file scope as the
338 first local scope, and all other local scopes as nested local
339 scopes, and worked fine. Check to see if we really need to
340 distinguish these in buildsym.c. */
341 struct pending **list_in_scope;
342
343 /* DWARF abbreviation table associated with this compilation unit. */
344 struct abbrev_info **dwarf2_abbrevs;
345
346 /* Storage for the abbrev table. */
347 struct obstack abbrev_obstack;
348
349 /* Hash table holding all the loaded partial DIEs. */
350 htab_t partial_dies;
351
352 /* Storage for things with the same lifetime as this read-in compilation
353 unit, including partial DIEs. */
354 struct obstack comp_unit_obstack;
355
356 /* When multiple dwarf2_cu structures are living in memory, this field
357 chains them all together, so that they can be released efficiently.
358 We will probably also want a generation counter so that most-recently-used
359 compilation units are cached... */
360 struct dwarf2_per_cu_data *read_in_chain;
361
362 /* Backchain to our per_cu entry if the tree has been built. */
363 struct dwarf2_per_cu_data *per_cu;
364
365 /* How many compilation units ago was this CU last referenced? */
366 int last_used;
367
368 /* A hash table of die offsets for following references. */
369 htab_t die_hash;
370
371 /* Full DIEs if read in. */
372 struct die_info *dies;
373
374 /* A set of pointers to dwarf2_per_cu_data objects for compilation
375 units referenced by this one. Only set during full symbol processing;
376 partial symbol tables do not have dependencies. */
377 htab_t dependencies;
378
379 /* Header data from the line table, during full symbol processing. */
380 struct line_header *line_header;
381
382 /* A list of methods which need to have physnames computed
383 after all type information has been read. */
384 VEC (delayed_method_info) *method_list;
385
386 /* Mark used when releasing cached dies. */
387 unsigned int mark : 1;
388
389 /* This flag will be set if this compilation unit might include
390 inter-compilation-unit references. */
391 unsigned int has_form_ref_addr : 1;
392
393 /* This flag will be set if this compilation unit includes any
394 DW_TAG_namespace DIEs. If we know that there are explicit
395 DIEs for namespaces, we don't need to try to infer them
396 from mangled names. */
397 unsigned int has_namespace_info : 1;
398 };
399
400 /* Persistent data held for a compilation unit, even when not
401 processing it. We put a pointer to this structure in the
402 read_symtab_private field of the psymtab. If we encounter
403 inter-compilation-unit references, we also maintain a sorted
404 list of all compilation units. */
405
406 struct dwarf2_per_cu_data
407 {
408 /* The start offset and length of this compilation unit. 2**29-1
409 bytes should suffice to store the length of any compilation unit
410 - if it doesn't, GDB will fall over anyway.
411 NOTE: Unlike comp_unit_head.length, this length includes
412 initial_length_size. */
413 unsigned int offset;
414 unsigned int length : 29;
415
416 /* Flag indicating this compilation unit will be read in before
417 any of the current compilation units are processed. */
418 unsigned int queued : 1;
419
420 /* This flag will be set if we need to load absolutely all DIEs
421 for this compilation unit, instead of just the ones we think
422 are interesting. It gets set if we look for a DIE in the
423 hash table and don't find it. */
424 unsigned int load_all_dies : 1;
425
426 /* Non-zero if this CU is from .debug_types.
427 Otherwise it's from .debug_info. */
428 unsigned int from_debug_types : 1;
429
430 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
431 of the CU cache it gets reset to NULL again. */
432 struct dwarf2_cu *cu;
433
434 /* The corresponding objfile. */
435 struct objfile *objfile;
436
437 /* When using partial symbol tables, the 'psymtab' field is active.
438 Otherwise the 'quick' field is active. */
439 union
440 {
441 /* The partial symbol table associated with this compilation unit,
442 or NULL for partial units (which do not have an associated
443 symtab). */
444 struct partial_symtab *psymtab;
445
446 /* Data needed by the "quick" functions. */
447 struct dwarf2_per_cu_quick_data *quick;
448 } v;
449 };
450
451 /* Entry in the signatured_types hash table. */
452
453 struct signatured_type
454 {
455 ULONGEST signature;
456
457 /* Offset in .debug_types of the TU (type_unit) for this type. */
458 unsigned int offset;
459
460 /* Offset in .debug_types of the type defined by this TU. */
461 unsigned int type_offset;
462
463 /* The CU(/TU) of this type. */
464 struct dwarf2_per_cu_data per_cu;
465 };
466
467 /* Struct used to pass misc. parameters to read_die_and_children, et. al.
468 which are used for both .debug_info and .debug_types dies.
469 All parameters here are unchanging for the life of the call.
470 This struct exists to abstract away the constant parameters of
471 die reading. */
472
473 struct die_reader_specs
474 {
475 /* The bfd of this objfile. */
476 bfd* abfd;
477
478 /* The CU of the DIE we are parsing. */
479 struct dwarf2_cu *cu;
480
481 /* Pointer to start of section buffer.
482 This is either the start of .debug_info or .debug_types. */
483 const gdb_byte *buffer;
484 };
485
486 /* The line number information for a compilation unit (found in the
487 .debug_line section) begins with a "statement program header",
488 which contains the following information. */
489 struct line_header
490 {
491 unsigned int total_length;
492 unsigned short version;
493 unsigned int header_length;
494 unsigned char minimum_instruction_length;
495 unsigned char maximum_ops_per_instruction;
496 unsigned char default_is_stmt;
497 int line_base;
498 unsigned char line_range;
499 unsigned char opcode_base;
500
501 /* standard_opcode_lengths[i] is the number of operands for the
502 standard opcode whose value is i. This means that
503 standard_opcode_lengths[0] is unused, and the last meaningful
504 element is standard_opcode_lengths[opcode_base - 1]. */
505 unsigned char *standard_opcode_lengths;
506
507 /* The include_directories table. NOTE! These strings are not
508 allocated with xmalloc; instead, they are pointers into
509 debug_line_buffer. If you try to free them, `free' will get
510 indigestion. */
511 unsigned int num_include_dirs, include_dirs_size;
512 char **include_dirs;
513
514 /* The file_names table. NOTE! These strings are not allocated
515 with xmalloc; instead, they are pointers into debug_line_buffer.
516 Don't try to free them directly. */
517 unsigned int num_file_names, file_names_size;
518 struct file_entry
519 {
520 char *name;
521 unsigned int dir_index;
522 unsigned int mod_time;
523 unsigned int length;
524 int included_p; /* Non-zero if referenced by the Line Number Program. */
525 struct symtab *symtab; /* The associated symbol table, if any. */
526 } *file_names;
527
528 /* The start and end of the statement program following this
529 header. These point into dwarf2_per_objfile->line_buffer. */
530 gdb_byte *statement_program_start, *statement_program_end;
531 };
532
533 /* When we construct a partial symbol table entry we only
534 need this much information. */
535 struct partial_die_info
536 {
537 /* Offset of this DIE. */
538 unsigned int offset;
539
540 /* DWARF-2 tag for this DIE. */
541 ENUM_BITFIELD(dwarf_tag) tag : 16;
542
543 /* Assorted flags describing the data found in this DIE. */
544 unsigned int has_children : 1;
545 unsigned int is_external : 1;
546 unsigned int is_declaration : 1;
547 unsigned int has_type : 1;
548 unsigned int has_specification : 1;
549 unsigned int has_pc_info : 1;
550
551 /* Flag set if the SCOPE field of this structure has been
552 computed. */
553 unsigned int scope_set : 1;
554
555 /* Flag set if the DIE has a byte_size attribute. */
556 unsigned int has_byte_size : 1;
557
558 /* Flag set if any of the DIE's children are template arguments. */
559 unsigned int has_template_arguments : 1;
560
561 /* Flag set if fixup_partial_die has been called on this die. */
562 unsigned int fixup_called : 1;
563
564 /* The name of this DIE. Normally the value of DW_AT_name, but
565 sometimes a default name for unnamed DIEs. */
566 char *name;
567
568 /* The linkage name, if present. */
569 const char *linkage_name;
570
571 /* The scope to prepend to our children. This is generally
572 allocated on the comp_unit_obstack, so will disappear
573 when this compilation unit leaves the cache. */
574 char *scope;
575
576 /* The location description associated with this DIE, if any. */
577 struct dwarf_block *locdesc;
578
579 /* If HAS_PC_INFO, the PC range associated with this DIE. */
580 CORE_ADDR lowpc;
581 CORE_ADDR highpc;
582
583 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
584 DW_AT_sibling, if any. */
585 /* NOTE: This member isn't strictly necessary, read_partial_die could
586 return DW_AT_sibling values to its caller load_partial_dies. */
587 gdb_byte *sibling;
588
589 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
590 DW_AT_specification (or DW_AT_abstract_origin or
591 DW_AT_extension). */
592 unsigned int spec_offset;
593
594 /* Pointers to this DIE's parent, first child, and next sibling,
595 if any. */
596 struct partial_die_info *die_parent, *die_child, *die_sibling;
597 };
598
599 /* This data structure holds the information of an abbrev. */
600 struct abbrev_info
601 {
602 unsigned int number; /* number identifying abbrev */
603 enum dwarf_tag tag; /* dwarf tag */
604 unsigned short has_children; /* boolean */
605 unsigned short num_attrs; /* number of attributes */
606 struct attr_abbrev *attrs; /* an array of attribute descriptions */
607 struct abbrev_info *next; /* next in chain */
608 };
609
610 struct attr_abbrev
611 {
612 ENUM_BITFIELD(dwarf_attribute) name : 16;
613 ENUM_BITFIELD(dwarf_form) form : 16;
614 };
615
616 /* Attributes have a name and a value */
617 struct attribute
618 {
619 ENUM_BITFIELD(dwarf_attribute) name : 16;
620 ENUM_BITFIELD(dwarf_form) form : 15;
621
622 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
623 field should be in u.str (existing only for DW_STRING) but it is kept
624 here for better struct attribute alignment. */
625 unsigned int string_is_canonical : 1;
626
627 union
628 {
629 char *str;
630 struct dwarf_block *blk;
631 ULONGEST unsnd;
632 LONGEST snd;
633 CORE_ADDR addr;
634 struct signatured_type *signatured_type;
635 }
636 u;
637 };
638
639 /* This data structure holds a complete die structure. */
640 struct die_info
641 {
642 /* DWARF-2 tag for this DIE. */
643 ENUM_BITFIELD(dwarf_tag) tag : 16;
644
645 /* Number of attributes */
646 unsigned char num_attrs;
647
648 /* True if we're presently building the full type name for the
649 type derived from this DIE. */
650 unsigned char building_fullname : 1;
651
652 /* Abbrev number */
653 unsigned int abbrev;
654
655 /* Offset in .debug_info or .debug_types section. */
656 unsigned int offset;
657
658 /* The dies in a compilation unit form an n-ary tree. PARENT
659 points to this die's parent; CHILD points to the first child of
660 this node; and all the children of a given node are chained
661 together via their SIBLING fields. */
662 struct die_info *child; /* Its first child, if any. */
663 struct die_info *sibling; /* Its next sibling, if any. */
664 struct die_info *parent; /* Its parent, if any. */
665
666 /* An array of attributes, with NUM_ATTRS elements. There may be
667 zero, but it's not common and zero-sized arrays are not
668 sufficiently portable C. */
669 struct attribute attrs[1];
670 };
671
672 struct function_range
673 {
674 const char *name;
675 CORE_ADDR lowpc, highpc;
676 int seen_line;
677 struct function_range *next;
678 };
679
680 /* Get at parts of an attribute structure */
681
682 #define DW_STRING(attr) ((attr)->u.str)
683 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
684 #define DW_UNSND(attr) ((attr)->u.unsnd)
685 #define DW_BLOCK(attr) ((attr)->u.blk)
686 #define DW_SND(attr) ((attr)->u.snd)
687 #define DW_ADDR(attr) ((attr)->u.addr)
688 #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
689
690 /* Blocks are a bunch of untyped bytes. */
691 struct dwarf_block
692 {
693 unsigned int size;
694 gdb_byte *data;
695 };
696
697 #ifndef ATTR_ALLOC_CHUNK
698 #define ATTR_ALLOC_CHUNK 4
699 #endif
700
701 /* Allocate fields for structs, unions and enums in this size. */
702 #ifndef DW_FIELD_ALLOC_CHUNK
703 #define DW_FIELD_ALLOC_CHUNK 4
704 #endif
705
706 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
707 but this would require a corresponding change in unpack_field_as_long
708 and friends. */
709 static int bits_per_byte = 8;
710
711 /* The routines that read and process dies for a C struct or C++ class
712 pass lists of data member fields and lists of member function fields
713 in an instance of a field_info structure, as defined below. */
714 struct field_info
715 {
716 /* List of data member and baseclasses fields. */
717 struct nextfield
718 {
719 struct nextfield *next;
720 int accessibility;
721 int virtuality;
722 struct field field;
723 }
724 *fields, *baseclasses;
725
726 /* Number of fields (including baseclasses). */
727 int nfields;
728
729 /* Number of baseclasses. */
730 int nbaseclasses;
731
732 /* Set if the accesibility of one of the fields is not public. */
733 int non_public_fields;
734
735 /* Member function fields array, entries are allocated in the order they
736 are encountered in the object file. */
737 struct nextfnfield
738 {
739 struct nextfnfield *next;
740 struct fn_field fnfield;
741 }
742 *fnfields;
743
744 /* Member function fieldlist array, contains name of possibly overloaded
745 member function, number of overloaded member functions and a pointer
746 to the head of the member function field chain. */
747 struct fnfieldlist
748 {
749 char *name;
750 int length;
751 struct nextfnfield *head;
752 }
753 *fnfieldlists;
754
755 /* Number of entries in the fnfieldlists array. */
756 int nfnfields;
757
758 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
759 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
760 struct typedef_field_list
761 {
762 struct typedef_field field;
763 struct typedef_field_list *next;
764 }
765 *typedef_field_list;
766 unsigned typedef_field_list_count;
767 };
768
769 /* One item on the queue of compilation units to read in full symbols
770 for. */
771 struct dwarf2_queue_item
772 {
773 struct dwarf2_per_cu_data *per_cu;
774 struct dwarf2_queue_item *next;
775 };
776
777 /* The current queue. */
778 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
779
780 /* Loaded secondary compilation units are kept in memory until they
781 have not been referenced for the processing of this many
782 compilation units. Set this to zero to disable caching. Cache
783 sizes of up to at least twenty will improve startup time for
784 typical inter-CU-reference binaries, at an obvious memory cost. */
785 static int dwarf2_max_cache_age = 5;
786 static void
787 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
788 struct cmd_list_element *c, const char *value)
789 {
790 fprintf_filtered (file, _("The upper bound on the age of cached "
791 "dwarf2 compilation units is %s.\n"),
792 value);
793 }
794
795
796 /* Various complaints about symbol reading that don't abort the process */
797
798 static void
799 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
800 {
801 complaint (&symfile_complaints,
802 _("statement list doesn't fit in .debug_line section"));
803 }
804
805 static void
806 dwarf2_debug_line_missing_file_complaint (void)
807 {
808 complaint (&symfile_complaints,
809 _(".debug_line section has line data without a file"));
810 }
811
812 static void
813 dwarf2_debug_line_missing_end_sequence_complaint (void)
814 {
815 complaint (&symfile_complaints,
816 _(".debug_line section has line "
817 "program sequence without an end"));
818 }
819
820 static void
821 dwarf2_complex_location_expr_complaint (void)
822 {
823 complaint (&symfile_complaints, _("location expression too complex"));
824 }
825
826 static void
827 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
828 int arg3)
829 {
830 complaint (&symfile_complaints,
831 _("const value length mismatch for '%s', got %d, expected %d"),
832 arg1, arg2, arg3);
833 }
834
835 static void
836 dwarf2_macros_too_long_complaint (void)
837 {
838 complaint (&symfile_complaints,
839 _("macro info runs off end of `.debug_macinfo' section"));
840 }
841
842 static void
843 dwarf2_macro_malformed_definition_complaint (const char *arg1)
844 {
845 complaint (&symfile_complaints,
846 _("macro debug info contains a "
847 "malformed macro definition:\n`%s'"),
848 arg1);
849 }
850
851 static void
852 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
853 {
854 complaint (&symfile_complaints,
855 _("invalid attribute class or form for '%s' in '%s'"),
856 arg1, arg2);
857 }
858
859 /* local function prototypes */
860
861 static void dwarf2_locate_sections (bfd *, asection *, void *);
862
863 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
864 struct objfile *);
865
866 static void dwarf2_build_psymtabs_hard (struct objfile *);
867
868 static void scan_partial_symbols (struct partial_die_info *,
869 CORE_ADDR *, CORE_ADDR *,
870 int, struct dwarf2_cu *);
871
872 static void add_partial_symbol (struct partial_die_info *,
873 struct dwarf2_cu *);
874
875 static void add_partial_namespace (struct partial_die_info *pdi,
876 CORE_ADDR *lowpc, CORE_ADDR *highpc,
877 int need_pc, struct dwarf2_cu *cu);
878
879 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
880 CORE_ADDR *highpc, int need_pc,
881 struct dwarf2_cu *cu);
882
883 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
884 struct dwarf2_cu *cu);
885
886 static void add_partial_subprogram (struct partial_die_info *pdi,
887 CORE_ADDR *lowpc, CORE_ADDR *highpc,
888 int need_pc, struct dwarf2_cu *cu);
889
890 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
891 gdb_byte *buffer, gdb_byte *info_ptr,
892 bfd *abfd, struct dwarf2_cu *cu);
893
894 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
895
896 static void psymtab_to_symtab_1 (struct partial_symtab *);
897
898 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
899
900 static void dwarf2_free_abbrev_table (void *);
901
902 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
903 struct dwarf2_cu *);
904
905 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
906 struct dwarf2_cu *);
907
908 static struct partial_die_info *load_partial_dies (bfd *,
909 gdb_byte *, gdb_byte *,
910 int, struct dwarf2_cu *);
911
912 static gdb_byte *read_partial_die (struct partial_die_info *,
913 struct abbrev_info *abbrev,
914 unsigned int, bfd *,
915 gdb_byte *, gdb_byte *,
916 struct dwarf2_cu *);
917
918 static struct partial_die_info *find_partial_die (unsigned int,
919 struct dwarf2_cu *);
920
921 static void fixup_partial_die (struct partial_die_info *,
922 struct dwarf2_cu *);
923
924 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
925 bfd *, gdb_byte *, struct dwarf2_cu *);
926
927 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
928 bfd *, gdb_byte *, struct dwarf2_cu *);
929
930 static unsigned int read_1_byte (bfd *, gdb_byte *);
931
932 static int read_1_signed_byte (bfd *, gdb_byte *);
933
934 static unsigned int read_2_bytes (bfd *, gdb_byte *);
935
936 static unsigned int read_4_bytes (bfd *, gdb_byte *);
937
938 static ULONGEST read_8_bytes (bfd *, gdb_byte *);
939
940 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
941 unsigned int *);
942
943 static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
944
945 static LONGEST read_checked_initial_length_and_offset
946 (bfd *, gdb_byte *, const struct comp_unit_head *,
947 unsigned int *, unsigned int *);
948
949 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
950 unsigned int *);
951
952 static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
953
954 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
955
956 static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
957
958 static char *read_indirect_string (bfd *, gdb_byte *,
959 const struct comp_unit_head *,
960 unsigned int *);
961
962 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
963
964 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
965
966 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
967
968 static void set_cu_language (unsigned int, struct dwarf2_cu *);
969
970 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
971 struct dwarf2_cu *);
972
973 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
974 unsigned int,
975 struct dwarf2_cu *);
976
977 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
978 struct dwarf2_cu *cu);
979
980 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
981
982 static struct die_info *die_specification (struct die_info *die,
983 struct dwarf2_cu **);
984
985 static void free_line_header (struct line_header *lh);
986
987 static void add_file_name (struct line_header *, char *, unsigned int,
988 unsigned int, unsigned int);
989
990 static struct line_header *(dwarf_decode_line_header
991 (unsigned int offset,
992 bfd *abfd, struct dwarf2_cu *cu));
993
994 static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
995 struct dwarf2_cu *, struct partial_symtab *);
996
997 static void dwarf2_start_subfile (char *, const char *, const char *);
998
999 static struct symbol *new_symbol (struct die_info *, struct type *,
1000 struct dwarf2_cu *);
1001
1002 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1003 struct dwarf2_cu *, struct symbol *);
1004
1005 static void dwarf2_const_value (struct attribute *, struct symbol *,
1006 struct dwarf2_cu *);
1007
1008 static void dwarf2_const_value_attr (struct attribute *attr,
1009 struct type *type,
1010 const char *name,
1011 struct obstack *obstack,
1012 struct dwarf2_cu *cu, long *value,
1013 gdb_byte **bytes,
1014 struct dwarf2_locexpr_baton **baton);
1015
1016 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1017
1018 static int need_gnat_info (struct dwarf2_cu *);
1019
1020 static struct type *die_descriptive_type (struct die_info *,
1021 struct dwarf2_cu *);
1022
1023 static void set_descriptive_type (struct type *, struct die_info *,
1024 struct dwarf2_cu *);
1025
1026 static struct type *die_containing_type (struct die_info *,
1027 struct dwarf2_cu *);
1028
1029 static struct type *lookup_die_type (struct die_info *, struct attribute *,
1030 struct dwarf2_cu *);
1031
1032 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1033
1034 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1035
1036 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1037
1038 static char *typename_concat (struct obstack *obs, const char *prefix,
1039 const char *suffix, int physname,
1040 struct dwarf2_cu *cu);
1041
1042 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1043
1044 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1045
1046 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1047
1048 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1049
1050 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1051 struct dwarf2_cu *, struct partial_symtab *);
1052
1053 static int dwarf2_get_pc_bounds (struct die_info *,
1054 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1055 struct partial_symtab *);
1056
1057 static void get_scope_pc_bounds (struct die_info *,
1058 CORE_ADDR *, CORE_ADDR *,
1059 struct dwarf2_cu *);
1060
1061 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1062 CORE_ADDR, struct dwarf2_cu *);
1063
1064 static void dwarf2_add_field (struct field_info *, struct die_info *,
1065 struct dwarf2_cu *);
1066
1067 static void dwarf2_attach_fields_to_type (struct field_info *,
1068 struct type *, struct dwarf2_cu *);
1069
1070 static void dwarf2_add_member_fn (struct field_info *,
1071 struct die_info *, struct type *,
1072 struct dwarf2_cu *);
1073
1074 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1075 struct type *,
1076 struct dwarf2_cu *);
1077
1078 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1079
1080 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1081
1082 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1083
1084 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1085
1086 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1087
1088 static struct type *read_module_type (struct die_info *die,
1089 struct dwarf2_cu *cu);
1090
1091 static const char *namespace_name (struct die_info *die,
1092 int *is_anonymous, struct dwarf2_cu *);
1093
1094 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1095
1096 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1097
1098 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1099 struct dwarf2_cu *);
1100
1101 static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
1102
1103 static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1104 gdb_byte *info_ptr,
1105 gdb_byte **new_info_ptr,
1106 struct die_info *parent);
1107
1108 static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1109 gdb_byte *info_ptr,
1110 gdb_byte **new_info_ptr,
1111 struct die_info *parent);
1112
1113 static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1114 gdb_byte *info_ptr,
1115 gdb_byte **new_info_ptr,
1116 struct die_info *parent);
1117
1118 static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1119 struct die_info **, gdb_byte *,
1120 int *);
1121
1122 static void process_die (struct die_info *, struct dwarf2_cu *);
1123
1124 static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1125 struct obstack *);
1126
1127 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1128
1129 static const char *dwarf2_full_name (char *name,
1130 struct die_info *die,
1131 struct dwarf2_cu *cu);
1132
1133 static struct die_info *dwarf2_extension (struct die_info *die,
1134 struct dwarf2_cu **);
1135
1136 static char *dwarf_tag_name (unsigned int);
1137
1138 static char *dwarf_attr_name (unsigned int);
1139
1140 static char *dwarf_form_name (unsigned int);
1141
1142 static char *dwarf_bool_name (unsigned int);
1143
1144 static char *dwarf_type_encoding_name (unsigned int);
1145
1146 #if 0
1147 static char *dwarf_cfi_name (unsigned int);
1148 #endif
1149
1150 static struct die_info *sibling_die (struct die_info *);
1151
1152 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1153
1154 static void dump_die_for_error (struct die_info *);
1155
1156 static void dump_die_1 (struct ui_file *, int level, int max_level,
1157 struct die_info *);
1158
1159 /*static*/ void dump_die (struct die_info *, int max_level);
1160
1161 static void store_in_ref_table (struct die_info *,
1162 struct dwarf2_cu *);
1163
1164 static int is_ref_attr (struct attribute *);
1165
1166 static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
1167
1168 static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
1169
1170 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1171 struct attribute *,
1172 struct dwarf2_cu **);
1173
1174 static struct die_info *follow_die_ref (struct die_info *,
1175 struct attribute *,
1176 struct dwarf2_cu **);
1177
1178 static struct die_info *follow_die_sig (struct die_info *,
1179 struct attribute *,
1180 struct dwarf2_cu **);
1181
1182 static void read_signatured_type_at_offset (struct objfile *objfile,
1183 unsigned int offset);
1184
1185 static void read_signatured_type (struct objfile *,
1186 struct signatured_type *type_sig);
1187
1188 /* memory allocation interface */
1189
1190 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1191
1192 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1193
1194 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1195
1196 static void initialize_cu_func_list (struct dwarf2_cu *);
1197
1198 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1199 struct dwarf2_cu *);
1200
1201 static void dwarf_decode_macros (struct line_header *, unsigned int,
1202 char *, bfd *, struct dwarf2_cu *);
1203
1204 static int attr_form_is_block (struct attribute *);
1205
1206 static int attr_form_is_section_offset (struct attribute *);
1207
1208 static int attr_form_is_constant (struct attribute *);
1209
1210 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1211 struct dwarf2_loclist_baton *baton,
1212 struct attribute *attr);
1213
1214 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1215 struct symbol *sym,
1216 struct dwarf2_cu *cu);
1217
1218 static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1219 struct abbrev_info *abbrev,
1220 struct dwarf2_cu *cu);
1221
1222 static void free_stack_comp_unit (void *);
1223
1224 static hashval_t partial_die_hash (const void *item);
1225
1226 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1227
1228 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1229 (unsigned int offset, struct objfile *objfile);
1230
1231 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1232 (unsigned int offset, struct objfile *objfile);
1233
1234 static void init_one_comp_unit (struct dwarf2_cu *cu,
1235 struct objfile *objfile);
1236
1237 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1238 struct die_info *comp_unit_die);
1239
1240 static void free_one_comp_unit (void *);
1241
1242 static void free_cached_comp_units (void *);
1243
1244 static void age_cached_comp_units (void);
1245
1246 static void free_one_cached_comp_unit (void *);
1247
1248 static struct type *set_die_type (struct die_info *, struct type *,
1249 struct dwarf2_cu *);
1250
1251 static void create_all_comp_units (struct objfile *);
1252
1253 static int create_debug_types_hash_table (struct objfile *objfile);
1254
1255 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1256 struct objfile *);
1257
1258 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1259
1260 static void dwarf2_add_dependence (struct dwarf2_cu *,
1261 struct dwarf2_per_cu_data *);
1262
1263 static void dwarf2_mark (struct dwarf2_cu *);
1264
1265 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1266
1267 static struct type *get_die_type_at_offset (unsigned int,
1268 struct dwarf2_per_cu_data *per_cu);
1269
1270 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1271
1272 static void dwarf2_release_queue (void *dummy);
1273
1274 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1275 struct objfile *objfile);
1276
1277 static void process_queue (struct objfile *objfile);
1278
1279 static void find_file_and_directory (struct die_info *die,
1280 struct dwarf2_cu *cu,
1281 char **name, char **comp_dir);
1282
1283 static char *file_full_name (int file, struct line_header *lh,
1284 const char *comp_dir);
1285
1286 static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1287 gdb_byte *info_ptr,
1288 gdb_byte *buffer,
1289 unsigned int buffer_size,
1290 bfd *abfd);
1291
1292 static void init_cu_die_reader (struct die_reader_specs *reader,
1293 struct dwarf2_cu *cu);
1294
1295 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1296
1297 #if WORDS_BIGENDIAN
1298
1299 /* Convert VALUE between big- and little-endian. */
1300 static offset_type
1301 byte_swap (offset_type value)
1302 {
1303 offset_type result;
1304
1305 result = (value & 0xff) << 24;
1306 result |= (value & 0xff00) << 8;
1307 result |= (value & 0xff0000) >> 8;
1308 result |= (value & 0xff000000) >> 24;
1309 return result;
1310 }
1311
1312 #define MAYBE_SWAP(V) byte_swap (V)
1313
1314 #else
1315 #define MAYBE_SWAP(V) (V)
1316 #endif /* WORDS_BIGENDIAN */
1317
1318 /* The suffix for an index file. */
1319 #define INDEX_SUFFIX ".gdb-index"
1320
1321 static const char *dwarf2_physname (char *name, struct die_info *die,
1322 struct dwarf2_cu *cu);
1323
1324 /* Try to locate the sections we need for DWARF 2 debugging
1325 information and return true if we have enough to do something. */
1326
1327 int
1328 dwarf2_has_info (struct objfile *objfile)
1329 {
1330 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1331 if (!dwarf2_per_objfile)
1332 {
1333 /* Initialize per-objfile state. */
1334 struct dwarf2_per_objfile *data
1335 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1336
1337 memset (data, 0, sizeof (*data));
1338 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1339 dwarf2_per_objfile = data;
1340
1341 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1342 dwarf2_per_objfile->objfile = objfile;
1343 }
1344 return (dwarf2_per_objfile->info.asection != NULL
1345 && dwarf2_per_objfile->abbrev.asection != NULL);
1346 }
1347
1348 /* When loading sections, we can either look for ".<name>", or for
1349 * ".z<name>", which indicates a compressed section. */
1350
1351 static int
1352 section_is_p (const char *section_name, const char *name)
1353 {
1354 return (section_name[0] == '.'
1355 && (strcmp (section_name + 1, name) == 0
1356 || (section_name[1] == 'z'
1357 && strcmp (section_name + 2, name) == 0)));
1358 }
1359
1360 /* This function is mapped across the sections and remembers the
1361 offset and size of each of the debugging sections we are interested
1362 in. */
1363
1364 static void
1365 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1366 {
1367 if (section_is_p (sectp->name, INFO_SECTION))
1368 {
1369 dwarf2_per_objfile->info.asection = sectp;
1370 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
1371 }
1372 else if (section_is_p (sectp->name, ABBREV_SECTION))
1373 {
1374 dwarf2_per_objfile->abbrev.asection = sectp;
1375 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
1376 }
1377 else if (section_is_p (sectp->name, LINE_SECTION))
1378 {
1379 dwarf2_per_objfile->line.asection = sectp;
1380 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
1381 }
1382 else if (section_is_p (sectp->name, LOC_SECTION))
1383 {
1384 dwarf2_per_objfile->loc.asection = sectp;
1385 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
1386 }
1387 else if (section_is_p (sectp->name, MACINFO_SECTION))
1388 {
1389 dwarf2_per_objfile->macinfo.asection = sectp;
1390 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
1391 }
1392 else if (section_is_p (sectp->name, STR_SECTION))
1393 {
1394 dwarf2_per_objfile->str.asection = sectp;
1395 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
1396 }
1397 else if (section_is_p (sectp->name, FRAME_SECTION))
1398 {
1399 dwarf2_per_objfile->frame.asection = sectp;
1400 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
1401 }
1402 else if (section_is_p (sectp->name, EH_FRAME_SECTION))
1403 {
1404 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1405
1406 if (aflag & SEC_HAS_CONTENTS)
1407 {
1408 dwarf2_per_objfile->eh_frame.asection = sectp;
1409 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
1410 }
1411 }
1412 else if (section_is_p (sectp->name, RANGES_SECTION))
1413 {
1414 dwarf2_per_objfile->ranges.asection = sectp;
1415 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
1416 }
1417 else if (section_is_p (sectp->name, TYPES_SECTION))
1418 {
1419 dwarf2_per_objfile->types.asection = sectp;
1420 dwarf2_per_objfile->types.size = bfd_get_section_size (sectp);
1421 }
1422 else if (section_is_p (sectp->name, GDB_INDEX_SECTION))
1423 {
1424 dwarf2_per_objfile->gdb_index.asection = sectp;
1425 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1426 }
1427
1428 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1429 && bfd_section_vma (abfd, sectp) == 0)
1430 dwarf2_per_objfile->has_section_at_zero = 1;
1431 }
1432
1433 /* Decompress a section that was compressed using zlib. Store the
1434 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
1435
1436 static void
1437 zlib_decompress_section (struct objfile *objfile, asection *sectp,
1438 gdb_byte **outbuf, bfd_size_type *outsize)
1439 {
1440 bfd *abfd = objfile->obfd;
1441 #ifndef HAVE_ZLIB_H
1442 error (_("Support for zlib-compressed DWARF data (from '%s') "
1443 "is disabled in this copy of GDB"),
1444 bfd_get_filename (abfd));
1445 #else
1446 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1447 gdb_byte *compressed_buffer = xmalloc (compressed_size);
1448 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
1449 bfd_size_type uncompressed_size;
1450 gdb_byte *uncompressed_buffer;
1451 z_stream strm;
1452 int rc;
1453 int header_size = 12;
1454
1455 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1456 || bfd_bread (compressed_buffer,
1457 compressed_size, abfd) != compressed_size)
1458 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1459 bfd_get_filename (abfd));
1460
1461 /* Read the zlib header. In this case, it should be "ZLIB" followed
1462 by the uncompressed section size, 8 bytes in big-endian order. */
1463 if (compressed_size < header_size
1464 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1465 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1466 bfd_get_filename (abfd));
1467 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1468 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1469 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1470 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1471 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1472 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1473 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1474 uncompressed_size += compressed_buffer[11];
1475
1476 /* It is possible the section consists of several compressed
1477 buffers concatenated together, so we uncompress in a loop. */
1478 strm.zalloc = NULL;
1479 strm.zfree = NULL;
1480 strm.opaque = NULL;
1481 strm.avail_in = compressed_size - header_size;
1482 strm.next_in = (Bytef*) compressed_buffer + header_size;
1483 strm.avail_out = uncompressed_size;
1484 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1485 uncompressed_size);
1486 rc = inflateInit (&strm);
1487 while (strm.avail_in > 0)
1488 {
1489 if (rc != Z_OK)
1490 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1491 bfd_get_filename (abfd), rc);
1492 strm.next_out = ((Bytef*) uncompressed_buffer
1493 + (uncompressed_size - strm.avail_out));
1494 rc = inflate (&strm, Z_FINISH);
1495 if (rc != Z_STREAM_END)
1496 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1497 bfd_get_filename (abfd), rc);
1498 rc = inflateReset (&strm);
1499 }
1500 rc = inflateEnd (&strm);
1501 if (rc != Z_OK
1502 || strm.avail_out != 0)
1503 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1504 bfd_get_filename (abfd), rc);
1505
1506 do_cleanups (cleanup);
1507 *outbuf = uncompressed_buffer;
1508 *outsize = uncompressed_size;
1509 #endif
1510 }
1511
1512 /* Read the contents of the section SECTP from object file specified by
1513 OBJFILE, store info about the section into INFO.
1514 If the section is compressed, uncompress it before returning. */
1515
1516 static void
1517 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
1518 {
1519 bfd *abfd = objfile->obfd;
1520 asection *sectp = info->asection;
1521 gdb_byte *buf, *retbuf;
1522 unsigned char header[4];
1523
1524 if (info->readin)
1525 return;
1526 info->buffer = NULL;
1527 info->was_mmapped = 0;
1528 info->readin = 1;
1529
1530 if (info->asection == NULL || info->size == 0)
1531 return;
1532
1533 /* Check if the file has a 4-byte header indicating compression. */
1534 if (info->size > sizeof (header)
1535 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1536 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1537 {
1538 /* Upon decompression, update the buffer and its size. */
1539 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1540 {
1541 zlib_decompress_section (objfile, sectp, &info->buffer,
1542 &info->size);
1543 return;
1544 }
1545 }
1546
1547 #ifdef HAVE_MMAP
1548 if (pagesize == 0)
1549 pagesize = getpagesize ();
1550
1551 /* Only try to mmap sections which are large enough: we don't want to
1552 waste space due to fragmentation. Also, only try mmap for sections
1553 without relocations. */
1554
1555 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1556 {
1557 off_t pg_offset = sectp->filepos & ~(pagesize - 1);
1558 size_t map_length = info->size + sectp->filepos - pg_offset;
1559 caddr_t retbuf = bfd_mmap (abfd, 0, map_length, PROT_READ,
1560 MAP_PRIVATE, pg_offset);
1561
1562 if (retbuf != MAP_FAILED)
1563 {
1564 info->was_mmapped = 1;
1565 info->buffer = retbuf + (sectp->filepos & (pagesize - 1)) ;
1566 #if HAVE_POSIX_MADVISE
1567 posix_madvise (retbuf, map_length, POSIX_MADV_WILLNEED);
1568 #endif
1569 return;
1570 }
1571 }
1572 #endif
1573
1574 /* If we get here, we are a normal, not-compressed section. */
1575 info->buffer = buf
1576 = obstack_alloc (&objfile->objfile_obstack, info->size);
1577
1578 /* When debugging .o files, we may need to apply relocations; see
1579 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1580 We never compress sections in .o files, so we only need to
1581 try this when the section is not compressed. */
1582 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
1583 if (retbuf != NULL)
1584 {
1585 info->buffer = retbuf;
1586 return;
1587 }
1588
1589 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1590 || bfd_bread (buf, info->size, abfd) != info->size)
1591 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1592 bfd_get_filename (abfd));
1593 }
1594
1595 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1596 SECTION_NAME. */
1597
1598 void
1599 dwarf2_get_section_info (struct objfile *objfile, const char *section_name,
1600 asection **sectp, gdb_byte **bufp,
1601 bfd_size_type *sizep)
1602 {
1603 struct dwarf2_per_objfile *data
1604 = objfile_data (objfile, dwarf2_objfile_data_key);
1605 struct dwarf2_section_info *info;
1606
1607 /* We may see an objfile without any DWARF, in which case we just
1608 return nothing. */
1609 if (data == NULL)
1610 {
1611 *sectp = NULL;
1612 *bufp = NULL;
1613 *sizep = 0;
1614 return;
1615 }
1616 if (section_is_p (section_name, EH_FRAME_SECTION))
1617 info = &data->eh_frame;
1618 else if (section_is_p (section_name, FRAME_SECTION))
1619 info = &data->frame;
1620 else
1621 gdb_assert_not_reached ("unexpected section");
1622
1623 if (info->asection != NULL && info->size != 0 && info->buffer == NULL)
1624 /* We haven't read this section in yet. Do it now. */
1625 dwarf2_read_section (objfile, info);
1626
1627 *sectp = info->asection;
1628 *bufp = info->buffer;
1629 *sizep = info->size;
1630 }
1631
1632 \f
1633 /* DWARF quick_symbols_functions support. */
1634
1635 /* TUs can share .debug_line entries, and there can be a lot more TUs than
1636 unique line tables, so we maintain a separate table of all .debug_line
1637 derived entries to support the sharing.
1638 All the quick functions need is the list of file names. We discard the
1639 line_header when we're done and don't need to record it here. */
1640 struct quick_file_names
1641 {
1642 /* The offset in .debug_line of the line table. We hash on this. */
1643 unsigned int offset;
1644
1645 /* The number of entries in file_names, real_names. */
1646 unsigned int num_file_names;
1647
1648 /* The file names from the line table, after being run through
1649 file_full_name. */
1650 const char **file_names;
1651
1652 /* The file names from the line table after being run through
1653 gdb_realpath. These are computed lazily. */
1654 const char **real_names;
1655 };
1656
1657 /* When using the index (and thus not using psymtabs), each CU has an
1658 object of this type. This is used to hold information needed by
1659 the various "quick" methods. */
1660 struct dwarf2_per_cu_quick_data
1661 {
1662 /* The file table. This can be NULL if there was no file table
1663 or it's currently not read in.
1664 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1665 struct quick_file_names *file_names;
1666
1667 /* The corresponding symbol table. This is NULL if symbols for this
1668 CU have not yet been read. */
1669 struct symtab *symtab;
1670
1671 /* A temporary mark bit used when iterating over all CUs in
1672 expand_symtabs_matching. */
1673 unsigned int mark : 1;
1674
1675 /* True if we've tried to read the file table and found there isn't one.
1676 There will be no point in trying to read it again next time. */
1677 unsigned int no_file_data : 1;
1678 };
1679
1680 /* Hash function for a quick_file_names. */
1681
1682 static hashval_t
1683 hash_file_name_entry (const void *e)
1684 {
1685 const struct quick_file_names *file_data = e;
1686
1687 return file_data->offset;
1688 }
1689
1690 /* Equality function for a quick_file_names. */
1691
1692 static int
1693 eq_file_name_entry (const void *a, const void *b)
1694 {
1695 const struct quick_file_names *ea = a;
1696 const struct quick_file_names *eb = b;
1697
1698 return ea->offset == eb->offset;
1699 }
1700
1701 /* Delete function for a quick_file_names. */
1702
1703 static void
1704 delete_file_name_entry (void *e)
1705 {
1706 struct quick_file_names *file_data = e;
1707 int i;
1708
1709 for (i = 0; i < file_data->num_file_names; ++i)
1710 {
1711 xfree ((void*) file_data->file_names[i]);
1712 if (file_data->real_names)
1713 xfree ((void*) file_data->real_names[i]);
1714 }
1715
1716 /* The space for the struct itself lives on objfile_obstack,
1717 so we don't free it here. */
1718 }
1719
1720 /* Create a quick_file_names hash table. */
1721
1722 static htab_t
1723 create_quick_file_names_table (unsigned int nr_initial_entries)
1724 {
1725 return htab_create_alloc (nr_initial_entries,
1726 hash_file_name_entry, eq_file_name_entry,
1727 delete_file_name_entry, xcalloc, xfree);
1728 }
1729
1730 /* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1731 this CU came. */
1732
1733 static void
1734 dw2_do_instantiate_symtab (struct objfile *objfile,
1735 struct dwarf2_per_cu_data *per_cu)
1736 {
1737 struct cleanup *back_to;
1738
1739 back_to = make_cleanup (dwarf2_release_queue, NULL);
1740
1741 queue_comp_unit (per_cu, objfile);
1742
1743 if (per_cu->from_debug_types)
1744 read_signatured_type_at_offset (objfile, per_cu->offset);
1745 else
1746 load_full_comp_unit (per_cu, objfile);
1747
1748 process_queue (objfile);
1749
1750 /* Age the cache, releasing compilation units that have not
1751 been used recently. */
1752 age_cached_comp_units ();
1753
1754 do_cleanups (back_to);
1755 }
1756
1757 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1758 the objfile from which this CU came. Returns the resulting symbol
1759 table. */
1760
1761 static struct symtab *
1762 dw2_instantiate_symtab (struct objfile *objfile,
1763 struct dwarf2_per_cu_data *per_cu)
1764 {
1765 if (!per_cu->v.quick->symtab)
1766 {
1767 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1768 increment_reading_symtab ();
1769 dw2_do_instantiate_symtab (objfile, per_cu);
1770 do_cleanups (back_to);
1771 }
1772 return per_cu->v.quick->symtab;
1773 }
1774
1775 /* Return the CU given its index. */
1776
1777 static struct dwarf2_per_cu_data *
1778 dw2_get_cu (int index)
1779 {
1780 if (index >= dwarf2_per_objfile->n_comp_units)
1781 {
1782 index -= dwarf2_per_objfile->n_comp_units;
1783 return dwarf2_per_objfile->type_comp_units[index];
1784 }
1785 return dwarf2_per_objfile->all_comp_units[index];
1786 }
1787
1788 /* A helper function that knows how to read a 64-bit value in a way
1789 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1790 otherwise. */
1791
1792 static int
1793 extract_cu_value (const char *bytes, ULONGEST *result)
1794 {
1795 if (sizeof (ULONGEST) < 8)
1796 {
1797 int i;
1798
1799 /* Ignore the upper 4 bytes if they are all zero. */
1800 for (i = 0; i < 4; ++i)
1801 if (bytes[i + 4] != 0)
1802 return 0;
1803
1804 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1805 }
1806 else
1807 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1808 return 1;
1809 }
1810
1811 /* Read the CU list from the mapped index, and use it to create all
1812 the CU objects for this objfile. Return 0 if something went wrong,
1813 1 if everything went ok. */
1814
1815 static int
1816 create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1817 offset_type cu_list_elements)
1818 {
1819 offset_type i;
1820
1821 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1822 dwarf2_per_objfile->all_comp_units
1823 = obstack_alloc (&objfile->objfile_obstack,
1824 dwarf2_per_objfile->n_comp_units
1825 * sizeof (struct dwarf2_per_cu_data *));
1826
1827 for (i = 0; i < cu_list_elements; i += 2)
1828 {
1829 struct dwarf2_per_cu_data *the_cu;
1830 ULONGEST offset, length;
1831
1832 if (!extract_cu_value (cu_list, &offset)
1833 || !extract_cu_value (cu_list + 8, &length))
1834 return 0;
1835 cu_list += 2 * 8;
1836
1837 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1838 struct dwarf2_per_cu_data);
1839 the_cu->offset = offset;
1840 the_cu->length = length;
1841 the_cu->objfile = objfile;
1842 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1843 struct dwarf2_per_cu_quick_data);
1844 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1845 }
1846
1847 return 1;
1848 }
1849
1850 /* Create the signatured type hash table from the index. */
1851
1852 static int
1853 create_signatured_type_table_from_index (struct objfile *objfile,
1854 const gdb_byte *bytes,
1855 offset_type elements)
1856 {
1857 offset_type i;
1858 htab_t sig_types_hash;
1859
1860 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1861 dwarf2_per_objfile->type_comp_units
1862 = obstack_alloc (&objfile->objfile_obstack,
1863 dwarf2_per_objfile->n_type_comp_units
1864 * sizeof (struct dwarf2_per_cu_data *));
1865
1866 sig_types_hash = allocate_signatured_type_table (objfile);
1867
1868 for (i = 0; i < elements; i += 3)
1869 {
1870 struct signatured_type *type_sig;
1871 ULONGEST offset, type_offset, signature;
1872 void **slot;
1873
1874 if (!extract_cu_value (bytes, &offset)
1875 || !extract_cu_value (bytes + 8, &type_offset))
1876 return 0;
1877 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1878 bytes += 3 * 8;
1879
1880 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1881 struct signatured_type);
1882 type_sig->signature = signature;
1883 type_sig->offset = offset;
1884 type_sig->type_offset = type_offset;
1885 type_sig->per_cu.from_debug_types = 1;
1886 type_sig->per_cu.offset = offset;
1887 type_sig->per_cu.objfile = objfile;
1888 type_sig->per_cu.v.quick
1889 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1890 struct dwarf2_per_cu_quick_data);
1891
1892 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1893 *slot = type_sig;
1894
1895 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
1896 }
1897
1898 dwarf2_per_objfile->signatured_types = sig_types_hash;
1899
1900 return 1;
1901 }
1902
1903 /* Read the address map data from the mapped index, and use it to
1904 populate the objfile's psymtabs_addrmap. */
1905
1906 static void
1907 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
1908 {
1909 const gdb_byte *iter, *end;
1910 struct obstack temp_obstack;
1911 struct addrmap *mutable_map;
1912 struct cleanup *cleanup;
1913 CORE_ADDR baseaddr;
1914
1915 obstack_init (&temp_obstack);
1916 cleanup = make_cleanup_obstack_free (&temp_obstack);
1917 mutable_map = addrmap_create_mutable (&temp_obstack);
1918
1919 iter = index->address_table;
1920 end = iter + index->address_table_size;
1921
1922 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1923
1924 while (iter < end)
1925 {
1926 ULONGEST hi, lo, cu_index;
1927 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1928 iter += 8;
1929 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
1930 iter += 8;
1931 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
1932 iter += 4;
1933
1934 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1935 dw2_get_cu (cu_index));
1936 }
1937
1938 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
1939 &objfile->objfile_obstack);
1940 do_cleanups (cleanup);
1941 }
1942
1943 /* The hash function for strings in the mapped index. This is the
1944 same as the hashtab.c hash function, but we keep a separate copy to
1945 maintain control over the implementation. This is necessary
1946 because the hash function is tied to the format of the mapped index
1947 file. */
1948
1949 static hashval_t
1950 mapped_index_string_hash (const void *p)
1951 {
1952 const unsigned char *str = (const unsigned char *) p;
1953 hashval_t r = 0;
1954 unsigned char c;
1955
1956 while ((c = *str++) != 0)
1957 r = r * 67 + c - 113;
1958
1959 return r;
1960 }
1961
1962 /* Find a slot in the mapped index INDEX for the object named NAME.
1963 If NAME is found, set *VEC_OUT to point to the CU vector in the
1964 constant pool and return 1. If NAME cannot be found, return 0. */
1965
1966 static int
1967 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
1968 offset_type **vec_out)
1969 {
1970 offset_type hash = mapped_index_string_hash (name);
1971 offset_type slot, step;
1972
1973 slot = hash & (index->symbol_table_slots - 1);
1974 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
1975
1976 for (;;)
1977 {
1978 /* Convert a slot number to an offset into the table. */
1979 offset_type i = 2 * slot;
1980 const char *str;
1981 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
1982 return 0;
1983
1984 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
1985 if (!strcmp (name, str))
1986 {
1987 *vec_out = (offset_type *) (index->constant_pool
1988 + MAYBE_SWAP (index->symbol_table[i + 1]));
1989 return 1;
1990 }
1991
1992 slot = (slot + step) & (index->symbol_table_slots - 1);
1993 }
1994 }
1995
1996 /* Read the index file. If everything went ok, initialize the "quick"
1997 elements of all the CUs and return 1. Otherwise, return 0. */
1998
1999 static int
2000 dwarf2_read_index (struct objfile *objfile)
2001 {
2002 char *addr;
2003 struct mapped_index *map;
2004 offset_type *metadata;
2005 const gdb_byte *cu_list;
2006 const gdb_byte *types_list = NULL;
2007 offset_type version, cu_list_elements;
2008 offset_type types_list_elements = 0;
2009 int i;
2010
2011 if (dwarf2_per_objfile->gdb_index.asection == NULL
2012 || dwarf2_per_objfile->gdb_index.size == 0)
2013 return 0;
2014
2015 /* Older elfutils strip versions could keep the section in the main
2016 executable while splitting it for the separate debug info file. */
2017 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2018 & SEC_HAS_CONTENTS) == 0)
2019 return 0;
2020
2021 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2022
2023 addr = dwarf2_per_objfile->gdb_index.buffer;
2024 /* Version check. */
2025 version = MAYBE_SWAP (*(offset_type *) addr);
2026 /* Versions earlier than 3 emitted every copy of a psymbol. This
2027 causes the index to behave very poorly for certain requests. So,
2028 it seems better to just ignore such indices. */
2029 if (version < 3)
2030 return 0;
2031 /* Indexes with higher version than the one supported by GDB may be no
2032 longer backward compatible. */
2033 if (version > 3)
2034 return 0;
2035
2036 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
2037 map->total_size = dwarf2_per_objfile->gdb_index.size;
2038
2039 metadata = (offset_type *) (addr + sizeof (offset_type));
2040
2041 i = 0;
2042 cu_list = addr + MAYBE_SWAP (metadata[i]);
2043 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2044 / 8);
2045 ++i;
2046
2047 types_list = addr + MAYBE_SWAP (metadata[i]);
2048 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2049 - MAYBE_SWAP (metadata[i]))
2050 / 8);
2051 ++i;
2052
2053 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2054 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2055 - MAYBE_SWAP (metadata[i]));
2056 ++i;
2057
2058 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2059 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2060 - MAYBE_SWAP (metadata[i]))
2061 / (2 * sizeof (offset_type)));
2062 ++i;
2063
2064 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2065
2066 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2067 return 0;
2068
2069 if (types_list_elements
2070 && !create_signatured_type_table_from_index (objfile, types_list,
2071 types_list_elements))
2072 return 0;
2073
2074 create_addrmap_from_index (objfile, map);
2075
2076 dwarf2_per_objfile->index_table = map;
2077 dwarf2_per_objfile->using_index = 1;
2078 dwarf2_per_objfile->quick_file_names_table =
2079 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2080
2081 return 1;
2082 }
2083
2084 /* A helper for the "quick" functions which sets the global
2085 dwarf2_per_objfile according to OBJFILE. */
2086
2087 static void
2088 dw2_setup (struct objfile *objfile)
2089 {
2090 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2091 gdb_assert (dwarf2_per_objfile);
2092 }
2093
2094 /* A helper for the "quick" functions which attempts to read the line
2095 table for THIS_CU. */
2096
2097 static struct quick_file_names *
2098 dw2_get_file_names (struct objfile *objfile,
2099 struct dwarf2_per_cu_data *this_cu)
2100 {
2101 bfd *abfd = objfile->obfd;
2102 struct line_header *lh;
2103 struct attribute *attr;
2104 struct cleanup *cleanups;
2105 struct die_info *comp_unit_die;
2106 struct dwarf2_section_info* sec;
2107 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2108 int has_children, i;
2109 struct dwarf2_cu cu;
2110 unsigned int bytes_read, buffer_size;
2111 struct die_reader_specs reader_specs;
2112 char *name, *comp_dir;
2113 void **slot;
2114 struct quick_file_names *qfn;
2115 unsigned int line_offset;
2116
2117 if (this_cu->v.quick->file_names != NULL)
2118 return this_cu->v.quick->file_names;
2119 /* If we know there is no line data, no point in looking again. */
2120 if (this_cu->v.quick->no_file_data)
2121 return NULL;
2122
2123 init_one_comp_unit (&cu, objfile);
2124 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2125
2126 if (this_cu->from_debug_types)
2127 sec = &dwarf2_per_objfile->types;
2128 else
2129 sec = &dwarf2_per_objfile->info;
2130 dwarf2_read_section (objfile, sec);
2131 buffer_size = sec->size;
2132 buffer = sec->buffer;
2133 info_ptr = buffer + this_cu->offset;
2134 beg_of_comp_unit = info_ptr;
2135
2136 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2137 buffer, buffer_size,
2138 abfd);
2139
2140 /* Complete the cu_header. */
2141 cu.header.offset = beg_of_comp_unit - buffer;
2142 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2143
2144 this_cu->cu = &cu;
2145 cu.per_cu = this_cu;
2146
2147 dwarf2_read_abbrevs (abfd, &cu);
2148 make_cleanup (dwarf2_free_abbrev_table, &cu);
2149
2150 if (this_cu->from_debug_types)
2151 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2152 init_cu_die_reader (&reader_specs, &cu);
2153 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2154 &has_children);
2155
2156 lh = NULL;
2157 slot = NULL;
2158 line_offset = 0;
2159 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2160 if (attr)
2161 {
2162 struct quick_file_names find_entry;
2163
2164 line_offset = DW_UNSND (attr);
2165
2166 /* We may have already read in this line header (TU line header sharing).
2167 If we have we're done. */
2168 find_entry.offset = line_offset;
2169 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2170 &find_entry, INSERT);
2171 if (*slot != NULL)
2172 {
2173 do_cleanups (cleanups);
2174 this_cu->v.quick->file_names = *slot;
2175 return *slot;
2176 }
2177
2178 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2179 }
2180 if (lh == NULL)
2181 {
2182 do_cleanups (cleanups);
2183 this_cu->v.quick->no_file_data = 1;
2184 return NULL;
2185 }
2186
2187 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2188 qfn->offset = line_offset;
2189 gdb_assert (slot != NULL);
2190 *slot = qfn;
2191
2192 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
2193
2194 qfn->num_file_names = lh->num_file_names;
2195 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2196 lh->num_file_names * sizeof (char *));
2197 for (i = 0; i < lh->num_file_names; ++i)
2198 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2199 qfn->real_names = NULL;
2200
2201 free_line_header (lh);
2202 do_cleanups (cleanups);
2203
2204 this_cu->v.quick->file_names = qfn;
2205 return qfn;
2206 }
2207
2208 /* A helper for the "quick" functions which computes and caches the
2209 real path for a given file name from the line table. */
2210
2211 static const char *
2212 dw2_get_real_path (struct objfile *objfile,
2213 struct quick_file_names *qfn, int index)
2214 {
2215 if (qfn->real_names == NULL)
2216 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2217 qfn->num_file_names, sizeof (char *));
2218
2219 if (qfn->real_names[index] == NULL)
2220 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
2221
2222 return qfn->real_names[index];
2223 }
2224
2225 static struct symtab *
2226 dw2_find_last_source_symtab (struct objfile *objfile)
2227 {
2228 int index;
2229
2230 dw2_setup (objfile);
2231 index = dwarf2_per_objfile->n_comp_units - 1;
2232 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
2233 }
2234
2235 /* Traversal function for dw2_forget_cached_source_info. */
2236
2237 static int
2238 dw2_free_cached_file_names (void **slot, void *info)
2239 {
2240 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
2241
2242 if (file_data->real_names)
2243 {
2244 int i;
2245
2246 for (i = 0; i < file_data->num_file_names; ++i)
2247 {
2248 xfree ((void*) file_data->real_names[i]);
2249 file_data->real_names[i] = NULL;
2250 }
2251 }
2252
2253 return 1;
2254 }
2255
2256 static void
2257 dw2_forget_cached_source_info (struct objfile *objfile)
2258 {
2259 dw2_setup (objfile);
2260
2261 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2262 dw2_free_cached_file_names, NULL);
2263 }
2264
2265 static int
2266 dw2_lookup_symtab (struct objfile *objfile, const char *name,
2267 const char *full_path, const char *real_path,
2268 struct symtab **result)
2269 {
2270 int i;
2271 int check_basename = lbasename (name) == name;
2272 struct dwarf2_per_cu_data *base_cu = NULL;
2273
2274 dw2_setup (objfile);
2275
2276 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2277 + dwarf2_per_objfile->n_type_comp_units); ++i)
2278 {
2279 int j;
2280 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2281 struct quick_file_names *file_data;
2282
2283 if (per_cu->v.quick->symtab)
2284 continue;
2285
2286 file_data = dw2_get_file_names (objfile, per_cu);
2287 if (file_data == NULL)
2288 continue;
2289
2290 for (j = 0; j < file_data->num_file_names; ++j)
2291 {
2292 const char *this_name = file_data->file_names[j];
2293
2294 if (FILENAME_CMP (name, this_name) == 0)
2295 {
2296 *result = dw2_instantiate_symtab (objfile, per_cu);
2297 return 1;
2298 }
2299
2300 if (check_basename && ! base_cu
2301 && FILENAME_CMP (lbasename (this_name), name) == 0)
2302 base_cu = per_cu;
2303
2304 if (full_path != NULL)
2305 {
2306 const char *this_real_name = dw2_get_real_path (objfile,
2307 file_data, j);
2308
2309 if (this_real_name != NULL
2310 && FILENAME_CMP (full_path, this_real_name) == 0)
2311 {
2312 *result = dw2_instantiate_symtab (objfile, per_cu);
2313 return 1;
2314 }
2315 }
2316
2317 if (real_path != NULL)
2318 {
2319 const char *this_real_name = dw2_get_real_path (objfile,
2320 file_data, j);
2321
2322 if (this_real_name != NULL
2323 && FILENAME_CMP (real_path, this_real_name) == 0)
2324 {
2325 *result = dw2_instantiate_symtab (objfile, per_cu);
2326 return 1;
2327 }
2328 }
2329 }
2330 }
2331
2332 if (base_cu)
2333 {
2334 *result = dw2_instantiate_symtab (objfile, base_cu);
2335 return 1;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static struct symtab *
2342 dw2_lookup_symbol (struct objfile *objfile, int block_index,
2343 const char *name, domain_enum domain)
2344 {
2345 /* We do all the work in the pre_expand_symtabs_matching hook
2346 instead. */
2347 return NULL;
2348 }
2349
2350 /* A helper function that expands all symtabs that hold an object
2351 named NAME. */
2352
2353 static void
2354 dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2355 {
2356 dw2_setup (objfile);
2357
2358 /* index_table is NULL if OBJF_READNOW. */
2359 if (dwarf2_per_objfile->index_table)
2360 {
2361 offset_type *vec;
2362
2363 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2364 name, &vec))
2365 {
2366 offset_type i, len = MAYBE_SWAP (*vec);
2367 for (i = 0; i < len; ++i)
2368 {
2369 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
2370 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
2371
2372 dw2_instantiate_symtab (objfile, per_cu);
2373 }
2374 }
2375 }
2376 }
2377
2378 static void
2379 dw2_pre_expand_symtabs_matching (struct objfile *objfile,
2380 int kind, const char *name,
2381 domain_enum domain)
2382 {
2383 dw2_do_expand_symtabs_matching (objfile, name);
2384 }
2385
2386 static void
2387 dw2_print_stats (struct objfile *objfile)
2388 {
2389 int i, count;
2390
2391 dw2_setup (objfile);
2392 count = 0;
2393 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2394 + dwarf2_per_objfile->n_type_comp_units); ++i)
2395 {
2396 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2397
2398 if (!per_cu->v.quick->symtab)
2399 ++count;
2400 }
2401 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2402 }
2403
2404 static void
2405 dw2_dump (struct objfile *objfile)
2406 {
2407 /* Nothing worth printing. */
2408 }
2409
2410 static void
2411 dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2412 struct section_offsets *delta)
2413 {
2414 /* There's nothing to relocate here. */
2415 }
2416
2417 static void
2418 dw2_expand_symtabs_for_function (struct objfile *objfile,
2419 const char *func_name)
2420 {
2421 dw2_do_expand_symtabs_matching (objfile, func_name);
2422 }
2423
2424 static void
2425 dw2_expand_all_symtabs (struct objfile *objfile)
2426 {
2427 int i;
2428
2429 dw2_setup (objfile);
2430
2431 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2432 + dwarf2_per_objfile->n_type_comp_units); ++i)
2433 {
2434 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2435
2436 dw2_instantiate_symtab (objfile, per_cu);
2437 }
2438 }
2439
2440 static void
2441 dw2_expand_symtabs_with_filename (struct objfile *objfile,
2442 const char *filename)
2443 {
2444 int i;
2445
2446 dw2_setup (objfile);
2447
2448 /* We don't need to consider type units here.
