]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
* dwarf2read.c (read_subroutine_type): Call make_function_type
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3 2004
4 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support in dwarfread.c
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 59 Temple Place - Suite 330,
28 Boston, MA 02111-1307, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 char *info_buffer;
165 char *abbrev_buffer;
166 char *line_buffer;
167 char *str_buffer;
168 char *macinfo_buffer;
169 char *ranges_buffer;
170 char *loc_buffer;
171
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
182 };
183
184 static struct dwarf2_per_objfile *dwarf2_per_objfile;
185
186 static asection *dwarf_info_section;
187 static asection *dwarf_abbrev_section;
188 static asection *dwarf_line_section;
189 static asection *dwarf_pubnames_section;
190 static asection *dwarf_aranges_section;
191 static asection *dwarf_loc_section;
192 static asection *dwarf_macinfo_section;
193 static asection *dwarf_str_section;
194 static asection *dwarf_ranges_section;
195 asection *dwarf_frame_section;
196 asection *dwarf_eh_frame_section;
197
198 /* names of the debugging sections */
199
200 #define INFO_SECTION ".debug_info"
201 #define ABBREV_SECTION ".debug_abbrev"
202 #define LINE_SECTION ".debug_line"
203 #define PUBNAMES_SECTION ".debug_pubnames"
204 #define ARANGES_SECTION ".debug_aranges"
205 #define LOC_SECTION ".debug_loc"
206 #define MACINFO_SECTION ".debug_macinfo"
207 #define STR_SECTION ".debug_str"
208 #define RANGES_SECTION ".debug_ranges"
209 #define FRAME_SECTION ".debug_frame"
210 #define EH_FRAME_SECTION ".eh_frame"
211
212 /* local data types */
213
214 /* We hold several abbreviation tables in memory at the same time. */
215 #ifndef ABBREV_HASH_SIZE
216 #define ABBREV_HASH_SIZE 121
217 #endif
218
219 /* The data in a compilation unit header, after target2host
220 translation, looks like this. */
221 struct comp_unit_head
222 {
223 unsigned long length;
224 short version;
225 unsigned int abbrev_offset;
226 unsigned char addr_size;
227 unsigned char signed_addr_p;
228 unsigned int offset_size; /* size of file offsets; either 4 or 8 */
229 unsigned int initial_length_size; /* size of the length field; either
230 4 or 12 */
231
232 /* Offset to the first byte of this compilation unit header in the
233 * .debug_info section, for resolving relative reference dies. */
234
235 unsigned int offset;
236
237 /* Pointer to this compilation unit header in the .debug_info
238 * section */
239
240 char *cu_head_ptr;
241
242 /* Pointer to the first die of this compilatio unit. This will
243 * be the first byte following the compilation unit header. */
244
245 char *first_die_ptr;
246
247 /* Pointer to the next compilation unit header in the program. */
248
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252
253 CORE_ADDR base_address;
254
255 /* Non-zero if base_address has been set. */
256
257 int base_known;
258 };
259
260 /* Fixed size for the DIE hash table. */
261 #ifndef REF_HASH_SIZE
262 #define REF_HASH_SIZE 1021
263 #endif
264
265 /* Internal state when decoding a particular compilation unit. */
266 struct dwarf2_cu
267 {
268 /* The objfile containing this compilation unit. */
269 struct objfile *objfile;
270
271 /* The header of the compilation unit.
272
273 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
274 should logically be moved to the dwarf2_cu structure. */
275 struct comp_unit_head header;
276
277 struct function_range *first_fn, *last_fn, *cached_fn;
278
279 /* The language we are debugging. */
280 enum language language;
281 const struct language_defn *language_defn;
282
283 const char *producer;
284
285 /* The generic symbol table building routines have separate lists for
286 file scope symbols and all all other scopes (local scopes). So
287 we need to select the right one to pass to add_symbol_to_list().
288 We do it by keeping a pointer to the correct list in list_in_scope.
289
290 FIXME: The original dwarf code just treated the file scope as the
291 first local scope, and all other local scopes as nested local
292 scopes, and worked fine. Check to see if we really need to
293 distinguish these in buildsym.c. */
294 struct pending **list_in_scope;
295
296 /* Maintain an array of referenced fundamental types for the current
297 compilation unit being read. For DWARF version 1, we have to construct
298 the fundamental types on the fly, since no information about the
299 fundamental types is supplied. Each such fundamental type is created by
300 calling a language dependent routine to create the type, and then a
301 pointer to that type is then placed in the array at the index specified
302 by it's FT_<TYPENAME> value. The array has a fixed size set by the
303 FT_NUM_MEMBERS compile time constant, which is the number of predefined
304 fundamental types gdb knows how to construct. */
305 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
306
307 /* DWARF abbreviation table associated with this compilation unit. */
308 struct abbrev_info **dwarf2_abbrevs;
309
310 /* Storage for the abbrev table. */
311 struct obstack abbrev_obstack;
312
313 /* Hash table holding all the loaded partial DIEs. */
314 htab_t partial_dies;
315
316 /* Storage for things with the same lifetime as this read-in compilation
317 unit, including partial DIEs. */
318 struct obstack comp_unit_obstack;
319
320 /* When multiple dwarf2_cu structures are living in memory, this field
321 chains them all together, so that they can be released efficiently.
322 We will probably also want a generation counter so that most-recently-used
323 compilation units are cached... */
324 struct dwarf2_per_cu_data *read_in_chain;
325
326 /* Backchain to our per_cu entry if the tree has been built. */
327 struct dwarf2_per_cu_data *per_cu;
328
329 /* How many compilation units ago was this CU last referenced? */
330 int last_used;
331
332 /* A hash table of die offsets for following references. */
333 struct die_info *die_ref_table[REF_HASH_SIZE];
334
335 /* Full DIEs if read in. */
336 struct die_info *dies;
337
338 /* A set of pointers to dwarf2_per_cu_data objects for compilation
339 units referenced by this one. Only set during full symbol processing;
340 partial symbol tables do not have dependencies. */
341 htab_t dependencies;
342
343 /* Mark used when releasing cached dies. */
344 unsigned int mark : 1;
345
346 /* This flag will be set if this compilation unit might include
347 inter-compilation-unit references. */
348 unsigned int has_form_ref_addr : 1;
349
350 /* This flag will be set if this compilation unit includes any
351 DW_TAG_namespace DIEs. If we know that there are explicit
352 DIEs for namespaces, we don't need to try to infer them
353 from mangled names. */
354 unsigned int has_namespace_info : 1;
355 };
356
357 /* Persistent data held for a compilation unit, even when not
358 processing it. We put a pointer to this structure in the
359 read_symtab_private field of the psymtab. If we encounter
360 inter-compilation-unit references, we also maintain a sorted
361 list of all compilation units. */
362
363 struct dwarf2_per_cu_data
364 {
365 /* The start offset and length of this compilation unit. 2**31-1
366 bytes should suffice to store the length of any compilation unit
367 - if it doesn't, GDB will fall over anyway. */
368 unsigned long offset;
369 unsigned long length : 31;
370
371 /* Flag indicating this compilation unit will be read in before
372 any of the current compilation units are processed. */
373 unsigned long queued : 1;
374
375 /* Set iff currently read in. */
376 struct dwarf2_cu *cu;
377
378 /* If full symbols for this CU have been read in, then this field
379 holds a map of DIE offsets to types. It isn't always possible
380 to reconstruct this information later, so we have to preserve
381 it. */
382 htab_t type_hash;
383
384 /* The partial symbol table associated with this compilation unit. */
385 struct partial_symtab *psymtab;
386 };
387
388 /* The line number information for a compilation unit (found in the
389 .debug_line section) begins with a "statement program header",
390 which contains the following information. */
391 struct line_header
392 {
393 unsigned int total_length;
394 unsigned short version;
395 unsigned int header_length;
396 unsigned char minimum_instruction_length;
397 unsigned char default_is_stmt;
398 int line_base;
399 unsigned char line_range;
400 unsigned char opcode_base;
401
402 /* standard_opcode_lengths[i] is the number of operands for the
403 standard opcode whose value is i. This means that
404 standard_opcode_lengths[0] is unused, and the last meaningful
405 element is standard_opcode_lengths[opcode_base - 1]. */
406 unsigned char *standard_opcode_lengths;
407
408 /* The include_directories table. NOTE! These strings are not
409 allocated with xmalloc; instead, they are pointers into
410 debug_line_buffer. If you try to free them, `free' will get
411 indigestion. */
412 unsigned int num_include_dirs, include_dirs_size;
413 char **include_dirs;
414
415 /* The file_names table. NOTE! These strings are not allocated
416 with xmalloc; instead, they are pointers into debug_line_buffer.
417 Don't try to free them directly. */
418 unsigned int num_file_names, file_names_size;
419 struct file_entry
420 {
421 char *name;
422 unsigned int dir_index;
423 unsigned int mod_time;
424 unsigned int length;
425 int included_p; /* Non-zero if referenced by the Line Number Program. */
426 } *file_names;
427
428 /* The start and end of the statement program following this
429 header. These point into dwarf2_per_objfile->line_buffer. */
430 char *statement_program_start, *statement_program_end;
431 };
432
433 /* When we construct a partial symbol table entry we only
434 need this much information. */
435 struct partial_die_info
436 {
437 /* Offset of this DIE. */
438 unsigned int offset;
439
440 /* DWARF-2 tag for this DIE. */
441 ENUM_BITFIELD(dwarf_tag) tag : 16;
442
443 /* Language code associated with this DIE. This is only used
444 for the compilation unit DIE. */
445 unsigned int language : 8;
446
447 /* Assorted flags describing the data found in this DIE. */
448 unsigned int has_children : 1;
449 unsigned int is_external : 1;
450 unsigned int is_declaration : 1;
451 unsigned int has_type : 1;
452 unsigned int has_specification : 1;
453 unsigned int has_stmt_list : 1;
454 unsigned int has_pc_info : 1;
455
456 /* Flag set if the SCOPE field of this structure has been
457 computed. */
458 unsigned int scope_set : 1;
459
460 /* The name of this DIE. Normally the value of DW_AT_name, but
461 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
462 other fashion. */
463 char *name;
464 char *dirname;
465
466 /* The scope to prepend to our children. This is generally
467 allocated on the comp_unit_obstack, so will disappear
468 when this compilation unit leaves the cache. */
469 char *scope;
470
471 /* The location description associated with this DIE, if any. */
472 struct dwarf_block *locdesc;
473
474 /* If HAS_PC_INFO, the PC range associated with this DIE. */
475 CORE_ADDR lowpc;
476 CORE_ADDR highpc;
477
478 /* Pointer into the info_buffer pointing at the target of
479 DW_AT_sibling, if any. */
480 char *sibling;
481
482 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
483 DW_AT_specification (or DW_AT_abstract_origin or
484 DW_AT_extension). */
485 unsigned int spec_offset;
486
487 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
488 unsigned int line_offset;
489
490 /* Pointers to this DIE's parent, first child, and next sibling,
491 if any. */
492 struct partial_die_info *die_parent, *die_child, *die_sibling;
493 };
494
495 /* This data structure holds the information of an abbrev. */
496 struct abbrev_info
497 {
498 unsigned int number; /* number identifying abbrev */
499 enum dwarf_tag tag; /* dwarf tag */
500 unsigned short has_children; /* boolean */
501 unsigned short num_attrs; /* number of attributes */
502 struct attr_abbrev *attrs; /* an array of attribute descriptions */
503 struct abbrev_info *next; /* next in chain */
504 };
505
506 struct attr_abbrev
507 {
508 enum dwarf_attribute name;
509 enum dwarf_form form;
510 };
511
512 /* This data structure holds a complete die structure. */
513 struct die_info
514 {
515 enum dwarf_tag tag; /* Tag indicating type of die */
516 unsigned int abbrev; /* Abbrev number */
517 unsigned int offset; /* Offset in .debug_info section */
518 unsigned int num_attrs; /* Number of attributes */
519 struct attribute *attrs; /* An array of attributes */
520 struct die_info *next_ref; /* Next die in ref hash table */
521
522 /* The dies in a compilation unit form an n-ary tree. PARENT
523 points to this die's parent; CHILD points to the first child of
524 this node; and all the children of a given node are chained
525 together via their SIBLING fields, terminated by a die whose
526 tag is zero. */
527 struct die_info *child; /* Its first child, if any. */
528 struct die_info *sibling; /* Its next sibling, if any. */
529 struct die_info *parent; /* Its parent, if any. */
530
531 struct type *type; /* Cached type information */
532 };
533
534 /* Attributes have a name and a value */
535 struct attribute
536 {
537 enum dwarf_attribute name;
538 enum dwarf_form form;
539 union
540 {
541 char *str;
542 struct dwarf_block *blk;
543 unsigned long unsnd;
544 long int snd;
545 CORE_ADDR addr;
546 }
547 u;
548 };
549
550 struct function_range
551 {
552 const char *name;
553 CORE_ADDR lowpc, highpc;
554 int seen_line;
555 struct function_range *next;
556 };
557
558 /* Get at parts of an attribute structure */
559
560 #define DW_STRING(attr) ((attr)->u.str)
561 #define DW_UNSND(attr) ((attr)->u.unsnd)
562 #define DW_BLOCK(attr) ((attr)->u.blk)
563 #define DW_SND(attr) ((attr)->u.snd)
564 #define DW_ADDR(attr) ((attr)->u.addr)
565
566 /* Blocks are a bunch of untyped bytes. */
567 struct dwarf_block
568 {
569 unsigned int size;
570 char *data;
571 };
572
573 #ifndef ATTR_ALLOC_CHUNK
574 #define ATTR_ALLOC_CHUNK 4
575 #endif
576
577 /* Allocate fields for structs, unions and enums in this size. */
578 #ifndef DW_FIELD_ALLOC_CHUNK
579 #define DW_FIELD_ALLOC_CHUNK 4
580 #endif
581
582 /* A zeroed version of a partial die for initialization purposes. */
583 static struct partial_die_info zeroed_partial_die;
584
585 /* FIXME: decode_locdesc sets these variables to describe the location
586 to the caller. These ought to be a structure or something. If
587 none of the flags are set, the object lives at the address returned
588 by decode_locdesc. */
589
590 static int isreg; /* Object lives in register.
