]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Fix BFD leak in dwarf2_get_dwz_file.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "expression.h"
45 #include "filenames.h" /* for DOSish file names */
46 #include "macrotab.h"
47 #include "language.h"
48 #include "complaints.h"
49 #include "bcache.h"
50 #include "dwarf2expr.h"
51 #include "dwarf2loc.h"
52 #include "cp-support.h"
53 #include "hashtab.h"
54 #include "command.h"
55 #include "gdbcmd.h"
56 #include "block.h"
57 #include "addrmap.h"
58 #include "typeprint.h"
59 #include "psympriv.h"
60 #include <sys/stat.h>
61 #include "completer.h"
62 #include "common/vec.h"
63 #include "c-lang.h"
64 #include "go-lang.h"
65 #include "valprint.h"
66 #include "gdbcore.h" /* for gnutarget */
67 #include "gdb/gdb-index.h"
68 #include <ctype.h>
69 #include "gdb_bfd.h"
70 #include "f-lang.h"
71 #include "source.h"
72 #include "common/filestuff.h"
73 #include "build-id.h"
74 #include "namespace.h"
75 #include "common/gdb_unlinker.h"
76 #include "common/function-view.h"
77 #include "common/gdb_optional.h"
78 #include "common/underlying.h"
79 #include "common/byte-vector.h"
80 #include "common/hash_enum.h"
81 #include "filename-seen-cache.h"
82 #include "producer.h"
83 #include <fcntl.h>
84 #include <sys/types.h>
85 #include <algorithm>
86 #include <unordered_set>
87 #include <unordered_map>
88 #include "common/selftest.h"
89 #include <cmath>
90 #include <set>
91 #include <forward_list>
92 #include "rust-lang.h"
93 #include "common/pathstuff.h"
94
95 /* When == 1, print basic high level tracing messages.
96 When > 1, be more verbose.
97 This is in contrast to the low level DIE reading of dwarf_die_debug. */
98 static unsigned int dwarf_read_debug = 0;
99
100 /* When non-zero, dump DIEs after they are read in. */
101 static unsigned int dwarf_die_debug = 0;
102
103 /* When non-zero, dump line number entries as they are read in. */
104 static unsigned int dwarf_line_debug = 0;
105
106 /* When non-zero, cross-check physname against demangler. */
107 static int check_physname = 0;
108
109 /* When non-zero, do not reject deprecated .gdb_index sections. */
110 static int use_deprecated_index_sections = 0;
111
112 static const struct objfile_data *dwarf2_objfile_data_key;
113
114 /* The "aclass" indices for various kinds of computed DWARF symbols. */
115
116 static int dwarf2_locexpr_index;
117 static int dwarf2_loclist_index;
118 static int dwarf2_locexpr_block_index;
119 static int dwarf2_loclist_block_index;
120
121 /* An index into a (C++) symbol name component in a symbol name as
122 recorded in the mapped_index's symbol table. For each C++ symbol
123 in the symbol table, we record one entry for the start of each
124 component in the symbol in a table of name components, and then
125 sort the table, in order to be able to binary search symbol names,
126 ignoring leading namespaces, both completion and regular look up.
127 For example, for symbol "A::B::C", we'll have an entry that points
128 to "A::B::C", another that points to "B::C", and another for "C".
129 Note that function symbols in GDB index have no parameter
130 information, just the function/method names. You can convert a
131 name_component to a "const char *" using the
132 'mapped_index::symbol_name_at(offset_type)' method. */
133
134 struct name_component
135 {
136 /* Offset in the symbol name where the component starts. Stored as
137 a (32-bit) offset instead of a pointer to save memory and improve
138 locality on 64-bit architectures. */
139 offset_type name_offset;
140
141 /* The symbol's index in the symbol and constant pool tables of a
142 mapped_index. */
143 offset_type idx;
144 };
145
146 /* Base class containing bits shared by both .gdb_index and
147 .debug_name indexes. */
148
149 struct mapped_index_base
150 {
151 mapped_index_base () = default;
152 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
153
154 /* The name_component table (a sorted vector). See name_component's
155 description above. */
156 std::vector<name_component> name_components;
157
158 /* How NAME_COMPONENTS is sorted. */
159 enum case_sensitivity name_components_casing;
160
161 /* Return the number of names in the symbol table. */
162 virtual size_t symbol_name_count () const = 0;
163
164 /* Get the name of the symbol at IDX in the symbol table. */
165 virtual const char *symbol_name_at (offset_type idx) const = 0;
166
167 /* Return whether the name at IDX in the symbol table should be
168 ignored. */
169 virtual bool symbol_name_slot_invalid (offset_type idx) const
170 {
171 return false;
172 }
173
174 /* Build the symbol name component sorted vector, if we haven't
175 yet. */
176 void build_name_components ();
177
178 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
179 possible matches for LN_NO_PARAMS in the name component
180 vector. */
181 std::pair<std::vector<name_component>::const_iterator,
182 std::vector<name_component>::const_iterator>
183 find_name_components_bounds (const lookup_name_info &ln_no_params) const;
184
185 /* Prevent deleting/destroying via a base class pointer. */
186 protected:
187 ~mapped_index_base() = default;
188 };
189
190 /* A description of the mapped index. The file format is described in
191 a comment by the code that writes the index. */
192 struct mapped_index final : public mapped_index_base
193 {
194 /* A slot/bucket in the symbol table hash. */
195 struct symbol_table_slot
196 {
197 const offset_type name;
198 const offset_type vec;
199 };
200
201 /* Index data format version. */
202 int version = 0;
203
204 /* The address table data. */
205 gdb::array_view<const gdb_byte> address_table;
206
207 /* The symbol table, implemented as a hash table. */
208 gdb::array_view<symbol_table_slot> symbol_table;
209
210 /* A pointer to the constant pool. */
211 const char *constant_pool = nullptr;
212
213 bool symbol_name_slot_invalid (offset_type idx) const override
214 {
215 const auto &bucket = this->symbol_table[idx];
216 return bucket.name == 0 && bucket.vec;
217 }
218
219 /* Convenience method to get at the name of the symbol at IDX in the
220 symbol table. */
221 const char *symbol_name_at (offset_type idx) const override
222 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
223
224 size_t symbol_name_count () const override
225 { return this->symbol_table.size (); }
226 };
227
228 /* A description of the mapped .debug_names.
229 Uninitialized map has CU_COUNT 0. */
230 struct mapped_debug_names final : public mapped_index_base
231 {
232 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
233 : dwarf2_per_objfile (dwarf2_per_objfile_)
234 {}
235
236 struct dwarf2_per_objfile *dwarf2_per_objfile;
237 bfd_endian dwarf5_byte_order;
238 bool dwarf5_is_dwarf64;
239 bool augmentation_is_gdb;
240 uint8_t offset_size;
241 uint32_t cu_count = 0;
242 uint32_t tu_count, bucket_count, name_count;
243 const gdb_byte *cu_table_reordered, *tu_table_reordered;
244 const uint32_t *bucket_table_reordered, *hash_table_reordered;
245 const gdb_byte *name_table_string_offs_reordered;
246 const gdb_byte *name_table_entry_offs_reordered;
247 const gdb_byte *entry_pool;
248
249 struct index_val
250 {
251 ULONGEST dwarf_tag;
252 struct attr
253 {
254 /* Attribute name DW_IDX_*. */
255 ULONGEST dw_idx;
256
257 /* Attribute form DW_FORM_*. */
258 ULONGEST form;
259
260 /* Value if FORM is DW_FORM_implicit_const. */
261 LONGEST implicit_const;
262 };
263 std::vector<attr> attr_vec;
264 };
265
266 std::unordered_map<ULONGEST, index_val> abbrev_map;
267
268 const char *namei_to_name (uint32_t namei) const;
269
270 /* Implementation of the mapped_index_base virtual interface, for
271 the name_components cache. */
272
273 const char *symbol_name_at (offset_type idx) const override
274 { return namei_to_name (idx); }
275
276 size_t symbol_name_count () const override
277 { return this->name_count; }
278 };
279
280 /* See dwarf2read.h. */
281
282 dwarf2_per_objfile *
283 get_dwarf2_per_objfile (struct objfile *objfile)
284 {
285 return ((struct dwarf2_per_objfile *)
286 objfile_data (objfile, dwarf2_objfile_data_key));
287 }
288
289 /* Set the dwarf2_per_objfile associated to OBJFILE. */
290
291 void
292 set_dwarf2_per_objfile (struct objfile *objfile,
293 struct dwarf2_per_objfile *dwarf2_per_objfile)
294 {
295 gdb_assert (get_dwarf2_per_objfile (objfile) == NULL);
296 set_objfile_data (objfile, dwarf2_objfile_data_key, dwarf2_per_objfile);
297 }
298
299 /* Default names of the debugging sections. */
300
301 /* Note that if the debugging section has been compressed, it might
302 have a name like .zdebug_info. */
303
304 static const struct dwarf2_debug_sections dwarf2_elf_names =
305 {
306 { ".debug_info", ".zdebug_info" },
307 { ".debug_abbrev", ".zdebug_abbrev" },
308 { ".debug_line", ".zdebug_line" },
309 { ".debug_loc", ".zdebug_loc" },
310 { ".debug_loclists", ".zdebug_loclists" },
311 { ".debug_macinfo", ".zdebug_macinfo" },
312 { ".debug_macro", ".zdebug_macro" },
313 { ".debug_str", ".zdebug_str" },
314 { ".debug_line_str", ".zdebug_line_str" },
315 { ".debug_ranges", ".zdebug_ranges" },
316 { ".debug_rnglists", ".zdebug_rnglists" },
317 { ".debug_types", ".zdebug_types" },
318 { ".debug_addr", ".zdebug_addr" },
319 { ".debug_frame", ".zdebug_frame" },
320 { ".eh_frame", NULL },
321 { ".gdb_index", ".zgdb_index" },
322 { ".debug_names", ".zdebug_names" },
323 { ".debug_aranges", ".zdebug_aranges" },
324 23
325 };
326
327 /* List of DWO/DWP sections. */
328
329 static const struct dwop_section_names
330 {
331 struct dwarf2_section_names abbrev_dwo;
332 struct dwarf2_section_names info_dwo;
333 struct dwarf2_section_names line_dwo;
334 struct dwarf2_section_names loc_dwo;
335 struct dwarf2_section_names loclists_dwo;
336 struct dwarf2_section_names macinfo_dwo;
337 struct dwarf2_section_names macro_dwo;
338 struct dwarf2_section_names str_dwo;
339 struct dwarf2_section_names str_offsets_dwo;
340 struct dwarf2_section_names types_dwo;
341 struct dwarf2_section_names cu_index;
342 struct dwarf2_section_names tu_index;
343 }
344 dwop_section_names =
345 {
346 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
347 { ".debug_info.dwo", ".zdebug_info.dwo" },
348 { ".debug_line.dwo", ".zdebug_line.dwo" },
349 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
350 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
351 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
352 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
353 { ".debug_str.dwo", ".zdebug_str.dwo" },
354 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
355 { ".debug_types.dwo", ".zdebug_types.dwo" },
356 { ".debug_cu_index", ".zdebug_cu_index" },
357 { ".debug_tu_index", ".zdebug_tu_index" },
358 };
359
360 /* local data types */
361
362 /* The data in a compilation unit header, after target2host
363 translation, looks like this. */
364 struct comp_unit_head
365 {
366 unsigned int length;
367 short version;
368 unsigned char addr_size;
369 unsigned char signed_addr_p;
370 sect_offset abbrev_sect_off;
371
372 /* Size of file offsets; either 4 or 8. */
373 unsigned int offset_size;
374
375 /* Size of the length field; either 4 or 12. */
376 unsigned int initial_length_size;
377
378 enum dwarf_unit_type unit_type;
379
380 /* Offset to the first byte of this compilation unit header in the
381 .debug_info section, for resolving relative reference dies. */
382 sect_offset sect_off;
383
384 /* Offset to first die in this cu from the start of the cu.
385 This will be the first byte following the compilation unit header. */
386 cu_offset first_die_cu_offset;
387
388 /* 64-bit signature of this type unit - it is valid only for
389 UNIT_TYPE DW_UT_type. */
390 ULONGEST signature;
391
392 /* For types, offset in the type's DIE of the type defined by this TU. */
393 cu_offset type_cu_offset_in_tu;
394 };
395
396 /* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398 struct delayed_method_info
399 {
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414 };
415
416 /* Internal state when decoding a particular compilation unit. */
417 struct dwarf2_cu
418 {
419 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
420 ~dwarf2_cu ();
421
422 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
423
424 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
425 Create the set of symtabs used by this TU, or if this TU is sharing
426 symtabs with another TU and the symtabs have already been created
427 then restore those symtabs in the line header.
428 We don't need the pc/line-number mapping for type units. */
429 void setup_type_unit_groups (struct die_info *die);
430
431 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
432 buildsym_compunit constructor. */
433 struct compunit_symtab *start_symtab (const char *name,
434 const char *comp_dir,
435 CORE_ADDR low_pc);
436
437 /* Reset the builder. */
438 void reset_builder () { m_builder.reset (); }
439
440 /* The header of the compilation unit. */
441 struct comp_unit_head header {};
442
443 /* Base address of this compilation unit. */
444 CORE_ADDR base_address = 0;
445
446 /* Non-zero if base_address has been set. */
447 int base_known = 0;
448
449 /* The language we are debugging. */
450 enum language language = language_unknown;
451 const struct language_defn *language_defn = nullptr;
452
453 const char *producer = nullptr;
454
455 private:
456 /* The symtab builder for this CU. This is only non-NULL when full
457 symbols are being read. */
458 std::unique_ptr<buildsym_compunit> m_builder;
459
460 public:
461 /* The generic symbol table building routines have separate lists for
462 file scope symbols and all all other scopes (local scopes). So
463 we need to select the right one to pass to add_symbol_to_list().
464 We do it by keeping a pointer to the correct list in list_in_scope.
465
466 FIXME: The original dwarf code just treated the file scope as the
467 first local scope, and all other local scopes as nested local
468 scopes, and worked fine. Check to see if we really need to
469 distinguish these in buildsym.c. */
470 struct pending **list_in_scope = nullptr;
471
472 /* Hash table holding all the loaded partial DIEs
473 with partial_die->offset.SECT_OFF as hash. */
474 htab_t partial_dies = nullptr;
475
476 /* Storage for things with the same lifetime as this read-in compilation
477 unit, including partial DIEs. */
478 auto_obstack comp_unit_obstack;
479
480 /* When multiple dwarf2_cu structures are living in memory, this field
481 chains them all together, so that they can be released efficiently.
482 We will probably also want a generation counter so that most-recently-used
483 compilation units are cached... */
484 struct dwarf2_per_cu_data *read_in_chain = nullptr;
485
486 /* Backlink to our per_cu entry. */
487 struct dwarf2_per_cu_data *per_cu;
488
489 /* How many compilation units ago was this CU last referenced? */
490 int last_used = 0;
491
492 /* A hash table of DIE cu_offset for following references with
493 die_info->offset.sect_off as hash. */
494 htab_t die_hash = nullptr;
495
496 /* Full DIEs if read in. */
497 struct die_info *dies = nullptr;
498
499 /* A set of pointers to dwarf2_per_cu_data objects for compilation
500 units referenced by this one. Only set during full symbol processing;
501 partial symbol tables do not have dependencies. */
502 htab_t dependencies = nullptr;
503
504 /* Header data from the line table, during full symbol processing. */
505 struct line_header *line_header = nullptr;
506 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
507 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
508 this is the DW_TAG_compile_unit die for this CU. We'll hold on
509 to the line header as long as this DIE is being processed. See
510 process_die_scope. */
511 die_info *line_header_die_owner = nullptr;
512
513 /* A list of methods which need to have physnames computed
514 after all type information has been read. */
515 std::vector<delayed_method_info> method_list;
516
517 /* To be copied to symtab->call_site_htab. */
518 htab_t call_site_htab = nullptr;
519
520 /* Non-NULL if this CU came from a DWO file.
521 There is an invariant here that is important to remember:
522 Except for attributes copied from the top level DIE in the "main"
523 (or "stub") file in preparation for reading the DWO file
524 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
525 Either there isn't a DWO file (in which case this is NULL and the point
526 is moot), or there is and either we're not going to read it (in which
527 case this is NULL) or there is and we are reading it (in which case this
528 is non-NULL). */
529 struct dwo_unit *dwo_unit = nullptr;
530
531 /* The DW_AT_addr_base attribute if present, zero otherwise
532 (zero is a valid value though).
533 Note this value comes from the Fission stub CU/TU's DIE. */
534 ULONGEST addr_base = 0;
535
536 /* The DW_AT_ranges_base attribute if present, zero otherwise
537 (zero is a valid value though).
538 Note this value comes from the Fission stub CU/TU's DIE.
539 Also note that the value is zero in the non-DWO case so this value can
540 be used without needing to know whether DWO files are in use or not.
541 N.B. This does not apply to DW_AT_ranges appearing in
542 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
543 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
544 DW_AT_ranges_base *would* have to be applied, and we'd have to care
545 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
546 ULONGEST ranges_base = 0;
547
548 /* When reading debug info generated by older versions of rustc, we
549 have to rewrite some union types to be struct types with a
550 variant part. This rewriting must be done after the CU is fully
551 read in, because otherwise at the point of rewriting some struct
552 type might not have been fully processed. So, we keep a list of
553 all such types here and process them after expansion. */
554 std::vector<struct type *> rust_unions;
555
556 /* Mark used when releasing cached dies. */
557 bool mark : 1;
558
559 /* This CU references .debug_loc. See the symtab->locations_valid field.
560 This test is imperfect as there may exist optimized debug code not using
561 any location list and still facing inlining issues if handled as
562 unoptimized code. For a future better test see GCC PR other/32998. */
563 bool has_loclist : 1;
564
565 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
566 if all the producer_is_* fields are valid. This information is cached
567 because profiling CU expansion showed excessive time spent in
568 producer_is_gxx_lt_4_6. */
569 bool checked_producer : 1;
570 bool producer_is_gxx_lt_4_6 : 1;
571 bool producer_is_gcc_lt_4_3 : 1;
572 bool producer_is_icc : 1;
573 bool producer_is_icc_lt_14 : 1;
574 bool producer_is_codewarrior : 1;
575
576 /* When true, the file that we're processing is known to have
577 debugging info for C++ namespaces. GCC 3.3.x did not produce
578 this information, but later versions do. */
579
580 bool processing_has_namespace_info : 1;
581
582 struct partial_die_info *find_partial_die (sect_offset sect_off);
583
584 /* If this CU was inherited by another CU (via specification,
585 abstract_origin, etc), this is the ancestor CU. */
586 dwarf2_cu *ancestor;
587
588 /* Get the buildsym_compunit for this CU. */
589 buildsym_compunit *get_builder ()
590 {
591 /* If this CU has a builder associated with it, use that. */
592 if (m_builder != nullptr)
593 return m_builder.get ();
594
595 /* Otherwise, search ancestors for a valid builder. */
596 if (ancestor != nullptr)
597 return ancestor->get_builder ();
598
599 return nullptr;
600 }
601 };
602
603 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
604 This includes type_unit_group and quick_file_names. */
605
606 struct stmt_list_hash
607 {
608 /* The DWO unit this table is from or NULL if there is none. */
609 struct dwo_unit *dwo_unit;
610
611 /* Offset in .debug_line or .debug_line.dwo. */
612 sect_offset line_sect_off;
613 };
614
615 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
616 an object of this type. */
617
618 struct type_unit_group
619 {
620 /* dwarf2read.c's main "handle" on a TU symtab.
621 To simplify things we create an artificial CU that "includes" all the
622 type units using this stmt_list so that the rest of the code still has
623 a "per_cu" handle on the symtab.
624 This PER_CU is recognized by having no section. */
625 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
626 struct dwarf2_per_cu_data per_cu;
627
628 /* The TUs that share this DW_AT_stmt_list entry.
629 This is added to while parsing type units to build partial symtabs,
630 and is deleted afterwards and not used again. */
631 VEC (sig_type_ptr) *tus;
632
633 /* The compunit symtab.
634 Type units in a group needn't all be defined in the same source file,
635 so we create an essentially anonymous symtab as the compunit symtab. */
636 struct compunit_symtab *compunit_symtab;
637
638 /* The data used to construct the hash key. */
639 struct stmt_list_hash hash;
640
641 /* The number of symtabs from the line header.
642 The value here must match line_header.num_file_names. */
643 unsigned int num_symtabs;
644
645 /* The symbol tables for this TU (obtained from the files listed in
646 DW_AT_stmt_list).
647 WARNING: The order of entries here must match the order of entries
648 in the line header. After the first TU using this type_unit_group, the
649 line header for the subsequent TUs is recreated from this. This is done
650 because we need to use the same symtabs for each TU using the same
651 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
652 there's no guarantee the line header doesn't have duplicate entries. */
653 struct symtab **symtabs;
654 };
655
656 /* These sections are what may appear in a (real or virtual) DWO file. */
657
658 struct dwo_sections
659 {
660 struct dwarf2_section_info abbrev;
661 struct dwarf2_section_info line;
662 struct dwarf2_section_info loc;
663 struct dwarf2_section_info loclists;
664 struct dwarf2_section_info macinfo;
665 struct dwarf2_section_info macro;
666 struct dwarf2_section_info str;
667 struct dwarf2_section_info str_offsets;
668 /* In the case of a virtual DWO file, these two are unused. */
669 struct dwarf2_section_info info;
670 VEC (dwarf2_section_info_def) *types;
671 };
672
673 /* CUs/TUs in DWP/DWO files. */
674
675 struct dwo_unit
676 {
677 /* Backlink to the containing struct dwo_file. */
678 struct dwo_file *dwo_file;
679
680 /* The "id" that distinguishes this CU/TU.
681 .debug_info calls this "dwo_id", .debug_types calls this "signature".
682 Since signatures came first, we stick with it for consistency. */
683 ULONGEST signature;
684
685 /* The section this CU/TU lives in, in the DWO file. */
686 struct dwarf2_section_info *section;
687
688 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
689 sect_offset sect_off;
690 unsigned int length;
691
692 /* For types, offset in the type's DIE of the type defined by this TU. */
693 cu_offset type_offset_in_tu;
694 };
695
696 /* include/dwarf2.h defines the DWP section codes.
697 It defines a max value but it doesn't define a min value, which we
698 use for error checking, so provide one. */
699
700 enum dwp_v2_section_ids
701 {
702 DW_SECT_MIN = 1
703 };
704
705 /* Data for one DWO file.
706
707 This includes virtual DWO files (a virtual DWO file is a DWO file as it
708 appears in a DWP file). DWP files don't really have DWO files per se -
709 comdat folding of types "loses" the DWO file they came from, and from
710 a high level view DWP files appear to contain a mass of random types.
711 However, to maintain consistency with the non-DWP case we pretend DWP
712 files contain virtual DWO files, and we assign each TU with one virtual
713 DWO file (generally based on the line and abbrev section offsets -
714 a heuristic that seems to work in practice). */
715
716 struct dwo_file
717 {
718 /* The DW_AT_GNU_dwo_name attribute.
719 For virtual DWO files the name is constructed from the section offsets
720 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
721 from related CU+TUs. */
722 const char *dwo_name;
723
724 /* The DW_AT_comp_dir attribute. */
725 const char *comp_dir;
726
727 /* The bfd, when the file is open. Otherwise this is NULL.
728 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
729 bfd *dbfd;
730
731 /* The sections that make up this DWO file.
732 Remember that for virtual DWO files in DWP V2, these are virtual
733 sections (for lack of a better name). */
734 struct dwo_sections sections;
735
736 /* The CUs in the file.
737 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
738 an extension to handle LLVM's Link Time Optimization output (where
739 multiple source files may be compiled into a single object/dwo pair). */
740 htab_t cus;
741
742 /* Table of TUs in the file.
743 Each element is a struct dwo_unit. */
744 htab_t tus;
745 };
746
747 /* These sections are what may appear in a DWP file. */
748
749 struct dwp_sections
750 {
751 /* These are used by both DWP version 1 and 2. */
752 struct dwarf2_section_info str;
753 struct dwarf2_section_info cu_index;
754 struct dwarf2_section_info tu_index;
755
756 /* These are only used by DWP version 2 files.
757 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
758 sections are referenced by section number, and are not recorded here.
759 In DWP version 2 there is at most one copy of all these sections, each
760 section being (effectively) comprised of the concatenation of all of the
761 individual sections that exist in the version 1 format.
762 To keep the code simple we treat each of these concatenated pieces as a
763 section itself (a virtual section?). */
764 struct dwarf2_section_info abbrev;
765 struct dwarf2_section_info info;
766 struct dwarf2_section_info line;
767 struct dwarf2_section_info loc;
768 struct dwarf2_section_info macinfo;
769 struct dwarf2_section_info macro;
770 struct dwarf2_section_info str_offsets;
771 struct dwarf2_section_info types;
772 };
773
774 /* These sections are what may appear in a virtual DWO file in DWP version 1.
775 A virtual DWO file is a DWO file as it appears in a DWP file. */
776
777 struct virtual_v1_dwo_sections
778 {
779 struct dwarf2_section_info abbrev;
780 struct dwarf2_section_info line;
781 struct dwarf2_section_info loc;
782 struct dwarf2_section_info macinfo;
783 struct dwarf2_section_info macro;
784 struct dwarf2_section_info str_offsets;
785 /* Each DWP hash table entry records one CU or one TU.
786 That is recorded here, and copied to dwo_unit.section. */
787 struct dwarf2_section_info info_or_types;
788 };
789
790 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
791 In version 2, the sections of the DWO files are concatenated together
792 and stored in one section of that name. Thus each ELF section contains
793 several "virtual" sections. */
794
795 struct virtual_v2_dwo_sections
796 {
797 bfd_size_type abbrev_offset;
798 bfd_size_type abbrev_size;
799
800 bfd_size_type line_offset;
801 bfd_size_type line_size;
802
803 bfd_size_type loc_offset;
804 bfd_size_type loc_size;
805
806 bfd_size_type macinfo_offset;
807 bfd_size_type macinfo_size;
808
809 bfd_size_type macro_offset;
810 bfd_size_type macro_size;
811
812 bfd_size_type str_offsets_offset;
813 bfd_size_type str_offsets_size;
814
815 /* Each DWP hash table entry records one CU or one TU.
816 That is recorded here, and copied to dwo_unit.section. */
817 bfd_size_type info_or_types_offset;
818 bfd_size_type info_or_types_size;
819 };
820
821 /* Contents of DWP hash tables. */
822
823 struct dwp_hash_table
824 {
825 uint32_t version, nr_columns;
826 uint32_t nr_units, nr_slots;
827 const gdb_byte *hash_table, *unit_table;
828 union
829 {
830 struct
831 {
832 const gdb_byte *indices;
833 } v1;
834 struct
835 {
836 /* This is indexed by column number and gives the id of the section
837 in that column. */
838 #define MAX_NR_V2_DWO_SECTIONS \
839 (1 /* .debug_info or .debug_types */ \
840 + 1 /* .debug_abbrev */ \
841 + 1 /* .debug_line */ \
842 + 1 /* .debug_loc */ \
843 + 1 /* .debug_str_offsets */ \
844 + 1 /* .debug_macro or .debug_macinfo */)
845 int section_ids[MAX_NR_V2_DWO_SECTIONS];
846 const gdb_byte *offsets;
847 const gdb_byte *sizes;
848 } v2;
849 } section_pool;
850 };
851
852 /* Data for one DWP file. */
853
854 struct dwp_file
855 {
856 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
857 : name (name_),
858 dbfd (std::move (abfd))
859 {
860 }
861
862 /* Name of the file. */
863 const char *name;
864
865 /* File format version. */
866 int version = 0;
867
868 /* The bfd. */
869 gdb_bfd_ref_ptr dbfd;
870
871 /* Section info for this file. */
872 struct dwp_sections sections {};
873
874 /* Table of CUs in the file. */
875 const struct dwp_hash_table *cus = nullptr;
876
877 /* Table of TUs in the file. */
878 const struct dwp_hash_table *tus = nullptr;
879
880 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
881 htab_t loaded_cus {};
882 htab_t loaded_tus {};
883
884 /* Table to map ELF section numbers to their sections.
885 This is only needed for the DWP V1 file format. */
886 unsigned int num_sections = 0;
887 asection **elf_sections = nullptr;
888 };
889
890 /* This represents a '.dwz' file. */
891
892 struct dwz_file
893 {
894 dwz_file (gdb_bfd_ref_ptr &&bfd)
895 : dwz_bfd (std::move (bfd))
896 {
897 }
898
899 /* A dwz file can only contain a few sections. */
900 struct dwarf2_section_info abbrev {};
901 struct dwarf2_section_info info {};
902 struct dwarf2_section_info str {};
903 struct dwarf2_section_info line {};
904 struct dwarf2_section_info macro {};
905 struct dwarf2_section_info gdb_index {};
906 struct dwarf2_section_info debug_names {};
907
908 /* The dwz's BFD. */
909 gdb_bfd_ref_ptr dwz_bfd;
910
911 /* If we loaded the index from an external file, this contains the
912 resources associated to the open file, memory mapping, etc. */
913 std::unique_ptr<index_cache_resource> index_cache_res;
914 };
915
916 /* Struct used to pass misc. parameters to read_die_and_children, et
917 al. which are used for both .debug_info and .debug_types dies.
918 All parameters here are unchanging for the life of the call. This
919 struct exists to abstract away the constant parameters of die reading. */
920
921 struct die_reader_specs
922 {
923 /* The bfd of die_section. */
924 bfd* abfd;
925
926 /* The CU of the DIE we are parsing. */
927 struct dwarf2_cu *cu;
928
929 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
930 struct dwo_file *dwo_file;
931
932 /* The section the die comes from.
933 This is either .debug_info or .debug_types, or the .dwo variants. */
934 struct dwarf2_section_info *die_section;
935
936 /* die_section->buffer. */
937 const gdb_byte *buffer;
938
939 /* The end of the buffer. */
940 const gdb_byte *buffer_end;
941
942 /* The value of the DW_AT_comp_dir attribute. */
943 const char *comp_dir;
944
945 /* The abbreviation table to use when reading the DIEs. */
946 struct abbrev_table *abbrev_table;
947 };
948
949 /* Type of function passed to init_cutu_and_read_dies, et.al. */
950 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
951 const gdb_byte *info_ptr,
952 struct die_info *comp_unit_die,
953 int has_children,
954 void *data);
955
956 /* A 1-based directory index. This is a strong typedef to prevent
957 accidentally using a directory index as a 0-based index into an
958 array/vector. */
959 enum class dir_index : unsigned int {};
960
961 /* Likewise, a 1-based file name index. */
962 enum class file_name_index : unsigned int {};
963
964 struct file_entry
965 {
966 file_entry () = default;
967
968 file_entry (const char *name_, dir_index d_index_,
969 unsigned int mod_time_, unsigned int length_)
970 : name (name_),
971 d_index (d_index_),
972 mod_time (mod_time_),
973 length (length_)
974 {}
975
976 /* Return the include directory at D_INDEX stored in LH. Returns
977 NULL if D_INDEX is out of bounds. */
978 const char *include_dir (const line_header *lh) const;
979
980 /* The file name. Note this is an observing pointer. The memory is
981 owned by debug_line_buffer. */
982 const char *name {};
983
984 /* The directory index (1-based). */
985 dir_index d_index {};
986
987 unsigned int mod_time {};
988
989 unsigned int length {};
990
991 /* True if referenced by the Line Number Program. */
992 bool included_p {};
993
994 /* The associated symbol table, if any. */
995 struct symtab *symtab {};
996 };
997
998 /* The line number information for a compilation unit (found in the
999 .debug_line section) begins with a "statement program header",
1000 which contains the following information. */
1001 struct line_header
1002 {
1003 line_header ()
1004 : offset_in_dwz {}
1005 {}
1006
1007 /* Add an entry to the include directory table. */
1008 void add_include_dir (const char *include_dir);
1009
1010 /* Add an entry to the file name table. */
1011 void add_file_name (const char *name, dir_index d_index,
1012 unsigned int mod_time, unsigned int length);
1013
1014 /* Return the include dir at INDEX (1-based). Returns NULL if INDEX
1015 is out of bounds. */
1016 const char *include_dir_at (dir_index index) const
1017 {
1018 /* Convert directory index number (1-based) to vector index
1019 (0-based). */
1020 size_t vec_index = to_underlying (index) - 1;
1021
1022 if (vec_index >= include_dirs.size ())
1023 return NULL;
1024 return include_dirs[vec_index];
1025 }
1026
1027 /* Return the file name at INDEX (1-based). Returns NULL if INDEX
1028 is out of bounds. */
1029 file_entry *file_name_at (file_name_index index)
1030 {
1031 /* Convert file name index number (1-based) to vector index
1032 (0-based). */
1033 size_t vec_index = to_underlying (index) - 1;
1034
1035 if (vec_index >= file_names.size ())
1036 return NULL;
1037 return &file_names[vec_index];
1038 }
1039
1040 /* Const version of the above. */
1041 const file_entry *file_name_at (unsigned int index) const
1042 {
1043 if (index >= file_names.size ())
1044 return NULL;
1045 return &file_names[index];
1046 }
1047
1048 /* Offset of line number information in .debug_line section. */
1049 sect_offset sect_off {};
1050
1051 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1052 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1053
1054 unsigned int total_length {};
1055 unsigned short version {};
1056 unsigned int header_length {};
1057 unsigned char minimum_instruction_length {};
1058 unsigned char maximum_ops_per_instruction {};
1059 unsigned char default_is_stmt {};
1060 int line_base {};
1061 unsigned char line_range {};
1062 unsigned char opcode_base {};
1063
1064 /* standard_opcode_lengths[i] is the number of operands for the
1065 standard opcode whose value is i. This means that
1066 standard_opcode_lengths[0] is unused, and the last meaningful
1067 element is standard_opcode_lengths[opcode_base - 1]. */
1068 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1069
1070 /* The include_directories table. Note these are observing
1071 pointers. The memory is owned by debug_line_buffer. */
1072 std::vector<const char *> include_dirs;
1073
1074 /* The file_names table. */
1075 std::vector<file_entry> file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start {}, *statement_program_end {};
1080 };
1081
1082 typedef std::unique_ptr<line_header> line_header_up;
1083
1084 const char *
1085 file_entry::include_dir (const line_header *lh) const
1086 {
1087 return lh->include_dir_at (d_index);
1088 }
1089
1090 /* When we construct a partial symbol table entry we only
1091 need this much information. */
1092 struct partial_die_info : public allocate_on_obstack
1093 {
1094 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1095
1096 /* Disable assign but still keep copy ctor, which is needed
1097 load_partial_dies. */
1098 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1099
1100 /* Adjust the partial die before generating a symbol for it. This
1101 function may set the is_external flag or change the DIE's
1102 name. */
1103 void fixup (struct dwarf2_cu *cu);
1104
1105 /* Read a minimal amount of information into the minimal die
1106 structure. */
1107 const gdb_byte *read (const struct die_reader_specs *reader,
1108 const struct abbrev_info &abbrev,
1109 const gdb_byte *info_ptr);
1110
1111 /* Offset of this DIE. */
1112 const sect_offset sect_off;
1113
1114 /* DWARF-2 tag for this DIE. */
1115 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1116
1117 /* Assorted flags describing the data found in this DIE. */
1118 const unsigned int has_children : 1;
1119
1120 unsigned int is_external : 1;
1121 unsigned int is_declaration : 1;
1122 unsigned int has_type : 1;
1123 unsigned int has_specification : 1;
1124 unsigned int has_pc_info : 1;
1125 unsigned int may_be_inlined : 1;
1126
1127 /* This DIE has been marked DW_AT_main_subprogram. */
1128 unsigned int main_subprogram : 1;
1129
1130 /* Flag set if the SCOPE field of this structure has been
1131 computed. */
1132 unsigned int scope_set : 1;
1133
1134 /* Flag set if the DIE has a byte_size attribute. */
1135 unsigned int has_byte_size : 1;
1136
1137 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1138 unsigned int has_const_value : 1;
1139
1140 /* Flag set if any of the DIE's children are template arguments. */
1141 unsigned int has_template_arguments : 1;
1142
1143 /* Flag set if fixup has been called on this die. */
1144 unsigned int fixup_called : 1;
1145
1146 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1147 unsigned int is_dwz : 1;
1148
1149 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1150 unsigned int spec_is_dwz : 1;
1151
1152 /* The name of this DIE. Normally the value of DW_AT_name, but
1153 sometimes a default name for unnamed DIEs. */
1154 const char *name = nullptr;
1155
1156 /* The linkage name, if present. */
1157 const char *linkage_name = nullptr;
1158
1159 /* The scope to prepend to our children. This is generally
1160 allocated on the comp_unit_obstack, so will disappear
1161 when this compilation unit leaves the cache. */
1162 const char *scope = nullptr;
1163
1164 /* Some data associated with the partial DIE. The tag determines
1165 which field is live. */
1166 union
1167 {
1168 /* The location description associated with this DIE, if any. */
1169 struct dwarf_block *locdesc;
1170 /* The offset of an import, for DW_TAG_imported_unit. */
1171 sect_offset sect_off;
1172 } d {};
1173
1174 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1175 CORE_ADDR lowpc = 0;
1176 CORE_ADDR highpc = 0;
1177
1178 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1179 DW_AT_sibling, if any. */
1180 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1181 could return DW_AT_sibling values to its caller load_partial_dies. */
1182 const gdb_byte *sibling = nullptr;
1183
1184 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1185 DW_AT_specification (or DW_AT_abstract_origin or
1186 DW_AT_extension). */
1187 sect_offset spec_offset {};
1188
1189 /* Pointers to this DIE's parent, first child, and next sibling,
1190 if any. */
1191 struct partial_die_info *die_parent = nullptr;
1192 struct partial_die_info *die_child = nullptr;
1193 struct partial_die_info *die_sibling = nullptr;
1194
1195 friend struct partial_die_info *
1196 dwarf2_cu::find_partial_die (sect_offset sect_off);
1197
1198 private:
1199 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1200 partial_die_info (sect_offset sect_off)
1201 : partial_die_info (sect_off, DW_TAG_padding, 0)
1202 {
1203 }
1204
1205 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1206 int has_children_)
1207 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1208 {
1209 is_external = 0;
1210 is_declaration = 0;
1211 has_type = 0;
1212 has_specification = 0;
1213 has_pc_info = 0;
1214 may_be_inlined = 0;
1215 main_subprogram = 0;
1216 scope_set = 0;
1217 has_byte_size = 0;
1218 has_const_value = 0;
1219 has_template_arguments = 0;
1220 fixup_called = 0;
1221 is_dwz = 0;
1222 spec_is_dwz = 0;
1223 }
1224 };
1225
1226 /* This data structure holds the information of an abbrev. */
1227 struct abbrev_info
1228 {
1229 unsigned int number; /* number identifying abbrev */
1230 enum dwarf_tag tag; /* dwarf tag */
1231 unsigned short has_children; /* boolean */
1232 unsigned short num_attrs; /* number of attributes */
1233 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1234 struct abbrev_info *next; /* next in chain */
1235 };
1236
1237 struct attr_abbrev
1238 {
1239 ENUM_BITFIELD(dwarf_attribute) name : 16;
1240 ENUM_BITFIELD(dwarf_form) form : 16;
1241
1242 /* It is valid only if FORM is DW_FORM_implicit_const. */
1243 LONGEST implicit_const;
1244 };
1245
1246 /* Size of abbrev_table.abbrev_hash_table. */
1247 #define ABBREV_HASH_SIZE 121
1248
1249 /* Top level data structure to contain an abbreviation table. */
1250
1251 struct abbrev_table
1252 {
1253 explicit abbrev_table (sect_offset off)
1254 : sect_off (off)
1255 {
1256 m_abbrevs =
1257 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1258 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1259 }
1260
1261 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1262
1263 /* Allocate space for a struct abbrev_info object in
1264 ABBREV_TABLE. */
1265 struct abbrev_info *alloc_abbrev ();
1266
1267 /* Add an abbreviation to the table. */
1268 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1269
1270 /* Look up an abbrev in the table.
1271 Returns NULL if the abbrev is not found. */
1272
1273 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1274
1275
1276 /* Where the abbrev table came from.
1277 This is used as a sanity check when the table is used. */
1278 const sect_offset sect_off;
1279
1280 /* Storage for the abbrev table. */
1281 auto_obstack abbrev_obstack;
1282
1283 private:
1284
1285 /* Hash table of abbrevs.
1286 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1287 It could be statically allocated, but the previous code didn't so we
1288 don't either. */
1289 struct abbrev_info **m_abbrevs;
1290 };
1291
1292 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1293
1294 /* Attributes have a name and a value. */
1295 struct attribute
1296 {
1297 ENUM_BITFIELD(dwarf_attribute) name : 16;
1298 ENUM_BITFIELD(dwarf_form) form : 15;
1299
1300 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1301 field should be in u.str (existing only for DW_STRING) but it is kept
1302 here for better struct attribute alignment. */
1303 unsigned int string_is_canonical : 1;
1304
1305 union
1306 {
1307 const char *str;
1308 struct dwarf_block *blk;
1309 ULONGEST unsnd;
1310 LONGEST snd;
1311 CORE_ADDR addr;
1312 ULONGEST signature;
1313 }
1314 u;
1315 };
1316
1317 /* This data structure holds a complete die structure. */
1318 struct die_info
1319 {
1320 /* DWARF-2 tag for this DIE. */
1321 ENUM_BITFIELD(dwarf_tag) tag : 16;
1322
1323 /* Number of attributes */
1324 unsigned char num_attrs;
1325
1326 /* True if we're presently building the full type name for the
1327 type derived from this DIE. */
1328 unsigned char building_fullname : 1;
1329
1330 /* True if this die is in process. PR 16581. */
1331 unsigned char in_process : 1;
1332
1333 /* Abbrev number */
1334 unsigned int abbrev;
1335
1336 /* Offset in .debug_info or .debug_types section. */
1337 sect_offset sect_off;
1338
1339 /* The dies in a compilation unit form an n-ary tree. PARENT
1340 points to this die's parent; CHILD points to the first child of
1341 this node; and all the children of a given node are chained
1342 together via their SIBLING fields. */
1343 struct die_info *child; /* Its first child, if any. */
1344 struct die_info *sibling; /* Its next sibling, if any. */
1345 struct die_info *parent; /* Its parent, if any. */
1346
1347 /* An array of attributes, with NUM_ATTRS elements. There may be
1348 zero, but it's not common and zero-sized arrays are not
1349 sufficiently portable C. */
1350 struct attribute attrs[1];
1351 };
1352
1353 /* Get at parts of an attribute structure. */
1354
1355 #define DW_STRING(attr) ((attr)->u.str)
1356 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1357 #define DW_UNSND(attr) ((attr)->u.unsnd)
1358 #define DW_BLOCK(attr) ((attr)->u.blk)
1359 #define DW_SND(attr) ((attr)->u.snd)
1360 #define DW_ADDR(attr) ((attr)->u.addr)
1361 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1362
1363 /* Blocks are a bunch of untyped bytes. */
1364 struct dwarf_block
1365 {
1366 size_t size;
1367
1368 /* Valid only if SIZE is not zero. */
1369 const gdb_byte *data;
1370 };
1371
1372 #ifndef ATTR_ALLOC_CHUNK
1373 #define ATTR_ALLOC_CHUNK 4
1374 #endif
1375
1376 /* Allocate fields for structs, unions and enums in this size. */
1377 #ifndef DW_FIELD_ALLOC_CHUNK
1378 #define DW_FIELD_ALLOC_CHUNK 4
1379 #endif
1380
1381 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1382 but this would require a corresponding change in unpack_field_as_long
1383 and friends. */
1384 static int bits_per_byte = 8;
1385
1386 /* When reading a variant or variant part, we track a bit more
1387 information about the field, and store it in an object of this
1388 type. */
1389
1390 struct variant_field
1391 {
1392 /* If we see a DW_TAG_variant, then this will be the discriminant
1393 value. */
1394 ULONGEST discriminant_value;
1395 /* If we see a DW_TAG_variant, then this will be set if this is the
1396 default branch. */
1397 bool default_branch;
1398 /* While reading a DW_TAG_variant_part, this will be set if this
1399 field is the discriminant. */
1400 bool is_discriminant;
1401 };
1402
1403 struct nextfield
1404 {
1405 int accessibility = 0;
1406 int virtuality = 0;
1407 /* Extra information to describe a variant or variant part. */
1408 struct variant_field variant {};
1409 struct field field {};
1410 };
1411
1412 struct fnfieldlist
1413 {
1414 const char *name = nullptr;
1415 std::vector<struct fn_field> fnfields;
1416 };
1417
1418 /* The routines that read and process dies for a C struct or C++ class
1419 pass lists of data member fields and lists of member function fields
1420 in an instance of a field_info structure, as defined below. */
1421 struct field_info
1422 {
1423 /* List of data member and baseclasses fields. */
1424 std::vector<struct nextfield> fields;
1425 std::vector<struct nextfield> baseclasses;
1426
1427 /* Number of fields (including baseclasses). */
1428 int nfields = 0;
1429
1430 /* Set if the accesibility of one of the fields is not public. */
1431 int non_public_fields = 0;
1432
1433 /* Member function fieldlist array, contains name of possibly overloaded
1434 member function, number of overloaded member functions and a pointer
1435 to the head of the member function field chain. */
1436 std::vector<struct fnfieldlist> fnfieldlists;
1437
1438 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1439 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1440 std::vector<struct decl_field> typedef_field_list;
1441
1442 /* Nested types defined by this class and the number of elements in this
1443 list. */
1444 std::vector<struct decl_field> nested_types_list;
1445 };
1446
1447 /* One item on the queue of compilation units to read in full symbols
1448 for. */
1449 struct dwarf2_queue_item
1450 {
1451 struct dwarf2_per_cu_data *per_cu;
1452 enum language pretend_language;
1453 struct dwarf2_queue_item *next;
1454 };
1455
1456 /* The current queue. */
1457 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1458
1459 /* Loaded secondary compilation units are kept in memory until they
1460 have not been referenced for the processing of this many
1461 compilation units. Set this to zero to disable caching. Cache
1462 sizes of up to at least twenty will improve startup time for
1463 typical inter-CU-reference binaries, at an obvious memory cost. */
1464 static int dwarf_max_cache_age = 5;
1465 static void
1466 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1467 struct cmd_list_element *c, const char *value)
1468 {
1469 fprintf_filtered (file, _("The upper bound on the age of cached "
1470 "DWARF compilation units is %s.\n"),
1471 value);
1472 }
1473 \f
1474 /* local function prototypes */
1475
1476 static const char *get_section_name (const struct dwarf2_section_info *);
1477
1478 static const char *get_section_file_name (const struct dwarf2_section_info *);
1479
1480 static void dwarf2_find_base_address (struct die_info *die,
1481 struct dwarf2_cu *cu);
1482
1483 static struct partial_symtab *create_partial_symtab
1484 (struct dwarf2_per_cu_data *per_cu, const char *name);
1485
1486 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1487 const gdb_byte *info_ptr,
1488 struct die_info *type_unit_die,
1489 int has_children, void *data);
1490
1491 static void dwarf2_build_psymtabs_hard
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1493
1494 static void scan_partial_symbols (struct partial_die_info *,
1495 CORE_ADDR *, CORE_ADDR *,
1496 int, struct dwarf2_cu *);
1497
1498 static void add_partial_symbol (struct partial_die_info *,
1499 struct dwarf2_cu *);
1500
1501 static void add_partial_namespace (struct partial_die_info *pdi,
1502 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1503 int set_addrmap, struct dwarf2_cu *cu);
1504
1505 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1506 CORE_ADDR *highpc, int set_addrmap,
1507 struct dwarf2_cu *cu);
1508
1509 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1510 struct dwarf2_cu *cu);
1511
1512 static void add_partial_subprogram (struct partial_die_info *pdi,
1513 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1514 int need_pc, struct dwarf2_cu *cu);
1515
1516 static void dwarf2_read_symtab (struct partial_symtab *,
1517 struct objfile *);
1518
1519 static void psymtab_to_symtab_1 (struct partial_symtab *);
1520
1521 static abbrev_table_up abbrev_table_read_table
1522 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1523 sect_offset);
1524
1525 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1526
1527 static struct partial_die_info *load_partial_dies
1528 (const struct die_reader_specs *, const gdb_byte *, int);
1529
1530 static struct partial_die_info *find_partial_die (sect_offset, int,
1531 struct dwarf2_cu *);
1532
1533 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1534 struct attribute *, struct attr_abbrev *,
1535 const gdb_byte *);
1536
1537 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1538
1539 static int read_1_signed_byte (bfd *, const gdb_byte *);
1540
1541 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1542
1543 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1544
1545 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1546
1547 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1548 unsigned int *);
1549
1550 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1551
1552 static LONGEST read_checked_initial_length_and_offset
1553 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1554 unsigned int *, unsigned int *);
1555
1556 static LONGEST read_offset (bfd *, const gdb_byte *,
1557 const struct comp_unit_head *,
1558 unsigned int *);
1559
1560 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1561
1562 static sect_offset read_abbrev_offset
1563 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1564 struct dwarf2_section_info *, sect_offset);
1565
1566 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1567
1568 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1569
1570 static const char *read_indirect_string
1571 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1572 const struct comp_unit_head *, unsigned int *);
1573
1574 static const char *read_indirect_line_string
1575 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1576 const struct comp_unit_head *, unsigned int *);
1577
1578 static const char *read_indirect_string_at_offset
1579 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1580 LONGEST str_offset);
1581
1582 static const char *read_indirect_string_from_dwz
1583 (struct objfile *objfile, struct dwz_file *, LONGEST);
1584
1585 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1586
1587 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1588 const gdb_byte *,
1589 unsigned int *);
1590
1591 static const char *read_str_index (const struct die_reader_specs *reader,
1592 ULONGEST str_index);
1593
1594 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1595
1596 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1597 struct dwarf2_cu *);
1598
1599 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1600 unsigned int);
1601
1602 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1603 struct dwarf2_cu *cu);
1604
1605 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1606 struct dwarf2_cu *cu);
1607
1608 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1609
1610 static struct die_info *die_specification (struct die_info *die,
1611 struct dwarf2_cu **);
1612
1613 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1614 struct dwarf2_cu *cu);
1615
1616 static void dwarf_decode_lines (struct line_header *, const char *,
1617 struct dwarf2_cu *, struct partial_symtab *,
1618 CORE_ADDR, int decode_mapping);
1619
1620 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1621 const char *);
1622
1623 static struct symbol *new_symbol (struct die_info *, struct type *,
1624 struct dwarf2_cu *, struct symbol * = NULL);
1625
1626 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1627 struct dwarf2_cu *);
1628
1629 static void dwarf2_const_value_attr (const struct attribute *attr,
1630 struct type *type,
1631 const char *name,
1632 struct obstack *obstack,
1633 struct dwarf2_cu *cu, LONGEST *value,
1634 const gdb_byte **bytes,
1635 struct dwarf2_locexpr_baton **baton);
1636
1637 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1638
1639 static int need_gnat_info (struct dwarf2_cu *);
1640
1641 static struct type *die_descriptive_type (struct die_info *,
1642 struct dwarf2_cu *);
1643
1644 static void set_descriptive_type (struct type *, struct die_info *,
1645 struct dwarf2_cu *);
1646
1647 static struct type *die_containing_type (struct die_info *,
1648 struct dwarf2_cu *);
1649
1650 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1651 struct dwarf2_cu *);
1652
1653 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1654
1655 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1656
1657 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1658
1659 static char *typename_concat (struct obstack *obs, const char *prefix,
1660 const char *suffix, int physname,
1661 struct dwarf2_cu *cu);
1662
1663 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1664
1665 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1666
1667 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1668
1669 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1670
1671 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1672
1673 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1674
1675 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1676 struct dwarf2_cu *, struct partial_symtab *);
1677
1678 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1679 values. Keep the items ordered with increasing constraints compliance. */
1680 enum pc_bounds_kind
1681 {
1682 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1683 PC_BOUNDS_NOT_PRESENT,
1684
1685 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1686 were present but they do not form a valid range of PC addresses. */
1687 PC_BOUNDS_INVALID,
1688
1689 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1690 PC_BOUNDS_RANGES,
1691
1692 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1693 PC_BOUNDS_HIGH_LOW,
1694 };
1695
1696 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1697 CORE_ADDR *, CORE_ADDR *,
1698 struct dwarf2_cu *,
1699 struct partial_symtab *);
1700
1701 static void get_scope_pc_bounds (struct die_info *,
1702 CORE_ADDR *, CORE_ADDR *,
1703 struct dwarf2_cu *);
1704
1705 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1706 CORE_ADDR, struct dwarf2_cu *);
1707
1708 static void dwarf2_add_field (struct field_info *, struct die_info *,
1709 struct dwarf2_cu *);
1710
1711 static void dwarf2_attach_fields_to_type (struct field_info *,
1712 struct type *, struct dwarf2_cu *);
1713
1714 static void dwarf2_add_member_fn (struct field_info *,
1715 struct die_info *, struct type *,
1716 struct dwarf2_cu *);
1717
1718 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1719 struct type *,
1720 struct dwarf2_cu *);
1721
1722 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1723
1724 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1725
1726 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1727
1728 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1729
1730 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1731
1732 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1733
1734 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1735
1736 static struct type *read_module_type (struct die_info *die,
1737 struct dwarf2_cu *cu);
1738
1739 static const char *namespace_name (struct die_info *die,
1740 int *is_anonymous, struct dwarf2_cu *);
1741
1742 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1743
1744 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1745
1746 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1747 struct dwarf2_cu *);
1748
1749 static struct die_info *read_die_and_siblings_1
1750 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1751 struct die_info *);
1752
1753 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1754 const gdb_byte *info_ptr,
1755 const gdb_byte **new_info_ptr,
1756 struct die_info *parent);
1757
1758 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1759 struct die_info **, const gdb_byte *,
1760 int *, int);
1761
1762 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1763 struct die_info **, const gdb_byte *,
1764 int *);
1765
1766 static void process_die (struct die_info *, struct dwarf2_cu *);
1767
1768 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1769 struct obstack *);
1770
1771 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1772
1773 static const char *dwarf2_full_name (const char *name,
1774 struct die_info *die,
1775 struct dwarf2_cu *cu);
1776
1777 static const char *dwarf2_physname (const char *name, struct die_info *die,
1778 struct dwarf2_cu *cu);
1779
1780 static struct die_info *dwarf2_extension (struct die_info *die,
1781 struct dwarf2_cu **);
1782
1783 static const char *dwarf_tag_name (unsigned int);
1784
1785 static const char *dwarf_attr_name (unsigned int);
1786
1787 static const char *dwarf_form_name (unsigned int);
1788
1789 static const char *dwarf_bool_name (unsigned int);
1790
1791 static const char *dwarf_type_encoding_name (unsigned int);
1792
1793 static struct die_info *sibling_die (struct die_info *);
1794
1795 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1796
1797 static void dump_die_for_error (struct die_info *);
1798
1799 static void dump_die_1 (struct ui_file *, int level, int max_level,
1800 struct die_info *);
1801
1802 /*static*/ void dump_die (struct die_info *, int max_level);
1803
1804 static void store_in_ref_table (struct die_info *,
1805 struct dwarf2_cu *);
1806
1807 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1808
1809 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1810
1811 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1812 const struct attribute *,
1813 struct dwarf2_cu **);
1814
1815 static struct die_info *follow_die_ref (struct die_info *,
1816 const struct attribute *,
1817 struct dwarf2_cu **);
1818
1819 static struct die_info *follow_die_sig (struct die_info *,
1820 const struct attribute *,
1821 struct dwarf2_cu **);
1822
1823 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1824 struct dwarf2_cu *);
1825
1826 static struct type *get_DW_AT_signature_type (struct die_info *,
1827 const struct attribute *,
1828 struct dwarf2_cu *);
1829
1830 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1831
1832 static void read_signatured_type (struct signatured_type *);
1833
1834 static int attr_to_dynamic_prop (const struct attribute *attr,
1835 struct die_info *die, struct dwarf2_cu *cu,
1836 struct dynamic_prop *prop);
1837
1838 /* memory allocation interface */
1839
1840 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1841
1842 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1843
1844 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1845
1846 static int attr_form_is_block (const struct attribute *);
1847
1848 static int attr_form_is_section_offset (const struct attribute *);
1849
1850 static int attr_form_is_constant (const struct attribute *);
1851
1852 static int attr_form_is_ref (const struct attribute *);
1853
1854 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1855 struct dwarf2_loclist_baton *baton,
1856 const struct attribute *attr);
1857
1858 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1859 struct symbol *sym,
1860 struct dwarf2_cu *cu,
1861 int is_block);
1862
1863 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1864 const gdb_byte *info_ptr,
1865 struct abbrev_info *abbrev);
1866
1867 static hashval_t partial_die_hash (const void *item);
1868
1869 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1870
1871 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1872 (sect_offset sect_off, unsigned int offset_in_dwz,
1873 struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1876 struct die_info *comp_unit_die,
1877 enum language pretend_language);
1878
1879 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1880
1881 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1882
1883 static struct type *set_die_type (struct die_info *, struct type *,
1884 struct dwarf2_cu *);
1885
1886 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1887
1888 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1889
1890 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1891 enum language);
1892
1893 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1894 enum language);
1895
1896 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1897 enum language);
1898
1899 static void dwarf2_add_dependence (struct dwarf2_cu *,
1900 struct dwarf2_per_cu_data *);
1901
1902 static void dwarf2_mark (struct dwarf2_cu *);
1903
1904 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1905
1906 static struct type *get_die_type_at_offset (sect_offset,
1907 struct dwarf2_per_cu_data *);
1908
1909 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1910
1911 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1912 enum language pretend_language);
1913
1914 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1915
1916 /* Class, the destructor of which frees all allocated queue entries. This
1917 will only have work to do if an error was thrown while processing the
1918 dwarf. If no error was thrown then the queue entries should have all
1919 been processed, and freed, as we went along. */
1920
1921 class dwarf2_queue_guard
1922 {
1923 public:
1924 dwarf2_queue_guard () = default;
1925
1926 /* Free any entries remaining on the queue. There should only be
1927 entries left if we hit an error while processing the dwarf. */
1928 ~dwarf2_queue_guard ()
1929 {
1930 struct dwarf2_queue_item *item, *last;
1931
1932 item = dwarf2_queue;
1933 while (item)
1934 {
1935 /* Anything still marked queued is likely to be in an
1936 inconsistent state, so discard it. */
1937 if (item->per_cu->queued)
1938 {
1939 if (item->per_cu->cu != NULL)
1940 free_one_cached_comp_unit (item->per_cu);
1941 item->per_cu->queued = 0;
1942 }
1943
1944 last = item;
1945 item = item->next;
1946 xfree (last);
1947 }
1948
1949 dwarf2_queue = dwarf2_queue_tail = NULL;
1950 }
1951 };
1952
1953 /* The return type of find_file_and_directory. Note, the enclosed
1954 string pointers are only valid while this object is valid. */
1955
1956 struct file_and_directory
1957 {
1958 /* The filename. This is never NULL. */
1959 const char *name;
1960
1961 /* The compilation directory. NULL if not known. If we needed to
1962 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1963 points directly to the DW_AT_comp_dir string attribute owned by
1964 the obstack that owns the DIE. */
1965 const char *comp_dir;
1966
1967 /* If we needed to build a new string for comp_dir, this is what
1968 owns the storage. */
1969 std::string comp_dir_storage;
1970 };
1971
1972 static file_and_directory find_file_and_directory (struct die_info *die,
1973 struct dwarf2_cu *cu);
1974
1975 static char *file_full_name (int file, struct line_header *lh,
1976 const char *comp_dir);
1977
1978 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1979 enum class rcuh_kind { COMPILE, TYPE };
1980
1981 static const gdb_byte *read_and_check_comp_unit_head
1982 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1983 struct comp_unit_head *header,
1984 struct dwarf2_section_info *section,
1985 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1986 rcuh_kind section_kind);
1987
1988 static void init_cutu_and_read_dies
1989 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1990 int use_existing_cu, int keep, bool skip_partial,
1991 die_reader_func_ftype *die_reader_func, void *data);
1992
1993 static void init_cutu_and_read_dies_simple
1994 (struct dwarf2_per_cu_data *this_cu,
1995 die_reader_func_ftype *die_reader_func, void *data);
1996
1997 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1998
1999 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2000
2001 static struct dwo_unit *lookup_dwo_unit_in_dwp
2002 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2003 struct dwp_file *dwp_file, const char *comp_dir,
2004 ULONGEST signature, int is_debug_types);
2005
2006 static struct dwp_file *get_dwp_file
2007 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2008
2009 static struct dwo_unit *lookup_dwo_comp_unit
2010 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2011
2012 static struct dwo_unit *lookup_dwo_type_unit
2013 (struct signatured_type *, const char *, const char *);
2014
2015 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2016
2017 static void free_dwo_file (struct dwo_file *);
2018
2019 /* A unique_ptr helper to free a dwo_file. */
2020
2021 struct dwo_file_deleter
2022 {
2023 void operator() (struct dwo_file *df) const
2024 {
2025 free_dwo_file (df);
2026 }
2027 };
2028
2029 /* A unique pointer to a dwo_file. */
2030
2031 typedef std::unique_ptr<struct dwo_file, dwo_file_deleter> dwo_file_up;
2032
2033 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2034
2035 static void check_producer (struct dwarf2_cu *cu);
2036
2037 static void free_line_header_voidp (void *arg);
2038 \f
2039 /* Various complaints about symbol reading that don't abort the process. */
2040
2041 static void
2042 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2043 {
2044 complaint (_("statement list doesn't fit in .debug_line section"));
2045 }
2046
2047 static void
2048 dwarf2_debug_line_missing_file_complaint (void)
2049 {
2050 complaint (_(".debug_line section has line data without a file"));
2051 }
2052
2053 static void
2054 dwarf2_debug_line_missing_end_sequence_complaint (void)
2055 {
2056 complaint (_(".debug_line section has line "
2057 "program sequence without an end"));
2058 }
2059
2060 static void
2061 dwarf2_complex_location_expr_complaint (void)
2062 {
2063 complaint (_("location expression too complex"));
2064 }
2065
2066 static void
2067 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2068 int arg3)
2069 {
2070 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2071 arg1, arg2, arg3);
2072 }
2073
2074 static void
2075 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2076 {
2077 complaint (_("debug info runs off end of %s section"
2078 " [in module %s]"),
2079 get_section_name (section),
2080 get_section_file_name (section));
2081 }
2082
2083 static void
2084 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2085 {
2086 complaint (_("macro debug info contains a "
2087 "malformed macro definition:\n`%s'"),
2088 arg1);
2089 }
2090
2091 static void
2092 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2093 {
2094 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2095 arg1, arg2);
2096 }
2097
2098 /* Hash function for line_header_hash. */
2099
2100 static hashval_t
2101 line_header_hash (const struct line_header *ofs)
2102 {
2103 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2104 }
2105
2106 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2107
2108 static hashval_t
2109 line_header_hash_voidp (const void *item)
2110 {
2111 const struct line_header *ofs = (const struct line_header *) item;
2112
2113 return line_header_hash (ofs);
2114 }
2115
2116 /* Equality function for line_header_hash. */
2117
2118 static int
2119 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2120 {
2121 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2122 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2123
2124 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2125 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2126 }
2127
2128 \f
2129
2130 /* Read the given attribute value as an address, taking the attribute's
2131 form into account. */
2132
2133 static CORE_ADDR
2134 attr_value_as_address (struct attribute *attr)
2135 {
2136 CORE_ADDR addr;
2137
2138 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2139 {
2140 /* Aside from a few clearly defined exceptions, attributes that
2141 contain an address must always be in DW_FORM_addr form.
2142 Unfortunately, some compilers happen to be violating this
2143 requirement by encoding addresses using other forms, such
2144 as DW_FORM_data4 for example. For those broken compilers,
2145 we try to do our best, without any guarantee of success,
2146 to interpret the address correctly. It would also be nice
2147 to generate a complaint, but that would require us to maintain
2148 a list of legitimate cases where a non-address form is allowed,
2149 as well as update callers to pass in at least the CU's DWARF
2150 version. This is more overhead than what we're willing to
2151 expand for a pretty rare case. */
2152 addr = DW_UNSND (attr);
2153 }
2154 else
2155 addr = DW_ADDR (attr);
2156
2157 return addr;
2158 }
2159
2160 /* See declaration. */
2161
2162 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2163 const dwarf2_debug_sections *names)
2164 : objfile (objfile_)
2165 {
2166 if (names == NULL)
2167 names = &dwarf2_elf_names;
2168
2169 bfd *obfd = objfile->obfd;
2170
2171 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2172 locate_sections (obfd, sec, *names);
2173 }
2174
2175 static void free_dwo_files (htab_t dwo_files, struct objfile *objfile);
2176
2177 dwarf2_per_objfile::~dwarf2_per_objfile ()
2178 {
2179 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2180 free_cached_comp_units ();
2181
2182 if (quick_file_names_table)
2183 htab_delete (quick_file_names_table);
2184
2185 if (line_header_hash)
2186 htab_delete (line_header_hash);
2187
2188 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2189 VEC_free (dwarf2_per_cu_ptr, per_cu->imported_symtabs);
2190
2191 for (signatured_type *sig_type : all_type_units)
2192 VEC_free (dwarf2_per_cu_ptr, sig_type->per_cu.imported_symtabs);
2193
2194 VEC_free (dwarf2_section_info_def, types);
2195
2196 if (dwo_files != NULL)
2197 free_dwo_files (dwo_files, objfile);
2198
2199 /* Everything else should be on the objfile obstack. */
2200 }
2201
2202 /* See declaration. */
2203
2204 void
2205 dwarf2_per_objfile::free_cached_comp_units ()
2206 {
2207 dwarf2_per_cu_data *per_cu = read_in_chain;
2208 dwarf2_per_cu_data **last_chain = &read_in_chain;
2209 while (per_cu != NULL)
2210 {
2211 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2212
2213 delete per_cu->cu;
2214 *last_chain = next_cu;
2215 per_cu = next_cu;
2216 }
2217 }
2218
2219 /* A helper class that calls free_cached_comp_units on
2220 destruction. */
2221
2222 class free_cached_comp_units
2223 {
2224 public:
2225
2226 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2227 : m_per_objfile (per_objfile)
2228 {
2229 }
2230
2231 ~free_cached_comp_units ()
2232 {
2233 m_per_objfile->free_cached_comp_units ();
2234 }
2235
2236 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2237
2238 private:
2239
2240 dwarf2_per_objfile *m_per_objfile;
2241 };
2242
2243 /* Try to locate the sections we need for DWARF 2 debugging
2244 information and return true if we have enough to do something.
2245 NAMES points to the dwarf2 section names, or is NULL if the standard
2246 ELF names are used. */
2247
2248 int
2249 dwarf2_has_info (struct objfile *objfile,
2250 const struct dwarf2_debug_sections *names)
2251 {
2252 if (objfile->flags & OBJF_READNEVER)
2253 return 0;
2254
2255 struct dwarf2_per_objfile *dwarf2_per_objfile
2256 = get_dwarf2_per_objfile (objfile);
2257
2258 if (dwarf2_per_objfile == NULL)
2259 {
2260 /* Initialize per-objfile state. */
2261 dwarf2_per_objfile
2262 = new (&objfile->objfile_obstack) struct dwarf2_per_objfile (objfile,
2263 names);
2264 set_dwarf2_per_objfile (objfile, dwarf2_per_objfile);
2265 }
2266 return (!dwarf2_per_objfile->info.is_virtual
2267 && dwarf2_per_objfile->info.s.section != NULL
2268 && !dwarf2_per_objfile->abbrev.is_virtual
2269 && dwarf2_per_objfile->abbrev.s.section != NULL);
2270 }
2271
2272 /* Return the containing section of virtual section SECTION. */
2273
2274 static struct dwarf2_section_info *
2275 get_containing_section (const struct dwarf2_section_info *section)
2276 {
2277 gdb_assert (section->is_virtual);
2278 return section->s.containing_section;
2279 }
2280
2281 /* Return the bfd owner of SECTION. */
2282
2283 static struct bfd *
2284 get_section_bfd_owner (const struct dwarf2_section_info *section)
2285 {
2286 if (section->is_virtual)
2287 {
2288 section = get_containing_section (section);
2289 gdb_assert (!section->is_virtual);
2290 }
2291 return section->s.section->owner;
2292 }
2293
2294 /* Return the bfd section of SECTION.
2295 Returns NULL if the section is not present. */
2296
2297 static asection *
2298 get_section_bfd_section (const struct dwarf2_section_info *section)
2299 {
2300 if (section->is_virtual)
2301 {
2302 section = get_containing_section (section);
2303 gdb_assert (!section->is_virtual);
2304 }
2305 return section->s.section;
2306 }
2307
2308 /* Return the name of SECTION. */
2309
2310 static const char *
2311 get_section_name (const struct dwarf2_section_info *section)
2312 {
2313 asection *sectp = get_section_bfd_section (section);
2314
2315 gdb_assert (sectp != NULL);
2316 return bfd_section_name (get_section_bfd_owner (section), sectp);
2317 }
2318
2319 /* Return the name of the file SECTION is in. */
2320
2321 static const char *
2322 get_section_file_name (const struct dwarf2_section_info *section)
2323 {
2324 bfd *abfd = get_section_bfd_owner (section);
2325
2326 return bfd_get_filename (abfd);
2327 }
2328
2329 /* Return the id of SECTION.
2330 Returns 0 if SECTION doesn't exist. */
2331
2332 static int
2333 get_section_id (const struct dwarf2_section_info *section)
2334 {
2335 asection *sectp = get_section_bfd_section (section);
2336
2337 if (sectp == NULL)
2338 return 0;
2339 return sectp->id;
2340 }
2341
2342 /* Return the flags of SECTION.
2343 SECTION (or containing section if this is a virtual section) must exist. */
2344
2345 static int
2346 get_section_flags (const struct dwarf2_section_info *section)
2347 {
2348 asection *sectp = get_section_bfd_section (section);
2349
2350 gdb_assert (sectp != NULL);
2351 return bfd_get_section_flags (sectp->owner, sectp);
2352 }
2353
2354 /* When loading sections, we look either for uncompressed section or for
2355 compressed section names. */
2356
2357 static int
2358 section_is_p (const char *section_name,
2359 const struct dwarf2_section_names *names)
2360 {
2361 if (names->normal != NULL
2362 && strcmp (section_name, names->normal) == 0)
2363 return 1;
2364 if (names->compressed != NULL
2365 && strcmp (section_name, names->compressed) == 0)
2366 return 1;
2367 return 0;
2368 }
2369
2370 /* See declaration. */
2371
2372 void
2373 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2374 const dwarf2_debug_sections &names)
2375 {
2376 flagword aflag = bfd_get_section_flags (abfd, sectp);
2377
2378 if ((aflag & SEC_HAS_CONTENTS) == 0)
2379 {
2380 }
2381 else if (section_is_p (sectp->name, &names.info))
2382 {
2383 this->info.s.section = sectp;
2384 this->info.size = bfd_get_section_size (sectp);
2385 }
2386 else if (section_is_p (sectp->name, &names.abbrev))
2387 {
2388 this->abbrev.s.section = sectp;
2389 this->abbrev.size = bfd_get_section_size (sectp);
2390 }
2391 else if (section_is_p (sectp->name, &names.line))
2392 {
2393 this->line.s.section = sectp;
2394 this->line.size = bfd_get_section_size (sectp);
2395 }
2396 else if (section_is_p (sectp->name, &names.loc))
2397 {
2398 this->loc.s.section = sectp;
2399 this->loc.size = bfd_get_section_size (sectp);
2400 }
2401 else if (section_is_p (sectp->name, &names.loclists))
2402 {
2403 this->loclists.s.section = sectp;
2404 this->loclists.size = bfd_get_section_size (sectp);
2405 }
2406 else if (section_is_p (sectp->name, &names.macinfo))
2407 {
2408 this->macinfo.s.section = sectp;
2409 this->macinfo.size = bfd_get_section_size (sectp);
2410 }
2411 else if (section_is_p (sectp->name, &names.macro))
2412 {
2413 this->macro.s.section = sectp;
2414 this->macro.size = bfd_get_section_size (sectp);
2415 }
2416 else if (section_is_p (sectp->name, &names.str))
2417 {
2418 this->str.s.section = sectp;
2419 this->str.size = bfd_get_section_size (sectp);
2420 }
2421 else if (section_is_p (sectp->name, &names.line_str))
2422 {
2423 this->line_str.s.section = sectp;
2424 this->line_str.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &names.addr))
2427 {
2428 this->addr.s.section = sectp;
2429 this->addr.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &names.frame))
2432 {
2433 this->frame.s.section = sectp;
2434 this->frame.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &names.eh_frame))
2437 {
2438 this->eh_frame.s.section = sectp;
2439 this->eh_frame.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &names.ranges))
2442 {
2443 this->ranges.s.section = sectp;
2444 this->ranges.size = bfd_get_section_size (sectp);
2445 }
2446 else if (section_is_p (sectp->name, &names.rnglists))
2447 {
2448 this->rnglists.s.section = sectp;
2449 this->rnglists.size = bfd_get_section_size (sectp);
2450 }
2451 else if (section_is_p (sectp->name, &names.types))
2452 {
2453 struct dwarf2_section_info type_section;
2454
2455 memset (&type_section, 0, sizeof (type_section));
2456 type_section.s.section = sectp;
2457 type_section.size = bfd_get_section_size (sectp);
2458
2459 VEC_safe_push (dwarf2_section_info_def, this->types,
2460 &type_section);
2461 }
2462 else if (section_is_p (sectp->name, &names.gdb_index))
2463 {
2464 this->gdb_index.s.section = sectp;
2465 this->gdb_index.size = bfd_get_section_size (sectp);
2466 }
2467 else if (section_is_p (sectp->name, &names.debug_names))
2468 {
2469 this->debug_names.s.section = sectp;
2470 this->debug_names.size = bfd_get_section_size (sectp);
2471 }
2472 else if (section_is_p (sectp->name, &names.debug_aranges))
2473 {
2474 this->debug_aranges.s.section = sectp;
2475 this->debug_aranges.size = bfd_get_section_size (sectp);
2476 }
2477
2478 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
2479 && bfd_section_vma (abfd, sectp) == 0)
2480 this->has_section_at_zero = true;
2481 }
2482
2483 /* A helper function that decides whether a section is empty,
2484 or not present. */
2485
2486 static int
2487 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2488 {
2489 if (section->is_virtual)
2490 return section->size == 0;
2491 return section->s.section == NULL || section->size == 0;
2492 }
2493
2494 /* See dwarf2read.h. */
2495
2496 void
2497 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2498 {
2499 asection *sectp;
2500 bfd *abfd;
2501 gdb_byte *buf, *retbuf;
2502
2503 if (info->readin)
2504 return;
2505 info->buffer = NULL;
2506 info->readin = 1;
2507
2508 if (dwarf2_section_empty_p (info))
2509 return;
2510
2511 sectp = get_section_bfd_section (info);
2512
2513 /* If this is a virtual section we need to read in the real one first. */
2514 if (info->is_virtual)
2515 {
2516 struct dwarf2_section_info *containing_section =
2517 get_containing_section (info);
2518
2519 gdb_assert (sectp != NULL);
2520 if ((sectp->flags & SEC_RELOC) != 0)
2521 {
2522 error (_("Dwarf Error: DWP format V2 with relocations is not"
2523 " supported in section %s [in module %s]"),
2524 get_section_name (info), get_section_file_name (info));
2525 }
2526 dwarf2_read_section (objfile, containing_section);
2527 /* Other code should have already caught virtual sections that don't
2528 fit. */
2529 gdb_assert (info->virtual_offset + info->size
2530 <= containing_section->size);
2531 /* If the real section is empty or there was a problem reading the
2532 section we shouldn't get here. */
2533 gdb_assert (containing_section->buffer != NULL);
2534 info->buffer = containing_section->buffer + info->virtual_offset;
2535 return;
2536 }
2537
2538 /* If the section has relocations, we must read it ourselves.
2539 Otherwise we attach it to the BFD. */
2540 if ((sectp->flags & SEC_RELOC) == 0)
2541 {
2542 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2543 return;
2544 }
2545
2546 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2547 info->buffer = buf;
2548
2549 /* When debugging .o files, we may need to apply relocations; see
2550 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2551 We never compress sections in .o files, so we only need to
2552 try this when the section is not compressed. */
2553 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2554 if (retbuf != NULL)
2555 {
2556 info->buffer = retbuf;
2557 return;
2558 }
2559
2560 abfd = get_section_bfd_owner (info);
2561 gdb_assert (abfd != NULL);
2562
2563 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2564 || bfd_bread (buf, info->size, abfd) != info->size)
2565 {
2566 error (_("Dwarf Error: Can't read DWARF data"
2567 " in section %s [in module %s]"),
2568 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2569 }
2570 }
2571
2572 /* A helper function that returns the size of a section in a safe way.
2573 If you are positive that the section has been read before using the
2574 size, then it is safe to refer to the dwarf2_section_info object's
2575 "size" field directly. In other cases, you must call this
2576 function, because for compressed sections the size field is not set
2577 correctly until the section has been read. */
2578
2579 static bfd_size_type
2580 dwarf2_section_size (struct objfile *objfile,
2581 struct dwarf2_section_info *info)
2582 {
2583 if (!info->readin)
2584 dwarf2_read_section (objfile, info);
2585 return info->size;
2586 }
2587
2588 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2589 SECTION_NAME. */
2590
2591 void
2592 dwarf2_get_section_info (struct objfile *objfile,
2593 enum dwarf2_section_enum sect,
2594 asection **sectp, const gdb_byte **bufp,
2595 bfd_size_type *sizep)
2596 {
2597 struct dwarf2_per_objfile *data
2598 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2599 dwarf2_objfile_data_key);
2600 struct dwarf2_section_info *info;
2601
2602 /* We may see an objfile without any DWARF, in which case we just
2603 return nothing. */
2604 if (data == NULL)
2605 {
2606 *sectp = NULL;
2607 *bufp = NULL;
2608 *sizep = 0;
2609 return;
2610 }
2611 switch (sect)
2612 {
2613 case DWARF2_DEBUG_FRAME:
2614 info = &data->frame;
2615 break;
2616 case DWARF2_EH_FRAME:
2617 info = &data->eh_frame;
2618 break;
2619 default:
2620 gdb_assert_not_reached ("unexpected section");
2621 }
2622
2623 dwarf2_read_section (objfile, info);
2624
2625 *sectp = get_section_bfd_section (info);
2626 *bufp = info->buffer;
2627 *sizep = info->size;
2628 }
2629
2630 /* A helper function to find the sections for a .dwz file. */
2631
2632 static void
2633 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2634 {
2635 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2636
2637 /* Note that we only support the standard ELF names, because .dwz
2638 is ELF-only (at the time of writing). */
2639 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2640 {
2641 dwz_file->abbrev.s.section = sectp;
2642 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2643 }
2644 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2645 {
2646 dwz_file->info.s.section = sectp;
2647 dwz_file->info.size = bfd_get_section_size (sectp);
2648 }
2649 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2650 {
2651 dwz_file->str.s.section = sectp;
2652 dwz_file->str.size = bfd_get_section_size (sectp);
2653 }
2654 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2655 {
2656 dwz_file->line.s.section = sectp;
2657 dwz_file->line.size = bfd_get_section_size (sectp);
2658 }
2659 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2660 {
2661 dwz_file->macro.s.section = sectp;
2662 dwz_file->macro.size = bfd_get_section_size (sectp);
2663 }
2664 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2665 {
2666 dwz_file->gdb_index.s.section = sectp;
2667 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2668 }
2669 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2670 {
2671 dwz_file->debug_names.s.section = sectp;
2672 dwz_file->debug_names.size = bfd_get_section_size (sectp);
2673 }
2674 }
2675
2676 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2677 there is no .gnu_debugaltlink section in the file. Error if there
2678 is such a section but the file cannot be found. */
2679
2680 static struct dwz_file *
2681 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2682 {
2683 const char *filename;
2684 bfd_size_type buildid_len_arg;
2685 size_t buildid_len;
2686 bfd_byte *buildid;
2687
2688 if (dwarf2_per_objfile->dwz_file != NULL)
2689 return dwarf2_per_objfile->dwz_file.get ();
2690
2691 bfd_set_error (bfd_error_no_error);
2692 gdb::unique_xmalloc_ptr<char> data
2693 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2694 &buildid_len_arg, &buildid));
2695 if (data == NULL)
2696 {
2697 if (bfd_get_error () == bfd_error_no_error)
2698 return NULL;
2699 error (_("could not read '.gnu_debugaltlink' section: %s"),
2700 bfd_errmsg (bfd_get_error ()));
2701 }
2702
2703 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2704
2705 buildid_len = (size_t) buildid_len_arg;
2706
2707 filename = data.get ();
2708
2709 std::string abs_storage;
2710 if (!IS_ABSOLUTE_PATH (filename))
2711 {
2712 gdb::unique_xmalloc_ptr<char> abs
2713 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2714
2715 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2716 filename = abs_storage.c_str ();
2717 }
2718
2719 /* First try the file name given in the section. If that doesn't
2720 work, try to use the build-id instead. */
2721 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2722 if (dwz_bfd != NULL)
2723 {
2724 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2725 dwz_bfd.reset (nullptr);
2726 }
2727
2728 if (dwz_bfd == NULL)
2729 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2730
2731 if (dwz_bfd == NULL)
2732 error (_("could not find '.gnu_debugaltlink' file for %s"),
2733 objfile_name (dwarf2_per_objfile->objfile));
2734
2735 std::unique_ptr<struct dwz_file> result
2736 (new struct dwz_file (std::move (dwz_bfd)));
2737
2738 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2739 result.get ());
2740
2741 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2742 result->dwz_bfd.get ());
2743 dwarf2_per_objfile->dwz_file = std::move (result);
2744 return dwarf2_per_objfile->dwz_file.get ();
2745 }
2746 \f
2747 /* DWARF quick_symbols_functions support. */
2748
2749 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2750 unique line tables, so we maintain a separate table of all .debug_line
2751 derived entries to support the sharing.
2752 All the quick functions need is the list of file names. We discard the
2753 line_header when we're done and don't need to record it here. */
2754 struct quick_file_names
2755 {
2756 /* The data used to construct the hash key. */
2757 struct stmt_list_hash hash;
2758
2759 /* The number of entries in file_names, real_names. */
2760 unsigned int num_file_names;
2761
2762 /* The file names from the line table, after being run through
2763 file_full_name. */
2764 const char **file_names;
2765
2766 /* The file names from the line table after being run through
2767 gdb_realpath. These are computed lazily. */
2768 const char **real_names;
2769 };
2770
2771 /* When using the index (and thus not using psymtabs), each CU has an
2772 object of this type. This is used to hold information needed by
2773 the various "quick" methods. */
2774 struct dwarf2_per_cu_quick_data
2775 {
2776 /* The file table. This can be NULL if there was no file table
2777 or it's currently not read in.
2778 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2779 struct quick_file_names *file_names;
2780
2781 /* The corresponding symbol table. This is NULL if symbols for this
2782 CU have not yet been read. */
2783 struct compunit_symtab *compunit_symtab;
2784
2785 /* A temporary mark bit used when iterating over all CUs in
2786 expand_symtabs_matching. */
2787 unsigned int mark : 1;
2788
2789 /* True if we've tried to read the file table and found there isn't one.
2790 There will be no point in trying to read it again next time. */
2791 unsigned int no_file_data : 1;
2792 };
2793
2794 /* Utility hash function for a stmt_list_hash. */
2795
2796 static hashval_t
2797 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2798 {
2799 hashval_t v = 0;
2800
2801 if (stmt_list_hash->dwo_unit != NULL)
2802 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2803 v += to_underlying (stmt_list_hash->line_sect_off);
2804 return v;
2805 }
2806
2807 /* Utility equality function for a stmt_list_hash. */
2808
2809 static int
2810 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2811 const struct stmt_list_hash *rhs)
2812 {
2813 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2814 return 0;
2815 if (lhs->dwo_unit != NULL
2816 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2817 return 0;
2818
2819 return lhs->line_sect_off == rhs->line_sect_off;
2820 }
2821
2822 /* Hash function for a quick_file_names. */
2823
2824 static hashval_t
2825 hash_file_name_entry (const void *e)
2826 {
2827 const struct quick_file_names *file_data
2828 = (const struct quick_file_names *) e;
2829
2830 return hash_stmt_list_entry (&file_data->hash);
2831 }
2832
2833 /* Equality function for a quick_file_names. */
2834
2835 static int
2836 eq_file_name_entry (const void *a, const void *b)
2837 {
2838 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2839 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2840
2841 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2842 }
2843
2844 /* Delete function for a quick_file_names. */
2845
2846 static void
2847 delete_file_name_entry (void *e)
2848 {
2849 struct quick_file_names *file_data = (struct quick_file_names *) e;
2850 int i;
2851
2852 for (i = 0; i < file_data->num_file_names; ++i)
2853 {
2854 xfree ((void*) file_data->file_names[i]);
2855 if (file_data->real_names)
2856 xfree ((void*) file_data->real_names[i]);
2857 }
2858
2859 /* The space for the struct itself lives on objfile_obstack,
2860 so we don't free it here. */
2861 }
2862
2863 /* Create a quick_file_names hash table. */
2864
2865 static htab_t
2866 create_quick_file_names_table (unsigned int nr_initial_entries)
2867 {
2868 return htab_create_alloc (nr_initial_entries,
2869 hash_file_name_entry, eq_file_name_entry,
2870 delete_file_name_entry, xcalloc, xfree);
2871 }
2872
2873 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2874 have to be created afterwards. You should call age_cached_comp_units after
2875 processing PER_CU->CU. dw2_setup must have been already called. */
2876
2877 static void
2878 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2879 {
2880 if (per_cu->is_debug_types)
2881 load_full_type_unit (per_cu);
2882 else
2883 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2884
2885 if (per_cu->cu == NULL)
2886 return; /* Dummy CU. */
2887
2888 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2889 }
2890
2891 /* Read in the symbols for PER_CU. */
2892
2893 static void
2894 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2895 {
2896 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2897
2898 /* Skip type_unit_groups, reading the type units they contain
2899 is handled elsewhere. */
2900 if (IS_TYPE_UNIT_GROUP (per_cu))
2901 return;
2902
2903 /* The destructor of dwarf2_queue_guard frees any entries left on
2904 the queue. After this point we're guaranteed to leave this function
2905 with the dwarf queue empty. */
2906 dwarf2_queue_guard q_guard;
2907
2908 if (dwarf2_per_objfile->using_index
2909 ? per_cu->v.quick->compunit_symtab == NULL
2910 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2911 {
2912 queue_comp_unit (per_cu, language_minimal);
2913 load_cu (per_cu, skip_partial);
2914
2915 /* If we just loaded a CU from a DWO, and we're working with an index
2916 that may badly handle TUs, load all the TUs in that DWO as well.
2917 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2918 if (!per_cu->is_debug_types
2919 && per_cu->cu != NULL
2920 && per_cu->cu->dwo_unit != NULL
2921 && dwarf2_per_objfile->index_table != NULL
2922 && dwarf2_per_objfile->index_table->version <= 7
2923 /* DWP files aren't supported yet. */
2924 && get_dwp_file (dwarf2_per_objfile) == NULL)
2925 queue_and_load_all_dwo_tus (per_cu);
2926 }
2927
2928 process_queue (dwarf2_per_objfile);
2929
2930 /* Age the cache, releasing compilation units that have not
2931 been used recently. */
2932 age_cached_comp_units (dwarf2_per_objfile);
2933 }
2934
2935 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2936 the objfile from which this CU came. Returns the resulting symbol
2937 table. */
2938
2939 static struct compunit_symtab *
2940 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2941 {
2942 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2943
2944 gdb_assert (dwarf2_per_objfile->using_index);
2945 if (!per_cu->v.quick->compunit_symtab)
2946 {
2947 free_cached_comp_units freer (dwarf2_per_objfile);
2948 scoped_restore decrementer = increment_reading_symtab ();
2949 dw2_do_instantiate_symtab (per_cu, skip_partial);
2950 process_cu_includes (dwarf2_per_objfile);
2951 }
2952
2953 return per_cu->v.quick->compunit_symtab;
2954 }
2955
2956 /* See declaration. */
2957
2958 dwarf2_per_cu_data *
2959 dwarf2_per_objfile::get_cutu (int index)
2960 {
2961 if (index >= this->all_comp_units.size ())
2962 {
2963 index -= this->all_comp_units.size ();
2964 gdb_assert (index < this->all_type_units.size ());
2965 return &this->all_type_units[index]->per_cu;
2966 }
2967
2968 return this->all_comp_units[index];
2969 }
2970
2971 /* See declaration. */
2972
2973 dwarf2_per_cu_data *
2974 dwarf2_per_objfile::get_cu (int index)
2975 {
2976 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2977
2978 return this->all_comp_units[index];
2979 }
2980
2981 /* See declaration. */
2982
2983 signatured_type *
2984 dwarf2_per_objfile::get_tu (int index)
2985 {
2986 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2987
2988 return this->all_type_units[index];
2989 }
2990
2991 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2992 objfile_obstack, and constructed with the specified field
2993 values. */
2994
2995 static dwarf2_per_cu_data *
2996 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2997 struct dwarf2_section_info *section,
2998 int is_dwz,
2999 sect_offset sect_off, ULONGEST length)
3000 {
3001 struct objfile *objfile = dwarf2_per_objfile->objfile;
3002 dwarf2_per_cu_data *the_cu
3003 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3004 struct dwarf2_per_cu_data);
3005 the_cu->sect_off = sect_off;
3006 the_cu->length = length;
3007 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
3008 the_cu->section = section;
3009 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3010 struct dwarf2_per_cu_quick_data);
3011 the_cu->is_dwz = is_dwz;
3012 return the_cu;
3013 }
3014
3015 /* A helper for create_cus_from_index that handles a given list of
3016 CUs. */
3017
3018 static void
3019 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3020 const gdb_byte *cu_list, offset_type n_elements,
3021 struct dwarf2_section_info *section,
3022 int is_dwz)
3023 {
3024 for (offset_type i = 0; i < n_elements; i += 2)
3025 {
3026 gdb_static_assert (sizeof (ULONGEST) >= 8);
3027
3028 sect_offset sect_off
3029 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3030 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3031 cu_list += 2 * 8;
3032
3033 dwarf2_per_cu_data *per_cu
3034 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3035 sect_off, length);
3036 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3037 }
3038 }
3039
3040 /* Read the CU list from the mapped index, and use it to create all
3041 the CU objects for this objfile. */
3042
3043 static void
3044 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3045 const gdb_byte *cu_list, offset_type cu_list_elements,
3046 const gdb_byte *dwz_list, offset_type dwz_elements)
3047 {
3048 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3049 dwarf2_per_objfile->all_comp_units.reserve
3050 ((cu_list_elements + dwz_elements) / 2);
3051
3052 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3053 &dwarf2_per_objfile->info, 0);
3054
3055 if (dwz_elements == 0)
3056 return;
3057
3058 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3059 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3060 &dwz->info, 1);
3061 }
3062
3063 /* Create the signatured type hash table from the index. */
3064
3065 static void
3066 create_signatured_type_table_from_index
3067 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3068 struct dwarf2_section_info *section,
3069 const gdb_byte *bytes,
3070 offset_type elements)
3071 {
3072 struct objfile *objfile = dwarf2_per_objfile->objfile;
3073
3074 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3075 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3076
3077 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3078
3079 for (offset_type i = 0; i < elements; i += 3)
3080 {
3081 struct signatured_type *sig_type;
3082 ULONGEST signature;
3083 void **slot;
3084 cu_offset type_offset_in_tu;
3085
3086 gdb_static_assert (sizeof (ULONGEST) >= 8);
3087 sect_offset sect_off
3088 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3089 type_offset_in_tu
3090 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3091 BFD_ENDIAN_LITTLE);
3092 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3093 bytes += 3 * 8;
3094
3095 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3096 struct signatured_type);
3097 sig_type->signature = signature;
3098 sig_type->type_offset_in_tu = type_offset_in_tu;
3099 sig_type->per_cu.is_debug_types = 1;
3100 sig_type->per_cu.section = section;
3101 sig_type->per_cu.sect_off = sect_off;
3102 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3103 sig_type->per_cu.v.quick
3104 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3105 struct dwarf2_per_cu_quick_data);
3106
3107 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3108 *slot = sig_type;
3109
3110 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3111 }
3112
3113 dwarf2_per_objfile->signatured_types = sig_types_hash;
3114 }
3115
3116 /* Create the signatured type hash table from .debug_names. */
3117
3118 static void
3119 create_signatured_type_table_from_debug_names
3120 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3121 const mapped_debug_names &map,
3122 struct dwarf2_section_info *section,
3123 struct dwarf2_section_info *abbrev_section)
3124 {
3125 struct objfile *objfile = dwarf2_per_objfile->objfile;
3126
3127 dwarf2_read_section (objfile, section);
3128 dwarf2_read_section (objfile, abbrev_section);
3129
3130 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3131 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3132
3133 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3134
3135 for (uint32_t i = 0; i < map.tu_count; ++i)
3136 {
3137 struct signatured_type *sig_type;
3138 void **slot;
3139
3140 sect_offset sect_off
3141 = (sect_offset) (extract_unsigned_integer
3142 (map.tu_table_reordered + i * map.offset_size,
3143 map.offset_size,
3144 map.dwarf5_byte_order));
3145
3146 comp_unit_head cu_header;
3147 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3148 abbrev_section,
3149 section->buffer + to_underlying (sect_off),
3150 rcuh_kind::TYPE);
3151
3152 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3153 struct signatured_type);
3154 sig_type->signature = cu_header.signature;
3155 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3156 sig_type->per_cu.is_debug_types = 1;
3157 sig_type->per_cu.section = section;
3158 sig_type->per_cu.sect_off = sect_off;
3159 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3160 sig_type->per_cu.v.quick
3161 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3162 struct dwarf2_per_cu_quick_data);
3163
3164 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3165 *slot = sig_type;
3166
3167 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3168 }
3169
3170 dwarf2_per_objfile->signatured_types = sig_types_hash;
3171 }
3172
3173 /* Read the address map data from the mapped index, and use it to
3174 populate the objfile's psymtabs_addrmap. */
3175
3176 static void
3177 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3178 struct mapped_index *index)
3179 {
3180 struct objfile *objfile = dwarf2_per_objfile->objfile;
3181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3182 const gdb_byte *iter, *end;
3183 struct addrmap *mutable_map;
3184 CORE_ADDR baseaddr;
3185
3186 auto_obstack temp_obstack;
3187
3188 mutable_map = addrmap_create_mutable (&temp_obstack);
3189
3190 iter = index->address_table.data ();
3191 end = iter + index->address_table.size ();
3192
3193 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3194
3195 while (iter < end)
3196 {
3197 ULONGEST hi, lo, cu_index;
3198 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3199 iter += 8;
3200 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3201 iter += 8;
3202 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3203 iter += 4;
3204
3205 if (lo > hi)
3206 {
3207 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3208 hex_string (lo), hex_string (hi));
3209 continue;
3210 }
3211
3212 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3213 {
3214 complaint (_(".gdb_index address table has invalid CU number %u"),
3215 (unsigned) cu_index);
3216 continue;
3217 }
3218
3219 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3220 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3221 addrmap_set_empty (mutable_map, lo, hi - 1,
3222 dwarf2_per_objfile->get_cu (cu_index));
3223 }
3224
3225 objfile->partial_symtabs->psymtabs_addrmap
3226 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3227 }
3228
3229 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3230 populate the objfile's psymtabs_addrmap. */
3231
3232 static void
3233 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3234 struct dwarf2_section_info *section)
3235 {
3236 struct objfile *objfile = dwarf2_per_objfile->objfile;
3237 bfd *abfd = objfile->obfd;
3238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3239 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3240 SECT_OFF_TEXT (objfile));
3241
3242 auto_obstack temp_obstack;
3243 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3244
3245 std::unordered_map<sect_offset,
3246 dwarf2_per_cu_data *,
3247 gdb::hash_enum<sect_offset>>
3248 debug_info_offset_to_per_cu;
3249 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3250 {
3251 const auto insertpair
3252 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3253 if (!insertpair.second)
3254 {
3255 warning (_("Section .debug_aranges in %s has duplicate "
3256 "debug_info_offset %s, ignoring .debug_aranges."),
3257 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3258 return;
3259 }
3260 }
3261
3262 dwarf2_read_section (objfile, section);
3263
3264 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3265
3266 const gdb_byte *addr = section->buffer;
3267
3268 while (addr < section->buffer + section->size)
3269 {
3270 const gdb_byte *const entry_addr = addr;
3271 unsigned int bytes_read;
3272
3273 const LONGEST entry_length = read_initial_length (abfd, addr,
3274 &bytes_read);
3275 addr += bytes_read;
3276
3277 const gdb_byte *const entry_end = addr + entry_length;
3278 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3279 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3280 if (addr + entry_length > section->buffer + section->size)
3281 {
3282 warning (_("Section .debug_aranges in %s entry at offset %zu "
3283 "length %s exceeds section length %s, "
3284 "ignoring .debug_aranges."),
3285 objfile_name (objfile), entry_addr - section->buffer,
3286 plongest (bytes_read + entry_length),
3287 pulongest (section->size));
3288 return;
3289 }
3290
3291 /* The version number. */
3292 const uint16_t version = read_2_bytes (abfd, addr);
3293 addr += 2;
3294 if (version != 2)
3295 {
3296 warning (_("Section .debug_aranges in %s entry at offset %zu "
3297 "has unsupported version %d, ignoring .debug_aranges."),
3298 objfile_name (objfile), entry_addr - section->buffer,
3299 version);
3300 return;
3301 }
3302
3303 const uint64_t debug_info_offset
3304 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3305 addr += offset_size;
3306 const auto per_cu_it
3307 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3308 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3309 {
3310 warning (_("Section .debug_aranges in %s entry at offset %zu "
3311 "debug_info_offset %s does not exists, "
3312 "ignoring .debug_aranges."),
3313 objfile_name (objfile), entry_addr - section->buffer,
3314 pulongest (debug_info_offset));
3315 return;
3316 }
3317 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3318
3319 const uint8_t address_size = *addr++;
3320 if (address_size < 1 || address_size > 8)
3321 {
3322 warning (_("Section .debug_aranges in %s entry at offset %zu "
3323 "address_size %u is invalid, ignoring .debug_aranges."),
3324 objfile_name (objfile), entry_addr - section->buffer,
3325 address_size);
3326 return;
3327 }
3328
3329 const uint8_t segment_selector_size = *addr++;
3330 if (segment_selector_size != 0)
3331 {
3332 warning (_("Section .debug_aranges in %s entry at offset %zu "
3333 "segment_selector_size %u is not supported, "
3334 "ignoring .debug_aranges."),
3335 objfile_name (objfile), entry_addr - section->buffer,
3336 segment_selector_size);
3337 return;
3338 }
3339
3340 /* Must pad to an alignment boundary that is twice the address
3341 size. It is undocumented by the DWARF standard but GCC does
3342 use it. */
3343 for (size_t padding = ((-(addr - section->buffer))
3344 & (2 * address_size - 1));
3345 padding > 0; padding--)
3346 if (*addr++ != 0)
3347 {
3348 warning (_("Section .debug_aranges in %s entry at offset %zu "
3349 "padding is not zero, ignoring .debug_aranges."),
3350 objfile_name (objfile), entry_addr - section->buffer);
3351 return;
3352 }
3353
3354 for (;;)
3355 {
3356 if (addr + 2 * address_size > entry_end)
3357 {
3358 warning (_("Section .debug_aranges in %s entry at offset %zu "
3359 "address list is not properly terminated, "
3360 "ignoring .debug_aranges."),
3361 objfile_name (objfile), entry_addr - section->buffer);
3362 return;
3363 }
3364 ULONGEST start = extract_unsigned_integer (addr, address_size,
3365 dwarf5_byte_order);
3366 addr += address_size;
3367 ULONGEST length = extract_unsigned_integer (addr, address_size,
3368 dwarf5_byte_order);
3369 addr += address_size;
3370 if (start == 0 && length == 0)
3371 break;
3372 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3373 {
3374 /* Symbol was eliminated due to a COMDAT group. */
3375 continue;
3376 }
3377 ULONGEST end = start + length;
3378 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3379 - baseaddr);
3380 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3381 - baseaddr);
3382 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3383 }
3384 }
3385
3386 objfile->partial_symtabs->psymtabs_addrmap
3387 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3388 }
3389
3390 /* Find a slot in the mapped index INDEX for the object named NAME.