2449 This is only called for examining code, e.g. expand_line_sal.
2450 There can be an order of magnitude (or more) more type units
2451 than comp units, and we avoid them if we can. */
2452
2453 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
2454 {
2455 int j;
2456 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2457 struct quick_file_names *file_data;
2458
2459 if (per_cu->v.quick->symtab)
2460 continue;
2461
2462 file_data = dw2_get_file_names (objfile, per_cu);
2463 if (file_data == NULL)
2464 continue;
2465
2466 for (j = 0; j < file_data->num_file_names; ++j)
2467 {
2468 const char *this_name = file_data->file_names[j];
2469 if (FILENAME_CMP (this_name, filename) == 0)
2470 {
2471 dw2_instantiate_symtab (objfile, per_cu);
2472 break;
2473 }
2474 }
2475 }
2476 }
2477
2478 static const char *
2479 dw2_find_symbol_file (struct objfile *objfile, const char *name)
2480 {
2481 struct dwarf2_per_cu_data *per_cu;
2482 offset_type *vec;
2483 struct quick_file_names *file_data;
2484
2485 dw2_setup (objfile);
2486
2487 /* index_table is NULL if OBJF_READNOW. */
2488 if (!dwarf2_per_objfile->index_table)
2489 return NULL;
2490
2491 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2492 name, &vec))
2493 return NULL;
2494
2495 /* Note that this just looks at the very first one named NAME -- but
2496 actually we are looking for a function. find_main_filename
2497 should be rewritten so that it doesn't require a custom hook. It
2498 could just use the ordinary symbol tables. */
2499 /* vec[0] is the length, which must always be >0. */
2500 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
2501
2502 file_data = dw2_get_file_names (objfile, per_cu);
2503 if (file_data == NULL)
2504 return NULL;
2505
2506 return file_data->file_names[file_data->num_file_names - 1];
2507 }
2508
2509 static void
2510 dw2_map_matching_symbols (const char * name, domain_enum namespace,
2511 struct objfile *objfile, int global,
2512 int (*callback) (struct block *,
2513 struct symbol *, void *),
2514 void *data, symbol_compare_ftype *match,
2515 symbol_compare_ftype *ordered_compare)
2516 {
2517 /* Currently unimplemented; used for Ada. The function can be called if the
2518 current language is Ada for a non-Ada objfile using GNU index. As Ada
2519 does not look for non-Ada symbols this function should just return. */
2520 }
2521
2522 static void
2523 dw2_expand_symtabs_matching (struct objfile *objfile,
2524 int (*file_matcher) (const char *, void *),
2525 int (*name_matcher) (const char *, void *),
2526 domain_enum kind,
2527 void *data)
2528 {
2529 int i;
2530 offset_type iter;
2531 struct mapped_index *index;
2532
2533 dw2_setup (objfile);
2534
2535 /* index_table is NULL if OBJF_READNOW. */
2536 if (!dwarf2_per_objfile->index_table)
2537 return;
2538 index = dwarf2_per_objfile->index_table;
2539
2540 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2541 + dwarf2_per_objfile->n_type_comp_units); ++i)
2542 {
2543 int j;
2544 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2545 struct quick_file_names *file_data;
2546
2547 per_cu->v.quick->mark = 0;
2548 if (per_cu->v.quick->symtab)
2549 continue;
2550
2551 file_data = dw2_get_file_names (objfile, per_cu);
2552 if (file_data == NULL)
2553 continue;
2554
2555 for (j = 0; j < file_data->num_file_names; ++j)
2556 {
2557 if (file_matcher (file_data->file_names[j], data))
2558 {
2559 per_cu->v.quick->mark = 1;
2560 break;
2561 }
2562 }
2563 }
2564
2565 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2566 {
2567 offset_type idx = 2 * iter;
2568 const char *name;
2569 offset_type *vec, vec_len, vec_idx;
2570
2571 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2572 continue;
2573
2574 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
2575
2576 if (! (*name_matcher) (name, data))
2577 continue;
2578
2579 /* The name was matched, now expand corresponding CUs that were
2580 marked. */
2581 vec = (offset_type *) (index->constant_pool
2582 + MAYBE_SWAP (index->symbol_table[idx + 1]));
2583 vec_len = MAYBE_SWAP (vec[0]);
2584 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2585 {
2586 struct dwarf2_per_cu_data *per_cu;
2587
2588 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
2589 if (per_cu->v.quick->mark)
2590 dw2_instantiate_symtab (objfile, per_cu);
2591 }
2592 }
2593 }
2594
2595 static struct symtab *
2596 dw2_find_pc_sect_symtab (struct objfile *objfile,
2597 struct minimal_symbol *msymbol,
2598 CORE_ADDR pc,
2599 struct obj_section *section,
2600 int warn_if_readin)
2601 {
2602 struct dwarf2_per_cu_data *data;
2603
2604 dw2_setup (objfile);
2605
2606 if (!objfile->psymtabs_addrmap)
2607 return NULL;
2608
2609 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2610 if (!data)
2611 return NULL;
2612
2613 if (warn_if_readin && data->v.quick->symtab)
2614 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
2615 paddress (get_objfile_arch (objfile), pc));
2616
2617 return dw2_instantiate_symtab (objfile, data);
2618 }
2619
2620 static void
2621 dw2_map_symbol_names (struct objfile *objfile,
2622 void (*fun) (const char *, void *),
2623 void *data)
2624 {
2625 offset_type iter;
2626 struct mapped_index *index;
2627
2628 dw2_setup (objfile);
2629
2630 /* index_table is NULL if OBJF_READNOW. */
2631 if (!dwarf2_per_objfile->index_table)
2632 return;
2633 index = dwarf2_per_objfile->index_table;
2634
2635 for (iter = 0; iter < index->symbol_table_slots; ++iter)
2636 {
2637 offset_type idx = 2 * iter;
2638 const char *name;
2639 offset_type *vec, vec_len, vec_idx;
2640
2641 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
2642 continue;
2643
2644 name = (index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]));
2645
2646 (*fun) (name, data);
2647 }
2648 }
2649
2650 static void
2651 dw2_map_symbol_filenames (struct objfile *objfile,
2652 void (*fun) (const char *, const char *, void *),
2653 void *data)
2654 {
2655 int i;
2656
2657 dw2_setup (objfile);
2658
2659 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2660 + dwarf2_per_objfile->n_type_comp_units); ++i)
2661 {
2662 int j;
2663 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2664 struct quick_file_names *file_data;
2665
2666 if (per_cu->v.quick->symtab)
2667 continue;
2668
2669 file_data = dw2_get_file_names (objfile, per_cu);
2670 if (file_data == NULL)
2671 continue;
2672
2673 for (j = 0; j < file_data->num_file_names; ++j)
2674 {
2675 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2676 j);
2677 (*fun) (file_data->file_names[j], this_real_name, data);
2678 }
2679 }
2680 }
2681
2682 static int
2683 dw2_has_symbols (struct objfile *objfile)
2684 {
2685 return 1;
2686 }
2687
2688 const struct quick_symbol_functions dwarf2_gdb_index_functions =
2689 {
2690 dw2_has_symbols,
2691 dw2_find_last_source_symtab,
2692 dw2_forget_cached_source_info,
2693 dw2_lookup_symtab,
2694 dw2_lookup_symbol,
2695 dw2_pre_expand_symtabs_matching,
2696 dw2_print_stats,
2697 dw2_dump,
2698 dw2_relocate,
2699 dw2_expand_symtabs_for_function,
2700 dw2_expand_all_symtabs,
2701 dw2_expand_symtabs_with_filename,
2702 dw2_find_symbol_file,
2703 dw2_map_matching_symbols,
2704 dw2_expand_symtabs_matching,
2705 dw2_find_pc_sect_symtab,
2706 dw2_map_symbol_names,
2707 dw2_map_symbol_filenames
2708 };
2709
2710 /* Initialize for reading DWARF for this objfile. Return 0 if this
2711 file will use psymtabs, or 1 if using the GNU index. */
2712
2713 int
2714 dwarf2_initialize_objfile (struct objfile *objfile)
2715 {
2716 /* If we're about to read full symbols, don't bother with the
2717 indices. In this case we also don't care if some other debug
2718 format is making psymtabs, because they are all about to be
2719 expanded anyway. */
2720 if ((objfile->flags & OBJF_READNOW))
2721 {
2722 int i;
2723
2724 dwarf2_per_objfile->using_index = 1;
2725 create_all_comp_units (objfile);
2726 create_debug_types_hash_table (objfile);
2727 dwarf2_per_objfile->quick_file_names_table =
2728 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
2729
2730 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2731 + dwarf2_per_objfile->n_type_comp_units); ++i)
2732 {
2733 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2734
2735 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2737 }
2738
2739 /* Return 1 so that gdb sees the "quick" functions. However,
2740 these functions will be no-ops because we will have expanded
2741 all symtabs. */
2742 return 1;
2743 }
2744
2745 if (dwarf2_read_index (objfile))
2746 return 1;
2747
2748 dwarf2_build_psymtabs (objfile);
2749 return 0;
2750 }
2751
2752 \f
2753
2754 /* Build a partial symbol table. */
2755
2756 void
2757 dwarf2_build_psymtabs (struct objfile *objfile)
2758 {
2759 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
2760 {
2761 init_psymbol_list (objfile, 1024);
2762 }
2763
2764 dwarf2_build_psymtabs_hard (objfile);
2765 }
2766
2767 /* Return TRUE if OFFSET is within CU_HEADER. */
2768
2769 static inline int
2770 offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2771 {
2772 unsigned int bottom = cu_header->offset;
2773 unsigned int top = (cu_header->offset
2774 + cu_header->length
2775 + cu_header->initial_length_size);
2776
2777 return (offset >= bottom && offset < top);
2778 }
2779
2780 /* Read in the comp unit header information from the debug_info at info_ptr.
2781 NOTE: This leaves members offset, first_die_offset to be filled in
2782 by the caller. */
2783
2784 static gdb_byte *
2785 read_comp_unit_head (struct comp_unit_head *cu_header,
2786 gdb_byte *info_ptr, bfd *abfd)
2787 {
2788 int signed_addr;
2789 unsigned int bytes_read;
2790
2791 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2792 cu_header->initial_length_size = bytes_read;
2793 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
2794 info_ptr += bytes_read;
2795 cu_header->version = read_2_bytes (abfd, info_ptr);
2796 info_ptr += 2;
2797 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
2798 &bytes_read);
2799 info_ptr += bytes_read;
2800 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2801 info_ptr += 1;
2802 signed_addr = bfd_get_sign_extend_vma (abfd);
2803 if (signed_addr < 0)
2804 internal_error (__FILE__, __LINE__,
2805 _("read_comp_unit_head: dwarf from non elf file"));
2806 cu_header->signed_addr_p = signed_addr;
2807
2808 return info_ptr;
2809 }
2810
2811 static gdb_byte *
2812 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
2813 gdb_byte *buffer, unsigned int buffer_size,
2814 bfd *abfd)
2815 {
2816 gdb_byte *beg_of_comp_unit = info_ptr;
2817
2818 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2819
2820 if (header->version != 2 && header->version != 3 && header->version != 4)
2821 error (_("Dwarf Error: wrong version in compilation unit header "
2822 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2823 bfd_get_filename (abfd));
2824
2825 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev.size)
2826 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2827 "(offset 0x%lx + 6) [in module %s]"),
2828 (long) header->abbrev_offset,
2829 (long) (beg_of_comp_unit - buffer),
2830 bfd_get_filename (abfd));
2831
2832 if (beg_of_comp_unit + header->length + header->initial_length_size
2833 > buffer + buffer_size)
2834 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2835 "(offset 0x%lx + 0) [in module %s]"),
2836 (long) header->length,
2837 (long) (beg_of_comp_unit - buffer),
2838 bfd_get_filename (abfd));
2839
2840 return info_ptr;
2841 }
2842
2843 /* Read in the types comp unit header information from .debug_types entry at
2844 types_ptr. The result is a pointer to one past the end of the header. */
2845
2846 static gdb_byte *
2847 read_type_comp_unit_head (struct comp_unit_head *cu_header,
2848 ULONGEST *signature,
2849 gdb_byte *types_ptr, bfd *abfd)
2850 {
2851 gdb_byte *initial_types_ptr = types_ptr;
2852
2853 dwarf2_read_section (dwarf2_per_objfile->objfile,
2854 &dwarf2_per_objfile->types);
2855 cu_header->offset = types_ptr - dwarf2_per_objfile->types.buffer;
2856
2857 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2858
2859 *signature = read_8_bytes (abfd, types_ptr);
2860 types_ptr += 8;
2861 types_ptr += cu_header->offset_size;
2862 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2863
2864 return types_ptr;
2865 }
2866
2867 /* Allocate a new partial symtab for file named NAME and mark this new
2868 partial symtab as being an include of PST. */
2869
2870 static void
2871 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
2872 struct objfile *objfile)
2873 {
2874 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
2875
2876 subpst->section_offsets = pst->section_offsets;
2877 subpst->textlow = 0;
2878 subpst->texthigh = 0;
2879
2880 subpst->dependencies = (struct partial_symtab **)
2881 obstack_alloc (&objfile->objfile_obstack,
2882 sizeof (struct partial_symtab *));
2883 subpst->dependencies[0] = pst;
2884 subpst->number_of_dependencies = 1;
2885
2886 subpst->globals_offset = 0;
2887 subpst->n_global_syms = 0;
2888 subpst->statics_offset = 0;
2889 subpst->n_static_syms = 0;
2890 subpst->symtab = NULL;
2891 subpst->read_symtab = pst->read_symtab;
2892 subpst->readin = 0;
2893
2894 /* No private part is necessary for include psymtabs. This property
2895 can be used to differentiate between such include psymtabs and
2896 the regular ones. */
2897 subpst->read_symtab_private = NULL;
2898 }
2899
2900 /* Read the Line Number Program data and extract the list of files
2901 included by the source file represented by PST. Build an include
2902 partial symtab for each of these included files. */
2903
2904 static void
2905 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
2906 struct die_info *die,
2907 struct partial_symtab *pst)
2908 {
2909 struct objfile *objfile = cu->objfile;
2910 bfd *abfd = objfile->obfd;
2911 struct line_header *lh = NULL;
2912 struct attribute *attr;
2913
2914 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2915 if (attr)
2916 {
2917 unsigned int line_offset = DW_UNSND (attr);
2918
2919 lh = dwarf_decode_line_header (line_offset, abfd, cu);
2920 }
2921 if (lh == NULL)
2922 return; /* No linetable, so no includes. */
2923
2924 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
2925 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
2926
2927 free_line_header (lh);
2928 }
2929
2930 static hashval_t
2931 hash_type_signature (const void *item)
2932 {
2933 const struct signatured_type *type_sig = item;
2934
2935 /* This drops the top 32 bits of the signature, but is ok for a hash. */
2936 return type_sig->signature;
2937 }
2938
2939 static int
2940 eq_type_signature (const void *item_lhs, const void *item_rhs)
2941 {
2942 const struct signatured_type *lhs = item_lhs;
2943 const struct signatured_type *rhs = item_rhs;
2944
2945 return lhs->signature == rhs->signature;
2946 }
2947
2948 /* Allocate a hash table for signatured types. */
2949
2950 static htab_t
2951 allocate_signatured_type_table (struct objfile *objfile)
2952 {
2953 return htab_create_alloc_ex (41,
2954 hash_type_signature,
2955 eq_type_signature,
2956 NULL,
2957 &objfile->objfile_obstack,
2958 hashtab_obstack_allocate,
2959 dummy_obstack_deallocate);
2960 }
2961
2962 /* A helper function to add a signatured type CU to a list. */
2963
2964 static int
2965 add_signatured_type_cu_to_list (void **slot, void *datum)
2966 {
2967 struct signatured_type *sigt = *slot;
2968 struct dwarf2_per_cu_data ***datap = datum;
2969
2970 **datap = &sigt->per_cu;
2971 ++*datap;
2972
2973 return 1;
2974 }
2975
2976 /* Create the hash table of all entries in the .debug_types section.
2977 The result is zero if there is an error (e.g. missing .debug_types section),
2978 otherwise non-zero. */
2979
2980 static int
2981 create_debug_types_hash_table (struct objfile *objfile)
2982 {
2983 gdb_byte *info_ptr;
2984 htab_t types_htab;
2985 struct dwarf2_per_cu_data **iter;
2986
2987 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
2988 info_ptr = dwarf2_per_objfile->types.buffer;
2989
2990 if (info_ptr == NULL)
2991 {
2992 dwarf2_per_objfile->signatured_types = NULL;
2993 return 0;
2994 }
2995
2996 types_htab = allocate_signatured_type_table (objfile);
2997
2998 if (dwarf2_die_debug)
2999 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3000
3001 while (info_ptr < dwarf2_per_objfile->types.buffer
3002 + dwarf2_per_objfile->types.size)
3003 {
3004 unsigned int offset;
3005 unsigned int offset_size;
3006 unsigned int type_offset;
3007 unsigned int length, initial_length_size;
3008 unsigned short version;
3009 ULONGEST signature;
3010 struct signatured_type *type_sig;
3011 void **slot;
3012 gdb_byte *ptr = info_ptr;
3013
3014 offset = ptr - dwarf2_per_objfile->types.buffer;
3015
3016 /* We need to read the type's signature in order to build the hash
3017 table, but we don't need to read anything else just yet. */
3018
3019 /* Sanity check to ensure entire cu is present. */
3020 length = read_initial_length (objfile->obfd, ptr, &initial_length_size);
3021 if (ptr + length + initial_length_size
3022 > dwarf2_per_objfile->types.buffer + dwarf2_per_objfile->types.size)
3023 {
3024 complaint (&symfile_complaints,
3025 _("debug type entry runs off end "
3026 "of `.debug_types' section, ignored"));
3027 break;
3028 }
3029
3030 offset_size = initial_length_size == 4 ? 4 : 8;
3031 ptr += initial_length_size;
3032 version = bfd_get_16 (objfile->obfd, ptr);
3033 ptr += 2;
3034 ptr += offset_size; /* abbrev offset */
3035 ptr += 1; /* address size */
3036 signature = bfd_get_64 (objfile->obfd, ptr);
3037 ptr += 8;
3038 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3039
3040 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3041 memset (type_sig, 0, sizeof (*type_sig));
3042 type_sig->signature = signature;
3043 type_sig->offset = offset;
3044 type_sig->type_offset = type_offset;
3045 type_sig->per_cu.objfile = objfile;
3046 type_sig->per_cu.from_debug_types = 1;
3047
3048 slot = htab_find_slot (types_htab, type_sig, INSERT);
3049 gdb_assert (slot != NULL);
3050 *slot = type_sig;
3051
3052 if (dwarf2_die_debug)
3053 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3054 offset, phex (signature, sizeof (signature)));
3055
3056 info_ptr = info_ptr + initial_length_size + length;
3057 }
3058
3059 dwarf2_per_objfile->signatured_types = types_htab;
3060
3061 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3062 dwarf2_per_objfile->type_comp_units
3063 = obstack_alloc (&objfile->objfile_obstack,
3064 dwarf2_per_objfile->n_type_comp_units
3065 * sizeof (struct dwarf2_per_cu_data *));
3066 iter = &dwarf2_per_objfile->type_comp_units[0];
3067 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3068 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3069 == dwarf2_per_objfile->n_type_comp_units);
3070
3071 return 1;
3072 }
3073
3074 /* Lookup a signature based type.
3075 Returns NULL if SIG is not present in the table. */
3076
3077 static struct signatured_type *
3078 lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3079 {
3080 struct signatured_type find_entry, *entry;
3081
3082 if (dwarf2_per_objfile->signatured_types == NULL)
3083 {
3084 complaint (&symfile_complaints,
3085 _("missing `.debug_types' section for DW_FORM_sig8 die"));
3086 return 0;
3087 }
3088
3089 find_entry.signature = sig;
3090 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3091 return entry;
3092 }
3093
3094 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3095
3096 static void
3097 init_cu_die_reader (struct die_reader_specs *reader,
3098 struct dwarf2_cu *cu)
3099 {
3100 reader->abfd = cu->objfile->obfd;
3101 reader->cu = cu;
3102 if (cu->per_cu->from_debug_types)
3103 {
3104 gdb_assert (dwarf2_per_objfile->types.readin);
3105 reader->buffer = dwarf2_per_objfile->types.buffer;
3106 }
3107 else
3108 {
3109 gdb_assert (dwarf2_per_objfile->info.readin);
3110 reader->buffer = dwarf2_per_objfile->info.buffer;
3111 }
3112 }
3113
3114 /* Find the base address of the compilation unit for range lists and
3115 location lists. It will normally be specified by DW_AT_low_pc.
3116 In DWARF-3 draft 4, the base address could be overridden by
3117 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3118 compilation units with discontinuous ranges. */
3119
3120 static void
3121 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3122 {
3123 struct attribute *attr;
3124
3125 cu->base_known = 0;
3126 cu->base_address = 0;
3127
3128 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3129 if (attr)
3130 {
3131 cu->base_address = DW_ADDR (attr);
3132 cu->base_known = 1;
3133 }
3134 else
3135 {
3136 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3137 if (attr)
3138 {
3139 cu->base_address = DW_ADDR (attr);
3140 cu->base_known = 1;
3141 }
3142 }
3143 }
3144
3145 /* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3146 to combine the common parts.
3147 Process a compilation unit for a psymtab.
3148 BUFFER is a pointer to the beginning of the dwarf section buffer,
3149 either .debug_info or debug_types.
3150 INFO_PTR is a pointer to the start of the CU.
3151 Returns a pointer to the next CU. */
3152
3153 static gdb_byte *
3154 process_psymtab_comp_unit (struct objfile *objfile,
3155 struct dwarf2_per_cu_data *this_cu,
3156 gdb_byte *buffer, gdb_byte *info_ptr,
3157 unsigned int buffer_size)
3158 {
3159 bfd *abfd = objfile->obfd;
3160 gdb_byte *beg_of_comp_unit = info_ptr;
3161 struct die_info *comp_unit_die;
3162 struct partial_symtab *pst;
3163 CORE_ADDR baseaddr;
3164 struct cleanup *back_to_inner;
3165 struct dwarf2_cu cu;
3166 int has_children, has_pc_info;
3167 struct attribute *attr;
3168 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3169 struct die_reader_specs reader_specs;
3170
3171 init_one_comp_unit (&cu, objfile);
3172 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
3173
3174 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3175 buffer, buffer_size,
3176 abfd);
3177
3178 /* Complete the cu_header. */
3179 cu.header.offset = beg_of_comp_unit - buffer;
3180 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
3181
3182 cu.list_in_scope = &file_symbols;
3183
3184 /* If this compilation unit was already read in, free the
3185 cached copy in order to read it in again. This is
3186 necessary because we skipped some symbols when we first
3187 read in the compilation unit (see load_partial_dies).
3188 This problem could be avoided, but the benefit is
3189 unclear. */
3190 if (this_cu->cu != NULL)
3191 free_one_cached_comp_unit (this_cu->cu);
3192
3193 /* Note that this is a pointer to our stack frame, being
3194 added to a global data structure. It will be cleaned up
3195 in free_stack_comp_unit when we finish with this
3196 compilation unit. */
3197 this_cu->cu = &cu;
3198 cu.per_cu = this_cu;
3199
3200 /* Read the abbrevs for this compilation unit into a table. */
3201 dwarf2_read_abbrevs (abfd, &cu);
3202 make_cleanup (dwarf2_free_abbrev_table, &cu);
3203
3204 /* Read the compilation unit die. */
3205 if (this_cu->from_debug_types)
3206 info_ptr += 8 /*signature*/ + cu.header.offset_size;
3207 init_cu_die_reader (&reader_specs, &cu);
3208 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3209 &has_children);
3210
3211 if (this_cu->from_debug_types)
3212 {
3213 /* offset,length haven't been set yet for type units. */
3214 this_cu->offset = cu.header.offset;
3215 this_cu->length = cu.header.length + cu.header.initial_length_size;
3216 }
3217 else if (comp_unit_die->tag == DW_TAG_partial_unit)
3218 {
3219 info_ptr = (beg_of_comp_unit + cu.header.length
3220 + cu.header.initial_length_size);
3221 do_cleanups (back_to_inner);
3222 return info_ptr;
3223 }
3224
3225 prepare_one_comp_unit (&cu, comp_unit_die);
3226
3227 /* Allocate a new partial symbol table structure. */
3228 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3229 pst = start_psymtab_common (objfile, objfile->section_offsets,
3230 (attr != NULL) ? DW_STRING (attr) : "",
3231 /* TEXTLOW and TEXTHIGH are set below. */
3232 0,
3233 objfile->global_psymbols.next,
3234 objfile->static_psymbols.next);
3235
3236 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3237 if (attr != NULL)
3238 pst->dirname = DW_STRING (attr);
3239
3240 pst->read_symtab_private = this_cu;
3241
3242 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3243
3244 /* Store the function that reads in the rest of the symbol table */
3245 pst->read_symtab = dwarf2_psymtab_to_symtab;
3246
3247 this_cu->v.psymtab = pst;
3248
3249 dwarf2_find_base_address (comp_unit_die, &cu);
3250
3251 /* Possibly set the default values of LOWPC and HIGHPC from
3252 `DW_AT_ranges'. */
3253 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3254 &best_highpc, &cu, pst);
3255 if (has_pc_info == 1 && best_lowpc < best_highpc)
3256 /* Store the contiguous range if it is not empty; it can be empty for
3257 CUs with no code. */
3258 addrmap_set_empty (objfile->psymtabs_addrmap,
3259 best_lowpc + baseaddr,
3260 best_highpc + baseaddr - 1, pst);
3261
3262 /* Check if comp unit has_children.
3263 If so, read the rest of the partial symbols from this comp unit.
3264 If not, there's no more debug_info for this comp unit. */
3265 if (has_children)
3266 {
3267 struct partial_die_info *first_die;
3268 CORE_ADDR lowpc, highpc;
3269
3270 lowpc = ((CORE_ADDR) -1);
3271 highpc = ((CORE_ADDR) 0);
3272
3273 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
3274
3275 scan_partial_symbols (first_die, &lowpc, &highpc,
3276 ! has_pc_info, &cu);
3277
3278 /* If we didn't find a lowpc, set it to highpc to avoid
3279 complaints from `maint check'. */
3280 if (lowpc == ((CORE_ADDR) -1))
3281 lowpc = highpc;
3282
3283 /* If the compilation unit didn't have an explicit address range,
3284 then use the information extracted from its child dies. */
3285 if (! has_pc_info)
3286 {
3287 best_lowpc = lowpc;
3288 best_highpc = highpc;
3289 }
3290 }
3291 pst->textlow = best_lowpc + baseaddr;
3292 pst->texthigh = best_highpc + baseaddr;
3293
3294 pst->n_global_syms = objfile->global_psymbols.next -
3295 (objfile->global_psymbols.list + pst->globals_offset);
3296 pst->n_static_syms = objfile->static_psymbols.next -
3297 (objfile->static_psymbols.list + pst->statics_offset);
3298 sort_pst_symbols (pst);
3299
3300 info_ptr = (beg_of_comp_unit + cu.header.length
3301 + cu.header.initial_length_size);
3302
3303 if (this_cu->from_debug_types)
3304 {
3305 /* It's not clear we want to do anything with stmt lists here.
3306 Waiting to see what gcc ultimately does. */
3307 }
3308 else
3309 {
3310 /* Get the list of files included in the current compilation unit,
3311 and build a psymtab for each of them. */
3312 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
3313 }
3314
3315 do_cleanups (back_to_inner);
3316
3317 return info_ptr;
3318 }
3319
3320 /* Traversal function for htab_traverse_noresize.
3321 Process one .debug_types comp-unit. */
3322
3323 static int
3324 process_type_comp_unit (void **slot, void *info)
3325 {
3326 struct signatured_type *entry = (struct signatured_type *) *slot;
3327 struct objfile *objfile = (struct objfile *) info;
3328 struct dwarf2_per_cu_data *this_cu;
3329
3330 this_cu = &entry->per_cu;
3331
3332 gdb_assert (dwarf2_per_objfile->types.readin);
3333 process_psymtab_comp_unit (objfile, this_cu,
3334 dwarf2_per_objfile->types.buffer,
3335 dwarf2_per_objfile->types.buffer + entry->offset,
3336 dwarf2_per_objfile->types.size);
3337
3338 return 1;
3339 }
3340
3341 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3342 Build partial symbol tables for the .debug_types comp-units. */
3343
3344 static void
3345 build_type_psymtabs (struct objfile *objfile)
3346 {
3347 if (! create_debug_types_hash_table (objfile))
3348 return;
3349
3350 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3351 process_type_comp_unit, objfile);
3352 }
3353
3354 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
3355
3356 static void
3357 psymtabs_addrmap_cleanup (void *o)
3358 {
3359 struct objfile *objfile = o;
3360
3361 objfile->psymtabs_addrmap = NULL;
3362 }
3363
3364 /* Build the partial symbol table by doing a quick pass through the
3365 .debug_info and .debug_abbrev sections. */
3366
3367 static void
3368 dwarf2_build_psymtabs_hard (struct objfile *objfile)
3369 {
3370 gdb_byte *info_ptr;
3371 struct cleanup *back_to, *addrmap_cleanup;
3372 struct obstack temp_obstack;
3373
3374 dwarf2_per_objfile->reading_partial_symbols = 1;
3375
3376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3377 info_ptr = dwarf2_per_objfile->info.buffer;
3378
3379 /* Any cached compilation units will be linked by the per-objfile
3380 read_in_chain. Make sure to free them when we're done. */
3381 back_to = make_cleanup (free_cached_comp_units, NULL);
3382
3383 build_type_psymtabs (objfile);
3384
3385 create_all_comp_units (objfile);
3386
3387 /* Create a temporary address map on a temporary obstack. We later
3388 copy this to the final obstack. */
3389 obstack_init (&temp_obstack);
3390 make_cleanup_obstack_free (&temp_obstack);
3391 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3392 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
3393
3394 /* Since the objects we're extracting from .debug_info vary in
3395 length, only the individual functions to extract them (like
3396 read_comp_unit_head and load_partial_die) can really know whether
3397 the buffer is large enough to hold another complete object.
3398
3399 At the moment, they don't actually check that. If .debug_info
3400 holds just one extra byte after the last compilation unit's dies,
3401 then read_comp_unit_head will happily read off the end of the
3402 buffer. read_partial_die is similarly casual. Those functions
3403 should be fixed.
3404
3405 For this loop condition, simply checking whether there's any data
3406 left at all should be sufficient. */
3407
3408 while (info_ptr < (dwarf2_per_objfile->info.buffer
3409 + dwarf2_per_objfile->info.size))
3410 {
3411 struct dwarf2_per_cu_data *this_cu;
3412
3413 this_cu = dwarf2_find_comp_unit (info_ptr
3414 - dwarf2_per_objfile->info.buffer,
3415 objfile);
3416
3417 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3418 dwarf2_per_objfile->info.buffer,
3419 info_ptr,
3420 dwarf2_per_objfile->info.size);
3421 }
3422
3423 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3424 &objfile->objfile_obstack);
3425 discard_cleanups (addrmap_cleanup);
3426
3427 do_cleanups (back_to);
3428 }
3429
3430 /* Load the partial DIEs for a secondary CU into memory. */
3431
3432 static void
3433 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3434 struct objfile *objfile)
3435 {
3436 bfd *abfd = objfile->obfd;
3437 gdb_byte *info_ptr, *beg_of_comp_unit;
3438 struct die_info *comp_unit_die;
3439 struct dwarf2_cu *cu;
3440 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
3441 int has_children;
3442 struct die_reader_specs reader_specs;
3443 int read_cu = 0;
3444
3445 gdb_assert (! this_cu->from_debug_types);
3446
3447 gdb_assert (dwarf2_per_objfile->info.readin);
3448 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
3449 beg_of_comp_unit = info_ptr;
3450
3451 if (this_cu->cu == NULL)
3452 {
3453 cu = xmalloc (sizeof (*cu));
3454 init_one_comp_unit (cu, objfile);
3455
3456 read_cu = 1;
3457
3458 /* If an error occurs while loading, release our storage. */
3459 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
3460
3461 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3462 dwarf2_per_objfile->info.buffer,
3463 dwarf2_per_objfile->info.size,
3464 abfd);
3465
3466 /* Complete the cu_header. */
3467 cu->header.offset = this_cu->offset;
3468 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3469
3470 /* Link this compilation unit into the compilation unit tree. */
3471 this_cu->cu = cu;
3472 cu->per_cu = this_cu;
3473
3474 /* Link this CU into read_in_chain. */
3475 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3476 dwarf2_per_objfile->read_in_chain = this_cu;
3477 }
3478 else
3479 {
3480 cu = this_cu->cu;
3481 info_ptr += cu->header.first_die_offset;
3482 }
3483
3484 /* Read the abbrevs for this compilation unit into a table. */
3485 gdb_assert (cu->dwarf2_abbrevs == NULL);
3486 dwarf2_read_abbrevs (abfd, cu);
3487 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
3488
3489 /* Read the compilation unit die. */
3490 init_cu_die_reader (&reader_specs, cu);
3491 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3492 &has_children);
3493
3494 prepare_one_comp_unit (cu, comp_unit_die);
3495
3496 /* Check if comp unit has_children.
3497 If so, read the rest of the partial symbols from this comp unit.
3498 If not, there's no more debug_info for this comp unit. */
3499 if (has_children)
3500 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
3501
3502 do_cleanups (free_abbrevs_cleanup);
3503
3504 if (read_cu)
3505 {
3506 /* We've successfully allocated this compilation unit. Let our
3507 caller clean it up when finished with it. */
3508 discard_cleanups (free_cu_cleanup);
3509 }
3510 }
3511
3512 /* Create a list of all compilation units in OBJFILE. We do this only
3513 if an inter-comp-unit reference is found; presumably if there is one,
3514 there will be many, and one will occur early in the .debug_info section.
3515 So there's no point in building this list incrementally. */
3516
3517 static void
3518 create_all_comp_units (struct objfile *objfile)
3519 {
3520 int n_allocated;
3521 int n_comp_units;
3522 struct dwarf2_per_cu_data **all_comp_units;
3523 gdb_byte *info_ptr;
3524
3525 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3526 info_ptr = dwarf2_per_objfile->info.buffer;
3527
3528 n_comp_units = 0;
3529 n_allocated = 10;
3530 all_comp_units = xmalloc (n_allocated
3531 * sizeof (struct dwarf2_per_cu_data *));
3532
3533 while (info_ptr < dwarf2_per_objfile->info.buffer
3534 + dwarf2_per_objfile->info.size)
3535 {
3536 unsigned int length, initial_length_size;
3537 struct dwarf2_per_cu_data *this_cu;
3538 unsigned int offset;
3539
3540 offset = info_ptr - dwarf2_per_objfile->info.buffer;
3541
3542 /* Read just enough information to find out where the next
3543 compilation unit is. */
3544 length = read_initial_length (objfile->obfd, info_ptr,
3545 &initial_length_size);
3546
3547 /* Save the compilation unit for later lookup. */
3548 this_cu = obstack_alloc (&objfile->objfile_obstack,
3549 sizeof (struct dwarf2_per_cu_data));
3550 memset (this_cu, 0, sizeof (*this_cu));
3551 this_cu->offset = offset;
3552 this_cu->length = length + initial_length_size;
3553 this_cu->objfile = objfile;
3554
3555 if (n_comp_units == n_allocated)
3556 {
3557 n_allocated *= 2;
3558 all_comp_units = xrealloc (all_comp_units,
3559 n_allocated
3560 * sizeof (struct dwarf2_per_cu_data *));
3561 }
3562 all_comp_units[n_comp_units++] = this_cu;
3563
3564 info_ptr = info_ptr + this_cu->length;
3565 }
3566
3567 dwarf2_per_objfile->all_comp_units
3568 = obstack_alloc (&objfile->objfile_obstack,
3569 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3570 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3571 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3572 xfree (all_comp_units);
3573 dwarf2_per_objfile->n_comp_units = n_comp_units;
3574 }
3575
3576 /* Process all loaded DIEs for compilation unit CU, starting at
3577 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3578 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3579 DW_AT_ranges). If NEED_PC is set, then this function will set
3580 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3581 and record the covered ranges in the addrmap. */
3582
3583 static void
3584 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
3585 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3586 {
3587 struct partial_die_info *pdi;
3588
3589 /* Now, march along the PDI's, descending into ones which have
3590 interesting children but skipping the children of the other ones,
3591 until we reach the end of the compilation unit. */
3592
3593 pdi = first_die;
3594
3595 while (pdi != NULL)
3596 {
3597 fixup_partial_die (pdi, cu);
3598
3599 /* Anonymous namespaces or modules have no name but have interesting
3600 children, so we need to look at them. Ditto for anonymous
3601 enums. */
3602
3603 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
3604 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
3605 {
3606 switch (pdi->tag)
3607 {
3608 case DW_TAG_subprogram:
3609 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
3610 break;
3611 case DW_TAG_constant:
3612 case DW_TAG_variable:
3613 case DW_TAG_typedef:
3614 case DW_TAG_union_type:
3615 if (!pdi->is_declaration)
3616 {
3617 add_partial_symbol (pdi, cu);
3618 }
3619 break;
3620 case DW_TAG_class_type:
3621 case DW_TAG_interface_type:
3622 case DW_TAG_structure_type:
3623 if (!pdi->is_declaration)
3624 {
3625 add_partial_symbol (pdi, cu);
3626 }
3627 break;
3628 case DW_TAG_enumeration_type:
3629 if (!pdi->is_declaration)
3630 add_partial_enumeration (pdi, cu);
3631 break;
3632 case DW_TAG_base_type:
3633 case DW_TAG_subrange_type:
3634 /* File scope base type definitions are added to the partial
3635 symbol table. */
3636 add_partial_symbol (pdi, cu);
3637 break;
3638 case DW_TAG_namespace:
3639 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
3640 break;
3641 case DW_TAG_module:
3642 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3643 break;
3644 default:
3645 break;
3646 }
3647 }
3648
3649 /* If the die has a sibling, skip to the sibling. */
3650
3651 pdi = pdi->die_sibling;
3652 }
3653 }
3654
3655 /* Functions used to compute the fully scoped name of a partial DIE.
3656
3657 Normally, this is simple. For C++, the parent DIE's fully scoped
3658 name is concatenated with "::" and the partial DIE's name. For
3659 Java, the same thing occurs except that "." is used instead of "::".
3660 Enumerators are an exception; they use the scope of their parent
3661 enumeration type, i.e. the name of the enumeration type is not
3662 prepended to the enumerator.
3663
3664 There are two complexities. One is DW_AT_specification; in this
3665 case "parent" means the parent of the target of the specification,
3666 instead of the direct parent of the DIE. The other is compilers
3667 which do not emit DW_TAG_namespace; in this case we try to guess
3668 the fully qualified name of structure types from their members'
3669 linkage names. This must be done using the DIE's children rather
3670 than the children of any DW_AT_specification target. We only need
3671 to do this for structures at the top level, i.e. if the target of
3672 any DW_AT_specification (if any; otherwise the DIE itself) does not
3673 have a parent. */
3674
3675 /* Compute the scope prefix associated with PDI's parent, in
3676 compilation unit CU. The result will be allocated on CU's
3677 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3678 field. NULL is returned if no prefix is necessary. */
3679 static char *
3680 partial_die_parent_scope (struct partial_die_info *pdi,
3681 struct dwarf2_cu *cu)
3682 {
3683 char *grandparent_scope;
3684 struct partial_die_info *parent, *real_pdi;
3685
3686 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3687 then this means the parent of the specification DIE. */
3688
3689 real_pdi = pdi;
3690 while (real_pdi->has_specification)
3691 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
3692
3693 parent = real_pdi->die_parent;
3694 if (parent == NULL)
3695 return NULL;
3696
3697 if (parent->scope_set)
3698 return parent->scope;
3699
3700 fixup_partial_die (parent, cu);
3701
3702 grandparent_scope = partial_die_parent_scope (parent, cu);
3703
3704 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3705 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3706 Work around this problem here. */
3707 if (cu->language == language_cplus
3708 && parent->tag == DW_TAG_namespace
3709 && strcmp (parent->name, "::") == 0
3710 && grandparent_scope == NULL)
3711 {
3712 parent->scope = NULL;
3713 parent->scope_set = 1;
3714 return NULL;
3715 }
3716
3717 if (parent->tag == DW_TAG_namespace
3718 || parent->tag == DW_TAG_module
3719 || parent->tag == DW_TAG_structure_type
3720 || parent->tag == DW_TAG_class_type
3721 || parent->tag == DW_TAG_interface_type
3722 || parent->tag == DW_TAG_union_type
3723 || parent->tag == DW_TAG_enumeration_type)
3724 {
3725 if (grandparent_scope == NULL)
3726 parent->scope = parent->name;
3727 else
3728 parent->scope = typename_concat (&cu->comp_unit_obstack,
3729 grandparent_scope,
3730 parent->name, 0, cu);
3731 }
3732 else if (parent->tag == DW_TAG_enumerator)
3733 /* Enumerators should not get the name of the enumeration as a prefix. */
3734 parent->scope = grandparent_scope;
3735 else
3736 {
3737 /* FIXME drow/2004-04-01: What should we be doing with
3738 function-local names? For partial symbols, we should probably be
3739 ignoring them. */
3740 complaint (&symfile_complaints,
3741 _("unhandled containing DIE tag %d for DIE at %d"),
3742 parent->tag, pdi->offset);
3743 parent->scope = grandparent_scope;
3744 }
3745
3746 parent->scope_set = 1;
3747 return parent->scope;
3748 }
3749
3750 /* Return the fully scoped name associated with PDI, from compilation unit
3751 CU. The result will be allocated with malloc. */
3752 static char *
3753 partial_die_full_name (struct partial_die_info *pdi,
3754 struct dwarf2_cu *cu)
3755 {
3756 char *parent_scope;
3757
3758 /* If this is a template instantiation, we can not work out the
3759 template arguments from partial DIEs. So, unfortunately, we have
3760 to go through the full DIEs. At least any work we do building
3761 types here will be reused if full symbols are loaded later. */
3762 if (pdi->has_template_arguments)
3763 {
3764 fixup_partial_die (pdi, cu);
3765
3766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3767 {
3768 struct die_info *die;
3769 struct attribute attr;
3770 struct dwarf2_cu *ref_cu = cu;
3771
3772 attr.name = 0;
3773 attr.form = DW_FORM_ref_addr;
3774 attr.u.addr = pdi->offset;
3775 die = follow_die_ref (NULL, &attr, &ref_cu);
3776
3777 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3778 }
3779 }
3780
3781 parent_scope = partial_die_parent_scope (pdi, cu);
3782 if (parent_scope == NULL)
3783 return NULL;
3784 else
3785 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
3786 }
3787
3788 static void
3789 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
3790 {
3791 struct objfile *objfile = cu->objfile;
3792 CORE_ADDR addr = 0;
3793 char *actual_name = NULL;
3794 const struct partial_symbol *psym = NULL;
3795 CORE_ADDR baseaddr;
3796 int built_actual_name = 0;
3797
3798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3799
3800 actual_name = partial_die_full_name (pdi, cu);
3801 if (actual_name)
3802 built_actual_name = 1;
3803
3804 if (actual_name == NULL)
3805 actual_name = pdi->name;
3806
3807 switch (pdi->tag)
3808 {
3809 case DW_TAG_subprogram:
3810 if (pdi->is_external || cu->language == language_ada)
3811 {
3812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3813 of the global scope. But in Ada, we want to be able to access
3814 nested procedures globally. So all Ada subprograms are stored
3815 in the global scope. */
3816 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3817 mst_text, objfile); */
3818 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3819 built_actual_name,
3820 VAR_DOMAIN, LOC_BLOCK,
3821 &objfile->global_psymbols,
3822 0, pdi->lowpc + baseaddr,
3823 cu->language, objfile);
3824 }
3825 else
3826 {
3827 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
3828 mst_file_text, objfile); */
3829 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3830 built_actual_name,
3831 VAR_DOMAIN, LOC_BLOCK,
3832 &objfile->static_psymbols,
3833 0, pdi->lowpc + baseaddr,
3834 cu->language, objfile);
3835 }
3836 break;
3837 case DW_TAG_constant:
3838 {
3839 struct psymbol_allocation_list *list;
3840
3841 if (pdi->is_external)
3842 list = &objfile->global_psymbols;
3843 else
3844 list = &objfile->static_psymbols;
3845 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3846 built_actual_name, VAR_DOMAIN, LOC_STATIC,
3847 list, 0, 0, cu->language, objfile);
3848
3849 }
3850 break;
3851 case DW_TAG_variable:
3852 if (pdi->locdesc)
3853 addr = decode_locdesc (pdi->locdesc, cu);
3854
3855 if (pdi->locdesc
3856 && addr == 0
3857 && !dwarf2_per_objfile->has_section_at_zero)
3858 {
3859 /* A global or static variable may also have been stripped
3860 out by the linker if unused, in which case its address
3861 will be nullified; do not add such variables into partial
3862 symbol table then. */
3863 }
3864 else if (pdi->is_external)
3865 {
3866 /* Global Variable.
3867 Don't enter into the minimal symbol tables as there is
3868 a minimal symbol table entry from the ELF symbols already.
3869 Enter into partial symbol table if it has a location
3870 descriptor or a type.
3871 If the location descriptor is missing, new_symbol will create
3872 a LOC_UNRESOLVED symbol, the address of the variable will then
3873 be determined from the minimal symbol table whenever the variable
3874 is referenced.
3875 The address for the partial symbol table entry is not
3876 used by GDB, but it comes in handy for debugging partial symbol
3877 table building. */
3878
3879 if (pdi->locdesc || pdi->has_type)
3880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3881 built_actual_name,
3882 VAR_DOMAIN, LOC_STATIC,
3883 &objfile->global_psymbols,
3884 0, addr + baseaddr,
3885 cu->language, objfile);
3886 }
3887 else
3888 {
3889 /* Static Variable. Skip symbols without location descriptors. */
3890 if (pdi->locdesc == NULL)
3891 {
3892 if (built_actual_name)
3893 xfree (actual_name);
3894 return;
3895 }
3896 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
3897 mst_file_data, objfile); */
3898 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
3899 built_actual_name,
3900 VAR_DOMAIN, LOC_STATIC,
3901 &objfile->static_psymbols,
3902 0, addr + baseaddr,
3903 cu->language, objfile);
3904 }
3905 break;
3906 case DW_TAG_typedef:
3907 case DW_TAG_base_type:
3908 case DW_TAG_subrange_type:
3909 add_psymbol_to_list (actual_name, strlen (actual_name),
3910 built_actual_name,
3911 VAR_DOMAIN, LOC_TYPEDEF,
3912 &objfile->static_psymbols,
3913 0, (CORE_ADDR) 0, cu->language, objfile);
3914 break;
3915 case DW_TAG_namespace:
3916 add_psymbol_to_list (actual_name, strlen (actual_name),
3917 built_actual_name,
3918 VAR_DOMAIN, LOC_TYPEDEF,
3919 &objfile->global_psymbols,
3920 0, (CORE_ADDR) 0, cu->language, objfile);
3921 break;
3922 case DW_TAG_class_type:
3923 case DW_TAG_interface_type:
3924 case DW_TAG_structure_type:
3925 case DW_TAG_union_type:
3926 case DW_TAG_enumeration_type:
3927 /* Skip external references. The DWARF standard says in the section
3928 about "Structure, Union, and Class Type Entries": "An incomplete
3929 structure, union or class type is represented by a structure,
3930 union or class entry that does not have a byte size attribute
3931 and that has a DW_AT_declaration attribute." */
3932 if (!pdi->has_byte_size && pdi->is_declaration)
3933 {
3934 if (built_actual_name)
3935 xfree (actual_name);
3936 return;
3937 }
3938
3939 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
3940 static vs. global. */
3941 add_psymbol_to_list (actual_name, strlen (actual_name),
3942 built_actual_name,
3943 STRUCT_DOMAIN, LOC_TYPEDEF,
3944 (cu->language == language_cplus
3945 || cu->language == language_java)
3946 ? &objfile->global_psymbols
3947 : &objfile->static_psymbols,
3948 0, (CORE_ADDR) 0, cu->language, objfile);
3949
3950 break;
3951 case DW_TAG_enumerator:
3952 add_psymbol_to_list (actual_name, strlen (actual_name),
3953 built_actual_name,
3954 VAR_DOMAIN, LOC_CONST,
3955 (cu->language == language_cplus
3956 || cu->language == language_java)
3957 ? &objfile->global_psymbols
3958 : &objfile->static_psymbols,
3959 0, (CORE_ADDR) 0, cu->language, objfile);
3960 break;
3961 default:
3962 break;
3963 }
3964
3965 if (built_actual_name)
3966 xfree (actual_name);
3967 }
3968
3969 /* Read a partial die corresponding to a namespace; also, add a symbol
3970 corresponding to that namespace to the symbol table. NAMESPACE is
3971 the name of the enclosing namespace. */
3972
3973 static void
3974 add_partial_namespace (struct partial_die_info *pdi,
3975 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3976 int need_pc, struct dwarf2_cu *cu)
3977 {
3978 /* Add a symbol for the namespace. */
3979
3980 add_partial_symbol (pdi, cu);
3981
3982 /* Now scan partial symbols in that namespace. */
3983
3984 if (pdi->has_children)
3985 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3986 }
3987
3988 /* Read a partial die corresponding to a Fortran module. */
3989
3990 static void
3991 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
3992 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
3993 {
3994 /* Now scan partial symbols in that module. */
3995
3996 if (pdi->has_children)
3997 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
3998 }
3999
4000 /* Read a partial die corresponding to a subprogram and create a partial
4001 symbol for that subprogram. When the CU language allows it, this
4002 routine also defines a partial symbol for each nested subprogram
4003 that this subprogram contains.
4004
4005 DIE my also be a lexical block, in which case we simply search
4006 recursively for suprograms defined inside that lexical block.
4007 Again, this is only performed when the CU language allows this
4008 type of definitions. */
4009
4010 static void
4011 add_partial_subprogram (struct partial_die_info *pdi,
4012 CORE_ADDR *lowpc, CORE_ADDR *highpc,
4013 int need_pc, struct dwarf2_cu *cu)
4014 {
4015 if (pdi->tag == DW_TAG_subprogram)
4016 {
4017 if (pdi->has_pc_info)
4018 {
4019 if (pdi->lowpc < *lowpc)
4020 *lowpc = pdi->lowpc;
4021 if (pdi->highpc > *highpc)
4022 *highpc = pdi->highpc;
4023 if (need_pc)
4024 {
4025 CORE_ADDR baseaddr;
4026 struct objfile *objfile = cu->objfile;
4027
4028 baseaddr = ANOFFSET (objfile->section_offsets,
4029 SECT_OFF_TEXT (objfile));
4030 addrmap_set_empty (objfile->psymtabs_addrmap,
4031 pdi->lowpc + baseaddr,
4032 pdi->highpc - 1 + baseaddr,
4033 cu->per_cu->v.psymtab);
4034 }
4035 if (!pdi->is_declaration)
4036 /* Ignore subprogram DIEs that do not have a name, they are
4037 illegal. Do not emit a complaint at this point, we will
4038 do so when we convert this psymtab into a symtab. */
4039 if (pdi->name)
4040 add_partial_symbol (pdi, cu);
4041 }
4042 }
4043
4044 if (! pdi->has_children)
4045 return;
4046
4047 if (cu->language == language_ada)
4048 {
4049 pdi = pdi->die_child;
4050 while (pdi != NULL)
4051 {
4052 fixup_partial_die (pdi, cu);
4053 if (pdi->tag == DW_TAG_subprogram
4054 || pdi->tag == DW_TAG_lexical_block)
4055 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
4056 pdi = pdi->die_sibling;
4057 }
4058 }
4059 }
4060
4061 /* Read a partial die corresponding to an enumeration type. */
4062
4063 static void
4064 add_partial_enumeration (struct partial_die_info *enum_pdi,
4065 struct dwarf2_cu *cu)
4066 {
4067 struct partial_die_info *pdi;
4068
4069 if (enum_pdi->name != NULL)
4070 add_partial_symbol (enum_pdi, cu);
4071
4072 pdi = enum_pdi->die_child;
4073 while (pdi)
4074 {
4075 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
4076 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
4077 else
4078 add_partial_symbol (pdi, cu);
4079 pdi = pdi->die_sibling;
4080 }
4081 }
4082
4083 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4084 Return the corresponding abbrev, or NULL if the number is zero (indicating
4085 an empty DIE). In either case *BYTES_READ will be set to the length of
4086 the initial number. */
4087
4088 static struct abbrev_info *
4089 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
4090 struct dwarf2_cu *cu)
4091 {
4092 bfd *abfd = cu->objfile->obfd;
4093 unsigned int abbrev_number;
4094 struct abbrev_info *abbrev;
4095
4096 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4097
4098 if (abbrev_number == 0)
4099 return NULL;
4100
4101 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4102 if (!abbrev)
4103 {
4104 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4105 abbrev_number, bfd_get_filename (abfd));
4106 }
4107
4108 return abbrev;
4109 }
4110
4111 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4112 Returns a pointer to the end of a series of DIEs, terminated by an empty
4113 DIE. Any children of the skipped DIEs will also be skipped. */
4114
4115 static gdb_byte *
4116 skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4117 {
4118 struct abbrev_info *abbrev;
4119 unsigned int bytes_read;
4120
4121 while (1)
4122 {
4123 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4124 if (abbrev == NULL)
4125 return info_ptr + bytes_read;
4126 else
4127 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4128 }
4129 }
4130
4131 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4132 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4133 abbrev corresponding to that skipped uleb128 should be passed in
4134 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4135 children. */
4136
4137 static gdb_byte *
4138 skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4139 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4140 {
4141 unsigned int bytes_read;
4142 struct attribute attr;
4143 bfd *abfd = cu->objfile->obfd;
4144 unsigned int form, i;
4145
4146 for (i = 0; i < abbrev->num_attrs; i++)
4147 {
4148 /* The only abbrev we care about is DW_AT_sibling. */
4149 if (abbrev->attrs[i].name == DW_AT_sibling)
4150 {
4151 read_attribute (&attr, &abbrev->attrs[i],
4152 abfd, info_ptr, cu);
4153 if (attr.form == DW_FORM_ref_addr)
4154 complaint (&symfile_complaints,
4155 _("ignoring absolute DW_AT_sibling"));
4156 else
4157 return buffer + dwarf2_get_ref_die_offset (&attr);
4158 }
4159
4160 /* If it isn't DW_AT_sibling, skip this attribute. */
4161 form = abbrev->attrs[i].form;
4162 skip_attribute:
4163 switch (form)
4164 {
4165 case DW_FORM_ref_addr:
4166 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4167 and later it is offset sized. */
4168 if (cu->header.version == 2)
4169 info_ptr += cu->header.addr_size;
4170 else
4171 info_ptr += cu->header.offset_size;
4172 break;
4173 case DW_FORM_addr:
4174 info_ptr += cu->header.addr_size;
4175 break;
4176 case DW_FORM_data1:
4177 case DW_FORM_ref1:
4178 case DW_FORM_flag:
4179 info_ptr += 1;
4180 break;
4181 case DW_FORM_flag_present:
4182 break;
4183 case DW_FORM_data2:
4184 case DW_FORM_ref2:
4185 info_ptr += 2;
4186 break;
4187 case DW_FORM_data4:
4188 case DW_FORM_ref4:
4189 info_ptr += 4;
4190 break;
4191 case DW_FORM_data8:
4192 case DW_FORM_ref8:
4193 case DW_FORM_sig8:
4194 info_ptr += 8;
4195 break;
4196 case DW_FORM_string:
4197 read_direct_string (abfd, info_ptr, &bytes_read);
4198 info_ptr += bytes_read;
4199 break;
4200 case DW_FORM_sec_offset:
4201 case DW_FORM_strp:
4202 info_ptr += cu->header.offset_size;
4203 break;
4204 case DW_FORM_exprloc:
4205 case DW_FORM_block:
4206 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4207 info_ptr += bytes_read;
4208 break;
4209 case DW_FORM_block1:
4210 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4211 break;
4212 case DW_FORM_block2:
4213 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4214 break;
4215 case DW_FORM_block4:
4216 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4217 break;
4218 case DW_FORM_sdata:
4219 case DW_FORM_udata:
4220 case DW_FORM_ref_udata:
4221 info_ptr = skip_leb128 (abfd, info_ptr);
4222 break;
4223 case DW_FORM_indirect:
4224 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4225 info_ptr += bytes_read;
4226 /* We need to continue parsing from here, so just go back to
4227 the top. */
4228 goto skip_attribute;
4229
4230 default:
4231 error (_("Dwarf Error: Cannot handle %s "
4232 "in DWARF reader [in module %s]"),
4233 dwarf_form_name (form),
4234 bfd_get_filename (abfd));
4235 }
4236 }
4237
4238 if (abbrev->has_children)
4239 return skip_children (buffer, info_ptr, cu);
4240 else
4241 return info_ptr;
4242 }
4243
4244 /* Locate ORIG_PDI's sibling.