591 decode_locdesc's return value is
592 the register number. */
593
594 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
595 but this would require a corresponding change in unpack_field_as_long
596 and friends. */
597 static int bits_per_byte = 8;
598
599 /* The routines that read and process dies for a C struct or C++ class
600 pass lists of data member fields and lists of member function fields
601 in an instance of a field_info structure, as defined below. */
602 struct field_info
603 {
604 /* List of data member and baseclasses fields. */
605 struct nextfield
606 {
607 struct nextfield *next;
608 int accessibility;
609 int virtuality;
610 struct field field;
611 }
612 *fields;
613
614 /* Number of fields. */
615 int nfields;
616
617 /* Number of baseclasses. */
618 int nbaseclasses;
619
620 /* Set if the accesibility of one of the fields is not public. */
621 int non_public_fields;
622
623 /* Member function fields array, entries are allocated in the order they
624 are encountered in the object file. */
625 struct nextfnfield
626 {
627 struct nextfnfield *next;
628 struct fn_field fnfield;
629 }
630 *fnfields;
631
632 /* Member function fieldlist array, contains name of possibly overloaded
633 member function, number of overloaded member functions and a pointer
634 to the head of the member function field chain. */
635 struct fnfieldlist
636 {
637 char *name;
638 int length;
639 struct nextfnfield *head;
640 }
641 *fnfieldlists;
642
643 /* Number of entries in the fnfieldlists array. */
644 int nfnfields;
645 };
646
647 /* One item on the queue of compilation units to read in full symbols
648 for. */
649 struct dwarf2_queue_item
650 {
651 struct dwarf2_per_cu_data *per_cu;
652 struct dwarf2_queue_item *next;
653 };
654
655 /* The current queue. */
656 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
657
658 /* Loaded secondary compilation units are kept in memory until they
659 have not been referenced for the processing of this many
660 compilation units. Set this to zero to disable caching. Cache
661 sizes of up to at least twenty will improve startup time for
662 typical inter-CU-reference binaries, at an obvious memory cost. */
663 static int dwarf2_max_cache_age = 5;
664
665 /* Various complaints about symbol reading that don't abort the process */
666
667 static void
668 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
669 {
670 complaint (&symfile_complaints,
671 "statement list doesn't fit in .debug_line section");
672 }
673
674 static void
675 dwarf2_complex_location_expr_complaint (void)
676 {
677 complaint (&symfile_complaints, "location expression too complex");
678 }
679
680 static void
681 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
682 int arg3)
683 {
684 complaint (&symfile_complaints,
685 "const value length mismatch for '%s', got %d, expected %d", arg1,
686 arg2, arg3);
687 }
688
689 static void
690 dwarf2_macros_too_long_complaint (void)
691 {
692 complaint (&symfile_complaints,
693 "macro info runs off end of `.debug_macinfo' section");
694 }
695
696 static void
697 dwarf2_macro_malformed_definition_complaint (const char *arg1)
698 {
699 complaint (&symfile_complaints,
700 "macro debug info contains a malformed macro definition:\n`%s'",
701 arg1);
702 }
703
704 static void
705 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
706 {
707 complaint (&symfile_complaints,
708 "invalid attribute class or form for '%s' in '%s'", arg1, arg2);
709 }
710
711 /* local function prototypes */
712
713 static void dwarf2_locate_sections (bfd *, asection *, void *);
714
715 #if 0
716 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
717 #endif
718
719 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
720 struct objfile *);
721
722 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
723 struct partial_die_info *,
724 struct partial_symtab *);
725
726 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
727
728 static void scan_partial_symbols (struct partial_die_info *,
729 CORE_ADDR *, CORE_ADDR *,
730 struct dwarf2_cu *);
731
732 static void add_partial_symbol (struct partial_die_info *,
733 struct dwarf2_cu *);
734
735 static int pdi_needs_namespace (enum dwarf_tag tag);
736
737 static void add_partial_namespace (struct partial_die_info *pdi,
738 CORE_ADDR *lowpc, CORE_ADDR *highpc,
739 struct dwarf2_cu *cu);
740
741 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
742 struct dwarf2_cu *cu);
743
744 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
745 char *info_ptr,
746 bfd *abfd,
747 struct dwarf2_cu *cu);
748
749 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
750
751 static void psymtab_to_symtab_1 (struct partial_symtab *);
752
753 char *dwarf2_read_section (struct objfile *, asection *);
754
755 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
756
757 static void dwarf2_free_abbrev_table (void *);
758
759 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
760
761 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
762 struct dwarf2_cu *);
763
764 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
765 struct dwarf2_cu *);
766
767 static char *read_partial_die (struct partial_die_info *,
768 struct abbrev_info *abbrev, unsigned int,
769 bfd *, char *, struct dwarf2_cu *);
770
771 static struct partial_die_info *find_partial_die (unsigned long,
772 struct dwarf2_cu *);
773
774 static void fixup_partial_die (struct partial_die_info *,
775 struct dwarf2_cu *);
776
777 static char *read_full_die (struct die_info **, bfd *, char *,
778 struct dwarf2_cu *, int *);
779
780 static char *read_attribute (struct attribute *, struct attr_abbrev *,
781 bfd *, char *, struct dwarf2_cu *);
782
783 static char *read_attribute_value (struct attribute *, unsigned,
784 bfd *, char *, struct dwarf2_cu *);
785
786 static unsigned int read_1_byte (bfd *, char *);
787
788 static int read_1_signed_byte (bfd *, char *);
789
790 static unsigned int read_2_bytes (bfd *, char *);
791
792 static unsigned int read_4_bytes (bfd *, char *);
793
794 static unsigned long read_8_bytes (bfd *, char *);
795
796 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
797 int *bytes_read);
798
799 static LONGEST read_initial_length (bfd *, char *,
800 struct comp_unit_head *, int *bytes_read);
801
802 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
803 int *bytes_read);
804
805 static char *read_n_bytes (bfd *, char *, unsigned int);
806
807 static char *read_string (bfd *, char *, unsigned int *);
808
809 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
810 unsigned int *);
811
812 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
813
814 static long read_signed_leb128 (bfd *, char *, unsigned int *);
815
816 static char *skip_leb128 (bfd *, char *);
817
818 static void set_cu_language (unsigned int, struct dwarf2_cu *);
819
820 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
821 struct dwarf2_cu *);
822
823 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
824 struct dwarf2_cu *cu);
825
826 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
827
828 static struct die_info *die_specification (struct die_info *die,
829 struct dwarf2_cu *);
830
831 static void free_line_header (struct line_header *lh);
832
833 static void add_file_name (struct line_header *, char *, unsigned int,
834 unsigned int, unsigned int);
835
836 static struct line_header *(dwarf_decode_line_header
837 (unsigned int offset,
838 bfd *abfd, struct dwarf2_cu *cu));
839
840 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
841 struct dwarf2_cu *, struct partial_symtab *);
842
843 static void dwarf2_start_subfile (char *, char *);
844
845 static struct symbol *new_symbol (struct die_info *, struct type *,
846 struct dwarf2_cu *);
847
848 static void dwarf2_const_value (struct attribute *, struct symbol *,
849 struct dwarf2_cu *);
850
851 static void dwarf2_const_value_data (struct attribute *attr,
852 struct symbol *sym,
853 int bits);
854
855 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
856
857 static struct type *die_containing_type (struct die_info *,
858 struct dwarf2_cu *);
859
860 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
861
862 static void read_type_die (struct die_info *, struct dwarf2_cu *);
863
864 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
865
866 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
867 struct dwarf2_cu *);
868
869 static void read_typedef (struct die_info *, struct dwarf2_cu *);
870
871 static void read_base_type (struct die_info *, struct dwarf2_cu *);
872
873 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
874
875 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
876
877 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
878
879 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
880
881 static int dwarf2_get_pc_bounds (struct die_info *,
882 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
883
884 static void get_scope_pc_bounds (struct die_info *,
885 CORE_ADDR *, CORE_ADDR *,
886 struct dwarf2_cu *);
887
888 static void dwarf2_add_field (struct field_info *, struct die_info *,
889 struct dwarf2_cu *);
890
891 static void dwarf2_attach_fields_to_type (struct field_info *,
892 struct type *, struct dwarf2_cu *);
893
894 static void dwarf2_add_member_fn (struct field_info *,
895 struct die_info *, struct type *,
896 struct dwarf2_cu *);
897
898 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
899 struct type *, struct dwarf2_cu *);
900
901 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
902
903 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
904
905 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
906
907 static void read_common_block (struct die_info *, struct dwarf2_cu *);
908
909 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
910
911 static const char *namespace_name (struct die_info *die,
912 int *is_anonymous, struct dwarf2_cu *);
913
914 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
915
916 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
917
918 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
919
920 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
921
922 static void read_array_type (struct die_info *, struct dwarf2_cu *);
923
924 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
925 struct dwarf2_cu *);
926
927 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
928
929 static void read_tag_ptr_to_member_type (struct die_info *,
930 struct dwarf2_cu *);
931
932 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
933
934 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
937
938 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
939
940 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
941
942 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
943
944 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
945 struct dwarf2_cu *,
946 char **new_info_ptr,
947 struct die_info *parent);
948
949 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
950 struct dwarf2_cu *,
951 char **new_info_ptr,
952 struct die_info *parent);
953
954 static void free_die_list (struct die_info *);
955
956 static void process_die (struct die_info *, struct dwarf2_cu *);
957
958 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
959
960 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
961
962 static struct die_info *dwarf2_extension (struct die_info *die,
963 struct dwarf2_cu *);
964
965 static char *dwarf_tag_name (unsigned int);
966
967 static char *dwarf_attr_name (unsigned int);
968
969 static char *dwarf_form_name (unsigned int);
970
971 static char *dwarf_stack_op_name (unsigned int);
972
973 static char *dwarf_bool_name (unsigned int);
974
975 static char *dwarf_type_encoding_name (unsigned int);
976
977 #if 0
978 static char *dwarf_cfi_name (unsigned int);
979
980 struct die_info *copy_die (struct die_info *);
981 #endif
982
983 static struct die_info *sibling_die (struct die_info *);
984
985 static void dump_die (struct die_info *);
986
987 static void dump_die_list (struct die_info *);
988
989 static void store_in_ref_table (unsigned int, struct die_info *,
990 struct dwarf2_cu *);
991
992 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
993 struct dwarf2_cu *);
994
995 static int dwarf2_get_attr_constant_value (struct attribute *, int);
996
997 static struct die_info *follow_die_ref (struct die_info *,
998 struct attribute *,
999 struct dwarf2_cu *);
1000
1001 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1002 struct dwarf2_cu *);
1003
1004 /* memory allocation interface */
1005
1006 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1007
1008 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1009
1010 static struct die_info *dwarf_alloc_die (void);
1011
1012 static void initialize_cu_func_list (struct dwarf2_cu *);
1013
1014 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1015 struct dwarf2_cu *);
1016
1017 static void dwarf_decode_macros (struct line_header *, unsigned int,
1018 char *, bfd *, struct dwarf2_cu *);
1019
1020 static int attr_form_is_block (struct attribute *);
1021
1022 static void
1023 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1024 struct dwarf2_cu *cu);
1025
1026 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1027 struct dwarf2_cu *cu);
1028
1029 static void free_stack_comp_unit (void *);
1030
1031 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1032
1033 static void dummy_obstack_deallocate (void *object, void *data);
1034
1035 static hashval_t partial_die_hash (const void *item);
1036
1037 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1038
1039 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1040 (unsigned long offset, struct objfile *objfile);
1041
1042 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1043 (unsigned long offset, struct objfile *objfile);
1044
1045 static void free_one_comp_unit (void *);
1046
1047 static void free_cached_comp_units (void *);
1048
1049 static void age_cached_comp_units (void);
1050
1051 static void free_one_cached_comp_unit (void *);
1052
1053 static void set_die_type (struct die_info *, struct type *,
1054 struct dwarf2_cu *);
1055
1056 static void reset_die_and_siblings_types (struct die_info *,
1057 struct dwarf2_cu *);
1058
1059 static void create_all_comp_units (struct objfile *);
1060
1061 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1064
1065 static void dwarf2_add_dependence (struct dwarf2_cu *,
1066 struct dwarf2_per_cu_data *);
1067
1068 static void dwarf2_mark (struct dwarf2_cu *);
1069
1070 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1071
1072 /* Try to locate the sections we need for DWARF 2 debugging
1073 information and return true if we have enough to do something. */
1074
1075 int
1076 dwarf2_has_info (struct objfile *objfile)
1077 {
1078 struct dwarf2_per_objfile *data;
1079
1080 /* Initialize per-objfile state. */
1081 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1082 memset (data, 0, sizeof (*data));
1083 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1084 dwarf2_per_objfile = data;
1085
1086 dwarf_info_section = 0;
1087 dwarf_abbrev_section = 0;
1088 dwarf_line_section = 0;
1089 dwarf_str_section = 0;
1090 dwarf_macinfo_section = 0;
1091 dwarf_frame_section = 0;
1092 dwarf_eh_frame_section = 0;
1093 dwarf_ranges_section = 0;
1094 dwarf_loc_section = 0;
1095
1096 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1097 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1098 }
1099
1100 /* This function is mapped across the sections and remembers the
1101 offset and size of each of the debugging sections we are interested
1102 in. */
1103
1104 static void
1105 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1106 {
1107 if (strcmp (sectp->name, INFO_SECTION) == 0)
1108 {
1109 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1110 dwarf_info_section = sectp;
1111 }
1112 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1113 {
1114 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1115 dwarf_abbrev_section = sectp;
1116 }
1117 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1118 {
1119 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1120 dwarf_line_section = sectp;
1121 }
1122 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1123 {