3391 If NAME is found, set *VEC_OUT to point to the CU vector in the
3392 constant pool and return true. If NAME cannot be found, return
3393 false. */
3394
3395 static bool
3396 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3397 offset_type **vec_out)
3398 {
3399 offset_type hash;
3400 offset_type slot, step;
3401 int (*cmp) (const char *, const char *);
3402
3403 gdb::unique_xmalloc_ptr<char> without_params;
3404 if (current_language->la_language == language_cplus
3405 || current_language->la_language == language_fortran
3406 || current_language->la_language == language_d)
3407 {
3408 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3409 not contain any. */
3410
3411 if (strchr (name, '(') != NULL)
3412 {
3413 without_params = cp_remove_params (name);
3414
3415 if (without_params != NULL)
3416 name = without_params.get ();
3417 }
3418 }
3419
3420 /* Index version 4 did not support case insensitive searches. But the
3421 indices for case insensitive languages are built in lowercase, therefore
3422 simulate our NAME being searched is also lowercased. */
3423 hash = mapped_index_string_hash ((index->version == 4
3424 && case_sensitivity == case_sensitive_off
3425 ? 5 : index->version),
3426 name);
3427
3428 slot = hash & (index->symbol_table.size () - 1);
3429 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3430 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3431
3432 for (;;)
3433 {
3434 const char *str;
3435
3436 const auto &bucket = index->symbol_table[slot];
3437 if (bucket.name == 0 && bucket.vec == 0)
3438 return false;
3439
3440 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3441 if (!cmp (name, str))
3442 {
3443 *vec_out = (offset_type *) (index->constant_pool
3444 + MAYBE_SWAP (bucket.vec));
3445 return true;
3446 }
3447
3448 slot = (slot + step) & (index->symbol_table.size () - 1);
3449 }
3450 }
3451
3452 /* A helper function that reads the .gdb_index from BUFFER and fills
3453 in MAP. FILENAME is the name of the file containing the data;
3454 it is used for error reporting. DEPRECATED_OK is true if it is
3455 ok to use deprecated sections.
3456
3457 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3458 out parameters that are filled in with information about the CU and
3459 TU lists in the section.
3460
3461 Returns true if all went well, false otherwise. */
3462
3463 static bool
3464 read_gdb_index_from_buffer (struct objfile *objfile,
3465 const char *filename,
3466 bool deprecated_ok,
3467 gdb::array_view<const gdb_byte> buffer,
3468 struct mapped_index *map,
3469 const gdb_byte **cu_list,
3470 offset_type *cu_list_elements,
3471 const gdb_byte **types_list,
3472 offset_type *types_list_elements)
3473 {
3474 const gdb_byte *addr = &buffer[0];
3475
3476 /* Version check. */
3477 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3478 /* Versions earlier than 3 emitted every copy of a psymbol. This
3479 causes the index to behave very poorly for certain requests. Version 3
3480 contained incomplete addrmap. So, it seems better to just ignore such
3481 indices. */
3482 if (version < 4)
3483 {
3484 static int warning_printed = 0;
3485 if (!warning_printed)
3486 {
3487 warning (_("Skipping obsolete .gdb_index section in %s."),
3488 filename);
3489 warning_printed = 1;
3490 }
3491 return 0;
3492 }
3493 /* Index version 4 uses a different hash function than index version
3494 5 and later.
3495
3496 Versions earlier than 6 did not emit psymbols for inlined
3497 functions. Using these files will cause GDB not to be able to
3498 set breakpoints on inlined functions by name, so we ignore these
3499 indices unless the user has done
3500 "set use-deprecated-index-sections on". */
3501 if (version < 6 && !deprecated_ok)
3502 {
3503 static int warning_printed = 0;
3504 if (!warning_printed)
3505 {
3506 warning (_("\
3507 Skipping deprecated .gdb_index section in %s.\n\
3508 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3509 to use the section anyway."),
3510 filename);
3511 warning_printed = 1;
3512 }
3513 return 0;
3514 }
3515 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3516 of the TU (for symbols coming from TUs),
3517 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3518 Plus gold-generated indices can have duplicate entries for global symbols,
3519 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3520 These are just performance bugs, and we can't distinguish gdb-generated
3521 indices from gold-generated ones, so issue no warning here. */
3522
3523 /* Indexes with higher version than the one supported by GDB may be no
3524 longer backward compatible. */
3525 if (version > 8)
3526 return 0;
3527
3528 map->version = version;
3529
3530 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3531
3532 int i = 0;
3533 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3534 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3535 / 8);
3536 ++i;
3537
3538 *types_list = addr + MAYBE_SWAP (metadata[i]);
3539 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3540 - MAYBE_SWAP (metadata[i]))
3541 / 8);
3542 ++i;
3543
3544 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3546 map->address_table
3547 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3548 ++i;
3549
3550 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3551 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3552 map->symbol_table
3553 = gdb::array_view<mapped_index::symbol_table_slot>
3554 ((mapped_index::symbol_table_slot *) symbol_table,
3555 (mapped_index::symbol_table_slot *) symbol_table_end);
3556
3557 ++i;
3558 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3559
3560 return 1;
3561 }
3562
3563 /* Callback types for dwarf2_read_gdb_index. */
3564
3565 typedef gdb::function_view
3566 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3567 get_gdb_index_contents_ftype;
3568 typedef gdb::function_view
3569 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3570 get_gdb_index_contents_dwz_ftype;
3571
3572 /* Read .gdb_index. If everything went ok, initialize the "quick"
3573 elements of all the CUs and return 1. Otherwise, return 0. */
3574
3575 static int
3576 dwarf2_read_gdb_index
3577 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3578 get_gdb_index_contents_ftype get_gdb_index_contents,
3579 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3580 {
3581 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3582 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3583 struct dwz_file *dwz;
3584 struct objfile *objfile = dwarf2_per_objfile->objfile;
3585
3586 gdb::array_view<const gdb_byte> main_index_contents
3587 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3588
3589 if (main_index_contents.empty ())
3590 return 0;
3591
3592 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3593 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3594 use_deprecated_index_sections,
3595 main_index_contents, map.get (), &cu_list,
3596 &cu_list_elements, &types_list,
3597 &types_list_elements))
3598 return 0;
3599
3600 /* Don't use the index if it's empty. */
3601 if (map->symbol_table.empty ())
3602 return 0;
3603
3604 /* If there is a .dwz file, read it so we can get its CU list as
3605 well. */
3606 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3607 if (dwz != NULL)
3608 {
3609 struct mapped_index dwz_map;
3610 const gdb_byte *dwz_types_ignore;
3611 offset_type dwz_types_elements_ignore;
3612
3613 gdb::array_view<const gdb_byte> dwz_index_content
3614 = get_gdb_index_contents_dwz (objfile, dwz);
3615
3616 if (dwz_index_content.empty ())
3617 return 0;
3618
3619 if (!read_gdb_index_from_buffer (objfile,
3620 bfd_get_filename (dwz->dwz_bfd), 1,
3621 dwz_index_content, &dwz_map,
3622 &dwz_list, &dwz_list_elements,
3623 &dwz_types_ignore,
3624 &dwz_types_elements_ignore))
3625 {
3626 warning (_("could not read '.gdb_index' section from %s; skipping"),
3627 bfd_get_filename (dwz->dwz_bfd));
3628 return 0;
3629 }
3630 }
3631
3632 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3633 dwz_list, dwz_list_elements);
3634
3635 if (types_list_elements)
3636 {
3637 struct dwarf2_section_info *section;
3638
3639 /* We can only handle a single .debug_types when we have an
3640 index. */
3641 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3642 return 0;
3643
3644 section = VEC_index (dwarf2_section_info_def,
3645 dwarf2_per_objfile->types, 0);
3646
3647 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3648 types_list, types_list_elements);
3649 }
3650
3651 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3652
3653 dwarf2_per_objfile->index_table = std::move (map);
3654 dwarf2_per_objfile->using_index = 1;
3655 dwarf2_per_objfile->quick_file_names_table =
3656 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3657
3658 return 1;
3659 }
3660
3661 /* die_reader_func for dw2_get_file_names. */
3662
3663 static void
3664 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3665 const gdb_byte *info_ptr,
3666 struct die_info *comp_unit_die,
3667 int has_children,
3668 void *data)
3669 {
3670 struct dwarf2_cu *cu = reader->cu;
3671 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3672 struct dwarf2_per_objfile *dwarf2_per_objfile
3673 = cu->per_cu->dwarf2_per_objfile;
3674 struct objfile *objfile = dwarf2_per_objfile->objfile;
3675 struct dwarf2_per_cu_data *lh_cu;
3676 struct attribute *attr;
3677 int i;
3678 void **slot;
3679 struct quick_file_names *qfn;
3680
3681 gdb_assert (! this_cu->is_debug_types);
3682
3683 /* Our callers never want to match partial units -- instead they
3684 will match the enclosing full CU. */
3685 if (comp_unit_die->tag == DW_TAG_partial_unit)
3686 {
3687 this_cu->v.quick->no_file_data = 1;
3688 return;
3689 }
3690
3691 lh_cu = this_cu;
3692 slot = NULL;
3693
3694 line_header_up lh;
3695 sect_offset line_offset {};
3696
3697 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3698 if (attr)
3699 {
3700 struct quick_file_names find_entry;
3701
3702 line_offset = (sect_offset) DW_UNSND (attr);
3703
3704 /* We may have already read in this line header (TU line header sharing).
3705 If we have we're done. */
3706 find_entry.hash.dwo_unit = cu->dwo_unit;
3707 find_entry.hash.line_sect_off = line_offset;
3708 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3709 &find_entry, INSERT);
3710 if (*slot != NULL)
3711 {
3712 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3713 return;
3714 }
3715
3716 lh = dwarf_decode_line_header (line_offset, cu);
3717 }
3718 if (lh == NULL)
3719 {
3720 lh_cu->v.quick->no_file_data = 1;
3721 return;
3722 }
3723
3724 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3725 qfn->hash.dwo_unit = cu->dwo_unit;
3726 qfn->hash.line_sect_off = line_offset;
3727 gdb_assert (slot != NULL);
3728 *slot = qfn;
3729
3730 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3731
3732 qfn->num_file_names = lh->file_names.size ();
3733 qfn->file_names =
3734 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->file_names.size ());
3735 for (i = 0; i < lh->file_names.size (); ++i)
3736 qfn->file_names[i] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3737 qfn->real_names = NULL;
3738
3739 lh_cu->v.quick->file_names = qfn;
3740 }
3741
3742 /* A helper for the "quick" functions which attempts to read the line
3743 table for THIS_CU. */
3744
3745 static struct quick_file_names *
3746 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3747 {
3748 /* This should never be called for TUs. */
3749 gdb_assert (! this_cu->is_debug_types);
3750 /* Nor type unit groups. */
3751 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3752
3753 if (this_cu->v.quick->file_names != NULL)
3754 return this_cu->v.quick->file_names;
3755 /* If we know there is no line data, no point in looking again. */
3756 if (this_cu->v.quick->no_file_data)
3757 return NULL;
3758
3759 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3760
3761 if (this_cu->v.quick->no_file_data)
3762 return NULL;
3763 return this_cu->v.quick->file_names;
3764 }
3765
3766 /* A helper for the "quick" functions which computes and caches the
3767 real path for a given file name from the line table. */
3768
3769 static const char *
3770 dw2_get_real_path (struct objfile *objfile,
3771 struct quick_file_names *qfn, int index)
3772 {
3773 if (qfn->real_names == NULL)
3774 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3775 qfn->num_file_names, const char *);
3776
3777 if (qfn->real_names[index] == NULL)
3778 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3779
3780 return qfn->real_names[index];
3781 }
3782
3783 static struct symtab *
3784 dw2_find_last_source_symtab (struct objfile *objfile)
3785 {
3786 struct dwarf2_per_objfile *dwarf2_per_objfile
3787 = get_dwarf2_per_objfile (objfile);
3788 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3789 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3790
3791 if (cust == NULL)
3792 return NULL;
3793
3794 return compunit_primary_filetab (cust);
3795 }
3796
3797 /* Traversal function for dw2_forget_cached_source_info. */
3798
3799 static int
3800 dw2_free_cached_file_names (void **slot, void *info)
3801 {
3802 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3803
3804 if (file_data->real_names)
3805 {
3806 int i;
3807
3808 for (i = 0; i < file_data->num_file_names; ++i)
3809 {
3810 xfree ((void*) file_data->real_names[i]);
3811 file_data->real_names[i] = NULL;
3812 }
3813 }
3814
3815 return 1;
3816 }
3817
3818 static void
3819 dw2_forget_cached_source_info (struct objfile *objfile)
3820 {
3821 struct dwarf2_per_objfile *dwarf2_per_objfile
3822 = get_dwarf2_per_objfile (objfile);
3823
3824 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3825 dw2_free_cached_file_names, NULL);
3826 }
3827
3828 /* Helper function for dw2_map_symtabs_matching_filename that expands
3829 the symtabs and calls the iterator. */
3830
3831 static int
3832 dw2_map_expand_apply (struct objfile *objfile,
3833 struct dwarf2_per_cu_data *per_cu,
3834 const char *name, const char *real_path,
3835 gdb::function_view<bool (symtab *)> callback)
3836 {
3837 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3838
3839 /* Don't visit already-expanded CUs. */
3840 if (per_cu->v.quick->compunit_symtab)
3841 return 0;
3842
3843 /* This may expand more than one symtab, and we want to iterate over
3844 all of them. */
3845 dw2_instantiate_symtab (per_cu, false);
3846
3847 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3848 last_made, callback);
3849 }
3850
3851 /* Implementation of the map_symtabs_matching_filename method. */
3852
3853 static bool
3854 dw2_map_symtabs_matching_filename
3855 (struct objfile *objfile, const char *name, const char *real_path,
3856 gdb::function_view<bool (symtab *)> callback)
3857 {
3858 const char *name_basename = lbasename (name);
3859 struct dwarf2_per_objfile *dwarf2_per_objfile
3860 = get_dwarf2_per_objfile (objfile);
3861
3862 /* The rule is CUs specify all the files, including those used by
3863 any TU, so there's no need to scan TUs here. */
3864
3865 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3866 {
3867 /* We only need to look at symtabs not already expanded. */
3868 if (per_cu->v.quick->compunit_symtab)
3869 continue;
3870
3871 quick_file_names *file_data = dw2_get_file_names (per_cu);
3872 if (file_data == NULL)
3873 continue;
3874
3875 for (int j = 0; j < file_data->num_file_names; ++j)
3876 {
3877 const char *this_name = file_data->file_names[j];
3878 const char *this_real_name;
3879
3880 if (compare_filenames_for_search (this_name, name))
3881 {
3882 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3883 callback))
3884 return true;
3885 continue;
3886 }
3887
3888 /* Before we invoke realpath, which can get expensive when many
3889 files are involved, do a quick comparison of the basenames. */
3890 if (! basenames_may_differ
3891 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3892 continue;
3893
3894 this_real_name = dw2_get_real_path (objfile, file_data, j);
3895 if (compare_filenames_for_search (this_real_name, name))
3896 {
3897 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3898 callback))
3899 return true;
3900 continue;
3901 }
3902
3903 if (real_path != NULL)
3904 {
3905 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3906 gdb_assert (IS_ABSOLUTE_PATH (name));
3907 if (this_real_name != NULL
3908 && FILENAME_CMP (real_path, this_real_name) == 0)
3909 {
3910 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3911 callback))
3912 return true;
3913 continue;
3914 }
3915 }
3916 }
3917 }
3918
3919 return false;
3920 }
3921
3922 /* Struct used to manage iterating over all CUs looking for a symbol. */
3923
3924 struct dw2_symtab_iterator
3925 {
3926 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3927 struct dwarf2_per_objfile *dwarf2_per_objfile;
3928 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3929 int want_specific_block;
3930 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3931 Unused if !WANT_SPECIFIC_BLOCK. */
3932 int block_index;
3933 /* The kind of symbol we're looking for. */
3934 domain_enum domain;
3935 /* The list of CUs from the index entry of the symbol,
3936 or NULL if not found. */
3937 offset_type *vec;
3938 /* The next element in VEC to look at. */
3939 int next;
3940 /* The number of elements in VEC, or zero if there is no match. */
3941 int length;
3942 /* Have we seen a global version of the symbol?
3943 If so we can ignore all further global instances.
3944 This is to work around gold/15646, inefficient gold-generated
3945 indices. */
3946 int global_seen;
3947 };
3948
3949 /* Initialize the index symtab iterator ITER.
3950 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3951 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3952
3953 static void
3954 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3955 struct dwarf2_per_objfile *dwarf2_per_objfile,
3956 int want_specific_block,
3957 int block_index,
3958 domain_enum domain,
3959 const char *name)
3960 {
3961 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3962 iter->want_specific_block = want_specific_block;
3963 iter->block_index = block_index;
3964 iter->domain = domain;
3965 iter->next = 0;
3966 iter->global_seen = 0;
3967
3968 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3969
3970 /* index is NULL if OBJF_READNOW. */
3971 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3972 iter->length = MAYBE_SWAP (*iter->vec);
3973 else
3974 {
3975 iter->vec = NULL;
3976 iter->length = 0;
3977 }
3978 }
3979
3980 /* Return the next matching CU or NULL if there are no more. */
3981
3982 static struct dwarf2_per_cu_data *
3983 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3984 {
3985 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3986
3987 for ( ; iter->next < iter->length; ++iter->next)
3988 {
3989 offset_type cu_index_and_attrs =
3990 MAYBE_SWAP (iter->vec[iter->next + 1]);
3991 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3992 int want_static = iter->block_index != GLOBAL_BLOCK;
3993 /* This value is only valid for index versions >= 7. */
3994 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3995 gdb_index_symbol_kind symbol_kind =
3996 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3997 /* Only check the symbol attributes if they're present.
3998 Indices prior to version 7 don't record them,
3999 and indices >= 7 may elide them for certain symbols
4000 (gold does this). */
4001 int attrs_valid =
4002 (dwarf2_per_objfile->index_table->version >= 7
4003 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4004
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4007 + dwarf2_per_objfile->all_type_units.size ()))
4008 {
4009 complaint (_(".gdb_index entry has bad CU index"
4010 " [in module %s]"),
4011 objfile_name (dwarf2_per_objfile->objfile));
4012 continue;
4013 }
4014
4015 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4016
4017 /* Skip if already read in. */
4018 if (per_cu->v.quick->compunit_symtab)
4019 continue;
4020
4021 /* Check static vs global. */
4022 if (attrs_valid)
4023 {
4024 if (iter->want_specific_block
4025 && want_static != is_static)
4026 continue;
4027 /* Work around gold/15646. */
4028 if (!is_static && iter->global_seen)
4029 continue;
4030 if (!is_static)
4031 iter->global_seen = 1;
4032 }
4033
4034 /* Only check the symbol's kind if it has one. */
4035 if (attrs_valid)
4036 {
4037 switch (iter->domain)
4038 {
4039 case VAR_DOMAIN:
4040 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4041 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4042 /* Some types are also in VAR_DOMAIN. */
4043 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4044 continue;
4045 break;
4046 case STRUCT_DOMAIN:
4047 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4048 continue;
4049 break;
4050 case LABEL_DOMAIN:
4051 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4052 continue;
4053 break;
4054 default:
4055 break;
4056 }
4057 }
4058
4059 ++iter->next;
4060 return per_cu;
4061 }
4062
4063 return NULL;
4064 }
4065
4066 static struct compunit_symtab *
4067 dw2_lookup_symbol (struct objfile *objfile, int block_index,
4068 const char *name, domain_enum domain)
4069 {
4070 struct compunit_symtab *stab_best = NULL;
4071 struct dwarf2_per_objfile *dwarf2_per_objfile
4072 = get_dwarf2_per_objfile (objfile);
4073
4074 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4075
4076 struct dw2_symtab_iterator iter;
4077 struct dwarf2_per_cu_data *per_cu;
4078
4079 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 1, block_index, domain, name);
4080
4081 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4082 {
4083 struct symbol *sym, *with_opaque = NULL;
4084 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4085 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4086 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4087
4088 sym = block_find_symbol (block, name, domain,
4089 block_find_non_opaque_type_preferred,
4090 &with_opaque);
4091
4092 /* Some caution must be observed with overloaded functions
4093 and methods, since the index will not contain any overload
4094 information (but NAME might contain it). */
4095
4096 if (sym != NULL
4097 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4098 return stab;
4099 if (with_opaque != NULL
4100 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4101 stab_best = stab;
4102
4103 /* Keep looking through other CUs. */
4104 }
4105
4106 return stab_best;
4107 }
4108
4109 static void
4110 dw2_print_stats (struct objfile *objfile)
4111 {
4112 struct dwarf2_per_objfile *dwarf2_per_objfile
4113 = get_dwarf2_per_objfile (objfile);
4114 int total = (dwarf2_per_objfile->all_comp_units.size ()
4115 + dwarf2_per_objfile->all_type_units.size ());
4116 int count = 0;
4117
4118 for (int i = 0; i < total; ++i)
4119 {
4120 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4121
4122 if (!per_cu->v.quick->compunit_symtab)
4123 ++count;
4124 }
4125 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4126 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4127 }
4128
4129 /* This dumps minimal information about the index.
4130 It is called via "mt print objfiles".
4131 One use is to verify .gdb_index has been loaded by the
4132 gdb.dwarf2/gdb-index.exp testcase. */
4133
4134 static void
4135 dw2_dump (struct objfile *objfile)
4136 {
4137 struct dwarf2_per_objfile *dwarf2_per_objfile
4138 = get_dwarf2_per_objfile (objfile);
4139
4140 gdb_assert (dwarf2_per_objfile->using_index);
4141 printf_filtered (".gdb_index:");
4142 if (dwarf2_per_objfile->index_table != NULL)
4143 {
4144 printf_filtered (" version %d\n",
4145 dwarf2_per_objfile->index_table->version);
4146 }
4147 else
4148 printf_filtered (" faked for \"readnow\"\n");
4149 printf_filtered ("\n");
4150 }
4151
4152 static void
4153 dw2_expand_symtabs_for_function (struct objfile *objfile,
4154 const char *func_name)
4155 {
4156 struct dwarf2_per_objfile *dwarf2_per_objfile
4157 = get_dwarf2_per_objfile (objfile);
4158
4159 struct dw2_symtab_iterator iter;
4160 struct dwarf2_per_cu_data *per_cu;
4161
4162 /* Note: It doesn't matter what we pass for block_index here. */
4163 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, 0, GLOBAL_BLOCK, VAR_DOMAIN,
4164 func_name);
4165
4166 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4167 dw2_instantiate_symtab (per_cu, false);
4168
4169 }
4170
4171 static void
4172 dw2_expand_all_symtabs (struct objfile *objfile)
4173 {
4174 struct dwarf2_per_objfile *dwarf2_per_objfile
4175 = get_dwarf2_per_objfile (objfile);
4176 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4177 + dwarf2_per_objfile->all_type_units.size ());
4178
4179 for (int i = 0; i < total_units; ++i)
4180 {
4181 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4182
4183 /* We don't want to directly expand a partial CU, because if we
4184 read it with the wrong language, then assertion failures can
4185 be triggered later on. See PR symtab/23010. So, tell
4186 dw2_instantiate_symtab to skip partial CUs -- any important
4187 partial CU will be read via DW_TAG_imported_unit anyway. */
4188 dw2_instantiate_symtab (per_cu, true);
4189 }
4190 }
4191
4192 static void
4193 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4194 const char *fullname)
4195 {
4196 struct dwarf2_per_objfile *dwarf2_per_objfile
4197 = get_dwarf2_per_objfile (objfile);
4198
4199 /* We don't need to consider type units here.
4200 This is only called for examining code, e.g. expand_line_sal.
4201 There can be an order of magnitude (or more) more type units
4202 than comp units, and we avoid them if we can. */
4203
4204 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4205 {
4206 /* We only need to look at symtabs not already expanded. */
4207 if (per_cu->v.quick->compunit_symtab)
4208 continue;
4209
4210 quick_file_names *file_data = dw2_get_file_names (per_cu);
4211 if (file_data == NULL)
4212 continue;
4213
4214 for (int j = 0; j < file_data->num_file_names; ++j)
4215 {
4216 const char *this_fullname = file_data->file_names[j];
4217
4218 if (filename_cmp (this_fullname, fullname) == 0)
4219 {
4220 dw2_instantiate_symtab (per_cu, false);
4221 break;
4222 }
4223 }
4224 }
4225 }
4226
4227 static void
4228 dw2_map_matching_symbols (struct objfile *objfile,
4229 const char * name, domain_enum domain,
4230 int global,
4231 int (*callback) (struct block *,
4232 struct symbol *, void *),
4233 void *data, symbol_name_match_type match,
4234 symbol_compare_ftype *ordered_compare)
4235 {
4236 /* Currently unimplemented; used for Ada. The function can be called if the
4237 current language is Ada for a non-Ada objfile using GNU index. As Ada
4238 does not look for non-Ada symbols this function should just return. */
4239 }
4240
4241 /* Symbol name matcher for .gdb_index names.
4242
4243 Symbol names in .gdb_index have a few particularities:
4244
4245 - There's no indication of which is the language of each symbol.
4246
4247 Since each language has its own symbol name matching algorithm,
4248 and we don't know which language is the right one, we must match
4249 each symbol against all languages. This would be a potential
4250 performance problem if it were not mitigated by the
4251 mapped_index::name_components lookup table, which significantly
4252 reduces the number of times we need to call into this matcher,
4253 making it a non-issue.
4254
4255 - Symbol names in the index have no overload (parameter)
4256 information. I.e., in C++, "foo(int)" and "foo(long)" both
4257 appear as "foo" in the index, for example.
4258
4259 This means that the lookup names passed to the symbol name
4260 matcher functions must have no parameter information either
4261 because (e.g.) symbol search name "foo" does not match
4262 lookup-name "foo(int)" [while swapping search name for lookup
4263 name would match].
4264 */
4265 class gdb_index_symbol_name_matcher
4266 {
4267 public:
4268 /* Prepares the vector of comparison functions for LOOKUP_NAME. */
4269 gdb_index_symbol_name_matcher (const lookup_name_info &lookup_name);
4270
4271 /* Walk all the matcher routines and match SYMBOL_NAME against them.
4272 Returns true if any matcher matches. */
4273 bool matches (const char *symbol_name);
4274
4275 private:
4276 /* A reference to the lookup name we're matching against. */
4277 const lookup_name_info &m_lookup_name;
4278
4279 /* A vector holding all the different symbol name matchers, for all
4280 languages. */
4281 std::vector<symbol_name_matcher_ftype *> m_symbol_name_matcher_funcs;
4282 };
4283
4284 gdb_index_symbol_name_matcher::gdb_index_symbol_name_matcher
4285 (const lookup_name_info &lookup_name)
4286 : m_lookup_name (lookup_name)
4287 {
4288 /* Prepare the vector of comparison functions upfront, to avoid
4289 doing the same work for each symbol. Care is taken to avoid
4290 matching with the same matcher more than once if/when multiple
4291 languages use the same matcher function. */
4292 auto &matchers = m_symbol_name_matcher_funcs;
4293 matchers.reserve (nr_languages);
4294
4295 matchers.push_back (default_symbol_name_matcher);
4296
4297 for (int i = 0; i < nr_languages; i++)
4298 {
4299 const language_defn *lang = language_def ((enum language) i);
4300 symbol_name_matcher_ftype *name_matcher
4301 = get_symbol_name_matcher (lang, m_lookup_name);
4302
4303 /* Don't insert the same comparison routine more than once.
4304 Note that we do this linear walk instead of a seemingly
4305 cheaper sorted insert, or use a std::set or something like
4306 that, because relative order of function addresses is not
4307 stable. This is not a problem in practice because the number
4308 of supported languages is low, and the cost here is tiny
4309 compared to the number of searches we'll do afterwards using
4310 this object. */
4311 if (name_matcher != default_symbol_name_matcher
4312 && (std::find (matchers.begin (), matchers.end (), name_matcher)
4313 == matchers.end ()))
4314 matchers.push_back (name_matcher);
4315 }
4316 }
4317
4318 bool
4319 gdb_index_symbol_name_matcher::matches (const char *symbol_name)
4320 {
4321 for (auto matches_name : m_symbol_name_matcher_funcs)
4322 if (matches_name (symbol_name, m_lookup_name, NULL))
4323 return true;
4324
4325 return false;
4326 }
4327
4328 /* Starting from a search name, return the string that finds the upper
4329 bound of all strings that start with SEARCH_NAME in a sorted name
4330 list. Returns the empty string to indicate that the upper bound is
4331 the end of the list. */
4332
4333 static std::string
4334 make_sort_after_prefix_name (const char *search_name)
4335 {
4336 /* When looking to complete "func", we find the upper bound of all
4337 symbols that start with "func" by looking for where we'd insert
4338 the closest string that would follow "func" in lexicographical
4339 order. Usually, that's "func"-with-last-character-incremented,
4340 i.e. "fund". Mind non-ASCII characters, though. Usually those
4341 will be UTF-8 multi-byte sequences, but we can't be certain.
4342 Especially mind the 0xff character, which is a valid character in
4343 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4344 rule out compilers allowing it in identifiers. Note that
4345 conveniently, strcmp/strcasecmp are specified to compare
4346 characters interpreted as unsigned char. So what we do is treat
4347 the whole string as a base 256 number composed of a sequence of
4348 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4349 to 0, and carries 1 to the following more-significant position.
4350 If the very first character in SEARCH_NAME ends up incremented
4351 and carries/overflows, then the upper bound is the end of the
4352 list. The string after the empty string is also the empty
4353 string.
4354
4355 Some examples of this operation:
4356
4357 SEARCH_NAME => "+1" RESULT
4358
4359 "abc" => "abd"
4360 "ab\xff" => "ac"
4361 "\xff" "a" "\xff" => "\xff" "b"
4362 "\xff" => ""
4363 "\xff\xff" => ""
4364 "" => ""
4365
4366 Then, with these symbols for example:
4367
4368 func
4369 func1
4370 fund
4371
4372 completing "func" looks for symbols between "func" and
4373 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4374 which finds "func" and "func1", but not "fund".
4375
4376 And with:
4377
4378 funcÿ (Latin1 'ÿ' [0xff])
4379 funcÿ1
4380 fund
4381
4382 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4383 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4384
4385 And with:
4386
4387 ÿÿ (Latin1 'ÿ' [0xff])
4388 ÿÿ1
4389
4390 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4391 the end of the list.
4392 */
4393 std::string after = search_name;
4394 while (!after.empty () && (unsigned char) after.back () == 0xff)
4395 after.pop_back ();
4396 if (!after.empty ())
4397 after.back () = (unsigned char) after.back () + 1;
4398 return after;
4399 }
4400
4401 /* See declaration. */
4402
4403 std::pair<std::vector<name_component>::const_iterator,
4404 std::vector<name_component>::const_iterator>
4405 mapped_index_base::find_name_components_bounds
4406 (const lookup_name_info &lookup_name_without_params) const
4407 {
4408 auto *name_cmp
4409 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4410
4411 const char *cplus
4412 = lookup_name_without_params.cplus ().lookup_name ().c_str ();
4413
4414 /* Comparison function object for lower_bound that matches against a
4415 given symbol name. */
4416 auto lookup_compare_lower = [&] (const name_component &elem,
4417 const char *name)
4418 {
4419 const char *elem_qualified = this->symbol_name_at (elem.idx);
4420 const char *elem_name = elem_qualified + elem.name_offset;
4421 return name_cmp (elem_name, name) < 0;
4422 };
4423
4424 /* Comparison function object for upper_bound that matches against a
4425 given symbol name. */
4426 auto lookup_compare_upper = [&] (const char *name,
4427 const name_component &elem)
4428 {
4429 const char *elem_qualified = this->symbol_name_at (elem.idx);
4430 const char *elem_name = elem_qualified + elem.name_offset;
4431 return name_cmp (name, elem_name) < 0;
4432 };
4433
4434 auto begin = this->name_components.begin ();
4435 auto end = this->name_components.end ();
4436
4437 /* Find the lower bound. */
4438 auto lower = [&] ()
4439 {
4440 if (lookup_name_without_params.completion_mode () && cplus[0] == '\0')
4441 return begin;
4442 else
4443 return std::lower_bound (begin, end, cplus, lookup_compare_lower);
4444 } ();
4445
4446 /* Find the upper bound. */
4447 auto upper = [&] ()
4448 {
4449 if (lookup_name_without_params.completion_mode ())
4450 {
4451 /* In completion mode, we want UPPER to point past all
4452 symbols names that have the same prefix. I.e., with
4453 these symbols, and completing "func":
4454
4455 function << lower bound
4456 function1
4457 other_function << upper bound
4458
4459 We find the upper bound by looking for the insertion
4460 point of "func"-with-last-character-incremented,
4461 i.e. "fund". */
4462 std::string after = make_sort_after_prefix_name (cplus);
4463 if (after.empty ())
4464 return end;
4465 return std::lower_bound (lower, end, after.c_str (),
4466 lookup_compare_lower);
4467 }
4468 else
4469 return std::upper_bound (lower, end, cplus, lookup_compare_upper);
4470 } ();
4471
4472 return {lower, upper};
4473 }
4474
4475 /* See declaration. */
4476
4477 void
4478 mapped_index_base::build_name_components ()
4479 {
4480 if (!this->name_components.empty ())
4481 return;
4482
4483 this->name_components_casing = case_sensitivity;
4484 auto *name_cmp
4485 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4486
4487 /* The code below only knows how to break apart components of C++
4488 symbol names (and other languages that use '::' as
4489 namespace/module separator). If we add support for wild matching
4490 to some language that uses some other operator (E.g., Ada, Go and
4491 D use '.'), then we'll need to try splitting the symbol name
4492 according to that language too. Note that Ada does support wild
4493 matching, but doesn't currently support .gdb_index. */
4494 auto count = this->symbol_name_count ();
4495 for (offset_type idx = 0; idx < count; idx++)
4496 {
4497 if (this->symbol_name_slot_invalid (idx))
4498 continue;
4499
4500 const char *name = this->symbol_name_at (idx);
4501
4502 /* Add each name component to the name component table. */
4503 unsigned int previous_len = 0;
4504 for (unsigned int current_len = cp_find_first_component (name);
4505 name[current_len] != '\0';
4506 current_len += cp_find_first_component (name + current_len))
4507 {
4508 gdb_assert (name[current_len] == ':');
4509 this->name_components.push_back ({previous_len, idx});
4510 /* Skip the '::'. */
4511 current_len += 2;
4512 previous_len = current_len;
4513 }
4514 this->name_components.push_back ({previous_len, idx});
4515 }
4516
4517 /* Sort name_components elements by name. */
4518 auto name_comp_compare = [&] (const name_component &left,
4519 const name_component &right)
4520 {
4521 const char *left_qualified = this->symbol_name_at (left.idx);
4522 const char *right_qualified = this->symbol_name_at (right.idx);
4523
4524 const char *left_name = left_qualified + left.name_offset;
4525 const char *right_name = right_qualified + right.name_offset;
4526
4527 return name_cmp (left_name, right_name) < 0;
4528 };
4529
4530 std::sort (this->name_components.begin (),
4531 this->name_components.end (),
4532 name_comp_compare);
4533 }
4534
4535 /* Helper for dw2_expand_symtabs_matching that works with a
4536 mapped_index_base instead of the containing objfile. This is split
4537 to a separate function in order to be able to unit test the
4538 name_components matching using a mock mapped_index_base. For each
4539 symbol name that matches, calls MATCH_CALLBACK, passing it the
4540 symbol's index in the mapped_index_base symbol table. */
4541
4542 static void
4543 dw2_expand_symtabs_matching_symbol
4544 (mapped_index_base &index,
4545 const lookup_name_info &lookup_name_in,
4546 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4547 enum search_domain kind,
4548 gdb::function_view<void (offset_type)> match_callback)
4549 {
4550 lookup_name_info lookup_name_without_params
4551 = lookup_name_in.make_ignore_params ();
4552 gdb_index_symbol_name_matcher lookup_name_matcher
4553 (lookup_name_without_params);
4554
4555 /* Build the symbol name component sorted vector, if we haven't
4556 yet. */
4557 index.build_name_components ();
4558
4559 auto bounds = index.find_name_components_bounds (lookup_name_without_params);
4560
4561 /* Now for each symbol name in range, check to see if we have a name
4562 match, and if so, call the MATCH_CALLBACK callback. */
4563
4564 /* The same symbol may appear more than once in the range though.
4565 E.g., if we're looking for symbols that complete "w", and we have
4566 a symbol named "w1::w2", we'll find the two name components for
4567 that same symbol in the range. To be sure we only call the
4568 callback once per symbol, we first collect the symbol name
4569 indexes that matched in a temporary vector and ignore
4570 duplicates. */
4571 std::vector<offset_type> matches;
4572 matches.reserve (std::distance (bounds.first, bounds.second));
4573
4574 for (; bounds.first != bounds.second; ++bounds.first)
4575 {
4576 const char *qualified = index.symbol_name_at (bounds.first->idx);
4577
4578 if (!lookup_name_matcher.matches (qualified)
4579 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4580 continue;
4581
4582 matches.push_back (bounds.first->idx);
4583 }
4584
4585 std::sort (matches.begin (), matches.end ());
4586
4587 /* Finally call the callback, once per match. */
4588 ULONGEST prev = -1;
4589 for (offset_type idx : matches)
4590 {
4591 if (prev != idx)
4592 {
4593 match_callback (idx);
4594 prev = idx;
4595 }
4596 }
4597
4598 /* Above we use a type wider than idx's for 'prev', since 0 and
4599 (offset_type)-1 are both possible values. */
4600 static_assert (sizeof (prev) > sizeof (offset_type), "");
4601 }
4602
4603 #if GDB_SELF_TEST
4604
4605 namespace selftests { namespace dw2_expand_symtabs_matching {
4606
4607 /* A mock .gdb_index/.debug_names-like name index table, enough to
4608 exercise dw2_expand_symtabs_matching_symbol, which works with the
4609 mapped_index_base interface. Builds an index from the symbol list
4610 passed as parameter to the constructor. */
4611 class mock_mapped_index : public mapped_index_base
4612 {
4613 public:
4614 mock_mapped_index (gdb::array_view<const char *> symbols)
4615 : m_symbol_table (symbols)
4616 {}
4617
4618 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4619
4620 /* Return the number of names in the symbol table. */
4621 size_t symbol_name_count () const override
4622 {
4623 return m_symbol_table.size ();
4624 }
4625
4626 /* Get the name of the symbol at IDX in the symbol table. */
4627 const char *symbol_name_at (offset_type idx) const override
4628 {
4629 return m_symbol_table[idx];
4630 }
4631
4632 private:
4633 gdb::array_view<const char *> m_symbol_table;
4634 };
4635
4636 /* Convenience function that converts a NULL pointer to a "<null>"
4637 string, to pass to print routines. */
4638
4639 static const char *
4640 string_or_null (const char *str)
4641 {
4642 return str != NULL ? str : "<null>";
4643 }
4644
4645 /* Check if a lookup_name_info built from
4646 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4647 index. EXPECTED_LIST is the list of expected matches, in expected
4648 matching order. If no match expected, then an empty list is
4649 specified. Returns true on success. On failure prints a warning
4650 indicating the file:line that failed, and returns false. */
4651
4652 static bool
4653 check_match (const char *file, int line,
4654 mock_mapped_index &mock_index,
4655 const char *name, symbol_name_match_type match_type,
4656 bool completion_mode,
4657 std::initializer_list<const char *> expected_list)
4658 {
4659 lookup_name_info lookup_name (name, match_type, completion_mode);
4660
4661 bool matched = true;
4662
4663 auto mismatch = [&] (const char *expected_str,
4664 const char *got)
4665 {
4666 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4667 "expected=\"%s\", got=\"%s\"\n"),
4668 file, line,
4669 (match_type == symbol_name_match_type::FULL
4670 ? "FULL" : "WILD"),
4671 name, string_or_null (expected_str), string_or_null (got));
4672 matched = false;
4673 };
4674
4675 auto expected_it = expected_list.begin ();
4676 auto expected_end = expected_list.end ();
4677
4678 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4679 NULL, ALL_DOMAIN,
4680 [&] (offset_type idx)
4681 {
4682 const char *matched_name = mock_index.symbol_name_at (idx);
4683 const char *expected_str
4684 = expected_it == expected_end ? NULL : *expected_it++;
4685
4686 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4687 mismatch (expected_str, matched_name);
4688 });
4689
4690 const char *expected_str
4691 = expected_it == expected_end ? NULL : *expected_it++;
4692 if (expected_str != NULL)
4693 mismatch (expected_str, NULL);
4694
4695 return matched;
4696 }
4697
4698 /* The symbols added to the mock mapped_index for testing (in
4699 canonical form). */
4700 static const char *test_symbols[] = {
4701 "function",
4702 "std::bar",
4703 "std::zfunction",
4704 "std::zfunction2",
4705 "w1::w2",
4706 "ns::foo<char*>",
4707 "ns::foo<int>",
4708 "ns::foo<long>",
4709 "ns2::tmpl<int>::foo2",
4710 "(anonymous namespace)::A::B::C",
4711
4712 /* These are used to check that the increment-last-char in the
4713 matching algorithm for completion doesn't match "t1_fund" when
4714 completing "t1_func". */
4715 "t1_func",
4716 "t1_func1",
4717 "t1_fund",
4718 "t1_fund1",
4719
4720 /* A UTF-8 name with multi-byte sequences to make sure that
4721 cp-name-parser understands this as a single identifier ("função"
4722 is "function" in PT). */
4723 u8"u8função",
4724
4725 /* \377 (0xff) is Latin1 'ÿ'. */
4726 "yfunc\377",
4727
4728 /* \377 (0xff) is Latin1 'ÿ'. */
4729 "\377",
4730 "\377\377123",
4731
4732 /* A name with all sorts of complications. Starts with "z" to make
4733 it easier for the completion tests below. */
4734 #define Z_SYM_NAME \
4735 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4736 "::tuple<(anonymous namespace)::ui*, " \
4737 "std::default_delete<(anonymous namespace)::ui>, void>"
4738
4739 Z_SYM_NAME
4740 };
4741
4742 /* Returns true if the mapped_index_base::find_name_component_bounds
4743 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4744 in completion mode. */
4745
4746 static bool
4747 check_find_bounds_finds (mapped_index_base &index,
4748 const char *search_name,
4749 gdb::array_view<const char *> expected_syms)
4750 {
4751 lookup_name_info lookup_name (search_name,
4752 symbol_name_match_type::FULL, true);
4753
4754 auto bounds = index.find_name_components_bounds (lookup_name);
4755
4756 size_t distance = std::distance (bounds.first, bounds.second);
4757 if (distance != expected_syms.size ())
4758 return false;
4759
4760 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4761 {
4762 auto nc_elem = bounds.first + exp_elem;
4763 const char *qualified = index.symbol_name_at (nc_elem->idx);
4764 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4765 return false;
4766 }
4767
4768 return true;
4769 }
4770
4771 /* Test the lower-level mapped_index::find_name_component_bounds
4772 method. */
4773
4774 static void
4775 test_mapped_index_find_name_component_bounds ()
4776 {
4777 mock_mapped_index mock_index (test_symbols);
4778
4779 mock_index.build_name_components ();
4780
4781 /* Test the lower-level mapped_index::find_name_component_bounds
4782 method in completion mode. */
4783 {
4784 static const char *expected_syms[] = {
4785 "t1_func",
4786 "t1_func1",
4787 };
4788
4789 SELF_CHECK (check_find_bounds_finds (mock_index,
4790 "t1_func", expected_syms));
4791 }
4792
4793 /* Check that the increment-last-char in the name matching algorithm
4794 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4795 {
4796 static const char *expected_syms1[] = {
4797 "\377",
4798 "\377\377123",
4799 };
4800 SELF_CHECK (check_find_bounds_finds (mock_index,
4801 "\377", expected_syms1));
4802
4803 static const char *expected_syms2[] = {
4804 "\377\377123",
4805 };
4806 SELF_CHECK (check_find_bounds_finds (mock_index,
4807 "\377\377", expected_syms2));
4808 }
4809 }
4810
4811 /* Test dw2_expand_symtabs_matching_symbol. */
4812
4813 static void
4814 test_dw2_expand_symtabs_matching_symbol ()
4815 {
4816 mock_mapped_index mock_index (test_symbols);
4817
4818 /* We let all tests run until the end even if some fails, for debug
4819 convenience. */
4820 bool any_mismatch = false;
4821
4822 /* Create the expected symbols list (an initializer_list). Needed
4823 because lists have commas, and we need to pass them to CHECK,
4824 which is a macro. */
4825 #define EXPECT(...) { __VA_ARGS__ }
4826
4827 /* Wrapper for check_match that passes down the current
4828 __FILE__/__LINE__. */
4829 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4830 any_mismatch |= !check_match (__FILE__, __LINE__, \
4831 mock_index, \
4832 NAME, MATCH_TYPE, COMPLETION_MODE, \
4833 EXPECTED_LIST)
4834
4835 /* Identity checks. */
4836 for (const char *sym : test_symbols)
4837 {
4838 /* Should be able to match all existing symbols. */
4839 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4840 EXPECT (sym));
4841
4842 /* Should be able to match all existing symbols with
4843 parameters. */
4844 std::string with_params = std::string (sym) + "(int)";
4845 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4846 EXPECT (sym));
4847
4848 /* Should be able to match all existing symbols with
4849 parameters and qualifiers. */
4850 with_params = std::string (sym) + " ( int ) const";
4851 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4852 EXPECT (sym));
4853
4854 /* This should really find sym, but cp-name-parser.y doesn't
4855 know about lvalue/rvalue qualifiers yet. */
4856 with_params = std::string (sym) + " ( int ) &&";
4857 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4858 {});
4859 }
4860
4861 /* Check that the name matching algorithm for completion doesn't get
4862 confused with Latin1 'ÿ' / 0xff. */
4863 {
4864 static const char str[] = "\377";
4865 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4866 EXPECT ("\377", "\377\377123"));
4867 }
4868
4869 /* Check that the increment-last-char in the matching algorithm for
4870 completion doesn't match "t1_fund" when completing "t1_func". */
4871 {
4872 static const char str[] = "t1_func";
4873 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4874 EXPECT ("t1_func", "t1_func1"));
4875 }
4876
4877 /* Check that completion mode works at each prefix of the expected
4878 symbol name. */
4879 {
4880 static const char str[] = "function(int)";
4881 size_t len = strlen (str);
4882 std::string lookup;
4883
4884 for (size_t i = 1; i < len; i++)
4885 {
4886 lookup.assign (str, i);
4887 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4888 EXPECT ("function"));
4889 }
4890 }
4891
4892 /* While "w" is a prefix of both components, the match function
4893 should still only be called once. */
4894 {
4895 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4896 EXPECT ("w1::w2"));
4897 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4898 EXPECT ("w1::w2"));
4899 }
4900
4901 /* Same, with a "complicated" symbol. */
4902 {
4903 static const char str[] = Z_SYM_NAME;
4904 size_t len = strlen (str);
4905 std::string lookup;
4906
4907 for (size_t i = 1; i < len; i++)
4908 {
4909 lookup.assign (str, i);
4910 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4911 EXPECT (Z_SYM_NAME));
4912 }
4913 }
4914
4915 /* In FULL mode, an incomplete symbol doesn't match. */
4916 {
4917 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4918 {});
4919 }
4920
4921 /* A complete symbol with parameters matches any overload, since the
4922 index has no overload info. */
4923 {
4924 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4925 EXPECT ("std::zfunction", "std::zfunction2"));
4926 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4927 EXPECT ("std::zfunction", "std::zfunction2"));
4928 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4929 EXPECT ("std::zfunction", "std::zfunction2"));
4930 }
4931
4932 /* Check that whitespace is ignored appropriately. A symbol with a
4933 template argument list. */
4934 {
4935 static const char expected[] = "ns::foo<int>";
4936 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4937 EXPECT (expected));
4938 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4939 EXPECT (expected));
4940 }
4941
4942 /* Check that whitespace is ignored appropriately. A symbol with a
4943 template argument list that includes a pointer. */
4944 {
4945 static const char expected[] = "ns::foo<char*>";
4946 /* Try both completion and non-completion modes. */
4947 static const bool completion_mode[2] = {false, true};
4948 for (size_t i = 0; i < 2; i++)
4949 {
4950 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4951 completion_mode[i], EXPECT (expected));
4952 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4953 completion_mode[i], EXPECT (expected));
4954
4955 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4956 completion_mode[i], EXPECT (expected));
4957 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4958 completion_mode[i], EXPECT (expected));
4959 }
4960 }
4961
4962 {
4963 /* Check method qualifiers are ignored. */
4964 static const char expected[] = "ns::foo<char*>";
4965 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4966 symbol_name_match_type::FULL, true, EXPECT (expected));
4967 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4968 symbol_name_match_type::FULL, true, EXPECT (expected));
4969 CHECK_MATCH ("foo < char * > ( int ) const",
4970 symbol_name_match_type::WILD, true, EXPECT (expected));
4971 CHECK_MATCH ("foo < char * > ( int ) &&",
4972 symbol_name_match_type::WILD, true, EXPECT (expected));
4973 }
4974
4975 /* Test lookup names that don't match anything. */
4976 {
4977 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4978 {});
4979
4980 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4981 {});
4982 }
4983
4984 /* Some wild matching tests, exercising "(anonymous namespace)",
4985 which should not be confused with a parameter list. */
4986 {
4987 static const char *syms[] = {
4988 "A::B::C",
4989 "B::C",
4990 "C",
4991 "A :: B :: C ( int )",
4992 "B :: C ( int )",
4993 "C ( int )",
4994 };
4995
4996 for (const char *s : syms)
4997 {
4998 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4999 EXPECT ("(anonymous namespace)::A::B::C"));
5000 }
5001 }
5002
5003 {
5004 static const char expected[] = "ns2::tmpl<int>::foo2";
5005 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
5006 EXPECT (expected));
5007 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
5008 EXPECT (expected));
5009 }
5010
5011 SELF_CHECK (!any_mismatch);
5012
5013 #undef EXPECT
5014 #undef CHECK_MATCH
5015 }
5016
5017 static void
5018 run_test ()
5019 {
5020 test_mapped_index_find_name_component_bounds ();
5021 test_dw2_expand_symtabs_matching_symbol ();
5022 }
5023
5024 }} // namespace selftests::dw2_expand_symtabs_matching
5025
5026 #endif /* GDB_SELF_TEST */
5027
5028 /* If FILE_MATCHER is NULL or if PER_CU has
5029 dwarf2_per_cu_quick_data::MARK set (see
5030 dw_expand_symtabs_matching_file_matcher), expand the CU and call
5031 EXPANSION_NOTIFY on it. */
5032
5033 static void
5034 dw2_expand_symtabs_matching_one
5035 (struct dwarf2_per_cu_data *per_cu,
5036 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5037 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
5038 {
5039 if (file_matcher == NULL || per_cu->v.quick->mark)
5040 {
5041 bool symtab_was_null
5042 = (per_cu->v.quick->compunit_symtab == NULL);
5043
5044 dw2_instantiate_symtab (per_cu, false);
5045
5046 if (expansion_notify != NULL
5047 && symtab_was_null
5048 && per_cu->v.quick->compunit_symtab != NULL)
5049 expansion_notify (per_cu->v.quick->compunit_symtab);
5050 }
5051 }
5052
5053 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5054 matched, to expand corresponding CUs that were marked. IDX is the
5055 index of the symbol name that matched. */
5056
5057 static void
5058 dw2_expand_marked_cus
5059 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5060 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5061 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5062 search_domain kind)
5063 {
5064 offset_type *vec, vec_len, vec_idx;
5065 bool global_seen = false;
5066 mapped_index &index = *dwarf2_per_objfile->index_table;
5067
5068 vec = (offset_type *) (index.constant_pool
5069 + MAYBE_SWAP (index.symbol_table[idx].vec));
5070 vec_len = MAYBE_SWAP (vec[0]);
5071 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5072 {
5073 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5074 /* This value is only valid for index versions >= 7. */
5075 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5076 gdb_index_symbol_kind symbol_kind =
5077 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5078 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5079 /* Only check the symbol attributes if they're present.
5080 Indices prior to version 7 don't record them,
5081 and indices >= 7 may elide them for certain symbols
5082 (gold does this). */
5083 int attrs_valid =
5084 (index.version >= 7
5085 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5086
5087 /* Work around gold/15646. */
5088 if (attrs_valid)
5089 {
5090 if (!is_static && global_seen)
5091 continue;
5092 if (!is_static)
5093 global_seen = true;
5094 }
5095
5096 /* Only check the symbol's kind if it has one. */
5097 if (attrs_valid)
5098 {
5099 switch (kind)
5100 {
5101 case VARIABLES_DOMAIN:
5102 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5103 continue;
5104 break;
5105 case FUNCTIONS_DOMAIN:
5106 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5107 continue;
5108 break;
5109 case TYPES_DOMAIN:
5110 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5111 continue;
5112 break;
5113 default:
5114 break;
5115 }
5116 }
5117
5118 /* Don't crash on bad data. */
5119 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5120 + dwarf2_per_objfile->all_type_units.size ()))
5121 {
5122 complaint (_(".gdb_index entry has bad CU index"
5123 " [in module %s]"),
5124 objfile_name (dwarf2_per_objfile->objfile));
5125 continue;
5126 }
5127
5128 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5129 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5130 expansion_notify);
5131 }
5132 }
5133
5134 /* If FILE_MATCHER is non-NULL, set all the
5135 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5136 that match FILE_MATCHER. */
5137
5138 static void
5139 dw_expand_symtabs_matching_file_matcher
5140 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5141 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5142 {
5143 if (file_matcher == NULL)
5144 return;
5145
5146 objfile *const objfile = dwarf2_per_objfile->objfile;
5147
5148 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5149 htab_eq_pointer,
5150 NULL, xcalloc, xfree));
5151 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5152 htab_eq_pointer,
5153 NULL, xcalloc, xfree));
5154
5155 /* The rule is CUs specify all the files, including those used by
5156 any TU, so there's no need to scan TUs here. */
5157
5158 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5159 {
5160 QUIT;
5161
5162 per_cu->v.quick->mark = 0;
5163
5164 /* We only need to look at symtabs not already expanded. */
5165 if (per_cu->v.quick->compunit_symtab)
5166 continue;
5167
5168 quick_file_names *file_data = dw2_get_file_names (per_cu);
5169 if (file_data == NULL)
5170 continue;
5171
5172 if (htab_find (visited_not_found.get (), file_data) != NULL)
5173 continue;
5174 else if (htab_find (visited_found.get (), file_data) != NULL)
5175 {
5176 per_cu->v.quick->mark = 1;
5177 continue;
5178 }
5179
5180 for (int j = 0; j < file_data->num_file_names; ++j)
5181 {
5182 const char *this_real_name;
5183
5184 if (file_matcher (file_data->file_names[j], false))
5185 {
5186 per_cu->v.quick->mark = 1;
5187 break;
5188 }
5189
5190 /* Before we invoke realpath, which can get expensive when many
5191 files are involved, do a quick comparison of the basenames. */
5192 if (!basenames_may_differ
5193 && !file_matcher (lbasename (file_data->file_names[j]),
5194 true))
5195 continue;
5196
5197 this_real_name = dw2_get_real_path (objfile, file_data, j);
5198 if (file_matcher (this_real_name, false))
5199 {
5200 per_cu->v.quick->mark = 1;
5201 break;
5202 }
5203 }
5204
5205 void **slot = htab_find_slot (per_cu->v.quick->mark
5206 ? visited_found.get ()
5207 : visited_not_found.get (),
5208 file_data, INSERT);
5209 *slot = file_data;
5210 }
5211 }
5212
5213 static void
5214 dw2_expand_symtabs_matching
5215 (struct objfile *objfile,
5216 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5217 const lookup_name_info &lookup_name,
5218 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5219 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5220 enum search_domain kind)
5221 {
5222 struct dwarf2_per_objfile *dwarf2_per_objfile
5223 = get_dwarf2_per_objfile (objfile);
5224
5225 /* index_table is NULL if OBJF_READNOW. */
5226 if (!dwarf2_per_objfile->index_table)
5227 return;
5228
5229 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5230
5231 mapped_index &index = *dwarf2_per_objfile->index_table;
5232
5233 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5234 symbol_matcher,
5235 kind, [&] (offset_type idx)
5236 {
5237 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5238 expansion_notify, kind);
5239 });
5240 }
5241
5242 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5243 symtab. */
5244
5245 static struct compunit_symtab *
5246 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5247 CORE_ADDR pc)
5248 {
5249 int i;
5250
5251 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5252 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5253 return cust;
5254
5255 if (cust->includes == NULL)
5256 return NULL;
5257
5258 for (i = 0; cust->includes[i]; ++i)
5259 {
5260 struct compunit_symtab *s = cust->includes[i];
5261
5262 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5263 if (s != NULL)
5264 return s;
5265 }
5266
5267 return NULL;
5268 }
5269
5270 static struct compunit_symtab *
5271 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5272 struct bound_minimal_symbol msymbol,
5273 CORE_ADDR pc,
5274 struct obj_section *section,
5275 int warn_if_readin)
5276 {
5277 struct dwarf2_per_cu_data *data;
5278 struct compunit_symtab *result;
5279
5280 if (!objfile->partial_symtabs->psymtabs_addrmap)
5281 return NULL;
5282
5283 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5284 SECT_OFF_TEXT (objfile));
5285 data = (struct dwarf2_per_cu_data *) addrmap_find
5286 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5287 if (!data)
5288 return NULL;
5289
5290 if (warn_if_readin && data->v.quick->compunit_symtab)
5291 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5292 paddress (get_objfile_arch (objfile), pc));
5293
5294 result
5295 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5296 false),
5297 pc);
5298 gdb_assert (result != NULL);
5299 return result;
5300 }
5301
5302 static void
5303 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5304 void *data, int need_fullname)
5305 {
5306 struct dwarf2_per_objfile *dwarf2_per_objfile
5307 = get_dwarf2_per_objfile (objfile);
5308
5309 if (!dwarf2_per_objfile->filenames_cache)
5310 {
5311 dwarf2_per_objfile->filenames_cache.emplace ();
5312
5313 htab_up visited (htab_create_alloc (10,
5314 htab_hash_pointer, htab_eq_pointer,
5315 NULL, xcalloc, xfree));
5316
5317 /* The rule is CUs specify all the files, including those used
5318 by any TU, so there's no need to scan TUs here. We can
5319 ignore file names coming from already-expanded CUs. */
5320
5321 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5322 {
5323 if (per_cu->v.quick->compunit_symtab)
5324 {
5325 void **slot = htab_find_slot (visited.get (),
5326 per_cu->v.quick->file_names,
5327 INSERT);
5328
5329 *slot = per_cu->v.quick->file_names;
5330 }
5331 }
5332
5333 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5334 {
5335 /* We only need to look at symtabs not already expanded. */
5336 if (per_cu->v.quick->compunit_symtab)
5337 continue;
5338
5339 quick_file_names *file_data = dw2_get_file_names (per_cu);
5340 if (file_data == NULL)
5341 continue;
5342
5343 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5344 if (*slot)
5345 {
5346 /* Already visited. */
5347 continue;
5348 }
5349 *slot = file_data;
5350
5351 for (int j = 0; j < file_data->num_file_names; ++j)
5352 {
5353 const char *filename = file_data->file_names[j];
5354 dwarf2_per_objfile->filenames_cache->seen (filename);
5355 }
5356 }
5357 }
5358
5359 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5360 {
5361 gdb::unique_xmalloc_ptr<char> this_real_name;
5362
5363 if (need_fullname)
5364 this_real_name = gdb_realpath (filename);
5365 (*fun) (filename, this_real_name.get (), data);
5366 });
5367 }
5368
5369 static int
5370 dw2_has_symbols (struct objfile *objfile)
5371 {
5372 return 1;
5373 }
5374
5375 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5376 {
5377 dw2_has_symbols,
5378 dw2_find_last_source_symtab,
5379 dw2_forget_cached_source_info,
5380 dw2_map_symtabs_matching_filename,
5381 dw2_lookup_symbol,
5382 dw2_print_stats,
5383 dw2_dump,
5384 dw2_expand_symtabs_for_function,
5385 dw2_expand_all_symtabs,
5386 dw2_expand_symtabs_with_fullname,
5387 dw2_map_matching_symbols,
5388 dw2_expand_symtabs_matching,
5389 dw2_find_pc_sect_compunit_symtab,
5390 NULL,
5391 dw2_map_symbol_filenames
5392 };
5393
5394 /* DWARF-5 debug_names reader. */
5395
5396 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5397 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5398
5399 /* A helper function that reads the .debug_names section in SECTION
5400 and fills in MAP. FILENAME is the name of the file containing the
5401 section; it is used for error reporting.
5402
5403 Returns true if all went well, false otherwise. */
5404
5405 static bool
5406 read_debug_names_from_section (struct objfile *objfile,
5407 const char *filename,
5408 struct dwarf2_section_info *section,
5409 mapped_debug_names &map)
5410 {
5411 if (dwarf2_section_empty_p (section))
5412 return false;
5413
5414 /* Older elfutils strip versions could keep the section in the main
5415 executable while splitting it for the separate debug info file. */
5416 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5417 return false;
5418
5419 dwarf2_read_section (objfile, section);
5420
5421 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5422
5423 const gdb_byte *addr = section->buffer;
5424
5425 bfd *const abfd = get_section_bfd_owner (section);
5426
5427 unsigned int bytes_read;
5428 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5429 addr += bytes_read;
5430
5431 map.dwarf5_is_dwarf64 = bytes_read != 4;
5432 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5433 if (bytes_read + length != section->size)
5434 {
5435 /* There may be multiple per-CU indices. */
5436 warning (_("Section .debug_names in %s length %s does not match "
5437 "section length %s, ignoring .debug_names."),
5438 filename, plongest (bytes_read + length),
5439 pulongest (section->size));
5440 return false;
5441 }
5442
5443 /* The version number. */
5444 uint16_t version = read_2_bytes (abfd, addr);
5445 addr += 2;
5446 if (version != 5)
5447 {
5448 warning (_("Section .debug_names in %s has unsupported version %d, "
5449 "ignoring .debug_names."),
5450 filename, version);
5451 return false;
5452 }
5453
5454 /* Padding. */
5455 uint16_t padding = read_2_bytes (abfd, addr);
5456 addr += 2;
5457 if (padding != 0)
5458 {
5459 warning (_("Section .debug_names in %s has unsupported padding %d, "
5460 "ignoring .debug_names."),
5461 filename, padding);
5462 return false;
5463 }
5464
5465 /* comp_unit_count - The number of CUs in the CU list. */
5466 map.cu_count = read_4_bytes (abfd, addr);
5467 addr += 4;
5468
5469 /* local_type_unit_count - The number of TUs in the local TU
5470 list. */
5471 map.tu_count = read_4_bytes (abfd, addr);
5472 addr += 4;
5473
5474 /* foreign_type_unit_count - The number of TUs in the foreign TU
5475 list. */
5476 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5477 addr += 4;
5478 if (foreign_tu_count != 0)
5479 {
5480 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5481 "ignoring .debug_names."),
5482 filename, static_cast<unsigned long> (foreign_tu_count));
5483 return false;
5484 }
5485
5486 /* bucket_count - The number of hash buckets in the hash lookup
5487 table. */
5488 map.bucket_count = read_4_bytes (abfd, addr);
5489 addr += 4;
5490
5491 /* name_count - The number of unique names in the index. */
5492 map.name_count = read_4_bytes (abfd, addr);
5493 addr += 4;
5494
5495 /* abbrev_table_size - The size in bytes of the abbreviations
5496 table. */
5497 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5498 addr += 4;
5499
5500 /* augmentation_string_size - The size in bytes of the augmentation
5501 string. This value is rounded up to a multiple of 4. */
5502 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5503 addr += 4;
5504 map.augmentation_is_gdb = ((augmentation_string_size
5505 == sizeof (dwarf5_augmentation))
5506 && memcmp (addr, dwarf5_augmentation,
5507 sizeof (dwarf5_augmentation)) == 0);
5508 augmentation_string_size += (-augmentation_string_size) & 3;
5509 addr += augmentation_string_size;
5510
5511 /* List of CUs */
5512 map.cu_table_reordered = addr;
5513 addr += map.cu_count * map.offset_size;
5514
5515 /* List of Local TUs */
5516 map.tu_table_reordered = addr;
5517 addr += map.tu_count * map.offset_size;
5518
5519 /* Hash Lookup Table */
5520 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5521 addr += map.bucket_count * 4;
5522 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5523 addr += map.name_count * 4;
5524
5525 /* Name Table */
5526 map.name_table_string_offs_reordered = addr;
5527 addr += map.name_count * map.offset_size;
5528 map.name_table_entry_offs_reordered = addr;
5529 addr += map.name_count * map.offset_size;
5530
5531 const gdb_byte *abbrev_table_start = addr;
5532 for (;;)
5533 {
5534 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5535 addr += bytes_read;
5536 if (index_num == 0)
5537 break;
5538
5539 const auto insertpair
5540 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5541 if (!insertpair.second)
5542 {
5543 warning (_("Section .debug_names in %s has duplicate index %s, "
5544 "ignoring .debug_names."),
5545 filename, pulongest (index_num));
5546 return false;
5547 }
5548 mapped_debug_names::index_val &indexval = insertpair.first->second;
5549 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5550 addr += bytes_read;
5551
5552 for (;;)
5553 {
5554 mapped_debug_names::index_val::attr attr;
5555 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5556 addr += bytes_read;
5557 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5558 addr += bytes_read;
5559 if (attr.form == DW_FORM_implicit_const)
5560 {
5561 attr.implicit_const = read_signed_leb128 (abfd, addr,
5562 &bytes_read);
5563 addr += bytes_read;
5564 }
5565 if (attr.dw_idx == 0 && attr.form == 0)
5566 break;
5567 indexval.attr_vec.push_back (std::move (attr));
5568 }
5569 }
5570 if (addr != abbrev_table_start + abbrev_table_size)
5571 {
5572 warning (_("Section .debug_names in %s has abbreviation_table "
5573 "of size %zu vs. written as %u, ignoring .debug_names."),
5574 filename, addr - abbrev_table_start, abbrev_table_size);
5575 return false;
5576 }
5577 map.entry_pool = addr;
5578
5579 return true;
5580 }
5581
5582 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5583 list. */
5584
5585 static void
5586 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5587 const mapped_debug_names &map,
5588 dwarf2_section_info &section,
5589 bool is_dwz)
5590 {
5591 sect_offset sect_off_prev;
5592 for (uint32_t i = 0; i <= map.cu_count; ++i)
5593 {
5594 sect_offset sect_off_next;
5595 if (i < map.cu_count)
5596 {
5597 sect_off_next
5598 = (sect_offset) (extract_unsigned_integer
5599 (map.cu_table_reordered + i * map.offset_size,
5600 map.offset_size,
5601 map.dwarf5_byte_order));
5602 }
5603 else
5604 sect_off_next = (sect_offset) section.size;
5605 if (i >= 1)
5606 {
5607 const ULONGEST length = sect_off_next - sect_off_prev;
5608 dwarf2_per_cu_data *per_cu
5609 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5610 sect_off_prev, length);
5611 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5612 }
5613 sect_off_prev = sect_off_next;
5614 }
5615 }
5616
5617 /* Read the CU list from the mapped index, and use it to create all
5618 the CU objects for this dwarf2_per_objfile. */
5619
5620 static void
5621 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5622 const mapped_debug_names &map,
5623 const mapped_debug_names &dwz_map)
5624 {
5625 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5626 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5627
5628 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5629 dwarf2_per_objfile->info,
5630 false /* is_dwz */);
5631
5632 if (dwz_map.cu_count == 0)
5633 return;
5634
5635 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5636 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5637 true /* is_dwz */);
5638 }
5639
5640 /* Read .debug_names. If everything went ok, initialize the "quick"
5641 elements of all the CUs and return true. Otherwise, return false. */
5642
5643 static bool
5644 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5645 {
5646 std::unique_ptr<mapped_debug_names> map
5647 (new mapped_debug_names (dwarf2_per_objfile));
5648 mapped_debug_names dwz_map (dwarf2_per_objfile);
5649 struct objfile *objfile = dwarf2_per_objfile->objfile;
5650
5651 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5652 &dwarf2_per_objfile->debug_names,
5653 *map))
5654 return false;
5655
5656 /* Don't use the index if it's empty. */
5657 if (map->name_count == 0)
5658 return false;
5659
5660 /* If there is a .dwz file, read it so we can get its CU list as
5661 well. */
5662 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5663 if (dwz != NULL)
5664 {
5665 if (!read_debug_names_from_section (objfile,
5666 bfd_get_filename (dwz->dwz_bfd),
5667 &dwz->debug_names, dwz_map))
5668 {
5669 warning (_("could not read '.debug_names' section from %s; skipping"),
5670 bfd_get_filename (dwz->dwz_bfd));
5671 return false;
5672 }
5673 }
5674
5675 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5676
5677 if (map->tu_count != 0)
5678 {
5679 /* We can only handle a single .debug_types when we have an
5680 index. */
5681 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
5682 return false;
5683
5684 dwarf2_section_info *section = VEC_index (dwarf2_section_info_def,
5685 dwarf2_per_objfile->types, 0);
5686
5687 create_signatured_type_table_from_debug_names
5688 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5689 }
5690
5691 create_addrmap_from_aranges (dwarf2_per_objfile,
5692 &dwarf2_per_objfile->debug_aranges);
5693
5694 dwarf2_per_objfile->debug_names_table = std::move (map);
5695 dwarf2_per_objfile->using_index = 1;
5696 dwarf2_per_objfile->quick_file_names_table =
5697 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5698
5699 return true;
5700 }
5701
5702 /* Type used to manage iterating over all CUs looking for a symbol for
5703 .debug_names. */
5704
5705 class dw2_debug_names_iterator
5706 {
5707 public:
5708 /* If WANT_SPECIFIC_BLOCK is true, only look for symbols in block
5709 BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
5710 dw2_debug_names_iterator (const mapped_debug_names &map,
5711 bool want_specific_block,
5712 block_enum block_index, domain_enum domain,
5713 const char *name)
5714 : m_map (map), m_want_specific_block (want_specific_block),
5715 m_block_index (block_index), m_domain (domain),
5716 m_addr (find_vec_in_debug_names (map, name))
5717 {}
5718
5719 dw2_debug_names_iterator (const mapped_debug_names &map,
5720 search_domain search, uint32_t namei)
5721 : m_map (map),
5722 m_search (search),
5723 m_addr (find_vec_in_debug_names (map, namei))
5724 {}
5725
5726 /* Return the next matching CU or NULL if there are no more. */
5727 dwarf2_per_cu_data *next ();
5728
5729 private:
5730 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5731 const char *name);
5732 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5733 uint32_t namei);
5734
5735 /* The internalized form of .debug_names. */
5736 const mapped_debug_names &m_map;
5737
5738 /* If true, only look for symbols that match BLOCK_INDEX. */
5739 const bool m_want_specific_block = false;
5740
5741 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
5742 Unused if !WANT_SPECIFIC_BLOCK - FIRST_LOCAL_BLOCK is an invalid
5743 value. */
5744 const block_enum m_block_index = FIRST_LOCAL_BLOCK;
5745
5746 /* The kind of symbol we're looking for. */
5747 const domain_enum m_domain = UNDEF_DOMAIN;
5748 const search_domain m_search = ALL_DOMAIN;
5749
5750 /* The list of CUs from the index entry of the symbol, or NULL if
5751 not found. */
5752 const gdb_byte *m_addr;
5753 };
5754
5755 const char *
5756 mapped_debug_names::namei_to_name (uint32_t namei) const
5757 {
5758 const ULONGEST namei_string_offs
5759 = extract_unsigned_integer ((name_table_string_offs_reordered
5760 + namei * offset_size),
5761 offset_size,
5762 dwarf5_byte_order);
5763 return read_indirect_string_at_offset
5764 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5765 }
5766
5767 /* Find a slot in .debug_names for the object named NAME. If NAME is
5768 found, return pointer to its pool data. If NAME cannot be found,
5769 return NULL. */
5770
5771 const gdb_byte *
5772 dw2_debug_names_iterator::find_vec_in_debug_names
5773 (const mapped_debug_names &map, const char *name)
5774 {
5775 int (*cmp) (const char *, const char *);
5776
5777 if (current_language->la_language == language_cplus
5778 || current_language->la_language == language_fortran
5779 || current_language->la_language == language_d)
5780 {
5781 /* NAME is already canonical. Drop any qualifiers as
5782 .debug_names does not contain any. */
5783
5784 if (strchr (name, '(') != NULL)
5785 {
5786 gdb::unique_xmalloc_ptr<char> without_params
5787 = cp_remove_params (name);
5788
5789 if (without_params != NULL)
5790 {
5791 name = without_params.get();
5792 }
5793 }
5794 }
5795
5796 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5797
5798 const uint32_t full_hash = dwarf5_djb_hash (name);
5799 uint32_t namei
5800 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5801 (map.bucket_table_reordered
5802 + (full_hash % map.bucket_count)), 4,
5803 map.dwarf5_byte_order);
5804 if (namei == 0)
5805 return NULL;
5806 --namei;
5807 if (namei >= map.name_count)
5808 {
5809 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5810 "[in module %s]"),
5811 namei, map.name_count,
5812 objfile_name (map.dwarf2_per_objfile->objfile));
5813 return NULL;
5814 }
5815
5816 for (;;)
5817 {
5818 const uint32_t namei_full_hash
5819 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5820 (map.hash_table_reordered + namei), 4,
5821 map.dwarf5_byte_order);
5822 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5823 return NULL;
5824
5825 if (full_hash == namei_full_hash)
5826 {
5827 const char *const namei_string = map.namei_to_name (namei);
5828
5829 #if 0 /* An expensive sanity check. */
5830 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5831 {
5832 complaint (_("Wrong .debug_names hash for string at index %u "
5833 "[in module %s]"),
5834 namei, objfile_name (dwarf2_per_objfile->objfile));
5835 return NULL;
5836 }
5837 #endif
5838
5839 if (cmp (namei_string, name) == 0)
5840 {
5841 const ULONGEST namei_entry_offs
5842 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5843 + namei * map.offset_size),
5844 map.offset_size, map.dwarf5_byte_order);
5845 return map.entry_pool + namei_entry_offs;
5846 }
5847 }
5848
5849 ++namei;
5850 if (namei >= map.name_count)
5851 return NULL;
5852 }
5853 }
5854
5855 const gdb_byte *
5856 dw2_debug_names_iterator::find_vec_in_debug_names
5857 (const mapped_debug_names &map, uint32_t namei)
5858 {
5859 if (namei >= map.name_count)
5860 {
5861 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5862 "[in module %s]"),
5863 namei, map.name_count,
5864 objfile_name (map.dwarf2_per_objfile->objfile));
5865 return NULL;
5866 }
5867
5868 const ULONGEST namei_entry_offs
5869 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5870 + namei * map.offset_size),
5871 map.offset_size, map.dwarf5_byte_order);
5872 return map.entry_pool + namei_entry_offs;
5873 }
5874
5875 /* See dw2_debug_names_iterator. */
5876
5877 dwarf2_per_cu_data *
5878 dw2_debug_names_iterator::next ()
5879 {
5880 if (m_addr == NULL)
5881 return NULL;
5882
5883 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5884 struct objfile *objfile = dwarf2_per_objfile->objfile;
5885 bfd *const abfd = objfile->obfd;
5886
5887 again:
5888
5889 unsigned int bytes_read;
5890 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5891 m_addr += bytes_read;
5892 if (abbrev == 0)
5893 return NULL;
5894
5895 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5896 if (indexval_it == m_map.abbrev_map.cend ())
5897 {
5898 complaint (_("Wrong .debug_names undefined abbrev code %s "
5899 "[in module %s]"),
5900 pulongest (abbrev), objfile_name (objfile));
5901 return NULL;
5902 }
5903 const mapped_debug_names::index_val &indexval = indexval_it->second;
5904 bool have_is_static = false;
5905 bool is_static;
5906 dwarf2_per_cu_data *per_cu = NULL;
5907 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5908 {
5909 ULONGEST ull;
5910 switch (attr.form)
5911 {
5912 case DW_FORM_implicit_const:
5913 ull = attr.implicit_const;
5914 break;
5915 case DW_FORM_flag_present:
5916 ull = 1;
5917 break;
5918 case DW_FORM_udata:
5919 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5920 m_addr += bytes_read;
5921 break;
5922 default:
5923 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5924 dwarf_form_name (attr.form),
5925 objfile_name (objfile));
5926 return NULL;
5927 }
5928 switch (attr.dw_idx)
5929 {
5930 case DW_IDX_compile_unit:
5931 /* Don't crash on bad data. */
5932 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5933 {
5934 complaint (_(".debug_names entry has bad CU index %s"
5935 " [in module %s]"),
5936 pulongest (ull),
5937 objfile_name (dwarf2_per_objfile->objfile));
5938 continue;
5939 }
5940 per_cu = dwarf2_per_objfile->get_cutu (ull);
5941 break;
5942 case DW_IDX_type_unit:
5943 /* Don't crash on bad data. */
5944 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5945 {
5946 complaint (_(".debug_names entry has bad TU index %s"
5947 " [in module %s]"),
5948 pulongest (ull),
5949 objfile_name (dwarf2_per_objfile->objfile));
5950 continue;
5951 }
5952 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5953 break;
5954 case DW_IDX_GNU_internal:
5955 if (!m_map.augmentation_is_gdb)
5956 break;
5957 have_is_static = true;
5958 is_static = true;
5959 break;
5960 case DW_IDX_GNU_external:
5961 if (!m_map.augmentation_is_gdb)
5962 break;
5963 have_is_static = true;
5964 is_static = false;
5965 break;
5966 }
5967 }
5968
5969 /* Skip if already read in. */
5970 if (per_cu->v.quick->compunit_symtab)
5971 goto again;
5972
5973 /* Check static vs global. */
5974 if (have_is_static)
5975 {
5976 const bool want_static = m_block_index != GLOBAL_BLOCK;
5977 if (m_want_specific_block && want_static != is_static)
5978 goto again;
5979 }
5980
5981 /* Match dw2_symtab_iter_next, symbol_kind
5982 and debug_names::psymbol_tag. */
5983 switch (m_domain)
5984 {
5985 case VAR_DOMAIN:
5986 switch (indexval.dwarf_tag)
5987 {
5988 case DW_TAG_variable:
5989 case DW_TAG_subprogram:
5990 /* Some types are also in VAR_DOMAIN. */
5991 case DW_TAG_typedef:
5992 case DW_TAG_structure_type:
5993 break;
5994 default:
5995 goto again;
5996 }
5997 break;
5998 case STRUCT_DOMAIN:
5999 switch (indexval.dwarf_tag)
6000 {
6001 case DW_TAG_typedef:
6002 case DW_TAG_structure_type:
6003 break;
6004 default:
6005 goto again;
6006 }
6007 break;
6008 case LABEL_DOMAIN:
6009 switch (indexval.dwarf_tag)
6010 {
6011 case 0:
6012 case DW_TAG_variable:
6013 break;
6014 default:
6015 goto again;
6016 }
6017 break;
6018 default:
6019 break;
6020 }
6021
6022 /* Match dw2_expand_symtabs_matching, symbol_kind and
6023 debug_names::psymbol_tag. */
6024 switch (m_search)
6025 {
6026 case VARIABLES_DOMAIN:
6027 switch (indexval.dwarf_tag)
6028 {
6029 case DW_TAG_variable:
6030 break;
6031 default:
6032 goto again;
6033 }
6034 break;
6035 case FUNCTIONS_DOMAIN:
6036 switch (indexval.dwarf_tag)
6037 {
6038 case DW_TAG_subprogram:
6039 break;
6040 default:
6041 goto again;
6042 }
6043 break;
6044 case TYPES_DOMAIN:
6045 switch (indexval.dwarf_tag)
6046 {
6047 case DW_TAG_typedef:
6048 case DW_TAG_structure_type:
6049 break;
6050 default:
6051 goto again;
6052 }
6053 break;
6054 default:
6055 break;
6056 }
6057
6058 return per_cu;
6059 }
6060
6061 static struct compunit_symtab *
6062 dw2_debug_names_lookup_symbol (struct objfile *objfile, int block_index_int,
6063 const char *name, domain_enum domain)
6064 {
6065 const block_enum block_index = static_cast<block_enum> (block_index_int);
6066 struct dwarf2_per_objfile *dwarf2_per_objfile
6067 = get_dwarf2_per_objfile (objfile);
6068
6069 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6070 if (!mapp)
6071 {
6072 /* index is NULL if OBJF_READNOW. */
6073 return NULL;
6074 }
6075 const auto &map = *mapp;
6076
6077 dw2_debug_names_iterator iter (map, true /* want_specific_block */,
6078 block_index, domain, name);
6079
6080 struct compunit_symtab *stab_best = NULL;
6081 struct dwarf2_per_cu_data *per_cu;
6082 while ((per_cu = iter.next ()) != NULL)
6083 {
6084 struct symbol *sym, *with_opaque = NULL;
6085 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6086 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6087 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6088
6089 sym = block_find_symbol (block, name, domain,
6090 block_find_non_opaque_type_preferred,
6091 &with_opaque);
6092
6093 /* Some caution must be observed with overloaded functions and
6094 methods, since the index will not contain any overload
6095 information (but NAME might contain it). */
6096
6097 if (sym != NULL
6098 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
6099 return stab;
6100 if (with_opaque != NULL
6101 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
6102 stab_best = stab;
6103
6104 /* Keep looking through other CUs. */
6105 }
6106
6107 return stab_best;
6108 }
6109
6110 /* This dumps minimal information about .debug_names. It is called
6111 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6112 uses this to verify that .debug_names has been loaded. */
6113
6114 static void
6115 dw2_debug_names_dump (struct objfile *objfile)
6116 {
6117 struct dwarf2_per_objfile *dwarf2_per_objfile
6118 = get_dwarf2_per_objfile (objfile);
6119
6120 gdb_assert (dwarf2_per_objfile->using_index);
6121 printf_filtered (".debug_names:");
6122 if (dwarf2_per_objfile->debug_names_table)
6123 printf_filtered (" exists\n");
6124 else
6125 printf_filtered (" faked for \"readnow\"\n");
6126 printf_filtered ("\n");
6127 }
6128
6129 static void
6130 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6131 const char *func_name)
6132 {
6133 struct dwarf2_per_objfile *dwarf2_per_objfile
6134 = get_dwarf2_per_objfile (objfile);
6135
6136 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6137 if (dwarf2_per_objfile->debug_names_table)
6138 {
6139 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6140
6141 /* Note: It doesn't matter what we pass for block_index here. */
6142 dw2_debug_names_iterator iter (map, false /* want_specific_block */,
6143 GLOBAL_BLOCK, VAR_DOMAIN, func_name);
6144
6145 struct dwarf2_per_cu_data *per_cu;
6146 while ((per_cu = iter.next ()) != NULL)
6147 dw2_instantiate_symtab (per_cu, false);
6148 }
6149 }
6150
6151 static void
6152 dw2_debug_names_expand_symtabs_matching
6153 (struct objfile *objfile,
6154 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6155 const lookup_name_info &lookup_name,
6156 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6157 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6158 enum search_domain kind)
6159 {
6160 struct dwarf2_per_objfile *dwarf2_per_objfile
6161 = get_dwarf2_per_objfile (objfile);
6162
6163 /* debug_names_table is NULL if OBJF_READNOW. */
6164 if (!dwarf2_per_objfile->debug_names_table)
6165 return;
6166
6167 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6168
6169 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6170
6171 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6172 symbol_matcher,
6173 kind, [&] (offset_type namei)
6174 {
6175 /* The name was matched, now expand corresponding CUs that were
6176 marked. */
6177 dw2_debug_names_iterator iter (map, kind, namei);
6178
6179 struct dwarf2_per_cu_data *per_cu;
6180 while ((per_cu = iter.next ()) != NULL)
6181 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6182 expansion_notify);
6183 });
6184 }
6185
6186 const struct quick_symbol_functions dwarf2_debug_names_functions =
6187 {
6188 dw2_has_symbols,
6189 dw2_find_last_source_symtab,
6190 dw2_forget_cached_source_info,
6191 dw2_map_symtabs_matching_filename,
6192 dw2_debug_names_lookup_symbol,
6193 dw2_print_stats,
6194 dw2_debug_names_dump,
6195 dw2_debug_names_expand_symtabs_for_function,
6196 dw2_expand_all_symtabs,
6197 dw2_expand_symtabs_with_fullname,
6198 dw2_map_matching_symbols,
6199 dw2_debug_names_expand_symtabs_matching,
6200 dw2_find_pc_sect_compunit_symtab,
6201 NULL,
6202 dw2_map_symbol_filenames
6203 };
6204
6205 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6206 to either a dwarf2_per_objfile or dwz_file object. */
6207
6208 template <typename T>
6209 static gdb::array_view<const gdb_byte>
6210 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6211 {
6212 dwarf2_section_info *section = &section_owner->gdb_index;
6213
6214 if (dwarf2_section_empty_p (section))
6215 return {};
6216
6217 /* Older elfutils strip versions could keep the section in the main
6218 executable while splitting it for the separate debug info file. */
6219 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6220 return {};
6221
6222 dwarf2_read_section (obj, section);
6223
6224 /* dwarf2_section_info::size is a bfd_size_type, while
6225 gdb::array_view works with size_t. On 32-bit hosts, with
6226 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6227 is 32-bit. So we need an explicit narrowing conversion here.
6228 This is fine, because it's impossible to allocate or mmap an
6229 array/buffer larger than what size_t can represent. */
6230 return gdb::make_array_view (section->buffer, section->size);
6231 }
6232
6233 /* Lookup the index cache for the contents of the index associated to
6234 DWARF2_OBJ. */
6235
6236 static gdb::array_view<const gdb_byte>
6237 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6238 {
6239 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6240 if (build_id == nullptr)
6241 return {};
6242
6243 return global_index_cache.lookup_gdb_index (build_id,
6244 &dwarf2_obj->index_cache_res);
6245 }
6246
6247 /* Same as the above, but for DWZ. */
6248
6249 static gdb::array_view<const gdb_byte>
6250 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6251 {
6252 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6253 if (build_id == nullptr)
6254 return {};
6255
6256 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6257 }
6258
6259 /* See symfile.h. */
6260
6261 bool
6262 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6263 {
6264 struct dwarf2_per_objfile *dwarf2_per_objfile
6265 = get_dwarf2_per_objfile (objfile);
6266
6267 /* If we're about to read full symbols, don't bother with the
6268 indices. In this case we also don't care if some other debug
6269 format is making psymtabs, because they are all about to be
6270 expanded anyway. */
6271 if ((objfile->flags & OBJF_READNOW))
6272 {
6273 dwarf2_per_objfile->using_index = 1;
6274 create_all_comp_units (dwarf2_per_objfile);
6275 create_all_type_units (dwarf2_per_objfile);
6276 dwarf2_per_objfile->quick_file_names_table
6277 = create_quick_file_names_table
6278 (dwarf2_per_objfile->all_comp_units.size ());
6279
6280 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6281 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6282 {
6283 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6284
6285 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6286 struct dwarf2_per_cu_quick_data);
6287 }
6288
6289 /* Return 1 so that gdb sees the "quick" functions. However,
6290 these functions will be no-ops because we will have expanded
6291 all symtabs. */
6292 *index_kind = dw_index_kind::GDB_INDEX;
6293 return true;
6294 }
6295
6296 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6297 {
6298 *index_kind = dw_index_kind::DEBUG_NAMES;
6299 return true;
6300 }
6301
6302 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6303 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6304 get_gdb_index_contents_from_section<dwz_file>))
6305 {
6306 *index_kind = dw_index_kind::GDB_INDEX;
6307 return true;
6308 }
6309
6310 /* ... otherwise, try to find the index in the index cache. */
6311 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6312 get_gdb_index_contents_from_cache,
6313 get_gdb_index_contents_from_cache_dwz))
6314 {
6315 global_index_cache.hit ();
6316 *index_kind = dw_index_kind::GDB_INDEX;
6317 return true;
6318 }
6319
6320 global_index_cache.miss ();
6321 return false;
6322 }
6323
6324 \f
6325
6326 /* Build a partial symbol table. */
6327
6328 void
6329 dwarf2_build_psymtabs (struct objfile *objfile)
6330 {
6331 struct dwarf2_per_objfile *dwarf2_per_objfile
6332 = get_dwarf2_per_objfile (objfile);
6333
6334 init_psymbol_list (objfile, 1024);
6335
6336 TRY
6337 {
6338 /* This isn't really ideal: all the data we allocate on the
6339 objfile's obstack is still uselessly kept around. However,
6340 freeing it seems unsafe. */
6341 psymtab_discarder psymtabs (objfile);
6342 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6343 psymtabs.keep ();
6344
6345 /* (maybe) store an index in the cache. */
6346 global_index_cache.store (dwarf2_per_objfile);
6347 }
6348 CATCH (except, RETURN_MASK_ERROR)
6349 {
6350 exception_print (gdb_stderr, except);
6351 }
6352 END_CATCH
6353 }
6354
6355 /* Return the total length of the CU described by HEADER. */
6356
6357 static unsigned int
6358 get_cu_length (const struct comp_unit_head *header)
6359 {
6360 return header->initial_length_size + header->length;
6361 }
6362
6363 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6364
6365 static inline bool
6366 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6367 {
6368 sect_offset bottom = cu_header->sect_off;
6369 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6370
6371 return sect_off >= bottom && sect_off < top;
6372 }
6373
6374 /* Find the base address of the compilation unit for range lists and
6375 location lists. It will normally be specified by DW_AT_low_pc.
6376 In DWARF-3 draft 4, the base address could be overridden by
6377 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6378 compilation units with discontinuous ranges. */
6379
6380 static void
6381 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6382 {
6383 struct attribute *attr;
6384
6385 cu->base_known = 0;
6386 cu->base_address = 0;
6387
6388 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6389 if (attr)
6390 {
6391 cu->base_address = attr_value_as_address (attr);
6392 cu->base_known = 1;
6393 }
6394 else
6395 {
6396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6397 if (attr)
6398 {
6399 cu->base_address = attr_value_as_address (attr);
6400 cu->base_known = 1;
6401 }
6402 }
6403 }
6404
6405 /* Read in the comp unit header information from the debug_info at info_ptr.
6406 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6407 NOTE: This leaves members offset, first_die_offset to be filled in
6408 by the caller. */
6409
6410 static const gdb_byte *
6411 read_comp_unit_head (struct comp_unit_head *cu_header,
6412 const gdb_byte *info_ptr,
6413 struct dwarf2_section_info *section,
6414 rcuh_kind section_kind)
6415 {
6416 int signed_addr;
6417 unsigned int bytes_read;
6418 const char *filename = get_section_file_name (section);
6419 bfd *abfd = get_section_bfd_owner (section);
6420
6421 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6422 cu_header->initial_length_size = bytes_read;
6423 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6424 info_ptr += bytes_read;
6425 cu_header->version = read_2_bytes (abfd, info_ptr);
6426 if (cu_header->version < 2 || cu_header->version > 5)
6427 error (_("Dwarf Error: wrong version in compilation unit header "
6428 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6429 cu_header->version, filename);
6430 info_ptr += 2;
6431 if (cu_header->version < 5)
6432 switch (section_kind)
6433 {
6434 case rcuh_kind::COMPILE:
6435 cu_header->unit_type = DW_UT_compile;
6436 break;
6437 case rcuh_kind::TYPE:
6438 cu_header->unit_type = DW_UT_type;
6439 break;
6440 default:
6441 internal_error (__FILE__, __LINE__,
6442 _("read_comp_unit_head: invalid section_kind"));
6443 }
6444 else
6445 {
6446 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6447 (read_1_byte (abfd, info_ptr));
6448 info_ptr += 1;
6449 switch (cu_header->unit_type)
6450 {
6451 case DW_UT_compile:
6452 if (section_kind != rcuh_kind::COMPILE)
6453 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6454 "(is DW_UT_compile, should be DW_UT_type) [in module %s]"),
6455 filename);
6456 break;
6457 case DW_UT_type:
6458 section_kind = rcuh_kind::TYPE;
6459 break;
6460 default:
6461 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6462 "(is %d, should be %d or %d) [in module %s]"),
6463 cu_header->unit_type, DW_UT_compile, DW_UT_type, filename);
6464 }
6465
6466 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6467 info_ptr += 1;
6468 }
6469 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6470 cu_header,
6471 &bytes_read);
6472 info_ptr += bytes_read;
6473 if (cu_header->version < 5)
6474 {
6475 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6476 info_ptr += 1;
6477 }
6478 signed_addr = bfd_get_sign_extend_vma (abfd);
6479 if (signed_addr < 0)
6480 internal_error (__FILE__, __LINE__,
6481 _("read_comp_unit_head: dwarf from non elf file"));
6482 cu_header->signed_addr_p = signed_addr;
6483
6484 if (section_kind == rcuh_kind::TYPE)
6485 {
6486 LONGEST type_offset;
6487
6488 cu_header->signature = read_8_bytes (abfd, info_ptr);
6489 info_ptr += 8;
6490
6491 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6492 info_ptr += bytes_read;
6493 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6494 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6495 error (_("Dwarf Error: Too big type_offset in compilation unit "
6496 "header (is %s) [in module %s]"), plongest (type_offset),
6497 filename);
6498 }
6499
6500 return info_ptr;
6501 }
6502
6503 /* Helper function that returns the proper abbrev section for
6504 THIS_CU. */
6505
6506 static struct dwarf2_section_info *
6507 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6508 {
6509 struct dwarf2_section_info *abbrev;
6510 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6511
6512 if (this_cu->is_dwz)
6513 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6514 else
6515 abbrev = &dwarf2_per_objfile->abbrev;
6516
6517 return abbrev;
6518 }
6519
6520 /* Subroutine of read_and_check_comp_unit_head and
6521 read_and_check_type_unit_head to simplify them.