4245 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4246 in BUFFER. */
4247
4248 static gdb_byte *
4249 locate_pdi_sibling (struct partial_die_info *orig_pdi,
4250 gdb_byte *buffer, gdb_byte *info_ptr,
4251 bfd *abfd, struct dwarf2_cu *cu)
4252 {
4253 /* Do we know the sibling already? */
4254
4255 if (orig_pdi->sibling)
4256 return orig_pdi->sibling;
4257
4258 /* Are there any children to deal with? */
4259
4260 if (!orig_pdi->has_children)
4261 return info_ptr;
4262
4263 /* Skip the children the long way. */
4264
4265 return skip_children (buffer, info_ptr, cu);
4266 }
4267
4268 /* Expand this partial symbol table into a full symbol table. */
4269
4270 static void
4271 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
4272 {
4273 if (pst != NULL)
4274 {
4275 if (pst->readin)
4276 {
4277 warning (_("bug: psymtab for %s is already read in."),
4278 pst->filename);
4279 }
4280 else
4281 {
4282 if (info_verbose)
4283 {
4284 printf_filtered (_("Reading in symbols for %s..."),
4285 pst->filename);
4286 gdb_flush (gdb_stdout);
4287 }
4288
4289 /* Restore our global data. */
4290 dwarf2_per_objfile = objfile_data (pst->objfile,
4291 dwarf2_objfile_data_key);
4292
4293 /* If this psymtab is constructed from a debug-only objfile, the
4294 has_section_at_zero flag will not necessarily be correct. We
4295 can get the correct value for this flag by looking at the data
4296 associated with the (presumably stripped) associated objfile. */
4297 if (pst->objfile->separate_debug_objfile_backlink)
4298 {
4299 struct dwarf2_per_objfile *dpo_backlink
4300 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4301 dwarf2_objfile_data_key);
4302
4303 dwarf2_per_objfile->has_section_at_zero
4304 = dpo_backlink->has_section_at_zero;
4305 }
4306
4307 dwarf2_per_objfile->reading_partial_symbols = 0;
4308
4309 psymtab_to_symtab_1 (pst);
4310
4311 /* Finish up the debug error message. */
4312 if (info_verbose)
4313 printf_filtered (_("done.\n"));
4314 }
4315 }
4316 }
4317
4318 /* Add PER_CU to the queue. */
4319
4320 static void
4321 queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
4322 {
4323 struct dwarf2_queue_item *item;
4324
4325 per_cu->queued = 1;
4326 item = xmalloc (sizeof (*item));
4327 item->per_cu = per_cu;
4328 item->next = NULL;
4329
4330 if (dwarf2_queue == NULL)
4331 dwarf2_queue = item;
4332 else
4333 dwarf2_queue_tail->next = item;
4334
4335 dwarf2_queue_tail = item;
4336 }
4337
4338 /* Process the queue. */
4339
4340 static void
4341 process_queue (struct objfile *objfile)
4342 {
4343 struct dwarf2_queue_item *item, *next_item;
4344
4345 /* The queue starts out with one item, but following a DIE reference
4346 may load a new CU, adding it to the end of the queue. */
4347 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4348 {
4349 if (dwarf2_per_objfile->using_index
4350 ? !item->per_cu->v.quick->symtab
4351 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
4352 process_full_comp_unit (item->per_cu);
4353
4354 item->per_cu->queued = 0;
4355 next_item = item->next;
4356 xfree (item);
4357 }
4358
4359 dwarf2_queue_tail = NULL;
4360 }
4361
4362 /* Free all allocated queue entries. This function only releases anything if
4363 an error was thrown; if the queue was processed then it would have been
4364 freed as we went along. */
4365
4366 static void
4367 dwarf2_release_queue (void *dummy)
4368 {
4369 struct dwarf2_queue_item *item, *last;
4370
4371 item = dwarf2_queue;
4372 while (item)
4373 {
4374 /* Anything still marked queued is likely to be in an
4375 inconsistent state, so discard it. */
4376 if (item->per_cu->queued)
4377 {
4378 if (item->per_cu->cu != NULL)
4379 free_one_cached_comp_unit (item->per_cu->cu);
4380 item->per_cu->queued = 0;
4381 }
4382
4383 last = item;
4384 item = item->next;
4385 xfree (last);
4386 }
4387
4388 dwarf2_queue = dwarf2_queue_tail = NULL;
4389 }
4390
4391 /* Read in full symbols for PST, and anything it depends on. */
4392
4393 static void
4394 psymtab_to_symtab_1 (struct partial_symtab *pst)
4395 {
4396 struct dwarf2_per_cu_data *per_cu;
4397 struct cleanup *back_to;
4398 int i;
4399
4400 for (i = 0; i < pst->number_of_dependencies; i++)
4401 if (!pst->dependencies[i]->readin)
4402 {
4403 /* Inform about additional files that need to be read in. */
4404 if (info_verbose)
4405 {
4406 /* FIXME: i18n: Need to make this a single string. */
4407 fputs_filtered (" ", gdb_stdout);
4408 wrap_here ("");
4409 fputs_filtered ("and ", gdb_stdout);
4410 wrap_here ("");
4411 printf_filtered ("%s...", pst->dependencies[i]->filename);
4412 wrap_here (""); /* Flush output */
4413 gdb_flush (gdb_stdout);
4414 }
4415 psymtab_to_symtab_1 (pst->dependencies[i]);
4416 }
4417
4418 per_cu = pst->read_symtab_private;
4419
4420 if (per_cu == NULL)
4421 {
4422 /* It's an include file, no symbols to read for it.
4423 Everything is in the parent symtab. */
4424 pst->readin = 1;
4425 return;
4426 }
4427
4428 dw2_do_instantiate_symtab (pst->objfile, per_cu);
4429 }
4430
4431 /* Load the DIEs associated with PER_CU into memory. */
4432
4433 static void
4434 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4435 struct objfile *objfile)
4436 {
4437 bfd *abfd = objfile->obfd;
4438 struct dwarf2_cu *cu;
4439 unsigned int offset;
4440 gdb_byte *info_ptr, *beg_of_comp_unit;
4441 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
4442 struct attribute *attr;
4443 int read_cu = 0;
4444
4445 gdb_assert (! per_cu->from_debug_types);
4446
4447 /* Set local variables from the partial symbol table info. */
4448 offset = per_cu->offset;
4449
4450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
4451 info_ptr = dwarf2_per_objfile->info.buffer + offset;
4452 beg_of_comp_unit = info_ptr;
4453
4454 if (per_cu->cu == NULL)
4455 {
4456 cu = xmalloc (sizeof (*cu));
4457 init_one_comp_unit (cu, objfile);
4458
4459 read_cu = 1;
4460
4461 /* If an error occurs while loading, release our storage. */
4462 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
4463
4464 /* Read in the comp_unit header. */
4465 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
4466
4467 /* Complete the cu_header. */
4468 cu->header.offset = offset;
4469 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
4470
4471 /* Read the abbrevs for this compilation unit. */
4472 dwarf2_read_abbrevs (abfd, cu);
4473 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
4474
4475 /* Link this compilation unit into the compilation unit tree. */
4476 per_cu->cu = cu;
4477 cu->per_cu = per_cu;
4478
4479 /* Link this CU into read_in_chain. */
4480 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4481 dwarf2_per_objfile->read_in_chain = per_cu;
4482 }
4483 else
4484 {
4485 cu = per_cu->cu;
4486 info_ptr += cu->header.first_die_offset;
4487 }
4488
4489 cu->dies = read_comp_unit (info_ptr, cu);
4490
4491 /* We try not to read any attributes in this function, because not
4492 all objfiles needed for references have been loaded yet, and symbol
4493 table processing isn't initialized. But we have to set the CU language,
4494 or we won't be able to build types correctly. */
4495 prepare_one_comp_unit (cu, cu->dies);
4496
4497 /* Similarly, if we do not read the producer, we can not apply
4498 producer-specific interpretation. */
4499 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4500 if (attr)
4501 cu->producer = DW_STRING (attr);
4502
4503 if (read_cu)
4504 {
4505 do_cleanups (free_abbrevs_cleanup);
4506
4507 /* We've successfully allocated this compilation unit. Let our
4508 caller clean it up when finished with it. */
4509 discard_cleanups (free_cu_cleanup);
4510 }
4511 }
4512
4513 /* Add a DIE to the delayed physname list. */
4514
4515 static void
4516 add_to_method_list (struct type *type, int fnfield_index, int index,
4517 const char *name, struct die_info *die,
4518 struct dwarf2_cu *cu)
4519 {
4520 struct delayed_method_info mi;
4521 mi.type = type;
4522 mi.fnfield_index = fnfield_index;
4523 mi.index = index;
4524 mi.name = name;
4525 mi.die = die;
4526 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4527 }
4528
4529 /* A cleanup for freeing the delayed method list. */
4530
4531 static void
4532 free_delayed_list (void *ptr)
4533 {
4534 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4535 if (cu->method_list != NULL)
4536 {
4537 VEC_free (delayed_method_info, cu->method_list);
4538 cu->method_list = NULL;
4539 }
4540 }
4541
4542 /* Compute the physnames of any methods on the CU's method list.
4543
4544 The computation of method physnames is delayed in order to avoid the
4545 (bad) condition that one of the method's formal parameters is of an as yet
4546 incomplete type. */
4547
4548 static void
4549 compute_delayed_physnames (struct dwarf2_cu *cu)
4550 {
4551 int i;
4552 struct delayed_method_info *mi;
4553 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4554 {
4555 char *physname;
4556 struct fn_fieldlist *fn_flp
4557 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
4558 physname = (char *) dwarf2_physname ((char *) mi->name, mi->die, cu);
4559 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4560 }
4561 }
4562
4563 /* Generate full symbol information for PST and CU, whose DIEs have
4564 already been loaded into memory. */
4565
4566 static void
4567 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4568 {
4569 struct dwarf2_cu *cu = per_cu->cu;
4570 struct objfile *objfile = per_cu->objfile;
4571 CORE_ADDR lowpc, highpc;
4572 struct symtab *symtab;
4573 struct cleanup *back_to, *delayed_list_cleanup;
4574 CORE_ADDR baseaddr;
4575
4576 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4577
4578 buildsym_init ();
4579 back_to = make_cleanup (really_free_pendings, NULL);
4580 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
4581
4582 cu->list_in_scope = &file_symbols;
4583
4584 dwarf2_find_base_address (cu->dies, cu);
4585
4586 /* Do line number decoding in read_file_scope () */
4587 process_die (cu->dies, cu);
4588
4589 /* Now that we have processed all the DIEs in the CU, all the types
4590 should be complete, and it should now be safe to compute all of the
4591 physnames. */
4592 compute_delayed_physnames (cu);
4593 do_cleanups (delayed_list_cleanup);
4594
4595 /* Some compilers don't define a DW_AT_high_pc attribute for the
4596 compilation unit. If the DW_AT_high_pc is missing, synthesize
4597 it, by scanning the DIE's below the compilation unit. */
4598 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
4599
4600 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
4601
4602 /* Set symtab language to language from DW_AT_language.
4603 If the compilation is from a C file generated by language preprocessors,
4604 do not set the language if it was already deduced by start_subfile. */
4605 if (symtab != NULL
4606 && !(cu->language == language_c && symtab->language != language_c))
4607 {
4608 symtab->language = cu->language;
4609 }
4610
4611 if (dwarf2_per_objfile->using_index)
4612 per_cu->v.quick->symtab = symtab;
4613 else
4614 {
4615 struct partial_symtab *pst = per_cu->v.psymtab;
4616 pst->symtab = symtab;
4617 pst->readin = 1;
4618 }
4619
4620 do_cleanups (back_to);
4621 }
4622
4623 /* Process a die and its children. */
4624
4625 static void
4626 process_die (struct die_info *die, struct dwarf2_cu *cu)
4627 {
4628 switch (die->tag)
4629 {
4630 case DW_TAG_padding:
4631 break;
4632 case DW_TAG_compile_unit:
4633 read_file_scope (die, cu);
4634 break;
4635 case DW_TAG_type_unit:
4636 read_type_unit_scope (die, cu);
4637 break;
4638 case DW_TAG_subprogram:
4639 case DW_TAG_inlined_subroutine:
4640 read_func_scope (die, cu);
4641 break;
4642 case DW_TAG_lexical_block:
4643 case DW_TAG_try_block:
4644 case DW_TAG_catch_block:
4645 read_lexical_block_scope (die, cu);
4646 break;
4647 case DW_TAG_class_type:
4648 case DW_TAG_interface_type:
4649 case DW_TAG_structure_type:
4650 case DW_TAG_union_type:
4651 process_structure_scope (die, cu);
4652 break;
4653 case DW_TAG_enumeration_type:
4654 process_enumeration_scope (die, cu);
4655 break;
4656
4657 /* These dies have a type, but processing them does not create
4658 a symbol or recurse to process the children. Therefore we can
4659 read them on-demand through read_type_die. */
4660 case DW_TAG_subroutine_type:
4661 case DW_TAG_set_type:
4662 case DW_TAG_array_type:
4663 case DW_TAG_pointer_type:
4664 case DW_TAG_ptr_to_member_type:
4665 case DW_TAG_reference_type:
4666 case DW_TAG_string_type:
4667 break;
4668
4669 case DW_TAG_base_type:
4670 case DW_TAG_subrange_type:
4671 case DW_TAG_typedef:
4672 /* Add a typedef symbol for the type definition, if it has a
4673 DW_AT_name. */
4674 new_symbol (die, read_type_die (die, cu), cu);
4675 break;
4676 case DW_TAG_common_block:
4677 read_common_block (die, cu);
4678 break;
4679 case DW_TAG_common_inclusion:
4680 break;
4681 case DW_TAG_namespace:
4682 processing_has_namespace_info = 1;
4683 read_namespace (die, cu);
4684 break;
4685 case DW_TAG_module:
4686 processing_has_namespace_info = 1;
4687 read_module (die, cu);
4688 break;
4689 case DW_TAG_imported_declaration:
4690 case DW_TAG_imported_module:
4691 processing_has_namespace_info = 1;
4692 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4693 || cu->language != language_fortran))
4694 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4695 dwarf_tag_name (die->tag));
4696 read_import_statement (die, cu);
4697 break;
4698 default:
4699 new_symbol (die, NULL, cu);
4700 break;
4701 }
4702 }
4703
4704 /* A helper function for dwarf2_compute_name which determines whether DIE
4705 needs to have the name of the scope prepended to the name listed in the
4706 die. */
4707
4708 static int
4709 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4710 {
4711 struct attribute *attr;
4712
4713 switch (die->tag)
4714 {
4715 case DW_TAG_namespace:
4716 case DW_TAG_typedef:
4717 case DW_TAG_class_type:
4718 case DW_TAG_interface_type:
4719 case DW_TAG_structure_type:
4720 case DW_TAG_union_type:
4721 case DW_TAG_enumeration_type:
4722 case DW_TAG_enumerator:
4723 case DW_TAG_subprogram:
4724 case DW_TAG_member:
4725 return 1;
4726
4727 case DW_TAG_variable:
4728 case DW_TAG_constant:
4729 /* We only need to prefix "globally" visible variables. These include
4730 any variable marked with DW_AT_external or any variable that
4731 lives in a namespace. [Variables in anonymous namespaces
4732 require prefixing, but they are not DW_AT_external.] */
4733
4734 if (dwarf2_attr (die, DW_AT_specification, cu))
4735 {
4736 struct dwarf2_cu *spec_cu = cu;
4737
4738 return die_needs_namespace (die_specification (die, &spec_cu),
4739 spec_cu);
4740 }
4741
4742 attr = dwarf2_attr (die, DW_AT_external, cu);
4743 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4744 && die->parent->tag != DW_TAG_module)
4745 return 0;
4746 /* A variable in a lexical block of some kind does not need a
4747 namespace, even though in C++ such variables may be external
4748 and have a mangled name. */
4749 if (die->parent->tag == DW_TAG_lexical_block
4750 || die->parent->tag == DW_TAG_try_block
4751 || die->parent->tag == DW_TAG_catch_block
4752 || die->parent->tag == DW_TAG_subprogram)
4753 return 0;
4754 return 1;
4755
4756 default:
4757 return 0;
4758 }
4759 }
4760
4761 /* Retrieve the last character from a mem_file. */
4762
4763 static void
4764 do_ui_file_peek_last (void *object, const char *buffer, long length)
4765 {
4766 char *last_char_p = (char *) object;
4767
4768 if (length > 0)
4769 *last_char_p = buffer[length - 1];
4770 }
4771
4772 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4773 compute the physname for the object, which include a method's
4774 formal parameters (C++/Java) and return type (Java).
4775
4776 For Ada, return the DIE's linkage name rather than the fully qualified
4777 name. PHYSNAME is ignored..
4778
4779 The result is allocated on the objfile_obstack and canonicalized. */
4780
4781 static const char *
4782 dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4783 int physname)
4784 {
4785 if (name == NULL)
4786 name = dwarf2_name (die, cu);
4787
4788 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4789 compute it by typename_concat inside GDB. */
4790 if (cu->language == language_ada
4791 || (cu->language == language_fortran && physname))
4792 {
4793 /* For Ada unit, we prefer the linkage name over the name, as
4794 the former contains the exported name, which the user expects
4795 to be able to reference. Ideally, we want the user to be able
4796 to reference this entity using either natural or linkage name,
4797 but we haven't started looking at this enhancement yet. */
4798 struct attribute *attr;
4799
4800 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4801 if (attr == NULL)
4802 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4803 if (attr && DW_STRING (attr))
4804 return DW_STRING (attr);
4805 }
4806
4807 /* These are the only languages we know how to qualify names in. */
4808 if (name != NULL
4809 && (cu->language == language_cplus || cu->language == language_java
4810 || cu->language == language_fortran))
4811 {
4812 if (die_needs_namespace (die, cu))
4813 {
4814 long length;
4815 char *prefix;
4816 struct ui_file *buf;
4817
4818 prefix = determine_prefix (die, cu);
4819 buf = mem_fileopen ();
4820 if (*prefix != '\0')
4821 {
4822 char *prefixed_name = typename_concat (NULL, prefix, name,
4823 physname, cu);
4824
4825 fputs_unfiltered (prefixed_name, buf);
4826 xfree (prefixed_name);
4827 }
4828 else
4829 fputs_unfiltered (name ? name : "", buf);
4830
4831 /* Template parameters may be specified in the DIE's DW_AT_name, or
4832 as children with DW_TAG_template_type_param or
4833 DW_TAG_value_type_param. If the latter, add them to the name
4834 here. If the name already has template parameters, then
4835 skip this step; some versions of GCC emit both, and
4836 it is more efficient to use the pre-computed name.
4837
4838 Something to keep in mind about this process: it is very
4839 unlikely, or in some cases downright impossible, to produce
4840 something that will match the mangled name of a function.
4841 If the definition of the function has the same debug info,
4842 we should be able to match up with it anyway. But fallbacks
4843 using the minimal symbol, for instance to find a method
4844 implemented in a stripped copy of libstdc++, will not work.
4845 If we do not have debug info for the definition, we will have to
4846 match them up some other way.
4847
4848 When we do name matching there is a related problem with function
4849 templates; two instantiated function templates are allowed to
4850 differ only by their return types, which we do not add here. */
4851
4852 if (cu->language == language_cplus && strchr (name, '<') == NULL)
4853 {
4854 struct attribute *attr;
4855 struct die_info *child;
4856 int first = 1;
4857
4858 die->building_fullname = 1;
4859
4860 for (child = die->child; child != NULL; child = child->sibling)
4861 {
4862 struct type *type;
4863 long value;
4864 gdb_byte *bytes;
4865 struct dwarf2_locexpr_baton *baton;
4866 struct value *v;
4867
4868 if (child->tag != DW_TAG_template_type_param
4869 && child->tag != DW_TAG_template_value_param)
4870 continue;
4871
4872 if (first)
4873 {
4874 fputs_unfiltered ("<", buf);
4875 first = 0;
4876 }
4877 else
4878 fputs_unfiltered (", ", buf);
4879
4880 attr = dwarf2_attr (child, DW_AT_type, cu);
4881 if (attr == NULL)
4882 {
4883 complaint (&symfile_complaints,
4884 _("template parameter missing DW_AT_type"));
4885 fputs_unfiltered ("UNKNOWN_TYPE", buf);
4886 continue;
4887 }
4888 type = die_type (child, cu);
4889
4890 if (child->tag == DW_TAG_template_type_param)
4891 {
4892 c_print_type (type, "", buf, -1, 0);
4893 continue;
4894 }
4895
4896 attr = dwarf2_attr (child, DW_AT_const_value, cu);
4897 if (attr == NULL)
4898 {
4899 complaint (&symfile_complaints,
4900 _("template parameter missing "
4901 "DW_AT_const_value"));
4902 fputs_unfiltered ("UNKNOWN_VALUE", buf);
4903 continue;
4904 }
4905
4906 dwarf2_const_value_attr (attr, type, name,
4907 &cu->comp_unit_obstack, cu,
4908 &value, &bytes, &baton);
4909
4910 if (TYPE_NOSIGN (type))
4911 /* GDB prints characters as NUMBER 'CHAR'. If that's
4912 changed, this can use value_print instead. */
4913 c_printchar (value, type, buf);
4914 else
4915 {
4916 struct value_print_options opts;
4917
4918 if (baton != NULL)
4919 v = dwarf2_evaluate_loc_desc (type, NULL,
4920 baton->data,
4921 baton->size,
4922 baton->per_cu);
4923 else if (bytes != NULL)
4924 {
4925 v = allocate_value (type);
4926 memcpy (value_contents_writeable (v), bytes,
4927 TYPE_LENGTH (type));
4928 }
4929 else
4930 v = value_from_longest (type, value);
4931
4932 /* Specify decimal so that we do not depend on
4933 the radix. */
4934 get_formatted_print_options (&opts, 'd');
4935 opts.raw = 1;
4936 value_print (v, buf, &opts);
4937 release_value (v);
4938 value_free (v);
4939 }
4940 }
4941
4942 die->building_fullname = 0;
4943
4944 if (!first)
4945 {
4946 /* Close the argument list, with a space if necessary
4947 (nested templates). */
4948 char last_char = '\0';
4949 ui_file_put (buf, do_ui_file_peek_last, &last_char);
4950 if (last_char == '>')
4951 fputs_unfiltered (" >", buf);
4952 else
4953 fputs_unfiltered (">", buf);
4954 }
4955 }
4956
4957 /* For Java and C++ methods, append formal parameter type
4958 information, if PHYSNAME. */
4959
4960 if (physname && die->tag == DW_TAG_subprogram
4961 && (cu->language == language_cplus
4962 || cu->language == language_java))
4963 {
4964 struct type *type = read_type_die (die, cu);
4965
4966 c_type_print_args (type, buf, 0, cu->language);
4967
4968 if (cu->language == language_java)
4969 {
4970 /* For java, we must append the return type to method
4971 names. */
4972 if (die->tag == DW_TAG_subprogram)
4973 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
4974 0, 0);
4975 }
4976 else if (cu->language == language_cplus)
4977 {
4978 /* Assume that an artificial first parameter is
4979 "this", but do not crash if it is not. RealView
4980 marks unnamed (and thus unused) parameters as
4981 artificial; there is no way to differentiate
4982 the two cases. */
4983 if (TYPE_NFIELDS (type) > 0
4984 && TYPE_FIELD_ARTIFICIAL (type, 0)
4985 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
4986 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
4987 0))))
4988 fputs_unfiltered (" const", buf);
4989 }
4990 }
4991
4992 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
4993 &length);
4994 ui_file_delete (buf);
4995
4996 if (cu->language == language_cplus)
4997 {
4998 char *cname
4999 = dwarf2_canonicalize_name (name, cu,
5000 &cu->objfile->objfile_obstack);
5001
5002 if (cname != NULL)
5003 name = cname;
5004 }
5005 }
5006 }
5007
5008 return name;
5009 }
5010
5011 /* Return the fully qualified name of DIE, based on its DW_AT_name.
5012 If scope qualifiers are appropriate they will be added. The result
5013 will be allocated on the objfile_obstack, or NULL if the DIE does
5014 not have a name. NAME may either be from a previous call to
5015 dwarf2_name or NULL.
5016
5017 The output string will be canonicalized (if C++/Java). */
5018
5019 static const char *
5020 dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
5021 {
5022 return dwarf2_compute_name (name, die, cu, 0);
5023 }
5024
5025 /* Construct a physname for the given DIE in CU. NAME may either be
5026 from a previous call to dwarf2_name or NULL. The result will be
5027 allocated on the objfile_objstack or NULL if the DIE does not have a
5028 name.
5029
5030 The output string will be canonicalized (if C++/Java). */
5031
5032 static const char *
5033 dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5034 {
5035 return dwarf2_compute_name (name, die, cu, 1);
5036 }
5037
5038 /* Read the import statement specified by the given die and record it. */
5039
5040 static void
5041 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5042 {
5043 struct attribute *import_attr;
5044 struct die_info *imported_die;
5045 struct dwarf2_cu *imported_cu;
5046 const char *imported_name;
5047 const char *imported_name_prefix;
5048 const char *canonical_name;
5049 const char *import_alias;
5050 const char *imported_declaration = NULL;
5051 const char *import_prefix;
5052
5053 char *temp;
5054
5055 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5056 if (import_attr == NULL)
5057 {
5058 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5059 dwarf_tag_name (die->tag));
5060 return;
5061 }
5062
5063 imported_cu = cu;
5064 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5065 imported_name = dwarf2_name (imported_die, imported_cu);
5066 if (imported_name == NULL)
5067 {
5068 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5069
5070 The import in the following code:
5071 namespace A
5072 {
5073 typedef int B;
5074 }
5075
5076 int main ()
5077 {
5078 using A::B;
5079 B b;
5080 return b;
5081 }
5082
5083 ...
5084 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5085 <52> DW_AT_decl_file : 1
5086 <53> DW_AT_decl_line : 6
5087 <54> DW_AT_import : <0x75>
5088 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5089 <59> DW_AT_name : B
5090 <5b> DW_AT_decl_file : 1
5091 <5c> DW_AT_decl_line : 2
5092 <5d> DW_AT_type : <0x6e>
5093 ...
5094 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5095 <76> DW_AT_byte_size : 4
5096 <77> DW_AT_encoding : 5 (signed)
5097
5098 imports the wrong die ( 0x75 instead of 0x58 ).
5099 This case will be ignored until the gcc bug is fixed. */
5100 return;
5101 }
5102
5103 /* Figure out the local name after import. */
5104 import_alias = dwarf2_name (die, cu);
5105
5106 /* Figure out where the statement is being imported to. */
5107 import_prefix = determine_prefix (die, cu);
5108
5109 /* Figure out what the scope of the imported die is and prepend it
5110 to the name of the imported die. */
5111 imported_name_prefix = determine_prefix (imported_die, imported_cu);
5112
5113 if (imported_die->tag != DW_TAG_namespace
5114 && imported_die->tag != DW_TAG_module)
5115 {
5116 imported_declaration = imported_name;
5117 canonical_name = imported_name_prefix;
5118 }
5119 else if (strlen (imported_name_prefix) > 0)
5120 {
5121 temp = alloca (strlen (imported_name_prefix)
5122 + 2 + strlen (imported_name) + 1);
5123 strcpy (temp, imported_name_prefix);
5124 strcat (temp, "::");
5125 strcat (temp, imported_name);
5126 canonical_name = temp;
5127 }
5128 else
5129 canonical_name = imported_name;
5130
5131 cp_add_using_directive (import_prefix,
5132 canonical_name,
5133 import_alias,
5134 imported_declaration,
5135 &cu->objfile->objfile_obstack);
5136 }
5137
5138 static void
5139 initialize_cu_func_list (struct dwarf2_cu *cu)
5140 {
5141 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5142 }
5143
5144 /* Cleanup function for read_file_scope. */
5145
5146 static void
5147 free_cu_line_header (void *arg)
5148 {
5149 struct dwarf2_cu *cu = arg;
5150
5151 free_line_header (cu->line_header);
5152 cu->line_header = NULL;
5153 }
5154
5155 static void
5156 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5157 char **name, char **comp_dir)
5158 {
5159 struct attribute *attr;
5160
5161 *name = NULL;
5162 *comp_dir = NULL;
5163
5164 /* Find the filename. Do not use dwarf2_name here, since the filename
5165 is not a source language identifier. */
5166 attr = dwarf2_attr (die, DW_AT_name, cu);
5167 if (attr)
5168 {
5169 *name = DW_STRING (attr);
5170 }
5171
5172 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5173 if (attr)
5174 *comp_dir = DW_STRING (attr);
5175 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5176 {
5177 *comp_dir = ldirname (*name);
5178 if (*comp_dir != NULL)
5179 make_cleanup (xfree, *comp_dir);
5180 }
5181 if (*comp_dir != NULL)
5182 {
5183 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5184 directory, get rid of it. */
5185 char *cp = strchr (*comp_dir, ':');
5186
5187 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5188 *comp_dir = cp + 1;
5189 }
5190
5191 if (*name == NULL)
5192 *name = "<unknown>";
5193 }
5194
5195 /* Process DW_TAG_compile_unit. */
5196
5197 static void
5198 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
5199 {
5200 struct objfile *objfile = cu->objfile;
5201 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5202 CORE_ADDR lowpc = ((CORE_ADDR) -1);
5203 CORE_ADDR highpc = ((CORE_ADDR) 0);
5204 struct attribute *attr;
5205 char *name = NULL;
5206 char *comp_dir = NULL;
5207 struct die_info *child_die;
5208 bfd *abfd = objfile->obfd;
5209 struct line_header *line_header = 0;
5210 CORE_ADDR baseaddr;
5211
5212 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5213
5214 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
5215
5216 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5217 from finish_block. */
5218 if (lowpc == ((CORE_ADDR) -1))
5219 lowpc = highpc;
5220 lowpc += baseaddr;
5221 highpc += baseaddr;
5222
5223 find_file_and_directory (die, cu, &name, &comp_dir);
5224
5225 attr = dwarf2_attr (die, DW_AT_language, cu);
5226 if (attr)
5227 {
5228 set_cu_language (DW_UNSND (attr), cu);
5229 }
5230
5231 attr = dwarf2_attr (die, DW_AT_producer, cu);
5232 if (attr)
5233 cu->producer = DW_STRING (attr);
5234
5235 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5236 standardised yet. As a workaround for the language detection we fall
5237 back to the DW_AT_producer string. */
5238 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5239 cu->language = language_opencl;
5240
5241 /* We assume that we're processing GCC output. */
5242 processing_gcc_compilation = 2;
5243
5244 processing_has_namespace_info = 0;
5245
5246 start_symtab (name, comp_dir, lowpc);
5247 record_debugformat ("DWARF 2");
5248 record_producer (cu->producer);
5249
5250 initialize_cu_func_list (cu);
5251
5252 /* Decode line number information if present. We do this before
5253 processing child DIEs, so that the line header table is available
5254 for DW_AT_decl_file. */
5255 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5256 if (attr)
5257 {
5258 unsigned int line_offset = DW_UNSND (attr);
5259 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
5260 if (line_header)
5261 {
5262 cu->line_header = line_header;
5263 make_cleanup (free_cu_line_header, cu);
5264 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5265 }
5266 }
5267
5268 /* Process all dies in compilation unit. */
5269 if (die->child != NULL)
5270 {
5271 child_die = die->child;
5272 while (child_die && child_die->tag)
5273 {
5274 process_die (child_die, cu);
5275 child_die = sibling_die (child_die);
5276 }
5277 }
5278
5279 /* Decode macro information, if present. Dwarf 2 macro information
5280 refers to information in the line number info statement program
5281 header, so we can only read it if we've read the header
5282 successfully. */
5283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5284 if (attr && line_header)
5285 {
5286 unsigned int macro_offset = DW_UNSND (attr);
5287
5288 dwarf_decode_macros (line_header, macro_offset,
5289 comp_dir, abfd, cu);
5290 }
5291 do_cleanups (back_to);
5292 }
5293
5294 /* Process DW_TAG_type_unit.
5295 For TUs we want to skip the first top level sibling if it's not the
5296 actual type being defined by this TU. In this case the first top
5297 level sibling is there to provide context only. */
5298
5299 static void
5300 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5301 {
5302 struct objfile *objfile = cu->objfile;
5303 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5304 CORE_ADDR lowpc;
5305 struct attribute *attr;
5306 char *name = NULL;
5307 char *comp_dir = NULL;
5308 struct die_info *child_die;
5309 bfd *abfd = objfile->obfd;
5310
5311 /* start_symtab needs a low pc, but we don't really have one.
5312 Do what read_file_scope would do in the absence of such info. */
5313 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5314
5315 /* Find the filename. Do not use dwarf2_name here, since the filename
5316 is not a source language identifier. */
5317 attr = dwarf2_attr (die, DW_AT_name, cu);
5318 if (attr)
5319 name = DW_STRING (attr);
5320
5321 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5322 if (attr)
5323 comp_dir = DW_STRING (attr);
5324 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5325 {
5326 comp_dir = ldirname (name);
5327 if (comp_dir != NULL)
5328 make_cleanup (xfree, comp_dir);
5329 }
5330
5331 if (name == NULL)
5332 name = "<unknown>";
5333
5334 attr = dwarf2_attr (die, DW_AT_language, cu);
5335 if (attr)
5336 set_cu_language (DW_UNSND (attr), cu);
5337
5338 /* This isn't technically needed today. It is done for symmetry
5339 with read_file_scope. */
5340 attr = dwarf2_attr (die, DW_AT_producer, cu);
5341 if (attr)
5342 cu->producer = DW_STRING (attr);
5343
5344 /* We assume that we're processing GCC output. */
5345 processing_gcc_compilation = 2;
5346
5347 processing_has_namespace_info = 0;
5348
5349 start_symtab (name, comp_dir, lowpc);
5350 record_debugformat ("DWARF 2");
5351 record_producer (cu->producer);
5352
5353 /* Process the dies in the type unit. */
5354 if (die->child == NULL)
5355 {
5356 dump_die_for_error (die);
5357 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5358 bfd_get_filename (abfd));
5359 }
5360
5361 child_die = die->child;
5362
5363 while (child_die && child_die->tag)
5364 {
5365 process_die (child_die, cu);
5366
5367 child_die = sibling_die (child_die);
5368 }
5369
5370 do_cleanups (back_to);
5371 }
5372
5373 static void
5374 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5375 struct dwarf2_cu *cu)
5376 {
5377 struct function_range *thisfn;
5378
5379 thisfn = (struct function_range *)
5380 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5381 thisfn->name = name;
5382 thisfn->lowpc = lowpc;
5383 thisfn->highpc = highpc;
5384 thisfn->seen_line = 0;
5385 thisfn->next = NULL;
5386
5387 if (cu->last_fn == NULL)
5388 cu->first_fn = thisfn;
5389 else
5390 cu->last_fn->next = thisfn;
5391
5392 cu->last_fn = thisfn;
5393 }
5394
5395 /* qsort helper for inherit_abstract_dies. */
5396
5397 static int
5398 unsigned_int_compar (const void *ap, const void *bp)
5399 {
5400 unsigned int a = *(unsigned int *) ap;
5401 unsigned int b = *(unsigned int *) bp;
5402
5403 return (a > b) - (b > a);
5404 }
5405
5406 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
5407 Inherit only the children of the DW_AT_abstract_origin DIE not being
5408 already referenced by DW_AT_abstract_origin from the children of the
5409 current DIE. */
5410
5411 static void
5412 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5413 {
5414 struct die_info *child_die;
5415 unsigned die_children_count;
5416 /* CU offsets which were referenced by children of the current DIE. */
5417 unsigned *offsets;
5418 unsigned *offsets_end, *offsetp;
5419 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5420 struct die_info *origin_die;
5421 /* Iterator of the ORIGIN_DIE children. */
5422 struct die_info *origin_child_die;
5423 struct cleanup *cleanups;
5424 struct attribute *attr;
5425 struct dwarf2_cu *origin_cu;
5426 struct pending **origin_previous_list_in_scope;
5427
5428 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5429 if (!attr)
5430 return;
5431
5432 /* Note that following die references may follow to a die in a
5433 different cu. */
5434
5435 origin_cu = cu;
5436 origin_die = follow_die_ref (die, attr, &origin_cu);
5437
5438 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5439 symbols in. */
5440 origin_previous_list_in_scope = origin_cu->list_in_scope;
5441 origin_cu->list_in_scope = cu->list_in_scope;
5442
5443 if (die->tag != origin_die->tag
5444 && !(die->tag == DW_TAG_inlined_subroutine
5445 && origin_die->tag == DW_TAG_subprogram))
5446 complaint (&symfile_complaints,
5447 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5448 die->offset, origin_die->offset);
5449
5450 child_die = die->child;
5451 die_children_count = 0;
5452 while (child_die && child_die->tag)
5453 {
5454 child_die = sibling_die (child_die);
5455 die_children_count++;
5456 }
5457 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5458 cleanups = make_cleanup (xfree, offsets);
5459
5460 offsets_end = offsets;
5461 child_die = die->child;
5462 while (child_die && child_die->tag)
5463 {
5464 /* For each CHILD_DIE, find the corresponding child of
5465 ORIGIN_DIE. If there is more than one layer of
5466 DW_AT_abstract_origin, follow them all; there shouldn't be,
5467 but GCC versions at least through 4.4 generate this (GCC PR
5468 40573). */
5469 struct die_info *child_origin_die = child_die;
5470 struct dwarf2_cu *child_origin_cu = cu;
5471
5472 while (1)
5473 {
5474 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5475 child_origin_cu);
5476 if (attr == NULL)
5477 break;
5478 child_origin_die = follow_die_ref (child_origin_die, attr,
5479 &child_origin_cu);
5480 }
5481
5482 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5483 counterpart may exist. */
5484 if (child_origin_die != child_die)
5485 {
5486 if (child_die->tag != child_origin_die->tag
5487 && !(child_die->tag == DW_TAG_inlined_subroutine
5488 && child_origin_die->tag == DW_TAG_subprogram))
5489 complaint (&symfile_complaints,
5490 _("Child DIE 0x%x and its abstract origin 0x%x have "
5491 "different tags"), child_die->offset,
5492 child_origin_die->offset);
5493 if (child_origin_die->parent != origin_die)
5494 complaint (&symfile_complaints,
5495 _("Child DIE 0x%x and its abstract origin 0x%x have "
5496 "different parents"), child_die->offset,
5497 child_origin_die->offset);
5498 else
5499 *offsets_end++ = child_origin_die->offset;
5500 }
5501 child_die = sibling_die (child_die);
5502 }
5503 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5504 unsigned_int_compar);
5505 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5506 if (offsetp[-1] == *offsetp)
5507 complaint (&symfile_complaints,
5508 _("Multiple children of DIE 0x%x refer "
5509 "to DIE 0x%x as their abstract origin"),
5510 die->offset, *offsetp);
5511
5512 offsetp = offsets;
5513 origin_child_die = origin_die->child;
5514 while (origin_child_die && origin_child_die->tag)
5515 {
5516 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5517 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5518 offsetp++;
5519 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5520 {
5521 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
5522 process_die (origin_child_die, origin_cu);
5523 }
5524 origin_child_die = sibling_die (origin_child_die);
5525 }
5526 origin_cu->list_in_scope = origin_previous_list_in_scope;
5527
5528 do_cleanups (cleanups);
5529 }
5530
5531 static void
5532 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
5533 {
5534 struct objfile *objfile = cu->objfile;
5535 struct context_stack *new;
5536 CORE_ADDR lowpc;
5537 CORE_ADDR highpc;
5538 struct die_info *child_die;
5539 struct attribute *attr, *call_line, *call_file;
5540 char *name;
5541 CORE_ADDR baseaddr;
5542 struct block *block;
5543 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
5544 VEC (symbolp) *template_args = NULL;
5545 struct template_symbol *templ_func = NULL;
5546
5547 if (inlined_func)
5548 {
5549 /* If we do not have call site information, we can't show the
5550 caller of this inlined function. That's too confusing, so
5551 only use the scope for local variables. */
5552 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5553 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5554 if (call_line == NULL || call_file == NULL)
5555 {
5556 read_lexical_block_scope (die, cu);
5557 return;
5558 }
5559 }
5560
5561 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5562
5563 name = dwarf2_name (die, cu);
5564
5565 /* Ignore functions with missing or empty names. These are actually
5566 illegal according to the DWARF standard. */
5567 if (name == NULL)
5568 {
5569 complaint (&symfile_complaints,
5570 _("missing name for subprogram DIE at %d"), die->offset);
5571 return;
5572 }
5573
5574 /* Ignore functions with missing or invalid low and high pc attributes. */
5575 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5576 {
5577 attr = dwarf2_attr (die, DW_AT_external, cu);
5578 if (!attr || !DW_UNSND (attr))
5579 complaint (&symfile_complaints,
5580 _("cannot get low and high bounds "
5581 "for subprogram DIE at %d"),
5582 die->offset);
5583 return;
5584 }
5585
5586 lowpc += baseaddr;
5587 highpc += baseaddr;
5588
5589 /* Record the function range for dwarf_decode_lines. */
5590 add_to_cu_func_list (name, lowpc, highpc, cu);
5591
5592 /* If we have any template arguments, then we must allocate a
5593 different sort of symbol. */
5594 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5595 {
5596 if (child_die->tag == DW_TAG_template_type_param
5597 || child_die->tag == DW_TAG_template_value_param)
5598 {
5599 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5600 struct template_symbol);
5601 templ_func->base.is_cplus_template_function = 1;
5602 break;
5603 }
5604 }
5605
5606 new = push_context (0, lowpc);
5607 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5608 (struct symbol *) templ_func);
5609
5610 /* If there is a location expression for DW_AT_frame_base, record
5611 it. */
5612 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
5613 if (attr)
5614 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5615 expression is being recorded directly in the function's symbol
5616 and not in a separate frame-base object. I guess this hack is
5617 to avoid adding some sort of frame-base adjunct/annex to the
5618 function's symbol :-(. The problem with doing this is that it
5619 results in a function symbol with a location expression that
5620 has nothing to do with the location of the function, ouch! The
5621 relationship should be: a function's symbol has-a frame base; a
5622 frame-base has-a location expression. */
5623 dwarf2_symbol_mark_computed (attr, new->name, cu);
5624
5625 cu->list_in_scope = &local_symbols;
5626
5627 if (die->child != NULL)
5628 {
5629 child_die = die->child;
5630 while (child_die && child_die->tag)
5631 {
5632 if (child_die->tag == DW_TAG_template_type_param
5633 || child_die->tag == DW_TAG_template_value_param)
5634 {
5635 struct symbol *arg = new_symbol (child_die, NULL, cu);
5636
5637 if (arg != NULL)
5638 VEC_safe_push (symbolp, template_args, arg);
5639 }
5640 else
5641 process_die (child_die, cu);
5642 child_die = sibling_die (child_die);
5643 }
5644 }
5645
5646 inherit_abstract_dies (die, cu);
5647
5648 /* If we have a DW_AT_specification, we might need to import using
5649 directives from the context of the specification DIE. See the
5650 comment in determine_prefix. */
5651 if (cu->language == language_cplus
5652 && dwarf2_attr (die, DW_AT_specification, cu))
5653 {
5654 struct dwarf2_cu *spec_cu = cu;
5655 struct die_info *spec_die = die_specification (die, &spec_cu);
5656
5657 while (spec_die)
5658 {
5659 child_die = spec_die->child;
5660 while (child_die && child_die->tag)
5661 {
5662 if (child_die->tag == DW_TAG_imported_module)
5663 process_die (child_die, spec_cu);
5664 child_die = sibling_die (child_die);
5665 }
5666
5667 /* In some cases, GCC generates specification DIEs that
5668 themselves contain DW_AT_specification attributes. */
5669 spec_die = die_specification (spec_die, &spec_cu);
5670 }
5671 }
5672
5673 new = pop_context ();
5674 /* Make a block for the local symbols within. */
5675 block = finish_block (new->name, &local_symbols, new->old_blocks,
5676 lowpc, highpc, objfile);
5677
5678 /* For C++, set the block's scope. */
5679 if (cu->language == language_cplus || cu->language == language_fortran)
5680 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
5681 determine_prefix (die, cu),
5682 processing_has_namespace_info);
5683
5684 /* If we have address ranges, record them. */
5685 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5686
5687 /* Attach template arguments to function. */
5688 if (! VEC_empty (symbolp, template_args))
5689 {
5690 gdb_assert (templ_func != NULL);
5691
5692 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
5693 templ_func->template_arguments
5694 = obstack_alloc (&objfile->objfile_obstack,
5695 (templ_func->n_template_arguments
5696 * sizeof (struct symbol *)));
5697 memcpy (templ_func->template_arguments,
5698 VEC_address (symbolp, template_args),
5699 (templ_func->n_template_arguments * sizeof (struct symbol *)));
5700 VEC_free (symbolp, template_args);
5701 }
5702
5703 /* In C++, we can have functions nested inside functions (e.g., when
5704 a function declares a class that has methods). This means that
5705 when we finish processing a function scope, we may need to go
5706 back to building a containing block's symbol lists. */
5707 local_symbols = new->locals;
5708 param_symbols = new->params;
5709 using_directives = new->using_directives;
5710
5711 /* If we've finished processing a top-level function, subsequent
5712 symbols go in the file symbol list. */
5713 if (outermost_context_p ())
5714 cu->list_in_scope = &file_symbols;
5715 }
5716
5717 /* Process all the DIES contained within a lexical block scope. Start
5718 a new scope, process the dies, and then close the scope. */
5719
5720 static void
5721 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
5722 {
5723 struct objfile *objfile = cu->objfile;
5724 struct context_stack *new;
5725 CORE_ADDR lowpc, highpc;
5726 struct die_info *child_die;
5727 CORE_ADDR baseaddr;
5728
5729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5730
5731 /* Ignore blocks with missing or invalid low and high pc attributes. */
5732 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
5733 as multiple lexical blocks? Handling children in a sane way would
5734 be nasty. Might be easier to properly extend generic blocks to
5735 describe ranges. */
5736 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5737 return;
5738 lowpc += baseaddr;
5739 highpc += baseaddr;
5740
5741 push_context (0, lowpc);
5742 if (die->child != NULL)
5743 {
5744 child_die = die->child;
5745 while (child_die && child_die->tag)
5746 {
5747 process_die (child_die, cu);
5748 child_die = sibling_die (child_die);
5749 }
5750 }
5751 new = pop_context ();
5752
5753 if (local_symbols != NULL || using_directives != NULL)
5754 {
5755 struct block *block
5756 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
5757 highpc, objfile);
5758
5759 /* Note that recording ranges after traversing children, as we
5760 do here, means that recording a parent's ranges entails
5761 walking across all its children's ranges as they appear in
5762 the address map, which is quadratic behavior.
5763
5764 It would be nicer to record the parent's ranges before
5765 traversing its children, simply overriding whatever you find
5766 there. But since we don't even decide whether to create a
5767 block until after we've traversed its children, that's hard
5768 to do. */
5769 dwarf2_record_block_ranges (die, block, baseaddr, cu);
5770 }
5771 local_symbols = new->locals;
5772 using_directives = new->using_directives;
5773 }
5774
5775 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
5776 Return 1 if the attributes are present and valid, otherwise, return 0.
5777 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
5778
5779 static int
5780 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
5781 CORE_ADDR *high_return, struct dwarf2_cu *cu,
5782 struct partial_symtab *ranges_pst)
5783 {
5784 struct objfile *objfile = cu->objfile;
5785 struct comp_unit_head *cu_header = &cu->header;
5786 bfd *obfd = objfile->obfd;
5787 unsigned int addr_size = cu_header->addr_size;
5788 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
5789 /* Base address selection entry. */
5790 CORE_ADDR base;
5791 int found_base;
5792 unsigned int dummy;
5793 gdb_byte *buffer;
5794 CORE_ADDR marker;
5795 int low_set;
5796 CORE_ADDR low = 0;
5797 CORE_ADDR high = 0;
5798 CORE_ADDR baseaddr;
5799
5800 found_base = cu->base_known;
5801 base = cu->base_address;
5802
5803 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
5804 if (offset >= dwarf2_per_objfile->ranges.size)
5805 {
5806 complaint (&symfile_complaints,
5807 _("Offset %d out of bounds for DW_AT_ranges attribute"),
5808 offset);
5809 return 0;
5810 }
5811 buffer = dwarf2_per_objfile->ranges.buffer + offset;
5812
5813 /* Read in the largest possible address. */
5814 marker = read_address (obfd, buffer, cu, &dummy);
5815 if ((marker & mask) == mask)
5816 {
5817 /* If we found the largest possible address, then
5818 read the base address. */
5819 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5820 buffer += 2 * addr_size;
5821 offset += 2 * addr_size;
5822 found_base = 1;
5823 }
5824
5825 low_set = 0;
5826
5827 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5828
5829 while (1)
5830 {
5831 CORE_ADDR range_beginning, range_end;
5832
5833 range_beginning = read_address (obfd, buffer, cu, &dummy);
5834 buffer += addr_size;
5835 range_end = read_address (obfd, buffer, cu, &dummy);
5836 buffer += addr_size;
5837 offset += 2 * addr_size;
5838
5839 /* An end of list marker is a pair of zero addresses. */
5840 if (range_beginning == 0 && range_end == 0)
5841 /* Found the end of list entry. */
5842 break;
5843
5844 /* Each base address selection entry is a pair of 2 values.
5845 The first is the largest possible address, the second is
5846 the base address. Check for a base address here. */
5847 if ((range_beginning & mask) == mask)
5848 {
5849 /* If we found the largest possible address, then
5850 read the base address. */
5851 base = read_address (obfd, buffer + addr_size, cu, &dummy);
5852 found_base = 1;
5853 continue;
5854 }
5855
5856 if (!found_base)
5857 {
5858 /* We have no valid base address for the ranges
5859 data. */
5860 complaint (&symfile_complaints,
5861 _("Invalid .debug_ranges data (no base address)"));
5862 return 0;
5863 }
5864
5865 range_beginning += base;
5866 range_end += base;
5867
5868 if (ranges_pst != NULL && range_beginning < range_end)
5869 addrmap_set_empty (objfile->psymtabs_addrmap,
5870 range_beginning + baseaddr,
5871 range_end - 1 + baseaddr,
5872 ranges_pst);
5873
5874 /* FIXME: This is recording everything as a low-high
5875 segment of consecutive addresses. We should have a
5876 data structure for discontiguous block ranges
5877 instead. */
5878 if (! low_set)
5879 {
5880 low = range_beginning;
5881 high = range_end;
5882 low_set = 1;
5883 }
5884 else
5885 {
5886 if (range_beginning < low)
5887 low = range_beginning;
5888 if (range_end > high)
5889 high = range_end;
5890 }
5891 }
5892
5893 if (! low_set)
5894 /* If the first entry is an end-of-list marker, the range
5895 describes an empty scope, i.e. no instructions. */
5896 return 0;
5897
5898 if (low_return)
5899 *low_return = low;
5900 if (high_return)
5901 *high_return = high;
5902 return 1;
5903 }
5904
5905 /* Get low and high pc attributes from a die. Return 1 if the attributes
5906 are present and valid, otherwise, return 0. Return -1 if the range is
5907 discontinuous, i.e. derived from DW_AT_ranges information. */
5908 static int
5909 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
5910 CORE_ADDR *highpc, struct dwarf2_cu *cu,
5911 struct partial_symtab *pst)
5912 {
5913 struct attribute *attr;
5914 CORE_ADDR low = 0;
5915 CORE_ADDR high = 0;
5916 int ret = 0;
5917
5918 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
5919 if (attr)
5920 {
5921 high = DW_ADDR (attr);
5922 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5923 if (attr)
5924 low = DW_ADDR (attr);
5925 else
5926 /* Found high w/o low attribute. */
5927 return 0;
5928
5929 /* Found consecutive range of addresses. */
5930 ret = 1;
5931 }
5932 else
5933 {
5934 attr = dwarf2_attr (die, DW_AT_ranges, cu);
5935 if (attr != NULL)
5936 {
5937 /* Value of the DW_AT_ranges attribute is the offset in the
5938 .debug_ranges section. */
5939 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
5940 return 0;
5941 /* Found discontinuous range of addresses. */
5942 ret = -1;
5943 }
5944 }
5945
5946 if (high < low)
5947 return 0;
5948
5949 /* When using the GNU linker, .gnu.linkonce. sections are used to
5950 eliminate duplicate copies of functions and vtables and such.
5951 The linker will arbitrarily choose one and discard the others.
5952 The AT_*_pc values for such functions refer to local labels in
5953 these sections. If the section from that file was discarded, the
5954 labels are not in the output, so the relocs get a value of 0.
5955 If this is a discarded function, mark the pc bounds as invalid,
5956 so that GDB will ignore it. */
5957 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
5958 return 0;
5959
5960 *lowpc = low;
5961 *highpc = high;
5962 return ret;
5963 }
5964
5965 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
5966 its low and high PC addresses. Do nothing if these addresses could not
5967 be determined. Otherwise, set LOWPC to the low address if it is smaller,
5968 and HIGHPC to the high address if greater than HIGHPC. */
5969
5970 static void
5971 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
5972 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5973 struct dwarf2_cu *cu)
5974 {
5975 CORE_ADDR low, high;
5976 struct die_info *child = die->child;
5977
5978 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
5979 {
5980 *lowpc = min (*lowpc, low);
5981 *highpc = max (*highpc, high);
5982 }
5983
5984 /* If the language does not allow nested subprograms (either inside
5985 subprograms or lexical blocks), we're done. */
5986 if (cu->language != language_ada)
5987 return;
5988
5989 /* Check all the children of the given DIE. If it contains nested
5990 subprograms, then check their pc bounds. Likewise, we need to
5991 check lexical blocks as well, as they may also contain subprogram
5992 definitions. */
5993 while (child && child->tag)
5994 {
5995 if (child->tag == DW_TAG_subprogram
5996 || child->tag == DW_TAG_lexical_block)
5997 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
5998 child = sibling_die (child);
5999 }
6000 }
6001
6002 /* Get the low and high pc's represented by the scope DIE, and store
6003 them in *LOWPC and *HIGHPC. If the correct values can't be
6004 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6005
6006 static void
6007 get_scope_pc_bounds (struct die_info *die,
6008 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6009 struct dwarf2_cu *cu)
6010 {
6011 CORE_ADDR best_low = (CORE_ADDR) -1;
6012 CORE_ADDR best_high = (CORE_ADDR) 0;
6013 CORE_ADDR current_low, current_high;
6014
6015 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
6016 {
6017 best_low = current_low;
6018 best_high = current_high;
6019 }
6020 else
6021 {
6022 struct die_info *child = die->child;
6023
6024 while (child && child->tag)
6025 {
6026 switch (child->tag) {
6027 case DW_TAG_subprogram:
6028 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
6029 break;
6030 case DW_TAG_namespace:
6031 case DW_TAG_module:
6032 /* FIXME: carlton/2004-01-16: Should we do this for
6033 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6034 that current GCC's always emit the DIEs corresponding
6035 to definitions of methods of classes as children of a
6036 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6037 the DIEs giving the declarations, which could be
6038 anywhere). But I don't see any reason why the
6039 standards says that they have to be there. */
6040 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6041
6042 if (current_low != ((CORE_ADDR) -1))
6043 {
6044 best_low = min (best_low, current_low);
6045 best_high = max (best_high, current_high);
6046 }
6047 break;
6048 default:
6049 /* Ignore. */
6050 break;
6051 }
6052
6053 child = sibling_die (child);
6054 }
6055 }
6056
6057 *lowpc = best_low;
6058 *highpc = best_high;
6059 }
6060
6061 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
6062 in DIE. */
6063 static void
6064 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6065 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6066 {
6067 struct attribute *attr;
6068
6069 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6070 if (attr)
6071 {
6072 CORE_ADDR high = DW_ADDR (attr);
6073
6074 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6075 if (attr)
6076 {
6077 CORE_ADDR low = DW_ADDR (attr);
6078
6079 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6080 }
6081 }
6082
6083 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6084 if (attr)
6085 {
6086 bfd *obfd = cu->objfile->obfd;
6087
6088 /* The value of the DW_AT_ranges attribute is the offset of the
6089 address range list in the .debug_ranges section. */
6090 unsigned long offset = DW_UNSND (attr);
6091 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
6092
6093 /* For some target architectures, but not others, the
6094 read_address function sign-extends the addresses it returns.
6095 To recognize base address selection entries, we need a
6096 mask. */
6097 unsigned int addr_size = cu->header.addr_size;
6098 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6099
6100 /* The base address, to which the next pair is relative. Note
6101 that this 'base' is a DWARF concept: most entries in a range
6102 list are relative, to reduce the number of relocs against the
6103 debugging information. This is separate from this function's
6104 'baseaddr' argument, which GDB uses to relocate debugging
6105 information from a shared library based on the address at
6106 which the library was loaded. */
6107 CORE_ADDR base = cu->base_address;
6108 int base_known = cu->base_known;
6109
6110 gdb_assert (dwarf2_per_objfile->ranges.readin);
6111 if (offset >= dwarf2_per_objfile->ranges.size)
6112 {
6113 complaint (&symfile_complaints,
6114 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6115 offset);
6116 return;
6117 }
6118
6119 for (;;)
6120 {
6121 unsigned int bytes_read;
6122 CORE_ADDR start, end;
6123
6124 start = read_address (obfd, buffer, cu, &bytes_read);
6125 buffer += bytes_read;
6126 end = read_address (obfd, buffer, cu, &bytes_read);
6127 buffer += bytes_read;
6128
6129 /* Did we find the end of the range list? */
6130 if (start == 0 && end == 0)
6131 break;
6132
6133 /* Did we find a base address selection entry? */
6134 else if ((start & base_select_mask) == base_select_mask)
6135 {
6136 base = end;
6137 base_known = 1;
6138 }
6139
6140 /* We found an ordinary address range. */
6141 else
6142 {
6143 if (!base_known)
6144 {
6145 complaint (&symfile_complaints,
6146 _("Invalid .debug_ranges data "
6147 "(no base address)"));
6148 return;
6149 }
6150
6151 record_block_range (block,
6152 baseaddr + base + start,
6153 baseaddr + base + end - 1);
6154 }
6155 }
6156 }
6157 }
6158
6159 /* Add an aggregate field to the field list. */
6160
6161 static void
6162 dwarf2_add_field (struct field_info *fip, struct die_info *die,
6163 struct dwarf2_cu *cu)
6164 {
6165 struct objfile *objfile = cu->objfile;
6166 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6167 struct nextfield *new_field;
6168 struct attribute *attr;
6169 struct field *fp;
6170 char *fieldname = "";
6171
6172 /* Allocate a new field list entry and link it in. */
6173 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
6174 make_cleanup (xfree, new_field);
6175 memset (new_field, 0, sizeof (struct nextfield));
6176
6177 if (die->tag == DW_TAG_inheritance)
6178 {
6179 new_field->next = fip->baseclasses;
6180 fip->baseclasses = new_field;
6181 }
6182 else
6183 {
6184 new_field->next = fip->fields;
6185 fip->fields = new_field;
6186 }
6187 fip->nfields++;
6188
6189 /* Handle accessibility and virtuality of field.
6190 The default accessibility for members is public, the default
6191 accessibility for inheritance is private. */
6192 if (die->tag != DW_TAG_inheritance)
6193 new_field->accessibility = DW_ACCESS_public;
6194 else
6195 new_field->accessibility = DW_ACCESS_private;
6196 new_field->virtuality = DW_VIRTUALITY_none;
6197
6198 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6199 if (attr)
6200 new_field->accessibility = DW_UNSND (attr);
6201 if (new_field->accessibility != DW_ACCESS_public)
6202 fip->non_public_fields = 1;
6203 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6204 if (attr)
6205 new_field->virtuality = DW_UNSND (attr);
6206
6207 fp = &new_field->field;
6208
6209 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
6210 {
6211 /* Data member other than a C++ static data member. */
6212
6213 /* Get type of field. */
6214 fp->type = die_type (die, cu);
6215
6216 SET_FIELD_BITPOS (*fp, 0);
6217
6218 /* Get bit size of field (zero if none). */
6219 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
6220 if (attr)
6221 {
6222 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6223 }
6224 else
6225 {
6226 FIELD_BITSIZE (*fp) = 0;
6227 }
6228
6229 /* Get bit offset of field. */
6230 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6231 if (attr)
6232 {
6233 int byte_offset = 0;
6234
6235 if (attr_form_is_section_offset (attr))
6236 dwarf2_complex_location_expr_complaint ();
6237 else if (attr_form_is_constant (attr))
6238 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6239 else if (attr_form_is_block (attr))
6240 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6241 else
6242 dwarf2_complex_location_expr_complaint ();
6243
6244 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6245 }
6246 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
6247 if (attr)
6248 {
6249 if (gdbarch_bits_big_endian (gdbarch))
6250 {
6251 /* For big endian bits, the DW_AT_bit_offset gives the
6252 additional bit offset from the MSB of the containing
6253 anonymous object to the MSB of the field. We don't
6254 have to do anything special since we don't need to
6255 know the size of the anonymous object. */
6256 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6257 }
6258 else
6259 {
6260 /* For little endian bits, compute the bit offset to the
6261 MSB of the anonymous object, subtract off the number of
6262 bits from the MSB of the field to the MSB of the
6263 object, and then subtract off the number of bits of
6264 the field itself. The result is the bit offset of
6265 the LSB of the field. */
6266 int anonymous_size;
6267 int bit_offset = DW_UNSND (attr);
6268
6269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6270 if (attr)
6271 {
6272 /* The size of the anonymous object containing
6273 the bit field is explicit, so use the
6274 indicated size (in bytes). */
6275 anonymous_size = DW_UNSND (attr);
6276 }
6277 else
6278 {
6279 /* The size of the anonymous object containing
6280 the bit field must be inferred from the type
6281 attribute of the data member containing the
6282 bit field. */
6283 anonymous_size = TYPE_LENGTH (fp->type);
6284 }
6285 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6286 - bit_offset - FIELD_BITSIZE (*fp);
6287 }
6288 }
6289
6290 /* Get name of field. */
6291 fieldname = dwarf2_name (die, cu);
6292 if (fieldname == NULL)
6293 fieldname = "";
6294
6295 /* The name is already allocated along with this objfile, so we don't
6296 need to duplicate it for the type. */
6297 fp->name = fieldname;
6298
6299 /* Change accessibility for artificial fields (e.g. virtual table
6300 pointer or virtual base class pointer) to private. */
6301 if (dwarf2_attr (die, DW_AT_artificial, cu))
6302 {
6303 FIELD_ARTIFICIAL (*fp) = 1;
6304 new_field->accessibility = DW_ACCESS_private;
6305 fip->non_public_fields = 1;
6306 }
6307 }
6308 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
6309 {
6310 /* C++ static member. */
6311
6312 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6313 is a declaration, but all versions of G++ as of this writing
6314 (so through at least 3.2.1) incorrectly generate
6315 DW_TAG_variable tags. */
6316
6317 char *physname;
6318
6319 /* Get name of field. */
6320 fieldname = dwarf2_name (die, cu);
6321 if (fieldname == NULL)
6322 return;
6323
6324 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6325 if (attr
6326 /* Only create a symbol if this is an external value.