1124 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1125 dwarf_pubnames_section = sectp;
1126 }
1127 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1128 {
1129 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1130 dwarf_aranges_section = sectp;
1131 }
1132 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1133 {
1134 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1135 dwarf_loc_section = sectp;
1136 }
1137 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1138 {
1139 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1140 dwarf_macinfo_section = sectp;
1141 }
1142 else if (strcmp (sectp->name, STR_SECTION) == 0)
1143 {
1144 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1145 dwarf_str_section = sectp;
1146 }
1147 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1148 {
1149 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1150 dwarf_frame_section = sectp;
1151 }
1152 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1153 {
1154 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1155 if (aflag & SEC_HAS_CONTENTS)
1156 {
1157 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1158 dwarf_eh_frame_section = sectp;
1159 }
1160 }
1161 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1162 {
1163 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1164 dwarf_ranges_section = sectp;
1165 }
1166 }
1167
1168 /* Build a partial symbol table. */
1169
1170 void
1171 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1172 {
1173 /* We definitely need the .debug_info and .debug_abbrev sections */
1174
1175 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1176 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1177
1178 if (dwarf_line_section)
1179 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1180 else
1181 dwarf2_per_objfile->line_buffer = NULL;
1182
1183 if (dwarf_str_section)
1184 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1185 else
1186 dwarf2_per_objfile->str_buffer = NULL;
1187
1188 if (dwarf_macinfo_section)
1189 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1190 dwarf_macinfo_section);
1191 else
1192 dwarf2_per_objfile->macinfo_buffer = NULL;
1193
1194 if (dwarf_ranges_section)
1195 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1196 else
1197 dwarf2_per_objfile->ranges_buffer = NULL;
1198
1199 if (dwarf_loc_section)
1200 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1201 else
1202 dwarf2_per_objfile->loc_buffer = NULL;
1203
1204 if (mainline
1205 || (objfile->global_psymbols.size == 0
1206 && objfile->static_psymbols.size == 0))
1207 {
1208 init_psymbol_list (objfile, 1024);
1209 }
1210
1211 #if 0
1212 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1213 {
1214 /* Things are significantly easier if we have .debug_aranges and
1215 .debug_pubnames sections */
1216
1217 dwarf2_build_psymtabs_easy (objfile, mainline);
1218 }
1219 else
1220 #endif
1221 /* only test this case for now */
1222 {
1223 /* In this case we have to work a bit harder */
1224 dwarf2_build_psymtabs_hard (objfile, mainline);
1225 }
1226 }
1227
1228 #if 0
1229 /* Build the partial symbol table from the information in the
1230 .debug_pubnames and .debug_aranges sections. */
1231
1232 static void
1233 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1234 {
1235 bfd *abfd = objfile->obfd;
1236 char *aranges_buffer, *pubnames_buffer;
1237 char *aranges_ptr, *pubnames_ptr;
1238 unsigned int entry_length, version, info_offset, info_size;
1239
1240 pubnames_buffer = dwarf2_read_section (objfile,
1241 dwarf_pubnames_section);
1242 pubnames_ptr = pubnames_buffer;
1243 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1244 {
1245 struct comp_unit_head cu_header;
1246 int bytes_read;
1247
1248 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1249 &bytes_read);
1250 pubnames_ptr += bytes_read;
1251 version = read_1_byte (abfd, pubnames_ptr);
1252 pubnames_ptr += 1;
1253 info_offset = read_4_bytes (abfd, pubnames_ptr);
1254 pubnames_ptr += 4;
1255 info_size = read_4_bytes (abfd, pubnames_ptr);
1256 pubnames_ptr += 4;
1257 }
1258
1259 aranges_buffer = dwarf2_read_section (objfile,
1260 dwarf_aranges_section);
1261
1262 }
1263 #endif
1264
1265 /* Read in the comp unit header information from the debug_info at
1266 info_ptr. */
1267
1268 static char *
1269 read_comp_unit_head (struct comp_unit_head *cu_header,
1270 char *info_ptr, bfd *abfd)
1271 {
1272 int signed_addr;
1273 int bytes_read;
1274 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1275 &bytes_read);
1276 info_ptr += bytes_read;
1277 cu_header->version = read_2_bytes (abfd, info_ptr);
1278 info_ptr += 2;
1279 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1280 &bytes_read);
1281 info_ptr += bytes_read;
1282 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1283 info_ptr += 1;
1284 signed_addr = bfd_get_sign_extend_vma (abfd);
1285 if (signed_addr < 0)
1286 internal_error (__FILE__, __LINE__,
1287 "read_comp_unit_head: dwarf from non elf file");
1288 cu_header->signed_addr_p = signed_addr;
1289 return info_ptr;
1290 }
1291
1292 static char *
1293 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1294 bfd *abfd)
1295 {
1296 char *beg_of_comp_unit = info_ptr;
1297
1298 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1299
1300 if (header->version != 2)
1301 error ("Dwarf Error: wrong version in compilation unit header "
1302 "(is %d, should be %d) [in module %s]", header->version,
1303 2, bfd_get_filename (abfd));
1304
1305 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1306 error ("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1307 "(offset 0x%lx + 6) [in module %s]",
1308 (long) header->abbrev_offset,
1309 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1310 bfd_get_filename (abfd));
1311
1312 if (beg_of_comp_unit + header->length + header->initial_length_size
1313 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1314 error ("Dwarf Error: bad length (0x%lx) in compilation unit header "
1315 "(offset 0x%lx + 0) [in module %s]",
1316 (long) header->length,
1317 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1318 bfd_get_filename (abfd));
1319
1320 return info_ptr;
1321 }
1322
1323 /* Allocate a new partial symtab for file named NAME and mark this new
1324 partial symtab as being an include of PST. */
1325
1326 static void
1327 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1328 struct objfile *objfile)
1329 {
1330 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1331
1332 subpst->section_offsets = pst->section_offsets;
1333 subpst->textlow = 0;
1334 subpst->texthigh = 0;
1335
1336 subpst->dependencies = (struct partial_symtab **)
1337 obstack_alloc (&objfile->objfile_obstack,
1338 sizeof (struct partial_symtab *));
1339 subpst->dependencies[0] = pst;
1340 subpst->number_of_dependencies = 1;
1341
1342 subpst->globals_offset = 0;
1343 subpst->n_global_syms = 0;
1344 subpst->statics_offset = 0;
1345 subpst->n_static_syms = 0;
1346 subpst->symtab = NULL;
1347 subpst->read_symtab = pst->read_symtab;
1348 subpst->readin = 0;
1349
1350 /* No private part is necessary for include psymtabs. This property
1351 can be used to differentiate between such include psymtabs and
1352 the regular ones. */
1353 subpst->read_symtab_private = NULL;
1354 }
1355
1356 /* Read the Line Number Program data and extract the list of files
1357 included by the source file represented by PST. Build an include
1358 partial symtab for each of these included files.
1359
1360 This procedure assumes that there *is* a Line Number Program in
1361 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1362 before calling this procedure. */
1363
1364 static void
1365 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1366 struct partial_die_info *pdi,
1367 struct partial_symtab *pst)
1368 {
1369 struct objfile *objfile = cu->objfile;
1370 bfd *abfd = objfile->obfd;
1371 struct line_header *lh;
1372
1373 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1374 if (lh == NULL)
1375 return; /* No linetable, so no includes. */
1376
1377 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1378
1379 free_line_header (lh);
1380 }
1381
1382
1383 /* Build the partial symbol table by doing a quick pass through the
1384 .debug_info and .debug_abbrev sections. */
1385
1386 static void
1387 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1388 {
1389 /* Instead of reading this into a big buffer, we should probably use
1390 mmap() on architectures that support it. (FIXME) */
1391 bfd *abfd = objfile->obfd;
1392 char *info_ptr;
1393 char *beg_of_comp_unit;
1394 struct partial_die_info comp_unit_die;
1395 struct partial_symtab *pst;
1396 struct cleanup *back_to;
1397 CORE_ADDR lowpc, highpc, baseaddr;
1398
1399 info_ptr = dwarf2_per_objfile->info_buffer;
1400
1401 /* Any cached compilation units will be linked by the per-objfile
1402 read_in_chain. Make sure to free them when we're done. */
1403 back_to = make_cleanup (free_cached_comp_units, NULL);
1404
1405 create_all_comp_units (objfile);
1406
1407 /* Since the objects we're extracting from .debug_info vary in
1408 length, only the individual functions to extract them (like
1409 read_comp_unit_head and load_partial_die) can really know whether
1410 the buffer is large enough to hold another complete object.
1411
1412 At the moment, they don't actually check that. If .debug_info
1413 holds just one extra byte after the last compilation unit's dies,
1414 then read_comp_unit_head will happily read off the end of the
1415 buffer. read_partial_die is similarly casual. Those functions
1416 should be fixed.
1417
1418 For this loop condition, simply checking whether there's any data
1419 left at all should be sufficient. */
1420 while (info_ptr < (dwarf2_per_objfile->info_buffer
1421 + dwarf2_per_objfile->info_size))
1422 {
1423 struct cleanup *back_to_inner;
1424 struct dwarf2_cu cu;
1425 struct abbrev_info *abbrev;
1426 unsigned int bytes_read;
1427 struct dwarf2_per_cu_data *this_cu;
1428
1429 beg_of_comp_unit = info_ptr;
1430
1431 memset (&cu, 0, sizeof (cu));
1432
1433 obstack_init (&cu.comp_unit_obstack);
1434
1435 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1436
1437 cu.objfile = objfile;
1438 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1439
1440 /* Complete the cu_header */
1441 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1442 cu.header.first_die_ptr = info_ptr;
1443 cu.header.cu_head_ptr = beg_of_comp_unit;
1444
1445 cu.list_in_scope = &file_symbols;
1446
1447 /* Read the abbrevs for this compilation unit into a table */
1448 dwarf2_read_abbrevs (abfd, &cu);
1449 make_cleanup (dwarf2_free_abbrev_table, &cu);
1450
1451 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1452
1453 /* Read the compilation unit die */
1454 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1455 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1456 abfd, info_ptr, &cu);
1457
1458 /* Set the language we're debugging */
1459 set_cu_language (comp_unit_die.language, &cu);
1460
1461 /* Allocate a new partial symbol table structure */
1462 pst = start_psymtab_common (objfile, objfile->section_offsets,
1463 comp_unit_die.name ? comp_unit_die.name : "",
1464 comp_unit_die.lowpc,
1465 objfile->global_psymbols.next,
1466 objfile->static_psymbols.next);
1467
1468 if (comp_unit_die.dirname)
1469 pst->dirname = xstrdup (comp_unit_die.dirname);
1470
1471 pst->read_symtab_private = (char *) this_cu;
1472
1473 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1474
1475 /* Store the function that reads in the rest of the symbol table */
1476 pst->read_symtab = dwarf2_psymtab_to_symtab;
1477
1478 /* If this compilation unit was already read in, free the
1479 cached copy in order to read it in again. This is
1480 necessary because we skipped some symbols when we first
1481 read in the compilation unit (see load_partial_dies).
1482 This problem could be avoided, but the benefit is
1483 unclear. */
1484 if (this_cu->cu != NULL)
1485 free_one_cached_comp_unit (this_cu->cu);
1486
1487 cu.per_cu = this_cu;
1488
1489 /* Note that this is a pointer to our stack frame, being
1490 added to a global data structure. It will be cleaned up
1491 in free_stack_comp_unit when we finish with this
1492 compilation unit. */
1493 this_cu->cu = &cu;
1494
1495 this_cu->psymtab = pst;
1496
1497 /* Check if comp unit has_children.
1498 If so, read the rest of the partial symbols from this comp unit.
1499 If not, there's no more debug_info for this comp unit. */
1500 if (comp_unit_die.has_children)
1501 {
1502 struct partial_die_info *first_die;
1503
1504 lowpc = ((CORE_ADDR) -1);
1505 highpc = ((CORE_ADDR) 0);
1506
1507 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1508
1509 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1510
1511 /* If we didn't find a lowpc, set it to highpc to avoid
1512 complaints from `maint check'. */
1513 if (lowpc == ((CORE_ADDR) -1))
1514 lowpc = highpc;
1515
1516 /* If the compilation unit didn't have an explicit address range,
1517 then use the information extracted from its child dies. */
1518 if (! comp_unit_die.has_pc_info)
1519 {
1520 comp_unit_die.lowpc = lowpc;
1521 comp_unit_die.highpc = highpc;
1522 }
1523 }
1524 pst->textlow = comp_unit_die.lowpc + baseaddr;
1525 pst->texthigh = comp_unit_die.highpc + baseaddr;
1526
1527 pst->n_global_syms = objfile->global_psymbols.next -
1528 (objfile->global_psymbols.list + pst->globals_offset);
1529 pst->n_static_syms = objfile->static_psymbols.next -
1530 (objfile->static_psymbols.list + pst->statics_offset);
1531 sort_pst_symbols (pst);
1532
1533 /* If there is already a psymtab or symtab for a file of this
1534 name, remove it. (If there is a symtab, more drastic things
1535 also happen.) This happens in VxWorks. */
1536 free_named_symtabs (pst->filename);
1537
1538 if (comp_unit_die.has_stmt_list)
1539 {
1540 /* Get the list of files included in the current compilation unit,
1541 and build a psymtab for each of them. */
1542 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1543 }
1544
1545 info_ptr = beg_of_comp_unit + cu.header.length
1546 + cu.header.initial_length_size;
1547
1548 do_cleanups (back_to_inner);
1549 }
1550 do_cleanups (back_to);
1551 }
1552
1553 /* Load the DIEs for a secondary CU into memory. */
1554
1555 static void
1556 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1557 {
1558 bfd *abfd = objfile->obfd;
1559 char *info_ptr, *beg_of_comp_unit;
1560 struct partial_die_info comp_unit_die;
1561 struct dwarf2_cu *cu;
1562 struct abbrev_info *abbrev;
1563 unsigned int bytes_read;
1564 struct cleanup *back_to;
1565
1566 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1567 beg_of_comp_unit = info_ptr;
1568
1569 cu = xmalloc (sizeof (struct dwarf2_cu));
1570 memset (cu, 0, sizeof (struct dwarf2_cu));
1571
1572 obstack_init (&cu->comp_unit_obstack);
1573
1574 cu->objfile = objfile;
1575 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1576
1577 /* Complete the cu_header. */
1578 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1579 cu->header.first_die_ptr = info_ptr;
1580 cu->header.cu_head_ptr = beg_of_comp_unit;
1581
1582 /* Read the abbrevs for this compilation unit into a table. */
1583 dwarf2_read_abbrevs (abfd, cu);
1584 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1585
1586 /* Read the compilation unit die. */
1587 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1588 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1589 abfd, info_ptr, cu);
1590
1591 /* Set the language we're debugging. */
1592 set_cu_language (comp_unit_die.language, cu);
1593
1594 /* Link this compilation unit into the compilation unit tree. */
1595 this_cu->cu = cu;
1596 cu->per_cu = this_cu;
1597
1598 /* Check if comp unit has_children.
1599 If so, read the rest of the partial symbols from this comp unit.
1600 If not, there's no more debug_info for this comp unit. */
1601 if (comp_unit_die.has_children)
1602 load_partial_dies (abfd, info_ptr, 0, cu);
1603
1604 do_cleanups (back_to);
1605 }
1606
1607 /* Create a list of all compilation units in OBJFILE. We do this only
1608 if an inter-comp-unit reference is found; presumably if there is one,
1609 there will be many, and one will occur early in the .debug_info section.
