]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Switch the license of all .c files to GPLv3.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
19
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
27
28 #include "defs.h"
29 #include "bfd.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "objfiles.h"
33 #include "elf/dwarf2.h"
34 #include "buildsym.h"
35 #include "demangle.h"
36 #include "expression.h"
37 #include "filenames.h" /* for DOSish file names */
38 #include "macrotab.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "bcache.h"
42 #include "dwarf2expr.h"
43 #include "dwarf2loc.h"
44 #include "cp-support.h"
45 #include "hashtab.h"
46 #include "command.h"
47 #include "gdbcmd.h"
48
49 #include <fcntl.h>
50 #include "gdb_string.h"
51 #include "gdb_assert.h"
52 #include <sys/types.h>
53
54 /* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
68 #if 0
69 /* .debug_info header for a compilation unit
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72 typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81 _COMP_UNIT_HEADER;
82 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
83 #endif
84
85 /* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88 typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98 _PUBNAMES_HEADER;
99 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101 /* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104 typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114 _ARANGES_HEADER;
115 #define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117 /* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120 typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138 _STATEMENT_PROLOGUE;
139
140 static const struct objfile_data *dwarf2_objfile_data_key;
141
142 struct dwarf2_per_objfile
143 {
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
165
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
180 };
181
182 static struct dwarf2_per_objfile *dwarf2_per_objfile;
183
184 static asection *dwarf_info_section;
185 static asection *dwarf_abbrev_section;
186 static asection *dwarf_line_section;
187 static asection *dwarf_pubnames_section;
188 static asection *dwarf_aranges_section;
189 static asection *dwarf_loc_section;
190 static asection *dwarf_macinfo_section;
191 static asection *dwarf_str_section;
192 static asection *dwarf_ranges_section;
193 asection *dwarf_frame_section;
194 asection *dwarf_eh_frame_section;
195
196 /* names of the debugging sections */
197
198 #define INFO_SECTION ".debug_info"
199 #define ABBREV_SECTION ".debug_abbrev"
200 #define LINE_SECTION ".debug_line"
201 #define PUBNAMES_SECTION ".debug_pubnames"
202 #define ARANGES_SECTION ".debug_aranges"
203 #define LOC_SECTION ".debug_loc"
204 #define MACINFO_SECTION ".debug_macinfo"
205 #define STR_SECTION ".debug_str"
206 #define RANGES_SECTION ".debug_ranges"
207 #define FRAME_SECTION ".debug_frame"
208 #define EH_FRAME_SECTION ".eh_frame"
209
210 /* local data types */
211
212 /* We hold several abbreviation tables in memory at the same time. */
213 #ifndef ABBREV_HASH_SIZE
214 #define ABBREV_HASH_SIZE 121
215 #endif
216
217 /* The data in a compilation unit header, after target2host
218 translation, looks like this. */
219 struct comp_unit_head
220 {
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
226
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
229
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
232
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
239 gdb_byte *cu_head_ptr;
240
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
243 gdb_byte *first_die_ptr;
244
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
247
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
250
251 /* Non-zero if base_address has been set. */
252 int base_known;
253 };
254
255 /* Fixed size for the DIE hash table. */
256 #ifndef REF_HASH_SIZE
257 #define REF_HASH_SIZE 1021
258 #endif
259
260 /* Internal state when decoding a particular compilation unit. */
261 struct dwarf2_cu
262 {
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
269 should logically be moved to the dwarf2_cu structure. */
270 struct comp_unit_head header;
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
278 const char *producer;
279
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
291 /* Maintain an array of referenced fundamental types for the current
292 compilation unit being read. For DWARF version 1, we have to construct
293 the fundamental types on the fly, since no information about the
294 fundamental types is supplied. Each such fundamental type is created by
295 calling a language dependent routine to create the type, and then a
296 pointer to that type is then placed in the array at the index specified
297 by it's FT_<TYPENAME> value. The array has a fixed size set by the
298 FT_NUM_MEMBERS compile time constant, which is the number of predefined
299 fundamental types gdb knows how to construct. */
300 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
301
302 /* DWARF abbreviation table associated with this compilation unit. */
303 struct abbrev_info **dwarf2_abbrevs;
304
305 /* Storage for the abbrev table. */
306 struct obstack abbrev_obstack;
307
308 /* Hash table holding all the loaded partial DIEs. */
309 htab_t partial_dies;
310
311 /* Storage for things with the same lifetime as this read-in compilation
312 unit, including partial DIEs. */
313 struct obstack comp_unit_obstack;
314
315 /* When multiple dwarf2_cu structures are living in memory, this field
316 chains them all together, so that they can be released efficiently.
317 We will probably also want a generation counter so that most-recently-used
318 compilation units are cached... */
319 struct dwarf2_per_cu_data *read_in_chain;
320
321 /* Backchain to our per_cu entry if the tree has been built. */
322 struct dwarf2_per_cu_data *per_cu;
323
324 /* How many compilation units ago was this CU last referenced? */
325 int last_used;
326
327 /* A hash table of die offsets for following references. */
328 struct die_info *die_ref_table[REF_HASH_SIZE];
329
330 /* Full DIEs if read in. */
331 struct die_info *dies;
332
333 /* A set of pointers to dwarf2_per_cu_data objects for compilation
334 units referenced by this one. Only set during full symbol processing;
335 partial symbol tables do not have dependencies. */
336 htab_t dependencies;
337
338 /* Header data from the line table, during full symbol processing. */
339 struct line_header *line_header;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**30-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 30;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* This flag will be set if we need to load absolutely all DIEs
374 for this compilation unit, instead of just the ones we think
375 are interesting. It gets set if we look for a DIE in the
376 hash table and don't find it. */
377 unsigned int load_all_dies : 1;
378
379 /* Set iff currently read in. */
380 struct dwarf2_cu *cu;
381
382 /* If full symbols for this CU have been read in, then this field
383 holds a map of DIE offsets to types. It isn't always possible
384 to reconstruct this information later, so we have to preserve
385 it. */
386 htab_t type_hash;
387
388 /* The partial symbol table associated with this compilation unit,
389 or NULL for partial units (which do not have an associated
390 symtab). */
391 struct partial_symtab *psymtab;
392 };
393
394 /* The line number information for a compilation unit (found in the
395 .debug_line section) begins with a "statement program header",
396 which contains the following information. */
397 struct line_header
398 {
399 unsigned int total_length;
400 unsigned short version;
401 unsigned int header_length;
402 unsigned char minimum_instruction_length;
403 unsigned char default_is_stmt;
404 int line_base;
405 unsigned char line_range;
406 unsigned char opcode_base;
407
408 /* standard_opcode_lengths[i] is the number of operands for the
409 standard opcode whose value is i. This means that
410 standard_opcode_lengths[0] is unused, and the last meaningful
411 element is standard_opcode_lengths[opcode_base - 1]. */
412 unsigned char *standard_opcode_lengths;
413
414 /* The include_directories table. NOTE! These strings are not
415 allocated with xmalloc; instead, they are pointers into
416 debug_line_buffer. If you try to free them, `free' will get
417 indigestion. */
418 unsigned int num_include_dirs, include_dirs_size;
419 char **include_dirs;
420
421 /* The file_names table. NOTE! These strings are not allocated
422 with xmalloc; instead, they are pointers into debug_line_buffer.
423 Don't try to free them directly. */
424 unsigned int num_file_names, file_names_size;
425 struct file_entry
426 {
427 char *name;
428 unsigned int dir_index;
429 unsigned int mod_time;
430 unsigned int length;
431 int included_p; /* Non-zero if referenced by the Line Number Program. */
432 struct symtab *symtab; /* The associated symbol table, if any. */
433 } *file_names;
434
435 /* The start and end of the statement program following this
436 header. These point into dwarf2_per_objfile->line_buffer. */
437 gdb_byte *statement_program_start, *statement_program_end;
438 };
439
440 /* When we construct a partial symbol table entry we only
441 need this much information. */
442 struct partial_die_info
443 {
444 /* Offset of this DIE. */
445 unsigned int offset;
446
447 /* DWARF-2 tag for this DIE. */
448 ENUM_BITFIELD(dwarf_tag) tag : 16;
449
450 /* Language code associated with this DIE. This is only used
451 for the compilation unit DIE. */
452 unsigned int language : 8;
453
454 /* Assorted flags describing the data found in this DIE. */
455 unsigned int has_children : 1;
456 unsigned int is_external : 1;
457 unsigned int is_declaration : 1;
458 unsigned int has_type : 1;
459 unsigned int has_specification : 1;
460 unsigned int has_stmt_list : 1;
461 unsigned int has_pc_info : 1;
462
463 /* Flag set if the SCOPE field of this structure has been
464 computed. */
465 unsigned int scope_set : 1;
466
467 /* Flag set if the DIE has a byte_size attribute. */
468 unsigned int has_byte_size : 1;
469
470 /* The name of this DIE. Normally the value of DW_AT_name, but
471 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
472 other fashion. */
473 char *name;
474 char *dirname;
475
476 /* The scope to prepend to our children. This is generally
477 allocated on the comp_unit_obstack, so will disappear
478 when this compilation unit leaves the cache. */
479 char *scope;
480
481 /* The location description associated with this DIE, if any. */
482 struct dwarf_block *locdesc;
483
484 /* If HAS_PC_INFO, the PC range associated with this DIE. */
485 CORE_ADDR lowpc;
486 CORE_ADDR highpc;
487
488 /* Pointer into the info_buffer pointing at the target of
489 DW_AT_sibling, if any. */
490 gdb_byte *sibling;
491
492 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
493 DW_AT_specification (or DW_AT_abstract_origin or
494 DW_AT_extension). */
495 unsigned int spec_offset;
496
497 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
498 unsigned int line_offset;
499
500 /* Pointers to this DIE's parent, first child, and next sibling,
501 if any. */
502 struct partial_die_info *die_parent, *die_child, *die_sibling;
503 };
504
505 /* This data structure holds the information of an abbrev. */
506 struct abbrev_info
507 {
508 unsigned int number; /* number identifying abbrev */
509 enum dwarf_tag tag; /* dwarf tag */
510 unsigned short has_children; /* boolean */
511 unsigned short num_attrs; /* number of attributes */
512 struct attr_abbrev *attrs; /* an array of attribute descriptions */
513 struct abbrev_info *next; /* next in chain */
514 };
515
516 struct attr_abbrev
517 {
518 enum dwarf_attribute name;
519 enum dwarf_form form;
520 };
521
522 /* This data structure holds a complete die structure. */
523 struct die_info
524 {
525 enum dwarf_tag tag; /* Tag indicating type of die */
526 unsigned int abbrev; /* Abbrev number */
527 unsigned int offset; /* Offset in .debug_info section */
528 unsigned int num_attrs; /* Number of attributes */
529 struct attribute *attrs; /* An array of attributes */
530 struct die_info *next_ref; /* Next die in ref hash table */
531
532 /* The dies in a compilation unit form an n-ary tree. PARENT
533 points to this die's parent; CHILD points to the first child of
534 this node; and all the children of a given node are chained
535 together via their SIBLING fields, terminated by a die whose
536 tag is zero. */
537 struct die_info *child; /* Its first child, if any. */
538 struct die_info *sibling; /* Its next sibling, if any. */
539 struct die_info *parent; /* Its parent, if any. */
540
541 struct type *type; /* Cached type information */
542 };
543
544 /* Attributes have a name and a value */
545 struct attribute
546 {
547 enum dwarf_attribute name;
548 enum dwarf_form form;
549 union
550 {
551 char *str;
552 struct dwarf_block *blk;
553 unsigned long unsnd;
554 long int snd;
555 CORE_ADDR addr;
556 }
557 u;
558 };
559
560 struct function_range
561 {
562 const char *name;
563 CORE_ADDR lowpc, highpc;
564 int seen_line;
565 struct function_range *next;
566 };
567
568 /* Get at parts of an attribute structure */
569
570 #define DW_STRING(attr) ((attr)->u.str)
571 #define DW_UNSND(attr) ((attr)->u.unsnd)
572 #define DW_BLOCK(attr) ((attr)->u.blk)
573 #define DW_SND(attr) ((attr)->u.snd)
574 #define DW_ADDR(attr) ((attr)->u.addr)
575
576 /* Blocks are a bunch of untyped bytes. */
577 struct dwarf_block
578 {
579 unsigned int size;
580 gdb_byte *data;
581 };
582
583 #ifndef ATTR_ALLOC_CHUNK
584 #define ATTR_ALLOC_CHUNK 4
585 #endif
586
587 /* Allocate fields for structs, unions and enums in this size. */
588 #ifndef DW_FIELD_ALLOC_CHUNK
589 #define DW_FIELD_ALLOC_CHUNK 4
590 #endif
591
592 /* A zeroed version of a partial die for initialization purposes. */
593 static struct partial_die_info zeroed_partial_die;
594
595 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
596 but this would require a corresponding change in unpack_field_as_long
597 and friends. */
598 static int bits_per_byte = 8;
599
600 /* The routines that read and process dies for a C struct or C++ class
601 pass lists of data member fields and lists of member function fields
602 in an instance of a field_info structure, as defined below. */
603 struct field_info
604 {
605 /* List of data member and baseclasses fields. */
606 struct nextfield
607 {
608 struct nextfield *next;
609 int accessibility;
610 int virtuality;
611 struct field field;
612 }
613 *fields;
614
615 /* Number of fields. */
616 int nfields;
617
618 /* Number of baseclasses. */
619 int nbaseclasses;
620
621 /* Set if the accesibility of one of the fields is not public. */
622 int non_public_fields;
623
624 /* Member function fields array, entries are allocated in the order they
625 are encountered in the object file. */
626 struct nextfnfield
627 {
628 struct nextfnfield *next;
629 struct fn_field fnfield;
630 }
631 *fnfields;
632
633 /* Member function fieldlist array, contains name of possibly overloaded
634 member function, number of overloaded member functions and a pointer
635 to the head of the member function field chain. */
636 struct fnfieldlist
637 {
638 char *name;
639 int length;
640 struct nextfnfield *head;
641 }
642 *fnfieldlists;
643
644 /* Number of entries in the fnfieldlists array. */
645 int nfnfields;
646 };
647
648 /* One item on the queue of compilation units to read in full symbols
649 for. */
650 struct dwarf2_queue_item
651 {
652 struct dwarf2_per_cu_data *per_cu;
653 struct dwarf2_queue_item *next;
654 };
655
656 /* The current queue. */
657 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
658
659 /* Loaded secondary compilation units are kept in memory until they
660 have not been referenced for the processing of this many
661 compilation units. Set this to zero to disable caching. Cache
662 sizes of up to at least twenty will improve startup time for
663 typical inter-CU-reference binaries, at an obvious memory cost. */
664 static int dwarf2_max_cache_age = 5;
665 static void
666 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
667 struct cmd_list_element *c, const char *value)
668 {
669 fprintf_filtered (file, _("\
670 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
671 value);
672 }
673
674
675 /* Various complaints about symbol reading that don't abort the process */
676
677 static void
678 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
679 {
680 complaint (&symfile_complaints,
681 _("statement list doesn't fit in .debug_line section"));
682 }
683
684 static void
685 dwarf2_debug_line_missing_file_complaint (void)
686 {
687 complaint (&symfile_complaints,
688 _(".debug_line section has line data without a file"));
689 }
690
691 static void
692 dwarf2_complex_location_expr_complaint (void)
693 {
694 complaint (&symfile_complaints, _("location expression too complex"));
695 }
696
697 static void
698 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
699 int arg3)
700 {
701 complaint (&symfile_complaints,
702 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
703 arg2, arg3);
704 }
705
706 static void
707 dwarf2_macros_too_long_complaint (void)
708 {
709 complaint (&symfile_complaints,
710 _("macro info runs off end of `.debug_macinfo' section"));
711 }
712
713 static void
714 dwarf2_macro_malformed_definition_complaint (const char *arg1)
715 {
716 complaint (&symfile_complaints,
717 _("macro debug info contains a malformed macro definition:\n`%s'"),
718 arg1);
719 }
720
721 static void
722 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
723 {
724 complaint (&symfile_complaints,
725 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
726 }
727
728 /* local function prototypes */
729
730 static void dwarf2_locate_sections (bfd *, asection *, void *);
731
732 #if 0
733 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
734 #endif
735
736 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
737 struct objfile *);
738
739 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
740 struct partial_die_info *,
741 struct partial_symtab *);
742
743 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
744
745 static void scan_partial_symbols (struct partial_die_info *,
746 CORE_ADDR *, CORE_ADDR *,
747 struct dwarf2_cu *);
748
749 static void add_partial_symbol (struct partial_die_info *,
750 struct dwarf2_cu *);
751
752 static int pdi_needs_namespace (enum dwarf_tag tag);
753
754 static void add_partial_namespace (struct partial_die_info *pdi,
755 CORE_ADDR *lowpc, CORE_ADDR *highpc,
756 struct dwarf2_cu *cu);
757
758 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
759 struct dwarf2_cu *cu);
760
761 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
762 gdb_byte *info_ptr,
763 bfd *abfd,
764 struct dwarf2_cu *cu);
765
766 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
767
768 static void psymtab_to_symtab_1 (struct partial_symtab *);
769
770 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
771
772 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
773
774 static void dwarf2_free_abbrev_table (void *);
775
776 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
777 struct dwarf2_cu *);
778
779 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
780 struct dwarf2_cu *);
781
782 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
783 struct dwarf2_cu *);
784
785 static gdb_byte *read_partial_die (struct partial_die_info *,
786 struct abbrev_info *abbrev, unsigned int,
787 bfd *, gdb_byte *, struct dwarf2_cu *);
788
789 static struct partial_die_info *find_partial_die (unsigned long,
790 struct dwarf2_cu *);
791
792 static void fixup_partial_die (struct partial_die_info *,
793 struct dwarf2_cu *);
794
795 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
796 struct dwarf2_cu *, int *);
797
798 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
799 bfd *, gdb_byte *, struct dwarf2_cu *);
800
801 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
802 bfd *, gdb_byte *, struct dwarf2_cu *);
803
804 static unsigned int read_1_byte (bfd *, gdb_byte *);
805
806 static int read_1_signed_byte (bfd *, gdb_byte *);
807
808 static unsigned int read_2_bytes (bfd *, gdb_byte *);
809
810 static unsigned int read_4_bytes (bfd *, gdb_byte *);
811
812 static unsigned long read_8_bytes (bfd *, gdb_byte *);
813
814 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
815 unsigned int *);
816
817 static LONGEST read_initial_length (bfd *, gdb_byte *,
818 struct comp_unit_head *, unsigned int *);
819
820 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
821 unsigned int *);
822
823 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
824
825 static char *read_string (bfd *, gdb_byte *, unsigned int *);
826
827 static char *read_indirect_string (bfd *, gdb_byte *,
828 const struct comp_unit_head *,
829 unsigned int *);
830
831 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
832
833 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
834
835 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
836
837 static void set_cu_language (unsigned int, struct dwarf2_cu *);
838
839 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
840 struct dwarf2_cu *);
841
842 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
843 struct dwarf2_cu *cu);
844
845 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
846
847 static struct die_info *die_specification (struct die_info *die,
848 struct dwarf2_cu *);
849
850 static void free_line_header (struct line_header *lh);
851
852 static void add_file_name (struct line_header *, char *, unsigned int,
853 unsigned int, unsigned int);
854
855 static struct line_header *(dwarf_decode_line_header
856 (unsigned int offset,
857 bfd *abfd, struct dwarf2_cu *cu));
858
859 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
860 struct dwarf2_cu *, struct partial_symtab *);
861
862 static void dwarf2_start_subfile (char *, char *, char *);
863
864 static struct symbol *new_symbol (struct die_info *, struct type *,
865 struct dwarf2_cu *);
866
867 static void dwarf2_const_value (struct attribute *, struct symbol *,
868 struct dwarf2_cu *);
869
870 static void dwarf2_const_value_data (struct attribute *attr,
871 struct symbol *sym,
872 int bits);
873
874 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
875
876 static struct type *die_containing_type (struct die_info *,
877 struct dwarf2_cu *);
878
879 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
880
881 static void read_type_die (struct die_info *, struct dwarf2_cu *);
882
883 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
884
885 static char *typename_concat (struct obstack *,
886 const char *prefix,
887 const char *suffix,
888 struct dwarf2_cu *);
889
890 static void read_typedef (struct die_info *, struct dwarf2_cu *);
891
892 static void read_base_type (struct die_info *, struct dwarf2_cu *);
893
894 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
895
896 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
897
898 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
899
900 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
901
902 static int dwarf2_get_pc_bounds (struct die_info *,
903 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
904
905 static void get_scope_pc_bounds (struct die_info *,
906 CORE_ADDR *, CORE_ADDR *,
907 struct dwarf2_cu *);
908
909 static void dwarf2_add_field (struct field_info *, struct die_info *,
910 struct dwarf2_cu *);
911
912 static void dwarf2_attach_fields_to_type (struct field_info *,
913 struct type *, struct dwarf2_cu *);
914
915 static void dwarf2_add_member_fn (struct field_info *,
916 struct die_info *, struct type *,
917 struct dwarf2_cu *);
918
919 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
920 struct type *, struct dwarf2_cu *);
921
922 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
923
924 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
925
926 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
927
928 static void read_common_block (struct die_info *, struct dwarf2_cu *);
929
930 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
931
932 static const char *namespace_name (struct die_info *die,
933 int *is_anonymous, struct dwarf2_cu *);
934
935 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
936
937 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
938
939 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
940
941 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
942
943 static void read_array_type (struct die_info *, struct dwarf2_cu *);
944
945 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
946 struct dwarf2_cu *);
947
948 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
949
950 static void read_tag_ptr_to_member_type (struct die_info *,
951 struct dwarf2_cu *);
952
953 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
954
955 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
956
957 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
958
959 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
960
961 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
962
963 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
964
965 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
966 struct dwarf2_cu *,
967 gdb_byte **new_info_ptr,
968 struct die_info *parent);
969
970 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
971 struct dwarf2_cu *,
972 gdb_byte **new_info_ptr,
973 struct die_info *parent);
974
975 static void free_die_list (struct die_info *);
976
977 static void process_die (struct die_info *, struct dwarf2_cu *);
978
979 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
980
981 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
982
983 static struct die_info *dwarf2_extension (struct die_info *die,
984 struct dwarf2_cu *);
985
986 static char *dwarf_tag_name (unsigned int);
987
988 static char *dwarf_attr_name (unsigned int);
989
990 static char *dwarf_form_name (unsigned int);
991
992 static char *dwarf_stack_op_name (unsigned int);
993
994 static char *dwarf_bool_name (unsigned int);
995
996 static char *dwarf_type_encoding_name (unsigned int);
997
998 #if 0
999 static char *dwarf_cfi_name (unsigned int);
1000
1001 struct die_info *copy_die (struct die_info *);
1002 #endif
1003
1004 static struct die_info *sibling_die (struct die_info *);
1005
1006 static void dump_die (struct die_info *);
1007
1008 static void dump_die_list (struct die_info *);
1009
1010 static void store_in_ref_table (unsigned int, struct die_info *,
1011 struct dwarf2_cu *);
1012
1013 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1014 struct dwarf2_cu *);
1015
1016 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1017
1018 static struct die_info *follow_die_ref (struct die_info *,
1019 struct attribute *,
1020 struct dwarf2_cu *);
1021
1022 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1023 struct dwarf2_cu *);
1024
1025 /* memory allocation interface */
1026
1027 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1028
1029 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1030
1031 static struct die_info *dwarf_alloc_die (void);
1032
1033 static void initialize_cu_func_list (struct dwarf2_cu *);
1034
1035 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1036 struct dwarf2_cu *);
1037
1038 static void dwarf_decode_macros (struct line_header *, unsigned int,
1039 char *, bfd *, struct dwarf2_cu *);
1040
1041 static int attr_form_is_block (struct attribute *);
1042
1043 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1044 struct symbol *sym,
1045 struct dwarf2_cu *cu);
1046
1047 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1048 struct dwarf2_cu *cu);
1049
1050 static void free_stack_comp_unit (void *);
1051
1052 static hashval_t partial_die_hash (const void *item);
1053
1054 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1055
1056 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1057 (unsigned long offset, struct objfile *objfile);
1058
1059 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1060 (unsigned long offset, struct objfile *objfile);
1061
1062 static void free_one_comp_unit (void *);
1063
1064 static void free_cached_comp_units (void *);
1065
1066 static void age_cached_comp_units (void);
1067
1068 static void free_one_cached_comp_unit (void *);
1069
1070 static void set_die_type (struct die_info *, struct type *,
1071 struct dwarf2_cu *);
1072
1073 static void reset_die_and_siblings_types (struct die_info *,
1074 struct dwarf2_cu *);
1075
1076 static void create_all_comp_units (struct objfile *);
1077
1078 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1079 struct objfile *);
1080
1081 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1082
1083 static void dwarf2_add_dependence (struct dwarf2_cu *,
1084 struct dwarf2_per_cu_data *);
1085
1086 static void dwarf2_mark (struct dwarf2_cu *);
1087
1088 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1089
1090 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1091
1092
1093 /* Try to locate the sections we need for DWARF 2 debugging
1094 information and return true if we have enough to do something. */
1095
1096 int
1097 dwarf2_has_info (struct objfile *objfile)
1098 {
1099 struct dwarf2_per_objfile *data;
1100
1101 /* Initialize per-objfile state. */
1102 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1103 memset (data, 0, sizeof (*data));
1104 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1105 dwarf2_per_objfile = data;
1106
1107 dwarf_info_section = 0;
1108 dwarf_abbrev_section = 0;
1109 dwarf_line_section = 0;
1110 dwarf_str_section = 0;
1111 dwarf_macinfo_section = 0;
1112 dwarf_frame_section = 0;
1113 dwarf_eh_frame_section = 0;
1114 dwarf_ranges_section = 0;
1115 dwarf_loc_section = 0;
1116
1117 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1118 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1119 }
1120
1121 /* This function is mapped across the sections and remembers the
1122 offset and size of each of the debugging sections we are interested
1123 in. */
1124
1125 static void
1126 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1127 {
1128 if (strcmp (sectp->name, INFO_SECTION) == 0)
1129 {
1130 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1131 dwarf_info_section = sectp;
1132 }
1133 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1134 {
1135 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1136 dwarf_abbrev_section = sectp;
1137 }
1138 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1139 {
1140 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1141 dwarf_line_section = sectp;
1142 }
1143 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1144 {
1145 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1146 dwarf_pubnames_section = sectp;
1147 }
1148 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1149 {
1150 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1151 dwarf_aranges_section = sectp;
1152 }
1153 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1154 {
1155 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1156 dwarf_loc_section = sectp;
1157 }
1158 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1159 {
1160 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1161 dwarf_macinfo_section = sectp;
1162 }
1163 else if (strcmp (sectp->name, STR_SECTION) == 0)
1164 {
1165 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1166 dwarf_str_section = sectp;
1167 }
1168 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1169 {
1170 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1171 dwarf_frame_section = sectp;
1172 }
1173 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1174 {
1175 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1176 if (aflag & SEC_HAS_CONTENTS)
1177 {
1178 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1179 dwarf_eh_frame_section = sectp;
1180 }
1181 }
1182 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1183 {
1184 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1185 dwarf_ranges_section = sectp;
1186 }
1187
1188 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1189 && bfd_section_vma (abfd, sectp) == 0)
1190 dwarf2_per_objfile->has_section_at_zero = 1;
1191 }
1192
1193 /* Build a partial symbol table. */
1194
1195 void
1196 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1197 {
1198 /* We definitely need the .debug_info and .debug_abbrev sections */
1199
1200 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1201 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1202
1203 if (dwarf_line_section)
1204 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1205 else
1206 dwarf2_per_objfile->line_buffer = NULL;
1207
1208 if (dwarf_str_section)
1209 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1210 else
1211 dwarf2_per_objfile->str_buffer = NULL;
1212
1213 if (dwarf_macinfo_section)
1214 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1215 dwarf_macinfo_section);
1216 else
1217 dwarf2_per_objfile->macinfo_buffer = NULL;
1218
1219 if (dwarf_ranges_section)
1220 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1221 else
1222 dwarf2_per_objfile->ranges_buffer = NULL;
1223
1224 if (dwarf_loc_section)
1225 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1226 else
1227 dwarf2_per_objfile->loc_buffer = NULL;
1228
1229 if (mainline
1230 || (objfile->global_psymbols.size == 0
1231 && objfile->static_psymbols.size == 0))
1232 {
1233 init_psymbol_list (objfile, 1024);
1234 }
1235
1236 #if 0
1237 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1238 {
1239 /* Things are significantly easier if we have .debug_aranges and
1240 .debug_pubnames sections */
1241
1242 dwarf2_build_psymtabs_easy (objfile, mainline);
1243 }
1244 else
1245 #endif
1246 /* only test this case for now */
1247 {
1248 /* In this case we have to work a bit harder */
1249 dwarf2_build_psymtabs_hard (objfile, mainline);
1250 }
1251 }
1252
1253 #if 0
1254 /* Build the partial symbol table from the information in the
1255 .debug_pubnames and .debug_aranges sections. */
1256
1257 static void
1258 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1259 {
1260 bfd *abfd = objfile->obfd;
1261 char *aranges_buffer, *pubnames_buffer;
1262 char *aranges_ptr, *pubnames_ptr;
1263 unsigned int entry_length, version, info_offset, info_size;
1264
1265 pubnames_buffer = dwarf2_read_section (objfile,
1266 dwarf_pubnames_section);
1267 pubnames_ptr = pubnames_buffer;
1268 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1269 {
1270 struct comp_unit_head cu_header;
1271 unsigned int bytes_read;
1272
1273 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1274 &bytes_read);
1275 pubnames_ptr += bytes_read;
1276 version = read_1_byte (abfd, pubnames_ptr);
1277 pubnames_ptr += 1;
1278 info_offset = read_4_bytes (abfd, pubnames_ptr);
1279 pubnames_ptr += 4;
1280 info_size = read_4_bytes (abfd, pubnames_ptr);
1281 pubnames_ptr += 4;
1282 }
1283
1284 aranges_buffer = dwarf2_read_section (objfile,
1285 dwarf_aranges_section);
1286
1287 }
1288 #endif
1289
1290 /* Read in the comp unit header information from the debug_info at
1291 info_ptr. */
1292
1293 static gdb_byte *
1294 read_comp_unit_head (struct comp_unit_head *cu_header,
1295 gdb_byte *info_ptr, bfd *abfd)
1296 {
1297 int signed_addr;
1298 unsigned int bytes_read;
1299 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1300 &bytes_read);
1301 info_ptr += bytes_read;
1302 cu_header->version = read_2_bytes (abfd, info_ptr);
1303 info_ptr += 2;
1304 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1305 &bytes_read);
1306 info_ptr += bytes_read;
1307 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1308 info_ptr += 1;
1309 signed_addr = bfd_get_sign_extend_vma (abfd);
1310 if (signed_addr < 0)
1311 internal_error (__FILE__, __LINE__,
1312 _("read_comp_unit_head: dwarf from non elf file"));
1313 cu_header->signed_addr_p = signed_addr;
1314 return info_ptr;
1315 }
1316
1317 static gdb_byte *
1318 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1319 bfd *abfd)
1320 {
1321 gdb_byte *beg_of_comp_unit = info_ptr;
1322
1323 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1324
1325 if (header->version != 2 && header->version != 3)
1326 error (_("Dwarf Error: wrong version in compilation unit header "
1327 "(is %d, should be %d) [in module %s]"), header->version,
1328 2, bfd_get_filename (abfd));
1329
1330 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1331 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1332 "(offset 0x%lx + 6) [in module %s]"),
1333 (long) header->abbrev_offset,
1334 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1335 bfd_get_filename (abfd));
1336
1337 if (beg_of_comp_unit + header->length + header->initial_length_size
1338 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1339 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1340 "(offset 0x%lx + 0) [in module %s]"),
1341 (long) header->length,
1342 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1343 bfd_get_filename (abfd));
1344
1345 return info_ptr;
1346 }
1347
1348 /* Allocate a new partial symtab for file named NAME and mark this new
1349 partial symtab as being an include of PST. */
1350
1351 static void
1352 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1353 struct objfile *objfile)
1354 {
1355 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1356
1357 subpst->section_offsets = pst->section_offsets;
1358 subpst->textlow = 0;
1359 subpst->texthigh = 0;
1360
1361 subpst->dependencies = (struct partial_symtab **)
1362 obstack_alloc (&objfile->objfile_obstack,
1363 sizeof (struct partial_symtab *));
1364 subpst->dependencies[0] = pst;
1365 subpst->number_of_dependencies = 1;
1366
1367 subpst->globals_offset = 0;
1368 subpst->n_global_syms = 0;
1369 subpst->statics_offset = 0;
1370 subpst->n_static_syms = 0;
1371 subpst->symtab = NULL;
1372 subpst->read_symtab = pst->read_symtab;
1373 subpst->readin = 0;
1374
1375 /* No private part is necessary for include psymtabs. This property
1376 can be used to differentiate between such include psymtabs and
1377 the regular ones. */
1378 subpst->read_symtab_private = NULL;
1379 }
1380
1381 /* Read the Line Number Program data and extract the list of files
1382 included by the source file represented by PST. Build an include
1383 partial symtab for each of these included files.