6327 new_symbol checks this and puts the value in the global symbol
6328 table, which we want. If it is not external, new_symbol
6329 will try to put the value in cu->list_in_scope which is wrong. */
6330 && dwarf2_flag_true_p (die, DW_AT_external, cu))
6331 {
6332 /* A static const member, not much different than an enum as far as
6333 we're concerned, except that we can support more types. */
6334 new_symbol (die, NULL, cu);
6335 }
6336
6337 /* Get physical name. */
6338 physname = (char *) dwarf2_physname (fieldname, die, cu);
6339
6340 /* The name is already allocated along with this objfile, so we don't
6341 need to duplicate it for the type. */
6342 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
6343 FIELD_TYPE (*fp) = die_type (die, cu);
6344 FIELD_NAME (*fp) = fieldname;
6345 }
6346 else if (die->tag == DW_TAG_inheritance)
6347 {
6348 /* C++ base class field. */
6349 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6350 if (attr)
6351 {
6352 int byte_offset = 0;
6353
6354 if (attr_form_is_section_offset (attr))
6355 dwarf2_complex_location_expr_complaint ();
6356 else if (attr_form_is_constant (attr))
6357 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
6358 else if (attr_form_is_block (attr))
6359 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
6360 else
6361 dwarf2_complex_location_expr_complaint ();
6362
6363 SET_FIELD_BITPOS (*fp, byte_offset * bits_per_byte);
6364 }
6365 FIELD_BITSIZE (*fp) = 0;
6366 FIELD_TYPE (*fp) = die_type (die, cu);
6367 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6368 fip->nbaseclasses++;
6369 }
6370 }
6371
6372 /* Add a typedef defined in the scope of the FIP's class. */
6373
6374 static void
6375 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6376 struct dwarf2_cu *cu)
6377 {
6378 struct objfile *objfile = cu->objfile;
6379 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6380 struct typedef_field_list *new_field;
6381 struct attribute *attr;
6382 struct typedef_field *fp;
6383 char *fieldname = "";
6384
6385 /* Allocate a new field list entry and link it in. */
6386 new_field = xzalloc (sizeof (*new_field));
6387 make_cleanup (xfree, new_field);
6388
6389 gdb_assert (die->tag == DW_TAG_typedef);
6390
6391 fp = &new_field->field;
6392
6393 /* Get name of field. */
6394 fp->name = dwarf2_name (die, cu);
6395 if (fp->name == NULL)
6396 return;
6397
6398 fp->type = read_type_die (die, cu);
6399
6400 new_field->next = fip->typedef_field_list;
6401 fip->typedef_field_list = new_field;
6402 fip->typedef_field_list_count++;
6403 }
6404
6405 /* Create the vector of fields, and attach it to the type. */
6406
6407 static void
6408 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
6409 struct dwarf2_cu *cu)
6410 {
6411 int nfields = fip->nfields;
6412
6413 /* Record the field count, allocate space for the array of fields,
6414 and create blank accessibility bitfields if necessary. */
6415 TYPE_NFIELDS (type) = nfields;
6416 TYPE_FIELDS (type) = (struct field *)
6417 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6418 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6419
6420 if (fip->non_public_fields && cu->language != language_ada)
6421 {
6422 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6423
6424 TYPE_FIELD_PRIVATE_BITS (type) =
6425 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6426 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6427
6428 TYPE_FIELD_PROTECTED_BITS (type) =
6429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6430 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6431
6432 TYPE_FIELD_IGNORE_BITS (type) =
6433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6434 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
6435 }
6436
6437 /* If the type has baseclasses, allocate and clear a bit vector for
6438 TYPE_FIELD_VIRTUAL_BITS. */
6439 if (fip->nbaseclasses && cu->language != language_ada)
6440 {
6441 int num_bytes = B_BYTES (fip->nbaseclasses);
6442 unsigned char *pointer;
6443
6444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6445 pointer = TYPE_ALLOC (type, num_bytes);
6446 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
6447 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6448 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6449 }
6450
6451 /* Copy the saved-up fields into the field vector. Start from the head of
6452 the list, adding to the tail of the field array, so that they end up in
6453 the same order in the array in which they were added to the list. */
6454 while (nfields-- > 0)
6455 {
6456 struct nextfield *fieldp;
6457
6458 if (fip->fields)
6459 {
6460 fieldp = fip->fields;
6461 fip->fields = fieldp->next;
6462 }
6463 else
6464 {
6465 fieldp = fip->baseclasses;
6466 fip->baseclasses = fieldp->next;
6467 }
6468
6469 TYPE_FIELD (type, nfields) = fieldp->field;
6470 switch (fieldp->accessibility)
6471 {
6472 case DW_ACCESS_private:
6473 if (cu->language != language_ada)
6474 SET_TYPE_FIELD_PRIVATE (type, nfields);
6475 break;
6476
6477 case DW_ACCESS_protected:
6478 if (cu->language != language_ada)
6479 SET_TYPE_FIELD_PROTECTED (type, nfields);
6480 break;
6481
6482 case DW_ACCESS_public:
6483 break;
6484
6485 default:
6486 /* Unknown accessibility. Complain and treat it as public. */
6487 {
6488 complaint (&symfile_complaints, _("unsupported accessibility %d"),
6489 fieldp->accessibility);
6490 }
6491 break;
6492 }
6493 if (nfields < fip->nbaseclasses)
6494 {
6495 switch (fieldp->virtuality)
6496 {
6497 case DW_VIRTUALITY_virtual:
6498 case DW_VIRTUALITY_pure_virtual:
6499 if (cu->language == language_ada)
6500 error ("unexpected virtuality in component of Ada type");
6501 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6502 break;
6503 }
6504 }
6505 }
6506 }
6507
6508 /* Add a member function to the proper fieldlist. */
6509
6510 static void
6511 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
6512 struct type *type, struct dwarf2_cu *cu)
6513 {
6514 struct objfile *objfile = cu->objfile;
6515 struct attribute *attr;
6516 struct fnfieldlist *flp;
6517 int i;
6518 struct fn_field *fnp;
6519 char *fieldname;
6520 struct nextfnfield *new_fnfield;
6521 struct type *this_type;
6522
6523 if (cu->language == language_ada)
6524 error ("unexpected member function in Ada type");
6525
6526 /* Get name of member function. */
6527 fieldname = dwarf2_name (die, cu);
6528 if (fieldname == NULL)
6529 return;
6530
6531 /* Look up member function name in fieldlist. */
6532 for (i = 0; i < fip->nfnfields; i++)
6533 {
6534 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
6535 break;
6536 }
6537
6538 /* Create new list element if necessary. */
6539 if (i < fip->nfnfields)
6540 flp = &fip->fnfieldlists[i];
6541 else
6542 {
6543 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6544 {
6545 fip->fnfieldlists = (struct fnfieldlist *)
6546 xrealloc (fip->fnfieldlists,
6547 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
6548 * sizeof (struct fnfieldlist));
6549 if (fip->nfnfields == 0)
6550 make_cleanup (free_current_contents, &fip->fnfieldlists);
6551 }
6552 flp = &fip->fnfieldlists[fip->nfnfields];
6553 flp->name = fieldname;
6554 flp->length = 0;
6555 flp->head = NULL;
6556 i = fip->nfnfields++;
6557 }
6558
6559 /* Create a new member function field and chain it to the field list
6560 entry. */
6561 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
6562 make_cleanup (xfree, new_fnfield);
6563 memset (new_fnfield, 0, sizeof (struct nextfnfield));
6564 new_fnfield->next = flp->head;
6565 flp->head = new_fnfield;
6566 flp->length++;
6567
6568 /* Fill in the member function field info. */
6569 fnp = &new_fnfield->fnfield;
6570
6571 /* Delay processing of the physname until later. */
6572 if (cu->language == language_cplus || cu->language == language_java)
6573 {
6574 add_to_method_list (type, i, flp->length - 1, fieldname,
6575 die, cu);
6576 }
6577 else
6578 {
6579 char *physname = (char *) dwarf2_physname (fieldname, die, cu);
6580 fnp->physname = physname ? physname : "";
6581 }
6582
6583 fnp->type = alloc_type (objfile);
6584 this_type = read_type_die (die, cu);
6585 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
6586 {
6587 int nparams = TYPE_NFIELDS (this_type);
6588
6589 /* TYPE is the domain of this method, and THIS_TYPE is the type
6590 of the method itself (TYPE_CODE_METHOD). */
6591 smash_to_method_type (fnp->type, type,
6592 TYPE_TARGET_TYPE (this_type),
6593 TYPE_FIELDS (this_type),
6594 TYPE_NFIELDS (this_type),
6595 TYPE_VARARGS (this_type));
6596
6597 /* Handle static member functions.
6598 Dwarf2 has no clean way to discern C++ static and non-static
6599 member functions. G++ helps GDB by marking the first
6600 parameter for non-static member functions (which is the
6601 this pointer) as artificial. We obtain this information
6602 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
6603 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
6604 fnp->voffset = VOFFSET_STATIC;
6605 }
6606 else
6607 complaint (&symfile_complaints, _("member function type missing for '%s'"),
6608 dwarf2_full_name (fieldname, die, cu));
6609
6610 /* Get fcontext from DW_AT_containing_type if present. */
6611 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
6612 fnp->fcontext = die_containing_type (die, cu);
6613
6614 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
6615 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
6616
6617 /* Get accessibility. */
6618 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
6619 if (attr)
6620 {
6621 switch (DW_UNSND (attr))
6622 {
6623 case DW_ACCESS_private:
6624 fnp->is_private = 1;
6625 break;
6626 case DW_ACCESS_protected:
6627 fnp->is_protected = 1;
6628 break;
6629 }
6630 }
6631
6632 /* Check for artificial methods. */
6633 attr = dwarf2_attr (die, DW_AT_artificial, cu);
6634 if (attr && DW_UNSND (attr) != 0)
6635 fnp->is_artificial = 1;
6636
6637 /* Get index in virtual function table if it is a virtual member
6638 function. For older versions of GCC, this is an offset in the
6639 appropriate virtual table, as specified by DW_AT_containing_type.
6640 For everyone else, it is an expression to be evaluated relative
6641 to the object address. */
6642
6643 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
6644 if (attr)
6645 {
6646 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
6647 {
6648 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
6649 {
6650 /* Old-style GCC. */
6651 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
6652 }
6653 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
6654 || (DW_BLOCK (attr)->size > 1
6655 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
6656 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
6657 {
6658 struct dwarf_block blk;
6659 int offset;
6660
6661 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
6662 ? 1 : 2);
6663 blk.size = DW_BLOCK (attr)->size - offset;
6664 blk.data = DW_BLOCK (attr)->data + offset;
6665 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
6666 if ((fnp->voffset % cu->header.addr_size) != 0)
6667 dwarf2_complex_location_expr_complaint ();
6668 else
6669 fnp->voffset /= cu->header.addr_size;
6670 fnp->voffset += 2;
6671 }
6672 else
6673 dwarf2_complex_location_expr_complaint ();
6674
6675 if (!fnp->fcontext)
6676 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
6677 }
6678 else if (attr_form_is_section_offset (attr))
6679 {
6680 dwarf2_complex_location_expr_complaint ();
6681 }
6682 else
6683 {
6684 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
6685 fieldname);
6686 }
6687 }
6688 else
6689 {
6690 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
6691 if (attr && DW_UNSND (attr))
6692 {
6693 /* GCC does this, as of 2008-08-25; PR debug/37237. */
6694 complaint (&symfile_complaints,
6695 _("Member function \"%s\" (offset %d) is virtual "
6696 "but the vtable offset is not specified"),
6697 fieldname, die->offset);
6698 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6699 TYPE_CPLUS_DYNAMIC (type) = 1;
6700 }
6701 }
6702 }
6703
6704 /* Create the vector of member function fields, and attach it to the type. */
6705
6706 static void
6707 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
6708 struct dwarf2_cu *cu)
6709 {
6710 struct fnfieldlist *flp;
6711 int total_length = 0;
6712 int i;
6713
6714 if (cu->language == language_ada)
6715 error ("unexpected member functions in Ada type");
6716
6717 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6718 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
6719 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
6720
6721 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
6722 {
6723 struct nextfnfield *nfp = flp->head;
6724 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
6725 int k;
6726
6727 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
6728 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
6729 fn_flp->fn_fields = (struct fn_field *)
6730 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
6731 for (k = flp->length; (k--, nfp); nfp = nfp->next)
6732 fn_flp->fn_fields[k] = nfp->fnfield;
6733
6734 total_length += flp->length;
6735 }
6736
6737 TYPE_NFN_FIELDS (type) = fip->nfnfields;
6738 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
6739 }
6740
6741 /* Returns non-zero if NAME is the name of a vtable member in CU's
6742 language, zero otherwise. */
6743 static int
6744 is_vtable_name (const char *name, struct dwarf2_cu *cu)
6745 {
6746 static const char vptr[] = "_vptr";
6747 static const char vtable[] = "vtable";
6748
6749 /* Look for the C++ and Java forms of the vtable. */
6750 if ((cu->language == language_java
6751 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
6752 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
6753 && is_cplus_marker (name[sizeof (vptr) - 1])))
6754 return 1;
6755
6756 return 0;
6757 }
6758
6759 /* GCC outputs unnamed structures that are really pointers to member
6760 functions, with the ABI-specified layout. If TYPE describes
6761 such a structure, smash it into a member function type.
6762
6763 GCC shouldn't do this; it should just output pointer to member DIEs.
6764 This is GCC PR debug/28767. */
6765
6766 static void
6767 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
6768 {
6769 struct type *pfn_type, *domain_type, *new_type;
6770
6771 /* Check for a structure with no name and two children. */
6772 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
6773 return;
6774
6775 /* Check for __pfn and __delta members. */
6776 if (TYPE_FIELD_NAME (type, 0) == NULL
6777 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
6778 || TYPE_FIELD_NAME (type, 1) == NULL
6779 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
6780 return;
6781
6782 /* Find the type of the method. */
6783 pfn_type = TYPE_FIELD_TYPE (type, 0);
6784 if (pfn_type == NULL
6785 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
6786 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
6787 return;
6788
6789 /* Look for the "this" argument. */
6790 pfn_type = TYPE_TARGET_TYPE (pfn_type);
6791 if (TYPE_NFIELDS (pfn_type) == 0
6792 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
6793 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
6794 return;
6795
6796 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
6797 new_type = alloc_type (objfile);
6798 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
6799 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
6800 TYPE_VARARGS (pfn_type));
6801 smash_to_methodptr_type (type, new_type);
6802 }
6803
6804 /* Called when we find the DIE that starts a structure or union scope
6805 (definition) to create a type for the structure or union. Fill in
6806 the type's name and general properties; the members will not be
6807 processed until process_structure_type.
6808
6809 NOTE: we need to call these functions regardless of whether or not the
6810 DIE has a DW_AT_name attribute, since it might be an anonymous
6811 structure or union. This gets the type entered into our set of
6812 user defined types.
6813
6814 However, if the structure is incomplete (an opaque struct/union)
6815 then suppress creating a symbol table entry for it since gdb only
6816 wants to find the one with the complete definition. Note that if
6817 it is complete, we just call new_symbol, which does it's own
6818 checking about whether the struct/union is anonymous or not (and
6819 suppresses creating a symbol table entry itself). */
6820
6821 static struct type *
6822 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
6823 {
6824 struct objfile *objfile = cu->objfile;
6825 struct type *type;
6826 struct attribute *attr;
6827 char *name;
6828
6829 /* If the definition of this type lives in .debug_types, read that type.
6830 Don't follow DW_AT_specification though, that will take us back up
6831 the chain and we want to go down. */
6832 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
6833 if (attr)
6834 {
6835 struct dwarf2_cu *type_cu = cu;
6836 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
6837
6838 /* We could just recurse on read_structure_type, but we need to call
6839 get_die_type to ensure only one type for this DIE is created.
6840 This is important, for example, because for c++ classes we need
6841 TYPE_NAME set which is only done by new_symbol. Blech. */
6842 type = read_type_die (type_die, type_cu);
6843
6844 /* TYPE_CU may not be the same as CU.
6845 Ensure TYPE is recorded in CU's type_hash table. */
6846 return set_die_type (die, type, cu);
6847 }
6848
6849 type = alloc_type (objfile);
6850 INIT_CPLUS_SPECIFIC (type);
6851
6852 name = dwarf2_name (die, cu);
6853 if (name != NULL)
6854 {
6855 if (cu->language == language_cplus
6856 || cu->language == language_java)
6857 {
6858 char *full_name = (char *) dwarf2_full_name (name, die, cu);
6859
6860 /* dwarf2_full_name might have already finished building the DIE's
6861 type. If so, there is no need to continue. */
6862 if (get_die_type (die, cu) != NULL)
6863 return get_die_type (die, cu);
6864
6865 TYPE_TAG_NAME (type) = full_name;
6866 if (die->tag == DW_TAG_structure_type
6867 || die->tag == DW_TAG_class_type)
6868 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6869 }
6870 else
6871 {
6872 /* The name is already allocated along with this objfile, so
6873 we don't need to duplicate it for the type. */
6874 TYPE_TAG_NAME (type) = (char *) name;
6875 if (die->tag == DW_TAG_class_type)
6876 TYPE_NAME (type) = TYPE_TAG_NAME (type);
6877 }
6878 }
6879
6880 if (die->tag == DW_TAG_structure_type)
6881 {
6882 TYPE_CODE (type) = TYPE_CODE_STRUCT;
6883 }
6884 else if (die->tag == DW_TAG_union_type)
6885 {
6886 TYPE_CODE (type) = TYPE_CODE_UNION;
6887 }
6888 else
6889 {
6890 TYPE_CODE (type) = TYPE_CODE_CLASS;
6891 }
6892
6893 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
6894 TYPE_DECLARED_CLASS (type) = 1;
6895
6896 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
6897 if (attr)
6898 {
6899 TYPE_LENGTH (type) = DW_UNSND (attr);
6900 }
6901 else
6902 {
6903 TYPE_LENGTH (type) = 0;
6904 }
6905
6906 TYPE_STUB_SUPPORTED (type) = 1;
6907 if (die_is_declaration (die, cu))
6908 TYPE_STUB (type) = 1;
6909 else if (attr == NULL && die->child == NULL
6910 && producer_is_realview (cu->producer))
6911 /* RealView does not output the required DW_AT_declaration
6912 on incomplete types. */
6913 TYPE_STUB (type) = 1;
6914
6915 /* We need to add the type field to the die immediately so we don't
6916 infinitely recurse when dealing with pointers to the structure
6917 type within the structure itself. */
6918 set_die_type (die, type, cu);
6919
6920 /* set_die_type should be already done. */
6921 set_descriptive_type (type, die, cu);
6922
6923 return type;
6924 }
6925
6926 /* Finish creating a structure or union type, including filling in
6927 its members and creating a symbol for it. */
6928
6929 static void
6930 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
6931 {
6932 struct objfile *objfile = cu->objfile;
6933 struct die_info *child_die = die->child;
6934 struct type *type;
6935
6936 type = get_die_type (die, cu);
6937 if (type == NULL)
6938 type = read_structure_type (die, cu);
6939
6940 if (die->child != NULL && ! die_is_declaration (die, cu))
6941 {
6942 struct field_info fi;
6943 struct die_info *child_die;
6944 VEC (symbolp) *template_args = NULL;
6945 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
6946
6947 memset (&fi, 0, sizeof (struct field_info));
6948
6949 child_die = die->child;
6950
6951 while (child_die && child_die->tag)
6952 {
6953 if (child_die->tag == DW_TAG_member
6954 || child_die->tag == DW_TAG_variable)
6955 {
6956 /* NOTE: carlton/2002-11-05: A C++ static data member
6957 should be a DW_TAG_member that is a declaration, but
6958 all versions of G++ as of this writing (so through at
6959 least 3.2.1) incorrectly generate DW_TAG_variable
6960 tags for them instead. */
6961 dwarf2_add_field (&fi, child_die, cu);
6962 }
6963 else if (child_die->tag == DW_TAG_subprogram)
6964 {
6965 /* C++ member function. */
6966 dwarf2_add_member_fn (&fi, child_die, type, cu);
6967 }
6968 else if (child_die->tag == DW_TAG_inheritance)
6969 {
6970 /* C++ base class field. */
6971 dwarf2_add_field (&fi, child_die, cu);
6972 }
6973 else if (child_die->tag == DW_TAG_typedef)
6974 dwarf2_add_typedef (&fi, child_die, cu);
6975 else if (child_die->tag == DW_TAG_template_type_param
6976 || child_die->tag == DW_TAG_template_value_param)
6977 {
6978 struct symbol *arg = new_symbol (child_die, NULL, cu);
6979
6980 if (arg != NULL)
6981 VEC_safe_push (symbolp, template_args, arg);
6982 }
6983
6984 child_die = sibling_die (child_die);
6985 }
6986
6987 /* Attach template arguments to type. */
6988 if (! VEC_empty (symbolp, template_args))
6989 {
6990 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6991 TYPE_N_TEMPLATE_ARGUMENTS (type)
6992 = VEC_length (symbolp, template_args);
6993 TYPE_TEMPLATE_ARGUMENTS (type)
6994 = obstack_alloc (&objfile->objfile_obstack,
6995 (TYPE_N_TEMPLATE_ARGUMENTS (type)
6996 * sizeof (struct symbol *)));
6997 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
6998 VEC_address (symbolp, template_args),
6999 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7000 * sizeof (struct symbol *)));
7001 VEC_free (symbolp, template_args);
7002 }
7003
7004 /* Attach fields and member functions to the type. */
7005 if (fi.nfields)
7006 dwarf2_attach_fields_to_type (&fi, type, cu);
7007 if (fi.nfnfields)
7008 {
7009 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
7010
7011 /* Get the type which refers to the base class (possibly this
7012 class itself) which contains the vtable pointer for the current
7013 class from the DW_AT_containing_type attribute. This use of
7014 DW_AT_containing_type is a GNU extension. */
7015
7016 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
7017 {
7018 struct type *t = die_containing_type (die, cu);
7019
7020 TYPE_VPTR_BASETYPE (type) = t;
7021 if (type == t)
7022 {
7023 int i;
7024
7025 /* Our own class provides vtbl ptr. */
7026 for (i = TYPE_NFIELDS (t) - 1;
7027 i >= TYPE_N_BASECLASSES (t);
7028 --i)
7029 {
7030 char *fieldname = TYPE_FIELD_NAME (t, i);
7031
7032 if (is_vtable_name (fieldname, cu))
7033 {
7034 TYPE_VPTR_FIELDNO (type) = i;
7035 break;
7036 }
7037 }
7038
7039 /* Complain if virtual function table field not found. */
7040 if (i < TYPE_N_BASECLASSES (t))
7041 complaint (&symfile_complaints,
7042 _("virtual function table pointer "
7043 "not found when defining class '%s'"),
7044 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7045 "");
7046 }
7047 else
7048 {
7049 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7050 }
7051 }
7052 else if (cu->producer
7053 && strncmp (cu->producer,
7054 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7055 {
7056 /* The IBM XLC compiler does not provide direct indication
7057 of the containing type, but the vtable pointer is
7058 always named __vfp. */
7059
7060 int i;
7061
7062 for (i = TYPE_NFIELDS (type) - 1;
7063 i >= TYPE_N_BASECLASSES (type);
7064 --i)
7065 {
7066 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7067 {
7068 TYPE_VPTR_FIELDNO (type) = i;
7069 TYPE_VPTR_BASETYPE (type) = type;
7070 break;
7071 }
7072 }
7073 }
7074 }
7075
7076 /* Copy fi.typedef_field_list linked list elements content into the
7077 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7078 if (fi.typedef_field_list)
7079 {
7080 int i = fi.typedef_field_list_count;
7081
7082 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7083 TYPE_TYPEDEF_FIELD_ARRAY (type)
7084 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7085 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7086
7087 /* Reverse the list order to keep the debug info elements order. */
7088 while (--i >= 0)
7089 {
7090 struct typedef_field *dest, *src;
7091
7092 dest = &TYPE_TYPEDEF_FIELD (type, i);
7093 src = &fi.typedef_field_list->field;
7094 fi.typedef_field_list = fi.typedef_field_list->next;
7095 *dest = *src;
7096 }
7097 }
7098
7099 do_cleanups (back_to);
7100 }
7101
7102 quirk_gcc_member_function_pointer (type, cu->objfile);
7103
7104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7105 snapshots) has been known to create a die giving a declaration
7106 for a class that has, as a child, a die giving a definition for a
7107 nested class. So we have to process our children even if the
7108 current die is a declaration. Normally, of course, a declaration
7109 won't have any children at all. */
7110
7111 while (child_die != NULL && child_die->tag)
7112 {
7113 if (child_die->tag == DW_TAG_member
7114 || child_die->tag == DW_TAG_variable
7115 || child_die->tag == DW_TAG_inheritance
7116 || child_die->tag == DW_TAG_template_value_param
7117 || child_die->tag == DW_TAG_template_type_param)
7118 {
7119 /* Do nothing. */
7120 }
7121 else
7122 process_die (child_die, cu);
7123
7124 child_die = sibling_die (child_die);
7125 }
7126
7127 /* Do not consider external references. According to the DWARF standard,
7128 these DIEs are identified by the fact that they have no byte_size
7129 attribute, and a declaration attribute. */
7130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7131 || !die_is_declaration (die, cu))
7132 new_symbol (die, type, cu);
7133 }
7134
7135 /* Given a DW_AT_enumeration_type die, set its type. We do not
7136 complete the type's fields yet, or create any symbols. */
7137
7138 static struct type *
7139 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
7140 {
7141 struct objfile *objfile = cu->objfile;
7142 struct type *type;
7143 struct attribute *attr;
7144 const char *name;
7145
7146 /* If the definition of this type lives in .debug_types, read that type.
7147 Don't follow DW_AT_specification though, that will take us back up
7148 the chain and we want to go down. */
7149 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7150 if (attr)
7151 {
7152 struct dwarf2_cu *type_cu = cu;
7153 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
7154
7155 type = read_type_die (type_die, type_cu);
7156
7157 /* TYPE_CU may not be the same as CU.
7158 Ensure TYPE is recorded in CU's type_hash table. */
7159 return set_die_type (die, type, cu);
7160 }
7161
7162 type = alloc_type (objfile);
7163
7164 TYPE_CODE (type) = TYPE_CODE_ENUM;
7165 name = dwarf2_full_name (NULL, die, cu);
7166 if (name != NULL)
7167 TYPE_TAG_NAME (type) = (char *) name;
7168
7169 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7170 if (attr)
7171 {
7172 TYPE_LENGTH (type) = DW_UNSND (attr);
7173 }
7174 else
7175 {
7176 TYPE_LENGTH (type) = 0;
7177 }
7178
7179 /* The enumeration DIE can be incomplete. In Ada, any type can be
7180 declared as private in the package spec, and then defined only
7181 inside the package body. Such types are known as Taft Amendment
7182 Types. When another package uses such a type, an incomplete DIE
7183 may be generated by the compiler. */
7184 if (die_is_declaration (die, cu))
7185 TYPE_STUB (type) = 1;
7186
7187 return set_die_type (die, type, cu);
7188 }
7189
7190 /* Given a pointer to a die which begins an enumeration, process all
7191 the dies that define the members of the enumeration, and create the
7192 symbol for the enumeration type.
7193
7194 NOTE: We reverse the order of the element list. */
7195
7196 static void
7197 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7198 {
7199 struct type *this_type;
7200
7201 this_type = get_die_type (die, cu);
7202 if (this_type == NULL)
7203 this_type = read_enumeration_type (die, cu);
7204
7205 if (die->child != NULL)
7206 {
7207 struct die_info *child_die;
7208 struct symbol *sym;
7209 struct field *fields = NULL;
7210 int num_fields = 0;
7211 int unsigned_enum = 1;
7212 char *name;
7213
7214 child_die = die->child;
7215 while (child_die && child_die->tag)
7216 {
7217 if (child_die->tag != DW_TAG_enumerator)
7218 {
7219 process_die (child_die, cu);
7220 }
7221 else
7222 {
7223 name = dwarf2_name (child_die, cu);
7224 if (name)
7225 {
7226 sym = new_symbol (child_die, this_type, cu);
7227 if (SYMBOL_VALUE (sym) < 0)
7228 unsigned_enum = 0;
7229
7230 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7231 {
7232 fields = (struct field *)
7233 xrealloc (fields,
7234 (num_fields + DW_FIELD_ALLOC_CHUNK)
7235 * sizeof (struct field));
7236 }
7237
7238 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
7239 FIELD_TYPE (fields[num_fields]) = NULL;
7240 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
7241 FIELD_BITSIZE (fields[num_fields]) = 0;
7242
7243 num_fields++;
7244 }
7245 }
7246
7247 child_die = sibling_die (child_die);
7248 }
7249
7250 if (num_fields)
7251 {
7252 TYPE_NFIELDS (this_type) = num_fields;
7253 TYPE_FIELDS (this_type) = (struct field *)
7254 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7255 memcpy (TYPE_FIELDS (this_type), fields,
7256 sizeof (struct field) * num_fields);
7257 xfree (fields);
7258 }
7259 if (unsigned_enum)
7260 TYPE_UNSIGNED (this_type) = 1;
7261 }
7262
7263 new_symbol (die, this_type, cu);
7264 }
7265
7266 /* Extract all information from a DW_TAG_array_type DIE and put it in
7267 the DIE's type field. For now, this only handles one dimensional
7268 arrays. */
7269
7270 static struct type *
7271 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
7272 {
7273 struct objfile *objfile = cu->objfile;
7274 struct die_info *child_die;
7275 struct type *type;
7276 struct type *element_type, *range_type, *index_type;
7277 struct type **range_types = NULL;
7278 struct attribute *attr;
7279 int ndim = 0;
7280 struct cleanup *back_to;
7281 char *name;
7282
7283 element_type = die_type (die, cu);
7284
7285 /* The die_type call above may have already set the type for this DIE. */
7286 type = get_die_type (die, cu);
7287 if (type)
7288 return type;
7289
7290 /* Irix 6.2 native cc creates array types without children for
7291 arrays with unspecified length. */
7292 if (die->child == NULL)
7293 {
7294 index_type = objfile_type (objfile)->builtin_int;
7295 range_type = create_range_type (NULL, index_type, 0, -1);
7296 type = create_array_type (NULL, element_type, range_type);
7297 return set_die_type (die, type, cu);
7298 }
7299
7300 back_to = make_cleanup (null_cleanup, NULL);
7301 child_die = die->child;
7302 while (child_die && child_die->tag)
7303 {
7304 if (child_die->tag == DW_TAG_subrange_type)
7305 {
7306 struct type *child_type = read_type_die (child_die, cu);
7307
7308 if (child_type != NULL)
7309 {
7310 /* The range type was succesfully read. Save it for
7311 the array type creation. */
7312 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7313 {
7314 range_types = (struct type **)
7315 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7316 * sizeof (struct type *));
7317 if (ndim == 0)
7318 make_cleanup (free_current_contents, &range_types);
7319 }
7320 range_types[ndim++] = child_type;
7321 }
7322 }
7323 child_die = sibling_die (child_die);
7324 }
7325
7326 /* Dwarf2 dimensions are output from left to right, create the
7327 necessary array types in backwards order. */
7328
7329 type = element_type;
7330
7331 if (read_array_order (die, cu) == DW_ORD_col_major)
7332 {
7333 int i = 0;
7334
7335 while (i < ndim)
7336 type = create_array_type (NULL, type, range_types[i++]);
7337 }
7338 else
7339 {
7340 while (ndim-- > 0)
7341 type = create_array_type (NULL, type, range_types[ndim]);
7342 }
7343
7344 /* Understand Dwarf2 support for vector types (like they occur on
7345 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7346 array type. This is not part of the Dwarf2/3 standard yet, but a
7347 custom vendor extension. The main difference between a regular
7348 array and the vector variant is that vectors are passed by value
7349 to functions. */
7350 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
7351 if (attr)
7352 make_vector_type (type);
7353
7354 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7355 implementation may choose to implement triple vectors using this
7356 attribute. */
7357 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7358 if (attr)
7359 {
7360 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7361 TYPE_LENGTH (type) = DW_UNSND (attr);
7362 else
7363 complaint (&symfile_complaints,
7364 _("DW_AT_byte_size for array type smaller "
7365 "than the total size of elements"));
7366 }
7367
7368 name = dwarf2_name (die, cu);
7369 if (name)
7370 TYPE_NAME (type) = name;
7371
7372 /* Install the type in the die. */
7373 set_die_type (die, type, cu);
7374
7375 /* set_die_type should be already done. */
7376 set_descriptive_type (type, die, cu);
7377
7378 do_cleanups (back_to);
7379
7380 return type;
7381 }
7382
7383 static enum dwarf_array_dim_ordering
7384 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7385 {
7386 struct attribute *attr;
7387
7388 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7389
7390 if (attr) return DW_SND (attr);
7391
7392 /*
7393 GNU F77 is a special case, as at 08/2004 array type info is the
7394 opposite order to the dwarf2 specification, but data is still
7395 laid out as per normal fortran.
7396
7397 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7398 version checking.
7399 */
7400
7401 if (cu->language == language_fortran
7402 && cu->producer && strstr (cu->producer, "GNU F77"))
7403 {
7404 return DW_ORD_row_major;
7405 }
7406
7407 switch (cu->language_defn->la_array_ordering)
7408 {
7409 case array_column_major:
7410 return DW_ORD_col_major;
7411 case array_row_major:
7412 default:
7413 return DW_ORD_row_major;
7414 };
7415 }
7416
7417 /* Extract all information from a DW_TAG_set_type DIE and put it in
7418 the DIE's type field. */
7419
7420 static struct type *
7421 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7422 {
7423 struct type *domain_type, *set_type;
7424 struct attribute *attr;
7425
7426 domain_type = die_type (die, cu);
7427
7428 /* The die_type call above may have already set the type for this DIE. */
7429 set_type = get_die_type (die, cu);
7430 if (set_type)
7431 return set_type;
7432
7433 set_type = create_set_type (NULL, domain_type);
7434
7435 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7436 if (attr)
7437 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7438
7439 return set_die_type (die, set_type, cu);
7440 }
7441
7442 /* First cut: install each common block member as a global variable. */
7443
7444 static void
7445 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
7446 {
7447 struct die_info *child_die;
7448 struct attribute *attr;
7449 struct symbol *sym;
7450 CORE_ADDR base = (CORE_ADDR) 0;
7451
7452 attr = dwarf2_attr (die, DW_AT_location, cu);
7453 if (attr)
7454 {
7455 /* Support the .debug_loc offsets */
7456 if (attr_form_is_block (attr))
7457 {
7458 base = decode_locdesc (DW_BLOCK (attr), cu);
7459 }
7460 else if (attr_form_is_section_offset (attr))
7461 {
7462 dwarf2_complex_location_expr_complaint ();
7463 }
7464 else
7465 {
7466 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7467 "common block member");
7468 }
7469 }
7470 if (die->child != NULL)
7471 {
7472 child_die = die->child;
7473 while (child_die && child_die->tag)
7474 {
7475 sym = new_symbol (child_die, NULL, cu);
7476 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
7477 if (sym != NULL && attr != NULL)
7478 {
7479 CORE_ADDR byte_offset = 0;
7480
7481 if (attr_form_is_section_offset (attr))
7482 dwarf2_complex_location_expr_complaint ();
7483 else if (attr_form_is_constant (attr))
7484 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
7485 else if (attr_form_is_block (attr))
7486 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
7487 else
7488 dwarf2_complex_location_expr_complaint ();
7489
7490 SYMBOL_VALUE_ADDRESS (sym) = base + byte_offset;
7491 add_symbol_to_list (sym, &global_symbols);
7492 }
7493 child_die = sibling_die (child_die);
7494 }
7495 }
7496 }
7497
7498 /* Create a type for a C++ namespace. */
7499
7500 static struct type *
7501 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
7502 {
7503 struct objfile *objfile = cu->objfile;
7504 const char *previous_prefix, *name;
7505 int is_anonymous;
7506 struct type *type;
7507
7508 /* For extensions, reuse the type of the original namespace. */
7509 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7510 {
7511 struct die_info *ext_die;
7512 struct dwarf2_cu *ext_cu = cu;
7513
7514 ext_die = dwarf2_extension (die, &ext_cu);
7515 type = read_type_die (ext_die, ext_cu);
7516
7517 /* EXT_CU may not be the same as CU.
7518 Ensure TYPE is recorded in CU's type_hash table. */
7519 return set_die_type (die, type, cu);
7520 }
7521
7522 name = namespace_name (die, &is_anonymous, cu);
7523
7524 /* Now build the name of the current namespace. */
7525
7526 previous_prefix = determine_prefix (die, cu);
7527 if (previous_prefix[0] != '\0')
7528 name = typename_concat (&objfile->objfile_obstack,
7529 previous_prefix, name, 0, cu);
7530
7531 /* Create the type. */
7532 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
7533 objfile);
7534 TYPE_NAME (type) = (char *) name;
7535 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7536
7537 return set_die_type (die, type, cu);
7538 }
7539
7540 /* Read a C++ namespace. */
7541
7542 static void
7543 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
7544 {
7545 struct objfile *objfile = cu->objfile;
7546 const char *name;
7547 int is_anonymous;
7548
7549 /* Add a symbol associated to this if we haven't seen the namespace
7550 before. Also, add a using directive if it's an anonymous
7551 namespace. */
7552
7553 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
7554 {
7555 struct type *type;
7556
7557 type = read_type_die (die, cu);
7558 new_symbol (die, type, cu);
7559
7560 name = namespace_name (die, &is_anonymous, cu);
7561 if (is_anonymous)
7562 {
7563 const char *previous_prefix = determine_prefix (die, cu);
7564
7565 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
7566 NULL, &objfile->objfile_obstack);
7567 }
7568 }
7569
7570 if (die->child != NULL)
7571 {
7572 struct die_info *child_die = die->child;
7573
7574 while (child_die && child_die->tag)
7575 {
7576 process_die (child_die, cu);
7577 child_die = sibling_die (child_die);
7578 }
7579 }
7580 }
7581
7582 /* Read a Fortran module as type. This DIE can be only a declaration used for
7583 imported module. Still we need that type as local Fortran "use ... only"
7584 declaration imports depend on the created type in determine_prefix. */
7585
7586 static struct type *
7587 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
7588 {
7589 struct objfile *objfile = cu->objfile;
7590 char *module_name;
7591 struct type *type;
7592
7593 module_name = dwarf2_name (die, cu);
7594 if (!module_name)
7595 complaint (&symfile_complaints,
7596 _("DW_TAG_module has no name, offset 0x%x"),
7597 die->offset);
7598 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
7599
7600 /* determine_prefix uses TYPE_TAG_NAME. */
7601 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7602
7603 return set_die_type (die, type, cu);
7604 }
7605
7606 /* Read a Fortran module. */
7607
7608 static void
7609 read_module (struct die_info *die, struct dwarf2_cu *cu)
7610 {
7611 struct die_info *child_die = die->child;
7612
7613 while (child_die && child_die->tag)
7614 {
7615 process_die (child_die, cu);
7616 child_die = sibling_die (child_die);
7617 }
7618 }
7619
7620 /* Return the name of the namespace represented by DIE. Set
7621 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
7622 namespace. */
7623
7624 static const char *
7625 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
7626 {
7627 struct die_info *current_die;
7628 const char *name = NULL;
7629
7630 /* Loop through the extensions until we find a name. */
7631
7632 for (current_die = die;
7633 current_die != NULL;
7634 current_die = dwarf2_extension (die, &cu))
7635 {
7636 name = dwarf2_name (current_die, cu);
7637 if (name != NULL)
7638 break;
7639 }
7640
7641 /* Is it an anonymous namespace? */
7642
7643 *is_anonymous = (name == NULL);
7644 if (*is_anonymous)
7645 name = "(anonymous namespace)";
7646
7647 return name;
7648 }
7649
7650 /* Extract all information from a DW_TAG_pointer_type DIE and add to
7651 the user defined type vector. */
7652
7653 static struct type *
7654 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
7655 {
7656 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
7657 struct comp_unit_head *cu_header = &cu->header;
7658 struct type *type;
7659 struct attribute *attr_byte_size;
7660 struct attribute *attr_address_class;
7661 int byte_size, addr_class;
7662 struct type *target_type;
7663
7664 target_type = die_type (die, cu);
7665
7666 /* The die_type call above may have already set the type for this DIE. */
7667 type = get_die_type (die, cu);
7668 if (type)
7669 return type;
7670
7671 type = lookup_pointer_type (target_type);
7672
7673 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
7674 if (attr_byte_size)
7675 byte_size = DW_UNSND (attr_byte_size);
7676 else
7677 byte_size = cu_header->addr_size;
7678
7679 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
7680 if (attr_address_class)
7681 addr_class = DW_UNSND (attr_address_class);
7682 else
7683 addr_class = DW_ADDR_none;
7684
7685 /* If the pointer size or address class is different than the
7686 default, create a type variant marked as such and set the
7687 length accordingly. */
7688 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
7689 {
7690 if (gdbarch_address_class_type_flags_p (gdbarch))
7691 {
7692 int type_flags;
7693
7694 type_flags = gdbarch_address_class_type_flags
7695 (gdbarch, byte_size, addr_class);
7696 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
7697 == 0);
7698 type = make_type_with_address_space (type, type_flags);
7699 }
7700 else if (TYPE_LENGTH (type) != byte_size)
7701 {
7702 complaint (&symfile_complaints,
7703 _("invalid pointer size %d"), byte_size);
7704 }
7705 else
7706 {
7707 /* Should we also complain about unhandled address classes? */
7708 }
7709 }
7710
7711 TYPE_LENGTH (type) = byte_size;
7712 return set_die_type (die, type, cu);
7713 }
7714
7715 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
7716 the user defined type vector. */
7717
7718 static struct type *
7719 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
7720 {
7721 struct type *type;
7722 struct type *to_type;
7723 struct type *domain;
7724
7725 to_type = die_type (die, cu);
7726 domain = die_containing_type (die, cu);
7727
7728 /* The calls above may have already set the type for this DIE. */
7729 type = get_die_type (die, cu);
7730 if (type)
7731 return type;
7732
7733 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
7734 type = lookup_methodptr_type (to_type);
7735 else
7736 type = lookup_memberptr_type (to_type, domain);
7737
7738 return set_die_type (die, type, cu);
7739 }
7740
7741 /* Extract all information from a DW_TAG_reference_type DIE and add to
7742 the user defined type vector. */
7743
7744 static struct type *
7745 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
7746 {
7747 struct comp_unit_head *cu_header = &cu->header;
7748 struct type *type, *target_type;
7749 struct attribute *attr;
7750
7751 target_type = die_type (die, cu);
7752
7753 /* The die_type call above may have already set the type for this DIE. */
7754 type = get_die_type (die, cu);
7755 if (type)
7756 return type;
7757
7758 type = lookup_reference_type (target_type);
7759 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7760 if (attr)
7761 {
7762 TYPE_LENGTH (type) = DW_UNSND (attr);
7763 }
7764 else
7765 {
7766 TYPE_LENGTH (type) = cu_header->addr_size;
7767 }
7768 return set_die_type (die, type, cu);
7769 }
7770
7771 static struct type *
7772 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
7773 {
7774 struct type *base_type, *cv_type;
7775
7776 base_type = die_type (die, cu);
7777
7778 /* The die_type call above may have already set the type for this DIE. */
7779 cv_type = get_die_type (die, cu);
7780 if (cv_type)
7781 return cv_type;
7782
7783 /* In case the const qualifier is applied to an array type, the element type
7784 is so qualified, not the array type (section 6.7.3 of C99). */
7785 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
7786 {
7787 struct type *el_type, *inner_array;
7788
7789 base_type = copy_type (base_type);
7790 inner_array = base_type;
7791
7792 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
7793 {
7794 TYPE_TARGET_TYPE (inner_array) =
7795 copy_type (TYPE_TARGET_TYPE (inner_array));
7796 inner_array = TYPE_TARGET_TYPE (inner_array);
7797 }
7798
7799 el_type = TYPE_TARGET_TYPE (inner_array);
7800 TYPE_TARGET_TYPE (inner_array) =
7801 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
7802
7803 return set_die_type (die, base_type, cu);
7804 }
7805
7806 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
7807 return set_die_type (die, cv_type, cu);
7808 }
7809
7810 static struct type *
7811 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
7812 {
7813 struct type *base_type, *cv_type;
7814
7815 base_type = die_type (die, cu);
7816
7817 /* The die_type call above may have already set the type for this DIE. */
7818 cv_type = get_die_type (die, cu);
7819 if (cv_type)
7820 return cv_type;
7821
7822 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
7823 return set_die_type (die, cv_type, cu);
7824 }
7825
7826 /* Extract all information from a DW_TAG_string_type DIE and add to
7827 the user defined type vector. It isn't really a user defined type,
7828 but it behaves like one, with other DIE's using an AT_user_def_type
7829 attribute to reference it. */
7830
7831 static struct type *
7832 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
7833 {
7834 struct objfile *objfile = cu->objfile;
7835 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7836 struct type *type, *range_type, *index_type, *char_type;
7837 struct attribute *attr;
7838 unsigned int length;
7839
7840 attr = dwarf2_attr (die, DW_AT_string_length, cu);
7841 if (attr)
7842 {
7843 length = DW_UNSND (attr);
7844 }
7845 else
7846 {
7847 /* check for the DW_AT_byte_size attribute */
7848 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7849 if (attr)
7850 {
7851 length = DW_UNSND (attr);
7852 }
7853 else
7854 {
7855 length = 1;
7856 }
7857 }
7858
7859 index_type = objfile_type (objfile)->builtin_int;
7860 range_type = create_range_type (NULL, index_type, 1, length);
7861 char_type = language_string_char_type (cu->language_defn, gdbarch);
7862 type = create_string_type (NULL, char_type, range_type);
7863
7864 return set_die_type (die, type, cu);
7865 }
7866
7867 /* Handle DIES due to C code like:
7868
7869 struct foo
7870 {
7871 int (*funcp)(int a, long l);
7872 int b;
7873 };
7874
7875 ('funcp' generates a DW_TAG_subroutine_type DIE)
7876 */
7877
7878 static struct type *
7879 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
7880 {
7881 struct type *type; /* Type that this function returns */
7882 struct type *ftype; /* Function that returns above type */
7883 struct attribute *attr;
7884
7885 type = die_type (die, cu);
7886
7887 /* The die_type call above may have already set the type for this DIE. */
7888 ftype = get_die_type (die, cu);
7889 if (ftype)
7890 return ftype;
7891
7892 ftype = lookup_function_type (type);
7893
7894 /* All functions in C++, Pascal and Java have prototypes. */
7895 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
7896 if ((attr && (DW_UNSND (attr) != 0))
7897 || cu->language == language_cplus
7898 || cu->language == language_java
7899 || cu->language == language_pascal)
7900 TYPE_PROTOTYPED (ftype) = 1;
7901 else if (producer_is_realview (cu->producer))
7902 /* RealView does not emit DW_AT_prototyped. We can not
7903 distinguish prototyped and unprototyped functions; default to
7904 prototyped, since that is more common in modern code (and
7905 RealView warns about unprototyped functions). */
7906 TYPE_PROTOTYPED (ftype) = 1;
7907
7908 /* Store the calling convention in the type if it's available in
7909 the subroutine die. Otherwise set the calling convention to
7910 the default value DW_CC_normal. */
7911 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
7912 TYPE_CALLING_CONVENTION (ftype) = attr ? DW_UNSND (attr) : DW_CC_normal;
7913
7914 /* We need to add the subroutine type to the die immediately so
7915 we don't infinitely recurse when dealing with parameters
7916 declared as the same subroutine type. */
7917 set_die_type (die, ftype, cu);
7918
7919 if (die->child != NULL)
7920 {
7921 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
7922 struct die_info *child_die;
7923 int nparams, iparams;
7924
7925 /* Count the number of parameters.
7926 FIXME: GDB currently ignores vararg functions, but knows about
7927 vararg member functions. */
7928 nparams = 0;
7929 child_die = die->child;
7930 while (child_die && child_die->tag)
7931 {
7932 if (child_die->tag == DW_TAG_formal_parameter)
7933 nparams++;
7934 else if (child_die->tag == DW_TAG_unspecified_parameters)
7935 TYPE_VARARGS (ftype) = 1;
7936 child_die = sibling_die (child_die);
7937 }
7938
7939 /* Allocate storage for parameters and fill them in. */
7940 TYPE_NFIELDS (ftype) = nparams;
7941 TYPE_FIELDS (ftype) = (struct field *)
7942 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
7943
7944 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
7945 even if we error out during the parameters reading below. */
7946 for (iparams = 0; iparams < nparams; iparams++)
7947 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
7948
7949 iparams = 0;
7950 child_die = die->child;
7951 while (child_die && child_die->tag)
7952 {
7953 if (child_die->tag == DW_TAG_formal_parameter)
7954 {
7955 struct type *arg_type;
7956
7957 /* DWARF version 2 has no clean way to discern C++
7958 static and non-static member functions. G++ helps
7959 GDB by marking the first parameter for non-static
7960 member functions (which is the this pointer) as
7961 artificial. We pass this information to
7962 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
7963
7964 DWARF version 3 added DW_AT_object_pointer, which GCC
7965 4.5 does not yet generate. */
7966 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
7967 if (attr)
7968 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
7969 else
7970 {
7971 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
7972
7973 /* GCC/43521: In java, the formal parameter
7974 "this" is sometimes not marked with DW_AT_artificial. */
7975 if (cu->language == language_java)
7976 {
7977 const char *name = dwarf2_name (child_die, cu);
7978
7979 if (name && !strcmp (name, "this"))
7980 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
7981 }
7982 }
7983 arg_type = die_type (child_die, cu);
7984
7985 /* RealView does not mark THIS as const, which the testsuite
7986 expects. GCC marks THIS as const in method definitions,
7987 but not in the class specifications (GCC PR 43053). */
7988 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
7989 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
7990 {
7991 int is_this = 0;
7992 struct dwarf2_cu *arg_cu = cu;
7993 const char *name = dwarf2_name (child_die, cu);
7994
7995 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
7996 if (attr)
7997 {
7998 /* If the compiler emits this, use it. */
7999 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8000 is_this = 1;
8001 }
8002 else if (name && strcmp (name, "this") == 0)
8003 /* Function definitions will have the argument names. */
8004 is_this = 1;
8005 else if (name == NULL && iparams == 0)
8006 /* Declarations may not have the names, so like
8007 elsewhere in GDB, assume an artificial first
8008 argument is "this". */
8009 is_this = 1;
8010
8011 if (is_this)
8012 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8013 arg_type, 0);
8014 }
8015
8016 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
8017 iparams++;
8018 }
8019 child_die = sibling_die (child_die);
8020 }
8021 }
8022
8023 return ftype;
8024 }
8025
8026 static struct type *
8027 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
8028 {
8029 struct objfile *objfile = cu->objfile;
8030 const char *name = NULL;
8031 struct type *this_type;
8032
8033 name = dwarf2_full_name (NULL, die, cu);
8034 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
8035 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8036 TYPE_NAME (this_type) = (char *) name;
8037 set_die_type (die, this_type, cu);
8038 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8039 return this_type;
8040 }
8041
8042 /* Find a representation of a given base type and install
8043 it in the TYPE field of the die. */
8044
8045 static struct type *
8046 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
8047 {
8048 struct objfile *objfile = cu->objfile;
8049 struct type *type;
8050 struct attribute *attr;
8051 int encoding = 0, size = 0;
8052 char *name;
8053 enum type_code code = TYPE_CODE_INT;
8054 int type_flags = 0;
8055 struct type *target_type = NULL;
8056
8057 attr = dwarf2_attr (die, DW_AT_encoding, cu);
8058 if (attr)
8059 {
8060 encoding = DW_UNSND (attr);
8061 }
8062 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8063 if (attr)
8064 {
8065 size = DW_UNSND (attr);
8066 }
8067 name = dwarf2_name (die, cu);
8068 if (!name)
8069 {
8070 complaint (&symfile_complaints,
8071 _("DW_AT_name missing from DW_TAG_base_type"));
8072 }
8073
8074 switch (encoding)
8075 {
8076 case DW_ATE_address:
8077 /* Turn DW_ATE_address into a void * pointer. */
8078 code = TYPE_CODE_PTR;
8079 type_flags |= TYPE_FLAG_UNSIGNED;
8080 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8081 break;
8082 case DW_ATE_boolean:
8083 code = TYPE_CODE_BOOL;
8084 type_flags |= TYPE_FLAG_UNSIGNED;
8085 break;
8086 case DW_ATE_complex_float:
8087 code = TYPE_CODE_COMPLEX;
8088 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8089 break;
8090 case DW_ATE_decimal_float:
8091 code = TYPE_CODE_DECFLOAT;
8092 break;
8093 case DW_ATE_float:
8094 code = TYPE_CODE_FLT;
8095 break;
8096 case DW_ATE_signed:
8097 break;
8098 case DW_ATE_unsigned:
8099 type_flags |= TYPE_FLAG_UNSIGNED;
8100 break;
8101 case DW_ATE_signed_char:
8102 if (cu->language == language_ada || cu->language == language_m2
8103 || cu->language == language_pascal)
8104 code = TYPE_CODE_CHAR;
8105 break;
8106 case DW_ATE_unsigned_char:
8107 if (cu->language == language_ada || cu->language == language_m2
8108 || cu->language == language_pascal)
8109 code = TYPE_CODE_CHAR;
8110 type_flags |= TYPE_FLAG_UNSIGNED;
8111 break;
8112 case DW_ATE_UTF:
8113 /* We just treat this as an integer and then recognize the
8114 type by name elsewhere. */
8115 break;
8116
8117 default:
8118 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8119 dwarf_type_encoding_name (encoding));
8120 break;
8121 }
8122
8123 type = init_type (code, size, type_flags, NULL, objfile);
8124 TYPE_NAME (type) = name;
8125 TYPE_TARGET_TYPE (type) = target_type;
8126
8127 if (name && strcmp (name, "char") == 0)
8128 TYPE_NOSIGN (type) = 1;
8129
8130 return set_die_type (die, type, cu);
8131 }
8132
8133 /* Read the given DW_AT_subrange DIE. */
8134
8135 static struct type *
8136 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8137 {
8138 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
8139 struct type *base_type;
8140 struct type *range_type;
8141 struct attribute *attr;
8142 LONGEST low = 0;
8143 LONGEST high = -1;
8144 char *name;
8145 LONGEST negative_mask;
8146
8147 base_type = die_type (die, cu);
8148 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8149 check_typedef (base_type);
8150
8151 /* The die_type call above may have already set the type for this DIE. */
8152 range_type = get_die_type (die, cu);
8153 if (range_type)
8154 return range_type;
8155
8156 if (cu->language == language_fortran)
8157 {
8158 /* FORTRAN implies a lower bound of 1, if not given. */
8159 low = 1;
8160 }
8161
8162 /* FIXME: For variable sized arrays either of these could be
8163 a variable rather than a constant value. We'll allow it,
8164 but we don't know how to handle it. */
8165 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
8166 if (attr)
8167 low = dwarf2_get_attr_constant_value (attr, 0);
8168
8169 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
8170 if (attr)
8171 {
8172 if (attr->form == DW_FORM_block1 || is_ref_attr (attr))
8173 {
8174 /* GCC encodes arrays with unspecified or dynamic length
8175 with a DW_FORM_block1 attribute or a reference attribute.
8176 FIXME: GDB does not yet know how to handle dynamic
8177 arrays properly, treat them as arrays with unspecified
8178 length for now.
8179
8180 FIXME: jimb/2003-09-22: GDB does not really know
8181 how to handle arrays of unspecified length
8182 either; we just represent them as zero-length
8183 arrays. Choose an appropriate upper bound given
8184 the lower bound we've computed above. */
8185 high = low - 1;
8186 }
8187 else
8188 high = dwarf2_get_attr_constant_value (attr, 1);
8189 }
8190 else
8191 {
8192 attr = dwarf2_attr (die, DW_AT_count, cu);
8193 if (attr)
8194 {
8195 int count = dwarf2_get_attr_constant_value (attr, 1);
8196 high = low + count - 1;
8197 }
8198 }
8199
8200 /* Dwarf-2 specifications explicitly allows to create subrange types
8201 without specifying a base type.
8202 In that case, the base type must be set to the type of
8203 the lower bound, upper bound or count, in that order, if any of these
8204 three attributes references an object that has a type.
8205 If no base type is found, the Dwarf-2 specifications say that
8206 a signed integer type of size equal to the size of an address should
8207 be used.
8208 For the following C code: `extern char gdb_int [];'
8209 GCC produces an empty range DIE.
8210 FIXME: muller/2010-05-28: Possible references to object for low bound,
8211 high bound or count are not yet handled by this code.
8212 */
8213 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8214 {
8215 struct objfile *objfile = cu->objfile;
8216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8217 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8218 struct type *int_type = objfile_type (objfile)->builtin_int;
8219
8220 /* Test "int", "long int", and "long long int" objfile types,
8221 and select the first one having a size above or equal to the
8222 architecture address size. */
8223 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8224 base_type = int_type;
8225 else
8226 {
8227 int_type = objfile_type (objfile)->builtin_long;
8228 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8229 base_type = int_type;
8230 else
8231 {
8232 int_type = objfile_type (objfile)->builtin_long_long;
8233 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8234 base_type = int_type;
8235 }
8236 }
8237 }
8238
8239 negative_mask =
8240 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8241 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8242 low |= negative_mask;
8243 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8244 high |= negative_mask;
8245
8246 range_type = create_range_type (NULL, base_type, low, high);
8247
8248 /* Mark arrays with dynamic length at least as an array of unspecified
8249 length. GDB could check the boundary but before it gets implemented at
8250 least allow accessing the array elements. */
8251 if (attr && attr->form == DW_FORM_block1)
8252 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8253
8254 name = dwarf2_name (die, cu);
8255 if (name)
8256 TYPE_NAME (range_type) = name;
8257
8258 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
8259 if (attr)
8260 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8261
8262 set_die_type (die, range_type, cu);
8263
8264 /* set_die_type should be already done. */
8265 set_descriptive_type (range_type, die, cu);
8266
8267 return range_type;
8268 }
8269
8270 static struct type *
8271 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8272 {
8273 struct type *type;
8274
8275 /* For now, we only support the C meaning of an unspecified type: void. */
8276
8277 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8278 TYPE_NAME (type) = dwarf2_name (die, cu);
8279
8280 return set_die_type (die, type, cu);
8281 }
8282
8283 /* Trivial hash function for die_info: the hash value of a DIE
8284 is its offset in .debug_info for this objfile. */
8285
8286 static hashval_t
8287 die_hash (const void *item)
8288 {
8289 const struct die_info *die = item;
8290
8291 return die->offset;
8292 }
8293
8294 /* Trivial comparison function for die_info structures: two DIEs
8295 are equal if they have the same offset. */
8296
8297 static int
8298 die_eq (const void *item_lhs, const void *item_rhs)
8299 {
8300 const struct die_info *die_lhs = item_lhs;
8301 const struct die_info *die_rhs = item_rhs;
8302
8303 return die_lhs->offset == die_rhs->offset;
8304 }
8305
8306 /* Read a whole compilation unit into a linked list of dies. */
8307
8308 static struct die_info *
8309 read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
8310 {
8311 struct die_reader_specs reader_specs;
8312 int read_abbrevs = 0;
8313 struct cleanup *back_to = NULL;
8314 struct die_info *die;
8315
8316 if (cu->dwarf2_abbrevs == NULL)
8317 {
8318 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8319 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8320 read_abbrevs = 1;
8321 }
8322
8323 gdb_assert (cu->die_hash == NULL);
8324 cu->die_hash
8325 = htab_create_alloc_ex (cu->header.length / 12,
8326 die_hash,
8327 die_eq,
8328 NULL,
8329 &cu->comp_unit_obstack,
8330 hashtab_obstack_allocate,
8331 dummy_obstack_deallocate);
8332
8333 init_cu_die_reader (&reader_specs, cu);
8334
8335 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8336
8337 if (read_abbrevs)
8338 do_cleanups (back_to);
8339
8340 return die;
8341 }
8342
8343 /* Main entry point for reading a DIE and all children.