6522 Perform various error checking on the header. */
6523
6524 static void
6525 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6526 struct comp_unit_head *header,
6527 struct dwarf2_section_info *section,
6528 struct dwarf2_section_info *abbrev_section)
6529 {
6530 const char *filename = get_section_file_name (section);
6531
6532 if (to_underlying (header->abbrev_sect_off)
6533 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6534 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6535 "(offset %s + 6) [in module %s]"),
6536 sect_offset_str (header->abbrev_sect_off),
6537 sect_offset_str (header->sect_off),
6538 filename);
6539
6540 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6541 avoid potential 32-bit overflow. */
6542 if (((ULONGEST) header->sect_off + get_cu_length (header))
6543 > section->size)
6544 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6545 "(offset %s + 0) [in module %s]"),
6546 header->length, sect_offset_str (header->sect_off),
6547 filename);
6548 }
6549
6550 /* Read in a CU/TU header and perform some basic error checking.
6551 The contents of the header are stored in HEADER.
6552 The result is a pointer to the start of the first DIE. */
6553
6554 static const gdb_byte *
6555 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6556 struct comp_unit_head *header,
6557 struct dwarf2_section_info *section,
6558 struct dwarf2_section_info *abbrev_section,
6559 const gdb_byte *info_ptr,
6560 rcuh_kind section_kind)
6561 {
6562 const gdb_byte *beg_of_comp_unit = info_ptr;
6563
6564 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6565
6566 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6567
6568 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6569
6570 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6571 abbrev_section);
6572
6573 return info_ptr;
6574 }
6575
6576 /* Fetch the abbreviation table offset from a comp or type unit header. */
6577
6578 static sect_offset
6579 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6580 struct dwarf2_section_info *section,
6581 sect_offset sect_off)
6582 {
6583 bfd *abfd = get_section_bfd_owner (section);
6584 const gdb_byte *info_ptr;
6585 unsigned int initial_length_size, offset_size;
6586 uint16_t version;
6587
6588 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6589 info_ptr = section->buffer + to_underlying (sect_off);
6590 read_initial_length (abfd, info_ptr, &initial_length_size);
6591 offset_size = initial_length_size == 4 ? 4 : 8;
6592 info_ptr += initial_length_size;
6593
6594 version = read_2_bytes (abfd, info_ptr);
6595 info_ptr += 2;
6596 if (version >= 5)
6597 {
6598 /* Skip unit type and address size. */
6599 info_ptr += 2;
6600 }
6601
6602 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6603 }
6604
6605 /* Allocate a new partial symtab for file named NAME and mark this new
6606 partial symtab as being an include of PST. */
6607
6608 static void
6609 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6610 struct objfile *objfile)
6611 {
6612 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6613
6614 if (!IS_ABSOLUTE_PATH (subpst->filename))
6615 {
6616 /* It shares objfile->objfile_obstack. */
6617 subpst->dirname = pst->dirname;
6618 }
6619
6620 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6621 subpst->dependencies[0] = pst;
6622 subpst->number_of_dependencies = 1;
6623
6624 subpst->read_symtab = pst->read_symtab;
6625
6626 /* No private part is necessary for include psymtabs. This property
6627 can be used to differentiate between such include psymtabs and
6628 the regular ones. */
6629 subpst->read_symtab_private = NULL;
6630 }
6631
6632 /* Read the Line Number Program data and extract the list of files
6633 included by the source file represented by PST. Build an include
6634 partial symtab for each of these included files. */
6635
6636 static void
6637 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6638 struct die_info *die,
6639 struct partial_symtab *pst)
6640 {
6641 line_header_up lh;
6642 struct attribute *attr;
6643
6644 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6645 if (attr)
6646 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6647 if (lh == NULL)
6648 return; /* No linetable, so no includes. */
6649
6650 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6651 that we pass in the raw text_low here; that is ok because we're
6652 only decoding the line table to make include partial symtabs, and
6653 so the addresses aren't really used. */
6654 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6655 pst->raw_text_low (), 1);
6656 }
6657
6658 static hashval_t
6659 hash_signatured_type (const void *item)
6660 {
6661 const struct signatured_type *sig_type
6662 = (const struct signatured_type *) item;
6663
6664 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6665 return sig_type->signature;
6666 }
6667
6668 static int
6669 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6670 {
6671 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6672 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6673
6674 return lhs->signature == rhs->signature;
6675 }
6676
6677 /* Allocate a hash table for signatured types. */
6678
6679 static htab_t
6680 allocate_signatured_type_table (struct objfile *objfile)
6681 {
6682 return htab_create_alloc_ex (41,
6683 hash_signatured_type,
6684 eq_signatured_type,
6685 NULL,
6686 &objfile->objfile_obstack,
6687 hashtab_obstack_allocate,
6688 dummy_obstack_deallocate);
6689 }
6690
6691 /* A helper function to add a signatured type CU to a table. */
6692
6693 static int
6694 add_signatured_type_cu_to_table (void **slot, void *datum)
6695 {
6696 struct signatured_type *sigt = (struct signatured_type *) *slot;
6697 std::vector<signatured_type *> *all_type_units
6698 = (std::vector<signatured_type *> *) datum;
6699
6700 all_type_units->push_back (sigt);
6701
6702 return 1;
6703 }
6704
6705 /* A helper for create_debug_types_hash_table. Read types from SECTION
6706 and fill them into TYPES_HTAB. It will process only type units,
6707 therefore DW_UT_type. */
6708
6709 static void
6710 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6711 struct dwo_file *dwo_file,
6712 dwarf2_section_info *section, htab_t &types_htab,
6713 rcuh_kind section_kind)
6714 {
6715 struct objfile *objfile = dwarf2_per_objfile->objfile;
6716 struct dwarf2_section_info *abbrev_section;
6717 bfd *abfd;
6718 const gdb_byte *info_ptr, *end_ptr;
6719
6720 abbrev_section = (dwo_file != NULL
6721 ? &dwo_file->sections.abbrev
6722 : &dwarf2_per_objfile->abbrev);
6723
6724 if (dwarf_read_debug)
6725 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6726 get_section_name (section),
6727 get_section_file_name (abbrev_section));
6728
6729 dwarf2_read_section (objfile, section);
6730 info_ptr = section->buffer;
6731
6732 if (info_ptr == NULL)
6733 return;
6734
6735 /* We can't set abfd until now because the section may be empty or
6736 not present, in which case the bfd is unknown. */
6737 abfd = get_section_bfd_owner (section);
6738
6739 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6740 because we don't need to read any dies: the signature is in the
6741 header. */
6742
6743 end_ptr = info_ptr + section->size;
6744 while (info_ptr < end_ptr)
6745 {
6746 struct signatured_type *sig_type;
6747 struct dwo_unit *dwo_tu;
6748 void **slot;
6749 const gdb_byte *ptr = info_ptr;
6750 struct comp_unit_head header;
6751 unsigned int length;
6752
6753 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6754
6755 /* Initialize it due to a false compiler warning. */
6756 header.signature = -1;
6757 header.type_cu_offset_in_tu = (cu_offset) -1;
6758
6759 /* We need to read the type's signature in order to build the hash
6760 table, but we don't need anything else just yet. */
6761
6762 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6763 abbrev_section, ptr, section_kind);
6764
6765 length = get_cu_length (&header);
6766
6767 /* Skip dummy type units. */
6768 if (ptr >= info_ptr + length
6769 || peek_abbrev_code (abfd, ptr) == 0
6770 || header.unit_type != DW_UT_type)
6771 {
6772 info_ptr += length;
6773 continue;
6774 }
6775
6776 if (types_htab == NULL)
6777 {
6778 if (dwo_file)
6779 types_htab = allocate_dwo_unit_table (objfile);
6780 else
6781 types_htab = allocate_signatured_type_table (objfile);
6782 }
6783
6784 if (dwo_file)
6785 {
6786 sig_type = NULL;
6787 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6788 struct dwo_unit);
6789 dwo_tu->dwo_file = dwo_file;
6790 dwo_tu->signature = header.signature;
6791 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6792 dwo_tu->section = section;
6793 dwo_tu->sect_off = sect_off;
6794 dwo_tu->length = length;
6795 }
6796 else
6797 {
6798 /* N.B.: type_offset is not usable if this type uses a DWO file.
6799 The real type_offset is in the DWO file. */
6800 dwo_tu = NULL;
6801 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6802 struct signatured_type);
6803 sig_type->signature = header.signature;
6804 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6805 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6806 sig_type->per_cu.is_debug_types = 1;
6807 sig_type->per_cu.section = section;
6808 sig_type->per_cu.sect_off = sect_off;
6809 sig_type->per_cu.length = length;
6810 }
6811
6812 slot = htab_find_slot (types_htab,
6813 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6814 INSERT);
6815 gdb_assert (slot != NULL);
6816 if (*slot != NULL)
6817 {
6818 sect_offset dup_sect_off;
6819
6820 if (dwo_file)
6821 {
6822 const struct dwo_unit *dup_tu
6823 = (const struct dwo_unit *) *slot;
6824
6825 dup_sect_off = dup_tu->sect_off;
6826 }
6827 else
6828 {
6829 const struct signatured_type *dup_tu
6830 = (const struct signatured_type *) *slot;
6831
6832 dup_sect_off = dup_tu->per_cu.sect_off;
6833 }
6834
6835 complaint (_("debug type entry at offset %s is duplicate to"
6836 " the entry at offset %s, signature %s"),
6837 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6838 hex_string (header.signature));
6839 }
6840 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6841
6842 if (dwarf_read_debug > 1)
6843 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6844 sect_offset_str (sect_off),
6845 hex_string (header.signature));
6846
6847 info_ptr += length;
6848 }
6849 }
6850
6851 /* Create the hash table of all entries in the .debug_types
6852 (or .debug_types.dwo) section(s).
6853 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6854 otherwise it is NULL.
6855
6856 The result is a pointer to the hash table or NULL if there are no types.
6857
6858 Note: This function processes DWO files only, not DWP files. */
6859
6860 static void
6861 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6862 struct dwo_file *dwo_file,
6863 VEC (dwarf2_section_info_def) *types,
6864 htab_t &types_htab)
6865 {
6866 int ix;
6867 struct dwarf2_section_info *section;
6868
6869 if (VEC_empty (dwarf2_section_info_def, types))
6870 return;
6871
6872 for (ix = 0;
6873 VEC_iterate (dwarf2_section_info_def, types, ix, section);
6874 ++ix)
6875 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, section,
6876 types_htab, rcuh_kind::TYPE);
6877 }
6878
6879 /* Create the hash table of all entries in the .debug_types section,
6880 and initialize all_type_units.
6881 The result is zero if there is an error (e.g. missing .debug_types section),
6882 otherwise non-zero. */
6883
6884 static int
6885 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6886 {
6887 htab_t types_htab = NULL;
6888
6889 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6890 &dwarf2_per_objfile->info, types_htab,
6891 rcuh_kind::COMPILE);
6892 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6893 dwarf2_per_objfile->types, types_htab);
6894 if (types_htab == NULL)
6895 {
6896 dwarf2_per_objfile->signatured_types = NULL;
6897 return 0;
6898 }
6899
6900 dwarf2_per_objfile->signatured_types = types_htab;
6901
6902 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6903 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6904
6905 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6906 &dwarf2_per_objfile->all_type_units);
6907
6908 return 1;
6909 }
6910
6911 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6912 If SLOT is non-NULL, it is the entry to use in the hash table.
6913 Otherwise we find one. */
6914
6915 static struct signatured_type *
6916 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6917 void **slot)
6918 {
6919 struct objfile *objfile = dwarf2_per_objfile->objfile;
6920
6921 if (dwarf2_per_objfile->all_type_units.size ()
6922 == dwarf2_per_objfile->all_type_units.capacity ())
6923 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6924
6925 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6926 struct signatured_type);
6927
6928 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6929 sig_type->signature = sig;
6930 sig_type->per_cu.is_debug_types = 1;
6931 if (dwarf2_per_objfile->using_index)
6932 {
6933 sig_type->per_cu.v.quick =
6934 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6935 struct dwarf2_per_cu_quick_data);
6936 }
6937
6938 if (slot == NULL)
6939 {
6940 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6941 sig_type, INSERT);
6942 }
6943 gdb_assert (*slot == NULL);
6944 *slot = sig_type;
6945 /* The rest of sig_type must be filled in by the caller. */
6946 return sig_type;
6947 }
6948
6949 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6950 Fill in SIG_ENTRY with DWO_ENTRY. */
6951
6952 static void
6953 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6954 struct signatured_type *sig_entry,
6955 struct dwo_unit *dwo_entry)
6956 {
6957 /* Make sure we're not clobbering something we don't expect to. */
6958 gdb_assert (! sig_entry->per_cu.queued);
6959 gdb_assert (sig_entry->per_cu.cu == NULL);
6960 if (dwarf2_per_objfile->using_index)
6961 {
6962 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6963 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6964 }
6965 else
6966 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6967 gdb_assert (sig_entry->signature == dwo_entry->signature);
6968 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6969 gdb_assert (sig_entry->type_unit_group == NULL);
6970 gdb_assert (sig_entry->dwo_unit == NULL);
6971
6972 sig_entry->per_cu.section = dwo_entry->section;
6973 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6974 sig_entry->per_cu.length = dwo_entry->length;
6975 sig_entry->per_cu.reading_dwo_directly = 1;
6976 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6977 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6978 sig_entry->dwo_unit = dwo_entry;
6979 }
6980
6981 /* Subroutine of lookup_signatured_type.
6982 If we haven't read the TU yet, create the signatured_type data structure
6983 for a TU to be read in directly from a DWO file, bypassing the stub.
6984 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6985 using .gdb_index, then when reading a CU we want to stay in the DWO file
6986 containing that CU. Otherwise we could end up reading several other DWO
6987 files (due to comdat folding) to process the transitive closure of all the
6988 mentioned TUs, and that can be slow. The current DWO file will have every
6989 type signature that it needs.
6990 We only do this for .gdb_index because in the psymtab case we already have
6991 to read all the DWOs to build the type unit groups. */
6992
6993 static struct signatured_type *
6994 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6995 {
6996 struct dwarf2_per_objfile *dwarf2_per_objfile
6997 = cu->per_cu->dwarf2_per_objfile;
6998 struct objfile *objfile = dwarf2_per_objfile->objfile;
6999 struct dwo_file *dwo_file;
7000 struct dwo_unit find_dwo_entry, *dwo_entry;
7001 struct signatured_type find_sig_entry, *sig_entry;
7002 void **slot;
7003
7004 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7005
7006 /* If TU skeletons have been removed then we may not have read in any
7007 TUs yet. */
7008 if (dwarf2_per_objfile->signatured_types == NULL)
7009 {
7010 dwarf2_per_objfile->signatured_types
7011 = allocate_signatured_type_table (objfile);
7012 }
7013
7014 /* We only ever need to read in one copy of a signatured type.
7015 Use the global signatured_types array to do our own comdat-folding
7016 of types. If this is the first time we're reading this TU, and
7017 the TU has an entry in .gdb_index, replace the recorded data from
7018 .gdb_index with this TU. */
7019
7020 find_sig_entry.signature = sig;
7021 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7022 &find_sig_entry, INSERT);
7023 sig_entry = (struct signatured_type *) *slot;
7024
7025 /* We can get here with the TU already read, *or* in the process of being
7026 read. Don't reassign the global entry to point to this DWO if that's
7027 the case. Also note that if the TU is already being read, it may not
7028 have come from a DWO, the program may be a mix of Fission-compiled
7029 code and non-Fission-compiled code. */
7030
7031 /* Have we already tried to read this TU?
7032 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7033 needn't exist in the global table yet). */
7034 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7035 return sig_entry;
7036
7037 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7038 dwo_unit of the TU itself. */
7039 dwo_file = cu->dwo_unit->dwo_file;
7040
7041 /* Ok, this is the first time we're reading this TU. */
7042 if (dwo_file->tus == NULL)
7043 return NULL;
7044 find_dwo_entry.signature = sig;
7045 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7046 if (dwo_entry == NULL)
7047 return NULL;
7048
7049 /* If the global table doesn't have an entry for this TU, add one. */
7050 if (sig_entry == NULL)
7051 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7052
7053 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7054 sig_entry->per_cu.tu_read = 1;
7055 return sig_entry;
7056 }
7057
7058 /* Subroutine of lookup_signatured_type.
7059 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7060 then try the DWP file. If the TU stub (skeleton) has been removed then
7061 it won't be in .gdb_index. */
7062
7063 static struct signatured_type *
7064 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7065 {
7066 struct dwarf2_per_objfile *dwarf2_per_objfile
7067 = cu->per_cu->dwarf2_per_objfile;
7068 struct objfile *objfile = dwarf2_per_objfile->objfile;
7069 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7070 struct dwo_unit *dwo_entry;
7071 struct signatured_type find_sig_entry, *sig_entry;
7072 void **slot;
7073
7074 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7075 gdb_assert (dwp_file != NULL);
7076
7077 /* If TU skeletons have been removed then we may not have read in any
7078 TUs yet. */
7079 if (dwarf2_per_objfile->signatured_types == NULL)
7080 {
7081 dwarf2_per_objfile->signatured_types
7082 = allocate_signatured_type_table (objfile);
7083 }
7084
7085 find_sig_entry.signature = sig;
7086 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7087 &find_sig_entry, INSERT);
7088 sig_entry = (struct signatured_type *) *slot;
7089
7090 /* Have we already tried to read this TU?
7091 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7092 needn't exist in the global table yet). */
7093 if (sig_entry != NULL)
7094 return sig_entry;
7095
7096 if (dwp_file->tus == NULL)
7097 return NULL;
7098 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7099 sig, 1 /* is_debug_types */);
7100 if (dwo_entry == NULL)
7101 return NULL;
7102
7103 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7104 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7105
7106 return sig_entry;
7107 }
7108
7109 /* Lookup a signature based type for DW_FORM_ref_sig8.
7110 Returns NULL if signature SIG is not present in the table.
7111 It is up to the caller to complain about this. */
7112
7113 static struct signatured_type *
7114 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7115 {
7116 struct dwarf2_per_objfile *dwarf2_per_objfile
7117 = cu->per_cu->dwarf2_per_objfile;
7118
7119 if (cu->dwo_unit
7120 && dwarf2_per_objfile->using_index)
7121 {
7122 /* We're in a DWO/DWP file, and we're using .gdb_index.
7123 These cases require special processing. */
7124 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7125 return lookup_dwo_signatured_type (cu, sig);
7126 else
7127 return lookup_dwp_signatured_type (cu, sig);
7128 }
7129 else
7130 {
7131 struct signatured_type find_entry, *entry;
7132
7133 if (dwarf2_per_objfile->signatured_types == NULL)
7134 return NULL;
7135 find_entry.signature = sig;
7136 entry = ((struct signatured_type *)
7137 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7138 return entry;
7139 }
7140 }
7141 \f
7142 /* Low level DIE reading support. */
7143
7144 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7145
7146 static void
7147 init_cu_die_reader (struct die_reader_specs *reader,
7148 struct dwarf2_cu *cu,
7149 struct dwarf2_section_info *section,
7150 struct dwo_file *dwo_file,
7151 struct abbrev_table *abbrev_table)
7152 {
7153 gdb_assert (section->readin && section->buffer != NULL);
7154 reader->abfd = get_section_bfd_owner (section);
7155 reader->cu = cu;
7156 reader->dwo_file = dwo_file;
7157 reader->die_section = section;
7158 reader->buffer = section->buffer;
7159 reader->buffer_end = section->buffer + section->size;
7160 reader->comp_dir = NULL;
7161 reader->abbrev_table = abbrev_table;
7162 }
7163
7164 /* Subroutine of init_cutu_and_read_dies to simplify it.
7165 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7166 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7167 already.
7168
7169 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7170 from it to the DIE in the DWO. If NULL we are skipping the stub.
7171 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7172 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7173 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7174 STUB_COMP_DIR may be non-NULL.
7175 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7176 are filled in with the info of the DIE from the DWO file.
7177 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7178 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7179 kept around for at least as long as *RESULT_READER.
7180
7181 The result is non-zero if a valid (non-dummy) DIE was found. */
7182
7183 static int
7184 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7185 struct dwo_unit *dwo_unit,
7186 struct die_info *stub_comp_unit_die,
7187 const char *stub_comp_dir,
7188 struct die_reader_specs *result_reader,
7189 const gdb_byte **result_info_ptr,
7190 struct die_info **result_comp_unit_die,
7191 int *result_has_children,
7192 abbrev_table_up *result_dwo_abbrev_table)
7193 {
7194 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7195 struct objfile *objfile = dwarf2_per_objfile->objfile;
7196 struct dwarf2_cu *cu = this_cu->cu;
7197 bfd *abfd;
7198 const gdb_byte *begin_info_ptr, *info_ptr;
7199 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7200 int i,num_extra_attrs;
7201 struct dwarf2_section_info *dwo_abbrev_section;
7202 struct attribute *attr;
7203 struct die_info *comp_unit_die;
7204
7205 /* At most one of these may be provided. */
7206 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7207
7208 /* These attributes aren't processed until later:
7209 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7210 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7211 referenced later. However, these attributes are found in the stub
7212 which we won't have later. In order to not impose this complication
7213 on the rest of the code, we read them here and copy them to the
7214 DWO CU/TU die. */
7215
7216 stmt_list = NULL;
7217 low_pc = NULL;
7218 high_pc = NULL;
7219 ranges = NULL;
7220 comp_dir = NULL;
7221
7222 if (stub_comp_unit_die != NULL)
7223 {
7224 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7225 DWO file. */
7226 if (! this_cu->is_debug_types)
7227 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7228 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7229 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7230 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7231 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7232
7233 /* There should be a DW_AT_addr_base attribute here (if needed).
7234 We need the value before we can process DW_FORM_GNU_addr_index. */
7235 cu->addr_base = 0;
7236 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7237 if (attr)
7238 cu->addr_base = DW_UNSND (attr);
7239
7240 /* There should be a DW_AT_ranges_base attribute here (if needed).
7241 We need the value before we can process DW_AT_ranges. */
7242 cu->ranges_base = 0;
7243 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7244 if (attr)
7245 cu->ranges_base = DW_UNSND (attr);
7246 }
7247 else if (stub_comp_dir != NULL)
7248 {
7249 /* Reconstruct the comp_dir attribute to simplify the code below. */
7250 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7251 comp_dir->name = DW_AT_comp_dir;
7252 comp_dir->form = DW_FORM_string;
7253 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7254 DW_STRING (comp_dir) = stub_comp_dir;
7255 }
7256
7257 /* Set up for reading the DWO CU/TU. */
7258 cu->dwo_unit = dwo_unit;
7259 dwarf2_section_info *section = dwo_unit->section;
7260 dwarf2_read_section (objfile, section);
7261 abfd = get_section_bfd_owner (section);
7262 begin_info_ptr = info_ptr = (section->buffer
7263 + to_underlying (dwo_unit->sect_off));
7264 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7265
7266 if (this_cu->is_debug_types)
7267 {
7268 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7269
7270 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7271 &cu->header, section,
7272 dwo_abbrev_section,
7273 info_ptr, rcuh_kind::TYPE);
7274 /* This is not an assert because it can be caused by bad debug info. */
7275 if (sig_type->signature != cu->header.signature)
7276 {
7277 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7278 " TU at offset %s [in module %s]"),
7279 hex_string (sig_type->signature),
7280 hex_string (cu->header.signature),
7281 sect_offset_str (dwo_unit->sect_off),
7282 bfd_get_filename (abfd));
7283 }
7284 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7285 /* For DWOs coming from DWP files, we don't know the CU length
7286 nor the type's offset in the TU until now. */
7287 dwo_unit->length = get_cu_length (&cu->header);
7288 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7289
7290 /* Establish the type offset that can be used to lookup the type.
7291 For DWO files, we don't know it until now. */
7292 sig_type->type_offset_in_section
7293 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7294 }
7295 else
7296 {
7297 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7298 &cu->header, section,
7299 dwo_abbrev_section,
7300 info_ptr, rcuh_kind::COMPILE);
7301 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7302 /* For DWOs coming from DWP files, we don't know the CU length
7303 until now. */
7304 dwo_unit->length = get_cu_length (&cu->header);
7305 }
7306
7307 *result_dwo_abbrev_table
7308 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7309 cu->header.abbrev_sect_off);
7310 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7311 result_dwo_abbrev_table->get ());
7312
7313 /* Read in the die, but leave space to copy over the attributes
7314 from the stub. This has the benefit of simplifying the rest of
7315 the code - all the work to maintain the illusion of a single
7316 DW_TAG_{compile,type}_unit DIE is done here. */
7317 num_extra_attrs = ((stmt_list != NULL)
7318 + (low_pc != NULL)
7319 + (high_pc != NULL)
7320 + (ranges != NULL)
7321 + (comp_dir != NULL));
7322 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7323 result_has_children, num_extra_attrs);
7324
7325 /* Copy over the attributes from the stub to the DIE we just read in. */
7326 comp_unit_die = *result_comp_unit_die;
7327 i = comp_unit_die->num_attrs;
7328 if (stmt_list != NULL)
7329 comp_unit_die->attrs[i++] = *stmt_list;
7330 if (low_pc != NULL)
7331 comp_unit_die->attrs[i++] = *low_pc;
7332 if (high_pc != NULL)
7333 comp_unit_die->attrs[i++] = *high_pc;
7334 if (ranges != NULL)
7335 comp_unit_die->attrs[i++] = *ranges;
7336 if (comp_dir != NULL)
7337 comp_unit_die->attrs[i++] = *comp_dir;
7338 comp_unit_die->num_attrs += num_extra_attrs;
7339
7340 if (dwarf_die_debug)
7341 {
7342 fprintf_unfiltered (gdb_stdlog,
7343 "Read die from %s@0x%x of %s:\n",
7344 get_section_name (section),
7345 (unsigned) (begin_info_ptr - section->buffer),
7346 bfd_get_filename (abfd));
7347 dump_die (comp_unit_die, dwarf_die_debug);
7348 }
7349
7350 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7351 TUs by skipping the stub and going directly to the entry in the DWO file.
7352 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7353 to get it via circuitous means. Blech. */
7354 if (comp_dir != NULL)
7355 result_reader->comp_dir = DW_STRING (comp_dir);
7356
7357 /* Skip dummy compilation units. */
7358 if (info_ptr >= begin_info_ptr + dwo_unit->length
7359 || peek_abbrev_code (abfd, info_ptr) == 0)
7360 return 0;
7361
7362 *result_info_ptr = info_ptr;
7363 return 1;
7364 }
7365
7366 /* Subroutine of init_cutu_and_read_dies to simplify it.
7367 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7368 Returns NULL if the specified DWO unit cannot be found. */
7369
7370 static struct dwo_unit *
7371 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7372 struct die_info *comp_unit_die)
7373 {
7374 struct dwarf2_cu *cu = this_cu->cu;
7375 ULONGEST signature;
7376 struct dwo_unit *dwo_unit;
7377 const char *comp_dir, *dwo_name;
7378
7379 gdb_assert (cu != NULL);
7380
7381 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7382 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7383 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7384
7385 if (this_cu->is_debug_types)
7386 {
7387 struct signatured_type *sig_type;
7388
7389 /* Since this_cu is the first member of struct signatured_type,
7390 we can go from a pointer to one to a pointer to the other. */
7391 sig_type = (struct signatured_type *) this_cu;
7392 signature = sig_type->signature;
7393 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7394 }
7395 else
7396 {
7397 struct attribute *attr;
7398
7399 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7400 if (! attr)
7401 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7402 " [in module %s]"),
7403 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7404 signature = DW_UNSND (attr);
7405 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7406 signature);
7407 }
7408
7409 return dwo_unit;
7410 }
7411
7412 /* Subroutine of init_cutu_and_read_dies to simplify it.
7413 See it for a description of the parameters.
7414 Read a TU directly from a DWO file, bypassing the stub. */
7415
7416 static void
7417 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7418 int use_existing_cu, int keep,
7419 die_reader_func_ftype *die_reader_func,
7420 void *data)
7421 {
7422 std::unique_ptr<dwarf2_cu> new_cu;
7423 struct signatured_type *sig_type;
7424 struct die_reader_specs reader;
7425 const gdb_byte *info_ptr;
7426 struct die_info *comp_unit_die;
7427 int has_children;
7428 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7429
7430 /* Verify we can do the following downcast, and that we have the
7431 data we need. */
7432 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7433 sig_type = (struct signatured_type *) this_cu;
7434 gdb_assert (sig_type->dwo_unit != NULL);
7435
7436 if (use_existing_cu && this_cu->cu != NULL)
7437 {
7438 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7439 /* There's no need to do the rereading_dwo_cu handling that
7440 init_cutu_and_read_dies does since we don't read the stub. */
7441 }
7442 else
7443 {
7444 /* If !use_existing_cu, this_cu->cu must be NULL. */
7445 gdb_assert (this_cu->cu == NULL);
7446 new_cu.reset (new dwarf2_cu (this_cu));
7447 }
7448
7449 /* A future optimization, if needed, would be to use an existing
7450 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7451 could share abbrev tables. */
7452
7453 /* The abbreviation table used by READER, this must live at least as long as
7454 READER. */
7455 abbrev_table_up dwo_abbrev_table;
7456
7457 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7458 NULL /* stub_comp_unit_die */,
7459 sig_type->dwo_unit->dwo_file->comp_dir,
7460 &reader, &info_ptr,
7461 &comp_unit_die, &has_children,
7462 &dwo_abbrev_table) == 0)
7463 {
7464 /* Dummy die. */
7465 return;
7466 }
7467
7468 /* All the "real" work is done here. */
7469 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7470
7471 /* This duplicates the code in init_cutu_and_read_dies,
7472 but the alternative is making the latter more complex.
7473 This function is only for the special case of using DWO files directly:
7474 no point in overly complicating the general case just to handle this. */
7475 if (new_cu != NULL && keep)
7476 {
7477 /* Link this CU into read_in_chain. */
7478 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7479 dwarf2_per_objfile->read_in_chain = this_cu;
7480 /* The chain owns it now. */
7481 new_cu.release ();
7482 }
7483 }
7484
7485 /* Initialize a CU (or TU) and read its DIEs.
7486 If the CU defers to a DWO file, read the DWO file as well.
7487
7488 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7489 Otherwise the table specified in the comp unit header is read in and used.
7490 This is an optimization for when we already have the abbrev table.
7491
7492 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7493 Otherwise, a new CU is allocated with xmalloc.
7494
7495 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7496 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7497
7498 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7499 linker) then DIE_READER_FUNC will not get called. */
7500
7501 static void
7502 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7503 struct abbrev_table *abbrev_table,
7504 int use_existing_cu, int keep,
7505 bool skip_partial,
7506 die_reader_func_ftype *die_reader_func,
7507 void *data)
7508 {
7509 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7510 struct objfile *objfile = dwarf2_per_objfile->objfile;
7511 struct dwarf2_section_info *section = this_cu->section;
7512 bfd *abfd = get_section_bfd_owner (section);
7513 struct dwarf2_cu *cu;
7514 const gdb_byte *begin_info_ptr, *info_ptr;
7515 struct die_reader_specs reader;
7516 struct die_info *comp_unit_die;
7517 int has_children;
7518 struct attribute *attr;
7519 struct signatured_type *sig_type = NULL;
7520 struct dwarf2_section_info *abbrev_section;
7521 /* Non-zero if CU currently points to a DWO file and we need to
7522 reread it. When this happens we need to reread the skeleton die
7523 before we can reread the DWO file (this only applies to CUs, not TUs). */
7524 int rereading_dwo_cu = 0;
7525
7526 if (dwarf_die_debug)
7527 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7528 this_cu->is_debug_types ? "type" : "comp",
7529 sect_offset_str (this_cu->sect_off));
7530
7531 if (use_existing_cu)
7532 gdb_assert (keep);
7533
7534 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7535 file (instead of going through the stub), short-circuit all of this. */
7536 if (this_cu->reading_dwo_directly)
7537 {
7538 /* Narrow down the scope of possibilities to have to understand. */
7539 gdb_assert (this_cu->is_debug_types);
7540 gdb_assert (abbrev_table == NULL);
7541 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7542 die_reader_func, data);
7543 return;
7544 }
7545
7546 /* This is cheap if the section is already read in. */
7547 dwarf2_read_section (objfile, section);
7548
7549 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7550
7551 abbrev_section = get_abbrev_section_for_cu (this_cu);
7552
7553 std::unique_ptr<dwarf2_cu> new_cu;
7554 if (use_existing_cu && this_cu->cu != NULL)
7555 {
7556 cu = this_cu->cu;
7557 /* If this CU is from a DWO file we need to start over, we need to
7558 refetch the attributes from the skeleton CU.
7559 This could be optimized by retrieving those attributes from when we
7560 were here the first time: the previous comp_unit_die was stored in
7561 comp_unit_obstack. But there's no data yet that we need this
7562 optimization. */
7563 if (cu->dwo_unit != NULL)
7564 rereading_dwo_cu = 1;
7565 }
7566 else
7567 {
7568 /* If !use_existing_cu, this_cu->cu must be NULL. */
7569 gdb_assert (this_cu->cu == NULL);
7570 new_cu.reset (new dwarf2_cu (this_cu));
7571 cu = new_cu.get ();
7572 }
7573
7574 /* Get the header. */
7575 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7576 {
7577 /* We already have the header, there's no need to read it in again. */
7578 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7579 }
7580 else
7581 {
7582 if (this_cu->is_debug_types)
7583 {
7584 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7585 &cu->header, section,
7586 abbrev_section, info_ptr,
7587 rcuh_kind::TYPE);
7588
7589 /* Since per_cu is the first member of struct signatured_type,
7590 we can go from a pointer to one to a pointer to the other. */
7591 sig_type = (struct signatured_type *) this_cu;
7592 gdb_assert (sig_type->signature == cu->header.signature);
7593 gdb_assert (sig_type->type_offset_in_tu
7594 == cu->header.type_cu_offset_in_tu);
7595 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7596
7597 /* LENGTH has not been set yet for type units if we're
7598 using .gdb_index. */
7599 this_cu->length = get_cu_length (&cu->header);
7600
7601 /* Establish the type offset that can be used to lookup the type. */
7602 sig_type->type_offset_in_section =
7603 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7604
7605 this_cu->dwarf_version = cu->header.version;
7606 }
7607 else
7608 {
7609 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7610 &cu->header, section,
7611 abbrev_section,
7612 info_ptr,
7613 rcuh_kind::COMPILE);
7614
7615 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7616 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7617 this_cu->dwarf_version = cu->header.version;
7618 }
7619 }
7620
7621 /* Skip dummy compilation units. */
7622 if (info_ptr >= begin_info_ptr + this_cu->length
7623 || peek_abbrev_code (abfd, info_ptr) == 0)
7624 return;
7625
7626 /* If we don't have them yet, read the abbrevs for this compilation unit.
7627 And if we need to read them now, make sure they're freed when we're
7628 done (own the table through ABBREV_TABLE_HOLDER). */
7629 abbrev_table_up abbrev_table_holder;
7630 if (abbrev_table != NULL)
7631 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7632 else
7633 {
7634 abbrev_table_holder
7635 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7636 cu->header.abbrev_sect_off);
7637 abbrev_table = abbrev_table_holder.get ();
7638 }
7639
7640 /* Read the top level CU/TU die. */
7641 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7642 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7643
7644 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7645 return;
7646
7647 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7648 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7649 table from the DWO file and pass the ownership over to us. It will be
7650 referenced from READER, so we must make sure to free it after we're done
7651 with READER.
7652
7653 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7654 DWO CU, that this test will fail (the attribute will not be present). */
7655 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
7656 abbrev_table_up dwo_abbrev_table;
7657 if (attr)
7658 {
7659 struct dwo_unit *dwo_unit;
7660 struct die_info *dwo_comp_unit_die;
7661
7662 if (has_children)
7663 {
7664 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7665 " has children (offset %s) [in module %s]"),
7666 sect_offset_str (this_cu->sect_off),
7667 bfd_get_filename (abfd));
7668 }
7669 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7670 if (dwo_unit != NULL)
7671 {
7672 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7673 comp_unit_die, NULL,
7674 &reader, &info_ptr,
7675 &dwo_comp_unit_die, &has_children,
7676 &dwo_abbrev_table) == 0)
7677 {
7678 /* Dummy die. */
7679 return;
7680 }
7681 comp_unit_die = dwo_comp_unit_die;
7682 }
7683 else
7684 {
7685 /* Yikes, we couldn't find the rest of the DIE, we only have
7686 the stub. A complaint has already been logged. There's
7687 not much more we can do except pass on the stub DIE to
7688 die_reader_func. We don't want to throw an error on bad
7689 debug info. */
7690 }
7691 }
7692
7693 /* All of the above is setup for this call. Yikes. */
7694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7695
7696 /* Done, clean up. */
7697 if (new_cu != NULL && keep)
7698 {
7699 /* Link this CU into read_in_chain. */
7700 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7701 dwarf2_per_objfile->read_in_chain = this_cu;
7702 /* The chain owns it now. */
7703 new_cu.release ();
7704 }
7705 }
7706
7707 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7708 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7709 to have already done the lookup to find the DWO file).
7710
7711 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7712 THIS_CU->is_debug_types, but nothing else.
7713
7714 We fill in THIS_CU->length.
7715
7716 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7717 linker) then DIE_READER_FUNC will not get called.
7718
7719 THIS_CU->cu is always freed when done.
7720 This is done in order to not leave THIS_CU->cu in a state where we have
7721 to care whether it refers to the "main" CU or the DWO CU. */
7722
7723 static void
7724 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7725 struct dwo_file *dwo_file,
7726 die_reader_func_ftype *die_reader_func,
7727 void *data)
7728 {
7729 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7730 struct objfile *objfile = dwarf2_per_objfile->objfile;
7731 struct dwarf2_section_info *section = this_cu->section;
7732 bfd *abfd = get_section_bfd_owner (section);
7733 struct dwarf2_section_info *abbrev_section;
7734 const gdb_byte *begin_info_ptr, *info_ptr;
7735 struct die_reader_specs reader;
7736 struct die_info *comp_unit_die;
7737 int has_children;
7738
7739 if (dwarf_die_debug)
7740 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7741 this_cu->is_debug_types ? "type" : "comp",
7742 sect_offset_str (this_cu->sect_off));
7743
7744 gdb_assert (this_cu->cu == NULL);
7745
7746 abbrev_section = (dwo_file != NULL
7747 ? &dwo_file->sections.abbrev
7748 : get_abbrev_section_for_cu (this_cu));
7749
7750 /* This is cheap if the section is already read in. */
7751 dwarf2_read_section (objfile, section);
7752
7753 struct dwarf2_cu cu (this_cu);
7754
7755 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7756 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7757 &cu.header, section,
7758 abbrev_section, info_ptr,
7759 (this_cu->is_debug_types
7760 ? rcuh_kind::TYPE
7761 : rcuh_kind::COMPILE));
7762
7763 this_cu->length = get_cu_length (&cu.header);
7764
7765 /* Skip dummy compilation units. */
7766 if (info_ptr >= begin_info_ptr + this_cu->length
7767 || peek_abbrev_code (abfd, info_ptr) == 0)
7768 return;
7769
7770 abbrev_table_up abbrev_table
7771 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7772 cu.header.abbrev_sect_off);
7773
7774 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7775 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7776
7777 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7778 }
7779
7780 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7781 does not lookup the specified DWO file.
7782 This cannot be used to read DWO files.
7783
7784 THIS_CU->cu is always freed when done.
7785 This is done in order to not leave THIS_CU->cu in a state where we have
7786 to care whether it refers to the "main" CU or the DWO CU.
7787 We can revisit this if the data shows there's a performance issue. */
7788
7789 static void
7790 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7791 die_reader_func_ftype *die_reader_func,
7792 void *data)
7793 {
7794 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7795 }
7796 \f
7797 /* Type Unit Groups.
7798
7799 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7800 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7801 so that all types coming from the same compilation (.o file) are grouped
7802 together. A future step could be to put the types in the same symtab as
7803 the CU the types ultimately came from. */
7804
7805 static hashval_t
7806 hash_type_unit_group (const void *item)
7807 {
7808 const struct type_unit_group *tu_group
7809 = (const struct type_unit_group *) item;
7810
7811 return hash_stmt_list_entry (&tu_group->hash);
7812 }
7813
7814 static int
7815 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7816 {
7817 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7818 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7819
7820 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7821 }
7822
7823 /* Allocate a hash table for type unit groups. */
7824
7825 static htab_t
7826 allocate_type_unit_groups_table (struct objfile *objfile)
7827 {
7828 return htab_create_alloc_ex (3,
7829 hash_type_unit_group,
7830 eq_type_unit_group,
7831 NULL,
7832 &objfile->objfile_obstack,
7833 hashtab_obstack_allocate,
7834 dummy_obstack_deallocate);
7835 }
7836
7837 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7838 partial symtabs. We combine several TUs per psymtab to not let the size
7839 of any one psymtab grow too big. */
7840 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7841 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7842
7843 /* Helper routine for get_type_unit_group.
7844 Create the type_unit_group object used to hold one or more TUs. */
7845
7846 static struct type_unit_group *
7847 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7848 {
7849 struct dwarf2_per_objfile *dwarf2_per_objfile
7850 = cu->per_cu->dwarf2_per_objfile;
7851 struct objfile *objfile = dwarf2_per_objfile->objfile;
7852 struct dwarf2_per_cu_data *per_cu;
7853 struct type_unit_group *tu_group;
7854
7855 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7856 struct type_unit_group);
7857 per_cu = &tu_group->per_cu;
7858 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7859
7860 if (dwarf2_per_objfile->using_index)
7861 {
7862 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7863 struct dwarf2_per_cu_quick_data);
7864 }
7865 else
7866 {
7867 unsigned int line_offset = to_underlying (line_offset_struct);
7868 struct partial_symtab *pst;
7869 std::string name;
7870
7871 /* Give the symtab a useful name for debug purposes. */
7872 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7873 name = string_printf ("<type_units_%d>",
7874 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7875 else
7876 name = string_printf ("<type_units_at_0x%x>", line_offset);
7877
7878 pst = create_partial_symtab (per_cu, name.c_str ());
7879 pst->anonymous = 1;
7880 }
7881
7882 tu_group->hash.dwo_unit = cu->dwo_unit;
7883 tu_group->hash.line_sect_off = line_offset_struct;
7884
7885 return tu_group;
7886 }
7887
7888 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7889 STMT_LIST is a DW_AT_stmt_list attribute. */
7890
7891 static struct type_unit_group *
7892 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7893 {
7894 struct dwarf2_per_objfile *dwarf2_per_objfile
7895 = cu->per_cu->dwarf2_per_objfile;
7896 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7897 struct type_unit_group *tu_group;
7898 void **slot;
7899 unsigned int line_offset;
7900 struct type_unit_group type_unit_group_for_lookup;
7901
7902 if (dwarf2_per_objfile->type_unit_groups == NULL)
7903 {
7904 dwarf2_per_objfile->type_unit_groups =
7905 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7906 }
7907
7908 /* Do we need to create a new group, or can we use an existing one? */
7909
7910 if (stmt_list)
7911 {
7912 line_offset = DW_UNSND (stmt_list);
7913 ++tu_stats->nr_symtab_sharers;
7914 }
7915 else
7916 {
7917 /* Ugh, no stmt_list. Rare, but we have to handle it.
7918 We can do various things here like create one group per TU or
7919 spread them over multiple groups to split up the expansion work.
7920 To avoid worst case scenarios (too many groups or too large groups)
7921 we, umm, group them in bunches. */
7922 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7923 | (tu_stats->nr_stmt_less_type_units
7924 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7925 ++tu_stats->nr_stmt_less_type_units;
7926 }
7927
7928 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7929 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7930 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7931 &type_unit_group_for_lookup, INSERT);
7932 if (*slot != NULL)
7933 {
7934 tu_group = (struct type_unit_group *) *slot;
7935 gdb_assert (tu_group != NULL);
7936 }
7937 else
7938 {
7939 sect_offset line_offset_struct = (sect_offset) line_offset;
7940 tu_group = create_type_unit_group (cu, line_offset_struct);
7941 *slot = tu_group;
7942 ++tu_stats->nr_symtabs;
7943 }
7944
7945 return tu_group;
7946 }
7947 \f
7948 /* Partial symbol tables. */
7949
7950 /* Create a psymtab named NAME and assign it to PER_CU.
7951
7952 The caller must fill in the following details:
7953 dirname, textlow, texthigh. */
7954
7955 static struct partial_symtab *
7956 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7957 {
7958 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7959 struct partial_symtab *pst;
7960
7961 pst = start_psymtab_common (objfile, name, 0);
7962
7963 pst->psymtabs_addrmap_supported = 1;
7964
7965 /* This is the glue that links PST into GDB's symbol API. */
7966 pst->read_symtab_private = per_cu;
7967 pst->read_symtab = dwarf2_read_symtab;
7968 per_cu->v.psymtab = pst;
7969
7970 return pst;
7971 }
7972
7973 /* The DATA object passed to process_psymtab_comp_unit_reader has this
7974 type. */
7975
7976 struct process_psymtab_comp_unit_data
7977 {
7978 /* True if we are reading a DW_TAG_partial_unit. */
7979
7980 int want_partial_unit;
7981
7982 /* The "pretend" language that is used if the CU doesn't declare a
7983 language. */
7984
7985 enum language pretend_language;
7986 };
7987
7988 /* die_reader_func for process_psymtab_comp_unit. */
7989
7990 static void
7991 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7992 const gdb_byte *info_ptr,
7993 struct die_info *comp_unit_die,
7994 int has_children,
7995 void *data)
7996 {
7997 struct dwarf2_cu *cu = reader->cu;
7998 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7999 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8000 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8001 CORE_ADDR baseaddr;
8002 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8003 struct partial_symtab *pst;
8004 enum pc_bounds_kind cu_bounds_kind;
8005 const char *filename;
8006 struct process_psymtab_comp_unit_data *info
8007 = (struct process_psymtab_comp_unit_data *) data;
8008
8009 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8010 return;
8011
8012 gdb_assert (! per_cu->is_debug_types);
8013
8014 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8015
8016 /* Allocate a new partial symbol table structure. */
8017 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8018 if (filename == NULL)
8019 filename = "";
8020
8021 pst = create_partial_symtab (per_cu, filename);
8022
8023 /* This must be done before calling dwarf2_build_include_psymtabs. */
8024 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8025
8026 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8027
8028 dwarf2_find_base_address (comp_unit_die, cu);
8029
8030 /* Possibly set the default values of LOWPC and HIGHPC from
8031 `DW_AT_ranges'. */
8032 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8033 &best_highpc, cu, pst);
8034 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8035 {
8036 CORE_ADDR low
8037 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8038 - baseaddr);
8039 CORE_ADDR high
8040 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8041 - baseaddr - 1);
8042 /* Store the contiguous range if it is not empty; it can be
8043 empty for CUs with no code. */
8044 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8045 low, high, pst);
8046 }
8047
8048 /* Check if comp unit has_children.
8049 If so, read the rest of the partial symbols from this comp unit.
8050 If not, there's no more debug_info for this comp unit. */
8051 if (has_children)
8052 {
8053 struct partial_die_info *first_die;
8054 CORE_ADDR lowpc, highpc;
8055
8056 lowpc = ((CORE_ADDR) -1);
8057 highpc = ((CORE_ADDR) 0);
8058
8059 first_die = load_partial_dies (reader, info_ptr, 1);
8060
8061 scan_partial_symbols (first_die, &lowpc, &highpc,
8062 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8063
8064 /* If we didn't find a lowpc, set it to highpc to avoid
8065 complaints from `maint check'. */
8066 if (lowpc == ((CORE_ADDR) -1))
8067 lowpc = highpc;
8068
8069 /* If the compilation unit didn't have an explicit address range,
8070 then use the information extracted from its child dies. */
8071 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8072 {
8073 best_lowpc = lowpc;
8074 best_highpc = highpc;
8075 }
8076 }
8077 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8078 best_lowpc + baseaddr)
8079 - baseaddr);
8080 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8081 best_highpc + baseaddr)
8082 - baseaddr);
8083
8084 end_psymtab_common (objfile, pst);
8085
8086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
8087 {
8088 int i;
8089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8090 struct dwarf2_per_cu_data *iter;
8091
8092 /* Fill in 'dependencies' here; we fill in 'users' in a
8093 post-pass. */
8094 pst->number_of_dependencies = len;
8095 pst->dependencies
8096 = objfile->partial_symtabs->allocate_dependencies (len);
8097 for (i = 0;
8098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8099 i, iter);
8100 ++i)
8101 pst->dependencies[i] = iter->v.psymtab;
8102
8103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
8104 }
8105
8106 /* Get the list of files included in the current compilation unit,
8107 and build a psymtab for each of them. */
8108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8109
8110 if (dwarf_read_debug)
8111 fprintf_unfiltered (gdb_stdlog,
8112 "Psymtab for %s unit @%s: %s - %s"
8113 ", %d global, %d static syms\n",
8114 per_cu->is_debug_types ? "type" : "comp",
8115 sect_offset_str (per_cu->sect_off),
8116 paddress (gdbarch, pst->text_low (objfile)),
8117 paddress (gdbarch, pst->text_high (objfile)),
8118 pst->n_global_syms, pst->n_static_syms);
8119 }
8120
8121 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8122 Process compilation unit THIS_CU for a psymtab. */
8123
8124 static void
8125 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8126 int want_partial_unit,
8127 enum language pretend_language)
8128 {
8129 /* If this compilation unit was already read in, free the
8130 cached copy in order to read it in again. This is
8131 necessary because we skipped some symbols when we first
8132 read in the compilation unit (see load_partial_dies).
8133 This problem could be avoided, but the benefit is unclear. */
8134 if (this_cu->cu != NULL)
8135 free_one_cached_comp_unit (this_cu);
8136
8137 if (this_cu->is_debug_types)
8138 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8139 build_type_psymtabs_reader, NULL);
8140 else
8141 {
8142 process_psymtab_comp_unit_data info;
8143 info.want_partial_unit = want_partial_unit;
8144 info.pretend_language = pretend_language;
8145 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8146 process_psymtab_comp_unit_reader, &info);
8147 }
8148
8149 /* Age out any secondary CUs. */
8150 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8151 }
8152
8153 /* Reader function for build_type_psymtabs. */
8154
8155 static void
8156 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8157 const gdb_byte *info_ptr,
8158 struct die_info *type_unit_die,
8159 int has_children,
8160 void *data)
8161 {
8162 struct dwarf2_per_objfile *dwarf2_per_objfile
8163 = reader->cu->per_cu->dwarf2_per_objfile;
8164 struct objfile *objfile = dwarf2_per_objfile->objfile;
8165 struct dwarf2_cu *cu = reader->cu;
8166 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8167 struct signatured_type *sig_type;
8168 struct type_unit_group *tu_group;
8169 struct attribute *attr;
8170 struct partial_die_info *first_die;
8171 CORE_ADDR lowpc, highpc;
8172 struct partial_symtab *pst;
8173
8174 gdb_assert (data == NULL);
8175 gdb_assert (per_cu->is_debug_types);
8176 sig_type = (struct signatured_type *) per_cu;
8177
8178 if (! has_children)
8179 return;
8180
8181 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8182 tu_group = get_type_unit_group (cu, attr);
8183
8184 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
8185
8186 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8187 pst = create_partial_symtab (per_cu, "");
8188 pst->anonymous = 1;
8189
8190 first_die = load_partial_dies (reader, info_ptr, 1);
8191
8192 lowpc = (CORE_ADDR) -1;
8193 highpc = (CORE_ADDR) 0;
8194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8195
8196 end_psymtab_common (objfile, pst);
8197 }
8198
8199 /* Struct used to sort TUs by their abbreviation table offset. */
8200
8201 struct tu_abbrev_offset
8202 {
8203 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8204 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8205 {}
8206
8207 signatured_type *sig_type;
8208 sect_offset abbrev_offset;
8209 };
8210
8211 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8212
8213 static bool
8214 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8215 const struct tu_abbrev_offset &b)
8216 {
8217 return a.abbrev_offset < b.abbrev_offset;
8218 }
8219
8220 /* Efficiently read all the type units.
8221 This does the bulk of the work for build_type_psymtabs.
8222
8223 The efficiency is because we sort TUs by the abbrev table they use and
8224 only read each abbrev table once. In one program there are 200K TUs
8225 sharing 8K abbrev tables.
8226
8227 The main purpose of this function is to support building the
8228 dwarf2_per_objfile->type_unit_groups table.
8229 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8230 can collapse the search space by grouping them by stmt_list.
8231 The savings can be significant, in the same program from above the 200K TUs
8232 share 8K stmt_list tables.
8233
8234 FUNC is expected to call get_type_unit_group, which will create the
8235 struct type_unit_group if necessary and add it to
8236 dwarf2_per_objfile->type_unit_groups. */
8237
8238 static void
8239 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8240 {
8241 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8242 abbrev_table_up abbrev_table;
8243 sect_offset abbrev_offset;
8244
8245 /* It's up to the caller to not call us multiple times. */
8246 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8247
8248 if (dwarf2_per_objfile->all_type_units.empty ())
8249 return;
8250
8251 /* TUs typically share abbrev tables, and there can be way more TUs than
8252 abbrev tables. Sort by abbrev table to reduce the number of times we
8253 read each abbrev table in.
8254 Alternatives are to punt or to maintain a cache of abbrev tables.
8255 This is simpler and efficient enough for now.
8256
8257 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8258 symtab to use). Typically TUs with the same abbrev offset have the same
8259 stmt_list value too so in practice this should work well.
8260
8261 The basic algorithm here is:
8262
8263 sort TUs by abbrev table
8264 for each TU with same abbrev table:
8265 read abbrev table if first user
8266 read TU top level DIE
8267 [IWBN if DWO skeletons had DW_AT_stmt_list]
8268 call FUNC */
8269
8270 if (dwarf_read_debug)
8271 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8272
8273 /* Sort in a separate table to maintain the order of all_type_units
8274 for .gdb_index: TU indices directly index all_type_units. */
8275 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8276 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8277
8278 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8279 sorted_by_abbrev.emplace_back
8280 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8281 sig_type->per_cu.section,
8282 sig_type->per_cu.sect_off));
8283
8284 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8285 sort_tu_by_abbrev_offset);
8286
8287 abbrev_offset = (sect_offset) ~(unsigned) 0;
8288
8289 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8290 {
8291 /* Switch to the next abbrev table if necessary. */
8292 if (abbrev_table == NULL
8293 || tu.abbrev_offset != abbrev_offset)
8294 {
8295 abbrev_offset = tu.abbrev_offset;
8296 abbrev_table =
8297 abbrev_table_read_table (dwarf2_per_objfile,
8298 &dwarf2_per_objfile->abbrev,
8299 abbrev_offset);
8300 ++tu_stats->nr_uniq_abbrev_tables;
8301 }
8302
8303 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8304 0, 0, false, build_type_psymtabs_reader, NULL);
8305 }
8306 }
8307
8308 /* Print collected type unit statistics. */
8309
8310 static void
8311 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8312 {
8313 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8314
8315 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8316 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8317 dwarf2_per_objfile->all_type_units.size ());
8318 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8319 tu_stats->nr_uniq_abbrev_tables);
8320 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8321 tu_stats->nr_symtabs);
8322 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8323 tu_stats->nr_symtab_sharers);
8324 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8325 tu_stats->nr_stmt_less_type_units);
8326 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8327 tu_stats->nr_all_type_units_reallocs);
8328 }
8329
8330 /* Traversal function for build_type_psymtabs. */
8331
8332 static int
8333 build_type_psymtab_dependencies (void **slot, void *info)
8334 {
8335 struct dwarf2_per_objfile *dwarf2_per_objfile
8336 = (struct dwarf2_per_objfile *) info;
8337 struct objfile *objfile = dwarf2_per_objfile->objfile;
8338 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8339 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8340 struct partial_symtab *pst = per_cu->v.psymtab;
8341 int len = VEC_length (sig_type_ptr, tu_group->tus);
8342 struct signatured_type *iter;
8343 int i;
8344
8345 gdb_assert (len > 0);
8346 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8347
8348 pst->number_of_dependencies = len;
8349 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8350 for (i = 0;
8351 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
8352 ++i)
8353 {
8354 gdb_assert (iter->per_cu.is_debug_types);
8355 pst->dependencies[i] = iter->per_cu.v.psymtab;
8356 iter->type_unit_group = tu_group;
8357 }
8358
8359 VEC_free (sig_type_ptr, tu_group->tus);
8360
8361 return 1;
8362 }
8363
8364 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8365 Build partial symbol tables for the .debug_types comp-units. */
8366
8367 static void
8368 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8369 {
8370 if (! create_all_type_units (dwarf2_per_objfile))
8371 return;
8372
8373 build_type_psymtabs_1 (dwarf2_per_objfile);
8374 }
8375
8376 /* Traversal function for process_skeletonless_type_unit.
8377 Read a TU in a DWO file and build partial symbols for it. */
8378
8379 static int
8380 process_skeletonless_type_unit (void **slot, void *info)
8381 {
8382 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8383 struct dwarf2_per_objfile *dwarf2_per_objfile
8384 = (struct dwarf2_per_objfile *) info;
8385 struct signatured_type find_entry, *entry;
8386
8387 /* If this TU doesn't exist in the global table, add it and read it in. */
8388
8389 if (dwarf2_per_objfile->signatured_types == NULL)
8390 {
8391 dwarf2_per_objfile->signatured_types
8392 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8393 }
8394
8395 find_entry.signature = dwo_unit->signature;
8396 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8397 INSERT);
8398 /* If we've already seen this type there's nothing to do. What's happening
8399 is we're doing our own version of comdat-folding here. */
8400 if (*slot != NULL)
8401 return 1;
8402
8403 /* This does the job that create_all_type_units would have done for
8404 this TU. */
8405 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8406 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8407 *slot = entry;
8408
8409 /* This does the job that build_type_psymtabs_1 would have done. */
8410 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8411 build_type_psymtabs_reader, NULL);
8412
8413 return 1;
8414 }
8415
8416 /* Traversal function for process_skeletonless_type_units. */
8417
8418 static int
8419 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8420 {
8421 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8422
8423 if (dwo_file->tus != NULL)
8424 {
8425 htab_traverse_noresize (dwo_file->tus,
8426 process_skeletonless_type_unit, info);
8427 }
8428
8429 return 1;
8430 }
8431
8432 /* Scan all TUs of DWO files, verifying we've processed them.
8433 This is needed in case a TU was emitted without its skeleton.
8434 Note: This can't be done until we know what all the DWO files are. */
8435
8436 static void
8437 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8438 {
8439 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8440 if (get_dwp_file (dwarf2_per_objfile) == NULL
8441 && dwarf2_per_objfile->dwo_files != NULL)
8442 {
8443 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
8444 process_dwo_file_for_skeletonless_type_units,
8445 dwarf2_per_objfile);
8446 }
8447 }
8448
8449 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8450
8451 static void
8452 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8453 {
8454 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8455 {
8456 struct partial_symtab *pst = per_cu->v.psymtab;
8457
8458 if (pst == NULL)
8459 continue;
8460
8461 for (int j = 0; j < pst->number_of_dependencies; ++j)
8462 {
8463 /* Set the 'user' field only if it is not already set. */
8464 if (pst->dependencies[j]->user == NULL)
8465 pst->dependencies[j]->user = pst;
8466 }
8467 }
8468 }
8469
8470 /* Build the partial symbol table by doing a quick pass through the
8471 .debug_info and .debug_abbrev sections. */
8472
8473 static void
8474 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8475 {
8476 struct objfile *objfile = dwarf2_per_objfile->objfile;
8477
8478 if (dwarf_read_debug)
8479 {
8480 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8481 objfile_name (objfile));
8482 }
8483
8484 dwarf2_per_objfile->reading_partial_symbols = 1;
8485
8486 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8487
8488 /* Any cached compilation units will be linked by the per-objfile
8489 read_in_chain. Make sure to free them when we're done. */
8490 free_cached_comp_units freer (dwarf2_per_objfile);
8491
8492 build_type_psymtabs (dwarf2_per_objfile);
8493
8494 create_all_comp_units (dwarf2_per_objfile);
8495
8496 /* Create a temporary address map on a temporary obstack. We later
8497 copy this to the final obstack. */
8498 auto_obstack temp_obstack;
8499
8500 scoped_restore save_psymtabs_addrmap
8501 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8502 addrmap_create_mutable (&temp_obstack));
8503
8504 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8505 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8506
8507 /* This has to wait until we read the CUs, we need the list of DWOs. */
8508 process_skeletonless_type_units (dwarf2_per_objfile);
8509
8510 /* Now that all TUs have been processed we can fill in the dependencies. */
8511 if (dwarf2_per_objfile->type_unit_groups != NULL)
8512 {
8513 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8514 build_type_psymtab_dependencies, dwarf2_per_objfile);
8515 }
8516
8517 if (dwarf_read_debug)
8518 print_tu_stats (dwarf2_per_objfile);
8519
8520 set_partial_user (dwarf2_per_objfile);
8521
8522 objfile->partial_symtabs->psymtabs_addrmap
8523 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8524 objfile->partial_symtabs->obstack ());
8525 /* At this point we want to keep the address map. */
8526 save_psymtabs_addrmap.release ();
8527
8528 if (dwarf_read_debug)
8529 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8530 objfile_name (objfile));
8531 }
8532
8533 /* die_reader_func for load_partial_comp_unit. */
8534
8535 static void
8536 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8537 const gdb_byte *info_ptr,
8538 struct die_info *comp_unit_die,
8539 int has_children,
8540 void *data)
8541 {
8542 struct dwarf2_cu *cu = reader->cu;
8543
8544 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8545
8546 /* Check if comp unit has_children.
8547 If so, read the rest of the partial symbols from this comp unit.
8548 If not, there's no more debug_info for this comp unit. */
8549 if (has_children)
8550 load_partial_dies (reader, info_ptr, 0);
8551 }
8552
8553 /* Load the partial DIEs for a secondary CU into memory.
8554 This is also used when rereading a primary CU with load_all_dies. */
8555
8556 static void
8557 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8558 {
8559 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8560 load_partial_comp_unit_reader, NULL);
8561 }
8562
8563 static void
8564 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8565 struct dwarf2_section_info *section,
8566 struct dwarf2_section_info *abbrev_section,
8567 unsigned int is_dwz)
8568 {
8569 const gdb_byte *info_ptr;
8570 struct objfile *objfile = dwarf2_per_objfile->objfile;
8571
8572 if (dwarf_read_debug)
8573 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8574 get_section_name (section),
8575 get_section_file_name (section));
8576
8577 dwarf2_read_section (objfile, section);
8578
8579 info_ptr = section->buffer;
8580
8581 while (info_ptr < section->buffer + section->size)
8582 {
8583 struct dwarf2_per_cu_data *this_cu;
8584
8585 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8586
8587 comp_unit_head cu_header;
8588 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8589 abbrev_section, info_ptr,
8590 rcuh_kind::COMPILE);
8591
8592 /* Save the compilation unit for later lookup. */
8593 if (cu_header.unit_type != DW_UT_type)
8594 {
8595 this_cu = XOBNEW (&objfile->objfile_obstack,
8596 struct dwarf2_per_cu_data);
8597 memset (this_cu, 0, sizeof (*this_cu));
8598 }
8599 else
8600 {
8601 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8602 struct signatured_type);
8603 memset (sig_type, 0, sizeof (*sig_type));
8604 sig_type->signature = cu_header.signature;
8605 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8606 this_cu = &sig_type->per_cu;
8607 }
8608 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8609 this_cu->sect_off = sect_off;
8610 this_cu->length = cu_header.length + cu_header.initial_length_size;
8611 this_cu->is_dwz = is_dwz;
8612 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8613 this_cu->section = section;
8614
8615 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8616
8617 info_ptr = info_ptr + this_cu->length;
8618 }
8619 }
8620
8621 /* Create a list of all compilation units in OBJFILE.
8622 This is only done for -readnow and building partial symtabs. */
8623
8624 static void
8625 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8626 {
8627 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8628 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8629 &dwarf2_per_objfile->abbrev, 0);
8630
8631 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8632 if (dwz != NULL)
8633 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8634 1);
8635 }
8636
8637 /* Process all loaded DIEs for compilation unit CU, starting at
8638 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8639 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8640 DW_AT_ranges). See the comments of add_partial_subprogram on how
8641 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8642
8643 static void
8644 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8645 CORE_ADDR *highpc, int set_addrmap,
8646 struct dwarf2_cu *cu)
8647 {
8648 struct partial_die_info *pdi;
8649
8650 /* Now, march along the PDI's, descending into ones which have
8651 interesting children but skipping the children of the other ones,
8652 until we reach the end of the compilation unit. */
8653
8654 pdi = first_die;
8655
8656 while (pdi != NULL)
8657 {
8658 pdi->fixup (cu);
8659
8660 /* Anonymous namespaces or modules have no name but have interesting
8661 children, so we need to look at them. Ditto for anonymous
8662 enums. */
8663
8664 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8665 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8666 || pdi->tag == DW_TAG_imported_unit
8667 || pdi->tag == DW_TAG_inlined_subroutine)
8668 {
8669 switch (pdi->tag)
8670 {
8671 case DW_TAG_subprogram:
8672 case DW_TAG_inlined_subroutine:
8673 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8674 break;
8675 case DW_TAG_constant:
8676 case DW_TAG_variable:
8677 case DW_TAG_typedef:
8678 case DW_TAG_union_type:
8679 if (!pdi->is_declaration)
8680 {
8681 add_partial_symbol (pdi, cu);
8682 }
8683 break;
8684 case DW_TAG_class_type:
8685 case DW_TAG_interface_type:
8686 case DW_TAG_structure_type:
8687 if (!pdi->is_declaration)
8688 {
8689 add_partial_symbol (pdi, cu);
8690 }
8691 if ((cu->language == language_rust
8692 || cu->language == language_cplus) && pdi->has_children)
8693 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8694 set_addrmap, cu);
8695 break;
8696 case DW_TAG_enumeration_type:
8697 if (!pdi->is_declaration)
8698 add_partial_enumeration (pdi, cu);
8699 break;
8700 case DW_TAG_base_type:
8701 case DW_TAG_subrange_type:
8702 /* File scope base type definitions are added to the partial
8703 symbol table. */
8704 add_partial_symbol (pdi, cu);
8705 break;
8706 case DW_TAG_namespace:
8707 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8708 break;
8709 case DW_TAG_module:
8710 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8711 break;
8712 case DW_TAG_imported_unit:
8713 {
8714 struct dwarf2_per_cu_data *per_cu;
8715
8716 /* For now we don't handle imported units in type units. */
8717 if (cu->per_cu->is_debug_types)
8718 {
8719 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8720 " supported in type units [in module %s]"),
8721 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8722 }
8723
8724 per_cu = dwarf2_find_containing_comp_unit
8725 (pdi->d.sect_off, pdi->is_dwz,
8726 cu->per_cu->dwarf2_per_objfile);
8727
8728 /* Go read the partial unit, if needed. */
8729 if (per_cu->v.psymtab == NULL)
8730 process_psymtab_comp_unit (per_cu, 1, cu->language);
8731
8732 VEC_safe_push (dwarf2_per_cu_ptr,
8733 cu->per_cu->imported_symtabs, per_cu);
8734 }
8735 break;
8736 case DW_TAG_imported_declaration:
8737 add_partial_symbol (pdi, cu);
8738 break;
8739 default:
8740 break;
8741 }
8742 }
8743
8744 /* If the die has a sibling, skip to the sibling. */
8745
8746 pdi = pdi->die_sibling;
8747 }
8748 }
8749
8750 /* Functions used to compute the fully scoped name of a partial DIE.
8751
8752 Normally, this is simple. For C++, the parent DIE's fully scoped
8753 name is concatenated with "::" and the partial DIE's name.
8754 Enumerators are an exception; they use the scope of their parent
8755 enumeration type, i.e. the name of the enumeration type is not
8756 prepended to the enumerator.
8757
8758 There are two complexities. One is DW_AT_specification; in this
8759 case "parent" means the parent of the target of the specification,
8760 instead of the direct parent of the DIE. The other is compilers
8761 which do not emit DW_TAG_namespace; in this case we try to guess
8762 the fully qualified name of structure types from their members'
8763 linkage names. This must be done using the DIE's children rather
8764 than the children of any DW_AT_specification target. We only need
8765 to do this for structures at the top level, i.e. if the target of
8766 any DW_AT_specification (if any; otherwise the DIE itself) does not
8767 have a parent. */
8768
8769 /* Compute the scope prefix associated with PDI's parent, in
8770 compilation unit CU. The result will be allocated on CU's
8771 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8772 field. NULL is returned if no prefix is necessary. */
8773 static const char *
8774 partial_die_parent_scope (struct partial_die_info *pdi,
8775 struct dwarf2_cu *cu)
8776 {
8777 const char *grandparent_scope;
8778 struct partial_die_info *parent, *real_pdi;
8779
8780 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8781 then this means the parent of the specification DIE. */
8782
8783 real_pdi = pdi;
8784 while (real_pdi->has_specification)
8785 real_pdi = find_partial_die (real_pdi->spec_offset,
8786 real_pdi->spec_is_dwz, cu);
8787
8788 parent = real_pdi->die_parent;
8789 if (parent == NULL)
8790 return NULL;
8791
8792 if (parent->scope_set)
8793 return parent->scope;
8794
8795 parent->fixup (cu);
8796
8797 grandparent_scope = partial_die_parent_scope (parent, cu);
8798
8799 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8800 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8801 Work around this problem here. */
8802 if (cu->language == language_cplus
8803 && parent->tag == DW_TAG_namespace
8804 && strcmp (parent->name, "::") == 0
8805 && grandparent_scope == NULL)
8806 {
8807 parent->scope = NULL;
8808 parent->scope_set = 1;
8809 return NULL;
8810 }
8811
8812 if (pdi->tag == DW_TAG_enumerator)
8813 /* Enumerators should not get the name of the enumeration as a prefix. */
8814 parent->scope = grandparent_scope;
8815 else if (parent->tag == DW_TAG_namespace
8816 || parent->tag == DW_TAG_module
8817 || parent->tag == DW_TAG_structure_type
8818 || parent->tag == DW_TAG_class_type
8819 || parent->tag == DW_TAG_interface_type
8820 || parent->tag == DW_TAG_union_type
8821 || parent->tag == DW_TAG_enumeration_type)
8822 {
8823 if (grandparent_scope == NULL)
8824 parent->scope = parent->name;
8825 else
8826 parent->scope = typename_concat (&cu->comp_unit_obstack,
8827 grandparent_scope,
8828 parent->name, 0, cu);
8829 }
8830 else
8831 {
8832 /* FIXME drow/2004-04-01: What should we be doing with
8833 function-local names? For partial symbols, we should probably be
8834 ignoring them. */
8835 complaint (_("unhandled containing DIE tag %d for DIE at %s"),
8836 parent->tag, sect_offset_str (pdi->sect_off));
8837 parent->scope = grandparent_scope;
8838 }
8839
8840 parent->scope_set = 1;
8841 return parent->scope;
8842 }
8843
8844 /* Return the fully scoped name associated with PDI, from compilation unit
8845 CU. The result will be allocated with malloc. */
8846
8847 static char *
8848 partial_die_full_name (struct partial_die_info *pdi,
8849 struct dwarf2_cu *cu)
8850 {
8851 const char *parent_scope;
8852
8853 /* If this is a template instantiation, we can not work out the
8854 template arguments from partial DIEs. So, unfortunately, we have
8855 to go through the full DIEs. At least any work we do building
8856 types here will be reused if full symbols are loaded later. */
8857 if (pdi->has_template_arguments)
8858 {
8859 pdi->fixup (cu);
8860
8861 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8862 {
8863 struct die_info *die;
8864 struct attribute attr;
8865 struct dwarf2_cu *ref_cu = cu;
8866
8867 /* DW_FORM_ref_addr is using section offset. */
8868 attr.name = (enum dwarf_attribute) 0;
8869 attr.form = DW_FORM_ref_addr;
8870 attr.u.unsnd = to_underlying (pdi->sect_off);
8871 die = follow_die_ref (NULL, &attr, &ref_cu);
8872
8873 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8874 }
8875 }
8876
8877 parent_scope = partial_die_parent_scope (pdi, cu);
8878 if (parent_scope == NULL)
8879 return NULL;
8880 else
8881 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8882 }
8883
8884 static void
8885 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8886 {
8887 struct dwarf2_per_objfile *dwarf2_per_objfile
8888 = cu->per_cu->dwarf2_per_objfile;
8889 struct objfile *objfile = dwarf2_per_objfile->objfile;
8890 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8891 CORE_ADDR addr = 0;
8892 const char *actual_name = NULL;
8893 CORE_ADDR baseaddr;
8894 char *built_actual_name;
8895
8896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8897
8898 built_actual_name = partial_die_full_name (pdi, cu);
8899 if (built_actual_name != NULL)
8900 actual_name = built_actual_name;
8901
8902 if (actual_name == NULL)
8903 actual_name = pdi->name;
8904
8905 switch (pdi->tag)
8906 {
8907 case DW_TAG_inlined_subroutine:
8908 case DW_TAG_subprogram:
8909 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8910 - baseaddr);
8911 if (pdi->is_external || cu->language == language_ada)
8912 {
8913 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
8914 of the global scope. But in Ada, we want to be able to access
8915 nested procedures globally. So all Ada subprograms are stored
8916 in the global scope. */
8917 add_psymbol_to_list (actual_name, strlen (actual_name),
8918 built_actual_name != NULL,
8919 VAR_DOMAIN, LOC_BLOCK,
8920 SECT_OFF_TEXT (objfile),
8921 psymbol_placement::GLOBAL,
8922 addr,
8923 cu->language, objfile);
8924 }
8925 else
8926 {
8927 add_psymbol_to_list (actual_name, strlen (actual_name),
8928 built_actual_name != NULL,
8929 VAR_DOMAIN, LOC_BLOCK,
8930 SECT_OFF_TEXT (objfile),
8931 psymbol_placement::STATIC,
8932 addr, cu->language, objfile);
8933 }
8934
8935 if (pdi->main_subprogram && actual_name != NULL)
8936 set_objfile_main_name (objfile, actual_name, cu->language);
8937 break;
8938 case DW_TAG_constant:
8939 add_psymbol_to_list (actual_name, strlen (actual_name),
8940 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
8941 -1, (pdi->is_external
8942 ? psymbol_placement::GLOBAL
8943 : psymbol_placement::STATIC),
8944 0, cu->language, objfile);
8945 break;
8946 case DW_TAG_variable:
8947 if (pdi->d.locdesc)
8948 addr = decode_locdesc (pdi->d.locdesc, cu);
8949
8950 if (pdi->d.locdesc
8951 && addr == 0
8952 && !dwarf2_per_objfile->has_section_at_zero)
8953 {
8954 /* A global or static variable may also have been stripped
8955 out by the linker if unused, in which case its address
8956 will be nullified; do not add such variables into partial
8957 symbol table then. */
8958 }
8959 else if (pdi->is_external)
8960 {
8961 /* Global Variable.
8962 Don't enter into the minimal symbol tables as there is
8963 a minimal symbol table entry from the ELF symbols already.
8964 Enter into partial symbol table if it has a location
8965 descriptor or a type.
8966 If the location descriptor is missing, new_symbol will create
8967 a LOC_UNRESOLVED symbol, the address of the variable will then
8968 be determined from the minimal symbol table whenever the variable
8969 is referenced.
8970 The address for the partial symbol table entry is not
8971 used by GDB, but it comes in handy for debugging partial symbol
8972 table building. */
8973
8974 if (pdi->d.locdesc || pdi->has_type)
8975 add_psymbol_to_list (actual_name, strlen (actual_name),
8976 built_actual_name != NULL,
8977 VAR_DOMAIN, LOC_STATIC,
8978 SECT_OFF_TEXT (objfile),
8979 psymbol_placement::GLOBAL,
8980 addr, cu->language, objfile);
8981 }
8982 else
8983 {
8984 int has_loc = pdi->d.locdesc != NULL;
8985
8986 /* Static Variable. Skip symbols whose value we cannot know (those
8987 without location descriptors or constant values). */
8988 if (!has_loc && !pdi->has_const_value)
8989 {
8990 xfree (built_actual_name);
8991 return;
8992 }
8993
8994 add_psymbol_to_list (actual_name, strlen (actual_name),
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_STATIC,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 has_loc ? addr : 0,
9000 cu->language, objfile);
9001 }
9002 break;
9003 case DW_TAG_typedef:
9004 case DW_TAG_base_type:
9005 case DW_TAG_subrange_type:
9006 add_psymbol_to_list (actual_name, strlen (actual_name),
9007 built_actual_name != NULL,
9008 VAR_DOMAIN, LOC_TYPEDEF, -1,
9009 psymbol_placement::STATIC,
9010 0, cu->language, objfile);
9011 break;
9012 case DW_TAG_imported_declaration:
9013 case DW_TAG_namespace:
9014 add_psymbol_to_list (actual_name, strlen (actual_name),
9015 built_actual_name != NULL,
9016 VAR_DOMAIN, LOC_TYPEDEF, -1,
9017 psymbol_placement::GLOBAL,
9018 0, cu->language, objfile);
9019 break;
9020 case DW_TAG_module:
9021 add_psymbol_to_list (actual_name, strlen (actual_name),
9022 built_actual_name != NULL,
9023 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9024 psymbol_placement::GLOBAL,
9025 0, cu->language, objfile);
9026 break;
9027 case DW_TAG_class_type:
9028 case DW_TAG_interface_type:
9029 case DW_TAG_structure_type:
9030 case DW_TAG_union_type:
9031 case DW_TAG_enumeration_type:
9032 /* Skip external references. The DWARF standard says in the section
9033 about "Structure, Union, and Class Type Entries": "An incomplete
9034 structure, union or class type is represented by a structure,
9035 union or class entry that does not have a byte size attribute
9036 and that has a DW_AT_declaration attribute." */
9037 if (!pdi->has_byte_size && pdi->is_declaration)
9038 {
9039 xfree (built_actual_name);
9040 return;
9041 }
9042
9043 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9044 static vs. global. */
9045 add_psymbol_to_list (actual_name, strlen (actual_name),
9046 built_actual_name != NULL,
9047 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9048 cu->language == language_cplus
9049 ? psymbol_placement::GLOBAL
9050 : psymbol_placement::STATIC,
9051 0, cu->language, objfile);
9052
9053 break;
9054 case DW_TAG_enumerator:
9055 add_psymbol_to_list (actual_name, strlen (actual_name),
9056 built_actual_name != NULL,
9057 VAR_DOMAIN, LOC_CONST, -1,
9058 cu->language == language_cplus
9059 ? psymbol_placement::GLOBAL
9060 : psymbol_placement::STATIC,
9061 0, cu->language, objfile);
9062 break;
9063 default:
9064 break;
9065 }
9066
9067 xfree (built_actual_name);
9068 }
9069
9070 /* Read a partial die corresponding to a namespace; also, add a symbol
9071 corresponding to that namespace to the symbol table. NAMESPACE is
9072 the name of the enclosing namespace. */
9073
9074 static void
9075 add_partial_namespace (struct partial_die_info *pdi,
9076 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9077 int set_addrmap, struct dwarf2_cu *cu)
9078 {
9079 /* Add a symbol for the namespace. */
9080
9081 add_partial_symbol (pdi, cu);
9082
9083 /* Now scan partial symbols in that namespace. */
9084
9085 if (pdi->has_children)
9086 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9087 }
9088
9089 /* Read a partial die corresponding to a Fortran module. */
9090
9091 static void
9092 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9093 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9094 {
9095 /* Add a symbol for the namespace. */
9096
9097 add_partial_symbol (pdi, cu);
9098
9099 /* Now scan partial symbols in that module. */
9100
9101 if (pdi->has_children)
9102 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9103 }
9104
9105 /* Read a partial die corresponding to a subprogram or an inlined
9106 subprogram and create a partial symbol for that subprogram.
9107 When the CU language allows it, this routine also defines a partial
9108 symbol for each nested subprogram that this subprogram contains.
9109 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9110 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9111
9112 PDI may also be a lexical block, in which case we simply search
9113 recursively for subprograms defined inside that lexical block.
9114 Again, this is only performed when the CU language allows this
9115 type of definitions. */
9116
9117 static void
9118 add_partial_subprogram (struct partial_die_info *pdi,
9119 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9120 int set_addrmap, struct dwarf2_cu *cu)
9121 {
9122 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9123 {
9124 if (pdi->has_pc_info)
9125 {
9126 if (pdi->lowpc < *lowpc)
9127 *lowpc = pdi->lowpc;
9128 if (pdi->highpc > *highpc)
9129 *highpc = pdi->highpc;
9130 if (set_addrmap)
9131 {
9132 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9134 CORE_ADDR baseaddr;
9135 CORE_ADDR this_highpc;
9136 CORE_ADDR this_lowpc;
9137
9138 baseaddr = ANOFFSET (objfile->section_offsets,
9139 SECT_OFF_TEXT (objfile));
9140 this_lowpc
9141 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9142 pdi->lowpc + baseaddr)
9143 - baseaddr);
9144 this_highpc
9145 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9146 pdi->highpc + baseaddr)
9147 - baseaddr);
9148 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9149 this_lowpc, this_highpc - 1,
9150 cu->per_cu->v.psymtab);
9151 }
9152 }
9153
9154 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9155 {
9156 if (!pdi->is_declaration)
9157 /* Ignore subprogram DIEs that do not have a name, they are
9158 illegal. Do not emit a complaint at this point, we will
9159 do so when we convert this psymtab into a symtab. */
9160 if (pdi->name)
9161 add_partial_symbol (pdi, cu);
9162 }
9163 }
9164
9165 if (! pdi->has_children)
9166 return;
9167
9168 if (cu->language == language_ada)
9169 {
9170 pdi = pdi->die_child;
9171 while (pdi != NULL)
9172 {
9173 pdi->fixup (cu);
9174 if (pdi->tag == DW_TAG_subprogram
9175 || pdi->tag == DW_TAG_inlined_subroutine
9176 || pdi->tag == DW_TAG_lexical_block)
9177 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9178 pdi = pdi->die_sibling;
9179 }
9180 }
9181 }
9182
9183 /* Read a partial die corresponding to an enumeration type. */
9184
9185 static void
9186 add_partial_enumeration (struct partial_die_info *enum_pdi,
9187 struct dwarf2_cu *cu)
9188 {
9189 struct partial_die_info *pdi;
9190
9191 if (enum_pdi->name != NULL)
9192 add_partial_symbol (enum_pdi, cu);
9193
9194 pdi = enum_pdi->die_child;
9195 while (pdi)
9196 {
9197 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9198 complaint (_("malformed enumerator DIE ignored"));
9199 else
9200 add_partial_symbol (pdi, cu);
9201 pdi = pdi->die_sibling;
9202 }
9203 }
9204
9205 /* Return the initial uleb128 in the die at INFO_PTR. */
9206
9207 static unsigned int
9208 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9209 {
9210 unsigned int bytes_read;
9211
9212 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9213 }
9214
9215 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9216 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9217
9218 Return the corresponding abbrev, or NULL if the number is zero (indicating
9219 an empty DIE). In either case *BYTES_READ will be set to the length of
9220 the initial number. */
9221
9222 static struct abbrev_info *
9223 peek_die_abbrev (const die_reader_specs &reader,
9224 const gdb_byte *info_ptr, unsigned int *bytes_read)
9225 {
9226 dwarf2_cu *cu = reader.cu;
9227 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9228 unsigned int abbrev_number
9229 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9230
9231 if (abbrev_number == 0)
9232 return NULL;
9233
9234 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9235 if (!abbrev)
9236 {
9237 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9238 " at offset %s [in module %s]"),
9239 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9240 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9241 }
9242
9243 return abbrev;
9244 }
9245
9246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9247 Returns a pointer to the end of a series of DIEs, terminated by an empty
9248 DIE. Any children of the skipped DIEs will also be skipped. */
9249
9250 static const gdb_byte *
9251 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9252 {
9253 while (1)
9254 {
9255 unsigned int bytes_read;
9256 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9257
9258 if (abbrev == NULL)
9259 return info_ptr + bytes_read;
9260 else
9261 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9262 }
9263 }
9264
9265 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9266 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9267 abbrev corresponding to that skipped uleb128 should be passed in
9268 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9269 children. */
9270
9271 static const gdb_byte *
9272 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9273 struct abbrev_info *abbrev)
9274 {
9275 unsigned int bytes_read;
9276 struct attribute attr;
9277 bfd *abfd = reader->abfd;
9278 struct dwarf2_cu *cu = reader->cu;
9279 const gdb_byte *buffer = reader->buffer;
9280 const gdb_byte *buffer_end = reader->buffer_end;
9281 unsigned int form, i;
9282
9283 for (i = 0; i < abbrev->num_attrs; i++)
9284 {
9285 /* The only abbrev we care about is DW_AT_sibling. */
9286 if (abbrev->attrs[i].name == DW_AT_sibling)
9287 {
9288 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9289 if (attr.form == DW_FORM_ref_addr)
9290 complaint (_("ignoring absolute DW_AT_sibling"));
9291 else
9292 {
9293 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9294 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9295
9296 if (sibling_ptr < info_ptr)
9297 complaint (_("DW_AT_sibling points backwards"));
9298 else if (sibling_ptr > reader->buffer_end)
9299 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9300 else
9301 return sibling_ptr;
9302 }
9303 }
9304
9305 /* If it isn't DW_AT_sibling, skip this attribute. */
9306 form = abbrev->attrs[i].form;
9307 skip_attribute:
9308 switch (form)
9309 {
9310 case DW_FORM_ref_addr:
9311 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9312 and later it is offset sized. */
9313 if (cu->header.version == 2)
9314 info_ptr += cu->header.addr_size;
9315 else
9316 info_ptr += cu->header.offset_size;
9317 break;
9318 case DW_FORM_GNU_ref_alt:
9319 info_ptr += cu->header.offset_size;
9320 break;
9321 case DW_FORM_addr:
9322 info_ptr += cu->header.addr_size;
9323 break;
9324 case DW_FORM_data1:
9325 case DW_FORM_ref1:
9326 case DW_FORM_flag:
9327 info_ptr += 1;
9328 break;
9329 case DW_FORM_flag_present:
9330 case DW_FORM_implicit_const:
9331 break;
9332 case DW_FORM_data2:
9333 case DW_FORM_ref2:
9334 info_ptr += 2;
9335 break;
9336 case DW_FORM_data4:
9337 case DW_FORM_ref4:
9338 info_ptr += 4;
9339 break;
9340 case DW_FORM_data8:
9341 case DW_FORM_ref8:
9342 case DW_FORM_ref_sig8:
9343 info_ptr += 8;
9344 break;
9345 case DW_FORM_data16:
9346 info_ptr += 16;
9347 break;
9348 case DW_FORM_string:
9349 read_direct_string (abfd, info_ptr, &bytes_read);
9350 info_ptr += bytes_read;
9351 break;
9352 case DW_FORM_sec_offset:
9353 case DW_FORM_strp:
9354 case DW_FORM_GNU_strp_alt:
9355 info_ptr += cu->header.offset_size;
9356 break;
9357 case DW_FORM_exprloc:
9358 case DW_FORM_block:
9359 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9360 info_ptr += bytes_read;
9361 break;
9362 case DW_FORM_block1:
9363 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9364 break;
9365 case DW_FORM_block2:
9366 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9367 break;
9368 case DW_FORM_block4:
9369 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9370 break;
9371 case DW_FORM_sdata:
9372 case DW_FORM_udata:
9373 case DW_FORM_ref_udata:
9374 case DW_FORM_GNU_addr_index:
9375 case DW_FORM_GNU_str_index:
9376 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9377 break;
9378 case DW_FORM_indirect:
9379 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9380 info_ptr += bytes_read;
9381 /* We need to continue parsing from here, so just go back to
9382 the top. */
9383 goto skip_attribute;
9384
9385 default:
9386 error (_("Dwarf Error: Cannot handle %s "
9387 "in DWARF reader [in module %s]"),
9388 dwarf_form_name (form),
9389 bfd_get_filename (abfd));
9390 }
9391 }
9392
9393 if (abbrev->has_children)
9394 return skip_children (reader, info_ptr);
9395 else
9396 return info_ptr;
9397 }
9398
9399 /* Locate ORIG_PDI's sibling.
9400 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9401
9402 static const gdb_byte *
9403 locate_pdi_sibling (const struct die_reader_specs *reader,
9404 struct partial_die_info *orig_pdi,
9405 const gdb_byte *info_ptr)
9406 {
9407 /* Do we know the sibling already? */
9408
9409 if (orig_pdi->sibling)
9410 return orig_pdi->sibling;
9411
9412 /* Are there any children to deal with? */
9413
9414 if (!orig_pdi->has_children)
9415 return info_ptr;
9416
9417 /* Skip the children the long way. */
9418
9419 return skip_children (reader, info_ptr);
9420 }
9421
9422 /* Expand this partial symbol table into a full symbol table. SELF is
9423 not NULL. */
9424
9425 static void
9426 dwarf2_read_symtab (struct partial_symtab *self,
9427 struct objfile *objfile)
9428 {
9429 struct dwarf2_per_objfile *dwarf2_per_objfile
9430 = get_dwarf2_per_objfile (objfile);
9431
9432 if (self->readin)
9433 {
9434 warning (_("bug: psymtab for %s is already read in."),
9435 self->filename);
9436 }
9437 else
9438 {
9439 if (info_verbose)
9440 {
9441 printf_filtered (_("Reading in symbols for %s..."),
9442 self->filename);
9443 gdb_flush (gdb_stdout);
9444 }
9445
9446 /* If this psymtab is constructed from a debug-only objfile, the
9447 has_section_at_zero flag will not necessarily be correct. We
9448 can get the correct value for this flag by looking at the data
9449 associated with the (presumably stripped) associated objfile. */
9450 if (objfile->separate_debug_objfile_backlink)
9451 {
9452 struct dwarf2_per_objfile *dpo_backlink
9453 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9454
9455 dwarf2_per_objfile->has_section_at_zero
9456 = dpo_backlink->has_section_at_zero;
9457 }
9458
9459 dwarf2_per_objfile->reading_partial_symbols = 0;
9460
9461 psymtab_to_symtab_1 (self);
9462
9463 /* Finish up the debug error message. */
9464 if (info_verbose)
9465 printf_filtered (_("done.\n"));
9466 }
9467
9468 process_cu_includes (dwarf2_per_objfile);
9469 }
9470 \f
9471 /* Reading in full CUs. */
9472
9473 /* Add PER_CU to the queue. */
9474
9475 static void
9476 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9477 enum language pretend_language)
9478 {
9479 struct dwarf2_queue_item *item;
9480
9481 per_cu->queued = 1;
9482 item = XNEW (struct dwarf2_queue_item);
9483 item->per_cu = per_cu;
9484 item->pretend_language = pretend_language;
9485 item->next = NULL;
9486
9487 if (dwarf2_queue == NULL)
9488 dwarf2_queue = item;
9489 else
9490 dwarf2_queue_tail->next = item;
9491
9492 dwarf2_queue_tail = item;
9493 }
9494
9495 /* If PER_CU is not yet queued, add it to the queue.
9496 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9497 dependency.
9498 The result is non-zero if PER_CU was queued, otherwise the result is zero
9499 meaning either PER_CU is already queued or it is already loaded.
9500
9501 N.B. There is an invariant here that if a CU is queued then it is loaded.
9502 The caller is required to load PER_CU if we return non-zero. */
9503
9504 static int
9505 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9506 struct dwarf2_per_cu_data *per_cu,
9507 enum language pretend_language)
9508 {
9509 /* We may arrive here during partial symbol reading, if we need full
9510 DIEs to process an unusual case (e.g. template arguments). Do
9511 not queue PER_CU, just tell our caller to load its DIEs. */
9512 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9513 {
9514 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9515 return 1;
9516 return 0;
9517 }
9518
9519 /* Mark the dependence relation so that we don't flush PER_CU
9520 too early. */
9521 if (dependent_cu != NULL)
9522 dwarf2_add_dependence (dependent_cu, per_cu);
9523
9524 /* If it's already on the queue, we have nothing to do. */
9525 if (per_cu->queued)
9526 return 0;
9527
9528 /* If the compilation unit is already loaded, just mark it as
9529 used. */
9530 if (per_cu->cu != NULL)
9531 {
9532 per_cu->cu->last_used = 0;
9533 return 0;
9534 }
9535
9536 /* Add it to the queue. */
9537 queue_comp_unit (per_cu, pretend_language);
9538
9539 return 1;
9540 }
9541
9542 /* Process the queue. */
9543
9544 static void
9545 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9546 {
9547 struct dwarf2_queue_item *item, *next_item;
9548
9549 if (dwarf_read_debug)
9550 {
9551 fprintf_unfiltered (gdb_stdlog,
9552 "Expanding one or more symtabs of objfile %s ...\n",
9553 objfile_name (dwarf2_per_objfile->objfile));
9554 }
9555
9556 /* The queue starts out with one item, but following a DIE reference
9557 may load a new CU, adding it to the end of the queue. */
9558 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9559 {
9560 if ((dwarf2_per_objfile->using_index
9561 ? !item->per_cu->v.quick->compunit_symtab
9562 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9563 /* Skip dummy CUs. */
9564 && item->per_cu->cu != NULL)
9565 {
9566 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9567 unsigned int debug_print_threshold;
9568 char buf[100];
9569
9570 if (per_cu->is_debug_types)
9571 {
9572 struct signatured_type *sig_type =
9573 (struct signatured_type *) per_cu;
9574
9575 sprintf (buf, "TU %s at offset %s",
9576 hex_string (sig_type->signature),
9577 sect_offset_str (per_cu->sect_off));
9578 /* There can be 100s of TUs.
9579 Only print them in verbose mode. */
9580 debug_print_threshold = 2;
9581 }
9582 else
9583 {
9584 sprintf (buf, "CU at offset %s",
9585 sect_offset_str (per_cu->sect_off));
9586 debug_print_threshold = 1;
9587 }
9588
9589 if (dwarf_read_debug >= debug_print_threshold)
9590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9591
9592 if (per_cu->is_debug_types)
9593 process_full_type_unit (per_cu, item->pretend_language);
9594 else
9595 process_full_comp_unit (per_cu, item->pretend_language);
9596
9597 if (dwarf_read_debug >= debug_print_threshold)
9598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9599 }
9600
9601 item->per_cu->queued = 0;
9602 next_item = item->next;
9603 xfree (item);
9604 }
9605
9606 dwarf2_queue_tail = NULL;
9607
9608 if (dwarf_read_debug)
9609 {
9610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9611 objfile_name (dwarf2_per_objfile->objfile));
9612 }
9613 }
9614
9615 /* Read in full symbols for PST, and anything it depends on. */
9616
9617 static void
9618 psymtab_to_symtab_1 (struct partial_symtab *pst)
9619 {
9620 struct dwarf2_per_cu_data *per_cu;
9621 int i;
9622
9623 if (pst->readin)
9624 return;
9625
9626 for (i = 0; i < pst->number_of_dependencies; i++)
9627 if (!pst->dependencies[i]->readin
9628 && pst->dependencies[i]->user == NULL)
9629 {
9630 /* Inform about additional files that need to be read in. */
9631 if (info_verbose)
9632 {
9633 /* FIXME: i18n: Need to make this a single string. */
9634 fputs_filtered (" ", gdb_stdout);
9635 wrap_here ("");
9636 fputs_filtered ("and ", gdb_stdout);
9637 wrap_here ("");
9638 printf_filtered ("%s...", pst->dependencies[i]->filename);
9639 wrap_here (""); /* Flush output. */
9640 gdb_flush (gdb_stdout);
9641 }
9642 psymtab_to_symtab_1 (pst->dependencies[i]);
9643 }
9644
9645 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9646
9647 if (per_cu == NULL)
9648 {
9649 /* It's an include file, no symbols to read for it.