1610 So there's no point in building this list incrementally. */
1611
1612 static void
1613 create_all_comp_units (struct objfile *objfile)
1614 {
1615 int n_allocated;
1616 int n_comp_units;
1617 struct dwarf2_per_cu_data **all_comp_units;
1618 char *info_ptr = dwarf2_per_objfile->info_buffer;
1619
1620 n_comp_units = 0;
1621 n_allocated = 10;
1622 all_comp_units = xmalloc (n_allocated
1623 * sizeof (struct dwarf2_per_cu_data *));
1624
1625 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1626 {
1627 struct comp_unit_head cu_header;
1628 char *beg_of_comp_unit;
1629 struct dwarf2_per_cu_data *this_cu;
1630 unsigned long offset;
1631 int bytes_read;
1632
1633 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1634
1635 /* Read just enough information to find out where the next
1636 compilation unit is. */
1637 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1638 &cu_header, &bytes_read);
1639
1640 /* Save the compilation unit for later lookup. */
1641 this_cu = obstack_alloc (&objfile->objfile_obstack,
1642 sizeof (struct dwarf2_per_cu_data));
1643 memset (this_cu, 0, sizeof (*this_cu));
1644 this_cu->offset = offset;
1645 this_cu->length = cu_header.length + cu_header.initial_length_size;
1646
1647 if (n_comp_units == n_allocated)
1648 {
1649 n_allocated *= 2;
1650 all_comp_units = xrealloc (all_comp_units,
1651 n_allocated
1652 * sizeof (struct dwarf2_per_cu_data *));
1653 }
1654 all_comp_units[n_comp_units++] = this_cu;
1655
1656 info_ptr = info_ptr + this_cu->length;
1657 }
1658
1659 dwarf2_per_objfile->all_comp_units
1660 = obstack_alloc (&objfile->objfile_obstack,
1661 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1662 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1663 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1664 xfree (all_comp_units);
1665 dwarf2_per_objfile->n_comp_units = n_comp_units;
1666 }
1667
1668 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1669 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1670 in CU. */
1671
1672 static void
1673 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1674 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1675 {
1676 struct objfile *objfile = cu->objfile;
1677 bfd *abfd = objfile->obfd;
1678 struct partial_die_info *pdi;
1679
1680 /* Now, march along the PDI's, descending into ones which have
1681 interesting children but skipping the children of the other ones,
1682 until we reach the end of the compilation unit. */
1683
1684 pdi = first_die;
1685
1686 while (pdi != NULL)
1687 {
1688 fixup_partial_die (pdi, cu);
1689
1690 /* Anonymous namespaces have no name but have interesting
1691 children, so we need to look at them. Ditto for anonymous
1692 enums. */
1693
1694 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1695 || pdi->tag == DW_TAG_enumeration_type)
1696 {
1697 switch (pdi->tag)
1698 {
1699 case DW_TAG_subprogram:
1700 if (pdi->has_pc_info)
1701 {
1702 if (pdi->lowpc < *lowpc)
1703 {
1704 *lowpc = pdi->lowpc;
1705 }
1706 if (pdi->highpc > *highpc)
1707 {
1708 *highpc = pdi->highpc;
1709 }
1710 if (!pdi->is_declaration)
1711 {
1712 add_partial_symbol (pdi, cu);
1713 }
1714 }
1715 break;
1716 case DW_TAG_variable:
1717 case DW_TAG_typedef:
1718 case DW_TAG_union_type:
1719 if (!pdi->is_declaration)
1720 {
1721 add_partial_symbol (pdi, cu);
1722 }
1723 break;
1724 case DW_TAG_class_type:
1725 case DW_TAG_structure_type:
1726 if (!pdi->is_declaration)
1727 {
1728 add_partial_symbol (pdi, cu);
1729 }
1730 break;
1731 case DW_TAG_enumeration_type:
1732 if (!pdi->is_declaration)
1733 add_partial_enumeration (pdi, cu);
1734 break;
1735 case DW_TAG_base_type:
1736 case DW_TAG_subrange_type:
1737 /* File scope base type definitions are added to the partial
1738 symbol table. */
1739 add_partial_symbol (pdi, cu);
1740 break;
1741 case DW_TAG_namespace:
1742 add_partial_namespace (pdi, lowpc, highpc, cu);
1743 break;
1744 default:
1745 break;
1746 }
1747 }
1748
1749 /* If the die has a sibling, skip to the sibling. */
1750
1751 pdi = pdi->die_sibling;
1752 }
1753 }
1754
1755 /* Functions used to compute the fully scoped name of a partial DIE.
1756
1757 Normally, this is simple. For C++, the parent DIE's fully scoped
1758 name is concatenated with "::" and the partial DIE's name. For
1759 Java, the same thing occurs except that "." is used instead of "::".
1760 Enumerators are an exception; they use the scope of their parent
1761 enumeration type, i.e. the name of the enumeration type is not
1762 prepended to the enumerator.
1763
1764 There are two complexities. One is DW_AT_specification; in this
1765 case "parent" means the parent of the target of the specification,
1766 instead of the direct parent of the DIE. The other is compilers
1767 which do not emit DW_TAG_namespace; in this case we try to guess
1768 the fully qualified name of structure types from their members'
1769 linkage names. This must be done using the DIE's children rather
1770 than the children of any DW_AT_specification target. We only need
1771 to do this for structures at the top level, i.e. if the target of
1772 any DW_AT_specification (if any; otherwise the DIE itself) does not
1773 have a parent. */
1774
1775 /* Compute the scope prefix associated with PDI's parent, in
1776 compilation unit CU. The result will be allocated on CU's
1777 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1778 field. NULL is returned if no prefix is necessary. */
1779 static char *
1780 partial_die_parent_scope (struct partial_die_info *pdi,
1781 struct dwarf2_cu *cu)
1782 {
1783 char *grandparent_scope;
1784 struct partial_die_info *parent, *real_pdi;
1785
1786 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1787 then this means the parent of the specification DIE. */
1788
1789 real_pdi = pdi;
1790 while (real_pdi->has_specification)
1791 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1792
1793 parent = real_pdi->die_parent;
1794 if (parent == NULL)
1795 return NULL;
1796
1797 if (parent->scope_set)
1798 return parent->scope;
1799
1800 fixup_partial_die (parent, cu);
1801
1802 grandparent_scope = partial_die_parent_scope (parent, cu);
1803
1804 if (parent->tag == DW_TAG_namespace
1805 || parent->tag == DW_TAG_structure_type
1806 || parent->tag == DW_TAG_class_type
1807 || parent->tag == DW_TAG_union_type)
1808 {
1809 if (grandparent_scope == NULL)
1810 parent->scope = parent->name;
1811 else
1812 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1813 parent->name, cu);
1814 }
1815 else if (parent->tag == DW_TAG_enumeration_type)
1816 /* Enumerators should not get the name of the enumeration as a prefix. */
1817 parent->scope = grandparent_scope;
1818 else
1819 {
1820 /* FIXME drow/2004-04-01: What should we be doing with
1821 function-local names? For partial symbols, we should probably be
1822 ignoring them. */
1823 complaint (&symfile_complaints,
1824 "unhandled containing DIE tag %d for DIE at %d",
1825 parent->tag, pdi->offset);
1826 parent->scope = grandparent_scope;
1827 }
1828
1829 parent->scope_set = 1;
1830 return parent->scope;
1831 }
1832
1833 /* Return the fully scoped name associated with PDI, from compilation unit
1834 CU. The result will be allocated with malloc. */
1835 static char *
1836 partial_die_full_name (struct partial_die_info *pdi,
1837 struct dwarf2_cu *cu)
1838 {
1839 char *parent_scope;
1840
1841 parent_scope = partial_die_parent_scope (pdi, cu);
1842 if (parent_scope == NULL)
1843 return NULL;
1844 else
1845 return typename_concat (NULL, parent_scope, pdi->name, cu);
1846 }
1847
1848 static void
1849 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1850 {
1851 struct objfile *objfile = cu->objfile;
1852 CORE_ADDR addr = 0;
1853 char *actual_name;
1854 const char *my_prefix;
1855 const struct partial_symbol *psym = NULL;
1856 CORE_ADDR baseaddr;
1857 int built_actual_name = 0;
1858
1859 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1860
1861 actual_name = NULL;
1862
1863 if (pdi_needs_namespace (pdi->tag))
1864 {
1865 actual_name = partial_die_full_name (pdi, cu);
1866 if (actual_name)
1867 built_actual_name = 1;
1868 }
1869
1870 if (actual_name == NULL)
1871 actual_name = pdi->name;
1872
1873 switch (pdi->tag)
1874 {
1875 case DW_TAG_subprogram:
1876 if (pdi->is_external)
1877 {
1878 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1879 mst_text, objfile); */
1880 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1881 VAR_DOMAIN, LOC_BLOCK,
1882 &objfile->global_psymbols,
1883 0, pdi->lowpc + baseaddr,
1884 cu->language, objfile);
1885 }
1886 else
1887 {
1888 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1889 mst_file_text, objfile); */
1890 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1891 VAR_DOMAIN, LOC_BLOCK,
1892 &objfile->static_psymbols,
1893 0, pdi->lowpc + baseaddr,
1894 cu->language, objfile);
1895 }
1896 break;
1897 case DW_TAG_variable:
1898 if (pdi->is_external)
1899 {
1900 /* Global Variable.
1901 Don't enter into the minimal symbol tables as there is
1902 a minimal symbol table entry from the ELF symbols already.
1903 Enter into partial symbol table if it has a location
1904 descriptor or a type.
1905 If the location descriptor is missing, new_symbol will create
1906 a LOC_UNRESOLVED symbol, the address of the variable will then
1907 be determined from the minimal symbol table whenever the variable
1908 is referenced.
1909 The address for the partial symbol table entry is not
1910 used by GDB, but it comes in handy for debugging partial symbol
1911 table building. */
1912
1913 if (pdi->locdesc)
1914 addr = decode_locdesc (pdi->locdesc, cu);
1915 if (pdi->locdesc || pdi->has_type)
1916 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1917 VAR_DOMAIN, LOC_STATIC,
1918 &objfile->global_psymbols,
1919 0, addr + baseaddr,
1920 cu->language, objfile);
1921 }
1922 else
1923 {
1924 /* Static Variable. Skip symbols without location descriptors. */
1925 if (pdi->locdesc == NULL)
1926 return;
1927 addr = decode_locdesc (pdi->locdesc, cu);
1928 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1929 mst_file_data, objfile); */
1930 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1931 VAR_DOMAIN, LOC_STATIC,
1932 &objfile->static_psymbols,
1933 0, addr + baseaddr,
1934 cu->language, objfile);
1935 }
1936 break;
1937 case DW_TAG_typedef:
1938 case DW_TAG_base_type:
1939 case DW_TAG_subrange_type:
1940 add_psymbol_to_list (actual_name, strlen (actual_name),
1941 VAR_DOMAIN, LOC_TYPEDEF,
1942 &objfile->static_psymbols,
1943 0, (CORE_ADDR) 0, cu->language, objfile);
1944 break;
1945 case DW_TAG_namespace:
1946 add_psymbol_to_list (actual_name, strlen (actual_name),
1947 VAR_DOMAIN, LOC_TYPEDEF,
1948 &objfile->global_psymbols,
1949 0, (CORE_ADDR) 0, cu->language, objfile);
1950 break;
1951 case DW_TAG_class_type:
1952 case DW_TAG_structure_type:
1953 case DW_TAG_union_type:
1954 case DW_TAG_enumeration_type:
1955 /* Skip aggregate types without children, these are external
1956 references. */
1957 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1958 static vs. global. */
1959 if (pdi->has_children == 0)
1960 return;
1961 add_psymbol_to_list (actual_name, strlen (actual_name),
1962 STRUCT_DOMAIN, LOC_TYPEDEF,
1963 (cu->language == language_cplus
1964 || cu->language == language_java)
1965 ? &objfile->global_psymbols
1966 : &objfile->static_psymbols,
1967 0, (CORE_ADDR) 0, cu->language, objfile);
1968
1969 if (cu->language == language_cplus
1970 || cu->language == language_java)
1971 {
1972 /* For C++ and Java, these implicitly act as typedefs as well. */
1973 add_psymbol_to_list (actual_name, strlen (actual_name),
1974 VAR_DOMAIN, LOC_TYPEDEF,
1975 &objfile->global_psymbols,
1976 0, (CORE_ADDR) 0, cu->language, objfile);
1977 }
1978 break;
1979 case DW_TAG_enumerator:
1980 add_psymbol_to_list (actual_name, strlen (actual_name),
1981 VAR_DOMAIN, LOC_CONST,
1982 (cu->language == language_cplus
1983 || cu->language == language_java)
1984 ? &objfile->global_psymbols
1985 : &objfile->static_psymbols,
1986 0, (CORE_ADDR) 0, cu->language, objfile);
1987 break;
1988 default:
1989 break;
1990 }
1991
1992 /* Check to see if we should scan the name for possible namespace
1993 info. Only do this if this is C++, if we don't have namespace
1994 debugging info in the file, if the psym is of an appropriate type
1995 (otherwise we'll have psym == NULL), and if we actually had a
1996 mangled name to begin with. */
1997
1998 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1999 cases which do not set PSYM above? */
2000
2001 if (cu->language == language_cplus
2002 && cu->has_namespace_info == 0
2003 && psym != NULL
2004 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2005 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2006 objfile);
2007
2008 if (built_actual_name)
2009 xfree (actual_name);
2010 }
2011
2012 /* Determine whether a die of type TAG living in a C++ class or
2013 namespace needs to have the name of the scope prepended to the
2014 name listed in the die. */
2015
2016 static int
2017 pdi_needs_namespace (enum dwarf_tag tag)
2018 {
2019 switch (tag)
2020 {
2021 case DW_TAG_namespace:
2022 case DW_TAG_typedef:
2023 case DW_TAG_class_type:
2024 case DW_TAG_structure_type:
2025 case DW_TAG_union_type:
2026 case DW_TAG_enumeration_type:
2027 case DW_TAG_enumerator:
2028 return 1;
2029 default:
2030 return 0;
2031 }
2032 }
2033
2034 /* Read a partial die corresponding to a namespace; also, add a symbol
2035 corresponding to that namespace to the symbol table. NAMESPACE is
2036 the name of the enclosing namespace. */
2037
2038 static void
2039 add_partial_namespace (struct partial_die_info *pdi,
2040 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2041 struct dwarf2_cu *cu)
2042 {
2043 struct objfile *objfile = cu->objfile;
2044
2045 /* Add a symbol for the namespace. */
2046
2047 add_partial_symbol (pdi, cu);
2048
2049 /* Now scan partial symbols in that namespace. */
2050
2051 if (pdi->has_children)
2052 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2053 }
2054
2055 /* See if we can figure out if the class lives in a namespace. We do
2056 this by looking for a member function; its demangled name will
2057 contain namespace info, if there is any. */
2058
2059 static void
2060 guess_structure_name (struct partial_die_info *struct_pdi,
2061 struct dwarf2_cu *cu)
2062 {
2063 if ((cu->language == language_cplus
2064 || cu->language == language_java)
2065 && cu->has_namespace_info == 0
2066 && struct_pdi->has_children)
2067 {
2068 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2069 what template types look like, because the demangler
2070 frequently doesn't give the same name as the debug info. We
2071 could fix this by only using the demangled name to get the
2072 prefix (but see comment in read_structure_type). */
2073
2074 struct partial_die_info *child_pdi = struct_pdi->die_child;
2075 struct partial_die_info *real_pdi;
2076
2077 /* If this DIE (this DIE's specification, if any) has a parent, then