8344 Read the DIE and dump it if requested. */
8345
8346 static struct die_info *
8347 read_die_and_children (const struct die_reader_specs *reader,
8348 gdb_byte *info_ptr,
8349 gdb_byte **new_info_ptr,
8350 struct die_info *parent)
8351 {
8352 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
8353 new_info_ptr, parent);
8354
8355 if (dwarf2_die_debug)
8356 {
8357 fprintf_unfiltered (gdb_stdlog,
8358 "\nRead die from %s of %s:\n",
8359 reader->buffer == dwarf2_per_objfile->info.buffer
8360 ? ".debug_info"
8361 : reader->buffer == dwarf2_per_objfile->types.buffer
8362 ? ".debug_types"
8363 : "unknown section",
8364 reader->abfd->filename);
8365 dump_die (result, dwarf2_die_debug);
8366 }
8367
8368 return result;
8369 }
8370
8371 /* Read a single die and all its descendents. Set the die's sibling
8372 field to NULL; set other fields in the die correctly, and set all
8373 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8374 location of the info_ptr after reading all of those dies. PARENT
8375 is the parent of the die in question. */
8376
8377 static struct die_info *
8378 read_die_and_children_1 (const struct die_reader_specs *reader,
8379 gdb_byte *info_ptr,
8380 gdb_byte **new_info_ptr,
8381 struct die_info *parent)
8382 {
8383 struct die_info *die;
8384 gdb_byte *cur_ptr;
8385 int has_children;
8386
8387 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
8388 if (die == NULL)
8389 {
8390 *new_info_ptr = cur_ptr;
8391 return NULL;
8392 }
8393 store_in_ref_table (die, reader->cu);
8394
8395 if (has_children)
8396 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
8397 else
8398 {
8399 die->child = NULL;
8400 *new_info_ptr = cur_ptr;
8401 }
8402
8403 die->sibling = NULL;
8404 die->parent = parent;
8405 return die;
8406 }
8407
8408 /* Read a die, all of its descendents, and all of its siblings; set
8409 all of the fields of all of the dies correctly. Arguments are as
8410 in read_die_and_children. */
8411
8412 static struct die_info *
8413 read_die_and_siblings (const struct die_reader_specs *reader,
8414 gdb_byte *info_ptr,
8415 gdb_byte **new_info_ptr,
8416 struct die_info *parent)
8417 {
8418 struct die_info *first_die, *last_sibling;
8419 gdb_byte *cur_ptr;
8420
8421 cur_ptr = info_ptr;
8422 first_die = last_sibling = NULL;
8423
8424 while (1)
8425 {
8426 struct die_info *die
8427 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
8428
8429 if (die == NULL)
8430 {
8431 *new_info_ptr = cur_ptr;
8432 return first_die;
8433 }
8434
8435 if (!first_die)
8436 first_die = die;
8437 else
8438 last_sibling->sibling = die;
8439
8440 last_sibling = die;
8441 }
8442 }
8443
8444 /* Read the die from the .debug_info section buffer. Set DIEP to
8445 point to a newly allocated die with its information, except for its
8446 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8447 whether the die has children or not. */
8448
8449 static gdb_byte *
8450 read_full_die (const struct die_reader_specs *reader,
8451 struct die_info **diep, gdb_byte *info_ptr,
8452 int *has_children)
8453 {
8454 unsigned int abbrev_number, bytes_read, i, offset;
8455 struct abbrev_info *abbrev;
8456 struct die_info *die;
8457 struct dwarf2_cu *cu = reader->cu;
8458 bfd *abfd = reader->abfd;
8459
8460 offset = info_ptr - reader->buffer;
8461 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8462 info_ptr += bytes_read;
8463 if (!abbrev_number)
8464 {
8465 *diep = NULL;
8466 *has_children = 0;
8467 return info_ptr;
8468 }
8469
8470 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8471 if (!abbrev)
8472 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8473 abbrev_number,
8474 bfd_get_filename (abfd));
8475
8476 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8477 die->offset = offset;
8478 die->tag = abbrev->tag;
8479 die->abbrev = abbrev_number;
8480
8481 die->num_attrs = abbrev->num_attrs;
8482
8483 for (i = 0; i < abbrev->num_attrs; ++i)
8484 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8485 abfd, info_ptr, cu);
8486
8487 *diep = die;
8488 *has_children = abbrev->has_children;
8489 return info_ptr;
8490 }
8491
8492 /* In DWARF version 2, the description of the debugging information is
8493 stored in a separate .debug_abbrev section. Before we read any
8494 dies from a section we read in all abbreviations and install them
8495 in a hash table. This function also sets flags in CU describing
8496 the data found in the abbrev table. */
8497
8498 static void
8499 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
8500 {
8501 struct comp_unit_head *cu_header = &cu->header;
8502 gdb_byte *abbrev_ptr;
8503 struct abbrev_info *cur_abbrev;
8504 unsigned int abbrev_number, bytes_read, abbrev_name;
8505 unsigned int abbrev_form, hash_number;
8506 struct attr_abbrev *cur_attrs;
8507 unsigned int allocated_attrs;
8508
8509 /* Initialize dwarf2 abbrevs */
8510 obstack_init (&cu->abbrev_obstack);
8511 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8512 (ABBREV_HASH_SIZE
8513 * sizeof (struct abbrev_info *)));
8514 memset (cu->dwarf2_abbrevs, 0,
8515 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
8516
8517 dwarf2_read_section (dwarf2_per_objfile->objfile,
8518 &dwarf2_per_objfile->abbrev);
8519 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
8520 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8521 abbrev_ptr += bytes_read;
8522
8523 allocated_attrs = ATTR_ALLOC_CHUNK;
8524 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
8525
8526 /* loop until we reach an abbrev number of 0 */
8527 while (abbrev_number)
8528 {
8529 cur_abbrev = dwarf_alloc_abbrev (cu);
8530
8531 /* read in abbrev header */
8532 cur_abbrev->number = abbrev_number;
8533 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8534 abbrev_ptr += bytes_read;
8535 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
8536 abbrev_ptr += 1;
8537
8538 if (cur_abbrev->tag == DW_TAG_namespace)
8539 cu->has_namespace_info = 1;
8540
8541 /* now read in declarations */
8542 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8543 abbrev_ptr += bytes_read;
8544 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8545 abbrev_ptr += bytes_read;
8546 while (abbrev_name)
8547 {
8548 if (cur_abbrev->num_attrs == allocated_attrs)
8549 {
8550 allocated_attrs += ATTR_ALLOC_CHUNK;
8551 cur_attrs
8552 = xrealloc (cur_attrs, (allocated_attrs
8553 * sizeof (struct attr_abbrev)));
8554 }
8555
8556 /* Record whether this compilation unit might have
8557 inter-compilation-unit references. If we don't know what form
8558 this attribute will have, then it might potentially be a
8559 DW_FORM_ref_addr, so we conservatively expect inter-CU
8560 references. */
8561
8562 if (abbrev_form == DW_FORM_ref_addr
8563 || abbrev_form == DW_FORM_indirect)
8564 cu->has_form_ref_addr = 1;
8565
8566 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
8567 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
8568 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8569 abbrev_ptr += bytes_read;
8570 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8571 abbrev_ptr += bytes_read;
8572 }
8573
8574 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
8575 (cur_abbrev->num_attrs
8576 * sizeof (struct attr_abbrev)));
8577 memcpy (cur_abbrev->attrs, cur_attrs,
8578 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
8579
8580 hash_number = abbrev_number % ABBREV_HASH_SIZE;
8581 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
8582 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
8583
8584 /* Get next abbreviation.
8585 Under Irix6 the abbreviations for a compilation unit are not
8586 always properly terminated with an abbrev number of 0.
8587 Exit loop if we encounter an abbreviation which we have
8588 already read (which means we are about to read the abbreviations
8589 for the next compile unit) or if the end of the abbreviation
8590 table is reached. */
8591 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
8592 >= dwarf2_per_objfile->abbrev.size)
8593 break;
8594 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
8595 abbrev_ptr += bytes_read;
8596 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
8597 break;
8598 }
8599
8600 xfree (cur_attrs);
8601 }
8602
8603 /* Release the memory used by the abbrev table for a compilation unit. */
8604
8605 static void
8606 dwarf2_free_abbrev_table (void *ptr_to_cu)
8607 {
8608 struct dwarf2_cu *cu = ptr_to_cu;
8609
8610 obstack_free (&cu->abbrev_obstack, NULL);
8611 cu->dwarf2_abbrevs = NULL;
8612 }
8613
8614 /* Lookup an abbrev_info structure in the abbrev hash table. */
8615
8616 static struct abbrev_info *
8617 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
8618 {
8619 unsigned int hash_number;
8620 struct abbrev_info *abbrev;
8621
8622 hash_number = number % ABBREV_HASH_SIZE;
8623 abbrev = cu->dwarf2_abbrevs[hash_number];
8624
8625 while (abbrev)
8626 {
8627 if (abbrev->number == number)
8628 return abbrev;
8629 else
8630 abbrev = abbrev->next;
8631 }
8632 return NULL;
8633 }
8634
8635 /* Returns nonzero if TAG represents a type that we might generate a partial
8636 symbol for. */
8637
8638 static int
8639 is_type_tag_for_partial (int tag)
8640 {
8641 switch (tag)
8642 {
8643 #if 0
8644 /* Some types that would be reasonable to generate partial symbols for,
8645 that we don't at present. */
8646 case DW_TAG_array_type:
8647 case DW_TAG_file_type:
8648 case DW_TAG_ptr_to_member_type:
8649 case DW_TAG_set_type:
8650 case DW_TAG_string_type:
8651 case DW_TAG_subroutine_type:
8652 #endif
8653 case DW_TAG_base_type:
8654 case DW_TAG_class_type:
8655 case DW_TAG_interface_type:
8656 case DW_TAG_enumeration_type:
8657 case DW_TAG_structure_type:
8658 case DW_TAG_subrange_type:
8659 case DW_TAG_typedef:
8660 case DW_TAG_union_type:
8661 return 1;
8662 default:
8663 return 0;
8664 }
8665 }
8666
8667 /* Load all DIEs that are interesting for partial symbols into memory. */
8668
8669 static struct partial_die_info *
8670 load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
8671 int building_psymtab, struct dwarf2_cu *cu)
8672 {
8673 struct partial_die_info *part_die;
8674 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
8675 struct abbrev_info *abbrev;
8676 unsigned int bytes_read;
8677 unsigned int load_all = 0;
8678
8679 int nesting_level = 1;
8680
8681 parent_die = NULL;
8682 last_die = NULL;
8683
8684 if (cu->per_cu && cu->per_cu->load_all_dies)
8685 load_all = 1;
8686
8687 cu->partial_dies
8688 = htab_create_alloc_ex (cu->header.length / 12,
8689 partial_die_hash,
8690 partial_die_eq,
8691 NULL,
8692 &cu->comp_unit_obstack,
8693 hashtab_obstack_allocate,
8694 dummy_obstack_deallocate);
8695
8696 part_die = obstack_alloc (&cu->comp_unit_obstack,
8697 sizeof (struct partial_die_info));
8698
8699 while (1)
8700 {
8701 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
8702
8703 /* A NULL abbrev means the end of a series of children. */
8704 if (abbrev == NULL)
8705 {
8706 if (--nesting_level == 0)
8707 {
8708 /* PART_DIE was probably the last thing allocated on the
8709 comp_unit_obstack, so we could call obstack_free
8710 here. We don't do that because the waste is small,
8711 and will be cleaned up when we're done with this
8712 compilation unit. This way, we're also more robust
8713 against other users of the comp_unit_obstack. */
8714 return first_die;
8715 }
8716 info_ptr += bytes_read;
8717 last_die = parent_die;
8718 parent_die = parent_die->die_parent;
8719 continue;
8720 }
8721
8722 /* Check for template arguments. We never save these; if
8723 they're seen, we just mark the parent, and go on our way. */
8724 if (parent_die != NULL
8725 && cu->language == language_cplus
8726 && (abbrev->tag == DW_TAG_template_type_param
8727 || abbrev->tag == DW_TAG_template_value_param))
8728 {
8729 parent_die->has_template_arguments = 1;
8730
8731 if (!load_all)
8732 {
8733 /* We don't need a partial DIE for the template argument. */
8734 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
8735 cu);
8736 continue;
8737 }
8738 }
8739
8740 /* We only recurse into subprograms looking for template arguments.
8741 Skip their other children. */
8742 if (!load_all
8743 && cu->language == language_cplus
8744 && parent_die != NULL
8745 && parent_die->tag == DW_TAG_subprogram)
8746 {
8747 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8748 continue;
8749 }
8750
8751 /* Check whether this DIE is interesting enough to save. Normally
8752 we would not be interested in members here, but there may be
8753 later variables referencing them via DW_AT_specification (for
8754 static members). */
8755 if (!load_all
8756 && !is_type_tag_for_partial (abbrev->tag)
8757 && abbrev->tag != DW_TAG_constant
8758 && abbrev->tag != DW_TAG_enumerator
8759 && abbrev->tag != DW_TAG_subprogram
8760 && abbrev->tag != DW_TAG_lexical_block
8761 && abbrev->tag != DW_TAG_variable
8762 && abbrev->tag != DW_TAG_namespace
8763 && abbrev->tag != DW_TAG_module
8764 && abbrev->tag != DW_TAG_member)
8765 {
8766 /* Otherwise we skip to the next sibling, if any. */
8767 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
8768 continue;
8769 }
8770
8771 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
8772 buffer, info_ptr, cu);
8773
8774 /* This two-pass algorithm for processing partial symbols has a
8775 high cost in cache pressure. Thus, handle some simple cases
8776 here which cover the majority of C partial symbols. DIEs
8777 which neither have specification tags in them, nor could have
8778 specification tags elsewhere pointing at them, can simply be
8779 processed and discarded.
8780
8781 This segment is also optional; scan_partial_symbols and
8782 add_partial_symbol will handle these DIEs if we chain
8783 them in normally. When compilers which do not emit large
8784 quantities of duplicate debug information are more common,
8785 this code can probably be removed. */
8786
8787 /* Any complete simple types at the top level (pretty much all
8788 of them, for a language without namespaces), can be processed
8789 directly. */
8790 if (parent_die == NULL
8791 && part_die->has_specification == 0
8792 && part_die->is_declaration == 0
8793 && (part_die->tag == DW_TAG_typedef
8794 || part_die->tag == DW_TAG_base_type
8795 || part_die->tag == DW_TAG_subrange_type))
8796 {
8797 if (building_psymtab && part_die->name != NULL)
8798 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8799 VAR_DOMAIN, LOC_TYPEDEF,
8800 &cu->objfile->static_psymbols,
8801 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8802 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8803 continue;
8804 }
8805
8806 /* If we're at the second level, and we're an enumerator, and
8807 our parent has no specification (meaning possibly lives in a
8808 namespace elsewhere), then we can add the partial symbol now
8809 instead of queueing it. */
8810 if (part_die->tag == DW_TAG_enumerator
8811 && parent_die != NULL
8812 && parent_die->die_parent == NULL
8813 && parent_die->tag == DW_TAG_enumeration_type
8814 && parent_die->has_specification == 0)
8815 {
8816 if (part_die->name == NULL)
8817 complaint (&symfile_complaints,
8818 _("malformed enumerator DIE ignored"));
8819 else if (building_psymtab)
8820 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
8821 VAR_DOMAIN, LOC_CONST,
8822 (cu->language == language_cplus
8823 || cu->language == language_java)
8824 ? &cu->objfile->global_psymbols
8825 : &cu->objfile->static_psymbols,
8826 0, (CORE_ADDR) 0, cu->language, cu->objfile);
8827
8828 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
8829 continue;
8830 }
8831
8832 /* We'll save this DIE so link it in. */
8833 part_die->die_parent = parent_die;
8834 part_die->die_sibling = NULL;
8835 part_die->die_child = NULL;
8836
8837 if (last_die && last_die == parent_die)
8838 last_die->die_child = part_die;
8839 else if (last_die)
8840 last_die->die_sibling = part_die;
8841
8842 last_die = part_die;
8843
8844 if (first_die == NULL)
8845 first_die = part_die;
8846
8847 /* Maybe add the DIE to the hash table. Not all DIEs that we
8848 find interesting need to be in the hash table, because we
8849 also have the parent/sibling/child chains; only those that we
8850 might refer to by offset later during partial symbol reading.
8851
8852 For now this means things that might have be the target of a
8853 DW_AT_specification, DW_AT_abstract_origin, or
8854 DW_AT_extension. DW_AT_extension will refer only to
8855 namespaces; DW_AT_abstract_origin refers to functions (and
8856 many things under the function DIE, but we do not recurse
8857 into function DIEs during partial symbol reading) and
8858 possibly variables as well; DW_AT_specification refers to
8859 declarations. Declarations ought to have the DW_AT_declaration
8860 flag. It happens that GCC forgets to put it in sometimes, but
8861 only for functions, not for types.
8862
8863 Adding more things than necessary to the hash table is harmless
8864 except for the performance cost. Adding too few will result in
8865 wasted time in find_partial_die, when we reread the compilation
8866 unit with load_all_dies set. */
8867
8868 if (load_all
8869 || abbrev->tag == DW_TAG_constant
8870 || abbrev->tag == DW_TAG_subprogram
8871 || abbrev->tag == DW_TAG_variable
8872 || abbrev->tag == DW_TAG_namespace
8873 || part_die->is_declaration)
8874 {
8875 void **slot;
8876
8877 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
8878 part_die->offset, INSERT);
8879 *slot = part_die;
8880 }
8881
8882 part_die = obstack_alloc (&cu->comp_unit_obstack,
8883 sizeof (struct partial_die_info));
8884
8885 /* For some DIEs we want to follow their children (if any). For C
8886 we have no reason to follow the children of structures; for other
8887 languages we have to, so that we can get at method physnames
8888 to infer fully qualified class names, for DW_AT_specification,
8889 and for C++ template arguments. For C++, we also look one level
8890 inside functions to find template arguments (if the name of the
8891 function does not already contain the template arguments).
8892
8893 For Ada, we need to scan the children of subprograms and lexical
8894 blocks as well because Ada allows the definition of nested
8895 entities that could be interesting for the debugger, such as
8896 nested subprograms for instance. */
8897 if (last_die->has_children
8898 && (load_all
8899 || last_die->tag == DW_TAG_namespace
8900 || last_die->tag == DW_TAG_module
8901 || last_die->tag == DW_TAG_enumeration_type
8902 || (cu->language == language_cplus
8903 && last_die->tag == DW_TAG_subprogram
8904 && (last_die->name == NULL
8905 || strchr (last_die->name, '<') == NULL))
8906 || (cu->language != language_c
8907 && (last_die->tag == DW_TAG_class_type
8908 || last_die->tag == DW_TAG_interface_type
8909 || last_die->tag == DW_TAG_structure_type
8910 || last_die->tag == DW_TAG_union_type))
8911 || (cu->language == language_ada
8912 && (last_die->tag == DW_TAG_subprogram
8913 || last_die->tag == DW_TAG_lexical_block))))
8914 {
8915 nesting_level++;
8916 parent_die = last_die;
8917 continue;
8918 }
8919
8920 /* Otherwise we skip to the next sibling, if any. */
8921 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
8922
8923 /* Back to the top, do it again. */
8924 }
8925 }
8926
8927 /* Read a minimal amount of information into the minimal die structure. */
8928
8929 static gdb_byte *
8930 read_partial_die (struct partial_die_info *part_die,
8931 struct abbrev_info *abbrev,
8932 unsigned int abbrev_len, bfd *abfd,
8933 gdb_byte *buffer, gdb_byte *info_ptr,
8934 struct dwarf2_cu *cu)
8935 {
8936 unsigned int i;
8937 struct attribute attr;
8938 int has_low_pc_attr = 0;
8939 int has_high_pc_attr = 0;
8940
8941 memset (part_die, 0, sizeof (struct partial_die_info));
8942
8943 part_die->offset = info_ptr - buffer;
8944
8945 info_ptr += abbrev_len;
8946
8947 if (abbrev == NULL)
8948 return info_ptr;
8949
8950 part_die->tag = abbrev->tag;
8951 part_die->has_children = abbrev->has_children;
8952
8953 for (i = 0; i < abbrev->num_attrs; ++i)
8954 {
8955 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
8956
8957 /* Store the data if it is of an attribute we want to keep in a
8958 partial symbol table. */
8959 switch (attr.name)
8960 {
8961 case DW_AT_name:
8962 switch (part_die->tag)
8963 {
8964 case DW_TAG_compile_unit:
8965 case DW_TAG_type_unit:
8966 /* Compilation units have a DW_AT_name that is a filename, not
8967 a source language identifier. */
8968 case DW_TAG_enumeration_type:
8969 case DW_TAG_enumerator:
8970 /* These tags always have simple identifiers already; no need
8971 to canonicalize them. */
8972 part_die->name = DW_STRING (&attr);
8973 break;
8974 default:
8975 part_die->name
8976 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
8977 &cu->objfile->objfile_obstack);
8978 break;
8979 }
8980 break;
8981 case DW_AT_linkage_name:
8982 case DW_AT_MIPS_linkage_name:
8983 /* Note that both forms of linkage name might appear. We
8984 assume they will be the same, and we only store the last
8985 one we see. */
8986 if (cu->language == language_ada)
8987 part_die->name = DW_STRING (&attr);
8988 part_die->linkage_name = DW_STRING (&attr);
8989 break;
8990 case DW_AT_low_pc:
8991 has_low_pc_attr = 1;
8992 part_die->lowpc = DW_ADDR (&attr);
8993 break;
8994 case DW_AT_high_pc:
8995 has_high_pc_attr = 1;
8996 part_die->highpc = DW_ADDR (&attr);
8997 break;
8998 case DW_AT_location:
8999 /* Support the .debug_loc offsets */
9000 if (attr_form_is_block (&attr))
9001 {
9002 part_die->locdesc = DW_BLOCK (&attr);
9003 }
9004 else if (attr_form_is_section_offset (&attr))
9005 {
9006 dwarf2_complex_location_expr_complaint ();
9007 }
9008 else
9009 {
9010 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9011 "partial symbol information");
9012 }
9013 break;
9014 case DW_AT_external:
9015 part_die->is_external = DW_UNSND (&attr);
9016 break;
9017 case DW_AT_declaration:
9018 part_die->is_declaration = DW_UNSND (&attr);
9019 break;
9020 case DW_AT_type:
9021 part_die->has_type = 1;
9022 break;
9023 case DW_AT_abstract_origin:
9024 case DW_AT_specification:
9025 case DW_AT_extension:
9026 part_die->has_specification = 1;
9027 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
9028 break;
9029 case DW_AT_sibling:
9030 /* Ignore absolute siblings, they might point outside of
9031 the current compile unit. */
9032 if (attr.form == DW_FORM_ref_addr)
9033 complaint (&symfile_complaints,
9034 _("ignoring absolute DW_AT_sibling"));
9035 else
9036 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
9037 break;
9038 case DW_AT_byte_size:
9039 part_die->has_byte_size = 1;
9040 break;
9041 case DW_AT_calling_convention:
9042 /* DWARF doesn't provide a way to identify a program's source-level
9043 entry point. DW_AT_calling_convention attributes are only meant
9044 to describe functions' calling conventions.
9045
9046 However, because it's a necessary piece of information in
9047 Fortran, and because DW_CC_program is the only piece of debugging
9048 information whose definition refers to a 'main program' at all,
9049 several compilers have begun marking Fortran main programs with
9050 DW_CC_program --- even when those functions use the standard
9051 calling conventions.
9052
9053 So until DWARF specifies a way to provide this information and
9054 compilers pick up the new representation, we'll support this
9055 practice. */
9056 if (DW_UNSND (&attr) == DW_CC_program
9057 && cu->language == language_fortran)
9058 {
9059 set_main_name (part_die->name);
9060
9061 /* As this DIE has a static linkage the name would be difficult
9062 to look up later. */
9063 language_of_main = language_fortran;
9064 }
9065 break;
9066 default:
9067 break;
9068 }
9069 }
9070
9071 /* When using the GNU linker, .gnu.linkonce. sections are used to
9072 eliminate duplicate copies of functions and vtables and such.
9073 The linker will arbitrarily choose one and discard the others.
9074 The AT_*_pc values for such functions refer to local labels in
9075 these sections. If the section from that file was discarded, the
9076 labels are not in the output, so the relocs get a value of 0.
9077 If this is a discarded function, mark the pc bounds as invalid,
9078 so that GDB will ignore it. */
9079 if (has_low_pc_attr && has_high_pc_attr
9080 && part_die->lowpc < part_die->highpc
9081 && (part_die->lowpc != 0
9082 || dwarf2_per_objfile->has_section_at_zero))
9083 part_die->has_pc_info = 1;
9084
9085 return info_ptr;
9086 }
9087
9088 /* Find a cached partial DIE at OFFSET in CU. */
9089
9090 static struct partial_die_info *
9091 find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
9092 {
9093 struct partial_die_info *lookup_die = NULL;
9094 struct partial_die_info part_die;
9095
9096 part_die.offset = offset;
9097 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9098
9099 return lookup_die;
9100 }
9101
9102 /* Find a partial DIE at OFFSET, which may or may not be in CU,
9103 except in the case of .debug_types DIEs which do not reference
9104 outside their CU (they do however referencing other types via
9105 DW_FORM_sig8). */
9106
9107 static struct partial_die_info *
9108 find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
9109 {
9110 struct dwarf2_per_cu_data *per_cu = NULL;
9111 struct partial_die_info *pd = NULL;
9112
9113 if (cu->per_cu->from_debug_types)
9114 {
9115 pd = find_partial_die_in_comp_unit (offset, cu);
9116 if (pd != NULL)
9117 return pd;
9118 goto not_found;
9119 }
9120
9121 if (offset_in_cu_p (&cu->header, offset))
9122 {
9123 pd = find_partial_die_in_comp_unit (offset, cu);
9124 if (pd != NULL)
9125 return pd;
9126 }
9127
9128 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9129
9130 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9131 load_partial_comp_unit (per_cu, cu->objfile);
9132
9133 per_cu->cu->last_used = 0;
9134 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9135
9136 if (pd == NULL && per_cu->load_all_dies == 0)
9137 {
9138 struct cleanup *back_to;
9139 struct partial_die_info comp_unit_die;
9140 struct abbrev_info *abbrev;
9141 unsigned int bytes_read;
9142 char *info_ptr;
9143
9144 per_cu->load_all_dies = 1;
9145
9146 /* Re-read the DIEs. */
9147 back_to = make_cleanup (null_cleanup, 0);
9148 if (per_cu->cu->dwarf2_abbrevs == NULL)
9149 {
9150 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
9151 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
9152 }
9153 info_ptr = (dwarf2_per_objfile->info.buffer
9154 + per_cu->cu->header.offset
9155 + per_cu->cu->header.first_die_offset);
9156 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9157 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
9158 per_cu->cu->objfile->obfd,
9159 dwarf2_per_objfile->info.buffer, info_ptr,
9160 per_cu->cu);
9161 if (comp_unit_die.has_children)
9162 load_partial_dies (per_cu->cu->objfile->obfd,
9163 dwarf2_per_objfile->info.buffer, info_ptr,
9164 0, per_cu->cu);
9165 do_cleanups (back_to);
9166
9167 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9168 }
9169
9170 not_found:
9171
9172 if (pd == NULL)
9173 internal_error (__FILE__, __LINE__,
9174 _("could not find partial DIE 0x%x "
9175 "in cache [from module %s]\n"),
9176 offset, bfd_get_filename (cu->objfile->obfd));
9177 return pd;
9178 }
9179
9180 /* See if we can figure out if the class lives in a namespace. We do
9181 this by looking for a member function; its demangled name will
9182 contain namespace info, if there is any. */
9183
9184 static void
9185 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9186 struct dwarf2_cu *cu)
9187 {
9188 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9189 what template types look like, because the demangler
9190 frequently doesn't give the same name as the debug info. We
9191 could fix this by only using the demangled name to get the
9192 prefix (but see comment in read_structure_type). */
9193
9194 struct partial_die_info *real_pdi;
9195 struct partial_die_info *child_pdi;
9196
9197 /* If this DIE (this DIE's specification, if any) has a parent, then
9198 we should not do this. We'll prepend the parent's fully qualified
9199 name when we create the partial symbol. */
9200
9201 real_pdi = struct_pdi;
9202 while (real_pdi->has_specification)
9203 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9204
9205 if (real_pdi->die_parent != NULL)
9206 return;
9207
9208 for (child_pdi = struct_pdi->die_child;
9209 child_pdi != NULL;
9210 child_pdi = child_pdi->die_sibling)
9211 {
9212 if (child_pdi->tag == DW_TAG_subprogram
9213 && child_pdi->linkage_name != NULL)
9214 {
9215 char *actual_class_name
9216 = language_class_name_from_physname (cu->language_defn,
9217 child_pdi->linkage_name);
9218 if (actual_class_name != NULL)
9219 {
9220 struct_pdi->name
9221 = obsavestring (actual_class_name,
9222 strlen (actual_class_name),
9223 &cu->objfile->objfile_obstack);
9224 xfree (actual_class_name);
9225 }
9226 break;
9227 }
9228 }
9229 }
9230
9231 /* Adjust PART_DIE before generating a symbol for it. This function
9232 may set the is_external flag or change the DIE's name. */
9233
9234 static void
9235 fixup_partial_die (struct partial_die_info *part_die,
9236 struct dwarf2_cu *cu)
9237 {
9238 /* Once we've fixed up a die, there's no point in doing so again.
9239 This also avoids a memory leak if we were to call
9240 guess_partial_die_structure_name multiple times. */
9241 if (part_die->fixup_called)
9242 return;
9243
9244 /* If we found a reference attribute and the DIE has no name, try
9245 to find a name in the referred to DIE. */
9246
9247 if (part_die->name == NULL && part_die->has_specification)
9248 {
9249 struct partial_die_info *spec_die;
9250
9251 spec_die = find_partial_die (part_die->spec_offset, cu);
9252
9253 fixup_partial_die (spec_die, cu);
9254
9255 if (spec_die->name)
9256 {
9257 part_die->name = spec_die->name;
9258
9259 /* Copy DW_AT_external attribute if it is set. */
9260 if (spec_die->is_external)
9261 part_die->is_external = spec_die->is_external;
9262 }
9263 }
9264
9265 /* Set default names for some unnamed DIEs. */
9266
9267 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
9268 part_die->name = "(anonymous namespace)";
9269
9270 /* If there is no parent die to provide a namespace, and there are
9271 children, see if we can determine the namespace from their linkage
9272 name.
9273 NOTE: We need to do this even if cu->has_namespace_info != 0.
9274 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9275 if (cu->language == language_cplus
9276 && dwarf2_per_objfile->types.asection != NULL
9277 && part_die->die_parent == NULL
9278 && part_die->has_children
9279 && (part_die->tag == DW_TAG_class_type
9280 || part_die->tag == DW_TAG_structure_type
9281 || part_die->tag == DW_TAG_union_type))
9282 guess_partial_die_structure_name (part_die, cu);
9283
9284 part_die->fixup_called = 1;
9285 }
9286
9287 /* Read an attribute value described by an attribute form. */
9288
9289 static gdb_byte *
9290 read_attribute_value (struct attribute *attr, unsigned form,
9291 bfd *abfd, gdb_byte *info_ptr,
9292 struct dwarf2_cu *cu)
9293 {
9294 struct comp_unit_head *cu_header = &cu->header;
9295 unsigned int bytes_read;
9296 struct dwarf_block *blk;
9297
9298 attr->form = form;
9299 switch (form)
9300 {
9301 case DW_FORM_ref_addr:
9302 if (cu->header.version == 2)
9303 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9304 else
9305 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9306 &cu->header, &bytes_read);
9307 info_ptr += bytes_read;
9308 break;
9309 case DW_FORM_addr:
9310 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9311 info_ptr += bytes_read;
9312 break;
9313 case DW_FORM_block2:
9314 blk = dwarf_alloc_block (cu);
9315 blk->size = read_2_bytes (abfd, info_ptr);
9316 info_ptr += 2;
9317 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9318 info_ptr += blk->size;
9319 DW_BLOCK (attr) = blk;
9320 break;
9321 case DW_FORM_block4:
9322 blk = dwarf_alloc_block (cu);
9323 blk->size = read_4_bytes (abfd, info_ptr);
9324 info_ptr += 4;
9325 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9326 info_ptr += blk->size;
9327 DW_BLOCK (attr) = blk;
9328 break;
9329 case DW_FORM_data2:
9330 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9331 info_ptr += 2;
9332 break;
9333 case DW_FORM_data4:
9334 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9335 info_ptr += 4;
9336 break;
9337 case DW_FORM_data8:
9338 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9339 info_ptr += 8;
9340 break;
9341 case DW_FORM_sec_offset:
9342 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9343 info_ptr += bytes_read;
9344 break;
9345 case DW_FORM_string:
9346 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
9347 DW_STRING_IS_CANONICAL (attr) = 0;
9348 info_ptr += bytes_read;
9349 break;
9350 case DW_FORM_strp:
9351 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9352 &bytes_read);
9353 DW_STRING_IS_CANONICAL (attr) = 0;
9354 info_ptr += bytes_read;
9355 break;
9356 case DW_FORM_exprloc:
9357 case DW_FORM_block:
9358 blk = dwarf_alloc_block (cu);
9359 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9362 info_ptr += blk->size;
9363 DW_BLOCK (attr) = blk;
9364 break;
9365 case DW_FORM_block1:
9366 blk = dwarf_alloc_block (cu);
9367 blk->size = read_1_byte (abfd, info_ptr);
9368 info_ptr += 1;
9369 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9370 info_ptr += blk->size;
9371 DW_BLOCK (attr) = blk;
9372 break;
9373 case DW_FORM_data1:
9374 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9375 info_ptr += 1;
9376 break;
9377 case DW_FORM_flag:
9378 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9379 info_ptr += 1;
9380 break;
9381 case DW_FORM_flag_present:
9382 DW_UNSND (attr) = 1;
9383 break;
9384 case DW_FORM_sdata:
9385 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9386 info_ptr += bytes_read;
9387 break;
9388 case DW_FORM_udata:
9389 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9390 info_ptr += bytes_read;
9391 break;
9392 case DW_FORM_ref1:
9393 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
9394 info_ptr += 1;
9395 break;
9396 case DW_FORM_ref2:
9397 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
9398 info_ptr += 2;
9399 break;
9400 case DW_FORM_ref4:
9401 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
9402 info_ptr += 4;
9403 break;
9404 case DW_FORM_ref8:
9405 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
9406 info_ptr += 8;
9407 break;
9408 case DW_FORM_sig8:
9409 /* Convert the signature to something we can record in DW_UNSND
9410 for later lookup.
9411 NOTE: This is NULL if the type wasn't found. */
9412 DW_SIGNATURED_TYPE (attr) =
9413 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9414 info_ptr += 8;
9415 break;
9416 case DW_FORM_ref_udata:
9417 DW_ADDR (attr) = (cu->header.offset
9418 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
9419 info_ptr += bytes_read;
9420 break;
9421 case DW_FORM_indirect:
9422 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9423 info_ptr += bytes_read;
9424 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
9425 break;
9426 default:
9427 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
9428 dwarf_form_name (form),
9429 bfd_get_filename (abfd));
9430 }
9431
9432 /* We have seen instances where the compiler tried to emit a byte
9433 size attribute of -1 which ended up being encoded as an unsigned
9434 0xffffffff. Although 0xffffffff is technically a valid size value,
9435 an object of this size seems pretty unlikely so we can relatively
9436 safely treat these cases as if the size attribute was invalid and
9437 treat them as zero by default. */
9438 if (attr->name == DW_AT_byte_size
9439 && form == DW_FORM_data4
9440 && DW_UNSND (attr) >= 0xffffffff)
9441 {
9442 complaint
9443 (&symfile_complaints,
9444 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9445 hex_string (DW_UNSND (attr)));
9446 DW_UNSND (attr) = 0;
9447 }
9448
9449 return info_ptr;
9450 }
9451
9452 /* Read an attribute described by an abbreviated attribute. */
9453
9454 static gdb_byte *
9455 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
9456 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
9457 {
9458 attr->name = abbrev->name;
9459 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
9460 }
9461
9462 /* read dwarf information from a buffer */
9463
9464 static unsigned int
9465 read_1_byte (bfd *abfd, gdb_byte *buf)
9466 {
9467 return bfd_get_8 (abfd, buf);
9468 }
9469
9470 static int
9471 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
9472 {
9473 return bfd_get_signed_8 (abfd, buf);
9474 }
9475
9476 static unsigned int
9477 read_2_bytes (bfd *abfd, gdb_byte *buf)
9478 {
9479 return bfd_get_16 (abfd, buf);
9480 }
9481
9482 static int
9483 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
9484 {
9485 return bfd_get_signed_16 (abfd, buf);
9486 }
9487
9488 static unsigned int
9489 read_4_bytes (bfd *abfd, gdb_byte *buf)
9490 {
9491 return bfd_get_32 (abfd, buf);
9492 }
9493
9494 static int
9495 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
9496 {
9497 return bfd_get_signed_32 (abfd, buf);
9498 }
9499
9500 static ULONGEST
9501 read_8_bytes (bfd *abfd, gdb_byte *buf)
9502 {
9503 return bfd_get_64 (abfd, buf);
9504 }
9505
9506 static CORE_ADDR
9507 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
9508 unsigned int *bytes_read)
9509 {
9510 struct comp_unit_head *cu_header = &cu->header;
9511 CORE_ADDR retval = 0;
9512
9513 if (cu_header->signed_addr_p)
9514 {
9515 switch (cu_header->addr_size)
9516 {
9517 case 2:
9518 retval = bfd_get_signed_16 (abfd, buf);
9519 break;
9520 case 4:
9521 retval = bfd_get_signed_32 (abfd, buf);
9522 break;
9523 case 8:
9524 retval = bfd_get_signed_64 (abfd, buf);
9525 break;
9526 default:
9527 internal_error (__FILE__, __LINE__,
9528 _("read_address: bad switch, signed [in module %s]"),
9529 bfd_get_filename (abfd));
9530 }
9531 }
9532 else
9533 {
9534 switch (cu_header->addr_size)
9535 {
9536 case 2:
9537 retval = bfd_get_16 (abfd, buf);
9538 break;
9539 case 4:
9540 retval = bfd_get_32 (abfd, buf);
9541 break;
9542 case 8:
9543 retval = bfd_get_64 (abfd, buf);
9544 break;
9545 default:
9546 internal_error (__FILE__, __LINE__,
9547 _("read_address: bad switch, unsigned [in module %s]"),
9548 bfd_get_filename (abfd));
9549 }
9550 }
9551
9552 *bytes_read = cu_header->addr_size;
9553 return retval;
9554 }
9555
9556 /* Read the initial length from a section. The (draft) DWARF 3
9557 specification allows the initial length to take up either 4 bytes
9558 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
9559 bytes describe the length and all offsets will be 8 bytes in length
9560 instead of 4.
9561
9562 An older, non-standard 64-bit format is also handled by this
9563 function. The older format in question stores the initial length
9564 as an 8-byte quantity without an escape value. Lengths greater
9565 than 2^32 aren't very common which means that the initial 4 bytes
9566 is almost always zero. Since a length value of zero doesn't make
9567 sense for the 32-bit format, this initial zero can be considered to
9568 be an escape value which indicates the presence of the older 64-bit
9569 format. As written, the code can't detect (old format) lengths
9570 greater than 4GB. If it becomes necessary to handle lengths
9571 somewhat larger than 4GB, we could allow other small values (such
9572 as the non-sensical values of 1, 2, and 3) to also be used as
9573 escape values indicating the presence of the old format.
9574
9575 The value returned via bytes_read should be used to increment the
9576 relevant pointer after calling read_initial_length().
9577
9578 [ Note: read_initial_length() and read_offset() are based on the
9579 document entitled "DWARF Debugging Information Format", revision
9580 3, draft 8, dated November 19, 2001. This document was obtained
9581 from:
9582
9583 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
9584
9585 This document is only a draft and is subject to change. (So beware.)
9586
9587 Details regarding the older, non-standard 64-bit format were
9588 determined empirically by examining 64-bit ELF files produced by
9589 the SGI toolchain on an IRIX 6.5 machine.
9590
9591 - Kevin, July 16, 2002
9592 ] */
9593
9594 static LONGEST
9595 read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
9596 {
9597 LONGEST length = bfd_get_32 (abfd, buf);
9598
9599 if (length == 0xffffffff)
9600 {
9601 length = bfd_get_64 (abfd, buf + 4);
9602 *bytes_read = 12;
9603 }
9604 else if (length == 0)
9605 {
9606 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
9607 length = bfd_get_64 (abfd, buf);
9608 *bytes_read = 8;
9609 }
9610 else
9611 {
9612 *bytes_read = 4;
9613 }
9614
9615 return length;
9616 }
9617
9618 /* Cover function for read_initial_length.
9619 Returns the length of the object at BUF, and stores the size of the
9620 initial length in *BYTES_READ and stores the size that offsets will be in
9621 *OFFSET_SIZE.
9622 If the initial length size is not equivalent to that specified in
9623 CU_HEADER then issue a complaint.
9624 This is useful when reading non-comp-unit headers. */
9625
9626 static LONGEST
9627 read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
9628 const struct comp_unit_head *cu_header,
9629 unsigned int *bytes_read,
9630 unsigned int *offset_size)
9631 {
9632 LONGEST length = read_initial_length (abfd, buf, bytes_read);
9633
9634 gdb_assert (cu_header->initial_length_size == 4
9635 || cu_header->initial_length_size == 8
9636 || cu_header->initial_length_size == 12);
9637
9638 if (cu_header->initial_length_size != *bytes_read)
9639 complaint (&symfile_complaints,
9640 _("intermixed 32-bit and 64-bit DWARF sections"));
9641
9642 *offset_size = (*bytes_read == 4) ? 4 : 8;
9643 return length;
9644 }
9645
9646 /* Read an offset from the data stream. The size of the offset is
9647 given by cu_header->offset_size. */
9648
9649 static LONGEST
9650 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
9651 unsigned int *bytes_read)
9652 {
9653 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9654
9655 *bytes_read = cu_header->offset_size;
9656 return offset;
9657 }
9658
9659 /* Read an offset from the data stream. */
9660
9661 static LONGEST
9662 read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
9663 {
9664 LONGEST retval = 0;
9665
9666 switch (offset_size)
9667 {
9668 case 4:
9669 retval = bfd_get_32 (abfd, buf);
9670 break;
9671 case 8:
9672 retval = bfd_get_64 (abfd, buf);
9673 break;
9674 default:
9675 internal_error (__FILE__, __LINE__,
9676 _("read_offset_1: bad switch [in module %s]"),
9677 bfd_get_filename (abfd));
9678 }
9679
9680 return retval;
9681 }
9682
9683 static gdb_byte *
9684 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
9685 {
9686 /* If the size of a host char is 8 bits, we can return a pointer
9687 to the buffer, otherwise we have to copy the data to a buffer
9688 allocated on the temporary obstack. */
9689 gdb_assert (HOST_CHAR_BIT == 8);
9690 return buf;
9691 }
9692
9693 static char *
9694 read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9695 {
9696 /* If the size of a host char is 8 bits, we can return a pointer
9697 to the string, otherwise we have to copy the string to a buffer
9698 allocated on the temporary obstack. */
9699 gdb_assert (HOST_CHAR_BIT == 8);
9700 if (*buf == '\0')
9701 {
9702 *bytes_read_ptr = 1;
9703 return NULL;
9704 }
9705 *bytes_read_ptr = strlen ((char *) buf) + 1;
9706 return (char *) buf;
9707 }
9708
9709 static char *
9710 read_indirect_string (bfd *abfd, gdb_byte *buf,
9711 const struct comp_unit_head *cu_header,
9712 unsigned int *bytes_read_ptr)
9713 {
9714 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
9715
9716 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
9717 if (dwarf2_per_objfile->str.buffer == NULL)
9718 {
9719 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
9720 bfd_get_filename (abfd));
9721 return NULL;
9722 }
9723 if (str_offset >= dwarf2_per_objfile->str.size)
9724 {
9725 error (_("DW_FORM_strp pointing outside of "
9726 ".debug_str section [in module %s]"),
9727 bfd_get_filename (abfd));
9728 return NULL;
9729 }
9730 gdb_assert (HOST_CHAR_BIT == 8);
9731 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
9732 return NULL;
9733 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
9734 }
9735
9736 static unsigned long
9737 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9738 {
9739 unsigned long result;
9740 unsigned int num_read;
9741 int i, shift;
9742 unsigned char byte;
9743
9744 result = 0;
9745 shift = 0;
9746 num_read = 0;
9747 i = 0;
9748 while (1)
9749 {
9750 byte = bfd_get_8 (abfd, buf);
9751 buf++;
9752 num_read++;
9753 result |= ((unsigned long)(byte & 127) << shift);
9754 if ((byte & 128) == 0)
9755 {
9756 break;
9757 }
9758 shift += 7;
9759 }
9760 *bytes_read_ptr = num_read;
9761 return result;
9762 }
9763
9764 static long
9765 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
9766 {
9767 long result;
9768 int i, shift, num_read;
9769 unsigned char byte;
9770
9771 result = 0;
9772 shift = 0;
9773 num_read = 0;
9774 i = 0;
9775 while (1)
9776 {
9777 byte = bfd_get_8 (abfd, buf);
9778 buf++;
9779 num_read++;
9780 result |= ((long)(byte & 127) << shift);
9781 shift += 7;
9782 if ((byte & 128) == 0)
9783 {
9784 break;
9785 }
9786 }
9787 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
9788 result |= -(((long)1) << shift);
9789 *bytes_read_ptr = num_read;
9790 return result;
9791 }
9792
9793 /* Return a pointer to just past the end of an LEB128 number in BUF. */
9794
9795 static gdb_byte *
9796 skip_leb128 (bfd *abfd, gdb_byte *buf)
9797 {
9798 int byte;
9799
9800 while (1)
9801 {
9802 byte = bfd_get_8 (abfd, buf);
9803 buf++;
9804 if ((byte & 128) == 0)
9805 return buf;
9806 }
9807 }
9808
9809 static void
9810 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
9811 {
9812 switch (lang)
9813 {
9814 case DW_LANG_C89:
9815 case DW_LANG_C99:
9816 case DW_LANG_C:
9817 cu->language = language_c;
9818 break;
9819 case DW_LANG_C_plus_plus:
9820 cu->language = language_cplus;
9821 break;
9822 case DW_LANG_D:
9823 cu->language = language_d;
9824 break;
9825 case DW_LANG_Fortran77:
9826 case DW_LANG_Fortran90:
9827 case DW_LANG_Fortran95:
9828 cu->language = language_fortran;
9829 break;
9830 case DW_LANG_Mips_Assembler:
9831 cu->language = language_asm;
9832 break;
9833 case DW_LANG_Java:
9834 cu->language = language_java;
9835 break;
9836 case DW_LANG_Ada83:
9837 case DW_LANG_Ada95:
9838 cu->language = language_ada;
9839 break;
9840 case DW_LANG_Modula2:
9841 cu->language = language_m2;
9842 break;
9843 case DW_LANG_Pascal83:
9844 cu->language = language_pascal;
9845 break;
9846 case DW_LANG_ObjC:
9847 cu->language = language_objc;
9848 break;
9849 case DW_LANG_Cobol74:
9850 case DW_LANG_Cobol85:
9851 default:
9852 cu->language = language_minimal;
9853 break;
9854 }
9855 cu->language_defn = language_def (cu->language);
9856 }
9857
9858 /* Return the named attribute or NULL if not there. */
9859
9860 static struct attribute *
9861 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
9862 {
9863 unsigned int i;
9864 struct attribute *spec = NULL;
9865
9866 for (i = 0; i < die->num_attrs; ++i)
9867 {
9868 if (die->attrs[i].name == name)
9869 return &die->attrs[i];
9870 if (die->attrs[i].name == DW_AT_specification
9871 || die->attrs[i].name == DW_AT_abstract_origin)
9872 spec = &die->attrs[i];
9873 }
9874
9875 if (spec)
9876 {
9877 die = follow_die_ref (die, spec, &cu);
9878 return dwarf2_attr (die, name, cu);
9879 }
9880
9881 return NULL;
9882 }
9883
9884 /* Return the named attribute or NULL if not there,
9885 but do not follow DW_AT_specification, etc.
9886 This is for use in contexts where we're reading .debug_types dies.
9887 Following DW_AT_specification, DW_AT_abstract_origin will take us
9888 back up the chain, and we want to go down. */
9889
9890 static struct attribute *
9891 dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
9892 struct dwarf2_cu *cu)
9893 {
9894 unsigned int i;
9895
9896 for (i = 0; i < die->num_attrs; ++i)
9897 if (die->attrs[i].name == name)
9898 return &die->attrs[i];
9899
9900 return NULL;
9901 }
9902
9903 /* Return non-zero iff the attribute NAME is defined for the given DIE,
9904 and holds a non-zero value. This function should only be used for
9905 DW_FORM_flag or DW_FORM_flag_present attributes. */
9906
9907 static int
9908 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
9909 {
9910 struct attribute *attr = dwarf2_attr (die, name, cu);
9911
9912 return (attr && DW_UNSND (attr));
9913 }
9914
9915 static int
9916 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
9917 {
9918 /* A DIE is a declaration if it has a DW_AT_declaration attribute
9919 which value is non-zero. However, we have to be careful with
9920 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
9921 (via dwarf2_flag_true_p) follows this attribute. So we may
9922 end up accidently finding a declaration attribute that belongs
9923 to a different DIE referenced by the specification attribute,
9924 even though the given DIE does not have a declaration attribute. */
9925 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
9926 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
9927 }
9928
9929 /* Return the die giving the specification for DIE, if there is
9930 one. *SPEC_CU is the CU containing DIE on input, and the CU
9931 containing the return value on output. If there is no
9932 specification, but there is an abstract origin, that is
9933 returned. */
9934
9935 static struct die_info *
9936 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
9937 {
9938 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
9939 *spec_cu);
9940
9941 if (spec_attr == NULL)
9942 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
9943
9944 if (spec_attr == NULL)
9945 return NULL;
9946 else
9947 return follow_die_ref (die, spec_attr, spec_cu);
9948 }
9949
9950 /* Free the line_header structure *LH, and any arrays and strings it
9951 refers to.
9952 NOTE: This is also used as a "cleanup" function. */
9953
9954 static void
9955 free_line_header (struct line_header *lh)
9956 {
9957 if (lh->standard_opcode_lengths)
9958 xfree (lh->standard_opcode_lengths);
9959
9960 /* Remember that all the lh->file_names[i].name pointers are
9961 pointers into debug_line_buffer, and don't need to be freed. */
9962 if (lh->file_names)
9963 xfree (lh->file_names);
9964
9965 /* Similarly for the include directory names. */
9966 if (lh->include_dirs)
9967 xfree (lh->include_dirs);
9968
9969 xfree (lh);
9970 }
9971
9972 /* Add an entry to LH's include directory table. */
9973
9974 static void
9975 add_include_dir (struct line_header *lh, char *include_dir)
9976 {
9977 /* Grow the array if necessary. */
9978 if (lh->include_dirs_size == 0)
9979 {
9980 lh->include_dirs_size = 1; /* for testing */
9981 lh->include_dirs = xmalloc (lh->include_dirs_size
9982 * sizeof (*lh->include_dirs));
9983 }
9984 else if (lh->num_include_dirs >= lh->include_dirs_size)
9985 {
9986 lh->include_dirs_size *= 2;
9987 lh->include_dirs = xrealloc (lh->include_dirs,
9988 (lh->include_dirs_size
9989 * sizeof (*lh->include_dirs)));
9990 }
9991
9992 lh->include_dirs[lh->num_include_dirs++] = include_dir;
9993 }
9994
9995 /* Add an entry to LH's file name table. */
9996
9997 static void
9998 add_file_name (struct line_header *lh,
9999 char *name,
10000 unsigned int dir_index,
10001 unsigned int mod_time,
10002 unsigned int length)
10003 {
10004 struct file_entry *fe;
10005
10006 /* Grow the array if necessary. */
10007 if (lh->file_names_size == 0)
10008 {
10009 lh->file_names_size = 1; /* for testing */
10010 lh->file_names = xmalloc (lh->file_names_size
10011 * sizeof (*lh->file_names));
10012 }
10013 else if (lh->num_file_names >= lh->file_names_size)
10014 {
10015 lh->file_names_size *= 2;
10016 lh->file_names = xrealloc (lh->file_names,
10017 (lh->file_names_size
10018 * sizeof (*lh->file_names)));
10019 }
10020
10021 fe = &lh->file_names[lh->num_file_names++];
10022 fe->name = name;
10023 fe->dir_index = dir_index;
10024 fe->mod_time = mod_time;
10025 fe->length = length;
10026 fe->included_p = 0;
10027 fe->symtab = NULL;
10028 }
10029
10030 /* Read the statement program header starting at OFFSET in
10031 .debug_line, according to the endianness of ABFD. Return a pointer
10032 to a struct line_header, allocated using xmalloc.
10033
10034 NOTE: the strings in the include directory and file name tables of
10035 the returned object point into debug_line_buffer, and must not be
10036 freed. */
10037
10038 static struct line_header *
10039 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
10040 struct dwarf2_cu *cu)
10041 {
10042 struct cleanup *back_to;
10043 struct line_header *lh;
10044 gdb_byte *line_ptr;
10045 unsigned int bytes_read, offset_size;
10046 int i;
10047 char *cur_dir, *cur_file;
10048
10049 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
10050 if (dwarf2_per_objfile->line.buffer == NULL)
10051 {
10052 complaint (&symfile_complaints, _("missing .debug_line section"));
10053 return 0;
10054 }
10055
10056 /* Make sure that at least there's room for the total_length field.
10057 That could be 12 bytes long, but we're just going to fudge that. */
10058 if (offset + 4 >= dwarf2_per_objfile->line.size)
10059 {
10060 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10061 return 0;
10062 }
10063
10064 lh = xmalloc (sizeof (*lh));
10065 memset (lh, 0, sizeof (*lh));
10066 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10067 (void *) lh);
10068
10069 line_ptr = dwarf2_per_objfile->line.buffer + offset;
10070
10071 /* Read in the header. */
10072 lh->total_length =
10073 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10074 &bytes_read, &offset_size);
10075 line_ptr += bytes_read;
10076 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10077 + dwarf2_per_objfile->line.size))
10078 {
10079 dwarf2_statement_list_fits_in_line_number_section_complaint ();
10080 return 0;
10081 }
10082 lh->statement_program_end = line_ptr + lh->total_length;
10083 lh->version = read_2_bytes (abfd, line_ptr);
10084 line_ptr += 2;
10085 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10086 line_ptr += offset_size;
10087 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10088 line_ptr += 1;
10089 if (lh->version >= 4)
10090 {
10091 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10092 line_ptr += 1;
10093 }
10094 else
10095 lh->maximum_ops_per_instruction = 1;
10096
10097 if (lh->maximum_ops_per_instruction == 0)
10098 {
10099 lh->maximum_ops_per_instruction = 1;
10100 complaint (&symfile_complaints,
10101 _("invalid maximum_ops_per_instruction "
10102 "in `.debug_line' section"));
10103 }
10104
10105 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10106 line_ptr += 1;
10107 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10108 line_ptr += 1;
10109 lh->line_range = read_1_byte (abfd, line_ptr);
10110 line_ptr += 1;
10111 lh->opcode_base = read_1_byte (abfd, line_ptr);
10112 line_ptr += 1;
10113 lh->standard_opcode_lengths
10114 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
10115
10116 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10117 for (i = 1; i < lh->opcode_base; ++i)
10118 {
10119 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10120 line_ptr += 1;
10121 }
10122
10123 /* Read directory table. */
10124 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10125 {
10126 line_ptr += bytes_read;
10127 add_include_dir (lh, cur_dir);
10128 }
10129 line_ptr += bytes_read;
10130
10131 /* Read file name table. */
10132 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
10133 {
10134 unsigned int dir_index, mod_time, length;
10135
10136 line_ptr += bytes_read;
10137 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10138 line_ptr += bytes_read;
10139 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10140 line_ptr += bytes_read;
10141 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10142 line_ptr += bytes_read;
10143
10144 add_file_name (lh, cur_file, dir_index, mod_time, length);
10145 }
10146 line_ptr += bytes_read;
10147 lh->statement_program_start = line_ptr;
10148
10149 if (line_ptr > (dwarf2_per_objfile->line.buffer
10150 + dwarf2_per_objfile->line.size))
10151 complaint (&symfile_complaints,
10152 _("line number info header doesn't "
10153 "fit in `.debug_line' section"));
10154
10155 discard_cleanups (back_to);
10156 return lh;
10157 }
10158
10159 /* This function exists to work around a bug in certain compilers
10160 (particularly GCC 2.95), in which the first line number marker of a
10161 function does not show up until after the prologue, right before
10162 the second line number marker. This function shifts ADDRESS down
10163 to the beginning of the function if necessary, and is called on
10164 addresses passed to record_line. */
10165
10166 static CORE_ADDR
10167 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
10168 {
10169 struct function_range *fn;
10170
10171 /* Find the function_range containing address. */
10172 if (!cu->first_fn)
10173 return address;
10174
10175 if (!cu->cached_fn)
10176 cu->cached_fn = cu->first_fn;
10177
10178 fn = cu->cached_fn;
10179 while (fn)
10180 if (fn->lowpc <= address && fn->highpc > address)
10181 goto found;
10182 else
10183 fn = fn->next;
10184
10185 fn = cu->first_fn;
10186 while (fn && fn != cu->cached_fn)
10187 if (fn->lowpc <= address && fn->highpc > address)
10188 goto found;
10189 else
10190 fn = fn->next;
10191
10192 return address;
10193
10194 found:
10195 if (fn->seen_line)
10196 return address;
10197 if (address != fn->lowpc)
10198 complaint (&symfile_complaints,
10199 _("misplaced first line number at 0x%lx for '%s'"),
10200 (unsigned long) address, fn->name);
10201 fn->seen_line = 1;
10202 return fn->lowpc;
10203 }
10204
10205 /* Subroutine of dwarf_decode_lines to simplify it.
10206 Return the file name of the psymtab for included file FILE_INDEX
10207 in line header LH of PST.
10208 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10209 If space for the result is malloc'd, it will be freed by a cleanup.
10210 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10211
10212 static char *
10213 psymtab_include_file_name (const struct line_header *lh, int file_index,
10214 const struct partial_symtab *pst,
10215 const char *comp_dir)
10216 {
10217 const struct file_entry fe = lh->file_names [file_index];
10218 char *include_name = fe.name;
10219 char *include_name_to_compare = include_name;
10220 char *dir_name = NULL;
10221 const char *pst_filename;
10222 char *copied_name = NULL;
10223 int file_is_pst;
10224
10225 if (fe.dir_index)
10226 dir_name = lh->include_dirs[fe.dir_index - 1];
10227
10228 if (!IS_ABSOLUTE_PATH (include_name)
10229 && (dir_name != NULL || comp_dir != NULL))
10230 {
10231 /* Avoid creating a duplicate psymtab for PST.
10232 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10233 Before we do the comparison, however, we need to account
10234 for DIR_NAME and COMP_DIR.
10235 First prepend dir_name (if non-NULL). If we still don't
10236 have an absolute path prepend comp_dir (if non-NULL).
10237 However, the directory we record in the include-file's
10238 psymtab does not contain COMP_DIR (to match the
10239 corresponding symtab(s)).
10240
10241 Example:
10242
10243 bash$ cd /tmp
10244 bash$ gcc -g ./hello.c
10245 include_name = "hello.c"
10246 dir_name = "."
10247 DW_AT_comp_dir = comp_dir = "/tmp"
10248 DW_AT_name = "./hello.c" */
10249
10250 if (dir_name != NULL)
10251 {
10252 include_name = concat (dir_name, SLASH_STRING,
10253 include_name, (char *)NULL);
10254 include_name_to_compare = include_name;
10255 make_cleanup (xfree, include_name);
10256 }
10257 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10258 {
10259 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10260 include_name, (char *)NULL);
10261 }
10262 }
10263
10264 pst_filename = pst->filename;
10265 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10266 {
10267 copied_name = concat (pst->dirname, SLASH_STRING,
10268 pst_filename, (char *)NULL);
10269 pst_filename = copied_name;
10270 }
10271
10272 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
10273
10274 if (include_name_to_compare != include_name)
10275 xfree (include_name_to_compare);
10276 if (copied_name != NULL)
10277 xfree (copied_name);
10278
10279 if (file_is_pst)
10280 return NULL;
10281 return include_name;
10282 }
10283
10284 /* Decode the Line Number Program (LNP) for the given line_header
10285 structure and CU. The actual information extracted and the type
10286 of structures created from the LNP depends on the value of PST.
10287
10288 1. If PST is NULL, then this procedure uses the data from the program
10289 to create all necessary symbol tables, and their linetables.
10290
10291 2. If PST is not NULL, this procedure reads the program to determine
10292 the list of files included by the unit represented by PST, and
10293 builds all the associated partial symbol tables.
10294
10295 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10296 It is used for relative paths in the line table.
10297 NOTE: When processing partial symtabs (pst != NULL),
10298 comp_dir == pst->dirname.
10299
10300 NOTE: It is important that psymtabs have the same file name (via strcmp)
10301 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10302 symtab we don't use it in the name of the psymtabs we create.