9650 Everything is in the parent symtab. */
9651 pst->readin = 1;
9652 return;
9653 }
9654
9655 dw2_do_instantiate_symtab (per_cu, false);
9656 }
9657
9658 /* Trivial hash function for die_info: the hash value of a DIE
9659 is its offset in .debug_info for this objfile. */
9660
9661 static hashval_t
9662 die_hash (const void *item)
9663 {
9664 const struct die_info *die = (const struct die_info *) item;
9665
9666 return to_underlying (die->sect_off);
9667 }
9668
9669 /* Trivial comparison function for die_info structures: two DIEs
9670 are equal if they have the same offset. */
9671
9672 static int
9673 die_eq (const void *item_lhs, const void *item_rhs)
9674 {
9675 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9676 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9677
9678 return die_lhs->sect_off == die_rhs->sect_off;
9679 }
9680
9681 /* die_reader_func for load_full_comp_unit.
9682 This is identical to read_signatured_type_reader,
9683 but is kept separate for now. */
9684
9685 static void
9686 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9687 const gdb_byte *info_ptr,
9688 struct die_info *comp_unit_die,
9689 int has_children,
9690 void *data)
9691 {
9692 struct dwarf2_cu *cu = reader->cu;
9693 enum language *language_ptr = (enum language *) data;
9694
9695 gdb_assert (cu->die_hash == NULL);
9696 cu->die_hash =
9697 htab_create_alloc_ex (cu->header.length / 12,
9698 die_hash,
9699 die_eq,
9700 NULL,
9701 &cu->comp_unit_obstack,
9702 hashtab_obstack_allocate,
9703 dummy_obstack_deallocate);
9704
9705 if (has_children)
9706 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9707 &info_ptr, comp_unit_die);
9708 cu->dies = comp_unit_die;
9709 /* comp_unit_die is not stored in die_hash, no need. */
9710
9711 /* We try not to read any attributes in this function, because not
9712 all CUs needed for references have been loaded yet, and symbol
9713 table processing isn't initialized. But we have to set the CU language,
9714 or we won't be able to build types correctly.
9715 Similarly, if we do not read the producer, we can not apply
9716 producer-specific interpretation. */
9717 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9718 }
9719
9720 /* Load the DIEs associated with PER_CU into memory. */
9721
9722 static void
9723 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9724 bool skip_partial,
9725 enum language pretend_language)
9726 {
9727 gdb_assert (! this_cu->is_debug_types);
9728
9729 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9730 load_full_comp_unit_reader, &pretend_language);
9731 }
9732
9733 /* Add a DIE to the delayed physname list. */
9734
9735 static void
9736 add_to_method_list (struct type *type, int fnfield_index, int index,
9737 const char *name, struct die_info *die,
9738 struct dwarf2_cu *cu)
9739 {
9740 struct delayed_method_info mi;
9741 mi.type = type;
9742 mi.fnfield_index = fnfield_index;
9743 mi.index = index;
9744 mi.name = name;
9745 mi.die = die;
9746 cu->method_list.push_back (mi);
9747 }
9748
9749 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9750 "const" / "volatile". If so, decrements LEN by the length of the
9751 modifier and return true. Otherwise return false. */
9752
9753 template<size_t N>
9754 static bool
9755 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9756 {
9757 size_t mod_len = sizeof (mod) - 1;
9758 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9759 {
9760 len -= mod_len;
9761 return true;
9762 }
9763 return false;
9764 }
9765
9766 /* Compute the physnames of any methods on the CU's method list.
9767
9768 The computation of method physnames is delayed in order to avoid the
9769 (bad) condition that one of the method's formal parameters is of an as yet
9770 incomplete type. */
9771
9772 static void
9773 compute_delayed_physnames (struct dwarf2_cu *cu)
9774 {
9775 /* Only C++ delays computing physnames. */
9776 if (cu->method_list.empty ())
9777 return;
9778 gdb_assert (cu->language == language_cplus);
9779
9780 for (const delayed_method_info &mi : cu->method_list)
9781 {
9782 const char *physname;
9783 struct fn_fieldlist *fn_flp
9784 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9785 physname = dwarf2_physname (mi.name, mi.die, cu);
9786 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9787 = physname ? physname : "";
9788
9789 /* Since there's no tag to indicate whether a method is a
9790 const/volatile overload, extract that information out of the
9791 demangled name. */
9792 if (physname != NULL)
9793 {
9794 size_t len = strlen (physname);
9795
9796 while (1)
9797 {
9798 if (physname[len] == ')') /* shortcut */
9799 break;
9800 else if (check_modifier (physname, len, " const"))
9801 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9802 else if (check_modifier (physname, len, " volatile"))
9803 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9804 else
9805 break;
9806 }
9807 }
9808 }
9809
9810 /* The list is no longer needed. */
9811 cu->method_list.clear ();
9812 }
9813
9814 /* Go objects should be embedded in a DW_TAG_module DIE,
9815 and it's not clear if/how imported objects will appear.
9816 To keep Go support simple until that's worked out,
9817 go back through what we've read and create something usable.
9818 We could do this while processing each DIE, and feels kinda cleaner,
9819 but that way is more invasive.
9820 This is to, for example, allow the user to type "p var" or "b main"
9821 without having to specify the package name, and allow lookups
9822 of module.object to work in contexts that use the expression
9823 parser. */
9824
9825 static void
9826 fixup_go_packaging (struct dwarf2_cu *cu)
9827 {
9828 char *package_name = NULL;
9829 struct pending *list;
9830 int i;
9831
9832 for (list = *cu->get_builder ()->get_global_symbols ();
9833 list != NULL;
9834 list = list->next)
9835 {
9836 for (i = 0; i < list->nsyms; ++i)
9837 {
9838 struct symbol *sym = list->symbol[i];
9839
9840 if (SYMBOL_LANGUAGE (sym) == language_go
9841 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9842 {
9843 char *this_package_name = go_symbol_package_name (sym);
9844
9845 if (this_package_name == NULL)
9846 continue;
9847 if (package_name == NULL)
9848 package_name = this_package_name;
9849 else
9850 {
9851 struct objfile *objfile
9852 = cu->per_cu->dwarf2_per_objfile->objfile;
9853 if (strcmp (package_name, this_package_name) != 0)
9854 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9855 (symbol_symtab (sym) != NULL
9856 ? symtab_to_filename_for_display
9857 (symbol_symtab (sym))
9858 : objfile_name (objfile)),
9859 this_package_name, package_name);
9860 xfree (this_package_name);
9861 }
9862 }
9863 }
9864 }
9865
9866 if (package_name != NULL)
9867 {
9868 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9869 const char *saved_package_name
9870 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
9871 package_name,
9872 strlen (package_name));
9873 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9874 saved_package_name);
9875 struct symbol *sym;
9876
9877 sym = allocate_symbol (objfile);
9878 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
9879 SYMBOL_SET_NAMES (sym, saved_package_name,
9880 strlen (saved_package_name), 0, objfile);
9881 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9882 e.g., "main" finds the "main" module and not C's main(). */
9883 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9884 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9885 SYMBOL_TYPE (sym) = type;
9886
9887 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9888
9889 xfree (package_name);
9890 }
9891 }
9892
9893 /* Allocate a fully-qualified name consisting of the two parts on the
9894 obstack. */
9895
9896 static const char *
9897 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9898 {
9899 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9900 }
9901
9902 /* A helper that allocates a struct discriminant_info to attach to a
9903 union type. */
9904
9905 static struct discriminant_info *
9906 alloc_discriminant_info (struct type *type, int discriminant_index,
9907 int default_index)
9908 {
9909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9910 gdb_assert (discriminant_index == -1
9911 || (discriminant_index >= 0
9912 && discriminant_index < TYPE_NFIELDS (type)));
9913 gdb_assert (default_index == -1
9914 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9915
9916 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9917
9918 struct discriminant_info *disc
9919 = ((struct discriminant_info *)
9920 TYPE_ZALLOC (type,
9921 offsetof (struct discriminant_info, discriminants)
9922 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9923 disc->default_index = default_index;
9924 disc->discriminant_index = discriminant_index;
9925
9926 struct dynamic_prop prop;
9927 prop.kind = PROP_UNDEFINED;
9928 prop.data.baton = disc;
9929
9930 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
9931
9932 return disc;
9933 }
9934
9935 /* Some versions of rustc emitted enums in an unusual way.
9936
9937 Ordinary enums were emitted as unions. The first element of each
9938 structure in the union was named "RUST$ENUM$DISR". This element
9939 held the discriminant.
9940
9941 These versions of Rust also implemented the "non-zero"
9942 optimization. When the enum had two values, and one is empty and
9943 the other holds a pointer that cannot be zero, the pointer is used
9944 as the discriminant, with a zero value meaning the empty variant.
9945 Here, the union's first member is of the form
9946 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9947 where the fieldnos are the indices of the fields that should be
9948 traversed in order to find the field (which may be several fields deep)
9949 and the variantname is the name of the variant of the case when the
9950 field is zero.
9951
9952 This function recognizes whether TYPE is of one of these forms,
9953 and, if so, smashes it to be a variant type. */
9954
9955 static void
9956 quirk_rust_enum (struct type *type, struct objfile *objfile)
9957 {
9958 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9959
9960 /* We don't need to deal with empty enums. */
9961 if (TYPE_NFIELDS (type) == 0)
9962 return;
9963
9964 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9965 if (TYPE_NFIELDS (type) == 1
9966 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9967 {
9968 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9969
9970 /* Decode the field name to find the offset of the
9971 discriminant. */
9972 ULONGEST bit_offset = 0;
9973 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9974 while (name[0] >= '0' && name[0] <= '9')
9975 {
9976 char *tail;
9977 unsigned long index = strtoul (name, &tail, 10);
9978 name = tail;
9979 if (*name != '$'
9980 || index >= TYPE_NFIELDS (field_type)
9981 || (TYPE_FIELD_LOC_KIND (field_type, index)
9982 != FIELD_LOC_KIND_BITPOS))
9983 {
9984 complaint (_("Could not parse Rust enum encoding string \"%s\""
9985 "[in module %s]"),
9986 TYPE_FIELD_NAME (type, 0),
9987 objfile_name (objfile));
9988 return;
9989 }
9990 ++name;
9991
9992 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9993 field_type = TYPE_FIELD_TYPE (field_type, index);
9994 }
9995
9996 /* Make a union to hold the variants. */
9997 struct type *union_type = alloc_type (objfile);
9998 TYPE_CODE (union_type) = TYPE_CODE_UNION;
9999 TYPE_NFIELDS (union_type) = 3;
10000 TYPE_FIELDS (union_type)
10001 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10002 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10003 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10004
10005 /* Put the discriminant must at index 0. */
10006 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10007 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10008 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10009 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10010
10011 /* The order of fields doesn't really matter, so put the real
10012 field at index 1 and the data-less field at index 2. */
10013 struct discriminant_info *disc
10014 = alloc_discriminant_info (union_type, 0, 1);
10015 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10016 TYPE_FIELD_NAME (union_type, 1)
10017 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10018 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10019 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10020 TYPE_FIELD_NAME (union_type, 1));
10021
10022 const char *dataless_name
10023 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10024 name);
10025 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10026 dataless_name);
10027 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10028 /* NAME points into the original discriminant name, which
10029 already has the correct lifetime. */
10030 TYPE_FIELD_NAME (union_type, 2) = name;
10031 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10032 disc->discriminants[2] = 0;
10033
10034 /* Smash this type to be a structure type. We have to do this
10035 because the type has already been recorded. */
10036 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10037 TYPE_NFIELDS (type) = 1;
10038 TYPE_FIELDS (type)
10039 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10040
10041 /* Install the variant part. */
10042 TYPE_FIELD_TYPE (type, 0) = union_type;
10043 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10044 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10045 }
10046 else if (TYPE_NFIELDS (type) == 1)
10047 {
10048 /* We assume that a union with a single field is a univariant
10049 enum. */
10050 /* Smash this type to be a structure type. We have to do this
10051 because the type has already been recorded. */
10052 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10053
10054 /* Make a union to hold the variants. */
10055 struct type *union_type = alloc_type (objfile);
10056 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10057 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10058 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10059 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10060 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10061
10062 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10063 const char *variant_name
10064 = rust_last_path_segment (TYPE_NAME (field_type));
10065 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10066 TYPE_NAME (field_type)
10067 = rust_fully_qualify (&objfile->objfile_obstack,
10068 TYPE_NAME (type), variant_name);
10069
10070 /* Install the union in the outer struct type. */
10071 TYPE_NFIELDS (type) = 1;
10072 TYPE_FIELDS (type)
10073 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10074 TYPE_FIELD_TYPE (type, 0) = union_type;
10075 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10076 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10077
10078 alloc_discriminant_info (union_type, -1, 0);
10079 }
10080 else
10081 {
10082 struct type *disr_type = nullptr;
10083 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10084 {
10085 disr_type = TYPE_FIELD_TYPE (type, i);
10086
10087 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10088 {
10089 /* All fields of a true enum will be structs. */
10090 return;
10091 }
10092 else if (TYPE_NFIELDS (disr_type) == 0)
10093 {
10094 /* Could be data-less variant, so keep going. */
10095 disr_type = nullptr;
10096 }
10097 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10098 "RUST$ENUM$DISR") != 0)
10099 {
10100 /* Not a Rust enum. */
10101 return;
10102 }
10103 else
10104 {
10105 /* Found one. */
10106 break;
10107 }
10108 }
10109
10110 /* If we got here without a discriminant, then it's probably
10111 just a union. */
10112 if (disr_type == nullptr)
10113 return;
10114
10115 /* Smash this type to be a structure type. We have to do this
10116 because the type has already been recorded. */
10117 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10118
10119 /* Make a union to hold the variants. */
10120 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10121 struct type *union_type = alloc_type (objfile);
10122 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10123 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10124 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10125 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10126 TYPE_FIELDS (union_type)
10127 = (struct field *) TYPE_ZALLOC (union_type,
10128 (TYPE_NFIELDS (union_type)
10129 * sizeof (struct field)));
10130
10131 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10132 TYPE_NFIELDS (type) * sizeof (struct field));
10133
10134 /* Install the discriminant at index 0 in the union. */
10135 TYPE_FIELD (union_type, 0) = *disr_field;
10136 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10137 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10138
10139 /* Install the union in the outer struct type. */
10140 TYPE_FIELD_TYPE (type, 0) = union_type;
10141 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10142 TYPE_NFIELDS (type) = 1;
10143
10144 /* Set the size and offset of the union type. */
10145 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10146
10147 /* We need a way to find the correct discriminant given a
10148 variant name. For convenience we build a map here. */
10149 struct type *enum_type = FIELD_TYPE (*disr_field);
10150 std::unordered_map<std::string, ULONGEST> discriminant_map;
10151 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10152 {
10153 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10154 {
10155 const char *name
10156 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10157 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10158 }
10159 }
10160
10161 int n_fields = TYPE_NFIELDS (union_type);
10162 struct discriminant_info *disc
10163 = alloc_discriminant_info (union_type, 0, -1);
10164 /* Skip the discriminant here. */
10165 for (int i = 1; i < n_fields; ++i)
10166 {
10167 /* Find the final word in the name of this variant's type.
10168 That name can be used to look up the correct
10169 discriminant. */
10170 const char *variant_name
10171 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10172 i)));
10173
10174 auto iter = discriminant_map.find (variant_name);
10175 if (iter != discriminant_map.end ())
10176 disc->discriminants[i] = iter->second;
10177
10178 /* Remove the discriminant field, if it exists. */
10179 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10180 if (TYPE_NFIELDS (sub_type) > 0)
10181 {
10182 --TYPE_NFIELDS (sub_type);
10183 ++TYPE_FIELDS (sub_type);
10184 }
10185 TYPE_FIELD_NAME (union_type, i) = variant_name;
10186 TYPE_NAME (sub_type)
10187 = rust_fully_qualify (&objfile->objfile_obstack,
10188 TYPE_NAME (type), variant_name);
10189 }
10190 }
10191 }
10192
10193 /* Rewrite some Rust unions to be structures with variants parts. */
10194
10195 static void
10196 rust_union_quirks (struct dwarf2_cu *cu)
10197 {
10198 gdb_assert (cu->language == language_rust);
10199 for (type *type_ : cu->rust_unions)
10200 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10201 /* We don't need this any more. */
10202 cu->rust_unions.clear ();
10203 }
10204
10205 /* Return the symtab for PER_CU. This works properly regardless of
10206 whether we're using the index or psymtabs. */
10207
10208 static struct compunit_symtab *
10209 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10210 {
10211 return (per_cu->dwarf2_per_objfile->using_index
10212 ? per_cu->v.quick->compunit_symtab
10213 : per_cu->v.psymtab->compunit_symtab);
10214 }
10215
10216 /* A helper function for computing the list of all symbol tables
10217 included by PER_CU. */
10218
10219 static void
10220 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10221 htab_t all_children, htab_t all_type_symtabs,
10222 struct dwarf2_per_cu_data *per_cu,
10223 struct compunit_symtab *immediate_parent)
10224 {
10225 void **slot;
10226 int ix;
10227 struct compunit_symtab *cust;
10228 struct dwarf2_per_cu_data *iter;
10229
10230 slot = htab_find_slot (all_children, per_cu, INSERT);
10231 if (*slot != NULL)
10232 {
10233 /* This inclusion and its children have been processed. */
10234 return;
10235 }
10236
10237 *slot = per_cu;
10238 /* Only add a CU if it has a symbol table. */
10239 cust = get_compunit_symtab (per_cu);
10240 if (cust != NULL)
10241 {
10242 /* If this is a type unit only add its symbol table if we haven't
10243 seen it yet (type unit per_cu's can share symtabs). */
10244 if (per_cu->is_debug_types)
10245 {
10246 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10247 if (*slot == NULL)
10248 {
10249 *slot = cust;
10250 result->push_back (cust);
10251 if (cust->user == NULL)
10252 cust->user = immediate_parent;
10253 }
10254 }
10255 else
10256 {
10257 result->push_back (cust);
10258 if (cust->user == NULL)
10259 cust->user = immediate_parent;
10260 }
10261 }
10262
10263 for (ix = 0;
10264 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
10265 ++ix)
10266 {
10267 recursively_compute_inclusions (result, all_children,
10268 all_type_symtabs, iter, cust);
10269 }
10270 }
10271
10272 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10273 PER_CU. */
10274
10275 static void
10276 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10277 {
10278 gdb_assert (! per_cu->is_debug_types);
10279
10280 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
10281 {
10282 int ix, len;
10283 struct dwarf2_per_cu_data *per_cu_iter;
10284 std::vector<compunit_symtab *> result_symtabs;
10285 htab_t all_children, all_type_symtabs;
10286 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10287
10288 /* If we don't have a symtab, we can just skip this case. */
10289 if (cust == NULL)
10290 return;
10291
10292 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10293 NULL, xcalloc, xfree);
10294 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10295 NULL, xcalloc, xfree);
10296
10297 for (ix = 0;
10298 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
10299 ix, per_cu_iter);
10300 ++ix)
10301 {
10302 recursively_compute_inclusions (&result_symtabs, all_children,
10303 all_type_symtabs, per_cu_iter,
10304 cust);
10305 }
10306
10307 /* Now we have a transitive closure of all the included symtabs. */
10308 len = result_symtabs.size ();
10309 cust->includes
10310 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10311 struct compunit_symtab *, len + 1);
10312 memcpy (cust->includes, result_symtabs.data (),
10313 len * sizeof (compunit_symtab *));
10314 cust->includes[len] = NULL;
10315
10316 htab_delete (all_children);
10317 htab_delete (all_type_symtabs);
10318 }
10319 }
10320
10321 /* Compute the 'includes' field for the symtabs of all the CUs we just
10322 read. */
10323
10324 static void
10325 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10326 {
10327 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10328 {
10329 if (! iter->is_debug_types)
10330 compute_compunit_symtab_includes (iter);
10331 }
10332
10333 dwarf2_per_objfile->just_read_cus.clear ();
10334 }
10335
10336 /* Generate full symbol information for PER_CU, whose DIEs have
10337 already been loaded into memory. */
10338
10339 static void
10340 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10341 enum language pretend_language)
10342 {
10343 struct dwarf2_cu *cu = per_cu->cu;
10344 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10345 struct objfile *objfile = dwarf2_per_objfile->objfile;
10346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10347 CORE_ADDR lowpc, highpc;
10348 struct compunit_symtab *cust;
10349 CORE_ADDR baseaddr;
10350 struct block *static_block;
10351 CORE_ADDR addr;
10352
10353 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10354
10355 /* Clear the list here in case something was left over. */
10356 cu->method_list.clear ();
10357
10358 cu->language = pretend_language;
10359 cu->language_defn = language_def (cu->language);
10360
10361 /* Do line number decoding in read_file_scope () */
10362 process_die (cu->dies, cu);
10363
10364 /* For now fudge the Go package. */
10365 if (cu->language == language_go)
10366 fixup_go_packaging (cu);
10367
10368 /* Now that we have processed all the DIEs in the CU, all the types
10369 should be complete, and it should now be safe to compute all of the
10370 physnames. */
10371 compute_delayed_physnames (cu);
10372
10373 if (cu->language == language_rust)
10374 rust_union_quirks (cu);
10375
10376 /* Some compilers don't define a DW_AT_high_pc attribute for the
10377 compilation unit. If the DW_AT_high_pc is missing, synthesize
10378 it, by scanning the DIE's below the compilation unit. */
10379 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10380
10381 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10382 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10383
10384 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10385 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10386 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10387 addrmap to help ensure it has an accurate map of pc values belonging to
10388 this comp unit. */
10389 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10390
10391 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10392 SECT_OFF_TEXT (objfile),
10393 0);
10394
10395 if (cust != NULL)
10396 {
10397 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10398
10399 /* Set symtab language to language from DW_AT_language. If the
10400 compilation is from a C file generated by language preprocessors, do
10401 not set the language if it was already deduced by start_subfile. */
10402 if (!(cu->language == language_c
10403 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10404 COMPUNIT_FILETABS (cust)->language = cu->language;
10405
10406 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10407 produce DW_AT_location with location lists but it can be possibly
10408 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10409 there were bugs in prologue debug info, fixed later in GCC-4.5
10410 by "unwind info for epilogues" patch (which is not directly related).
10411
10412 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10413 needed, it would be wrong due to missing DW_AT_producer there.
10414
10415 Still one can confuse GDB by using non-standard GCC compilation
10416 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10417 */
10418 if (cu->has_loclist && gcc_4_minor >= 5)
10419 cust->locations_valid = 1;
10420
10421 if (gcc_4_minor >= 5)
10422 cust->epilogue_unwind_valid = 1;
10423
10424 cust->call_site_htab = cu->call_site_htab;
10425 }
10426
10427 if (dwarf2_per_objfile->using_index)
10428 per_cu->v.quick->compunit_symtab = cust;
10429 else
10430 {
10431 struct partial_symtab *pst = per_cu->v.psymtab;
10432 pst->compunit_symtab = cust;
10433 pst->readin = 1;
10434 }
10435
10436 /* Push it for inclusion processing later. */
10437 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10438
10439 /* Not needed any more. */
10440 cu->reset_builder ();
10441 }
10442
10443 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10444 already been loaded into memory. */
10445
10446 static void
10447 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10448 enum language pretend_language)
10449 {
10450 struct dwarf2_cu *cu = per_cu->cu;
10451 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
10453 struct compunit_symtab *cust;
10454 struct signatured_type *sig_type;
10455
10456 gdb_assert (per_cu->is_debug_types);
10457 sig_type = (struct signatured_type *) per_cu;
10458
10459 /* Clear the list here in case something was left over. */
10460 cu->method_list.clear ();
10461
10462 cu->language = pretend_language;
10463 cu->language_defn = language_def (cu->language);
10464
10465 /* The symbol tables are set up in read_type_unit_scope. */
10466 process_die (cu->dies, cu);
10467
10468 /* For now fudge the Go package. */
10469 if (cu->language == language_go)
10470 fixup_go_packaging (cu);
10471
10472 /* Now that we have processed all the DIEs in the CU, all the types
10473 should be complete, and it should now be safe to compute all of the
10474 physnames. */
10475 compute_delayed_physnames (cu);
10476
10477 if (cu->language == language_rust)
10478 rust_union_quirks (cu);
10479
10480 /* TUs share symbol tables.
10481 If this is the first TU to use this symtab, complete the construction
10482 of it with end_expandable_symtab. Otherwise, complete the addition of
10483 this TU's symbols to the existing symtab. */
10484 if (sig_type->type_unit_group->compunit_symtab == NULL)
10485 {
10486 buildsym_compunit *builder = cu->get_builder ();
10487 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10488 sig_type->type_unit_group->compunit_symtab = cust;
10489
10490 if (cust != NULL)
10491 {
10492 /* Set symtab language to language from DW_AT_language. If the
10493 compilation is from a C file generated by language preprocessors,
10494 do not set the language if it was already deduced by
10495 start_subfile. */
10496 if (!(cu->language == language_c
10497 && COMPUNIT_FILETABS (cust)->language != language_c))
10498 COMPUNIT_FILETABS (cust)->language = cu->language;
10499 }
10500 }
10501 else
10502 {
10503 cu->get_builder ()->augment_type_symtab ();
10504 cust = sig_type->type_unit_group->compunit_symtab;
10505 }
10506
10507 if (dwarf2_per_objfile->using_index)
10508 per_cu->v.quick->compunit_symtab = cust;
10509 else
10510 {
10511 struct partial_symtab *pst = per_cu->v.psymtab;
10512 pst->compunit_symtab = cust;
10513 pst->readin = 1;
10514 }
10515
10516 /* Not needed any more. */
10517 cu->reset_builder ();
10518 }
10519
10520 /* Process an imported unit DIE. */
10521
10522 static void
10523 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10524 {
10525 struct attribute *attr;
10526
10527 /* For now we don't handle imported units in type units. */
10528 if (cu->per_cu->is_debug_types)
10529 {
10530 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10531 " supported in type units [in module %s]"),
10532 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10533 }
10534
10535 attr = dwarf2_attr (die, DW_AT_import, cu);
10536 if (attr != NULL)
10537 {
10538 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10539 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10540 dwarf2_per_cu_data *per_cu
10541 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10542 cu->per_cu->dwarf2_per_objfile);
10543
10544 /* If necessary, add it to the queue and load its DIEs. */
10545 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10546 load_full_comp_unit (per_cu, false, cu->language);
10547
10548 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
10549 per_cu);
10550 }
10551 }
10552
10553 /* RAII object that represents a process_die scope: i.e.,
10554 starts/finishes processing a DIE. */
10555 class process_die_scope
10556 {
10557 public:
10558 process_die_scope (die_info *die, dwarf2_cu *cu)
10559 : m_die (die), m_cu (cu)
10560 {
10561 /* We should only be processing DIEs not already in process. */
10562 gdb_assert (!m_die->in_process);
10563 m_die->in_process = true;
10564 }
10565
10566 ~process_die_scope ()
10567 {
10568 m_die->in_process = false;
10569
10570 /* If we're done processing the DIE for the CU that owns the line
10571 header, we don't need the line header anymore. */
10572 if (m_cu->line_header_die_owner == m_die)
10573 {
10574 delete m_cu->line_header;
10575 m_cu->line_header = NULL;
10576 m_cu->line_header_die_owner = NULL;
10577 }
10578 }
10579
10580 private:
10581 die_info *m_die;
10582 dwarf2_cu *m_cu;
10583 };
10584
10585 /* Process a die and its children. */
10586
10587 static void
10588 process_die (struct die_info *die, struct dwarf2_cu *cu)
10589 {
10590 process_die_scope scope (die, cu);
10591
10592 switch (die->tag)
10593 {
10594 case DW_TAG_padding:
10595 break;
10596 case DW_TAG_compile_unit:
10597 case DW_TAG_partial_unit:
10598 read_file_scope (die, cu);
10599 break;
10600 case DW_TAG_type_unit:
10601 read_type_unit_scope (die, cu);
10602 break;
10603 case DW_TAG_subprogram:
10604 case DW_TAG_inlined_subroutine:
10605 read_func_scope (die, cu);
10606 break;
10607 case DW_TAG_lexical_block:
10608 case DW_TAG_try_block:
10609 case DW_TAG_catch_block:
10610 read_lexical_block_scope (die, cu);
10611 break;
10612 case DW_TAG_call_site:
10613 case DW_TAG_GNU_call_site:
10614 read_call_site_scope (die, cu);
10615 break;
10616 case DW_TAG_class_type:
10617 case DW_TAG_interface_type:
10618 case DW_TAG_structure_type:
10619 case DW_TAG_union_type:
10620 process_structure_scope (die, cu);
10621 break;
10622 case DW_TAG_enumeration_type:
10623 process_enumeration_scope (die, cu);
10624 break;
10625
10626 /* These dies have a type, but processing them does not create
10627 a symbol or recurse to process the children. Therefore we can
10628 read them on-demand through read_type_die. */
10629 case DW_TAG_subroutine_type:
10630 case DW_TAG_set_type:
10631 case DW_TAG_array_type:
10632 case DW_TAG_pointer_type:
10633 case DW_TAG_ptr_to_member_type:
10634 case DW_TAG_reference_type:
10635 case DW_TAG_rvalue_reference_type:
10636 case DW_TAG_string_type:
10637 break;
10638
10639 case DW_TAG_base_type:
10640 case DW_TAG_subrange_type:
10641 case DW_TAG_typedef:
10642 /* Add a typedef symbol for the type definition, if it has a
10643 DW_AT_name. */
10644 new_symbol (die, read_type_die (die, cu), cu);
10645 break;
10646 case DW_TAG_common_block:
10647 read_common_block (die, cu);
10648 break;
10649 case DW_TAG_common_inclusion:
10650 break;
10651 case DW_TAG_namespace:
10652 cu->processing_has_namespace_info = true;
10653 read_namespace (die, cu);
10654 break;
10655 case DW_TAG_module:
10656 cu->processing_has_namespace_info = true;
10657 read_module (die, cu);
10658 break;
10659 case DW_TAG_imported_declaration:
10660 cu->processing_has_namespace_info = true;
10661 if (read_namespace_alias (die, cu))
10662 break;
10663 /* The declaration is not a global namespace alias. */
10664 /* Fall through. */
10665 case DW_TAG_imported_module:
10666 cu->processing_has_namespace_info = true;
10667 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10668 || cu->language != language_fortran))
10669 complaint (_("Tag '%s' has unexpected children"),
10670 dwarf_tag_name (die->tag));
10671 read_import_statement (die, cu);
10672 break;
10673
10674 case DW_TAG_imported_unit:
10675 process_imported_unit_die (die, cu);
10676 break;
10677
10678 case DW_TAG_variable:
10679 read_variable (die, cu);
10680 break;
10681
10682 default:
10683 new_symbol (die, NULL, cu);
10684 break;
10685 }
10686 }
10687 \f
10688 /* DWARF name computation. */
10689
10690 /* A helper function for dwarf2_compute_name which determines whether DIE
10691 needs to have the name of the scope prepended to the name listed in the
10692 die. */
10693
10694 static int
10695 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10696 {
10697 struct attribute *attr;
10698
10699 switch (die->tag)
10700 {
10701 case DW_TAG_namespace:
10702 case DW_TAG_typedef:
10703 case DW_TAG_class_type:
10704 case DW_TAG_interface_type:
10705 case DW_TAG_structure_type:
10706 case DW_TAG_union_type:
10707 case DW_TAG_enumeration_type:
10708 case DW_TAG_enumerator:
10709 case DW_TAG_subprogram:
10710 case DW_TAG_inlined_subroutine:
10711 case DW_TAG_member:
10712 case DW_TAG_imported_declaration:
10713 return 1;
10714
10715 case DW_TAG_variable:
10716 case DW_TAG_constant:
10717 /* We only need to prefix "globally" visible variables. These include
10718 any variable marked with DW_AT_external or any variable that
10719 lives in a namespace. [Variables in anonymous namespaces
10720 require prefixing, but they are not DW_AT_external.] */
10721
10722 if (dwarf2_attr (die, DW_AT_specification, cu))
10723 {
10724 struct dwarf2_cu *spec_cu = cu;
10725
10726 return die_needs_namespace (die_specification (die, &spec_cu),
10727 spec_cu);
10728 }
10729
10730 attr = dwarf2_attr (die, DW_AT_external, cu);
10731 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10732 && die->parent->tag != DW_TAG_module)
10733 return 0;
10734 /* A variable in a lexical block of some kind does not need a
10735 namespace, even though in C++ such variables may be external
10736 and have a mangled name. */
10737 if (die->parent->tag == DW_TAG_lexical_block
10738 || die->parent->tag == DW_TAG_try_block
10739 || die->parent->tag == DW_TAG_catch_block
10740 || die->parent->tag == DW_TAG_subprogram)
10741 return 0;
10742 return 1;
10743
10744 default:
10745 return 0;
10746 }
10747 }
10748
10749 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10750 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10751 defined for the given DIE. */
10752
10753 static struct attribute *
10754 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10755 {
10756 struct attribute *attr;
10757
10758 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10759 if (attr == NULL)
10760 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10761
10762 return attr;
10763 }
10764
10765 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10766 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10767 defined for the given DIE. */
10768
10769 static const char *
10770 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10771 {
10772 const char *linkage_name;
10773
10774 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10775 if (linkage_name == NULL)
10776 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10777
10778 return linkage_name;
10779 }
10780
10781 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10782 compute the physname for the object, which include a method's:
10783 - formal parameters (C++),
10784 - receiver type (Go),
10785
10786 The term "physname" is a bit confusing.
10787 For C++, for example, it is the demangled name.
10788 For Go, for example, it's the mangled name.
10789
10790 For Ada, return the DIE's linkage name rather than the fully qualified
10791 name. PHYSNAME is ignored..
10792
10793 The result is allocated on the objfile_obstack and canonicalized. */
10794
10795 static const char *
10796 dwarf2_compute_name (const char *name,
10797 struct die_info *die, struct dwarf2_cu *cu,
10798 int physname)
10799 {
10800 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10801
10802 if (name == NULL)
10803 name = dwarf2_name (die, cu);
10804
10805 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10806 but otherwise compute it by typename_concat inside GDB.
10807 FIXME: Actually this is not really true, or at least not always true.
10808 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10809 Fortran names because there is no mangling standard. So new_symbol
10810 will set the demangled name to the result of dwarf2_full_name, and it is
10811 the demangled name that GDB uses if it exists. */
10812 if (cu->language == language_ada
10813 || (cu->language == language_fortran && physname))
10814 {
10815 /* For Ada unit, we prefer the linkage name over the name, as
10816 the former contains the exported name, which the user expects
10817 to be able to reference. Ideally, we want the user to be able
10818 to reference this entity using either natural or linkage name,
10819 but we haven't started looking at this enhancement yet. */
10820 const char *linkage_name = dw2_linkage_name (die, cu);
10821
10822 if (linkage_name != NULL)
10823 return linkage_name;
10824 }
10825
10826 /* These are the only languages we know how to qualify names in. */
10827 if (name != NULL
10828 && (cu->language == language_cplus
10829 || cu->language == language_fortran || cu->language == language_d
10830 || cu->language == language_rust))
10831 {
10832 if (die_needs_namespace (die, cu))
10833 {
10834 const char *prefix;
10835 const char *canonical_name = NULL;
10836
10837 string_file buf;
10838
10839 prefix = determine_prefix (die, cu);
10840 if (*prefix != '\0')
10841 {
10842 char *prefixed_name = typename_concat (NULL, prefix, name,
10843 physname, cu);
10844
10845 buf.puts (prefixed_name);
10846 xfree (prefixed_name);
10847 }
10848 else
10849 buf.puts (name);
10850
10851 /* Template parameters may be specified in the DIE's DW_AT_name, or
10852 as children with DW_TAG_template_type_param or
10853 DW_TAG_value_type_param. If the latter, add them to the name
10854 here. If the name already has template parameters, then
10855 skip this step; some versions of GCC emit both, and
10856 it is more efficient to use the pre-computed name.
10857
10858 Something to keep in mind about this process: it is very
10859 unlikely, or in some cases downright impossible, to produce
10860 something that will match the mangled name of a function.
10861 If the definition of the function has the same debug info,
10862 we should be able to match up with it anyway. But fallbacks
10863 using the minimal symbol, for instance to find a method
10864 implemented in a stripped copy of libstdc++, will not work.
10865 If we do not have debug info for the definition, we will have to
10866 match them up some other way.
10867
10868 When we do name matching there is a related problem with function
10869 templates; two instantiated function templates are allowed to
10870 differ only by their return types, which we do not add here. */
10871
10872 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10873 {
10874 struct attribute *attr;
10875 struct die_info *child;
10876 int first = 1;
10877
10878 die->building_fullname = 1;
10879
10880 for (child = die->child; child != NULL; child = child->sibling)
10881 {
10882 struct type *type;
10883 LONGEST value;
10884 const gdb_byte *bytes;
10885 struct dwarf2_locexpr_baton *baton;
10886 struct value *v;
10887
10888 if (child->tag != DW_TAG_template_type_param
10889 && child->tag != DW_TAG_template_value_param)
10890 continue;
10891
10892 if (first)
10893 {
10894 buf.puts ("<");
10895 first = 0;
10896 }
10897 else
10898 buf.puts (", ");
10899
10900 attr = dwarf2_attr (child, DW_AT_type, cu);
10901 if (attr == NULL)
10902 {
10903 complaint (_("template parameter missing DW_AT_type"));
10904 buf.puts ("UNKNOWN_TYPE");
10905 continue;
10906 }
10907 type = die_type (child, cu);
10908
10909 if (child->tag == DW_TAG_template_type_param)
10910 {
10911 c_print_type (type, "", &buf, -1, 0, cu->language,
10912 &type_print_raw_options);
10913 continue;
10914 }
10915
10916 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10917 if (attr == NULL)
10918 {
10919 complaint (_("template parameter missing "
10920 "DW_AT_const_value"));
10921 buf.puts ("UNKNOWN_VALUE");
10922 continue;
10923 }
10924
10925 dwarf2_const_value_attr (attr, type, name,
10926 &cu->comp_unit_obstack, cu,
10927 &value, &bytes, &baton);
10928
10929 if (TYPE_NOSIGN (type))
10930 /* GDB prints characters as NUMBER 'CHAR'. If that's
10931 changed, this can use value_print instead. */
10932 c_printchar (value, type, &buf);
10933 else
10934 {
10935 struct value_print_options opts;
10936
10937 if (baton != NULL)
10938 v = dwarf2_evaluate_loc_desc (type, NULL,
10939 baton->data,
10940 baton->size,
10941 baton->per_cu);
10942 else if (bytes != NULL)
10943 {
10944 v = allocate_value (type);
10945 memcpy (value_contents_writeable (v), bytes,
10946 TYPE_LENGTH (type));
10947 }
10948 else
10949 v = value_from_longest (type, value);
10950
10951 /* Specify decimal so that we do not depend on
10952 the radix. */
10953 get_formatted_print_options (&opts, 'd');
10954 opts.raw = 1;
10955 value_print (v, &buf, &opts);
10956 release_value (v);
10957 }
10958 }
10959
10960 die->building_fullname = 0;
10961
10962 if (!first)
10963 {
10964 /* Close the argument list, with a space if necessary
10965 (nested templates). */
10966 if (!buf.empty () && buf.string ().back () == '>')
10967 buf.puts (" >");
10968 else
10969 buf.puts (">");
10970 }
10971 }
10972
10973 /* For C++ methods, append formal parameter type
10974 information, if PHYSNAME. */
10975
10976 if (physname && die->tag == DW_TAG_subprogram
10977 && cu->language == language_cplus)
10978 {
10979 struct type *type = read_type_die (die, cu);
10980
10981 c_type_print_args (type, &buf, 1, cu->language,
10982 &type_print_raw_options);
10983
10984 if (cu->language == language_cplus)
10985 {
10986 /* Assume that an artificial first parameter is
10987 "this", but do not crash if it is not. RealView
10988 marks unnamed (and thus unused) parameters as
10989 artificial; there is no way to differentiate
10990 the two cases. */
10991 if (TYPE_NFIELDS (type) > 0
10992 && TYPE_FIELD_ARTIFICIAL (type, 0)
10993 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
10994 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10995 0))))
10996 buf.puts (" const");
10997 }
10998 }
10999
11000 const std::string &intermediate_name = buf.string ();
11001
11002 if (cu->language == language_cplus)
11003 canonical_name
11004 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11005 &objfile->per_bfd->storage_obstack);
11006
11007 /* If we only computed INTERMEDIATE_NAME, or if
11008 INTERMEDIATE_NAME is already canonical, then we need to
11009 copy it to the appropriate obstack. */
11010 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11011 name = ((const char *)
11012 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11013 intermediate_name.c_str (),
11014 intermediate_name.length ()));
11015 else
11016 name = canonical_name;
11017 }
11018 }
11019
11020 return name;
11021 }
11022
11023 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11024 If scope qualifiers are appropriate they will be added. The result
11025 will be allocated on the storage_obstack, or NULL if the DIE does
11026 not have a name. NAME may either be from a previous call to
11027 dwarf2_name or NULL.
11028
11029 The output string will be canonicalized (if C++). */
11030
11031 static const char *
11032 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11033 {
11034 return dwarf2_compute_name (name, die, cu, 0);
11035 }
11036
11037 /* Construct a physname for the given DIE in CU. NAME may either be
11038 from a previous call to dwarf2_name or NULL. The result will be
11039 allocated on the objfile_objstack or NULL if the DIE does not have a
11040 name.
11041
11042 The output string will be canonicalized (if C++). */
11043
11044 static const char *
11045 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11046 {
11047 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11048 const char *retval, *mangled = NULL, *canon = NULL;
11049 int need_copy = 1;
11050
11051 /* In this case dwarf2_compute_name is just a shortcut not building anything
11052 on its own. */
11053 if (!die_needs_namespace (die, cu))
11054 return dwarf2_compute_name (name, die, cu, 1);
11055
11056 mangled = dw2_linkage_name (die, cu);
11057
11058 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11059 See https://github.com/rust-lang/rust/issues/32925. */
11060 if (cu->language == language_rust && mangled != NULL
11061 && strchr (mangled, '{') != NULL)
11062 mangled = NULL;
11063
11064 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11065 has computed. */
11066 gdb::unique_xmalloc_ptr<char> demangled;
11067 if (mangled != NULL)
11068 {
11069
11070 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11071 {
11072 /* Do nothing (do not demangle the symbol name). */
11073 }
11074 else if (cu->language == language_go)
11075 {
11076 /* This is a lie, but we already lie to the caller new_symbol.
11077 new_symbol assumes we return the mangled name.
11078 This just undoes that lie until things are cleaned up. */
11079 }
11080 else
11081 {
11082 /* Use DMGL_RET_DROP for C++ template functions to suppress
11083 their return type. It is easier for GDB users to search
11084 for such functions as `name(params)' than `long name(params)'.
11085 In such case the minimal symbol names do not match the full
11086 symbol names but for template functions there is never a need
11087 to look up their definition from their declaration so
11088 the only disadvantage remains the minimal symbol variant
11089 `long name(params)' does not have the proper inferior type. */
11090 demangled.reset (gdb_demangle (mangled,
11091 (DMGL_PARAMS | DMGL_ANSI
11092 | DMGL_RET_DROP)));
11093 }
11094 if (demangled)
11095 canon = demangled.get ();
11096 else
11097 {
11098 canon = mangled;
11099 need_copy = 0;
11100 }
11101 }
11102
11103 if (canon == NULL || check_physname)
11104 {
11105 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11106
11107 if (canon != NULL && strcmp (physname, canon) != 0)
11108 {
11109 /* It may not mean a bug in GDB. The compiler could also
11110 compute DW_AT_linkage_name incorrectly. But in such case
11111 GDB would need to be bug-to-bug compatible. */
11112
11113 complaint (_("Computed physname <%s> does not match demangled <%s> "
11114 "(from linkage <%s>) - DIE at %s [in module %s]"),
11115 physname, canon, mangled, sect_offset_str (die->sect_off),
11116 objfile_name (objfile));
11117
11118 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11119 is available here - over computed PHYSNAME. It is safer
11120 against both buggy GDB and buggy compilers. */
11121
11122 retval = canon;
11123 }
11124 else
11125 {
11126 retval = physname;
11127 need_copy = 0;
11128 }
11129 }
11130 else
11131 retval = canon;
11132
11133 if (need_copy)
11134 retval = ((const char *)
11135 obstack_copy0 (&objfile->per_bfd->storage_obstack,
11136 retval, strlen (retval)));
11137
11138 return retval;
11139 }
11140
11141 /* Inspect DIE in CU for a namespace alias. If one exists, record
11142 a new symbol for it.
11143
11144 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11145
11146 static int
11147 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11148 {
11149 struct attribute *attr;
11150
11151 /* If the die does not have a name, this is not a namespace
11152 alias. */
11153 attr = dwarf2_attr (die, DW_AT_name, cu);
11154 if (attr != NULL)
11155 {
11156 int num;
11157 struct die_info *d = die;
11158 struct dwarf2_cu *imported_cu = cu;
11159
11160 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11161 keep inspecting DIEs until we hit the underlying import. */
11162 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11163 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11164 {
11165 attr = dwarf2_attr (d, DW_AT_import, cu);
11166 if (attr == NULL)
11167 break;
11168
11169 d = follow_die_ref (d, attr, &imported_cu);
11170 if (d->tag != DW_TAG_imported_declaration)
11171 break;
11172 }
11173
11174 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11175 {
11176 complaint (_("DIE at %s has too many recursively imported "
11177 "declarations"), sect_offset_str (d->sect_off));
11178 return 0;
11179 }
11180
11181 if (attr != NULL)
11182 {
11183 struct type *type;
11184 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11185
11186 type = get_die_type_at_offset (sect_off, cu->per_cu);
11187 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11188 {
11189 /* This declaration is a global namespace alias. Add
11190 a symbol for it whose type is the aliased namespace. */
11191 new_symbol (die, type, cu);
11192 return 1;
11193 }
11194 }
11195 }
11196
11197 return 0;
11198 }
11199
11200 /* Return the using directives repository (global or local?) to use in the
11201 current context for CU.
11202
11203 For Ada, imported declarations can materialize renamings, which *may* be
11204 global. However it is impossible (for now?) in DWARF to distinguish
11205 "external" imported declarations and "static" ones. As all imported
11206 declarations seem to be static in all other languages, make them all CU-wide
11207 global only in Ada. */
11208
11209 static struct using_direct **
11210 using_directives (struct dwarf2_cu *cu)
11211 {
11212 if (cu->language == language_ada
11213 && cu->get_builder ()->outermost_context_p ())
11214 return cu->get_builder ()->get_global_using_directives ();
11215 else
11216 return cu->get_builder ()->get_local_using_directives ();
11217 }
11218
11219 /* Read the import statement specified by the given die and record it. */
11220
11221 static void
11222 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11223 {
11224 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11225 struct attribute *import_attr;
11226 struct die_info *imported_die, *child_die;
11227 struct dwarf2_cu *imported_cu;
11228 const char *imported_name;
11229 const char *imported_name_prefix;
11230 const char *canonical_name;
11231 const char *import_alias;
11232 const char *imported_declaration = NULL;
11233 const char *import_prefix;
11234 std::vector<const char *> excludes;
11235
11236 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11237 if (import_attr == NULL)
11238 {
11239 complaint (_("Tag '%s' has no DW_AT_import"),
11240 dwarf_tag_name (die->tag));
11241 return;
11242 }
11243
11244 imported_cu = cu;
11245 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11246 imported_name = dwarf2_name (imported_die, imported_cu);
11247 if (imported_name == NULL)
11248 {
11249 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11250
11251 The import in the following code:
11252 namespace A
11253 {
11254 typedef int B;
11255 }
11256
11257 int main ()
11258 {
11259 using A::B;
11260 B b;
11261 return b;
11262 }
11263
11264 ...
11265 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11266 <52> DW_AT_decl_file : 1
11267 <53> DW_AT_decl_line : 6
11268 <54> DW_AT_import : <0x75>
11269 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11270 <59> DW_AT_name : B
11271 <5b> DW_AT_decl_file : 1
11272 <5c> DW_AT_decl_line : 2
11273 <5d> DW_AT_type : <0x6e>
11274 ...
11275 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11276 <76> DW_AT_byte_size : 4
11277 <77> DW_AT_encoding : 5 (signed)
11278
11279 imports the wrong die ( 0x75 instead of 0x58 ).
11280 This case will be ignored until the gcc bug is fixed. */
11281 return;
11282 }
11283
11284 /* Figure out the local name after import. */
11285 import_alias = dwarf2_name (die, cu);
11286
11287 /* Figure out where the statement is being imported to. */
11288 import_prefix = determine_prefix (die, cu);
11289
11290 /* Figure out what the scope of the imported die is and prepend it
11291 to the name of the imported die. */
11292 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11293
11294 if (imported_die->tag != DW_TAG_namespace
11295 && imported_die->tag != DW_TAG_module)
11296 {
11297 imported_declaration = imported_name;
11298 canonical_name = imported_name_prefix;
11299 }
11300 else if (strlen (imported_name_prefix) > 0)
11301 canonical_name = obconcat (&objfile->objfile_obstack,
11302 imported_name_prefix,
11303 (cu->language == language_d ? "." : "::"),
11304 imported_name, (char *) NULL);
11305 else
11306 canonical_name = imported_name;
11307
11308 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11309 for (child_die = die->child; child_die && child_die->tag;
11310 child_die = sibling_die (child_die))
11311 {
11312 /* DWARF-4: A Fortran use statement with a “rename list” may be
11313 represented by an imported module entry with an import attribute
11314 referring to the module and owned entries corresponding to those
11315 entities that are renamed as part of being imported. */
11316
11317 if (child_die->tag != DW_TAG_imported_declaration)
11318 {
11319 complaint (_("child DW_TAG_imported_declaration expected "
11320 "- DIE at %s [in module %s]"),
11321 sect_offset_str (child_die->sect_off),
11322 objfile_name (objfile));
11323 continue;
11324 }
11325
11326 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11327 if (import_attr == NULL)
11328 {
11329 complaint (_("Tag '%s' has no DW_AT_import"),
11330 dwarf_tag_name (child_die->tag));
11331 continue;
11332 }
11333
11334 imported_cu = cu;
11335 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11336 &imported_cu);
11337 imported_name = dwarf2_name (imported_die, imported_cu);
11338 if (imported_name == NULL)
11339 {
11340 complaint (_("child DW_TAG_imported_declaration has unknown "
11341 "imported name - DIE at %s [in module %s]"),
11342 sect_offset_str (child_die->sect_off),
11343 objfile_name (objfile));
11344 continue;
11345 }
11346
11347 excludes.push_back (imported_name);
11348
11349 process_die (child_die, cu);
11350 }
11351
11352 add_using_directive (using_directives (cu),
11353 import_prefix,
11354 canonical_name,
11355 import_alias,
11356 imported_declaration,
11357 excludes,
11358 0,
11359 &objfile->objfile_obstack);
11360 }
11361
11362 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11363 types, but gives them a size of zero. Starting with version 14,
11364 ICC is compatible with GCC. */
11365
11366 static bool
11367 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11368 {
11369 if (!cu->checked_producer)
11370 check_producer (cu);
11371
11372 return cu->producer_is_icc_lt_14;
11373 }
11374
11375 /* ICC generates a DW_AT_type for C void functions. This was observed on
11376 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11377 which says that void functions should not have a DW_AT_type. */
11378
11379 static bool
11380 producer_is_icc (struct dwarf2_cu *cu)
11381 {
11382 if (!cu->checked_producer)
11383 check_producer (cu);
11384
11385 return cu->producer_is_icc;
11386 }
11387
11388 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11389 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11390 this, it was first present in GCC release 4.3.0. */
11391
11392 static bool
11393 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11394 {
11395 if (!cu->checked_producer)
11396 check_producer (cu);
11397
11398 return cu->producer_is_gcc_lt_4_3;
11399 }
11400
11401 static file_and_directory
11402 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11403 {
11404 file_and_directory res;
11405
11406 /* Find the filename. Do not use dwarf2_name here, since the filename
11407 is not a source language identifier. */
11408 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11409 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11410
11411 if (res.comp_dir == NULL
11412 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11413 && IS_ABSOLUTE_PATH (res.name))
11414 {
11415 res.comp_dir_storage = ldirname (res.name);
11416 if (!res.comp_dir_storage.empty ())
11417 res.comp_dir = res.comp_dir_storage.c_str ();
11418 }
11419 if (res.comp_dir != NULL)
11420 {
11421 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11422 directory, get rid of it. */
11423 const char *cp = strchr (res.comp_dir, ':');
11424
11425 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11426 res.comp_dir = cp + 1;
11427 }
11428
11429 if (res.name == NULL)
11430 res.name = "<unknown>";
11431
11432 return res;
11433 }
11434
11435 /* Handle DW_AT_stmt_list for a compilation unit.
11436 DIE is the DW_TAG_compile_unit die for CU.
11437 COMP_DIR is the compilation directory. LOWPC is passed to
11438 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11439
11440 static void
11441 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11442 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11443 {
11444 struct dwarf2_per_objfile *dwarf2_per_objfile
11445 = cu->per_cu->dwarf2_per_objfile;
11446 struct objfile *objfile = dwarf2_per_objfile->objfile;
11447 struct attribute *attr;
11448 struct line_header line_header_local;
11449 hashval_t line_header_local_hash;
11450 void **slot;
11451 int decode_mapping;
11452
11453 gdb_assert (! cu->per_cu->is_debug_types);
11454
11455 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11456 if (attr == NULL)
11457 return;
11458
11459 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11460
11461 /* The line header hash table is only created if needed (it exists to
11462 prevent redundant reading of the line table for partial_units).
11463 If we're given a partial_unit, we'll need it. If we're given a
11464 compile_unit, then use the line header hash table if it's already
11465 created, but don't create one just yet. */
11466
11467 if (dwarf2_per_objfile->line_header_hash == NULL
11468 && die->tag == DW_TAG_partial_unit)
11469 {
11470 dwarf2_per_objfile->line_header_hash
11471 = htab_create_alloc_ex (127, line_header_hash_voidp,
11472 line_header_eq_voidp,
11473 free_line_header_voidp,
11474 &objfile->objfile_obstack,
11475 hashtab_obstack_allocate,
11476 dummy_obstack_deallocate);
11477 }
11478
11479 line_header_local.sect_off = line_offset;
11480 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11481 line_header_local_hash = line_header_hash (&line_header_local);
11482 if (dwarf2_per_objfile->line_header_hash != NULL)
11483 {
11484 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11485 &line_header_local,
11486 line_header_local_hash, NO_INSERT);
11487
11488 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11489 is not present in *SLOT (since if there is something in *SLOT then
11490 it will be for a partial_unit). */
11491 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11492 {
11493 gdb_assert (*slot != NULL);
11494 cu->line_header = (struct line_header *) *slot;
11495 return;
11496 }
11497 }
11498
11499 /* dwarf_decode_line_header does not yet provide sufficient information.
11500 We always have to call also dwarf_decode_lines for it. */
11501 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11502 if (lh == NULL)
11503 return;
11504
11505 cu->line_header = lh.release ();
11506 cu->line_header_die_owner = die;
11507
11508 if (dwarf2_per_objfile->line_header_hash == NULL)
11509 slot = NULL;
11510 else
11511 {
11512 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11513 &line_header_local,
11514 line_header_local_hash, INSERT);
11515 gdb_assert (slot != NULL);
11516 }
11517 if (slot != NULL && *slot == NULL)
11518 {
11519 /* This newly decoded line number information unit will be owned
11520 by line_header_hash hash table. */
11521 *slot = cu->line_header;
11522 cu->line_header_die_owner = NULL;
11523 }
11524 else
11525 {
11526 /* We cannot free any current entry in (*slot) as that struct line_header
11527 may be already used by multiple CUs. Create only temporary decoded
11528 line_header for this CU - it may happen at most once for each line
11529 number information unit. And if we're not using line_header_hash
11530 then this is what we want as well. */
11531 gdb_assert (die->tag != DW_TAG_partial_unit);
11532 }
11533 decode_mapping = (die->tag != DW_TAG_partial_unit);
11534 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11535 decode_mapping);
11536
11537 }
11538
11539 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11540
11541 static void
11542 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11543 {
11544 struct dwarf2_per_objfile *dwarf2_per_objfile
11545 = cu->per_cu->dwarf2_per_objfile;
11546 struct objfile *objfile = dwarf2_per_objfile->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11549 CORE_ADDR highpc = ((CORE_ADDR) 0);
11550 struct attribute *attr;
11551 struct die_info *child_die;
11552 CORE_ADDR baseaddr;
11553
11554 prepare_one_comp_unit (cu, die, cu->language);
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11556
11557 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11558
11559 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11560 from finish_block. */
11561 if (lowpc == ((CORE_ADDR) -1))
11562 lowpc = highpc;
11563 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11564
11565 file_and_directory fnd = find_file_and_directory (die, cu);
11566
11567 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11568 standardised yet. As a workaround for the language detection we fall
11569 back to the DW_AT_producer string. */
11570 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11571 cu->language = language_opencl;
11572
11573 /* Similar hack for Go. */
11574 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11575 set_cu_language (DW_LANG_Go, cu);
11576
11577 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11578
11579 /* Decode line number information if present. We do this before
11580 processing child DIEs, so that the line header table is available
11581 for DW_AT_decl_file. */
11582 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11583
11584 /* Process all dies in compilation unit. */
11585 if (die->child != NULL)
11586 {
11587 child_die = die->child;
11588 while (child_die && child_die->tag)
11589 {
11590 process_die (child_die, cu);
11591 child_die = sibling_die (child_die);
11592 }
11593 }
11594
11595 /* Decode macro information, if present. Dwarf 2 macro information
11596 refers to information in the line number info statement program
11597 header, so we can only read it if we've read the header
11598 successfully. */
11599 attr = dwarf2_attr (die, DW_AT_macros, cu);
11600 if (attr == NULL)
11601 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11602 if (attr && cu->line_header)
11603 {
11604 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11605 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11606
11607 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11608 }
11609 else
11610 {
11611 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11612 if (attr && cu->line_header)
11613 {
11614 unsigned int macro_offset = DW_UNSND (attr);
11615
11616 dwarf_decode_macros (cu, macro_offset, 0);
11617 }
11618 }
11619 }
11620
11621 void
11622 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11623 {
11624 struct type_unit_group *tu_group;
11625 int first_time;
11626 struct attribute *attr;
11627 unsigned int i;
11628 struct signatured_type *sig_type;
11629
11630 gdb_assert (per_cu->is_debug_types);
11631 sig_type = (struct signatured_type *) per_cu;
11632
11633 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11634
11635 /* If we're using .gdb_index (includes -readnow) then
11636 per_cu->type_unit_group may not have been set up yet. */
11637 if (sig_type->type_unit_group == NULL)
11638 sig_type->type_unit_group = get_type_unit_group (this, attr);
11639 tu_group = sig_type->type_unit_group;
11640
11641 /* If we've already processed this stmt_list there's no real need to
11642 do it again, we could fake it and just recreate the part we need
11643 (file name,index -> symtab mapping). If data shows this optimization
11644 is useful we can do it then. */
11645 first_time = tu_group->compunit_symtab == NULL;
11646
11647 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11648 debug info. */
11649 line_header_up lh;
11650 if (attr != NULL)
11651 {
11652 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11653 lh = dwarf_decode_line_header (line_offset, this);
11654 }
11655 if (lh == NULL)
11656 {
11657 if (first_time)
11658 start_symtab ("", NULL, 0);
11659 else
11660 {
11661 gdb_assert (tu_group->symtabs == NULL);
11662 gdb_assert (m_builder == nullptr);
11663 struct compunit_symtab *cust = tu_group->compunit_symtab;
11664 m_builder.reset (new struct buildsym_compunit
11665 (COMPUNIT_OBJFILE (cust), "",
11666 COMPUNIT_DIRNAME (cust),
11667 compunit_language (cust),
11668 0, cust));
11669 }
11670 return;
11671 }
11672
11673 line_header = lh.release ();
11674 line_header_die_owner = die;
11675
11676 if (first_time)
11677 {
11678 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11679
11680 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11681 still initializing it, and our caller (a few levels up)
11682 process_full_type_unit still needs to know if this is the first
11683 time. */
11684
11685 tu_group->num_symtabs = line_header->file_names.size ();
11686 tu_group->symtabs = XNEWVEC (struct symtab *,
11687 line_header->file_names.size ());
11688
11689 for (i = 0; i < line_header->file_names.size (); ++i)
11690 {
11691 file_entry &fe = line_header->file_names[i];
11692
11693 dwarf2_start_subfile (this, fe.name,
11694 fe.include_dir (line_header));
11695 buildsym_compunit *b = get_builder ();
11696 if (b->get_current_subfile ()->symtab == NULL)
11697 {
11698 /* NOTE: start_subfile will recognize when it's been
11699 passed a file it has already seen. So we can't
11700 assume there's a simple mapping from
11701 cu->line_header->file_names to subfiles, plus
11702 cu->line_header->file_names may contain dups. */
11703 b->get_current_subfile ()->symtab
11704 = allocate_symtab (cust, b->get_current_subfile ()->name);
11705 }
11706
11707 fe.symtab = b->get_current_subfile ()->symtab;
11708 tu_group->symtabs[i] = fe.symtab;
11709 }
11710 }
11711 else
11712 {
11713 gdb_assert (m_builder == nullptr);
11714 struct compunit_symtab *cust = tu_group->compunit_symtab;
11715 m_builder.reset (new struct buildsym_compunit
11716 (COMPUNIT_OBJFILE (cust), "",
11717 COMPUNIT_DIRNAME (cust),
11718 compunit_language (cust),
11719 0, cust));
11720
11721 for (i = 0; i < line_header->file_names.size (); ++i)
11722 {
11723 file_entry &fe = line_header->file_names[i];
11724
11725 fe.symtab = tu_group->symtabs[i];
11726 }
11727 }
11728
11729 /* The main symtab is allocated last. Type units don't have DW_AT_name
11730 so they don't have a "real" (so to speak) symtab anyway.
11731 There is later code that will assign the main symtab to all symbols
11732 that don't have one. We need to handle the case of a symbol with a
11733 missing symtab (DW_AT_decl_file) anyway. */
11734 }
11735
11736 /* Process DW_TAG_type_unit.
11737 For TUs we want to skip the first top level sibling if it's not the
11738 actual type being defined by this TU. In this case the first top
11739 level sibling is there to provide context only. */
11740
11741 static void
11742 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11743 {
11744 struct die_info *child_die;
11745
11746 prepare_one_comp_unit (cu, die, language_minimal);
11747
11748 /* Initialize (or reinitialize) the machinery for building symtabs.
11749 We do this before processing child DIEs, so that the line header table
11750 is available for DW_AT_decl_file. */
11751 cu->setup_type_unit_groups (die);
11752
11753 if (die->child != NULL)
11754 {
11755 child_die = die->child;
11756 while (child_die && child_die->tag)
11757 {
11758 process_die (child_die, cu);
11759 child_die = sibling_die (child_die);
11760 }
11761 }
11762 }
11763 \f
11764 /* DWO/DWP files.
11765
11766 http://gcc.gnu.org/wiki/DebugFission
11767 http://gcc.gnu.org/wiki/DebugFissionDWP
11768
11769 To simplify handling of both DWO files ("object" files with the DWARF info)
11770 and DWP files (a file with the DWOs packaged up into one file), we treat
11771 DWP files as having a collection of virtual DWO files. */
11772
11773 static hashval_t
11774 hash_dwo_file (const void *item)
11775 {
11776 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11777 hashval_t hash;
11778
11779 hash = htab_hash_string (dwo_file->dwo_name);
11780 if (dwo_file->comp_dir != NULL)
11781 hash += htab_hash_string (dwo_file->comp_dir);
11782 return hash;
11783 }
11784
11785 static int
11786 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11787 {
11788 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11789 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11790
11791 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11792 return 0;
11793 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11794 return lhs->comp_dir == rhs->comp_dir;
11795 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11796 }
11797
11798 /* Allocate a hash table for DWO files. */
11799
11800 static htab_t
11801 allocate_dwo_file_hash_table (struct objfile *objfile)
11802 {
11803 return htab_create_alloc_ex (41,
11804 hash_dwo_file,
11805 eq_dwo_file,
11806 NULL,
11807 &objfile->objfile_obstack,
11808 hashtab_obstack_allocate,
11809 dummy_obstack_deallocate);
11810 }
11811
11812 /* Lookup DWO file DWO_NAME. */
11813
11814 static void **
11815 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11816 const char *dwo_name,
11817 const char *comp_dir)
11818 {
11819 struct dwo_file find_entry;
11820 void **slot;
11821
11822 if (dwarf2_per_objfile->dwo_files == NULL)
11823 dwarf2_per_objfile->dwo_files
11824 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11825
11826 memset (&find_entry, 0, sizeof (find_entry));
11827 find_entry.dwo_name = dwo_name;
11828 find_entry.comp_dir = comp_dir;
11829 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
11830
11831 return slot;
11832 }
11833
11834 static hashval_t
11835 hash_dwo_unit (const void *item)
11836 {
11837 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11838
11839 /* This drops the top 32 bits of the id, but is ok for a hash. */
11840 return dwo_unit->signature;
11841 }
11842
11843 static int
11844 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11845 {
11846 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11847 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11848
11849 /* The signature is assumed to be unique within the DWO file.
11850 So while object file CU dwo_id's always have the value zero,
11851 that's OK, assuming each object file DWO file has only one CU,
11852 and that's the rule for now. */
11853 return lhs->signature == rhs->signature;
11854 }
11855
11856 /* Allocate a hash table for DWO CUs,TUs.
11857 There is one of these tables for each of CUs,TUs for each DWO file. */
11858
11859 static htab_t
11860 allocate_dwo_unit_table (struct objfile *objfile)
11861 {
11862 /* Start out with a pretty small number.
11863 Generally DWO files contain only one CU and maybe some TUs. */
11864 return htab_create_alloc_ex (3,
11865 hash_dwo_unit,
11866 eq_dwo_unit,
11867 NULL,
11868 &objfile->objfile_obstack,
11869 hashtab_obstack_allocate,
11870 dummy_obstack_deallocate);
11871 }
11872
11873 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11874
11875 struct create_dwo_cu_data
11876 {
11877 struct dwo_file *dwo_file;
11878 struct dwo_unit dwo_unit;
11879 };
11880
11881 /* die_reader_func for create_dwo_cu. */
11882
11883 static void
11884 create_dwo_cu_reader (const struct die_reader_specs *reader,
11885 const gdb_byte *info_ptr,
11886 struct die_info *comp_unit_die,
11887 int has_children,
11888 void *datap)
11889 {
11890 struct dwarf2_cu *cu = reader->cu;
11891 sect_offset sect_off = cu->per_cu->sect_off;
11892 struct dwarf2_section_info *section = cu->per_cu->section;
11893 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11894 struct dwo_file *dwo_file = data->dwo_file;
11895 struct dwo_unit *dwo_unit = &data->dwo_unit;
11896 struct attribute *attr;
11897
11898 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
11899 if (attr == NULL)
11900 {
11901 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11902 " its dwo_id [in module %s]"),
11903 sect_offset_str (sect_off), dwo_file->dwo_name);
11904 return;
11905 }
11906
11907 dwo_unit->dwo_file = dwo_file;
11908 dwo_unit->signature = DW_UNSND (attr);
11909 dwo_unit->section = section;
11910 dwo_unit->sect_off = sect_off;
11911 dwo_unit->length = cu->per_cu->length;
11912
11913 if (dwarf_read_debug)
11914 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11915 sect_offset_str (sect_off),
11916 hex_string (dwo_unit->signature));
11917 }
11918
11919 /* Create the dwo_units for the CUs in a DWO_FILE.
11920 Note: This function processes DWO files only, not DWP files. */
11921
11922 static void
11923 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11924 struct dwo_file &dwo_file, dwarf2_section_info &section,
11925 htab_t &cus_htab)
11926 {
11927 struct objfile *objfile = dwarf2_per_objfile->objfile;
11928 const gdb_byte *info_ptr, *end_ptr;
11929
11930 dwarf2_read_section (objfile, &section);
11931 info_ptr = section.buffer;
11932
11933 if (info_ptr == NULL)
11934 return;
11935
11936 if (dwarf_read_debug)
11937 {
11938 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11939 get_section_name (&section),
11940 get_section_file_name (&section));
11941 }
11942
11943 end_ptr = info_ptr + section.size;
11944 while (info_ptr < end_ptr)
11945 {
11946 struct dwarf2_per_cu_data per_cu;
11947 struct create_dwo_cu_data create_dwo_cu_data;
11948 struct dwo_unit *dwo_unit;
11949 void **slot;
11950 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11951
11952 memset (&create_dwo_cu_data.dwo_unit, 0,
11953 sizeof (create_dwo_cu_data.dwo_unit));
11954 memset (&per_cu, 0, sizeof (per_cu));
11955 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11956 per_cu.is_debug_types = 0;
11957 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11958 per_cu.section = &section;
11959 create_dwo_cu_data.dwo_file = &dwo_file;
11960
11961 init_cutu_and_read_dies_no_follow (
11962 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
11963 info_ptr += per_cu.length;
11964
11965 // If the unit could not be parsed, skip it.
11966 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
11967 continue;
11968
11969 if (cus_htab == NULL)
11970 cus_htab = allocate_dwo_unit_table (objfile);
11971
11972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11973 *dwo_unit = create_dwo_cu_data.dwo_unit;
11974 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
11975 gdb_assert (slot != NULL);
11976 if (*slot != NULL)
11977 {
11978 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11979 sect_offset dup_sect_off = dup_cu->sect_off;
11980
11981 complaint (_("debug cu entry at offset %s is duplicate to"
11982 " the entry at offset %s, signature %s"),
11983 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11984 hex_string (dwo_unit->signature));
11985 }
11986 *slot = (void *)dwo_unit;
11987 }
11988 }
11989
11990 /* DWP file .debug_{cu,tu}_index section format:
11991 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11992
11993 DWP Version 1:
11994
11995 Both index sections have the same format, and serve to map a 64-bit
11996 signature to a set of section numbers. Each section begins with a header,
11997 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11998 indexes, and a pool of 32-bit section numbers. The index sections will be
11999 aligned at 8-byte boundaries in the file.
12000
12001 The index section header consists of:
12002
12003 V, 32 bit version number
12004 -, 32 bits unused
12005 N, 32 bit number of compilation units or type units in the index
12006 M, 32 bit number of slots in the hash table
12007
12008 Numbers are recorded using the byte order of the application binary.
12009
12010 The hash table begins at offset 16 in the section, and consists of an array
12011 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12012 order of the application binary). Unused slots in the hash table are 0.
12013 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12014
12015 The parallel table begins immediately after the hash table
12016 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12017 array of 32-bit indexes (using the byte order of the application binary),
12018 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12019 table contains a 32-bit index into the pool of section numbers. For unused
12020 hash table slots, the corresponding entry in the parallel table will be 0.
12021
12022 The pool of section numbers begins immediately following the hash table
12023 (at offset 16 + 12 * M from the beginning of the section). The pool of
12024 section numbers consists of an array of 32-bit words (using the byte order
12025 of the application binary). Each item in the array is indexed starting
12026 from 0. The hash table entry provides the index of the first section
12027 number in the set. Additional section numbers in the set follow, and the
12028 set is terminated by a 0 entry (section number 0 is not used in ELF).
12029
12030 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12031 section must be the first entry in the set, and the .debug_abbrev.dwo must
12032 be the second entry. Other members of the set may follow in any order.
12033
12034 ---
12035
12036 DWP Version 2:
12037
12038 DWP Version 2 combines all the .debug_info, etc. sections into one,
12039 and the entries in the index tables are now offsets into these sections.
12040 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12041 section.
12042
12043 Index Section Contents:
12044 Header
12045 Hash Table of Signatures dwp_hash_table.hash_table
12046 Parallel Table of Indices dwp_hash_table.unit_table
12047 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12048 Table of Section Sizes dwp_hash_table.v2.sizes
12049
12050 The index section header consists of:
12051
12052 V, 32 bit version number
12053 L, 32 bit number of columns in the table of section offsets
12054 N, 32 bit number of compilation units or type units in the index
12055 M, 32 bit number of slots in the hash table
12056
12057 Numbers are recorded using the byte order of the application binary.
12058
12059 The hash table has the same format as version 1.
12060 The parallel table of indices has the same format as version 1,
12061 except that the entries are origin-1 indices into the table of sections
12062 offsets and the table of section sizes.
12063
12064 The table of offsets begins immediately following the parallel table
12065 (at offset 16 + 12 * M from the beginning of the section). The table is
12066 a two-dimensional array of 32-bit words (using the byte order of the
12067 application binary), with L columns and N+1 rows, in row-major order.
12068 Each row in the array is indexed starting from 0. The first row provides
12069 a key to the remaining rows: each column in this row provides an identifier
12070 for a debug section, and the offsets in the same column of subsequent rows
12071 refer to that section. The section identifiers are:
12072
12073 DW_SECT_INFO 1 .debug_info.dwo
12074 DW_SECT_TYPES 2 .debug_types.dwo
12075 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12076 DW_SECT_LINE 4 .debug_line.dwo
12077 DW_SECT_LOC 5 .debug_loc.dwo
12078 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12079 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12080 DW_SECT_MACRO 8 .debug_macro.dwo
12081
12082 The offsets provided by the CU and TU index sections are the base offsets
12083 for the contributions made by each CU or TU to the corresponding section
12084 in the package file. Each CU and TU header contains an abbrev_offset
12085 field, used to find the abbreviations table for that CU or TU within the
12086 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12087 be interpreted as relative to the base offset given in the index section.
12088 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12089 should be interpreted as relative to the base offset for .debug_line.dwo,
12090 and offsets into other debug sections obtained from DWARF attributes should
12091 also be interpreted as relative to the corresponding base offset.
12092
12093 The table of sizes begins immediately following the table of offsets.
12094 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12095 with L columns and N rows, in row-major order. Each row in the array is
12096 indexed starting from 1 (row 0 is shared by the two tables).
12097
12098 ---
12099
12100 Hash table lookup is handled the same in version 1 and 2:
12101
12102 We assume that N and M will not exceed 2^32 - 1.
12103 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12104
12105 Given a 64-bit compilation unit signature or a type signature S, an entry
12106 in the hash table is located as follows:
12107
12108 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12109 the low-order k bits all set to 1.
12110
12111 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12112
12113 3) If the hash table entry at index H matches the signature, use that
12114 entry. If the hash table entry at index H is unused (all zeroes),
12115 terminate the search: the signature is not present in the table.
12116
12117 4) Let H = (H + H') modulo M. Repeat at Step 3.
12118
12119 Because M > N and H' and M are relatively prime, the search is guaranteed
12120 to stop at an unused slot or find the match. */
12121
12122 /* Create a hash table to map DWO IDs to their CU/TU entry in
12123 .debug_{info,types}.dwo in DWP_FILE.
12124 Returns NULL if there isn't one.
12125 Note: This function processes DWP files only, not DWO files. */
12126
12127 static struct dwp_hash_table *
12128 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12129 struct dwp_file *dwp_file, int is_debug_types)
12130 {
12131 struct objfile *objfile = dwarf2_per_objfile->objfile;
12132 bfd *dbfd = dwp_file->dbfd.get ();
12133 const gdb_byte *index_ptr, *index_end;
12134 struct dwarf2_section_info *index;
12135 uint32_t version, nr_columns, nr_units, nr_slots;
12136 struct dwp_hash_table *htab;
12137
12138 if (is_debug_types)
12139 index = &dwp_file->sections.tu_index;
12140 else
12141 index = &dwp_file->sections.cu_index;
12142
12143 if (dwarf2_section_empty_p (index))
12144 return NULL;
12145 dwarf2_read_section (objfile, index);
12146
12147 index_ptr = index->buffer;
12148 index_end = index_ptr + index->size;
12149
12150 version = read_4_bytes (dbfd, index_ptr);
12151 index_ptr += 4;
12152 if (version == 2)
12153 nr_columns = read_4_bytes (dbfd, index_ptr);
12154 else
12155 nr_columns = 0;
12156 index_ptr += 4;
12157 nr_units = read_4_bytes (dbfd, index_ptr);
12158 index_ptr += 4;
12159 nr_slots = read_4_bytes (dbfd, index_ptr);
12160 index_ptr += 4;
12161
12162 if (version != 1 && version != 2)
12163 {
12164 error (_("Dwarf Error: unsupported DWP file version (%s)"
12165 " [in module %s]"),
12166 pulongest (version), dwp_file->name);
12167 }
12168 if (nr_slots != (nr_slots & -nr_slots))
12169 {
12170 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12171 " is not power of 2 [in module %s]"),
12172 pulongest (nr_slots), dwp_file->name);
12173 }
12174
12175 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12176 htab->version = version;
12177 htab->nr_columns = nr_columns;
12178 htab->nr_units = nr_units;
12179 htab->nr_slots = nr_slots;
12180 htab->hash_table = index_ptr;
12181 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12182
12183 /* Exit early if the table is empty. */
12184 if (nr_slots == 0 || nr_units == 0
12185 || (version == 2 && nr_columns == 0))
12186 {
12187 /* All must be zero. */
12188 if (nr_slots != 0 || nr_units != 0
12189 || (version == 2 && nr_columns != 0))
12190 {
12191 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12192 " all zero [in modules %s]"),
12193 dwp_file->name);
12194 }
12195 return htab;
12196 }
12197
12198 if (version == 1)
12199 {
12200 htab->section_pool.v1.indices =
12201 htab->unit_table + sizeof (uint32_t) * nr_slots;
12202 /* It's harder to decide whether the section is too small in v1.
12203 V1 is deprecated anyway so we punt. */
12204 }
12205 else
12206 {
12207 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12208 int *ids = htab->section_pool.v2.section_ids;
12209 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12210 /* Reverse map for error checking. */
12211 int ids_seen[DW_SECT_MAX + 1];
12212 int i;
12213
12214 if (nr_columns < 2)
12215 {
12216 error (_("Dwarf Error: bad DWP hash table, too few columns"
12217 " in section table [in module %s]"),
12218 dwp_file->name);
12219 }
12220 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12221 {
12222 error (_("Dwarf Error: bad DWP hash table, too many columns"
12223 " in section table [in module %s]"),
12224 dwp_file->name);
12225 }
12226 memset (ids, 255, sizeof_ids);
12227 memset (ids_seen, 255, sizeof (ids_seen));
12228 for (i = 0; i < nr_columns; ++i)
12229 {
12230 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12231
12232 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12233 {
12234 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12235 " in section table [in module %s]"),
12236 id, dwp_file->name);
12237 }
12238 if (ids_seen[id] != -1)
12239 {
12240 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12241 " id %d in section table [in module %s]"),
12242 id, dwp_file->name);
12243 }
12244 ids_seen[id] = i;
12245 ids[i] = id;
12246 }
12247 /* Must have exactly one info or types section. */
12248 if (((ids_seen[DW_SECT_INFO] != -1)
12249 + (ids_seen[DW_SECT_TYPES] != -1))
12250 != 1)
12251 {
12252 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12253 " DWO info/types section [in module %s]"),
12254 dwp_file->name);
12255 }
12256 /* Must have an abbrev section. */
12257 if (ids_seen[DW_SECT_ABBREV] == -1)
12258 {
12259 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12260 " section [in module %s]"),
12261 dwp_file->name);
12262 }
12263 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12264 htab->section_pool.v2.sizes =
12265 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12266 * nr_units * nr_columns);
12267 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12268 * nr_units * nr_columns))
12269 > index_end)
12270 {
12271 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12272 " [in module %s]"),
12273 dwp_file->name);
12274 }
12275 }
12276
12277 return htab;
12278 }
12279
12280 /* Update SECTIONS with the data from SECTP.
12281
12282 This function is like the other "locate" section routines that are
12283 passed to bfd_map_over_sections, but in this context the sections to
12284 read comes from the DWP V1 hash table, not the full ELF section table.
12285
12286 The result is non-zero for success, or zero if an error was found. */
12287
12288 static int
12289 locate_v1_virtual_dwo_sections (asection *sectp,
12290 struct virtual_v1_dwo_sections *sections)
12291 {
12292 const struct dwop_section_names *names = &dwop_section_names;
12293
12294 if (section_is_p (sectp->name, &names->abbrev_dwo))
12295 {
12296 /* There can be only one. */
12297 if (sections->abbrev.s.section != NULL)
12298 return 0;
12299 sections->abbrev.s.section = sectp;
12300 sections->abbrev.size = bfd_get_section_size (sectp);
12301 }
12302 else if (section_is_p (sectp->name, &names->info_dwo)
12303 || section_is_p (sectp->name, &names->types_dwo))
12304 {
12305 /* There can be only one. */
12306 if (sections->info_or_types.s.section != NULL)
12307 return 0;
12308 sections->info_or_types.s.section = sectp;
12309 sections->info_or_types.size = bfd_get_section_size (sectp);
12310 }
12311 else if (section_is_p (sectp->name, &names->line_dwo))
12312 {
12313 /* There can be only one. */
12314 if (sections->line.s.section != NULL)
12315 return 0;
12316 sections->line.s.section = sectp;
12317 sections->line.size = bfd_get_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->loc_dwo))
12320 {
12321 /* There can be only one. */
12322 if (sections->loc.s.section != NULL)
12323 return 0;
12324 sections->loc.s.section = sectp;
12325 sections->loc.size = bfd_get_section_size (sectp);
12326 }
12327 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12328 {
12329 /* There can be only one. */
12330 if (sections->macinfo.s.section != NULL)
12331 return 0;
12332 sections->macinfo.s.section = sectp;
12333 sections->macinfo.size = bfd_get_section_size (sectp);
12334 }
12335 else if (section_is_p (sectp->name, &names->macro_dwo))
12336 {
12337 /* There can be only one. */
12338 if (sections->macro.s.section != NULL)
12339 return 0;
12340 sections->macro.s.section = sectp;
12341 sections->macro.size = bfd_get_section_size (sectp);
12342 }
12343 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12344 {
12345 /* There can be only one. */
12346 if (sections->str_offsets.s.section != NULL)
12347 return 0;
12348 sections->str_offsets.s.section = sectp;
12349 sections->str_offsets.size = bfd_get_section_size (sectp);
12350 }
12351 else
12352 {
12353 /* No other kind of section is valid. */
12354 return 0;
12355 }
12356
12357 return 1;
12358 }
12359
12360 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12361 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12362 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12363 This is for DWP version 1 files. */
12364
12365 static struct dwo_unit *
12366 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12367 struct dwp_file *dwp_file,
12368 uint32_t unit_index,
12369 const char *comp_dir,
12370 ULONGEST signature, int is_debug_types)
12371 {
12372 struct objfile *objfile = dwarf2_per_objfile->objfile;
12373 const struct dwp_hash_table *dwp_htab =
12374 is_debug_types ? dwp_file->tus : dwp_file->cus;
12375 bfd *dbfd = dwp_file->dbfd.get ();
12376 const char *kind = is_debug_types ? "TU" : "CU";
12377 struct dwo_file *dwo_file;
12378 struct dwo_unit *dwo_unit;
12379 struct virtual_v1_dwo_sections sections;
12380 void **dwo_file_slot;
12381 int i;
12382
12383 gdb_assert (dwp_file->version == 1);
12384
12385 if (dwarf_read_debug)
12386 {
12387 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12388 kind,
12389 pulongest (unit_index), hex_string (signature),
12390 dwp_file->name);
12391 }
12392
12393 /* Fetch the sections of this DWO unit.
12394 Put a limit on the number of sections we look for so that bad data
12395 doesn't cause us to loop forever. */
12396
12397 #define MAX_NR_V1_DWO_SECTIONS \
12398 (1 /* .debug_info or .debug_types */ \
12399 + 1 /* .debug_abbrev */ \
12400 + 1 /* .debug_line */ \
12401 + 1 /* .debug_loc */ \
12402 + 1 /* .debug_str_offsets */ \
12403 + 1 /* .debug_macro or .debug_macinfo */ \
12404 + 1 /* trailing zero */)
12405
12406 memset (&sections, 0, sizeof (sections));
12407
12408 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12409 {
12410 asection *sectp;
12411 uint32_t section_nr =
12412 read_4_bytes (dbfd,
12413 dwp_htab->section_pool.v1.indices
12414 + (unit_index + i) * sizeof (uint32_t));
12415
12416 if (section_nr == 0)
12417 break;
12418 if (section_nr >= dwp_file->num_sections)
12419 {
12420 error (_("Dwarf Error: bad DWP hash table, section number too large"
12421 " [in module %s]"),
12422 dwp_file->name);
12423 }
12424
12425 sectp = dwp_file->elf_sections[section_nr];
12426 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12427 {
12428 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12429 " [in module %s]"),
12430 dwp_file->name);
12431 }
12432 }
12433
12434 if (i < 2
12435 || dwarf2_section_empty_p (&sections.info_or_types)
12436 || dwarf2_section_empty_p (&sections.abbrev))
12437 {
12438 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12439 " [in module %s]"),
12440 dwp_file->name);
12441 }
12442 if (i == MAX_NR_V1_DWO_SECTIONS)
12443 {
12444 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12445 " [in module %s]"),
12446 dwp_file->name);
12447 }
12448
12449 /* It's easier for the rest of the code if we fake a struct dwo_file and
12450 have dwo_unit "live" in that. At least for now.
12451
12452 The DWP file can be made up of a random collection of CUs and TUs.
12453 However, for each CU + set of TUs that came from the same original DWO
12454 file, we can combine them back into a virtual DWO file to save space
12455 (fewer struct dwo_file objects to allocate). Remember that for really
12456 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12457
12458 std::string virtual_dwo_name =
12459 string_printf ("virtual-dwo/%d-%d-%d-%d",
12460 get_section_id (&sections.abbrev),
12461 get_section_id (&sections.line),
12462 get_section_id (&sections.loc),
12463 get_section_id (&sections.str_offsets));
12464 /* Can we use an existing virtual DWO file? */
12465 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12466 virtual_dwo_name.c_str (),
12467 comp_dir);
12468 /* Create one if necessary. */
12469 if (*dwo_file_slot == NULL)
12470 {
12471 if (dwarf_read_debug)
12472 {
12473 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12474 virtual_dwo_name.c_str ());
12475 }
12476 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12477 dwo_file->dwo_name
12478 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12479 virtual_dwo_name.c_str (),
12480 virtual_dwo_name.size ());
12481 dwo_file->comp_dir = comp_dir;
12482 dwo_file->sections.abbrev = sections.abbrev;
12483 dwo_file->sections.line = sections.line;
12484 dwo_file->sections.loc = sections.loc;
12485 dwo_file->sections.macinfo = sections.macinfo;
12486 dwo_file->sections.macro = sections.macro;
12487 dwo_file->sections.str_offsets = sections.str_offsets;
12488 /* The "str" section is global to the entire DWP file. */
12489 dwo_file->sections.str = dwp_file->sections.str;
12490 /* The info or types section is assigned below to dwo_unit,
12491 there's no need to record it in dwo_file.
12492 Also, we can't simply record type sections in dwo_file because
12493 we record a pointer into the vector in dwo_unit. As we collect more
12494 types we'll grow the vector and eventually have to reallocate space
12495 for it, invalidating all copies of pointers into the previous
12496 contents. */
12497 *dwo_file_slot = dwo_file;
12498 }
12499 else
12500 {
12501 if (dwarf_read_debug)
12502 {
12503 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12504 virtual_dwo_name.c_str ());
12505 }
12506 dwo_file = (struct dwo_file *) *dwo_file_slot;
12507 }
12508
12509 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12510 dwo_unit->dwo_file = dwo_file;
12511 dwo_unit->signature = signature;
12512 dwo_unit->section =
12513 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12514 *dwo_unit->section = sections.info_or_types;
12515 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12516
12517 return dwo_unit;
12518 }
12519
12520 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12521 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12522 piece within that section used by a TU/CU, return a virtual section
12523 of just that piece. */
12524
12525 static struct dwarf2_section_info
12526 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12527 struct dwarf2_section_info *section,
12528 bfd_size_type offset, bfd_size_type size)
12529 {
12530 struct dwarf2_section_info result;
12531 asection *sectp;
12532
12533 gdb_assert (section != NULL);
12534 gdb_assert (!section->is_virtual);
12535
12536 memset (&result, 0, sizeof (result));
12537 result.s.containing_section = section;
12538 result.is_virtual = 1;
12539
12540 if (size == 0)
12541 return result;
12542
12543 sectp = get_section_bfd_section (section);
12544
12545 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12546 bounds of the real section. This is a pretty-rare event, so just
12547 flag an error (easier) instead of a warning and trying to cope. */
12548 if (sectp == NULL
12549 || offset + size > bfd_get_section_size (sectp))
12550 {
12551 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12552 " in section %s [in module %s]"),
12553 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
12554 objfile_name (dwarf2_per_objfile->objfile));
12555 }
12556
12557 result.virtual_offset = offset;
12558 result.size = size;
12559 return result;
12560 }
12561
12562 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12563 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12564 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12565 This is for DWP version 2 files. */
12566
12567 static struct dwo_unit *
12568 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12569 struct dwp_file *dwp_file,
12570 uint32_t unit_index,
12571 const char *comp_dir,
12572 ULONGEST signature, int is_debug_types)
12573 {
12574 struct objfile *objfile = dwarf2_per_objfile->objfile;
12575 const struct dwp_hash_table *dwp_htab =
12576 is_debug_types ? dwp_file->tus : dwp_file->cus;
12577 bfd *dbfd = dwp_file->dbfd.get ();
12578 const char *kind = is_debug_types ? "TU" : "CU";
12579 struct dwo_file *dwo_file;
12580 struct dwo_unit *dwo_unit;
12581 struct virtual_v2_dwo_sections sections;
12582 void **dwo_file_slot;
12583 int i;
12584
12585 gdb_assert (dwp_file->version == 2);
12586
12587 if (dwarf_read_debug)
12588 {
12589 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12590 kind,
12591 pulongest (unit_index), hex_string (signature),
12592 dwp_file->name);
12593 }
12594
12595 /* Fetch the section offsets of this DWO unit. */
12596
12597 memset (&sections, 0, sizeof (sections));
12598
12599 for (i = 0; i < dwp_htab->nr_columns; ++i)
12600 {
12601 uint32_t offset = read_4_bytes (dbfd,
12602 dwp_htab->section_pool.v2.offsets
12603 + (((unit_index - 1) * dwp_htab->nr_columns
12604 + i)
12605 * sizeof (uint32_t)));
12606 uint32_t size = read_4_bytes (dbfd,
12607 dwp_htab->section_pool.v2.sizes
12608 + (((unit_index - 1) * dwp_htab->nr_columns
12609 + i)
12610 * sizeof (uint32_t)));
12611
12612 switch (dwp_htab->section_pool.v2.section_ids[i])
12613 {
12614 case DW_SECT_INFO:
12615 case DW_SECT_TYPES:
12616 sections.info_or_types_offset = offset;
12617 sections.info_or_types_size = size;
12618 break;
12619 case DW_SECT_ABBREV:
12620 sections.abbrev_offset = offset;
12621 sections.abbrev_size = size;
12622 break;
12623 case DW_SECT_LINE:
12624 sections.line_offset = offset;
12625 sections.line_size = size;
12626 break;
12627 case DW_SECT_LOC:
12628 sections.loc_offset = offset;
12629 sections.loc_size = size;
12630 break;
12631 case DW_SECT_STR_OFFSETS:
12632 sections.str_offsets_offset = offset;
12633 sections.str_offsets_size = size;
12634 break;
12635 case DW_SECT_MACINFO:
12636 sections.macinfo_offset = offset;
12637 sections.macinfo_size = size;
12638 break;
12639 case DW_SECT_MACRO:
12640 sections.macro_offset = offset;
12641 sections.macro_size = size;
12642 break;
12643 }
12644 }
12645
12646 /* It's easier for the rest of the code if we fake a struct dwo_file and
12647 have dwo_unit "live" in that. At least for now.
12648
12649 The DWP file can be made up of a random collection of CUs and TUs.
12650 However, for each CU + set of TUs that came from the same original DWO
12651 file, we can combine them back into a virtual DWO file to save space
12652 (fewer struct dwo_file objects to allocate). Remember that for really
12653 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12654
12655 std::string virtual_dwo_name =
12656 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12657 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12658 (long) (sections.line_size ? sections.line_offset : 0),
12659 (long) (sections.loc_size ? sections.loc_offset : 0),
12660 (long) (sections.str_offsets_size
12661 ? sections.str_offsets_offset : 0));
12662 /* Can we use an existing virtual DWO file? */
12663 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12664 virtual_dwo_name.c_str (),
12665 comp_dir);
12666 /* Create one if necessary. */
12667 if (*dwo_file_slot == NULL)
12668 {
12669 if (dwarf_read_debug)
12670 {
12671 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12672 virtual_dwo_name.c_str ());
12673 }
12674 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
12675 dwo_file->dwo_name
12676 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
12677 virtual_dwo_name.c_str (),
12678 virtual_dwo_name.size ());
12679 dwo_file->comp_dir = comp_dir;
12680 dwo_file->sections.abbrev =
12681 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12682 sections.abbrev_offset, sections.abbrev_size);
12683 dwo_file->sections.line =
12684 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12685 sections.line_offset, sections.line_size);
12686 dwo_file->sections.loc =
12687 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12688 sections.loc_offset, sections.loc_size);
12689 dwo_file->sections.macinfo =
12690 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12691 sections.macinfo_offset, sections.macinfo_size);
12692 dwo_file->sections.macro =
12693 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12694 sections.macro_offset, sections.macro_size);
12695 dwo_file->sections.str_offsets =
12696 create_dwp_v2_section (dwarf2_per_objfile,
12697 &dwp_file->sections.str_offsets,
12698 sections.str_offsets_offset,
12699 sections.str_offsets_size);
12700 /* The "str" section is global to the entire DWP file. */
12701 dwo_file->sections.str = dwp_file->sections.str;
12702 /* The info or types section is assigned below to dwo_unit,
12703 there's no need to record it in dwo_file.
12704 Also, we can't simply record type sections in dwo_file because
12705 we record a pointer into the vector in dwo_unit. As we collect more
12706 types we'll grow the vector and eventually have to reallocate space
12707 for it, invalidating all copies of pointers into the previous
12708 contents. */
12709 *dwo_file_slot = dwo_file;
12710 }
12711 else
12712 {
12713 if (dwarf_read_debug)
12714 {
12715 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12716 virtual_dwo_name.c_str ());
12717 }
12718 dwo_file = (struct dwo_file *) *dwo_file_slot;
12719 }
12720
12721 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12722 dwo_unit->dwo_file = dwo_file;
12723 dwo_unit->signature = signature;
12724 dwo_unit->section =
12725 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12726 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12727 is_debug_types
12728 ? &dwp_file->sections.types
12729 : &dwp_file->sections.info,
12730 sections.info_or_types_offset,
12731 sections.info_or_types_size);
12732 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12733
12734 return dwo_unit;
12735 }
12736
12737 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12738 Returns NULL if the signature isn't found. */
12739
12740 static struct dwo_unit *
12741 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12742 struct dwp_file *dwp_file, const char *comp_dir,
12743 ULONGEST signature, int is_debug_types)
12744 {
12745 const struct dwp_hash_table *dwp_htab =
12746 is_debug_types ? dwp_file->tus : dwp_file->cus;
12747 bfd *dbfd = dwp_file->dbfd.get ();
12748 uint32_t mask = dwp_htab->nr_slots - 1;
12749 uint32_t hash = signature & mask;
12750 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12751 unsigned int i;
12752 void **slot;
12753 struct dwo_unit find_dwo_cu;
12754
12755 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12756 find_dwo_cu.signature = signature;
12757 slot = htab_find_slot (is_debug_types
12758 ? dwp_file->loaded_tus
12759 : dwp_file->loaded_cus,
12760 &find_dwo_cu, INSERT);
12761
12762 if (*slot != NULL)
12763 return (struct dwo_unit *) *slot;
12764
12765 /* Use a for loop so that we don't loop forever on bad debug info. */
12766 for (i = 0; i < dwp_htab->nr_slots; ++i)
12767 {
12768 ULONGEST signature_in_table;
12769
12770 signature_in_table =
12771 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12772 if (signature_in_table == signature)
12773 {
12774 uint32_t unit_index =
12775 read_4_bytes (dbfd,
12776 dwp_htab->unit_table + hash * sizeof (uint32_t));
12777
12778 if (dwp_file->version == 1)
12779 {
12780 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12781 dwp_file, unit_index,
12782 comp_dir, signature,
12783 is_debug_types);
12784 }
12785 else
12786 {
12787 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12788 dwp_file, unit_index,
12789 comp_dir, signature,
12790 is_debug_types);
12791 }
12792 return (struct dwo_unit *) *slot;
12793 }
12794 if (signature_in_table == 0)
12795 return NULL;
12796 hash = (hash + hash2) & mask;
12797 }
12798
12799 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12800 " [in module %s]"),
12801 dwp_file->name);
12802 }
12803
12804 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12805 Open the file specified by FILE_NAME and hand it off to BFD for
12806 preliminary analysis. Return a newly initialized bfd *, which
12807 includes a canonicalized copy of FILE_NAME.