2078 we should not do this. We'll prepend the parent's fully qualified
2079 name when we create the partial symbol. */
2080
2081 real_pdi = struct_pdi;
2082 while (real_pdi->has_specification)
2083 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2084
2085 if (real_pdi->die_parent != NULL)
2086 return;
2087
2088 while (child_pdi != NULL)
2089 {
2090 if (child_pdi->tag == DW_TAG_subprogram)
2091 {
2092 char *actual_class_name
2093 = language_class_name_from_physname (cu->language_defn,
2094 child_pdi->name);
2095 if (actual_class_name != NULL)
2096 {
2097 struct_pdi->name
2098 = obsavestring (actual_class_name,
2099 strlen (actual_class_name),
2100 &cu->comp_unit_obstack);
2101 xfree (actual_class_name);
2102 }
2103 break;
2104 }
2105
2106 child_pdi = child_pdi->die_sibling;
2107 }
2108 }
2109 }
2110
2111 /* Read a partial die corresponding to an enumeration type. */
2112
2113 static void
2114 add_partial_enumeration (struct partial_die_info *enum_pdi,
2115 struct dwarf2_cu *cu)
2116 {
2117 struct objfile *objfile = cu->objfile;
2118 bfd *abfd = objfile->obfd;
2119 struct partial_die_info *pdi;
2120
2121 if (enum_pdi->name != NULL)
2122 add_partial_symbol (enum_pdi, cu);
2123
2124 pdi = enum_pdi->die_child;
2125 while (pdi)
2126 {
2127 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2128 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
2129 else
2130 add_partial_symbol (pdi, cu);
2131 pdi = pdi->die_sibling;
2132 }
2133 }
2134
2135 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2136 Return the corresponding abbrev, or NULL if the number is zero (indicating
2137 an empty DIE). In either case *BYTES_READ will be set to the length of
2138 the initial number. */
2139
2140 static struct abbrev_info *
2141 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2142 {
2143 bfd *abfd = cu->objfile->obfd;
2144 unsigned int abbrev_number;
2145 struct abbrev_info *abbrev;
2146
2147 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2148
2149 if (abbrev_number == 0)
2150 return NULL;
2151
2152 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2153 if (!abbrev)
2154 {
2155 error ("Dwarf Error: Could not find abbrev number %d [in module %s]", abbrev_number,
2156 bfd_get_filename (abfd));
2157 }
2158
2159 return abbrev;
2160 }
2161
2162 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2163 pointer to the end of a series of DIEs, terminated by an empty
2164 DIE. Any children of the skipped DIEs will also be skipped. */
2165
2166 static char *
2167 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2168 {
2169 struct abbrev_info *abbrev;
2170 unsigned int bytes_read;
2171
2172 while (1)
2173 {
2174 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2175 if (abbrev == NULL)
2176 return info_ptr + bytes_read;
2177 else
2178 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2179 }
2180 }
2181
2182 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2183 should point just after the initial uleb128 of a DIE, and the
2184 abbrev corresponding to that skipped uleb128 should be passed in
2185 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2186 children. */
2187
2188 static char *
2189 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2190 struct dwarf2_cu *cu)
2191 {
2192 unsigned int bytes_read;
2193 struct attribute attr;
2194 bfd *abfd = cu->objfile->obfd;
2195 unsigned int form, i;
2196
2197 for (i = 0; i < abbrev->num_attrs; i++)
2198 {
2199 /* The only abbrev we care about is DW_AT_sibling. */
2200 if (abbrev->attrs[i].name == DW_AT_sibling)
2201 {
2202 read_attribute (&attr, &abbrev->attrs[i],
2203 abfd, info_ptr, cu);
2204 if (attr.form == DW_FORM_ref_addr)
2205 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
2206 else
2207 return dwarf2_per_objfile->info_buffer
2208 + dwarf2_get_ref_die_offset (&attr, cu);
2209 }
2210
2211 /* If it isn't DW_AT_sibling, skip this attribute. */
2212 form = abbrev->attrs[i].form;
2213 skip_attribute:
2214 switch (form)
2215 {
2216 case DW_FORM_addr:
2217 case DW_FORM_ref_addr:
2218 info_ptr += cu->header.addr_size;
2219 break;
2220 case DW_FORM_data1:
2221 case DW_FORM_ref1:
2222 case DW_FORM_flag:
2223 info_ptr += 1;
2224 break;
2225 case DW_FORM_data2:
2226 case DW_FORM_ref2:
2227 info_ptr += 2;
2228 break;
2229 case DW_FORM_data4:
2230 case DW_FORM_ref4:
2231 info_ptr += 4;
2232 break;
2233 case DW_FORM_data8:
2234 case DW_FORM_ref8:
2235 info_ptr += 8;
2236 break;
2237 case DW_FORM_string:
2238 read_string (abfd, info_ptr, &bytes_read);
2239 info_ptr += bytes_read;
2240 break;
2241 case DW_FORM_strp:
2242 info_ptr += cu->header.offset_size;
2243 break;
2244 case DW_FORM_block:
2245 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2246 info_ptr += bytes_read;
2247 break;
2248 case DW_FORM_block1:
2249 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2250 break;
2251 case DW_FORM_block2:
2252 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2253 break;
2254 case DW_FORM_block4:
2255 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2256 break;
2257 case DW_FORM_sdata:
2258 case DW_FORM_udata:
2259 case DW_FORM_ref_udata:
2260 info_ptr = skip_leb128 (abfd, info_ptr);
2261 break;
2262 case DW_FORM_indirect:
2263 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2264 info_ptr += bytes_read;
2265 /* We need to continue parsing from here, so just go back to
2266 the top. */
2267 goto skip_attribute;
2268
2269 default:
2270 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
2271 dwarf_form_name (form),
2272 bfd_get_filename (abfd));
2273 }
2274 }
2275
2276 if (abbrev->has_children)
2277 return skip_children (info_ptr, cu);
2278 else
2279 return info_ptr;
2280 }
2281
2282 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2283 the next DIE after ORIG_PDI. */
2284
2285 static char *
2286 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2287 bfd *abfd, struct dwarf2_cu *cu)
2288 {
2289 /* Do we know the sibling already? */
2290
2291 if (orig_pdi->sibling)
2292 return orig_pdi->sibling;
2293
2294 /* Are there any children to deal with? */
2295
2296 if (!orig_pdi->has_children)
2297 return info_ptr;
2298
2299 /* Skip the children the long way. */
2300
2301 return skip_children (info_ptr, cu);
2302 }
2303
2304 /* Expand this partial symbol table into a full symbol table. */
2305
2306 static void
2307 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2308 {
2309 /* FIXME: This is barely more than a stub. */
2310 if (pst != NULL)
2311 {
2312 if (pst->readin)
2313 {
2314 warning ("bug: psymtab for %s is already read in.", pst->filename);
2315 }
2316 else
2317 {
2318 if (info_verbose)
2319 {
2320 printf_filtered ("Reading in symbols for %s...", pst->filename);
2321 gdb_flush (gdb_stdout);
2322 }
2323
2324 /* Restore our global data. */
2325 dwarf2_per_objfile = objfile_data (pst->objfile,
2326 dwarf2_objfile_data_key);
2327
2328 psymtab_to_symtab_1 (pst);
2329
2330 /* Finish up the debug error message. */
2331 if (info_verbose)
2332 printf_filtered ("done.\n");
2333 }
2334 }
2335 }
2336
2337 /* Add PER_CU to the queue. */
2338
2339 static void
2340 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2341 {
2342 struct dwarf2_queue_item *item;
2343
2344 per_cu->queued = 1;
2345 item = xmalloc (sizeof (*item));
2346 item->per_cu = per_cu;
2347 item->next = NULL;
2348
2349 if (dwarf2_queue == NULL)
2350 dwarf2_queue = item;
2351 else
2352 dwarf2_queue_tail->next = item;
2353
2354 dwarf2_queue_tail = item;
2355 }
2356
2357 /* Process the queue. */
2358
2359 static void
2360 process_queue (struct objfile *objfile)
2361 {
2362 struct dwarf2_queue_item *item, *next_item;
2363
2364 /* Initially, there is just one item on the queue. Load its DIEs,
2365 and the DIEs of any other compilation units it requires,
2366 transitively. */
2367
2368 for (item = dwarf2_queue; item != NULL; item = item->next)
2369 {
2370 /* Read in this compilation unit. This may add new items to
2371 the end of the queue. */
2372 load_full_comp_unit (item->per_cu);
2373
2374 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2375 dwarf2_per_objfile->read_in_chain = item->per_cu;
2376
2377 /* If this compilation unit has already had full symbols created,
2378 reset the TYPE fields in each DIE. */
2379 if (item->per_cu->psymtab->readin)
2380 reset_die_and_siblings_types (item->per_cu->cu->dies,
2381 item->per_cu->cu);
2382 }
2383
2384 /* Now everything left on the queue needs to be read in. Process
2385 them, one at a time, removing from the queue as we finish. */
2386 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2387 {
2388 if (!item->per_cu->psymtab->readin)
2389 process_full_comp_unit (item->per_cu);
2390
2391 item->per_cu->queued = 0;
2392 next_item = item->next;
2393 xfree (item);
2394 }
2395
2396 dwarf2_queue_tail = NULL;
2397 }
2398
2399 /* Free all allocated queue entries. This function only releases anything if
2400 an error was thrown; if the queue was processed then it would have been
2401 freed as we went along. */
2402
2403 static void
2404 dwarf2_release_queue (void *dummy)
2405 {
2406 struct dwarf2_queue_item *item, *last;
2407
2408 item = dwarf2_queue;
2409 while (item)
2410 {
2411 /* Anything still marked queued is likely to be in an
2412 inconsistent state, so discard it. */
2413 if (item->per_cu->queued)
2414 {
2415 if (item->per_cu->cu != NULL)
2416 free_one_cached_comp_unit (item->per_cu->cu);
2417 item->per_cu->queued = 0;
2418 }
2419
2420 last = item;
2421 item = item->next;
2422 xfree (last);
2423 }
2424
2425 dwarf2_queue = dwarf2_queue_tail = NULL;
2426 }
2427
2428 /* Read in full symbols for PST, and anything it depends on. */
2429
2430 static void
2431 psymtab_to_symtab_1 (struct partial_symtab *pst)
2432 {
2433 struct dwarf2_per_cu_data *per_cu;
2434 struct cleanup *back_to;
2435 int i;
2436
2437 for (i = 0; i < pst->number_of_dependencies; i++)
2438 if (!pst->dependencies[i]->readin)
2439 {
2440 /* Inform about additional files that need to be read in. */
2441 if (info_verbose)
2442 {
2443 fputs_filtered (" ", gdb_stdout);
2444 wrap_here ("");
2445 fputs_filtered ("and ", gdb_stdout);
2446 wrap_here ("");
2447 printf_filtered ("%s...", pst->dependencies[i]->filename);
2448 wrap_here (""); /* Flush output */
2449 gdb_flush (gdb_stdout);
2450 }
2451 psymtab_to_symtab_1 (pst->dependencies[i]);
2452 }
2453
2454 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2455
2456 if (per_cu == NULL)
2457 {
2458 /* It's an include file, no symbols to read for it.
2459 Everything is in the parent symtab. */
2460 pst->readin = 1;
2461 return;
2462 }
2463
2464 back_to = make_cleanup (dwarf2_release_queue, NULL);
2465
2466 queue_comp_unit (per_cu);
2467
2468 process_queue (pst->objfile);
2469
2470 /* Age the cache, releasing compilation units that have not
2471 been used recently. */
2472 age_cached_comp_units ();
2473
2474 do_cleanups (back_to);
2475 }
2476
2477 /* Load the DIEs associated with PST and PER_CU into memory. */
2478
2479 static struct dwarf2_cu *
2480 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2481 {
2482 struct partial_symtab *pst = per_cu->psymtab;
2483 bfd *abfd = pst->objfile->obfd;
2484 struct dwarf2_cu *cu;
2485 unsigned long offset;
2486 char *info_ptr;
2487 struct cleanup *back_to, *free_cu_cleanup;
2488 struct attribute *attr;
2489 CORE_ADDR baseaddr;
2490
2491 /* Set local variables from the partial symbol table info. */
2492 offset = per_cu->offset;
2493
2494 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2495
2496 cu = xmalloc (sizeof (struct dwarf2_cu));
2497 memset (cu, 0, sizeof (struct dwarf2_cu));
2498
2499 /* If an error occurs while loading, release our storage. */
2500 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2501
2502 cu->objfile = pst->objfile;
2503
2504 /* read in the comp_unit header */
2505 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2506
2507 /* Read the abbrevs for this compilation unit */
2508 dwarf2_read_abbrevs (abfd, cu);
2509 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2510
2511 cu->header.offset = offset;
2512
2513 cu->per_cu = per_cu;
2514 per_cu->cu = cu;
2515
2516 /* We use this obstack for block values in dwarf_alloc_block. */
2517 obstack_init (&cu->comp_unit_obstack);
2518
2519 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2520
2521 /* We try not to read any attributes in this function, because not
2522 all objfiles needed for references have been loaded yet, and symbol
2523 table processing isn't initialized. But we have to set the CU language,
2524 or we won't be able to build types correctly. */
2525 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2526 if (attr)
2527 set_cu_language (DW_UNSND (attr), cu);
2528 else
2529 set_cu_language (language_minimal, cu);
2530
2531 do_cleanups (back_to);
2532
2533 /* We've successfully allocated this compilation unit. Let our caller
2534 clean it up when finished with it. */
2535 discard_cleanups (free_cu_cleanup);
2536
2537 return cu;
2538 }
2539
2540 /* Generate full symbol information for PST and CU, whose DIEs have
2541 already been loaded into memory. */
2542
2543 static void
2544 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2545 {
2546 struct partial_symtab *pst = per_cu->psymtab;
2547 struct dwarf2_cu *cu = per_cu->cu;
2548 struct objfile *objfile = pst->objfile;
2549 bfd *abfd = objfile->obfd;
2550 CORE_ADDR lowpc, highpc;
2551 struct symtab *symtab;
2552 struct cleanup *back_to;
2553 struct attribute *attr;
2554 CORE_ADDR baseaddr;
2555
2556 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2557
2558 /* We're in the global namespace. */
2559 processing_current_prefix = "";
2560
2561 buildsym_init ();
2562 back_to = make_cleanup (really_free_pendings, NULL);
2563
2564 cu->list_in_scope = &file_symbols;
2565
2566 /* Find the base address of the compilation unit for range lists and
2567 location lists. It will normally be specified by DW_AT_low_pc.
2568 In DWARF-3 draft 4, the base address could be overridden by
2569 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2570 compilation units with discontinuous ranges. */
2571
2572 cu->header.base_known = 0;
2573 cu->header.base_address = 0;
2574
2575 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2576 if (attr)
2577 {
2578 cu->header.base_address = DW_ADDR (attr);
2579 cu->header.base_known = 1;
2580 }
2581 else
2582 {
2583 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2584 if (attr)
2585 {
2586 cu->header.base_address = DW_ADDR (attr);
2587 cu->header.base_known = 1;
2588 }
2589 }
2590
2591 /* Do line number decoding in read_file_scope () */
2592 process_die (cu->dies, cu);
2593
2594 /* Some compilers don't define a DW_AT_high_pc attribute for the
2595 compilation unit. If the DW_AT_high_pc is missing, synthesize
2596 it, by scanning the DIE's below the compilation unit. */
2597 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2598
2599 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2600
2601 /* Set symtab language to language from DW_AT_language.