1384
1385 This procedure assumes that there *is* a Line Number Program in
1386 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1387 before calling this procedure. */
1388
1389 static void
1390 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1391 struct partial_die_info *pdi,
1392 struct partial_symtab *pst)
1393 {
1394 struct objfile *objfile = cu->objfile;
1395 bfd *abfd = objfile->obfd;
1396 struct line_header *lh;
1397
1398 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1399 if (lh == NULL)
1400 return; /* No linetable, so no includes. */
1401
1402 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1403
1404 free_line_header (lh);
1405 }
1406
1407
1408 /* Build the partial symbol table by doing a quick pass through the
1409 .debug_info and .debug_abbrev sections. */
1410
1411 static void
1412 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1413 {
1414 /* Instead of reading this into a big buffer, we should probably use
1415 mmap() on architectures that support it. (FIXME) */
1416 bfd *abfd = objfile->obfd;
1417 gdb_byte *info_ptr;
1418 gdb_byte *beg_of_comp_unit;
1419 struct partial_die_info comp_unit_die;
1420 struct partial_symtab *pst;
1421 struct cleanup *back_to;
1422 CORE_ADDR lowpc, highpc, baseaddr;
1423
1424 info_ptr = dwarf2_per_objfile->info_buffer;
1425
1426 /* Any cached compilation units will be linked by the per-objfile
1427 read_in_chain. Make sure to free them when we're done. */
1428 back_to = make_cleanup (free_cached_comp_units, NULL);
1429
1430 create_all_comp_units (objfile);
1431
1432 /* Since the objects we're extracting from .debug_info vary in
1433 length, only the individual functions to extract them (like
1434 read_comp_unit_head and load_partial_die) can really know whether
1435 the buffer is large enough to hold another complete object.
1436
1437 At the moment, they don't actually check that. If .debug_info
1438 holds just one extra byte after the last compilation unit's dies,
1439 then read_comp_unit_head will happily read off the end of the
1440 buffer. read_partial_die is similarly casual. Those functions
1441 should be fixed.
1442
1443 For this loop condition, simply checking whether there's any data
1444 left at all should be sufficient. */
1445 while (info_ptr < (dwarf2_per_objfile->info_buffer
1446 + dwarf2_per_objfile->info_size))
1447 {
1448 struct cleanup *back_to_inner;
1449 struct dwarf2_cu cu;
1450 struct abbrev_info *abbrev;
1451 unsigned int bytes_read;
1452 struct dwarf2_per_cu_data *this_cu;
1453
1454 beg_of_comp_unit = info_ptr;
1455
1456 memset (&cu, 0, sizeof (cu));
1457
1458 obstack_init (&cu.comp_unit_obstack);
1459
1460 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1461
1462 cu.objfile = objfile;
1463 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1464
1465 /* Complete the cu_header */
1466 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1467 cu.header.first_die_ptr = info_ptr;
1468 cu.header.cu_head_ptr = beg_of_comp_unit;
1469
1470 cu.list_in_scope = &file_symbols;
1471
1472 /* Read the abbrevs for this compilation unit into a table */
1473 dwarf2_read_abbrevs (abfd, &cu);
1474 make_cleanup (dwarf2_free_abbrev_table, &cu);
1475
1476 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1477
1478 /* Read the compilation unit die */
1479 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1480 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1481 abfd, info_ptr, &cu);
1482
1483 if (comp_unit_die.tag == DW_TAG_partial_unit)
1484 {
1485 info_ptr = (beg_of_comp_unit + cu.header.length
1486 + cu.header.initial_length_size);
1487 do_cleanups (back_to_inner);
1488 continue;
1489 }
1490
1491 /* Set the language we're debugging */
1492 set_cu_language (comp_unit_die.language, &cu);
1493
1494 /* Allocate a new partial symbol table structure */
1495 pst = start_psymtab_common (objfile, objfile->section_offsets,
1496 comp_unit_die.name ? comp_unit_die.name : "",
1497 comp_unit_die.lowpc,
1498 objfile->global_psymbols.next,
1499 objfile->static_psymbols.next);
1500
1501 if (comp_unit_die.dirname)
1502 pst->dirname = xstrdup (comp_unit_die.dirname);
1503
1504 pst->read_symtab_private = (char *) this_cu;
1505
1506 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1507
1508 /* Store the function that reads in the rest of the symbol table */
1509 pst->read_symtab = dwarf2_psymtab_to_symtab;
1510
1511 /* If this compilation unit was already read in, free the
1512 cached copy in order to read it in again. This is
1513 necessary because we skipped some symbols when we first
1514 read in the compilation unit (see load_partial_dies).
1515 This problem could be avoided, but the benefit is
1516 unclear. */
1517 if (this_cu->cu != NULL)
1518 free_one_cached_comp_unit (this_cu->cu);
1519
1520 cu.per_cu = this_cu;
1521
1522 /* Note that this is a pointer to our stack frame, being
1523 added to a global data structure. It will be cleaned up
1524 in free_stack_comp_unit when we finish with this
1525 compilation unit. */
1526 this_cu->cu = &cu;
1527
1528 this_cu->psymtab = pst;
1529
1530 /* Check if comp unit has_children.
1531 If so, read the rest of the partial symbols from this comp unit.
1532 If not, there's no more debug_info for this comp unit. */
1533 if (comp_unit_die.has_children)
1534 {
1535 struct partial_die_info *first_die;
1536
1537 lowpc = ((CORE_ADDR) -1);
1538 highpc = ((CORE_ADDR) 0);
1539
1540 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1541
1542 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1543
1544 /* If we didn't find a lowpc, set it to highpc to avoid
1545 complaints from `maint check'. */
1546 if (lowpc == ((CORE_ADDR) -1))
1547 lowpc = highpc;
1548
1549 /* If the compilation unit didn't have an explicit address range,
1550 then use the information extracted from its child dies. */
1551 if (! comp_unit_die.has_pc_info)
1552 {
1553 comp_unit_die.lowpc = lowpc;
1554 comp_unit_die.highpc = highpc;
1555 }
1556 }
1557 pst->textlow = comp_unit_die.lowpc + baseaddr;
1558 pst->texthigh = comp_unit_die.highpc + baseaddr;
1559
1560 pst->n_global_syms = objfile->global_psymbols.next -
1561 (objfile->global_psymbols.list + pst->globals_offset);
1562 pst->n_static_syms = objfile->static_psymbols.next -
1563 (objfile->static_psymbols.list + pst->statics_offset);
1564 sort_pst_symbols (pst);
1565
1566 /* If there is already a psymtab or symtab for a file of this
1567 name, remove it. (If there is a symtab, more drastic things
1568 also happen.) This happens in VxWorks. */
1569 free_named_symtabs (pst->filename);
1570
1571 info_ptr = beg_of_comp_unit + cu.header.length
1572 + cu.header.initial_length_size;
1573
1574 if (comp_unit_die.has_stmt_list)
1575 {
1576 /* Get the list of files included in the current compilation unit,
1577 and build a psymtab for each of them. */
1578 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1579 }
1580
1581 do_cleanups (back_to_inner);
1582 }
1583 do_cleanups (back_to);
1584 }
1585
1586 /* Load the DIEs for a secondary CU into memory. */
1587
1588 static void
1589 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1590 {
1591 bfd *abfd = objfile->obfd;
1592 gdb_byte *info_ptr, *beg_of_comp_unit;
1593 struct partial_die_info comp_unit_die;
1594 struct dwarf2_cu *cu;
1595 struct abbrev_info *abbrev;
1596 unsigned int bytes_read;
1597 struct cleanup *back_to;
1598
1599 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1600 beg_of_comp_unit = info_ptr;
1601
1602 cu = xmalloc (sizeof (struct dwarf2_cu));
1603 memset (cu, 0, sizeof (struct dwarf2_cu));
1604
1605 obstack_init (&cu->comp_unit_obstack);
1606
1607 cu->objfile = objfile;
1608 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1609
1610 /* Complete the cu_header. */
1611 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1612 cu->header.first_die_ptr = info_ptr;
1613 cu->header.cu_head_ptr = beg_of_comp_unit;
1614
1615 /* Read the abbrevs for this compilation unit into a table. */
1616 dwarf2_read_abbrevs (abfd, cu);
1617 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1618
1619 /* Read the compilation unit die. */
1620 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1621 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1622 abfd, info_ptr, cu);
1623
1624 /* Set the language we're debugging. */
1625 set_cu_language (comp_unit_die.language, cu);
1626
1627 /* Link this compilation unit into the compilation unit tree. */
1628 this_cu->cu = cu;
1629 cu->per_cu = this_cu;
1630
1631 /* Check if comp unit has_children.
1632 If so, read the rest of the partial symbols from this comp unit.
1633 If not, there's no more debug_info for this comp unit. */
1634 if (comp_unit_die.has_children)
1635 load_partial_dies (abfd, info_ptr, 0, cu);
1636
1637 do_cleanups (back_to);
1638 }
1639
1640 /* Create a list of all compilation units in OBJFILE. We do this only
1641 if an inter-comp-unit reference is found; presumably if there is one,
1642 there will be many, and one will occur early in the .debug_info section.
1643 So there's no point in building this list incrementally. */
1644
1645 static void
1646 create_all_comp_units (struct objfile *objfile)
1647 {
1648 int n_allocated;
1649 int n_comp_units;
1650 struct dwarf2_per_cu_data **all_comp_units;
1651 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1652
1653 n_comp_units = 0;
1654 n_allocated = 10;
1655 all_comp_units = xmalloc (n_allocated
1656 * sizeof (struct dwarf2_per_cu_data *));
1657
1658 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1659 {
1660 struct comp_unit_head cu_header;
1661 gdb_byte *beg_of_comp_unit;
1662 struct dwarf2_per_cu_data *this_cu;
1663 unsigned long offset;
1664 unsigned int bytes_read;
1665
1666 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1667
1668 /* Read just enough information to find out where the next
1669 compilation unit is. */
1670 cu_header.initial_length_size = 0;
1671 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1672 &cu_header, &bytes_read);
1673
1674 /* Save the compilation unit for later lookup. */
1675 this_cu = obstack_alloc (&objfile->objfile_obstack,
1676 sizeof (struct dwarf2_per_cu_data));
1677 memset (this_cu, 0, sizeof (*this_cu));
1678 this_cu->offset = offset;
1679 this_cu->length = cu_header.length + cu_header.initial_length_size;
1680
1681 if (n_comp_units == n_allocated)
1682 {
1683 n_allocated *= 2;
1684 all_comp_units = xrealloc (all_comp_units,
1685 n_allocated
1686 * sizeof (struct dwarf2_per_cu_data *));
1687 }
1688 all_comp_units[n_comp_units++] = this_cu;
1689
1690 info_ptr = info_ptr + this_cu->length;
1691 }
1692
1693 dwarf2_per_objfile->all_comp_units
1694 = obstack_alloc (&objfile->objfile_obstack,
1695 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1696 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1697 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1698 xfree (all_comp_units);
1699 dwarf2_per_objfile->n_comp_units = n_comp_units;
1700 }
1701
1702 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1703 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1704 in CU. */
1705
1706 static void
1707 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1708 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1709 {
1710 struct objfile *objfile = cu->objfile;
1711 bfd *abfd = objfile->obfd;
1712 struct partial_die_info *pdi;
1713
1714 /* Now, march along the PDI's, descending into ones which have
1715 interesting children but skipping the children of the other ones,
1716 until we reach the end of the compilation unit. */
1717
1718 pdi = first_die;
1719
1720 while (pdi != NULL)
1721 {
1722 fixup_partial_die (pdi, cu);
1723
1724 /* Anonymous namespaces have no name but have interesting
1725 children, so we need to look at them. Ditto for anonymous
1726 enums. */
1727
1728 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1729 || pdi->tag == DW_TAG_enumeration_type)
1730 {
1731 switch (pdi->tag)
1732 {
1733 case DW_TAG_subprogram:
1734 if (pdi->has_pc_info)
1735 {
1736 if (pdi->lowpc < *lowpc)
1737 {
1738 *lowpc = pdi->lowpc;
1739 }
1740 if (pdi->highpc > *highpc)
1741 {
1742 *highpc = pdi->highpc;
1743 }
1744 if (!pdi->is_declaration)
1745 {
1746 add_partial_symbol (pdi, cu);
1747 }
1748 }
1749 break;
1750 case DW_TAG_variable:
1751 case DW_TAG_typedef:
1752 case DW_TAG_union_type:
1753 if (!pdi->is_declaration)
1754 {
1755 add_partial_symbol (pdi, cu);
1756 }
1757 break;
1758 case DW_TAG_class_type:
1759 case DW_TAG_structure_type:
1760 if (!pdi->is_declaration)
1761 {
1762 add_partial_symbol (pdi, cu);
1763 }
1764 break;
1765 case DW_TAG_enumeration_type:
1766 if (!pdi->is_declaration)
1767 add_partial_enumeration (pdi, cu);
1768 break;
1769 case DW_TAG_base_type:
1770 case DW_TAG_subrange_type:
1771 /* File scope base type definitions are added to the partial
1772 symbol table. */
1773 add_partial_symbol (pdi, cu);
1774 break;
1775 case DW_TAG_namespace:
1776 add_partial_namespace (pdi, lowpc, highpc, cu);
1777 break;
1778 default:
1779 break;
1780 }
1781 }
1782
1783 /* If the die has a sibling, skip to the sibling. */
1784
1785 pdi = pdi->die_sibling;
1786 }
1787 }
1788
1789 /* Functions used to compute the fully scoped name of a partial DIE.
1790
1791 Normally, this is simple. For C++, the parent DIE's fully scoped
1792 name is concatenated with "::" and the partial DIE's name. For
1793 Java, the same thing occurs except that "." is used instead of "::".
1794 Enumerators are an exception; they use the scope of their parent
1795 enumeration type, i.e. the name of the enumeration type is not
1796 prepended to the enumerator.
1797
1798 There are two complexities. One is DW_AT_specification; in this
1799 case "parent" means the parent of the target of the specification,
1800 instead of the direct parent of the DIE. The other is compilers
1801 which do not emit DW_TAG_namespace; in this case we try to guess
1802 the fully qualified name of structure types from their members'
1803 linkage names. This must be done using the DIE's children rather
1804 than the children of any DW_AT_specification target. We only need
1805 to do this for structures at the top level, i.e. if the target of
1806 any DW_AT_specification (if any; otherwise the DIE itself) does not
1807 have a parent. */
1808
1809 /* Compute the scope prefix associated with PDI's parent, in
1810 compilation unit CU. The result will be allocated on CU's
1811 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1812 field. NULL is returned if no prefix is necessary. */
1813 static char *
1814 partial_die_parent_scope (struct partial_die_info *pdi,
1815 struct dwarf2_cu *cu)
1816 {
1817 char *grandparent_scope;
1818 struct partial_die_info *parent, *real_pdi;
1819
1820 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1821 then this means the parent of the specification DIE. */
1822
1823 real_pdi = pdi;
1824 while (real_pdi->has_specification)
1825 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1826
1827 parent = real_pdi->die_parent;
1828 if (parent == NULL)
1829 return NULL;
1830
1831 if (parent->scope_set)
1832 return parent->scope;
1833
1834 fixup_partial_die (parent, cu);
1835
1836 grandparent_scope = partial_die_parent_scope (parent, cu);
1837
1838 if (parent->tag == DW_TAG_namespace
1839 || parent->tag == DW_TAG_structure_type
1840 || parent->tag == DW_TAG_class_type
1841 || parent->tag == DW_TAG_union_type)
1842 {
1843 if (grandparent_scope == NULL)
1844 parent->scope = parent->name;
1845 else
1846 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1847 parent->name, cu);
1848 }
1849 else if (parent->tag == DW_TAG_enumeration_type)
1850 /* Enumerators should not get the name of the enumeration as a prefix. */
1851 parent->scope = grandparent_scope;
1852 else
1853 {
1854 /* FIXME drow/2004-04-01: What should we be doing with
1855 function-local names? For partial symbols, we should probably be
1856 ignoring them. */
1857 complaint (&symfile_complaints,
1858 _("unhandled containing DIE tag %d for DIE at %d"),
1859 parent->tag, pdi->offset);
1860 parent->scope = grandparent_scope;
1861 }
1862
1863 parent->scope_set = 1;
1864 return parent->scope;
1865 }
1866
1867 /* Return the fully scoped name associated with PDI, from compilation unit
1868 CU. The result will be allocated with malloc. */
1869 static char *
1870 partial_die_full_name (struct partial_die_info *pdi,
1871 struct dwarf2_cu *cu)
1872 {
1873 char *parent_scope;
1874
1875 parent_scope = partial_die_parent_scope (pdi, cu);
1876 if (parent_scope == NULL)
1877 return NULL;
1878 else
1879 return typename_concat (NULL, parent_scope, pdi->name, cu);
1880 }
1881
1882 static void
1883 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1884 {
1885 struct objfile *objfile = cu->objfile;
1886 CORE_ADDR addr = 0;
1887 char *actual_name = NULL;
1888 const char *my_prefix;
1889 const struct partial_symbol *psym = NULL;
1890 CORE_ADDR baseaddr;
1891 int built_actual_name = 0;
1892
1893 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1894
1895 if (pdi_needs_namespace (pdi->tag))
1896 {
1897 actual_name = partial_die_full_name (pdi, cu);
1898 if (actual_name)
1899 built_actual_name = 1;
1900 }
1901
1902 if (actual_name == NULL)
1903 actual_name = pdi->name;
1904
1905 switch (pdi->tag)
1906 {
1907 case DW_TAG_subprogram:
1908 if (pdi->is_external)
1909 {
1910 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1911 mst_text, objfile); */
1912 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1913 VAR_DOMAIN, LOC_BLOCK,
1914 &objfile->global_psymbols,
1915 0, pdi->lowpc + baseaddr,
1916 cu->language, objfile);
1917 }
1918 else
1919 {
1920 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1921 mst_file_text, objfile); */
1922 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1923 VAR_DOMAIN, LOC_BLOCK,
1924 &objfile->static_psymbols,
1925 0, pdi->lowpc + baseaddr,
1926 cu->language, objfile);
1927 }
1928 break;
1929 case DW_TAG_variable:
1930 if (pdi->is_external)
1931 {
1932 /* Global Variable.
1933 Don't enter into the minimal symbol tables as there is
1934 a minimal symbol table entry from the ELF symbols already.
1935 Enter into partial symbol table if it has a location
1936 descriptor or a type.
1937 If the location descriptor is missing, new_symbol will create
1938 a LOC_UNRESOLVED symbol, the address of the variable will then
1939 be determined from the minimal symbol table whenever the variable
1940 is referenced.
1941 The address for the partial symbol table entry is not
1942 used by GDB, but it comes in handy for debugging partial symbol
1943 table building. */
1944
1945 if (pdi->locdesc)
1946 addr = decode_locdesc (pdi->locdesc, cu);
1947 if (pdi->locdesc || pdi->has_type)
1948 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1949 VAR_DOMAIN, LOC_STATIC,
1950 &objfile->global_psymbols,
1951 0, addr + baseaddr,
1952 cu->language, objfile);
1953 }
1954 else
1955 {
1956 /* Static Variable. Skip symbols without location descriptors. */
1957 if (pdi->locdesc == NULL)
1958 {
1959 if (built_actual_name)
1960 xfree (actual_name);
1961 return;
1962 }
1963 addr = decode_locdesc (pdi->locdesc, cu);
1964 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1965 mst_file_data, objfile); */
1966 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1967 VAR_DOMAIN, LOC_STATIC,
1968 &objfile->static_psymbols,
1969 0, addr + baseaddr,
1970 cu->language, objfile);
1971 }
1972 break;
1973 case DW_TAG_typedef:
1974 case DW_TAG_base_type:
1975 case DW_TAG_subrange_type:
1976 add_psymbol_to_list (actual_name, strlen (actual_name),
1977 VAR_DOMAIN, LOC_TYPEDEF,
1978 &objfile->static_psymbols,
1979 0, (CORE_ADDR) 0, cu->language, objfile);
1980 break;
1981 case DW_TAG_namespace:
1982 add_psymbol_to_list (actual_name, strlen (actual_name),
1983 VAR_DOMAIN, LOC_TYPEDEF,
1984 &objfile->global_psymbols,
1985 0, (CORE_ADDR) 0, cu->language, objfile);
1986 break;
1987 case DW_TAG_class_type:
1988 case DW_TAG_structure_type:
1989 case DW_TAG_union_type:
1990 case DW_TAG_enumeration_type:
1991 /* Skip external references. The DWARF standard says in the section
1992 about "Structure, Union, and Class Type Entries": "An incomplete
1993 structure, union or class type is represented by a structure,
1994 union or class entry that does not have a byte size attribute
1995 and that has a DW_AT_declaration attribute." */
1996 if (!pdi->has_byte_size && pdi->is_declaration)
1997 {
1998 if (built_actual_name)
1999 xfree (actual_name);
2000 return;
2001 }
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055 }
2056
2057 /* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061 static int
2062 pdi_needs_namespace (enum dwarf_tag tag)
2063 {
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077 }
2078
2079 /* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083 static void
2084 add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087 {
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098 }
2099
2100 /* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104 static void
2105 guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107 {
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154 }
2155
2156 /* Read a partial die corresponding to an enumeration type. */
2157
2158 static void
2159 add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161 {
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178 }
2179
2180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185 static struct abbrev_info *
2186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188 {
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206 }
2207
2208 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212 static gdb_byte *
2213 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214 {
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226 }
2227
2228 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234 static gdb_byte *
2235 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237 {
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326 }
2327
2328 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331 static gdb_byte *
2332 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334 {
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348 }
2349
2350 /* Expand this partial symbol table into a full symbol table. */
2351
2352 static void
2353 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354 {
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381 }
2382
2383 /* Add PER_CU to the queue. */
2384
2385 static void
2386 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387 {
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401 }
2402
2403 /* Process the queue. */
2404
2405 static void
2406 process_queue (struct objfile *objfile)
2407 {
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449 static void
2450 dwarf2_release_queue (void *dummy)
2451 {
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472 }
2473
2474 /* Read in full symbols for PST, and anything it depends on. */
2475
2476 static void
2477 psymtab_to_symtab_1 (struct partial_symtab *pst)
2478 {
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522 }
2523
2524 /* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526 static struct dwarf2_cu *
2527 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528 {
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584 }
2585
2586 /* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589 static void
2590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591 {
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659 }
2660
2661 /* Process a die and its children. */
2662
2663 static void
2664 process_die (struct die_info *die, struct dwarf2_cu *cu)
2665 {
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 attr = dwarf2_attr (die, DW_AT_name, cu);
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
2809
2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2811 if (attr)
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2814 {
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
2824
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
2827 }
2828
2829 if (name == NULL)
2830 name = "<unknown>";
2831
2832 attr = dwarf2_attr (die, DW_AT_language, cu);
2833 if (attr)
2834 {
2835 set_cu_language (DW_UNSND (attr), cu);
2836 }
2837
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
2841
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
2851 record_producer (cu->producer);
2852
2853 initialize_cu_func_list (cu);
2854
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2859 if (attr)
2860 {
2861 unsigned int line_offset = DW_UNSND (attr);
2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2863 if (line_header)
2864 {
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2868 }
2869 }
2870
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2887 if (attr && line_header)
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
2891 comp_dir, abfd, cu);
2892 }
2893 do_cleanups (back_to);
2894 }
2895
2896 static void
2897 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
2899 {
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
2912 else
2913 cu->last_fn->next = thisfn;
2914
2915 cu->last_fn = thisfn;
2916 }
2917
2918 static void
2919 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2920 {
2921 struct objfile *objfile = cu->objfile;
2922 struct context_stack *new;
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
2930 CORE_ADDR baseaddr;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2939 return;
2940
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
2943 {
2944 struct die_info *spec_die = die_specification (die, cu);
2945
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
2967
2968 if (spec_die != NULL)
2969 {
2970 char *specification_prefix = determine_prefix (spec_die, cu);
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
2979 /* Record the function range for dwarf_decode_lines. */
2980 add_to_cu_func_list (name, lowpc, highpc, cu);
2981
2982 new = push_context (0, lowpc);
2983 new->name = new_symbol (die, die->type, cu);
2984
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2988 if (attr)
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
2999
3000 cu->list_in_scope = &local_symbols;
3001
3002 if (die->child != NULL)
3003 {
3004 child_die = die->child;
3005 while (child_die && child_die->tag)
3006 {
3007 process_die (child_die, cu);
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
3027 cu->list_in_scope = &file_symbols;
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
3032 }
3033
3034 /* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037 static void
3038 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3039 {
3040 struct objfile *objfile = cu->objfile;
3041 struct context_stack *new;
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
3059 if (die->child != NULL)
3060 {
3061 child_die = die->child;
3062 while (child_die && child_die->tag)
3063 {
3064 process_die (child_die, cu);
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076 }
3077
3078 /* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
3081 static int
3082 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3084 {
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
3087 struct attribute *attr;
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
3092
3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3094 if (attr)
3095 {
3096 high = DW_ADDR (attr);
3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
3107 else
3108 {
3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
3115 .debug_ranges section. */
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
3118 CORE_ADDR base;
3119 int found_base;
3120 unsigned int dummy;
3121 gdb_byte *buffer;
3122 CORE_ADDR marker;
3123 int low_set;
3124
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
3127
3128 if (offset >= dwarf2_per_objfile->ranges_size)
3129 {
3130 complaint (&symfile_complaints,
3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3132 offset);
3133 return 0;
3134 }
3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3136
3137 /* Read in the largest possible address. */
3138 marker = read_address (obfd, buffer, cu, &dummy);
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
3156 buffer += addr_size;
3157 range_end = read_address (obfd, buffer, cu, &dummy);
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
3183 _("Invalid .debug_ranges data (no base address)"));
3184 return 0;
3185 }
3186
3187 range_beginning += base;
3188 range_end += base;
3189
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
3234 return ret;
3235 }
3236
3237 /* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241 static void
3242 get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245 {
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297 }
3298
3299 /* Add an aggregate field to the field list. */
3300
3301 static void
3302 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3303 struct dwarf2_cu *cu)
3304 {
3305 struct objfile *objfile = cu->objfile;
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3313 make_cleanup (xfree, new_field);
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
3338
3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3340 {
3341 /* Data member other than a C++ static data member. */
3342
3343 /* Get type of field. */
3344 fp->type = die_type (die, cu);
3345
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
3348 /* Get bit size of field (zero if none). */
3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
3413 attr = dwarf2_attr (die, DW_AT_name, cu);
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
3422 pointer or virtual base class pointer) to private. */
3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3430 {
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
3438 char *physname;
3439
3440 /* Get name of field. */
3441 attr = dwarf2_attr (die, DW_AT_name, cu);
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
3445 return;
3446
3447 /* Get physical name. */
3448 physname = dwarf2_linkage_name (die, cu);
3449
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3453 FIELD_TYPE (*fp) = die_type (die, cu);
3454 FIELD_NAME (*fp) = fieldname;
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3460 if (attr)
3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3462 * bits_per_byte);
3463 FIELD_BITSIZE (*fp) = 0;
3464 FIELD_STATIC_KIND (*fp) = 0;
3465 FIELD_TYPE (*fp) = die_type (die, cu);
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469 }
3470
3471 /* Create the vector of fields, and attach it to the type. */
3472
3473 static void
3474 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3475 struct dwarf2_cu *cu)
3476 {
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
3508 unsigned char *pointer;
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
3528
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
3532
3533 case DW_ACCESS_public:
3534 break;
3535
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3540 fip->fields->accessibility);
3541 }
3542 break;
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556 }
3557
3558 /* Add a member function to the proper fieldlist. */
3559
3560 static void
3561 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3562 struct type *type, struct dwarf2_cu *cu)
3563 {
3564 struct objfile *objfile = cu->objfile;
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
3573 /* Get name of member function. */
3574 attr = dwarf2_attr (die, DW_AT_name, cu);
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
3577 else
3578 return;
3579
3580 /* Get the mangled name. */
3581 physname = dwarf2_linkage_name (die, cu);
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3600 * sizeof (struct fnfieldlist));
3601 if (fip->nfnfields == 0)
3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3614 make_cleanup (xfree, new_fnfield);
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
3628 int nparams = TYPE_NFIELDS (die->type);
3629
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
3637
3638 /* Handle static member functions.