12808 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12809 SEARCH_CWD is true if the current directory is to be searched.
12810 It will be searched before debug-file-directory.
12811 If successful, the file is added to the bfd include table of the
12812 objfile's bfd (see gdb_bfd_record_inclusion).
12813 If unable to find/open the file, return NULL.
12814 NOTE: This function is derived from symfile_bfd_open. */
12815
12816 static gdb_bfd_ref_ptr
12817 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12818 const char *file_name, int is_dwp, int search_cwd)
12819 {
12820 int desc;
12821 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12822 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12823 to debug_file_directory. */
12824 const char *search_path;
12825 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12826
12827 gdb::unique_xmalloc_ptr<char> search_path_holder;
12828 if (search_cwd)
12829 {
12830 if (*debug_file_directory != '\0')
12831 {
12832 search_path_holder.reset (concat (".", dirname_separator_string,
12833 debug_file_directory,
12834 (char *) NULL));
12835 search_path = search_path_holder.get ();
12836 }
12837 else
12838 search_path = ".";
12839 }
12840 else
12841 search_path = debug_file_directory;
12842
12843 openp_flags flags = OPF_RETURN_REALPATH;
12844 if (is_dwp)
12845 flags |= OPF_SEARCH_IN_PATH;
12846
12847 gdb::unique_xmalloc_ptr<char> absolute_name;
12848 desc = openp (search_path, flags, file_name,
12849 O_RDONLY | O_BINARY, &absolute_name);
12850 if (desc < 0)
12851 return NULL;
12852
12853 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12854 gnutarget, desc));
12855 if (sym_bfd == NULL)
12856 return NULL;
12857 bfd_set_cacheable (sym_bfd.get (), 1);
12858
12859 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12860 return NULL;
12861
12862 /* Success. Record the bfd as having been included by the objfile's bfd.
12863 This is important because things like demangled_names_hash lives in the
12864 objfile's per_bfd space and may have references to things like symbol
12865 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12866 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12867
12868 return sym_bfd;
12869 }
12870
12871 /* Try to open DWO file FILE_NAME.
12872 COMP_DIR is the DW_AT_comp_dir attribute.
12873 The result is the bfd handle of the file.
12874 If there is a problem finding or opening the file, return NULL.
12875 Upon success, the canonicalized path of the file is stored in the bfd,
12876 same as symfile_bfd_open. */
12877
12878 static gdb_bfd_ref_ptr
12879 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12880 const char *file_name, const char *comp_dir)
12881 {
12882 if (IS_ABSOLUTE_PATH (file_name))
12883 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12884 0 /*is_dwp*/, 0 /*search_cwd*/);
12885
12886 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12887
12888 if (comp_dir != NULL)
12889 {
12890 char *path_to_try = concat (comp_dir, SLASH_STRING,
12891 file_name, (char *) NULL);
12892
12893 /* NOTE: If comp_dir is a relative path, this will also try the
12894 search path, which seems useful. */
12895 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12896 path_to_try,
12897 0 /*is_dwp*/,
12898 1 /*search_cwd*/));
12899 xfree (path_to_try);
12900 if (abfd != NULL)
12901 return abfd;
12902 }
12903
12904 /* That didn't work, try debug-file-directory, which, despite its name,
12905 is a list of paths. */
12906
12907 if (*debug_file_directory == '\0')
12908 return NULL;
12909
12910 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12911 0 /*is_dwp*/, 1 /*search_cwd*/);
12912 }
12913
12914 /* This function is mapped across the sections and remembers the offset and
12915 size of each of the DWO debugging sections we are interested in. */
12916
12917 static void
12918 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12919 {
12920 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12921 const struct dwop_section_names *names = &dwop_section_names;
12922
12923 if (section_is_p (sectp->name, &names->abbrev_dwo))
12924 {
12925 dwo_sections->abbrev.s.section = sectp;
12926 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
12927 }
12928 else if (section_is_p (sectp->name, &names->info_dwo))
12929 {
12930 dwo_sections->info.s.section = sectp;
12931 dwo_sections->info.size = bfd_get_section_size (sectp);
12932 }
12933 else if (section_is_p (sectp->name, &names->line_dwo))
12934 {
12935 dwo_sections->line.s.section = sectp;
12936 dwo_sections->line.size = bfd_get_section_size (sectp);
12937 }
12938 else if (section_is_p (sectp->name, &names->loc_dwo))
12939 {
12940 dwo_sections->loc.s.section = sectp;
12941 dwo_sections->loc.size = bfd_get_section_size (sectp);
12942 }
12943 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12944 {
12945 dwo_sections->macinfo.s.section = sectp;
12946 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
12947 }
12948 else if (section_is_p (sectp->name, &names->macro_dwo))
12949 {
12950 dwo_sections->macro.s.section = sectp;
12951 dwo_sections->macro.size = bfd_get_section_size (sectp);
12952 }
12953 else if (section_is_p (sectp->name, &names->str_dwo))
12954 {
12955 dwo_sections->str.s.section = sectp;
12956 dwo_sections->str.size = bfd_get_section_size (sectp);
12957 }
12958 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12959 {
12960 dwo_sections->str_offsets.s.section = sectp;
12961 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
12962 }
12963 else if (section_is_p (sectp->name, &names->types_dwo))
12964 {
12965 struct dwarf2_section_info type_section;
12966
12967 memset (&type_section, 0, sizeof (type_section));
12968 type_section.s.section = sectp;
12969 type_section.size = bfd_get_section_size (sectp);
12970 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
12971 &type_section);
12972 }
12973 }
12974
12975 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12976 by PER_CU. This is for the non-DWP case.
12977 The result is NULL if DWO_NAME can't be found. */
12978
12979 static struct dwo_file *
12980 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12981 const char *dwo_name, const char *comp_dir)
12982 {
12983 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12984 struct objfile *objfile = dwarf2_per_objfile->objfile;
12985
12986 gdb_bfd_ref_ptr dbfd (open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir));
12987 if (dbfd == NULL)
12988 {
12989 if (dwarf_read_debug)
12990 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12991 return NULL;
12992 }
12993
12994 /* We use a unique pointer here, despite the obstack allocation,
12995 because a dwo_file needs some cleanup if it is abandoned. */
12996 dwo_file_up dwo_file (OBSTACK_ZALLOC (&objfile->objfile_obstack,
12997 struct dwo_file));
12998 dwo_file->dwo_name = dwo_name;
12999 dwo_file->comp_dir = comp_dir;
13000 dwo_file->dbfd = dbfd.release ();
13001
13002 bfd_map_over_sections (dwo_file->dbfd, dwarf2_locate_dwo_sections,
13003 &dwo_file->sections);
13004
13005 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13006 dwo_file->cus);
13007
13008 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13009 dwo_file->sections.types, dwo_file->tus);
13010
13011 if (dwarf_read_debug)
13012 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13013
13014 return dwo_file.release ();
13015 }
13016
13017 /* This function is mapped across the sections and remembers the offset and
13018 size of each of the DWP debugging sections common to version 1 and 2 that
13019 we are interested in. */
13020
13021 static void
13022 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13023 void *dwp_file_ptr)
13024 {
13025 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13026 const struct dwop_section_names *names = &dwop_section_names;
13027 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13028
13029 /* Record the ELF section number for later lookup: this is what the
13030 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13031 gdb_assert (elf_section_nr < dwp_file->num_sections);
13032 dwp_file->elf_sections[elf_section_nr] = sectp;
13033
13034 /* Look for specific sections that we need. */
13035 if (section_is_p (sectp->name, &names->str_dwo))
13036 {
13037 dwp_file->sections.str.s.section = sectp;
13038 dwp_file->sections.str.size = bfd_get_section_size (sectp);
13039 }
13040 else if (section_is_p (sectp->name, &names->cu_index))
13041 {
13042 dwp_file->sections.cu_index.s.section = sectp;
13043 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
13044 }
13045 else if (section_is_p (sectp->name, &names->tu_index))
13046 {
13047 dwp_file->sections.tu_index.s.section = sectp;
13048 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
13049 }
13050 }
13051
13052 /* This function is mapped across the sections and remembers the offset and
13053 size of each of the DWP version 2 debugging sections that we are interested
13054 in. This is split into a separate function because we don't know if we
13055 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13056
13057 static void
13058 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13059 {
13060 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13061 const struct dwop_section_names *names = &dwop_section_names;
13062 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13063
13064 /* Record the ELF section number for later lookup: this is what the
13065 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13066 gdb_assert (elf_section_nr < dwp_file->num_sections);
13067 dwp_file->elf_sections[elf_section_nr] = sectp;
13068
13069 /* Look for specific sections that we need. */
13070 if (section_is_p (sectp->name, &names->abbrev_dwo))
13071 {
13072 dwp_file->sections.abbrev.s.section = sectp;
13073 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
13074 }
13075 else if (section_is_p (sectp->name, &names->info_dwo))
13076 {
13077 dwp_file->sections.info.s.section = sectp;
13078 dwp_file->sections.info.size = bfd_get_section_size (sectp);
13079 }
13080 else if (section_is_p (sectp->name, &names->line_dwo))
13081 {
13082 dwp_file->sections.line.s.section = sectp;
13083 dwp_file->sections.line.size = bfd_get_section_size (sectp);
13084 }
13085 else if (section_is_p (sectp->name, &names->loc_dwo))
13086 {
13087 dwp_file->sections.loc.s.section = sectp;
13088 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
13089 }
13090 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13091 {
13092 dwp_file->sections.macinfo.s.section = sectp;
13093 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
13094 }
13095 else if (section_is_p (sectp->name, &names->macro_dwo))
13096 {
13097 dwp_file->sections.macro.s.section = sectp;
13098 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
13099 }
13100 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13101 {
13102 dwp_file->sections.str_offsets.s.section = sectp;
13103 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
13104 }
13105 else if (section_is_p (sectp->name, &names->types_dwo))
13106 {
13107 dwp_file->sections.types.s.section = sectp;
13108 dwp_file->sections.types.size = bfd_get_section_size (sectp);
13109 }
13110 }
13111
13112 /* Hash function for dwp_file loaded CUs/TUs. */
13113
13114 static hashval_t
13115 hash_dwp_loaded_cutus (const void *item)
13116 {
13117 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13118
13119 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13120 return dwo_unit->signature;
13121 }
13122
13123 /* Equality function for dwp_file loaded CUs/TUs. */
13124
13125 static int
13126 eq_dwp_loaded_cutus (const void *a, const void *b)
13127 {
13128 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13129 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13130
13131 return dua->signature == dub->signature;
13132 }
13133
13134 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13135
13136 static htab_t
13137 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13138 {
13139 return htab_create_alloc_ex (3,
13140 hash_dwp_loaded_cutus,
13141 eq_dwp_loaded_cutus,
13142 NULL,
13143 &objfile->objfile_obstack,
13144 hashtab_obstack_allocate,
13145 dummy_obstack_deallocate);
13146 }
13147
13148 /* Try to open DWP file FILE_NAME.
13149 The result is the bfd handle of the file.
13150 If there is a problem finding or opening the file, return NULL.
13151 Upon success, the canonicalized path of the file is stored in the bfd,
13152 same as symfile_bfd_open. */
13153
13154 static gdb_bfd_ref_ptr
13155 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13156 const char *file_name)
13157 {
13158 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13159 1 /*is_dwp*/,
13160 1 /*search_cwd*/));
13161 if (abfd != NULL)
13162 return abfd;
13163
13164 /* Work around upstream bug 15652.
13165 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13166 [Whether that's a "bug" is debatable, but it is getting in our way.]
13167 We have no real idea where the dwp file is, because gdb's realpath-ing
13168 of the executable's path may have discarded the needed info.
13169 [IWBN if the dwp file name was recorded in the executable, akin to
13170 .gnu_debuglink, but that doesn't exist yet.]
13171 Strip the directory from FILE_NAME and search again. */
13172 if (*debug_file_directory != '\0')
13173 {
13174 /* Don't implicitly search the current directory here.
13175 If the user wants to search "." to handle this case,
13176 it must be added to debug-file-directory. */
13177 return try_open_dwop_file (dwarf2_per_objfile,
13178 lbasename (file_name), 1 /*is_dwp*/,
13179 0 /*search_cwd*/);
13180 }
13181
13182 return NULL;
13183 }
13184
13185 /* Initialize the use of the DWP file for the current objfile.
13186 By convention the name of the DWP file is ${objfile}.dwp.
13187 The result is NULL if it can't be found. */
13188
13189 static std::unique_ptr<struct dwp_file>
13190 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13191 {
13192 struct objfile *objfile = dwarf2_per_objfile->objfile;
13193
13194 /* Try to find first .dwp for the binary file before any symbolic links
13195 resolving. */
13196
13197 /* If the objfile is a debug file, find the name of the real binary
13198 file and get the name of dwp file from there. */
13199 std::string dwp_name;
13200 if (objfile->separate_debug_objfile_backlink != NULL)
13201 {
13202 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13203 const char *backlink_basename = lbasename (backlink->original_name);
13204
13205 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13206 }
13207 else
13208 dwp_name = objfile->original_name;
13209
13210 dwp_name += ".dwp";
13211
13212 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13213 if (dbfd == NULL
13214 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13215 {
13216 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13217 dwp_name = objfile_name (objfile);
13218 dwp_name += ".dwp";
13219 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13220 }
13221
13222 if (dbfd == NULL)
13223 {
13224 if (dwarf_read_debug)
13225 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13226 return std::unique_ptr<dwp_file> ();
13227 }
13228
13229 const char *name = bfd_get_filename (dbfd.get ());
13230 std::unique_ptr<struct dwp_file> dwp_file
13231 (new struct dwp_file (name, std::move (dbfd)));
13232
13233 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13234 dwp_file->elf_sections =
13235 OBSTACK_CALLOC (&objfile->objfile_obstack,
13236 dwp_file->num_sections, asection *);
13237
13238 bfd_map_over_sections (dwp_file->dbfd.get (),
13239 dwarf2_locate_common_dwp_sections,
13240 dwp_file.get ());
13241
13242 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13243 0);
13244
13245 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13246 1);
13247
13248 /* The DWP file version is stored in the hash table. Oh well. */
13249 if (dwp_file->cus && dwp_file->tus
13250 && dwp_file->cus->version != dwp_file->tus->version)
13251 {
13252 /* Technically speaking, we should try to limp along, but this is
13253 pretty bizarre. We use pulongest here because that's the established
13254 portability solution (e.g, we cannot use %u for uint32_t). */
13255 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13256 " TU version %s [in DWP file %s]"),
13257 pulongest (dwp_file->cus->version),
13258 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13259 }
13260
13261 if (dwp_file->cus)
13262 dwp_file->version = dwp_file->cus->version;
13263 else if (dwp_file->tus)
13264 dwp_file->version = dwp_file->tus->version;
13265 else
13266 dwp_file->version = 2;
13267
13268 if (dwp_file->version == 2)
13269 bfd_map_over_sections (dwp_file->dbfd.get (),
13270 dwarf2_locate_v2_dwp_sections,
13271 dwp_file.get ());
13272
13273 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13274 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13275
13276 if (dwarf_read_debug)
13277 {
13278 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13279 fprintf_unfiltered (gdb_stdlog,
13280 " %s CUs, %s TUs\n",
13281 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13282 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13283 }
13284
13285 return dwp_file;
13286 }
13287
13288 /* Wrapper around open_and_init_dwp_file, only open it once. */
13289
13290 static struct dwp_file *
13291 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13292 {
13293 if (! dwarf2_per_objfile->dwp_checked)
13294 {
13295 dwarf2_per_objfile->dwp_file
13296 = open_and_init_dwp_file (dwarf2_per_objfile);
13297 dwarf2_per_objfile->dwp_checked = 1;
13298 }
13299 return dwarf2_per_objfile->dwp_file.get ();
13300 }
13301
13302 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13303 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13304 or in the DWP file for the objfile, referenced by THIS_UNIT.
13305 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13306 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13307
13308 This is called, for example, when wanting to read a variable with a
13309 complex location. Therefore we don't want to do file i/o for every call.
13310 Therefore we don't want to look for a DWO file on every call.
13311 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13312 then we check if we've already seen DWO_NAME, and only THEN do we check
13313 for a DWO file.
13314
13315 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13316 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13317
13318 static struct dwo_unit *
13319 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13320 const char *dwo_name, const char *comp_dir,
13321 ULONGEST signature, int is_debug_types)
13322 {
13323 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13324 struct objfile *objfile = dwarf2_per_objfile->objfile;
13325 const char *kind = is_debug_types ? "TU" : "CU";
13326 void **dwo_file_slot;
13327 struct dwo_file *dwo_file;
13328 struct dwp_file *dwp_file;
13329
13330 /* First see if there's a DWP file.
13331 If we have a DWP file but didn't find the DWO inside it, don't
13332 look for the original DWO file. It makes gdb behave differently
13333 depending on whether one is debugging in the build tree. */
13334
13335 dwp_file = get_dwp_file (dwarf2_per_objfile);
13336 if (dwp_file != NULL)
13337 {
13338 const struct dwp_hash_table *dwp_htab =
13339 is_debug_types ? dwp_file->tus : dwp_file->cus;
13340
13341 if (dwp_htab != NULL)
13342 {
13343 struct dwo_unit *dwo_cutu =
13344 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13345 signature, is_debug_types);
13346
13347 if (dwo_cutu != NULL)
13348 {
13349 if (dwarf_read_debug)
13350 {
13351 fprintf_unfiltered (gdb_stdlog,
13352 "Virtual DWO %s %s found: @%s\n",
13353 kind, hex_string (signature),
13354 host_address_to_string (dwo_cutu));
13355 }
13356 return dwo_cutu;
13357 }
13358 }
13359 }
13360 else
13361 {
13362 /* No DWP file, look for the DWO file. */
13363
13364 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13365 dwo_name, comp_dir);
13366 if (*dwo_file_slot == NULL)
13367 {
13368 /* Read in the file and build a table of the CUs/TUs it contains. */
13369 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13370 }
13371 /* NOTE: This will be NULL if unable to open the file. */
13372 dwo_file = (struct dwo_file *) *dwo_file_slot;
13373
13374 if (dwo_file != NULL)
13375 {
13376 struct dwo_unit *dwo_cutu = NULL;
13377
13378 if (is_debug_types && dwo_file->tus)
13379 {
13380 struct dwo_unit find_dwo_cutu;
13381
13382 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13383 find_dwo_cutu.signature = signature;
13384 dwo_cutu
13385 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13386 }
13387 else if (!is_debug_types && dwo_file->cus)
13388 {
13389 struct dwo_unit find_dwo_cutu;
13390
13391 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13392 find_dwo_cutu.signature = signature;
13393 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13394 &find_dwo_cutu);
13395 }
13396
13397 if (dwo_cutu != NULL)
13398 {
13399 if (dwarf_read_debug)
13400 {
13401 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13402 kind, dwo_name, hex_string (signature),
13403 host_address_to_string (dwo_cutu));
13404 }
13405 return dwo_cutu;
13406 }
13407 }
13408 }
13409
13410 /* We didn't find it. This could mean a dwo_id mismatch, or
13411 someone deleted the DWO/DWP file, or the search path isn't set up
13412 correctly to find the file. */
13413
13414 if (dwarf_read_debug)
13415 {
13416 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13417 kind, dwo_name, hex_string (signature));
13418 }
13419
13420 /* This is a warning and not a complaint because it can be caused by
13421 pilot error (e.g., user accidentally deleting the DWO). */
13422 {
13423 /* Print the name of the DWP file if we looked there, helps the user
13424 better diagnose the problem. */
13425 std::string dwp_text;
13426
13427 if (dwp_file != NULL)
13428 dwp_text = string_printf (" [in DWP file %s]",
13429 lbasename (dwp_file->name));
13430
13431 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13432 " [in module %s]"),
13433 kind, dwo_name, hex_string (signature),
13434 dwp_text.c_str (),
13435 this_unit->is_debug_types ? "TU" : "CU",
13436 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13437 }
13438 return NULL;
13439 }
13440
13441 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13442 See lookup_dwo_cutu_unit for details. */
13443
13444 static struct dwo_unit *
13445 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13446 const char *dwo_name, const char *comp_dir,
13447 ULONGEST signature)
13448 {
13449 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13450 }
13451
13452 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13453 See lookup_dwo_cutu_unit for details. */
13454
13455 static struct dwo_unit *
13456 lookup_dwo_type_unit (struct signatured_type *this_tu,
13457 const char *dwo_name, const char *comp_dir)
13458 {
13459 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13460 }
13461
13462 /* Traversal function for queue_and_load_all_dwo_tus. */
13463
13464 static int
13465 queue_and_load_dwo_tu (void **slot, void *info)
13466 {
13467 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13468 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13469 ULONGEST signature = dwo_unit->signature;
13470 struct signatured_type *sig_type =
13471 lookup_dwo_signatured_type (per_cu->cu, signature);
13472
13473 if (sig_type != NULL)
13474 {
13475 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13476
13477 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13478 a real dependency of PER_CU on SIG_TYPE. That is detected later
13479 while processing PER_CU. */
13480 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13481 load_full_type_unit (sig_cu);
13482 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
13483 }
13484
13485 return 1;
13486 }
13487
13488 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13489 The DWO may have the only definition of the type, though it may not be
13490 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13491 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13492
13493 static void
13494 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13495 {
13496 struct dwo_unit *dwo_unit;
13497 struct dwo_file *dwo_file;
13498
13499 gdb_assert (!per_cu->is_debug_types);
13500 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13501 gdb_assert (per_cu->cu != NULL);
13502
13503 dwo_unit = per_cu->cu->dwo_unit;
13504 gdb_assert (dwo_unit != NULL);
13505
13506 dwo_file = dwo_unit->dwo_file;
13507 if (dwo_file->tus != NULL)
13508 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13509 }
13510
13511 /* Free all resources associated with DWO_FILE.
13512 Close the DWO file and munmap the sections. */
13513
13514 static void
13515 free_dwo_file (struct dwo_file *dwo_file)
13516 {
13517 /* Note: dbfd is NULL for virtual DWO files. */
13518 gdb_bfd_unref (dwo_file->dbfd);
13519
13520 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
13521 }
13522
13523 /* Traversal function for free_dwo_files. */
13524
13525 static int
13526 free_dwo_file_from_slot (void **slot, void *info)
13527 {
13528 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
13529
13530 free_dwo_file (dwo_file);
13531
13532 return 1;
13533 }
13534
13535 /* Free all resources associated with DWO_FILES. */
13536
13537 static void
13538 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
13539 {
13540 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
13541 }
13542 \f
13543 /* Read in various DIEs. */
13544
13545 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13546 Inherit only the children of the DW_AT_abstract_origin DIE not being
13547 already referenced by DW_AT_abstract_origin from the children of the
13548 current DIE. */
13549
13550 static void
13551 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13552 {
13553 struct die_info *child_die;
13554 sect_offset *offsetp;
13555 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13556 struct die_info *origin_die;
13557 /* Iterator of the ORIGIN_DIE children. */
13558 struct die_info *origin_child_die;
13559 struct attribute *attr;
13560 struct dwarf2_cu *origin_cu;
13561 struct pending **origin_previous_list_in_scope;
13562
13563 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13564 if (!attr)
13565 return;
13566
13567 /* Note that following die references may follow to a die in a
13568 different cu. */
13569
13570 origin_cu = cu;
13571 origin_die = follow_die_ref (die, attr, &origin_cu);
13572
13573 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13574 symbols in. */
13575 origin_previous_list_in_scope = origin_cu->list_in_scope;
13576 origin_cu->list_in_scope = cu->list_in_scope;
13577
13578 if (die->tag != origin_die->tag
13579 && !(die->tag == DW_TAG_inlined_subroutine
13580 && origin_die->tag == DW_TAG_subprogram))
13581 complaint (_("DIE %s and its abstract origin %s have different tags"),
13582 sect_offset_str (die->sect_off),
13583 sect_offset_str (origin_die->sect_off));
13584
13585 std::vector<sect_offset> offsets;
13586
13587 for (child_die = die->child;
13588 child_die && child_die->tag;
13589 child_die = sibling_die (child_die))
13590 {
13591 struct die_info *child_origin_die;
13592 struct dwarf2_cu *child_origin_cu;
13593
13594 /* We are trying to process concrete instance entries:
13595 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13596 it's not relevant to our analysis here. i.e. detecting DIEs that are
13597 present in the abstract instance but not referenced in the concrete
13598 one. */
13599 if (child_die->tag == DW_TAG_call_site
13600 || child_die->tag == DW_TAG_GNU_call_site)
13601 continue;
13602
13603 /* For each CHILD_DIE, find the corresponding child of
13604 ORIGIN_DIE. If there is more than one layer of
13605 DW_AT_abstract_origin, follow them all; there shouldn't be,
13606 but GCC versions at least through 4.4 generate this (GCC PR
13607 40573). */
13608 child_origin_die = child_die;
13609 child_origin_cu = cu;
13610 while (1)
13611 {
13612 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13613 child_origin_cu);
13614 if (attr == NULL)
13615 break;
13616 child_origin_die = follow_die_ref (child_origin_die, attr,
13617 &child_origin_cu);
13618 }
13619
13620 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13621 counterpart may exist. */
13622 if (child_origin_die != child_die)
13623 {
13624 if (child_die->tag != child_origin_die->tag
13625 && !(child_die->tag == DW_TAG_inlined_subroutine
13626 && child_origin_die->tag == DW_TAG_subprogram))
13627 complaint (_("Child DIE %s and its abstract origin %s have "
13628 "different tags"),
13629 sect_offset_str (child_die->sect_off),
13630 sect_offset_str (child_origin_die->sect_off));
13631 if (child_origin_die->parent != origin_die)
13632 complaint (_("Child DIE %s and its abstract origin %s have "
13633 "different parents"),
13634 sect_offset_str (child_die->sect_off),
13635 sect_offset_str (child_origin_die->sect_off));
13636 else
13637 offsets.push_back (child_origin_die->sect_off);
13638 }
13639 }
13640 std::sort (offsets.begin (), offsets.end ());
13641 sect_offset *offsets_end = offsets.data () + offsets.size ();
13642 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13643 if (offsetp[-1] == *offsetp)
13644 complaint (_("Multiple children of DIE %s refer "
13645 "to DIE %s as their abstract origin"),
13646 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13647
13648 offsetp = offsets.data ();
13649 origin_child_die = origin_die->child;
13650 while (origin_child_die && origin_child_die->tag)
13651 {
13652 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13653 while (offsetp < offsets_end
13654 && *offsetp < origin_child_die->sect_off)
13655 offsetp++;
13656 if (offsetp >= offsets_end
13657 || *offsetp > origin_child_die->sect_off)
13658 {
13659 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13660 Check whether we're already processing ORIGIN_CHILD_DIE.
13661 This can happen with mutually referenced abstract_origins.
13662 PR 16581. */
13663 if (!origin_child_die->in_process)
13664 process_die (origin_child_die, origin_cu);
13665 }
13666 origin_child_die = sibling_die (origin_child_die);
13667 }
13668 origin_cu->list_in_scope = origin_previous_list_in_scope;
13669 }
13670
13671 static void
13672 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13673 {
13674 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13675 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13676 struct context_stack *newobj;
13677 CORE_ADDR lowpc;
13678 CORE_ADDR highpc;
13679 struct die_info *child_die;
13680 struct attribute *attr, *call_line, *call_file;
13681 const char *name;
13682 CORE_ADDR baseaddr;
13683 struct block *block;
13684 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13685 std::vector<struct symbol *> template_args;
13686 struct template_symbol *templ_func = NULL;
13687
13688 if (inlined_func)
13689 {
13690 /* If we do not have call site information, we can't show the
13691 caller of this inlined function. That's too confusing, so
13692 only use the scope for local variables. */
13693 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13694 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13695 if (call_line == NULL || call_file == NULL)
13696 {
13697 read_lexical_block_scope (die, cu);
13698 return;
13699 }
13700 }
13701
13702 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13703
13704 name = dwarf2_name (die, cu);
13705
13706 /* Ignore functions with missing or empty names. These are actually
13707 illegal according to the DWARF standard. */
13708 if (name == NULL)
13709 {
13710 complaint (_("missing name for subprogram DIE at %s"),
13711 sect_offset_str (die->sect_off));
13712 return;
13713 }
13714
13715 /* Ignore functions with missing or invalid low and high pc attributes. */
13716 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13717 <= PC_BOUNDS_INVALID)
13718 {
13719 attr = dwarf2_attr (die, DW_AT_external, cu);
13720 if (!attr || !DW_UNSND (attr))
13721 complaint (_("cannot get low and high bounds "
13722 "for subprogram DIE at %s"),
13723 sect_offset_str (die->sect_off));
13724 return;
13725 }
13726
13727 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13728 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13729
13730 /* If we have any template arguments, then we must allocate a
13731 different sort of symbol. */
13732 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13733 {
13734 if (child_die->tag == DW_TAG_template_type_param
13735 || child_die->tag == DW_TAG_template_value_param)
13736 {
13737 templ_func = allocate_template_symbol (objfile);
13738 templ_func->subclass = SYMBOL_TEMPLATE;
13739 break;
13740 }
13741 }
13742
13743 newobj = cu->get_builder ()->push_context (0, lowpc);
13744 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13745 (struct symbol *) templ_func);
13746
13747 /* If there is a location expression for DW_AT_frame_base, record
13748 it. */
13749 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13750 if (attr)
13751 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13752
13753 /* If there is a location for the static link, record it. */
13754 newobj->static_link = NULL;
13755 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13756 if (attr)
13757 {
13758 newobj->static_link
13759 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13760 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
13761 }
13762
13763 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13764
13765 if (die->child != NULL)
13766 {
13767 child_die = die->child;
13768 while (child_die && child_die->tag)
13769 {
13770 if (child_die->tag == DW_TAG_template_type_param
13771 || child_die->tag == DW_TAG_template_value_param)
13772 {
13773 struct symbol *arg = new_symbol (child_die, NULL, cu);
13774
13775 if (arg != NULL)
13776 template_args.push_back (arg);
13777 }
13778 else
13779 process_die (child_die, cu);
13780 child_die = sibling_die (child_die);
13781 }
13782 }
13783
13784 inherit_abstract_dies (die, cu);
13785
13786 /* If we have a DW_AT_specification, we might need to import using
13787 directives from the context of the specification DIE. See the
13788 comment in determine_prefix. */
13789 if (cu->language == language_cplus
13790 && dwarf2_attr (die, DW_AT_specification, cu))
13791 {
13792 struct dwarf2_cu *spec_cu = cu;
13793 struct die_info *spec_die = die_specification (die, &spec_cu);
13794
13795 while (spec_die)
13796 {
13797 child_die = spec_die->child;
13798 while (child_die && child_die->tag)
13799 {
13800 if (child_die->tag == DW_TAG_imported_module)
13801 process_die (child_die, spec_cu);
13802 child_die = sibling_die (child_die);
13803 }
13804
13805 /* In some cases, GCC generates specification DIEs that
13806 themselves contain DW_AT_specification attributes. */
13807 spec_die = die_specification (spec_die, &spec_cu);
13808 }
13809 }
13810
13811 struct context_stack cstk = cu->get_builder ()->pop_context ();
13812 /* Make a block for the local symbols within. */
13813 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13814 cstk.static_link, lowpc, highpc);
13815
13816 /* For C++, set the block's scope. */
13817 if ((cu->language == language_cplus
13818 || cu->language == language_fortran
13819 || cu->language == language_d
13820 || cu->language == language_rust)
13821 && cu->processing_has_namespace_info)
13822 block_set_scope (block, determine_prefix (die, cu),
13823 &objfile->objfile_obstack);
13824
13825 /* If we have address ranges, record them. */
13826 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13827
13828 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13829
13830 /* Attach template arguments to function. */
13831 if (!template_args.empty ())
13832 {
13833 gdb_assert (templ_func != NULL);
13834
13835 templ_func->n_template_arguments = template_args.size ();
13836 templ_func->template_arguments
13837 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13838 templ_func->n_template_arguments);
13839 memcpy (templ_func->template_arguments,
13840 template_args.data (),
13841 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13842
13843 /* Make sure that the symtab is set on the new symbols. Even
13844 though they don't appear in this symtab directly, other parts
13845 of gdb assume that symbols do, and this is reasonably
13846 true. */
13847 for (symbol *sym : template_args)
13848 symbol_set_symtab (sym, symbol_symtab (templ_func));
13849 }
13850
13851 /* In C++, we can have functions nested inside functions (e.g., when
13852 a function declares a class that has methods). This means that
13853 when we finish processing a function scope, we may need to go
13854 back to building a containing block's symbol lists. */
13855 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13856 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13857
13858 /* If we've finished processing a top-level function, subsequent
13859 symbols go in the file symbol list. */
13860 if (cu->get_builder ()->outermost_context_p ())
13861 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13862 }
13863
13864 /* Process all the DIES contained within a lexical block scope. Start
13865 a new scope, process the dies, and then close the scope. */
13866
13867 static void
13868 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13869 {
13870 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13872 CORE_ADDR lowpc, highpc;
13873 struct die_info *child_die;
13874 CORE_ADDR baseaddr;
13875
13876 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13877
13878 /* Ignore blocks with missing or invalid low and high pc attributes. */
13879 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13880 as multiple lexical blocks? Handling children in a sane way would
13881 be nasty. Might be easier to properly extend generic blocks to
13882 describe ranges. */
13883 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13884 {
13885 case PC_BOUNDS_NOT_PRESENT:
13886 /* DW_TAG_lexical_block has no attributes, process its children as if
13887 there was no wrapping by that DW_TAG_lexical_block.
13888 GCC does no longer produces such DWARF since GCC r224161. */
13889 for (child_die = die->child;
13890 child_die != NULL && child_die->tag;
13891 child_die = sibling_die (child_die))
13892 process_die (child_die, cu);
13893 return;
13894 case PC_BOUNDS_INVALID:
13895 return;
13896 }
13897 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13898 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13899
13900 cu->get_builder ()->push_context (0, lowpc);
13901 if (die->child != NULL)
13902 {
13903 child_die = die->child;
13904 while (child_die && child_die->tag)
13905 {
13906 process_die (child_die, cu);
13907 child_die = sibling_die (child_die);
13908 }
13909 }
13910 inherit_abstract_dies (die, cu);
13911 struct context_stack cstk = cu->get_builder ()->pop_context ();
13912
13913 if (*cu->get_builder ()->get_local_symbols () != NULL
13914 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13915 {
13916 struct block *block
13917 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13918 cstk.start_addr, highpc);
13919
13920 /* Note that recording ranges after traversing children, as we
13921 do here, means that recording a parent's ranges entails
13922 walking across all its children's ranges as they appear in
13923 the address map, which is quadratic behavior.
13924
13925 It would be nicer to record the parent's ranges before
13926 traversing its children, simply overriding whatever you find
13927 there. But since we don't even decide whether to create a
13928 block until after we've traversed its children, that's hard
13929 to do. */
13930 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13931 }
13932 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13933 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13934 }
13935
13936 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13937
13938 static void
13939 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13940 {
13941 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13942 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13943 CORE_ADDR pc, baseaddr;
13944 struct attribute *attr;
13945 struct call_site *call_site, call_site_local;
13946 void **slot;
13947 int nparams;
13948 struct die_info *child_die;
13949
13950 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13951
13952 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13953 if (attr == NULL)
13954 {
13955 /* This was a pre-DWARF-5 GNU extension alias
13956 for DW_AT_call_return_pc. */
13957 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13958 }
13959 if (!attr)
13960 {
13961 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13962 "DIE %s [in module %s]"),
13963 sect_offset_str (die->sect_off), objfile_name (objfile));
13964 return;
13965 }
13966 pc = attr_value_as_address (attr) + baseaddr;
13967 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13968
13969 if (cu->call_site_htab == NULL)
13970 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13971 NULL, &objfile->objfile_obstack,
13972 hashtab_obstack_allocate, NULL);
13973 call_site_local.pc = pc;
13974 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13975 if (*slot != NULL)
13976 {
13977 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13978 "DIE %s [in module %s]"),
13979 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13980 objfile_name (objfile));
13981 return;
13982 }
13983
13984 /* Count parameters at the caller. */
13985
13986 nparams = 0;
13987 for (child_die = die->child; child_die && child_die->tag;
13988 child_die = sibling_die (child_die))
13989 {
13990 if (child_die->tag != DW_TAG_call_site_parameter
13991 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13992 {
13993 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13994 "DW_TAG_call_site child DIE %s [in module %s]"),
13995 child_die->tag, sect_offset_str (child_die->sect_off),
13996 objfile_name (objfile));
13997 continue;
13998 }
13999
14000 nparams++;
14001 }
14002
14003 call_site
14004 = ((struct call_site *)
14005 obstack_alloc (&objfile->objfile_obstack,
14006 sizeof (*call_site)
14007 + (sizeof (*call_site->parameter) * (nparams - 1))));
14008 *slot = call_site;
14009 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14010 call_site->pc = pc;
14011
14012 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14013 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14014 {
14015 struct die_info *func_die;
14016
14017 /* Skip also over DW_TAG_inlined_subroutine. */
14018 for (func_die = die->parent;
14019 func_die && func_die->tag != DW_TAG_subprogram
14020 && func_die->tag != DW_TAG_subroutine_type;
14021 func_die = func_die->parent);
14022
14023 /* DW_AT_call_all_calls is a superset
14024 of DW_AT_call_all_tail_calls. */
14025 if (func_die
14026 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14027 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14028 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14029 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14030 {
14031 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14032 not complete. But keep CALL_SITE for look ups via call_site_htab,
14033 both the initial caller containing the real return address PC and
14034 the final callee containing the current PC of a chain of tail
14035 calls do not need to have the tail call list complete. But any
14036 function candidate for a virtual tail call frame searched via
14037 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14038 determined unambiguously. */
14039 }
14040 else
14041 {
14042 struct type *func_type = NULL;
14043
14044 if (func_die)
14045 func_type = get_die_type (func_die, cu);
14046 if (func_type != NULL)
14047 {
14048 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14049
14050 /* Enlist this call site to the function. */
14051 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14052 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14053 }
14054 else
14055 complaint (_("Cannot find function owning DW_TAG_call_site "
14056 "DIE %s [in module %s]"),
14057 sect_offset_str (die->sect_off), objfile_name (objfile));
14058 }
14059 }
14060
14061 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14062 if (attr == NULL)
14063 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14064 if (attr == NULL)
14065 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14066 if (attr == NULL)
14067 {
14068 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14069 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14070 }
14071 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14072 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14073 /* Keep NULL DWARF_BLOCK. */;
14074 else if (attr_form_is_block (attr))
14075 {
14076 struct dwarf2_locexpr_baton *dlbaton;
14077
14078 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14079 dlbaton->data = DW_BLOCK (attr)->data;
14080 dlbaton->size = DW_BLOCK (attr)->size;
14081 dlbaton->per_cu = cu->per_cu;
14082
14083 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14084 }
14085 else if (attr_form_is_ref (attr))
14086 {
14087 struct dwarf2_cu *target_cu = cu;
14088 struct die_info *target_die;
14089
14090 target_die = follow_die_ref (die, attr, &target_cu);
14091 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14092 if (die_is_declaration (target_die, target_cu))
14093 {
14094 const char *target_physname;
14095
14096 /* Prefer the mangled name; otherwise compute the demangled one. */
14097 target_physname = dw2_linkage_name (target_die, target_cu);
14098 if (target_physname == NULL)
14099 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14100 if (target_physname == NULL)
14101 complaint (_("DW_AT_call_target target DIE has invalid "
14102 "physname, for referencing DIE %s [in module %s]"),
14103 sect_offset_str (die->sect_off), objfile_name (objfile));
14104 else
14105 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14106 }
14107 else
14108 {
14109 CORE_ADDR lowpc;
14110
14111 /* DW_AT_entry_pc should be preferred. */
14112 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14113 <= PC_BOUNDS_INVALID)
14114 complaint (_("DW_AT_call_target target DIE has invalid "
14115 "low pc, for referencing DIE %s [in module %s]"),
14116 sect_offset_str (die->sect_off), objfile_name (objfile));
14117 else
14118 {
14119 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14120 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14121 }
14122 }
14123 }
14124 else
14125 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14126 "block nor reference, for DIE %s [in module %s]"),
14127 sect_offset_str (die->sect_off), objfile_name (objfile));
14128
14129 call_site->per_cu = cu->per_cu;
14130
14131 for (child_die = die->child;
14132 child_die && child_die->tag;
14133 child_die = sibling_die (child_die))
14134 {
14135 struct call_site_parameter *parameter;
14136 struct attribute *loc, *origin;
14137
14138 if (child_die->tag != DW_TAG_call_site_parameter
14139 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14140 {
14141 /* Already printed the complaint above. */
14142 continue;
14143 }
14144
14145 gdb_assert (call_site->parameter_count < nparams);
14146 parameter = &call_site->parameter[call_site->parameter_count];
14147
14148 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14149 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14150 register is contained in DW_AT_call_value. */
14151
14152 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14153 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14154 if (origin == NULL)
14155 {
14156 /* This was a pre-DWARF-5 GNU extension alias
14157 for DW_AT_call_parameter. */
14158 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14159 }
14160 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14161 {
14162 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14163
14164 sect_offset sect_off
14165 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14166 if (!offset_in_cu_p (&cu->header, sect_off))
14167 {
14168 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14169 binding can be done only inside one CU. Such referenced DIE
14170 therefore cannot be even moved to DW_TAG_partial_unit. */
14171 complaint (_("DW_AT_call_parameter offset is not in CU for "
14172 "DW_TAG_call_site child DIE %s [in module %s]"),
14173 sect_offset_str (child_die->sect_off),
14174 objfile_name (objfile));
14175 continue;
14176 }
14177 parameter->u.param_cu_off
14178 = (cu_offset) (sect_off - cu->header.sect_off);
14179 }
14180 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14181 {
14182 complaint (_("No DW_FORM_block* DW_AT_location for "
14183 "DW_TAG_call_site child DIE %s [in module %s]"),
14184 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14185 continue;
14186 }
14187 else
14188 {
14189 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14190 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14191 if (parameter->u.dwarf_reg != -1)
14192 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14193 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14194 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14195 &parameter->u.fb_offset))
14196 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14197 else
14198 {
14199 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14200 "for DW_FORM_block* DW_AT_location is supported for "
14201 "DW_TAG_call_site child DIE %s "
14202 "[in module %s]"),
14203 sect_offset_str (child_die->sect_off),
14204 objfile_name (objfile));
14205 continue;
14206 }
14207 }
14208
14209 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14210 if (attr == NULL)
14211 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14212 if (!attr_form_is_block (attr))
14213 {
14214 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14215 "DW_TAG_call_site child DIE %s [in module %s]"),
14216 sect_offset_str (child_die->sect_off),
14217 objfile_name (objfile));
14218 continue;
14219 }
14220 parameter->value = DW_BLOCK (attr)->data;
14221 parameter->value_size = DW_BLOCK (attr)->size;
14222
14223 /* Parameters are not pre-cleared by memset above. */
14224 parameter->data_value = NULL;
14225 parameter->data_value_size = 0;
14226 call_site->parameter_count++;
14227
14228 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14229 if (attr == NULL)
14230 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14231 if (attr)
14232 {
14233 if (!attr_form_is_block (attr))
14234 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14235 "DW_TAG_call_site child DIE %s [in module %s]"),
14236 sect_offset_str (child_die->sect_off),
14237 objfile_name (objfile));
14238 else
14239 {
14240 parameter->data_value = DW_BLOCK (attr)->data;
14241 parameter->data_value_size = DW_BLOCK (attr)->size;
14242 }
14243 }
14244 }
14245 }
14246
14247 /* Helper function for read_variable. If DIE represents a virtual
14248 table, then return the type of the concrete object that is
14249 associated with the virtual table. Otherwise, return NULL. */
14250
14251 static struct type *
14252 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14253 {
14254 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14255 if (attr == NULL)
14256 return NULL;
14257
14258 /* Find the type DIE. */
14259 struct die_info *type_die = NULL;
14260 struct dwarf2_cu *type_cu = cu;
14261
14262 if (attr_form_is_ref (attr))
14263 type_die = follow_die_ref (die, attr, &type_cu);
14264 if (type_die == NULL)
14265 return NULL;
14266
14267 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14268 return NULL;
14269 return die_containing_type (type_die, type_cu);
14270 }
14271
14272 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14273
14274 static void
14275 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14276 {
14277 struct rust_vtable_symbol *storage = NULL;
14278
14279 if (cu->language == language_rust)
14280 {
14281 struct type *containing_type = rust_containing_type (die, cu);
14282
14283 if (containing_type != NULL)
14284 {
14285 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14286
14287 storage = OBSTACK_ZALLOC (&objfile->objfile_obstack,
14288 struct rust_vtable_symbol);
14289 initialize_objfile_symbol (storage);
14290 storage->concrete_type = containing_type;
14291 storage->subclass = SYMBOL_RUST_VTABLE;
14292 }
14293 }
14294
14295 struct symbol *res = new_symbol (die, NULL, cu, storage);
14296 struct attribute *abstract_origin
14297 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14298 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14299 if (res == NULL && loc && abstract_origin)
14300 {
14301 /* We have a variable without a name, but with a location and an abstract
14302 origin. This may be a concrete instance of an abstract variable
14303 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14304 later. */
14305 struct dwarf2_cu *origin_cu = cu;
14306 struct die_info *origin_die
14307 = follow_die_ref (die, abstract_origin, &origin_cu);
14308 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14309 dpo->abstract_to_concrete[origin_die].push_back (die);
14310 }
14311 }
14312
14313 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14314 reading .debug_rnglists.
14315 Callback's type should be:
14316 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14317 Return true if the attributes are present and valid, otherwise,
14318 return false. */
14319
14320 template <typename Callback>
14321 static bool
14322 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14323 Callback &&callback)
14324 {
14325 struct dwarf2_per_objfile *dwarf2_per_objfile
14326 = cu->per_cu->dwarf2_per_objfile;
14327 struct objfile *objfile = dwarf2_per_objfile->objfile;
14328 bfd *obfd = objfile->obfd;
14329 /* Base address selection entry. */
14330 CORE_ADDR base;
14331 int found_base;
14332 const gdb_byte *buffer;
14333 CORE_ADDR baseaddr;
14334 bool overflow = false;
14335
14336 found_base = cu->base_known;
14337 base = cu->base_address;
14338
14339 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14340 if (offset >= dwarf2_per_objfile->rnglists.size)
14341 {
14342 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14343 offset);
14344 return false;
14345 }
14346 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14347
14348 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14349
14350 while (1)
14351 {
14352 /* Initialize it due to a false compiler warning. */
14353 CORE_ADDR range_beginning = 0, range_end = 0;
14354 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14355 + dwarf2_per_objfile->rnglists.size);
14356 unsigned int bytes_read;
14357
14358 if (buffer == buf_end)
14359 {
14360 overflow = true;
14361 break;
14362 }
14363 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14364 switch (rlet)
14365 {
14366 case DW_RLE_end_of_list:
14367 break;
14368 case DW_RLE_base_address:
14369 if (buffer + cu->header.addr_size > buf_end)
14370 {
14371 overflow = true;
14372 break;
14373 }
14374 base = read_address (obfd, buffer, cu, &bytes_read);
14375 found_base = 1;
14376 buffer += bytes_read;
14377 break;
14378 case DW_RLE_start_length:
14379 if (buffer + cu->header.addr_size > buf_end)
14380 {
14381 overflow = true;
14382 break;
14383 }
14384 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14385 buffer += bytes_read;
14386 range_end = (range_beginning
14387 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14388 buffer += bytes_read;
14389 if (buffer > buf_end)
14390 {
14391 overflow = true;
14392 break;
14393 }
14394 break;
14395 case DW_RLE_offset_pair:
14396 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14397 buffer += bytes_read;
14398 if (buffer > buf_end)
14399 {
14400 overflow = true;
14401 break;
14402 }
14403 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14404 buffer += bytes_read;
14405 if (buffer > buf_end)
14406 {
14407 overflow = true;
14408 break;
14409 }
14410 break;
14411 case DW_RLE_start_end:
14412 if (buffer + 2 * cu->header.addr_size > buf_end)
14413 {
14414 overflow = true;
14415 break;
14416 }
14417 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14418 buffer += bytes_read;
14419 range_end = read_address (obfd, buffer, cu, &bytes_read);
14420 buffer += bytes_read;
14421 break;
14422 default:
14423 complaint (_("Invalid .debug_rnglists data (no base address)"));
14424 return false;
14425 }
14426 if (rlet == DW_RLE_end_of_list || overflow)
14427 break;
14428 if (rlet == DW_RLE_base_address)
14429 continue;
14430
14431 if (!found_base)
14432 {
14433 /* We have no valid base address for the ranges
14434 data. */
14435 complaint (_("Invalid .debug_rnglists data (no base address)"));
14436 return false;
14437 }
14438
14439 if (range_beginning > range_end)
14440 {
14441 /* Inverted range entries are invalid. */
14442 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14443 return false;
14444 }
14445
14446 /* Empty range entries have no effect. */
14447 if (range_beginning == range_end)
14448 continue;
14449
14450 range_beginning += base;
14451 range_end += base;
14452
14453 /* A not-uncommon case of bad debug info.
14454 Don't pollute the addrmap with bad data. */
14455 if (range_beginning + baseaddr == 0
14456 && !dwarf2_per_objfile->has_section_at_zero)
14457 {
14458 complaint (_(".debug_rnglists entry has start address of zero"
14459 " [in module %s]"), objfile_name (objfile));
14460 continue;
14461 }
14462
14463 callback (range_beginning, range_end);
14464 }
14465
14466 if (overflow)
14467 {
14468 complaint (_("Offset %d is not terminated "
14469 "for DW_AT_ranges attribute"),
14470 offset);
14471 return false;
14472 }
14473
14474 return true;
14475 }
14476
14477 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14478 Callback's type should be:
14479 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14480 Return 1 if the attributes are present and valid, otherwise, return 0. */
14481
14482 template <typename Callback>
14483 static int
14484 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14485 Callback &&callback)
14486 {
14487 struct dwarf2_per_objfile *dwarf2_per_objfile
14488 = cu->per_cu->dwarf2_per_objfile;
14489 struct objfile *objfile = dwarf2_per_objfile->objfile;
14490 struct comp_unit_head *cu_header = &cu->header;
14491 bfd *obfd = objfile->obfd;
14492 unsigned int addr_size = cu_header->addr_size;
14493 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14494 /* Base address selection entry. */
14495 CORE_ADDR base;
14496 int found_base;
14497 unsigned int dummy;
14498 const gdb_byte *buffer;
14499 CORE_ADDR baseaddr;
14500
14501 if (cu_header->version >= 5)
14502 return dwarf2_rnglists_process (offset, cu, callback);
14503
14504 found_base = cu->base_known;
14505 base = cu->base_address;
14506
14507 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14508 if (offset >= dwarf2_per_objfile->ranges.size)
14509 {
14510 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14511 offset);
14512 return 0;
14513 }
14514 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14515
14516 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14517
14518 while (1)
14519 {
14520 CORE_ADDR range_beginning, range_end;
14521
14522 range_beginning = read_address (obfd, buffer, cu, &dummy);
14523 buffer += addr_size;
14524 range_end = read_address (obfd, buffer, cu, &dummy);
14525 buffer += addr_size;
14526 offset += 2 * addr_size;
14527
14528 /* An end of list marker is a pair of zero addresses. */
14529 if (range_beginning == 0 && range_end == 0)
14530 /* Found the end of list entry. */
14531 break;
14532
14533 /* Each base address selection entry is a pair of 2 values.
14534 The first is the largest possible address, the second is
14535 the base address. Check for a base address here. */
14536 if ((range_beginning & mask) == mask)
14537 {
14538 /* If we found the largest possible address, then we already
14539 have the base address in range_end. */
14540 base = range_end;
14541 found_base = 1;
14542 continue;
14543 }
14544
14545 if (!found_base)
14546 {
14547 /* We have no valid base address for the ranges
14548 data. */
14549 complaint (_("Invalid .debug_ranges data (no base address)"));
14550 return 0;
14551 }
14552
14553 if (range_beginning > range_end)
14554 {
14555 /* Inverted range entries are invalid. */
14556 complaint (_("Invalid .debug_ranges data (inverted range)"));
14557 return 0;
14558 }
14559
14560 /* Empty range entries have no effect. */
14561 if (range_beginning == range_end)
14562 continue;
14563
14564 range_beginning += base;
14565 range_end += base;
14566
14567 /* A not-uncommon case of bad debug info.
14568 Don't pollute the addrmap with bad data. */
14569 if (range_beginning + baseaddr == 0
14570 && !dwarf2_per_objfile->has_section_at_zero)
14571 {
14572 complaint (_(".debug_ranges entry has start address of zero"
14573 " [in module %s]"), objfile_name (objfile));
14574 continue;
14575 }
14576
14577 callback (range_beginning, range_end);
14578 }
14579
14580 return 1;
14581 }
14582
14583 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14584 Return 1 if the attributes are present and valid, otherwise, return 0.
14585 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14586
14587 static int
14588 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14589 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14590 struct partial_symtab *ranges_pst)
14591 {
14592 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14593 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14594 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14595 SECT_OFF_TEXT (objfile));
14596 int low_set = 0;
14597 CORE_ADDR low = 0;
14598 CORE_ADDR high = 0;
14599 int retval;
14600
14601 retval = dwarf2_ranges_process (offset, cu,
14602 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14603 {
14604 if (ranges_pst != NULL)
14605 {
14606 CORE_ADDR lowpc;
14607 CORE_ADDR highpc;
14608
14609 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14610 range_beginning + baseaddr)
14611 - baseaddr);
14612 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14613 range_end + baseaddr)
14614 - baseaddr);
14615 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14616 lowpc, highpc - 1, ranges_pst);
14617 }
14618
14619 /* FIXME: This is recording everything as a low-high
14620 segment of consecutive addresses. We should have a
14621 data structure for discontiguous block ranges
14622 instead. */
14623 if (! low_set)
14624 {
14625 low = range_beginning;
14626 high = range_end;
14627 low_set = 1;
14628 }
14629 else
14630 {
14631 if (range_beginning < low)
14632 low = range_beginning;
14633 if (range_end > high)
14634 high = range_end;
14635 }
14636 });
14637 if (!retval)
14638 return 0;
14639
14640 if (! low_set)
14641 /* If the first entry is an end-of-list marker, the range
14642 describes an empty scope, i.e. no instructions. */
14643 return 0;
14644
14645 if (low_return)
14646 *low_return = low;
14647 if (high_return)
14648 *high_return = high;
14649 return 1;
14650 }
14651
14652 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14653 definition for the return value. *LOWPC and *HIGHPC are set iff
14654 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14655
14656 static enum pc_bounds_kind
14657 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14658 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14659 struct partial_symtab *pst)
14660 {
14661 struct dwarf2_per_objfile *dwarf2_per_objfile
14662 = cu->per_cu->dwarf2_per_objfile;
14663 struct attribute *attr;
14664 struct attribute *attr_high;
14665 CORE_ADDR low = 0;
14666 CORE_ADDR high = 0;
14667 enum pc_bounds_kind ret;
14668
14669 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14670 if (attr_high)
14671 {
14672 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14673 if (attr)
14674 {
14675 low = attr_value_as_address (attr);
14676 high = attr_value_as_address (attr_high);
14677 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14678 high += low;
14679 }
14680 else
14681 /* Found high w/o low attribute. */
14682 return PC_BOUNDS_INVALID;
14683
14684 /* Found consecutive range of addresses. */
14685 ret = PC_BOUNDS_HIGH_LOW;
14686 }
14687 else
14688 {
14689 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14690 if (attr != NULL)
14691 {
14692 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14693 We take advantage of the fact that DW_AT_ranges does not appear
14694 in DW_TAG_compile_unit of DWO files. */
14695 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14696 unsigned int ranges_offset = (DW_UNSND (attr)
14697 + (need_ranges_base
14698 ? cu->ranges_base
14699 : 0));
14700
14701 /* Value of the DW_AT_ranges attribute is the offset in the
14702 .debug_ranges section. */
14703 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14704 return PC_BOUNDS_INVALID;
14705 /* Found discontinuous range of addresses. */
14706 ret = PC_BOUNDS_RANGES;
14707 }
14708 else
14709 return PC_BOUNDS_NOT_PRESENT;
14710 }
14711
14712 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14713 if (high <= low)
14714 return PC_BOUNDS_INVALID;
14715
14716 /* When using the GNU linker, .gnu.linkonce. sections are used to
14717 eliminate duplicate copies of functions and vtables and such.
14718 The linker will arbitrarily choose one and discard the others.
14719 The AT_*_pc values for such functions refer to local labels in
14720 these sections. If the section from that file was discarded, the
14721 labels are not in the output, so the relocs get a value of 0.
14722 If this is a discarded function, mark the pc bounds as invalid,
14723 so that GDB will ignore it. */
14724 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14725 return PC_BOUNDS_INVALID;
14726
14727 *lowpc = low;
14728 if (highpc)
14729 *highpc = high;
14730 return ret;
14731 }
14732
14733 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14734 its low and high PC addresses. Do nothing if these addresses could not
14735 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14736 and HIGHPC to the high address if greater than HIGHPC. */
14737
14738 static void
14739 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14740 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14741 struct dwarf2_cu *cu)
14742 {
14743 CORE_ADDR low, high;
14744 struct die_info *child = die->child;
14745
14746 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14747 {
14748 *lowpc = std::min (*lowpc, low);
14749 *highpc = std::max (*highpc, high);
14750 }
14751
14752 /* If the language does not allow nested subprograms (either inside
14753 subprograms or lexical blocks), we're done. */
14754 if (cu->language != language_ada)
14755 return;
14756
14757 /* Check all the children of the given DIE. If it contains nested
14758 subprograms, then check their pc bounds. Likewise, we need to
14759 check lexical blocks as well, as they may also contain subprogram
14760 definitions. */
14761 while (child && child->tag)
14762 {
14763 if (child->tag == DW_TAG_subprogram
14764 || child->tag == DW_TAG_lexical_block)
14765 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14766 child = sibling_die (child);
14767 }
14768 }
14769
14770 /* Get the low and high pc's represented by the scope DIE, and store
14771 them in *LOWPC and *HIGHPC. If the correct values can't be
14772 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14773
14774 static void
14775 get_scope_pc_bounds (struct die_info *die,
14776 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14777 struct dwarf2_cu *cu)
14778 {
14779 CORE_ADDR best_low = (CORE_ADDR) -1;
14780 CORE_ADDR best_high = (CORE_ADDR) 0;
14781 CORE_ADDR current_low, current_high;
14782
14783 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14784 >= PC_BOUNDS_RANGES)
14785 {
14786 best_low = current_low;
14787 best_high = current_high;
14788 }
14789 else
14790 {
14791 struct die_info *child = die->child;
14792
14793 while (child && child->tag)
14794 {
14795 switch (child->tag) {
14796 case DW_TAG_subprogram:
14797 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14798 break;
14799 case DW_TAG_namespace:
14800 case DW_TAG_module:
14801 /* FIXME: carlton/2004-01-16: Should we do this for
14802 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14803 that current GCC's always emit the DIEs corresponding
14804 to definitions of methods of classes as children of a
14805 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14806 the DIEs giving the declarations, which could be
14807 anywhere). But I don't see any reason why the
14808 standards says that they have to be there. */
14809 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14810
14811 if (current_low != ((CORE_ADDR) -1))
14812 {
14813 best_low = std::min (best_low, current_low);
14814 best_high = std::max (best_high, current_high);
14815 }
14816 break;
14817 default:
14818 /* Ignore. */
14819 break;
14820 }
14821
14822 child = sibling_die (child);
14823 }
14824 }
14825
14826 *lowpc = best_low;
14827 *highpc = best_high;
14828 }
14829
14830 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14831 in DIE. */
14832
14833 static void
14834 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14835 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14836 {
14837 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14838 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14839 struct attribute *attr;
14840 struct attribute *attr_high;
14841
14842 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14843 if (attr_high)
14844 {
14845 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14846 if (attr)
14847 {
14848 CORE_ADDR low = attr_value_as_address (attr);
14849 CORE_ADDR high = attr_value_as_address (attr_high);
14850
14851 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14852 high += low;
14853
14854 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14855 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14856 cu->get_builder ()->record_block_range (block, low, high - 1);
14857 }
14858 }
14859
14860 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14861 if (attr)
14862 {
14863 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14864 We take advantage of the fact that DW_AT_ranges does not appear
14865 in DW_TAG_compile_unit of DWO files. */
14866 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14867
14868 /* The value of the DW_AT_ranges attribute is the offset of the
14869 address range list in the .debug_ranges section. */
14870 unsigned long offset = (DW_UNSND (attr)
14871 + (need_ranges_base ? cu->ranges_base : 0));
14872
14873 std::vector<blockrange> blockvec;
14874 dwarf2_ranges_process (offset, cu,
14875 [&] (CORE_ADDR start, CORE_ADDR end)
14876 {
14877 start += baseaddr;
14878 end += baseaddr;
14879 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14880 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14881 cu->get_builder ()->record_block_range (block, start, end - 1);
14882 blockvec.emplace_back (start, end);
14883 });
14884
14885 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14886 }
14887 }
14888
14889 /* Check whether the producer field indicates either of GCC < 4.6, or the
14890 Intel C/C++ compiler, and cache the result in CU. */
14891
14892 static void
14893 check_producer (struct dwarf2_cu *cu)
14894 {
14895 int major, minor;
14896
14897 if (cu->producer == NULL)
14898 {
14899 /* For unknown compilers expect their behavior is DWARF version
14900 compliant.
14901
14902 GCC started to support .debug_types sections by -gdwarf-4 since
14903 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14904 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14905 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14906 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14907 }
14908 else if (producer_is_gcc (cu->producer, &major, &minor))
14909 {
14910 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14911 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14912 }
14913 else if (producer_is_icc (cu->producer, &major, &minor))
14914 {
14915 cu->producer_is_icc = true;
14916 cu->producer_is_icc_lt_14 = major < 14;
14917 }
14918 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14919 cu->producer_is_codewarrior = true;
14920 else
14921 {
14922 /* For other non-GCC compilers, expect their behavior is DWARF version
14923 compliant. */
14924 }
14925
14926 cu->checked_producer = true;
14927 }
14928
14929 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14930 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14931 during 4.6.0 experimental. */
14932
14933 static bool
14934 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14935 {
14936 if (!cu->checked_producer)
14937 check_producer (cu);
14938
14939 return cu->producer_is_gxx_lt_4_6;
14940 }
14941
14942
14943 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14944 with incorrect is_stmt attributes. */
14945
14946 static bool
14947 producer_is_codewarrior (struct dwarf2_cu *cu)
14948 {
14949 if (!cu->checked_producer)
14950 check_producer (cu);
14951
14952 return cu->producer_is_codewarrior;
14953 }
14954
14955 /* Return the default accessibility type if it is not overriden by
14956 DW_AT_accessibility. */
14957
14958 static enum dwarf_access_attribute
14959 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14960 {
14961 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14962 {
14963 /* The default DWARF 2 accessibility for members is public, the default
14964 accessibility for inheritance is private. */
14965
14966 if (die->tag != DW_TAG_inheritance)
14967 return DW_ACCESS_public;
14968 else
14969 return DW_ACCESS_private;
14970 }
14971 else
14972 {
14973 /* DWARF 3+ defines the default accessibility a different way. The same
14974 rules apply now for DW_TAG_inheritance as for the members and it only
14975 depends on the container kind. */
14976
14977 if (die->parent->tag == DW_TAG_class_type)
14978 return DW_ACCESS_private;
14979 else
14980 return DW_ACCESS_public;
14981 }
14982 }
14983
14984 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14985 offset. If the attribute was not found return 0, otherwise return
14986 1. If it was found but could not properly be handled, set *OFFSET
14987 to 0. */
14988
14989 static int
14990 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14991 LONGEST *offset)
14992 {
14993 struct attribute *attr;
14994
14995 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14996 if (attr != NULL)
14997 {
14998 *offset = 0;
14999
15000 /* Note that we do not check for a section offset first here.
15001 This is because DW_AT_data_member_location is new in DWARF 4,
15002 so if we see it, we can assume that a constant form is really
15003 a constant and not a section offset. */
15004 if (attr_form_is_constant (attr))
15005 *offset = dwarf2_get_attr_constant_value (attr, 0);
15006 else if (attr_form_is_section_offset (attr))
15007 dwarf2_complex_location_expr_complaint ();
15008 else if (attr_form_is_block (attr))
15009 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15010 else
15011 dwarf2_complex_location_expr_complaint ();
15012
15013 return 1;
15014 }
15015
15016 return 0;
15017 }
15018
15019 /* Add an aggregate field to the field list. */
15020
15021 static void
15022 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15023 struct dwarf2_cu *cu)
15024 {
15025 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15026 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15027 struct nextfield *new_field;
15028 struct attribute *attr;
15029 struct field *fp;
15030 const char *fieldname = "";
15031
15032 if (die->tag == DW_TAG_inheritance)
15033 {
15034 fip->baseclasses.emplace_back ();
15035 new_field = &fip->baseclasses.back ();
15036 }
15037 else
15038 {
15039 fip->fields.emplace_back ();
15040 new_field = &fip->fields.back ();
15041 }
15042
15043 fip->nfields++;
15044
15045 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15046 if (attr)
15047 new_field->accessibility = DW_UNSND (attr);
15048 else
15049 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15050 if (new_field->accessibility != DW_ACCESS_public)
15051 fip->non_public_fields = 1;
15052
15053 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15054 if (attr)
15055 new_field->virtuality = DW_UNSND (attr);
15056 else
15057 new_field->virtuality = DW_VIRTUALITY_none;
15058
15059 fp = &new_field->field;
15060
15061 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15062 {
15063 LONGEST offset;
15064
15065 /* Data member other than a C++ static data member. */
15066
15067 /* Get type of field. */
15068 fp->type = die_type (die, cu);
15069
15070 SET_FIELD_BITPOS (*fp, 0);
15071
15072 /* Get bit size of field (zero if none). */
15073 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15074 if (attr)
15075 {
15076 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15077 }
15078 else
15079 {
15080 FIELD_BITSIZE (*fp) = 0;
15081 }
15082
15083 /* Get bit offset of field. */
15084 if (handle_data_member_location (die, cu, &offset))
15085 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15086 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15087 if (attr)
15088 {
15089 if (gdbarch_bits_big_endian (gdbarch))
15090 {
15091 /* For big endian bits, the DW_AT_bit_offset gives the
15092 additional bit offset from the MSB of the containing
15093 anonymous object to the MSB of the field. We don't
15094 have to do anything special since we don't need to
15095 know the size of the anonymous object. */
15096 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15097 }
15098 else
15099 {
15100 /* For little endian bits, compute the bit offset to the
15101 MSB of the anonymous object, subtract off the number of
15102 bits from the MSB of the field to the MSB of the
15103 object, and then subtract off the number of bits of
15104 the field itself. The result is the bit offset of
15105 the LSB of the field. */
15106 int anonymous_size;
15107 int bit_offset = DW_UNSND (attr);
15108
15109 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15110 if (attr)
15111 {
15112 /* The size of the anonymous object containing
15113 the bit field is explicit, so use the
15114 indicated size (in bytes). */
15115 anonymous_size = DW_UNSND (attr);
15116 }
15117 else
15118 {
15119 /* The size of the anonymous object containing
15120 the bit field must be inferred from the type
15121 attribute of the data member containing the
15122 bit field. */
15123 anonymous_size = TYPE_LENGTH (fp->type);
15124 }
15125 SET_FIELD_BITPOS (*fp,
15126 (FIELD_BITPOS (*fp)
15127 + anonymous_size * bits_per_byte
15128 - bit_offset - FIELD_BITSIZE (*fp)));
15129 }
15130 }
15131 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15132 if (attr != NULL)
15133 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15134 + dwarf2_get_attr_constant_value (attr, 0)));
15135
15136 /* Get name of field. */
15137 fieldname = dwarf2_name (die, cu);
15138 if (fieldname == NULL)
15139 fieldname = "";
15140
15141 /* The name is already allocated along with this objfile, so we don't
15142 need to duplicate it for the type. */
15143 fp->name = fieldname;
15144
15145 /* Change accessibility for artificial fields (e.g. virtual table
15146 pointer or virtual base class pointer) to private. */
15147 if (dwarf2_attr (die, DW_AT_artificial, cu))
15148 {
15149 FIELD_ARTIFICIAL (*fp) = 1;
15150 new_field->accessibility = DW_ACCESS_private;
15151 fip->non_public_fields = 1;
15152 }
15153 }
15154 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15155 {
15156 /* C++ static member. */
15157
15158 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15159 is a declaration, but all versions of G++ as of this writing
15160 (so through at least 3.2.1) incorrectly generate
15161 DW_TAG_variable tags. */
15162
15163 const char *physname;
15164
15165 /* Get name of field. */
15166 fieldname = dwarf2_name (die, cu);
15167 if (fieldname == NULL)
15168 return;
15169
15170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15171 if (attr
15172 /* Only create a symbol if this is an external value.
15173 new_symbol checks this and puts the value in the global symbol
15174 table, which we want. If it is not external, new_symbol
15175 will try to put the value in cu->list_in_scope which is wrong. */
15176 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15177 {
15178 /* A static const member, not much different than an enum as far as
15179 we're concerned, except that we can support more types. */
15180 new_symbol (die, NULL, cu);
15181 }
15182
15183 /* Get physical name. */
15184 physname = dwarf2_physname (fieldname, die, cu);
15185
15186 /* The name is already allocated along with this objfile, so we don't
15187 need to duplicate it for the type. */
15188 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15189 FIELD_TYPE (*fp) = die_type (die, cu);
15190 FIELD_NAME (*fp) = fieldname;
15191 }
15192 else if (die->tag == DW_TAG_inheritance)
15193 {
15194 LONGEST offset;
15195
15196 /* C++ base class field. */
15197 if (handle_data_member_location (die, cu, &offset))
15198 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15199 FIELD_BITSIZE (*fp) = 0;
15200 FIELD_TYPE (*fp) = die_type (die, cu);
15201 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15202 }
15203 else if (die->tag == DW_TAG_variant_part)
15204 {
15205 /* process_structure_scope will treat this DIE as a union. */
15206 process_structure_scope (die, cu);
15207
15208 /* The variant part is relative to the start of the enclosing
15209 structure. */
15210 SET_FIELD_BITPOS (*fp, 0);
15211 fp->type = get_die_type (die, cu);
15212 fp->artificial = 1;
15213 fp->name = "<<variant>>";
15214
15215 /* Normally a DW_TAG_variant_part won't have a size, but our
15216 representation requires one, so set it to the maximum of the
15217 child sizes. */
15218 if (TYPE_LENGTH (fp->type) == 0)
15219 {
15220 unsigned max = 0;
15221 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15222 if (TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)) > max)
15223 max = TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i));
15224 TYPE_LENGTH (fp->type) = max;
15225 }
15226 }
15227 else
15228 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15229 }
15230
15231 /* Can the type given by DIE define another type? */
15232
15233 static bool
15234 type_can_define_types (const struct die_info *die)
15235 {
15236 switch (die->tag)
15237 {
15238 case DW_TAG_typedef:
15239 case DW_TAG_class_type:
15240 case DW_TAG_structure_type:
15241 case DW_TAG_union_type:
15242 case DW_TAG_enumeration_type:
15243 return true;
15244
15245 default:
15246 return false;
15247 }
15248 }
15249
15250 /* Add a type definition defined in the scope of the FIP's class. */
15251
15252 static void
15253 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15254 struct dwarf2_cu *cu)
15255 {
15256 struct decl_field fp;
15257 memset (&fp, 0, sizeof (fp));
15258
15259 gdb_assert (type_can_define_types (die));
15260
15261 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15262 fp.name = dwarf2_name (die, cu);
15263 fp.type = read_type_die (die, cu);
15264
15265 /* Save accessibility. */
15266 enum dwarf_access_attribute accessibility;
15267 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15268 if (attr != NULL)
15269 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15270 else
15271 accessibility = dwarf2_default_access_attribute (die, cu);
15272 switch (accessibility)
15273 {
15274 case DW_ACCESS_public:
15275 /* The assumed value if neither private nor protected. */
15276 break;
15277 case DW_ACCESS_private:
15278 fp.is_private = 1;
15279 break;
15280 case DW_ACCESS_protected:
15281 fp.is_protected = 1;
15282 break;
15283 default:
15284 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15285 }
15286
15287 if (die->tag == DW_TAG_typedef)
15288 fip->typedef_field_list.push_back (fp);
15289 else
15290 fip->nested_types_list.push_back (fp);
15291 }
15292
15293 /* Create the vector of fields, and attach it to the type. */
15294
15295 static void
15296 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15297 struct dwarf2_cu *cu)
15298 {
15299 int nfields = fip->nfields;
15300
15301 /* Record the field count, allocate space for the array of fields,
15302 and create blank accessibility bitfields if necessary. */
15303 TYPE_NFIELDS (type) = nfields;
15304 TYPE_FIELDS (type) = (struct field *)
15305 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15306
15307 if (fip->non_public_fields && cu->language != language_ada)
15308 {
15309 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15310
15311 TYPE_FIELD_PRIVATE_BITS (type) =
15312 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15313 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15314
15315 TYPE_FIELD_PROTECTED_BITS (type) =
15316 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15317 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15318
15319 TYPE_FIELD_IGNORE_BITS (type) =
15320 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15321 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15322 }
15323
15324 /* If the type has baseclasses, allocate and clear a bit vector for
15325 TYPE_FIELD_VIRTUAL_BITS. */
15326 if (!fip->baseclasses.empty () && cu->language != language_ada)
15327 {
15328 int num_bytes = B_BYTES (fip->baseclasses.size ());
15329 unsigned char *pointer;
15330
15331 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15332 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15333 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15334 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15335 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15336 }
15337
15338 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15339 {
15340 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15341
15342 for (int index = 0; index < nfields; ++index)
15343 {
15344 struct nextfield &field = fip->fields[index];
15345
15346 if (field.variant.is_discriminant)
15347 di->discriminant_index = index;
15348 else if (field.variant.default_branch)
15349 di->default_index = index;
15350 else
15351 di->discriminants[index] = field.variant.discriminant_value;
15352 }
15353 }
15354
15355 /* Copy the saved-up fields into the field vector. */
15356 for (int i = 0; i < nfields; ++i)
15357 {
15358 struct nextfield &field
15359 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15360 : fip->fields[i - fip->baseclasses.size ()]);
15361
15362 TYPE_FIELD (type, i) = field.field;
15363 switch (field.accessibility)
15364 {
15365 case DW_ACCESS_private:
15366 if (cu->language != language_ada)
15367 SET_TYPE_FIELD_PRIVATE (type, i);
15368 break;
15369
15370 case DW_ACCESS_protected:
15371 if (cu->language != language_ada)
15372 SET_TYPE_FIELD_PROTECTED (type, i);
15373 break;
15374
15375 case DW_ACCESS_public:
15376 break;
15377
15378 default:
15379 /* Unknown accessibility. Complain and treat it as public. */
15380 {
15381 complaint (_("unsupported accessibility %d"),
15382 field.accessibility);
15383 }
15384 break;
15385 }
15386 if (i < fip->baseclasses.size ())
15387 {
15388 switch (field.virtuality)
15389 {
15390 case DW_VIRTUALITY_virtual:
15391 case DW_VIRTUALITY_pure_virtual:
15392 if (cu->language == language_ada)
15393 error (_("unexpected virtuality in component of Ada type"));
15394 SET_TYPE_FIELD_VIRTUAL (type, i);
15395 break;
15396 }
15397 }
15398 }
15399 }
15400
15401 /* Return true if this member function is a constructor, false
15402 otherwise. */
15403
15404 static int
15405 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15406 {
15407 const char *fieldname;
15408 const char *type_name;
15409 int len;
15410
15411 if (die->parent == NULL)
15412 return 0;
15413
15414 if (die->parent->tag != DW_TAG_structure_type
15415 && die->parent->tag != DW_TAG_union_type
15416 && die->parent->tag != DW_TAG_class_type)
15417 return 0;
15418
15419 fieldname = dwarf2_name (die, cu);
15420 type_name = dwarf2_name (die->parent, cu);
15421 if (fieldname == NULL || type_name == NULL)
15422 return 0;
15423
15424 len = strlen (fieldname);
15425 return (strncmp (fieldname, type_name, len) == 0
15426 && (type_name[len] == '\0' || type_name[len] == '<'));
15427 }
15428
15429 /* Add a member function to the proper fieldlist. */
15430
15431 static void
15432 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15433 struct type *type, struct dwarf2_cu *cu)
15434 {
15435 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15436 struct attribute *attr;
15437 int i;
15438 struct fnfieldlist *flp = nullptr;
15439 struct fn_field *fnp;
15440 const char *fieldname;
15441 struct type *this_type;
15442 enum dwarf_access_attribute accessibility;
15443
15444 if (cu->language == language_ada)
15445 error (_("unexpected member function in Ada type"));
15446
15447 /* Get name of member function. */
15448 fieldname = dwarf2_name (die, cu);
15449 if (fieldname == NULL)
15450 return;
15451
15452 /* Look up member function name in fieldlist. */
15453 for (i = 0; i < fip->fnfieldlists.size (); i++)
15454 {
15455 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15456 {
15457 flp = &fip->fnfieldlists[i];
15458 break;
15459 }
15460 }
15461
15462 /* Create a new fnfieldlist if necessary. */
15463 if (flp == nullptr)
15464 {
15465 fip->fnfieldlists.emplace_back ();
15466 flp = &fip->fnfieldlists.back ();
15467 flp->name = fieldname;
15468 i = fip->fnfieldlists.size () - 1;
15469 }
15470
15471 /* Create a new member function field and add it to the vector of
15472 fnfieldlists. */
15473 flp->fnfields.emplace_back ();
15474 fnp = &flp->fnfields.back ();
15475
15476 /* Delay processing of the physname until later. */
15477 if (cu->language == language_cplus)
15478 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15479 die, cu);
15480 else
15481 {
15482 const char *physname = dwarf2_physname (fieldname, die, cu);
15483 fnp->physname = physname ? physname : "";
15484 }
15485
15486 fnp->type = alloc_type (objfile);
15487 this_type = read_type_die (die, cu);
15488 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15489 {
15490 int nparams = TYPE_NFIELDS (this_type);
15491
15492 /* TYPE is the domain of this method, and THIS_TYPE is the type
15493 of the method itself (TYPE_CODE_METHOD). */
15494 smash_to_method_type (fnp->type, type,
15495 TYPE_TARGET_TYPE (this_type),
15496 TYPE_FIELDS (this_type),
15497 TYPE_NFIELDS (this_type),
15498 TYPE_VARARGS (this_type));
15499
15500 /* Handle static member functions.
15501 Dwarf2 has no clean way to discern C++ static and non-static
15502 member functions. G++ helps GDB by marking the first
15503 parameter for non-static member functions (which is the this
15504 pointer) as artificial. We obtain this information from
15505 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15506 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15507 fnp->voffset = VOFFSET_STATIC;
15508 }
15509 else
15510 complaint (_("member function type missing for '%s'"),
15511 dwarf2_full_name (fieldname, die, cu));
15512
15513 /* Get fcontext from DW_AT_containing_type if present. */
15514 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15515 fnp->fcontext = die_containing_type (die, cu);
15516
15517 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15518 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15519
15520 /* Get accessibility. */
15521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15522 if (attr)
15523 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15524 else
15525 accessibility = dwarf2_default_access_attribute (die, cu);
15526 switch (accessibility)
15527 {
15528 case DW_ACCESS_private:
15529 fnp->is_private = 1;
15530 break;
15531 case DW_ACCESS_protected:
15532 fnp->is_protected = 1;
15533 break;
15534 }
15535
15536 /* Check for artificial methods. */
15537 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15538 if (attr && DW_UNSND (attr) != 0)
15539 fnp->is_artificial = 1;
15540
15541 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15542
15543 /* Get index in virtual function table if it is a virtual member
15544 function. For older versions of GCC, this is an offset in the
15545 appropriate virtual table, as specified by DW_AT_containing_type.
15546 For everyone else, it is an expression to be evaluated relative
15547 to the object address. */
15548
15549 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15550 if (attr)
15551 {
15552 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15553 {
15554 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15555 {
15556 /* Old-style GCC. */
15557 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15558 }
15559 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15560 || (DW_BLOCK (attr)->size > 1
15561 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15562 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15563 {
15564 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15565 if ((fnp->voffset % cu->header.addr_size) != 0)
15566 dwarf2_complex_location_expr_complaint ();
15567 else
15568 fnp->voffset /= cu->header.addr_size;
15569 fnp->voffset += 2;
15570 }
15571 else
15572 dwarf2_complex_location_expr_complaint ();
15573
15574 if (!fnp->fcontext)
15575 {
15576 /* If there is no `this' field and no DW_AT_containing_type,
15577 we cannot actually find a base class context for the
15578 vtable! */
15579 if (TYPE_NFIELDS (this_type) == 0
15580 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15581 {
15582 complaint (_("cannot determine context for virtual member "
15583 "function \"%s\" (offset %s)"),
15584 fieldname, sect_offset_str (die->sect_off));
15585 }
15586 else
15587 {
15588 fnp->fcontext
15589 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15590 }
15591 }
15592 }
15593 else if (attr_form_is_section_offset (attr))
15594 {
15595 dwarf2_complex_location_expr_complaint ();
15596 }
15597 else
15598 {
15599 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15600 fieldname);
15601 }
15602 }
15603 else
15604 {
15605 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15606 if (attr && DW_UNSND (attr))
15607 {
15608 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15609 complaint (_("Member function \"%s\" (offset %s) is virtual "
15610 "but the vtable offset is not specified"),
15611 fieldname, sect_offset_str (die->sect_off));
15612 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15613 TYPE_CPLUS_DYNAMIC (type) = 1;
15614 }
15615 }
15616 }
15617
15618 /* Create the vector of member function fields, and attach it to the type. */
15619
15620 static void
15621 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15622 struct dwarf2_cu *cu)
15623 {
15624 if (cu->language == language_ada)
15625 error (_("unexpected member functions in Ada type"));
15626
15627 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15628 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15629 TYPE_ALLOC (type,
15630 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15631
15632 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15633 {
15634 struct fnfieldlist &nf = fip->fnfieldlists[i];
15635 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15636
15637 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15638 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15639 fn_flp->fn_fields = (struct fn_field *)
15640 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15641
15642 for (int k = 0; k < nf.fnfields.size (); ++k)
15643 fn_flp->fn_fields[k] = nf.fnfields[k];
15644 }
15645
15646 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15647 }
15648
15649 /* Returns non-zero if NAME is the name of a vtable member in CU's
15650 language, zero otherwise. */
15651 static int
15652 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15653 {
15654 static const char vptr[] = "_vptr";
15655
15656 /* Look for the C++ form of the vtable. */
15657 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15658 return 1;
15659
15660 return 0;
15661 }
15662
15663 /* GCC outputs unnamed structures that are really pointers to member
15664 functions, with the ABI-specified layout. If TYPE describes
15665 such a structure, smash it into a member function type.
15666
15667 GCC shouldn't do this; it should just output pointer to member DIEs.
15668 This is GCC PR debug/28767. */
15669
15670 static void
15671 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15672 {
15673 struct type *pfn_type, *self_type, *new_type;
15674
15675 /* Check for a structure with no name and two children. */
15676 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15677 return;
15678
15679 /* Check for __pfn and __delta members. */
15680 if (TYPE_FIELD_NAME (type, 0) == NULL
15681 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15682 || TYPE_FIELD_NAME (type, 1) == NULL
15683 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15684 return;
15685
15686 /* Find the type of the method. */
15687 pfn_type = TYPE_FIELD_TYPE (type, 0);
15688 if (pfn_type == NULL
15689 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15690 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15691 return;
15692
15693 /* Look for the "this" argument. */
15694 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15695 if (TYPE_NFIELDS (pfn_type) == 0
15696 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15697 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15698 return;
15699
15700 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15701 new_type = alloc_type (objfile);
15702 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15703 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15704 TYPE_VARARGS (pfn_type));
15705 smash_to_methodptr_type (type, new_type);
15706 }
15707
15708 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15709 appropriate error checking and issuing complaints if there is a
15710 problem. */
15711
15712 static ULONGEST
15713 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15714 {
15715 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15716
15717 if (attr == nullptr)
15718 return 0;
15719
15720 if (!attr_form_is_constant (attr))
15721 {
15722 complaint (_("DW_AT_alignment must have constant form"
15723 " - DIE at %s [in module %s]"),
15724 sect_offset_str (die->sect_off),
15725 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15726 return 0;
15727 }
15728
15729 ULONGEST align;
15730 if (attr->form == DW_FORM_sdata)
15731 {
15732 LONGEST val = DW_SND (attr);
15733 if (val < 0)
15734 {
15735 complaint (_("DW_AT_alignment value must not be negative"
15736 " - DIE at %s [in module %s]"),
15737 sect_offset_str (die->sect_off),
15738 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15739 return 0;
15740 }
15741 align = val;
15742 }
15743 else
15744 align = DW_UNSND (attr);
15745
15746 if (align == 0)
15747 {
15748 complaint (_("DW_AT_alignment value must not be zero"
15749 " - DIE at %s [in module %s]"),
15750 sect_offset_str (die->sect_off),
15751 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15752 return 0;
15753 }
15754 if ((align & (align - 1)) != 0)
15755 {
15756 complaint (_("DW_AT_alignment value must be a power of 2"
15757 " - DIE at %s [in module %s]"),
15758 sect_offset_str (die->sect_off),
15759 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15760 return 0;
15761 }
15762
15763 return align;
15764 }
15765
15766 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15767 the alignment for TYPE. */
15768
15769 static void
15770 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15771 struct type *type)
15772 {
15773 if (!set_type_align (type, get_alignment (cu, die)))
15774 complaint (_("DW_AT_alignment value too large"
15775 " - DIE at %s [in module %s]"),
15776 sect_offset_str (die->sect_off),
15777 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15778 }
15779
15780 /* Called when we find the DIE that starts a structure or union scope
15781 (definition) to create a type for the structure or union. Fill in
15782 the type's name and general properties; the members will not be
15783 processed until process_structure_scope. A symbol table entry for
15784 the type will also not be done until process_structure_scope (assuming
15785 the type has a name).
15786
15787 NOTE: we need to call these functions regardless of whether or not the
15788 DIE has a DW_AT_name attribute, since it might be an anonymous
15789 structure or union. This gets the type entered into our set of
15790 user defined types. */
15791
15792 static struct type *
15793 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15794 {
15795 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15796 struct type *type;
15797 struct attribute *attr;
15798 const char *name;
15799
15800 /* If the definition of this type lives in .debug_types, read that type.
15801 Don't follow DW_AT_specification though, that will take us back up
15802 the chain and we want to go down. */
15803 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15804 if (attr)
15805 {
15806 type = get_DW_AT_signature_type (die, attr, cu);
15807
15808 /* The type's CU may not be the same as CU.
15809 Ensure TYPE is recorded with CU in die_type_hash. */
15810 return set_die_type (die, type, cu);
15811 }
15812
15813 type = alloc_type (objfile);
15814 INIT_CPLUS_SPECIFIC (type);
15815
15816 name = dwarf2_name (die, cu);
15817 if (name != NULL)
15818 {
15819 if (cu->language == language_cplus
15820 || cu->language == language_d
15821 || cu->language == language_rust)
15822 {
15823 const char *full_name = dwarf2_full_name (name, die, cu);
15824
15825 /* dwarf2_full_name might have already finished building the DIE's
15826 type. If so, there is no need to continue. */
15827 if (get_die_type (die, cu) != NULL)
15828 return get_die_type (die, cu);
15829
15830 TYPE_NAME (type) = full_name;
15831 }
15832 else
15833 {
15834 /* The name is already allocated along with this objfile, so
15835 we don't need to duplicate it for the type. */
15836 TYPE_NAME (type) = name;
15837 }
15838 }
15839
15840 if (die->tag == DW_TAG_structure_type)
15841 {
15842 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15843 }
15844 else if (die->tag == DW_TAG_union_type)
15845 {
15846 TYPE_CODE (type) = TYPE_CODE_UNION;
15847 }
15848 else if (die->tag == DW_TAG_variant_part)
15849 {
15850 TYPE_CODE (type) = TYPE_CODE_UNION;
15851 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15852 }
15853 else
15854 {
15855 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15856 }
15857
15858 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15859 TYPE_DECLARED_CLASS (type) = 1;
15860
15861 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15862 if (attr)
15863 {
15864 if (attr_form_is_constant (attr))
15865 TYPE_LENGTH (type) = DW_UNSND (attr);
15866 else
15867 {
15868 /* For the moment, dynamic type sizes are not supported
15869 by GDB's struct type. The actual size is determined
15870 on-demand when resolving the type of a given object,
15871 so set the type's length to zero for now. Otherwise,
15872 we record an expression as the length, and that expression
15873 could lead to a very large value, which could eventually
15874 lead to us trying to allocate that much memory when creating
15875 a value of that type. */
15876 TYPE_LENGTH (type) = 0;
15877 }
15878 }
15879 else
15880 {
15881 TYPE_LENGTH (type) = 0;
15882 }
15883
15884 maybe_set_alignment (cu, die, type);
15885
15886 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15887 {
15888 /* ICC<14 does not output the required DW_AT_declaration on
15889 incomplete types, but gives them a size of zero. */
15890 TYPE_STUB (type) = 1;
15891 }
15892 else
15893 TYPE_STUB_SUPPORTED (type) = 1;
15894
15895 if (die_is_declaration (die, cu))
15896 TYPE_STUB (type) = 1;
15897 else if (attr == NULL && die->child == NULL
15898 && producer_is_realview (cu->producer))
15899 /* RealView does not output the required DW_AT_declaration
15900 on incomplete types. */
15901 TYPE_STUB (type) = 1;
15902
15903 /* We need to add the type field to the die immediately so we don't
15904 infinitely recurse when dealing with pointers to the structure
15905 type within the structure itself. */
15906 set_die_type (die, type, cu);
15907
15908 /* set_die_type should be already done. */
15909 set_descriptive_type (type, die, cu);
15910
15911 return type;
15912 }
15913
15914 /* A helper for process_structure_scope that handles a single member
15915 DIE. */
15916
15917 static void
15918 handle_struct_member_die (struct die_info *child_die, struct type *type,
15919 struct field_info *fi,
15920 std::vector<struct symbol *> *template_args,
15921 struct dwarf2_cu *cu)
15922 {
15923 if (child_die->tag == DW_TAG_member
15924 || child_die->tag == DW_TAG_variable
15925 || child_die->tag == DW_TAG_variant_part)
15926 {
15927 /* NOTE: carlton/2002-11-05: A C++ static data member
15928 should be a DW_TAG_member that is a declaration, but
15929 all versions of G++ as of this writing (so through at
15930 least 3.2.1) incorrectly generate DW_TAG_variable
15931 tags for them instead. */
15932 dwarf2_add_field (fi, child_die, cu);
15933 }
15934 else if (child_die->tag == DW_TAG_subprogram)
15935 {
15936 /* Rust doesn't have member functions in the C++ sense.
15937 However, it does emit ordinary functions as children
15938 of a struct DIE. */
15939 if (cu->language == language_rust)
15940 read_func_scope (child_die, cu);
15941 else
15942 {
15943 /* C++ member function. */
15944 dwarf2_add_member_fn (fi, child_die, type, cu);
15945 }
15946 }
15947 else if (child_die->tag == DW_TAG_inheritance)
15948 {
15949 /* C++ base class field. */
15950 dwarf2_add_field (fi, child_die, cu);
15951 }
15952 else if (type_can_define_types (child_die))
15953 dwarf2_add_type_defn (fi, child_die, cu);
15954 else if (child_die->tag == DW_TAG_template_type_param
15955 || child_die->tag == DW_TAG_template_value_param)
15956 {
15957 struct symbol *arg = new_symbol (child_die, NULL, cu);
15958
15959 if (arg != NULL)
15960 template_args->push_back (arg);
15961 }
15962 else if (child_die->tag == DW_TAG_variant)
15963 {
15964 /* In a variant we want to get the discriminant and also add a
15965 field for our sole member child. */
15966 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
15967
15968 for (struct die_info *variant_child = child_die->child;
15969 variant_child != NULL;
15970 variant_child = sibling_die (variant_child))
15971 {
15972 if (variant_child->tag == DW_TAG_member)
15973 {
15974 handle_struct_member_die (variant_child, type, fi,
15975 template_args, cu);
15976 /* Only handle the one. */
15977 break;
15978 }
15979 }
15980
15981 /* We don't handle this but we might as well report it if we see
15982 it. */
15983 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
15984 complaint (_("DW_AT_discr_list is not supported yet"
15985 " - DIE at %s [in module %s]"),
15986 sect_offset_str (child_die->sect_off),
15987 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15988
15989 /* The first field was just added, so we can stash the
15990 discriminant there. */
15991 gdb_assert (!fi->fields.empty ());
15992 if (discr == NULL)
15993 fi->fields.back ().variant.default_branch = true;
15994 else
15995 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
15996 }
15997 }
15998
15999 /* Finish creating a structure or union type, including filling in
16000 its members and creating a symbol for it. */
16001
16002 static void
16003 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16004 {
16005 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16006 struct die_info *child_die;
16007 struct type *type;
16008
16009 type = get_die_type (die, cu);
16010 if (type == NULL)
16011 type = read_structure_type (die, cu);
16012
16013 /* When reading a DW_TAG_variant_part, we need to notice when we
16014 read the discriminant member, so we can record it later in the
16015 discriminant_info. */
16016 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16017 sect_offset discr_offset;
16018 bool has_template_parameters = false;
16019
16020 if (is_variant_part)
16021 {
16022 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16023 if (discr == NULL)
16024 {
16025 /* Maybe it's a univariant form, an extension we support.