2602 If the compilation is from a C file generated by language preprocessors,
2603 do not set the language if it was already deduced by start_subfile. */
2604 if (symtab != NULL
2605 && !(cu->language == language_c && symtab->language != language_c))
2606 {
2607 symtab->language = cu->language;
2608 }
2609 pst->symtab = symtab;
2610 pst->readin = 1;
2611
2612 do_cleanups (back_to);
2613 }
2614
2615 /* Process a die and its children. */
2616
2617 static void
2618 process_die (struct die_info *die, struct dwarf2_cu *cu)
2619 {
2620 switch (die->tag)
2621 {
2622 case DW_TAG_padding:
2623 break;
2624 case DW_TAG_compile_unit:
2625 read_file_scope (die, cu);
2626 break;
2627 case DW_TAG_subprogram:
2628 read_subroutine_type (die, cu);
2629 read_func_scope (die, cu);
2630 break;
2631 case DW_TAG_inlined_subroutine:
2632 /* FIXME: These are ignored for now.
2633 They could be used to set breakpoints on all inlined instances
2634 of a function and make GDB `next' properly over inlined functions. */
2635 break;
2636 case DW_TAG_lexical_block:
2637 case DW_TAG_try_block:
2638 case DW_TAG_catch_block:
2639 read_lexical_block_scope (die, cu);
2640 break;
2641 case DW_TAG_class_type:
2642 case DW_TAG_structure_type:
2643 case DW_TAG_union_type:
2644 read_structure_type (die, cu);
2645 process_structure_scope (die, cu);
2646 break;
2647 case DW_TAG_enumeration_type:
2648 read_enumeration_type (die, cu);
2649 process_enumeration_scope (die, cu);
2650 break;
2651
2652 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2653 a symbol or process any children. Therefore it doesn't do anything
2654 that won't be done on-demand by read_type_die. */
2655 case DW_TAG_subroutine_type:
2656 read_subroutine_type (die, cu);
2657 break;
2658 case DW_TAG_array_type:
2659 read_array_type (die, cu);
2660 break;
2661 case DW_TAG_pointer_type:
2662 read_tag_pointer_type (die, cu);
2663 break;
2664 case DW_TAG_ptr_to_member_type:
2665 read_tag_ptr_to_member_type (die, cu);
2666 break;
2667 case DW_TAG_reference_type:
2668 read_tag_reference_type (die, cu);
2669 break;
2670 case DW_TAG_string_type:
2671 read_tag_string_type (die, cu);
2672 break;
2673 /* END FIXME */
2674
2675 case DW_TAG_base_type:
2676 read_base_type (die, cu);
2677 /* Add a typedef symbol for the type definition, if it has a
2678 DW_AT_name. */
2679 new_symbol (die, die->type, cu);
2680 break;
2681 case DW_TAG_subrange_type:
2682 read_subrange_type (die, cu);
2683 /* Add a typedef symbol for the type definition, if it has a
2684 DW_AT_name. */
2685 new_symbol (die, die->type, cu);
2686 break;
2687 case DW_TAG_common_block:
2688 read_common_block (die, cu);
2689 break;
2690 case DW_TAG_common_inclusion:
2691 break;
2692 case DW_TAG_namespace:
2693 processing_has_namespace_info = 1;
2694 read_namespace (die, cu);
2695 break;
2696 case DW_TAG_imported_declaration:
2697 case DW_TAG_imported_module:
2698 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2699 information contained in these. DW_TAG_imported_declaration
2700 dies shouldn't have children; DW_TAG_imported_module dies
2701 shouldn't in the C++ case, but conceivably could in the
2702 Fortran case, so we'll have to replace this gdb_assert if
2703 Fortran compilers start generating that info. */
2704 processing_has_namespace_info = 1;
2705 gdb_assert (die->child == NULL);
2706 break;
2707 default:
2708 new_symbol (die, NULL, cu);
2709 break;
2710 }
2711 }
2712
2713 static void
2714 initialize_cu_func_list (struct dwarf2_cu *cu)
2715 {
2716 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2717 }
2718
2719 static void
2720 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2721 {
2722 struct objfile *objfile = cu->objfile;
2723 struct comp_unit_head *cu_header = &cu->header;
2724 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2725 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2726 CORE_ADDR highpc = ((CORE_ADDR) 0);
2727 struct attribute *attr;
2728 char *name = "<unknown>";
2729 char *comp_dir = NULL;
2730 struct die_info *child_die;
2731 bfd *abfd = objfile->obfd;
2732 struct line_header *line_header = 0;
2733 CORE_ADDR baseaddr;
2734
2735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2736
2737 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2738
2739 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2740 from finish_block. */
2741 if (lowpc == ((CORE_ADDR) -1))
2742 lowpc = highpc;
2743 lowpc += baseaddr;
2744 highpc += baseaddr;
2745
2746 attr = dwarf2_attr (die, DW_AT_name, cu);
2747 if (attr)
2748 {
2749 name = DW_STRING (attr);
2750 }
2751 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2752 if (attr)
2753 {
2754 comp_dir = DW_STRING (attr);
2755 if (comp_dir)
2756 {
2757 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2758 directory, get rid of it. */
2759 char *cp = strchr (comp_dir, ':');
2760
2761 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2762 comp_dir = cp + 1;
2763 }
2764 }
2765
2766 attr = dwarf2_attr (die, DW_AT_language, cu);
2767 if (attr)
2768 {
2769 set_cu_language (DW_UNSND (attr), cu);
2770 }
2771
2772 attr = dwarf2_attr (die, DW_AT_producer, cu);
2773 if (attr)
2774 cu->producer = DW_STRING (attr);
2775
2776 /* We assume that we're processing GCC output. */
2777 processing_gcc_compilation = 2;
2778 #if 0
2779 /* FIXME:Do something here. */
2780 if (dip->at_producer != NULL)
2781 {
2782 handle_producer (dip->at_producer);
2783 }
2784 #endif
2785
2786 /* The compilation unit may be in a different language or objfile,
2787 zero out all remembered fundamental types. */
2788 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2789
2790 start_symtab (name, comp_dir, lowpc);
2791 record_debugformat ("DWARF 2");
2792
2793 initialize_cu_func_list (cu);
2794
2795 /* Process all dies in compilation unit. */
2796 if (die->child != NULL)
2797 {
2798 child_die = die->child;
2799 while (child_die && child_die->tag)
2800 {
2801 process_die (child_die, cu);
2802 child_die = sibling_die (child_die);
2803 }
2804 }
2805
2806 /* Decode line number information if present. */
2807 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2808 if (attr)
2809 {
2810 unsigned int line_offset = DW_UNSND (attr);
2811 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2812 if (line_header)
2813 {
2814 make_cleanup ((make_cleanup_ftype *) free_line_header,
2815 (void *) line_header);
2816 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2817 }
2818 }
2819
2820 /* Decode macro information, if present. Dwarf 2 macro information
2821 refers to information in the line number info statement program
2822 header, so we can only read it if we've read the header
2823 successfully. */
2824 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2825 if (attr && line_header)
2826 {
2827 unsigned int macro_offset = DW_UNSND (attr);
2828 dwarf_decode_macros (line_header, macro_offset,
2829 comp_dir, abfd, cu);
2830 }
2831 do_cleanups (back_to);
2832 }
2833
2834 static void
2835 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2836 struct dwarf2_cu *cu)
2837 {
2838 struct function_range *thisfn;
2839
2840 thisfn = (struct function_range *)
2841 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2842 thisfn->name = name;
2843 thisfn->lowpc = lowpc;
2844 thisfn->highpc = highpc;
2845 thisfn->seen_line = 0;
2846 thisfn->next = NULL;
2847
2848 if (cu->last_fn == NULL)
2849 cu->first_fn = thisfn;
2850 else
2851 cu->last_fn->next = thisfn;
2852
2853 cu->last_fn = thisfn;
2854 }
2855
2856 static void
2857 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2858 {
2859 struct objfile *objfile = cu->objfile;
2860 struct context_stack *new;
2861 CORE_ADDR lowpc;
2862 CORE_ADDR highpc;
2863 struct die_info *child_die;
2864 struct attribute *attr;
2865 char *name;
2866 const char *previous_prefix = processing_current_prefix;
2867 struct cleanup *back_to = NULL;
2868 CORE_ADDR baseaddr;
2869
2870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2871
2872 name = dwarf2_linkage_name (die, cu);
2873
2874 /* Ignore functions with missing or empty names and functions with
2875 missing or invalid low and high pc attributes. */
2876 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2877 return;
2878
2879 if (cu->language == language_cplus
2880 || cu->language == language_java)
2881 {
2882 struct die_info *spec_die = die_specification (die, cu);
2883
2884 /* NOTE: carlton/2004-01-23: We have to be careful in the
2885 presence of DW_AT_specification. For example, with GCC 3.4,
2886 given the code
2887
2888 namespace N {
2889 void foo() {
2890 // Definition of N::foo.
2891 }
2892 }
2893
2894 then we'll have a tree of DIEs like this:
2895
2896 1: DW_TAG_compile_unit
2897 2: DW_TAG_namespace // N
2898 3: DW_TAG_subprogram // declaration of N::foo
2899 4: DW_TAG_subprogram // definition of N::foo
2900 DW_AT_specification // refers to die #3
2901
2902 Thus, when processing die #4, we have to pretend that we're
2903 in the context of its DW_AT_specification, namely the contex
2904 of die #3. */
2905
2906 if (spec_die != NULL)
2907 {
2908 char *specification_prefix = determine_prefix (spec_die, cu);
2909 processing_current_prefix = specification_prefix;
2910 back_to = make_cleanup (xfree, specification_prefix);
2911 }
2912 }
2913
2914 lowpc += baseaddr;
2915 highpc += baseaddr;
2916
2917 /* Record the function range for dwarf_decode_lines. */
2918 add_to_cu_func_list (name, lowpc, highpc, cu);
2919
2920 new = push_context (0, lowpc);
2921 new->name = new_symbol (die, die->type, cu);
2922
2923 /* If there is a location expression for DW_AT_frame_base, record
2924 it. */
2925 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2926 if (attr)
2927 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2928 expression is being recorded directly in the function's symbol
2929 and not in a separate frame-base object. I guess this hack is
2930 to avoid adding some sort of frame-base adjunct/annex to the
2931 function's symbol :-(. The problem with doing this is that it
2932 results in a function symbol with a location expression that
2933 has nothing to do with the location of the function, ouch! The
2934 relationship should be: a function's symbol has-a frame base; a
2935 frame-base has-a location expression. */
2936 dwarf2_symbol_mark_computed (attr, new->name, cu);
2937
2938 cu->list_in_scope = &local_symbols;
2939
2940 if (die->child != NULL)
2941 {
2942 child_die = die->child;
2943 while (child_die && child_die->tag)
2944 {
2945 process_die (child_die, cu);
2946 child_die = sibling_die (child_die);
2947 }
2948 }
2949
2950 new = pop_context ();
2951 /* Make a block for the local symbols within. */
2952 finish_block (new->name, &local_symbols, new->old_blocks,
2953 lowpc, highpc, objfile);
2954
2955 /* In C++, we can have functions nested inside functions (e.g., when
2956 a function declares a class that has methods). This means that
2957 when we finish processing a function scope, we may need to go
2958 back to building a containing block's symbol lists. */
2959 local_symbols = new->locals;
2960 param_symbols = new->params;
2961
2962 /* If we've finished processing a top-level function, subsequent
2963 symbols go in the file symbol list. */
2964 if (outermost_context_p ())
2965 cu->list_in_scope = &file_symbols;
2966
2967 processing_current_prefix = previous_prefix;
2968 if (back_to != NULL)
2969 do_cleanups (back_to);
2970 }
2971
2972 /* Process all the DIES contained within a lexical block scope. Start
2973 a new scope, process the dies, and then close the scope. */
2974
2975 static void
2976 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2977 {
2978 struct objfile *objfile = cu->objfile;
2979 struct context_stack *new;
2980 CORE_ADDR lowpc, highpc;
2981 struct die_info *child_die;
2982 CORE_ADDR baseaddr;
2983
2984 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2985
2986 /* Ignore blocks with missing or invalid low and high pc attributes. */
2987 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2988 as multiple lexical blocks? Handling children in a sane way would
2989 be nasty. Might be easier to properly extend generic blocks to
2990 describe ranges. */
2991 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2992 return;
2993 lowpc += baseaddr;
2994 highpc += baseaddr;
2995
2996 push_context (0, lowpc);
2997 if (die->child != NULL)
2998 {
2999 child_die = die->child;
3000 while (child_die && child_die->tag)
3001 {
3002 process_die (child_die, cu);
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006 new = pop_context ();
3007
3008 if (local_symbols != NULL)
3009 {
3010 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3011 highpc, objfile);
3012 }
3013 local_symbols = new->locals;
3014 }
3015
3016 /* Get low and high pc attributes from a die. Return 1 if the attributes
3017 are present and valid, otherwise, return 0. Return -1 if the range is
3018 discontinuous, i.e. derived from DW_AT_ranges information. */
3019 static int
3020 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3021 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3022 {
3023 struct objfile *objfile = cu->objfile;
3024 struct comp_unit_head *cu_header = &cu->header;
3025 struct attribute *attr;
3026 bfd *obfd = objfile->obfd;
3027 CORE_ADDR low = 0;
3028 CORE_ADDR high = 0;
3029 int ret = 0;
3030
3031 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3032 if (attr)
3033 {
3034 high = DW_ADDR (attr);
3035 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3036 if (attr)
3037 low = DW_ADDR (attr);
3038 else
3039 /* Found high w/o low attribute. */
3040 return 0;
3041
3042 /* Found consecutive range of addresses. */
3043 ret = 1;
3044 }
3045 else
3046 {
3047 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3048 if (attr != NULL)
3049 {
3050 unsigned int addr_size = cu_header->addr_size;
3051 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3052 /* Value of the DW_AT_ranges attribute is the offset in the
3053 .debug_ranges section. */
3054 unsigned int offset = DW_UNSND (attr);
3055 /* Base address selection entry. */
3056 CORE_ADDR base;
3057 int found_base;
3058 int dummy;
3059 char *buffer;
3060 CORE_ADDR marker;
3061 int low_set;
3062
3063 found_base = cu_header->base_known;
3064 base = cu_header->base_address;
3065
3066 if (offset >= dwarf2_per_objfile->ranges_size)
3067 {
3068 complaint (&symfile_complaints,
3069 "Offset %d out of bounds for DW_AT_ranges attribute",
3070 offset);
3071 return 0;
3072 }
3073 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3074
3075 /* Read in the largest possible address. */
3076 marker = read_address (obfd, buffer, cu, &dummy);
3077 if ((marker & mask) == mask)
3078 {
3079 /* If we found the largest possible address, then
3080 read the base address. */
3081 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3082 buffer += 2 * addr_size;
3083 offset += 2 * addr_size;
3084 found_base = 1;
3085 }
3086
3087 low_set = 0;
3088
3089 while (1)
3090 {
3091 CORE_ADDR range_beginning, range_end;
3092
3093 range_beginning = read_address (obfd, buffer, cu, &dummy);
3094 buffer += addr_size;
3095 range_end = read_address (obfd, buffer, cu, &dummy);
3096 buffer += addr_size;
3097 offset += 2 * addr_size;
3098
3099 /* An end of list marker is a pair of zero addresses. */
3100 if (range_beginning == 0 && range_end == 0)
3101 /* Found the end of list entry. */
3102 break;
3103
3104 /* Each base address selection entry is a pair of 2 values.