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3649 physname);
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3653 fnp->fcontext = die_containing_type (die, cu);
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
3670 }
3671 }
3672
3673 /* Check for artificial methods. */
3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
3678 /* Get index in virtual function table if it is a virtual member function. */
3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3680 if (attr)
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
3689 dwarf2_complex_location_expr_complaint ();
3690 }
3691 else
3692 {
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
3695 }
3696 }
3697 }
3698
3699 /* Create the vector of member function fields, and attach it to the type. */
3700
3701 static void
3702 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3703 struct dwarf2_cu *cu)
3704 {
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3724 fn_flp->fn_fields[k] = nfp->fnfield;
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731 }
3732
3733 /* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735 static int
3736 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737 {
3738 static const char vptr[] = "_vptr";
3739 static const char vtable[] = "vtable";
3740
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
3746 return 1;
3747
3748 return 0;
3749 }
3750
3751 /* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
3758
3759 static int
3760 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761 {
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
3812 type = lookup_methodptr_type (type);
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816 }
3817
3818 /* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834 static void
3835 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3836 {
3837 struct objfile *objfile = cu->objfile;
3838 struct type *type;
3839 struct attribute *attr;
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
3842
3843 if (die->type)
3844 return;
3845
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
3848
3849 type = alloc_type (objfile);
3850 INIT_CPLUS_SPECIFIC (type);
3851 attr = dwarf2_attr (die, DW_AT_name, cu);
3852 if (attr && DW_STRING (attr))
3853 {
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
3856 {
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
3869 }
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3883 in gdbtypes.h. */
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
3904 set_die_type (die, type, cu);
3905
3906 if (die->child != NULL && ! die_is_declaration (die, cu))
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
3914 child_die = die->child;
3915
3916 while (child_die && child_die->tag)
3917 {
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
3920 {
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
3926 dwarf2_add_field (&fi, child_die, cu);
3927 }
3928 else if (child_die->tag == DW_TAG_subprogram)
3929 {
3930 /* C++ member function. */
3931 read_type_die (child_die, cu);
3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
3937 dwarf2_add_field (&fi, child_die, cu);
3938 }
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
3944 dwarf2_attach_fields_to_type (&fi, type, cu);
3945 if (fi.nfnfields)
3946 {
3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3948
3949 /* Get the type which refers to the base class (possibly this
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3954 {
3955 struct type *t = die_containing_type (die, cu);
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
3969 if (is_vtable_name (fieldname, cu))
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
3978 complaint (&symfile_complaints,
3979 _("virtual function table pointer not found when defining class '%s'"),
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
4010 }
4011
4012 do_cleanups (back_to);
4013 }
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
4018 }
4019
4020 static void
4021 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022 {
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
4025 struct die_info *child_die = die->child;
4026
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
4029
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
4036
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
4042 {
4043 /* Do nothing. */
4044 }
4045 else
4046 process_die (child_die, cu);
4047
4048 child_die = sibling_die (child_die);
4049 }
4050
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
4056 new_symbol (die, die->type, cu);
4057
4058 processing_current_prefix = previous_prefix;
4059 }
4060
4061 /* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
4063
4064 static void
4065 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4066 {
4067 struct objfile *objfile = cu->objfile;
4068 struct type *type;
4069 struct attribute *attr;
4070
4071 if (die->type)
4072 return;
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
4077 attr = dwarf2_attr (die, DW_AT_name, cu);
4078 if (attr && DW_STRING (attr))
4079 {
4080 char *name = DW_STRING (attr);
4081
4082 if (processing_has_namespace_info)
4083 {
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
4087 }
4088 else
4089 {
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
4093 }
4094 }
4095
4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
4106 set_die_type (die, type, cu);
4107 }
4108
4109 /* Determine the name of the type represented by DIE, which should be
4110 a named C++ or Java compound type. Return the name in question; the caller
4111 is responsible for xfree()'ing it. */
4112
4113 static char *
4114 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115 {
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
4132 guess_structure_name. */
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166 }
4167
4168 /* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174 static void
4175 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176 {
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
4185 num_fields = 0;
4186 fields = NULL;
4187 if (die->child != NULL)
4188 {
4189 child_die = die->child;
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
4194 process_die (child_die, cu);
4195 }
4196 else
4197 {
4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4199 if (attr)
4200 {
4201 sym = new_symbol (child_die, die->type, cu);
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
4210 * sizeof (struct field));
4211 }
4212
4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
4232 sizeof (struct field) * num_fields);
4233 xfree (fields);
4234 }
4235 if (unsigned_enum)
4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4237 }
4238
4239 new_symbol (die, die->type, cu);
4240 }
4241
4242 /* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246 static void
4247 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4248 {
4249 struct objfile *objfile = cu->objfile;
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
4264 element_type = die_type (die, cu);
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
4268 if (die->child == NULL)
4269 {
4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4271 range_type = create_range_type (NULL, index_type, 0, -1);
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
4278 child_die = die->child;
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
4283 read_subrange_type (child_die, cu);
4284
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
4305
4306 type = element_type;
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
4319
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4327 if (attr)
4328 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4329
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
4337 set_die_type (die, type, cu);
4338 }
4339
4340 static enum dwarf_array_dim_ordering
4341 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342 {
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372 }
4373
4374 /* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377 static void
4378 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379 {
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382 }
4383
4384 /* First cut: install each common block member as a global variable. */
4385
4386 static void
4387 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4388 {
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
4394 attr = dwarf2_attr (die, DW_AT_location, cu);
4395 if (attr)
4396 {
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
4400 base = decode_locdesc (DW_BLOCK (attr), cu);
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4404 dwarf2_complex_location_expr_complaint ();
4405 }
4406 else
4407 {
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
4410 }
4411 }
4412 if (die->child != NULL)
4413 {
4414 child_die = die->child;
4415 while (child_die && child_die->tag)
4416 {
4417 sym = new_symbol (child_die, NULL, cu);
4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
4422 base + decode_locdesc (DW_BLOCK (attr), cu);
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428 }
4429
4430 /* Read a C++ namespace. */
4431
4432 static void
4433 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4434 {
4435 struct objfile *objfile = cu->objfile;
4436 const char *previous_prefix = processing_current_prefix;
4437 const char *name;
4438 int is_anonymous;
4439 struct die_info *current_die;
4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4441
4442 name = namespace_name (die, &is_anonymous, cu);
4443
4444 /* Now build the name of the current namespace. */
4445
4446 if (previous_prefix[0] == '\0')
4447 {
4448 processing_current_prefix = name;
4449 }
4450 else
4451 {
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
4454 processing_current_prefix = temp_name;
4455 }
4456
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
4460
4461 if (dwarf2_extension (die, cu) == NULL)
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4468 (char *) processing_current_prefix,
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
4472 new_symbol (die, type, cu);
4473 set_die_type (die, type, cu);
4474
4475 if (is_anonymous)
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
4479 }
4480
4481 if (die->child != NULL)
4482 {
4483 struct die_info *child_die = die->child;
4484
4485 while (child_die && child_die->tag)
4486 {
4487 process_die (child_die, cu);
4488 child_die = sibling_die (child_die);
4489 }
4490 }
4491
4492 processing_current_prefix = previous_prefix;
4493 do_cleanups (back_to);
4494 }
4495
4496 /* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500 static const char *
4501 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4502 {
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
4510 current_die = dwarf2_extension (die, cu))
4511 {
4512 name = dwarf2_name (current_die, cu);
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
4524 }
4525
4526 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529 static void
4530 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4531 {
4532 struct comp_unit_head *cu_header = &cu->header;
4533 struct type *type;
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
4543 type = lookup_pointer_type (die_type (die, cu));
4544
4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
4548 else
4549 byte_size = cu_header->addr_size;
4550
4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4561 {
4562 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4563 {
4564 int type_flags;
4565
4566 type_flags = gdbarch_address_class_type_flags
4567 (current_gdbarch, byte_size, addr_class);
4568 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4569 type = make_type_with_address_space (type, type_flags);
4570 }
4571 else if (TYPE_LENGTH (type) != byte_size)
4572 {
4573 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4574 }
4575 else {
4576 /* Should we also complain about unhandled address classes? */
4577 }
4578 }
4579
4580 TYPE_LENGTH (type) = byte_size;
4581 set_die_type (die, type, cu);
4582 }
4583
4584 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4585 the user defined type vector. */
4586
4587 static void
4588 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4589 {
4590 struct objfile *objfile = cu->objfile;
4591 struct type *type;
4592 struct type *to_type;
4593 struct type *domain;
4594
4595 if (die->type)
4596 {
4597 return;
4598 }
4599
4600 to_type = die_type (die, cu);
4601 domain = die_containing_type (die, cu);
4602
4603 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4604 type = lookup_methodptr_type (to_type);
4605 else
4606 type = lookup_memberptr_type (to_type, domain);
4607
4608 set_die_type (die, type, cu);
4609 }
4610
4611 /* Extract all information from a DW_TAG_reference_type DIE and add to
4612 the user defined type vector. */
4613
4614 static void
4615 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4616 {
4617 struct comp_unit_head *cu_header = &cu->header;
4618 struct type *type;
4619 struct attribute *attr;
4620
4621 if (die->type)
4622 {
4623 return;
4624 }
4625
4626 type = lookup_reference_type (die_type (die, cu));
4627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4628 if (attr)
4629 {
4630 TYPE_LENGTH (type) = DW_UNSND (attr);
4631 }
4632 else
4633 {
4634 TYPE_LENGTH (type) = cu_header->addr_size;
4635 }
4636 set_die_type (die, type, cu);
4637 }
4638
4639 static void
4640 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4641 {
4642 struct type *base_type;
4643
4644 if (die->type)
4645 {
4646 return;
4647 }
4648
4649 base_type = die_type (die, cu);
4650 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4651 cu);
4652 }
4653
4654 static void
4655 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4656 {
4657 struct type *base_type;
4658
4659 if (die->type)
4660 {
4661 return;
4662 }
4663
4664 base_type = die_type (die, cu);
4665 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4666 cu);
4667 }
4668
4669 /* Extract all information from a DW_TAG_string_type DIE and add to
4670 the user defined type vector. It isn't really a user defined type,
4671 but it behaves like one, with other DIE's using an AT_user_def_type
4672 attribute to reference it. */
4673
4674 static void
4675 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4676 {
4677 struct objfile *objfile = cu->objfile;
4678 struct type *type, *range_type, *index_type, *char_type;
4679 struct attribute *attr;
4680 unsigned int length;
4681
4682 if (die->type)
4683 {
4684 return;
4685 }
4686
4687 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4688 if (attr)
4689 {
4690 length = DW_UNSND (attr);
4691 }
4692 else
4693 {
4694 /* check for the DW_AT_byte_size attribute */
4695 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4696 if (attr)
4697 {
4698 length = DW_UNSND (attr);
4699 }
4700 else
4701 {
4702 length = 1;
4703 }
4704 }
4705 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4706 range_type = create_range_type (NULL, index_type, 1, length);
4707 if (cu->language == language_fortran)
4708 {
4709 /* Need to create a unique string type for bounds
4710 information */
4711 type = create_string_type (0, range_type);
4712 }
4713 else
4714 {
4715 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4716 type = create_string_type (char_type, range_type);
4717 }
4718 set_die_type (die, type, cu);
4719 }
4720
4721 /* Handle DIES due to C code like:
4722
4723 struct foo
4724 {
4725 int (*funcp)(int a, long l);
4726 int b;
4727 };
4728
4729 ('funcp' generates a DW_TAG_subroutine_type DIE)
4730 */
4731
4732 static void
4733 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4734 {
4735 struct type *type; /* Type that this function returns */
4736 struct type *ftype; /* Function that returns above type */
4737 struct attribute *attr;
4738
4739 /* Decode the type that this subroutine returns */
4740 if (die->type)
4741 {
4742 return;
4743 }
4744 type = die_type (die, cu);
4745 ftype = make_function_type (type, (struct type **) 0);
4746
4747 /* All functions in C++ and Java have prototypes. */
4748 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4749 if ((attr && (DW_UNSND (attr) != 0))
4750 || cu->language == language_cplus
4751 || cu->language == language_java)
4752 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4753
4754 if (die->child != NULL)
4755 {
4756 struct die_info *child_die;
4757 int nparams = 0;
4758 int iparams = 0;
4759
4760 /* Count the number of parameters.
4761 FIXME: GDB currently ignores vararg functions, but knows about
4762 vararg member functions. */
4763 child_die = die->child;
4764 while (child_die && child_die->tag)
4765 {
4766 if (child_die->tag == DW_TAG_formal_parameter)
4767 nparams++;
4768 else if (child_die->tag == DW_TAG_unspecified_parameters)
4769 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4770 child_die = sibling_die (child_die);
4771 }
4772
4773 /* Allocate storage for parameters and fill them in. */
4774 TYPE_NFIELDS (ftype) = nparams;
4775 TYPE_FIELDS (ftype) = (struct field *)
4776 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4777
4778 child_die = die->child;
4779 while (child_die && child_die->tag)
4780 {
4781 if (child_die->tag == DW_TAG_formal_parameter)
4782 {
4783 /* Dwarf2 has no clean way to discern C++ static and non-static
4784 member functions. G++ helps GDB by marking the first
4785 parameter for non-static member functions (which is the
4786 this pointer) as artificial. We pass this information
4787 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4788 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4789 if (attr)
4790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4791 else
4792 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4793 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4794 iparams++;
4795 }
4796 child_die = sibling_die (child_die);
4797 }
4798 }
4799
4800 set_die_type (die, ftype, cu);
4801 }
4802
4803 static void
4804 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4805 {
4806 struct objfile *objfile = cu->objfile;
4807 struct attribute *attr;
4808 char *name = NULL;
4809
4810 if (!die->type)
4811 {
4812 attr = dwarf2_attr (die, DW_AT_name, cu);
4813 if (attr && DW_STRING (attr))
4814 {
4815 name = DW_STRING (attr);
4816 }
4817 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4818 TYPE_FLAG_TARGET_STUB, name, objfile),
4819 cu);
4820 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4821 }
4822 }
4823
4824 /* Find a representation of a given base type and install
4825 it in the TYPE field of the die. */
4826
4827 static void
4828 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4829 {
4830 struct objfile *objfile = cu->objfile;
4831 struct type *type;
4832 struct attribute *attr;
4833 int encoding = 0, size = 0;
4834
4835 /* If we've already decoded this die, this is a no-op. */
4836 if (die->type)
4837 {
4838 return;
4839 }
4840
4841 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4842 if (attr)
4843 {
4844 encoding = DW_UNSND (attr);
4845 }
4846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4847 if (attr)
4848 {
4849 size = DW_UNSND (attr);
4850 }
4851 attr = dwarf2_attr (die, DW_AT_name, cu);
4852 if (attr && DW_STRING (attr))
4853 {
4854 enum type_code code = TYPE_CODE_INT;
4855 int type_flags = 0;
4856
4857 switch (encoding)
4858 {
4859 case DW_ATE_address:
4860 /* Turn DW_ATE_address into a void * pointer. */
4861 code = TYPE_CODE_PTR;
4862 type_flags |= TYPE_FLAG_UNSIGNED;
4863 break;
4864 case DW_ATE_boolean:
4865 code = TYPE_CODE_BOOL;
4866 type_flags |= TYPE_FLAG_UNSIGNED;
4867 break;
4868 case DW_ATE_complex_float:
4869 code = TYPE_CODE_COMPLEX;
4870 break;
4871 case DW_ATE_float:
4872 code = TYPE_CODE_FLT;
4873 break;
4874 case DW_ATE_signed:
4875 break;
4876 case DW_ATE_unsigned:
4877 type_flags |= TYPE_FLAG_UNSIGNED;
4878 break;
4879 case DW_ATE_signed_char:
4880 if (cu->language == language_m2)
4881 code = TYPE_CODE_CHAR;
4882 break;
4883 case DW_ATE_unsigned_char:
4884 if (cu->language == language_m2)
4885 code = TYPE_CODE_CHAR;
4886 type_flags |= TYPE_FLAG_UNSIGNED;
4887 break;
4888 default:
4889 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4890 dwarf_type_encoding_name (encoding));
4891 break;
4892 }
4893 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4894 if (encoding == DW_ATE_address)
4895 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4896 cu);
4897 else if (encoding == DW_ATE_complex_float)
4898 {
4899 if (size == 32)
4900 TYPE_TARGET_TYPE (type)
4901 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4902 else if (size == 16)
4903 TYPE_TARGET_TYPE (type)
4904 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4905 else if (size == 8)
4906 TYPE_TARGET_TYPE (type)
4907 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4908 }
4909 }
4910 else
4911 {
4912 type = dwarf_base_type (encoding, size, cu);
4913 }
4914 set_die_type (die, type, cu);
4915 }
4916
4917 /* Read the given DW_AT_subrange DIE. */
4918
4919 static void
4920 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4921 {
4922 struct type *base_type;
4923 struct type *range_type;
4924 struct attribute *attr;
4925 int low = 0;
4926 int high = -1;
4927
4928 /* If we have already decoded this die, then nothing more to do. */
4929 if (die->type)
4930 return;
4931
4932 base_type = die_type (die, cu);
4933 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4934 {
4935 complaint (&symfile_complaints,
4936 _("DW_AT_type missing from DW_TAG_subrange_type"));
4937 base_type
4938 = dwarf_base_type (DW_ATE_signed,
4939 gdbarch_addr_bit (current_gdbarch) / 8, cu);
4940 }
4941
4942 if (cu->language == language_fortran)
4943 {
4944 /* FORTRAN implies a lower bound of 1, if not given. */
4945 low = 1;
4946 }
4947
4948 /* FIXME: For variable sized arrays either of these could be
4949 a variable rather than a constant value. We'll allow it,
4950 but we don't know how to handle it. */
4951 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4952 if (attr)
4953 low = dwarf2_get_attr_constant_value (attr, 0);
4954
4955 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4956 if (attr)
4957 {
4958 if (attr->form == DW_FORM_block1)
4959 {
4960 /* GCC encodes arrays with unspecified or dynamic length
4961 with a DW_FORM_block1 attribute.
4962 FIXME: GDB does not yet know how to handle dynamic
4963 arrays properly, treat them as arrays with unspecified
4964 length for now.
4965
4966 FIXME: jimb/2003-09-22: GDB does not really know
4967 how to handle arrays of unspecified length
4968 either; we just represent them as zero-length
4969 arrays. Choose an appropriate upper bound given
4970 the lower bound we've computed above. */
4971 high = low - 1;
4972 }
4973 else
4974 high = dwarf2_get_attr_constant_value (attr, 1);
4975 }
4976
4977 range_type = create_range_type (NULL, base_type, low, high);
4978
4979 attr = dwarf2_attr (die, DW_AT_name, cu);
4980 if (attr && DW_STRING (attr))
4981 TYPE_NAME (range_type) = DW_STRING (attr);
4982
4983 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4984 if (attr)
4985 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4986
4987 set_die_type (die, range_type, cu);
4988 }
4989
4990 static void
4991 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4992 {
4993 struct type *type;
4994 struct attribute *attr;
4995
4996 if (die->type)
4997 return;
4998
4999 /* For now, we only support the C meaning of an unspecified type: void. */
5000
5001 attr = dwarf2_attr (die, DW_AT_name, cu);
5002 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5003 cu->objfile);
5004
5005 set_die_type (die, type, cu);
5006 }
5007
5008 /* Read a whole compilation unit into a linked list of dies. */
5009
5010 static struct die_info *
5011 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5012 {
5013 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5014 }
5015
5016 /* Read a single die and all its descendents. Set the die's sibling
5017 field to NULL; set other fields in the die correctly, and set all
5018 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5019 location of the info_ptr after reading all of those dies. PARENT
5020 is the parent of the die in question. */
5021
5022 static struct die_info *
5023 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5024 struct dwarf2_cu *cu,
5025 gdb_byte **new_info_ptr,
5026 struct die_info *parent)
5027 {
5028 struct die_info *die;
5029 gdb_byte *cur_ptr;
5030 int has_children;
5031
5032 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5033 store_in_ref_table (die->offset, die, cu);
5034
5035 if (has_children)
5036 {
5037 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5038 new_info_ptr, die);
5039 }
5040 else
5041 {
5042 die->child = NULL;
5043 *new_info_ptr = cur_ptr;
5044 }
5045
5046 die->sibling = NULL;
5047 die->parent = parent;
5048 return die;
5049 }
5050
5051 /* Read a die, all of its descendents, and all of its siblings; set
5052 all of the fields of all of the dies correctly. Arguments are as
5053 in read_die_and_children. */
5054
5055 static struct die_info *
5056 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5057 struct dwarf2_cu *cu,
5058 gdb_byte **new_info_ptr,
5059 struct die_info *parent)
5060 {
5061 struct die_info *first_die, *last_sibling;
5062 gdb_byte *cur_ptr;
5063
5064 cur_ptr = info_ptr;
5065 first_die = last_sibling = NULL;
5066
5067 while (1)
5068 {
5069 struct die_info *die
5070 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5071
5072 if (!first_die)
5073 {
5074 first_die = die;
5075 }
5076 else
5077 {
5078 last_sibling->sibling = die;
5079 }
5080
5081 if (die->tag == 0)
5082 {
5083 *new_info_ptr = cur_ptr;
5084 return first_die;
5085 }
5086 else
5087 {
5088 last_sibling = die;
5089 }
5090 }
5091 }
5092
5093 /* Free a linked list of dies. */
5094
5095 static void
5096 free_die_list (struct die_info *dies)
5097 {
5098 struct die_info *die, *next;
5099
5100 die = dies;
5101 while (die)
5102 {
5103 if (die->child != NULL)
5104 free_die_list (die->child);
5105 next = die->sibling;
5106 xfree (die->attrs);
5107 xfree (die);
5108 die = next;
5109 }
5110 }
5111
5112 /* Read the contents of the section at OFFSET and of size SIZE from the
5113 object file specified by OBJFILE into the objfile_obstack and return it. */
5114
5115 gdb_byte *
5116 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5117 {
5118 bfd *abfd = objfile->obfd;
5119 gdb_byte *buf, *retbuf;
5120 bfd_size_type size = bfd_get_section_size (sectp);
5121
5122 if (size == 0)
5123 return NULL;
5124
5125 buf = obstack_alloc (&objfile->objfile_obstack, size);
5126 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5127 if (retbuf != NULL)
5128 return retbuf;
5129
5130 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5131 || bfd_bread (buf, size, abfd) != size)
5132 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5133 bfd_get_filename (abfd));
5134
5135 return buf;
5136 }
5137
5138 /* In DWARF version 2, the description of the debugging information is
5139 stored in a separate .debug_abbrev section. Before we read any
5140 dies from a section we read in all abbreviations and install them
5141 in a hash table. This function also sets flags in CU describing
5142 the data found in the abbrev table. */
5143
5144 static void
5145 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5146 {
5147 struct comp_unit_head *cu_header = &cu->header;
5148 gdb_byte *abbrev_ptr;
5149 struct abbrev_info *cur_abbrev;
5150 unsigned int abbrev_number, bytes_read, abbrev_name;
5151 unsigned int abbrev_form, hash_number;
5152 struct attr_abbrev *cur_attrs;
5153 unsigned int allocated_attrs;
5154
5155 /* Initialize dwarf2 abbrevs */
5156 obstack_init (&cu->abbrev_obstack);
5157 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5158 (ABBREV_HASH_SIZE
5159 * sizeof (struct abbrev_info *)));
5160 memset (cu->dwarf2_abbrevs, 0,
5161 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5162
5163 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5164 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5165 abbrev_ptr += bytes_read;
5166
5167 allocated_attrs = ATTR_ALLOC_CHUNK;
5168 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5169
5170 /* loop until we reach an abbrev number of 0 */
5171 while (abbrev_number)
5172 {
5173 cur_abbrev = dwarf_alloc_abbrev (cu);
5174
5175 /* read in abbrev header */
5176 cur_abbrev->number = abbrev_number;
5177 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5178 abbrev_ptr += bytes_read;
5179 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5180 abbrev_ptr += 1;
5181
5182 if (cur_abbrev->tag == DW_TAG_namespace)
5183 cu->has_namespace_info = 1;
5184
5185 /* now read in declarations */
5186 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5187 abbrev_ptr += bytes_read;
5188 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5189 abbrev_ptr += bytes_read;
5190 while (abbrev_name)
5191 {
5192 if (cur_abbrev->num_attrs == allocated_attrs)
5193 {
5194 allocated_attrs += ATTR_ALLOC_CHUNK;
5195 cur_attrs
5196 = xrealloc (cur_attrs, (allocated_attrs
5197 * sizeof (struct attr_abbrev)));
5198 }
5199
5200 /* Record whether this compilation unit might have
5201 inter-compilation-unit references. If we don't know what form
5202 this attribute will have, then it might potentially be a
5203 DW_FORM_ref_addr, so we conservatively expect inter-CU
5204 references. */
5205
5206 if (abbrev_form == DW_FORM_ref_addr
5207 || abbrev_form == DW_FORM_indirect)
5208 cu->has_form_ref_addr = 1;
5209
5210 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5211 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5212 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5213 abbrev_ptr += bytes_read;
5214 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5215 abbrev_ptr += bytes_read;
5216 }
5217
5218 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5219 (cur_abbrev->num_attrs
5220 * sizeof (struct attr_abbrev)));
5221 memcpy (cur_abbrev->attrs, cur_attrs,
5222 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5223
5224 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5225 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5226 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5227
5228 /* Get next abbreviation.
5229 Under Irix6 the abbreviations for a compilation unit are not
5230 always properly terminated with an abbrev number of 0.
5231 Exit loop if we encounter an abbreviation which we have
5232 already read (which means we are about to read the abbreviations
5233 for the next compile unit) or if the end of the abbreviation
5234 table is reached. */
5235 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5236 >= dwarf2_per_objfile->abbrev_size)
5237 break;
5238 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5239 abbrev_ptr += bytes_read;
5240 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5241 break;
5242 }
5243
5244 xfree (cur_attrs);
5245 }
5246
5247 /* Release the memory used by the abbrev table for a compilation unit. */
5248
5249 static void
5250 dwarf2_free_abbrev_table (void *ptr_to_cu)
5251 {
5252 struct dwarf2_cu *cu = ptr_to_cu;
5253
5254 obstack_free (&cu->abbrev_obstack, NULL);
5255 cu->dwarf2_abbrevs = NULL;
5256 }
5257
5258 /* Lookup an abbrev_info structure in the abbrev hash table. */
5259
5260 static struct abbrev_info *
5261 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5262 {
5263 unsigned int hash_number;
5264 struct abbrev_info *abbrev;
5265
5266 hash_number = number % ABBREV_HASH_SIZE;
5267 abbrev = cu->dwarf2_abbrevs[hash_number];
5268
5269 while (abbrev)
5270 {
5271 if (abbrev->number == number)
5272 return abbrev;
5273 else
5274 abbrev = abbrev->next;
5275 }
5276 return NULL;
5277 }
5278
5279 /* Returns nonzero if TAG represents a type that we might generate a partial
5280 symbol for. */
5281
5282 static int
5283 is_type_tag_for_partial (int tag)
5284 {
5285 switch (tag)
5286 {
5287 #if 0
5288 /* Some types that would be reasonable to generate partial symbols for,
5289 that we don't at present. */
5290 case DW_TAG_array_type:
5291 case DW_TAG_file_type:
5292 case DW_TAG_ptr_to_member_type:
5293 case DW_TAG_set_type:
5294 case DW_TAG_string_type:
5295 case DW_TAG_subroutine_type:
5296 #endif
5297 case DW_TAG_base_type:
5298 case DW_TAG_class_type:
5299 case DW_TAG_enumeration_type:
5300 case DW_TAG_structure_type:
5301 case DW_TAG_subrange_type:
5302 case DW_TAG_typedef:
5303 case DW_TAG_union_type:
5304 return 1;
5305 default:
5306 return 0;
5307 }
5308 }
5309
5310 /* Load all DIEs that are interesting for partial symbols into memory. */
5311
5312 static struct partial_die_info *
5313 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5314 struct dwarf2_cu *cu)
5315 {
5316 struct partial_die_info *part_die;
5317 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5318 struct abbrev_info *abbrev;
5319 unsigned int bytes_read;
5320 unsigned int load_all = 0;
5321
5322 int nesting_level = 1;
5323
5324 parent_die = NULL;
5325 last_die = NULL;
5326
5327 if (cu->per_cu && cu->per_cu->load_all_dies)
5328 load_all = 1;
5329
5330 cu->partial_dies
5331 = htab_create_alloc_ex (cu->header.length / 12,
5332 partial_die_hash,
5333 partial_die_eq,
5334 NULL,
5335 &cu->comp_unit_obstack,
5336 hashtab_obstack_allocate,
5337 dummy_obstack_deallocate);
5338
5339 part_die = obstack_alloc (&cu->comp_unit_obstack,
5340 sizeof (struct partial_die_info));
5341
5342 while (1)
5343 {
5344 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5345
5346 /* A NULL abbrev means the end of a series of children. */
5347 if (abbrev == NULL)
5348 {
5349 if (--nesting_level == 0)
5350 {
5351 /* PART_DIE was probably the last thing allocated on the
5352 comp_unit_obstack, so we could call obstack_free
5353 here. We don't do that because the waste is small,
5354 and will be cleaned up when we're done with this
5355 compilation unit. This way, we're also more robust
5356 against other users of the comp_unit_obstack. */
5357 return first_die;
5358 }
5359 info_ptr += bytes_read;
5360 last_die = parent_die;
5361 parent_die = parent_die->die_parent;
5362 continue;
5363 }
5364
5365 /* Check whether this DIE is interesting enough to save. Normally
5366 we would not be interested in members here, but there may be
5367 later variables referencing them via DW_AT_specification (for
5368 static members). */
5369 if (!load_all
5370 && !is_type_tag_for_partial (abbrev->tag)
5371 && abbrev->tag != DW_TAG_enumerator
5372 && abbrev->tag != DW_TAG_subprogram
5373 && abbrev->tag != DW_TAG_variable
5374 && abbrev->tag != DW_TAG_namespace
5375 && abbrev->tag != DW_TAG_member)
5376 {
5377 /* Otherwise we skip to the next sibling, if any. */
5378 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5379 continue;
5380 }
5381
5382 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5383 abfd, info_ptr, cu);
5384
5385 /* This two-pass algorithm for processing partial symbols has a
5386 high cost in cache pressure. Thus, handle some simple cases
5387 here which cover the majority of C partial symbols. DIEs
5388 which neither have specification tags in them, nor could have
5389 specification tags elsewhere pointing at them, can simply be
5390 processed and discarded.