10303 E.g. expand_line_sal requires this when finding psymtabs to expand.
10304 A good testcase for this is mb-inline.exp. */
10305
10306 static void
10307 dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
10308 struct dwarf2_cu *cu, struct partial_symtab *pst)
10309 {
10310 gdb_byte *line_ptr, *extended_end;
10311 gdb_byte *line_end;
10312 unsigned int bytes_read, extended_len;
10313 unsigned char op_code, extended_op, adj_opcode;
10314 CORE_ADDR baseaddr;
10315 struct objfile *objfile = cu->objfile;
10316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10317 const int decode_for_pst_p = (pst != NULL);
10318 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
10319
10320 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10321
10322 line_ptr = lh->statement_program_start;
10323 line_end = lh->statement_program_end;
10324
10325 /* Read the statement sequences until there's nothing left. */
10326 while (line_ptr < line_end)
10327 {
10328 /* state machine registers */
10329 CORE_ADDR address = 0;
10330 unsigned int file = 1;
10331 unsigned int line = 1;
10332 unsigned int column = 0;
10333 int is_stmt = lh->default_is_stmt;
10334 int basic_block = 0;
10335 int end_sequence = 0;
10336 CORE_ADDR addr;
10337 unsigned char op_index = 0;
10338
10339 if (!decode_for_pst_p && lh->num_file_names >= file)
10340 {
10341 /* Start a subfile for the current file of the state machine. */
10342 /* lh->include_dirs and lh->file_names are 0-based, but the
10343 directory and file name numbers in the statement program
10344 are 1-based. */
10345 struct file_entry *fe = &lh->file_names[file - 1];
10346 char *dir = NULL;
10347
10348 if (fe->dir_index)
10349 dir = lh->include_dirs[fe->dir_index - 1];
10350
10351 dwarf2_start_subfile (fe->name, dir, comp_dir);
10352 }
10353
10354 /* Decode the table. */
10355 while (!end_sequence)
10356 {
10357 op_code = read_1_byte (abfd, line_ptr);
10358 line_ptr += 1;
10359 if (line_ptr > line_end)
10360 {
10361 dwarf2_debug_line_missing_end_sequence_complaint ();
10362 break;
10363 }
10364
10365 if (op_code >= lh->opcode_base)
10366 {
10367 /* Special operand. */
10368 adj_opcode = op_code - lh->opcode_base;
10369 address += (((op_index + (adj_opcode / lh->line_range))
10370 / lh->maximum_ops_per_instruction)
10371 * lh->minimum_instruction_length);
10372 op_index = ((op_index + (adj_opcode / lh->line_range))
10373 % lh->maximum_ops_per_instruction);
10374 line += lh->line_base + (adj_opcode % lh->line_range);
10375 if (lh->num_file_names < file || file == 0)
10376 dwarf2_debug_line_missing_file_complaint ();
10377 /* For now we ignore lines not starting on an
10378 instruction boundary. */
10379 else if (op_index == 0)
10380 {
10381 lh->file_names[file - 1].included_p = 1;
10382 if (!decode_for_pst_p && is_stmt)
10383 {
10384 if (last_subfile != current_subfile)
10385 {
10386 addr = gdbarch_addr_bits_remove (gdbarch, address);
10387 if (last_subfile)
10388 record_line (last_subfile, 0, addr);
10389 last_subfile = current_subfile;
10390 }
10391 /* Append row to matrix using current values. */
10392 addr = check_cu_functions (address, cu);
10393 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10394 record_line (current_subfile, line, addr);
10395 }
10396 }
10397 basic_block = 0;
10398 }
10399 else switch (op_code)
10400 {
10401 case DW_LNS_extended_op:
10402 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10403 &bytes_read);
10404 line_ptr += bytes_read;
10405 extended_end = line_ptr + extended_len;
10406 extended_op = read_1_byte (abfd, line_ptr);
10407 line_ptr += 1;
10408 switch (extended_op)
10409 {
10410 case DW_LNE_end_sequence:
10411 end_sequence = 1;
10412 break;
10413 case DW_LNE_set_address:
10414 address = read_address (abfd, line_ptr, cu, &bytes_read);
10415 op_index = 0;
10416 line_ptr += bytes_read;
10417 address += baseaddr;
10418 break;
10419 case DW_LNE_define_file:
10420 {
10421 char *cur_file;
10422 unsigned int dir_index, mod_time, length;
10423
10424 cur_file = read_direct_string (abfd, line_ptr,
10425 &bytes_read);
10426 line_ptr += bytes_read;
10427 dir_index =
10428 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10429 line_ptr += bytes_read;
10430 mod_time =
10431 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10432 line_ptr += bytes_read;
10433 length =
10434 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10435 line_ptr += bytes_read;
10436 add_file_name (lh, cur_file, dir_index, mod_time, length);
10437 }
10438 break;
10439 case DW_LNE_set_discriminator:
10440 /* The discriminator is not interesting to the debugger;
10441 just ignore it. */
10442 line_ptr = extended_end;
10443 break;
10444 default:
10445 complaint (&symfile_complaints,
10446 _("mangled .debug_line section"));
10447 return;
10448 }
10449 /* Make sure that we parsed the extended op correctly. If e.g.
10450 we expected a different address size than the producer used,
10451 we may have read the wrong number of bytes. */
10452 if (line_ptr != extended_end)
10453 {
10454 complaint (&symfile_complaints,
10455 _("mangled .debug_line section"));
10456 return;
10457 }
10458 break;
10459 case DW_LNS_copy:
10460 if (lh->num_file_names < file || file == 0)
10461 dwarf2_debug_line_missing_file_complaint ();
10462 else
10463 {
10464 lh->file_names[file - 1].included_p = 1;
10465 if (!decode_for_pst_p && is_stmt)
10466 {
10467 if (last_subfile != current_subfile)
10468 {
10469 addr = gdbarch_addr_bits_remove (gdbarch, address);
10470 if (last_subfile)
10471 record_line (last_subfile, 0, addr);
10472 last_subfile = current_subfile;
10473 }
10474 addr = check_cu_functions (address, cu);
10475 addr = gdbarch_addr_bits_remove (gdbarch, addr);
10476 record_line (current_subfile, line, addr);
10477 }
10478 }
10479 basic_block = 0;
10480 break;
10481 case DW_LNS_advance_pc:
10482 {
10483 CORE_ADDR adjust
10484 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10485
10486 address += (((op_index + adjust)
10487 / lh->maximum_ops_per_instruction)
10488 * lh->minimum_instruction_length);
10489 op_index = ((op_index + adjust)
10490 % lh->maximum_ops_per_instruction);
10491 line_ptr += bytes_read;
10492 }
10493 break;
10494 case DW_LNS_advance_line:
10495 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
10496 line_ptr += bytes_read;
10497 break;
10498 case DW_LNS_set_file:
10499 {
10500 /* The arrays lh->include_dirs and lh->file_names are
10501 0-based, but the directory and file name numbers in
10502 the statement program are 1-based. */
10503 struct file_entry *fe;
10504 char *dir = NULL;
10505
10506 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10507 line_ptr += bytes_read;
10508 if (lh->num_file_names < file || file == 0)
10509 dwarf2_debug_line_missing_file_complaint ();
10510 else
10511 {
10512 fe = &lh->file_names[file - 1];
10513 if (fe->dir_index)
10514 dir = lh->include_dirs[fe->dir_index - 1];
10515 if (!decode_for_pst_p)
10516 {
10517 last_subfile = current_subfile;
10518 dwarf2_start_subfile (fe->name, dir, comp_dir);
10519 }
10520 }
10521 }
10522 break;
10523 case DW_LNS_set_column:
10524 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10525 line_ptr += bytes_read;
10526 break;
10527 case DW_LNS_negate_stmt:
10528 is_stmt = (!is_stmt);
10529 break;
10530 case DW_LNS_set_basic_block:
10531 basic_block = 1;
10532 break;
10533 /* Add to the address register of the state machine the
10534 address increment value corresponding to special opcode
10535 255. I.e., this value is scaled by the minimum
10536 instruction length since special opcode 255 would have
10537 scaled the the increment. */
10538 case DW_LNS_const_add_pc:
10539 {
10540 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
10541
10542 address += (((op_index + adjust)
10543 / lh->maximum_ops_per_instruction)
10544 * lh->minimum_instruction_length);
10545 op_index = ((op_index + adjust)
10546 % lh->maximum_ops_per_instruction);
10547 }
10548 break;
10549 case DW_LNS_fixed_advance_pc:
10550 address += read_2_bytes (abfd, line_ptr);
10551 op_index = 0;
10552 line_ptr += 2;
10553 break;
10554 default:
10555 {
10556 /* Unknown standard opcode, ignore it. */
10557 int i;
10558
10559 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
10560 {
10561 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10562 line_ptr += bytes_read;
10563 }
10564 }
10565 }
10566 }
10567 if (lh->num_file_names < file || file == 0)
10568 dwarf2_debug_line_missing_file_complaint ();
10569 else
10570 {
10571 lh->file_names[file - 1].included_p = 1;
10572 if (!decode_for_pst_p)
10573 {
10574 addr = gdbarch_addr_bits_remove (gdbarch, address);
10575 record_line (current_subfile, 0, addr);
10576 }
10577 }
10578 }
10579
10580 if (decode_for_pst_p)
10581 {
10582 int file_index;
10583
10584 /* Now that we're done scanning the Line Header Program, we can
10585 create the psymtab of each included file. */
10586 for (file_index = 0; file_index < lh->num_file_names; file_index++)
10587 if (lh->file_names[file_index].included_p == 1)
10588 {
10589 char *include_name =
10590 psymtab_include_file_name (lh, file_index, pst, comp_dir);
10591 if (include_name != NULL)
10592 dwarf2_create_include_psymtab (include_name, pst, objfile);
10593 }
10594 }
10595 else
10596 {
10597 /* Make sure a symtab is created for every file, even files
10598 which contain only variables (i.e. no code with associated
10599 line numbers). */
10600
10601 int i;
10602 struct file_entry *fe;
10603
10604 for (i = 0; i < lh->num_file_names; i++)
10605 {
10606 char *dir = NULL;
10607
10608 fe = &lh->file_names[i];
10609 if (fe->dir_index)
10610 dir = lh->include_dirs[fe->dir_index - 1];
10611 dwarf2_start_subfile (fe->name, dir, comp_dir);
10612
10613 /* Skip the main file; we don't need it, and it must be
10614 allocated last, so that it will show up before the
10615 non-primary symtabs in the objfile's symtab list. */
10616 if (current_subfile == first_subfile)
10617 continue;
10618
10619 if (current_subfile->symtab == NULL)
10620 current_subfile->symtab = allocate_symtab (current_subfile->name,
10621 cu->objfile);
10622 fe->symtab = current_subfile->symtab;
10623 }
10624 }
10625 }
10626
10627 /* Start a subfile for DWARF. FILENAME is the name of the file and
10628 DIRNAME the name of the source directory which contains FILENAME
10629 or NULL if not known. COMP_DIR is the compilation directory for the
10630 linetable's compilation unit or NULL if not known.
10631 This routine tries to keep line numbers from identical absolute and
10632 relative file names in a common subfile.
10633
10634 Using the `list' example from the GDB testsuite, which resides in
10635 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
10636 of /srcdir/list0.c yields the following debugging information for list0.c:
10637
10638 DW_AT_name: /srcdir/list0.c
10639 DW_AT_comp_dir: /compdir
10640 files.files[0].name: list0.h
10641 files.files[0].dir: /srcdir
10642 files.files[1].name: list0.c
10643 files.files[1].dir: /srcdir
10644
10645 The line number information for list0.c has to end up in a single
10646 subfile, so that `break /srcdir/list0.c:1' works as expected.
10647 start_subfile will ensure that this happens provided that we pass the
10648 concatenation of files.files[1].dir and files.files[1].name as the
10649 subfile's name. */
10650
10651 static void
10652 dwarf2_start_subfile (char *filename, const char *dirname,
10653 const char *comp_dir)
10654 {
10655 char *fullname;
10656
10657 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
10658 `start_symtab' will always pass the contents of DW_AT_comp_dir as
10659 second argument to start_subfile. To be consistent, we do the
10660 same here. In order not to lose the line information directory,
10661 we concatenate it to the filename when it makes sense.
10662 Note that the Dwarf3 standard says (speaking of filenames in line
10663 information): ``The directory index is ignored for file names
10664 that represent full path names''. Thus ignoring dirname in the
10665 `else' branch below isn't an issue. */
10666
10667 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
10668 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
10669 else
10670 fullname = filename;
10671
10672 start_subfile (fullname, comp_dir);
10673
10674 if (fullname != filename)
10675 xfree (fullname);
10676 }
10677
10678 static void
10679 var_decode_location (struct attribute *attr, struct symbol *sym,
10680 struct dwarf2_cu *cu)
10681 {
10682 struct objfile *objfile = cu->objfile;
10683 struct comp_unit_head *cu_header = &cu->header;
10684
10685 /* NOTE drow/2003-01-30: There used to be a comment and some special
10686 code here to turn a symbol with DW_AT_external and a
10687 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
10688 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
10689 with some versions of binutils) where shared libraries could have
10690 relocations against symbols in their debug information - the
10691 minimal symbol would have the right address, but the debug info
10692 would not. It's no longer necessary, because we will explicitly
10693 apply relocations when we read in the debug information now. */
10694
10695 /* A DW_AT_location attribute with no contents indicates that a
10696 variable has been optimized away. */
10697 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
10698 {
10699 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10700 return;
10701 }
10702
10703 /* Handle one degenerate form of location expression specially, to
10704 preserve GDB's previous behavior when section offsets are
10705 specified. If this is just a DW_OP_addr then mark this symbol
10706 as LOC_STATIC. */
10707
10708 if (attr_form_is_block (attr)
10709 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
10710 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
10711 {
10712 unsigned int dummy;
10713
10714 SYMBOL_VALUE_ADDRESS (sym) =
10715 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
10716 SYMBOL_CLASS (sym) = LOC_STATIC;
10717 fixup_symbol_section (sym, objfile);
10718 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
10719 SYMBOL_SECTION (sym));
10720 return;
10721 }
10722
10723 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
10724 expression evaluator, and use LOC_COMPUTED only when necessary
10725 (i.e. when the value of a register or memory location is
10726 referenced, or a thread-local block, etc.). Then again, it might
10727 not be worthwhile. I'm assuming that it isn't unless performance
10728 or memory numbers show me otherwise. */
10729
10730 dwarf2_symbol_mark_computed (attr, sym, cu);
10731 SYMBOL_CLASS (sym) = LOC_COMPUTED;
10732 }
10733
10734 /* Given a pointer to a DWARF information entry, figure out if we need
10735 to make a symbol table entry for it, and if so, create a new entry
10736 and return a pointer to it.
10737 If TYPE is NULL, determine symbol type from the die, otherwise
10738 used the passed type.
10739 If SPACE is not NULL, use it to hold the new symbol. If it is
10740 NULL, allocate a new symbol on the objfile's obstack. */
10741
10742 static struct symbol *
10743 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
10744 struct symbol *space)
10745 {
10746 struct objfile *objfile = cu->objfile;
10747 struct symbol *sym = NULL;
10748 char *name;
10749 struct attribute *attr = NULL;
10750 struct attribute *attr2 = NULL;
10751 CORE_ADDR baseaddr;
10752 struct pending **list_to_add = NULL;
10753
10754 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
10755
10756 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10757
10758 name = dwarf2_name (die, cu);
10759 if (name)
10760 {
10761 const char *linkagename;
10762 int suppress_add = 0;
10763
10764 if (space)
10765 sym = space;
10766 else
10767 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
10768 OBJSTAT (objfile, n_syms++);
10769
10770 /* Cache this symbol's name and the name's demangled form (if any). */
10771 SYMBOL_SET_LANGUAGE (sym, cu->language);
10772 linkagename = dwarf2_physname (name, die, cu);
10773 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
10774
10775 /* Fortran does not have mangling standard and the mangling does differ
10776 between gfortran, iFort etc. */
10777 if (cu->language == language_fortran
10778 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
10779 symbol_set_demangled_name (&(sym->ginfo),
10780 (char *) dwarf2_full_name (name, die, cu),
10781 NULL);
10782
10783 /* Default assumptions.
10784 Use the passed type or decode it from the die. */
10785 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
10786 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
10787 if (type != NULL)
10788 SYMBOL_TYPE (sym) = type;
10789 else
10790 SYMBOL_TYPE (sym) = die_type (die, cu);
10791 attr = dwarf2_attr (die,
10792 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
10793 cu);
10794 if (attr)
10795 {
10796 SYMBOL_LINE (sym) = DW_UNSND (attr);
10797 }
10798
10799 attr = dwarf2_attr (die,
10800 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
10801 cu);
10802 if (attr)
10803 {
10804 int file_index = DW_UNSND (attr);
10805
10806 if (cu->line_header == NULL
10807 || file_index > cu->line_header->num_file_names)
10808 complaint (&symfile_complaints,
10809 _("file index out of range"));
10810 else if (file_index > 0)
10811 {
10812 struct file_entry *fe;
10813
10814 fe = &cu->line_header->file_names[file_index - 1];
10815 SYMBOL_SYMTAB (sym) = fe->symtab;
10816 }
10817 }
10818
10819 switch (die->tag)
10820 {
10821 case DW_TAG_label:
10822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10823 if (attr)
10824 {
10825 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
10826 }
10827 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
10828 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
10829 SYMBOL_CLASS (sym) = LOC_LABEL;
10830 add_symbol_to_list (sym, cu->list_in_scope);
10831 break;
10832 case DW_TAG_subprogram:
10833 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10834 finish_block. */
10835 SYMBOL_CLASS (sym) = LOC_BLOCK;
10836 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10837 if ((attr2 && (DW_UNSND (attr2) != 0))
10838 || cu->language == language_ada)
10839 {
10840 /* Subprograms marked external are stored as a global symbol.
10841 Ada subprograms, whether marked external or not, are always
10842 stored as a global symbol, because we want to be able to
10843 access them globally. For instance, we want to be able
10844 to break on a nested subprogram without having to
10845 specify the context. */
10846 list_to_add = &global_symbols;
10847 }
10848 else
10849 {
10850 list_to_add = cu->list_in_scope;
10851 }
10852 break;
10853 case DW_TAG_inlined_subroutine:
10854 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
10855 finish_block. */
10856 SYMBOL_CLASS (sym) = LOC_BLOCK;
10857 SYMBOL_INLINED (sym) = 1;
10858 /* Do not add the symbol to any lists. It will be found via
10859 BLOCK_FUNCTION from the blockvector. */
10860 break;
10861 case DW_TAG_template_value_param:
10862 suppress_add = 1;
10863 /* Fall through. */
10864 case DW_TAG_constant:
10865 case DW_TAG_variable:
10866 case DW_TAG_member:
10867 /* Compilation with minimal debug info may result in variables
10868 with missing type entries. Change the misleading `void' type
10869 to something sensible. */
10870 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
10871 SYMBOL_TYPE (sym)
10872 = objfile_type (objfile)->nodebug_data_symbol;
10873
10874 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10875 /* In the case of DW_TAG_member, we should only be called for
10876 static const members. */
10877 if (die->tag == DW_TAG_member)
10878 {
10879 /* dwarf2_add_field uses die_is_declaration,
10880 so we do the same. */
10881 gdb_assert (die_is_declaration (die, cu));
10882 gdb_assert (attr);
10883 }
10884 if (attr)
10885 {
10886 dwarf2_const_value (attr, sym, cu);
10887 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10888 if (!suppress_add)
10889 {
10890 if (attr2 && (DW_UNSND (attr2) != 0))
10891 list_to_add = &global_symbols;
10892 else
10893 list_to_add = cu->list_in_scope;
10894 }
10895 break;
10896 }
10897 attr = dwarf2_attr (die, DW_AT_location, cu);
10898 if (attr)
10899 {
10900 var_decode_location (attr, sym, cu);
10901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10902 if (SYMBOL_CLASS (sym) == LOC_STATIC
10903 && SYMBOL_VALUE_ADDRESS (sym) == 0
10904 && !dwarf2_per_objfile->has_section_at_zero)
10905 {
10906 /* When a static variable is eliminated by the linker,
10907 the corresponding debug information is not stripped
10908 out, but the variable address is set to null;
10909 do not add such variables into symbol table. */
10910 }
10911 else if (attr2 && (DW_UNSND (attr2) != 0))
10912 {
10913 /* Workaround gfortran PR debug/40040 - it uses
10914 DW_AT_location for variables in -fPIC libraries which may
10915 get overriden by other libraries/executable and get
10916 a different address. Resolve it by the minimal symbol
10917 which may come from inferior's executable using copy
10918 relocation. Make this workaround only for gfortran as for
10919 other compilers GDB cannot guess the minimal symbol
10920 Fortran mangling kind. */
10921 if (cu->language == language_fortran && die->parent
10922 && die->parent->tag == DW_TAG_module
10923 && cu->producer
10924 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
10925 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10926
10927 /* A variable with DW_AT_external is never static,
10928 but it may be block-scoped. */
10929 list_to_add = (cu->list_in_scope == &file_symbols
10930 ? &global_symbols : cu->list_in_scope);
10931 }
10932 else
10933 list_to_add = cu->list_in_scope;
10934 }
10935 else
10936 {
10937 /* We do not know the address of this symbol.
10938 If it is an external symbol and we have type information
10939 for it, enter the symbol as a LOC_UNRESOLVED symbol.
10940 The address of the variable will then be determined from
10941 the minimal symbol table whenever the variable is
10942 referenced. */
10943 attr2 = dwarf2_attr (die, DW_AT_external, cu);
10944 if (attr2 && (DW_UNSND (attr2) != 0)
10945 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
10946 {
10947 /* A variable with DW_AT_external is never static, but it
10948 may be block-scoped. */
10949 list_to_add = (cu->list_in_scope == &file_symbols
10950 ? &global_symbols : cu->list_in_scope);
10951
10952 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
10953 }
10954 else if (!die_is_declaration (die, cu))
10955 {
10956 /* Use the default LOC_OPTIMIZED_OUT class. */
10957 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
10958 if (!suppress_add)
10959 list_to_add = cu->list_in_scope;
10960 }
10961 }
10962 break;
10963 case DW_TAG_formal_parameter:
10964 /* If we are inside a function, mark this as an argument. If
10965 not, we might be looking at an argument to an inlined function
10966 when we do not have enough information to show inlined frames;
10967 pretend it's a local variable in that case so that the user can
10968 still see it. */
10969 if (context_stack_depth > 0
10970 && context_stack[context_stack_depth - 1].name != NULL)
10971 SYMBOL_IS_ARGUMENT (sym) = 1;
10972 attr = dwarf2_attr (die, DW_AT_location, cu);
10973 if (attr)
10974 {
10975 var_decode_location (attr, sym, cu);
10976 }
10977 attr = dwarf2_attr (die, DW_AT_const_value, cu);
10978 if (attr)
10979 {
10980 dwarf2_const_value (attr, sym, cu);
10981 }
10982 attr = dwarf2_attr (die, DW_AT_variable_parameter, cu);
10983 if (attr && DW_UNSND (attr))
10984 {
10985 struct type *ref_type;
10986
10987 ref_type = lookup_reference_type (SYMBOL_TYPE (sym));
10988 SYMBOL_TYPE (sym) = ref_type;
10989 }
10990
10991 list_to_add = cu->list_in_scope;
10992 break;
10993 case DW_TAG_unspecified_parameters:
10994 /* From varargs functions; gdb doesn't seem to have any
10995 interest in this information, so just ignore it for now.
10996 (FIXME?) */
10997 break;
10998 case DW_TAG_template_type_param:
10999 suppress_add = 1;
11000 /* Fall through. */
11001 case DW_TAG_class_type:
11002 case DW_TAG_interface_type:
11003 case DW_TAG_structure_type:
11004 case DW_TAG_union_type:
11005 case DW_TAG_set_type:
11006 case DW_TAG_enumeration_type:
11007 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11008 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
11009
11010 {
11011 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
11012 really ever be static objects: otherwise, if you try
11013 to, say, break of a class's method and you're in a file
11014 which doesn't mention that class, it won't work unless
11015 the check for all static symbols in lookup_symbol_aux
11016 saves you. See the OtherFileClass tests in
11017 gdb.c++/namespace.exp. */
11018
11019 if (!suppress_add)
11020 {
11021 list_to_add = (cu->list_in_scope == &file_symbols
11022 && (cu->language == language_cplus
11023 || cu->language == language_java)
11024 ? &global_symbols : cu->list_in_scope);
11025
11026 /* The semantics of C++ state that "struct foo {
11027 ... }" also defines a typedef for "foo". A Java
11028 class declaration also defines a typedef for the
11029 class. */
11030 if (cu->language == language_cplus
11031 || cu->language == language_java
11032 || cu->language == language_ada)
11033 {
11034 /* The symbol's name is already allocated along
11035 with this objfile, so we don't need to
11036 duplicate it for the type. */
11037 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11038 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11039 }
11040 }
11041 }
11042 break;
11043 case DW_TAG_typedef:
11044 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11045 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11046 list_to_add = cu->list_in_scope;
11047 break;
11048 case DW_TAG_base_type:
11049 case DW_TAG_subrange_type:
11050 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
11052 list_to_add = cu->list_in_scope;
11053 break;
11054 case DW_TAG_enumerator:
11055 attr = dwarf2_attr (die, DW_AT_const_value, cu);
11056 if (attr)
11057 {
11058 dwarf2_const_value (attr, sym, cu);
11059 }
11060 {
11061 /* NOTE: carlton/2003-11-10: See comment above in the
11062 DW_TAG_class_type, etc. block. */
11063
11064 list_to_add = (cu->list_in_scope == &file_symbols
11065 && (cu->language == language_cplus
11066 || cu->language == language_java)
11067 ? &global_symbols : cu->list_in_scope);
11068 }
11069 break;
11070 case DW_TAG_namespace:
11071 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11072 list_to_add = &global_symbols;
11073 break;
11074 default:
11075 /* Not a tag we recognize. Hopefully we aren't processing
11076 trash data, but since we must specifically ignore things
11077 we don't recognize, there is nothing else we should do at
11078 this point. */
11079 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
11080 dwarf_tag_name (die->tag));
11081 break;
11082 }
11083
11084 if (suppress_add)
11085 {
11086 sym->hash_next = objfile->template_symbols;
11087 objfile->template_symbols = sym;
11088 list_to_add = NULL;
11089 }
11090
11091 if (list_to_add != NULL)
11092 add_symbol_to_list (sym, list_to_add);
11093
11094 /* For the benefit of old versions of GCC, check for anonymous
11095 namespaces based on the demangled name. */
11096 if (!processing_has_namespace_info
11097 && cu->language == language_cplus)
11098 cp_scan_for_anonymous_namespaces (sym);
11099 }
11100 return (sym);
11101 }
11102
11103 /* A wrapper for new_symbol_full that always allocates a new symbol. */
11104
11105 static struct symbol *
11106 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11107 {
11108 return new_symbol_full (die, type, cu, NULL);
11109 }
11110
11111 /* Given an attr with a DW_FORM_dataN value in host byte order,
11112 zero-extend it as appropriate for the symbol's type. The DWARF
11113 standard (v4) is not entirely clear about the meaning of using
11114 DW_FORM_dataN for a constant with a signed type, where the type is
11115 wider than the data. The conclusion of a discussion on the DWARF
11116 list was that this is unspecified. We choose to always zero-extend
11117 because that is the interpretation long in use by GCC. */
11118
11119 static gdb_byte *
11120 dwarf2_const_value_data (struct attribute *attr, struct type *type,
11121 const char *name, struct obstack *obstack,
11122 struct dwarf2_cu *cu, long *value, int bits)
11123 {
11124 struct objfile *objfile = cu->objfile;
11125 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11126 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
11127 LONGEST l = DW_UNSND (attr);
11128
11129 if (bits < sizeof (*value) * 8)
11130 {
11131 l &= ((LONGEST) 1 << bits) - 1;
11132 *value = l;
11133 }
11134 else if (bits == sizeof (*value) * 8)
11135 *value = l;
11136 else
11137 {
11138 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11139 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11140 return bytes;
11141 }
11142
11143 return NULL;
11144 }
11145
11146 /* Read a constant value from an attribute. Either set *VALUE, or if
11147 the value does not fit in *VALUE, set *BYTES - either already
11148 allocated on the objfile obstack, or newly allocated on OBSTACK,
11149 or, set *BATON, if we translated the constant to a location
11150 expression. */
11151
11152 static void
11153 dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11154 const char *name, struct obstack *obstack,
11155 struct dwarf2_cu *cu,
11156 long *value, gdb_byte **bytes,
11157 struct dwarf2_locexpr_baton **baton)
11158 {
11159 struct objfile *objfile = cu->objfile;
11160 struct comp_unit_head *cu_header = &cu->header;
11161 struct dwarf_block *blk;
11162 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11163 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11164
11165 *value = 0;
11166 *bytes = NULL;
11167 *baton = NULL;
11168
11169 switch (attr->form)
11170 {
11171 case DW_FORM_addr:
11172 {
11173 gdb_byte *data;
11174
11175 if (TYPE_LENGTH (type) != cu_header->addr_size)
11176 dwarf2_const_value_length_mismatch_complaint (name,
11177 cu_header->addr_size,
11178 TYPE_LENGTH (type));
11179 /* Symbols of this form are reasonably rare, so we just
11180 piggyback on the existing location code rather than writing
11181 a new implementation of symbol_computed_ops. */
11182 *baton = obstack_alloc (&objfile->objfile_obstack,
11183 sizeof (struct dwarf2_locexpr_baton));
11184 (*baton)->per_cu = cu->per_cu;
11185 gdb_assert ((*baton)->per_cu);
11186
11187 (*baton)->size = 2 + cu_header->addr_size;
11188 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11189 (*baton)->data = data;
11190
11191 data[0] = DW_OP_addr;
11192 store_unsigned_integer (&data[1], cu_header->addr_size,
11193 byte_order, DW_ADDR (attr));
11194 data[cu_header->addr_size + 1] = DW_OP_stack_value;
11195 }
11196 break;
11197 case DW_FORM_string:
11198 case DW_FORM_strp:
11199 /* DW_STRING is already allocated on the objfile obstack, point
11200 directly to it. */
11201 *bytes = (gdb_byte *) DW_STRING (attr);
11202 break;
11203 case DW_FORM_block1:
11204 case DW_FORM_block2:
11205 case DW_FORM_block4:
11206 case DW_FORM_block:
11207 case DW_FORM_exprloc:
11208 blk = DW_BLOCK (attr);
11209 if (TYPE_LENGTH (type) != blk->size)
11210 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11211 TYPE_LENGTH (type));
11212 *bytes = blk->data;
11213 break;
11214
11215 /* The DW_AT_const_value attributes are supposed to carry the
11216 symbol's value "represented as it would be on the target
11217 architecture." By the time we get here, it's already been
11218 converted to host endianness, so we just need to sign- or
11219 zero-extend it as appropriate. */
11220 case DW_FORM_data1:
11221 *bytes = dwarf2_const_value_data (attr, type, name,
11222 obstack, cu, value, 8);
11223 break;
11224 case DW_FORM_data2:
11225 *bytes = dwarf2_const_value_data (attr, type, name,
11226 obstack, cu, value, 16);
11227 break;
11228 case DW_FORM_data4:
11229 *bytes = dwarf2_const_value_data (attr, type, name,
11230 obstack, cu, value, 32);
11231 break;
11232 case DW_FORM_data8:
11233 *bytes = dwarf2_const_value_data (attr, type, name,
11234 obstack, cu, value, 64);
11235 break;
11236
11237 case DW_FORM_sdata:
11238 *value = DW_SND (attr);
11239 break;
11240
11241 case DW_FORM_udata:
11242 *value = DW_UNSND (attr);
11243 break;
11244
11245 default:
11246 complaint (&symfile_complaints,
11247 _("unsupported const value attribute form: '%s'"),
11248 dwarf_form_name (attr->form));
11249 *value = 0;
11250 break;
11251 }
11252 }
11253
11254
11255 /* Copy constant value from an attribute to a symbol. */
11256
11257 static void
11258 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11259 struct dwarf2_cu *cu)
11260 {
11261 struct objfile *objfile = cu->objfile;
11262 struct comp_unit_head *cu_header = &cu->header;
11263 long value;
11264 gdb_byte *bytes;
11265 struct dwarf2_locexpr_baton *baton;
11266
11267 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11268 SYMBOL_PRINT_NAME (sym),
11269 &objfile->objfile_obstack, cu,
11270 &value, &bytes, &baton);
11271
11272 if (baton != NULL)
11273 {
11274 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11275 SYMBOL_LOCATION_BATON (sym) = baton;
11276 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11277 }
11278 else if (bytes != NULL)
11279 {
11280 SYMBOL_VALUE_BYTES (sym) = bytes;
11281 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11282 }
11283 else
11284 {
11285 SYMBOL_VALUE (sym) = value;
11286 SYMBOL_CLASS (sym) = LOC_CONST;
11287 }
11288 }
11289
11290 /* Return the type of the die in question using its DW_AT_type attribute. */
11291
11292 static struct type *
11293 die_type (struct die_info *die, struct dwarf2_cu *cu)
11294 {
11295 struct attribute *type_attr;
11296
11297 type_attr = dwarf2_attr (die, DW_AT_type, cu);
11298 if (!type_attr)
11299 {
11300 /* A missing DW_AT_type represents a void type. */
11301 return objfile_type (cu->objfile)->builtin_void;
11302 }
11303
11304 return lookup_die_type (die, type_attr, cu);
11305 }
11306
11307 /* True iff CU's producer generates GNAT Ada auxiliary information
11308 that allows to find parallel types through that information instead
11309 of having to do expensive parallel lookups by type name. */
11310
11311 static int
11312 need_gnat_info (struct dwarf2_cu *cu)
11313 {
11314 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11315 of GNAT produces this auxiliary information, without any indication
11316 that it is produced. Part of enhancing the FSF version of GNAT
11317 to produce that information will be to put in place an indicator
11318 that we can use in order to determine whether the descriptive type
11319 info is available or not. One suggestion that has been made is
11320 to use a new attribute, attached to the CU die. For now, assume
11321 that the descriptive type info is not available. */
11322 return 0;
11323 }
11324
11325 /* Return the auxiliary type of the die in question using its
11326 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11327 attribute is not present. */
11328
11329 static struct type *
11330 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11331 {
11332 struct attribute *type_attr;
11333
11334 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11335 if (!type_attr)
11336 return NULL;
11337
11338 return lookup_die_type (die, type_attr, cu);
11339 }
11340
11341 /* If DIE has a descriptive_type attribute, then set the TYPE's
11342 descriptive type accordingly. */
11343
11344 static void
11345 set_descriptive_type (struct type *type, struct die_info *die,
11346 struct dwarf2_cu *cu)
11347 {
11348 struct type *descriptive_type = die_descriptive_type (die, cu);
11349
11350 if (descriptive_type)
11351 {
11352 ALLOCATE_GNAT_AUX_TYPE (type);
11353 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11354 }
11355 }
11356
11357 /* Return the containing type of the die in question using its
11358 DW_AT_containing_type attribute. */
11359
11360 static struct type *
11361 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
11362 {
11363 struct attribute *type_attr;
11364
11365 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
11366 if (!type_attr)
11367 error (_("Dwarf Error: Problem turning containing type into gdb type "
11368 "[in module %s]"), cu->objfile->name);
11369
11370 return lookup_die_type (die, type_attr, cu);
11371 }
11372
11373 /* Look up the type of DIE in CU using its type attribute ATTR.
11374 If there is no type substitute an error marker. */
11375
11376 static struct type *
11377 lookup_die_type (struct die_info *die, struct attribute *attr,
11378 struct dwarf2_cu *cu)
11379 {
11380 struct type *this_type;
11381
11382 /* First see if we have it cached. */
11383
11384 if (is_ref_attr (attr))
11385 {
11386 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11387
11388 this_type = get_die_type_at_offset (offset, cu->per_cu);
11389 }
11390 else if (attr->form == DW_FORM_sig8)
11391 {
11392 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11393 struct dwarf2_cu *sig_cu;
11394 unsigned int offset;
11395
11396 /* sig_type will be NULL if the signatured type is missing from
11397 the debug info. */
11398 if (sig_type == NULL)
11399 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11400 "at 0x%x [in module %s]"),
11401 die->offset, cu->objfile->name);
11402
11403 gdb_assert (sig_type->per_cu.from_debug_types);
11404 offset = sig_type->offset + sig_type->type_offset;
11405 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11406 }
11407 else
11408 {
11409 dump_die_for_error (die);
11410 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11411 dwarf_attr_name (attr->name), cu->objfile->name);
11412 }
11413
11414 /* If not cached we need to read it in. */
11415
11416 if (this_type == NULL)
11417 {
11418 struct die_info *type_die;
11419 struct dwarf2_cu *type_cu = cu;
11420
11421 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11422 /* If the type is cached, we should have found it above. */
11423 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11424 this_type = read_type_die_1 (type_die, type_cu);
11425 }
11426
11427 /* If we still don't have a type use an error marker. */
11428
11429 if (this_type == NULL)
11430 {
11431 char *message, *saved;
11432
11433 /* read_type_die already issued a complaint. */
11434 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11435 cu->objfile->name,
11436 cu->header.offset,
11437 die->offset);
11438 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11439 message, strlen (message));
11440 xfree (message);
11441
11442 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
11443 }
11444
11445 return this_type;
11446 }
11447
11448 /* Return the type in DIE, CU.
11449 Returns NULL for invalid types.
11450
11451 This first does a lookup in the appropriate type_hash table,
11452 and only reads the die in if necessary.
11453
11454 NOTE: This can be called when reading in partial or full symbols. */
11455
11456 static struct type *
11457 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
11458 {
11459 struct type *this_type;
11460
11461 this_type = get_die_type (die, cu);
11462 if (this_type)
11463 return this_type;
11464
11465 return read_type_die_1 (die, cu);
11466 }
11467
11468 /* Read the type in DIE, CU.
11469 Returns NULL for invalid types. */
11470
11471 static struct type *
11472 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
11473 {
11474 struct type *this_type = NULL;
11475
11476 switch (die->tag)
11477 {
11478 case DW_TAG_class_type:
11479 case DW_TAG_interface_type:
11480 case DW_TAG_structure_type:
11481 case DW_TAG_union_type:
11482 this_type = read_structure_type (die, cu);
11483 break;
11484 case DW_TAG_enumeration_type:
11485 this_type = read_enumeration_type (die, cu);
11486 break;
11487 case DW_TAG_subprogram:
11488 case DW_TAG_subroutine_type:
11489 case DW_TAG_inlined_subroutine:
11490 this_type = read_subroutine_type (die, cu);
11491 break;
11492 case DW_TAG_array_type:
11493 this_type = read_array_type (die, cu);
11494 break;
11495 case DW_TAG_set_type:
11496 this_type = read_set_type (die, cu);
11497 break;
11498 case DW_TAG_pointer_type:
11499 this_type = read_tag_pointer_type (die, cu);
11500 break;
11501 case DW_TAG_ptr_to_member_type:
11502 this_type = read_tag_ptr_to_member_type (die, cu);
11503 break;
11504 case DW_TAG_reference_type:
11505 this_type = read_tag_reference_type (die, cu);
11506 break;
11507 case DW_TAG_const_type:
11508 this_type = read_tag_const_type (die, cu);
11509 break;
11510 case DW_TAG_volatile_type:
11511 this_type = read_tag_volatile_type (die, cu);
11512 break;
11513 case DW_TAG_string_type:
11514 this_type = read_tag_string_type (die, cu);
11515 break;
11516 case DW_TAG_typedef:
11517 this_type = read_typedef (die, cu);
11518 break;
11519 case DW_TAG_subrange_type:
11520 this_type = read_subrange_type (die, cu);
11521 break;
11522 case DW_TAG_base_type:
11523 this_type = read_base_type (die, cu);
11524 break;
11525 case DW_TAG_unspecified_type:
11526 this_type = read_unspecified_type (die, cu);
11527 break;
11528 case DW_TAG_namespace:
11529 this_type = read_namespace_type (die, cu);
11530 break;
11531 case DW_TAG_module:
11532 this_type = read_module_type (die, cu);
11533 break;
11534 default:
11535 complaint (&symfile_complaints,
11536 _("unexpected tag in read_type_die: '%s'"),
11537 dwarf_tag_name (die->tag));
11538 break;
11539 }
11540
11541 return this_type;
11542 }
11543
11544 /* See if we can figure out if the class lives in a namespace. We do
11545 this by looking for a member function; its demangled name will
11546 contain namespace info, if there is any.
11547 Return the computed name or NULL.
11548 Space for the result is allocated on the objfile's obstack.
11549 This is the full-die version of guess_partial_die_structure_name.
11550 In this case we know DIE has no useful parent. */
11551
11552 static char *
11553 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
11554 {
11555 struct die_info *spec_die;
11556 struct dwarf2_cu *spec_cu;
11557 struct die_info *child;
11558
11559 spec_cu = cu;
11560 spec_die = die_specification (die, &spec_cu);
11561 if (spec_die != NULL)
11562 {
11563 die = spec_die;
11564 cu = spec_cu;
11565 }
11566
11567 for (child = die->child;
11568 child != NULL;
11569 child = child->sibling)
11570 {
11571 if (child->tag == DW_TAG_subprogram)
11572 {
11573 struct attribute *attr;
11574
11575 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
11576 if (attr == NULL)
11577 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
11578 if (attr != NULL)
11579 {
11580 char *actual_name
11581 = language_class_name_from_physname (cu->language_defn,
11582 DW_STRING (attr));
11583 char *name = NULL;
11584
11585 if (actual_name != NULL)
11586 {
11587 char *die_name = dwarf2_name (die, cu);
11588
11589 if (die_name != NULL
11590 && strcmp (die_name, actual_name) != 0)
11591 {
11592 /* Strip off the class name from the full name.
11593 We want the prefix. */
11594 int die_name_len = strlen (die_name);
11595 int actual_name_len = strlen (actual_name);
11596
11597 /* Test for '::' as a sanity check. */
11598 if (actual_name_len > die_name_len + 2
11599 && actual_name[actual_name_len
11600 - die_name_len - 1] == ':')
11601 name =
11602 obsavestring (actual_name,
11603 actual_name_len - die_name_len - 2,
11604 &cu->objfile->objfile_obstack);
11605 }
11606 }
11607 xfree (actual_name);
11608 return name;
11609 }
11610 }
11611 }
11612
11613 return NULL;
11614 }
11615
11616 /* Return the name of the namespace/class that DIE is defined within,
11617 or "" if we can't tell. The caller should not xfree the result.
11618
11619 For example, if we're within the method foo() in the following
11620 code:
11621
11622 namespace N {
11623 class C {
11624 void foo () {
11625 }
11626 };
11627 }
11628
11629 then determine_prefix on foo's die will return "N::C". */
11630
11631 static char *
11632 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
11633 {
11634 struct die_info *parent, *spec_die;
11635 struct dwarf2_cu *spec_cu;
11636 struct type *parent_type;
11637
11638 if (cu->language != language_cplus && cu->language != language_java
11639 && cu->language != language_fortran)
11640 return "";
11641
11642 /* We have to be careful in the presence of DW_AT_specification.
11643 For example, with GCC 3.4, given the code
11644
11645 namespace N {
11646 void foo() {
11647 // Definition of N::foo.
11648 }
11649 }
11650
11651 then we'll have a tree of DIEs like this:
11652
11653 1: DW_TAG_compile_unit
11654 2: DW_TAG_namespace // N
11655 3: DW_TAG_subprogram // declaration of N::foo
11656 4: DW_TAG_subprogram // definition of N::foo
11657 DW_AT_specification // refers to die #3
11658
11659 Thus, when processing die #4, we have to pretend that we're in
11660 the context of its DW_AT_specification, namely the contex of die
11661 #3. */
11662 spec_cu = cu;
11663 spec_die = die_specification (die, &spec_cu);
11664 if (spec_die == NULL)
11665 parent = die->parent;
11666 else
11667 {
11668 parent = spec_die->parent;
11669 cu = spec_cu;
11670 }
11671
11672 if (parent == NULL)
11673 return "";
11674 else if (parent->building_fullname)
11675 {
11676 const char *name;
11677 const char *parent_name;
11678
11679 /* It has been seen on RealView 2.2 built binaries,
11680 DW_TAG_template_type_param types actually _defined_ as
11681 children of the parent class:
11682
11683 enum E {};
11684 template class <class Enum> Class{};
11685 Class<enum E> class_e;
11686
11687 1: DW_TAG_class_type (Class)
11688 2: DW_TAG_enumeration_type (E)
11689 3: DW_TAG_enumerator (enum1:0)
11690 3: DW_TAG_enumerator (enum2:1)
11691 ...
11692 2: DW_TAG_template_type_param
11693 DW_AT_type DW_FORM_ref_udata (E)
11694
11695 Besides being broken debug info, it can put GDB into an
11696 infinite loop. Consider:
11697
11698 When we're building the full name for Class<E>, we'll start
11699 at Class, and go look over its template type parameters,
11700 finding E. We'll then try to build the full name of E, and
11701 reach here. We're now trying to build the full name of E,
11702 and look over the parent DIE for containing scope. In the
11703 broken case, if we followed the parent DIE of E, we'd again
11704 find Class, and once again go look at its template type
11705 arguments, etc., etc. Simply don't consider such parent die
11706 as source-level parent of this die (it can't be, the language
11707 doesn't allow it), and break the loop here. */
11708 name = dwarf2_name (die, cu);
11709 parent_name = dwarf2_name (parent, cu);
11710 complaint (&symfile_complaints,
11711 _("template param type '%s' defined within parent '%s'"),
11712 name ? name : "<unknown>",
11713 parent_name ? parent_name : "<unknown>");
11714 return "";
11715 }
11716 else
11717 switch (parent->tag)
11718 {
11719 case DW_TAG_namespace:
11720 parent_type = read_type_die (parent, cu);
11721 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
11722 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
11723 Work around this problem here. */
11724 if (cu->language == language_cplus
11725 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
11726 return "";
11727 /* We give a name to even anonymous namespaces. */
11728 return TYPE_TAG_NAME (parent_type);
11729 case DW_TAG_class_type:
11730 case DW_TAG_interface_type:
11731 case DW_TAG_structure_type:
11732 case DW_TAG_union_type:
11733 case DW_TAG_module:
11734 parent_type = read_type_die (parent, cu);
11735 if (TYPE_TAG_NAME (parent_type) != NULL)
11736 return TYPE_TAG_NAME (parent_type);
11737 else
11738 /* An anonymous structure is only allowed non-static data
11739 members; no typedefs, no member functions, et cetera.
11740 So it does not need a prefix. */
11741 return "";
11742 case DW_TAG_compile_unit:
11743 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
11744 if (cu->language == language_cplus
11745 && dwarf2_per_objfile->types.asection != NULL
11746 && die->child != NULL
11747 && (die->tag == DW_TAG_class_type
11748 || die->tag == DW_TAG_structure_type
11749 || die->tag == DW_TAG_union_type))
11750 {
11751 char *name = guess_full_die_structure_name (die, cu);
11752 if (name != NULL)
11753 return name;
11754 }
11755 return "";
11756 default:
11757 return determine_prefix (parent, cu);
11758 }
11759 }
11760
11761 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
11762 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
11763 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
11764 an obconcat, otherwise allocate storage for the result. The CU argument is
11765 used to determine the language and hence, the appropriate separator. */
11766
11767 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
11768
11769 static char *
11770 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
11771 int physname, struct dwarf2_cu *cu)
11772 {
11773 const char *lead = "";
11774 const char *sep;
11775
11776 if (suffix == NULL || suffix[0] == '\0'
11777 || prefix == NULL || prefix[0] == '\0')
11778 sep = "";
11779 else if (cu->language == language_java)
11780 sep = ".";
11781 else if (cu->language == language_fortran && physname)
11782 {
11783 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
11784 DW_AT_MIPS_linkage_name is preferred and used instead. */
11785
11786 lead = "__";
11787 sep = "_MOD_";
11788 }
11789 else
11790 sep = "::";
11791
11792 if (prefix == NULL)
11793 prefix = "";
11794 if (suffix == NULL)
11795 suffix = "";
11796
11797 if (obs == NULL)
11798 {
11799 char *retval
11800 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
11801
11802 strcpy (retval, lead);
11803 strcat (retval, prefix);
11804 strcat (retval, sep);
11805 strcat (retval, suffix);
11806 return retval;
11807 }
11808 else
11809 {
11810 /* We have an obstack. */
11811 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
11812 }
11813 }
11814
11815 /* Return sibling of die, NULL if no sibling. */
11816
11817 static struct die_info *
11818 sibling_die (struct die_info *die)
11819 {
11820 return die->sibling;
11821 }
11822
11823 /* Get name of a die, return NULL if not found. */
11824
11825 static char *
11826 dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
11827 struct obstack *obstack)
11828 {
11829 if (name && cu->language == language_cplus)
11830 {
11831 char *canon_name = cp_canonicalize_string (name);
11832
11833 if (canon_name != NULL)
11834 {
11835 if (strcmp (canon_name, name) != 0)
11836 name = obsavestring (canon_name, strlen (canon_name),
11837 obstack);
11838 xfree (canon_name);
11839 }
11840 }
11841
11842 return name;
11843 }
11844
11845 /* Get name of a die, return NULL if not found. */
11846
11847 static char *
11848 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
11849 {
11850 struct attribute *attr;
11851
11852 attr = dwarf2_attr (die, DW_AT_name, cu);
11853 if (!attr || !DW_STRING (attr))
11854 return NULL;
11855
11856 switch (die->tag)
11857 {
11858 case DW_TAG_compile_unit:
11859 /* Compilation units have a DW_AT_name that is a filename, not
11860 a source language identifier. */
11861 case DW_TAG_enumeration_type:
11862 case DW_TAG_enumerator:
11863 /* These tags always have simple identifiers already; no need
11864 to canonicalize them. */
11865 return DW_STRING (attr);
11866
11867 case DW_TAG_subprogram:
11868 /* Java constructors will all be named "<init>", so return
11869 the class name when we see this special case. */
11870 if (cu->language == language_java
11871 && DW_STRING (attr) != NULL
11872 && strcmp (DW_STRING (attr), "<init>") == 0)
11873 {
11874 struct dwarf2_cu *spec_cu = cu;
11875 struct die_info *spec_die;
11876
11877 /* GCJ will output '<init>' for Java constructor names.
11878 For this special case, return the name of the parent class. */
11879
11880 /* GCJ may output suprogram DIEs with AT_specification set.