16026 In this case arrange not to check the offset. */
16027 is_variant_part = false;
16028 }
16029 else if (attr_form_is_ref (discr))
16030 {
16031 struct dwarf2_cu *target_cu = cu;
16032 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16033
16034 discr_offset = target_die->sect_off;
16035 }
16036 else
16037 {
16038 complaint (_("DW_AT_discr does not have DIE reference form"
16039 " - DIE at %s [in module %s]"),
16040 sect_offset_str (die->sect_off),
16041 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16042 is_variant_part = false;
16043 }
16044 }
16045
16046 if (die->child != NULL && ! die_is_declaration (die, cu))
16047 {
16048 struct field_info fi;
16049 std::vector<struct symbol *> template_args;
16050
16051 child_die = die->child;
16052
16053 while (child_die && child_die->tag)
16054 {
16055 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16056
16057 if (is_variant_part && discr_offset == child_die->sect_off)
16058 fi.fields.back ().variant.is_discriminant = true;
16059
16060 child_die = sibling_die (child_die);
16061 }
16062
16063 /* Attach template arguments to type. */
16064 if (!template_args.empty ())
16065 {
16066 has_template_parameters = true;
16067 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16068 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16069 TYPE_TEMPLATE_ARGUMENTS (type)
16070 = XOBNEWVEC (&objfile->objfile_obstack,
16071 struct symbol *,
16072 TYPE_N_TEMPLATE_ARGUMENTS (type));
16073 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16074 template_args.data (),
16075 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16076 * sizeof (struct symbol *)));
16077 }
16078
16079 /* Attach fields and member functions to the type. */
16080 if (fi.nfields)
16081 dwarf2_attach_fields_to_type (&fi, type, cu);
16082 if (!fi.fnfieldlists.empty ())
16083 {
16084 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16085
16086 /* Get the type which refers to the base class (possibly this
16087 class itself) which contains the vtable pointer for the current
16088 class from the DW_AT_containing_type attribute. This use of
16089 DW_AT_containing_type is a GNU extension. */
16090
16091 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16092 {
16093 struct type *t = die_containing_type (die, cu);
16094
16095 set_type_vptr_basetype (type, t);
16096 if (type == t)
16097 {
16098 int i;
16099
16100 /* Our own class provides vtbl ptr. */
16101 for (i = TYPE_NFIELDS (t) - 1;
16102 i >= TYPE_N_BASECLASSES (t);
16103 --i)
16104 {
16105 const char *fieldname = TYPE_FIELD_NAME (t, i);
16106
16107 if (is_vtable_name (fieldname, cu))
16108 {
16109 set_type_vptr_fieldno (type, i);
16110 break;
16111 }
16112 }
16113
16114 /* Complain if virtual function table field not found. */
16115 if (i < TYPE_N_BASECLASSES (t))
16116 complaint (_("virtual function table pointer "
16117 "not found when defining class '%s'"),
16118 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16119 }
16120 else
16121 {
16122 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16123 }
16124 }
16125 else if (cu->producer
16126 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16127 {
16128 /* The IBM XLC compiler does not provide direct indication
16129 of the containing type, but the vtable pointer is
16130 always named __vfp. */
16131
16132 int i;
16133
16134 for (i = TYPE_NFIELDS (type) - 1;
16135 i >= TYPE_N_BASECLASSES (type);
16136 --i)
16137 {
16138 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16139 {
16140 set_type_vptr_fieldno (type, i);
16141 set_type_vptr_basetype (type, type);
16142 break;
16143 }
16144 }
16145 }
16146 }
16147
16148 /* Copy fi.typedef_field_list linked list elements content into the
16149 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16150 if (!fi.typedef_field_list.empty ())
16151 {
16152 int count = fi.typedef_field_list.size ();
16153
16154 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16155 TYPE_TYPEDEF_FIELD_ARRAY (type)
16156 = ((struct decl_field *)
16157 TYPE_ALLOC (type,
16158 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16159 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16160
16161 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16162 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16163 }
16164
16165 /* Copy fi.nested_types_list linked list elements content into the
16166 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16167 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16168 {
16169 int count = fi.nested_types_list.size ();
16170
16171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16172 TYPE_NESTED_TYPES_ARRAY (type)
16173 = ((struct decl_field *)
16174 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16175 TYPE_NESTED_TYPES_COUNT (type) = count;
16176
16177 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16178 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16179 }
16180 }
16181
16182 quirk_gcc_member_function_pointer (type, objfile);
16183 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16184 cu->rust_unions.push_back (type);
16185
16186 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16187 snapshots) has been known to create a die giving a declaration
16188 for a class that has, as a child, a die giving a definition for a
16189 nested class. So we have to process our children even if the
16190 current die is a declaration. Normally, of course, a declaration
16191 won't have any children at all. */
16192
16193 child_die = die->child;
16194
16195 while (child_die != NULL && child_die->tag)
16196 {
16197 if (child_die->tag == DW_TAG_member
16198 || child_die->tag == DW_TAG_variable
16199 || child_die->tag == DW_TAG_inheritance
16200 || child_die->tag == DW_TAG_template_value_param
16201 || child_die->tag == DW_TAG_template_type_param)
16202 {
16203 /* Do nothing. */
16204 }
16205 else
16206 process_die (child_die, cu);
16207
16208 child_die = sibling_die (child_die);
16209 }
16210
16211 /* Do not consider external references. According to the DWARF standard,
16212 these DIEs are identified by the fact that they have no byte_size
16213 attribute, and a declaration attribute. */
16214 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16215 || !die_is_declaration (die, cu))
16216 {
16217 struct symbol *sym = new_symbol (die, type, cu);
16218
16219 if (has_template_parameters)
16220 {
16221 /* Make sure that the symtab is set on the new symbols.
16222 Even though they don't appear in this symtab directly,
16223 other parts of gdb assume that symbols do, and this is
16224 reasonably true. */
16225 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16226 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i),
16227 symbol_symtab (sym));
16228 }
16229 }
16230 }
16231
16232 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16233 update TYPE using some information only available in DIE's children. */
16234
16235 static void
16236 update_enumeration_type_from_children (struct die_info *die,
16237 struct type *type,
16238 struct dwarf2_cu *cu)
16239 {
16240 struct die_info *child_die;
16241 int unsigned_enum = 1;
16242 int flag_enum = 1;
16243 ULONGEST mask = 0;
16244
16245 auto_obstack obstack;
16246
16247 for (child_die = die->child;
16248 child_die != NULL && child_die->tag;
16249 child_die = sibling_die (child_die))
16250 {
16251 struct attribute *attr;
16252 LONGEST value;
16253 const gdb_byte *bytes;
16254 struct dwarf2_locexpr_baton *baton;
16255 const char *name;
16256
16257 if (child_die->tag != DW_TAG_enumerator)
16258 continue;
16259
16260 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16261 if (attr == NULL)
16262 continue;
16263
16264 name = dwarf2_name (child_die, cu);
16265 if (name == NULL)
16266 name = "<anonymous enumerator>";
16267
16268 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16269 &value, &bytes, &baton);
16270 if (value < 0)
16271 {
16272 unsigned_enum = 0;
16273 flag_enum = 0;
16274 }
16275 else if ((mask & value) != 0)
16276 flag_enum = 0;
16277 else
16278 mask |= value;
16279
16280 /* If we already know that the enum type is neither unsigned, nor
16281 a flag type, no need to look at the rest of the enumerates. */
16282 if (!unsigned_enum && !flag_enum)
16283 break;
16284 }
16285
16286 if (unsigned_enum)
16287 TYPE_UNSIGNED (type) = 1;
16288 if (flag_enum)
16289 TYPE_FLAG_ENUM (type) = 1;
16290 }
16291
16292 /* Given a DW_AT_enumeration_type die, set its type. We do not
16293 complete the type's fields yet, or create any symbols. */
16294
16295 static struct type *
16296 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16297 {
16298 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16299 struct type *type;
16300 struct attribute *attr;
16301 const char *name;
16302
16303 /* If the definition of this type lives in .debug_types, read that type.
16304 Don't follow DW_AT_specification though, that will take us back up
16305 the chain and we want to go down. */
16306 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16307 if (attr)
16308 {
16309 type = get_DW_AT_signature_type (die, attr, cu);
16310
16311 /* The type's CU may not be the same as CU.
16312 Ensure TYPE is recorded with CU in die_type_hash. */
16313 return set_die_type (die, type, cu);
16314 }
16315
16316 type = alloc_type (objfile);
16317
16318 TYPE_CODE (type) = TYPE_CODE_ENUM;
16319 name = dwarf2_full_name (NULL, die, cu);
16320 if (name != NULL)
16321 TYPE_NAME (type) = name;
16322
16323 attr = dwarf2_attr (die, DW_AT_type, cu);
16324 if (attr != NULL)
16325 {
16326 struct type *underlying_type = die_type (die, cu);
16327
16328 TYPE_TARGET_TYPE (type) = underlying_type;
16329 }
16330
16331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16332 if (attr)
16333 {
16334 TYPE_LENGTH (type) = DW_UNSND (attr);
16335 }
16336 else
16337 {
16338 TYPE_LENGTH (type) = 0;
16339 }
16340
16341 maybe_set_alignment (cu, die, type);
16342
16343 /* The enumeration DIE can be incomplete. In Ada, any type can be
16344 declared as private in the package spec, and then defined only
16345 inside the package body. Such types are known as Taft Amendment
16346 Types. When another package uses such a type, an incomplete DIE
16347 may be generated by the compiler. */
16348 if (die_is_declaration (die, cu))
16349 TYPE_STUB (type) = 1;
16350
16351 /* Finish the creation of this type by using the enum's children.
16352 We must call this even when the underlying type has been provided
16353 so that we can determine if we're looking at a "flag" enum. */
16354 update_enumeration_type_from_children (die, type, cu);
16355
16356 /* If this type has an underlying type that is not a stub, then we
16357 may use its attributes. We always use the "unsigned" attribute
16358 in this situation, because ordinarily we guess whether the type
16359 is unsigned -- but the guess can be wrong and the underlying type
16360 can tell us the reality. However, we defer to a local size
16361 attribute if one exists, because this lets the compiler override
16362 the underlying type if needed. */
16363 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16364 {
16365 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16366 if (TYPE_LENGTH (type) == 0)
16367 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16368 if (TYPE_RAW_ALIGN (type) == 0
16369 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16370 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16371 }
16372
16373 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16374
16375 return set_die_type (die, type, cu);
16376 }
16377
16378 /* Given a pointer to a die which begins an enumeration, process all
16379 the dies that define the members of the enumeration, and create the
16380 symbol for the enumeration type.
16381
16382 NOTE: We reverse the order of the element list. */
16383
16384 static void
16385 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16386 {
16387 struct type *this_type;
16388
16389 this_type = get_die_type (die, cu);
16390 if (this_type == NULL)
16391 this_type = read_enumeration_type (die, cu);
16392
16393 if (die->child != NULL)
16394 {
16395 struct die_info *child_die;
16396 struct symbol *sym;
16397 struct field *fields = NULL;
16398 int num_fields = 0;
16399 const char *name;
16400
16401 child_die = die->child;
16402 while (child_die && child_die->tag)
16403 {
16404 if (child_die->tag != DW_TAG_enumerator)
16405 {
16406 process_die (child_die, cu);
16407 }
16408 else
16409 {
16410 name = dwarf2_name (child_die, cu);
16411 if (name)
16412 {
16413 sym = new_symbol (child_die, this_type, cu);
16414
16415 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16416 {
16417 fields = (struct field *)
16418 xrealloc (fields,
16419 (num_fields + DW_FIELD_ALLOC_CHUNK)
16420 * sizeof (struct field));
16421 }
16422
16423 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
16424 FIELD_TYPE (fields[num_fields]) = NULL;
16425 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16426 FIELD_BITSIZE (fields[num_fields]) = 0;
16427
16428 num_fields++;
16429 }
16430 }
16431
16432 child_die = sibling_die (child_die);
16433 }
16434
16435 if (num_fields)
16436 {
16437 TYPE_NFIELDS (this_type) = num_fields;
16438 TYPE_FIELDS (this_type) = (struct field *)
16439 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16440 memcpy (TYPE_FIELDS (this_type), fields,
16441 sizeof (struct field) * num_fields);
16442 xfree (fields);
16443 }
16444 }
16445
16446 /* If we are reading an enum from a .debug_types unit, and the enum
16447 is a declaration, and the enum is not the signatured type in the
16448 unit, then we do not want to add a symbol for it. Adding a
16449 symbol would in some cases obscure the true definition of the
16450 enum, giving users an incomplete type when the definition is
16451 actually available. Note that we do not want to do this for all
16452 enums which are just declarations, because C++0x allows forward
16453 enum declarations. */
16454 if (cu->per_cu->is_debug_types
16455 && die_is_declaration (die, cu))
16456 {
16457 struct signatured_type *sig_type;
16458
16459 sig_type = (struct signatured_type *) cu->per_cu;
16460 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16461 if (sig_type->type_offset_in_section != die->sect_off)
16462 return;
16463 }
16464
16465 new_symbol (die, this_type, cu);
16466 }
16467
16468 /* Extract all information from a DW_TAG_array_type DIE and put it in
16469 the DIE's type field. For now, this only handles one dimensional
16470 arrays. */
16471
16472 static struct type *
16473 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16474 {
16475 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16476 struct die_info *child_die;
16477 struct type *type;
16478 struct type *element_type, *range_type, *index_type;
16479 struct attribute *attr;
16480 const char *name;
16481 struct dynamic_prop *byte_stride_prop = NULL;
16482 unsigned int bit_stride = 0;
16483
16484 element_type = die_type (die, cu);
16485
16486 /* The die_type call above may have already set the type for this DIE. */
16487 type = get_die_type (die, cu);
16488 if (type)
16489 return type;
16490
16491 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16492 if (attr != NULL)
16493 {
16494 int stride_ok;
16495
16496 byte_stride_prop
16497 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16498 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop);
16499 if (!stride_ok)
16500 {
16501 complaint (_("unable to read array DW_AT_byte_stride "
16502 " - DIE at %s [in module %s]"),
16503 sect_offset_str (die->sect_off),
16504 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16505 /* Ignore this attribute. We will likely not be able to print
16506 arrays of this type correctly, but there is little we can do
16507 to help if we cannot read the attribute's value. */
16508 byte_stride_prop = NULL;
16509 }
16510 }
16511
16512 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16513 if (attr != NULL)
16514 bit_stride = DW_UNSND (attr);
16515
16516 /* Irix 6.2 native cc creates array types without children for
16517 arrays with unspecified length. */
16518 if (die->child == NULL)
16519 {
16520 index_type = objfile_type (objfile)->builtin_int;
16521 range_type = create_static_range_type (NULL, index_type, 0, -1);
16522 type = create_array_type_with_stride (NULL, element_type, range_type,
16523 byte_stride_prop, bit_stride);
16524 return set_die_type (die, type, cu);
16525 }
16526
16527 std::vector<struct type *> range_types;
16528 child_die = die->child;
16529 while (child_die && child_die->tag)
16530 {
16531 if (child_die->tag == DW_TAG_subrange_type)
16532 {
16533 struct type *child_type = read_type_die (child_die, cu);
16534
16535 if (child_type != NULL)
16536 {
16537 /* The range type was succesfully read. Save it for the
16538 array type creation. */
16539 range_types.push_back (child_type);
16540 }
16541 }
16542 child_die = sibling_die (child_die);
16543 }
16544
16545 /* Dwarf2 dimensions are output from left to right, create the
16546 necessary array types in backwards order. */
16547
16548 type = element_type;
16549
16550 if (read_array_order (die, cu) == DW_ORD_col_major)
16551 {
16552 int i = 0;
16553
16554 while (i < range_types.size ())
16555 type = create_array_type_with_stride (NULL, type, range_types[i++],
16556 byte_stride_prop, bit_stride);
16557 }
16558 else
16559 {
16560 size_t ndim = range_types.size ();
16561 while (ndim-- > 0)
16562 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16563 byte_stride_prop, bit_stride);
16564 }
16565
16566 /* Understand Dwarf2 support for vector types (like they occur on
16567 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16568 array type. This is not part of the Dwarf2/3 standard yet, but a
16569 custom vendor extension. The main difference between a regular
16570 array and the vector variant is that vectors are passed by value
16571 to functions. */
16572 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16573 if (attr)
16574 make_vector_type (type);
16575
16576 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16577 implementation may choose to implement triple vectors using this
16578 attribute. */
16579 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16580 if (attr)
16581 {
16582 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16583 TYPE_LENGTH (type) = DW_UNSND (attr);
16584 else
16585 complaint (_("DW_AT_byte_size for array type smaller "
16586 "than the total size of elements"));
16587 }
16588
16589 name = dwarf2_name (die, cu);
16590 if (name)
16591 TYPE_NAME (type) = name;
16592
16593 maybe_set_alignment (cu, die, type);
16594
16595 /* Install the type in the die. */
16596 set_die_type (die, type, cu);
16597
16598 /* set_die_type should be already done. */
16599 set_descriptive_type (type, die, cu);
16600
16601 return type;
16602 }
16603
16604 static enum dwarf_array_dim_ordering
16605 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16606 {
16607 struct attribute *attr;
16608
16609 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16610
16611 if (attr)
16612 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16613
16614 /* GNU F77 is a special case, as at 08/2004 array type info is the
16615 opposite order to the dwarf2 specification, but data is still
16616 laid out as per normal fortran.
16617
16618 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16619 version checking. */
16620
16621 if (cu->language == language_fortran
16622 && cu->producer && strstr (cu->producer, "GNU F77"))
16623 {
16624 return DW_ORD_row_major;
16625 }
16626
16627 switch (cu->language_defn->la_array_ordering)
16628 {
16629 case array_column_major:
16630 return DW_ORD_col_major;
16631 case array_row_major:
16632 default:
16633 return DW_ORD_row_major;
16634 };
16635 }
16636
16637 /* Extract all information from a DW_TAG_set_type DIE and put it in
16638 the DIE's type field. */
16639
16640 static struct type *
16641 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16642 {
16643 struct type *domain_type, *set_type;
16644 struct attribute *attr;
16645
16646 domain_type = die_type (die, cu);
16647
16648 /* The die_type call above may have already set the type for this DIE. */
16649 set_type = get_die_type (die, cu);
16650 if (set_type)
16651 return set_type;
16652
16653 set_type = create_set_type (NULL, domain_type);
16654
16655 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16656 if (attr)
16657 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16658
16659 maybe_set_alignment (cu, die, set_type);
16660
16661 return set_die_type (die, set_type, cu);
16662 }
16663
16664 /* A helper for read_common_block that creates a locexpr baton.
16665 SYM is the symbol which we are marking as computed.
16666 COMMON_DIE is the DIE for the common block.
16667 COMMON_LOC is the location expression attribute for the common
16668 block itself.
16669 MEMBER_LOC is the location expression attribute for the particular
16670 member of the common block that we are processing.
16671 CU is the CU from which the above come. */
16672
16673 static void
16674 mark_common_block_symbol_computed (struct symbol *sym,
16675 struct die_info *common_die,
16676 struct attribute *common_loc,
16677 struct attribute *member_loc,
16678 struct dwarf2_cu *cu)
16679 {
16680 struct dwarf2_per_objfile *dwarf2_per_objfile
16681 = cu->per_cu->dwarf2_per_objfile;
16682 struct objfile *objfile = dwarf2_per_objfile->objfile;
16683 struct dwarf2_locexpr_baton *baton;
16684 gdb_byte *ptr;
16685 unsigned int cu_off;
16686 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16687 LONGEST offset = 0;
16688
16689 gdb_assert (common_loc && member_loc);
16690 gdb_assert (attr_form_is_block (common_loc));
16691 gdb_assert (attr_form_is_block (member_loc)
16692 || attr_form_is_constant (member_loc));
16693
16694 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16695 baton->per_cu = cu->per_cu;
16696 gdb_assert (baton->per_cu);
16697
16698 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16699
16700 if (attr_form_is_constant (member_loc))
16701 {
16702 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16703 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16704 }
16705 else
16706 baton->size += DW_BLOCK (member_loc)->size;
16707
16708 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16709 baton->data = ptr;
16710
16711 *ptr++ = DW_OP_call4;
16712 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16713 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16714 ptr += 4;
16715
16716 if (attr_form_is_constant (member_loc))
16717 {
16718 *ptr++ = DW_OP_addr;
16719 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16720 ptr += cu->header.addr_size;
16721 }
16722 else
16723 {
16724 /* We have to copy the data here, because DW_OP_call4 will only
16725 use a DW_AT_location attribute. */
16726 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16727 ptr += DW_BLOCK (member_loc)->size;
16728 }
16729
16730 *ptr++ = DW_OP_plus;
16731 gdb_assert (ptr - baton->data == baton->size);
16732
16733 SYMBOL_LOCATION_BATON (sym) = baton;
16734 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16735 }
16736
16737 /* Create appropriate locally-scoped variables for all the
16738 DW_TAG_common_block entries. Also create a struct common_block
16739 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16740 is used to sepate the common blocks name namespace from regular
16741 variable names. */
16742
16743 static void
16744 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16745 {
16746 struct attribute *attr;
16747
16748 attr = dwarf2_attr (die, DW_AT_location, cu);
16749 if (attr)
16750 {
16751 /* Support the .debug_loc offsets. */
16752 if (attr_form_is_block (attr))
16753 {
16754 /* Ok. */
16755 }
16756 else if (attr_form_is_section_offset (attr))
16757 {
16758 dwarf2_complex_location_expr_complaint ();
16759 attr = NULL;
16760 }
16761 else
16762 {
16763 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16764 "common block member");
16765 attr = NULL;
16766 }
16767 }
16768
16769 if (die->child != NULL)
16770 {
16771 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16772 struct die_info *child_die;
16773 size_t n_entries = 0, size;
16774 struct common_block *common_block;
16775 struct symbol *sym;
16776
16777 for (child_die = die->child;
16778 child_die && child_die->tag;
16779 child_die = sibling_die (child_die))
16780 ++n_entries;
16781
16782 size = (sizeof (struct common_block)
16783 + (n_entries - 1) * sizeof (struct symbol *));
16784 common_block
16785 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16786 size);
16787 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16788 common_block->n_entries = 0;
16789
16790 for (child_die = die->child;
16791 child_die && child_die->tag;
16792 child_die = sibling_die (child_die))
16793 {
16794 /* Create the symbol in the DW_TAG_common_block block in the current
16795 symbol scope. */
16796 sym = new_symbol (child_die, NULL, cu);
16797 if (sym != NULL)
16798 {
16799 struct attribute *member_loc;
16800
16801 common_block->contents[common_block->n_entries++] = sym;
16802
16803 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16804 cu);
16805 if (member_loc)
16806 {
16807 /* GDB has handled this for a long time, but it is
16808 not specified by DWARF. It seems to have been
16809 emitted by gfortran at least as recently as:
16810 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16811 complaint (_("Variable in common block has "
16812 "DW_AT_data_member_location "
16813 "- DIE at %s [in module %s]"),
16814 sect_offset_str (child_die->sect_off),
16815 objfile_name (objfile));
16816
16817 if (attr_form_is_section_offset (member_loc))
16818 dwarf2_complex_location_expr_complaint ();
16819 else if (attr_form_is_constant (member_loc)
16820 || attr_form_is_block (member_loc))
16821 {
16822 if (attr)
16823 mark_common_block_symbol_computed (sym, die, attr,
16824 member_loc, cu);
16825 }
16826 else
16827 dwarf2_complex_location_expr_complaint ();
16828 }
16829 }
16830 }
16831
16832 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16833 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16834 }
16835 }
16836
16837 /* Create a type for a C++ namespace. */
16838
16839 static struct type *
16840 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16841 {
16842 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16843 const char *previous_prefix, *name;
16844 int is_anonymous;
16845 struct type *type;
16846
16847 /* For extensions, reuse the type of the original namespace. */
16848 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16849 {
16850 struct die_info *ext_die;
16851 struct dwarf2_cu *ext_cu = cu;
16852
16853 ext_die = dwarf2_extension (die, &ext_cu);
16854 type = read_type_die (ext_die, ext_cu);
16855
16856 /* EXT_CU may not be the same as CU.
16857 Ensure TYPE is recorded with CU in die_type_hash. */
16858 return set_die_type (die, type, cu);
16859 }
16860
16861 name = namespace_name (die, &is_anonymous, cu);
16862
16863 /* Now build the name of the current namespace. */
16864
16865 previous_prefix = determine_prefix (die, cu);
16866 if (previous_prefix[0] != '\0')
16867 name = typename_concat (&objfile->objfile_obstack,
16868 previous_prefix, name, 0, cu);
16869
16870 /* Create the type. */
16871 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16872
16873 return set_die_type (die, type, cu);
16874 }
16875
16876 /* Read a namespace scope. */
16877
16878 static void
16879 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16880 {
16881 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16882 int is_anonymous;
16883
16884 /* Add a symbol associated to this if we haven't seen the namespace
16885 before. Also, add a using directive if it's an anonymous
16886 namespace. */
16887
16888 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16889 {
16890 struct type *type;
16891
16892 type = read_type_die (die, cu);
16893 new_symbol (die, type, cu);
16894
16895 namespace_name (die, &is_anonymous, cu);
16896 if (is_anonymous)
16897 {
16898 const char *previous_prefix = determine_prefix (die, cu);
16899
16900 std::vector<const char *> excludes;
16901 add_using_directive (using_directives (cu),
16902 previous_prefix, TYPE_NAME (type), NULL,
16903 NULL, excludes, 0, &objfile->objfile_obstack);
16904 }
16905 }
16906
16907 if (die->child != NULL)
16908 {
16909 struct die_info *child_die = die->child;
16910
16911 while (child_die && child_die->tag)
16912 {
16913 process_die (child_die, cu);
16914 child_die = sibling_die (child_die);
16915 }
16916 }
16917 }
16918
16919 /* Read a Fortran module as type. This DIE can be only a declaration used for
16920 imported module. Still we need that type as local Fortran "use ... only"
16921 declaration imports depend on the created type in determine_prefix. */
16922
16923 static struct type *
16924 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16925 {
16926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16927 const char *module_name;
16928 struct type *type;
16929
16930 module_name = dwarf2_name (die, cu);
16931 if (!module_name)
16932 complaint (_("DW_TAG_module has no name, offset %s"),
16933 sect_offset_str (die->sect_off));
16934 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16935
16936 return set_die_type (die, type, cu);
16937 }
16938
16939 /* Read a Fortran module. */
16940
16941 static void
16942 read_module (struct die_info *die, struct dwarf2_cu *cu)
16943 {
16944 struct die_info *child_die = die->child;
16945 struct type *type;
16946
16947 type = read_type_die (die, cu);
16948 new_symbol (die, type, cu);
16949
16950 while (child_die && child_die->tag)
16951 {
16952 process_die (child_die, cu);
16953 child_die = sibling_die (child_die);
16954 }
16955 }
16956
16957 /* Return the name of the namespace represented by DIE. Set
16958 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16959 namespace. */
16960
16961 static const char *
16962 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16963 {
16964 struct die_info *current_die;
16965 const char *name = NULL;
16966
16967 /* Loop through the extensions until we find a name. */
16968
16969 for (current_die = die;
16970 current_die != NULL;
16971 current_die = dwarf2_extension (die, &cu))
16972 {
16973 /* We don't use dwarf2_name here so that we can detect the absence
16974 of a name -> anonymous namespace. */
16975 name = dwarf2_string_attr (die, DW_AT_name, cu);
16976
16977 if (name != NULL)
16978 break;
16979 }
16980
16981 /* Is it an anonymous namespace? */
16982
16983 *is_anonymous = (name == NULL);
16984 if (*is_anonymous)
16985 name = CP_ANONYMOUS_NAMESPACE_STR;
16986
16987 return name;
16988 }
16989
16990 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16991 the user defined type vector. */
16992
16993 static struct type *
16994 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct gdbarch *gdbarch
16997 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
16998 struct comp_unit_head *cu_header = &cu->header;
16999 struct type *type;
17000 struct attribute *attr_byte_size;
17001 struct attribute *attr_address_class;
17002 int byte_size, addr_class;
17003 struct type *target_type;
17004
17005 target_type = die_type (die, cu);
17006
17007 /* The die_type call above may have already set the type for this DIE. */
17008 type = get_die_type (die, cu);
17009 if (type)
17010 return type;
17011
17012 type = lookup_pointer_type (target_type);
17013
17014 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17015 if (attr_byte_size)
17016 byte_size = DW_UNSND (attr_byte_size);
17017 else
17018 byte_size = cu_header->addr_size;
17019
17020 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17021 if (attr_address_class)
17022 addr_class = DW_UNSND (attr_address_class);
17023 else
17024 addr_class = DW_ADDR_none;
17025
17026 ULONGEST alignment = get_alignment (cu, die);
17027
17028 /* If the pointer size, alignment, or address class is different
17029 than the default, create a type variant marked as such and set
17030 the length accordingly. */
17031 if (TYPE_LENGTH (type) != byte_size
17032 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17033 && alignment != TYPE_RAW_ALIGN (type))
17034 || addr_class != DW_ADDR_none)
17035 {
17036 if (gdbarch_address_class_type_flags_p (gdbarch))
17037 {
17038 int type_flags;
17039
17040 type_flags = gdbarch_address_class_type_flags
17041 (gdbarch, byte_size, addr_class);
17042 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17043 == 0);
17044 type = make_type_with_address_space (type, type_flags);
17045 }
17046 else if (TYPE_LENGTH (type) != byte_size)
17047 {
17048 complaint (_("invalid pointer size %d"), byte_size);
17049 }
17050 else if (TYPE_RAW_ALIGN (type) != alignment)
17051 {
17052 complaint (_("Invalid DW_AT_alignment"
17053 " - DIE at %s [in module %s]"),
17054 sect_offset_str (die->sect_off),
17055 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17056 }
17057 else
17058 {
17059 /* Should we also complain about unhandled address classes? */
17060 }
17061 }
17062
17063 TYPE_LENGTH (type) = byte_size;
17064 set_type_align (type, alignment);
17065 return set_die_type (die, type, cu);
17066 }
17067
17068 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17069 the user defined type vector. */
17070
17071 static struct type *
17072 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17073 {
17074 struct type *type;
17075 struct type *to_type;
17076 struct type *domain;
17077
17078 to_type = die_type (die, cu);
17079 domain = die_containing_type (die, cu);
17080
17081 /* The calls above may have already set the type for this DIE. */
17082 type = get_die_type (die, cu);
17083 if (type)
17084 return type;
17085
17086 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17087 type = lookup_methodptr_type (to_type);
17088 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17089 {
17090 struct type *new_type
17091 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17092
17093 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17094 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17095 TYPE_VARARGS (to_type));
17096 type = lookup_methodptr_type (new_type);
17097 }
17098 else
17099 type = lookup_memberptr_type (to_type, domain);
17100
17101 return set_die_type (die, type, cu);
17102 }
17103
17104 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17105 the user defined type vector. */
17106
17107 static struct type *
17108 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17109 enum type_code refcode)
17110 {
17111 struct comp_unit_head *cu_header = &cu->header;
17112 struct type *type, *target_type;
17113 struct attribute *attr;
17114
17115 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17116
17117 target_type = die_type (die, cu);
17118
17119 /* The die_type call above may have already set the type for this DIE. */
17120 type = get_die_type (die, cu);
17121 if (type)
17122 return type;
17123
17124 type = lookup_reference_type (target_type, refcode);
17125 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17126 if (attr)
17127 {
17128 TYPE_LENGTH (type) = DW_UNSND (attr);
17129 }
17130 else
17131 {
17132 TYPE_LENGTH (type) = cu_header->addr_size;
17133 }
17134 maybe_set_alignment (cu, die, type);
17135 return set_die_type (die, type, cu);
17136 }
17137
17138 /* Add the given cv-qualifiers to the element type of the array. GCC
17139 outputs DWARF type qualifiers that apply to an array, not the
17140 element type. But GDB relies on the array element type to carry
17141 the cv-qualifiers. This mimics section 6.7.3 of the C99
17142 specification. */
17143
17144 static struct type *
17145 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17146 struct type *base_type, int cnst, int voltl)
17147 {
17148 struct type *el_type, *inner_array;
17149
17150 base_type = copy_type (base_type);
17151 inner_array = base_type;
17152
17153 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17154 {
17155 TYPE_TARGET_TYPE (inner_array) =
17156 copy_type (TYPE_TARGET_TYPE (inner_array));
17157 inner_array = TYPE_TARGET_TYPE (inner_array);
17158 }
17159
17160 el_type = TYPE_TARGET_TYPE (inner_array);
17161 cnst |= TYPE_CONST (el_type);
17162 voltl |= TYPE_VOLATILE (el_type);
17163 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17164
17165 return set_die_type (die, base_type, cu);
17166 }
17167
17168 static struct type *
17169 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17170 {
17171 struct type *base_type, *cv_type;
17172
17173 base_type = die_type (die, cu);
17174
17175 /* The die_type call above may have already set the type for this DIE. */
17176 cv_type = get_die_type (die, cu);
17177 if (cv_type)
17178 return cv_type;
17179
17180 /* In case the const qualifier is applied to an array type, the element type
17181 is so qualified, not the array type (section 6.7.3 of C99). */
17182 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17183 return add_array_cv_type (die, cu, base_type, 1, 0);
17184
17185 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17186 return set_die_type (die, cv_type, cu);
17187 }
17188
17189 static struct type *
17190 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17191 {
17192 struct type *base_type, *cv_type;
17193
17194 base_type = die_type (die, cu);
17195
17196 /* The die_type call above may have already set the type for this DIE. */
17197 cv_type = get_die_type (die, cu);
17198 if (cv_type)
17199 return cv_type;
17200
17201 /* In case the volatile qualifier is applied to an array type, the
17202 element type is so qualified, not the array type (section 6.7.3
17203 of C99). */
17204 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17205 return add_array_cv_type (die, cu, base_type, 0, 1);
17206
17207 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17208 return set_die_type (die, cv_type, cu);
17209 }
17210
17211 /* Handle DW_TAG_restrict_type. */
17212
17213 static struct type *
17214 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17215 {
17216 struct type *base_type, *cv_type;
17217
17218 base_type = die_type (die, cu);
17219
17220 /* The die_type call above may have already set the type for this DIE. */
17221 cv_type = get_die_type (die, cu);
17222 if (cv_type)
17223 return cv_type;
17224
17225 cv_type = make_restrict_type (base_type);
17226 return set_die_type (die, cv_type, cu);
17227 }
17228
17229 /* Handle DW_TAG_atomic_type. */
17230
17231 static struct type *
17232 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17233 {
17234 struct type *base_type, *cv_type;
17235
17236 base_type = die_type (die, cu);
17237
17238 /* The die_type call above may have already set the type for this DIE. */
17239 cv_type = get_die_type (die, cu);
17240 if (cv_type)
17241 return cv_type;
17242
17243 cv_type = make_atomic_type (base_type);
17244 return set_die_type (die, cv_type, cu);
17245 }
17246
17247 /* Extract all information from a DW_TAG_string_type DIE and add to
17248 the user defined type vector. It isn't really a user defined type,
17249 but it behaves like one, with other DIE's using an AT_user_def_type
17250 attribute to reference it. */
17251
17252 static struct type *
17253 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17254 {
17255 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17256 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17257 struct type *type, *range_type, *index_type, *char_type;
17258 struct attribute *attr;
17259 unsigned int length;
17260
17261 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17262 if (attr)
17263 {
17264 length = DW_UNSND (attr);
17265 }
17266 else
17267 {
17268 /* Check for the DW_AT_byte_size attribute. */
17269 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17270 if (attr)
17271 {
17272 length = DW_UNSND (attr);
17273 }
17274 else
17275 {
17276 length = 1;
17277 }
17278 }
17279
17280 index_type = objfile_type (objfile)->builtin_int;
17281 range_type = create_static_range_type (NULL, index_type, 1, length);
17282 char_type = language_string_char_type (cu->language_defn, gdbarch);
17283 type = create_string_type (NULL, char_type, range_type);
17284
17285 return set_die_type (die, type, cu);
17286 }
17287
17288 /* Assuming that DIE corresponds to a function, returns nonzero
17289 if the function is prototyped. */
17290
17291 static int
17292 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17293 {
17294 struct attribute *attr;
17295
17296 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17297 if (attr && (DW_UNSND (attr) != 0))
17298 return 1;
17299
17300 /* The DWARF standard implies that the DW_AT_prototyped attribute
17301 is only meaninful for C, but the concept also extends to other
17302 languages that allow unprototyped functions (Eg: Objective C).
17303 For all other languages, assume that functions are always
17304 prototyped. */
17305 if (cu->language != language_c
17306 && cu->language != language_objc
17307 && cu->language != language_opencl)
17308 return 1;
17309
17310 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17311 prototyped and unprototyped functions; default to prototyped,
17312 since that is more common in modern code (and RealView warns
17313 about unprototyped functions). */
17314 if (producer_is_realview (cu->producer))
17315 return 1;
17316
17317 return 0;
17318 }
17319
17320 /* Handle DIES due to C code like:
17321
17322 struct foo
17323 {
17324 int (*funcp)(int a, long l);
17325 int b;
17326 };
17327
17328 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17329
17330 static struct type *
17331 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17332 {
17333 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17334 struct type *type; /* Type that this function returns. */
17335 struct type *ftype; /* Function that returns above type. */
17336 struct attribute *attr;
17337
17338 type = die_type (die, cu);
17339
17340 /* The die_type call above may have already set the type for this DIE. */
17341 ftype = get_die_type (die, cu);
17342 if (ftype)
17343 return ftype;
17344
17345 ftype = lookup_function_type (type);
17346
17347 if (prototyped_function_p (die, cu))
17348 TYPE_PROTOTYPED (ftype) = 1;
17349
17350 /* Store the calling convention in the type if it's available in
17351 the subroutine die. Otherwise set the calling convention to
17352 the default value DW_CC_normal. */
17353 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17354 if (attr)
17355 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17356 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17357 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17358 else
17359 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17360
17361 /* Record whether the function returns normally to its caller or not
17362 if the DWARF producer set that information. */
17363 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17364 if (attr && (DW_UNSND (attr) != 0))
17365 TYPE_NO_RETURN (ftype) = 1;
17366
17367 /* We need to add the subroutine type to the die immediately so
17368 we don't infinitely recurse when dealing with parameters
17369 declared as the same subroutine type. */
17370 set_die_type (die, ftype, cu);
17371
17372 if (die->child != NULL)
17373 {
17374 struct type *void_type = objfile_type (objfile)->builtin_void;
17375 struct die_info *child_die;
17376 int nparams, iparams;
17377
17378 /* Count the number of parameters.
17379 FIXME: GDB currently ignores vararg functions, but knows about
17380 vararg member functions. */
17381 nparams = 0;
17382 child_die = die->child;
17383 while (child_die && child_die->tag)
17384 {
17385 if (child_die->tag == DW_TAG_formal_parameter)
17386 nparams++;
17387 else if (child_die->tag == DW_TAG_unspecified_parameters)
17388 TYPE_VARARGS (ftype) = 1;
17389 child_die = sibling_die (child_die);
17390 }
17391
17392 /* Allocate storage for parameters and fill them in. */
17393 TYPE_NFIELDS (ftype) = nparams;
17394 TYPE_FIELDS (ftype) = (struct field *)
17395 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17396
17397 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17398 even if we error out during the parameters reading below. */
17399 for (iparams = 0; iparams < nparams; iparams++)
17400 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17401
17402 iparams = 0;
17403 child_die = die->child;
17404 while (child_die && child_die->tag)
17405 {
17406 if (child_die->tag == DW_TAG_formal_parameter)
17407 {
17408 struct type *arg_type;
17409
17410 /* DWARF version 2 has no clean way to discern C++
17411 static and non-static member functions. G++ helps
17412 GDB by marking the first parameter for non-static
17413 member functions (which is the this pointer) as
17414 artificial. We pass this information to
17415 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17416
17417 DWARF version 3 added DW_AT_object_pointer, which GCC
17418 4.5 does not yet generate. */
17419 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17420 if (attr)
17421 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17422 else
17423 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17424 arg_type = die_type (child_die, cu);
17425
17426 /* RealView does not mark THIS as const, which the testsuite
17427 expects. GCC marks THIS as const in method definitions,
17428 but not in the class specifications (GCC PR 43053). */
17429 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17430 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17431 {
17432 int is_this = 0;
17433 struct dwarf2_cu *arg_cu = cu;
17434 const char *name = dwarf2_name (child_die, cu);
17435
17436 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17437 if (attr)
17438 {
17439 /* If the compiler emits this, use it. */
17440 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17441 is_this = 1;
17442 }
17443 else if (name && strcmp (name, "this") == 0)
17444 /* Function definitions will have the argument names. */
17445 is_this = 1;
17446 else if (name == NULL && iparams == 0)
17447 /* Declarations may not have the names, so like
17448 elsewhere in GDB, assume an artificial first
17449 argument is "this". */
17450 is_this = 1;
17451
17452 if (is_this)
17453 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17454 arg_type, 0);
17455 }
17456
17457 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17458 iparams++;
17459 }
17460 child_die = sibling_die (child_die);
17461 }
17462 }
17463
17464 return ftype;
17465 }
17466
17467 static struct type *
17468 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17469 {
17470 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17471 const char *name = NULL;
17472 struct type *this_type, *target_type;
17473
17474 name = dwarf2_full_name (NULL, die, cu);
17475 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17476 TYPE_TARGET_STUB (this_type) = 1;
17477 set_die_type (die, this_type, cu);
17478 target_type = die_type (die, cu);
17479 if (target_type != this_type)
17480 TYPE_TARGET_TYPE (this_type) = target_type;
17481 else
17482 {
17483 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17484 spec and cause infinite loops in GDB. */
17485 complaint (_("Self-referential DW_TAG_typedef "
17486 "- DIE at %s [in module %s]"),
17487 sect_offset_str (die->sect_off), objfile_name (objfile));
17488 TYPE_TARGET_TYPE (this_type) = NULL;
17489 }
17490 return this_type;
17491 }
17492
17493 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17494 (which may be different from NAME) to the architecture back-end to allow
17495 it to guess the correct format if necessary. */
17496
17497 static struct type *
17498 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17499 const char *name_hint)
17500 {
17501 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17502 const struct floatformat **format;
17503 struct type *type;
17504
17505 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17506 if (format)
17507 type = init_float_type (objfile, bits, name, format);
17508 else
17509 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17510
17511 return type;
17512 }
17513
17514 /* Allocate an integer type of size BITS and name NAME. */
17515
17516 static struct type *
17517 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17518 int bits, int unsigned_p, const char *name)
17519 {
17520 struct type *type;
17521
17522 /* Versions of Intel's C Compiler generate an integer type called "void"
17523 instead of using DW_TAG_unspecified_type. This has been seen on
17524 at least versions 14, 17, and 18. */
17525 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17526 && strcmp (name, "void") == 0)
17527 type = objfile_type (objfile)->builtin_void;
17528 else
17529 type = init_integer_type (objfile, bits, unsigned_p, name);
17530
17531 return type;
17532 }
17533
17534 /* Find a representation of a given base type and install
17535 it in the TYPE field of the die. */
17536
17537 static struct type *
17538 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17539 {
17540 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17541 struct type *type;
17542 struct attribute *attr;
17543 int encoding = 0, bits = 0;
17544 const char *name;
17545
17546 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17547 if (attr)
17548 {
17549 encoding = DW_UNSND (attr);
17550 }
17551 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17552 if (attr)
17553 {
17554 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17555 }
17556 name = dwarf2_name (die, cu);
17557 if (!name)
17558 {
17559 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17560 }
17561
17562 switch (encoding)
17563 {
17564 case DW_ATE_address:
17565 /* Turn DW_ATE_address into a void * pointer. */
17566 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17567 type = init_pointer_type (objfile, bits, name, type);
17568 break;
17569 case DW_ATE_boolean:
17570 type = init_boolean_type (objfile, bits, 1, name);
17571 break;
17572 case DW_ATE_complex_float:
17573 type = dwarf2_init_float_type (objfile, bits / 2, NULL, name);
17574 type = init_complex_type (objfile, name, type);
17575 break;
17576 case DW_ATE_decimal_float:
17577 type = init_decfloat_type (objfile, bits, name);
17578 break;
17579 case DW_ATE_float:
17580 type = dwarf2_init_float_type (objfile, bits, name, name);
17581 break;
17582 case DW_ATE_signed:
17583 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17584 break;
17585 case DW_ATE_unsigned:
17586 if (cu->language == language_fortran
17587 && name
17588 && startswith (name, "character("))
17589 type = init_character_type (objfile, bits, 1, name);
17590 else
17591 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17592 break;
17593 case DW_ATE_signed_char:
17594 if (cu->language == language_ada || cu->language == language_m2
17595 || cu->language == language_pascal
17596 || cu->language == language_fortran)
17597 type = init_character_type (objfile, bits, 0, name);
17598 else
17599 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17600 break;
17601 case DW_ATE_unsigned_char:
17602 if (cu->language == language_ada || cu->language == language_m2
17603 || cu->language == language_pascal
17604 || cu->language == language_fortran
17605 || cu->language == language_rust)
17606 type = init_character_type (objfile, bits, 1, name);
17607 else
17608 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17609 break;
17610 case DW_ATE_UTF:
17611 {
17612 gdbarch *arch = get_objfile_arch (objfile);
17613
17614 if (bits == 16)
17615 type = builtin_type (arch)->builtin_char16;
17616 else if (bits == 32)
17617 type = builtin_type (arch)->builtin_char32;
17618 else
17619 {
17620 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17621 bits);
17622 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17623 }
17624 return set_die_type (die, type, cu);
17625 }
17626 break;
17627
17628 default:
17629 complaint (_("unsupported DW_AT_encoding: '%s'"),
17630 dwarf_type_encoding_name (encoding));
17631 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17632 break;
17633 }
17634
17635 if (name && strcmp (name, "char") == 0)
17636 TYPE_NOSIGN (type) = 1;
17637
17638 maybe_set_alignment (cu, die, type);
17639
17640 return set_die_type (die, type, cu);
17641 }
17642
17643 /* Parse dwarf attribute if it's a block, reference or constant and put the
17644 resulting value of the attribute into struct bound_prop.
17645 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17646
17647 static int
17648 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17649 struct dwarf2_cu *cu, struct dynamic_prop *prop)
17650 {
17651 struct dwarf2_property_baton *baton;
17652 struct obstack *obstack
17653 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17654
17655 if (attr == NULL || prop == NULL)
17656 return 0;
17657
17658 if (attr_form_is_block (attr))
17659 {
17660 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17661 baton->referenced_type = NULL;
17662 baton->locexpr.per_cu = cu->per_cu;
17663 baton->locexpr.size = DW_BLOCK (attr)->size;
17664 baton->locexpr.data = DW_BLOCK (attr)->data;
17665 prop->data.baton = baton;
17666 prop->kind = PROP_LOCEXPR;
17667 gdb_assert (prop->data.baton != NULL);
17668 }
17669 else if (attr_form_is_ref (attr))
17670 {
17671 struct dwarf2_cu *target_cu = cu;
17672 struct die_info *target_die;
17673 struct attribute *target_attr;
17674
17675 target_die = follow_die_ref (die, attr, &target_cu);
17676 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17677 if (target_attr == NULL)
17678 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17679 target_cu);
17680 if (target_attr == NULL)
17681 return 0;
17682
17683 switch (target_attr->name)
17684 {
17685 case DW_AT_location:
17686 if (attr_form_is_section_offset (target_attr))
17687 {
17688 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17689 baton->referenced_type = die_type (target_die, target_cu);
17690 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17691 prop->data.baton = baton;
17692 prop->kind = PROP_LOCLIST;
17693 gdb_assert (prop->data.baton != NULL);
17694 }
17695 else if (attr_form_is_block (target_attr))
17696 {
17697 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17698 baton->referenced_type = die_type (target_die, target_cu);
17699 baton->locexpr.per_cu = cu->per_cu;
17700 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17701 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17702 prop->data.baton = baton;
17703 prop->kind = PROP_LOCEXPR;
17704 gdb_assert (prop->data.baton != NULL);
17705 }
17706 else
17707 {
17708 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17709 "dynamic property");
17710 return 0;
17711 }
17712 break;
17713 case DW_AT_data_member_location:
17714 {
17715 LONGEST offset;
17716
17717 if (!handle_data_member_location (target_die, target_cu,
17718 &offset))
17719 return 0;
17720
17721 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17722 baton->referenced_type = read_type_die (target_die->parent,
17723 target_cu);
17724 baton->offset_info.offset = offset;
17725 baton->offset_info.type = die_type (target_die, target_cu);
17726 prop->data.baton = baton;
17727 prop->kind = PROP_ADDR_OFFSET;
17728 break;
17729 }
17730 }
17731 }
17732 else if (attr_form_is_constant (attr))
17733 {
17734 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17735 prop->kind = PROP_CONST;
17736 }
17737 else
17738 {
17739 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17740 dwarf2_name (die, cu));
17741 return 0;
17742 }
17743
17744 return 1;
17745 }
17746
17747 /* Read the given DW_AT_subrange DIE. */
17748
17749 static struct type *
17750 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17751 {
17752 struct type *base_type, *orig_base_type;
17753 struct type *range_type;
17754 struct attribute *attr;
17755 struct dynamic_prop low, high;
17756 int low_default_is_valid;
17757 int high_bound_is_count = 0;
17758 const char *name;
17759 ULONGEST negative_mask;
17760
17761 orig_base_type = die_type (die, cu);
17762 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17763 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17764 creating the range type, but we use the result of check_typedef
17765 when examining properties of the type. */
17766 base_type = check_typedef (orig_base_type);
17767
17768 /* The die_type call above may have already set the type for this DIE. */
17769 range_type = get_die_type (die, cu);
17770 if (range_type)
17771 return range_type;
17772
17773 low.kind = PROP_CONST;
17774 high.kind = PROP_CONST;
17775 high.data.const_val = 0;
17776
17777 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17778 omitting DW_AT_lower_bound. */
17779 switch (cu->language)
17780 {
17781 case language_c:
17782 case language_cplus:
17783 low.data.const_val = 0;
17784 low_default_is_valid = 1;
17785 break;
17786 case language_fortran:
17787 low.data.const_val = 1;
17788 low_default_is_valid = 1;
17789 break;
17790 case language_d:
17791 case language_objc:
17792 case language_rust:
17793 low.data.const_val = 0;
17794 low_default_is_valid = (cu->header.version >= 4);
17795 break;
17796 case language_ada:
17797 case language_m2:
17798 case language_pascal:
17799 low.data.const_val = 1;
17800 low_default_is_valid = (cu->header.version >= 4);
17801 break;
17802 default:
17803 low.data.const_val = 0;
17804 low_default_is_valid = 0;
17805 break;
17806 }
17807
17808 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17809 if (attr)
17810 attr_to_dynamic_prop (attr, die, cu, &low);
17811 else if (!low_default_is_valid)
17812 complaint (_("Missing DW_AT_lower_bound "
17813 "- DIE at %s [in module %s]"),
17814 sect_offset_str (die->sect_off),
17815 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17816
17817 struct attribute *attr_ub, *attr_count;
17818 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17819 if (!attr_to_dynamic_prop (attr, die, cu, &high))
17820 {
17821 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17822 if (attr_to_dynamic_prop (attr, die, cu, &high))
17823 {
17824 /* If bounds are constant do the final calculation here. */
17825 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17826 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17827 else
17828 high_bound_is_count = 1;
17829 }
17830 else
17831 {
17832 if (attr_ub != NULL)
17833 complaint (_("Unresolved DW_AT_upper_bound "
17834 "- DIE at %s [in module %s]"),
17835 sect_offset_str (die->sect_off),
17836 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17837 if (attr_count != NULL)
17838 complaint (_("Unresolved DW_AT_count "
17839 "- DIE at %s [in module %s]"),
17840 sect_offset_str (die->sect_off),
17841 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17842 }
17843
17844 }
17845
17846 /* Dwarf-2 specifications explicitly allows to create subrange types
17847 without specifying a base type.
17848 In that case, the base type must be set to the type of
17849 the lower bound, upper bound or count, in that order, if any of these
17850 three attributes references an object that has a type.
17851 If no base type is found, the Dwarf-2 specifications say that
17852 a signed integer type of size equal to the size of an address should
17853 be used.
17854 For the following C code: `extern char gdb_int [];'
17855 GCC produces an empty range DIE.
17856 FIXME: muller/2010-05-28: Possible references to object for low bound,
17857 high bound or count are not yet handled by this code. */
17858 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
17859 {
17860 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17862 int addr_size = gdbarch_addr_bit (gdbarch) /8;
17863 struct type *int_type = objfile_type (objfile)->builtin_int;
17864
17865 /* Test "int", "long int", and "long long int" objfile types,
17866 and select the first one having a size above or equal to the
17867 architecture address size. */
17868 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17869 base_type = int_type;
17870 else
17871 {
17872 int_type = objfile_type (objfile)->builtin_long;
17873 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17874 base_type = int_type;
17875 else
17876 {
17877 int_type = objfile_type (objfile)->builtin_long_long;
17878 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
17879 base_type = int_type;
17880 }
17881 }
17882 }
17883
17884 /* Normally, the DWARF producers are expected to use a signed
17885 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17886 But this is unfortunately not always the case, as witnessed
17887 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17888 is used instead. To work around that ambiguity, we treat
17889 the bounds as signed, and thus sign-extend their values, when
17890 the base type is signed. */
17891 negative_mask =
17892 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17893 if (low.kind == PROP_CONST
17894 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17895 low.data.const_val |= negative_mask;
17896 if (high.kind == PROP_CONST
17897 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17898 high.data.const_val |= negative_mask;
17899
17900 range_type = create_range_type (NULL, orig_base_type, &low, &high);
17901
17902 if (high_bound_is_count)
17903 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17904
17905 /* Ada expects an empty array on no boundary attributes. */
17906 if (attr == NULL && cu->language != language_ada)
17907 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17908
17909 name = dwarf2_name (die, cu);
17910 if (name)
17911 TYPE_NAME (range_type) = name;
17912
17913 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17914 if (attr)
17915 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17916
17917 maybe_set_alignment (cu, die, range_type);
17918
17919 set_die_type (die, range_type, cu);
17920
17921 /* set_die_type should be already done. */
17922 set_descriptive_type (range_type, die, cu);
17923
17924 return range_type;
17925 }
17926
17927 static struct type *
17928 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17929 {
17930 struct type *type;
17931
17932 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17933 NULL);
17934 TYPE_NAME (type) = dwarf2_name (die, cu);
17935
17936 /* In Ada, an unspecified type is typically used when the description
17937 of the type is defered to a different unit. When encountering
17938 such a type, we treat it as a stub, and try to resolve it later on,
17939 when needed. */
17940 if (cu->language == language_ada)
17941 TYPE_STUB (type) = 1;
17942
17943 return set_die_type (die, type, cu);
17944 }
17945
17946 /* Read a single die and all its descendents. Set the die's sibling
17947 field to NULL; set other fields in the die correctly, and set all
17948 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17949 location of the info_ptr after reading all of those dies. PARENT
17950 is the parent of the die in question. */
17951
17952 static struct die_info *
17953 read_die_and_children (const struct die_reader_specs *reader,
17954 const gdb_byte *info_ptr,
17955 const gdb_byte **new_info_ptr,
17956 struct die_info *parent)
17957 {
17958 struct die_info *die;
17959 const gdb_byte *cur_ptr;
17960 int has_children;
17961
17962 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
17963 if (die == NULL)
17964 {
17965 *new_info_ptr = cur_ptr;
17966 return NULL;
17967 }
17968 store_in_ref_table (die, reader->cu);
17969
17970 if (has_children)
17971 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17972 else
17973 {
17974 die->child = NULL;
17975 *new_info_ptr = cur_ptr;
17976 }
17977
17978 die->sibling = NULL;
17979 die->parent = parent;
17980 return die;
17981 }
17982
17983 /* Read a die, all of its descendents, and all of its siblings; set
17984 all of the fields of all of the dies correctly. Arguments are as
17985 in read_die_and_children. */
17986
17987 static struct die_info *
17988 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17989 const gdb_byte *info_ptr,
17990 const gdb_byte **new_info_ptr,
17991 struct die_info *parent)
17992 {
17993 struct die_info *first_die, *last_sibling;
17994 const gdb_byte *cur_ptr;
17995
17996 cur_ptr = info_ptr;
17997 first_die = last_sibling = NULL;
17998
17999 while (1)
18000 {
18001 struct die_info *die
18002 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18003
18004 if (die == NULL)
18005 {
18006 *new_info_ptr = cur_ptr;
18007 return first_die;
18008 }
18009
18010 if (!first_die)
18011 first_die = die;
18012 else
18013 last_sibling->sibling = die;
18014
18015 last_sibling = die;
18016 }
18017 }
18018
18019 /* Read a die, all of its descendents, and all of its siblings; set
18020 all of the fields of all of the dies correctly. Arguments are as
18021 in read_die_and_children.
18022 This the main entry point for reading a DIE and all its children. */
18023
18024 static struct die_info *
18025 read_die_and_siblings (const struct die_reader_specs *reader,
18026 const gdb_byte *info_ptr,
18027 const gdb_byte **new_info_ptr,
18028 struct die_info *parent)
18029 {
18030 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18031 new_info_ptr, parent);
18032
18033 if (dwarf_die_debug)
18034 {
18035 fprintf_unfiltered (gdb_stdlog,
18036 "Read die from %s@0x%x of %s:\n",
18037 get_section_name (reader->die_section),
18038 (unsigned) (info_ptr - reader->die_section->buffer),
18039 bfd_get_filename (reader->abfd));
18040 dump_die (die, dwarf_die_debug);
18041 }
18042
18043 return die;
18044 }
18045
18046 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18047 attributes.
18048 The caller is responsible for filling in the extra attributes
18049 and updating (*DIEP)->num_attrs.
18050 Set DIEP to point to a newly allocated die with its information,
18051 except for its child, sibling, and parent fields.
18052 Set HAS_CHILDREN to tell whether the die has children or not. */
18053
18054 static const gdb_byte *
18055 read_full_die_1 (const struct die_reader_specs *reader,
18056 struct die_info **diep, const gdb_byte *info_ptr,
18057 int *has_children, int num_extra_attrs)
18058 {
18059 unsigned int abbrev_number, bytes_read, i;
18060 struct abbrev_info *abbrev;
18061 struct die_info *die;
18062 struct dwarf2_cu *cu = reader->cu;
18063 bfd *abfd = reader->abfd;
18064
18065 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18066 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18067 info_ptr += bytes_read;
18068 if (!abbrev_number)
18069 {
18070 *diep = NULL;
18071 *has_children = 0;
18072 return info_ptr;
18073 }
18074
18075 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18076 if (!abbrev)
18077 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18078 abbrev_number,
18079 bfd_get_filename (abfd));
18080
18081 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18082 die->sect_off = sect_off;
18083 die->tag = abbrev->tag;
18084 die->abbrev = abbrev_number;
18085
18086 /* Make the result usable.
18087 The caller needs to update num_attrs after adding the extra
18088 attributes. */
18089 die->num_attrs = abbrev->num_attrs;
18090
18091 for (i = 0; i < abbrev->num_attrs; ++i)
18092 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18093 info_ptr);
18094
18095 *diep = die;
18096 *has_children = abbrev->has_children;
18097 return info_ptr;
18098 }
18099
18100 /* Read a die and all its attributes.
18101 Set DIEP to point to a newly allocated die with its information,
18102 except for its child, sibling, and parent fields.
18103 Set HAS_CHILDREN to tell whether the die has children or not. */
18104
18105 static const gdb_byte *
18106 read_full_die (const struct die_reader_specs *reader,
18107 struct die_info **diep, const gdb_byte *info_ptr,
18108 int *has_children)
18109 {
18110 const gdb_byte *result;
18111
18112 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18113
18114 if (dwarf_die_debug)
18115 {
18116 fprintf_unfiltered (gdb_stdlog,
18117 "Read die from %s@0x%x of %s:\n",
18118 get_section_name (reader->die_section),
18119 (unsigned) (info_ptr - reader->die_section->buffer),
18120 bfd_get_filename (reader->abfd));
18121 dump_die (*diep, dwarf_die_debug);
18122 }
18123
18124 return result;
18125 }
18126 \f
18127 /* Abbreviation tables.
18128
18129 In DWARF version 2, the description of the debugging information is
18130 stored in a separate .debug_abbrev section. Before we read any
18131 dies from a section we read in all abbreviations and install them
18132 in a hash table. */
18133
18134 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18135
18136 struct abbrev_info *
18137 abbrev_table::alloc_abbrev ()
18138 {
18139 struct abbrev_info *abbrev;
18140
18141 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18142 memset (abbrev, 0, sizeof (struct abbrev_info));
18143
18144 return abbrev;
18145 }
18146
18147 /* Add an abbreviation to the table. */
18148
18149 void
18150 abbrev_table::add_abbrev (unsigned int abbrev_number,
18151 struct abbrev_info *abbrev)
18152 {
18153 unsigned int hash_number;
18154
18155 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18156 abbrev->next = m_abbrevs[hash_number];
18157 m_abbrevs[hash_number] = abbrev;
18158 }
18159
18160 /* Look up an abbrev in the table.
18161 Returns NULL if the abbrev is not found. */
18162
18163 struct abbrev_info *
18164 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18165 {
18166 unsigned int hash_number;
18167 struct abbrev_info *abbrev;
18168
18169 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18170 abbrev = m_abbrevs[hash_number];
18171
18172 while (abbrev)
18173 {
18174 if (abbrev->number == abbrev_number)
18175 return abbrev;
18176 abbrev = abbrev->next;
18177 }
18178 return NULL;
18179 }
18180
18181 /* Read in an abbrev table. */
18182
18183 static abbrev_table_up
18184 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18185 struct dwarf2_section_info *section,
18186 sect_offset sect_off)
18187 {
18188 struct objfile *objfile = dwarf2_per_objfile->objfile;
18189 bfd *abfd = get_section_bfd_owner (section);
18190 const gdb_byte *abbrev_ptr;
18191 struct abbrev_info *cur_abbrev;
18192 unsigned int abbrev_number, bytes_read, abbrev_name;
18193 unsigned int abbrev_form;
18194 struct attr_abbrev *cur_attrs;
18195 unsigned int allocated_attrs;
18196
18197 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18198
18199 dwarf2_read_section (objfile, section);
18200 abbrev_ptr = section->buffer + to_underlying (sect_off);
18201 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18202 abbrev_ptr += bytes_read;
18203
18204 allocated_attrs = ATTR_ALLOC_CHUNK;
18205 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18206
18207 /* Loop until we reach an abbrev number of 0. */
18208 while (abbrev_number)
18209 {
18210 cur_abbrev = abbrev_table->alloc_abbrev ();
18211
18212 /* read in abbrev header */
18213 cur_abbrev->number = abbrev_number;
18214 cur_abbrev->tag
18215 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18216 abbrev_ptr += bytes_read;
18217 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18218 abbrev_ptr += 1;
18219
18220 /* now read in declarations */
18221 for (;;)
18222 {
18223 LONGEST implicit_const;
18224
18225 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18226 abbrev_ptr += bytes_read;
18227 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18228 abbrev_ptr += bytes_read;
18229 if (abbrev_form == DW_FORM_implicit_const)
18230 {
18231 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18232 &bytes_read);
18233 abbrev_ptr += bytes_read;
18234 }
18235 else
18236 {
18237 /* Initialize it due to a false compiler warning. */
18238 implicit_const = -1;
18239 }
18240
18241 if (abbrev_name == 0)
18242 break;
18243
18244 if (cur_abbrev->num_attrs == allocated_attrs)
18245 {
18246 allocated_attrs += ATTR_ALLOC_CHUNK;
18247 cur_attrs
18248 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18249 }
18250
18251 cur_attrs[cur_abbrev->num_attrs].name
18252 = (enum dwarf_attribute) abbrev_name;
18253 cur_attrs[cur_abbrev->num_attrs].form
18254 = (enum dwarf_form) abbrev_form;
18255 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18256 ++cur_abbrev->num_attrs;
18257 }
18258
18259 cur_abbrev->attrs =
18260 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18261 cur_abbrev->num_attrs);
18262 memcpy (cur_abbrev->attrs, cur_attrs,
18263 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18264
18265 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18266
18267 /* Get next abbreviation.
18268 Under Irix6 the abbreviations for a compilation unit are not
18269 always properly terminated with an abbrev number of 0.
18270 Exit loop if we encounter an abbreviation which we have
18271 already read (which means we are about to read the abbreviations
18272 for the next compile unit) or if the end of the abbreviation
18273 table is reached. */
18274 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18275 break;
18276 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18277 abbrev_ptr += bytes_read;
18278 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18279 break;
18280 }
18281
18282 xfree (cur_attrs);
18283 return abbrev_table;
18284 }
18285
18286 /* Returns nonzero if TAG represents a type that we might generate a partial
18287 symbol for. */
18288
18289 static int
18290 is_type_tag_for_partial (int tag)
18291 {
18292 switch (tag)
18293 {
18294 #if 0
18295 /* Some types that would be reasonable to generate partial symbols for,
18296 that we don't at present. */
18297 case DW_TAG_array_type:
18298 case DW_TAG_file_type:
18299 case DW_TAG_ptr_to_member_type:
18300 case DW_TAG_set_type:
18301 case DW_TAG_string_type:
18302 case DW_TAG_subroutine_type:
18303 #endif
18304 case DW_TAG_base_type:
18305 case DW_TAG_class_type:
18306 case DW_TAG_interface_type:
18307 case DW_TAG_enumeration_type:
18308 case DW_TAG_structure_type:
18309 case DW_TAG_subrange_type:
18310 case DW_TAG_typedef:
18311 case DW_TAG_union_type:
18312 return 1;
18313 default:
18314 return 0;
18315 }
18316 }
18317
18318 /* Load all DIEs that are interesting for partial symbols into memory. */
18319
18320 static struct partial_die_info *
18321 load_partial_dies (const struct die_reader_specs *reader,
18322 const gdb_byte *info_ptr, int building_psymtab)
18323 {
18324 struct dwarf2_cu *cu = reader->cu;
18325 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18326 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18327 unsigned int bytes_read;
18328 unsigned int load_all = 0;
18329 int nesting_level = 1;
18330
18331 parent_die = NULL;
18332 last_die = NULL;
18333
18334 gdb_assert (cu->per_cu != NULL);
18335 if (cu->per_cu->load_all_dies)
18336 load_all = 1;
18337
18338 cu->partial_dies
18339 = htab_create_alloc_ex (cu->header.length / 12,
18340 partial_die_hash,
18341 partial_die_eq,
18342 NULL,
18343 &cu->comp_unit_obstack,
18344 hashtab_obstack_allocate,
18345 dummy_obstack_deallocate);
18346
18347 while (1)
18348 {
18349 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18350
18351 /* A NULL abbrev means the end of a series of children. */
18352 if (abbrev == NULL)
18353 {
18354 if (--nesting_level == 0)
18355 return first_die;
18356
18357 info_ptr += bytes_read;
18358 last_die = parent_die;
18359 parent_die = parent_die->die_parent;
18360 continue;
18361 }
18362
18363 /* Check for template arguments. We never save these; if
18364 they're seen, we just mark the parent, and go on our way. */
18365 if (parent_die != NULL
18366 && cu->language == language_cplus
18367 && (abbrev->tag == DW_TAG_template_type_param
18368 || abbrev->tag == DW_TAG_template_value_param))
18369 {
18370 parent_die->has_template_arguments = 1;
18371
18372 if (!load_all)
18373 {
18374 /* We don't need a partial DIE for the template argument. */
18375 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18376 continue;
18377 }
18378 }
18379
18380 /* We only recurse into c++ subprograms looking for template arguments.
18381 Skip their other children. */
18382 if (!load_all
18383 && cu->language == language_cplus
18384 && parent_die != NULL
18385 && parent_die->tag == DW_TAG_subprogram)
18386 {
18387 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18388 continue;
18389 }
18390
18391 /* Check whether this DIE is interesting enough to save. Normally
18392 we would not be interested in members here, but there may be
18393 later variables referencing them via DW_AT_specification (for
18394 static members). */
18395 if (!load_all
18396 && !is_type_tag_for_partial (abbrev->tag)
18397 && abbrev->tag != DW_TAG_constant
18398 && abbrev->tag != DW_TAG_enumerator
18399 && abbrev->tag != DW_TAG_subprogram
18400 && abbrev->tag != DW_TAG_inlined_subroutine
18401 && abbrev->tag != DW_TAG_lexical_block
18402 && abbrev->tag != DW_TAG_variable
18403 && abbrev->tag != DW_TAG_namespace
18404 && abbrev->tag != DW_TAG_module
18405 && abbrev->tag != DW_TAG_member
18406 && abbrev->tag != DW_TAG_imported_unit
18407 && abbrev->tag != DW_TAG_imported_declaration)
18408 {
18409 /* Otherwise we skip to the next sibling, if any. */
18410 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18411 continue;
18412 }
18413
18414 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18415 abbrev);
18416
18417 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18418
18419 /* This two-pass algorithm for processing partial symbols has a
18420 high cost in cache pressure. Thus, handle some simple cases
18421 here which cover the majority of C partial symbols. DIEs
18422 which neither have specification tags in them, nor could have
18423 specification tags elsewhere pointing at them, can simply be
18424 processed and discarded.
18425
18426 This segment is also optional; scan_partial_symbols and
18427 add_partial_symbol will handle these DIEs if we chain
18428 them in normally. When compilers which do not emit large
18429 quantities of duplicate debug information are more common,
18430 this code can probably be removed. */
18431
18432 /* Any complete simple types at the top level (pretty much all
18433 of them, for a language without namespaces), can be processed
18434 directly. */
18435 if (parent_die == NULL
18436 && pdi.has_specification == 0
18437 && pdi.is_declaration == 0
18438 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18439 || pdi.tag == DW_TAG_base_type
18440 || pdi.tag == DW_TAG_subrange_type))
18441 {
18442 if (building_psymtab && pdi.name != NULL)
18443 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18444 VAR_DOMAIN, LOC_TYPEDEF, -1,
18445 psymbol_placement::STATIC,
18446 0, cu->language, objfile);
18447 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18448 continue;
18449 }
18450
18451 /* The exception for DW_TAG_typedef with has_children above is
18452 a workaround of GCC PR debug/47510. In the case of this complaint
18453 type_name_or_error will error on such types later.
18454
18455 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18456 it could not find the child DIEs referenced later, this is checked
18457 above. In correct DWARF DW_TAG_typedef should have no children. */
18458
18459 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18460 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18461 "- DIE at %s [in module %s]"),
18462 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18463
18464 /* If we're at the second level, and we're an enumerator, and
18465 our parent has no specification (meaning possibly lives in a
18466 namespace elsewhere), then we can add the partial symbol now
18467 instead of queueing it. */
18468 if (pdi.tag == DW_TAG_enumerator
18469 && parent_die != NULL
18470 && parent_die->die_parent == NULL
18471 && parent_die->tag == DW_TAG_enumeration_type
18472 && parent_die->has_specification == 0)
18473 {
18474 if (pdi.name == NULL)
18475 complaint (_("malformed enumerator DIE ignored"));
18476 else if (building_psymtab)
18477 add_psymbol_to_list (pdi.name, strlen (pdi.name), 0,
18478 VAR_DOMAIN, LOC_CONST, -1,
18479 cu->language == language_cplus
18480 ? psymbol_placement::GLOBAL
18481 : psymbol_placement::STATIC,
18482 0, cu->language, objfile);
18483
18484 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18485 continue;
18486 }
18487
18488 struct partial_die_info *part_die
18489 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18490
18491 /* We'll save this DIE so link it in. */
18492 part_die->die_parent = parent_die;
18493 part_die->die_sibling = NULL;
18494 part_die->die_child = NULL;
18495
18496 if (last_die && last_die == parent_die)
18497 last_die->die_child = part_die;
18498 else if (last_die)
18499 last_die->die_sibling = part_die;
18500
18501 last_die = part_die;
18502
18503 if (first_die == NULL)
18504 first_die = part_die;
18505
18506 /* Maybe add the DIE to the hash table. Not all DIEs that we
18507 find interesting need to be in the hash table, because we
18508 also have the parent/sibling/child chains; only those that we
18509 might refer to by offset later during partial symbol reading.
18510
18511 For now this means things that might have be the target of a
18512 DW_AT_specification, DW_AT_abstract_origin, or
18513 DW_AT_extension. DW_AT_extension will refer only to
18514 namespaces; DW_AT_abstract_origin refers to functions (and
18515 many things under the function DIE, but we do not recurse
18516 into function DIEs during partial symbol reading) and
18517 possibly variables as well; DW_AT_specification refers to
18518 declarations. Declarations ought to have the DW_AT_declaration
18519 flag. It happens that GCC forgets to put it in sometimes, but
18520 only for functions, not for types.
18521
18522 Adding more things than necessary to the hash table is harmless
18523 except for the performance cost. Adding too few will result in
18524 wasted time in find_partial_die, when we reread the compilation
18525 unit with load_all_dies set. */
18526
18527 if (load_all
18528 || abbrev->tag == DW_TAG_constant
18529 || abbrev->tag == DW_TAG_subprogram
18530 || abbrev->tag == DW_TAG_variable
18531 || abbrev->tag == DW_TAG_namespace
18532 || part_die->is_declaration)
18533 {
18534 void **slot;
18535
18536 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18537 to_underlying (part_die->sect_off),
18538 INSERT);
18539 *slot = part_die;
18540 }
18541
18542 /* For some DIEs we want to follow their children (if any). For C
18543 we have no reason to follow the children of structures; for other
18544 languages we have to, so that we can get at method physnames
18545 to infer fully qualified class names, for DW_AT_specification,
18546 and for C++ template arguments. For C++, we also look one level
18547 inside functions to find template arguments (if the name of the
18548 function does not already contain the template arguments).
18549
18550 For Ada, we need to scan the children of subprograms and lexical
18551 blocks as well because Ada allows the definition of nested
18552 entities that could be interesting for the debugger, such as
18553 nested subprograms for instance. */
18554 if (last_die->has_children
18555 && (load_all
18556 || last_die->tag == DW_TAG_namespace
18557 || last_die->tag == DW_TAG_module
18558 || last_die->tag == DW_TAG_enumeration_type
18559 || (cu->language == language_cplus
18560 && last_die->tag == DW_TAG_subprogram
18561 && (last_die->name == NULL
18562 || strchr (last_die->name, '<') == NULL))
18563 || (cu->language != language_c
18564 && (last_die->tag == DW_TAG_class_type
18565 || last_die->tag == DW_TAG_interface_type
18566 || last_die->tag == DW_TAG_structure_type
18567 || last_die->tag == DW_TAG_union_type))
18568 || (cu->language == language_ada
18569 && (last_die->tag == DW_TAG_subprogram
18570 || last_die->tag == DW_TAG_lexical_block))))
18571 {
18572 nesting_level++;
18573 parent_die = last_die;
18574 continue;
18575 }
18576
18577 /* Otherwise we skip to the next sibling, if any. */
18578 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18579
18580 /* Back to the top, do it again. */
18581 }
18582 }
18583
18584 partial_die_info::partial_die_info (sect_offset sect_off_,
18585 struct abbrev_info *abbrev)
18586 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18587 {
18588 }
18589
18590 /* Read a minimal amount of information into the minimal die structure.
18591 INFO_PTR should point just after the initial uleb128 of a DIE. */
18592
18593 const gdb_byte *
18594 partial_die_info::read (const struct die_reader_specs *reader,
18595 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18596 {
18597 struct dwarf2_cu *cu = reader->cu;
18598 struct dwarf2_per_objfile *dwarf2_per_objfile
18599 = cu->per_cu->dwarf2_per_objfile;
18600 unsigned int i;
18601 int has_low_pc_attr = 0;
18602 int has_high_pc_attr = 0;
18603 int high_pc_relative = 0;
18604
18605 for (i = 0; i < abbrev.num_attrs; ++i)
18606 {
18607 struct attribute attr;
18608
18609 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18610
18611 /* Store the data if it is of an attribute we want to keep in a
18612 partial symbol table. */
18613 switch (attr.name)
18614 {
18615 case DW_AT_name:
18616 switch (tag)
18617 {
18618 case DW_TAG_compile_unit:
18619 case DW_TAG_partial_unit:
18620 case DW_TAG_type_unit:
18621 /* Compilation units have a DW_AT_name that is a filename, not
18622 a source language identifier. */
18623 case DW_TAG_enumeration_type:
18624 case DW_TAG_enumerator:
18625 /* These tags always have simple identifiers already; no need
18626 to canonicalize them. */
18627 name = DW_STRING (&attr);
18628 break;
18629 default:
18630 {
18631 struct objfile *objfile = dwarf2_per_objfile->objfile;
18632
18633 name
18634 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18635 &objfile->per_bfd->storage_obstack);
18636 }
18637 break;
18638 }
18639 break;
18640 case DW_AT_linkage_name:
18641 case DW_AT_MIPS_linkage_name:
18642 /* Note that both forms of linkage name might appear. We
18643 assume they will be the same, and we only store the last
18644 one we see. */
18645 if (cu->language == language_ada)
18646 name = DW_STRING (&attr);
18647 linkage_name = DW_STRING (&attr);
18648 break;
18649 case DW_AT_low_pc:
18650 has_low_pc_attr = 1;
18651 lowpc = attr_value_as_address (&attr);
18652 break;
18653 case DW_AT_high_pc:
18654 has_high_pc_attr = 1;
18655 highpc = attr_value_as_address (&attr);
18656 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18657 high_pc_relative = 1;
18658 break;
18659 case DW_AT_location:
18660 /* Support the .debug_loc offsets. */
18661 if (attr_form_is_block (&attr))
18662 {
18663 d.locdesc = DW_BLOCK (&attr);
18664 }
18665 else if (attr_form_is_section_offset (&attr))
18666 {
18667 dwarf2_complex_location_expr_complaint ();
18668 }
18669 else
18670 {
18671 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18672 "partial symbol information");
18673 }
18674 break;
18675 case DW_AT_external:
18676 is_external = DW_UNSND (&attr);
18677 break;
18678 case DW_AT_declaration:
18679 is_declaration = DW_UNSND (&attr);
18680 break;
18681 case DW_AT_type:
18682 has_type = 1;
18683 break;
18684 case DW_AT_abstract_origin:
18685 case DW_AT_specification:
18686 case DW_AT_extension:
18687 has_specification = 1;
18688 spec_offset = dwarf2_get_ref_die_offset (&attr);
18689 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18690 || cu->per_cu->is_dwz);
18691 break;
18692 case DW_AT_sibling:
18693 /* Ignore absolute siblings, they might point outside of
18694 the current compile unit. */
18695 if (attr.form == DW_FORM_ref_addr)
18696 complaint (_("ignoring absolute DW_AT_sibling"));
18697 else
18698 {
18699 const gdb_byte *buffer = reader->buffer;
18700 sect_offset off = dwarf2_get_ref_die_offset (&attr);
18701 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18702
18703 if (sibling_ptr < info_ptr)
18704 complaint (_("DW_AT_sibling points backwards"));
18705 else if (sibling_ptr > reader->buffer_end)
18706 dwarf2_section_buffer_overflow_complaint (reader->die_section);
18707 else
18708 sibling = sibling_ptr;
18709 }
18710 break;
18711 case DW_AT_byte_size:
18712 has_byte_size = 1;
18713 break;
18714 case DW_AT_const_value:
18715 has_const_value = 1;
18716 break;
18717 case DW_AT_calling_convention:
18718 /* DWARF doesn't provide a way to identify a program's source-level
18719 entry point. DW_AT_calling_convention attributes are only meant
18720 to describe functions' calling conventions.
18721
18722 However, because it's a necessary piece of information in
18723 Fortran, and before DWARF 4 DW_CC_program was the only
18724 piece of debugging information whose definition refers to
18725 a 'main program' at all, several compilers marked Fortran
18726 main programs with DW_CC_program --- even when those
18727 functions use the standard calling conventions.
18728
18729 Although DWARF now specifies a way to provide this
18730 information, we support this practice for backward
18731 compatibility. */
18732 if (DW_UNSND (&attr) == DW_CC_program
18733 && cu->language == language_fortran)
18734 main_subprogram = 1;
18735 break;
18736 case DW_AT_inline:
18737 if (DW_UNSND (&attr) == DW_INL_inlined
18738 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18739 may_be_inlined = 1;
18740 break;
18741
18742 case DW_AT_import:
18743 if (tag == DW_TAG_imported_unit)
18744 {
18745 d.sect_off = dwarf2_get_ref_die_offset (&attr);
18746 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18747 || cu->per_cu->is_dwz);
18748 }
18749 break;
18750
18751 case DW_AT_main_subprogram:
18752 main_subprogram = DW_UNSND (&attr);
18753 break;
18754
18755 default:
18756 break;
18757 }
18758 }
18759
18760 if (high_pc_relative)
18761 highpc += lowpc;
18762
18763 if (has_low_pc_attr && has_high_pc_attr)
18764 {
18765 /* When using the GNU linker, .gnu.linkonce. sections are used to
18766 eliminate duplicate copies of functions and vtables and such.
18767 The linker will arbitrarily choose one and discard the others.
18768 The AT_*_pc values for such functions refer to local labels in
18769 these sections. If the section from that file was discarded, the
18770 labels are not in the output, so the relocs get a value of 0.
18771 If this is a discarded function, mark the pc bounds as invalid,
18772 so that GDB will ignore it. */
18773 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18774 {
18775 struct objfile *objfile = dwarf2_per_objfile->objfile;
18776 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18777
18778 complaint (_("DW_AT_low_pc %s is zero "
18779 "for DIE at %s [in module %s]"),
18780 paddress (gdbarch, lowpc),
18781 sect_offset_str (sect_off),
18782 objfile_name (objfile));
18783 }
18784 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18785 else if (lowpc >= highpc)
18786 {
18787 struct objfile *objfile = dwarf2_per_objfile->objfile;
18788 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18789
18790 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18791 "for DIE at %s [in module %s]"),
18792 paddress (gdbarch, lowpc),
18793 paddress (gdbarch, highpc),
18794 sect_offset_str (sect_off),
18795 objfile_name (objfile));
18796 }
18797 else
18798 has_pc_info = 1;
18799 }
18800
18801 return info_ptr;
18802 }
18803
18804 /* Find a cached partial DIE at OFFSET in CU. */
18805
18806 struct partial_die_info *
18807 dwarf2_cu::find_partial_die (sect_offset sect_off)
18808 {
18809 struct partial_die_info *lookup_die = NULL;
18810 struct partial_die_info part_die (sect_off);
18811
18812 lookup_die = ((struct partial_die_info *)
18813 htab_find_with_hash (partial_dies, &part_die,
18814 to_underlying (sect_off)));
18815
18816 return lookup_die;
18817 }
18818
18819 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18820 except in the case of .debug_types DIEs which do not reference
18821 outside their CU (they do however referencing other types via
18822 DW_FORM_ref_sig8). */
18823
18824 static struct partial_die_info *
18825 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18826 {
18827 struct dwarf2_per_objfile *dwarf2_per_objfile
18828 = cu->per_cu->dwarf2_per_objfile;
18829 struct objfile *objfile = dwarf2_per_objfile->objfile;
18830 struct dwarf2_per_cu_data *per_cu = NULL;
18831 struct partial_die_info *pd = NULL;
18832
18833 if (offset_in_dwz == cu->per_cu->is_dwz
18834 && offset_in_cu_p (&cu->header, sect_off))
18835 {
18836 pd = cu->find_partial_die (sect_off);
18837 if (pd != NULL)
18838 return pd;
18839 /* We missed recording what we needed.
18840 Load all dies and try again. */
18841 per_cu = cu->per_cu;
18842 }
18843 else
18844 {
18845 /* TUs don't reference other CUs/TUs (except via type signatures). */
18846 if (cu->per_cu->is_debug_types)
18847 {
18848 error (_("Dwarf Error: Type Unit at offset %s contains"
18849 " external reference to offset %s [in module %s].\n"),
18850 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18851 bfd_get_filename (objfile->obfd));
18852 }
18853 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18854 dwarf2_per_objfile);
18855
18856 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18857 load_partial_comp_unit (per_cu);
18858
18859 per_cu->cu->last_used = 0;
18860 pd = per_cu->cu->find_partial_die (sect_off);
18861 }
18862
18863 /* If we didn't find it, and not all dies have been loaded,
18864 load them all and try again. */
18865
18866 if (pd == NULL && per_cu->load_all_dies == 0)
18867 {
18868 per_cu->load_all_dies = 1;
18869
18870 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18871 THIS_CU->cu may already be in use. So we can't just free it and
18872 replace its DIEs with the ones we read in. Instead, we leave those
18873 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18874 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18875 set. */
18876 load_partial_comp_unit (per_cu);
18877
18878 pd = per_cu->cu->find_partial_die (sect_off);
18879 }
18880
18881 if (pd == NULL)
18882 internal_error (__FILE__, __LINE__,
18883 _("could not find partial DIE %s "
18884 "in cache [from module %s]\n"),
18885 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18886 return pd;
18887 }
18888
18889 /* See if we can figure out if the class lives in a namespace. We do
18890 this by looking for a member function; its demangled name will
18891 contain namespace info, if there is any. */
18892
18893 static void
18894 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18895 struct dwarf2_cu *cu)
18896 {
18897 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18898 what template types look like, because the demangler
18899 frequently doesn't give the same name as the debug info. We
18900 could fix this by only using the demangled name to get the
18901 prefix (but see comment in read_structure_type). */
18902
18903 struct partial_die_info *real_pdi;
18904 struct partial_die_info *child_pdi;
18905
18906 /* If this DIE (this DIE's specification, if any) has a parent, then
18907 we should not do this. We'll prepend the parent's fully qualified
18908 name when we create the partial symbol. */
18909
18910 real_pdi = struct_pdi;
18911 while (real_pdi->has_specification)
18912 real_pdi = find_partial_die (real_pdi->spec_offset,
18913 real_pdi->spec_is_dwz, cu);
18914
18915 if (real_pdi->die_parent != NULL)
18916 return;
18917
18918 for (child_pdi = struct_pdi->die_child;
18919 child_pdi != NULL;
18920 child_pdi = child_pdi->die_sibling)
18921 {
18922 if (child_pdi->tag == DW_TAG_subprogram
18923 && child_pdi->linkage_name != NULL)
18924 {
18925 char *actual_class_name
18926 = language_class_name_from_physname (cu->language_defn,
18927 child_pdi->linkage_name);
18928 if (actual_class_name != NULL)
18929 {
18930 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18931 struct_pdi->name
18932 = ((const char *)
18933 obstack_copy0 (&objfile->per_bfd->storage_obstack,
18934 actual_class_name,
18935 strlen (actual_class_name)));
18936 xfree (actual_class_name);
18937 }
18938 break;
18939 }
18940 }
18941 }
18942
18943 void
18944 partial_die_info::fixup (struct dwarf2_cu *cu)
18945 {
18946 /* Once we've fixed up a die, there's no point in doing so again.
18947 This also avoids a memory leak if we were to call
18948 guess_partial_die_structure_name multiple times. */
18949 if (fixup_called)
18950 return;
18951
18952 /* If we found a reference attribute and the DIE has no name, try
18953 to find a name in the referred to DIE. */
18954
18955 if (name == NULL && has_specification)
18956 {
18957 struct partial_die_info *spec_die;
18958
18959 spec_die = find_partial_die (spec_offset, spec_is_dwz, cu);
18960
18961 spec_die->fixup (cu);
18962
18963 if (spec_die->name)
18964 {
18965 name = spec_die->name;
18966
18967 /* Copy DW_AT_external attribute if it is set. */
18968 if (spec_die->is_external)
18969 is_external = spec_die->is_external;
18970 }
18971 }
18972
18973 /* Set default names for some unnamed DIEs. */
18974
18975 if (name == NULL && tag == DW_TAG_namespace)
18976 name = CP_ANONYMOUS_NAMESPACE_STR;
18977
18978 /* If there is no parent die to provide a namespace, and there are
18979 children, see if we can determine the namespace from their linkage
18980 name. */
18981 if (cu->language == language_cplus
18982 && !VEC_empty (dwarf2_section_info_def,
18983 cu->per_cu->dwarf2_per_objfile->types)
18984 && die_parent == NULL
18985 && has_children
18986 && (tag == DW_TAG_class_type
18987 || tag == DW_TAG_structure_type
18988 || tag == DW_TAG_union_type))
18989 guess_partial_die_structure_name (this, cu);
18990
18991 /* GCC might emit a nameless struct or union that has a linkage
18992 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18993 if (name == NULL
18994 && (tag == DW_TAG_class_type
18995 || tag == DW_TAG_interface_type
18996 || tag == DW_TAG_structure_type
18997 || tag == DW_TAG_union_type)
18998 && linkage_name != NULL)
18999 {
19000 char *demangled;
19001
19002 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19003 if (demangled)
19004 {
19005 const char *base;
19006
19007 /* Strip any leading namespaces/classes, keep only the base name.
19008 DW_AT_name for named DIEs does not contain the prefixes. */
19009 base = strrchr (demangled, ':');
19010 if (base && base > demangled && base[-1] == ':')
19011 base++;
19012 else
19013 base = demangled;
19014
19015 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19016 name
19017 = ((const char *)
19018 obstack_copy0 (&objfile->per_bfd->storage_obstack,
19019 base, strlen (base)));
19020 xfree (demangled);
19021 }
19022 }
19023
19024 fixup_called = 1;
19025 }
19026
19027 /* Read an attribute value described by an attribute form. */
19028
19029 static const gdb_byte *
19030 read_attribute_value (const struct die_reader_specs *reader,
19031 struct attribute *attr, unsigned form,
19032 LONGEST implicit_const, const gdb_byte *info_ptr)
19033 {
19034 struct dwarf2_cu *cu = reader->cu;
19035 struct dwarf2_per_objfile *dwarf2_per_objfile
19036 = cu->per_cu->dwarf2_per_objfile;
19037 struct objfile *objfile = dwarf2_per_objfile->objfile;
19038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19039 bfd *abfd = reader->abfd;
19040 struct comp_unit_head *cu_header = &cu->header;
19041 unsigned int bytes_read;
19042 struct dwarf_block *blk;
19043
19044 attr->form = (enum dwarf_form) form;
19045 switch (form)
19046 {
19047 case DW_FORM_ref_addr:
19048 if (cu->header.version == 2)
19049 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19050 else
19051 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19052 &cu->header, &bytes_read);
19053 info_ptr += bytes_read;
19054 break;
19055 case DW_FORM_GNU_ref_alt:
19056 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19057 info_ptr += bytes_read;
19058 break;
19059 case DW_FORM_addr:
19060 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19061 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19062 info_ptr += bytes_read;
19063 break;
19064 case DW_FORM_block2:
19065 blk = dwarf_alloc_block (cu);
19066 blk->size = read_2_bytes (abfd, info_ptr);
19067 info_ptr += 2;
19068 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19069 info_ptr += blk->size;
19070 DW_BLOCK (attr) = blk;
19071 break;
19072 case DW_FORM_block4:
19073 blk = dwarf_alloc_block (cu);
19074 blk->size = read_4_bytes (abfd, info_ptr);
19075 info_ptr += 4;
19076 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19077 info_ptr += blk->size;
19078 DW_BLOCK (attr) = blk;
19079 break;
19080 case DW_FORM_data2:
19081 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19082 info_ptr += 2;
19083 break;
19084 case DW_FORM_data4:
19085 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19086 info_ptr += 4;
19087 break;
19088 case DW_FORM_data8:
19089 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19090 info_ptr += 8;
19091 break;
19092 case DW_FORM_data16:
19093 blk = dwarf_alloc_block (cu);
19094 blk->size = 16;
19095 blk->data = read_n_bytes (abfd, info_ptr, 16);
19096 info_ptr += 16;
19097 DW_BLOCK (attr) = blk;
19098 break;
19099 case DW_FORM_sec_offset:
19100 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19101 info_ptr += bytes_read;
19102 break;
19103 case DW_FORM_string:
19104 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19105 DW_STRING_IS_CANONICAL (attr) = 0;
19106 info_ptr += bytes_read;
19107 break;
19108 case DW_FORM_strp:
19109 if (!cu->per_cu->is_dwz)
19110 {
19111 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19112 abfd, info_ptr, cu_header,
19113 &bytes_read);
19114 DW_STRING_IS_CANONICAL (attr) = 0;
19115 info_ptr += bytes_read;
19116 break;
19117 }
19118 /* FALLTHROUGH */
19119 case DW_FORM_line_strp:
19120 if (!cu->per_cu->is_dwz)
19121 {
19122 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19123 abfd, info_ptr,
19124 cu_header, &bytes_read);
19125 DW_STRING_IS_CANONICAL (attr) = 0;
19126 info_ptr += bytes_read;
19127 break;
19128 }
19129 /* FALLTHROUGH */
19130 case DW_FORM_GNU_strp_alt:
19131 {
19132 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19133 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19134 &bytes_read);
19135
19136 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19137 dwz, str_offset);
19138 DW_STRING_IS_CANONICAL (attr) = 0;
19139 info_ptr += bytes_read;
19140 }
19141 break;
19142 case DW_FORM_exprloc:
19143 case DW_FORM_block:
19144 blk = dwarf_alloc_block (cu);
19145 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19146 info_ptr += bytes_read;
19147 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19148 info_ptr += blk->size;
19149 DW_BLOCK (attr) = blk;
19150 break;
19151 case DW_FORM_block1:
19152 blk = dwarf_alloc_block (cu);
19153 blk->size = read_1_byte (abfd, info_ptr);
19154 info_ptr += 1;
19155 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19156 info_ptr += blk->size;
19157 DW_BLOCK (attr) = blk;
19158 break;
19159 case DW_FORM_data1:
19160 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19161 info_ptr += 1;
19162 break;
19163 case DW_FORM_flag:
19164 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19165 info_ptr += 1;
19166 break;
19167 case DW_FORM_flag_present:
19168 DW_UNSND (attr) = 1;
19169 break;
19170 case DW_FORM_sdata:
19171 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19172 info_ptr += bytes_read;
19173 break;
19174 case DW_FORM_udata:
19175 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19176 info_ptr += bytes_read;
19177 break;
19178 case DW_FORM_ref1:
19179 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19180 + read_1_byte (abfd, info_ptr));
19181 info_ptr += 1;
19182 break;
19183 case DW_FORM_ref2:
19184 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19185 + read_2_bytes (abfd, info_ptr));
19186 info_ptr += 2;
19187 break;
19188 case DW_FORM_ref4:
19189 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19190 + read_4_bytes (abfd, info_ptr));
19191 info_ptr += 4;
19192 break;
19193 case DW_FORM_ref8:
19194 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19195 + read_8_bytes (abfd, info_ptr));
19196 info_ptr += 8;
19197 break;
19198 case DW_FORM_ref_sig8:
19199 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19200 info_ptr += 8;
19201 break;
19202 case DW_FORM_ref_udata:
19203 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19204 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19205 info_ptr += bytes_read;
19206 break;
19207 case DW_FORM_indirect:
19208 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19209 info_ptr += bytes_read;
19210 if (form == DW_FORM_implicit_const)
19211 {
19212 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19213 info_ptr += bytes_read;
19214 }
19215 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19216 info_ptr);
19217 break;
19218 case DW_FORM_implicit_const:
19219 DW_SND (attr) = implicit_const;
19220 break;
19221 case DW_FORM_GNU_addr_index:
19222 if (reader->dwo_file == NULL)
19223 {
19224 /* For now flag a hard error.
19225 Later we can turn this into a complaint. */
19226 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19227 dwarf_form_name (form),
19228 bfd_get_filename (abfd));
19229 }
19230 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19231 info_ptr += bytes_read;
19232 break;
19233 case DW_FORM_GNU_str_index:
19234 if (reader->dwo_file == NULL)
19235 {
19236 /* For now flag a hard error.
19237 Later we can turn this into a complaint if warranted. */
19238 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19239 dwarf_form_name (form),
19240 bfd_get_filename (abfd));
19241 }
19242 {
19243 ULONGEST str_index =
19244 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19245
19246 DW_STRING (attr) = read_str_index (reader, str_index);
19247 DW_STRING_IS_CANONICAL (attr) = 0;
19248 info_ptr += bytes_read;
19249 }
19250 break;
19251 default:
19252 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19253 dwarf_form_name (form),
19254 bfd_get_filename (abfd));
19255 }
19256
19257 /* Super hack. */
19258 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19259 attr->form = DW_FORM_GNU_ref_alt;
19260
19261 /* We have seen instances where the compiler tried to emit a byte
19262 size attribute of -1 which ended up being encoded as an unsigned
19263 0xffffffff. Although 0xffffffff is technically a valid size value,
19264 an object of this size seems pretty unlikely so we can relatively
19265 safely treat these cases as if the size attribute was invalid and
19266 treat them as zero by default. */
19267 if (attr->name == DW_AT_byte_size
19268 && form == DW_FORM_data4
19269 && DW_UNSND (attr) >= 0xffffffff)
19270 {
19271 complaint
19272 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19273 hex_string (DW_UNSND (attr)));
19274 DW_UNSND (attr) = 0;
19275 }
19276
19277 return info_ptr;
19278 }
19279
19280 /* Read an attribute described by an abbreviated attribute. */
19281
19282 static const gdb_byte *
19283 read_attribute (const struct die_reader_specs *reader,
19284 struct attribute *attr, struct attr_abbrev *abbrev,
19285 const gdb_byte *info_ptr)
19286 {
19287 attr->name = abbrev->name;
19288 return read_attribute_value (reader, attr, abbrev->form,
19289 abbrev->implicit_const, info_ptr);
19290 }
19291
19292 /* Read dwarf information from a buffer. */
19293
19294 static unsigned int
19295 read_1_byte (bfd *abfd, const gdb_byte *buf)
19296 {
19297 return bfd_get_8 (abfd, buf);
19298 }
19299
19300 static int
19301 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19302 {
19303 return bfd_get_signed_8 (abfd, buf);
19304 }
19305
19306 static unsigned int
19307 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19308 {
19309 return bfd_get_16 (abfd, buf);
19310 }
19311
19312 static int
19313 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19314 {
19315 return bfd_get_signed_16 (abfd, buf);
19316 }
19317
19318 static unsigned int
19319 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19320 {
19321 return bfd_get_32 (abfd, buf);
19322 }
19323
19324 static int
19325 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19326 {
19327 return bfd_get_signed_32 (abfd, buf);
19328 }
19329
19330 static ULONGEST
19331 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19332 {
19333 return bfd_get_64 (abfd, buf);
19334 }
19335
19336 static CORE_ADDR
19337 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19338 unsigned int *bytes_read)
19339 {
19340 struct comp_unit_head *cu_header = &cu->header;
19341 CORE_ADDR retval = 0;
19342
19343 if (cu_header->signed_addr_p)
19344 {
19345 switch (cu_header->addr_size)
19346 {
19347 case 2:
19348 retval = bfd_get_signed_16 (abfd, buf);
19349 break;
19350 case 4:
19351 retval = bfd_get_signed_32 (abfd, buf);
19352 break;
19353 case 8:
19354 retval = bfd_get_signed_64 (abfd, buf);
19355 break;
19356 default:
19357 internal_error (__FILE__, __LINE__,
19358 _("read_address: bad switch, signed [in module %s]"),
19359 bfd_get_filename (abfd));
19360 }
19361 }
19362 else
19363 {
19364 switch (cu_header->addr_size)
19365 {
19366 case 2:
19367 retval = bfd_get_16 (abfd, buf);
19368 break;
19369 case 4:
19370 retval = bfd_get_32 (abfd, buf);
19371 break;
19372 case 8:
19373 retval = bfd_get_64 (abfd, buf);
19374 break;
19375 default:
19376 internal_error (__FILE__, __LINE__,
19377 _("read_address: bad switch, "
19378 "unsigned [in module %s]"),
19379 bfd_get_filename (abfd));
19380 }
19381 }
19382
19383 *bytes_read = cu_header->addr_size;
19384 return retval;
19385 }
19386
19387 /* Read the initial length from a section. The (draft) DWARF 3
19388 specification allows the initial length to take up either 4 bytes
19389 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19390 bytes describe the length and all offsets will be 8 bytes in length
19391 instead of 4.