5391
5392 This segment is also optional; scan_partial_symbols and
5393 add_partial_symbol will handle these DIEs if we chain
5394 them in normally. When compilers which do not emit large
5395 quantities of duplicate debug information are more common,
5396 this code can probably be removed. */
5397
5398 /* Any complete simple types at the top level (pretty much all
5399 of them, for a language without namespaces), can be processed
5400 directly. */
5401 if (parent_die == NULL
5402 && part_die->has_specification == 0
5403 && part_die->is_declaration == 0
5404 && (part_die->tag == DW_TAG_typedef
5405 || part_die->tag == DW_TAG_base_type
5406 || part_die->tag == DW_TAG_subrange_type))
5407 {
5408 if (building_psymtab && part_die->name != NULL)
5409 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5410 VAR_DOMAIN, LOC_TYPEDEF,
5411 &cu->objfile->static_psymbols,
5412 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5413 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5414 continue;
5415 }
5416
5417 /* If we're at the second level, and we're an enumerator, and
5418 our parent has no specification (meaning possibly lives in a
5419 namespace elsewhere), then we can add the partial symbol now
5420 instead of queueing it. */
5421 if (part_die->tag == DW_TAG_enumerator
5422 && parent_die != NULL
5423 && parent_die->die_parent == NULL
5424 && parent_die->tag == DW_TAG_enumeration_type
5425 && parent_die->has_specification == 0)
5426 {
5427 if (part_die->name == NULL)
5428 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5429 else if (building_psymtab)
5430 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5431 VAR_DOMAIN, LOC_CONST,
5432 (cu->language == language_cplus
5433 || cu->language == language_java)
5434 ? &cu->objfile->global_psymbols
5435 : &cu->objfile->static_psymbols,
5436 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5437
5438 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5439 continue;
5440 }
5441
5442 /* We'll save this DIE so link it in. */
5443 part_die->die_parent = parent_die;
5444 part_die->die_sibling = NULL;
5445 part_die->die_child = NULL;
5446
5447 if (last_die && last_die == parent_die)
5448 last_die->die_child = part_die;
5449 else if (last_die)
5450 last_die->die_sibling = part_die;
5451
5452 last_die = part_die;
5453
5454 if (first_die == NULL)
5455 first_die = part_die;
5456
5457 /* Maybe add the DIE to the hash table. Not all DIEs that we
5458 find interesting need to be in the hash table, because we
5459 also have the parent/sibling/child chains; only those that we
5460 might refer to by offset later during partial symbol reading.
5461
5462 For now this means things that might have be the target of a
5463 DW_AT_specification, DW_AT_abstract_origin, or
5464 DW_AT_extension. DW_AT_extension will refer only to
5465 namespaces; DW_AT_abstract_origin refers to functions (and
5466 many things under the function DIE, but we do not recurse
5467 into function DIEs during partial symbol reading) and
5468 possibly variables as well; DW_AT_specification refers to
5469 declarations. Declarations ought to have the DW_AT_declaration
5470 flag. It happens that GCC forgets to put it in sometimes, but
5471 only for functions, not for types.
5472
5473 Adding more things than necessary to the hash table is harmless
5474 except for the performance cost. Adding too few will result in
5475 wasted time in find_partial_die, when we reread the compilation
5476 unit with load_all_dies set. */
5477
5478 if (load_all
5479 || abbrev->tag == DW_TAG_subprogram
5480 || abbrev->tag == DW_TAG_variable
5481 || abbrev->tag == DW_TAG_namespace
5482 || part_die->is_declaration)
5483 {
5484 void **slot;
5485
5486 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5487 part_die->offset, INSERT);
5488 *slot = part_die;
5489 }
5490
5491 part_die = obstack_alloc (&cu->comp_unit_obstack,
5492 sizeof (struct partial_die_info));
5493
5494 /* For some DIEs we want to follow their children (if any). For C
5495 we have no reason to follow the children of structures; for other
5496 languages we have to, both so that we can get at method physnames
5497 to infer fully qualified class names, and for DW_AT_specification. */
5498 if (last_die->has_children
5499 && (load_all
5500 || last_die->tag == DW_TAG_namespace
5501 || last_die->tag == DW_TAG_enumeration_type
5502 || (cu->language != language_c
5503 && (last_die->tag == DW_TAG_class_type
5504 || last_die->tag == DW_TAG_structure_type
5505 || last_die->tag == DW_TAG_union_type))))
5506 {
5507 nesting_level++;
5508 parent_die = last_die;
5509 continue;
5510 }
5511
5512 /* Otherwise we skip to the next sibling, if any. */
5513 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5514
5515 /* Back to the top, do it again. */
5516 }
5517 }
5518
5519 /* Read a minimal amount of information into the minimal die structure. */
5520
5521 static gdb_byte *
5522 read_partial_die (struct partial_die_info *part_die,
5523 struct abbrev_info *abbrev,
5524 unsigned int abbrev_len, bfd *abfd,
5525 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5526 {
5527 unsigned int bytes_read, i;
5528 struct attribute attr;
5529 int has_low_pc_attr = 0;
5530 int has_high_pc_attr = 0;
5531
5532 memset (part_die, 0, sizeof (struct partial_die_info));
5533
5534 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5535
5536 info_ptr += abbrev_len;
5537
5538 if (abbrev == NULL)
5539 return info_ptr;
5540
5541 part_die->tag = abbrev->tag;
5542 part_die->has_children = abbrev->has_children;
5543
5544 for (i = 0; i < abbrev->num_attrs; ++i)
5545 {
5546 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5547
5548 /* Store the data if it is of an attribute we want to keep in a
5549 partial symbol table. */
5550 switch (attr.name)
5551 {
5552 case DW_AT_name:
5553
5554 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5555 if (part_die->name == NULL)
5556 part_die->name = DW_STRING (&attr);
5557 break;
5558 case DW_AT_comp_dir:
5559 if (part_die->dirname == NULL)
5560 part_die->dirname = DW_STRING (&attr);
5561 break;
5562 case DW_AT_MIPS_linkage_name:
5563 part_die->name = DW_STRING (&attr);
5564 break;
5565 case DW_AT_low_pc:
5566 has_low_pc_attr = 1;
5567 part_die->lowpc = DW_ADDR (&attr);
5568 break;
5569 case DW_AT_high_pc:
5570 has_high_pc_attr = 1;
5571 part_die->highpc = DW_ADDR (&attr);
5572 break;
5573 case DW_AT_location:
5574 /* Support the .debug_loc offsets */
5575 if (attr_form_is_block (&attr))
5576 {
5577 part_die->locdesc = DW_BLOCK (&attr);
5578 }
5579 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5580 {
5581 dwarf2_complex_location_expr_complaint ();
5582 }
5583 else
5584 {
5585 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5586 "partial symbol information");
5587 }
5588 break;
5589 case DW_AT_language:
5590 part_die->language = DW_UNSND (&attr);
5591 break;
5592 case DW_AT_external:
5593 part_die->is_external = DW_UNSND (&attr);
5594 break;
5595 case DW_AT_declaration:
5596 part_die->is_declaration = DW_UNSND (&attr);
5597 break;
5598 case DW_AT_type:
5599 part_die->has_type = 1;
5600 break;
5601 case DW_AT_abstract_origin:
5602 case DW_AT_specification:
5603 case DW_AT_extension:
5604 part_die->has_specification = 1;
5605 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5606 break;
5607 case DW_AT_sibling:
5608 /* Ignore absolute siblings, they might point outside of
5609 the current compile unit. */
5610 if (attr.form == DW_FORM_ref_addr)
5611 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5612 else
5613 part_die->sibling = dwarf2_per_objfile->info_buffer
5614 + dwarf2_get_ref_die_offset (&attr, cu);
5615 break;
5616 case DW_AT_stmt_list:
5617 part_die->has_stmt_list = 1;
5618 part_die->line_offset = DW_UNSND (&attr);
5619 break;
5620 case DW_AT_byte_size:
5621 part_die->has_byte_size = 1;
5622 break;
5623 default:
5624 break;
5625 }
5626 }
5627
5628 /* When using the GNU linker, .gnu.linkonce. sections are used to
5629 eliminate duplicate copies of functions and vtables and such.
5630 The linker will arbitrarily choose one and discard the others.
5631 The AT_*_pc values for such functions refer to local labels in
5632 these sections. If the section from that file was discarded, the
5633 labels are not in the output, so the relocs get a value of 0.
5634 If this is a discarded function, mark the pc bounds as invalid,
5635 so that GDB will ignore it. */
5636 if (has_low_pc_attr && has_high_pc_attr
5637 && part_die->lowpc < part_die->highpc
5638 && (part_die->lowpc != 0
5639 || dwarf2_per_objfile->has_section_at_zero))
5640 part_die->has_pc_info = 1;
5641 return info_ptr;
5642 }
5643
5644 /* Find a cached partial DIE at OFFSET in CU. */
5645
5646 static struct partial_die_info *
5647 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5648 {
5649 struct partial_die_info *lookup_die = NULL;
5650 struct partial_die_info part_die;
5651
5652 part_die.offset = offset;
5653 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5654
5655 return lookup_die;
5656 }
5657
5658 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5659
5660 static struct partial_die_info *
5661 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5662 {
5663 struct dwarf2_per_cu_data *per_cu = NULL;
5664 struct partial_die_info *pd = NULL;
5665
5666 if (offset >= cu->header.offset
5667 && offset < cu->header.offset + cu->header.length)
5668 {
5669 pd = find_partial_die_in_comp_unit (offset, cu);
5670 if (pd != NULL)
5671 return pd;
5672 }
5673
5674 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5675
5676 if (per_cu->cu == NULL)
5677 {
5678 load_comp_unit (per_cu, cu->objfile);
5679 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5680 dwarf2_per_objfile->read_in_chain = per_cu;
5681 }
5682
5683 per_cu->cu->last_used = 0;
5684 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5685
5686 if (pd == NULL && per_cu->load_all_dies == 0)
5687 {
5688 struct cleanup *back_to;
5689 struct partial_die_info comp_unit_die;
5690 struct abbrev_info *abbrev;
5691 unsigned int bytes_read;
5692 char *info_ptr;
5693
5694 per_cu->load_all_dies = 1;
5695
5696 /* Re-read the DIEs. */
5697 back_to = make_cleanup (null_cleanup, 0);
5698 if (per_cu->cu->dwarf2_abbrevs == NULL)
5699 {
5700 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5701 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5702 }
5703 info_ptr = per_cu->cu->header.first_die_ptr;
5704 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5705 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5706 per_cu->cu->objfile->obfd, info_ptr,
5707 per_cu->cu);
5708 if (comp_unit_die.has_children)
5709 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5710 do_cleanups (back_to);
5711
5712 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5713 }
5714
5715 if (pd == NULL)
5716 internal_error (__FILE__, __LINE__,
5717 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5718 offset, bfd_get_filename (cu->objfile->obfd));
5719 return pd;
5720 }
5721
5722 /* Adjust PART_DIE before generating a symbol for it. This function
5723 may set the is_external flag or change the DIE's name. */
5724
5725 static void
5726 fixup_partial_die (struct partial_die_info *part_die,
5727 struct dwarf2_cu *cu)
5728 {
5729 /* If we found a reference attribute and the DIE has no name, try
5730 to find a name in the referred to DIE. */
5731
5732 if (part_die->name == NULL && part_die->has_specification)
5733 {
5734 struct partial_die_info *spec_die;
5735
5736 spec_die = find_partial_die (part_die->spec_offset, cu);
5737
5738 fixup_partial_die (spec_die, cu);
5739
5740 if (spec_die->name)
5741 {
5742 part_die->name = spec_die->name;
5743
5744 /* Copy DW_AT_external attribute if it is set. */
5745 if (spec_die->is_external)
5746 part_die->is_external = spec_die->is_external;
5747 }
5748 }
5749
5750 /* Set default names for some unnamed DIEs. */
5751 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5752 || part_die->tag == DW_TAG_class_type))
5753 part_die->name = "(anonymous class)";
5754
5755 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5756 part_die->name = "(anonymous namespace)";
5757
5758 if (part_die->tag == DW_TAG_structure_type
5759 || part_die->tag == DW_TAG_class_type
5760 || part_die->tag == DW_TAG_union_type)
5761 guess_structure_name (part_die, cu);
5762 }
5763
5764 /* Read the die from the .debug_info section buffer. Set DIEP to
5765 point to a newly allocated die with its information, except for its
5766 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5767 whether the die has children or not. */
5768
5769 static gdb_byte *
5770 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5771 struct dwarf2_cu *cu, int *has_children)
5772 {
5773 unsigned int abbrev_number, bytes_read, i, offset;
5774 struct abbrev_info *abbrev;
5775 struct die_info *die;
5776
5777 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5778 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5779 info_ptr += bytes_read;
5780 if (!abbrev_number)
5781 {
5782 die = dwarf_alloc_die ();
5783 die->tag = 0;
5784 die->abbrev = abbrev_number;
5785 die->type = NULL;
5786 *diep = die;
5787 *has_children = 0;
5788 return info_ptr;
5789 }
5790
5791 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5792 if (!abbrev)
5793 {
5794 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5795 abbrev_number,
5796 bfd_get_filename (abfd));
5797 }
5798 die = dwarf_alloc_die ();
5799 die->offset = offset;
5800 die->tag = abbrev->tag;
5801 die->abbrev = abbrev_number;
5802 die->type = NULL;
5803
5804 die->num_attrs = abbrev->num_attrs;
5805 die->attrs = (struct attribute *)
5806 xmalloc (die->num_attrs * sizeof (struct attribute));
5807
5808 for (i = 0; i < abbrev->num_attrs; ++i)
5809 {
5810 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5811 abfd, info_ptr, cu);
5812
5813 /* If this attribute is an absolute reference to a different
5814 compilation unit, make sure that compilation unit is loaded
5815 also. */
5816 if (die->attrs[i].form == DW_FORM_ref_addr
5817 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5818 || (DW_ADDR (&die->attrs[i])
5819 >= cu->header.offset + cu->header.length)))
5820 {
5821 struct dwarf2_per_cu_data *per_cu;
5822 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5823 cu->objfile);
5824
5825 /* Mark the dependence relation so that we don't flush PER_CU
5826 too early. */
5827 dwarf2_add_dependence (cu, per_cu);
5828
5829 /* If it's already on the queue, we have nothing to do. */
5830 if (per_cu->queued)
5831 continue;
5832
5833 /* If the compilation unit is already loaded, just mark it as
5834 used. */
5835 if (per_cu->cu != NULL)
5836 {
5837 per_cu->cu->last_used = 0;
5838 continue;
5839 }
5840
5841 /* Add it to the queue. */
5842 queue_comp_unit (per_cu);
5843 }
5844 }
5845
5846 *diep = die;
5847 *has_children = abbrev->has_children;
5848 return info_ptr;
5849 }
5850
5851 /* Read an attribute value described by an attribute form. */
5852
5853 static gdb_byte *
5854 read_attribute_value (struct attribute *attr, unsigned form,
5855 bfd *abfd, gdb_byte *info_ptr,
5856 struct dwarf2_cu *cu)
5857 {
5858 struct comp_unit_head *cu_header = &cu->header;
5859 unsigned int bytes_read;
5860 struct dwarf_block *blk;
5861
5862 attr->form = form;
5863 switch (form)
5864 {
5865 case DW_FORM_addr:
5866 case DW_FORM_ref_addr:
5867 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5868 info_ptr += bytes_read;
5869 break;
5870 case DW_FORM_block2:
5871 blk = dwarf_alloc_block (cu);
5872 blk->size = read_2_bytes (abfd, info_ptr);
5873 info_ptr += 2;
5874 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5875 info_ptr += blk->size;
5876 DW_BLOCK (attr) = blk;
5877 break;
5878 case DW_FORM_block4:
5879 blk = dwarf_alloc_block (cu);
5880 blk->size = read_4_bytes (abfd, info_ptr);
5881 info_ptr += 4;
5882 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5883 info_ptr += blk->size;
5884 DW_BLOCK (attr) = blk;
5885 break;
5886 case DW_FORM_data2:
5887 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5888 info_ptr += 2;
5889 break;
5890 case DW_FORM_data4:
5891 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5892 info_ptr += 4;
5893 break;
5894 case DW_FORM_data8:
5895 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5896 info_ptr += 8;
5897 break;
5898 case DW_FORM_string:
5899 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5900 info_ptr += bytes_read;
5901 break;
5902 case DW_FORM_strp:
5903 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5904 &bytes_read);
5905 info_ptr += bytes_read;
5906 break;
5907 case DW_FORM_block:
5908 blk = dwarf_alloc_block (cu);
5909 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5910 info_ptr += bytes_read;
5911 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5912 info_ptr += blk->size;
5913 DW_BLOCK (attr) = blk;
5914 break;
5915 case DW_FORM_block1:
5916 blk = dwarf_alloc_block (cu);
5917 blk->size = read_1_byte (abfd, info_ptr);
5918 info_ptr += 1;
5919 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5920 info_ptr += blk->size;
5921 DW_BLOCK (attr) = blk;
5922 break;
5923 case DW_FORM_data1:
5924 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5925 info_ptr += 1;
5926 break;
5927 case DW_FORM_flag:
5928 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5929 info_ptr += 1;
5930 break;
5931 case DW_FORM_sdata:
5932 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5933 info_ptr += bytes_read;
5934 break;
5935 case DW_FORM_udata:
5936 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5937 info_ptr += bytes_read;
5938 break;
5939 case DW_FORM_ref1:
5940 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5941 info_ptr += 1;
5942 break;
5943 case DW_FORM_ref2:
5944 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5945 info_ptr += 2;
5946 break;
5947 case DW_FORM_ref4:
5948 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5949 info_ptr += 4;
5950 break;
5951 case DW_FORM_ref8:
5952 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5953 info_ptr += 8;
5954 break;
5955 case DW_FORM_ref_udata:
5956 DW_ADDR (attr) = (cu->header.offset
5957 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5958 info_ptr += bytes_read;
5959 break;
5960 case DW_FORM_indirect:
5961 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5962 info_ptr += bytes_read;
5963 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5964 break;
5965 default:
5966 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5967 dwarf_form_name (form),
5968 bfd_get_filename (abfd));
5969 }
5970 return info_ptr;
5971 }
5972
5973 /* Read an attribute described by an abbreviated attribute. */
5974
5975 static gdb_byte *
5976 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5977 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5978 {
5979 attr->name = abbrev->name;
5980 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5981 }
5982
5983 /* read dwarf information from a buffer */
5984
5985 static unsigned int
5986 read_1_byte (bfd *abfd, gdb_byte *buf)
5987 {
5988 return bfd_get_8 (abfd, buf);
5989 }
5990
5991 static int
5992 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5993 {
5994 return bfd_get_signed_8 (abfd, buf);
5995 }
5996
5997 static unsigned int
5998 read_2_bytes (bfd *abfd, gdb_byte *buf)
5999 {
6000 return bfd_get_16 (abfd, buf);
6001 }
6002
6003 static int
6004 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6005 {
6006 return bfd_get_signed_16 (abfd, buf);
6007 }
6008
6009 static unsigned int
6010 read_4_bytes (bfd *abfd, gdb_byte *buf)
6011 {
6012 return bfd_get_32 (abfd, buf);
6013 }
6014
6015 static int
6016 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6017 {
6018 return bfd_get_signed_32 (abfd, buf);
6019 }
6020
6021 static unsigned long
6022 read_8_bytes (bfd *abfd, gdb_byte *buf)
6023 {
6024 return bfd_get_64 (abfd, buf);
6025 }
6026
6027 static CORE_ADDR
6028 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6029 unsigned int *bytes_read)
6030 {
6031 struct comp_unit_head *cu_header = &cu->header;
6032 CORE_ADDR retval = 0;
6033
6034 if (cu_header->signed_addr_p)
6035 {
6036 switch (cu_header->addr_size)
6037 {
6038 case 2:
6039 retval = bfd_get_signed_16 (abfd, buf);
6040 break;
6041 case 4:
6042 retval = bfd_get_signed_32 (abfd, buf);
6043 break;
6044 case 8:
6045 retval = bfd_get_signed_64 (abfd, buf);
6046 break;
6047 default:
6048 internal_error (__FILE__, __LINE__,
6049 _("read_address: bad switch, signed [in module %s]"),
6050 bfd_get_filename (abfd));
6051 }
6052 }
6053 else
6054 {
6055 switch (cu_header->addr_size)
6056 {
6057 case 2:
6058 retval = bfd_get_16 (abfd, buf);
6059 break;
6060 case 4:
6061 retval = bfd_get_32 (abfd, buf);
6062 break;
6063 case 8:
6064 retval = bfd_get_64 (abfd, buf);
6065 break;
6066 default:
6067 internal_error (__FILE__, __LINE__,
6068 _("read_address: bad switch, unsigned [in module %s]"),
6069 bfd_get_filename (abfd));
6070 }
6071 }
6072
6073 *bytes_read = cu_header->addr_size;
6074 return retval;
6075 }
6076
6077 /* Read the initial length from a section. The (draft) DWARF 3
6078 specification allows the initial length to take up either 4 bytes
6079 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6080 bytes describe the length and all offsets will be 8 bytes in length
6081 instead of 4.
6082
6083 An older, non-standard 64-bit format is also handled by this
6084 function. The older format in question stores the initial length
6085 as an 8-byte quantity without an escape value. Lengths greater
6086 than 2^32 aren't very common which means that the initial 4 bytes
6087 is almost always zero. Since a length value of zero doesn't make
6088 sense for the 32-bit format, this initial zero can be considered to
6089 be an escape value which indicates the presence of the older 64-bit
6090 format. As written, the code can't detect (old format) lengths
6091 greater than 4GB. If it becomes necessary to handle lengths
6092 somewhat larger than 4GB, we could allow other small values (such
6093 as the non-sensical values of 1, 2, and 3) to also be used as
6094 escape values indicating the presence of the old format.
6095
6096 The value returned via bytes_read should be used to increment the
6097 relevant pointer after calling read_initial_length().
6098
6099 As a side effect, this function sets the fields initial_length_size
6100 and offset_size in cu_header to the values appropriate for the
6101 length field. (The format of the initial length field determines
6102 the width of file offsets to be fetched later with read_offset().)
6103
6104 [ Note: read_initial_length() and read_offset() are based on the
6105 document entitled "DWARF Debugging Information Format", revision
6106 3, draft 8, dated November 19, 2001. This document was obtained
6107 from:
6108
6109 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6110
6111 This document is only a draft and is subject to change. (So beware.)
6112
6113 Details regarding the older, non-standard 64-bit format were
6114 determined empirically by examining 64-bit ELF files produced by
6115 the SGI toolchain on an IRIX 6.5 machine.
6116
6117 - Kevin, July 16, 2002
6118 ] */
6119
6120 static LONGEST
6121 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6122 unsigned int *bytes_read)
6123 {
6124 LONGEST length = bfd_get_32 (abfd, buf);
6125
6126 if (length == 0xffffffff)
6127 {
6128 length = bfd_get_64 (abfd, buf + 4);
6129 *bytes_read = 12;
6130 }
6131 else if (length == 0)
6132 {
6133 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6134 length = bfd_get_64 (abfd, buf);
6135 *bytes_read = 8;
6136 }
6137 else
6138 {
6139 *bytes_read = 4;
6140 }
6141
6142 if (cu_header)
6143 {
6144 gdb_assert (cu_header->initial_length_size == 0
6145 || cu_header->initial_length_size == 4
6146 || cu_header->initial_length_size == 8
6147 || cu_header->initial_length_size == 12);
6148
6149 if (cu_header->initial_length_size != 0
6150 && cu_header->initial_length_size != *bytes_read)
6151 complaint (&symfile_complaints,
6152 _("intermixed 32-bit and 64-bit DWARF sections"));
6153
6154 cu_header->initial_length_size = *bytes_read;
6155 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6156 }
6157
6158 return length;
6159 }
6160
6161 /* Read an offset from the data stream. The size of the offset is
6162 given by cu_header->offset_size. */
6163
6164 static LONGEST
6165 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6166 unsigned int *bytes_read)
6167 {
6168 LONGEST retval = 0;
6169
6170 switch (cu_header->offset_size)
6171 {
6172 case 4:
6173 retval = bfd_get_32 (abfd, buf);
6174 *bytes_read = 4;
6175 break;
6176 case 8:
6177 retval = bfd_get_64 (abfd, buf);
6178 *bytes_read = 8;
6179 break;
6180 default:
6181 internal_error (__FILE__, __LINE__,
6182 _("read_offset: bad switch [in module %s]"),
6183 bfd_get_filename (abfd));
6184 }
6185
6186 return retval;
6187 }
6188
6189 static gdb_byte *
6190 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6191 {
6192 /* If the size of a host char is 8 bits, we can return a pointer
6193 to the buffer, otherwise we have to copy the data to a buffer
6194 allocated on the temporary obstack. */
6195 gdb_assert (HOST_CHAR_BIT == 8);
6196 return buf;
6197 }
6198
6199 static char *
6200 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6201 {
6202 /* If the size of a host char is 8 bits, we can return a pointer
6203 to the string, otherwise we have to copy the string to a buffer
6204 allocated on the temporary obstack. */
6205 gdb_assert (HOST_CHAR_BIT == 8);
6206 if (*buf == '\0')
6207 {
6208 *bytes_read_ptr = 1;
6209 return NULL;
6210 }
6211 *bytes_read_ptr = strlen ((char *) buf) + 1;
6212 return (char *) buf;
6213 }
6214
6215 static char *
6216 read_indirect_string (bfd *abfd, gdb_byte *buf,
6217 const struct comp_unit_head *cu_header,
6218 unsigned int *bytes_read_ptr)
6219 {
6220 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6221 bytes_read_ptr);
6222
6223 if (dwarf2_per_objfile->str_buffer == NULL)
6224 {
6225 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6226 bfd_get_filename (abfd));
6227 return NULL;
6228 }
6229 if (str_offset >= dwarf2_per_objfile->str_size)
6230 {
6231 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6232 bfd_get_filename (abfd));
6233 return NULL;
6234 }
6235 gdb_assert (HOST_CHAR_BIT == 8);
6236 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6237 return NULL;
6238 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6239 }
6240
6241 static unsigned long
6242 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6243 {
6244 unsigned long result;
6245 unsigned int num_read;
6246 int i, shift;
6247 unsigned char byte;
6248
6249 result = 0;
6250 shift = 0;
6251 num_read = 0;
6252 i = 0;
6253 while (1)
6254 {
6255 byte = bfd_get_8 (abfd, buf);
6256 buf++;
6257 num_read++;
6258 result |= ((unsigned long)(byte & 127) << shift);
6259 if ((byte & 128) == 0)
6260 {
6261 break;
6262 }
6263 shift += 7;
6264 }
6265 *bytes_read_ptr = num_read;
6266 return result;
6267 }
6268
6269 static long
6270 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6271 {
6272 long result;
6273 int i, shift, num_read;
6274 unsigned char byte;
6275
6276 result = 0;
6277 shift = 0;
6278 num_read = 0;
6279 i = 0;
6280 while (1)
6281 {
6282 byte = bfd_get_8 (abfd, buf);
6283 buf++;
6284 num_read++;
6285 result |= ((long)(byte & 127) << shift);
6286 shift += 7;
6287 if ((byte & 128) == 0)
6288 {
6289 break;
6290 }
6291 }
6292 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6293 result |= -(((long)1) << shift);
6294 *bytes_read_ptr = num_read;
6295 return result;
6296 }
6297
6298 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6299
6300 static gdb_byte *
6301 skip_leb128 (bfd *abfd, gdb_byte *buf)
6302 {
6303 int byte;
6304
6305 while (1)
6306 {
6307 byte = bfd_get_8 (abfd, buf);
6308 buf++;
6309 if ((byte & 128) == 0)
6310 return buf;
6311 }
6312 }
6313
6314 static void
6315 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6316 {
6317 switch (lang)
6318 {
6319 case DW_LANG_C89:
6320 case DW_LANG_C:
6321 cu->language = language_c;
6322 break;
6323 case DW_LANG_C_plus_plus:
6324 cu->language = language_cplus;
6325 break;
6326 case DW_LANG_Fortran77:
6327 case DW_LANG_Fortran90:
6328 case DW_LANG_Fortran95:
6329 cu->language = language_fortran;
6330 break;
6331 case DW_LANG_Mips_Assembler:
6332 cu->language = language_asm;
6333 break;
6334 case DW_LANG_Java:
6335 cu->language = language_java;
6336 break;
6337 case DW_LANG_Ada83:
6338 case DW_LANG_Ada95:
6339 cu->language = language_ada;
6340 break;
6341 case DW_LANG_Modula2:
6342 cu->language = language_m2;
6343 break;
6344 case DW_LANG_Pascal83:
6345 cu->language = language_pascal;
6346 break;
6347 case DW_LANG_Cobol74:
6348 case DW_LANG_Cobol85:
6349 default:
6350 cu->language = language_minimal;
6351 break;
6352 }
6353 cu->language_defn = language_def (cu->language);
6354 }
6355
6356 /* Return the named attribute or NULL if not there. */
6357
6358 static struct attribute *
6359 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6360 {
6361 unsigned int i;
6362 struct attribute *spec = NULL;
6363
6364 for (i = 0; i < die->num_attrs; ++i)
6365 {
6366 if (die->attrs[i].name == name)
6367 return &die->attrs[i];
6368 if (die->attrs[i].name == DW_AT_specification
6369 || die->attrs[i].name == DW_AT_abstract_origin)
6370 spec = &die->attrs[i];
6371 }
6372
6373 if (spec)
6374 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6375
6376 return NULL;
6377 }
6378
6379 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6380 and holds a non-zero value. This function should only be used for
6381 DW_FORM_flag attributes. */
6382
6383 static int
6384 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6385 {
6386 struct attribute *attr = dwarf2_attr (die, name, cu);
6387
6388 return (attr && DW_UNSND (attr));
6389 }
6390
6391 static int
6392 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6393 {
6394 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6395 which value is non-zero. However, we have to be careful with
6396 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6397 (via dwarf2_flag_true_p) follows this attribute. So we may
6398 end up accidently finding a declaration attribute that belongs
6399 to a different DIE referenced by the specification attribute,
6400 even though the given DIE does not have a declaration attribute. */
6401 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6402 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6403 }
6404
6405 /* Return the die giving the specification for DIE, if there is
6406 one. */
6407
6408 static struct die_info *
6409 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6410 {
6411 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6412
6413 if (spec_attr == NULL)
6414 return NULL;
6415 else
6416 return follow_die_ref (die, spec_attr, cu);
6417 }
6418
6419 /* Free the line_header structure *LH, and any arrays and strings it
6420 refers to. */
6421 static void
6422 free_line_header (struct line_header *lh)
6423 {
6424 if (lh->standard_opcode_lengths)
6425 xfree (lh->standard_opcode_lengths);
6426
6427 /* Remember that all the lh->file_names[i].name pointers are
6428 pointers into debug_line_buffer, and don't need to be freed. */
6429 if (lh->file_names)
6430 xfree (lh->file_names);
6431
6432 /* Similarly for the include directory names. */
6433 if (lh->include_dirs)
6434 xfree (lh->include_dirs);
6435
6436 xfree (lh);
6437 }
6438
6439
6440 /* Add an entry to LH's include directory table. */
6441 static void
6442 add_include_dir (struct line_header *lh, char *include_dir)
6443 {
6444 /* Grow the array if necessary. */
6445 if (lh->include_dirs_size == 0)
6446 {
6447 lh->include_dirs_size = 1; /* for testing */
6448 lh->include_dirs = xmalloc (lh->include_dirs_size
6449 * sizeof (*lh->include_dirs));
6450 }
6451 else if (lh->num_include_dirs >= lh->include_dirs_size)
6452 {
6453 lh->include_dirs_size *= 2;
6454 lh->include_dirs = xrealloc (lh->include_dirs,
6455 (lh->include_dirs_size
6456 * sizeof (*lh->include_dirs)));
6457 }
6458
6459 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6460 }
6461
6462
6463 /* Add an entry to LH's file name table. */
6464 static void
6465 add_file_name (struct line_header *lh,
6466 char *name,
6467 unsigned int dir_index,
6468 unsigned int mod_time,
6469 unsigned int length)
6470 {
6471 struct file_entry *fe;
6472
6473 /* Grow the array if necessary. */
6474 if (lh->file_names_size == 0)
6475 {
6476 lh->file_names_size = 1; /* for testing */
6477 lh->file_names = xmalloc (lh->file_names_size
6478 * sizeof (*lh->file_names));
6479 }
6480 else if (lh->num_file_names >= lh->file_names_size)
6481 {
6482 lh->file_names_size *= 2;
6483 lh->file_names = xrealloc (lh->file_names,
6484 (lh->file_names_size
6485 * sizeof (*lh->file_names)));
6486 }
6487
6488 fe = &lh->file_names[lh->num_file_names++];
6489 fe->name = name;
6490 fe->dir_index = dir_index;
6491 fe->mod_time = mod_time;
6492 fe->length = length;
6493 fe->included_p = 0;
6494 fe->symtab = NULL;
6495 }
6496
6497
6498 /* Read the statement program header starting at OFFSET in
6499 .debug_line, according to the endianness of ABFD. Return a pointer
6500 to a struct line_header, allocated using xmalloc.