11881 If so, use the name of the specified DIE. */
11882 spec_die = die_specification (die, &spec_cu);
11883 if (spec_die != NULL)
11884 return dwarf2_name (spec_die, spec_cu);
11885
11886 do
11887 {
11888 die = die->parent;
11889 if (die->tag == DW_TAG_class_type)
11890 return dwarf2_name (die, cu);
11891 }
11892 while (die->tag != DW_TAG_compile_unit);
11893 }
11894 break;
11895
11896 case DW_TAG_class_type:
11897 case DW_TAG_interface_type:
11898 case DW_TAG_structure_type:
11899 case DW_TAG_union_type:
11900 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
11901 structures or unions. These were of the form "._%d" in GCC 4.1,
11902 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
11903 and GCC 4.4. We work around this problem by ignoring these. */
11904 if (strncmp (DW_STRING (attr), "._", 2) == 0
11905 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)
11906 return NULL;
11907 break;
11908
11909 default:
11910 break;
11911 }
11912
11913 if (!DW_STRING_IS_CANONICAL (attr))
11914 {
11915 DW_STRING (attr)
11916 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
11917 &cu->objfile->objfile_obstack);
11918 DW_STRING_IS_CANONICAL (attr) = 1;
11919 }
11920 return DW_STRING (attr);
11921 }
11922
11923 /* Return the die that this die in an extension of, or NULL if there
11924 is none. *EXT_CU is the CU containing DIE on input, and the CU
11925 containing the return value on output. */
11926
11927 static struct die_info *
11928 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
11929 {
11930 struct attribute *attr;
11931
11932 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
11933 if (attr == NULL)
11934 return NULL;
11935
11936 return follow_die_ref (die, attr, ext_cu);
11937 }
11938
11939 /* Convert a DIE tag into its string name. */
11940
11941 static char *
11942 dwarf_tag_name (unsigned tag)
11943 {
11944 switch (tag)
11945 {
11946 case DW_TAG_padding:
11947 return "DW_TAG_padding";
11948 case DW_TAG_array_type:
11949 return "DW_TAG_array_type";
11950 case DW_TAG_class_type:
11951 return "DW_TAG_class_type";
11952 case DW_TAG_entry_point:
11953 return "DW_TAG_entry_point";
11954 case DW_TAG_enumeration_type:
11955 return "DW_TAG_enumeration_type";
11956 case DW_TAG_formal_parameter:
11957 return "DW_TAG_formal_parameter";
11958 case DW_TAG_imported_declaration:
11959 return "DW_TAG_imported_declaration";
11960 case DW_TAG_label:
11961 return "DW_TAG_label";
11962 case DW_TAG_lexical_block:
11963 return "DW_TAG_lexical_block";
11964 case DW_TAG_member:
11965 return "DW_TAG_member";
11966 case DW_TAG_pointer_type:
11967 return "DW_TAG_pointer_type";
11968 case DW_TAG_reference_type:
11969 return "DW_TAG_reference_type";
11970 case DW_TAG_compile_unit:
11971 return "DW_TAG_compile_unit";
11972 case DW_TAG_string_type:
11973 return "DW_TAG_string_type";
11974 case DW_TAG_structure_type:
11975 return "DW_TAG_structure_type";
11976 case DW_TAG_subroutine_type:
11977 return "DW_TAG_subroutine_type";
11978 case DW_TAG_typedef:
11979 return "DW_TAG_typedef";
11980 case DW_TAG_union_type:
11981 return "DW_TAG_union_type";
11982 case DW_TAG_unspecified_parameters:
11983 return "DW_TAG_unspecified_parameters";
11984 case DW_TAG_variant:
11985 return "DW_TAG_variant";
11986 case DW_TAG_common_block:
11987 return "DW_TAG_common_block";
11988 case DW_TAG_common_inclusion:
11989 return "DW_TAG_common_inclusion";
11990 case DW_TAG_inheritance:
11991 return "DW_TAG_inheritance";
11992 case DW_TAG_inlined_subroutine:
11993 return "DW_TAG_inlined_subroutine";
11994 case DW_TAG_module:
11995 return "DW_TAG_module";
11996 case DW_TAG_ptr_to_member_type:
11997 return "DW_TAG_ptr_to_member_type";
11998 case DW_TAG_set_type:
11999 return "DW_TAG_set_type";
12000 case DW_TAG_subrange_type:
12001 return "DW_TAG_subrange_type";
12002 case DW_TAG_with_stmt:
12003 return "DW_TAG_with_stmt";
12004 case DW_TAG_access_declaration:
12005 return "DW_TAG_access_declaration";
12006 case DW_TAG_base_type:
12007 return "DW_TAG_base_type";
12008 case DW_TAG_catch_block:
12009 return "DW_TAG_catch_block";
12010 case DW_TAG_const_type:
12011 return "DW_TAG_const_type";
12012 case DW_TAG_constant:
12013 return "DW_TAG_constant";
12014 case DW_TAG_enumerator:
12015 return "DW_TAG_enumerator";
12016 case DW_TAG_file_type:
12017 return "DW_TAG_file_type";
12018 case DW_TAG_friend:
12019 return "DW_TAG_friend";
12020 case DW_TAG_namelist:
12021 return "DW_TAG_namelist";
12022 case DW_TAG_namelist_item:
12023 return "DW_TAG_namelist_item";
12024 case DW_TAG_packed_type:
12025 return "DW_TAG_packed_type";
12026 case DW_TAG_subprogram:
12027 return "DW_TAG_subprogram";
12028 case DW_TAG_template_type_param:
12029 return "DW_TAG_template_type_param";
12030 case DW_TAG_template_value_param:
12031 return "DW_TAG_template_value_param";
12032 case DW_TAG_thrown_type:
12033 return "DW_TAG_thrown_type";
12034 case DW_TAG_try_block:
12035 return "DW_TAG_try_block";
12036 case DW_TAG_variant_part:
12037 return "DW_TAG_variant_part";
12038 case DW_TAG_variable:
12039 return "DW_TAG_variable";
12040 case DW_TAG_volatile_type:
12041 return "DW_TAG_volatile_type";
12042 case DW_TAG_dwarf_procedure:
12043 return "DW_TAG_dwarf_procedure";
12044 case DW_TAG_restrict_type:
12045 return "DW_TAG_restrict_type";
12046 case DW_TAG_interface_type:
12047 return "DW_TAG_interface_type";
12048 case DW_TAG_namespace:
12049 return "DW_TAG_namespace";
12050 case DW_TAG_imported_module:
12051 return "DW_TAG_imported_module";
12052 case DW_TAG_unspecified_type:
12053 return "DW_TAG_unspecified_type";
12054 case DW_TAG_partial_unit:
12055 return "DW_TAG_partial_unit";
12056 case DW_TAG_imported_unit:
12057 return "DW_TAG_imported_unit";
12058 case DW_TAG_condition:
12059 return "DW_TAG_condition";
12060 case DW_TAG_shared_type:
12061 return "DW_TAG_shared_type";
12062 case DW_TAG_type_unit:
12063 return "DW_TAG_type_unit";
12064 case DW_TAG_MIPS_loop:
12065 return "DW_TAG_MIPS_loop";
12066 case DW_TAG_HP_array_descriptor:
12067 return "DW_TAG_HP_array_descriptor";
12068 case DW_TAG_format_label:
12069 return "DW_TAG_format_label";
12070 case DW_TAG_function_template:
12071 return "DW_TAG_function_template";
12072 case DW_TAG_class_template:
12073 return "DW_TAG_class_template";
12074 case DW_TAG_GNU_BINCL:
12075 return "DW_TAG_GNU_BINCL";
12076 case DW_TAG_GNU_EINCL:
12077 return "DW_TAG_GNU_EINCL";
12078 case DW_TAG_upc_shared_type:
12079 return "DW_TAG_upc_shared_type";
12080 case DW_TAG_upc_strict_type:
12081 return "DW_TAG_upc_strict_type";
12082 case DW_TAG_upc_relaxed_type:
12083 return "DW_TAG_upc_relaxed_type";
12084 case DW_TAG_PGI_kanji_type:
12085 return "DW_TAG_PGI_kanji_type";
12086 case DW_TAG_PGI_interface_block:
12087 return "DW_TAG_PGI_interface_block";
12088 default:
12089 return "DW_TAG_<unknown>";
12090 }
12091 }
12092
12093 /* Convert a DWARF attribute code into its string name. */
12094
12095 static char *
12096 dwarf_attr_name (unsigned attr)
12097 {
12098 switch (attr)
12099 {
12100 case DW_AT_sibling:
12101 return "DW_AT_sibling";
12102 case DW_AT_location:
12103 return "DW_AT_location";
12104 case DW_AT_name:
12105 return "DW_AT_name";
12106 case DW_AT_ordering:
12107 return "DW_AT_ordering";
12108 case DW_AT_subscr_data:
12109 return "DW_AT_subscr_data";
12110 case DW_AT_byte_size:
12111 return "DW_AT_byte_size";
12112 case DW_AT_bit_offset:
12113 return "DW_AT_bit_offset";
12114 case DW_AT_bit_size:
12115 return "DW_AT_bit_size";
12116 case DW_AT_element_list:
12117 return "DW_AT_element_list";
12118 case DW_AT_stmt_list:
12119 return "DW_AT_stmt_list";
12120 case DW_AT_low_pc:
12121 return "DW_AT_low_pc";
12122 case DW_AT_high_pc:
12123 return "DW_AT_high_pc";
12124 case DW_AT_language:
12125 return "DW_AT_language";
12126 case DW_AT_member:
12127 return "DW_AT_member";
12128 case DW_AT_discr:
12129 return "DW_AT_discr";
12130 case DW_AT_discr_value:
12131 return "DW_AT_discr_value";
12132 case DW_AT_visibility:
12133 return "DW_AT_visibility";
12134 case DW_AT_import:
12135 return "DW_AT_import";
12136 case DW_AT_string_length:
12137 return "DW_AT_string_length";
12138 case DW_AT_common_reference:
12139 return "DW_AT_common_reference";
12140 case DW_AT_comp_dir:
12141 return "DW_AT_comp_dir";
12142 case DW_AT_const_value:
12143 return "DW_AT_const_value";
12144 case DW_AT_containing_type:
12145 return "DW_AT_containing_type";
12146 case DW_AT_default_value:
12147 return "DW_AT_default_value";
12148 case DW_AT_inline:
12149 return "DW_AT_inline";
12150 case DW_AT_is_optional:
12151 return "DW_AT_is_optional";
12152 case DW_AT_lower_bound:
12153 return "DW_AT_lower_bound";
12154 case DW_AT_producer:
12155 return "DW_AT_producer";
12156 case DW_AT_prototyped:
12157 return "DW_AT_prototyped";
12158 case DW_AT_return_addr:
12159 return "DW_AT_return_addr";
12160 case DW_AT_start_scope:
12161 return "DW_AT_start_scope";
12162 case DW_AT_bit_stride:
12163 return "DW_AT_bit_stride";
12164 case DW_AT_upper_bound:
12165 return "DW_AT_upper_bound";
12166 case DW_AT_abstract_origin:
12167 return "DW_AT_abstract_origin";
12168 case DW_AT_accessibility:
12169 return "DW_AT_accessibility";
12170 case DW_AT_address_class:
12171 return "DW_AT_address_class";
12172 case DW_AT_artificial:
12173 return "DW_AT_artificial";
12174 case DW_AT_base_types:
12175 return "DW_AT_base_types";
12176 case DW_AT_calling_convention:
12177 return "DW_AT_calling_convention";
12178 case DW_AT_count:
12179 return "DW_AT_count";
12180 case DW_AT_data_member_location:
12181 return "DW_AT_data_member_location";
12182 case DW_AT_decl_column:
12183 return "DW_AT_decl_column";
12184 case DW_AT_decl_file:
12185 return "DW_AT_decl_file";
12186 case DW_AT_decl_line:
12187 return "DW_AT_decl_line";
12188 case DW_AT_declaration:
12189 return "DW_AT_declaration";
12190 case DW_AT_discr_list:
12191 return "DW_AT_discr_list";
12192 case DW_AT_encoding:
12193 return "DW_AT_encoding";
12194 case DW_AT_external:
12195 return "DW_AT_external";
12196 case DW_AT_frame_base:
12197 return "DW_AT_frame_base";
12198 case DW_AT_friend:
12199 return "DW_AT_friend";
12200 case DW_AT_identifier_case:
12201 return "DW_AT_identifier_case";
12202 case DW_AT_macro_info:
12203 return "DW_AT_macro_info";
12204 case DW_AT_namelist_items:
12205 return "DW_AT_namelist_items";
12206 case DW_AT_priority:
12207 return "DW_AT_priority";
12208 case DW_AT_segment:
12209 return "DW_AT_segment";
12210 case DW_AT_specification:
12211 return "DW_AT_specification";
12212 case DW_AT_static_link:
12213 return "DW_AT_static_link";
12214 case DW_AT_type:
12215 return "DW_AT_type";
12216 case DW_AT_use_location:
12217 return "DW_AT_use_location";
12218 case DW_AT_variable_parameter:
12219 return "DW_AT_variable_parameter";
12220 case DW_AT_virtuality:
12221 return "DW_AT_virtuality";
12222 case DW_AT_vtable_elem_location:
12223 return "DW_AT_vtable_elem_location";
12224 /* DWARF 3 values. */
12225 case DW_AT_allocated:
12226 return "DW_AT_allocated";
12227 case DW_AT_associated:
12228 return "DW_AT_associated";
12229 case DW_AT_data_location:
12230 return "DW_AT_data_location";
12231 case DW_AT_byte_stride:
12232 return "DW_AT_byte_stride";
12233 case DW_AT_entry_pc:
12234 return "DW_AT_entry_pc";
12235 case DW_AT_use_UTF8:
12236 return "DW_AT_use_UTF8";
12237 case DW_AT_extension:
12238 return "DW_AT_extension";
12239 case DW_AT_ranges:
12240 return "DW_AT_ranges";
12241 case DW_AT_trampoline:
12242 return "DW_AT_trampoline";
12243 case DW_AT_call_column:
12244 return "DW_AT_call_column";
12245 case DW_AT_call_file:
12246 return "DW_AT_call_file";
12247 case DW_AT_call_line:
12248 return "DW_AT_call_line";
12249 case DW_AT_description:
12250 return "DW_AT_description";
12251 case DW_AT_binary_scale:
12252 return "DW_AT_binary_scale";
12253 case DW_AT_decimal_scale:
12254 return "DW_AT_decimal_scale";
12255 case DW_AT_small:
12256 return "DW_AT_small";
12257 case DW_AT_decimal_sign:
12258 return "DW_AT_decimal_sign";
12259 case DW_AT_digit_count:
12260 return "DW_AT_digit_count";
12261 case DW_AT_picture_string:
12262 return "DW_AT_picture_string";
12263 case DW_AT_mutable:
12264 return "DW_AT_mutable";
12265 case DW_AT_threads_scaled:
12266 return "DW_AT_threads_scaled";
12267 case DW_AT_explicit:
12268 return "DW_AT_explicit";
12269 case DW_AT_object_pointer:
12270 return "DW_AT_object_pointer";
12271 case DW_AT_endianity:
12272 return "DW_AT_endianity";
12273 case DW_AT_elemental:
12274 return "DW_AT_elemental";
12275 case DW_AT_pure:
12276 return "DW_AT_pure";
12277 case DW_AT_recursive:
12278 return "DW_AT_recursive";
12279 /* DWARF 4 values. */
12280 case DW_AT_signature:
12281 return "DW_AT_signature";
12282 case DW_AT_linkage_name:
12283 return "DW_AT_linkage_name";
12284 /* SGI/MIPS extensions. */
12285 #ifdef MIPS /* collides with DW_AT_HP_block_index */
12286 case DW_AT_MIPS_fde:
12287 return "DW_AT_MIPS_fde";
12288 #endif
12289 case DW_AT_MIPS_loop_begin:
12290 return "DW_AT_MIPS_loop_begin";
12291 case DW_AT_MIPS_tail_loop_begin:
12292 return "DW_AT_MIPS_tail_loop_begin";
12293 case DW_AT_MIPS_epilog_begin:
12294 return "DW_AT_MIPS_epilog_begin";
12295 case DW_AT_MIPS_loop_unroll_factor:
12296 return "DW_AT_MIPS_loop_unroll_factor";
12297 case DW_AT_MIPS_software_pipeline_depth:
12298 return "DW_AT_MIPS_software_pipeline_depth";
12299 case DW_AT_MIPS_linkage_name:
12300 return "DW_AT_MIPS_linkage_name";
12301 case DW_AT_MIPS_stride:
12302 return "DW_AT_MIPS_stride";
12303 case DW_AT_MIPS_abstract_name:
12304 return "DW_AT_MIPS_abstract_name";
12305 case DW_AT_MIPS_clone_origin:
12306 return "DW_AT_MIPS_clone_origin";
12307 case DW_AT_MIPS_has_inlines:
12308 return "DW_AT_MIPS_has_inlines";
12309 /* HP extensions. */
12310 #ifndef MIPS /* collides with DW_AT_MIPS_fde */
12311 case DW_AT_HP_block_index:
12312 return "DW_AT_HP_block_index";
12313 #endif
12314 case DW_AT_HP_unmodifiable:
12315 return "DW_AT_HP_unmodifiable";
12316 case DW_AT_HP_actuals_stmt_list:
12317 return "DW_AT_HP_actuals_stmt_list";
12318 case DW_AT_HP_proc_per_section:
12319 return "DW_AT_HP_proc_per_section";
12320 case DW_AT_HP_raw_data_ptr:
12321 return "DW_AT_HP_raw_data_ptr";
12322 case DW_AT_HP_pass_by_reference:
12323 return "DW_AT_HP_pass_by_reference";
12324 case DW_AT_HP_opt_level:
12325 return "DW_AT_HP_opt_level";
12326 case DW_AT_HP_prof_version_id:
12327 return "DW_AT_HP_prof_version_id";
12328 case DW_AT_HP_opt_flags:
12329 return "DW_AT_HP_opt_flags";
12330 case DW_AT_HP_cold_region_low_pc:
12331 return "DW_AT_HP_cold_region_low_pc";
12332 case DW_AT_HP_cold_region_high_pc:
12333 return "DW_AT_HP_cold_region_high_pc";
12334 case DW_AT_HP_all_variables_modifiable:
12335 return "DW_AT_HP_all_variables_modifiable";
12336 case DW_AT_HP_linkage_name:
12337 return "DW_AT_HP_linkage_name";
12338 case DW_AT_HP_prof_flags:
12339 return "DW_AT_HP_prof_flags";
12340 /* GNU extensions. */
12341 case DW_AT_sf_names:
12342 return "DW_AT_sf_names";
12343 case DW_AT_src_info:
12344 return "DW_AT_src_info";
12345 case DW_AT_mac_info:
12346 return "DW_AT_mac_info";
12347 case DW_AT_src_coords:
12348 return "DW_AT_src_coords";
12349 case DW_AT_body_begin:
12350 return "DW_AT_body_begin";
12351 case DW_AT_body_end:
12352 return "DW_AT_body_end";
12353 case DW_AT_GNU_vector:
12354 return "DW_AT_GNU_vector";
12355 case DW_AT_GNU_odr_signature:
12356 return "DW_AT_GNU_odr_signature";
12357 /* VMS extensions. */
12358 case DW_AT_VMS_rtnbeg_pd_address:
12359 return "DW_AT_VMS_rtnbeg_pd_address";
12360 /* UPC extension. */
12361 case DW_AT_upc_threads_scaled:
12362 return "DW_AT_upc_threads_scaled";
12363 /* PGI (STMicroelectronics) extensions. */
12364 case DW_AT_PGI_lbase:
12365 return "DW_AT_PGI_lbase";
12366 case DW_AT_PGI_soffset:
12367 return "DW_AT_PGI_soffset";
12368 case DW_AT_PGI_lstride:
12369 return "DW_AT_PGI_lstride";
12370 default:
12371 return "DW_AT_<unknown>";
12372 }
12373 }
12374
12375 /* Convert a DWARF value form code into its string name. */
12376
12377 static char *
12378 dwarf_form_name (unsigned form)
12379 {
12380 switch (form)
12381 {
12382 case DW_FORM_addr:
12383 return "DW_FORM_addr";
12384 case DW_FORM_block2:
12385 return "DW_FORM_block2";
12386 case DW_FORM_block4:
12387 return "DW_FORM_block4";
12388 case DW_FORM_data2:
12389 return "DW_FORM_data2";
12390 case DW_FORM_data4:
12391 return "DW_FORM_data4";
12392 case DW_FORM_data8:
12393 return "DW_FORM_data8";
12394 case DW_FORM_string:
12395 return "DW_FORM_string";
12396 case DW_FORM_block:
12397 return "DW_FORM_block";
12398 case DW_FORM_block1:
12399 return "DW_FORM_block1";
12400 case DW_FORM_data1:
12401 return "DW_FORM_data1";
12402 case DW_FORM_flag:
12403 return "DW_FORM_flag";
12404 case DW_FORM_sdata:
12405 return "DW_FORM_sdata";
12406 case DW_FORM_strp:
12407 return "DW_FORM_strp";
12408 case DW_FORM_udata:
12409 return "DW_FORM_udata";
12410 case DW_FORM_ref_addr:
12411 return "DW_FORM_ref_addr";
12412 case DW_FORM_ref1:
12413 return "DW_FORM_ref1";
12414 case DW_FORM_ref2:
12415 return "DW_FORM_ref2";
12416 case DW_FORM_ref4:
12417 return "DW_FORM_ref4";
12418 case DW_FORM_ref8:
12419 return "DW_FORM_ref8";
12420 case DW_FORM_ref_udata:
12421 return "DW_FORM_ref_udata";
12422 case DW_FORM_indirect:
12423 return "DW_FORM_indirect";
12424 case DW_FORM_sec_offset:
12425 return "DW_FORM_sec_offset";
12426 case DW_FORM_exprloc:
12427 return "DW_FORM_exprloc";
12428 case DW_FORM_flag_present:
12429 return "DW_FORM_flag_present";
12430 case DW_FORM_sig8:
12431 return "DW_FORM_sig8";
12432 default:
12433 return "DW_FORM_<unknown>";
12434 }
12435 }
12436
12437 /* Convert a DWARF stack opcode into its string name. */
12438
12439 const char *
12440 dwarf_stack_op_name (unsigned op, int def)
12441 {
12442 switch (op)
12443 {
12444 case DW_OP_addr:
12445 return "DW_OP_addr";
12446 case DW_OP_deref:
12447 return "DW_OP_deref";
12448 case DW_OP_const1u:
12449 return "DW_OP_const1u";
12450 case DW_OP_const1s:
12451 return "DW_OP_const1s";
12452 case DW_OP_const2u:
12453 return "DW_OP_const2u";
12454 case DW_OP_const2s:
12455 return "DW_OP_const2s";
12456 case DW_OP_const4u:
12457 return "DW_OP_const4u";
12458 case DW_OP_const4s:
12459 return "DW_OP_const4s";
12460 case DW_OP_const8u:
12461 return "DW_OP_const8u";
12462 case DW_OP_const8s:
12463 return "DW_OP_const8s";
12464 case DW_OP_constu:
12465 return "DW_OP_constu";
12466 case DW_OP_consts:
12467 return "DW_OP_consts";
12468 case DW_OP_dup:
12469 return "DW_OP_dup";
12470 case DW_OP_drop:
12471 return "DW_OP_drop";
12472 case DW_OP_over:
12473 return "DW_OP_over";
12474 case DW_OP_pick:
12475 return "DW_OP_pick";
12476 case DW_OP_swap:
12477 return "DW_OP_swap";
12478 case DW_OP_rot:
12479 return "DW_OP_rot";
12480 case DW_OP_xderef:
12481 return "DW_OP_xderef";
12482 case DW_OP_abs:
12483 return "DW_OP_abs";
12484 case DW_OP_and:
12485 return "DW_OP_and";
12486 case DW_OP_div:
12487 return "DW_OP_div";
12488 case DW_OP_minus:
12489 return "DW_OP_minus";
12490 case DW_OP_mod:
12491 return "DW_OP_mod";
12492 case DW_OP_mul:
12493 return "DW_OP_mul";
12494 case DW_OP_neg:
12495 return "DW_OP_neg";
12496 case DW_OP_not:
12497 return "DW_OP_not";
12498 case DW_OP_or:
12499 return "DW_OP_or";
12500 case DW_OP_plus:
12501 return "DW_OP_plus";
12502 case DW_OP_plus_uconst:
12503 return "DW_OP_plus_uconst";
12504 case DW_OP_shl:
12505 return "DW_OP_shl";
12506 case DW_OP_shr:
12507 return "DW_OP_shr";
12508 case DW_OP_shra:
12509 return "DW_OP_shra";
12510 case DW_OP_xor:
12511 return "DW_OP_xor";
12512 case DW_OP_bra:
12513 return "DW_OP_bra";
12514 case DW_OP_eq:
12515 return "DW_OP_eq";
12516 case DW_OP_ge:
12517 return "DW_OP_ge";
12518 case DW_OP_gt:
12519 return "DW_OP_gt";
12520 case DW_OP_le:
12521 return "DW_OP_le";
12522 case DW_OP_lt:
12523 return "DW_OP_lt";
12524 case DW_OP_ne:
12525 return "DW_OP_ne";
12526 case DW_OP_skip:
12527 return "DW_OP_skip";
12528 case DW_OP_lit0:
12529 return "DW_OP_lit0";
12530 case DW_OP_lit1:
12531 return "DW_OP_lit1";
12532 case DW_OP_lit2:
12533 return "DW_OP_lit2";
12534 case DW_OP_lit3:
12535 return "DW_OP_lit3";
12536 case DW_OP_lit4:
12537 return "DW_OP_lit4";
12538 case DW_OP_lit5:
12539 return "DW_OP_lit5";
12540 case DW_OP_lit6:
12541 return "DW_OP_lit6";
12542 case DW_OP_lit7:
12543 return "DW_OP_lit7";
12544 case DW_OP_lit8:
12545 return "DW_OP_lit8";
12546 case DW_OP_lit9:
12547 return "DW_OP_lit9";
12548 case DW_OP_lit10:
12549 return "DW_OP_lit10";
12550 case DW_OP_lit11:
12551 return "DW_OP_lit11";
12552 case DW_OP_lit12:
12553 return "DW_OP_lit12";
12554 case DW_OP_lit13:
12555 return "DW_OP_lit13";
12556 case DW_OP_lit14:
12557 return "DW_OP_lit14";
12558 case DW_OP_lit15:
12559 return "DW_OP_lit15";
12560 case DW_OP_lit16:
12561 return "DW_OP_lit16";
12562 case DW_OP_lit17:
12563 return "DW_OP_lit17";
12564 case DW_OP_lit18:
12565 return "DW_OP_lit18";
12566 case DW_OP_lit19:
12567 return "DW_OP_lit19";
12568 case DW_OP_lit20:
12569 return "DW_OP_lit20";
12570 case DW_OP_lit21:
12571 return "DW_OP_lit21";
12572 case DW_OP_lit22:
12573 return "DW_OP_lit22";
12574 case DW_OP_lit23:
12575 return "DW_OP_lit23";
12576 case DW_OP_lit24:
12577 return "DW_OP_lit24";
12578 case DW_OP_lit25:
12579 return "DW_OP_lit25";
12580 case DW_OP_lit26:
12581 return "DW_OP_lit26";
12582 case DW_OP_lit27:
12583 return "DW_OP_lit27";
12584 case DW_OP_lit28:
12585 return "DW_OP_lit28";
12586 case DW_OP_lit29:
12587 return "DW_OP_lit29";
12588 case DW_OP_lit30:
12589 return "DW_OP_lit30";
12590 case DW_OP_lit31:
12591 return "DW_OP_lit31";
12592 case DW_OP_reg0:
12593 return "DW_OP_reg0";
12594 case DW_OP_reg1:
12595 return "DW_OP_reg1";
12596 case DW_OP_reg2:
12597 return "DW_OP_reg2";
12598 case DW_OP_reg3:
12599 return "DW_OP_reg3";
12600 case DW_OP_reg4:
12601 return "DW_OP_reg4";
12602 case DW_OP_reg5:
12603 return "DW_OP_reg5";
12604 case DW_OP_reg6:
12605 return "DW_OP_reg6";
12606 case DW_OP_reg7:
12607 return "DW_OP_reg7";
12608 case DW_OP_reg8:
12609 return "DW_OP_reg8";
12610 case DW_OP_reg9:
12611 return "DW_OP_reg9";
12612 case DW_OP_reg10:
12613 return "DW_OP_reg10";
12614 case DW_OP_reg11:
12615 return "DW_OP_reg11";
12616 case DW_OP_reg12:
12617 return "DW_OP_reg12";
12618 case DW_OP_reg13:
12619 return "DW_OP_reg13";
12620 case DW_OP_reg14:
12621 return "DW_OP_reg14";
12622 case DW_OP_reg15:
12623 return "DW_OP_reg15";
12624 case DW_OP_reg16:
12625 return "DW_OP_reg16";
12626 case DW_OP_reg17:
12627 return "DW_OP_reg17";
12628 case DW_OP_reg18:
12629 return "DW_OP_reg18";
12630 case DW_OP_reg19:
12631 return "DW_OP_reg19";
12632 case DW_OP_reg20:
12633 return "DW_OP_reg20";
12634 case DW_OP_reg21:
12635 return "DW_OP_reg21";
12636 case DW_OP_reg22:
12637 return "DW_OP_reg22";
12638 case DW_OP_reg23:
12639 return "DW_OP_reg23";
12640 case DW_OP_reg24:
12641 return "DW_OP_reg24";
12642 case DW_OP_reg25:
12643 return "DW_OP_reg25";
12644 case DW_OP_reg26:
12645 return "DW_OP_reg26";
12646 case DW_OP_reg27:
12647 return "DW_OP_reg27";
12648 case DW_OP_reg28:
12649 return "DW_OP_reg28";
12650 case DW_OP_reg29:
12651 return "DW_OP_reg29";
12652 case DW_OP_reg30:
12653 return "DW_OP_reg30";
12654 case DW_OP_reg31:
12655 return "DW_OP_reg31";
12656 case DW_OP_breg0:
12657 return "DW_OP_breg0";
12658 case DW_OP_breg1:
12659 return "DW_OP_breg1";
12660 case DW_OP_breg2:
12661 return "DW_OP_breg2";
12662 case DW_OP_breg3:
12663 return "DW_OP_breg3";
12664 case DW_OP_breg4:
12665 return "DW_OP_breg4";
12666 case DW_OP_breg5:
12667 return "DW_OP_breg5";
12668 case DW_OP_breg6:
12669 return "DW_OP_breg6";
12670 case DW_OP_breg7:
12671 return "DW_OP_breg7";
12672 case DW_OP_breg8:
12673 return "DW_OP_breg8";
12674 case DW_OP_breg9:
12675 return "DW_OP_breg9";
12676 case DW_OP_breg10:
12677 return "DW_OP_breg10";
12678 case DW_OP_breg11:
12679 return "DW_OP_breg11";
12680 case DW_OP_breg12:
12681 return "DW_OP_breg12";
12682 case DW_OP_breg13:
12683 return "DW_OP_breg13";
12684 case DW_OP_breg14:
12685 return "DW_OP_breg14";
12686 case DW_OP_breg15:
12687 return "DW_OP_breg15";
12688 case DW_OP_breg16:
12689 return "DW_OP_breg16";
12690 case DW_OP_breg17:
12691 return "DW_OP_breg17";
12692 case DW_OP_breg18:
12693 return "DW_OP_breg18";
12694 case DW_OP_breg19:
12695 return "DW_OP_breg19";
12696 case DW_OP_breg20:
12697 return "DW_OP_breg20";
12698 case DW_OP_breg21:
12699 return "DW_OP_breg21";
12700 case DW_OP_breg22:
12701 return "DW_OP_breg22";
12702 case DW_OP_breg23:
12703 return "DW_OP_breg23";
12704 case DW_OP_breg24:
12705 return "DW_OP_breg24";
12706 case DW_OP_breg25:
12707 return "DW_OP_breg25";
12708 case DW_OP_breg26:
12709 return "DW_OP_breg26";
12710 case DW_OP_breg27:
12711 return "DW_OP_breg27";
12712 case DW_OP_breg28:
12713 return "DW_OP_breg28";
12714 case DW_OP_breg29:
12715 return "DW_OP_breg29";
12716 case DW_OP_breg30:
12717 return "DW_OP_breg30";
12718 case DW_OP_breg31:
12719 return "DW_OP_breg31";
12720 case DW_OP_regx:
12721 return "DW_OP_regx";
12722 case DW_OP_fbreg:
12723 return "DW_OP_fbreg";
12724 case DW_OP_bregx:
12725 return "DW_OP_bregx";
12726 case DW_OP_piece:
12727 return "DW_OP_piece";
12728 case DW_OP_deref_size:
12729 return "DW_OP_deref_size";
12730 case DW_OP_xderef_size:
12731 return "DW_OP_xderef_size";
12732 case DW_OP_nop:
12733 return "DW_OP_nop";
12734 /* DWARF 3 extensions. */
12735 case DW_OP_push_object_address:
12736 return "DW_OP_push_object_address";
12737 case DW_OP_call2:
12738 return "DW_OP_call2";
12739 case DW_OP_call4:
12740 return "DW_OP_call4";
12741 case DW_OP_call_ref:
12742 return "DW_OP_call_ref";
12743 case DW_OP_form_tls_address:
12744 return "DW_OP_form_tls_address";
12745 case DW_OP_call_frame_cfa:
12746 return "DW_OP_call_frame_cfa";
12747 case DW_OP_bit_piece:
12748 return "DW_OP_bit_piece";
12749 /* DWARF 4 extensions. */
12750 case DW_OP_implicit_value:
12751 return "DW_OP_implicit_value";
12752 case DW_OP_stack_value:
12753 return "DW_OP_stack_value";
12754 /* GNU extensions. */
12755 case DW_OP_GNU_push_tls_address:
12756 return "DW_OP_GNU_push_tls_address";
12757 case DW_OP_GNU_uninit:
12758 return "DW_OP_GNU_uninit";
12759 case DW_OP_GNU_implicit_pointer:
12760 return "DW_OP_GNU_implicit_pointer";
12761 default:
12762 return def ? "OP_<unknown>" : NULL;
12763 }
12764 }
12765
12766 static char *
12767 dwarf_bool_name (unsigned mybool)
12768 {
12769 if (mybool)
12770 return "TRUE";
12771 else
12772 return "FALSE";
12773 }
12774
12775 /* Convert a DWARF type code into its string name. */
12776
12777 static char *
12778 dwarf_type_encoding_name (unsigned enc)
12779 {
12780 switch (enc)
12781 {
12782 case DW_ATE_void:
12783 return "DW_ATE_void";
12784 case DW_ATE_address:
12785 return "DW_ATE_address";
12786 case DW_ATE_boolean:
12787 return "DW_ATE_boolean";
12788 case DW_ATE_complex_float:
12789 return "DW_ATE_complex_float";
12790 case DW_ATE_float:
12791 return "DW_ATE_float";
12792 case DW_ATE_signed:
12793 return "DW_ATE_signed";
12794 case DW_ATE_signed_char:
12795 return "DW_ATE_signed_char";
12796 case DW_ATE_unsigned:
12797 return "DW_ATE_unsigned";
12798 case DW_ATE_unsigned_char:
12799 return "DW_ATE_unsigned_char";
12800 /* DWARF 3. */
12801 case DW_ATE_imaginary_float:
12802 return "DW_ATE_imaginary_float";
12803 case DW_ATE_packed_decimal:
12804 return "DW_ATE_packed_decimal";
12805 case DW_ATE_numeric_string:
12806 return "DW_ATE_numeric_string";
12807 case DW_ATE_edited:
12808 return "DW_ATE_edited";
12809 case DW_ATE_signed_fixed:
12810 return "DW_ATE_signed_fixed";
12811 case DW_ATE_unsigned_fixed:
12812 return "DW_ATE_unsigned_fixed";
12813 case DW_ATE_decimal_float:
12814 return "DW_ATE_decimal_float";
12815 /* DWARF 4. */
12816 case DW_ATE_UTF:
12817 return "DW_ATE_UTF";
12818 /* HP extensions. */
12819 case DW_ATE_HP_float80:
12820 return "DW_ATE_HP_float80";
12821 case DW_ATE_HP_complex_float80:
12822 return "DW_ATE_HP_complex_float80";
12823 case DW_ATE_HP_float128:
12824 return "DW_ATE_HP_float128";
12825 case DW_ATE_HP_complex_float128:
12826 return "DW_ATE_HP_complex_float128";
12827 case DW_ATE_HP_floathpintel:
12828 return "DW_ATE_HP_floathpintel";
12829 case DW_ATE_HP_imaginary_float80:
12830 return "DW_ATE_HP_imaginary_float80";
12831 case DW_ATE_HP_imaginary_float128:
12832 return "DW_ATE_HP_imaginary_float128";
12833 default:
12834 return "DW_ATE_<unknown>";
12835 }
12836 }
12837
12838 /* Convert a DWARF call frame info operation to its string name. */
12839
12840 #if 0
12841 static char *
12842 dwarf_cfi_name (unsigned cfi_opc)
12843 {
12844 switch (cfi_opc)
12845 {
12846 case DW_CFA_advance_loc:
12847 return "DW_CFA_advance_loc";
12848 case DW_CFA_offset:
12849 return "DW_CFA_offset";
12850 case DW_CFA_restore:
12851 return "DW_CFA_restore";
12852 case DW_CFA_nop:
12853 return "DW_CFA_nop";
12854 case DW_CFA_set_loc:
12855 return "DW_CFA_set_loc";
12856 case DW_CFA_advance_loc1:
12857 return "DW_CFA_advance_loc1";
12858 case DW_CFA_advance_loc2:
12859 return "DW_CFA_advance_loc2";
12860 case DW_CFA_advance_loc4:
12861 return "DW_CFA_advance_loc4";
12862 case DW_CFA_offset_extended:
12863 return "DW_CFA_offset_extended";
12864 case DW_CFA_restore_extended:
12865 return "DW_CFA_restore_extended";
12866 case DW_CFA_undefined:
12867 return "DW_CFA_undefined";
12868 case DW_CFA_same_value:
12869 return "DW_CFA_same_value";
12870 case DW_CFA_register:
12871 return "DW_CFA_register";
12872 case DW_CFA_remember_state:
12873 return "DW_CFA_remember_state";
12874 case DW_CFA_restore_state:
12875 return "DW_CFA_restore_state";
12876 case DW_CFA_def_cfa:
12877 return "DW_CFA_def_cfa";
12878 case DW_CFA_def_cfa_register:
12879 return "DW_CFA_def_cfa_register";
12880 case DW_CFA_def_cfa_offset:
12881 return "DW_CFA_def_cfa_offset";
12882 /* DWARF 3. */
12883 case DW_CFA_def_cfa_expression:
12884 return "DW_CFA_def_cfa_expression";
12885 case DW_CFA_expression:
12886 return "DW_CFA_expression";
12887 case DW_CFA_offset_extended_sf:
12888 return "DW_CFA_offset_extended_sf";
12889 case DW_CFA_def_cfa_sf:
12890 return "DW_CFA_def_cfa_sf";
12891 case DW_CFA_def_cfa_offset_sf:
12892 return "DW_CFA_def_cfa_offset_sf";
12893 case DW_CFA_val_offset:
12894 return "DW_CFA_val_offset";
12895 case DW_CFA_val_offset_sf:
12896 return "DW_CFA_val_offset_sf";
12897 case DW_CFA_val_expression:
12898 return "DW_CFA_val_expression";
12899 /* SGI/MIPS specific. */
12900 case DW_CFA_MIPS_advance_loc8:
12901 return "DW_CFA_MIPS_advance_loc8";
12902 /* GNU extensions. */
12903 case DW_CFA_GNU_window_save:
12904 return "DW_CFA_GNU_window_save";
12905 case DW_CFA_GNU_args_size:
12906 return "DW_CFA_GNU_args_size";
12907 case DW_CFA_GNU_negative_offset_extended:
12908 return "DW_CFA_GNU_negative_offset_extended";
12909 default:
12910 return "DW_CFA_<unknown>";
12911 }
12912 }
12913 #endif
12914
12915 static void
12916 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
12917 {
12918 unsigned int i;
12919
12920 print_spaces (indent, f);
12921 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
12922 dwarf_tag_name (die->tag), die->abbrev, die->offset);
12923
12924 if (die->parent != NULL)
12925 {
12926 print_spaces (indent, f);
12927 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
12928 die->parent->offset);
12929 }
12930
12931 print_spaces (indent, f);
12932 fprintf_unfiltered (f, " has children: %s\n",
12933 dwarf_bool_name (die->child != NULL));
12934
12935 print_spaces (indent, f);
12936 fprintf_unfiltered (f, " attributes:\n");
12937
12938 for (i = 0; i < die->num_attrs; ++i)
12939 {
12940 print_spaces (indent, f);
12941 fprintf_unfiltered (f, " %s (%s) ",
12942 dwarf_attr_name (die->attrs[i].name),
12943 dwarf_form_name (die->attrs[i].form));
12944
12945 switch (die->attrs[i].form)
12946 {
12947 case DW_FORM_ref_addr:
12948 case DW_FORM_addr:
12949 fprintf_unfiltered (f, "address: ");
12950 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
12951 break;
12952 case DW_FORM_block2:
12953 case DW_FORM_block4:
12954 case DW_FORM_block:
12955 case DW_FORM_block1:
12956 fprintf_unfiltered (f, "block: size %d",
12957 DW_BLOCK (&die->attrs[i])->size);
12958 break;
12959 case DW_FORM_exprloc:
12960 fprintf_unfiltered (f, "expression: size %u",
12961 DW_BLOCK (&die->attrs[i])->size);
12962 break;
12963 case DW_FORM_ref1:
12964 case DW_FORM_ref2:
12965 case DW_FORM_ref4:
12966 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
12967 (long) (DW_ADDR (&die->attrs[i])));
12968 break;
12969 case DW_FORM_data1:
12970 case DW_FORM_data2:
12971 case DW_FORM_data4:
12972 case DW_FORM_data8:
12973 case DW_FORM_udata:
12974 case DW_FORM_sdata:
12975 fprintf_unfiltered (f, "constant: %s",
12976 pulongest (DW_UNSND (&die->attrs[i])));
12977 break;
12978 case DW_FORM_sec_offset:
12979 fprintf_unfiltered (f, "section offset: %s",
12980 pulongest (DW_UNSND (&die->attrs[i])));
12981 break;
12982 case DW_FORM_sig8:
12983 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
12984 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
12985 DW_SIGNATURED_TYPE (&die->attrs[i])->offset);
12986 else
12987 fprintf_unfiltered (f, "signatured type, offset: unknown");
12988 break;
12989 case DW_FORM_string:
12990 case DW_FORM_strp:
12991 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
12992 DW_STRING (&die->attrs[i])
12993 ? DW_STRING (&die->attrs[i]) : "",
12994 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
12995 break;
12996 case DW_FORM_flag:
12997 if (DW_UNSND (&die->attrs[i]))
12998 fprintf_unfiltered (f, "flag: TRUE");
12999 else
13000 fprintf_unfiltered (f, "flag: FALSE");
13001 break;
13002 case DW_FORM_flag_present:
13003 fprintf_unfiltered (f, "flag: TRUE");
13004 break;
13005 case DW_FORM_indirect:
13006 /* the reader will have reduced the indirect form to
13007 the "base form" so this form should not occur */
13008 fprintf_unfiltered (f,
13009 "unexpected attribute form: DW_FORM_indirect");
13010 break;
13011 default:
13012 fprintf_unfiltered (f, "unsupported attribute form: %d.",
13013 die->attrs[i].form);
13014 break;
13015 }
13016 fprintf_unfiltered (f, "\n");
13017 }
13018 }
13019
13020 static void
13021 dump_die_for_error (struct die_info *die)
13022 {
13023 dump_die_shallow (gdb_stderr, 0, die);
13024 }
13025
13026 static void
13027 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13028 {
13029 int indent = level * 4;
13030
13031 gdb_assert (die != NULL);
13032
13033 if (level >= max_level)
13034 return;
13035
13036 dump_die_shallow (f, indent, die);
13037
13038 if (die->child != NULL)
13039 {
13040 print_spaces (indent, f);
13041 fprintf_unfiltered (f, " Children:");
13042 if (level + 1 < max_level)
13043 {
13044 fprintf_unfiltered (f, "\n");
13045 dump_die_1 (f, level + 1, max_level, die->child);
13046 }
13047 else
13048 {
13049 fprintf_unfiltered (f,
13050 " [not printed, max nesting level reached]\n");
13051 }
13052 }
13053
13054 if (die->sibling != NULL && level > 0)
13055 {
13056 dump_die_1 (f, level, max_level, die->sibling);
13057 }
13058 }
13059
13060 /* This is called from the pdie macro in gdbinit.in.
13061 It's not static so gcc will keep a copy callable from gdb. */
13062
13063 void
13064 dump_die (struct die_info *die, int max_level)
13065 {
13066 dump_die_1 (gdb_stdlog, 0, max_level, die);
13067 }
13068
13069 static void
13070 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
13071 {
13072 void **slot;
13073
13074 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13075
13076 *slot = die;
13077 }
13078
13079 static int
13080 is_ref_attr (struct attribute *attr)
13081 {
13082 switch (attr->form)
13083 {
13084 case DW_FORM_ref_addr:
13085 case DW_FORM_ref1:
13086 case DW_FORM_ref2:
13087 case DW_FORM_ref4:
13088 case DW_FORM_ref8:
13089 case DW_FORM_ref_udata:
13090 return 1;
13091 default:
13092 return 0;
13093 }
13094 }
13095
13096 static unsigned int
13097 dwarf2_get_ref_die_offset (struct attribute *attr)
13098 {
13099 if (is_ref_attr (attr))
13100 return DW_ADDR (attr);
13101
13102 complaint (&symfile_complaints,
13103 _("unsupported die ref attribute form: '%s'"),
13104 dwarf_form_name (attr->form));
13105 return 0;
13106 }
13107
13108 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13109 * the value held by the attribute is not constant. */
13110
13111 static LONGEST
13112 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13113 {
13114 if (attr->form == DW_FORM_sdata)
13115 return DW_SND (attr);
13116 else if (attr->form == DW_FORM_udata
13117 || attr->form == DW_FORM_data1
13118 || attr->form == DW_FORM_data2
13119 || attr->form == DW_FORM_data4
13120 || attr->form == DW_FORM_data8)
13121 return DW_UNSND (attr);
13122 else
13123 {
13124 complaint (&symfile_complaints,
13125 _("Attribute value is not a constant (%s)"),
13126 dwarf_form_name (attr->form));
13127 return default_value;
13128 }
13129 }
13130
13131 /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
13132 unit and add it to our queue.
13133 The result is non-zero if PER_CU was queued, otherwise the result is zero
13134 meaning either PER_CU is already queued or it is already loaded. */
13135
13136 static int
13137 maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13138 struct dwarf2_per_cu_data *per_cu)
13139 {
13140 /* We may arrive here during partial symbol reading, if we need full
13141 DIEs to process an unusual case (e.g. template arguments). Do
13142 not queue PER_CU, just tell our caller to load its DIEs. */
13143 if (dwarf2_per_objfile->reading_partial_symbols)
13144 {
13145 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13146 return 1;
13147 return 0;
13148 }
13149
13150 /* Mark the dependence relation so that we don't flush PER_CU
13151 too early. */
13152 dwarf2_add_dependence (this_cu, per_cu);
13153
13154 /* If it's already on the queue, we have nothing to do. */
13155 if (per_cu->queued)
13156 return 0;
13157
13158 /* If the compilation unit is already loaded, just mark it as
13159 used. */
13160 if (per_cu->cu != NULL)
13161 {
13162 per_cu->cu->last_used = 0;
13163 return 0;
13164 }
13165
13166 /* Add it to the queue. */
13167 queue_comp_unit (per_cu, this_cu->objfile);
13168
13169 return 1;
13170 }
13171
13172 /* Follow reference or signature attribute ATTR of SRC_DIE.
13173 On entry *REF_CU is the CU of SRC_DIE.
13174 On exit *REF_CU is the CU of the result. */
13175
13176 static struct die_info *
13177 follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13178 struct dwarf2_cu **ref_cu)
13179 {
13180 struct die_info *die;
13181
13182 if (is_ref_attr (attr))
13183 die = follow_die_ref (src_die, attr, ref_cu);
13184 else if (attr->form == DW_FORM_sig8)
13185 die = follow_die_sig (src_die, attr, ref_cu);
13186 else
13187 {
13188 dump_die_for_error (src_die);
13189 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13190 (*ref_cu)->objfile->name);
13191 }
13192
13193 return die;
13194 }
13195
13196 /* Follow reference OFFSET.
13197 On entry *REF_CU is the CU of the source die referencing OFFSET.
13198 On exit *REF_CU is the CU of the result.
13199 Returns NULL if OFFSET is invalid. */
13200
13201 static struct die_info *
13202 follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
13203 {
13204 struct die_info temp_die;
13205 struct dwarf2_cu *target_cu, *cu = *ref_cu;
13206
13207 gdb_assert (cu->per_cu != NULL);
13208
13209 target_cu = cu;
13210
13211 if (cu->per_cu->from_debug_types)
13212 {
13213 /* .debug_types CUs cannot reference anything outside their CU.
13214 If they need to, they have to reference a signatured type via
13215 DW_FORM_sig8. */
13216 if (! offset_in_cu_p (&cu->header, offset))
13217 return NULL;
13218 }
13219 else if (! offset_in_cu_p (&cu->header, offset))
13220 {
13221 struct dwarf2_per_cu_data *per_cu;
13222
13223 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
13224
13225 /* If necessary, add it to the queue and load its DIEs. */
13226 if (maybe_queue_comp_unit (cu, per_cu))
13227 load_full_comp_unit (per_cu, cu->objfile);
13228
13229 target_cu = per_cu->cu;
13230 }
13231 else if (cu->dies == NULL)
13232 {
13233 /* We're loading full DIEs during partial symbol reading. */
13234 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13235 load_full_comp_unit (cu->per_cu, cu->objfile);
13236 }
13237
13238 *ref_cu = target_cu;
13239 temp_die.offset = offset;
13240 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13241 }
13242
13243 /* Follow reference attribute ATTR of SRC_DIE.
13244 On entry *REF_CU is the CU of SRC_DIE.
13245 On exit *REF_CU is the CU of the result. */
13246
13247 static struct die_info *
13248 follow_die_ref (struct die_info *src_die, struct attribute *attr,
13249 struct dwarf2_cu **ref_cu)
13250 {
13251 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13252 struct dwarf2_cu *cu = *ref_cu;
13253 struct die_info *die;
13254
13255 die = follow_die_offset (offset, ref_cu);
13256 if (!die)
13257 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13258 "at 0x%x [in module %s]"),
13259 offset, src_die->offset, cu->objfile->name);
13260
13261 return die;
13262 }
13263
13264 /* Return DWARF block and its CU referenced by OFFSET at PER_CU. Returned
13265 value is intended for DW_OP_call*. */
13266
13267 struct dwarf2_locexpr_baton
13268 dwarf2_fetch_die_location_block (unsigned int offset,
13269 struct dwarf2_per_cu_data *per_cu,
13270 CORE_ADDR (*get_frame_pc) (void *baton),
13271 void *baton)
13272 {
13273 struct dwarf2_cu *cu = per_cu->cu;
13274 struct die_info *die;
13275 struct attribute *attr;
13276 struct dwarf2_locexpr_baton retval;
13277
13278 dw2_setup (per_cu->objfile);
13279
13280 die = follow_die_offset (offset, &cu);
13281 if (!die)
13282 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13283 offset, per_cu->cu->objfile->name);
13284
13285 attr = dwarf2_attr (die, DW_AT_location, cu);
13286 if (!attr)
13287 {
13288 /* DWARF: "If there is no such attribute, then there is no effect.". */
13289
13290 retval.data = NULL;
13291 retval.size = 0;
13292 }
13293 else if (attr_form_is_section_offset (attr))
13294 {
13295 struct dwarf2_loclist_baton loclist_baton;
13296 CORE_ADDR pc = (*get_frame_pc) (baton);
13297 size_t size;
13298
13299 fill_in_loclist_baton (cu, &loclist_baton, attr);
13300
13301 retval.data = dwarf2_find_location_expression (&loclist_baton,
13302 &size, pc);
13303 retval.size = size;
13304 }
13305 else
13306 {
13307 if (!attr_form_is_block (attr))
13308 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13309 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13310 offset, per_cu->cu->objfile->name);
13311
13312 retval.data = DW_BLOCK (attr)->data;
13313 retval.size = DW_BLOCK (attr)->size;
13314 }
13315 retval.per_cu = cu->per_cu;
13316 return retval;
13317 }
13318
13319 /* Follow the signature attribute ATTR in SRC_DIE.
13320 On entry *REF_CU is the CU of SRC_DIE.
13321 On exit *REF_CU is the CU of the result. */
13322
13323 static struct die_info *
13324 follow_die_sig (struct die_info *src_die, struct attribute *attr,
13325 struct dwarf2_cu **ref_cu)
13326 {
13327 struct objfile *objfile = (*ref_cu)->objfile;
13328 struct die_info temp_die;
13329 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13330 struct dwarf2_cu *sig_cu;
13331 struct die_info *die;
13332
13333 /* sig_type will be NULL if the signatured type is missing from
13334 the debug info. */
13335 if (sig_type == NULL)
13336 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13337 "at 0x%x [in module %s]"),
13338 src_die->offset, objfile->name);
13339
13340 /* If necessary, add it to the queue and load its DIEs. */
13341
13342 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13343 read_signatured_type (objfile, sig_type);
13344
13345 gdb_assert (sig_type->per_cu.cu != NULL);
13346
13347 sig_cu = sig_type->per_cu.cu;
13348 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13349 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13350 if (die)
13351 {
13352 *ref_cu = sig_cu;
13353 return die;
13354 }
13355
13356 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13357 "from DIE at 0x%x [in module %s]"),
13358 sig_type->type_offset, src_die->offset, objfile->name);
13359 }
13360
13361 /* Given an offset of a signatured type, return its signatured_type. */
13362
13363 static struct signatured_type *
13364 lookup_signatured_type_at_offset (struct objfile *objfile, unsigned int offset)
13365 {
13366 gdb_byte *info_ptr = dwarf2_per_objfile->types.buffer + offset;
13367 unsigned int length, initial_length_size;
13368 unsigned int sig_offset;
13369 struct signatured_type find_entry, *type_sig;
13370
13371 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13372 sig_offset = (initial_length_size
13373 + 2 /*version*/
13374 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13375 + 1 /*address_size*/);
13376 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13377 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13378
13379 /* This is only used to lookup previously recorded types.
13380 If we didn't find it, it's our bug. */
13381 gdb_assert (type_sig != NULL);
13382 gdb_assert (offset == type_sig->offset);
13383
13384 return type_sig;
13385 }
13386
13387 /* Read in signatured type at OFFSET and build its CU and die(s). */
13388
13389 static void
13390 read_signatured_type_at_offset (struct objfile *objfile,
13391 unsigned int offset)
13392 {
13393 struct signatured_type *type_sig;
13394
13395 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13396
13397 /* We have the section offset, but we need the signature to do the
13398 hash table lookup. */
13399 type_sig = lookup_signatured_type_at_offset (objfile, offset);
13400
13401 gdb_assert (type_sig->per_cu.cu == NULL);
13402
13403 read_signatured_type (objfile, type_sig);
13404
13405 gdb_assert (type_sig->per_cu.cu != NULL);
13406 }
13407
13408 /* Read in a signatured type and build its CU and DIEs. */
13409
13410 static void
13411 read_signatured_type (struct objfile *objfile,
13412 struct signatured_type *type_sig)
13413 {
13414 gdb_byte *types_ptr;
13415 struct die_reader_specs reader_specs;
13416 struct dwarf2_cu *cu;
13417 ULONGEST signature;
13418 struct cleanup *back_to, *free_cu_cleanup;
13419
13420 dwarf2_read_section (objfile, &dwarf2_per_objfile->types);
13421 types_ptr = dwarf2_per_objfile->types.buffer + type_sig->offset;
13422
13423 gdb_assert (type_sig->per_cu.cu == NULL);
13424
13425 cu = xmalloc (sizeof (*cu));
13426 init_one_comp_unit (cu, objfile);
13427
13428 type_sig->per_cu.cu = cu;
13429 cu->per_cu = &type_sig->per_cu;
13430
13431 /* If an error occurs while loading, release our storage. */
13432 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
13433
13434 types_ptr = read_type_comp_unit_head (&cu->header, &signature,
13435 types_ptr, objfile->obfd);
13436 gdb_assert (signature == type_sig->signature);
13437
13438 cu->die_hash
13439 = htab_create_alloc_ex (cu->header.length / 12,
13440 die_hash,
13441 die_eq,
13442 NULL,
13443 &cu->comp_unit_obstack,
13444 hashtab_obstack_allocate,
13445 dummy_obstack_deallocate);
13446
13447 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
13448 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
13449
13450 init_cu_die_reader (&reader_specs, cu);
13451
13452 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
13453 NULL /*parent*/);
13454
13455 /* We try not to read any attributes in this function, because not
13456 all objfiles needed for references have been loaded yet, and symbol
13457 table processing isn't initialized. But we have to set the CU language,
13458 or we won't be able to build types correctly. */
13459 prepare_one_comp_unit (cu, cu->dies);
13460
13461 do_cleanups (back_to);
13462
13463 /* We've successfully allocated this compilation unit. Let our caller
13464 clean it up when finished with it. */
13465 discard_cleanups (free_cu_cleanup);
13466
13467 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
13468 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
13469 }
13470
13471 /* Decode simple location descriptions.
13472 Given a pointer to a dwarf block that defines a location, compute
13473 the location and return the value.
13474
13475 NOTE drow/2003-11-18: This function is called in two situations
13476 now: for the address of static or global variables (partial symbols
13477 only) and for offsets into structures which are expected to be
13478 (more or less) constant. The partial symbol case should go away,
13479 and only the constant case should remain. That will let this
13480 function complain more accurately. A few special modes are allowed
13481 without complaint for global variables (for instance, global
13482 register values and thread-local values).
13483
13484 A location description containing no operations indicates that the
13485 object is optimized out. The return value is 0 for that case.
13486 FIXME drow/2003-11-16: No callers check for this case any more; soon all
13487 callers will only want a very basic result and this can become a
13488 complaint.
13489
13490 Note that stack[0] is unused except as a default error return. */
13491
13492 static CORE_ADDR
13493 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
13494 {
13495 struct objfile *objfile = cu->objfile;
13496 int i;
13497 int size = blk->size;
13498 gdb_byte *data = blk->data;
13499 CORE_ADDR stack[64];
13500 int stacki;
13501 unsigned int bytes_read, unsnd;
13502 gdb_byte op;
13503
13504 i = 0;
13505 stacki = 0;
13506 stack[stacki] = 0;
13507 stack[++stacki] = 0;
13508
13509 while (i < size)
13510 {
13511 op = data[i++];
13512 switch (op)
13513 {
13514 case DW_OP_lit0:
13515 case DW_OP_lit1:
13516 case DW_OP_lit2:
13517 case DW_OP_lit3:
13518 case DW_OP_lit4:
13519 case DW_OP_lit5:
13520 case DW_OP_lit6:
13521 case DW_OP_lit7:
13522 case DW_OP_lit8:
13523 case DW_OP_lit9:
13524 case DW_OP_lit10:
13525 case DW_OP_lit11:
13526 case DW_OP_lit12:
13527 case DW_OP_lit13:
13528 case DW_OP_lit14:
13529 case DW_OP_lit15:
13530 case DW_OP_lit16:
13531 case DW_OP_lit17:
13532 case DW_OP_lit18:
13533 case DW_OP_lit19:
13534 case DW_OP_lit20:
13535 case DW_OP_lit21:
13536 case DW_OP_lit22:
13537 case DW_OP_lit23:
13538 case DW_OP_lit24:
13539 case DW_OP_lit25:
13540 case DW_OP_lit26:
13541 case DW_OP_lit27:
13542 case DW_OP_lit28:
13543 case DW_OP_lit29:
13544 case DW_OP_lit30:
13545 case DW_OP_lit31:
13546 stack[++stacki] = op - DW_OP_lit0;
13547 break;
13548
13549 case DW_OP_reg0:
13550 case DW_OP_reg1:
13551 case DW_OP_reg2:
13552 case DW_OP_reg3:
13553 case DW_OP_reg4:
13554 case DW_OP_reg5:
13555 case DW_OP_reg6:
13556 case DW_OP_reg7:
13557 case DW_OP_reg8:
13558 case DW_OP_reg9:
13559 case DW_OP_reg10:
13560 case DW_OP_reg11:
13561 case DW_OP_reg12:
13562 case DW_OP_reg13:
13563 case DW_OP_reg14:
13564 case DW_OP_reg15:
13565 case DW_OP_reg16:
13566 case DW_OP_reg17:
13567 case DW_OP_reg18:
13568 case DW_OP_reg19:
13569 case DW_OP_reg20:
13570 case DW_OP_reg21:
13571 case DW_OP_reg22:
13572 case DW_OP_reg23:
13573 case DW_OP_reg24:
13574 case DW_OP_reg25:
13575 case DW_OP_reg26:
13576 case DW_OP_reg27:
13577 case DW_OP_reg28:
13578 case DW_OP_reg29:
13579 case DW_OP_reg30:
13580 case DW_OP_reg31:
13581 stack[++stacki] = op - DW_OP_reg0;
13582 if (i < size)
13583 dwarf2_complex_location_expr_complaint ();
13584 break;
13585
13586 case DW_OP_regx:
13587 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
13588 i += bytes_read;
13589 stack[++stacki] = unsnd;
13590 if (i < size)
13591 dwarf2_complex_location_expr_complaint ();
13592 break;
13593
13594 case DW_OP_addr:
13595 stack[++stacki] = read_address (objfile->obfd, &data[i],
13596 cu, &bytes_read);
13597 i += bytes_read;
13598 break;
13599
13600 case DW_OP_const1u:
13601 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
13602 i += 1;
13603 break;
13604
13605 case DW_OP_const1s:
13606 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
13607 i += 1;
13608 break;
13609
13610 case DW_OP_const2u:
13611 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
13612 i += 2;
13613 break;
13614
13615 case DW_OP_const2s:
13616 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
13617 i += 2;
13618 break;
13619
13620 case DW_OP_const4u:
13621 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
13622 i += 4;
13623 break;
13624
13625 case DW_OP_const4s:
13626 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
13627 i += 4;
13628 break;
13629
13630 case DW_OP_constu:
13631 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
13632 &bytes_read);
13633 i += bytes_read;
13634 break;
13635
13636 case DW_OP_consts:
13637 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
13638 i += bytes_read;
13639 break;
13640
13641 case DW_OP_dup:
13642 stack[stacki + 1] = stack[stacki];
13643 stacki++;
13644 break;
13645
13646 case DW_OP_plus:
13647 stack[stacki - 1] += stack[stacki];
13648 stacki--;
13649 break;
13650
13651 case DW_OP_plus_uconst:
13652 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
13653 &bytes_read);
13654 i += bytes_read;
13655 break;
13656
13657 case DW_OP_minus:
13658 stack[stacki - 1] -= stack[stacki];
13659 stacki--;
13660 break;
13661
13662 case DW_OP_deref:
13663 /* If we're not the last op, then we definitely can't encode
13664 this using GDB's address_class enum. This is valid for partial
13665 global symbols, although the variable's address will be bogus
13666 in the psymtab. */
13667 if (i < size)
13668 dwarf2_complex_location_expr_complaint ();
13669 break;
13670
13671 case DW_OP_GNU_push_tls_address:
13672 /* The top of the stack has the offset from the beginning
13673 of the thread control block at which the variable is located. */
13674 /* Nothing should follow this operator, so the top of stack would
13675 be returned. */
13676 /* This is valid for partial global symbols, but the variable's
13677 address will be bogus in the psymtab. */
13678 if (i < size)
13679 dwarf2_complex_location_expr_complaint ();
13680 break;
13681
13682 case DW_OP_GNU_uninit:
13683 break;
13684
13685 default:
13686 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
13687 dwarf_stack_op_name (op, 1));
13688 return (stack[stacki]);
13689 }
13690
13691 /* Enforce maximum stack depth of SIZE-1 to avoid writing
13692 outside of the allocated space. Also enforce minimum>0. */
13693 if (stacki >= ARRAY_SIZE (stack) - 1)
13694 {
13695 complaint (&symfile_complaints,
13696 _("location description stack overflow"));
13697 return 0;
13698 }
13699
13700 if (stacki <= 0)
13701 {
13702 complaint (&symfile_complaints,
13703 _("location description stack underflow"));
13704 return 0;
13705 }
13706 }
13707 return (stack[stacki]);
13708 }
13709
13710 /* memory allocation interface */
13711
13712 static struct dwarf_block *
13713 dwarf_alloc_block (struct dwarf2_cu *cu)
13714 {
13715 struct dwarf_block *blk;
13716
13717 blk = (struct dwarf_block *)
13718 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
13719 return (blk);
13720 }
13721
13722 static struct abbrev_info *
13723 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
13724 {
13725 struct abbrev_info *abbrev;
13726
13727 abbrev = (struct abbrev_info *)
13728 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
13729 memset (abbrev, 0, sizeof (struct abbrev_info));
13730 return (abbrev);
13731 }
13732
13733 static struct die_info *
13734 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
13735 {
13736 struct die_info *die;
13737 size_t size = sizeof (struct die_info);
13738
13739 if (num_attrs > 1)
13740 size += (num_attrs - 1) * sizeof (struct attribute);
13741
13742 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
13743 memset (die, 0, sizeof (struct die_info));
13744 return (die);
13745 }
13746
13747 \f
13748 /* Macro support. */
13749
13750 /* Return the full name of file number I in *LH's file name table.
13751 Use COMP_DIR as the name of the current directory of the
13752 compilation. The result is allocated using xmalloc; the caller is
13753 responsible for freeing it. */
13754 static char *
13755 file_full_name (int file, struct line_header *lh, const char *comp_dir)
13756 {
13757 /* Is the file number a valid index into the line header's file name
13758 table? Remember that file numbers start with one, not zero. */
13759 if (1 <= file && file <= lh->num_file_names)
13760 {
13761 struct file_entry *fe = &lh->file_names[file - 1];
13762
13763 if (IS_ABSOLUTE_PATH (fe->name))
13764 return xstrdup (fe->name);
13765 else
13766 {
13767 const char *dir;
13768 int dir_len;
13769 char *full_name;
13770
13771 if (fe->dir_index)
13772 dir = lh->include_dirs[fe->dir_index - 1];
13773 else
13774 dir = comp_dir;
13775
13776 if (dir)
13777 {
13778 dir_len = strlen (dir);
13779 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
13780 strcpy (full_name, dir);
13781 full_name[dir_len] = '/';
13782 strcpy (full_name + dir_len + 1, fe->name);
13783 return full_name;
13784 }
13785 else
13786 return xstrdup (fe->name);
13787 }
13788 }
13789 else
13790 {
13791 /* The compiler produced a bogus file number. We can at least
13792 record the macro definitions made in the file, even if we
13793 won't be able to find the file by name. */
13794 char fake_name[80];
13795
13796 sprintf (fake_name, "<bad macro file number %d>", file);
13797
13798 complaint (&symfile_complaints,
13799 _("bad file number in macro information (%d)"),
13800 file);
13801
13802 return xstrdup (fake_name);
13803 }
13804 }
13805
13806
13807 static struct macro_source_file *
13808 macro_start_file (int file, int line,
13809 struct macro_source_file *current_file,
13810 const char *comp_dir,
13811 struct line_header *lh, struct objfile *objfile)
13812 {
13813 /* The full name of this source file. */
13814 char *full_name = file_full_name (file, lh, comp_dir);
13815
13816 /* We don't create a macro table for this compilation unit
13817 at all until we actually get a filename. */
13818 if (! pending_macros)
13819 pending_macros = new_macro_table (&objfile->objfile_obstack,
13820 objfile->macro_cache);
13821
13822 if (! current_file)
13823 /* If we have no current file, then this must be the start_file
13824 directive for the compilation unit's main source file. */
13825 current_file = macro_set_main (pending_macros, full_name);
13826 else
13827 current_file = macro_include (current_file, line, full_name);
13828
13829 xfree (full_name);
13830
13831 return current_file;
13832 }
13833
13834
13835 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
13836 followed by a null byte. */
13837 static char *
13838 copy_string (const char *buf, int len)
13839 {
13840 char *s = xmalloc (len + 1);
13841
13842 memcpy (s, buf, len);
13843 s[len] = '\0';
13844 return s;
13845 }
13846
13847
13848 static const char *
13849 consume_improper_spaces (const char *p, const char *body)
13850 {
13851 if (*p == ' ')
13852 {
13853 complaint (&symfile_complaints,
13854 _("macro definition contains spaces "
13855 "in formal argument list:\n`%s'"),
13856 body);
13857
13858 while (*p == ' ')
13859 p++;
13860 }
13861
13862 return p;
13863 }
13864
13865
13866 static void
13867 parse_macro_definition (struct macro_source_file *file, int line,
13868 const char *body)
13869 {
13870 const char *p;
13871
13872 /* The body string takes one of two forms. For object-like macro
13873 definitions, it should be:
13874
13875 <macro name> " " <definition>
13876
13877 For function-like macro definitions, it should be:
13878
13879 <macro name> "() " <definition>
13880 or
13881 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
13882
13883 Spaces may appear only where explicitly indicated, and in the
13884 <definition>.
13885
13886 The Dwarf 2 spec says that an object-like macro's name is always
13887 followed by a space, but versions of GCC around March 2002 omit
13888 the space when the macro's definition is the empty string.
13889
13890 The Dwarf 2 spec says that there should be no spaces between the
13891 formal arguments in a function-like macro's formal argument list,
13892 but versions of GCC around March 2002 include spaces after the
13893 commas. */
13894
13895
13896 /* Find the extent of the macro name. The macro name is terminated
13897 by either a space or null character (for an object-like macro) or
13898 an opening paren (for a function-like macro). */
13899 for (p = body; *p; p++)
13900 if (*p == ' ' || *p == '(')
13901 break;
13902
13903 if (*p == ' ' || *p == '\0')
13904 {
13905 /* It's an object-like macro. */
13906 int name_len = p - body;
13907 char *name = copy_string (body, name_len);
13908 const char *replacement;
13909
13910 if (*p == ' ')
13911 replacement = body + name_len + 1;
13912 else
13913 {
13914 dwarf2_macro_malformed_definition_complaint (body);
13915 replacement = body + name_len;
13916 }
13917
13918 macro_define_object (file, line, name, replacement);
13919
13920 xfree (name);
13921 }
13922 else if (*p == '(')
13923 {
13924 /* It's a function-like macro. */
13925 char *name = copy_string (body, p - body);
13926 int argc = 0;
13927 int argv_size = 1;
13928 char **argv = xmalloc (argv_size * sizeof (*argv));
13929
13930 p++;
13931
13932 p = consume_improper_spaces (p, body);
13933
13934 /* Parse the formal argument list. */
13935 while (*p && *p != ')')
13936 {
13937 /* Find the extent of the current argument name. */
13938 const char *arg_start = p;
13939
13940 while (*p && *p != ',' && *p != ')' && *p != ' ')
13941 p++;
13942
13943 if (! *p || p == arg_start)
13944 dwarf2_macro_malformed_definition_complaint (body);
13945 else
13946 {
13947 /* Make sure argv has room for the new argument. */
13948 if (argc >= argv_size)
13949 {
13950 argv_size *= 2;
13951 argv = xrealloc (argv, argv_size * sizeof (*argv));
13952 }
13953
13954 argv[argc++] = copy_string (arg_start, p - arg_start);
13955 }
13956
13957 p = consume_improper_spaces (p, body);
13958
13959 /* Consume the comma, if present. */
13960 if (*p == ',')
13961 {
13962 p++;
13963
13964 p = consume_improper_spaces (p, body);
13965 }
13966 }
13967
13968 if (*p == ')')
13969 {
13970 p++;
13971
13972 if (*p == ' ')
13973 /* Perfectly formed definition, no complaints. */
13974 macro_define_function (file, line, name,
13975 argc, (const char **) argv,
13976 p + 1);
13977 else if (*p == '\0')
13978 {
13979 /* Complain, but do define it. */
13980 dwarf2_macro_malformed_definition_complaint (body);
13981 macro_define_function (file, line, name,
13982 argc, (const char **) argv,
13983 p);
13984 }
13985 else
13986 /* Just complain. */
13987 dwarf2_macro_malformed_definition_complaint (body);
13988 }
13989 else
13990 /* Just complain. */
13991 dwarf2_macro_malformed_definition_complaint (body);
13992
13993 xfree (name);
13994 {
13995 int i;
13996
13997 for (i = 0; i < argc; i++)
13998 xfree (argv[i]);
13999 }
14000 xfree (argv);
14001 }
14002 else
14003 dwarf2_macro_malformed_definition_complaint (body);
14004 }
14005
14006
14007 static void
14008 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14009 char *comp_dir, bfd *abfd,
14010 struct dwarf2_cu *cu)
14011 {
14012 gdb_byte *mac_ptr, *mac_end;
14013 struct macro_source_file *current_file = 0;
14014 enum dwarf_macinfo_record_type macinfo_type;
14015 int at_commandline;
14016
14017 dwarf2_read_section (dwarf2_per_objfile->objfile,
14018 &dwarf2_per_objfile->macinfo);
14019 if (dwarf2_per_objfile->macinfo.buffer == NULL)
14020 {
14021 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
14022 return;
14023 }
14024
14025 /* First pass: Find the name of the base filename.