19392
19393 An older, non-standard 64-bit format is also handled by this
19394 function. The older format in question stores the initial length
19395 as an 8-byte quantity without an escape value. Lengths greater
19396 than 2^32 aren't very common which means that the initial 4 bytes
19397 is almost always zero. Since a length value of zero doesn't make
19398 sense for the 32-bit format, this initial zero can be considered to
19399 be an escape value which indicates the presence of the older 64-bit
19400 format. As written, the code can't detect (old format) lengths
19401 greater than 4GB. If it becomes necessary to handle lengths
19402 somewhat larger than 4GB, we could allow other small values (such
19403 as the non-sensical values of 1, 2, and 3) to also be used as
19404 escape values indicating the presence of the old format.
19405
19406 The value returned via bytes_read should be used to increment the
19407 relevant pointer after calling read_initial_length().
19408
19409 [ Note: read_initial_length() and read_offset() are based on the
19410 document entitled "DWARF Debugging Information Format", revision
19411 3, draft 8, dated November 19, 2001. This document was obtained
19412 from:
19413
19414 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19415
19416 This document is only a draft and is subject to change. (So beware.)
19417
19418 Details regarding the older, non-standard 64-bit format were
19419 determined empirically by examining 64-bit ELF files produced by
19420 the SGI toolchain on an IRIX 6.5 machine.
19421
19422 - Kevin, July 16, 2002
19423 ] */
19424
19425 static LONGEST
19426 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19427 {
19428 LONGEST length = bfd_get_32 (abfd, buf);
19429
19430 if (length == 0xffffffff)
19431 {
19432 length = bfd_get_64 (abfd, buf + 4);
19433 *bytes_read = 12;
19434 }
19435 else if (length == 0)
19436 {
19437 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19438 length = bfd_get_64 (abfd, buf);
19439 *bytes_read = 8;
19440 }
19441 else
19442 {
19443 *bytes_read = 4;
19444 }
19445
19446 return length;
19447 }
19448
19449 /* Cover function for read_initial_length.
19450 Returns the length of the object at BUF, and stores the size of the
19451 initial length in *BYTES_READ and stores the size that offsets will be in
19452 *OFFSET_SIZE.
19453 If the initial length size is not equivalent to that specified in
19454 CU_HEADER then issue a complaint.
19455 This is useful when reading non-comp-unit headers. */
19456
19457 static LONGEST
19458 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19459 const struct comp_unit_head *cu_header,
19460 unsigned int *bytes_read,
19461 unsigned int *offset_size)
19462 {
19463 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19464
19465 gdb_assert (cu_header->initial_length_size == 4
19466 || cu_header->initial_length_size == 8
19467 || cu_header->initial_length_size == 12);
19468
19469 if (cu_header->initial_length_size != *bytes_read)
19470 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19471
19472 *offset_size = (*bytes_read == 4) ? 4 : 8;
19473 return length;
19474 }
19475
19476 /* Read an offset from the data stream. The size of the offset is
19477 given by cu_header->offset_size. */
19478
19479 static LONGEST
19480 read_offset (bfd *abfd, const gdb_byte *buf,
19481 const struct comp_unit_head *cu_header,
19482 unsigned int *bytes_read)
19483 {
19484 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19485
19486 *bytes_read = cu_header->offset_size;
19487 return offset;
19488 }
19489
19490 /* Read an offset from the data stream. */
19491
19492 static LONGEST
19493 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19494 {
19495 LONGEST retval = 0;
19496
19497 switch (offset_size)
19498 {
19499 case 4:
19500 retval = bfd_get_32 (abfd, buf);
19501 break;
19502 case 8:
19503 retval = bfd_get_64 (abfd, buf);
19504 break;
19505 default:
19506 internal_error (__FILE__, __LINE__,
19507 _("read_offset_1: bad switch [in module %s]"),
19508 bfd_get_filename (abfd));
19509 }
19510
19511 return retval;
19512 }
19513
19514 static const gdb_byte *
19515 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19516 {
19517 /* If the size of a host char is 8 bits, we can return a pointer
19518 to the buffer, otherwise we have to copy the data to a buffer
19519 allocated on the temporary obstack. */
19520 gdb_assert (HOST_CHAR_BIT == 8);
19521 return buf;
19522 }
19523
19524 static const char *
19525 read_direct_string (bfd *abfd, const gdb_byte *buf,
19526 unsigned int *bytes_read_ptr)
19527 {
19528 /* If the size of a host char is 8 bits, we can return a pointer
19529 to the string, otherwise we have to copy the string to a buffer
19530 allocated on the temporary obstack. */
19531 gdb_assert (HOST_CHAR_BIT == 8);
19532 if (*buf == '\0')
19533 {
19534 *bytes_read_ptr = 1;
19535 return NULL;
19536 }
19537 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19538 return (const char *) buf;
19539 }
19540
19541 /* Return pointer to string at section SECT offset STR_OFFSET with error
19542 reporting strings FORM_NAME and SECT_NAME. */
19543
19544 static const char *
19545 read_indirect_string_at_offset_from (struct objfile *objfile,
19546 bfd *abfd, LONGEST str_offset,
19547 struct dwarf2_section_info *sect,
19548 const char *form_name,
19549 const char *sect_name)
19550 {
19551 dwarf2_read_section (objfile, sect);
19552 if (sect->buffer == NULL)
19553 error (_("%s used without %s section [in module %s]"),
19554 form_name, sect_name, bfd_get_filename (abfd));
19555 if (str_offset >= sect->size)
19556 error (_("%s pointing outside of %s section [in module %s]"),
19557 form_name, sect_name, bfd_get_filename (abfd));
19558 gdb_assert (HOST_CHAR_BIT == 8);
19559 if (sect->buffer[str_offset] == '\0')
19560 return NULL;
19561 return (const char *) (sect->buffer + str_offset);
19562 }
19563
19564 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19565
19566 static const char *
19567 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19568 bfd *abfd, LONGEST str_offset)
19569 {
19570 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19571 abfd, str_offset,
19572 &dwarf2_per_objfile->str,
19573 "DW_FORM_strp", ".debug_str");
19574 }
19575
19576 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19577
19578 static const char *
19579 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19580 bfd *abfd, LONGEST str_offset)
19581 {
19582 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19583 abfd, str_offset,
19584 &dwarf2_per_objfile->line_str,
19585 "DW_FORM_line_strp",
19586 ".debug_line_str");
19587 }
19588
19589 /* Read a string at offset STR_OFFSET in the .debug_str section from
19590 the .dwz file DWZ. Throw an error if the offset is too large. If
19591 the string consists of a single NUL byte, return NULL; otherwise
19592 return a pointer to the string. */
19593
19594 static const char *
19595 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19596 LONGEST str_offset)
19597 {
19598 dwarf2_read_section (objfile, &dwz->str);
19599
19600 if (dwz->str.buffer == NULL)
19601 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19602 "section [in module %s]"),
19603 bfd_get_filename (dwz->dwz_bfd));
19604 if (str_offset >= dwz->str.size)
19605 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19606 ".debug_str section [in module %s]"),
19607 bfd_get_filename (dwz->dwz_bfd));
19608 gdb_assert (HOST_CHAR_BIT == 8);
19609 if (dwz->str.buffer[str_offset] == '\0')
19610 return NULL;
19611 return (const char *) (dwz->str.buffer + str_offset);
19612 }
19613
19614 /* Return pointer to string at .debug_str offset as read from BUF.
19615 BUF is assumed to be in a compilation unit described by CU_HEADER.
19616 Return *BYTES_READ_PTR count of bytes read from BUF. */
19617
19618 static const char *
19619 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19620 const gdb_byte *buf,
19621 const struct comp_unit_head *cu_header,
19622 unsigned int *bytes_read_ptr)
19623 {
19624 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19625
19626 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19627 }
19628
19629 /* Return pointer to string at .debug_line_str offset as read from BUF.
19630 BUF is assumed to be in a compilation unit described by CU_HEADER.
19631 Return *BYTES_READ_PTR count of bytes read from BUF. */
19632
19633 static const char *
19634 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
19635 bfd *abfd, const gdb_byte *buf,
19636 const struct comp_unit_head *cu_header,
19637 unsigned int *bytes_read_ptr)
19638 {
19639 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19640
19641 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
19642 str_offset);
19643 }
19644
19645 ULONGEST
19646 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
19647 unsigned int *bytes_read_ptr)
19648 {
19649 ULONGEST result;
19650 unsigned int num_read;
19651 int shift;
19652 unsigned char byte;
19653
19654 result = 0;
19655 shift = 0;
19656 num_read = 0;
19657 while (1)
19658 {
19659 byte = bfd_get_8 (abfd, buf);
19660 buf++;
19661 num_read++;
19662 result |= ((ULONGEST) (byte & 127) << shift);
19663 if ((byte & 128) == 0)
19664 {
19665 break;
19666 }
19667 shift += 7;
19668 }
19669 *bytes_read_ptr = num_read;
19670 return result;
19671 }
19672
19673 static LONGEST
19674 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
19675 unsigned int *bytes_read_ptr)
19676 {
19677 ULONGEST result;
19678 int shift, num_read;
19679 unsigned char byte;
19680
19681 result = 0;
19682 shift = 0;
19683 num_read = 0;
19684 while (1)
19685 {
19686 byte = bfd_get_8 (abfd, buf);
19687 buf++;
19688 num_read++;
19689 result |= ((ULONGEST) (byte & 127) << shift);
19690 shift += 7;
19691 if ((byte & 128) == 0)
19692 {
19693 break;
19694 }
19695 }
19696 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
19697 result |= -(((ULONGEST) 1) << shift);
19698 *bytes_read_ptr = num_read;
19699 return result;
19700 }
19701
19702 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19703 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
19704 ADDR_SIZE is the size of addresses from the CU header. */
19705
19706 static CORE_ADDR
19707 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19708 unsigned int addr_index, ULONGEST addr_base, int addr_size)
19709 {
19710 struct objfile *objfile = dwarf2_per_objfile->objfile;
19711 bfd *abfd = objfile->obfd;
19712 const gdb_byte *info_ptr;
19713
19714 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
19715 if (dwarf2_per_objfile->addr.buffer == NULL)
19716 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19717 objfile_name (objfile));
19718 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
19719 error (_("DW_FORM_addr_index pointing outside of "
19720 ".debug_addr section [in module %s]"),
19721 objfile_name (objfile));
19722 info_ptr = (dwarf2_per_objfile->addr.buffer
19723 + addr_base + addr_index * addr_size);
19724 if (addr_size == 4)
19725 return bfd_get_32 (abfd, info_ptr);
19726 else
19727 return bfd_get_64 (abfd, info_ptr);
19728 }
19729
19730 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19731
19732 static CORE_ADDR
19733 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19734 {
19735 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19736 cu->addr_base, cu->header.addr_size);
19737 }
19738
19739 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19740
19741 static CORE_ADDR
19742 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19743 unsigned int *bytes_read)
19744 {
19745 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19746 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19747
19748 return read_addr_index (cu, addr_index);
19749 }
19750
19751 /* Data structure to pass results from dwarf2_read_addr_index_reader
19752 back to dwarf2_read_addr_index. */
19753
19754 struct dwarf2_read_addr_index_data
19755 {
19756 ULONGEST addr_base;
19757 int addr_size;
19758 };
19759
19760 /* die_reader_func for dwarf2_read_addr_index. */
19761
19762 static void
19763 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
19764 const gdb_byte *info_ptr,
19765 struct die_info *comp_unit_die,
19766 int has_children,
19767 void *data)
19768 {
19769 struct dwarf2_cu *cu = reader->cu;
19770 struct dwarf2_read_addr_index_data *aidata =
19771 (struct dwarf2_read_addr_index_data *) data;
19772
19773 aidata->addr_base = cu->addr_base;
19774 aidata->addr_size = cu->header.addr_size;
19775 }
19776
19777 /* Given an index in .debug_addr, fetch the value.
19778 NOTE: This can be called during dwarf expression evaluation,
19779 long after the debug information has been read, and thus per_cu->cu
19780 may no longer exist. */
19781
19782 CORE_ADDR
19783 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
19784 unsigned int addr_index)
19785 {
19786 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19787 struct dwarf2_cu *cu = per_cu->cu;
19788 ULONGEST addr_base;
19789 int addr_size;
19790
19791 /* We need addr_base and addr_size.
19792 If we don't have PER_CU->cu, we have to get it.
19793 Nasty, but the alternative is storing the needed info in PER_CU,
19794 which at this point doesn't seem justified: it's not clear how frequently
19795 it would get used and it would increase the size of every PER_CU.
19796 Entry points like dwarf2_per_cu_addr_size do a similar thing
19797 so we're not in uncharted territory here.
19798 Alas we need to be a bit more complicated as addr_base is contained
19799 in the DIE.
19800
19801 We don't need to read the entire CU(/TU).
19802 We just need the header and top level die.
19803
19804 IWBN to use the aging mechanism to let us lazily later discard the CU.
19805 For now we skip this optimization. */
19806
19807 if (cu != NULL)
19808 {
19809 addr_base = cu->addr_base;
19810 addr_size = cu->header.addr_size;
19811 }
19812 else
19813 {
19814 struct dwarf2_read_addr_index_data aidata;
19815
19816 /* Note: We can't use init_cutu_and_read_dies_simple here,
19817 we need addr_base. */
19818 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
19819 dwarf2_read_addr_index_reader, &aidata);
19820 addr_base = aidata.addr_base;
19821 addr_size = aidata.addr_size;
19822 }
19823
19824 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19825 addr_size);
19826 }
19827
19828 /* Given a DW_FORM_GNU_str_index, fetch the string.
19829 This is only used by the Fission support. */
19830
19831 static const char *
19832 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19833 {
19834 struct dwarf2_cu *cu = reader->cu;
19835 struct dwarf2_per_objfile *dwarf2_per_objfile
19836 = cu->per_cu->dwarf2_per_objfile;
19837 struct objfile *objfile = dwarf2_per_objfile->objfile;
19838 const char *objf_name = objfile_name (objfile);
19839 bfd *abfd = objfile->obfd;
19840 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
19841 struct dwarf2_section_info *str_offsets_section =
19842 &reader->dwo_file->sections.str_offsets;
19843 const gdb_byte *info_ptr;
19844 ULONGEST str_offset;
19845 static const char form_name[] = "DW_FORM_GNU_str_index";
19846
19847 dwarf2_read_section (objfile, str_section);
19848 dwarf2_read_section (objfile, str_offsets_section);
19849 if (str_section->buffer == NULL)
19850 error (_("%s used without .debug_str.dwo section"
19851 " in CU at offset %s [in module %s]"),
19852 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19853 if (str_offsets_section->buffer == NULL)
19854 error (_("%s used without .debug_str_offsets.dwo section"
19855 " in CU at offset %s [in module %s]"),
19856 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19857 if (str_index * cu->header.offset_size >= str_offsets_section->size)
19858 error (_("%s pointing outside of .debug_str_offsets.dwo"
19859 " section in CU at offset %s [in module %s]"),
19860 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19861 info_ptr = (str_offsets_section->buffer
19862 + str_index * cu->header.offset_size);
19863 if (cu->header.offset_size == 4)
19864 str_offset = bfd_get_32 (abfd, info_ptr);
19865 else
19866 str_offset = bfd_get_64 (abfd, info_ptr);
19867 if (str_offset >= str_section->size)
19868 error (_("Offset from %s pointing outside of"
19869 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19870 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19871 return (const char *) (str_section->buffer + str_offset);
19872 }
19873
19874 /* Return the length of an LEB128 number in BUF. */
19875
19876 static int
19877 leb128_size (const gdb_byte *buf)
19878 {
19879 const gdb_byte *begin = buf;
19880 gdb_byte byte;
19881
19882 while (1)
19883 {
19884 byte = *buf++;
19885 if ((byte & 128) == 0)
19886 return buf - begin;
19887 }
19888 }
19889
19890 static void
19891 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19892 {
19893 switch (lang)
19894 {
19895 case DW_LANG_C89:
19896 case DW_LANG_C99:
19897 case DW_LANG_C11:
19898 case DW_LANG_C:
19899 case DW_LANG_UPC:
19900 cu->language = language_c;
19901 break;
19902 case DW_LANG_Java:
19903 case DW_LANG_C_plus_plus:
19904 case DW_LANG_C_plus_plus_11:
19905 case DW_LANG_C_plus_plus_14:
19906 cu->language = language_cplus;
19907 break;
19908 case DW_LANG_D:
19909 cu->language = language_d;
19910 break;
19911 case DW_LANG_Fortran77:
19912 case DW_LANG_Fortran90:
19913 case DW_LANG_Fortran95:
19914 case DW_LANG_Fortran03:
19915 case DW_LANG_Fortran08:
19916 cu->language = language_fortran;
19917 break;
19918 case DW_LANG_Go:
19919 cu->language = language_go;
19920 break;
19921 case DW_LANG_Mips_Assembler:
19922 cu->language = language_asm;
19923 break;
19924 case DW_LANG_Ada83:
19925 case DW_LANG_Ada95:
19926 cu->language = language_ada;
19927 break;
19928 case DW_LANG_Modula2:
19929 cu->language = language_m2;
19930 break;
19931 case DW_LANG_Pascal83:
19932 cu->language = language_pascal;
19933 break;
19934 case DW_LANG_ObjC:
19935 cu->language = language_objc;
19936 break;
19937 case DW_LANG_Rust:
19938 case DW_LANG_Rust_old:
19939 cu->language = language_rust;
19940 break;
19941 case DW_LANG_Cobol74:
19942 case DW_LANG_Cobol85:
19943 default:
19944 cu->language = language_minimal;
19945 break;
19946 }
19947 cu->language_defn = language_def (cu->language);
19948 }
19949
19950 /* Return the named attribute or NULL if not there. */
19951
19952 static struct attribute *
19953 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19954 {
19955 for (;;)
19956 {
19957 unsigned int i;
19958 struct attribute *spec = NULL;
19959
19960 for (i = 0; i < die->num_attrs; ++i)
19961 {
19962 if (die->attrs[i].name == name)
19963 return &die->attrs[i];
19964 if (die->attrs[i].name == DW_AT_specification
19965 || die->attrs[i].name == DW_AT_abstract_origin)
19966 spec = &die->attrs[i];
19967 }
19968
19969 if (!spec)
19970 break;
19971
19972 die = follow_die_ref (die, spec, &cu);
19973 }
19974
19975 return NULL;
19976 }
19977
19978 /* Return the named attribute or NULL if not there,
19979 but do not follow DW_AT_specification, etc.
19980 This is for use in contexts where we're reading .debug_types dies.
19981 Following DW_AT_specification, DW_AT_abstract_origin will take us
19982 back up the chain, and we want to go down. */
19983
19984 static struct attribute *
19985 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
19986 {
19987 unsigned int i;
19988
19989 for (i = 0; i < die->num_attrs; ++i)
19990 if (die->attrs[i].name == name)
19991 return &die->attrs[i];
19992
19993 return NULL;
19994 }
19995
19996 /* Return the string associated with a string-typed attribute, or NULL if it
19997 is either not found or is of an incorrect type. */
19998
19999 static const char *
20000 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20001 {
20002 struct attribute *attr;
20003 const char *str = NULL;
20004
20005 attr = dwarf2_attr (die, name, cu);
20006
20007 if (attr != NULL)
20008 {
20009 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20010 || attr->form == DW_FORM_string
20011 || attr->form == DW_FORM_GNU_str_index
20012 || attr->form == DW_FORM_GNU_strp_alt)
20013 str = DW_STRING (attr);
20014 else
20015 complaint (_("string type expected for attribute %s for "
20016 "DIE at %s in module %s"),
20017 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20018 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20019 }
20020
20021 return str;
20022 }
20023
20024 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20025 and holds a non-zero value. This function should only be used for
20026 DW_FORM_flag or DW_FORM_flag_present attributes. */
20027
20028 static int
20029 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20030 {
20031 struct attribute *attr = dwarf2_attr (die, name, cu);
20032
20033 return (attr && DW_UNSND (attr));
20034 }
20035
20036 static int
20037 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20038 {
20039 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20040 which value is non-zero. However, we have to be careful with
20041 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20042 (via dwarf2_flag_true_p) follows this attribute. So we may
20043 end up accidently finding a declaration attribute that belongs
20044 to a different DIE referenced by the specification attribute,
20045 even though the given DIE does not have a declaration attribute. */
20046 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20047 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20048 }
20049
20050 /* Return the die giving the specification for DIE, if there is
20051 one. *SPEC_CU is the CU containing DIE on input, and the CU
20052 containing the return value on output. If there is no
20053 specification, but there is an abstract origin, that is
20054 returned. */
20055
20056 static struct die_info *
20057 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20058 {
20059 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20060 *spec_cu);
20061
20062 if (spec_attr == NULL)
20063 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20064
20065 if (spec_attr == NULL)
20066 return NULL;
20067 else
20068 return follow_die_ref (die, spec_attr, spec_cu);
20069 }
20070
20071 /* Stub for free_line_header to match void * callback types. */
20072
20073 static void
20074 free_line_header_voidp (void *arg)
20075 {
20076 struct line_header *lh = (struct line_header *) arg;
20077
20078 delete lh;
20079 }
20080
20081 void
20082 line_header::add_include_dir (const char *include_dir)
20083 {
20084 if (dwarf_line_debug >= 2)
20085 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20086 include_dirs.size () + 1, include_dir);
20087
20088 include_dirs.push_back (include_dir);
20089 }
20090
20091 void
20092 line_header::add_file_name (const char *name,
20093 dir_index d_index,
20094 unsigned int mod_time,
20095 unsigned int length)
20096 {
20097 if (dwarf_line_debug >= 2)
20098 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
20099 (unsigned) file_names.size () + 1, name);
20100
20101 file_names.emplace_back (name, d_index, mod_time, length);
20102 }
20103
20104 /* A convenience function to find the proper .debug_line section for a CU. */
20105
20106 static struct dwarf2_section_info *
20107 get_debug_line_section (struct dwarf2_cu *cu)
20108 {
20109 struct dwarf2_section_info *section;
20110 struct dwarf2_per_objfile *dwarf2_per_objfile
20111 = cu->per_cu->dwarf2_per_objfile;
20112
20113 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20114 DWO file. */
20115 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20116 section = &cu->dwo_unit->dwo_file->sections.line;
20117 else if (cu->per_cu->is_dwz)
20118 {
20119 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20120
20121 section = &dwz->line;
20122 }
20123 else
20124 section = &dwarf2_per_objfile->line;
20125
20126 return section;
20127 }
20128
20129 /* Read directory or file name entry format, starting with byte of
20130 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20131 entries count and the entries themselves in the described entry
20132 format. */
20133
20134 static void
20135 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20136 bfd *abfd, const gdb_byte **bufp,
20137 struct line_header *lh,
20138 const struct comp_unit_head *cu_header,
20139 void (*callback) (struct line_header *lh,
20140 const char *name,
20141 dir_index d_index,
20142 unsigned int mod_time,
20143 unsigned int length))
20144 {
20145 gdb_byte format_count, formati;
20146 ULONGEST data_count, datai;
20147 const gdb_byte *buf = *bufp;
20148 const gdb_byte *format_header_data;
20149 unsigned int bytes_read;
20150
20151 format_count = read_1_byte (abfd, buf);
20152 buf += 1;
20153 format_header_data = buf;
20154 for (formati = 0; formati < format_count; formati++)
20155 {
20156 read_unsigned_leb128 (abfd, buf, &bytes_read);
20157 buf += bytes_read;
20158 read_unsigned_leb128 (abfd, buf, &bytes_read);
20159 buf += bytes_read;
20160 }
20161
20162 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20163 buf += bytes_read;
20164 for (datai = 0; datai < data_count; datai++)
20165 {
20166 const gdb_byte *format = format_header_data;
20167 struct file_entry fe;
20168
20169 for (formati = 0; formati < format_count; formati++)
20170 {
20171 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20172 format += bytes_read;
20173
20174 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20175 format += bytes_read;
20176
20177 gdb::optional<const char *> string;
20178 gdb::optional<unsigned int> uint;
20179
20180 switch (form)
20181 {
20182 case DW_FORM_string:
20183 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20184 buf += bytes_read;
20185 break;
20186
20187 case DW_FORM_line_strp:
20188 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20189 abfd, buf,
20190 cu_header,
20191 &bytes_read));
20192 buf += bytes_read;
20193 break;
20194
20195 case DW_FORM_data1:
20196 uint.emplace (read_1_byte (abfd, buf));
20197 buf += 1;
20198 break;
20199
20200 case DW_FORM_data2:
20201 uint.emplace (read_2_bytes (abfd, buf));
20202 buf += 2;
20203 break;
20204
20205 case DW_FORM_data4:
20206 uint.emplace (read_4_bytes (abfd, buf));
20207 buf += 4;
20208 break;
20209
20210 case DW_FORM_data8:
20211 uint.emplace (read_8_bytes (abfd, buf));
20212 buf += 8;
20213 break;
20214
20215 case DW_FORM_udata:
20216 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20217 buf += bytes_read;
20218 break;
20219
20220 case DW_FORM_block:
20221 /* It is valid only for DW_LNCT_timestamp which is ignored by
20222 current GDB. */
20223 break;
20224 }
20225
20226 switch (content_type)
20227 {
20228 case DW_LNCT_path:
20229 if (string.has_value ())
20230 fe.name = *string;
20231 break;
20232 case DW_LNCT_directory_index:
20233 if (uint.has_value ())
20234 fe.d_index = (dir_index) *uint;
20235 break;
20236 case DW_LNCT_timestamp:
20237 if (uint.has_value ())
20238 fe.mod_time = *uint;
20239 break;
20240 case DW_LNCT_size:
20241 if (uint.has_value ())
20242 fe.length = *uint;
20243 break;
20244 case DW_LNCT_MD5:
20245 break;
20246 default:
20247 complaint (_("Unknown format content type %s"),
20248 pulongest (content_type));
20249 }
20250 }
20251
20252 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20253 }
20254
20255 *bufp = buf;
20256 }
20257
20258 /* Read the statement program header starting at OFFSET in
20259 .debug_line, or .debug_line.dwo. Return a pointer
20260 to a struct line_header, allocated using xmalloc.
20261 Returns NULL if there is a problem reading the header, e.g., if it
20262 has a version we don't understand.
20263
20264 NOTE: the strings in the include directory and file name tables of
20265 the returned object point into the dwarf line section buffer,
20266 and must not be freed. */
20267
20268 static line_header_up
20269 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20270 {
20271 const gdb_byte *line_ptr;
20272 unsigned int bytes_read, offset_size;
20273 int i;
20274 const char *cur_dir, *cur_file;
20275 struct dwarf2_section_info *section;
20276 bfd *abfd;
20277 struct dwarf2_per_objfile *dwarf2_per_objfile
20278 = cu->per_cu->dwarf2_per_objfile;
20279
20280 section = get_debug_line_section (cu);
20281 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20282 if (section->buffer == NULL)
20283 {
20284 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20285 complaint (_("missing .debug_line.dwo section"));
20286 else
20287 complaint (_("missing .debug_line section"));
20288 return 0;
20289 }
20290
20291 /* We can't do this until we know the section is non-empty.
20292 Only then do we know we have such a section. */
20293 abfd = get_section_bfd_owner (section);
20294
20295 /* Make sure that at least there's room for the total_length field.
20296 That could be 12 bytes long, but we're just going to fudge that. */
20297 if (to_underlying (sect_off) + 4 >= section->size)
20298 {
20299 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20300 return 0;
20301 }
20302
20303 line_header_up lh (new line_header ());
20304
20305 lh->sect_off = sect_off;
20306 lh->offset_in_dwz = cu->per_cu->is_dwz;
20307
20308 line_ptr = section->buffer + to_underlying (sect_off);
20309
20310 /* Read in the header. */
20311 lh->total_length =
20312 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20313 &bytes_read, &offset_size);
20314 line_ptr += bytes_read;
20315 if (line_ptr + lh->total_length > (section->buffer + section->size))
20316 {
20317 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20318 return 0;
20319 }
20320 lh->statement_program_end = line_ptr + lh->total_length;
20321 lh->version = read_2_bytes (abfd, line_ptr);
20322 line_ptr += 2;
20323 if (lh->version > 5)
20324 {
20325 /* This is a version we don't understand. The format could have
20326 changed in ways we don't handle properly so just punt. */
20327 complaint (_("unsupported version in .debug_line section"));
20328 return NULL;
20329 }
20330 if (lh->version >= 5)
20331 {
20332 gdb_byte segment_selector_size;
20333
20334 /* Skip address size. */
20335 read_1_byte (abfd, line_ptr);
20336 line_ptr += 1;
20337
20338 segment_selector_size = read_1_byte (abfd, line_ptr);
20339 line_ptr += 1;
20340 if (segment_selector_size != 0)
20341 {
20342 complaint (_("unsupported segment selector size %u "
20343 "in .debug_line section"),
20344 segment_selector_size);
20345 return NULL;
20346 }
20347 }
20348 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20349 line_ptr += offset_size;
20350 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20351 line_ptr += 1;
20352 if (lh->version >= 4)
20353 {
20354 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20355 line_ptr += 1;
20356 }
20357 else
20358 lh->maximum_ops_per_instruction = 1;
20359
20360 if (lh->maximum_ops_per_instruction == 0)
20361 {
20362 lh->maximum_ops_per_instruction = 1;
20363 complaint (_("invalid maximum_ops_per_instruction "
20364 "in `.debug_line' section"));
20365 }
20366
20367 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20368 line_ptr += 1;
20369 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20370 line_ptr += 1;
20371 lh->line_range = read_1_byte (abfd, line_ptr);
20372 line_ptr += 1;
20373 lh->opcode_base = read_1_byte (abfd, line_ptr);
20374 line_ptr += 1;
20375 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20376
20377 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20378 for (i = 1; i < lh->opcode_base; ++i)
20379 {
20380 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20381 line_ptr += 1;
20382 }
20383
20384 if (lh->version >= 5)
20385 {
20386 /* Read directory table. */
20387 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20388 &cu->header,
20389 [] (struct line_header *header, const char *name,
20390 dir_index d_index, unsigned int mod_time,
20391 unsigned int length)
20392 {
20393 header->add_include_dir (name);
20394 });
20395
20396 /* Read file name table. */
20397 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20398 &cu->header,
20399 [] (struct line_header *header, const char *name,
20400 dir_index d_index, unsigned int mod_time,
20401 unsigned int length)
20402 {
20403 header->add_file_name (name, d_index, mod_time, length);
20404 });
20405 }
20406 else
20407 {
20408 /* Read directory table. */
20409 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20410 {
20411 line_ptr += bytes_read;
20412 lh->add_include_dir (cur_dir);
20413 }
20414 line_ptr += bytes_read;
20415
20416 /* Read file name table. */
20417 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20418 {
20419 unsigned int mod_time, length;
20420 dir_index d_index;
20421
20422 line_ptr += bytes_read;
20423 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20424 line_ptr += bytes_read;
20425 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20426 line_ptr += bytes_read;
20427 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20428 line_ptr += bytes_read;
20429
20430 lh->add_file_name (cur_file, d_index, mod_time, length);
20431 }
20432 line_ptr += bytes_read;
20433 }
20434 lh->statement_program_start = line_ptr;
20435
20436 if (line_ptr > (section->buffer + section->size))
20437 complaint (_("line number info header doesn't "
20438 "fit in `.debug_line' section"));
20439
20440 return lh;
20441 }
20442
20443 /* Subroutine of dwarf_decode_lines to simplify it.
20444 Return the file name of the psymtab for included file FILE_INDEX
20445 in line header LH of PST.
20446 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20447 If space for the result is malloc'd, *NAME_HOLDER will be set.
20448 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20449
20450 static const char *
20451 psymtab_include_file_name (const struct line_header *lh, int file_index,
20452 const struct partial_symtab *pst,
20453 const char *comp_dir,
20454 gdb::unique_xmalloc_ptr<char> *name_holder)
20455 {
20456 const file_entry &fe = lh->file_names[file_index];
20457 const char *include_name = fe.name;
20458 const char *include_name_to_compare = include_name;
20459 const char *pst_filename;
20460 int file_is_pst;
20461
20462 const char *dir_name = fe.include_dir (lh);
20463
20464 gdb::unique_xmalloc_ptr<char> hold_compare;
20465 if (!IS_ABSOLUTE_PATH (include_name)
20466 && (dir_name != NULL || comp_dir != NULL))
20467 {
20468 /* Avoid creating a duplicate psymtab for PST.
20469 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20470 Before we do the comparison, however, we need to account
20471 for DIR_NAME and COMP_DIR.
20472 First prepend dir_name (if non-NULL). If we still don't
20473 have an absolute path prepend comp_dir (if non-NULL).
20474 However, the directory we record in the include-file's
20475 psymtab does not contain COMP_DIR (to match the
20476 corresponding symtab(s)).
20477
20478 Example:
20479
20480 bash$ cd /tmp
20481 bash$ gcc -g ./hello.c
20482 include_name = "hello.c"
20483 dir_name = "."
20484 DW_AT_comp_dir = comp_dir = "/tmp"
20485 DW_AT_name = "./hello.c"
20486
20487 */
20488
20489 if (dir_name != NULL)
20490 {
20491 name_holder->reset (concat (dir_name, SLASH_STRING,
20492 include_name, (char *) NULL));
20493 include_name = name_holder->get ();
20494 include_name_to_compare = include_name;
20495 }
20496 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20497 {
20498 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20499 include_name, (char *) NULL));
20500 include_name_to_compare = hold_compare.get ();
20501 }
20502 }
20503
20504 pst_filename = pst->filename;
20505 gdb::unique_xmalloc_ptr<char> copied_name;
20506 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20507 {
20508 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20509 pst_filename, (char *) NULL));
20510 pst_filename = copied_name.get ();
20511 }
20512
20513 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20514
20515 if (file_is_pst)
20516 return NULL;
20517 return include_name;
20518 }
20519
20520 /* State machine to track the state of the line number program. */
20521
20522 class lnp_state_machine
20523 {
20524 public:
20525 /* Initialize a machine state for the start of a line number
20526 program. */
20527 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20528 bool record_lines_p);
20529
20530 file_entry *current_file ()
20531 {
20532 /* lh->file_names is 0-based, but the file name numbers in the
20533 statement program are 1-based. */
20534 return m_line_header->file_name_at (m_file);
20535 }
20536
20537 /* Record the line in the state machine. END_SEQUENCE is true if
20538 we're processing the end of a sequence. */
20539 void record_line (bool end_sequence);
20540
20541 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20542 nop-out rest of the lines in this sequence. */
20543 void check_line_address (struct dwarf2_cu *cu,
20544 const gdb_byte *line_ptr,
20545 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20546
20547 void handle_set_discriminator (unsigned int discriminator)
20548 {
20549 m_discriminator = discriminator;
20550 m_line_has_non_zero_discriminator |= discriminator != 0;
20551 }
20552
20553 /* Handle DW_LNE_set_address. */
20554 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20555 {
20556 m_op_index = 0;
20557 address += baseaddr;
20558 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20559 }
20560
20561 /* Handle DW_LNS_advance_pc. */
20562 void handle_advance_pc (CORE_ADDR adjust);
20563
20564 /* Handle a special opcode. */
20565 void handle_special_opcode (unsigned char op_code);
20566
20567 /* Handle DW_LNS_advance_line. */
20568 void handle_advance_line (int line_delta)
20569 {
20570 advance_line (line_delta);
20571 }
20572
20573 /* Handle DW_LNS_set_file. */
20574 void handle_set_file (file_name_index file);
20575
20576 /* Handle DW_LNS_negate_stmt. */
20577 void handle_negate_stmt ()
20578 {
20579 m_is_stmt = !m_is_stmt;
20580 }
20581
20582 /* Handle DW_LNS_const_add_pc. */
20583 void handle_const_add_pc ();
20584
20585 /* Handle DW_LNS_fixed_advance_pc. */
20586 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20587 {
20588 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20589 m_op_index = 0;
20590 }
20591
20592 /* Handle DW_LNS_copy. */
20593 void handle_copy ()
20594 {
20595 record_line (false);
20596 m_discriminator = 0;
20597 }
20598
20599 /* Handle DW_LNE_end_sequence. */
20600 void handle_end_sequence ()
20601 {
20602 m_currently_recording_lines = true;
20603 }
20604
20605 private:
20606 /* Advance the line by LINE_DELTA. */
20607 void advance_line (int line_delta)
20608 {
20609 m_line += line_delta;
20610
20611 if (line_delta != 0)
20612 m_line_has_non_zero_discriminator = m_discriminator != 0;
20613 }
20614
20615 struct dwarf2_cu *m_cu;
20616
20617 gdbarch *m_gdbarch;
20618
20619 /* True if we're recording lines.
20620 Otherwise we're building partial symtabs and are just interested in
20621 finding include files mentioned by the line number program. */
20622 bool m_record_lines_p;
20623
20624 /* The line number header. */
20625 line_header *m_line_header;
20626
20627 /* These are part of the standard DWARF line number state machine,
20628 and initialized according to the DWARF spec. */
20629
20630 unsigned char m_op_index = 0;
20631 /* The line table index (1-based) of the current file. */
20632 file_name_index m_file = (file_name_index) 1;
20633 unsigned int m_line = 1;
20634
20635 /* These are initialized in the constructor. */
20636
20637 CORE_ADDR m_address;
20638 bool m_is_stmt;
20639 unsigned int m_discriminator;
20640
20641 /* Additional bits of state we need to track. */
20642
20643 /* The last file that we called dwarf2_start_subfile for.
20644 This is only used for TLLs. */
20645 unsigned int m_last_file = 0;
20646 /* The last file a line number was recorded for. */
20647 struct subfile *m_last_subfile = NULL;
20648
20649 /* When true, record the lines we decode. */
20650 bool m_currently_recording_lines = false;
20651
20652 /* The last line number that was recorded, used to coalesce
20653 consecutive entries for the same line. This can happen, for
20654 example, when discriminators are present. PR 17276. */
20655 unsigned int m_last_line = 0;
20656 bool m_line_has_non_zero_discriminator = false;
20657 };
20658
20659 void
20660 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
20661 {
20662 CORE_ADDR addr_adj = (((m_op_index + adjust)
20663 / m_line_header->maximum_ops_per_instruction)
20664 * m_line_header->minimum_instruction_length);
20665 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20666 m_op_index = ((m_op_index + adjust)
20667 % m_line_header->maximum_ops_per_instruction);
20668 }
20669
20670 void
20671 lnp_state_machine::handle_special_opcode (unsigned char op_code)
20672 {
20673 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
20674 CORE_ADDR addr_adj = (((m_op_index
20675 + (adj_opcode / m_line_header->line_range))
20676 / m_line_header->maximum_ops_per_instruction)
20677 * m_line_header->minimum_instruction_length);
20678 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20679 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
20680 % m_line_header->maximum_ops_per_instruction);
20681
20682 int line_delta = (m_line_header->line_base
20683 + (adj_opcode % m_line_header->line_range));
20684 advance_line (line_delta);
20685 record_line (false);
20686 m_discriminator = 0;
20687 }
20688
20689 void
20690 lnp_state_machine::handle_set_file (file_name_index file)
20691 {
20692 m_file = file;
20693
20694 const file_entry *fe = current_file ();
20695 if (fe == NULL)
20696 dwarf2_debug_line_missing_file_complaint ();
20697 else if (m_record_lines_p)
20698 {
20699 const char *dir = fe->include_dir (m_line_header);
20700
20701 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20702 m_line_has_non_zero_discriminator = m_discriminator != 0;
20703 dwarf2_start_subfile (m_cu, fe->name, dir);
20704 }
20705 }
20706
20707 void
20708 lnp_state_machine::handle_const_add_pc ()
20709 {
20710 CORE_ADDR adjust
20711 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
20712
20713 CORE_ADDR addr_adj
20714 = (((m_op_index + adjust)
20715 / m_line_header->maximum_ops_per_instruction)
20716 * m_line_header->minimum_instruction_length);
20717
20718 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20719 m_op_index = ((m_op_index + adjust)
20720 % m_line_header->maximum_ops_per_instruction);
20721 }
20722
20723 /* Return non-zero if we should add LINE to the line number table.
20724 LINE is the line to add, LAST_LINE is the last line that was added,
20725 LAST_SUBFILE is the subfile for LAST_LINE.
20726 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
20727 had a non-zero discriminator.
20728
20729 We have to be careful in the presence of discriminators.
20730 E.g., for this line:
20731
20732 for (i = 0; i < 100000; i++);
20733
20734 clang can emit four line number entries for that one line,
20735 each with a different discriminator.
20736 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
20737
20738 However, we want gdb to coalesce all four entries into one.
20739 Otherwise the user could stepi into the middle of the line and
20740 gdb would get confused about whether the pc really was in the
20741 middle of the line.
20742
20743 Things are further complicated by the fact that two consecutive
20744 line number entries for the same line is a heuristic used by gcc
20745 to denote the end of the prologue. So we can't just discard duplicate
20746 entries, we have to be selective about it. The heuristic we use is
20747 that we only collapse consecutive entries for the same line if at least
20748 one of those entries has a non-zero discriminator. PR 17276.
20749
20750 Note: Addresses in the line number state machine can never go backwards
20751 within one sequence, thus this coalescing is ok. */
20752
20753 static int
20754 dwarf_record_line_p (struct dwarf2_cu *cu,
20755 unsigned int line, unsigned int last_line,
20756 int line_has_non_zero_discriminator,
20757 struct subfile *last_subfile)
20758 {
20759 if (cu->get_builder ()->get_current_subfile () != last_subfile)
20760 return 1;
20761 if (line != last_line)
20762 return 1;
20763 /* Same line for the same file that we've seen already.
20764 As a last check, for pr 17276, only record the line if the line
20765 has never had a non-zero discriminator. */
20766 if (!line_has_non_zero_discriminator)
20767 return 1;
20768 return 0;
20769 }
20770
20771 /* Use the CU's builder to record line number LINE beginning at
20772 address ADDRESS in the line table of subfile SUBFILE. */
20773
20774 static void
20775 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20776 unsigned int line, CORE_ADDR address,
20777 struct dwarf2_cu *cu)
20778 {
20779 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20780
20781 if (dwarf_line_debug)
20782 {
20783 fprintf_unfiltered (gdb_stdlog,
20784 "Recording line %u, file %s, address %s\n",
20785 line, lbasename (subfile->name),
20786 paddress (gdbarch, address));
20787 }
20788
20789 if (cu != nullptr)
20790 cu->get_builder ()->record_line (subfile, line, addr);
20791 }
20792
20793 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20794 Mark the end of a set of line number records.
20795 The arguments are the same as for dwarf_record_line_1.
20796 If SUBFILE is NULL the request is ignored. */
20797
20798 static void
20799 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20800 CORE_ADDR address, struct dwarf2_cu *cu)
20801 {
20802 if (subfile == NULL)
20803 return;
20804
20805 if (dwarf_line_debug)
20806 {
20807 fprintf_unfiltered (gdb_stdlog,
20808 "Finishing current line, file %s, address %s\n",
20809 lbasename (subfile->name),
20810 paddress (gdbarch, address));
20811 }
20812
20813 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
20814 }
20815
20816 void
20817 lnp_state_machine::record_line (bool end_sequence)
20818 {
20819 if (dwarf_line_debug)
20820 {
20821 fprintf_unfiltered (gdb_stdlog,
20822 "Processing actual line %u: file %u,"
20823 " address %s, is_stmt %u, discrim %u\n",
20824 m_line, to_underlying (m_file),
20825 paddress (m_gdbarch, m_address),
20826 m_is_stmt, m_discriminator);
20827 }
20828
20829 file_entry *fe = current_file ();
20830
20831 if (fe == NULL)
20832 dwarf2_debug_line_missing_file_complaint ();
20833 /* For now we ignore lines not starting on an instruction boundary.
20834 But not when processing end_sequence for compatibility with the
20835 previous version of the code. */
20836 else if (m_op_index == 0 || end_sequence)
20837 {
20838 fe->included_p = 1;
20839 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
20840 {
20841 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20842 || end_sequence)
20843 {
20844 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20845 m_currently_recording_lines ? m_cu : nullptr);
20846 }
20847
20848 if (!end_sequence)
20849 {
20850 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20851 m_line_has_non_zero_discriminator,
20852 m_last_subfile))
20853 {
20854 buildsym_compunit *builder = m_cu->get_builder ();
20855 dwarf_record_line_1 (m_gdbarch,
20856 builder->get_current_subfile (),
20857 m_line, m_address,
20858 m_currently_recording_lines ? m_cu : nullptr);
20859 }
20860 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20861 m_last_line = m_line;
20862 }
20863 }
20864 }
20865 }
20866
20867 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20868 line_header *lh, bool record_lines_p)
20869 {
20870 m_cu = cu;
20871 m_gdbarch = arch;
20872 m_record_lines_p = record_lines_p;
20873 m_line_header = lh;
20874
20875 m_currently_recording_lines = true;
20876
20877 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20878 was a line entry for it so that the backend has a chance to adjust it
20879 and also record it in case it needs it. This is currently used by MIPS
20880 code, cf. `mips_adjust_dwarf2_line'. */
20881 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20882 m_is_stmt = lh->default_is_stmt;
20883 m_discriminator = 0;
20884 }
20885
20886 void
20887 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20888 const gdb_byte *line_ptr,
20889 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20890 {
20891 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20892 the pc range of the CU. However, we restrict the test to only ADDRESS
20893 values of zero to preserve GDB's previous behaviour which is to handle
20894 the specific case of a function being GC'd by the linker. */
20895
20896 if (address == 0 && address < unrelocated_lowpc)
20897 {
20898 /* This line table is for a function which has been
20899 GCd by the linker. Ignore it. PR gdb/12528 */
20900
20901 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20902 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20903
20904 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20905 line_offset, objfile_name (objfile));
20906 m_currently_recording_lines = false;
20907 /* Note: m_currently_recording_lines is left as false until we see
20908 DW_LNE_end_sequence. */
20909 }
20910 }
20911
20912 /* Subroutine of dwarf_decode_lines to simplify it.
20913 Process the line number information in LH.
20914 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20915 program in order to set included_p for every referenced header. */
20916
20917 static void
20918 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20919 const int decode_for_pst_p, CORE_ADDR lowpc)
20920 {
20921 const gdb_byte *line_ptr, *extended_end;
20922 const gdb_byte *line_end;
20923 unsigned int bytes_read, extended_len;
20924 unsigned char op_code, extended_op;
20925 CORE_ADDR baseaddr;
20926 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20927 bfd *abfd = objfile->obfd;
20928 struct gdbarch *gdbarch = get_objfile_arch (objfile);
20929 /* True if we're recording line info (as opposed to building partial
20930 symtabs and just interested in finding include files mentioned by
20931 the line number program). */
20932 bool record_lines_p = !decode_for_pst_p;
20933
20934 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
20935
20936 line_ptr = lh->statement_program_start;
20937 line_end = lh->statement_program_end;
20938
20939 /* Read the statement sequences until there's nothing left. */
20940 while (line_ptr < line_end)
20941 {
20942 /* The DWARF line number program state machine. Reset the state
20943 machine at the start of each sequence. */
20944 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20945 bool end_sequence = false;
20946
20947 if (record_lines_p)
20948 {
20949 /* Start a subfile for the current file of the state
20950 machine. */
20951 const file_entry *fe = state_machine.current_file ();
20952
20953 if (fe != NULL)
20954 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20955 }
20956
20957 /* Decode the table. */
20958 while (line_ptr < line_end && !end_sequence)
20959 {
20960 op_code = read_1_byte (abfd, line_ptr);
20961 line_ptr += 1;
20962
20963 if (op_code >= lh->opcode_base)
20964 {
20965 /* Special opcode. */
20966 state_machine.handle_special_opcode (op_code);
20967 }
20968 else switch (op_code)
20969 {
20970 case DW_LNS_extended_op:
20971 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20972 &bytes_read);
20973 line_ptr += bytes_read;
20974 extended_end = line_ptr + extended_len;
20975 extended_op = read_1_byte (abfd, line_ptr);
20976 line_ptr += 1;
20977 switch (extended_op)
20978 {
20979 case DW_LNE_end_sequence:
20980 state_machine.handle_end_sequence ();
20981 end_sequence = true;
20982 break;
20983 case DW_LNE_set_address:
20984 {
20985 CORE_ADDR address
20986 = read_address (abfd, line_ptr, cu, &bytes_read);
20987 line_ptr += bytes_read;
20988
20989 state_machine.check_line_address (cu, line_ptr,
20990 lowpc - baseaddr, address);
20991 state_machine.handle_set_address (baseaddr, address);
20992 }
20993 break;
20994 case DW_LNE_define_file:
20995 {
20996 const char *cur_file;
20997 unsigned int mod_time, length;
20998 dir_index dindex;
20999
21000 cur_file = read_direct_string (abfd, line_ptr,
21001 &bytes_read);
21002 line_ptr += bytes_read;
21003 dindex = (dir_index)
21004 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21005 line_ptr += bytes_read;
21006 mod_time =
21007 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21008 line_ptr += bytes_read;
21009 length =
21010 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21011 line_ptr += bytes_read;
21012 lh->add_file_name (cur_file, dindex, mod_time, length);
21013 }
21014 break;
21015 case DW_LNE_set_discriminator:
21016 {
21017 /* The discriminator is not interesting to the
21018 debugger; just ignore it. We still need to
21019 check its value though:
21020 if there are consecutive entries for the same
21021 (non-prologue) line we want to coalesce them.
21022 PR 17276. */
21023 unsigned int discr
21024 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21025 line_ptr += bytes_read;
21026
21027 state_machine.handle_set_discriminator (discr);
21028 }
21029 break;
21030 default:
21031 complaint (_("mangled .debug_line section"));
21032 return;
21033 }
21034 /* Make sure that we parsed the extended op correctly. If e.g.
21035 we expected a different address size than the producer used,
21036 we may have read the wrong number of bytes. */
21037 if (line_ptr != extended_end)
21038 {
21039 complaint (_("mangled .debug_line section"));
21040 return;
21041 }
21042 break;
21043 case DW_LNS_copy:
21044 state_machine.handle_copy ();
21045 break;
21046 case DW_LNS_advance_pc:
21047 {
21048 CORE_ADDR adjust
21049 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21050 line_ptr += bytes_read;
21051
21052 state_machine.handle_advance_pc (adjust);
21053 }
21054 break;
21055 case DW_LNS_advance_line:
21056 {
21057 int line_delta
21058 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21059 line_ptr += bytes_read;
21060
21061 state_machine.handle_advance_line (line_delta);
21062 }
21063 break;
21064 case DW_LNS_set_file:
21065 {
21066 file_name_index file
21067 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21068 &bytes_read);
21069 line_ptr += bytes_read;
21070
21071 state_machine.handle_set_file (file);
21072 }
21073 break;
21074 case DW_LNS_set_column:
21075 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21076 line_ptr += bytes_read;
21077 break;
21078 case DW_LNS_negate_stmt:
21079 state_machine.handle_negate_stmt ();
21080 break;
21081 case DW_LNS_set_basic_block:
21082 break;
21083 /* Add to the address register of the state machine the
21084 address increment value corresponding to special opcode
21085 255. I.e., this value is scaled by the minimum
21086 instruction length since special opcode 255 would have
21087 scaled the increment. */
21088 case DW_LNS_const_add_pc:
21089 state_machine.handle_const_add_pc ();
21090 break;
21091 case DW_LNS_fixed_advance_pc:
21092 {
21093 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21094 line_ptr += 2;
21095
21096 state_machine.handle_fixed_advance_pc (addr_adj);
21097 }
21098 break;
21099 default:
21100 {
21101 /* Unknown standard opcode, ignore it. */
21102 int i;
21103
21104 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21105 {
21106 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21107 line_ptr += bytes_read;
21108 }
21109 }
21110 }
21111 }
21112
21113 if (!end_sequence)
21114 dwarf2_debug_line_missing_end_sequence_complaint ();
21115
21116 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21117 in which case we still finish recording the last line). */
21118 state_machine.record_line (true);
21119 }
21120 }
21121
21122 /* Decode the Line Number Program (LNP) for the given line_header
21123 structure and CU. The actual information extracted and the type
21124 of structures created from the LNP depends on the value of PST.
21125
21126 1. If PST is NULL, then this procedure uses the data from the program
21127 to create all necessary symbol tables, and their linetables.
21128
21129 2. If PST is not NULL, this procedure reads the program to determine
21130 the list of files included by the unit represented by PST, and
21131 builds all the associated partial symbol tables.
21132
21133 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21134 It is used for relative paths in the line table.
21135 NOTE: When processing partial symtabs (pst != NULL),
21136 comp_dir == pst->dirname.
21137
21138 NOTE: It is important that psymtabs have the same file name (via strcmp)
21139 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21140 symtab we don't use it in the name of the psymtabs we create.
21141 E.g. expand_line_sal requires this when finding psymtabs to expand.
21142 A good testcase for this is mb-inline.exp.
21143
21144 LOWPC is the lowest address in CU (or 0 if not known).
21145
21146 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21147 for its PC<->lines mapping information. Otherwise only the filename
21148 table is read in. */
21149
21150 static void
21151 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21152 struct dwarf2_cu *cu, struct partial_symtab *pst,
21153 CORE_ADDR lowpc, int decode_mapping)
21154 {
21155 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21156 const int decode_for_pst_p = (pst != NULL);
21157
21158 if (decode_mapping)
21159 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21160
21161 if (decode_for_pst_p)
21162 {
21163 int file_index;
21164
21165 /* Now that we're done scanning the Line Header Program, we can
21166 create the psymtab of each included file. */
21167 for (file_index = 0; file_index < lh->file_names.size (); file_index++)
21168 if (lh->file_names[file_index].included_p == 1)
21169 {
21170 gdb::unique_xmalloc_ptr<char> name_holder;
21171 const char *include_name =
21172 psymtab_include_file_name (lh, file_index, pst, comp_dir,
21173 &name_holder);
21174 if (include_name != NULL)
21175 dwarf2_create_include_psymtab (include_name, pst, objfile);
21176 }
21177 }
21178 else
21179 {
21180 /* Make sure a symtab is created for every file, even files
21181 which contain only variables (i.e. no code with associated
21182 line numbers). */
21183 buildsym_compunit *builder = cu->get_builder ();
21184 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21185 int i;
21186
21187 for (i = 0; i < lh->file_names.size (); i++)
21188 {
21189 file_entry &fe = lh->file_names[i];
21190
21191 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21192
21193 if (builder->get_current_subfile ()->symtab == NULL)
21194 {
21195 builder->get_current_subfile ()->symtab
21196 = allocate_symtab (cust,
21197 builder->get_current_subfile ()->name);
21198 }
21199 fe.symtab = builder->get_current_subfile ()->symtab;
21200 }
21201 }
21202 }
21203
21204 /* Start a subfile for DWARF. FILENAME is the name of the file and
21205 DIRNAME the name of the source directory which contains FILENAME
21206 or NULL if not known.
21207 This routine tries to keep line numbers from identical absolute and
21208 relative file names in a common subfile.
21209
21210 Using the `list' example from the GDB testsuite, which resides in
21211 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21212 of /srcdir/list0.c yields the following debugging information for list0.c:
21213
21214 DW_AT_name: /srcdir/list0.c
21215 DW_AT_comp_dir: /compdir
21216 files.files[0].name: list0.h
21217 files.files[0].dir: /srcdir
21218 files.files[1].name: list0.c
21219 files.files[1].dir: /srcdir
21220
21221 The line number information for list0.c has to end up in a single
21222 subfile, so that `break /srcdir/list0.c:1' works as expected.
21223 start_subfile will ensure that this happens provided that we pass the
21224 concatenation of files.files[1].dir and files.files[1].name as the
21225 subfile's name. */
21226
21227 static void
21228 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21229 const char *dirname)
21230 {
21231 char *copy = NULL;
21232
21233 /* In order not to lose the line information directory,
21234 we concatenate it to the filename when it makes sense.
21235 Note that the Dwarf3 standard says (speaking of filenames in line
21236 information): ``The directory index is ignored for file names
21237 that represent full path names''. Thus ignoring dirname in the
21238 `else' branch below isn't an issue. */
21239
21240 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21241 {
21242 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21243 filename = copy;
21244 }
21245
21246 cu->get_builder ()->start_subfile (filename);
21247
21248 if (copy != NULL)
21249 xfree (copy);
21250 }
21251
21252 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21253 buildsym_compunit constructor. */
21254
21255 struct compunit_symtab *
21256 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21257 CORE_ADDR low_pc)
21258 {
21259 gdb_assert (m_builder == nullptr);
21260
21261 m_builder.reset (new struct buildsym_compunit
21262 (per_cu->dwarf2_per_objfile->objfile,
21263 name, comp_dir, language, low_pc));
21264
21265 list_in_scope = get_builder ()->get_file_symbols ();
21266
21267 get_builder ()->record_debugformat ("DWARF 2");
21268 get_builder ()->record_producer (producer);
21269
21270 processing_has_namespace_info = false;
21271
21272 return get_builder ()->get_compunit_symtab ();
21273 }
21274
21275 static void
21276 var_decode_location (struct attribute *attr, struct symbol *sym,
21277 struct dwarf2_cu *cu)
21278 {
21279 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21280 struct comp_unit_head *cu_header = &cu->header;
21281
21282 /* NOTE drow/2003-01-30: There used to be a comment and some special
21283 code here to turn a symbol with DW_AT_external and a
21284 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21285 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21286 with some versions of binutils) where shared libraries could have
21287 relocations against symbols in their debug information - the
21288 minimal symbol would have the right address, but the debug info
21289 would not. It's no longer necessary, because we will explicitly
21290 apply relocations when we read in the debug information now. */
21291
21292 /* A DW_AT_location attribute with no contents indicates that a
21293 variable has been optimized away. */
21294 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21295 {
21296 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21297 return;
21298 }
21299
21300 /* Handle one degenerate form of location expression specially, to
21301 preserve GDB's previous behavior when section offsets are
21302 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
21303 then mark this symbol as LOC_STATIC. */
21304
21305 if (attr_form_is_block (attr)
21306 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21307 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21308 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21309 && (DW_BLOCK (attr)->size
21310 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21311 {
21312 unsigned int dummy;
21313
21314 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21315 SYMBOL_VALUE_ADDRESS (sym) =
21316 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
21317 else
21318 SYMBOL_VALUE_ADDRESS (sym) =
21319 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
21320 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21321 fixup_symbol_section (sym, objfile);
21322 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
21323 SYMBOL_SECTION (sym));
21324 return;
21325 }
21326
21327 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21328 expression evaluator, and use LOC_COMPUTED only when necessary
21329 (i.e. when the value of a register or memory location is
21330 referenced, or a thread-local block, etc.). Then again, it might
21331 not be worthwhile. I'm assuming that it isn't unless performance
21332 or memory numbers show me otherwise. */
21333
21334 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21335
21336 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21337 cu->has_loclist = true;
21338 }
21339
21340 /* Given a pointer to a DWARF information entry, figure out if we need
21341 to make a symbol table entry for it, and if so, create a new entry
21342 and return a pointer to it.
21343 If TYPE is NULL, determine symbol type from the die, otherwise
21344 used the passed type.
21345 If SPACE is not NULL, use it to hold the new symbol. If it is
21346 NULL, allocate a new symbol on the objfile's obstack. */
21347
21348 static struct symbol *
21349 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21350 struct symbol *space)
21351 {
21352 struct dwarf2_per_objfile *dwarf2_per_objfile
21353 = cu->per_cu->dwarf2_per_objfile;
21354 struct objfile *objfile = dwarf2_per_objfile->objfile;
21355 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21356 struct symbol *sym = NULL;
21357 const char *name;
21358 struct attribute *attr = NULL;
21359 struct attribute *attr2 = NULL;
21360 CORE_ADDR baseaddr;
21361 struct pending **list_to_add = NULL;
21362
21363 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21364
21365 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21366
21367 name = dwarf2_name (die, cu);
21368 if (name)
21369 {
21370 const char *linkagename;
21371 int suppress_add = 0;
21372
21373 if (space)
21374 sym = space;
21375 else
21376 sym = allocate_symbol (objfile);
21377 OBJSTAT (objfile, n_syms++);
21378
21379 /* Cache this symbol's name and the name's demangled form (if any). */
21380 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
21381 linkagename = dwarf2_physname (name, die, cu);
21382 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
21383
21384 /* Fortran does not have mangling standard and the mangling does differ
21385 between gfortran, iFort etc. */
21386 if (cu->language == language_fortran
21387 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
21388 symbol_set_demangled_name (&(sym->ginfo),
21389 dwarf2_full_name (name, die, cu),
21390 NULL);
21391
21392 /* Default assumptions.
21393 Use the passed type or decode it from the die. */
21394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21395 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21396 if (type != NULL)
21397 SYMBOL_TYPE (sym) = type;
21398 else
21399 SYMBOL_TYPE (sym) = die_type (die, cu);
21400 attr = dwarf2_attr (die,
21401 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21402 cu);
21403 if (attr)
21404 {
21405 SYMBOL_LINE (sym) = DW_UNSND (attr);
21406 }
21407
21408 attr = dwarf2_attr (die,
21409 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21410 cu);
21411 if (attr)
21412 {
21413 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21414 struct file_entry *fe;
21415
21416 if (cu->line_header != NULL)
21417 fe = cu->line_header->file_name_at (file_index);
21418 else
21419 fe = NULL;
21420
21421 if (fe == NULL)
21422 complaint (_("file index out of range"));
21423 else
21424 symbol_set_symtab (sym, fe->symtab);
21425 }
21426
21427 switch (die->tag)
21428 {
21429 case DW_TAG_label:
21430 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21431 if (attr)
21432 {
21433 CORE_ADDR addr;
21434
21435 addr = attr_value_as_address (attr);
21436 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21437 SYMBOL_VALUE_ADDRESS (sym) = addr;
21438 }
21439 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21440 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21441 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21442 add_symbol_to_list (sym, cu->list_in_scope);
21443 break;
21444 case DW_TAG_subprogram:
21445 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21446 finish_block. */
21447 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21449 if ((attr2 && (DW_UNSND (attr2) != 0))
21450 || cu->language == language_ada)
21451 {
21452 /* Subprograms marked external are stored as a global symbol.
21453 Ada subprograms, whether marked external or not, are always
21454 stored as a global symbol, because we want to be able to
21455 access them globally. For instance, we want to be able
21456 to break on a nested subprogram without having to
21457 specify the context. */
21458 list_to_add = cu->get_builder ()->get_global_symbols ();
21459 }
21460 else
21461 {
21462 list_to_add = cu->list_in_scope;
21463 }
21464 break;
21465 case DW_TAG_inlined_subroutine:
21466 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21467 finish_block. */
21468 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21469 SYMBOL_INLINED (sym) = 1;
21470 list_to_add = cu->list_in_scope;
21471 break;
21472 case DW_TAG_template_value_param:
21473 suppress_add = 1;
21474 /* Fall through. */
21475 case DW_TAG_constant:
21476 case DW_TAG_variable:
21477 case DW_TAG_member:
21478 /* Compilation with minimal debug info may result in
21479 variables with missing type entries. Change the
21480 misleading `void' type to something sensible. */
21481 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21482 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21483
21484 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21485 /* In the case of DW_TAG_member, we should only be called for
21486 static const members. */
21487 if (die->tag == DW_TAG_member)
21488 {
21489 /* dwarf2_add_field uses die_is_declaration,
21490 so we do the same. */
21491 gdb_assert (die_is_declaration (die, cu));
21492 gdb_assert (attr);
21493 }
21494 if (attr)
21495 {
21496 dwarf2_const_value (attr, sym, cu);
21497 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21498 if (!suppress_add)
21499 {
21500 if (attr2 && (DW_UNSND (attr2) != 0))
21501 list_to_add = cu->get_builder ()->get_global_symbols ();
21502 else
21503 list_to_add = cu->list_in_scope;
21504 }
21505 break;
21506 }
21507 attr = dwarf2_attr (die, DW_AT_location, cu);
21508 if (attr)
21509 {
21510 var_decode_location (attr, sym, cu);
21511 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21512
21513 /* Fortran explicitly imports any global symbols to the local
21514 scope by DW_TAG_common_block. */
21515 if (cu->language == language_fortran && die->parent
21516 && die->parent->tag == DW_TAG_common_block)
21517 attr2 = NULL;
21518
21519 if (SYMBOL_CLASS (sym) == LOC_STATIC
21520 && SYMBOL_VALUE_ADDRESS (sym) == 0
21521 && !dwarf2_per_objfile->has_section_at_zero)
21522 {
21523 /* When a static variable is eliminated by the linker,
21524 the corresponding debug information is not stripped
21525 out, but the variable address is set to null;
21526 do not add such variables into symbol table. */
21527 }
21528 else if (attr2 && (DW_UNSND (attr2) != 0))
21529 {
21530 /* Workaround gfortran PR debug/40040 - it uses
21531 DW_AT_location for variables in -fPIC libraries which may
21532 get overriden by other libraries/executable and get
21533 a different address. Resolve it by the minimal symbol
21534 which may come from inferior's executable using copy
21535 relocation. Make this workaround only for gfortran as for
21536 other compilers GDB cannot guess the minimal symbol
21537 Fortran mangling kind. */
21538 if (cu->language == language_fortran && die->parent
21539 && die->parent->tag == DW_TAG_module
21540 && cu->producer
21541 && startswith (cu->producer, "GNU Fortran"))
21542 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21543
21544 /* A variable with DW_AT_external is never static,
21545 but it may be block-scoped. */
21546 list_to_add
21547 = ((cu->list_in_scope
21548 == cu->get_builder ()->get_file_symbols ())
21549 ? cu->get_builder ()->get_global_symbols ()
21550 : cu->list_in_scope);
21551 }
21552 else
21553 list_to_add = cu->list_in_scope;
21554 }
21555 else
21556 {
21557 /* We do not know the address of this symbol.
21558 If it is an external symbol and we have type information
21559 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21560 The address of the variable will then be determined from
21561 the minimal symbol table whenever the variable is
21562 referenced. */
21563 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21564
21565 /* Fortran explicitly imports any global symbols to the local
21566 scope by DW_TAG_common_block. */
21567 if (cu->language == language_fortran && die->parent
21568 && die->parent->tag == DW_TAG_common_block)
21569 {
21570 /* SYMBOL_CLASS doesn't matter here because
21571 read_common_block is going to reset it. */
21572 if (!suppress_add)
21573 list_to_add = cu->list_in_scope;
21574 }
21575 else if (attr2 && (DW_UNSND (attr2) != 0)
21576 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21577 {
21578 /* A variable with DW_AT_external is never static, but it
21579 may be block-scoped. */
21580 list_to_add
21581 = ((cu->list_in_scope
21582 == cu->get_builder ()->get_file_symbols ())
21583 ? cu->get_builder ()->get_global_symbols ()
21584 : cu->list_in_scope);
21585
21586 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21587 }
21588 else if (!die_is_declaration (die, cu))
21589 {
21590 /* Use the default LOC_OPTIMIZED_OUT class. */
21591 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
21592 if (!suppress_add)
21593 list_to_add = cu->list_in_scope;
21594 }
21595 }
21596 break;
21597 case DW_TAG_formal_parameter:
21598 {
21599 /* If we are inside a function, mark this as an argument. If
21600 not, we might be looking at an argument to an inlined function
21601 when we do not have enough information to show inlined frames;
21602 pretend it's a local variable in that case so that the user can
21603 still see it. */
21604 struct context_stack *curr
21605 = cu->get_builder ()->get_current_context_stack ();
21606 if (curr != nullptr && curr->name != nullptr)
21607 SYMBOL_IS_ARGUMENT (sym) = 1;
21608 attr = dwarf2_attr (die, DW_AT_location, cu);
21609 if (attr)
21610 {
21611 var_decode_location (attr, sym, cu);
21612 }
21613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21614 if (attr)
21615 {
21616 dwarf2_const_value (attr, sym, cu);
21617 }
21618
21619 list_to_add = cu->list_in_scope;
21620 }
21621 break;
21622 case DW_TAG_unspecified_parameters:
21623 /* From varargs functions; gdb doesn't seem to have any
21624 interest in this information, so just ignore it for now.
21625 (FIXME?) */
21626 break;
21627 case DW_TAG_template_type_param:
21628 suppress_add = 1;
21629 /* Fall through. */
21630 case DW_TAG_class_type:
21631 case DW_TAG_interface_type:
21632 case DW_TAG_structure_type:
21633 case DW_TAG_union_type:
21634 case DW_TAG_set_type:
21635 case DW_TAG_enumeration_type:
21636 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21637 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
21638
21639 {
21640 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
21641 really ever be static objects: otherwise, if you try
21642 to, say, break of a class's method and you're in a file
21643 which doesn't mention that class, it won't work unless
21644 the check for all static symbols in lookup_symbol_aux
21645 saves you. See the OtherFileClass tests in
21646 gdb.c++/namespace.exp. */
21647
21648 if (!suppress_add)
21649 {
21650 buildsym_compunit *builder = cu->get_builder ();
21651 list_to_add
21652 = (cu->list_in_scope == builder->get_file_symbols ()
21653 && cu->language == language_cplus
21654 ? builder->get_global_symbols ()
21655 : cu->list_in_scope);
21656
21657 /* The semantics of C++ state that "struct foo {
21658 ... }" also defines a typedef for "foo". */
21659 if (cu->language == language_cplus
21660 || cu->language == language_ada
21661 || cu->language == language_d
21662 || cu->language == language_rust)
21663 {
21664 /* The symbol's name is already allocated along
21665 with this objfile, so we don't need to
21666 duplicate it for the type. */
21667 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
21668 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
21669 }
21670 }
21671 }
21672 break;
21673 case DW_TAG_typedef:
21674 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21675 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21676 list_to_add = cu->list_in_scope;
21677 break;
21678 case DW_TAG_base_type:
21679 case DW_TAG_subrange_type:
21680 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21681 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21682 list_to_add = cu->list_in_scope;
21683 break;
21684 case DW_TAG_enumerator:
21685 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21686 if (attr)
21687 {
21688 dwarf2_const_value (attr, sym, cu);
21689 }
21690 {
21691 /* NOTE: carlton/2003-11-10: See comment above in the
21692 DW_TAG_class_type, etc. block. */
21693
21694 list_to_add
21695 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
21696 && cu->language == language_cplus
21697 ? cu->get_builder ()->get_global_symbols ()
21698 : cu->list_in_scope);
21699 }
21700 break;
21701 case DW_TAG_imported_declaration:
21702 case DW_TAG_namespace:
21703 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21704 list_to_add = cu->get_builder ()->get_global_symbols ();
21705 break;
21706 case DW_TAG_module:
21707 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
21708 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
21709 list_to_add = cu->get_builder ()->get_global_symbols ();
21710 break;
21711 case DW_TAG_common_block:
21712 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
21713 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
21714 add_symbol_to_list (sym, cu->list_in_scope);
21715 break;
21716 default:
21717 /* Not a tag we recognize. Hopefully we aren't processing
21718 trash data, but since we must specifically ignore things
21719 we don't recognize, there is nothing else we should do at
21720 this point. */
21721 complaint (_("unsupported tag: '%s'"),
21722 dwarf_tag_name (die->tag));
21723 break;
21724 }
21725
21726 if (suppress_add)
21727 {
21728 sym->hash_next = objfile->template_symbols;
21729 objfile->template_symbols = sym;
21730 list_to_add = NULL;
21731 }
21732
21733 if (list_to_add != NULL)
21734 add_symbol_to_list (sym, list_to_add);
21735
21736 /* For the benefit of old versions of GCC, check for anonymous
21737 namespaces based on the demangled name. */
21738 if (!cu->processing_has_namespace_info
21739 && cu->language == language_cplus)
21740 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
21741 }
21742 return (sym);
21743 }
21744
21745 /* Given an attr with a DW_FORM_dataN value in host byte order,
21746 zero-extend it as appropriate for the symbol's type. The DWARF
21747 standard (v4) is not entirely clear about the meaning of using
21748 DW_FORM_dataN for a constant with a signed type, where the type is
21749 wider than the data. The conclusion of a discussion on the DWARF
21750 list was that this is unspecified. We choose to always zero-extend
21751 because that is the interpretation long in use by GCC. */
21752
21753 static gdb_byte *
21754 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
21755 struct dwarf2_cu *cu, LONGEST *value, int bits)
21756 {
21757 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21758 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
21759 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21760 LONGEST l = DW_UNSND (attr);
21761
21762 if (bits < sizeof (*value) * 8)
21763 {
21764 l &= ((LONGEST) 1 << bits) - 1;
21765 *value = l;
21766 }
21767 else if (bits == sizeof (*value) * 8)
21768 *value = l;
21769 else
21770 {
21771 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21772 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21773 return bytes;
21774 }
21775
21776 return NULL;
21777 }
21778
21779 /* Read a constant value from an attribute. Either set *VALUE, or if
21780 the value does not fit in *VALUE, set *BYTES - either already
21781 allocated on the objfile obstack, or newly allocated on OBSTACK,
21782 or, set *BATON, if we translated the constant to a location
21783 expression. */
21784
21785 static void
21786 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21787 const char *name, struct obstack *obstack,
21788 struct dwarf2_cu *cu,
21789 LONGEST *value, const gdb_byte **bytes,
21790 struct dwarf2_locexpr_baton **baton)
21791 {
21792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21793 struct comp_unit_head *cu_header = &cu->header;
21794 struct dwarf_block *blk;
21795 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21796 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21797
21798 *value = 0;
21799 *bytes = NULL;
21800 *baton = NULL;
21801
21802 switch (attr->form)
21803 {
21804 case DW_FORM_addr:
21805 case DW_FORM_GNU_addr_index:
21806 {
21807 gdb_byte *data;
21808
21809 if (TYPE_LENGTH (type) != cu_header->addr_size)
21810 dwarf2_const_value_length_mismatch_complaint (name,
21811 cu_header->addr_size,
21812 TYPE_LENGTH (type));
21813 /* Symbols of this form are reasonably rare, so we just
21814 piggyback on the existing location code rather than writing
21815 a new implementation of symbol_computed_ops. */
21816 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21817 (*baton)->per_cu = cu->per_cu;
21818 gdb_assert ((*baton)->per_cu);
21819
21820 (*baton)->size = 2 + cu_header->addr_size;
21821 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21822 (*baton)->data = data;
21823
21824 data[0] = DW_OP_addr;
21825 store_unsigned_integer (&data[1], cu_header->addr_size,
21826 byte_order, DW_ADDR (attr));
21827 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21828 }
21829 break;
21830 case DW_FORM_string:
21831 case DW_FORM_strp:
21832 case DW_FORM_GNU_str_index:
21833 case DW_FORM_GNU_strp_alt:
21834 /* DW_STRING is already allocated on the objfile obstack, point
21835 directly to it. */
21836 *bytes = (const gdb_byte *) DW_STRING (attr);
21837 break;
21838 case DW_FORM_block1:
21839 case DW_FORM_block2:
21840 case DW_FORM_block4:
21841 case DW_FORM_block:
21842 case DW_FORM_exprloc:
21843 case DW_FORM_data16:
21844 blk = DW_BLOCK (attr);
21845 if (TYPE_LENGTH (type) != blk->size)
21846 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21847 TYPE_LENGTH (type));
21848 *bytes = blk->data;
21849 break;
21850
21851 /* The DW_AT_const_value attributes are supposed to carry the
21852 symbol's value "represented as it would be on the target
21853 architecture." By the time we get here, it's already been
21854 converted to host endianness, so we just need to sign- or
21855 zero-extend it as appropriate. */
21856 case DW_FORM_data1:
21857 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21858 break;
21859 case DW_FORM_data2:
21860 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21861 break;
21862 case DW_FORM_data4:
21863 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21864 break;
21865 case DW_FORM_data8:
21866 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21867 break;
21868
21869 case DW_FORM_sdata:
21870 case DW_FORM_implicit_const:
21871 *value = DW_SND (attr);
21872 break;
21873
21874 case DW_FORM_udata:
21875 *value = DW_UNSND (attr);
21876 break;
21877
21878 default:
21879 complaint (_("unsupported const value attribute form: '%s'"),
21880 dwarf_form_name (attr->form));
21881 *value = 0;
21882 break;
21883 }
21884 }
21885
21886
21887 /* Copy constant value from an attribute to a symbol. */
21888
21889 static void
21890 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21891 struct dwarf2_cu *cu)
21892 {
21893 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21894 LONGEST value;
21895 const gdb_byte *bytes;
21896 struct dwarf2_locexpr_baton *baton;
21897
21898 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21899 SYMBOL_PRINT_NAME (sym),
21900 &objfile->objfile_obstack, cu,
21901 &value, &bytes, &baton);
21902
21903 if (baton != NULL)
21904 {
21905 SYMBOL_LOCATION_BATON (sym) = baton;
21906 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21907 }
21908 else if (bytes != NULL)
21909 {
21910 SYMBOL_VALUE_BYTES (sym) = bytes;
21911 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21912 }
21913 else
21914 {
21915 SYMBOL_VALUE (sym) = value;
21916 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21917 }
21918 }
21919
21920 /* Return the type of the die in question using its DW_AT_type attribute. */
21921
21922 static struct type *
21923 die_type (struct die_info *die, struct dwarf2_cu *cu)
21924 {
21925 struct attribute *type_attr;
21926
21927 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21928 if (!type_attr)
21929 {
21930 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21931 /* A missing DW_AT_type represents a void type. */
21932 return objfile_type (objfile)->builtin_void;
21933 }
21934
21935 return lookup_die_type (die, type_attr, cu);
21936 }
21937
21938 /* True iff CU's producer generates GNAT Ada auxiliary information
21939 that allows to find parallel types through that information instead
21940 of having to do expensive parallel lookups by type name. */
21941
21942 static int
21943 need_gnat_info (struct dwarf2_cu *cu)
21944 {
21945 /* Assume that the Ada compiler was GNAT, which always produces
21946 the auxiliary information. */
21947 return (cu->language == language_ada);
21948 }
21949
21950 /* Return the auxiliary type of the die in question using its
21951 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21952 attribute is not present. */
21953
21954 static struct type *
21955 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21956 {
21957 struct attribute *type_attr;
21958
21959 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21960 if (!type_attr)
21961 return NULL;
21962
21963 return lookup_die_type (die, type_attr, cu);
21964 }
21965
21966 /* If DIE has a descriptive_type attribute, then set the TYPE's
21967 descriptive type accordingly. */
21968
21969 static void
21970 set_descriptive_type (struct type *type, struct die_info *die,
21971 struct dwarf2_cu *cu)
21972 {
21973 struct type *descriptive_type = die_descriptive_type (die, cu);
21974
21975 if (descriptive_type)
21976 {
21977 ALLOCATE_GNAT_AUX_TYPE (type);
21978 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21979 }
21980 }
21981
21982 /* Return the containing type of the die in question using its
21983 DW_AT_containing_type attribute. */
21984
21985 static struct type *
21986 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21987 {
21988 struct attribute *type_attr;
21989 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21990
21991 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21992 if (!type_attr)
21993 error (_("Dwarf Error: Problem turning containing type into gdb type "
21994 "[in module %s]"), objfile_name (objfile));
21995
21996 return lookup_die_type (die, type_attr, cu);
21997 }
21998
21999 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22000
22001 static struct type *
22002 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22003 {
22004 struct dwarf2_per_objfile *dwarf2_per_objfile
22005 = cu->per_cu->dwarf2_per_objfile;
22006 struct objfile *objfile = dwarf2_per_objfile->objfile;
22007 char *saved;
22008
22009 std::string message
22010 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22011 objfile_name (objfile),
22012 sect_offset_str (cu->header.sect_off),
22013 sect_offset_str (die->sect_off));
22014 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
22015 message.c_str (), message.length ());
22016
22017 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22018 }
22019
22020 /* Look up the type of DIE in CU using its type attribute ATTR.
22021 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22022 DW_AT_containing_type.
22023 If there is no type substitute an error marker. */
22024
22025 static struct type *
22026 lookup_die_type (struct die_info *die, const struct attribute *attr,
22027 struct dwarf2_cu *cu)
22028 {
22029 struct dwarf2_per_objfile *dwarf2_per_objfile
22030 = cu->per_cu->dwarf2_per_objfile;
22031 struct objfile *objfile = dwarf2_per_objfile->objfile;
22032 struct type *this_type;
22033
22034 gdb_assert (attr->name == DW_AT_type
22035 || attr->name == DW_AT_GNAT_descriptive_type
22036 || attr->name == DW_AT_containing_type);
22037
22038 /* First see if we have it cached. */
22039
22040 if (attr->form == DW_FORM_GNU_ref_alt)
22041 {
22042 struct dwarf2_per_cu_data *per_cu;
22043 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22044
22045 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22046 dwarf2_per_objfile);
22047 this_type = get_die_type_at_offset (sect_off, per_cu);
22048 }
22049 else if (attr_form_is_ref (attr))
22050 {
22051 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22052
22053 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22054 }
22055 else if (attr->form == DW_FORM_ref_sig8)
22056 {
22057 ULONGEST signature = DW_SIGNATURE (attr);
22058
22059 return get_signatured_type (die, signature, cu);
22060 }
22061 else
22062 {
22063 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22064 " at %s [in module %s]"),
22065 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22066 objfile_name (objfile));
22067 return build_error_marker_type (cu, die);
22068 }
22069
22070 /* If not cached we need to read it in. */
22071
22072 if (this_type == NULL)
22073 {
22074 struct die_info *type_die = NULL;
22075 struct dwarf2_cu *type_cu = cu;
22076
22077 if (attr_form_is_ref (attr))
22078 type_die = follow_die_ref (die, attr, &type_cu);
22079 if (type_die == NULL)
22080 return build_error_marker_type (cu, die);
22081 /* If we find the type now, it's probably because the type came
22082 from an inter-CU reference and the type's CU got expanded before
22083 ours. */
22084 this_type = read_type_die (type_die, type_cu);
22085 }
22086
22087 /* If we still don't have a type use an error marker. */
22088
22089 if (this_type == NULL)
22090 return build_error_marker_type (cu, die);
22091
22092 return this_type;
22093 }
22094
22095 /* Return the type in DIE, CU.
22096 Returns NULL for invalid types.
22097
22098 This first does a lookup in die_type_hash,
22099 and only reads the die in if necessary.
22100
22101 NOTE: This can be called when reading in partial or full symbols. */
22102
22103 static struct type *
22104 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22105 {
22106 struct type *this_type;
22107
22108 this_type = get_die_type (die, cu);
22109 if (this_type)
22110 return this_type;
22111
22112 return read_type_die_1 (die, cu);
22113 }
22114
22115 /* Read the type in DIE, CU.
22116 Returns NULL for invalid types. */
22117
22118 static struct type *
22119 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22120 {
22121 struct type *this_type = NULL;
22122
22123 switch (die->tag)
22124 {
22125 case DW_TAG_class_type:
22126 case DW_TAG_interface_type:
22127 case DW_TAG_structure_type:
22128 case DW_TAG_union_type:
22129 this_type = read_structure_type (die, cu);
22130 break;
22131 case DW_TAG_enumeration_type:
22132 this_type = read_enumeration_type (die, cu);
22133 break;
22134 case DW_TAG_subprogram:
22135 case DW_TAG_subroutine_type:
22136 case DW_TAG_inlined_subroutine:
22137 this_type = read_subroutine_type (die, cu);
22138 break;
22139 case DW_TAG_array_type:
22140 this_type = read_array_type (die, cu);
22141 break;
22142 case DW_TAG_set_type:
22143 this_type = read_set_type (die, cu);
22144 break;
22145 case DW_TAG_pointer_type:
22146 this_type = read_tag_pointer_type (die, cu);
22147 break;
22148 case DW_TAG_ptr_to_member_type:
22149 this_type = read_tag_ptr_to_member_type (die, cu);
22150 break;
22151 case DW_TAG_reference_type:
22152 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22153 break;
22154 case DW_TAG_rvalue_reference_type:
22155 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22156 break;
22157 case DW_TAG_const_type:
22158 this_type = read_tag_const_type (die, cu);
22159 break;
22160 case DW_TAG_volatile_type:
22161 this_type = read_tag_volatile_type (die, cu);
22162 break;
22163 case DW_TAG_restrict_type:
22164 this_type = read_tag_restrict_type (die, cu);
22165 break;
22166 case DW_TAG_string_type:
22167 this_type = read_tag_string_type (die, cu);
22168 break;
22169 case DW_TAG_typedef:
22170 this_type = read_typedef (die, cu);
22171 break;
22172 case DW_TAG_subrange_type:
22173 this_type = read_subrange_type (die, cu);
22174 break;
22175 case DW_TAG_base_type:
22176 this_type = read_base_type (die, cu);
22177 break;
22178 case DW_TAG_unspecified_type:
22179 this_type = read_unspecified_type (die, cu);
22180 break;
22181 case DW_TAG_namespace:
22182 this_type = read_namespace_type (die, cu);
22183 break;
22184 case DW_TAG_module:
22185 this_type = read_module_type (die, cu);
22186 break;
22187 case DW_TAG_atomic_type:
22188 this_type = read_tag_atomic_type (die, cu);
22189 break;
22190 default:
22191 complaint (_("unexpected tag in read_type_die: '%s'"),
22192 dwarf_tag_name (die->tag));
22193 break;
22194 }
22195
22196 return this_type;
22197 }
22198
22199 /* See if we can figure out if the class lives in a namespace. We do
22200 this by looking for a member function; its demangled name will
22201 contain namespace info, if there is any.
22202 Return the computed name or NULL.
22203 Space for the result is allocated on the objfile's obstack.
22204 This is the full-die version of guess_partial_die_structure_name.
22205 In this case we know DIE has no useful parent. */
22206
22207 static char *
22208 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22209 {
22210 struct die_info *spec_die;
22211 struct dwarf2_cu *spec_cu;
22212 struct die_info *child;
22213 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22214
22215 spec_cu = cu;
22216 spec_die = die_specification (die, &spec_cu);
22217 if (spec_die != NULL)
22218 {
22219 die = spec_die;
22220 cu = spec_cu;
22221 }
22222
22223 for (child = die->child;
22224 child != NULL;
22225 child = child->sibling)
22226 {
22227 if (child->tag == DW_TAG_subprogram)
22228 {
22229 const char *linkage_name = dw2_linkage_name (child, cu);
22230
22231 if (linkage_name != NULL)
22232 {
22233 char *actual_name
22234 = language_class_name_from_physname (cu->language_defn,
22235 linkage_name);
22236 char *name = NULL;
22237
22238 if (actual_name != NULL)
22239 {
22240 const char *die_name = dwarf2_name (die, cu);
22241
22242 if (die_name != NULL
22243 && strcmp (die_name, actual_name) != 0)
22244 {
22245 /* Strip off the class name from the full name.
22246 We want the prefix. */
22247 int die_name_len = strlen (die_name);
22248 int actual_name_len = strlen (actual_name);
22249
22250 /* Test for '::' as a sanity check. */
22251 if (actual_name_len > die_name_len + 2
22252 && actual_name[actual_name_len
22253 - die_name_len - 1] == ':')
22254 name = (char *) obstack_copy0 (
22255 &objfile->per_bfd->storage_obstack,
22256 actual_name, actual_name_len - die_name_len - 2);
22257 }
22258 }
22259 xfree (actual_name);
22260 return name;
22261 }
22262 }
22263 }
22264
22265 return NULL;
22266 }
22267
22268 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22269 prefix part in such case. See
22270 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22271
22272 static const char *
22273 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22274 {
22275 struct attribute *attr;
22276 const char *base;
22277
22278 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22279 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22280 return NULL;
22281
22282 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22283 return NULL;
22284
22285 attr = dw2_linkage_name_attr (die, cu);
22286 if (attr == NULL || DW_STRING (attr) == NULL)
22287 return NULL;
22288
22289 /* dwarf2_name had to be already called. */
22290 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22291
22292 /* Strip the base name, keep any leading namespaces/classes. */
22293 base = strrchr (DW_STRING (attr), ':');
22294 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22295 return "";
22296
22297 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22298 return (char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
22299 DW_STRING (attr),
22300 &base[-1] - DW_STRING (attr));
22301 }
22302
22303 /* Return the name of the namespace/class that DIE is defined within,
22304 or "" if we can't tell. The caller should not xfree the result.
22305
22306 For example, if we're within the method foo() in the following
22307 code:
22308
22309 namespace N {
22310 class C {
22311 void foo () {
22312 }
22313 };
22314 }
22315
22316 then determine_prefix on foo's die will return "N::C". */
22317
22318 static const char *
22319 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22320 {
22321 struct dwarf2_per_objfile *dwarf2_per_objfile
22322 = cu->per_cu->dwarf2_per_objfile;
22323 struct die_info *parent, *spec_die;
22324 struct dwarf2_cu *spec_cu;
22325 struct type *parent_type;
22326 const char *retval;
22327
22328 if (cu->language != language_cplus
22329 && cu->language != language_fortran && cu->language != language_d
22330 && cu->language != language_rust)
22331 return "";
22332
22333 retval = anonymous_struct_prefix (die, cu);
22334 if (retval)
22335 return retval;
22336
22337 /* We have to be careful in the presence of DW_AT_specification.
22338 For example, with GCC 3.4, given the code
22339
22340 namespace N {
22341 void foo() {
22342 // Definition of N::foo.
22343 }
22344 }
22345
22346 then we'll have a tree of DIEs like this:
22347
22348 1: DW_TAG_compile_unit
22349 2: DW_TAG_namespace // N
22350 3: DW_TAG_subprogram // declaration of N::foo
22351 4: DW_TAG_subprogram // definition of N::foo
22352 DW_AT_specification // refers to die #3
22353
22354 Thus, when processing die #4, we have to pretend that we're in
22355 the context of its DW_AT_specification, namely the contex of die
22356 #3. */
22357 spec_cu = cu;
22358 spec_die = die_specification (die, &spec_cu);
22359 if (spec_die == NULL)
22360 parent = die->parent;
22361 else
22362 {
22363 parent = spec_die->parent;
22364 cu = spec_cu;
22365 }
22366
22367 if (parent == NULL)
22368 return "";
22369 else if (parent->building_fullname)
22370 {
22371 const char *name;
22372 const char *parent_name;
22373
22374 /* It has been seen on RealView 2.2 built binaries,
22375 DW_TAG_template_type_param types actually _defined_ as
22376 children of the parent class:
22377
22378 enum E {};
22379 template class <class Enum> Class{};
22380 Class<enum E> class_e;
22381
22382 1: DW_TAG_class_type (Class)
22383 2: DW_TAG_enumeration_type (E)
22384 3: DW_TAG_enumerator (enum1:0)
22385 3: DW_TAG_enumerator (enum2:1)
22386 ...
22387 2: DW_TAG_template_type_param
22388 DW_AT_type DW_FORM_ref_udata (E)
22389
22390 Besides being broken debug info, it can put GDB into an
22391 infinite loop. Consider:
22392
22393 When we're building the full name for Class<E>, we'll start
22394 at Class, and go look over its template type parameters,
22395 finding E. We'll then try to build the full name of E, and
22396 reach here. We're now trying to build the full name of E,
22397 and look over the parent DIE for containing scope. In the
22398 broken case, if we followed the parent DIE of E, we'd again
22399 find Class, and once again go look at its template type
22400 arguments, etc., etc. Simply don't consider such parent die
22401 as source-level parent of this die (it can't be, the language
22402 doesn't allow it), and break the loop here. */
22403 name = dwarf2_name (die, cu);
22404 parent_name = dwarf2_name (parent, cu);
22405 complaint (_("template param type '%s' defined within parent '%s'"),
22406 name ? name : "<unknown>",
22407 parent_name ? parent_name : "<unknown>");
22408 return "";
22409 }
22410 else
22411 switch (parent->tag)
22412 {
22413 case DW_TAG_namespace:
22414 parent_type = read_type_die (parent, cu);
22415 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22416 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22417 Work around this problem here. */
22418 if (cu->language == language_cplus
22419 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22420 return "";
22421 /* We give a name to even anonymous namespaces. */
22422 return TYPE_NAME (parent_type);
22423 case DW_TAG_class_type:
22424 case DW_TAG_interface_type:
22425 case DW_TAG_structure_type:
22426 case DW_TAG_union_type:
22427 case DW_TAG_module:
22428 parent_type = read_type_die (parent, cu);
22429 if (TYPE_NAME (parent_type) != NULL)
22430 return TYPE_NAME (parent_type);
22431 else
22432 /* An anonymous structure is only allowed non-static data
22433 members; no typedefs, no member functions, et cetera.
22434 So it does not need a prefix. */
22435 return "";
22436 case DW_TAG_compile_unit:
22437 case DW_TAG_partial_unit:
22438 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22439 if (cu->language == language_cplus
22440 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
22441 && die->child != NULL
22442 && (die->tag == DW_TAG_class_type
22443 || die->tag == DW_TAG_structure_type
22444 || die->tag == DW_TAG_union_type))
22445 {
22446 char *name = guess_full_die_structure_name (die, cu);
22447 if (name != NULL)
22448 return name;
22449 }
22450 return "";
22451 case DW_TAG_enumeration_type:
22452 parent_type = read_type_die (parent, cu);
22453 if (TYPE_DECLARED_CLASS (parent_type))
22454 {
22455 if (TYPE_NAME (parent_type) != NULL)
22456 return TYPE_NAME (parent_type);
22457 return "";
22458 }
22459 /* Fall through. */
22460 default:
22461 return determine_prefix (parent, cu);
22462 }
22463 }
22464
22465 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22466 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22467 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22468 an obconcat, otherwise allocate storage for the result. The CU argument is
22469 used to determine the language and hence, the appropriate separator. */
22470
22471 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22472
22473 static char *
22474 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22475 int physname, struct dwarf2_cu *cu)
22476 {
22477 const char *lead = "";
22478 const char *sep;
22479
22480 if (suffix == NULL || suffix[0] == '\0'
22481 || prefix == NULL || prefix[0] == '\0')
22482 sep = "";
22483 else if (cu->language == language_d)
22484 {
22485 /* For D, the 'main' function could be defined in any module, but it
22486 should never be prefixed. */
22487 if (strcmp (suffix, "D main") == 0)
22488 {
22489 prefix = "";
22490 sep = "";
22491 }
22492 else
22493 sep = ".";
22494 }
22495 else if (cu->language == language_fortran && physname)
22496 {
22497 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22498 DW_AT_MIPS_linkage_name is preferred and used instead. */
22499
22500 lead = "__";
22501 sep = "_MOD_";
22502 }
22503 else
22504 sep = "::";
22505
22506 if (prefix == NULL)
22507 prefix = "";
22508 if (suffix == NULL)
22509 suffix = "";
22510
22511 if (obs == NULL)
22512 {
22513 char *retval
22514 = ((char *)
22515 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22516
22517 strcpy (retval, lead);
22518 strcat (retval, prefix);
22519 strcat (retval, sep);
22520 strcat (retval, suffix);
22521 return retval;
22522 }
22523 else
22524 {
22525 /* We have an obstack. */
22526 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22527 }
22528 }
22529
22530 /* Return sibling of die, NULL if no sibling. */
22531
22532 static struct die_info *
22533 sibling_die (struct die_info *die)
22534 {
22535 return die->sibling;
22536 }
22537
22538 /* Get name of a die, return NULL if not found. */
22539
22540 static const char *
22541 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22542 struct obstack *obstack)
22543 {
22544 if (name && cu->language == language_cplus)
22545 {
22546 std::string canon_name = cp_canonicalize_string (name);
22547
22548 if (!canon_name.empty ())
22549 {
22550 if (canon_name != name)
22551 name = (const char *) obstack_copy0 (obstack,
22552 canon_name.c_str (),
22553 canon_name.length ());
22554 }
22555 }
22556
22557 return name;
22558 }
22559
22560 /* Get name of a die, return NULL if not found.