6501
6502 NOTE: the strings in the include directory and file name tables of
6503 the returned object point into debug_line_buffer, and must not be
6504 freed. */
6505 static struct line_header *
6506 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6507 struct dwarf2_cu *cu)
6508 {
6509 struct cleanup *back_to;
6510 struct line_header *lh;
6511 gdb_byte *line_ptr;
6512 unsigned int bytes_read;
6513 int i;
6514 char *cur_dir, *cur_file;
6515
6516 if (dwarf2_per_objfile->line_buffer == NULL)
6517 {
6518 complaint (&symfile_complaints, _("missing .debug_line section"));
6519 return 0;
6520 }
6521
6522 /* Make sure that at least there's room for the total_length field.
6523 That could be 12 bytes long, but we're just going to fudge that. */
6524 if (offset + 4 >= dwarf2_per_objfile->line_size)
6525 {
6526 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6527 return 0;
6528 }
6529
6530 lh = xmalloc (sizeof (*lh));
6531 memset (lh, 0, sizeof (*lh));
6532 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6533 (void *) lh);
6534
6535 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6536
6537 /* Read in the header. */
6538 lh->total_length =
6539 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6540 line_ptr += bytes_read;
6541 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6542 + dwarf2_per_objfile->line_size))
6543 {
6544 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6545 return 0;
6546 }
6547 lh->statement_program_end = line_ptr + lh->total_length;
6548 lh->version = read_2_bytes (abfd, line_ptr);
6549 line_ptr += 2;
6550 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6551 line_ptr += bytes_read;
6552 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6553 line_ptr += 1;
6554 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6555 line_ptr += 1;
6556 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6557 line_ptr += 1;
6558 lh->line_range = read_1_byte (abfd, line_ptr);
6559 line_ptr += 1;
6560 lh->opcode_base = read_1_byte (abfd, line_ptr);
6561 line_ptr += 1;
6562 lh->standard_opcode_lengths
6563 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6564
6565 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6566 for (i = 1; i < lh->opcode_base; ++i)
6567 {
6568 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6569 line_ptr += 1;
6570 }
6571
6572 /* Read directory table. */
6573 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6574 {
6575 line_ptr += bytes_read;
6576 add_include_dir (lh, cur_dir);
6577 }
6578 line_ptr += bytes_read;
6579
6580 /* Read file name table. */
6581 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6582 {
6583 unsigned int dir_index, mod_time, length;
6584
6585 line_ptr += bytes_read;
6586 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6587 line_ptr += bytes_read;
6588 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6589 line_ptr += bytes_read;
6590 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6591 line_ptr += bytes_read;
6592
6593 add_file_name (lh, cur_file, dir_index, mod_time, length);
6594 }
6595 line_ptr += bytes_read;
6596 lh->statement_program_start = line_ptr;
6597
6598 if (line_ptr > (dwarf2_per_objfile->line_buffer
6599 + dwarf2_per_objfile->line_size))
6600 complaint (&symfile_complaints,
6601 _("line number info header doesn't fit in `.debug_line' section"));
6602
6603 discard_cleanups (back_to);
6604 return lh;
6605 }
6606
6607 /* This function exists to work around a bug in certain compilers
6608 (particularly GCC 2.95), in which the first line number marker of a
6609 function does not show up until after the prologue, right before
6610 the second line number marker. This function shifts ADDRESS down
6611 to the beginning of the function if necessary, and is called on
6612 addresses passed to record_line. */
6613
6614 static CORE_ADDR
6615 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6616 {
6617 struct function_range *fn;
6618
6619 /* Find the function_range containing address. */
6620 if (!cu->first_fn)
6621 return address;
6622
6623 if (!cu->cached_fn)
6624 cu->cached_fn = cu->first_fn;
6625
6626 fn = cu->cached_fn;
6627 while (fn)
6628 if (fn->lowpc <= address && fn->highpc > address)
6629 goto found;
6630 else
6631 fn = fn->next;
6632
6633 fn = cu->first_fn;
6634 while (fn && fn != cu->cached_fn)
6635 if (fn->lowpc <= address && fn->highpc > address)
6636 goto found;
6637 else
6638 fn = fn->next;
6639
6640 return address;
6641
6642 found:
6643 if (fn->seen_line)
6644 return address;
6645 if (address != fn->lowpc)
6646 complaint (&symfile_complaints,
6647 _("misplaced first line number at 0x%lx for '%s'"),
6648 (unsigned long) address, fn->name);
6649 fn->seen_line = 1;
6650 return fn->lowpc;
6651 }
6652
6653 /* Decode the Line Number Program (LNP) for the given line_header
6654 structure and CU. The actual information extracted and the type
6655 of structures created from the LNP depends on the value of PST.
6656
6657 1. If PST is NULL, then this procedure uses the data from the program
6658 to create all necessary symbol tables, and their linetables.
6659 The compilation directory of the file is passed in COMP_DIR,
6660 and must not be NULL.
6661
6662 2. If PST is not NULL, this procedure reads the program to determine
6663 the list of files included by the unit represented by PST, and
6664 builds all the associated partial symbol tables. In this case,
6665 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6666 is not used to compute the full name of the symtab, and therefore
6667 omitting it when building the partial symtab does not introduce
6668 the potential for inconsistency - a partial symtab and its associated
6669 symbtab having a different fullname -). */
6670
6671 static void
6672 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6673 struct dwarf2_cu *cu, struct partial_symtab *pst)
6674 {
6675 gdb_byte *line_ptr, *extended_end;
6676 gdb_byte *line_end;
6677 unsigned int bytes_read, extended_len;
6678 unsigned char op_code, extended_op, adj_opcode;
6679 CORE_ADDR baseaddr;
6680 struct objfile *objfile = cu->objfile;
6681 const int decode_for_pst_p = (pst != NULL);
6682 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6683
6684 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6685
6686 line_ptr = lh->statement_program_start;
6687 line_end = lh->statement_program_end;
6688
6689 /* Read the statement sequences until there's nothing left. */
6690 while (line_ptr < line_end)
6691 {
6692 /* state machine registers */
6693 CORE_ADDR address = 0;
6694 unsigned int file = 1;
6695 unsigned int line = 1;
6696 unsigned int column = 0;
6697 int is_stmt = lh->default_is_stmt;
6698 int basic_block = 0;
6699 int end_sequence = 0;
6700
6701 if (!decode_for_pst_p && lh->num_file_names >= file)
6702 {
6703 /* Start a subfile for the current file of the state machine. */
6704 /* lh->include_dirs and lh->file_names are 0-based, but the
6705 directory and file name numbers in the statement program
6706 are 1-based. */
6707 struct file_entry *fe = &lh->file_names[file - 1];
6708 char *dir = NULL;
6709
6710 if (fe->dir_index)
6711 dir = lh->include_dirs[fe->dir_index - 1];
6712
6713 dwarf2_start_subfile (fe->name, dir, comp_dir);
6714 }
6715
6716 /* Decode the table. */
6717 while (!end_sequence)
6718 {
6719 op_code = read_1_byte (abfd, line_ptr);
6720 line_ptr += 1;
6721
6722 if (op_code >= lh->opcode_base)
6723 {
6724 /* Special operand. */
6725 adj_opcode = op_code - lh->opcode_base;
6726 address += (adj_opcode / lh->line_range)
6727 * lh->minimum_instruction_length;
6728 line += lh->line_base + (adj_opcode % lh->line_range);
6729 if (lh->num_file_names < file)
6730 dwarf2_debug_line_missing_file_complaint ();
6731 else
6732 {
6733 lh->file_names[file - 1].included_p = 1;
6734 if (!decode_for_pst_p)
6735 {
6736 if (last_subfile != current_subfile)
6737 {
6738 if (last_subfile)
6739 record_line (last_subfile, 0, address);
6740 last_subfile = current_subfile;
6741 }
6742 /* Append row to matrix using current values. */
6743 record_line (current_subfile, line,
6744 check_cu_functions (address, cu));
6745 }
6746 }
6747 basic_block = 1;
6748 }
6749 else switch (op_code)
6750 {
6751 case DW_LNS_extended_op:
6752 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6753 line_ptr += bytes_read;
6754 extended_end = line_ptr + extended_len;
6755 extended_op = read_1_byte (abfd, line_ptr);
6756 line_ptr += 1;
6757 switch (extended_op)
6758 {
6759 case DW_LNE_end_sequence:
6760 end_sequence = 1;
6761
6762 if (lh->num_file_names < file)
6763 dwarf2_debug_line_missing_file_complaint ();
6764 else
6765 {
6766 lh->file_names[file - 1].included_p = 1;
6767 if (!decode_for_pst_p)
6768 record_line (current_subfile, 0, address);
6769 }
6770 break;
6771 case DW_LNE_set_address:
6772 address = read_address (abfd, line_ptr, cu, &bytes_read);
6773 line_ptr += bytes_read;
6774 address += baseaddr;
6775 break;
6776 case DW_LNE_define_file:
6777 {
6778 char *cur_file;
6779 unsigned int dir_index, mod_time, length;
6780
6781 cur_file = read_string (abfd, line_ptr, &bytes_read);
6782 line_ptr += bytes_read;
6783 dir_index =
6784 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6785 line_ptr += bytes_read;
6786 mod_time =
6787 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6788 line_ptr += bytes_read;
6789 length =
6790 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6791 line_ptr += bytes_read;
6792 add_file_name (lh, cur_file, dir_index, mod_time, length);
6793 }
6794 break;
6795 default:
6796 complaint (&symfile_complaints,
6797 _("mangled .debug_line section"));
6798 return;
6799 }
6800 /* Make sure that we parsed the extended op correctly. If e.g.
6801 we expected a different address size than the producer used,
6802 we may have read the wrong number of bytes. */
6803 if (line_ptr != extended_end)
6804 {
6805 complaint (&symfile_complaints,
6806 _("mangled .debug_line section"));
6807 return;
6808 }
6809 break;
6810 case DW_LNS_copy:
6811 if (lh->num_file_names < file)
6812 dwarf2_debug_line_missing_file_complaint ();
6813 else
6814 {
6815 lh->file_names[file - 1].included_p = 1;
6816 if (!decode_for_pst_p)
6817 {
6818 if (last_subfile != current_subfile)
6819 {
6820 if (last_subfile)
6821 record_line (last_subfile, 0, address);
6822 last_subfile = current_subfile;
6823 }
6824 record_line (current_subfile, line,
6825 check_cu_functions (address, cu));
6826 }
6827 }
6828 basic_block = 0;
6829 break;
6830 case DW_LNS_advance_pc:
6831 address += lh->minimum_instruction_length
6832 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6833 line_ptr += bytes_read;
6834 break;
6835 case DW_LNS_advance_line:
6836 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6837 line_ptr += bytes_read;
6838 break;
6839 case DW_LNS_set_file:
6840 {
6841 /* The arrays lh->include_dirs and lh->file_names are
6842 0-based, but the directory and file name numbers in
6843 the statement program are 1-based. */
6844 struct file_entry *fe;
6845 char *dir = NULL;
6846
6847 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6848 line_ptr += bytes_read;
6849 if (lh->num_file_names < file)
6850 dwarf2_debug_line_missing_file_complaint ();
6851 else
6852 {
6853 fe = &lh->file_names[file - 1];
6854 if (fe->dir_index)
6855 dir = lh->include_dirs[fe->dir_index - 1];
6856 if (!decode_for_pst_p)
6857 {
6858 last_subfile = current_subfile;
6859 dwarf2_start_subfile (fe->name, dir, comp_dir);
6860 }
6861 }
6862 }
6863 break;
6864 case DW_LNS_set_column:
6865 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6866 line_ptr += bytes_read;
6867 break;
6868 case DW_LNS_negate_stmt:
6869 is_stmt = (!is_stmt);
6870 break;
6871 case DW_LNS_set_basic_block:
6872 basic_block = 1;
6873 break;
6874 /* Add to the address register of the state machine the
6875 address increment value corresponding to special opcode
6876 255. I.e., this value is scaled by the minimum
6877 instruction length since special opcode 255 would have
6878 scaled the the increment. */
6879 case DW_LNS_const_add_pc:
6880 address += (lh->minimum_instruction_length
6881 * ((255 - lh->opcode_base) / lh->line_range));
6882 break;
6883 case DW_LNS_fixed_advance_pc:
6884 address += read_2_bytes (abfd, line_ptr);
6885 line_ptr += 2;
6886 break;
6887 default:
6888 {
6889 /* Unknown standard opcode, ignore it. */
6890 int i;
6891
6892 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6893 {
6894 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6895 line_ptr += bytes_read;
6896 }
6897 }
6898 }
6899 }
6900 }
6901
6902 if (decode_for_pst_p)
6903 {
6904 int file_index;
6905
6906 /* Now that we're done scanning the Line Header Program, we can
6907 create the psymtab of each included file. */
6908 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6909 if (lh->file_names[file_index].included_p == 1)
6910 {
6911 const struct file_entry fe = lh->file_names [file_index];
6912 char *include_name = fe.name;
6913 char *dir_name = NULL;
6914 char *pst_filename = pst->filename;
6915
6916 if (fe.dir_index)
6917 dir_name = lh->include_dirs[fe.dir_index - 1];
6918
6919 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6920 {
6921 include_name = concat (dir_name, SLASH_STRING,
6922 include_name, (char *)NULL);
6923 make_cleanup (xfree, include_name);
6924 }
6925
6926 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6927 {
6928 pst_filename = concat (pst->dirname, SLASH_STRING,
6929 pst_filename, (char *)NULL);
6930 make_cleanup (xfree, pst_filename);
6931 }
6932
6933 if (strcmp (include_name, pst_filename) != 0)
6934 dwarf2_create_include_psymtab (include_name, pst, objfile);
6935 }
6936 }
6937 else
6938 {
6939 /* Make sure a symtab is created for every file, even files
6940 which contain only variables (i.e. no code with associated
6941 line numbers). */
6942
6943 int i;
6944 struct file_entry *fe;
6945
6946 for (i = 0; i < lh->num_file_names; i++)
6947 {
6948 char *dir = NULL;
6949 fe = &lh->file_names[i];
6950 if (fe->dir_index)
6951 dir = lh->include_dirs[fe->dir_index - 1];
6952 dwarf2_start_subfile (fe->name, dir, comp_dir);
6953
6954 /* Skip the main file; we don't need it, and it must be
6955 allocated last, so that it will show up before the
6956 non-primary symtabs in the objfile's symtab list. */
6957 if (current_subfile == first_subfile)
6958 continue;
6959
6960 if (current_subfile->symtab == NULL)
6961 current_subfile->symtab = allocate_symtab (current_subfile->name,
6962 cu->objfile);
6963 fe->symtab = current_subfile->symtab;
6964 }
6965 }
6966 }
6967
6968 /* Start a subfile for DWARF. FILENAME is the name of the file and
6969 DIRNAME the name of the source directory which contains FILENAME
6970 or NULL if not known. COMP_DIR is the compilation directory for the
6971 linetable's compilation unit or NULL if not known.
6972 This routine tries to keep line numbers from identical absolute and
6973 relative file names in a common subfile.
6974
6975 Using the `list' example from the GDB testsuite, which resides in
6976 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6977 of /srcdir/list0.c yields the following debugging information for list0.c:
6978
6979 DW_AT_name: /srcdir/list0.c
6980 DW_AT_comp_dir: /compdir
6981 files.files[0].name: list0.h
6982 files.files[0].dir: /srcdir
6983 files.files[1].name: list0.c
6984 files.files[1].dir: /srcdir
6985
6986 The line number information for list0.c has to end up in a single
6987 subfile, so that `break /srcdir/list0.c:1' works as expected.
6988 start_subfile will ensure that this happens provided that we pass the
6989 concatenation of files.files[1].dir and files.files[1].name as the
6990 subfile's name. */
6991
6992 static void
6993 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6994 {
6995 char *fullname;
6996
6997 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6998 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6999 second argument to start_subfile. To be consistent, we do the
7000 same here. In order not to lose the line information directory,
7001 we concatenate it to the filename when it makes sense.
7002 Note that the Dwarf3 standard says (speaking of filenames in line
7003 information): ``The directory index is ignored for file names
7004 that represent full path names''. Thus ignoring dirname in the
7005 `else' branch below isn't an issue. */
7006
7007 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
7008 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7009 else
7010 fullname = filename;
7011
7012 start_subfile (fullname, comp_dir);
7013
7014 if (fullname != filename)
7015 xfree (fullname);
7016 }
7017
7018 static void
7019 var_decode_location (struct attribute *attr, struct symbol *sym,
7020 struct dwarf2_cu *cu)
7021 {
7022 struct objfile *objfile = cu->objfile;
7023 struct comp_unit_head *cu_header = &cu->header;
7024
7025 /* NOTE drow/2003-01-30: There used to be a comment and some special
7026 code here to turn a symbol with DW_AT_external and a
7027 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7028 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7029 with some versions of binutils) where shared libraries could have
7030 relocations against symbols in their debug information - the
7031 minimal symbol would have the right address, but the debug info
7032 would not. It's no longer necessary, because we will explicitly
7033 apply relocations when we read in the debug information now. */
7034
7035 /* A DW_AT_location attribute with no contents indicates that a
7036 variable has been optimized away. */
7037 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7038 {
7039 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7040 return;
7041 }
7042
7043 /* Handle one degenerate form of location expression specially, to
7044 preserve GDB's previous behavior when section offsets are
7045 specified. If this is just a DW_OP_addr then mark this symbol
7046 as LOC_STATIC. */
7047
7048 if (attr_form_is_block (attr)
7049 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7050 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7051 {
7052 unsigned int dummy;
7053
7054 SYMBOL_VALUE_ADDRESS (sym) =
7055 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7056 fixup_symbol_section (sym, objfile);
7057 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7058 SYMBOL_SECTION (sym));
7059 SYMBOL_CLASS (sym) = LOC_STATIC;
7060 return;
7061 }
7062
7063 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7064 expression evaluator, and use LOC_COMPUTED only when necessary
7065 (i.e. when the value of a register or memory location is
7066 referenced, or a thread-local block, etc.). Then again, it might
7067 not be worthwhile. I'm assuming that it isn't unless performance
7068 or memory numbers show me otherwise. */
7069
7070 dwarf2_symbol_mark_computed (attr, sym, cu);
7071 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7072 }
7073
7074 /* Given a pointer to a DWARF information entry, figure out if we need
7075 to make a symbol table entry for it, and if so, create a new entry
7076 and return a pointer to it.
7077 If TYPE is NULL, determine symbol type from the die, otherwise
7078 used the passed type. */
7079
7080 static struct symbol *
7081 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7082 {
7083 struct objfile *objfile = cu->objfile;
7084 struct symbol *sym = NULL;
7085 char *name;
7086 struct attribute *attr = NULL;
7087 struct attribute *attr2 = NULL;
7088 CORE_ADDR baseaddr;
7089
7090 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7091
7092 if (die->tag != DW_TAG_namespace)
7093 name = dwarf2_linkage_name (die, cu);
7094 else
7095 name = TYPE_NAME (type);
7096
7097 if (name)
7098 {
7099 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7100 sizeof (struct symbol));
7101 OBJSTAT (objfile, n_syms++);
7102 memset (sym, 0, sizeof (struct symbol));
7103
7104 /* Cache this symbol's name and the name's demangled form (if any). */
7105 SYMBOL_LANGUAGE (sym) = cu->language;
7106 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7107
7108 /* Default assumptions.
7109 Use the passed type or decode it from the die. */
7110 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7111 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7112 if (type != NULL)
7113 SYMBOL_TYPE (sym) = type;
7114 else
7115 SYMBOL_TYPE (sym) = die_type (die, cu);
7116 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7117 if (attr)
7118 {
7119 SYMBOL_LINE (sym) = DW_UNSND (attr);
7120 }
7121
7122 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7123 if (attr)
7124 {
7125 int file_index = DW_UNSND (attr);
7126 if (cu->line_header == NULL
7127 || file_index > cu->line_header->num_file_names)
7128 complaint (&symfile_complaints,
7129 _("file index out of range"));
7130 else if (file_index > 0)
7131 {
7132 struct file_entry *fe;
7133 fe = &cu->line_header->file_names[file_index - 1];
7134 SYMBOL_SYMTAB (sym) = fe->symtab;
7135 }
7136 }
7137
7138 switch (die->tag)
7139 {
7140 case DW_TAG_label:
7141 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7142 if (attr)
7143 {
7144 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7145 }
7146 SYMBOL_CLASS (sym) = LOC_LABEL;
7147 break;
7148 case DW_TAG_subprogram:
7149 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7150 finish_block. */
7151 SYMBOL_CLASS (sym) = LOC_BLOCK;
7152 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7153 if (attr2 && (DW_UNSND (attr2) != 0))
7154 {
7155 add_symbol_to_list (sym, &global_symbols);
7156 }
7157 else
7158 {
7159 add_symbol_to_list (sym, cu->list_in_scope);
7160 }
7161 break;
7162 case DW_TAG_variable:
7163 /* Compilation with minimal debug info may result in variables
7164 with missing type entries. Change the misleading `void' type
7165 to something sensible. */
7166 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7167 SYMBOL_TYPE (sym)
7168 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7169
7170 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7171 if (attr)
7172 {
7173 dwarf2_const_value (attr, sym, cu);
7174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7175 if (attr2 && (DW_UNSND (attr2) != 0))
7176 add_symbol_to_list (sym, &global_symbols);
7177 else
7178 add_symbol_to_list (sym, cu->list_in_scope);
7179 break;
7180 }
7181 attr = dwarf2_attr (die, DW_AT_location, cu);
7182 if (attr)
7183 {
7184 var_decode_location (attr, sym, cu);
7185 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7186 if (attr2 && (DW_UNSND (attr2) != 0))
7187 add_symbol_to_list (sym, &global_symbols);
7188 else
7189 add_symbol_to_list (sym, cu->list_in_scope);
7190 }
7191 else
7192 {
7193 /* We do not know the address of this symbol.
7194 If it is an external symbol and we have type information
7195 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7196 The address of the variable will then be determined from
7197 the minimal symbol table whenever the variable is
7198 referenced. */
7199 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7200 if (attr2 && (DW_UNSND (attr2) != 0)
7201 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7202 {
7203 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7204 add_symbol_to_list (sym, &global_symbols);
7205 }
7206 }
7207 break;
7208 case DW_TAG_formal_parameter:
7209 attr = dwarf2_attr (die, DW_AT_location, cu);
7210 if (attr)
7211 {
7212 var_decode_location (attr, sym, cu);
7213 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7214 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7215 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7216 }
7217 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7218 if (attr)
7219 {
7220 dwarf2_const_value (attr, sym, cu);
7221 }
7222 add_symbol_to_list (sym, cu->list_in_scope);
7223 break;
7224 case DW_TAG_unspecified_parameters:
7225 /* From varargs functions; gdb doesn't seem to have any
7226 interest in this information, so just ignore it for now.