14026 This filename is needed in order to process all macros whose definition
14027 (or undefinition) comes from the command line. These macros are defined
14028 before the first DW_MACINFO_start_file entry, and yet still need to be
14029 associated to the base file.
14030
14031 To determine the base file name, we scan the macro definitions until we
14032 reach the first DW_MACINFO_start_file entry. We then initialize
14033 CURRENT_FILE accordingly so that any macro definition found before the
14034 first DW_MACINFO_start_file can still be associated to the base file. */
14035
14036 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14037 mac_end = dwarf2_per_objfile->macinfo.buffer
14038 + dwarf2_per_objfile->macinfo.size;
14039
14040 do
14041 {
14042 /* Do we at least have room for a macinfo type byte? */
14043 if (mac_ptr >= mac_end)
14044 {
14045 /* Complaint is printed during the second pass as GDB will probably
14046 stop the first pass earlier upon finding
14047 DW_MACINFO_start_file. */
14048 break;
14049 }
14050
14051 macinfo_type = read_1_byte (abfd, mac_ptr);
14052 mac_ptr++;
14053
14054 switch (macinfo_type)
14055 {
14056 /* A zero macinfo type indicates the end of the macro
14057 information. */
14058 case 0:
14059 break;
14060
14061 case DW_MACINFO_define:
14062 case DW_MACINFO_undef:
14063 /* Only skip the data by MAC_PTR. */
14064 {
14065 unsigned int bytes_read;
14066
14067 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14068 mac_ptr += bytes_read;
14069 read_direct_string (abfd, mac_ptr, &bytes_read);
14070 mac_ptr += bytes_read;
14071 }
14072 break;
14073
14074 case DW_MACINFO_start_file:
14075 {
14076 unsigned int bytes_read;
14077 int line, file;
14078
14079 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14080 mac_ptr += bytes_read;
14081 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14082 mac_ptr += bytes_read;
14083
14084 current_file = macro_start_file (file, line, current_file,
14085 comp_dir, lh, cu->objfile);
14086 }
14087 break;
14088
14089 case DW_MACINFO_end_file:
14090 /* No data to skip by MAC_PTR. */
14091 break;
14092
14093 case DW_MACINFO_vendor_ext:
14094 /* Only skip the data by MAC_PTR. */
14095 {
14096 unsigned int bytes_read;
14097
14098 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14099 mac_ptr += bytes_read;
14100 read_direct_string (abfd, mac_ptr, &bytes_read);
14101 mac_ptr += bytes_read;
14102 }
14103 break;
14104
14105 default:
14106 break;
14107 }
14108 } while (macinfo_type != 0 && current_file == NULL);
14109
14110 /* Second pass: Process all entries.
14111
14112 Use the AT_COMMAND_LINE flag to determine whether we are still processing
14113 command-line macro definitions/undefinitions. This flag is unset when we
14114 reach the first DW_MACINFO_start_file entry. */
14115
14116 mac_ptr = dwarf2_per_objfile->macinfo.buffer + offset;
14117
14118 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14119 GDB is still reading the definitions from command line. First
14120 DW_MACINFO_start_file will need to be ignored as it was already executed
14121 to create CURRENT_FILE for the main source holding also the command line
14122 definitions. On first met DW_MACINFO_start_file this flag is reset to
14123 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14124
14125 at_commandline = 1;
14126
14127 do
14128 {
14129 /* Do we at least have room for a macinfo type byte? */
14130 if (mac_ptr >= mac_end)
14131 {
14132 dwarf2_macros_too_long_complaint ();
14133 break;
14134 }
14135
14136 macinfo_type = read_1_byte (abfd, mac_ptr);
14137 mac_ptr++;
14138
14139 switch (macinfo_type)
14140 {
14141 /* A zero macinfo type indicates the end of the macro
14142 information. */
14143 case 0:
14144 break;
14145
14146 case DW_MACINFO_define:
14147 case DW_MACINFO_undef:
14148 {
14149 unsigned int bytes_read;
14150 int line;
14151 char *body;
14152
14153 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14154 mac_ptr += bytes_read;
14155 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14156 mac_ptr += bytes_read;
14157
14158 if (! current_file)
14159 {
14160 /* DWARF violation as no main source is present. */
14161 complaint (&symfile_complaints,
14162 _("debug info with no main source gives macro %s "
14163 "on line %d: %s"),
14164 macinfo_type == DW_MACINFO_define ?
14165 _("definition") :
14166 macinfo_type == DW_MACINFO_undef ?
14167 _("undefinition") :
14168 _("something-or-other"), line, body);
14169 break;
14170 }
14171 if ((line == 0 && !at_commandline)
14172 || (line != 0 && at_commandline))
14173 complaint (&symfile_complaints,
14174 _("debug info gives %s macro %s with %s line %d: %s"),
14175 at_commandline ? _("command-line") : _("in-file"),
14176 macinfo_type == DW_MACINFO_define ?
14177 _("definition") :
14178 macinfo_type == DW_MACINFO_undef ?
14179 _("undefinition") :
14180 _("something-or-other"),
14181 line == 0 ? _("zero") : _("non-zero"), line, body);
14182
14183 if (macinfo_type == DW_MACINFO_define)
14184 parse_macro_definition (current_file, line, body);
14185 else if (macinfo_type == DW_MACINFO_undef)
14186 macro_undef (current_file, line, body);
14187 }
14188 break;
14189
14190 case DW_MACINFO_start_file:
14191 {
14192 unsigned int bytes_read;
14193 int line, file;
14194
14195 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14196 mac_ptr += bytes_read;
14197 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14198 mac_ptr += bytes_read;
14199
14200 if ((line == 0 && !at_commandline)
14201 || (line != 0 && at_commandline))
14202 complaint (&symfile_complaints,
14203 _("debug info gives source %d included "
14204 "from %s at %s line %d"),
14205 file, at_commandline ? _("command-line") : _("file"),
14206 line == 0 ? _("zero") : _("non-zero"), line);
14207
14208 if (at_commandline)
14209 {
14210 /* This DW_MACINFO_start_file was executed in the pass one. */
14211 at_commandline = 0;
14212 }
14213 else
14214 current_file = macro_start_file (file, line,
14215 current_file, comp_dir,
14216 lh, cu->objfile);
14217 }
14218 break;
14219
14220 case DW_MACINFO_end_file:
14221 if (! current_file)
14222 complaint (&symfile_complaints,
14223 _("macro debug info has an unmatched "
14224 "`close_file' directive"));
14225 else
14226 {
14227 current_file = current_file->included_by;
14228 if (! current_file)
14229 {
14230 enum dwarf_macinfo_record_type next_type;
14231
14232 /* GCC circa March 2002 doesn't produce the zero
14233 type byte marking the end of the compilation
14234 unit. Complain if it's not there, but exit no
14235 matter what. */
14236
14237 /* Do we at least have room for a macinfo type byte? */
14238 if (mac_ptr >= mac_end)
14239 {
14240 dwarf2_macros_too_long_complaint ();
14241 return;
14242 }
14243
14244 /* We don't increment mac_ptr here, so this is just
14245 a look-ahead. */
14246 next_type = read_1_byte (abfd, mac_ptr);
14247 if (next_type != 0)
14248 complaint (&symfile_complaints,
14249 _("no terminating 0-type entry for "
14250 "macros in `.debug_macinfo' section"));
14251
14252 return;
14253 }
14254 }
14255 break;
14256
14257 case DW_MACINFO_vendor_ext:
14258 {
14259 unsigned int bytes_read;
14260 int constant;
14261 char *string;
14262
14263 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14264 mac_ptr += bytes_read;
14265 string = read_direct_string (abfd, mac_ptr, &bytes_read);
14266 mac_ptr += bytes_read;
14267
14268 /* We don't recognize any vendor extensions. */
14269 }
14270 break;
14271 }
14272 } while (macinfo_type != 0);
14273 }
14274
14275 /* Check if the attribute's form is a DW_FORM_block*
14276 if so return true else false. */
14277 static int
14278 attr_form_is_block (struct attribute *attr)
14279 {
14280 return (attr == NULL ? 0 :
14281 attr->form == DW_FORM_block1
14282 || attr->form == DW_FORM_block2
14283 || attr->form == DW_FORM_block4
14284 || attr->form == DW_FORM_block
14285 || attr->form == DW_FORM_exprloc);
14286 }
14287
14288 /* Return non-zero if ATTR's value is a section offset --- classes
14289 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
14290 You may use DW_UNSND (attr) to retrieve such offsets.
14291
14292 Section 7.5.4, "Attribute Encodings", explains that no attribute
14293 may have a value that belongs to more than one of these classes; it
14294 would be ambiguous if we did, because we use the same forms for all
14295 of them. */
14296 static int
14297 attr_form_is_section_offset (struct attribute *attr)
14298 {
14299 return (attr->form == DW_FORM_data4
14300 || attr->form == DW_FORM_data8
14301 || attr->form == DW_FORM_sec_offset);
14302 }
14303
14304
14305 /* Return non-zero if ATTR's value falls in the 'constant' class, or
14306 zero otherwise. When this function returns true, you can apply
14307 dwarf2_get_attr_constant_value to it.
14308
14309 However, note that for some attributes you must check
14310 attr_form_is_section_offset before using this test. DW_FORM_data4
14311 and DW_FORM_data8 are members of both the constant class, and of
14312 the classes that contain offsets into other debug sections
14313 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
14314 that, if an attribute's can be either a constant or one of the
14315 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
14316 taken as section offsets, not constants. */
14317 static int
14318 attr_form_is_constant (struct attribute *attr)
14319 {
14320 switch (attr->form)
14321 {
14322 case DW_FORM_sdata:
14323 case DW_FORM_udata:
14324 case DW_FORM_data1:
14325 case DW_FORM_data2:
14326 case DW_FORM_data4:
14327 case DW_FORM_data8:
14328 return 1;
14329 default:
14330 return 0;
14331 }
14332 }
14333
14334 /* A helper function that fills in a dwarf2_loclist_baton. */
14335
14336 static void
14337 fill_in_loclist_baton (struct dwarf2_cu *cu,
14338 struct dwarf2_loclist_baton *baton,
14339 struct attribute *attr)
14340 {
14341 dwarf2_read_section (dwarf2_per_objfile->objfile,
14342 &dwarf2_per_objfile->loc);
14343
14344 baton->per_cu = cu->per_cu;
14345 gdb_assert (baton->per_cu);
14346 /* We don't know how long the location list is, but make sure we
14347 don't run off the edge of the section. */
14348 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
14349 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
14350 baton->base_address = cu->base_address;
14351 }
14352
14353 static void
14354 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
14355 struct dwarf2_cu *cu)
14356 {
14357 if (attr_form_is_section_offset (attr)
14358 /* ".debug_loc" may not exist at all, or the offset may be outside
14359 the section. If so, fall through to the complaint in the
14360 other branch. */
14361 && DW_UNSND (attr) < dwarf2_per_objfile->loc.size)
14362 {
14363 struct dwarf2_loclist_baton *baton;
14364
14365 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14366 sizeof (struct dwarf2_loclist_baton));
14367
14368 fill_in_loclist_baton (cu, baton, attr);
14369
14370 if (cu->base_known == 0)
14371 complaint (&symfile_complaints,
14372 _("Location list used without "
14373 "specifying the CU base address."));
14374
14375 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
14376 SYMBOL_LOCATION_BATON (sym) = baton;
14377 }
14378 else
14379 {
14380 struct dwarf2_locexpr_baton *baton;
14381
14382 baton = obstack_alloc (&cu->objfile->objfile_obstack,
14383 sizeof (struct dwarf2_locexpr_baton));
14384 baton->per_cu = cu->per_cu;
14385 gdb_assert (baton->per_cu);
14386
14387 if (attr_form_is_block (attr))
14388 {
14389 /* Note that we're just copying the block's data pointer
14390 here, not the actual data. We're still pointing into the
14391 info_buffer for SYM's objfile; right now we never release
14392 that buffer, but when we do clean up properly this may
14393 need to change. */
14394 baton->size = DW_BLOCK (attr)->size;
14395 baton->data = DW_BLOCK (attr)->data;
14396 }
14397 else
14398 {
14399 dwarf2_invalid_attrib_class_complaint ("location description",
14400 SYMBOL_NATURAL_NAME (sym));
14401 baton->size = 0;
14402 baton->data = NULL;
14403 }
14404
14405 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
14406 SYMBOL_LOCATION_BATON (sym) = baton;
14407 }
14408 }
14409
14410 /* Return the OBJFILE associated with the compilation unit CU. If CU
14411 came from a separate debuginfo file, then the master objfile is
14412 returned. */
14413
14414 struct objfile *
14415 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
14416 {
14417 struct objfile *objfile = per_cu->objfile;
14418
14419 /* Return the master objfile, so that we can report and look up the
14420 correct file containing this variable. */
14421 if (objfile->separate_debug_objfile_backlink)
14422 objfile = objfile->separate_debug_objfile_backlink;
14423
14424 return objfile;
14425 }
14426
14427 /* Return the address size given in the compilation unit header for CU. */
14428
14429 CORE_ADDR
14430 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
14431 {
14432 if (per_cu->cu)
14433 return per_cu->cu->header.addr_size;
14434 else
14435 {
14436 /* If the CU is not currently read in, we re-read its header. */
14437 struct objfile *objfile = per_cu->objfile;
14438 struct dwarf2_per_objfile *per_objfile
14439 = objfile_data (objfile, dwarf2_objfile_data_key);
14440 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14441 struct comp_unit_head cu_header;
14442
14443 memset (&cu_header, 0, sizeof cu_header);
14444 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14445 return cu_header.addr_size;
14446 }
14447 }
14448
14449 /* Return the offset size given in the compilation unit header for CU. */
14450
14451 int
14452 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
14453 {
14454 if (per_cu->cu)
14455 return per_cu->cu->header.offset_size;
14456 else
14457 {
14458 /* If the CU is not currently read in, we re-read its header. */
14459 struct objfile *objfile = per_cu->objfile;
14460 struct dwarf2_per_objfile *per_objfile
14461 = objfile_data (objfile, dwarf2_objfile_data_key);
14462 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
14463 struct comp_unit_head cu_header;
14464
14465 memset (&cu_header, 0, sizeof cu_header);
14466 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
14467 return cu_header.offset_size;
14468 }
14469 }
14470
14471 /* Return the text offset of the CU. The returned offset comes from
14472 this CU's objfile. If this objfile came from a separate debuginfo
14473 file, then the offset may be different from the corresponding
14474 offset in the parent objfile. */
14475
14476 CORE_ADDR
14477 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
14478 {
14479 struct objfile *objfile = per_cu->objfile;
14480
14481 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14482 }
14483
14484 /* Locate the .debug_info compilation unit from CU's objfile which contains
14485 the DIE at OFFSET. Raises an error on failure. */
14486
14487 static struct dwarf2_per_cu_data *
14488 dwarf2_find_containing_comp_unit (unsigned int offset,
14489 struct objfile *objfile)
14490 {
14491 struct dwarf2_per_cu_data *this_cu;
14492 int low, high;
14493
14494 low = 0;
14495 high = dwarf2_per_objfile->n_comp_units - 1;
14496 while (high > low)
14497 {
14498 int mid = low + (high - low) / 2;
14499
14500 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
14501 high = mid;
14502 else
14503 low = mid + 1;
14504 }
14505 gdb_assert (low == high);
14506 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
14507 {
14508 if (low == 0)
14509 error (_("Dwarf Error: could not find partial DIE containing "
14510 "offset 0x%lx [in module %s]"),
14511 (long) offset, bfd_get_filename (objfile->obfd));
14512
14513 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
14514 return dwarf2_per_objfile->all_comp_units[low-1];
14515 }
14516 else
14517 {
14518 this_cu = dwarf2_per_objfile->all_comp_units[low];
14519 if (low == dwarf2_per_objfile->n_comp_units - 1
14520 && offset >= this_cu->offset + this_cu->length)
14521 error (_("invalid dwarf2 offset %u"), offset);
14522 gdb_assert (offset < this_cu->offset + this_cu->length);
14523 return this_cu;
14524 }
14525 }
14526
14527 /* Locate the compilation unit from OBJFILE which is located at exactly
14528 OFFSET. Raises an error on failure. */
14529
14530 static struct dwarf2_per_cu_data *
14531 dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
14532 {
14533 struct dwarf2_per_cu_data *this_cu;
14534
14535 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
14536 if (this_cu->offset != offset)
14537 error (_("no compilation unit with offset %u."), offset);
14538 return this_cu;
14539 }
14540
14541 /* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
14542
14543 static void
14544 init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
14545 {
14546 memset (cu, 0, sizeof (*cu));
14547 cu->objfile = objfile;
14548 obstack_init (&cu->comp_unit_obstack);
14549 }
14550
14551 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
14552
14553 static void
14554 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
14555 {
14556 struct attribute *attr;
14557
14558 /* Set the language we're debugging. */
14559 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
14560 if (attr)
14561 set_cu_language (DW_UNSND (attr), cu);
14562 else
14563 set_cu_language (language_minimal, cu);
14564 }
14565
14566 /* Release one cached compilation unit, CU. We unlink it from the tree
14567 of compilation units, but we don't remove it from the read_in_chain;
14568 the caller is responsible for that.
14569 NOTE: DATA is a void * because this function is also used as a
14570 cleanup routine. */
14571
14572 static void
14573 free_one_comp_unit (void *data)
14574 {
14575 struct dwarf2_cu *cu = data;
14576
14577 if (cu->per_cu != NULL)
14578 cu->per_cu->cu = NULL;
14579 cu->per_cu = NULL;
14580
14581 obstack_free (&cu->comp_unit_obstack, NULL);
14582
14583 xfree (cu);
14584 }
14585
14586 /* This cleanup function is passed the address of a dwarf2_cu on the stack
14587 when we're finished with it. We can't free the pointer itself, but be
14588 sure to unlink it from the cache. Also release any associated storage
14589 and perform cache maintenance.
14590
14591 Only used during partial symbol parsing. */
14592
14593 static void
14594 free_stack_comp_unit (void *data)
14595 {
14596 struct dwarf2_cu *cu = data;
14597
14598 obstack_free (&cu->comp_unit_obstack, NULL);
14599 cu->partial_dies = NULL;
14600
14601 if (cu->per_cu != NULL)
14602 {
14603 /* This compilation unit is on the stack in our caller, so we
14604 should not xfree it. Just unlink it. */
14605 cu->per_cu->cu = NULL;
14606 cu->per_cu = NULL;
14607
14608 /* If we had a per-cu pointer, then we may have other compilation
14609 units loaded, so age them now. */
14610 age_cached_comp_units ();
14611 }
14612 }
14613
14614 /* Free all cached compilation units. */
14615
14616 static void
14617 free_cached_comp_units (void *data)
14618 {
14619 struct dwarf2_per_cu_data *per_cu, **last_chain;
14620
14621 per_cu = dwarf2_per_objfile->read_in_chain;
14622 last_chain = &dwarf2_per_objfile->read_in_chain;
14623 while (per_cu != NULL)
14624 {
14625 struct dwarf2_per_cu_data *next_cu;
14626
14627 next_cu = per_cu->cu->read_in_chain;
14628
14629 free_one_comp_unit (per_cu->cu);
14630 *last_chain = next_cu;
14631
14632 per_cu = next_cu;
14633 }
14634 }
14635
14636 /* Increase the age counter on each cached compilation unit, and free
14637 any that are too old. */
14638
14639 static void
14640 age_cached_comp_units (void)
14641 {
14642 struct dwarf2_per_cu_data *per_cu, **last_chain;
14643
14644 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
14645 per_cu = dwarf2_per_objfile->read_in_chain;
14646 while (per_cu != NULL)
14647 {
14648 per_cu->cu->last_used ++;
14649 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
14650 dwarf2_mark (per_cu->cu);
14651 per_cu = per_cu->cu->read_in_chain;
14652 }
14653
14654 per_cu = dwarf2_per_objfile->read_in_chain;
14655 last_chain = &dwarf2_per_objfile->read_in_chain;
14656 while (per_cu != NULL)
14657 {
14658 struct dwarf2_per_cu_data *next_cu;
14659
14660 next_cu = per_cu->cu->read_in_chain;
14661
14662 if (!per_cu->cu->mark)
14663 {
14664 free_one_comp_unit (per_cu->cu);
14665 *last_chain = next_cu;
14666 }
14667 else
14668 last_chain = &per_cu->cu->read_in_chain;
14669
14670 per_cu = next_cu;
14671 }
14672 }
14673
14674 /* Remove a single compilation unit from the cache. */
14675
14676 static void
14677 free_one_cached_comp_unit (void *target_cu)
14678 {
14679 struct dwarf2_per_cu_data *per_cu, **last_chain;
14680
14681 per_cu = dwarf2_per_objfile->read_in_chain;
14682 last_chain = &dwarf2_per_objfile->read_in_chain;
14683 while (per_cu != NULL)
14684 {
14685 struct dwarf2_per_cu_data *next_cu;
14686
14687 next_cu = per_cu->cu->read_in_chain;
14688
14689 if (per_cu->cu == target_cu)
14690 {
14691 free_one_comp_unit (per_cu->cu);
14692 *last_chain = next_cu;
14693 break;
14694 }
14695 else
14696 last_chain = &per_cu->cu->read_in_chain;
14697
14698 per_cu = next_cu;
14699 }
14700 }
14701
14702 /* Release all extra memory associated with OBJFILE. */
14703
14704 void
14705 dwarf2_free_objfile (struct objfile *objfile)
14706 {
14707 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
14708
14709 if (dwarf2_per_objfile == NULL)
14710 return;
14711
14712 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
14713 free_cached_comp_units (NULL);
14714
14715 if (dwarf2_per_objfile->quick_file_names_table)
14716 htab_delete (dwarf2_per_objfile->quick_file_names_table);
14717
14718 /* Everything else should be on the objfile obstack. */
14719 }
14720
14721 /* A pair of DIE offset and GDB type pointer. We store these
14722 in a hash table separate from the DIEs, and preserve them
14723 when the DIEs are flushed out of cache. */
14724
14725 struct dwarf2_offset_and_type
14726 {
14727 unsigned int offset;
14728 struct type *type;
14729 };
14730
14731 /* Hash function for a dwarf2_offset_and_type. */
14732
14733 static hashval_t
14734 offset_and_type_hash (const void *item)
14735 {
14736 const struct dwarf2_offset_and_type *ofs = item;
14737
14738 return ofs->offset;
14739 }
14740
14741 /* Equality function for a dwarf2_offset_and_type. */
14742
14743 static int
14744 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
14745 {
14746 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
14747 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
14748
14749 return ofs_lhs->offset == ofs_rhs->offset;
14750 }
14751
14752 /* Set the type associated with DIE to TYPE. Save it in CU's hash
14753 table if necessary. For convenience, return TYPE.
14754
14755 The DIEs reading must have careful ordering to:
14756 * Not cause infite loops trying to read in DIEs as a prerequisite for
14757 reading current DIE.
14758 * Not trying to dereference contents of still incompletely read in types
14759 while reading in other DIEs.
14760 * Enable referencing still incompletely read in types just by a pointer to
14761 the type without accessing its fields.
14762
14763 Therefore caller should follow these rules:
14764 * Try to fetch any prerequisite types we may need to build this DIE type
14765 before building the type and calling set_die_type.
14766 * After building type call set_die_type for current DIE as soon as
14767 possible before fetching more types to complete the current type.
14768 * Make the type as complete as possible before fetching more types. */
14769
14770 static struct type *
14771 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
14772 {
14773 struct dwarf2_offset_and_type **slot, ofs;
14774 struct objfile *objfile = cu->objfile;
14775 htab_t *type_hash_ptr;
14776
14777 /* For Ada types, make sure that the gnat-specific data is always
14778 initialized (if not already set). There are a few types where
14779 we should not be doing so, because the type-specific area is
14780 already used to hold some other piece of info (eg: TYPE_CODE_FLT
14781 where the type-specific area is used to store the floatformat).
14782 But this is not a problem, because the gnat-specific information
14783 is actually not needed for these types. */
14784 if (need_gnat_info (cu)
14785 && TYPE_CODE (type) != TYPE_CODE_FUNC
14786 && TYPE_CODE (type) != TYPE_CODE_FLT
14787 && !HAVE_GNAT_AUX_INFO (type))
14788 INIT_GNAT_SPECIFIC (type);
14789
14790 if (cu->per_cu->from_debug_types)
14791 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
14792 else
14793 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
14794
14795 if (*type_hash_ptr == NULL)
14796 {
14797 *type_hash_ptr
14798 = htab_create_alloc_ex (127,
14799 offset_and_type_hash,
14800 offset_and_type_eq,
14801 NULL,
14802 &objfile->objfile_obstack,
14803 hashtab_obstack_allocate,
14804 dummy_obstack_deallocate);
14805 }
14806
14807 ofs.offset = die->offset;
14808 ofs.type = type;
14809 slot = (struct dwarf2_offset_and_type **)
14810 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
14811 if (*slot)
14812 complaint (&symfile_complaints,
14813 _("A problem internal to GDB: DIE 0x%x has type already set"),
14814 die->offset);
14815 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
14816 **slot = ofs;
14817 return type;
14818 }
14819
14820 /* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
14821 table, or return NULL if the die does not have a saved type. */
14822
14823 static struct type *
14824 get_die_type_at_offset (unsigned int offset,
14825 struct dwarf2_per_cu_data *per_cu)
14826 {
14827 struct dwarf2_offset_and_type *slot, ofs;
14828 htab_t type_hash;
14829
14830 if (per_cu->from_debug_types)
14831 type_hash = dwarf2_per_objfile->debug_types_type_hash;
14832 else
14833 type_hash = dwarf2_per_objfile->debug_info_type_hash;
14834 if (type_hash == NULL)
14835 return NULL;
14836
14837 ofs.offset = offset;
14838 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
14839 if (slot)
14840 return slot->type;
14841 else
14842 return NULL;
14843 }
14844
14845 /* Look up the type for DIE in the appropriate type_hash table,
14846 or return NULL if DIE does not have a saved type. */
14847
14848 static struct type *
14849 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
14850 {
14851 return get_die_type_at_offset (die->offset, cu->per_cu);
14852 }
14853
14854 /* Add a dependence relationship from CU to REF_PER_CU. */
14855
14856 static void
14857 dwarf2_add_dependence (struct dwarf2_cu *cu,
14858 struct dwarf2_per_cu_data *ref_per_cu)
14859 {
14860 void **slot;
14861
14862 if (cu->dependencies == NULL)
14863 cu->dependencies
14864 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
14865 NULL, &cu->comp_unit_obstack,
14866 hashtab_obstack_allocate,
14867 dummy_obstack_deallocate);
14868
14869 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
14870 if (*slot == NULL)
14871 *slot = ref_per_cu;
14872 }
14873
14874 /* Subroutine of dwarf2_mark to pass to htab_traverse.
14875 Set the mark field in every compilation unit in the
14876 cache that we must keep because we are keeping CU. */
14877
14878 static int
14879 dwarf2_mark_helper (void **slot, void *data)
14880 {
14881 struct dwarf2_per_cu_data *per_cu;
14882
14883 per_cu = (struct dwarf2_per_cu_data *) *slot;
14884 if (per_cu->cu->mark)
14885 return 1;
14886 per_cu->cu->mark = 1;
14887
14888 if (per_cu->cu->dependencies != NULL)
14889 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
14890
14891 return 1;
14892 }
14893
14894 /* Set the mark field in CU and in every other compilation unit in the
14895 cache that we must keep because we are keeping CU. */
14896
14897 static void
14898 dwarf2_mark (struct dwarf2_cu *cu)
14899 {
14900 if (cu->mark)
14901 return;
14902 cu->mark = 1;
14903 if (cu->dependencies != NULL)
14904 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
14905 }
14906
14907 static void
14908 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
14909 {
14910 while (per_cu)
14911 {
14912 per_cu->cu->mark = 0;
14913 per_cu = per_cu->cu->read_in_chain;
14914 }
14915 }
14916
14917 /* Trivial hash function for partial_die_info: the hash value of a DIE
14918 is its offset in .debug_info for this objfile. */
14919
14920 static hashval_t
14921 partial_die_hash (const void *item)
14922 {
14923 const struct partial_die_info *part_die = item;
14924
14925 return part_die->offset;
14926 }
14927
14928 /* Trivial comparison function for partial_die_info structures: two DIEs
14929 are equal if they have the same offset. */
14930
14931 static int
14932 partial_die_eq (const void *item_lhs, const void *item_rhs)
14933 {
14934 const struct partial_die_info *part_die_lhs = item_lhs;
14935 const struct partial_die_info *part_die_rhs = item_rhs;
14936
14937 return part_die_lhs->offset == part_die_rhs->offset;
14938 }
14939
14940 static struct cmd_list_element *set_dwarf2_cmdlist;
14941 static struct cmd_list_element *show_dwarf2_cmdlist;
14942
14943 static void
14944 set_dwarf2_cmd (char *args, int from_tty)
14945 {
14946 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
14947 }
14948
14949 static void
14950 show_dwarf2_cmd (char *args, int from_tty)
14951 {
14952 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
14953 }
14954
14955 /* If section described by INFO was mmapped, munmap it now. */
14956
14957 static void
14958 munmap_section_buffer (struct dwarf2_section_info *info)
14959 {
14960 if (info->was_mmapped)
14961 {
14962 #ifdef HAVE_MMAP
14963 intptr_t begin = (intptr_t) info->buffer;
14964 intptr_t map_begin = begin & ~(pagesize - 1);
14965 size_t map_length = info->size + begin - map_begin;
14966
14967 gdb_assert (munmap ((void *) map_begin, map_length) == 0);
14968 #else
14969 /* Without HAVE_MMAP, we should never be here to begin with. */
14970 gdb_assert_not_reached ("no mmap support");
14971 #endif
14972 }
14973 }
14974
14975 /* munmap debug sections for OBJFILE, if necessary. */
14976
14977 static void
14978 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
14979 {
14980 struct dwarf2_per_objfile *data = d;
14981
14982 /* This is sorted according to the order they're defined in to make it easier
14983 to keep in sync. */
14984 munmap_section_buffer (&data->info);
14985 munmap_section_buffer (&data->abbrev);
14986 munmap_section_buffer (&data->line);
14987 munmap_section_buffer (&data->loc);
14988 munmap_section_buffer (&data->macinfo);
14989 munmap_section_buffer (&data->str);
14990 munmap_section_buffer (&data->ranges);
14991 munmap_section_buffer (&data->types);
14992 munmap_section_buffer (&data->frame);
14993 munmap_section_buffer (&data->eh_frame);
14994 munmap_section_buffer (&data->gdb_index);
14995 }
14996
14997 \f
14998 /* The "save gdb-index" command. */
14999
15000 /* The contents of the hash table we create when building the string
15001 table. */
15002 struct strtab_entry
15003 {
15004 offset_type offset;
15005 const char *str;
15006 };
15007
15008 /* Hash function for a strtab_entry. */
15009
15010 static hashval_t
15011 hash_strtab_entry (const void *e)
15012 {
15013 const struct strtab_entry *entry = e;
15014 return mapped_index_string_hash (entry->str);
15015 }
15016
15017 /* Equality function for a strtab_entry. */
15018
15019 static int
15020 eq_strtab_entry (const void *a, const void *b)
15021 {
15022 const struct strtab_entry *ea = a;
15023 const struct strtab_entry *eb = b;
15024 return !strcmp (ea->str, eb->str);
15025 }
15026
15027 /* Create a strtab_entry hash table. */
15028
15029 static htab_t
15030 create_strtab (void)
15031 {
15032 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15033 xfree, xcalloc, xfree);
15034 }
15035
15036 /* Add a string to the constant pool. Return the string's offset in
15037 host order. */
15038
15039 static offset_type
15040 add_string (htab_t table, struct obstack *cpool, const char *str)
15041 {
15042 void **slot;
15043 struct strtab_entry entry;
15044 struct strtab_entry *result;
15045
15046 entry.str = str;
15047 slot = htab_find_slot (table, &entry, INSERT);
15048 if (*slot)
15049 result = *slot;
15050 else
15051 {
15052 result = XNEW (struct strtab_entry);
15053 result->offset = obstack_object_size (cpool);
15054 result->str = str;
15055 obstack_grow_str0 (cpool, str);
15056 *slot = result;
15057 }
15058 return result->offset;
15059 }
15060
15061 /* An entry in the symbol table. */
15062 struct symtab_index_entry
15063 {
15064 /* The name of the symbol. */
15065 const char *name;
15066 /* The offset of the name in the constant pool. */
15067 offset_type index_offset;
15068 /* A sorted vector of the indices of all the CUs that hold an object
15069 of this name. */
15070 VEC (offset_type) *cu_indices;
15071 };
15072
15073 /* The symbol table. This is a power-of-2-sized hash table. */
15074 struct mapped_symtab
15075 {
15076 offset_type n_elements;
15077 offset_type size;
15078 struct symtab_index_entry **data;
15079 };
15080
15081 /* Hash function for a symtab_index_entry. */
15082
15083 static hashval_t
15084 hash_symtab_entry (const void *e)
15085 {
15086 const struct symtab_index_entry *entry = e;
15087 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15088 sizeof (offset_type) * VEC_length (offset_type,
15089 entry->cu_indices),
15090 0);
15091 }
15092
15093 /* Equality function for a symtab_index_entry. */
15094
15095 static int
15096 eq_symtab_entry (const void *a, const void *b)
15097 {
15098 const struct symtab_index_entry *ea = a;
15099 const struct symtab_index_entry *eb = b;
15100 int len = VEC_length (offset_type, ea->cu_indices);
15101 if (len != VEC_length (offset_type, eb->cu_indices))
15102 return 0;
15103 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15104 VEC_address (offset_type, eb->cu_indices),
15105 sizeof (offset_type) * len);
15106 }
15107
15108 /* Destroy a symtab_index_entry. */
15109
15110 static void
15111 delete_symtab_entry (void *p)
15112 {
15113 struct symtab_index_entry *entry = p;
15114 VEC_free (offset_type, entry->cu_indices);
15115 xfree (entry);
15116 }
15117
15118 /* Create a hash table holding symtab_index_entry objects. */
15119
15120 static htab_t
15121 create_symbol_hash_table (void)
15122 {
15123 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15124 delete_symtab_entry, xcalloc, xfree);
15125 }
15126
15127 /* Create a new mapped symtab object. */
15128
15129 static struct mapped_symtab *
15130 create_mapped_symtab (void)
15131 {
15132 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15133 symtab->n_elements = 0;
15134 symtab->size = 1024;
15135 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15136 return symtab;
15137 }
15138
15139 /* Destroy a mapped_symtab. */
15140
15141 static void
15142 cleanup_mapped_symtab (void *p)
15143 {
15144 struct mapped_symtab *symtab = p;
15145 /* The contents of the array are freed when the other hash table is
15146 destroyed. */
15147 xfree (symtab->data);
15148 xfree (symtab);
15149 }
15150
15151 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
15152 the slot. */
15153
15154 static struct symtab_index_entry **
15155 find_slot (struct mapped_symtab *symtab, const char *name)
15156 {
15157 offset_type index, step, hash = mapped_index_string_hash (name);
15158
15159 index = hash & (symtab->size - 1);
15160 step = ((hash * 17) & (symtab->size - 1)) | 1;
15161
15162 for (;;)
15163 {
15164 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15165 return &symtab->data[index];
15166 index = (index + step) & (symtab->size - 1);
15167 }
15168 }
15169
15170 /* Expand SYMTAB's hash table. */
15171
15172 static void
15173 hash_expand (struct mapped_symtab *symtab)
15174 {
15175 offset_type old_size = symtab->size;
15176 offset_type i;
15177 struct symtab_index_entry **old_entries = symtab->data;
15178
15179 symtab->size *= 2;
15180 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15181
15182 for (i = 0; i < old_size; ++i)
15183 {
15184 if (old_entries[i])
15185 {
15186 struct symtab_index_entry **slot = find_slot (symtab,
15187 old_entries[i]->name);
15188 *slot = old_entries[i];
15189 }
15190 }
15191
15192 xfree (old_entries);
15193 }
15194
15195 /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15196 is the index of the CU in which the symbol appears. */
15197
15198 static void
15199 add_index_entry (struct mapped_symtab *symtab, const char *name,
15200 offset_type cu_index)
15201 {
15202 struct symtab_index_entry **slot;
15203
15204 ++symtab->n_elements;
15205 if (4 * symtab->n_elements / 3 >= symtab->size)
15206 hash_expand (symtab);
15207
15208 slot = find_slot (symtab, name);
15209 if (!*slot)
15210 {
15211 *slot = XNEW (struct symtab_index_entry);
15212 (*slot)->name = name;
15213 (*slot)->cu_indices = NULL;
15214 }
15215 /* Don't push an index twice. Due to how we add entries we only
15216 have to check the last one. */
15217 if (VEC_empty (offset_type, (*slot)->cu_indices)
15218 || VEC_length (offset_type, (*slot)->cu_indices) != cu_index)
15219 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
15220 }
15221
15222 /* Add a vector of indices to the constant pool. */
15223
15224 static offset_type
15225 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
15226 struct symtab_index_entry *entry)
15227 {
15228 void **slot;
15229
15230 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
15231 if (!*slot)
15232 {
15233 offset_type len = VEC_length (offset_type, entry->cu_indices);
15234 offset_type val = MAYBE_SWAP (len);
15235 offset_type iter;
15236 int i;
15237
15238 *slot = entry;
15239 entry->index_offset = obstack_object_size (cpool);
15240
15241 obstack_grow (cpool, &val, sizeof (val));
15242 for (i = 0;
15243 VEC_iterate (offset_type, entry->cu_indices, i, iter);
15244 ++i)
15245 {
15246 val = MAYBE_SWAP (iter);
15247 obstack_grow (cpool, &val, sizeof (val));
15248 }
15249 }
15250 else
15251 {
15252 struct symtab_index_entry *old_entry = *slot;
15253 entry->index_offset = old_entry->index_offset;
15254 entry = old_entry;
15255 }
15256 return entry->index_offset;
15257 }
15258
15259 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
15260 constant pool entries going into the obstack CPOOL. */
15261
15262 static void
15263 write_hash_table (struct mapped_symtab *symtab,
15264 struct obstack *output, struct obstack *cpool)
15265 {
15266 offset_type i;
15267 htab_t symbol_hash_table;
15268 htab_t str_table;
15269
15270 symbol_hash_table = create_symbol_hash_table ();
15271 str_table = create_strtab ();
15272
15273 /* We add all the index vectors to the constant pool first, to
15274 ensure alignment is ok. */
15275 for (i = 0; i < symtab->size; ++i)
15276 {
15277 if (symtab->data[i])
15278 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
15279 }
15280
15281 /* Now write out the hash table. */
15282 for (i = 0; i < symtab->size; ++i)
15283 {
15284 offset_type str_off, vec_off;
15285
15286 if (symtab->data[i])
15287 {
15288 str_off = add_string (str_table, cpool, symtab->data[i]->name);
15289 vec_off = symtab->data[i]->index_offset;
15290 }
15291 else
15292 {
15293 /* While 0 is a valid constant pool index, it is not valid
15294 to have 0 for both offsets. */
15295 str_off = 0;
15296 vec_off = 0;
15297 }
15298
15299 str_off = MAYBE_SWAP (str_off);
15300 vec_off = MAYBE_SWAP (vec_off);
15301
15302 obstack_grow (output, &str_off, sizeof (str_off));
15303 obstack_grow (output, &vec_off, sizeof (vec_off));
15304 }
15305
15306 htab_delete (str_table);
15307 htab_delete (symbol_hash_table);
15308 }
15309
15310 /* Struct to map psymtab to CU index in the index file. */
15311 struct psymtab_cu_index_map
15312 {
15313 struct partial_symtab *psymtab;
15314 unsigned int cu_index;
15315 };
15316
15317 static hashval_t
15318 hash_psymtab_cu_index (const void *item)
15319 {
15320 const struct psymtab_cu_index_map *map = item;
15321
15322 return htab_hash_pointer (map->psymtab);
15323 }
15324
15325 static int
15326 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
15327 {
15328 const struct psymtab_cu_index_map *lhs = item_lhs;
15329 const struct psymtab_cu_index_map *rhs = item_rhs;
15330
15331 return lhs->psymtab == rhs->psymtab;
15332 }
15333
15334 /* Helper struct for building the address table. */
15335 struct addrmap_index_data
15336 {
15337 struct objfile *objfile;
15338 struct obstack *addr_obstack;
15339 htab_t cu_index_htab;
15340
15341 /* Non-zero if the previous_* fields are valid.
15342 We can't write an entry until we see the next entry (since it is only then
15343 that we know the end of the entry). */
15344 int previous_valid;
15345 /* Index of the CU in the table of all CUs in the index file. */
15346 unsigned int previous_cu_index;
15347 /* Start address of the CU. */
15348 CORE_ADDR previous_cu_start;
15349 };
15350
15351 /* Write an address entry to OBSTACK. */
15352
15353 static void
15354 add_address_entry (struct objfile *objfile, struct obstack *obstack,
15355 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
15356 {
15357 offset_type cu_index_to_write;
15358 char addr[8];
15359 CORE_ADDR baseaddr;
15360
15361 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15362
15363 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
15364 obstack_grow (obstack, addr, 8);
15365 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
15366 obstack_grow (obstack, addr, 8);
15367 cu_index_to_write = MAYBE_SWAP (cu_index);
15368 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
15369 }
15370
15371 /* Worker function for traversing an addrmap to build the address table. */
15372
15373 static int
15374 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
15375 {
15376 struct addrmap_index_data *data = datap;
15377 struct partial_symtab *pst = obj;
15378 offset_type cu_index;
15379 void **slot;
15380
15381 if (data->previous_valid)
15382 add_address_entry (data->objfile, data->addr_obstack,
15383 data->previous_cu_start, start_addr,
15384 data->previous_cu_index);
15385
15386 data->previous_cu_start = start_addr;
15387 if (pst != NULL)
15388 {
15389 struct psymtab_cu_index_map find_map, *map;
15390 find_map.psymtab = pst;
15391 map = htab_find (data->cu_index_htab, &find_map);
15392 gdb_assert (map != NULL);
15393 data->previous_cu_index = map->cu_index;
15394 data->previous_valid = 1;
15395 }
15396 else
15397 data->previous_valid = 0;
15398
15399 return 0;
15400 }
15401
15402 /* Write OBJFILE's address map to OBSTACK.
15403 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
15404 in the index file. */
15405
15406 static void
15407 write_address_map (struct objfile *objfile, struct obstack *obstack,
15408 htab_t cu_index_htab)
15409 {
15410 struct addrmap_index_data addrmap_index_data;
15411
15412 /* When writing the address table, we have to cope with the fact that
15413 the addrmap iterator only provides the start of a region; we have to
15414 wait until the next invocation to get the start of the next region. */
15415
15416 addrmap_index_data.objfile = objfile;
15417 addrmap_index_data.addr_obstack = obstack;
15418 addrmap_index_data.cu_index_htab = cu_index_htab;
15419 addrmap_index_data.previous_valid = 0;
15420
15421 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
15422 &addrmap_index_data);
15423
15424 /* It's highly unlikely the last entry (end address = 0xff...ff)
15425 is valid, but we should still handle it.
15426 The end address is recorded as the start of the next region, but that
15427 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
15428 anyway. */
15429 if (addrmap_index_data.previous_valid)
15430 add_address_entry (objfile, obstack,
15431 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
15432 addrmap_index_data.previous_cu_index);
15433 }
15434
15435 /* Add a list of partial symbols to SYMTAB. */
15436
15437 static void
15438 write_psymbols (struct mapped_symtab *symtab,
15439 htab_t psyms_seen,
15440 struct partial_symbol **psymp,
15441 int count,
15442 offset_type cu_index,
15443 int is_static)
15444 {
15445 for (; count-- > 0; ++psymp)
15446 {
15447 void **slot, *lookup;
15448
15449 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
15450 error (_("Ada is not currently supported by the index"));
15451
15452 /* We only want to add a given psymbol once. However, we also
15453 want to account for whether it is global or static. So, we
15454 may add it twice, using slightly different values. */
15455 if (is_static)
15456 {
15457 uintptr_t val = 1 | (uintptr_t) *psymp;
15458
15459 lookup = (void *) val;
15460 }
15461 else
15462 lookup = *psymp;
15463
15464 /* Only add a given psymbol once. */
15465 slot = htab_find_slot (psyms_seen, lookup, INSERT);
15466 if (!*slot)
15467 {
15468 *slot = lookup;
15469 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
15470 }
15471 }
15472 }
15473
15474 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
15475 exception if there is an error. */
15476
15477 static void
15478 write_obstack (FILE *file, struct obstack *obstack)
15479 {
15480 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
15481 file)
15482 != obstack_object_size (obstack))
15483 error (_("couldn't data write to file"));
15484 }
15485
15486 /* Unlink a file if the argument is not NULL. */
15487
15488 static void
15489 unlink_if_set (void *p)
15490 {
15491 char **filename = p;
15492 if (*filename)
15493 unlink (*filename);
15494 }
15495
15496 /* A helper struct used when iterating over debug_types. */
15497 struct signatured_type_index_data
15498 {
15499 struct objfile *objfile;
15500 struct mapped_symtab *symtab;
15501 struct obstack *types_list;
15502 htab_t psyms_seen;
15503 int cu_index;
15504 };
15505
15506 /* A helper function that writes a single signatured_type to an
15507 obstack. */
15508
15509 static int
15510 write_one_signatured_type (void **slot, void *d)
15511 {
15512 struct signatured_type_index_data *info = d;
15513 struct signatured_type *entry = (struct signatured_type *) *slot;
15514 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
15515 struct partial_symtab *psymtab = per_cu->v.psymtab;
15516 gdb_byte val[8];
15517
15518 write_psymbols (info->symtab,
15519 info->psyms_seen,
15520 info->objfile->global_psymbols.list
15521 + psymtab->globals_offset,
15522 psymtab->n_global_syms, info->cu_index,
15523 0);
15524 write_psymbols (info->symtab,
15525 info->psyms_seen,
15526 info->objfile->static_psymbols.list
15527 + psymtab->statics_offset,
15528 psymtab->n_static_syms, info->cu_index,
15529 1);
15530
15531 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->offset);
15532 obstack_grow (info->types_list, val, 8);
15533 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
15534 obstack_grow (info->types_list, val, 8);
15535 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
15536 obstack_grow (info->types_list, val, 8);
15537
15538 ++info->cu_index;
15539
15540 return 1;
15541 }
15542
15543 /* A cleanup function for an htab_t. */
15544
15545 static void
15546 cleanup_htab (void *arg)
15547 {
15548 htab_delete (arg);
15549 }
15550
15551 /* Create an index file for OBJFILE in the directory DIR. */
15552
15553 static void
15554 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
15555 {
15556 struct cleanup *cleanup;
15557 char *filename, *cleanup_filename;
15558 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
15559 struct obstack cu_list, types_cu_list;
15560 int i;
15561 FILE *out_file;
15562 struct mapped_symtab *symtab;
15563 offset_type val, size_of_contents, total_len;
15564 struct stat st;
15565 char buf[8];
15566 htab_t psyms_seen;
15567 htab_t cu_index_htab;
15568 struct psymtab_cu_index_map *psymtab_cu_index_map;
15569
15570 if (!objfile->psymtabs)
15571 return;
15572 if (dwarf2_per_objfile->using_index)
15573 error (_("Cannot use an index to create the index"));
15574
15575 if (stat (objfile->name, &st) < 0)
15576 perror_with_name (objfile->name);
15577
15578 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
15579 INDEX_SUFFIX, (char *) NULL);
15580 cleanup = make_cleanup (xfree, filename);
15581
15582 out_file = fopen (filename, "wb");
15583 if (!out_file)
15584 error (_("Can't open `%s' for writing"), filename);
15585
15586 cleanup_filename = filename;
15587 make_cleanup (unlink_if_set, &cleanup_filename);
15588
15589 symtab = create_mapped_symtab ();
15590 make_cleanup (cleanup_mapped_symtab, symtab);
15591
15592 obstack_init (&addr_obstack);
15593 make_cleanup_obstack_free (&addr_obstack);
15594
15595 obstack_init (&cu_list);
15596 make_cleanup_obstack_free (&cu_list);
15597
15598 obstack_init (&types_cu_list);
15599 make_cleanup_obstack_free (&types_cu_list);
15600
15601 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
15602 NULL, xcalloc, xfree);
15603 make_cleanup (cleanup_htab, psyms_seen);
15604
15605 /* While we're scanning CU's create a table that maps a psymtab pointer
15606 (which is what addrmap records) to its index (which is what is recorded
15607 in the index file). This will later be needed to write the address
15608 table. */
15609 cu_index_htab = htab_create_alloc (100,
15610 hash_psymtab_cu_index,
15611 eq_psymtab_cu_index,
15612 NULL, xcalloc, xfree);
15613 make_cleanup (cleanup_htab, cu_index_htab);
15614 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
15615 xmalloc (sizeof (struct psymtab_cu_index_map)
15616 * dwarf2_per_objfile->n_comp_units);
15617 make_cleanup (xfree, psymtab_cu_index_map);
15618
15619 /* The CU list is already sorted, so we don't need to do additional
15620 work here. Also, the debug_types entries do not appear in
15621 all_comp_units, but only in their own hash table. */
15622 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
15623 {
15624 struct dwarf2_per_cu_data *per_cu
15625 = dwarf2_per_objfile->all_comp_units[i];
15626 struct partial_symtab *psymtab = per_cu->v.psymtab;
15627 gdb_byte val[8];
15628 struct psymtab_cu_index_map *map;
15629 void **slot;
15630
15631 write_psymbols (symtab,
15632 psyms_seen,
15633 objfile->global_psymbols.list + psymtab->globals_offset,
15634 psymtab->n_global_syms, i,
15635 0);
15636 write_psymbols (symtab,
15637 psyms_seen,
15638 objfile->static_psymbols.list + psymtab->statics_offset,
15639 psymtab->n_static_syms, i,
15640 1);
15641
15642 map = &psymtab_cu_index_map[i];
15643 map->psymtab = psymtab;
15644 map->cu_index = i;
15645 slot = htab_find_slot (cu_index_htab, map, INSERT);
15646 gdb_assert (slot != NULL);
15647 gdb_assert (*slot == NULL);
15648 *slot = map;
15649
15650 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
15651 obstack_grow (&cu_list, val, 8);
15652 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
15653 obstack_grow (&cu_list, val, 8);
15654 }
15655
15656 /* Dump the address map. */
15657 write_address_map (objfile, &addr_obstack, cu_index_htab);
15658
15659 /* Write out the .debug_type entries, if any. */
15660 if (dwarf2_per_objfile->signatured_types)
15661 {
15662 struct signatured_type_index_data sig_data;
15663
15664 sig_data.objfile = objfile;
15665 sig_data.symtab = symtab;
15666 sig_data.types_list = &types_cu_list;
15667 sig_data.psyms_seen = psyms_seen;
15668 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
15669 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
15670 write_one_signatured_type, &sig_data);
15671 }
15672
15673 obstack_init (&constant_pool);
15674 make_cleanup_obstack_free (&constant_pool);
15675 obstack_init (&symtab_obstack);
15676 make_cleanup_obstack_free (&symtab_obstack);
15677 write_hash_table (symtab, &symtab_obstack, &constant_pool);
15678
15679 obstack_init (&contents);
15680 make_cleanup_obstack_free (&contents);
15681 size_of_contents = 6 * sizeof (offset_type);
15682 total_len = size_of_contents;
15683
15684 /* The version number. */
15685 val = MAYBE_SWAP (3);
15686 obstack_grow (&contents, &val, sizeof (val));
15687
15688 /* The offset of the CU list from the start of the file. */
15689 val = MAYBE_SWAP (total_len);
15690 obstack_grow (&contents, &val, sizeof (val));
15691 total_len += obstack_object_size (&cu_list);
15692
15693 /* The offset of the types CU list from the start of the file. */
15694 val = MAYBE_SWAP (total_len);
15695 obstack_grow (&contents, &val, sizeof (val));
15696 total_len += obstack_object_size (&types_cu_list);
15697
15698 /* The offset of the address table from the start of the file. */
15699 val = MAYBE_SWAP (total_len);
15700 obstack_grow (&contents, &val, sizeof (val));
15701 total_len += obstack_object_size (&addr_obstack);
15702
15703 /* The offset of the symbol table from the start of the file. */
15704 val = MAYBE_SWAP (total_len);
15705 obstack_grow (&contents, &val, sizeof (val));
15706 total_len += obstack_object_size (&symtab_obstack);
15707
15708 /* The offset of the constant pool from the start of the file. */
15709 val = MAYBE_SWAP (total_len);
15710 obstack_grow (&contents, &val, sizeof (val));
15711 total_len += obstack_object_size (&constant_pool);
15712
15713 gdb_assert (obstack_object_size (&contents) == size_of_contents);
15714
15715 write_obstack (out_file, &contents);
15716 write_obstack (out_file, &cu_list);
15717 write_obstack (out_file, &types_cu_list);
15718 write_obstack (out_file, &addr_obstack);
15719 write_obstack (out_file, &symtab_obstack);
15720 write_obstack (out_file, &constant_pool);
15721
15722 fclose (out_file);
15723
15724 /* We want to keep the file, so we set cleanup_filename to NULL
15725 here. See unlink_if_set. */
15726 cleanup_filename = NULL;
15727
15728 do_cleanups (cleanup);
15729 }
15730
15731 /* The mapped index file format is designed to be directly mmap()able
15732 on any architecture. In most cases, a datum is represented using a
15733 little-endian 32-bit integer value, called an offset_type. Big
15734 endian machines must byte-swap the values before using them.
15735 Exceptions to this rule are noted. The data is laid out such that
15736 alignment is always respected.
15737
15738 A mapped index consists of several sections.
15739
15740 1. The file header. This is a sequence of values, of offset_type
15741 unless otherwise noted:
15742
15743 [0] The version number, currently 3. Versions 1 and 2 are
15744 obsolete.
15745 [1] The offset, from the start of the file, of the CU list.
15746 [2] The offset, from the start of the file, of the types CU list.
15747 Note that this section can be empty, in which case this offset will
15748 be equal to the next offset.
15749 [3] The offset, from the start of the file, of the address section.
15750 [4] The offset, from the start of the file, of the symbol table.
15751 [5] The offset, from the start of the file, of the constant pool.
15752
15753 2. The CU list. This is a sequence of pairs of 64-bit
15754 little-endian values, sorted by the CU offset. The first element
15755 in each pair is the offset of a CU in the .debug_info section. The
15756 second element in each pair is the length of that CU. References
15757 to a CU elsewhere in the map are done using a CU index, which is
15758 just the 0-based index into this table. Note that if there are
15759 type CUs, then conceptually CUs and type CUs form a single list for
15760 the purposes of CU indices.
15761
15762 3. The types CU list. This is a sequence of triplets of 64-bit
15763 little-endian values. In a triplet, the first value is the CU
15764 offset, the second value is the type offset in the CU, and the
15765 third value is the type signature. The types CU list is not
15766 sorted.
15767
15768 4. The address section. The address section consists of a sequence
15769 of address entries. Each address entry has three elements.
15770 [0] The low address. This is a 64-bit little-endian value.
15771 [1] The high address. This is a 64-bit little-endian value.
15772 Like DW_AT_high_pc, the value is one byte beyond the end.
15773 [2] The CU index. This is an offset_type value.
15774
15775 5. The symbol table. This is a hash table. The size of the hash
15776 table is always a power of 2. The initial hash and the step are
15777 currently defined by the `find_slot' function.
15778
15779 Each slot in the hash table consists of a pair of offset_type
15780 values. The first value is the offset of the symbol's name in the
15781 constant pool. The second value is the offset of the CU vector in
15782 the constant pool.
15783
15784 If both values are 0, then this slot in the hash table is empty.
15785 This is ok because while 0 is a valid constant pool index, it
15786 cannot be a valid index for both a string and a CU vector.
15787
15788 A string in the constant pool is stored as a \0-terminated string,
15789 as you'd expect.
15790
15791 A CU vector in the constant pool is a sequence of offset_type
15792 values. The first value is the number of CU indices in the vector.
15793 Each subsequent value is the index of a CU in the CU list. This
15794 element in the hash table is used to indicate which CUs define the
15795 symbol.
15796
15797 6. The constant pool. This is simply a bunch of bytes. It is
15798 organized so that alignment is correct: CU vectors are stored
15799 first, followed by strings. */
15800
15801 static void
15802 save_gdb_index_command (char *arg, int from_tty)
15803 {
15804 struct objfile *objfile;
15805
15806 if (!arg || !*arg)
15807 error (_("usage: save gdb-index DIRECTORY"));
15808
15809 ALL_OBJFILES (objfile)
15810 {
15811 struct stat st;
15812
15813 /* If the objfile does not correspond to an actual file, skip it. */
15814 if (stat (objfile->name, &st) < 0)
15815 continue;
15816
15817 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15818 if (dwarf2_per_objfile)
15819 {
15820 volatile struct gdb_exception except;
15821
15822 TRY_CATCH (except, RETURN_MASK_ERROR)
15823 {
15824 write_psymtabs_to_index (objfile, arg);
15825 }
15826 if (except.reason < 0)
15827 exception_fprintf (gdb_stderr, except,
15828 _("Error while writing index for `%s': "),
15829 objfile->name);
15830 }
15831 }
15832 }
15833
15834 \f
15835
15836 int dwarf2_always_disassemble;
15837
15838 static void
15839 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
15840 struct cmd_list_element *c, const char *value)
15841 {
15842 fprintf_filtered (file,
15843 _("Whether to always disassemble "
15844 "DWARF expressions is %s.\n"),
15845 value);
15846 }
15847
15848 void _initialize_dwarf2_read (void);
15849
15850 void
15851 _initialize_dwarf2_read (void)
15852 {
15853 struct cmd_list_element *c;
15854
15855 dwarf2_objfile_data_key
15856 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
15857
15858 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
15859 Set DWARF 2 specific variables.\n\
15860 Configure DWARF 2 variables such as the cache size"),
15861 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
15862 0/*allow-unknown*/, &maintenance_set_cmdlist);
15863
15864 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
15865 Show DWARF 2 specific variables\n\
15866 Show DWARF 2 variables such as the cache size"),
15867 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
15868 0/*allow-unknown*/, &maintenance_show_cmdlist);
15869
15870 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
15871 &dwarf2_max_cache_age, _("\
15872 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
15873 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
15874 A higher limit means that cached compilation units will be stored\n\
15875 in memory longer, and more total memory will be used. Zero disables\n\
15876 caching, which can slow down startup."),
15877 NULL,
15878 show_dwarf2_max_cache_age,
15879 &set_dwarf2_cmdlist,
15880 &show_dwarf2_cmdlist);
15881
15882 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
15883 &dwarf2_always_disassemble, _("\
15884 Set whether `info address' always disassembles DWARF expressions."), _("\
15885 Show whether `info address' always disassembles DWARF expressions."), _("\
15886 When enabled, DWARF expressions are always printed in an assembly-like\n\
15887 syntax. When disabled, expressions will be printed in a more\n\
15888 conversational style, when possible."),
15889 NULL,
15890 show_dwarf2_always_disassemble,
15891 &set_dwarf2_cmdlist,
15892 &show_dwarf2_cmdlist);
15893
15894 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
15895 Set debugging of the dwarf2 DIE reader."), _("\
15896 Show debugging of the dwarf2 DIE reader."), _("\
15897 When enabled (non-zero), DIEs are dumped after they are read in.\n\
15898 The value is the maximum depth to print."),
15899 NULL,
15900 NULL,
15901 &setdebuglist, &showdebuglist);
15902
15903 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
15904 _("\
15905 Save a gdb-index file.\n\
15906 Usage: save gdb-index DIRECTORY"),
15907 &save_cmdlist);
15908 set_cmd_completer (c, filename_completer);
15909 }