3105 The first is the largest possible address, the second is
3106 the base address. Check for a base address here. */
3107 if ((range_beginning & mask) == mask)
3108 {
3109 /* If we found the largest possible address, then
3110 read the base address. */
3111 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3112 found_base = 1;
3113 continue;
3114 }
3115
3116 if (!found_base)
3117 {
3118 /* We have no valid base address for the ranges
3119 data. */
3120 complaint (&symfile_complaints,
3121 "Invalid .debug_ranges data (no base address)");
3122 return 0;
3123 }
3124
3125 range_beginning += base;
3126 range_end += base;
3127
3128 /* FIXME: This is recording everything as a low-high
3129 segment of consecutive addresses. We should have a
3130 data structure for discontiguous block ranges
3131 instead. */
3132 if (! low_set)
3133 {
3134 low = range_beginning;
3135 high = range_end;
3136 low_set = 1;
3137 }
3138 else
3139 {
3140 if (range_beginning < low)
3141 low = range_beginning;
3142 if (range_end > high)
3143 high = range_end;
3144 }
3145 }
3146
3147 if (! low_set)
3148 /* If the first entry is an end-of-list marker, the range
3149 describes an empty scope, i.e. no instructions. */
3150 return 0;
3151
3152 ret = -1;
3153 }
3154 }
3155
3156 if (high < low)
3157 return 0;
3158
3159 /* When using the GNU linker, .gnu.linkonce. sections are used to
3160 eliminate duplicate copies of functions and vtables and such.
3161 The linker will arbitrarily choose one and discard the others.
3162 The AT_*_pc values for such functions refer to local labels in
3163 these sections. If the section from that file was discarded, the
3164 labels are not in the output, so the relocs get a value of 0.
3165 If this is a discarded function, mark the pc bounds as invalid,
3166 so that GDB will ignore it. */
3167 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3168 return 0;
3169
3170 *lowpc = low;
3171 *highpc = high;
3172 return ret;
3173 }
3174
3175 /* Get the low and high pc's represented by the scope DIE, and store
3176 them in *LOWPC and *HIGHPC. If the correct values can't be
3177 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3178
3179 static void
3180 get_scope_pc_bounds (struct die_info *die,
3181 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3182 struct dwarf2_cu *cu)
3183 {
3184 CORE_ADDR best_low = (CORE_ADDR) -1;
3185 CORE_ADDR best_high = (CORE_ADDR) 0;
3186 CORE_ADDR current_low, current_high;
3187
3188 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3189 {
3190 best_low = current_low;
3191 best_high = current_high;
3192 }
3193 else
3194 {
3195 struct die_info *child = die->child;
3196
3197 while (child && child->tag)
3198 {
3199 switch (child->tag) {
3200 case DW_TAG_subprogram:
3201 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3202 {
3203 best_low = min (best_low, current_low);
3204 best_high = max (best_high, current_high);
3205 }
3206 break;
3207 case DW_TAG_namespace:
3208 /* FIXME: carlton/2004-01-16: Should we do this for
3209 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3210 that current GCC's always emit the DIEs corresponding
3211 to definitions of methods of classes as children of a
3212 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3213 the DIEs giving the declarations, which could be
3214 anywhere). But I don't see any reason why the
3215 standards says that they have to be there. */
3216 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3217
3218 if (current_low != ((CORE_ADDR) -1))
3219 {
3220 best_low = min (best_low, current_low);
3221 best_high = max (best_high, current_high);
3222 }
3223 break;
3224 default:
3225 /* Ignore. */
3226 break;
3227 }
3228
3229 child = sibling_die (child);
3230 }
3231 }
3232
3233 *lowpc = best_low;
3234 *highpc = best_high;
3235 }
3236
3237 /* Add an aggregate field to the field list. */
3238
3239 static void
3240 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3241 struct dwarf2_cu *cu)
3242 {
3243 struct objfile *objfile = cu->objfile;
3244 struct nextfield *new_field;
3245 struct attribute *attr;
3246 struct field *fp;
3247 char *fieldname = "";
3248
3249 /* Allocate a new field list entry and link it in. */
3250 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3251 make_cleanup (xfree, new_field);
3252 memset (new_field, 0, sizeof (struct nextfield));
3253 new_field->next = fip->fields;
3254 fip->fields = new_field;
3255 fip->nfields++;
3256
3257 /* Handle accessibility and virtuality of field.
3258 The default accessibility for members is public, the default
3259 accessibility for inheritance is private. */
3260 if (die->tag != DW_TAG_inheritance)
3261 new_field->accessibility = DW_ACCESS_public;
3262 else
3263 new_field->accessibility = DW_ACCESS_private;
3264 new_field->virtuality = DW_VIRTUALITY_none;
3265
3266 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3267 if (attr)
3268 new_field->accessibility = DW_UNSND (attr);
3269 if (new_field->accessibility != DW_ACCESS_public)
3270 fip->non_public_fields = 1;
3271 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3272 if (attr)
3273 new_field->virtuality = DW_UNSND (attr);
3274
3275 fp = &new_field->field;
3276
3277 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3278 {
3279 /* Data member other than a C++ static data member. */
3280
3281 /* Get type of field. */
3282 fp->type = die_type (die, cu);
3283
3284 FIELD_STATIC_KIND (*fp) = 0;
3285
3286 /* Get bit size of field (zero if none). */
3287 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3288 if (attr)
3289 {
3290 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3291 }
3292 else
3293 {
3294 FIELD_BITSIZE (*fp) = 0;
3295 }
3296
3297 /* Get bit offset of field. */
3298 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3299 if (attr)
3300 {
3301 FIELD_BITPOS (*fp) =
3302 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3303 }
3304 else
3305 FIELD_BITPOS (*fp) = 0;
3306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3307 if (attr)
3308 {
3309 if (BITS_BIG_ENDIAN)
3310 {
3311 /* For big endian bits, the DW_AT_bit_offset gives the
3312 additional bit offset from the MSB of the containing
3313 anonymous object to the MSB of the field. We don't
3314 have to do anything special since we don't need to
3315 know the size of the anonymous object. */
3316 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3317 }
3318 else
3319 {
3320 /* For little endian bits, compute the bit offset to the
3321 MSB of the anonymous object, subtract off the number of
3322 bits from the MSB of the field to the MSB of the
3323 object, and then subtract off the number of bits of
3324 the field itself. The result is the bit offset of
3325 the LSB of the field. */
3326 int anonymous_size;
3327 int bit_offset = DW_UNSND (attr);
3328
3329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3330 if (attr)
3331 {
3332 /* The size of the anonymous object containing
3333 the bit field is explicit, so use the
3334 indicated size (in bytes). */
3335 anonymous_size = DW_UNSND (attr);
3336 }
3337 else
3338 {
3339 /* The size of the anonymous object containing
3340 the bit field must be inferred from the type
3341 attribute of the data member containing the
3342 bit field. */
3343 anonymous_size = TYPE_LENGTH (fp->type);
3344 }
3345 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3346 - bit_offset - FIELD_BITSIZE (*fp);
3347 }
3348 }
3349
3350 /* Get name of field. */
3351 attr = dwarf2_attr (die, DW_AT_name, cu);
3352 if (attr && DW_STRING (attr))
3353 fieldname = DW_STRING (attr);
3354
3355 /* The name is already allocated along with this objfile, so we don't
3356 need to duplicate it for the type. */
3357 fp->name = fieldname;
3358
3359 /* Change accessibility for artificial fields (e.g. virtual table
3360 pointer or virtual base class pointer) to private. */
3361 if (dwarf2_attr (die, DW_AT_artificial, cu))
3362 {
3363 new_field->accessibility = DW_ACCESS_private;
3364 fip->non_public_fields = 1;
3365 }
3366 }
3367 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3368 {
3369 /* C++ static member. */
3370
3371 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3372 is a declaration, but all versions of G++ as of this writing
3373 (so through at least 3.2.1) incorrectly generate
3374 DW_TAG_variable tags. */
3375
3376 char *physname;
3377
3378 /* Get name of field. */
3379 attr = dwarf2_attr (die, DW_AT_name, cu);
3380 if (attr && DW_STRING (attr))
3381 fieldname = DW_STRING (attr);
3382 else
3383 return;
3384
3385 /* Get physical name. */
3386 physname = dwarf2_linkage_name (die, cu);
3387
3388 /* The name is already allocated along with this objfile, so we don't
3389 need to duplicate it for the type. */
3390 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3391 FIELD_TYPE (*fp) = die_type (die, cu);
3392 FIELD_NAME (*fp) = fieldname;
3393 }
3394 else if (die->tag == DW_TAG_inheritance)
3395 {
3396 /* C++ base class field. */
3397 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3398 if (attr)
3399 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3400 * bits_per_byte);
3401 FIELD_BITSIZE (*fp) = 0;
3402 FIELD_STATIC_KIND (*fp) = 0;
3403 FIELD_TYPE (*fp) = die_type (die, cu);
3404 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3405 fip->nbaseclasses++;
3406 }
3407 }
3408
3409 /* Create the vector of fields, and attach it to the type. */
3410
3411 static void
3412 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3413 struct dwarf2_cu *cu)
3414 {
3415 int nfields = fip->nfields;
3416
3417 /* Record the field count, allocate space for the array of fields,
3418 and create blank accessibility bitfields if necessary. */
3419 TYPE_NFIELDS (type) = nfields;
3420 TYPE_FIELDS (type) = (struct field *)
3421 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3422 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3423
3424 if (fip->non_public_fields)
3425 {
3426 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3427
3428 TYPE_FIELD_PRIVATE_BITS (type) =
3429 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3430 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3431
3432 TYPE_FIELD_PROTECTED_BITS (type) =
3433 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3434 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3435
3436 TYPE_FIELD_IGNORE_BITS (type) =
3437 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3438 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3439 }
3440
3441 /* If the type has baseclasses, allocate and clear a bit vector for
3442 TYPE_FIELD_VIRTUAL_BITS. */
3443 if (fip->nbaseclasses)
3444 {
3445 int num_bytes = B_BYTES (fip->nbaseclasses);
3446 char *pointer;
3447
3448 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3449 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3450 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3451 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3452 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3453 }
3454
3455 /* Copy the saved-up fields into the field vector. Start from the head
3456 of the list, adding to the tail of the field array, so that they end
3457 up in the same order in the array in which they were added to the list. */
3458 while (nfields-- > 0)
3459 {
3460 TYPE_FIELD (type, nfields) = fip->fields->field;
3461 switch (fip->fields->accessibility)
3462 {
3463 case DW_ACCESS_private:
3464 SET_TYPE_FIELD_PRIVATE (type, nfields);
3465 break;
3466
3467 case DW_ACCESS_protected:
3468 SET_TYPE_FIELD_PROTECTED (type, nfields);
3469 break;
3470
3471 case DW_ACCESS_public:
3472 break;
3473
3474 default:
3475 /* Unknown accessibility. Complain and treat it as public. */
3476 {
3477 complaint (&symfile_complaints, "unsupported accessibility %d",
3478 fip->fields->accessibility);
3479 }
3480 break;
3481 }
3482 if (nfields < fip->nbaseclasses)
3483 {
3484 switch (fip->fields->virtuality)
3485 {
3486 case DW_VIRTUALITY_virtual:
3487 case DW_VIRTUALITY_pure_virtual:
3488 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3489 break;
3490 }
3491 }
3492 fip->fields = fip->fields->next;
3493 }
3494 }
3495
3496 /* Add a member function to the proper fieldlist. */
3497
3498 static void
3499 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3500 struct type *type, struct dwarf2_cu *cu)
3501 {
3502 struct objfile *objfile = cu->objfile;
3503 struct attribute *attr;
3504 struct fnfieldlist *flp;
3505 int i;
3506 struct fn_field *fnp;
3507 char *fieldname;
3508 char *physname;
3509 struct nextfnfield *new_fnfield;
3510
3511 /* Get name of member function. */
3512 attr = dwarf2_attr (die, DW_AT_name, cu);
3513 if (attr && DW_STRING (attr))
3514 fieldname = DW_STRING (attr);
3515 else
3516 return;
3517
3518 /* Get the mangled name. */
3519 physname = dwarf2_linkage_name (die, cu);
3520
3521 /* Look up member function name in fieldlist. */
3522 for (i = 0; i < fip->nfnfields; i++)
3523 {
3524 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3525 break;
3526 }
3527
3528 /* Create new list element if necessary. */
3529 if (i < fip->nfnfields)
3530 flp = &fip->fnfieldlists[i];
3531 else
3532 {
3533 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3534 {
3535 fip->fnfieldlists = (struct fnfieldlist *)
3536 xrealloc (fip->fnfieldlists,
3537 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3538 * sizeof (struct fnfieldlist));
3539 if (fip->nfnfields == 0)
3540 make_cleanup (free_current_contents, &fip->fnfieldlists);
3541 }
3542 flp = &fip->fnfieldlists[fip->nfnfields];
3543 flp->name = fieldname;
3544 flp->length = 0;
3545 flp->head = NULL;
3546 fip->nfnfields++;
3547 }
3548
3549 /* Create a new member function field and chain it to the field list
3550 entry. */
3551 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3552 make_cleanup (xfree, new_fnfield);
3553 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3554 new_fnfield->next = flp->head;
3555 flp->head = new_fnfield;
3556 flp->length++;
3557
3558 /* Fill in the member function field info. */
3559 fnp = &new_fnfield->fnfield;
3560 /* The name is already allocated along with this objfile, so we don't
3561 need to duplicate it for the type. */
3562 fnp->physname = physname ? physname : "";
3563 fnp->type = alloc_type (objfile);
3564 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3565 {
3566 int nparams = TYPE_NFIELDS (die->type);
3567
3568 /* TYPE is the domain of this method, and DIE->TYPE is the type
3569 of the method itself (TYPE_CODE_METHOD). */
3570 smash_to_method_type (fnp->type, type,
3571 TYPE_TARGET_TYPE (die->type),
3572 TYPE_FIELDS (die->type),
3573 TYPE_NFIELDS (die->type),
3574 TYPE_VARARGS (die->type));
3575
3576 /* Handle static member functions.