7227 (FIXME?) */
7228 break;
7229 case DW_TAG_class_type:
7230 case DW_TAG_structure_type:
7231 case DW_TAG_union_type:
7232 case DW_TAG_set_type:
7233 case DW_TAG_enumeration_type:
7234 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7235 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7236
7237 /* Make sure that the symbol includes appropriate enclosing
7238 classes/namespaces in its name. These are calculated in
7239 read_structure_type, and the correct name is saved in
7240 the type. */
7241
7242 if (cu->language == language_cplus
7243 || cu->language == language_java)
7244 {
7245 struct type *type = SYMBOL_TYPE (sym);
7246
7247 if (TYPE_TAG_NAME (type) != NULL)
7248 {
7249 /* FIXME: carlton/2003-11-10: Should this use
7250 SYMBOL_SET_NAMES instead? (The same problem also
7251 arises further down in this function.) */
7252 /* The type's name is already allocated along with
7253 this objfile, so we don't need to duplicate it
7254 for the symbol. */
7255 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7256 }
7257 }
7258
7259 {
7260 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7261 really ever be static objects: otherwise, if you try
7262 to, say, break of a class's method and you're in a file
7263 which doesn't mention that class, it won't work unless
7264 the check for all static symbols in lookup_symbol_aux
7265 saves you. See the OtherFileClass tests in
7266 gdb.c++/namespace.exp. */
7267
7268 struct pending **list_to_add;
7269
7270 list_to_add = (cu->list_in_scope == &file_symbols
7271 && (cu->language == language_cplus
7272 || cu->language == language_java)
7273 ? &global_symbols : cu->list_in_scope);
7274
7275 add_symbol_to_list (sym, list_to_add);
7276
7277 /* The semantics of C++ state that "struct foo { ... }" also
7278 defines a typedef for "foo". A Java class declaration also
7279 defines a typedef for the class. Synthesize a typedef symbol
7280 so that "ptype foo" works as expected. */
7281 if (cu->language == language_cplus
7282 || cu->language == language_java
7283 || cu->language == language_ada)
7284 {
7285 struct symbol *typedef_sym = (struct symbol *)
7286 obstack_alloc (&objfile->objfile_obstack,
7287 sizeof (struct symbol));
7288 *typedef_sym = *sym;
7289 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7290 /* The symbol's name is already allocated along with
7291 this objfile, so we don't need to duplicate it for
7292 the type. */
7293 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7294 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7295 add_symbol_to_list (typedef_sym, list_to_add);
7296 }
7297 }
7298 break;
7299 case DW_TAG_typedef:
7300 if (processing_has_namespace_info
7301 && processing_current_prefix[0] != '\0')
7302 {
7303 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7304 processing_current_prefix,
7305 name, cu);
7306 }
7307 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7308 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7309 add_symbol_to_list (sym, cu->list_in_scope);
7310 break;
7311 case DW_TAG_base_type:
7312 case DW_TAG_subrange_type:
7313 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7314 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7315 add_symbol_to_list (sym, cu->list_in_scope);
7316 break;
7317 case DW_TAG_enumerator:
7318 if (processing_has_namespace_info
7319 && processing_current_prefix[0] != '\0')
7320 {
7321 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7322 processing_current_prefix,
7323 name, cu);
7324 }
7325 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7326 if (attr)
7327 {
7328 dwarf2_const_value (attr, sym, cu);
7329 }
7330 {
7331 /* NOTE: carlton/2003-11-10: See comment above in the
7332 DW_TAG_class_type, etc. block. */
7333
7334 struct pending **list_to_add;
7335
7336 list_to_add = (cu->list_in_scope == &file_symbols
7337 && (cu->language == language_cplus
7338 || cu->language == language_java)
7339 ? &global_symbols : cu->list_in_scope);
7340
7341 add_symbol_to_list (sym, list_to_add);
7342 }
7343 break;
7344 case DW_TAG_namespace:
7345 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7346 add_symbol_to_list (sym, &global_symbols);
7347 break;
7348 default:
7349 /* Not a tag we recognize. Hopefully we aren't processing
7350 trash data, but since we must specifically ignore things
7351 we don't recognize, there is nothing else we should do at
7352 this point. */
7353 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7354 dwarf_tag_name (die->tag));
7355 break;
7356 }
7357 }
7358 return (sym);
7359 }
7360
7361 /* Copy constant value from an attribute to a symbol. */
7362
7363 static void
7364 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7365 struct dwarf2_cu *cu)
7366 {
7367 struct objfile *objfile = cu->objfile;
7368 struct comp_unit_head *cu_header = &cu->header;
7369 struct dwarf_block *blk;
7370
7371 switch (attr->form)
7372 {
7373 case DW_FORM_addr:
7374 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7375 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7376 cu_header->addr_size,
7377 TYPE_LENGTH (SYMBOL_TYPE
7378 (sym)));
7379 SYMBOL_VALUE_BYTES (sym) =
7380 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7381 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7382 it's body - store_unsigned_integer. */
7383 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7384 DW_ADDR (attr));
7385 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7386 break;
7387 case DW_FORM_block1:
7388 case DW_FORM_block2:
7389 case DW_FORM_block4:
7390 case DW_FORM_block:
7391 blk = DW_BLOCK (attr);
7392 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7393 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7394 blk->size,
7395 TYPE_LENGTH (SYMBOL_TYPE
7396 (sym)));
7397 SYMBOL_VALUE_BYTES (sym) =
7398 obstack_alloc (&objfile->objfile_obstack, blk->size);
7399 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7400 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7401 break;
7402
7403 /* The DW_AT_const_value attributes are supposed to carry the
7404 symbol's value "represented as it would be on the target
7405 architecture." By the time we get here, it's already been
7406 converted to host endianness, so we just need to sign- or
7407 zero-extend it as appropriate. */
7408 case DW_FORM_data1:
7409 dwarf2_const_value_data (attr, sym, 8);
7410 break;
7411 case DW_FORM_data2:
7412 dwarf2_const_value_data (attr, sym, 16);
7413 break;
7414 case DW_FORM_data4:
7415 dwarf2_const_value_data (attr, sym, 32);
7416 break;
7417 case DW_FORM_data8:
7418 dwarf2_const_value_data (attr, sym, 64);
7419 break;
7420
7421 case DW_FORM_sdata:
7422 SYMBOL_VALUE (sym) = DW_SND (attr);
7423 SYMBOL_CLASS (sym) = LOC_CONST;
7424 break;
7425
7426 case DW_FORM_udata:
7427 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7428 SYMBOL_CLASS (sym) = LOC_CONST;
7429 break;
7430
7431 default:
7432 complaint (&symfile_complaints,
7433 _("unsupported const value attribute form: '%s'"),
7434 dwarf_form_name (attr->form));
7435 SYMBOL_VALUE (sym) = 0;
7436 SYMBOL_CLASS (sym) = LOC_CONST;
7437 break;
7438 }
7439 }
7440
7441
7442 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7443 or zero-extend it as appropriate for the symbol's type. */
7444 static void
7445 dwarf2_const_value_data (struct attribute *attr,
7446 struct symbol *sym,
7447 int bits)
7448 {
7449 LONGEST l = DW_UNSND (attr);
7450
7451 if (bits < sizeof (l) * 8)
7452 {
7453 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7454 l &= ((LONGEST) 1 << bits) - 1;
7455 else
7456 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7457 }
7458
7459 SYMBOL_VALUE (sym) = l;
7460 SYMBOL_CLASS (sym) = LOC_CONST;
7461 }
7462
7463
7464 /* Return the type of the die in question using its DW_AT_type attribute. */
7465
7466 static struct type *
7467 die_type (struct die_info *die, struct dwarf2_cu *cu)
7468 {
7469 struct type *type;
7470 struct attribute *type_attr;
7471 struct die_info *type_die;
7472
7473 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7474 if (!type_attr)
7475 {
7476 /* A missing DW_AT_type represents a void type. */
7477 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7478 }
7479 else
7480 type_die = follow_die_ref (die, type_attr, cu);
7481
7482 type = tag_type_to_type (type_die, cu);
7483 if (!type)
7484 {
7485 dump_die (type_die);
7486 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7487 cu->objfile->name);
7488 }
7489 return type;
7490 }
7491
7492 /* Return the containing type of the die in question using its
7493 DW_AT_containing_type attribute. */
7494
7495 static struct type *
7496 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7497 {
7498 struct type *type = NULL;
7499 struct attribute *type_attr;
7500 struct die_info *type_die = NULL;
7501
7502 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7503 if (type_attr)
7504 {
7505 type_die = follow_die_ref (die, type_attr, cu);
7506 type = tag_type_to_type (type_die, cu);
7507 }
7508 if (!type)
7509 {
7510 if (type_die)
7511 dump_die (type_die);
7512 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7513 cu->objfile->name);
7514 }
7515 return type;
7516 }
7517
7518 static struct type *
7519 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7520 {
7521 if (die->type)
7522 {
7523 return die->type;
7524 }
7525 else
7526 {
7527 read_type_die (die, cu);
7528 if (!die->type)
7529 {
7530 dump_die (die);
7531 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7532 cu->objfile->name);
7533 }
7534 return die->type;
7535 }
7536 }
7537
7538 static void
7539 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7540 {
7541 char *prefix = determine_prefix (die, cu);
7542 const char *old_prefix = processing_current_prefix;
7543 struct cleanup *back_to = make_cleanup (xfree, prefix);
7544 processing_current_prefix = prefix;
7545
7546 switch (die->tag)
7547 {
7548 case DW_TAG_class_type:
7549 case DW_TAG_structure_type:
7550 case DW_TAG_union_type:
7551 read_structure_type (die, cu);
7552 break;
7553 case DW_TAG_enumeration_type:
7554 read_enumeration_type (die, cu);
7555 break;
7556 case DW_TAG_subprogram:
7557 case DW_TAG_subroutine_type:
7558 read_subroutine_type (die, cu);
7559 break;
7560 case DW_TAG_array_type:
7561 read_array_type (die, cu);
7562 break;
7563 case DW_TAG_set_type:
7564 read_set_type (die, cu);
7565 break;
7566 case DW_TAG_pointer_type:
7567 read_tag_pointer_type (die, cu);
7568 break;
7569 case DW_TAG_ptr_to_member_type:
7570 read_tag_ptr_to_member_type (die, cu);
7571 break;
7572 case DW_TAG_reference_type:
7573 read_tag_reference_type (die, cu);
7574 break;
7575 case DW_TAG_const_type:
7576 read_tag_const_type (die, cu);
7577 break;
7578 case DW_TAG_volatile_type:
7579 read_tag_volatile_type (die, cu);
7580 break;
7581 case DW_TAG_string_type:
7582 read_tag_string_type (die, cu);
7583 break;
7584 case DW_TAG_typedef:
7585 read_typedef (die, cu);
7586 break;
7587 case DW_TAG_subrange_type:
7588 read_subrange_type (die, cu);
7589 break;
7590 case DW_TAG_base_type:
7591 read_base_type (die, cu);
7592 break;
7593 case DW_TAG_unspecified_type:
7594 read_unspecified_type (die, cu);
7595 break;
7596 default:
7597 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7598 dwarf_tag_name (die->tag));
7599 break;
7600 }
7601
7602 processing_current_prefix = old_prefix;
7603 do_cleanups (back_to);
7604 }
7605
7606 /* Return the name of the namespace/class that DIE is defined within,
7607 or "" if we can't tell. The caller should xfree the result. */
7608
7609 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7610 therein) for an example of how to use this function to deal with
7611 DW_AT_specification. */
7612
7613 static char *
7614 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7615 {
7616 struct die_info *parent;
7617
7618 if (cu->language != language_cplus
7619 && cu->language != language_java)
7620 return NULL;
7621
7622 parent = die->parent;
7623
7624 if (parent == NULL)
7625 {
7626 return xstrdup ("");
7627 }
7628 else
7629 {
7630 switch (parent->tag) {
7631 case DW_TAG_namespace:
7632 {
7633 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7634 before doing this check? */
7635 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7636 {
7637 return xstrdup (TYPE_TAG_NAME (parent->type));
7638 }
7639 else
7640 {
7641 int dummy;
7642 char *parent_prefix = determine_prefix (parent, cu);
7643 char *retval = typename_concat (NULL, parent_prefix,
7644 namespace_name (parent, &dummy,
7645 cu),
7646 cu);
7647 xfree (parent_prefix);
7648 return retval;
7649 }
7650 }
7651 break;
7652 case DW_TAG_class_type:
7653 case DW_TAG_structure_type:
7654 {
7655 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7656 {
7657 return xstrdup (TYPE_TAG_NAME (parent->type));
7658 }
7659 else
7660 {
7661 const char *old_prefix = processing_current_prefix;
7662 char *new_prefix = determine_prefix (parent, cu);
7663 char *retval;
7664
7665 processing_current_prefix = new_prefix;
7666 retval = determine_class_name (parent, cu);
7667 processing_current_prefix = old_prefix;
7668
7669 xfree (new_prefix);
7670 return retval;
7671 }
7672 }
7673 default:
7674 return determine_prefix (parent, cu);
7675 }
7676 }
7677 }
7678
7679 /* Return a newly-allocated string formed by concatenating PREFIX and
7680 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7681 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7682 perform an obconcat, otherwise allocate storage for the result. The CU argument
7683 is used to determine the language and hence, the appropriate separator. */
7684
7685 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7686
7687 static char *
7688 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7689 struct dwarf2_cu *cu)
7690 {
7691 char *sep;
7692
7693 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7694 sep = "";
7695 else if (cu->language == language_java)
7696 sep = ".";
7697 else
7698 sep = "::";
7699
7700 if (obs == NULL)
7701 {
7702 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7703 retval[0] = '\0';
7704
7705 if (prefix)
7706 {
7707 strcpy (retval, prefix);
7708 strcat (retval, sep);
7709 }
7710 if (suffix)
7711 strcat (retval, suffix);
7712
7713 return retval;
7714 }
7715 else
7716 {
7717 /* We have an obstack. */
7718 return obconcat (obs, prefix, sep, suffix);
7719 }
7720 }
7721
7722 static struct type *
7723 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7724 {
7725 struct objfile *objfile = cu->objfile;
7726
7727 /* FIXME - this should not produce a new (struct type *)
7728 every time. It should cache base types. */
7729 struct type *type;
7730 switch (encoding)
7731 {
7732 case DW_ATE_address:
7733 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7734 return type;
7735 case DW_ATE_boolean:
7736 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7737 return type;
7738 case DW_ATE_complex_float:
7739 if (size == 16)
7740 {
7741 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7742 }
7743 else
7744 {
7745 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7746 }
7747 return type;
7748 case DW_ATE_float:
7749 if (size == 8)
7750 {
7751 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7752 }
7753 else
7754 {
7755 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7756 }
7757 return type;
7758 case DW_ATE_signed:
7759 switch (size)
7760 {
7761 case 1:
7762 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7763 break;
7764 case 2:
7765 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7766 break;
7767 default:
7768 case 4:
7769 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7770 break;
7771 }
7772 return type;
7773 case DW_ATE_signed_char:
7774 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7775 return type;
7776 case DW_ATE_unsigned:
7777 switch (size)
7778 {
7779 case 1:
7780 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7781 break;
7782 case 2:
7783 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7784 break;
7785 default:
7786 case 4:
7787 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7788 break;
7789 }
7790 return type;
7791 case DW_ATE_unsigned_char:
7792 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7793 return type;
7794 default:
7795 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7796 return type;
7797 }
7798 }
7799
7800 #if 0
7801 struct die_info *
7802 copy_die (struct die_info *old_die)
7803 {
7804 struct die_info *new_die;
7805 int i, num_attrs;
7806
7807 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7808 memset (new_die, 0, sizeof (struct die_info));
7809
7810 new_die->tag = old_die->tag;
7811 new_die->has_children = old_die->has_children;
7812 new_die->abbrev = old_die->abbrev;
7813 new_die->offset = old_die->offset;
7814 new_die->type = NULL;
7815
7816 num_attrs = old_die->num_attrs;
7817 new_die->num_attrs = num_attrs;
7818 new_die->attrs = (struct attribute *)
7819 xmalloc (num_attrs * sizeof (struct attribute));
7820
7821 for (i = 0; i < old_die->num_attrs; ++i)
7822 {
7823 new_die->attrs[i].name = old_die->attrs[i].name;
7824 new_die->attrs[i].form = old_die->attrs[i].form;
7825 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7826 }
7827
7828 new_die->next = NULL;
7829 return new_die;
7830 }
7831 #endif
7832
7833 /* Return sibling of die, NULL if no sibling. */
7834
7835 static struct die_info *
7836 sibling_die (struct die_info *die)
7837 {
7838 return die->sibling;
7839 }
7840
7841 /* Get linkage name of a die, return NULL if not found. */
7842
7843 static char *
7844 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7845 {
7846 struct attribute *attr;
7847
7848 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7849 if (attr && DW_STRING (attr))
7850 return DW_STRING (attr);
7851 attr = dwarf2_attr (die, DW_AT_name, cu);
7852 if (attr && DW_STRING (attr))
7853 return DW_STRING (attr);
7854 return NULL;
7855 }
7856
7857 /* Get name of a die, return NULL if not found. */
7858
7859 static char *
7860 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7861 {
7862 struct attribute *attr;
7863
7864 attr = dwarf2_attr (die, DW_AT_name, cu);
7865 if (attr && DW_STRING (attr))
7866 return DW_STRING (attr);
7867 return NULL;
7868 }
7869
7870 /* Return the die that this die in an extension of, or NULL if there
7871 is none. */
7872
7873 static struct die_info *
7874 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7875 {
7876 struct attribute *attr;
7877
7878 attr = dwarf2_attr (die, DW_AT_extension, cu);
7879 if (attr == NULL)
7880 return NULL;
7881
7882 return follow_die_ref (die, attr, cu);
7883 }
7884
7885 /* Convert a DIE tag into its string name. */
7886
7887 static char *
7888 dwarf_tag_name (unsigned tag)
7889 {
7890 switch (tag)
7891 {
7892 case DW_TAG_padding:
7893 return "DW_TAG_padding";
7894 case DW_TAG_array_type:
7895 return "DW_TAG_array_type";
7896 case DW_TAG_class_type:
7897 return "DW_TAG_class_type";
7898 case DW_TAG_entry_point:
7899 return "DW_TAG_entry_point";
7900 case DW_TAG_enumeration_type:
7901 return "DW_TAG_enumeration_type";
7902 case DW_TAG_formal_parameter:
7903 return "DW_TAG_formal_parameter";
7904 case DW_TAG_imported_declaration:
7905 return "DW_TAG_imported_declaration";
7906 case DW_TAG_label:
7907 return "DW_TAG_label";
7908 case DW_TAG_lexical_block:
7909 return "DW_TAG_lexical_block";
7910 case DW_TAG_member:
7911 return "DW_TAG_member";
7912 case DW_TAG_pointer_type:
7913 return "DW_TAG_pointer_type";
7914 case DW_TAG_reference_type:
7915 return "DW_TAG_reference_type";
7916 case DW_TAG_compile_unit:
7917 return "DW_TAG_compile_unit";
7918 case DW_TAG_string_type:
7919 return "DW_TAG_string_type";
7920 case DW_TAG_structure_type:
7921 return "DW_TAG_structure_type";
7922 case DW_TAG_subroutine_type:
7923 return "DW_TAG_subroutine_type";
7924 case DW_TAG_typedef:
7925 return "DW_TAG_typedef";
7926 case DW_TAG_union_type:
7927 return "DW_TAG_union_type";
7928 case DW_TAG_unspecified_parameters:
7929 return "DW_TAG_unspecified_parameters";
7930 case DW_TAG_variant:
7931 return "DW_TAG_variant";
7932 case DW_TAG_common_block:
7933 return "DW_TAG_common_block";
7934 case DW_TAG_common_inclusion:
7935 return "DW_TAG_common_inclusion";
7936 case DW_TAG_inheritance:
7937 return "DW_TAG_inheritance";
7938 case DW_TAG_inlined_subroutine:
7939 return "DW_TAG_inlined_subroutine";
7940 case DW_TAG_module:
7941 return "DW_TAG_module";
7942 case DW_TAG_ptr_to_member_type:
7943 return "DW_TAG_ptr_to_member_type";
7944 case DW_TAG_set_type:
7945 return "DW_TAG_set_type";
7946 case DW_TAG_subrange_type:
7947 return "DW_TAG_subrange_type";
7948 case DW_TAG_with_stmt:
7949 return "DW_TAG_with_stmt";
7950 case DW_TAG_access_declaration:
7951 return "DW_TAG_access_declaration";
7952 case DW_TAG_base_type:
7953 return "DW_TAG_base_type";
7954 case DW_TAG_catch_block:
7955 return "DW_TAG_catch_block";
7956 case DW_TAG_const_type:
7957 return "DW_TAG_const_type";
7958 case DW_TAG_constant:
7959 return "DW_TAG_constant";
7960 case DW_TAG_enumerator:
7961 return "DW_TAG_enumerator";
7962 case DW_TAG_file_type:
7963 return "DW_TAG_file_type";
7964 case DW_TAG_friend:
7965 return "DW_TAG_friend";
7966 case DW_TAG_namelist:
7967 return "DW_TAG_namelist";
7968 case DW_TAG_namelist_item:
7969 return "DW_TAG_namelist_item";
7970 case DW_TAG_packed_type:
7971 return "DW_TAG_packed_type";
7972 case DW_TAG_subprogram:
7973 return "DW_TAG_subprogram";
7974 case DW_TAG_template_type_param:
7975 return "DW_TAG_template_type_param";
7976 case DW_TAG_template_value_param:
7977 return "DW_TAG_template_value_param";
7978 case DW_TAG_thrown_type:
7979 return "DW_TAG_thrown_type";
7980 case DW_TAG_try_block:
7981 return "DW_TAG_try_block";
7982 case DW_TAG_variant_part:
7983 return "DW_TAG_variant_part";
7984 case DW_TAG_variable:
7985 return "DW_TAG_variable";
7986 case DW_TAG_volatile_type:
7987 return "DW_TAG_volatile_type";
7988 case DW_TAG_dwarf_procedure:
7989 return "DW_TAG_dwarf_procedure";
7990 case DW_TAG_restrict_type:
7991 return "DW_TAG_restrict_type";
7992 case DW_TAG_interface_type:
7993 return "DW_TAG_interface_type";
7994 case DW_TAG_namespace:
7995 return "DW_TAG_namespace";
7996 case DW_TAG_imported_module:
7997 return "DW_TAG_imported_module";
7998 case DW_TAG_unspecified_type:
7999 return "DW_TAG_unspecified_type";
8000 case DW_TAG_partial_unit:
8001 return "DW_TAG_partial_unit";
8002 case DW_TAG_imported_unit:
8003 return "DW_TAG_imported_unit";
8004 case DW_TAG_condition:
8005 return "DW_TAG_condition";
8006 case DW_TAG_shared_type:
8007 return "DW_TAG_shared_type";
8008 case DW_TAG_MIPS_loop:
8009 return "DW_TAG_MIPS_loop";
8010 case DW_TAG_HP_array_descriptor:
8011 return "DW_TAG_HP_array_descriptor";
8012 case DW_TAG_format_label:
8013 return "DW_TAG_format_label";
8014 case DW_TAG_function_template:
8015 return "DW_TAG_function_template";
8016 case DW_TAG_class_template:
8017 return "DW_TAG_class_template";
8018 case DW_TAG_GNU_BINCL:
8019 return "DW_TAG_GNU_BINCL";
8020 case DW_TAG_GNU_EINCL:
8021 return "DW_TAG_GNU_EINCL";
8022 case DW_TAG_upc_shared_type:
8023 return "DW_TAG_upc_shared_type";
8024 case DW_TAG_upc_strict_type:
8025 return "DW_TAG_upc_strict_type";
8026 case DW_TAG_upc_relaxed_type:
8027 return "DW_TAG_upc_relaxed_type";
8028 case DW_TAG_PGI_kanji_type:
8029 return "DW_TAG_PGI_kanji_type";
8030 case DW_TAG_PGI_interface_block:
8031 return "DW_TAG_PGI_interface_block";
8032 default:
8033 return "DW_TAG_<unknown>";
8034 }
8035 }
8036
8037 /* Convert a DWARF attribute code into its string name. */
8038
8039 static char *
8040 dwarf_attr_name (unsigned attr)
8041 {
8042 switch (attr)
8043 {
8044 case DW_AT_sibling:
8045 return "DW_AT_sibling";
8046 case DW_AT_location:
8047 return "DW_AT_location";
8048 case DW_AT_name:
8049 return "DW_AT_name";
8050 case DW_AT_ordering:
8051 return "DW_AT_ordering";
8052 case DW_AT_subscr_data:
8053 return "DW_AT_subscr_data";
8054 case DW_AT_byte_size:
8055 return "DW_AT_byte_size";
8056 case DW_AT_bit_offset:
8057 return "DW_AT_bit_offset";
8058 case DW_AT_bit_size:
8059 return "DW_AT_bit_size";
8060 case DW_AT_element_list:
8061 return "DW_AT_element_list";
8062 case DW_AT_stmt_list:
8063 return "DW_AT_stmt_list";
8064 case DW_AT_low_pc:
8065 return "DW_AT_low_pc";
8066 case DW_AT_high_pc:
8067 return "DW_AT_high_pc";
8068 case DW_AT_language:
8069 return "DW_AT_language";
8070 case DW_AT_member:
8071 return "DW_AT_member";
8072 case DW_AT_discr:
8073 return "DW_AT_discr";
8074 case DW_AT_discr_value:
8075 return "DW_AT_discr_value";
8076 case DW_AT_visibility:
8077 return "DW_AT_visibility";
8078 case DW_AT_import:
8079 return "DW_AT_import";
8080 case DW_AT_string_length:
8081 return "DW_AT_string_length";
8082 case DW_AT_common_reference:
8083 return "DW_AT_common_reference";
8084 case DW_AT_comp_dir:
8085 return "DW_AT_comp_dir";
8086 case DW_AT_const_value:
8087 return "DW_AT_const_value";
8088 case DW_AT_containing_type:
8089 return "DW_AT_containing_type";
8090 case DW_AT_default_value:
8091 return "DW_AT_default_value";
8092 case DW_AT_inline:
8093 return "DW_AT_inline";
8094 case DW_AT_is_optional:
8095 return "DW_AT_is_optional";
8096 case DW_AT_lower_bound:
8097 return "DW_AT_lower_bound";
8098 case DW_AT_producer:
8099 return "DW_AT_producer";
8100 case DW_AT_prototyped:
8101 return "DW_AT_prototyped";
8102 case DW_AT_return_addr:
8103 return "DW_AT_return_addr";
8104 case DW_AT_start_scope:
8105 return "DW_AT_start_scope";
8106 case DW_AT_stride_size:
8107 return "DW_AT_stride_size";
8108 case DW_AT_upper_bound:
8109 return "DW_AT_upper_bound";
8110 case DW_AT_abstract_origin:
8111 return "DW_AT_abstract_origin";
8112 case DW_AT_accessibility:
8113 return "DW_AT_accessibility";
8114 case DW_AT_address_class:
8115 return "DW_AT_address_class";
8116 case DW_AT_artificial:
8117 return "DW_AT_artificial";
8118 case DW_AT_base_types:
8119 return "DW_AT_base_types";
8120 case DW_AT_calling_convention:
8121 return "DW_AT_calling_convention";
8122 case DW_AT_count:
8123 return "DW_AT_count";
8124 case DW_AT_data_member_location:
8125 return "DW_AT_data_member_location";
8126 case DW_AT_decl_column:
8127 return "DW_AT_decl_column";
8128 case DW_AT_decl_file:
8129 return "DW_AT_decl_file";
8130 case DW_AT_decl_line:
8131 return "DW_AT_decl_line";
8132 case DW_AT_declaration:
8133 return "DW_AT_declaration";
8134 case DW_AT_discr_list:
8135 return "DW_AT_discr_list";
8136 case DW_AT_encoding:
8137 return "DW_AT_encoding";
8138 case DW_AT_external:
8139 return "DW_AT_external";
8140 case DW_AT_frame_base:
8141 return "DW_AT_frame_base";
8142 case DW_AT_friend:
8143 return "DW_AT_friend";
8144 case DW_AT_identifier_case:
8145 return "DW_AT_identifier_case";
8146 case DW_AT_macro_info:
8147 return "DW_AT_macro_info";
8148 case DW_AT_namelist_items:
8149 return "DW_AT_namelist_items";
8150 case DW_AT_priority:
8151 return "DW_AT_priority";
8152 case DW_AT_segment:
8153 return "DW_AT_segment";
8154 case DW_AT_specification:
8155 return "DW_AT_specification";
8156 case DW_AT_static_link:
8157 return "DW_AT_static_link";
8158 case DW_AT_type:
8159 return "DW_AT_type";
8160 case DW_AT_use_location:
8161 return "DW_AT_use_location";
8162 case DW_AT_variable_parameter:
8163 return "DW_AT_variable_parameter";
8164 case DW_AT_virtuality:
8165 return "DW_AT_virtuality";
8166 case DW_AT_vtable_elem_location:
8167 return "DW_AT_vtable_elem_location";
8168 /* DWARF 3 values. */
8169 case DW_AT_allocated:
8170 return "DW_AT_allocated";
8171 case DW_AT_associated:
8172 return "DW_AT_associated";
8173 case DW_AT_data_location:
8174 return "DW_AT_data_location";
8175 case DW_AT_stride:
8176 return "DW_AT_stride";
8177 case DW_AT_entry_pc:
8178 return "DW_AT_entry_pc";
8179 case DW_AT_use_UTF8:
8180 return "DW_AT_use_UTF8";
8181 case DW_AT_extension:
8182 return "DW_AT_extension";
8183 case DW_AT_ranges:
8184 return "DW_AT_ranges";
8185 case DW_AT_trampoline:
8186 return "DW_AT_trampoline";
8187 case DW_AT_call_column:
8188 return "DW_AT_call_column";
8189 case DW_AT_call_file:
8190 return "DW_AT_call_file";
8191 case DW_AT_call_line:
8192 return "DW_AT_call_line";
8193 case DW_AT_description:
8194 return "DW_AT_description";
8195 case DW_AT_binary_scale:
8196 return "DW_AT_binary_scale";
8197 case DW_AT_decimal_scale:
8198 return "DW_AT_decimal_scale";
8199 case DW_AT_small:
8200 return "DW_AT_small";
8201 case DW_AT_decimal_sign:
8202 return "DW_AT_decimal_sign";
8203 case DW_AT_digit_count:
8204 return "DW_AT_digit_count";
8205 case DW_AT_picture_string:
8206 return "DW_AT_picture_string";
8207 case DW_AT_mutable:
8208 return "DW_AT_mutable";
8209 case DW_AT_threads_scaled:
8210 return "DW_AT_threads_scaled";
8211 case DW_AT_explicit:
8212 return "DW_AT_explicit";
8213 case DW_AT_object_pointer:
8214 return "DW_AT_object_pointer";
8215 case DW_AT_endianity:
8216 return "DW_AT_endianity";
8217 case DW_AT_elemental:
8218 return "DW_AT_elemental";
8219 case DW_AT_pure:
8220 return "DW_AT_pure";
8221 case DW_AT_recursive:
8222 return "DW_AT_recursive";
8223 #ifdef MIPS
8224 /* SGI/MIPS extensions. */
8225 case DW_AT_MIPS_fde:
8226 return "DW_AT_MIPS_fde";
8227 case DW_AT_MIPS_loop_begin:
8228 return "DW_AT_MIPS_loop_begin";
8229 case DW_AT_MIPS_tail_loop_begin:
8230 return "DW_AT_MIPS_tail_loop_begin";
8231 case DW_AT_MIPS_epilog_begin:
8232 return "DW_AT_MIPS_epilog_begin";
8233 case DW_AT_MIPS_loop_unroll_factor:
8234 return "DW_AT_MIPS_loop_unroll_factor";
8235 case DW_AT_MIPS_software_pipeline_depth:
8236 return "DW_AT_MIPS_software_pipeline_depth";
8237 case DW_AT_MIPS_linkage_name:
8238 return "DW_AT_MIPS_linkage_name";
8239 case DW_AT_MIPS_stride:
8240 return "DW_AT_MIPS_stride";
8241 case DW_AT_MIPS_abstract_name:
8242 return "DW_AT_MIPS_abstract_name";
8243 case DW_AT_MIPS_clone_origin:
8244 return "DW_AT_MIPS_clone_origin";
8245 case DW_AT_MIPS_has_inlines:
8246 return "DW_AT_MIPS_has_inlines";
8247 #endif
8248 /* HP extensions. */
8249 case DW_AT_HP_block_index:
8250 return "DW_AT_HP_block_index";
8251 case DW_AT_HP_unmodifiable:
8252 return "DW_AT_HP_unmodifiable";
8253 case DW_AT_HP_actuals_stmt_list:
8254 return "DW_AT_HP_actuals_stmt_list";
8255 case DW_AT_HP_proc_per_section:
8256 return "DW_AT_HP_proc_per_section";
8257 case DW_AT_HP_raw_data_ptr:
8258 return "DW_AT_HP_raw_data_ptr";
8259 case DW_AT_HP_pass_by_reference:
8260 return "DW_AT_HP_pass_by_reference";
8261 case DW_AT_HP_opt_level:
8262 return "DW_AT_HP_opt_level";
8263 case DW_AT_HP_prof_version_id:
8264 return "DW_AT_HP_prof_version_id";
8265 case DW_AT_HP_opt_flags:
8266 return "DW_AT_HP_opt_flags";
8267 case DW_AT_HP_cold_region_low_pc:
8268 return "DW_AT_HP_cold_region_low_pc";
8269 case DW_AT_HP_cold_region_high_pc:
8270 return "DW_AT_HP_cold_region_high_pc";
8271 case DW_AT_HP_all_variables_modifiable:
8272 return "DW_AT_HP_all_variables_modifiable";
8273 case DW_AT_HP_linkage_name:
8274 return "DW_AT_HP_linkage_name";
8275 case DW_AT_HP_prof_flags:
8276 return "DW_AT_HP_prof_flags";
8277 /* GNU extensions. */
8278 case DW_AT_sf_names:
8279 return "DW_AT_sf_names";
8280 case DW_AT_src_info:
8281 return "DW_AT_src_info";
8282 case DW_AT_mac_info:
8283 return "DW_AT_mac_info";
8284 case DW_AT_src_coords:
8285 return "DW_AT_src_coords";
8286 case DW_AT_body_begin:
8287 return "DW_AT_body_begin";
8288 case DW_AT_body_end:
8289 return "DW_AT_body_end";
8290 case DW_AT_GNU_vector:
8291 return "DW_AT_GNU_vector";
8292 /* VMS extensions. */
8293 case DW_AT_VMS_rtnbeg_pd_address:
8294 return "DW_AT_VMS_rtnbeg_pd_address";
8295 /* UPC extension. */
8296 case DW_AT_upc_threads_scaled:
8297 return "DW_AT_upc_threads_scaled";
8298 /* PGI (STMicroelectronics) extensions. */
8299 case DW_AT_PGI_lbase:
8300 return "DW_AT_PGI_lbase";
8301 case DW_AT_PGI_soffset:
8302 return "DW_AT_PGI_soffset";
8303 case DW_AT_PGI_lstride:
8304 return "DW_AT_PGI_lstride";
8305 default:
8306 return "DW_AT_<unknown>";
8307 }
8308 }
8309
8310 /* Convert a DWARF value form code into its string name. */
8311
8312 static char *
8313 dwarf_form_name (unsigned form)
8314 {
8315 switch (form)
8316 {
8317 case DW_FORM_addr:
8318 return "DW_FORM_addr";
8319 case DW_FORM_block2:
8320 return "DW_FORM_block2";
8321 case DW_FORM_block4:
8322 return "DW_FORM_block4";
8323 case DW_FORM_data2:
8324 return "DW_FORM_data2";
8325 case DW_FORM_data4:
8326 return "DW_FORM_data4";
8327 case DW_FORM_data8:
8328 return "DW_FORM_data8";
8329 case DW_FORM_string:
8330 return "DW_FORM_string";
8331 case DW_FORM_block:
8332 return "DW_FORM_block";
8333 case DW_FORM_block1:
8334 return "DW_FORM_block1";
8335 case DW_FORM_data1:
8336 return "DW_FORM_data1";
8337 case DW_FORM_flag:
8338 return "DW_FORM_flag";
8339 case DW_FORM_sdata:
8340 return "DW_FORM_sdata";
8341 case DW_FORM_strp:
8342 return "DW_FORM_strp";
8343 case DW_FORM_udata:
8344 return "DW_FORM_udata";
8345 case DW_FORM_ref_addr:
8346 return "DW_FORM_ref_addr";
8347 case DW_FORM_ref1:
8348 return "DW_FORM_ref1";
8349 case DW_FORM_ref2:
8350 return "DW_FORM_ref2";
8351 case DW_FORM_ref4:
8352 return "DW_FORM_ref4";
8353 case DW_FORM_ref8:
8354 return "DW_FORM_ref8";
8355 case DW_FORM_ref_udata:
8356 return "DW_FORM_ref_udata";
8357 case DW_FORM_indirect:
8358 return "DW_FORM_indirect";
8359 default:
8360 return "DW_FORM_<unknown>";
8361 }
8362 }
8363
8364 /* Convert a DWARF stack opcode into its string name. */
8365
8366 static char *
8367 dwarf_stack_op_name (unsigned op)
8368 {
8369 switch (op)
8370 {
8371 case DW_OP_addr:
8372 return "DW_OP_addr";
8373 case DW_OP_deref:
8374 return "DW_OP_deref";
8375 case DW_OP_const1u:
8376 return "DW_OP_const1u";
8377 case DW_OP_const1s:
8378 return "DW_OP_const1s";
8379 case DW_OP_const2u:
8380 return "DW_OP_const2u";
8381 case DW_OP_const2s:
8382 return "DW_OP_const2s";
8383 case DW_OP_const4u:
8384 return "DW_OP_const4u";
8385 case DW_OP_const4s:
8386 return "DW_OP_const4s";
8387 case DW_OP_const8u:
8388 return "DW_OP_const8u";
8389 case DW_OP_const8s:
8390 return "DW_OP_const8s";
8391 case DW_OP_constu:
8392 return "DW_OP_constu";
8393 case DW_OP_consts:
8394 return "DW_OP_consts";
8395 case DW_OP_dup:
8396 return "DW_OP_dup";
8397 case DW_OP_drop:
8398 return "DW_OP_drop";
8399 case DW_OP_over:
8400 return "DW_OP_over";
8401 case DW_OP_pick:
8402 return "DW_OP_pick";
8403 case DW_OP_swap:
8404 return "DW_OP_swap";
8405 case DW_OP_rot:
8406 return "DW_OP_rot";
8407 case DW_OP_xderef:
8408 return "DW_OP_xderef";
8409 case DW_OP_abs:
8410 return "DW_OP_abs";
8411 case DW_OP_and:
8412 return "DW_OP_and";
8413 case DW_OP_div:
8414 return "DW_OP_div";
8415 case DW_OP_minus:
8416 return "DW_OP_minus";
8417 case DW_OP_mod:
8418 return "DW_OP_mod";
8419 case DW_OP_mul:
8420 return "DW_OP_mul";
8421 case DW_OP_neg:
8422 return "DW_OP_neg";
8423 case DW_OP_not:
8424 return "DW_OP_not";
8425 case DW_OP_or:
8426 return "DW_OP_or";
8427 case DW_OP_plus:
8428 return "DW_OP_plus";
8429 case DW_OP_plus_uconst:
8430 return "DW_OP_plus_uconst";
8431 case DW_OP_shl:
8432 return "DW_OP_shl";
8433 case DW_OP_shr:
8434 return "DW_OP_shr";
8435 case DW_OP_shra:
8436 return "DW_OP_shra";
8437 case DW_OP_xor:
8438 return "DW_OP_xor";
8439 case DW_OP_bra:
8440 return "DW_OP_bra";
8441 case DW_OP_eq:
8442 return "DW_OP_eq";
8443 case DW_OP_ge:
8444 return "DW_OP_ge";
8445 case DW_OP_gt:
8446 return "DW_OP_gt";
8447 case DW_OP_le:
8448 return "DW_OP_le";
8449 case DW_OP_lt:
8450 return "DW_OP_lt";
8451 case DW_OP_ne:
8452 return "DW_OP_ne";
8453 case DW_OP_skip:
8454 return "DW_OP_skip";
8455 case DW_OP_lit0:
8456 return "DW_OP_lit0";
8457 case DW_OP_lit1:
8458 return "DW_OP_lit1";
8459 case DW_OP_lit2:
8460 return "DW_OP_lit2";
8461 case DW_OP_lit3:
8462 return "DW_OP_lit3";
8463 case DW_OP_lit4:
8464 return "DW_OP_lit4";
8465 case DW_OP_lit5:
8466 return "DW_OP_lit5";
8467 case DW_OP_lit6:
8468 return "DW_OP_lit6";
8469 case DW_OP_lit7:
8470 return "DW_OP_lit7";
8471 case DW_OP_lit8:
8472 return "DW_OP_lit8";
8473 case DW_OP_lit9:
8474 return "DW_OP_lit9";
8475 case DW_OP_lit10:
8476 return "DW_OP_lit10";
8477 case DW_OP_lit11:
8478 return "DW_OP_lit11";
8479 case DW_OP_lit12:
8480 return "DW_OP_lit12";
8481 case DW_OP_lit13:
8482 return "DW_OP_lit13";
8483 case DW_OP_lit14:
8484 return "DW_OP_lit14";
8485 case DW_OP_lit15:
8486 return "DW_OP_lit15";
8487 case DW_OP_lit16:
8488 return "DW_OP_lit16";
8489 case DW_OP_lit17:
8490 return "DW_OP_lit17";
8491 case DW_OP_lit18:
8492 return "DW_OP_lit18";
8493 case DW_OP_lit19:
8494 return "DW_OP_lit19";
8495 case DW_OP_lit20:
8496 return "DW_OP_lit20";
8497 case DW_OP_lit21:
8498 return "DW_OP_lit21";
8499 case DW_OP_lit22:
8500 return "DW_OP_lit22";
8501 case DW_OP_lit23:
8502 return "DW_OP_lit23";
8503 case DW_OP_lit24:
8504 return "DW_OP_lit24";
8505 case DW_OP_lit25:
8506 return "DW_OP_lit25";
8507 case DW_OP_lit26:
8508 return "DW_OP_lit26";
8509 case DW_OP_lit27:
8510 return "DW_OP_lit27";
8511 case DW_OP_lit28:
8512 return "DW_OP_lit28";
8513 case DW_OP_lit29:
8514 return "DW_OP_lit29";
8515 case DW_OP_lit30:
8516 return "DW_OP_lit30";
8517 case DW_OP_lit31:
8518 return "DW_OP_lit31";
8519 case DW_OP_reg0:
8520 return "DW_OP_reg0";
8521 case DW_OP_reg1:
8522 return "DW_OP_reg1";
8523 case DW_OP_reg2:
8524 return "DW_OP_reg2";
8525 case DW_OP_reg3:
8526 return "DW_OP_reg3";
8527 case DW_OP_reg4:
8528 return "DW_OP_reg4";
8529 case DW_OP_reg5:
8530 return "DW_OP_reg5";
8531 case DW_OP_reg6:
8532 return "DW_OP_reg6";
8533 case DW_OP_reg7:
8534 return "DW_OP_reg7";
8535 case DW_OP_reg8:
8536 return "DW_OP_reg8";
8537 case DW_OP_reg9:
8538 return "DW_OP_reg9";
8539 case DW_OP_reg10:
8540 return "DW_OP_reg10";
8541 case DW_OP_reg11:
8542 return "DW_OP_reg11";
8543 case DW_OP_reg12:
8544 return "DW_OP_reg12";
8545 case DW_OP_reg13:
8546 return "DW_OP_reg13";
8547 case DW_OP_reg14:
8548 return "DW_OP_reg14";
8549 case DW_OP_reg15:
8550 return "DW_OP_reg15";
8551 case DW_OP_reg16:
8552 return "DW_OP_reg16";
8553 case DW_OP_reg17:
8554 return "DW_OP_reg17";
8555 case DW_OP_reg18:
8556 return "DW_OP_reg18";
8557 case DW_OP_reg19:
8558 return "DW_OP_reg19";
8559 case DW_OP_reg20:
8560 return "DW_OP_reg20";
8561 case DW_OP_reg21:
8562 return "DW_OP_reg21";
8563 case DW_OP_reg22:
8564 return "DW_OP_reg22";
8565 case DW_OP_reg23:
8566 return "DW_OP_reg23";
8567 case DW_OP_reg24:
8568 return "DW_OP_reg24";
8569 case DW_OP_reg25:
8570 return "DW_OP_reg25";
8571 case DW_OP_reg26:
8572 return "DW_OP_reg26";
8573 case DW_OP_reg27:
8574 return "DW_OP_reg27";
8575 case DW_OP_reg28:
8576 return "DW_OP_reg28";
8577 case DW_OP_reg29:
8578 return "DW_OP_reg29";
8579 case DW_OP_reg30:
8580 return "DW_OP_reg30";
8581 case DW_OP_reg31:
8582 return "DW_OP_reg31";
8583 case DW_OP_breg0:
8584 return "DW_OP_breg0";
8585 case DW_OP_breg1:
8586 return "DW_OP_breg1";
8587 case DW_OP_breg2:
8588 return "DW_OP_breg2";
8589 case DW_OP_breg3:
8590 return "DW_OP_breg3";
8591 case DW_OP_breg4:
8592 return "DW_OP_breg4";
8593 case DW_OP_breg5:
8594 return "DW_OP_breg5";
8595 case DW_OP_breg6:
8596 return "DW_OP_breg6";
8597 case DW_OP_breg7:
8598 return "DW_OP_breg7";
8599 case DW_OP_breg8:
8600 return "DW_OP_breg8";
8601 case DW_OP_breg9:
8602 return "DW_OP_breg9";
8603 case DW_OP_breg10:
8604 return "DW_OP_breg10";
8605 case DW_OP_breg11:
8606 return "DW_OP_breg11";
8607 case DW_OP_breg12:
8608 return "DW_OP_breg12";
8609 case DW_OP_breg13:
8610 return "DW_OP_breg13";
8611 case DW_OP_breg14:
8612 return "DW_OP_breg14";
8613 case DW_OP_breg15:
8614 return "DW_OP_breg15";
8615 case DW_OP_breg16:
8616 return "DW_OP_breg16";
8617 case DW_OP_breg17:
8618 return "DW_OP_breg17";
8619 case DW_OP_breg18:
8620 return "DW_OP_breg18";
8621 case DW_OP_breg19:
8622 return "DW_OP_breg19";
8623 case DW_OP_breg20:
8624 return "DW_OP_breg20";
8625 case DW_OP_breg21:
8626 return "DW_OP_breg21";
8627 case DW_OP_breg22:
8628 return "DW_OP_breg22";
8629 case DW_OP_breg23:
8630 return "DW_OP_breg23";
8631 case DW_OP_breg24:
8632 return "DW_OP_breg24";
8633 case DW_OP_breg25:
8634 return "DW_OP_breg25";
8635 case DW_OP_breg26:
8636 return "DW_OP_breg26";
8637 case DW_OP_breg27:
8638 return "DW_OP_breg27";
8639 case DW_OP_breg28:
8640 return "DW_OP_breg28";
8641 case DW_OP_breg29:
8642 return "DW_OP_breg29";
8643 case DW_OP_breg30:
8644 return "DW_OP_breg30";
8645 case DW_OP_breg31:
8646 return "DW_OP_breg31";
8647 case DW_OP_regx:
8648 return "DW_OP_regx";
8649 case DW_OP_fbreg:
8650 return "DW_OP_fbreg";
8651 case DW_OP_bregx:
8652 return "DW_OP_bregx";
8653 case DW_OP_piece:
8654 return "DW_OP_piece";
8655 case DW_OP_deref_size:
8656 return "DW_OP_deref_size";
8657 case DW_OP_xderef_size:
8658 return "DW_OP_xderef_size";
8659 case DW_OP_nop:
8660 return "DW_OP_nop";
8661 /* DWARF 3 extensions. */
8662 case DW_OP_push_object_address:
8663 return "DW_OP_push_object_address";
8664 case DW_OP_call2:
8665 return "DW_OP_call2";
8666 case DW_OP_call4:
8667 return "DW_OP_call4";
8668 case DW_OP_call_ref:
8669 return "DW_OP_call_ref";
8670 /* GNU extensions. */
8671 case DW_OP_form_tls_address:
8672 return "DW_OP_form_tls_address";
8673 case DW_OP_call_frame_cfa:
8674 return "DW_OP_call_frame_cfa";
8675 case DW_OP_bit_piece:
8676 return "DW_OP_bit_piece";
8677 case DW_OP_GNU_push_tls_address:
8678 return "DW_OP_GNU_push_tls_address";
8679 case DW_OP_GNU_uninit:
8680 return "DW_OP_GNU_uninit";
8681 /* HP extensions. */
8682 case DW_OP_HP_is_value:
8683 return "DW_OP_HP_is_value";
8684 case DW_OP_HP_fltconst4:
8685 return "DW_OP_HP_fltconst4";
8686 case DW_OP_HP_fltconst8:
8687 return "DW_OP_HP_fltconst8";
8688 case DW_OP_HP_mod_range:
8689 return "DW_OP_HP_mod_range";
8690 case DW_OP_HP_unmod_range:
8691 return "DW_OP_HP_unmod_range";
8692 case DW_OP_HP_tls:
8693 return "DW_OP_HP_tls";
8694 default:
8695 return "OP_<unknown>";
8696 }
8697 }
8698
8699 static char *
8700 dwarf_bool_name (unsigned mybool)
8701 {
8702 if (mybool)
8703 return "TRUE";
8704 else
8705 return "FALSE";
8706 }
8707
8708 /* Convert a DWARF type code into its string name. */
8709
8710 static char *
8711 dwarf_type_encoding_name (unsigned enc)
8712 {
8713 switch (enc)
8714 {
8715 case DW_ATE_void:
8716 return "DW_ATE_void";
8717 case DW_ATE_address:
8718 return "DW_ATE_address";
8719 case DW_ATE_boolean:
8720 return "DW_ATE_boolean";
8721 case DW_ATE_complex_float:
8722 return "DW_ATE_complex_float";
8723 case DW_ATE_float:
8724 return "DW_ATE_float";
8725 case DW_ATE_signed:
8726 return "DW_ATE_signed";
8727 case DW_ATE_signed_char:
8728 return "DW_ATE_signed_char";
8729 case DW_ATE_unsigned:
8730 return "DW_ATE_unsigned";
8731 case DW_ATE_unsigned_char:
8732 return "DW_ATE_unsigned_char";
8733 /* DWARF 3. */
8734 case DW_ATE_imaginary_float:
8735 return "DW_ATE_imaginary_float";
8736 case DW_ATE_packed_decimal:
8737 return "DW_ATE_packed_decimal";
8738 case DW_ATE_numeric_string:
8739 return "DW_ATE_numeric_string";
8740 case DW_ATE_edited:
8741 return "DW_ATE_edited";
8742 case DW_ATE_signed_fixed:
8743 return "DW_ATE_signed_fixed";
8744 case DW_ATE_unsigned_fixed:
8745 return "DW_ATE_unsigned_fixed";
8746 case DW_ATE_decimal_float:
8747 return "DW_ATE_decimal_float";
8748 /* HP extensions. */
8749 case DW_ATE_HP_float80:
8750 return "DW_ATE_HP_float80";
8751 case DW_ATE_HP_complex_float80:
8752 return "DW_ATE_HP_complex_float80";
8753 case DW_ATE_HP_float128:
8754 return "DW_ATE_HP_float128";
8755 case DW_ATE_HP_complex_float128:
8756 return "DW_ATE_HP_complex_float128";
8757 case DW_ATE_HP_floathpintel:
8758 return "DW_ATE_HP_floathpintel";
8759 case DW_ATE_HP_imaginary_float80:
8760 return "DW_ATE_HP_imaginary_float80";
8761 case DW_ATE_HP_imaginary_float128:
8762 return "DW_ATE_HP_imaginary_float128";
8763 default:
8764 return "DW_ATE_<unknown>";
8765 }
8766 }
8767
8768 /* Convert a DWARF call frame info operation to its string name. */
8769
8770 #if 0
8771 static char *
8772 dwarf_cfi_name (unsigned cfi_opc)
8773 {
8774 switch (cfi_opc)
8775 {
8776 case DW_CFA_advance_loc:
8777 return "DW_CFA_advance_loc";
8778 case DW_CFA_offset:
8779 return "DW_CFA_offset";
8780 case DW_CFA_restore:
8781 return "DW_CFA_restore";
8782 case DW_CFA_nop:
8783 return "DW_CFA_nop";
8784 case DW_CFA_set_loc:
8785 return "DW_CFA_set_loc";
8786 case DW_CFA_advance_loc1:
8787 return "DW_CFA_advance_loc1";
8788 case DW_CFA_advance_loc2:
8789 return "DW_CFA_advance_loc2";
8790 case DW_CFA_advance_loc4:
8791 return "DW_CFA_advance_loc4";
8792 case DW_CFA_offset_extended:
8793 return "DW_CFA_offset_extended";
8794 case DW_CFA_restore_extended:
8795 return "DW_CFA_restore_extended";
8796 case DW_CFA_undefined:
8797 return "DW_CFA_undefined";
8798 case DW_CFA_same_value:
8799 return "DW_CFA_same_value";
8800 case DW_CFA_register:
8801 return "DW_CFA_register";
8802 case DW_CFA_remember_state:
8803 return "DW_CFA_remember_state";
8804 case DW_CFA_restore_state:
8805 return "DW_CFA_restore_state";
8806 case DW_CFA_def_cfa:
8807 return "DW_CFA_def_cfa";
8808 case DW_CFA_def_cfa_register:
8809 return "DW_CFA_def_cfa_register";
8810 case DW_CFA_def_cfa_offset:
8811 return "DW_CFA_def_cfa_offset";
8812 /* DWARF 3. */
8813 case DW_CFA_def_cfa_expression:
8814 return "DW_CFA_def_cfa_expression";
8815 case DW_CFA_expression:
8816 return "DW_CFA_expression";
8817 case DW_CFA_offset_extended_sf:
8818 return "DW_CFA_offset_extended_sf";
8819 case DW_CFA_def_cfa_sf:
8820 return "DW_CFA_def_cfa_sf";
8821 case DW_CFA_def_cfa_offset_sf:
8822 return "DW_CFA_def_cfa_offset_sf";
8823 case DW_CFA_val_offset:
8824 return "DW_CFA_val_offset";
8825 case DW_CFA_val_offset_sf:
8826 return "DW_CFA_val_offset_sf";
8827 case DW_CFA_val_expression:
8828 return "DW_CFA_val_expression";
8829 /* SGI/MIPS specific. */
8830 case DW_CFA_MIPS_advance_loc8:
8831 return "DW_CFA_MIPS_advance_loc8";
8832 /* GNU extensions. */
8833 case DW_CFA_GNU_window_save:
8834 return "DW_CFA_GNU_window_save";
8835 case DW_CFA_GNU_args_size:
8836 return "DW_CFA_GNU_args_size";
8837 case DW_CFA_GNU_negative_offset_extended:
8838 return "DW_CFA_GNU_negative_offset_extended";
8839 default:
8840 return "DW_CFA_<unknown>";
8841 }
8842 }
8843 #endif
8844
8845 static void
8846 dump_die (struct die_info *die)
8847 {
8848 unsigned int i;
8849
8850 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8851 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8852 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8853 dwarf_bool_name (die->child != NULL));
8854
8855 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8856 for (i = 0; i < die->num_attrs; ++i)
8857 {
8858 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8859 dwarf_attr_name (die->attrs[i].name),
8860 dwarf_form_name (die->attrs[i].form));
8861 switch (die->attrs[i].form)
8862 {
8863 case DW_FORM_ref_addr:
8864 case DW_FORM_addr:
8865 fprintf_unfiltered (gdb_stderr, "address: ");
8866 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8867 break;
8868 case DW_FORM_block2:
8869 case DW_FORM_block4:
8870 case DW_FORM_block:
8871 case DW_FORM_block1:
8872 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8873 break;
8874 case DW_FORM_ref1:
8875 case DW_FORM_ref2:
8876 case DW_FORM_ref4:
8877 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8878 (long) (DW_ADDR (&die->attrs[i])));
8879 break;
8880 case DW_FORM_data1:
8881 case DW_FORM_data2:
8882 case DW_FORM_data4:
8883 case DW_FORM_data8:
8884 case DW_FORM_udata:
8885 case DW_FORM_sdata:
8886 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8887 break;
8888 case DW_FORM_string:
8889 case DW_FORM_strp:
8890 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8891 DW_STRING (&die->attrs[i])
8892 ? DW_STRING (&die->attrs[i]) : "");
8893 break;
8894 case DW_FORM_flag:
8895 if (DW_UNSND (&die->attrs[i]))
8896 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8897 else
8898 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8899 break;
8900 case DW_FORM_indirect:
8901 /* the reader will have reduced the indirect form to
8902 the "base form" so this form should not occur */
8903 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8904 break;
8905 default:
8906 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8907 die->attrs[i].form);
8908 }
8909 fprintf_unfiltered (gdb_stderr, "\n");
8910 }
8911 }
8912
8913 static void
8914 dump_die_list (struct die_info *die)
8915 {
8916 while (die)
8917 {
8918 dump_die (die);
8919 if (die->child != NULL)
8920 dump_die_list (die->child);
8921 if (die->sibling != NULL)
8922 dump_die_list (die->sibling);
8923 }
8924 }
8925
8926 static void
8927 store_in_ref_table (unsigned int offset, struct die_info *die,
8928 struct dwarf2_cu *cu)
8929 {
8930 int h;
8931 struct die_info *old;
8932
8933 h = (offset % REF_HASH_SIZE);
8934 old = cu->die_ref_table[h];
8935 die->next_ref = old;
8936 cu->die_ref_table[h] = die;
8937 }
8938
8939 static unsigned int
8940 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8941 {
8942 unsigned int result = 0;
8943
8944 switch (attr->form)
8945 {
8946 case DW_FORM_ref_addr:
8947 case DW_FORM_ref1:
8948 case DW_FORM_ref2:
8949 case DW_FORM_ref4:
8950 case DW_FORM_ref8:
8951 case DW_FORM_ref_udata:
8952 result = DW_ADDR (attr);
8953 break;
8954 default:
8955 complaint (&symfile_complaints,
8956 _("unsupported die ref attribute form: '%s'"),
8957 dwarf_form_name (attr->form));
8958 }
8959 return result;
8960 }
8961
8962 /* Return the constant value held by the given attribute. Return -1
8963 if the value held by the attribute is not constant. */
8964
8965 static int
8966 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8967 {
8968 if (attr->form == DW_FORM_sdata)
8969 return DW_SND (attr);
8970 else if (attr->form == DW_FORM_udata
8971 || attr->form == DW_FORM_data1
8972 || attr->form == DW_FORM_data2
8973 || attr->form == DW_FORM_data4
8974 || attr->form == DW_FORM_data8)
8975 return DW_UNSND (attr);
8976 else
8977 {
8978 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8979 dwarf_form_name (attr->form));
8980 return default_value;
8981 }
8982 }
8983
8984 static struct die_info *
8985 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8986 struct dwarf2_cu *cu)
8987 {
8988 struct die_info *die;
8989 unsigned int offset;
8990 int h;
8991 struct die_info temp_die;
8992 struct dwarf2_cu *target_cu;
8993
8994 offset = dwarf2_get_ref_die_offset (attr, cu);
8995
8996 if (DW_ADDR (attr) < cu->header.offset
8997 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8998 {
8999 struct dwarf2_per_cu_data *per_cu;
9000 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9001 cu->objfile);
9002 target_cu = per_cu->cu;
9003 }
9004 else
9005 target_cu = cu;
9006
9007 h = (offset % REF_HASH_SIZE);
9008 die = target_cu->die_ref_table[h];
9009 while (die)
9010 {
9011 if (die->offset == offset)
9012 return die;
9013 die = die->next_ref;
9014 }
9015
9016 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9017 "at 0x%lx [in module %s]"),
9018 (long) src_die->offset, (long) offset, cu->objfile->name);
9019
9020 return NULL;
9021 }
9022
9023 static struct type *
9024 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9025 struct dwarf2_cu *cu)
9026 {
9027 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9028 {
9029 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9030 typeid, objfile->name);
9031 }
9032
9033 /* Look for this particular type in the fundamental type vector. If
9034 one is not found, create and install one appropriate for the
9035 current language and the current target machine. */
9036
9037 if (cu->ftypes[typeid] == NULL)
9038 {
9039 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9040 }
9041
9042 return (cu->ftypes[typeid]);
9043 }
9044
9045 /* Decode simple location descriptions.
9046 Given a pointer to a dwarf block that defines a location, compute
9047 the location and return the value.
9048
9049 NOTE drow/2003-11-18: This function is called in two situations
9050 now: for the address of static or global variables (partial symbols
9051 only) and for offsets into structures which are expected to be
9052 (more or less) constant. The partial symbol case should go away,
9053 and only the constant case should remain. That will let this
9054 function complain more accurately. A few special modes are allowed
9055 without complaint for global variables (for instance, global
9056 register values and thread-local values).
9057
9058 A location description containing no operations indicates that the
9059 object is optimized out. The return value is 0 for that case.
9060 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9061 callers will only want a very basic result and this can become a
9062 complaint.