22561 Anonymous namespaces are converted to their magic string. */
22562
22563 static const char *
22564 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22565 {
22566 struct attribute *attr;
22567 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22568
22569 attr = dwarf2_attr (die, DW_AT_name, cu);
22570 if ((!attr || !DW_STRING (attr))
22571 && die->tag != DW_TAG_namespace
22572 && die->tag != DW_TAG_class_type
22573 && die->tag != DW_TAG_interface_type
22574 && die->tag != DW_TAG_structure_type
22575 && die->tag != DW_TAG_union_type)
22576 return NULL;
22577
22578 switch (die->tag)
22579 {
22580 case DW_TAG_compile_unit:
22581 case DW_TAG_partial_unit:
22582 /* Compilation units have a DW_AT_name that is a filename, not
22583 a source language identifier. */
22584 case DW_TAG_enumeration_type:
22585 case DW_TAG_enumerator:
22586 /* These tags always have simple identifiers already; no need
22587 to canonicalize them. */
22588 return DW_STRING (attr);
22589
22590 case DW_TAG_namespace:
22591 if (attr != NULL && DW_STRING (attr) != NULL)
22592 return DW_STRING (attr);
22593 return CP_ANONYMOUS_NAMESPACE_STR;
22594
22595 case DW_TAG_class_type:
22596 case DW_TAG_interface_type:
22597 case DW_TAG_structure_type:
22598 case DW_TAG_union_type:
22599 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
22600 structures or unions. These were of the form "._%d" in GCC 4.1,
22601 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
22602 and GCC 4.4. We work around this problem by ignoring these. */
22603 if (attr && DW_STRING (attr)
22604 && (startswith (DW_STRING (attr), "._")
22605 || startswith (DW_STRING (attr), "<anonymous")))
22606 return NULL;
22607
22608 /* GCC might emit a nameless typedef that has a linkage name. See
22609 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22610 if (!attr || DW_STRING (attr) == NULL)
22611 {
22612 char *demangled = NULL;
22613
22614 attr = dw2_linkage_name_attr (die, cu);
22615 if (attr == NULL || DW_STRING (attr) == NULL)
22616 return NULL;
22617
22618 /* Avoid demangling DW_STRING (attr) the second time on a second
22619 call for the same DIE. */
22620 if (!DW_STRING_IS_CANONICAL (attr))
22621 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
22622
22623 if (demangled)
22624 {
22625 const char *base;
22626
22627 /* FIXME: we already did this for the partial symbol... */
22628 DW_STRING (attr)
22629 = ((const char *)
22630 obstack_copy0 (&objfile->per_bfd->storage_obstack,
22631 demangled, strlen (demangled)));
22632 DW_STRING_IS_CANONICAL (attr) = 1;
22633 xfree (demangled);
22634
22635 /* Strip any leading namespaces/classes, keep only the base name.
22636 DW_AT_name for named DIEs does not contain the prefixes. */
22637 base = strrchr (DW_STRING (attr), ':');
22638 if (base && base > DW_STRING (attr) && base[-1] == ':')
22639 return &base[1];
22640 else
22641 return DW_STRING (attr);
22642 }
22643 }
22644 break;
22645
22646 default:
22647 break;
22648 }
22649
22650 if (!DW_STRING_IS_CANONICAL (attr))
22651 {
22652 DW_STRING (attr)
22653 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
22654 &objfile->per_bfd->storage_obstack);
22655 DW_STRING_IS_CANONICAL (attr) = 1;
22656 }
22657 return DW_STRING (attr);
22658 }
22659
22660 /* Return the die that this die in an extension of, or NULL if there
22661 is none. *EXT_CU is the CU containing DIE on input, and the CU
22662 containing the return value on output. */
22663
22664 static struct die_info *
22665 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
22666 {
22667 struct attribute *attr;
22668
22669 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
22670 if (attr == NULL)
22671 return NULL;
22672
22673 return follow_die_ref (die, attr, ext_cu);
22674 }
22675
22676 /* Convert a DIE tag into its string name. */
22677
22678 static const char *
22679 dwarf_tag_name (unsigned tag)
22680 {
22681 const char *name = get_DW_TAG_name (tag);
22682
22683 if (name == NULL)
22684 return "DW_TAG_<unknown>";
22685
22686 return name;
22687 }
22688
22689 /* Convert a DWARF attribute code into its string name. */
22690
22691 static const char *
22692 dwarf_attr_name (unsigned attr)
22693 {
22694 const char *name;
22695
22696 #ifdef MIPS /* collides with DW_AT_HP_block_index */
22697 if (attr == DW_AT_MIPS_fde)
22698 return "DW_AT_MIPS_fde";
22699 #else
22700 if (attr == DW_AT_HP_block_index)
22701 return "DW_AT_HP_block_index";
22702 #endif
22703
22704 name = get_DW_AT_name (attr);
22705
22706 if (name == NULL)
22707 return "DW_AT_<unknown>";
22708
22709 return name;
22710 }
22711
22712 /* Convert a DWARF value form code into its string name. */
22713
22714 static const char *
22715 dwarf_form_name (unsigned form)
22716 {
22717 const char *name = get_DW_FORM_name (form);
22718
22719 if (name == NULL)
22720 return "DW_FORM_<unknown>";
22721
22722 return name;
22723 }
22724
22725 static const char *
22726 dwarf_bool_name (unsigned mybool)
22727 {
22728 if (mybool)
22729 return "TRUE";
22730 else
22731 return "FALSE";
22732 }
22733
22734 /* Convert a DWARF type code into its string name. */
22735
22736 static const char *
22737 dwarf_type_encoding_name (unsigned enc)
22738 {
22739 const char *name = get_DW_ATE_name (enc);
22740
22741 if (name == NULL)
22742 return "DW_ATE_<unknown>";
22743
22744 return name;
22745 }
22746
22747 static void
22748 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
22749 {
22750 unsigned int i;
22751
22752 print_spaces (indent, f);
22753 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
22754 dwarf_tag_name (die->tag), die->abbrev,
22755 sect_offset_str (die->sect_off));
22756
22757 if (die->parent != NULL)
22758 {
22759 print_spaces (indent, f);
22760 fprintf_unfiltered (f, " parent at offset: %s\n",
22761 sect_offset_str (die->parent->sect_off));
22762 }
22763
22764 print_spaces (indent, f);
22765 fprintf_unfiltered (f, " has children: %s\n",
22766 dwarf_bool_name (die->child != NULL));
22767
22768 print_spaces (indent, f);
22769 fprintf_unfiltered (f, " attributes:\n");
22770
22771 for (i = 0; i < die->num_attrs; ++i)
22772 {
22773 print_spaces (indent, f);
22774 fprintf_unfiltered (f, " %s (%s) ",
22775 dwarf_attr_name (die->attrs[i].name),
22776 dwarf_form_name (die->attrs[i].form));
22777
22778 switch (die->attrs[i].form)
22779 {
22780 case DW_FORM_addr:
22781 case DW_FORM_GNU_addr_index:
22782 fprintf_unfiltered (f, "address: ");
22783 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
22784 break;
22785 case DW_FORM_block2:
22786 case DW_FORM_block4:
22787 case DW_FORM_block:
22788 case DW_FORM_block1:
22789 fprintf_unfiltered (f, "block: size %s",
22790 pulongest (DW_BLOCK (&die->attrs[i])->size));
22791 break;
22792 case DW_FORM_exprloc:
22793 fprintf_unfiltered (f, "expression: size %s",
22794 pulongest (DW_BLOCK (&die->attrs[i])->size));
22795 break;
22796 case DW_FORM_data16:
22797 fprintf_unfiltered (f, "constant of 16 bytes");
22798 break;
22799 case DW_FORM_ref_addr:
22800 fprintf_unfiltered (f, "ref address: ");
22801 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22802 break;
22803 case DW_FORM_GNU_ref_alt:
22804 fprintf_unfiltered (f, "alt ref address: ");
22805 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
22806 break;
22807 case DW_FORM_ref1:
22808 case DW_FORM_ref2:
22809 case DW_FORM_ref4:
22810 case DW_FORM_ref8:
22811 case DW_FORM_ref_udata:
22812 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
22813 (long) (DW_UNSND (&die->attrs[i])));
22814 break;
22815 case DW_FORM_data1:
22816 case DW_FORM_data2:
22817 case DW_FORM_data4:
22818 case DW_FORM_data8:
22819 case DW_FORM_udata:
22820 case DW_FORM_sdata:
22821 fprintf_unfiltered (f, "constant: %s",
22822 pulongest (DW_UNSND (&die->attrs[i])));
22823 break;
22824 case DW_FORM_sec_offset:
22825 fprintf_unfiltered (f, "section offset: %s",
22826 pulongest (DW_UNSND (&die->attrs[i])));
22827 break;
22828 case DW_FORM_ref_sig8:
22829 fprintf_unfiltered (f, "signature: %s",
22830 hex_string (DW_SIGNATURE (&die->attrs[i])));
22831 break;
22832 case DW_FORM_string:
22833 case DW_FORM_strp:
22834 case DW_FORM_line_strp:
22835 case DW_FORM_GNU_str_index:
22836 case DW_FORM_GNU_strp_alt:
22837 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
22838 DW_STRING (&die->attrs[i])
22839 ? DW_STRING (&die->attrs[i]) : "",
22840 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22841 break;
22842 case DW_FORM_flag:
22843 if (DW_UNSND (&die->attrs[i]))
22844 fprintf_unfiltered (f, "flag: TRUE");
22845 else
22846 fprintf_unfiltered (f, "flag: FALSE");
22847 break;
22848 case DW_FORM_flag_present:
22849 fprintf_unfiltered (f, "flag: TRUE");
22850 break;
22851 case DW_FORM_indirect:
22852 /* The reader will have reduced the indirect form to
22853 the "base form" so this form should not occur. */
22854 fprintf_unfiltered (f,
22855 "unexpected attribute form: DW_FORM_indirect");
22856 break;
22857 case DW_FORM_implicit_const:
22858 fprintf_unfiltered (f, "constant: %s",
22859 plongest (DW_SND (&die->attrs[i])));
22860 break;
22861 default:
22862 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22863 die->attrs[i].form);
22864 break;
22865 }
22866 fprintf_unfiltered (f, "\n");
22867 }
22868 }
22869
22870 static void
22871 dump_die_for_error (struct die_info *die)
22872 {
22873 dump_die_shallow (gdb_stderr, 0, die);
22874 }
22875
22876 static void
22877 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22878 {
22879 int indent = level * 4;
22880
22881 gdb_assert (die != NULL);
22882
22883 if (level >= max_level)
22884 return;
22885
22886 dump_die_shallow (f, indent, die);
22887
22888 if (die->child != NULL)
22889 {
22890 print_spaces (indent, f);
22891 fprintf_unfiltered (f, " Children:");
22892 if (level + 1 < max_level)
22893 {
22894 fprintf_unfiltered (f, "\n");
22895 dump_die_1 (f, level + 1, max_level, die->child);
22896 }
22897 else
22898 {
22899 fprintf_unfiltered (f,
22900 " [not printed, max nesting level reached]\n");
22901 }
22902 }
22903
22904 if (die->sibling != NULL && level > 0)
22905 {
22906 dump_die_1 (f, level, max_level, die->sibling);
22907 }
22908 }
22909
22910 /* This is called from the pdie macro in gdbinit.in.
22911 It's not static so gcc will keep a copy callable from gdb. */
22912
22913 void
22914 dump_die (struct die_info *die, int max_level)
22915 {
22916 dump_die_1 (gdb_stdlog, 0, max_level, die);
22917 }
22918
22919 static void
22920 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22921 {
22922 void **slot;
22923
22924 slot = htab_find_slot_with_hash (cu->die_hash, die,
22925 to_underlying (die->sect_off),
22926 INSERT);
22927
22928 *slot = die;
22929 }
22930
22931 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
22932 required kind. */
22933
22934 static sect_offset
22935 dwarf2_get_ref_die_offset (const struct attribute *attr)
22936 {
22937 if (attr_form_is_ref (attr))
22938 return (sect_offset) DW_UNSND (attr);
22939
22940 complaint (_("unsupported die ref attribute form: '%s'"),
22941 dwarf_form_name (attr->form));
22942 return {};
22943 }
22944
22945 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
22946 * the value held by the attribute is not constant. */
22947
22948 static LONGEST
22949 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
22950 {
22951 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
22952 return DW_SND (attr);
22953 else if (attr->form == DW_FORM_udata
22954 || attr->form == DW_FORM_data1
22955 || attr->form == DW_FORM_data2
22956 || attr->form == DW_FORM_data4
22957 || attr->form == DW_FORM_data8)
22958 return DW_UNSND (attr);
22959 else
22960 {
22961 /* For DW_FORM_data16 see attr_form_is_constant. */
22962 complaint (_("Attribute value is not a constant (%s)"),
22963 dwarf_form_name (attr->form));
22964 return default_value;
22965 }
22966 }
22967
22968 /* Follow reference or signature attribute ATTR of SRC_DIE.
22969 On entry *REF_CU is the CU of SRC_DIE.
22970 On exit *REF_CU is the CU of the result. */
22971
22972 static struct die_info *
22973 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22974 struct dwarf2_cu **ref_cu)
22975 {
22976 struct die_info *die;
22977
22978 if (attr_form_is_ref (attr))
22979 die = follow_die_ref (src_die, attr, ref_cu);
22980 else if (attr->form == DW_FORM_ref_sig8)
22981 die = follow_die_sig (src_die, attr, ref_cu);
22982 else
22983 {
22984 dump_die_for_error (src_die);
22985 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22986 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22987 }
22988
22989 return die;
22990 }
22991
22992 /* Follow reference OFFSET.
22993 On entry *REF_CU is the CU of the source die referencing OFFSET.
22994 On exit *REF_CU is the CU of the result.
22995 Returns NULL if OFFSET is invalid. */
22996
22997 static struct die_info *
22998 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22999 struct dwarf2_cu **ref_cu)
23000 {
23001 struct die_info temp_die;
23002 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23003 struct dwarf2_per_objfile *dwarf2_per_objfile
23004 = cu->per_cu->dwarf2_per_objfile;
23005
23006 gdb_assert (cu->per_cu != NULL);
23007
23008 target_cu = cu;
23009
23010 if (cu->per_cu->is_debug_types)
23011 {
23012 /* .debug_types CUs cannot reference anything outside their CU.
23013 If they need to, they have to reference a signatured type via
23014 DW_FORM_ref_sig8. */
23015 if (!offset_in_cu_p (&cu->header, sect_off))
23016 return NULL;
23017 }
23018 else if (offset_in_dwz != cu->per_cu->is_dwz
23019 || !offset_in_cu_p (&cu->header, sect_off))
23020 {
23021 struct dwarf2_per_cu_data *per_cu;
23022
23023 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23024 dwarf2_per_objfile);
23025
23026 /* If necessary, add it to the queue and load its DIEs. */
23027 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23028 load_full_comp_unit (per_cu, false, cu->language);
23029
23030 target_cu = per_cu->cu;
23031 }
23032 else if (cu->dies == NULL)
23033 {
23034 /* We're loading full DIEs during partial symbol reading. */
23035 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23036 load_full_comp_unit (cu->per_cu, false, language_minimal);
23037 }
23038
23039 *ref_cu = target_cu;
23040 temp_die.sect_off = sect_off;
23041
23042 if (target_cu != cu)
23043 target_cu->ancestor = cu;
23044
23045 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23046 &temp_die,
23047 to_underlying (sect_off));
23048 }
23049
23050 /* Follow reference attribute ATTR of SRC_DIE.
23051 On entry *REF_CU is the CU of SRC_DIE.
23052 On exit *REF_CU is the CU of the result. */
23053
23054 static struct die_info *
23055 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23056 struct dwarf2_cu **ref_cu)
23057 {
23058 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23059 struct dwarf2_cu *cu = *ref_cu;
23060 struct die_info *die;
23061
23062 die = follow_die_offset (sect_off,
23063 (attr->form == DW_FORM_GNU_ref_alt
23064 || cu->per_cu->is_dwz),
23065 ref_cu);
23066 if (!die)
23067 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23068 "at %s [in module %s]"),
23069 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23070 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23071
23072 return die;
23073 }
23074
23075 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23076 Returned value is intended for DW_OP_call*. Returned
23077 dwarf2_locexpr_baton->data has lifetime of
23078 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23079
23080 struct dwarf2_locexpr_baton
23081 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23082 struct dwarf2_per_cu_data *per_cu,
23083 CORE_ADDR (*get_frame_pc) (void *baton),
23084 void *baton, bool resolve_abstract_p)
23085 {
23086 struct dwarf2_cu *cu;
23087 struct die_info *die;
23088 struct attribute *attr;
23089 struct dwarf2_locexpr_baton retval;
23090 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23091 struct objfile *objfile = dwarf2_per_objfile->objfile;
23092
23093 if (per_cu->cu == NULL)
23094 load_cu (per_cu, false);
23095 cu = per_cu->cu;
23096 if (cu == NULL)
23097 {
23098 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23099 Instead just throw an error, not much else we can do. */
23100 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23101 sect_offset_str (sect_off), objfile_name (objfile));
23102 }
23103
23104 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23105 if (!die)
23106 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23107 sect_offset_str (sect_off), objfile_name (objfile));
23108
23109 attr = dwarf2_attr (die, DW_AT_location, cu);
23110 if (!attr && resolve_abstract_p
23111 && (dwarf2_per_objfile->abstract_to_concrete.find (die)
23112 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23113 {
23114 CORE_ADDR pc = (*get_frame_pc) (baton);
23115
23116 for (const auto &cand : dwarf2_per_objfile->abstract_to_concrete[die])
23117 {
23118 if (!cand->parent
23119 || cand->parent->tag != DW_TAG_subprogram)
23120 continue;
23121
23122 CORE_ADDR pc_low, pc_high;
23123 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23124 if (pc_low == ((CORE_ADDR) -1)
23125 || !(pc_low <= pc && pc < pc_high))
23126 continue;
23127
23128 die = cand;
23129 attr = dwarf2_attr (die, DW_AT_location, cu);
23130 break;
23131 }
23132 }
23133
23134 if (!attr)
23135 {
23136 /* DWARF: "If there is no such attribute, then there is no effect.".
23137 DATA is ignored if SIZE is 0. */
23138
23139 retval.data = NULL;
23140 retval.size = 0;
23141 }
23142 else if (attr_form_is_section_offset (attr))
23143 {
23144 struct dwarf2_loclist_baton loclist_baton;
23145 CORE_ADDR pc = (*get_frame_pc) (baton);
23146 size_t size;
23147
23148 fill_in_loclist_baton (cu, &loclist_baton, attr);
23149
23150 retval.data = dwarf2_find_location_expression (&loclist_baton,
23151 &size, pc);
23152 retval.size = size;
23153 }
23154 else
23155 {
23156 if (!attr_form_is_block (attr))
23157 error (_("Dwarf Error: DIE at %s referenced in module %s "
23158 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23159 sect_offset_str (sect_off), objfile_name (objfile));
23160
23161 retval.data = DW_BLOCK (attr)->data;
23162 retval.size = DW_BLOCK (attr)->size;
23163 }
23164 retval.per_cu = cu->per_cu;
23165
23166 age_cached_comp_units (dwarf2_per_objfile);
23167
23168 return retval;
23169 }
23170
23171 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23172 offset. */
23173
23174 struct dwarf2_locexpr_baton
23175 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23176 struct dwarf2_per_cu_data *per_cu,
23177 CORE_ADDR (*get_frame_pc) (void *baton),
23178 void *baton)
23179 {
23180 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23181
23182 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23183 }
23184
23185 /* Write a constant of a given type as target-ordered bytes into
23186 OBSTACK. */
23187
23188 static const gdb_byte *
23189 write_constant_as_bytes (struct obstack *obstack,
23190 enum bfd_endian byte_order,
23191 struct type *type,
23192 ULONGEST value,
23193 LONGEST *len)
23194 {
23195 gdb_byte *result;
23196
23197 *len = TYPE_LENGTH (type);
23198 result = (gdb_byte *) obstack_alloc (obstack, *len);
23199 store_unsigned_integer (result, *len, byte_order, value);
23200
23201 return result;
23202 }
23203
23204 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23205 pointer to the constant bytes and set LEN to the length of the
23206 data. If memory is needed, allocate it on OBSTACK. If the DIE
23207 does not have a DW_AT_const_value, return NULL. */
23208
23209 const gdb_byte *
23210 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23211 struct dwarf2_per_cu_data *per_cu,
23212 struct obstack *obstack,
23213 LONGEST *len)
23214 {
23215 struct dwarf2_cu *cu;
23216 struct die_info *die;
23217 struct attribute *attr;
23218 const gdb_byte *result = NULL;
23219 struct type *type;
23220 LONGEST value;
23221 enum bfd_endian byte_order;
23222 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23223
23224 if (per_cu->cu == NULL)
23225 load_cu (per_cu, false);
23226 cu = per_cu->cu;
23227 if (cu == NULL)
23228 {
23229 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23230 Instead just throw an error, not much else we can do. */
23231 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23232 sect_offset_str (sect_off), objfile_name (objfile));
23233 }
23234
23235 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23236 if (!die)
23237 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23238 sect_offset_str (sect_off), objfile_name (objfile));
23239
23240 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23241 if (attr == NULL)
23242 return NULL;
23243
23244 byte_order = (bfd_big_endian (objfile->obfd)
23245 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23246
23247 switch (attr->form)
23248 {
23249 case DW_FORM_addr:
23250 case DW_FORM_GNU_addr_index:
23251 {
23252 gdb_byte *tem;
23253
23254 *len = cu->header.addr_size;
23255 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23256 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23257 result = tem;
23258 }
23259 break;
23260 case DW_FORM_string:
23261 case DW_FORM_strp:
23262 case DW_FORM_GNU_str_index:
23263 case DW_FORM_GNU_strp_alt:
23264 /* DW_STRING is already allocated on the objfile obstack, point
23265 directly to it. */
23266 result = (const gdb_byte *) DW_STRING (attr);
23267 *len = strlen (DW_STRING (attr));
23268 break;
23269 case DW_FORM_block1:
23270 case DW_FORM_block2:
23271 case DW_FORM_block4:
23272 case DW_FORM_block:
23273 case DW_FORM_exprloc:
23274 case DW_FORM_data16:
23275 result = DW_BLOCK (attr)->data;
23276 *len = DW_BLOCK (attr)->size;
23277 break;
23278
23279 /* The DW_AT_const_value attributes are supposed to carry the
23280 symbol's value "represented as it would be on the target
23281 architecture." By the time we get here, it's already been
23282 converted to host endianness, so we just need to sign- or
23283 zero-extend it as appropriate. */
23284 case DW_FORM_data1:
23285 type = die_type (die, cu);
23286 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23287 if (result == NULL)
23288 result = write_constant_as_bytes (obstack, byte_order,
23289 type, value, len);
23290 break;
23291 case DW_FORM_data2:
23292 type = die_type (die, cu);
23293 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23294 if (result == NULL)
23295 result = write_constant_as_bytes (obstack, byte_order,
23296 type, value, len);
23297 break;
23298 case DW_FORM_data4:
23299 type = die_type (die, cu);
23300 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23301 if (result == NULL)
23302 result = write_constant_as_bytes (obstack, byte_order,
23303 type, value, len);
23304 break;
23305 case DW_FORM_data8:
23306 type = die_type (die, cu);
23307 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23308 if (result == NULL)
23309 result = write_constant_as_bytes (obstack, byte_order,
23310 type, value, len);
23311 break;
23312
23313 case DW_FORM_sdata:
23314 case DW_FORM_implicit_const:
23315 type = die_type (die, cu);
23316 result = write_constant_as_bytes (obstack, byte_order,
23317 type, DW_SND (attr), len);
23318 break;
23319
23320 case DW_FORM_udata:
23321 type = die_type (die, cu);
23322 result = write_constant_as_bytes (obstack, byte_order,
23323 type, DW_UNSND (attr), len);
23324 break;
23325
23326 default:
23327 complaint (_("unsupported const value attribute form: '%s'"),
23328 dwarf_form_name (attr->form));
23329 break;
23330 }
23331
23332 return result;
23333 }
23334
23335 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23336 valid type for this die is found. */
23337
23338 struct type *
23339 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23340 struct dwarf2_per_cu_data *per_cu)
23341 {
23342 struct dwarf2_cu *cu;
23343 struct die_info *die;
23344
23345 if (per_cu->cu == NULL)
23346 load_cu (per_cu, false);
23347 cu = per_cu->cu;
23348 if (!cu)
23349 return NULL;
23350
23351 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23352 if (!die)
23353 return NULL;
23354
23355 return die_type (die, cu);
23356 }
23357
23358 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23359 PER_CU. */
23360
23361 struct type *
23362 dwarf2_get_die_type (cu_offset die_offset,
23363 struct dwarf2_per_cu_data *per_cu)
23364 {
23365 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23366 return get_die_type_at_offset (die_offset_sect, per_cu);
23367 }
23368
23369 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23370 On entry *REF_CU is the CU of SRC_DIE.
23371 On exit *REF_CU is the CU of the result.
23372 Returns NULL if the referenced DIE isn't found. */
23373
23374 static struct die_info *
23375 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23376 struct dwarf2_cu **ref_cu)
23377 {
23378 struct die_info temp_die;
23379 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23380 struct die_info *die;
23381
23382 /* While it might be nice to assert sig_type->type == NULL here,
23383 we can get here for DW_AT_imported_declaration where we need
23384 the DIE not the type. */
23385
23386 /* If necessary, add it to the queue and load its DIEs. */
23387
23388 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23389 read_signatured_type (sig_type);
23390
23391 sig_cu = sig_type->per_cu.cu;
23392 gdb_assert (sig_cu != NULL);
23393 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23394 temp_die.sect_off = sig_type->type_offset_in_section;
23395 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23396 to_underlying (temp_die.sect_off));
23397 if (die)
23398 {
23399 struct dwarf2_per_objfile *dwarf2_per_objfile
23400 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23401
23402 /* For .gdb_index version 7 keep track of included TUs.
23403 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23404 if (dwarf2_per_objfile->index_table != NULL
23405 && dwarf2_per_objfile->index_table->version <= 7)
23406 {
23407 VEC_safe_push (dwarf2_per_cu_ptr,
23408 (*ref_cu)->per_cu->imported_symtabs,
23409 sig_cu->per_cu);
23410 }
23411
23412 *ref_cu = sig_cu;
23413 if (sig_cu != cu)
23414 sig_cu->ancestor = cu;
23415
23416 return die;
23417 }
23418
23419 return NULL;
23420 }
23421
23422 /* Follow signatured type referenced by ATTR in SRC_DIE.
23423 On entry *REF_CU is the CU of SRC_DIE.
23424 On exit *REF_CU is the CU of the result.
23425 The result is the DIE of the type.
23426 If the referenced type cannot be found an error is thrown. */
23427
23428 static struct die_info *
23429 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23430 struct dwarf2_cu **ref_cu)
23431 {
23432 ULONGEST signature = DW_SIGNATURE (attr);
23433 struct signatured_type *sig_type;
23434 struct die_info *die;
23435
23436 gdb_assert (attr->form == DW_FORM_ref_sig8);
23437
23438 sig_type = lookup_signatured_type (*ref_cu, signature);
23439 /* sig_type will be NULL if the signatured type is missing from
23440 the debug info. */
23441 if (sig_type == NULL)
23442 {
23443 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23444 " from DIE at %s [in module %s]"),
23445 hex_string (signature), sect_offset_str (src_die->sect_off),
23446 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23447 }
23448
23449 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23450 if (die == NULL)
23451 {
23452 dump_die_for_error (src_die);
23453 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23454 " from DIE at %s [in module %s]"),
23455 hex_string (signature), sect_offset_str (src_die->sect_off),
23456 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23457 }
23458
23459 return die;
23460 }
23461
23462 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23463 reading in and processing the type unit if necessary. */
23464
23465 static struct type *
23466 get_signatured_type (struct die_info *die, ULONGEST signature,
23467 struct dwarf2_cu *cu)
23468 {
23469 struct dwarf2_per_objfile *dwarf2_per_objfile
23470 = cu->per_cu->dwarf2_per_objfile;
23471 struct signatured_type *sig_type;
23472 struct dwarf2_cu *type_cu;
23473 struct die_info *type_die;
23474 struct type *type;
23475
23476 sig_type = lookup_signatured_type (cu, signature);
23477 /* sig_type will be NULL if the signatured type is missing from
23478 the debug info. */
23479 if (sig_type == NULL)
23480 {
23481 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23482 " from DIE at %s [in module %s]"),
23483 hex_string (signature), sect_offset_str (die->sect_off),
23484 objfile_name (dwarf2_per_objfile->objfile));
23485 return build_error_marker_type (cu, die);
23486 }
23487
23488 /* If we already know the type we're done. */
23489 if (sig_type->type != NULL)
23490 return sig_type->type;
23491
23492 type_cu = cu;
23493 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23494 if (type_die != NULL)
23495 {
23496 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23497 is created. This is important, for example, because for c++ classes
23498 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23499 type = read_type_die (type_die, type_cu);
23500 if (type == NULL)
23501 {
23502 complaint (_("Dwarf Error: Cannot build signatured type %s"
23503 " referenced from DIE at %s [in module %s]"),
23504 hex_string (signature), sect_offset_str (die->sect_off),
23505 objfile_name (dwarf2_per_objfile->objfile));
23506 type = build_error_marker_type (cu, die);
23507 }
23508 }
23509 else
23510 {
23511 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23512 " from DIE at %s [in module %s]"),
23513 hex_string (signature), sect_offset_str (die->sect_off),
23514 objfile_name (dwarf2_per_objfile->objfile));
23515 type = build_error_marker_type (cu, die);
23516 }
23517 sig_type->type = type;
23518
23519 return type;
23520 }
23521
23522 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23523 reading in and processing the type unit if necessary. */
23524
23525 static struct type *
23526 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23527 struct dwarf2_cu *cu) /* ARI: editCase function */
23528 {
23529 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23530 if (attr_form_is_ref (attr))
23531 {
23532 struct dwarf2_cu *type_cu = cu;
23533 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
23534
23535 return read_type_die (type_die, type_cu);
23536 }
23537 else if (attr->form == DW_FORM_ref_sig8)
23538 {
23539 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
23540 }
23541 else
23542 {
23543 struct dwarf2_per_objfile *dwarf2_per_objfile
23544 = cu->per_cu->dwarf2_per_objfile;
23545
23546 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
23547 " at %s [in module %s]"),
23548 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
23549 objfile_name (dwarf2_per_objfile->objfile));
23550 return build_error_marker_type (cu, die);
23551 }
23552 }
23553
23554 /* Load the DIEs associated with type unit PER_CU into memory. */
23555
23556 static void
23557 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
23558 {
23559 struct signatured_type *sig_type;
23560
23561 /* Caller is responsible for ensuring type_unit_groups don't get here. */
23562 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
23563
23564 /* We have the per_cu, but we need the signatured_type.
23565 Fortunately this is an easy translation. */
23566 gdb_assert (per_cu->is_debug_types);
23567 sig_type = (struct signatured_type *) per_cu;
23568
23569 gdb_assert (per_cu->cu == NULL);
23570
23571 read_signatured_type (sig_type);
23572
23573 gdb_assert (per_cu->cu != NULL);
23574 }
23575
23576 /* die_reader_func for read_signatured_type.
23577 This is identical to load_full_comp_unit_reader,
23578 but is kept separate for now. */
23579
23580 static void
23581 read_signatured_type_reader (const struct die_reader_specs *reader,
23582 const gdb_byte *info_ptr,
23583 struct die_info *comp_unit_die,
23584 int has_children,
23585 void *data)
23586 {
23587 struct dwarf2_cu *cu = reader->cu;
23588
23589 gdb_assert (cu->die_hash == NULL);
23590 cu->die_hash =
23591 htab_create_alloc_ex (cu->header.length / 12,
23592 die_hash,
23593 die_eq,
23594 NULL,
23595 &cu->comp_unit_obstack,
23596 hashtab_obstack_allocate,
23597 dummy_obstack_deallocate);
23598
23599 if (has_children)
23600 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
23601 &info_ptr, comp_unit_die);
23602 cu->dies = comp_unit_die;
23603 /* comp_unit_die is not stored in die_hash, no need. */
23604
23605 /* We try not to read any attributes in this function, because not
23606 all CUs needed for references have been loaded yet, and symbol
23607 table processing isn't initialized. But we have to set the CU language,
23608 or we won't be able to build types correctly.
23609 Similarly, if we do not read the producer, we can not apply
23610 producer-specific interpretation. */
23611 prepare_one_comp_unit (cu, cu->dies, language_minimal);
23612 }
23613
23614 /* Read in a signatured type and build its CU and DIEs.
23615 If the type is a stub for the real type in a DWO file,
23616 read in the real type from the DWO file as well. */
23617
23618 static void
23619 read_signatured_type (struct signatured_type *sig_type)
23620 {
23621 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
23622
23623 gdb_assert (per_cu->is_debug_types);
23624 gdb_assert (per_cu->cu == NULL);
23625
23626 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
23627 read_signatured_type_reader, NULL);
23628 sig_type->per_cu.tu_read = 1;
23629 }
23630
23631 /* Decode simple location descriptions.
23632 Given a pointer to a dwarf block that defines a location, compute
23633 the location and return the value.
23634
23635 NOTE drow/2003-11-18: This function is called in two situations
23636 now: for the address of static or global variables (partial symbols
23637 only) and for offsets into structures which are expected to be
23638 (more or less) constant. The partial symbol case should go away,
23639 and only the constant case should remain. That will let this
23640 function complain more accurately. A few special modes are allowed
23641 without complaint for global variables (for instance, global
23642 register values and thread-local values).
23643
23644 A location description containing no operations indicates that the
23645 object is optimized out. The return value is 0 for that case.
23646 FIXME drow/2003-11-16: No callers check for this case any more; soon all
23647 callers will only want a very basic result and this can become a
23648 complaint.
23649
23650 Note that stack[0] is unused except as a default error return. */
23651
23652 static CORE_ADDR
23653 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
23654 {
23655 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
23656 size_t i;
23657 size_t size = blk->size;
23658 const gdb_byte *data = blk->data;
23659 CORE_ADDR stack[64];
23660 int stacki;
23661 unsigned int bytes_read, unsnd;
23662 gdb_byte op;
23663
23664 i = 0;
23665 stacki = 0;
23666 stack[stacki] = 0;
23667 stack[++stacki] = 0;
23668
23669 while (i < size)
23670 {
23671 op = data[i++];
23672 switch (op)
23673 {
23674 case DW_OP_lit0:
23675 case DW_OP_lit1:
23676 case DW_OP_lit2:
23677 case DW_OP_lit3:
23678 case DW_OP_lit4:
23679 case DW_OP_lit5:
23680 case DW_OP_lit6:
23681 case DW_OP_lit7:
23682 case DW_OP_lit8:
23683 case DW_OP_lit9:
23684 case DW_OP_lit10:
23685 case DW_OP_lit11:
23686 case DW_OP_lit12:
23687 case DW_OP_lit13:
23688 case DW_OP_lit14:
23689 case DW_OP_lit15:
23690 case DW_OP_lit16:
23691 case DW_OP_lit17:
23692 case DW_OP_lit18:
23693 case DW_OP_lit19:
23694 case DW_OP_lit20:
23695 case DW_OP_lit21:
23696 case DW_OP_lit22:
23697 case DW_OP_lit23:
23698 case DW_OP_lit24:
23699 case DW_OP_lit25:
23700 case DW_OP_lit26:
23701 case DW_OP_lit27:
23702 case DW_OP_lit28:
23703 case DW_OP_lit29:
23704 case DW_OP_lit30:
23705 case DW_OP_lit31:
23706 stack[++stacki] = op - DW_OP_lit0;
23707 break;
23708
23709 case DW_OP_reg0:
23710 case DW_OP_reg1:
23711 case DW_OP_reg2:
23712 case DW_OP_reg3:
23713 case DW_OP_reg4:
23714 case DW_OP_reg5:
23715 case DW_OP_reg6:
23716 case DW_OP_reg7:
23717 case DW_OP_reg8:
23718 case DW_OP_reg9:
23719 case DW_OP_reg10:
23720 case DW_OP_reg11:
23721 case DW_OP_reg12:
23722 case DW_OP_reg13:
23723 case DW_OP_reg14:
23724 case DW_OP_reg15:
23725 case DW_OP_reg16:
23726 case DW_OP_reg17:
23727 case DW_OP_reg18:
23728 case DW_OP_reg19:
23729 case DW_OP_reg20:
23730 case DW_OP_reg21:
23731 case DW_OP_reg22:
23732 case DW_OP_reg23:
23733 case DW_OP_reg24:
23734 case DW_OP_reg25:
23735 case DW_OP_reg26:
23736 case DW_OP_reg27:
23737 case DW_OP_reg28:
23738 case DW_OP_reg29:
23739 case DW_OP_reg30:
23740 case DW_OP_reg31:
23741 stack[++stacki] = op - DW_OP_reg0;
23742 if (i < size)
23743 dwarf2_complex_location_expr_complaint ();
23744 break;
23745
23746 case DW_OP_regx:
23747 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
23748 i += bytes_read;
23749 stack[++stacki] = unsnd;
23750 if (i < size)
23751 dwarf2_complex_location_expr_complaint ();
23752 break;
23753
23754 case DW_OP_addr:
23755 stack[++stacki] = read_address (objfile->obfd, &data[i],
23756 cu, &bytes_read);
23757 i += bytes_read;
23758 break;
23759
23760 case DW_OP_const1u:
23761 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
23762 i += 1;
23763 break;
23764
23765 case DW_OP_const1s:
23766 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
23767 i += 1;
23768 break;
23769
23770 case DW_OP_const2u:
23771 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
23772 i += 2;
23773 break;
23774
23775 case DW_OP_const2s:
23776 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
23777 i += 2;
23778 break;
23779
23780 case DW_OP_const4u:
23781 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
23782 i += 4;
23783 break;
23784
23785 case DW_OP_const4s:
23786 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
23787 i += 4;
23788 break;
23789
23790 case DW_OP_const8u:
23791 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
23792 i += 8;
23793 break;
23794
23795 case DW_OP_constu:
23796 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
23797 &bytes_read);
23798 i += bytes_read;
23799 break;
23800
23801 case DW_OP_consts:
23802 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
23803 i += bytes_read;
23804 break;
23805
23806 case DW_OP_dup:
23807 stack[stacki + 1] = stack[stacki];
23808 stacki++;
23809 break;
23810
23811 case DW_OP_plus:
23812 stack[stacki - 1] += stack[stacki];
23813 stacki--;
23814 break;
23815
23816 case DW_OP_plus_uconst:
23817 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
23818 &bytes_read);
23819 i += bytes_read;
23820 break;
23821
23822 case DW_OP_minus:
23823 stack[stacki - 1] -= stack[stacki];
23824 stacki--;
23825 break;
23826
23827 case DW_OP_deref:
23828 /* If we're not the last op, then we definitely can't encode
23829 this using GDB's address_class enum. This is valid for partial
23830 global symbols, although the variable's address will be bogus
23831 in the psymtab. */
23832 if (i < size)
23833 dwarf2_complex_location_expr_complaint ();
23834 break;
23835
23836 case DW_OP_GNU_push_tls_address:
23837 case DW_OP_form_tls_address:
23838 /* The top of the stack has the offset from the beginning
23839 of the thread control block at which the variable is located. */
23840 /* Nothing should follow this operator, so the top of stack would
23841 be returned. */
23842 /* This is valid for partial global symbols, but the variable's
23843 address will be bogus in the psymtab. Make it always at least
23844 non-zero to not look as a variable garbage collected by linker
23845 which have DW_OP_addr 0. */
23846 if (i < size)
23847 dwarf2_complex_location_expr_complaint ();
23848 stack[stacki]++;
23849 break;
23850
23851 case DW_OP_GNU_uninit:
23852 break;
23853
23854 case DW_OP_GNU_addr_index:
23855 case DW_OP_GNU_const_index:
23856 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
23857 &bytes_read);
23858 i += bytes_read;
23859 break;
23860
23861 default:
23862 {
23863 const char *name = get_DW_OP_name (op);
23864
23865 if (name)
23866 complaint (_("unsupported stack op: '%s'"),
23867 name);
23868 else
23869 complaint (_("unsupported stack op: '%02x'"),
23870 op);
23871 }
23872
23873 return (stack[stacki]);
23874 }
23875
23876 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23877 outside of the allocated space. Also enforce minimum>0. */
23878 if (stacki >= ARRAY_SIZE (stack) - 1)
23879 {
23880 complaint (_("location description stack overflow"));
23881 return 0;
23882 }
23883
23884 if (stacki <= 0)
23885 {
23886 complaint (_("location description stack underflow"));
23887 return 0;
23888 }
23889 }
23890 return (stack[stacki]);
23891 }
23892
23893 /* memory allocation interface */
23894
23895 static struct dwarf_block *
23896 dwarf_alloc_block (struct dwarf2_cu *cu)
23897 {
23898 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23899 }
23900
23901 static struct die_info *
23902 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23903 {
23904 struct die_info *die;
23905 size_t size = sizeof (struct die_info);
23906
23907 if (num_attrs > 1)
23908 size += (num_attrs - 1) * sizeof (struct attribute);
23909
23910 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23911 memset (die, 0, sizeof (struct die_info));
23912 return (die);
23913 }
23914
23915 \f
23916 /* Macro support. */
23917
23918 /* Return file name relative to the compilation directory of file number I in
23919 *LH's file name table. The result is allocated using xmalloc; the caller is
23920 responsible for freeing it. */
23921
23922 static char *
23923 file_file_name (int file, struct line_header *lh)
23924 {
23925 /* Is the file number a valid index into the line header's file name
23926 table? Remember that file numbers start with one, not zero. */
23927 if (1 <= file && file <= lh->file_names.size ())
23928 {
23929 const file_entry &fe = lh->file_names[file - 1];
23930
23931 if (!IS_ABSOLUTE_PATH (fe.name))
23932 {
23933 const char *dir = fe.include_dir (lh);
23934 if (dir != NULL)
23935 return concat (dir, SLASH_STRING, fe.name, (char *) NULL);
23936 }
23937 return xstrdup (fe.name);
23938 }
23939 else
23940 {
23941 /* The compiler produced a bogus file number. We can at least
23942 record the macro definitions made in the file, even if we
23943 won't be able to find the file by name. */
23944 char fake_name[80];
23945
23946 xsnprintf (fake_name, sizeof (fake_name),
23947 "<bad macro file number %d>", file);
23948
23949 complaint (_("bad file number in macro information (%d)"),
23950 file);
23951
23952 return xstrdup (fake_name);
23953 }
23954 }
23955
23956 /* Return the full name of file number I in *LH's file name table.
23957 Use COMP_DIR as the name of the current directory of the
23958 compilation. The result is allocated using xmalloc; the caller is
23959 responsible for freeing it. */
23960 static char *
23961 file_full_name (int file, struct line_header *lh, const char *comp_dir)
23962 {
23963 /* Is the file number a valid index into the line header's file name
23964 table? Remember that file numbers start with one, not zero. */
23965 if (1 <= file && file <= lh->file_names.size ())
23966 {
23967 char *relative = file_file_name (file, lh);
23968
23969 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
23970 return relative;
23971 return reconcat (relative, comp_dir, SLASH_STRING,
23972 relative, (char *) NULL);
23973 }
23974 else
23975 return file_file_name (file, lh);
23976 }
23977
23978
23979 static struct macro_source_file *
23980 macro_start_file (struct dwarf2_cu *cu,
23981 int file, int line,
23982 struct macro_source_file *current_file,
23983 struct line_header *lh)
23984 {
23985 /* File name relative to the compilation directory of this source file. */
23986 char *file_name = file_file_name (file, lh);
23987
23988 if (! current_file)
23989 {
23990 /* Note: We don't create a macro table for this compilation unit
23991 at all until we actually get a filename. */
23992 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
23993
23994 /* If we have no current file, then this must be the start_file
23995 directive for the compilation unit's main source file. */
23996 current_file = macro_set_main (macro_table, file_name);
23997 macro_define_special (macro_table);
23998 }
23999 else
24000 current_file = macro_include (current_file, line, file_name);
24001
24002 xfree (file_name);
24003
24004 return current_file;
24005 }
24006
24007 static const char *
24008 consume_improper_spaces (const char *p, const char *body)
24009 {
24010 if (*p == ' ')
24011 {
24012 complaint (_("macro definition contains spaces "
24013 "in formal argument list:\n`%s'"),
24014 body);
24015
24016 while (*p == ' ')
24017 p++;
24018 }
24019
24020 return p;
24021 }
24022
24023
24024 static void
24025 parse_macro_definition (struct macro_source_file *file, int line,
24026 const char *body)
24027 {
24028 const char *p;
24029
24030 /* The body string takes one of two forms. For object-like macro
24031 definitions, it should be:
24032
24033 <macro name> " " <definition>
24034
24035 For function-like macro definitions, it should be:
24036
24037 <macro name> "() " <definition>
24038 or
24039 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24040
24041 Spaces may appear only where explicitly indicated, and in the
24042 <definition>.
24043
24044 The Dwarf 2 spec says that an object-like macro's name is always
24045 followed by a space, but versions of GCC around March 2002 omit
24046 the space when the macro's definition is the empty string.
24047
24048 The Dwarf 2 spec says that there should be no spaces between the
24049 formal arguments in a function-like macro's formal argument list,
24050 but versions of GCC around March 2002 include spaces after the
24051 commas. */
24052
24053
24054 /* Find the extent of the macro name. The macro name is terminated
24055 by either a space or null character (for an object-like macro) or
24056 an opening paren (for a function-like macro). */
24057 for (p = body; *p; p++)
24058 if (*p == ' ' || *p == '(')
24059 break;
24060
24061 if (*p == ' ' || *p == '\0')
24062 {
24063 /* It's an object-like macro. */
24064 int name_len = p - body;
24065 char *name = savestring (body, name_len);
24066 const char *replacement;
24067
24068 if (*p == ' ')
24069 replacement = body + name_len + 1;
24070 else
24071 {
24072 dwarf2_macro_malformed_definition_complaint (body);
24073 replacement = body + name_len;
24074 }
24075
24076 macro_define_object (file, line, name, replacement);
24077
24078 xfree (name);
24079 }
24080 else if (*p == '(')
24081 {
24082 /* It's a function-like macro. */
24083 char *name = savestring (body, p - body);
24084 int argc = 0;
24085 int argv_size = 1;
24086 char **argv = XNEWVEC (char *, argv_size);
24087
24088 p++;
24089
24090 p = consume_improper_spaces (p, body);
24091
24092 /* Parse the formal argument list. */
24093 while (*p && *p != ')')
24094 {
24095 /* Find the extent of the current argument name. */
24096 const char *arg_start = p;
24097
24098 while (*p && *p != ',' && *p != ')' && *p != ' ')
24099 p++;
24100
24101 if (! *p || p == arg_start)
24102 dwarf2_macro_malformed_definition_complaint (body);
24103 else
24104 {
24105 /* Make sure argv has room for the new argument. */
24106 if (argc >= argv_size)
24107 {
24108 argv_size *= 2;
24109 argv = XRESIZEVEC (char *, argv, argv_size);
24110 }
24111
24112 argv[argc++] = savestring (arg_start, p - arg_start);
24113 }
24114
24115 p = consume_improper_spaces (p, body);
24116
24117 /* Consume the comma, if present. */
24118 if (*p == ',')
24119 {
24120 p++;
24121
24122 p = consume_improper_spaces (p, body);
24123 }
24124 }
24125
24126 if (*p == ')')
24127 {
24128 p++;
24129
24130 if (*p == ' ')
24131 /* Perfectly formed definition, no complaints. */
24132 macro_define_function (file, line, name,
24133 argc, (const char **) argv,
24134 p + 1);
24135 else if (*p == '\0')
24136 {
24137 /* Complain, but do define it. */
24138 dwarf2_macro_malformed_definition_complaint (body);
24139 macro_define_function (file, line, name,
24140 argc, (const char **) argv,
24141 p);
24142 }
24143 else
24144 /* Just complain. */
24145 dwarf2_macro_malformed_definition_complaint (body);
24146 }
24147 else
24148 /* Just complain. */
24149 dwarf2_macro_malformed_definition_complaint (body);
24150
24151 xfree (name);
24152 {
24153 int i;
24154
24155 for (i = 0; i < argc; i++)
24156 xfree (argv[i]);
24157 }
24158 xfree (argv);
24159 }
24160 else
24161 dwarf2_macro_malformed_definition_complaint (body);
24162 }
24163
24164 /* Skip some bytes from BYTES according to the form given in FORM.
24165 Returns the new pointer. */
24166
24167 static const gdb_byte *
24168 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24169 enum dwarf_form form,
24170 unsigned int offset_size,
24171 struct dwarf2_section_info *section)
24172 {
24173 unsigned int bytes_read;
24174
24175 switch (form)
24176 {
24177 case DW_FORM_data1:
24178 case DW_FORM_flag:
24179 ++bytes;
24180 break;
24181
24182 case DW_FORM_data2:
24183 bytes += 2;
24184 break;
24185
24186 case DW_FORM_data4:
24187 bytes += 4;
24188 break;
24189
24190 case DW_FORM_data8:
24191 bytes += 8;
24192 break;
24193
24194 case DW_FORM_data16:
24195 bytes += 16;
24196 break;
24197
24198 case DW_FORM_string:
24199 read_direct_string (abfd, bytes, &bytes_read);
24200 bytes += bytes_read;
24201 break;
24202
24203 case DW_FORM_sec_offset:
24204 case DW_FORM_strp:
24205 case DW_FORM_GNU_strp_alt:
24206 bytes += offset_size;
24207 break;
24208
24209 case DW_FORM_block:
24210 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24211 bytes += bytes_read;
24212 break;
24213
24214 case DW_FORM_block1:
24215 bytes += 1 + read_1_byte (abfd, bytes);
24216 break;
24217 case DW_FORM_block2:
24218 bytes += 2 + read_2_bytes (abfd, bytes);
24219 break;
24220 case DW_FORM_block4:
24221 bytes += 4 + read_4_bytes (abfd, bytes);
24222 break;
24223
24224 case DW_FORM_sdata:
24225 case DW_FORM_udata:
24226 case DW_FORM_GNU_addr_index:
24227 case DW_FORM_GNU_str_index:
24228 bytes = gdb_skip_leb128 (bytes, buffer_end);
24229 if (bytes == NULL)
24230 {
24231 dwarf2_section_buffer_overflow_complaint (section);
24232 return NULL;
24233 }
24234 break;
24235
24236 case DW_FORM_implicit_const:
24237 break;
24238
24239 default:
24240 {
24241 complaint (_("invalid form 0x%x in `%s'"),
24242 form, get_section_name (section));
24243 return NULL;
24244 }
24245 }
24246
24247 return bytes;
24248 }
24249
24250 /* A helper for dwarf_decode_macros that handles skipping an unknown
24251 opcode. Returns an updated pointer to the macro data buffer; or,
24252 on error, issues a complaint and returns NULL. */
24253
24254 static const gdb_byte *
24255 skip_unknown_opcode (unsigned int opcode,
24256 const gdb_byte **opcode_definitions,
24257 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24258 bfd *abfd,
24259 unsigned int offset_size,
24260 struct dwarf2_section_info *section)
24261 {
24262 unsigned int bytes_read, i;
24263 unsigned long arg;
24264 const gdb_byte *defn;
24265
24266 if (opcode_definitions[opcode] == NULL)
24267 {
24268 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24269 opcode);
24270 return NULL;
24271 }
24272
24273 defn = opcode_definitions[opcode];
24274 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24275 defn += bytes_read;
24276
24277 for (i = 0; i < arg; ++i)
24278 {
24279 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24280 (enum dwarf_form) defn[i], offset_size,
24281 section);
24282 if (mac_ptr == NULL)
24283 {
24284 /* skip_form_bytes already issued the complaint. */
24285 return NULL;
24286 }
24287 }
24288
24289 return mac_ptr;
24290 }
24291
24292 /* A helper function which parses the header of a macro section.
24293 If the macro section is the extended (for now called "GNU") type,
24294 then this updates *OFFSET_SIZE. Returns a pointer to just after
24295 the header, or issues a complaint and returns NULL on error. */
24296
24297 static const gdb_byte *
24298 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24299 bfd *abfd,
24300 const gdb_byte *mac_ptr,
24301 unsigned int *offset_size,
24302 int section_is_gnu)
24303 {
24304 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24305
24306 if (section_is_gnu)
24307 {
24308 unsigned int version, flags;
24309
24310 version = read_2_bytes (abfd, mac_ptr);
24311 if (version != 4 && version != 5)
24312 {
24313 complaint (_("unrecognized version `%d' in .debug_macro section"),
24314 version);
24315 return NULL;
24316 }
24317 mac_ptr += 2;
24318
24319 flags = read_1_byte (abfd, mac_ptr);
24320 ++mac_ptr;
24321 *offset_size = (flags & 1) ? 8 : 4;
24322
24323 if ((flags & 2) != 0)
24324 /* We don't need the line table offset. */
24325 mac_ptr += *offset_size;
24326
24327 /* Vendor opcode descriptions. */
24328 if ((flags & 4) != 0)
24329 {
24330 unsigned int i, count;
24331
24332 count = read_1_byte (abfd, mac_ptr);
24333 ++mac_ptr;
24334 for (i = 0; i < count; ++i)
24335 {
24336 unsigned int opcode, bytes_read;
24337 unsigned long arg;
24338
24339 opcode = read_1_byte (abfd, mac_ptr);
24340 ++mac_ptr;
24341 opcode_definitions[opcode] = mac_ptr;
24342 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24343 mac_ptr += bytes_read;
24344 mac_ptr += arg;
24345 }
24346 }
24347 }
24348
24349 return mac_ptr;
24350 }
24351
24352 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24353 including DW_MACRO_import. */
24354
24355 static void
24356 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24357 bfd *abfd,
24358 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24359 struct macro_source_file *current_file,
24360 struct line_header *lh,
24361 struct dwarf2_section_info *section,
24362 int section_is_gnu, int section_is_dwz,
24363 unsigned int offset_size,
24364 htab_t include_hash)
24365 {
24366 struct dwarf2_per_objfile *dwarf2_per_objfile
24367 = cu->per_cu->dwarf2_per_objfile;
24368 struct objfile *objfile = dwarf2_per_objfile->objfile;
24369 enum dwarf_macro_record_type macinfo_type;
24370 int at_commandline;
24371 const gdb_byte *opcode_definitions[256];
24372
24373 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24374 &offset_size, section_is_gnu);
24375 if (mac_ptr == NULL)
24376 {
24377 /* We already issued a complaint. */
24378 return;
24379 }
24380
24381 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24382 GDB is still reading the definitions from command line. First
24383 DW_MACINFO_start_file will need to be ignored as it was already executed
24384 to create CURRENT_FILE for the main source holding also the command line
24385 definitions. On first met DW_MACINFO_start_file this flag is reset to
24386 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24387
24388 at_commandline = 1;
24389
24390 do
24391 {
24392 /* Do we at least have room for a macinfo type byte? */
24393 if (mac_ptr >= mac_end)
24394 {
24395 dwarf2_section_buffer_overflow_complaint (section);
24396 break;
24397 }
24398
24399 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24400 mac_ptr++;
24401
24402 /* Note that we rely on the fact that the corresponding GNU and
24403 DWARF constants are the same. */
24404 DIAGNOSTIC_PUSH
24405 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24406 switch (macinfo_type)
24407 {
24408 /* A zero macinfo type indicates the end of the macro
24409 information. */
24410 case 0:
24411 break;
24412
24413 case DW_MACRO_define:
24414 case DW_MACRO_undef:
24415 case DW_MACRO_define_strp:
24416 case DW_MACRO_undef_strp:
24417 case DW_MACRO_define_sup:
24418 case DW_MACRO_undef_sup:
24419 {
24420 unsigned int bytes_read;
24421 int line;
24422 const char *body;
24423 int is_define;
24424
24425 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24426 mac_ptr += bytes_read;
24427
24428 if (macinfo_type == DW_MACRO_define
24429 || macinfo_type == DW_MACRO_undef)
24430 {
24431 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24432 mac_ptr += bytes_read;
24433 }
24434 else
24435 {
24436 LONGEST str_offset;
24437
24438 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24439 mac_ptr += offset_size;
24440
24441 if (macinfo_type == DW_MACRO_define_sup
24442 || macinfo_type == DW_MACRO_undef_sup
24443 || section_is_dwz)
24444 {
24445 struct dwz_file *dwz
24446 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24447
24448 body = read_indirect_string_from_dwz (objfile,
24449 dwz, str_offset);
24450 }
24451 else
24452 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24453 abfd, str_offset);
24454 }
24455
24456 is_define = (macinfo_type == DW_MACRO_define
24457 || macinfo_type == DW_MACRO_define_strp
24458 || macinfo_type == DW_MACRO_define_sup);
24459 if (! current_file)
24460 {
24461 /* DWARF violation as no main source is present. */
24462 complaint (_("debug info with no main source gives macro %s "
24463 "on line %d: %s"),
24464 is_define ? _("definition") : _("undefinition"),
24465 line, body);
24466 break;
24467 }
24468 if ((line == 0 && !at_commandline)
24469 || (line != 0 && at_commandline))
24470 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24471 at_commandline ? _("command-line") : _("in-file"),
24472 is_define ? _("definition") : _("undefinition"),
24473 line == 0 ? _("zero") : _("non-zero"), line, body);
24474
24475 if (is_define)
24476 parse_macro_definition (current_file, line, body);
24477 else
24478 {
24479 gdb_assert (macinfo_type == DW_MACRO_undef
24480 || macinfo_type == DW_MACRO_undef_strp
24481 || macinfo_type == DW_MACRO_undef_sup);
24482 macro_undef (current_file, line, body);
24483 }
24484 }
24485 break;
24486
24487 case DW_MACRO_start_file:
24488 {
24489 unsigned int bytes_read;
24490 int line, file;
24491
24492 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24493 mac_ptr += bytes_read;
24494 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24495 mac_ptr += bytes_read;
24496
24497 if ((line == 0 && !at_commandline)
24498 || (line != 0 && at_commandline))
24499 complaint (_("debug info gives source %d included "
24500 "from %s at %s line %d"),
24501 file, at_commandline ? _("command-line") : _("file"),
24502 line == 0 ? _("zero") : _("non-zero"), line);
24503
24504 if (at_commandline)
24505 {
24506 /* This DW_MACRO_start_file was executed in the
24507 pass one. */
24508 at_commandline = 0;
24509 }
24510 else
24511 current_file = macro_start_file (cu, file, line, current_file,
24512 lh);
24513 }
24514 break;
24515
24516 case DW_MACRO_end_file:
24517 if (! current_file)
24518 complaint (_("macro debug info has an unmatched "
24519 "`close_file' directive"));
24520 else
24521 {
24522 current_file = current_file->included_by;
24523 if (! current_file)
24524 {
24525 enum dwarf_macro_record_type next_type;
24526
24527 /* GCC circa March 2002 doesn't produce the zero
24528 type byte marking the end of the compilation
24529 unit. Complain if it's not there, but exit no
24530 matter what. */
24531
24532 /* Do we at least have room for a macinfo type byte? */
24533 if (mac_ptr >= mac_end)
24534 {
24535 dwarf2_section_buffer_overflow_complaint (section);
24536 return;
24537 }
24538
24539 /* We don't increment mac_ptr here, so this is just
24540 a look-ahead. */
24541 next_type
24542 = (enum dwarf_macro_record_type) read_1_byte (abfd,
24543 mac_ptr);
24544 if (next_type != 0)
24545 complaint (_("no terminating 0-type entry for "
24546 "macros in `.debug_macinfo' section"));
24547
24548 return;
24549 }
24550 }
24551 break;
24552
24553 case DW_MACRO_import:
24554 case DW_MACRO_import_sup:
24555 {
24556 LONGEST offset;
24557 void **slot;
24558 bfd *include_bfd = abfd;
24559 struct dwarf2_section_info *include_section = section;
24560 const gdb_byte *include_mac_end = mac_end;
24561 int is_dwz = section_is_dwz;
24562 const gdb_byte *new_mac_ptr;
24563
24564 offset = read_offset_1 (abfd, mac_ptr, offset_size);
24565 mac_ptr += offset_size;
24566
24567 if (macinfo_type == DW_MACRO_import_sup)
24568 {
24569 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
24570
24571 dwarf2_read_section (objfile, &dwz->macro);
24572
24573 include_section = &dwz->macro;
24574 include_bfd = get_section_bfd_owner (include_section);
24575 include_mac_end = dwz->macro.buffer + dwz->macro.size;
24576 is_dwz = 1;
24577 }
24578
24579 new_mac_ptr = include_section->buffer + offset;
24580 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
24581
24582 if (*slot != NULL)
24583 {
24584 /* This has actually happened; see
24585 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
24586 complaint (_("recursive DW_MACRO_import in "
24587 ".debug_macro section"));
24588 }
24589 else
24590 {
24591 *slot = (void *) new_mac_ptr;
24592
24593 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
24594 include_mac_end, current_file, lh,
24595 section, section_is_gnu, is_dwz,
24596 offset_size, include_hash);
24597
24598 htab_remove_elt (include_hash, (void *) new_mac_ptr);
24599 }
24600 }
24601 break;
24602
24603 case DW_MACINFO_vendor_ext:
24604 if (!section_is_gnu)
24605 {
24606 unsigned int bytes_read;
24607
24608 /* This reads the constant, but since we don't recognize
24609 any vendor extensions, we ignore it. */
24610 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24611 mac_ptr += bytes_read;
24612 read_direct_string (abfd, mac_ptr, &bytes_read);
24613 mac_ptr += bytes_read;
24614
24615 /* We don't recognize any vendor extensions. */
24616 break;
24617 }
24618 /* FALLTHROUGH */
24619
24620 default:
24621 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24622 mac_ptr, mac_end, abfd, offset_size,
24623 section);
24624 if (mac_ptr == NULL)
24625 return;
24626 break;
24627 }
24628 DIAGNOSTIC_POP
24629 } while (macinfo_type != 0);
24630 }
24631
24632 static void
24633 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
24634 int section_is_gnu)
24635 {
24636 struct dwarf2_per_objfile *dwarf2_per_objfile
24637 = cu->per_cu->dwarf2_per_objfile;
24638 struct objfile *objfile = dwarf2_per_objfile->objfile;
24639 struct line_header *lh = cu->line_header;
24640 bfd *abfd;
24641 const gdb_byte *mac_ptr, *mac_end;
24642 struct macro_source_file *current_file = 0;
24643 enum dwarf_macro_record_type macinfo_type;
24644 unsigned int offset_size = cu->header.offset_size;
24645 const gdb_byte *opcode_definitions[256];
24646 void **slot;
24647 struct dwarf2_section_info *section;
24648 const char *section_name;
24649
24650 if (cu->dwo_unit != NULL)
24651 {
24652 if (section_is_gnu)
24653 {
24654 section = &cu->dwo_unit->dwo_file->sections.macro;
24655 section_name = ".debug_macro.dwo";
24656 }
24657 else
24658 {
24659 section = &cu->dwo_unit->dwo_file->sections.macinfo;
24660 section_name = ".debug_macinfo.dwo";
24661 }
24662 }
24663 else
24664 {
24665 if (section_is_gnu)
24666 {
24667 section = &dwarf2_per_objfile->macro;
24668 section_name = ".debug_macro";
24669 }
24670 else
24671 {
24672 section = &dwarf2_per_objfile->macinfo;
24673 section_name = ".debug_macinfo";
24674 }
24675 }
24676
24677 dwarf2_read_section (objfile, section);
24678 if (section->buffer == NULL)
24679 {
24680 complaint (_("missing %s section"), section_name);
24681 return;
24682 }
24683 abfd = get_section_bfd_owner (section);
24684
24685 /* First pass: Find the name of the base filename.
24686 This filename is needed in order to process all macros whose definition
24687 (or undefinition) comes from the command line. These macros are defined
24688 before the first DW_MACINFO_start_file entry, and yet still need to be
24689 associated to the base file.
24690
24691 To determine the base file name, we scan the macro definitions until we
24692 reach the first DW_MACINFO_start_file entry. We then initialize
24693 CURRENT_FILE accordingly so that any macro definition found before the
24694 first DW_MACINFO_start_file can still be associated to the base file. */
24695
24696 mac_ptr = section->buffer + offset;
24697 mac_end = section->buffer + section->size;
24698
24699 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24700 &offset_size, section_is_gnu);
24701 if (mac_ptr == NULL)
24702 {
24703 /* We already issued a complaint. */
24704 return;
24705 }
24706
24707 do
24708 {
24709 /* Do we at least have room for a macinfo type byte? */
24710 if (mac_ptr >= mac_end)
24711 {
24712 /* Complaint is printed during the second pass as GDB will probably
24713 stop the first pass earlier upon finding
24714 DW_MACINFO_start_file. */
24715 break;
24716 }
24717
24718 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24719 mac_ptr++;
24720
24721 /* Note that we rely on the fact that the corresponding GNU and
24722 DWARF constants are the same. */
24723 DIAGNOSTIC_PUSH
24724 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24725 switch (macinfo_type)
24726 {
24727 /* A zero macinfo type indicates the end of the macro
24728 information. */
24729 case 0:
24730 break;
24731
24732 case DW_MACRO_define:
24733 case DW_MACRO_undef:
24734 /* Only skip the data by MAC_PTR. */
24735 {
24736 unsigned int bytes_read;
24737
24738 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24739 mac_ptr += bytes_read;
24740 read_direct_string (abfd, mac_ptr, &bytes_read);
24741 mac_ptr += bytes_read;
24742 }
24743 break;
24744
24745 case DW_MACRO_start_file:
24746 {
24747 unsigned int bytes_read;
24748 int line, file;
24749
24750 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24751 mac_ptr += bytes_read;
24752 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24753 mac_ptr += bytes_read;
24754
24755 current_file = macro_start_file (cu, file, line, current_file, lh);
24756 }
24757 break;
24758
24759 case DW_MACRO_end_file:
24760 /* No data to skip by MAC_PTR. */
24761 break;
24762
24763 case DW_MACRO_define_strp:
24764 case DW_MACRO_undef_strp:
24765 case DW_MACRO_define_sup:
24766 case DW_MACRO_undef_sup:
24767 {
24768 unsigned int bytes_read;
24769
24770 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24771 mac_ptr += bytes_read;
24772 mac_ptr += offset_size;
24773 }
24774 break;
24775
24776 case DW_MACRO_import:
24777 case DW_MACRO_import_sup:
24778 /* Note that, according to the spec, a transparent include
24779 chain cannot call DW_MACRO_start_file. So, we can just
24780 skip this opcode. */
24781 mac_ptr += offset_size;
24782 break;
24783
24784 case DW_MACINFO_vendor_ext:
24785 /* Only skip the data by MAC_PTR. */
24786 if (!section_is_gnu)
24787 {
24788 unsigned int bytes_read;
24789
24790 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24791 mac_ptr += bytes_read;
24792 read_direct_string (abfd, mac_ptr, &bytes_read);
24793 mac_ptr += bytes_read;
24794 }
24795 /* FALLTHROUGH */
24796
24797 default:
24798 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
24799 mac_ptr, mac_end, abfd, offset_size,
24800 section);
24801 if (mac_ptr == NULL)
24802 return;
24803 break;
24804 }
24805 DIAGNOSTIC_POP
24806 } while (macinfo_type != 0 && current_file == NULL);
24807
24808 /* Second pass: Process all entries.
24809
24810 Use the AT_COMMAND_LINE flag to determine whether we are still processing
24811 command-line macro definitions/undefinitions. This flag is unset when we
24812 reach the first DW_MACINFO_start_file entry. */
24813
24814 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
24815 htab_eq_pointer,
24816 NULL, xcalloc, xfree));
24817 mac_ptr = section->buffer + offset;
24818 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
24819 *slot = (void *) mac_ptr;
24820 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
24821 current_file, lh, section,
24822 section_is_gnu, 0, offset_size,
24823 include_hash.get ());
24824 }
24825
24826 /* Check if the attribute's form is a DW_FORM_block*
24827 if so return true else false. */
24828
24829 static int
24830 attr_form_is_block (const struct attribute *attr)
24831 {
24832 return (attr == NULL ? 0 :
24833 attr->form == DW_FORM_block1
24834 || attr->form == DW_FORM_block2
24835 || attr->form == DW_FORM_block4
24836 || attr->form == DW_FORM_block
24837 || attr->form == DW_FORM_exprloc);
24838 }
24839
24840 /* Return non-zero if ATTR's value is a section offset --- classes
24841 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
24842 You may use DW_UNSND (attr) to retrieve such offsets.
24843
24844 Section 7.5.4, "Attribute Encodings", explains that no attribute
24845 may have a value that belongs to more than one of these classes; it
24846 would be ambiguous if we did, because we use the same forms for all
24847 of them. */
24848
24849 static int
24850 attr_form_is_section_offset (const struct attribute *attr)
24851 {
24852 return (attr->form == DW_FORM_data4
24853 || attr->form == DW_FORM_data8
24854 || attr->form == DW_FORM_sec_offset);
24855 }
24856
24857 /* Return non-zero if ATTR's value falls in the 'constant' class, or
24858 zero otherwise. When this function returns true, you can apply
24859 dwarf2_get_attr_constant_value to it.
24860
24861 However, note that for some attributes you must check
24862 attr_form_is_section_offset before using this test. DW_FORM_data4
24863 and DW_FORM_data8 are members of both the constant class, and of
24864 the classes that contain offsets into other debug sections
24865 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
24866 that, if an attribute's can be either a constant or one of the
24867 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
24868 taken as section offsets, not constants.
24869
24870 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
24871 cannot handle that. */
24872
24873 static int
24874 attr_form_is_constant (const struct attribute *attr)
24875 {
24876 switch (attr->form)
24877 {
24878 case DW_FORM_sdata:
24879 case DW_FORM_udata:
24880 case DW_FORM_data1:
24881 case DW_FORM_data2:
24882 case DW_FORM_data4:
24883 case DW_FORM_data8:
24884 case DW_FORM_implicit_const:
24885 return 1;
24886 default:
24887 return 0;
24888 }
24889 }
24890
24891
24892 /* DW_ADDR is always stored already as sect_offset; despite for the forms
24893 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
24894
24895 static int
24896 attr_form_is_ref (const struct attribute *attr)
24897 {
24898 switch (attr->form)
24899 {
24900 case DW_FORM_ref_addr:
24901 case DW_FORM_ref1:
24902 case DW_FORM_ref2:
24903 case DW_FORM_ref4:
24904 case DW_FORM_ref8:
24905 case DW_FORM_ref_udata:
24906 case DW_FORM_GNU_ref_alt:
24907 return 1;
24908 default:
24909 return 0;
24910 }
24911 }
24912
24913 /* Return the .debug_loc section to use for CU.
24914 For DWO files use .debug_loc.dwo. */
24915
24916 static struct dwarf2_section_info *
24917 cu_debug_loc_section (struct dwarf2_cu *cu)
24918 {
24919 struct dwarf2_per_objfile *dwarf2_per_objfile
24920 = cu->per_cu->dwarf2_per_objfile;
24921
24922 if (cu->dwo_unit)
24923 {
24924 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
24925
24926 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
24927 }
24928 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
24929 : &dwarf2_per_objfile->loc);
24930 }
24931
24932 /* A helper function that fills in a dwarf2_loclist_baton. */
24933
24934 static void
24935 fill_in_loclist_baton (struct dwarf2_cu *cu,
24936 struct dwarf2_loclist_baton *baton,
24937 const struct attribute *attr)
24938 {
24939 struct dwarf2_per_objfile *dwarf2_per_objfile
24940 = cu->per_cu->dwarf2_per_objfile;
24941 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24942
24943 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
24944
24945 baton->per_cu = cu->per_cu;
24946 gdb_assert (baton->per_cu);
24947 /* We don't know how long the location list is, but make sure we
24948 don't run off the edge of the section. */
24949 baton->size = section->size - DW_UNSND (attr);
24950 baton->data = section->buffer + DW_UNSND (attr);
24951 baton->base_address = cu->base_address;
24952 baton->from_dwo = cu->dwo_unit != NULL;
24953 }
24954
24955 static void
24956 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
24957 struct dwarf2_cu *cu, int is_block)
24958 {
24959 struct dwarf2_per_objfile *dwarf2_per_objfile
24960 = cu->per_cu->dwarf2_per_objfile;
24961 struct objfile *objfile = dwarf2_per_objfile->objfile;
24962 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
24963
24964 if (attr_form_is_section_offset (attr)
24965 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
24966 the section. If so, fall through to the complaint in the
24967 other branch. */
24968 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
24969 {
24970 struct dwarf2_loclist_baton *baton;
24971
24972 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
24973
24974 fill_in_loclist_baton (cu, baton, attr);
24975
24976 if (cu->base_known == 0)
24977 complaint (_("Location list used without "
24978 "specifying the CU base address."));
24979
24980 SYMBOL_ACLASS_INDEX (sym) = (is_block
24981 ? dwarf2_loclist_block_index
24982 : dwarf2_loclist_index);
24983 SYMBOL_LOCATION_BATON (sym) = baton;
24984 }
24985 else
24986 {
24987 struct dwarf2_locexpr_baton *baton;
24988
24989 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
24990 baton->per_cu = cu->per_cu;
24991 gdb_assert (baton->per_cu);
24992
24993 if (attr_form_is_block (attr))
24994 {
24995 /* Note that we're just copying the block's data pointer
24996 here, not the actual data. We're still pointing into the
24997 info_buffer for SYM's objfile; right now we never release
24998 that buffer, but when we do clean up properly this may
24999 need to change. */
25000 baton->size = DW_BLOCK (attr)->size;
25001 baton->data = DW_BLOCK (attr)->data;
25002 }
25003 else
25004 {
25005 dwarf2_invalid_attrib_class_complaint ("location description",
25006 SYMBOL_NATURAL_NAME (sym));
25007 baton->size = 0;
25008 }
25009
25010 SYMBOL_ACLASS_INDEX (sym) = (is_block
25011 ? dwarf2_locexpr_block_index
25012 : dwarf2_locexpr_index);
25013 SYMBOL_LOCATION_BATON (sym) = baton;
25014 }
25015 }
25016
25017 /* Return the OBJFILE associated with the compilation unit CU. If CU
25018 came from a separate debuginfo file, then the master objfile is
25019 returned. */
25020
25021 struct objfile *
25022 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25023 {
25024 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25025
25026 /* Return the master objfile, so that we can report and look up the
25027 correct file containing this variable. */
25028 if (objfile->separate_debug_objfile_backlink)
25029 objfile = objfile->separate_debug_objfile_backlink;
25030
25031 return objfile;
25032 }
25033
25034 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25035 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25036 CU_HEADERP first. */
25037
25038 static const struct comp_unit_head *
25039 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25040 struct dwarf2_per_cu_data *per_cu)
25041 {
25042 const gdb_byte *info_ptr;
25043
25044 if (per_cu->cu)
25045 return &per_cu->cu->header;
25046
25047 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25048
25049 memset (cu_headerp, 0, sizeof (*cu_headerp));
25050 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25051 rcuh_kind::COMPILE);
25052
25053 return cu_headerp;
25054 }
25055
25056 /* Return the address size given in the compilation unit header for CU. */
25057
25058 int
25059 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25060 {
25061 struct comp_unit_head cu_header_local;
25062 const struct comp_unit_head *cu_headerp;
25063
25064 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25065
25066 return cu_headerp->addr_size;
25067 }
25068
25069 /* Return the offset size given in the compilation unit header for CU. */
25070
25071 int
25072 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25073 {
25074 struct comp_unit_head cu_header_local;
25075 const struct comp_unit_head *cu_headerp;
25076
25077 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25078
25079 return cu_headerp->offset_size;
25080 }
25081
25082 /* See its dwarf2loc.h declaration. */
25083
25084 int
25085 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25086 {
25087 struct comp_unit_head cu_header_local;
25088 const struct comp_unit_head *cu_headerp;
25089
25090 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25091
25092 if (cu_headerp->version == 2)
25093 return cu_headerp->addr_size;
25094 else
25095 return cu_headerp->offset_size;
25096 }
25097
25098 /* Return the text offset of the CU. The returned offset comes from
25099 this CU's objfile. If this objfile came from a separate debuginfo
25100 file, then the offset may be different from the corresponding
25101 offset in the parent objfile. */
25102
25103 CORE_ADDR
25104 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25105 {
25106 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25107
25108 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25109 }
25110
25111 /* Return DWARF version number of PER_CU. */
25112
25113 short
25114 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25115 {
25116 return per_cu->dwarf_version;
25117 }
25118
25119 /* Locate the .debug_info compilation unit from CU's objfile which contains
25120 the DIE at OFFSET. Raises an error on failure. */
25121
25122 static struct dwarf2_per_cu_data *
25123 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25124 unsigned int offset_in_dwz,
25125 struct dwarf2_per_objfile *dwarf2_per_objfile)
25126 {
25127 struct dwarf2_per_cu_data *this_cu;
25128 int low, high;
25129
25130 low = 0;
25131 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25132 while (high > low)
25133 {
25134 struct dwarf2_per_cu_data *mid_cu;
25135 int mid = low + (high - low) / 2;
25136
25137 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25138 if (mid_cu->is_dwz > offset_in_dwz
25139 || (mid_cu->is_dwz == offset_in_dwz
25140 && mid_cu->sect_off + mid_cu->length >= sect_off))
25141 high = mid;
25142 else
25143 low = mid + 1;
25144 }
25145 gdb_assert (low == high);
25146 this_cu = dwarf2_per_objfile->all_comp_units[low];
25147 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25148 {
25149 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25150 error (_("Dwarf Error: could not find partial DIE containing "
25151 "offset %s [in module %s]"),
25152 sect_offset_str (sect_off),
25153 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25154
25155 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25156 <= sect_off);
25157 return dwarf2_per_objfile->all_comp_units[low-1];
25158 }
25159 else
25160 {
25161 this_cu = dwarf2_per_objfile->all_comp_units[low];
25162 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25163 && sect_off >= this_cu->sect_off + this_cu->length)
25164 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25165 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25166 return this_cu;
25167 }
25168 }
25169
25170 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25171
25172 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25173 : per_cu (per_cu_),
25174 mark (false),
25175 has_loclist (false),
25176 checked_producer (false),
25177 producer_is_gxx_lt_4_6 (false),
25178 producer_is_gcc_lt_4_3 (false),
25179 producer_is_icc (false),
25180 producer_is_icc_lt_14 (false),
25181 producer_is_codewarrior (false),
25182 processing_has_namespace_info (false)
25183 {
25184 per_cu->cu = this;
25185 }
25186
25187 /* Destroy a dwarf2_cu. */
25188
25189 dwarf2_cu::~dwarf2_cu ()
25190 {
25191 per_cu->cu = NULL;
25192 }
25193
25194 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25195
25196 static void
25197 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25198 enum language pretend_language)
25199 {
25200 struct attribute *attr;
25201
25202 /* Set the language we're debugging. */
25203 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25204 if (attr)
25205 set_cu_language (DW_UNSND (attr), cu);
25206 else
25207 {
25208 cu->language = pretend_language;
25209 cu->language_defn = language_def (cu->language);
25210 }
25211
25212 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25213 }
25214
25215 /* Increase the age counter on each cached compilation unit, and free
25216 any that are too old. */
25217
25218 static void
25219 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25220 {
25221 struct dwarf2_per_cu_data *per_cu, **last_chain;
25222
25223 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25224 per_cu = dwarf2_per_objfile->read_in_chain;
25225 while (per_cu != NULL)
25226 {
25227 per_cu->cu->last_used ++;
25228 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25229 dwarf2_mark (per_cu->cu);
25230 per_cu = per_cu->cu->read_in_chain;
25231 }
25232
25233 per_cu = dwarf2_per_objfile->read_in_chain;
25234 last_chain = &dwarf2_per_objfile->read_in_chain;
25235 while (per_cu != NULL)
25236 {
25237 struct dwarf2_per_cu_data *next_cu;
25238
25239 next_cu = per_cu->cu->read_in_chain;
25240
25241 if (!per_cu->cu->mark)
25242 {
25243 delete per_cu->cu;
25244 *last_chain = next_cu;
25245 }
25246 else
25247 last_chain = &per_cu->cu->read_in_chain;
25248
25249 per_cu = next_cu;
25250 }
25251 }
25252
25253 /* Remove a single compilation unit from the cache. */
25254
25255 static void
25256 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25257 {
25258 struct dwarf2_per_cu_data *per_cu, **last_chain;
25259 struct dwarf2_per_objfile *dwarf2_per_objfile
25260 = target_per_cu->dwarf2_per_objfile;
25261
25262 per_cu = dwarf2_per_objfile->read_in_chain;
25263 last_chain = &dwarf2_per_objfile->read_in_chain;
25264 while (per_cu != NULL)
25265 {
25266 struct dwarf2_per_cu_data *next_cu;
25267
25268 next_cu = per_cu->cu->read_in_chain;
25269
25270 if (per_cu == target_per_cu)
25271 {
25272 delete per_cu->cu;
25273 per_cu->cu = NULL;
25274 *last_chain = next_cu;
25275 break;
25276 }
25277 else
25278 last_chain = &per_cu->cu->read_in_chain;
25279
25280 per_cu = next_cu;
25281 }
25282 }
25283
25284 /* Cleanup function for the dwarf2_per_objfile data. */
25285
25286 static void
25287 dwarf2_free_objfile (struct objfile *objfile, void *datum)
25288 {
25289 struct dwarf2_per_objfile *dwarf2_per_objfile
25290 = static_cast<struct dwarf2_per_objfile *> (datum);
25291
25292 delete dwarf2_per_objfile;
25293 }
25294
25295 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25296 We store these in a hash table separate from the DIEs, and preserve them
25297 when the DIEs are flushed out of cache.
25298
25299 The CU "per_cu" pointer is needed because offset alone is not enough to
25300 uniquely identify the type. A file may have multiple .debug_types sections,
25301 or the type may come from a DWO file. Furthermore, while it's more logical
25302 to use per_cu->section+offset, with Fission the section with the data is in
25303 the DWO file but we don't know that section at the point we need it.
25304 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25305 because we can enter the lookup routine, get_die_type_at_offset, from
25306 outside this file, and thus won't necessarily have PER_CU->cu.
25307 Fortunately, PER_CU is stable for the life of the objfile. */
25308
25309 struct dwarf2_per_cu_offset_and_type
25310 {
25311 const struct dwarf2_per_cu_data *per_cu;
25312 sect_offset sect_off;
25313 struct type *type;
25314 };
25315
25316 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25317
25318 static hashval_t
25319 per_cu_offset_and_type_hash (const void *item)
25320 {
25321 const struct dwarf2_per_cu_offset_and_type *ofs
25322 = (const struct dwarf2_per_cu_offset_and_type *) item;
25323
25324 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25325 }
25326
25327 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25328
25329 static int
25330 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25331 {
25332 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25333 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25334 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25335 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25336
25337 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25338 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25339 }
25340
25341 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25342 table if necessary. For convenience, return TYPE.
25343
25344 The DIEs reading must have careful ordering to:
25345 * Not cause infite loops trying to read in DIEs as a prerequisite for
25346 reading current DIE.
25347 * Not trying to dereference contents of still incompletely read in types
25348 while reading in other DIEs.
25349 * Enable referencing still incompletely read in types just by a pointer to
25350 the type without accessing its fields.
25351
25352 Therefore caller should follow these rules:
25353 * Try to fetch any prerequisite types we may need to build this DIE type
25354 before building the type and calling set_die_type.
25355 * After building type call set_die_type for current DIE as soon as
25356 possible before fetching more types to complete the current type.
25357 * Make the type as complete as possible before fetching more types. */
25358
25359 static struct type *
25360 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25361 {
25362 struct dwarf2_per_objfile *dwarf2_per_objfile
25363 = cu->per_cu->dwarf2_per_objfile;
25364 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25365 struct objfile *objfile = dwarf2_per_objfile->objfile;
25366 struct attribute *attr;
25367 struct dynamic_prop prop;
25368
25369 /* For Ada types, make sure that the gnat-specific data is always
25370 initialized (if not already set). There are a few types where
25371 we should not be doing so, because the type-specific area is
25372 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25373 where the type-specific area is used to store the floatformat).
25374 But this is not a problem, because the gnat-specific information
25375 is actually not needed for these types. */
25376 if (need_gnat_info (cu)
25377 && TYPE_CODE (type) != TYPE_CODE_FUNC
25378 && TYPE_CODE (type) != TYPE_CODE_FLT
25379 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25380 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25381 && TYPE_CODE (type) != TYPE_CODE_METHOD
25382 && !HAVE_GNAT_AUX_INFO (type))
25383 INIT_GNAT_SPECIFIC (type);
25384
25385 /* Read DW_AT_allocated and set in type. */
25386 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25387 if (attr_form_is_block (attr))
25388 {
25389 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25390 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25391 }
25392 else if (attr != NULL)
25393 {
25394 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25395 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25396 sect_offset_str (die->sect_off));
25397 }
25398
25399 /* Read DW_AT_associated and set in type. */
25400 attr = dwarf2_attr (die, DW_AT_associated, cu);
25401 if (attr_form_is_block (attr))
25402 {
25403 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25404 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25405 }
25406 else if (attr != NULL)
25407 {
25408 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25409 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25410 sect_offset_str (die->sect_off));
25411 }
25412
25413 /* Read DW_AT_data_location and set in type. */
25414 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25415 if (attr_to_dynamic_prop (attr, die, cu, &prop))
25416 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25417
25418 if (dwarf2_per_objfile->die_type_hash == NULL)
25419 {
25420 dwarf2_per_objfile->die_type_hash =
25421 htab_create_alloc_ex (127,
25422 per_cu_offset_and_type_hash,
25423 per_cu_offset_and_type_eq,
25424 NULL,
25425 &objfile->objfile_obstack,
25426 hashtab_obstack_allocate,
25427 dummy_obstack_deallocate);
25428 }
25429
25430 ofs.per_cu = cu->per_cu;
25431 ofs.sect_off = die->sect_off;
25432 ofs.type = type;
25433 slot = (struct dwarf2_per_cu_offset_and_type **)
25434 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25435 if (*slot)
25436 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25437 sect_offset_str (die->sect_off));
25438 *slot = XOBNEW (&objfile->objfile_obstack,
25439 struct dwarf2_per_cu_offset_and_type);
25440 **slot = ofs;
25441 return type;
25442 }
25443
25444 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25445 or return NULL if the die does not have a saved type. */
25446
25447 static struct type *
25448 get_die_type_at_offset (sect_offset sect_off,
25449 struct dwarf2_per_cu_data *per_cu)
25450 {
25451 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25452 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25453
25454 if (dwarf2_per_objfile->die_type_hash == NULL)
25455 return NULL;
25456
25457 ofs.per_cu = per_cu;
25458 ofs.sect_off = sect_off;
25459 slot = ((struct dwarf2_per_cu_offset_and_type *)
25460 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25461 if (slot)
25462 return slot->type;
25463 else
25464 return NULL;
25465 }
25466
25467 /* Look up the type for DIE in CU in die_type_hash,
25468 or return NULL if DIE does not have a saved type. */
25469
25470 static struct type *
25471 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25472 {
25473 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25474 }
25475
25476 /* Add a dependence relationship from CU to REF_PER_CU. */
25477
25478 static void
25479 dwarf2_add_dependence (struct dwarf2_cu *cu,
25480 struct dwarf2_per_cu_data *ref_per_cu)
25481 {
25482 void **slot;
25483
25484 if (cu->dependencies == NULL)
25485 cu->dependencies
25486 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25487 NULL, &cu->comp_unit_obstack,
25488 hashtab_obstack_allocate,
25489 dummy_obstack_deallocate);
25490
25491 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25492 if (*slot == NULL)
25493 *slot = ref_per_cu;
25494 }
25495
25496 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25497 Set the mark field in every compilation unit in the
25498 cache that we must keep because we are keeping CU. */
25499
25500 static int
25501 dwarf2_mark_helper (void **slot, void *data)
25502 {
25503 struct dwarf2_per_cu_data *per_cu;
25504
25505 per_cu = (struct dwarf2_per_cu_data *) *slot;
25506
25507 /* cu->dependencies references may not yet have been ever read if QUIT aborts
25508 reading of the chain. As such dependencies remain valid it is not much
25509 useful to track and undo them during QUIT cleanups. */
25510 if (per_cu->cu == NULL)
25511 return 1;
25512
25513 if (per_cu->cu->mark)
25514 return 1;
25515 per_cu->cu->mark = true;
25516
25517 if (per_cu->cu->dependencies != NULL)
25518 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
25519
25520 return 1;
25521 }
25522
25523 /* Set the mark field in CU and in every other compilation unit in the
25524 cache that we must keep because we are keeping CU. */
25525
25526 static void
25527 dwarf2_mark (struct dwarf2_cu *cu)
25528 {
25529 if (cu->mark)
25530 return;
25531 cu->mark = true;
25532 if (cu->dependencies != NULL)
25533 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
25534 }
25535
25536 static void
25537 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
25538 {
25539 while (per_cu)
25540 {
25541 per_cu->cu->mark = false;
25542 per_cu = per_cu->cu->read_in_chain;
25543 }
25544 }
25545
25546 /* Trivial hash function for partial_die_info: the hash value of a DIE
25547 is its offset in .debug_info for this objfile. */
25548
25549 static hashval_t
25550 partial_die_hash (const void *item)
25551 {
25552 const struct partial_die_info *part_die
25553 = (const struct partial_die_info *) item;
25554
25555 return to_underlying (part_die->sect_off);
25556 }
25557
25558 /* Trivial comparison function for partial_die_info structures: two DIEs
25559 are equal if they have the same offset. */
25560
25561 static int
25562 partial_die_eq (const void *item_lhs, const void *item_rhs)
25563 {
25564 const struct partial_die_info *part_die_lhs
25565 = (const struct partial_die_info *) item_lhs;
25566 const struct partial_die_info *part_die_rhs
25567 = (const struct partial_die_info *) item_rhs;
25568
25569 return part_die_lhs->sect_off == part_die_rhs->sect_off;
25570 }
25571
25572 struct cmd_list_element *set_dwarf_cmdlist;
25573 struct cmd_list_element *show_dwarf_cmdlist;
25574
25575 static void
25576 set_dwarf_cmd (const char *args, int from_tty)
25577 {
25578 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
25579 gdb_stdout);
25580 }
25581
25582 static void
25583 show_dwarf_cmd (const char *args, int from_tty)
25584 {
25585 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
25586 }
25587
25588 int dwarf_always_disassemble;
25589
25590 static void
25591 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
25592 struct cmd_list_element *c, const char *value)
25593 {
25594 fprintf_filtered (file,
25595 _("Whether to always disassemble "
25596 "DWARF expressions is %s.\n"),
25597 value);
25598 }
25599
25600 static void
25601 show_check_physname (struct ui_file *file, int from_tty,
25602 struct cmd_list_element *c, const char *value)
25603 {
25604 fprintf_filtered (file,
25605 _("Whether to check \"physname\" is %s.\n"),
25606 value);
25607 }
25608
25609 void
25610 _initialize_dwarf2_read (void)
25611 {
25612 dwarf2_objfile_data_key
25613 = register_objfile_data_with_cleanup (nullptr, dwarf2_free_objfile);
25614
25615 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
25616 Set DWARF specific variables.\n\
25617 Configure DWARF variables such as the cache size"),
25618 &set_dwarf_cmdlist, "maintenance set dwarf ",
25619 0/*allow-unknown*/, &maintenance_set_cmdlist);
25620
25621 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
25622 Show DWARF specific variables\n\
25623 Show DWARF variables such as the cache size"),
25624 &show_dwarf_cmdlist, "maintenance show dwarf ",
25625 0/*allow-unknown*/, &maintenance_show_cmdlist);
25626
25627 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
25628 &dwarf_max_cache_age, _("\
25629 Set the upper bound on the age of cached DWARF compilation units."), _("\
25630 Show the upper bound on the age of cached DWARF compilation units."), _("\
25631 A higher limit means that cached compilation units will be stored\n\
25632 in memory longer, and more total memory will be used. Zero disables\n\
25633 caching, which can slow down startup."),
25634 NULL,
25635 show_dwarf_max_cache_age,
25636 &set_dwarf_cmdlist,
25637 &show_dwarf_cmdlist);
25638
25639 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
25640 &dwarf_always_disassemble, _("\
25641 Set whether `info address' always disassembles DWARF expressions."), _("\
25642 Show whether `info address' always disassembles DWARF expressions."), _("\
25643 When enabled, DWARF expressions are always printed in an assembly-like\n\
25644 syntax. When disabled, expressions will be printed in a more\n\
25645 conversational style, when possible."),
25646 NULL,
25647 show_dwarf_always_disassemble,
25648 &set_dwarf_cmdlist,
25649 &show_dwarf_cmdlist);
25650
25651 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
25652 Set debugging of the DWARF reader."), _("\
25653 Show debugging of the DWARF reader."), _("\
25654 When enabled (non-zero), debugging messages are printed during DWARF\n\
25655 reading and symtab expansion. A value of 1 (one) provides basic\n\
25656 information. A value greater than 1 provides more verbose information."),
25657 NULL,
25658 NULL,
25659 &setdebuglist, &showdebuglist);
25660
25661 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
25662 Set debugging of the DWARF DIE reader."), _("\
25663 Show debugging of the DWARF DIE reader."), _("\
25664 When enabled (non-zero), DIEs are dumped after they are read in.\n\
25665 The value is the maximum depth to print."),
25666 NULL,
25667 NULL,
25668 &setdebuglist, &showdebuglist);
25669
25670 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
25671 Set debugging of the dwarf line reader."), _("\
25672 Show debugging of the dwarf line reader."), _("\
25673 When enabled (non-zero), line number entries are dumped as they are read in.\n\
25674 A value of 1 (one) provides basic information.\n\
25675 A value greater than 1 provides more verbose information."),
25676 NULL,
25677 NULL,
25678 &setdebuglist, &showdebuglist);
25679
25680 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
25681 Set cross-checking of \"physname\" code against demangler."), _("\
25682 Show cross-checking of \"physname\" code against demangler."), _("\
25683 When enabled, GDB's internal \"physname\" code is checked against\n\
25684 the demangler."),
25685 NULL, show_check_physname,
25686 &setdebuglist, &showdebuglist);
25687
25688 add_setshow_boolean_cmd ("use-deprecated-index-sections",
25689 no_class, &use_deprecated_index_sections, _("\
25690 Set whether to use deprecated gdb_index sections."), _("\
25691 Show whether to use deprecated gdb_index sections."), _("\
25692 When enabled, deprecated .gdb_index sections are used anyway.\n\
25693 Normally they are ignored either because of a missing feature or\n\
25694 performance issue.\n\
25695 Warning: This option must be enabled before gdb reads the file."),
25696 NULL,
25697 NULL,
25698 &setlist, &showlist);
25699
25700 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
25701 &dwarf2_locexpr_funcs);
25702 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
25703 &dwarf2_loclist_funcs);
25704
25705 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
25706 &dwarf2_block_frame_base_locexpr_funcs);
25707 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
25708 &dwarf2_block_frame_base_loclist_funcs);
25709
25710 #if GDB_SELF_TEST
25711 selftests::register_test ("dw2_expand_symtabs_matching",
25712 selftests::dw2_expand_symtabs_matching::run_test);
25713 #endif
25714 }