9063
9064 Note that stack[0] is unused except as a default error return.
9065 Note that stack overflow is not yet handled. */
9066
9067 static CORE_ADDR
9068 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9069 {
9070 struct objfile *objfile = cu->objfile;
9071 struct comp_unit_head *cu_header = &cu->header;
9072 int i;
9073 int size = blk->size;
9074 gdb_byte *data = blk->data;
9075 CORE_ADDR stack[64];
9076 int stacki;
9077 unsigned int bytes_read, unsnd;
9078 gdb_byte op;
9079
9080 i = 0;
9081 stacki = 0;
9082 stack[stacki] = 0;
9083
9084 while (i < size)
9085 {
9086 op = data[i++];
9087 switch (op)
9088 {
9089 case DW_OP_lit0:
9090 case DW_OP_lit1:
9091 case DW_OP_lit2:
9092 case DW_OP_lit3:
9093 case DW_OP_lit4:
9094 case DW_OP_lit5:
9095 case DW_OP_lit6:
9096 case DW_OP_lit7:
9097 case DW_OP_lit8:
9098 case DW_OP_lit9:
9099 case DW_OP_lit10:
9100 case DW_OP_lit11:
9101 case DW_OP_lit12:
9102 case DW_OP_lit13:
9103 case DW_OP_lit14:
9104 case DW_OP_lit15:
9105 case DW_OP_lit16:
9106 case DW_OP_lit17:
9107 case DW_OP_lit18:
9108 case DW_OP_lit19:
9109 case DW_OP_lit20:
9110 case DW_OP_lit21:
9111 case DW_OP_lit22:
9112 case DW_OP_lit23:
9113 case DW_OP_lit24:
9114 case DW_OP_lit25:
9115 case DW_OP_lit26:
9116 case DW_OP_lit27:
9117 case DW_OP_lit28:
9118 case DW_OP_lit29:
9119 case DW_OP_lit30:
9120 case DW_OP_lit31:
9121 stack[++stacki] = op - DW_OP_lit0;
9122 break;
9123
9124 case DW_OP_reg0:
9125 case DW_OP_reg1:
9126 case DW_OP_reg2:
9127 case DW_OP_reg3:
9128 case DW_OP_reg4:
9129 case DW_OP_reg5:
9130 case DW_OP_reg6:
9131 case DW_OP_reg7:
9132 case DW_OP_reg8:
9133 case DW_OP_reg9:
9134 case DW_OP_reg10:
9135 case DW_OP_reg11:
9136 case DW_OP_reg12:
9137 case DW_OP_reg13:
9138 case DW_OP_reg14:
9139 case DW_OP_reg15:
9140 case DW_OP_reg16:
9141 case DW_OP_reg17:
9142 case DW_OP_reg18:
9143 case DW_OP_reg19:
9144 case DW_OP_reg20:
9145 case DW_OP_reg21:
9146 case DW_OP_reg22:
9147 case DW_OP_reg23:
9148 case DW_OP_reg24:
9149 case DW_OP_reg25:
9150 case DW_OP_reg26:
9151 case DW_OP_reg27:
9152 case DW_OP_reg28:
9153 case DW_OP_reg29:
9154 case DW_OP_reg30:
9155 case DW_OP_reg31:
9156 stack[++stacki] = op - DW_OP_reg0;
9157 if (i < size)
9158 dwarf2_complex_location_expr_complaint ();
9159 break;
9160
9161 case DW_OP_regx:
9162 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9163 i += bytes_read;
9164 stack[++stacki] = unsnd;
9165 if (i < size)
9166 dwarf2_complex_location_expr_complaint ();
9167 break;
9168
9169 case DW_OP_addr:
9170 stack[++stacki] = read_address (objfile->obfd, &data[i],
9171 cu, &bytes_read);
9172 i += bytes_read;
9173 break;
9174
9175 case DW_OP_const1u:
9176 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9177 i += 1;
9178 break;
9179
9180 case DW_OP_const1s:
9181 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9182 i += 1;
9183 break;
9184
9185 case DW_OP_const2u:
9186 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9187 i += 2;
9188 break;
9189
9190 case DW_OP_const2s:
9191 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9192 i += 2;
9193 break;
9194
9195 case DW_OP_const4u:
9196 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9197 i += 4;
9198 break;
9199
9200 case DW_OP_const4s:
9201 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9202 i += 4;
9203 break;
9204
9205 case DW_OP_constu:
9206 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9207 &bytes_read);
9208 i += bytes_read;
9209 break;
9210
9211 case DW_OP_consts:
9212 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9213 i += bytes_read;
9214 break;
9215
9216 case DW_OP_dup:
9217 stack[stacki + 1] = stack[stacki];
9218 stacki++;
9219 break;
9220
9221 case DW_OP_plus:
9222 stack[stacki - 1] += stack[stacki];
9223 stacki--;
9224 break;
9225
9226 case DW_OP_plus_uconst:
9227 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9228 i += bytes_read;
9229 break;
9230
9231 case DW_OP_minus:
9232 stack[stacki - 1] -= stack[stacki];
9233 stacki--;
9234 break;
9235
9236 case DW_OP_deref:
9237 /* If we're not the last op, then we definitely can't encode
9238 this using GDB's address_class enum. This is valid for partial
9239 global symbols, although the variable's address will be bogus
9240 in the psymtab. */
9241 if (i < size)
9242 dwarf2_complex_location_expr_complaint ();
9243 break;
9244
9245 case DW_OP_GNU_push_tls_address:
9246 /* The top of the stack has the offset from the beginning
9247 of the thread control block at which the variable is located. */
9248 /* Nothing should follow this operator, so the top of stack would
9249 be returned. */
9250 /* This is valid for partial global symbols, but the variable's
9251 address will be bogus in the psymtab. */
9252 if (i < size)
9253 dwarf2_complex_location_expr_complaint ();
9254 break;
9255
9256 case DW_OP_GNU_uninit:
9257 break;
9258
9259 default:
9260 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9261 dwarf_stack_op_name (op));
9262 return (stack[stacki]);
9263 }
9264 }
9265 return (stack[stacki]);
9266 }
9267
9268 /* memory allocation interface */
9269
9270 static struct dwarf_block *
9271 dwarf_alloc_block (struct dwarf2_cu *cu)
9272 {
9273 struct dwarf_block *blk;
9274
9275 blk = (struct dwarf_block *)
9276 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9277 return (blk);
9278 }
9279
9280 static struct abbrev_info *
9281 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9282 {
9283 struct abbrev_info *abbrev;
9284
9285 abbrev = (struct abbrev_info *)
9286 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9287 memset (abbrev, 0, sizeof (struct abbrev_info));
9288 return (abbrev);
9289 }
9290
9291 static struct die_info *
9292 dwarf_alloc_die (void)
9293 {
9294 struct die_info *die;
9295
9296 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9297 memset (die, 0, sizeof (struct die_info));
9298 return (die);
9299 }
9300
9301 \f
9302 /* Macro support. */
9303
9304
9305 /* Return the full name of file number I in *LH's file name table.
9306 Use COMP_DIR as the name of the current directory of the
9307 compilation. The result is allocated using xmalloc; the caller is
9308 responsible for freeing it. */
9309 static char *
9310 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9311 {
9312 /* Is the file number a valid index into the line header's file name
9313 table? Remember that file numbers start with one, not zero. */
9314 if (1 <= file && file <= lh->num_file_names)
9315 {
9316 struct file_entry *fe = &lh->file_names[file - 1];
9317
9318 if (IS_ABSOLUTE_PATH (fe->name))
9319 return xstrdup (fe->name);
9320 else
9321 {
9322 const char *dir;
9323 int dir_len;
9324 char *full_name;
9325
9326 if (fe->dir_index)
9327 dir = lh->include_dirs[fe->dir_index - 1];
9328 else
9329 dir = comp_dir;
9330
9331 if (dir)
9332 {
9333 dir_len = strlen (dir);
9334 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9335 strcpy (full_name, dir);
9336 full_name[dir_len] = '/';
9337 strcpy (full_name + dir_len + 1, fe->name);
9338 return full_name;
9339 }
9340 else
9341 return xstrdup (fe->name);
9342 }
9343 }
9344 else
9345 {
9346 /* The compiler produced a bogus file number. We can at least
9347 record the macro definitions made in the file, even if we
9348 won't be able to find the file by name. */
9349 char fake_name[80];
9350 sprintf (fake_name, "<bad macro file number %d>", file);
9351
9352 complaint (&symfile_complaints,
9353 _("bad file number in macro information (%d)"),
9354 file);
9355
9356 return xstrdup (fake_name);
9357 }
9358 }
9359
9360
9361 static struct macro_source_file *
9362 macro_start_file (int file, int line,
9363 struct macro_source_file *current_file,
9364 const char *comp_dir,
9365 struct line_header *lh, struct objfile *objfile)
9366 {
9367 /* The full name of this source file. */
9368 char *full_name = file_full_name (file, lh, comp_dir);
9369
9370 /* We don't create a macro table for this compilation unit
9371 at all until we actually get a filename. */
9372 if (! pending_macros)
9373 pending_macros = new_macro_table (&objfile->objfile_obstack,
9374 objfile->macro_cache);
9375
9376 if (! current_file)
9377 /* If we have no current file, then this must be the start_file
9378 directive for the compilation unit's main source file. */
9379 current_file = macro_set_main (pending_macros, full_name);
9380 else
9381 current_file = macro_include (current_file, line, full_name);
9382
9383 xfree (full_name);
9384
9385 return current_file;
9386 }
9387
9388
9389 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9390 followed by a null byte. */
9391 static char *
9392 copy_string (const char *buf, int len)
9393 {
9394 char *s = xmalloc (len + 1);
9395 memcpy (s, buf, len);
9396 s[len] = '\0';
9397
9398 return s;
9399 }
9400
9401
9402 static const char *
9403 consume_improper_spaces (const char *p, const char *body)
9404 {
9405 if (*p == ' ')
9406 {
9407 complaint (&symfile_complaints,
9408 _("macro definition contains spaces in formal argument list:\n`%s'"),
9409 body);
9410
9411 while (*p == ' ')
9412 p++;
9413 }
9414
9415 return p;
9416 }
9417
9418
9419 static void
9420 parse_macro_definition (struct macro_source_file *file, int line,
9421 const char *body)
9422 {
9423 const char *p;
9424
9425 /* The body string takes one of two forms. For object-like macro
9426 definitions, it should be:
9427
9428 <macro name> " " <definition>
9429
9430 For function-like macro definitions, it should be:
9431
9432 <macro name> "() " <definition>
9433 or
9434 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9435
9436 Spaces may appear only where explicitly indicated, and in the
9437 <definition>.
9438
9439 The Dwarf 2 spec says that an object-like macro's name is always
9440 followed by a space, but versions of GCC around March 2002 omit
9441 the space when the macro's definition is the empty string.
9442
9443 The Dwarf 2 spec says that there should be no spaces between the
9444 formal arguments in a function-like macro's formal argument list,
9445 but versions of GCC around March 2002 include spaces after the
9446 commas. */
9447
9448
9449 /* Find the extent of the macro name. The macro name is terminated
9450 by either a space or null character (for an object-like macro) or
9451 an opening paren (for a function-like macro). */
9452 for (p = body; *p; p++)
9453 if (*p == ' ' || *p == '(')
9454 break;
9455
9456 if (*p == ' ' || *p == '\0')
9457 {
9458 /* It's an object-like macro. */
9459 int name_len = p - body;
9460 char *name = copy_string (body, name_len);
9461 const char *replacement;
9462
9463 if (*p == ' ')
9464 replacement = body + name_len + 1;
9465 else
9466 {
9467 dwarf2_macro_malformed_definition_complaint (body);
9468 replacement = body + name_len;
9469 }
9470
9471 macro_define_object (file, line, name, replacement);
9472
9473 xfree (name);
9474 }
9475 else if (*p == '(')
9476 {
9477 /* It's a function-like macro. */
9478 char *name = copy_string (body, p - body);
9479 int argc = 0;
9480 int argv_size = 1;
9481 char **argv = xmalloc (argv_size * sizeof (*argv));
9482
9483 p++;
9484
9485 p = consume_improper_spaces (p, body);
9486
9487 /* Parse the formal argument list. */
9488 while (*p && *p != ')')
9489 {
9490 /* Find the extent of the current argument name. */
9491 const char *arg_start = p;
9492
9493 while (*p && *p != ',' && *p != ')' && *p != ' ')
9494 p++;
9495
9496 if (! *p || p == arg_start)
9497 dwarf2_macro_malformed_definition_complaint (body);
9498 else
9499 {
9500 /* Make sure argv has room for the new argument. */
9501 if (argc >= argv_size)
9502 {
9503 argv_size *= 2;
9504 argv = xrealloc (argv, argv_size * sizeof (*argv));
9505 }
9506
9507 argv[argc++] = copy_string (arg_start, p - arg_start);
9508 }
9509
9510 p = consume_improper_spaces (p, body);
9511
9512 /* Consume the comma, if present. */
9513 if (*p == ',')
9514 {
9515 p++;
9516
9517 p = consume_improper_spaces (p, body);
9518 }
9519 }
9520
9521 if (*p == ')')
9522 {
9523 p++;
9524
9525 if (*p == ' ')
9526 /* Perfectly formed definition, no complaints. */
9527 macro_define_function (file, line, name,
9528 argc, (const char **) argv,
9529 p + 1);
9530 else if (*p == '\0')
9531 {
9532 /* Complain, but do define it. */
9533 dwarf2_macro_malformed_definition_complaint (body);
9534 macro_define_function (file, line, name,
9535 argc, (const char **) argv,
9536 p);
9537 }
9538 else
9539 /* Just complain. */
9540 dwarf2_macro_malformed_definition_complaint (body);
9541 }
9542 else
9543 /* Just complain. */
9544 dwarf2_macro_malformed_definition_complaint (body);
9545
9546 xfree (name);
9547 {
9548 int i;
9549
9550 for (i = 0; i < argc; i++)
9551 xfree (argv[i]);
9552 }
9553 xfree (argv);
9554 }
9555 else
9556 dwarf2_macro_malformed_definition_complaint (body);
9557 }
9558
9559
9560 static void
9561 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9562 char *comp_dir, bfd *abfd,
9563 struct dwarf2_cu *cu)
9564 {
9565 gdb_byte *mac_ptr, *mac_end;
9566 struct macro_source_file *current_file = 0;
9567
9568 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9569 {
9570 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9571 return;
9572 }
9573
9574 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9575 mac_end = dwarf2_per_objfile->macinfo_buffer
9576 + dwarf2_per_objfile->macinfo_size;
9577
9578 for (;;)
9579 {
9580 enum dwarf_macinfo_record_type macinfo_type;
9581
9582 /* Do we at least have room for a macinfo type byte? */
9583 if (mac_ptr >= mac_end)
9584 {
9585 dwarf2_macros_too_long_complaint ();
9586 return;
9587 }
9588
9589 macinfo_type = read_1_byte (abfd, mac_ptr);
9590 mac_ptr++;
9591
9592 switch (macinfo_type)
9593 {
9594 /* A zero macinfo type indicates the end of the macro
9595 information. */
9596 case 0:
9597 return;
9598
9599 case DW_MACINFO_define:
9600 case DW_MACINFO_undef:
9601 {
9602 unsigned int bytes_read;
9603 int line;
9604 char *body;
9605
9606 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9607 mac_ptr += bytes_read;
9608 body = read_string (abfd, mac_ptr, &bytes_read);
9609 mac_ptr += bytes_read;
9610
9611 if (! current_file)
9612 complaint (&symfile_complaints,
9613 _("debug info gives macro %s outside of any file: %s"),
9614 macinfo_type ==
9615 DW_MACINFO_define ? "definition" : macinfo_type ==
9616 DW_MACINFO_undef ? "undefinition" :
9617 "something-or-other", body);
9618 else
9619 {
9620 if (macinfo_type == DW_MACINFO_define)
9621 parse_macro_definition (current_file, line, body);
9622 else if (macinfo_type == DW_MACINFO_undef)
9623 macro_undef (current_file, line, body);
9624 }
9625 }
9626 break;
9627
9628 case DW_MACINFO_start_file:
9629 {
9630 unsigned int bytes_read;
9631 int line, file;
9632
9633 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9634 mac_ptr += bytes_read;
9635 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9636 mac_ptr += bytes_read;
9637
9638 current_file = macro_start_file (file, line,
9639 current_file, comp_dir,
9640 lh, cu->objfile);
9641 }
9642 break;
9643
9644 case DW_MACINFO_end_file:
9645 if (! current_file)
9646 complaint (&symfile_complaints,
9647 _("macro debug info has an unmatched `close_file' directive"));
9648 else
9649 {
9650 current_file = current_file->included_by;
9651 if (! current_file)
9652 {
9653 enum dwarf_macinfo_record_type next_type;
9654
9655 /* GCC circa March 2002 doesn't produce the zero
9656 type byte marking the end of the compilation
9657 unit. Complain if it's not there, but exit no
9658 matter what. */
9659
9660 /* Do we at least have room for a macinfo type byte? */
9661 if (mac_ptr >= mac_end)
9662 {
9663 dwarf2_macros_too_long_complaint ();
9664 return;
9665 }
9666
9667 /* We don't increment mac_ptr here, so this is just
9668 a look-ahead. */
9669 next_type = read_1_byte (abfd, mac_ptr);
9670 if (next_type != 0)
9671 complaint (&symfile_complaints,
9672 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9673
9674 return;
9675 }
9676 }
9677 break;
9678
9679 case DW_MACINFO_vendor_ext:
9680 {
9681 unsigned int bytes_read;
9682 int constant;
9683 char *string;
9684
9685 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9686 mac_ptr += bytes_read;
9687 string = read_string (abfd, mac_ptr, &bytes_read);
9688 mac_ptr += bytes_read;
9689
9690 /* We don't recognize any vendor extensions. */
9691 }
9692 break;
9693 }
9694 }
9695 }
9696
9697 /* Check if the attribute's form is a DW_FORM_block*
9698 if so return true else false. */
9699 static int
9700 attr_form_is_block (struct attribute *attr)
9701 {
9702 return (attr == NULL ? 0 :
9703 attr->form == DW_FORM_block1
9704 || attr->form == DW_FORM_block2
9705 || attr->form == DW_FORM_block4
9706 || attr->form == DW_FORM_block);
9707 }
9708
9709 static void
9710 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9711 struct dwarf2_cu *cu)
9712 {
9713 struct objfile *objfile = cu->objfile;
9714
9715 /* Save the master objfile, so that we can report and look up the
9716 correct file containing this variable. */
9717 if (objfile->separate_debug_objfile_backlink)
9718 objfile = objfile->separate_debug_objfile_backlink;
9719
9720 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9721 /* ".debug_loc" may not exist at all, or the offset may be outside
9722 the section. If so, fall through to the complaint in the
9723 other branch. */
9724 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9725 {
9726 struct dwarf2_loclist_baton *baton;
9727
9728 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9729 sizeof (struct dwarf2_loclist_baton));
9730 baton->objfile = objfile;
9731
9732 /* We don't know how long the location list is, but make sure we
9733 don't run off the edge of the section. */
9734 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9735 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9736 baton->base_address = cu->header.base_address;
9737 if (cu->header.base_known == 0)
9738 complaint (&symfile_complaints,
9739 _("Location list used without specifying the CU base address."));
9740
9741 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9742 SYMBOL_LOCATION_BATON (sym) = baton;
9743 }
9744 else
9745 {
9746 struct dwarf2_locexpr_baton *baton;
9747
9748 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9749 sizeof (struct dwarf2_locexpr_baton));
9750 baton->objfile = objfile;
9751
9752 if (attr_form_is_block (attr))
9753 {
9754 /* Note that we're just copying the block's data pointer
9755 here, not the actual data. We're still pointing into the
9756 info_buffer for SYM's objfile; right now we never release
9757 that buffer, but when we do clean up properly this may
9758 need to change. */
9759 baton->size = DW_BLOCK (attr)->size;
9760 baton->data = DW_BLOCK (attr)->data;
9761 }
9762 else
9763 {
9764 dwarf2_invalid_attrib_class_complaint ("location description",
9765 SYMBOL_NATURAL_NAME (sym));
9766 baton->size = 0;
9767 baton->data = NULL;
9768 }
9769
9770 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9771 SYMBOL_LOCATION_BATON (sym) = baton;
9772 }
9773 }
9774
9775 /* Locate the compilation unit from CU's objfile which contains the
9776 DIE at OFFSET. Raises an error on failure. */
9777
9778 static struct dwarf2_per_cu_data *
9779 dwarf2_find_containing_comp_unit (unsigned long offset,
9780 struct objfile *objfile)
9781 {
9782 struct dwarf2_per_cu_data *this_cu;
9783 int low, high;
9784
9785 low = 0;
9786 high = dwarf2_per_objfile->n_comp_units - 1;
9787 while (high > low)
9788 {
9789 int mid = low + (high - low) / 2;
9790 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9791 high = mid;
9792 else
9793 low = mid + 1;
9794 }
9795 gdb_assert (low == high);
9796 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9797 {
9798 if (low == 0)
9799 error (_("Dwarf Error: could not find partial DIE containing "
9800 "offset 0x%lx [in module %s]"),
9801 (long) offset, bfd_get_filename (objfile->obfd));
9802
9803 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9804 return dwarf2_per_objfile->all_comp_units[low-1];
9805 }
9806 else
9807 {
9808 this_cu = dwarf2_per_objfile->all_comp_units[low];
9809 if (low == dwarf2_per_objfile->n_comp_units - 1
9810 && offset >= this_cu->offset + this_cu->length)
9811 error (_("invalid dwarf2 offset %ld"), offset);
9812 gdb_assert (offset < this_cu->offset + this_cu->length);
9813 return this_cu;
9814 }
9815 }
9816
9817 /* Locate the compilation unit from OBJFILE which is located at exactly
9818 OFFSET. Raises an error on failure. */
9819
9820 static struct dwarf2_per_cu_data *
9821 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9822 {
9823 struct dwarf2_per_cu_data *this_cu;
9824 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9825 if (this_cu->offset != offset)
9826 error (_("no compilation unit with offset %ld."), offset);
9827 return this_cu;
9828 }
9829
9830 /* Release one cached compilation unit, CU. We unlink it from the tree
9831 of compilation units, but we don't remove it from the read_in_chain;
9832 the caller is responsible for that. */
9833
9834 static void
9835 free_one_comp_unit (void *data)
9836 {
9837 struct dwarf2_cu *cu = data;
9838
9839 if (cu->per_cu != NULL)
9840 cu->per_cu->cu = NULL;
9841 cu->per_cu = NULL;
9842
9843 obstack_free (&cu->comp_unit_obstack, NULL);
9844 if (cu->dies)
9845 free_die_list (cu->dies);
9846
9847 xfree (cu);
9848 }
9849
9850 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9851 when we're finished with it. We can't free the pointer itself, but be
9852 sure to unlink it from the cache. Also release any associated storage
9853 and perform cache maintenance.
9854
9855 Only used during partial symbol parsing. */
9856
9857 static void
9858 free_stack_comp_unit (void *data)
9859 {
9860 struct dwarf2_cu *cu = data;
9861
9862 obstack_free (&cu->comp_unit_obstack, NULL);
9863 cu->partial_dies = NULL;
9864
9865 if (cu->per_cu != NULL)
9866 {
9867 /* This compilation unit is on the stack in our caller, so we
9868 should not xfree it. Just unlink it. */
9869 cu->per_cu->cu = NULL;
9870 cu->per_cu = NULL;
9871
9872 /* If we had a per-cu pointer, then we may have other compilation
9873 units loaded, so age them now. */
9874 age_cached_comp_units ();
9875 }
9876 }
9877
9878 /* Free all cached compilation units. */
9879
9880 static void
9881 free_cached_comp_units (void *data)
9882 {
9883 struct dwarf2_per_cu_data *per_cu, **last_chain;
9884
9885 per_cu = dwarf2_per_objfile->read_in_chain;
9886 last_chain = &dwarf2_per_objfile->read_in_chain;
9887 while (per_cu != NULL)
9888 {
9889 struct dwarf2_per_cu_data *next_cu;
9890
9891 next_cu = per_cu->cu->read_in_chain;
9892
9893 free_one_comp_unit (per_cu->cu);
9894 *last_chain = next_cu;
9895
9896 per_cu = next_cu;
9897 }
9898 }
9899
9900 /* Increase the age counter on each cached compilation unit, and free
9901 any that are too old. */
9902
9903 static void
9904 age_cached_comp_units (void)
9905 {
9906 struct dwarf2_per_cu_data *per_cu, **last_chain;
9907
9908 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9909 per_cu = dwarf2_per_objfile->read_in_chain;
9910 while (per_cu != NULL)
9911 {
9912 per_cu->cu->last_used ++;
9913 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9914 dwarf2_mark (per_cu->cu);
9915 per_cu = per_cu->cu->read_in_chain;
9916 }
9917
9918 per_cu = dwarf2_per_objfile->read_in_chain;
9919 last_chain = &dwarf2_per_objfile->read_in_chain;
9920 while (per_cu != NULL)
9921 {
9922 struct dwarf2_per_cu_data *next_cu;
9923
9924 next_cu = per_cu->cu->read_in_chain;
9925
9926 if (!per_cu->cu->mark)
9927 {
9928 free_one_comp_unit (per_cu->cu);
9929 *last_chain = next_cu;
9930 }
9931 else
9932 last_chain = &per_cu->cu->read_in_chain;
9933
9934 per_cu = next_cu;
9935 }
9936 }
9937
9938 /* Remove a single compilation unit from the cache. */
9939
9940 static void
9941 free_one_cached_comp_unit (void *target_cu)
9942 {
9943 struct dwarf2_per_cu_data *per_cu, **last_chain;
9944
9945 per_cu = dwarf2_per_objfile->read_in_chain;
9946 last_chain = &dwarf2_per_objfile->read_in_chain;
9947 while (per_cu != NULL)
9948 {
9949 struct dwarf2_per_cu_data *next_cu;
9950
9951 next_cu = per_cu->cu->read_in_chain;
9952
9953 if (per_cu->cu == target_cu)
9954 {
9955 free_one_comp_unit (per_cu->cu);
9956 *last_chain = next_cu;
9957 break;
9958 }
9959 else
9960 last_chain = &per_cu->cu->read_in_chain;
9961
9962 per_cu = next_cu;
9963 }
9964 }
9965
9966 /* A pair of DIE offset and GDB type pointer. We store these
9967 in a hash table separate from the DIEs, and preserve them
9968 when the DIEs are flushed out of cache. */
9969
9970 struct dwarf2_offset_and_type
9971 {
9972 unsigned int offset;
9973 struct type *type;
9974 };
9975
9976 /* Hash function for a dwarf2_offset_and_type. */
9977
9978 static hashval_t
9979 offset_and_type_hash (const void *item)
9980 {
9981 const struct dwarf2_offset_and_type *ofs = item;
9982 return ofs->offset;
9983 }
9984
9985 /* Equality function for a dwarf2_offset_and_type. */
9986
9987 static int
9988 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9989 {
9990 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9991 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9992 return ofs_lhs->offset == ofs_rhs->offset;
9993 }
9994
9995 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9996 table if necessary. */
9997
9998 static void
9999 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10000 {
10001 struct dwarf2_offset_and_type **slot, ofs;
10002
10003 die->type = type;
10004
10005 if (cu->per_cu == NULL)
10006 return;
10007
10008 if (cu->per_cu->type_hash == NULL)
10009 cu->per_cu->type_hash
10010 = htab_create_alloc_ex (cu->header.length / 24,
10011 offset_and_type_hash,
10012 offset_and_type_eq,
10013 NULL,
10014 &cu->objfile->objfile_obstack,
10015 hashtab_obstack_allocate,
10016 dummy_obstack_deallocate);
10017
10018 ofs.offset = die->offset;
10019 ofs.type = type;
10020 slot = (struct dwarf2_offset_and_type **)
10021 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10022 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10023 **slot = ofs;
10024 }
10025
10026 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10027 have a saved type. */
10028
10029 static struct type *
10030 get_die_type (struct die_info *die, htab_t type_hash)
10031 {
10032 struct dwarf2_offset_and_type *slot, ofs;
10033
10034 ofs.offset = die->offset;
10035 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10036 if (slot)
10037 return slot->type;
10038 else
10039 return NULL;
10040 }
10041
10042 /* Restore the types of the DIE tree starting at START_DIE from the hash
10043 table saved in CU. */
10044
10045 static void
10046 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10047 {
10048 struct die_info *die;
10049
10050 if (cu->per_cu->type_hash == NULL)
10051 return;
10052
10053 for (die = start_die; die != NULL; die = die->sibling)
10054 {
10055 die->type = get_die_type (die, cu->per_cu->type_hash);
10056 if (die->child != NULL)
10057 reset_die_and_siblings_types (die->child, cu);
10058 }
10059 }
10060
10061 /* Set the mark field in CU and in every other compilation unit in the
10062 cache that we must keep because we are keeping CU. */
10063
10064 /* Add a dependence relationship from CU to REF_PER_CU. */
10065
10066 static void
10067 dwarf2_add_dependence (struct dwarf2_cu *cu,
10068 struct dwarf2_per_cu_data *ref_per_cu)
10069 {
10070 void **slot;
10071
10072 if (cu->dependencies == NULL)
10073 cu->dependencies
10074 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10075 NULL, &cu->comp_unit_obstack,
10076 hashtab_obstack_allocate,
10077 dummy_obstack_deallocate);
10078
10079 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10080 if (*slot == NULL)
10081 *slot = ref_per_cu;
10082 }
10083
10084 /* Set the mark field in CU and in every other compilation unit in the
10085 cache that we must keep because we are keeping CU. */
10086
10087 static int
10088 dwarf2_mark_helper (void **slot, void *data)
10089 {
10090 struct dwarf2_per_cu_data *per_cu;
10091
10092 per_cu = (struct dwarf2_per_cu_data *) *slot;
10093 if (per_cu->cu->mark)
10094 return 1;
10095 per_cu->cu->mark = 1;
10096
10097 if (per_cu->cu->dependencies != NULL)
10098 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10099
10100 return 1;
10101 }
10102
10103 static void
10104 dwarf2_mark (struct dwarf2_cu *cu)
10105 {
10106 if (cu->mark)
10107 return;
10108 cu->mark = 1;
10109 if (cu->dependencies != NULL)
10110 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10111 }
10112
10113 static void
10114 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10115 {
10116 while (per_cu)
10117 {
10118 per_cu->cu->mark = 0;
10119 per_cu = per_cu->cu->read_in_chain;
10120 }
10121 }
10122
10123 /* Trivial hash function for partial_die_info: the hash value of a DIE
10124 is its offset in .debug_info for this objfile. */
10125
10126 static hashval_t
10127 partial_die_hash (const void *item)
10128 {
10129 const struct partial_die_info *part_die = item;
10130 return part_die->offset;
10131 }
10132
10133 /* Trivial comparison function for partial_die_info structures: two DIEs
10134 are equal if they have the same offset. */
10135
10136 static int
10137 partial_die_eq (const void *item_lhs, const void *item_rhs)
10138 {
10139 const struct partial_die_info *part_die_lhs = item_lhs;
10140 const struct partial_die_info *part_die_rhs = item_rhs;
10141 return part_die_lhs->offset == part_die_rhs->offset;
10142 }
10143
10144 static struct cmd_list_element *set_dwarf2_cmdlist;
10145 static struct cmd_list_element *show_dwarf2_cmdlist;
10146
10147 static void
10148 set_dwarf2_cmd (char *args, int from_tty)
10149 {
10150 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10151 }
10152
10153 static void
10154 show_dwarf2_cmd (char *args, int from_tty)
10155 {
10156 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10157 }
10158
10159 void _initialize_dwarf2_read (void);
10160
10161 void
10162 _initialize_dwarf2_read (void)
10163 {
10164 dwarf2_objfile_data_key = register_objfile_data ();
10165
10166 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10167 Set DWARF 2 specific variables.\n\
10168 Configure DWARF 2 variables such as the cache size"),
10169 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10170 0/*allow-unknown*/, &maintenance_set_cmdlist);
10171
10172 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10173 Show DWARF 2 specific variables\n\
10174 Show DWARF 2 variables such as the cache size"),
10175 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10176 0/*allow-unknown*/, &maintenance_show_cmdlist);
10177
10178 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10179 &dwarf2_max_cache_age, _("\
10180 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10181 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10182 A higher limit means that cached compilation units will be stored\n\
10183 in memory longer, and more total memory will be used. Zero disables\n\
10184 caching, which can slow down startup."),
10185 NULL,
10186 show_dwarf2_max_cache_age,
10187 &set_dwarf2_cmdlist,
10188 &show_dwarf2_cmdlist);
10189 }