3577 Dwarf2 has no clean way to discern C++ static and non-static
3578 member functions. G++ helps GDB by marking the first
3579 parameter for non-static member functions (which is the
3580 this pointer) as artificial. We obtain this information
3581 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3582 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3583 fnp->voffset = VOFFSET_STATIC;
3584 }
3585 else
3586 complaint (&symfile_complaints, "member function type missing for '%s'",
3587 physname);
3588
3589 /* Get fcontext from DW_AT_containing_type if present. */
3590 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3591 fnp->fcontext = die_containing_type (die, cu);
3592
3593 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3594 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3595
3596 /* Get accessibility. */
3597 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3598 if (attr)
3599 {
3600 switch (DW_UNSND (attr))
3601 {
3602 case DW_ACCESS_private:
3603 fnp->is_private = 1;
3604 break;
3605 case DW_ACCESS_protected:
3606 fnp->is_protected = 1;
3607 break;
3608 }
3609 }
3610
3611 /* Check for artificial methods. */
3612 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3613 if (attr && DW_UNSND (attr) != 0)
3614 fnp->is_artificial = 1;
3615
3616 /* Get index in virtual function table if it is a virtual member function. */
3617 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3618 if (attr)
3619 {
3620 /* Support the .debug_loc offsets */
3621 if (attr_form_is_block (attr))
3622 {
3623 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3624 }
3625 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3626 {
3627 dwarf2_complex_location_expr_complaint ();
3628 }
3629 else
3630 {
3631 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3632 fieldname);
3633 }
3634 }
3635 }
3636
3637 /* Create the vector of member function fields, and attach it to the type. */
3638
3639 static void
3640 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3641 struct dwarf2_cu *cu)
3642 {
3643 struct fnfieldlist *flp;
3644 int total_length = 0;
3645 int i;
3646
3647 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3648 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3649 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3650
3651 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3652 {
3653 struct nextfnfield *nfp = flp->head;
3654 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3655 int k;
3656
3657 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3658 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3659 fn_flp->fn_fields = (struct fn_field *)
3660 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3661 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3662 fn_flp->fn_fields[k] = nfp->fnfield;
3663
3664 total_length += flp->length;
3665 }
3666
3667 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3668 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3669 }
3670
3671
3672 /* Returns non-zero if NAME is the name of a vtable member in CU's
3673 language, zero otherwise. */
3674 static int
3675 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3676 {
3677 static const char vptr[] = "_vptr";
3678 static const char vtable[] = "vtable";
3679
3680 /* Look for the C++ and Java forms of the vtable. */
3681 if ((cu->language == language_java
3682 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3683 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3684 && is_cplus_marker (name[sizeof (vptr) - 1])))
3685 return 1;
3686
3687 return 0;
3688 }
3689
3690
3691 /* Called when we find the DIE that starts a structure or union scope
3692 (definition) to process all dies that define the members of the
3693 structure or union.
3694
3695 NOTE: we need to call struct_type regardless of whether or not the
3696 DIE has an at_name attribute, since it might be an anonymous
3697 structure or union. This gets the type entered into our set of
3698 user defined types.
3699
3700 However, if the structure is incomplete (an opaque struct/union)
3701 then suppress creating a symbol table entry for it since gdb only
3702 wants to find the one with the complete definition. Note that if
3703 it is complete, we just call new_symbol, which does it's own
3704 checking about whether the struct/union is anonymous or not (and
3705 suppresses creating a symbol table entry itself). */
3706
3707 static void
3708 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3709 {
3710 struct objfile *objfile = cu->objfile;
3711 struct type *type;
3712 struct attribute *attr;
3713 const char *previous_prefix = processing_current_prefix;
3714 struct cleanup *back_to = NULL;
3715
3716 if (die->type)
3717 return;
3718
3719 type = alloc_type (objfile);
3720
3721 INIT_CPLUS_SPECIFIC (type);
3722 attr = dwarf2_attr (die, DW_AT_name, cu);
3723 if (attr && DW_STRING (attr))
3724 {
3725 if (cu->language == language_cplus
3726 || cu->language == language_java)
3727 {
3728 char *new_prefix = determine_class_name (die, cu);
3729 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3730 strlen (new_prefix),
3731 &objfile->objfile_obstack);
3732 back_to = make_cleanup (xfree, new_prefix);
3733 processing_current_prefix = new_prefix;
3734 }
3735 else
3736 {
3737 /* The name is already allocated along with this objfile, so
3738 we don't need to duplicate it for the type. */
3739 TYPE_TAG_NAME (type) = DW_STRING (attr);
3740 }
3741 }
3742
3743 if (die->tag == DW_TAG_structure_type)
3744 {
3745 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3746 }
3747 else if (die->tag == DW_TAG_union_type)
3748 {
3749 TYPE_CODE (type) = TYPE_CODE_UNION;
3750 }
3751 else
3752 {
3753 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3754 in gdbtypes.h. */
3755 TYPE_CODE (type) = TYPE_CODE_CLASS;
3756 }
3757
3758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3759 if (attr)
3760 {
3761 TYPE_LENGTH (type) = DW_UNSND (attr);
3762 }
3763 else
3764 {
3765 TYPE_LENGTH (type) = 0;
3766 }
3767
3768 if (die_is_declaration (die, cu))
3769 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3770
3771 /* We need to add the type field to the die immediately so we don't
3772 infinitely recurse when dealing with pointers to the structure
3773 type within the structure itself. */
3774 set_die_type (die, type, cu);
3775
3776 if (die->child != NULL && ! die_is_declaration (die, cu))
3777 {
3778 struct field_info fi;
3779 struct die_info *child_die;
3780 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3781
3782 memset (&fi, 0, sizeof (struct field_info));
3783
3784 child_die = die->child;
3785
3786 while (child_die && child_die->tag)
3787 {
3788 if (child_die->tag == DW_TAG_member
3789 || child_die->tag == DW_TAG_variable)
3790 {
3791 /* NOTE: carlton/2002-11-05: A C++ static data member
3792 should be a DW_TAG_member that is a declaration, but
3793 all versions of G++ as of this writing (so through at
3794 least 3.2.1) incorrectly generate DW_TAG_variable
3795 tags for them instead. */
3796 dwarf2_add_field (&fi, child_die, cu);
3797 }
3798 else if (child_die->tag == DW_TAG_subprogram)
3799 {
3800 /* C++ member function. */
3801 read_type_die (child_die, cu);
3802 dwarf2_add_member_fn (&fi, child_die, type, cu);
3803 }
3804 else if (child_die->tag == DW_TAG_inheritance)
3805 {
3806 /* C++ base class field. */
3807 dwarf2_add_field (&fi, child_die, cu);
3808 }
3809 child_die = sibling_die (child_die);
3810 }
3811
3812 /* Attach fields and member functions to the type. */
3813 if (fi.nfields)
3814 dwarf2_attach_fields_to_type (&fi, type, cu);
3815 if (fi.nfnfields)
3816 {
3817 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3818
3819 /* Get the type which refers to the base class (possibly this
3820 class itself) which contains the vtable pointer for the current
3821 class from the DW_AT_containing_type attribute. */
3822
3823 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3824 {
3825 struct type *t = die_containing_type (die, cu);
3826
3827 TYPE_VPTR_BASETYPE (type) = t;
3828 if (type == t)
3829 {
3830 int i;
3831
3832 /* Our own class provides vtbl ptr. */
3833 for (i = TYPE_NFIELDS (t) - 1;
3834 i >= TYPE_N_BASECLASSES (t);
3835 --i)
3836 {
3837 char *fieldname = TYPE_FIELD_NAME (t, i);
3838
3839 if (is_vtable_name (fieldname, cu))
3840 {
3841 TYPE_VPTR_FIELDNO (type) = i;
3842 break;
3843 }
3844 }
3845
3846 /* Complain if virtual function table field not found. */
3847 if (i < TYPE_N_BASECLASSES (t))
3848 complaint (&symfile_complaints,
3849 "virtual function table pointer not found when defining class '%s'",
3850 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3851 "");
3852 }
3853 else
3854 {
3855 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3856 }
3857 }
3858 }
3859
3860 do_cleanups (back_to);
3861 }
3862
3863 processing_current_prefix = previous_prefix;
3864 if (back_to != NULL)
3865 do_cleanups (back_to);
3866 }
3867
3868 static void
3869 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3870 {
3871 struct objfile *objfile = cu->objfile;
3872 const char *previous_prefix = processing_current_prefix;
3873 struct die_info *child_die = die->child;
3874
3875 if (TYPE_TAG_NAME (die->type) != NULL)
3876 processing_current_prefix = TYPE_TAG_NAME (die->type);
3877
3878 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3879 snapshots) has been known to create a die giving a declaration
3880 for a class that has, as a child, a die giving a definition for a
3881 nested class. So we have to process our children even if the
3882 current die is a declaration. Normally, of course, a declaration
3883 won't have any children at all. */
3884
3885 while (child_die != NULL && child_die->tag)
3886 {
3887 if (child_die->tag == DW_TAG_member
3888 || child_die->tag == DW_TAG_variable
3889 || child_die->tag == DW_TAG_inheritance)
3890 {
3891 /* Do nothing. */
3892 }
3893 else
3894 process_die (child_die, cu);
3895
3896 child_die = sibling_die (child_die);
3897 }
3898
3899 if (die->child != NULL && ! die_is_declaration (die, cu))
3900 new_symbol (die, die->type, cu);
3901
3902 processing_current_prefix = previous_prefix;
3903 }
3904
3905 /* Given a DW_AT_enumeration_type die, set its type. We do not
3906 complete the type's fields yet, or create any symbols. */
3907
3908 static void
3909 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3910 {
3911 struct objfile *objfile = cu->objfile;
3912 struct type *type;
3913 struct attribute *attr;
3914
3915 if (die->type)
3916 return;
3917
3918 type = alloc_type (objfile);
3919
3920 TYPE_CODE (type) = TYPE_CODE_ENUM;
3921 attr = dwarf2_attr (die, DW_AT_name, cu);
3922 if (attr && DW_STRING (attr))
3923 {
3924 char *name = DW_STRING (attr);
3925
3926 if (processing_has_namespace_info)
3927 {
3928 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3929 processing_current_prefix,
3930 name, cu);
3931 }
3932 else
3933 {
3934 /* The name is already allocated along with this objfile, so
3935 we don't need to duplicate it for the type. */
3936 TYPE_TAG_NAME (type) = name;
3937 }
3938 }
3939
3940 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3941 if (attr)
3942 {
3943 TYPE_LENGTH (type) = DW_UNSND (attr);
3944 }
3945 else
3946 {
3947 TYPE_LENGTH (type) = 0;
3948 }
3949
3950 set_die_type (die, type, cu);
3951 }
3952
3953 /* Determine the name of the type represented by DIE, which should be
3954 a named C++ or Java compound type. Return the name in question; the caller
3955 is responsible for xfree()'ing it. */
3956
3957 static char *
3958 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3959 {
3960 struct cleanup *back_to = NULL;
3961 struct die_info *spec_die = die_specification (die, cu);
3962 char *new_prefix = NULL;
3963
3964 /* If this is the definition of a class that is declared by another
3965 die, then processing_current_prefix may not be accurate; see
3966 read_func_scope for a similar example. */
3967 if (spec_die != NULL)
3968 {
3969 char *specification_prefix = determine_prefix (spec_die, cu);
3970 processing_current_prefix = specification_prefix;
3971 back_to = make_cleanup (xfree, specification_prefix);
3972 }
3973
3974 /* If we don't have namespace debug info, guess the name by trying
3975 to demangle the names of members, just like we did in
3976 guess_structure_name. */
3977 if (!processing_has_namespace_info)
3978 {
3979 struct die_info *child;
3980
3981 for (child = die->child;
3982 child != NULL && child->tag != 0;
3983 child = sibling_die (child))
3984 {
3985 if (child->tag == DW_TAG_subprogram)
3986 {
3987 new_prefix
3988 = language_class_name_from_physname (cu->language_defn,
3989 dwarf2_linkage_name
3990 (child, cu));
3991
3992 if (new_prefix != NULL)
3993 break;
3994 }
3995 }
3996 }
3997
3998 if (new_prefix == NULL)
3999 {
4000 const char *name = dwarf2_name (die, cu);
4001 new_prefix = typename_concat (NULL, processing_current_prefix,
4002 name ? name : "<<anonymous>>",
4003 cu);
4004 }
4005
4006 if (back_to != NULL)
4007 do_cleanups (back_to);
4008
4009 return new_prefix;
4010 }
4011
4012 /* Given a pointer to a die which begins an enumeration, process all
4013 the dies that define the members of the enumeration, and create the
4014 symbol for the enumeration type.
4015
4016 NOTE: We reverse the order of the element list. */
4017
4018 static void
4019 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4020 {
4021 struct objfile *objfile = cu->objfile;
4022 struct die_info *child_die;
4023 struct field *fields;
4024 struct attribute *attr;
4025 struct symbol *sym;
4026 int num_fields;
4027 int unsigned_enum = 1;
4028
4029 num_fields = 0;
4030 fields = NULL;
4031 if (die->child != NULL)
4032 {
4033 child_die = die->child;
4034 while (child_die && child_die->tag)
4035 {
4036 if (child_die->tag != DW_TAG_enumerator)
4037 {
4038 process_die (child_die, cu);
4039 }
4040 else
4041 {
4042 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4043 if (attr)
4044 {
4045 sym = new_symbol (child_die, die->type, cu);
4046 if (SYMBOL_VALUE (sym) < 0)
4047 unsigned_enum = 0;
4048
4049 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4050 {
4051 fields = (struct field *)
4052 xrealloc (fields,
4053 (num_fields + DW_FIELD_ALLOC_CHUNK)
4054 * sizeof (struct field));
4055 }
4056
4057 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4058 FIELD_TYPE (fields[num_fields]) = NULL;
4059 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4060 FIELD_BITSIZE (fields[num_fields]) = 0;
4061 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4062
4063 num_fields++;
4064 }
4065 }
4066
4067 child_die = sibling_die (child_die);
4068 }
4069
4070 if (num_fields)
4071 {
4072 TYPE_NFIELDS (die->type) = num_fields;
4073 TYPE_FIELDS (die->type) = (struct field *)
4074 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4075 memcpy (TYPE_FIELDS (die->type), fields,
4076 sizeof (struct field) * num_fields);
4077 xfree (fields);
4078 }
4079 if (unsigned_enum)
4080 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4081 }
4082
4083 new_symbol (die, die->type, cu);
4084 }
4085
4086 /* Extract all information from a DW_TAG_array_type DIE and put it in
4087 the DIE's type field. For now, this only handles one dimensional
4088 arrays. */
4089
4090 static void
4091 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4092 {
4093 struct objfile *objfile = cu->objfile;
4094 struct die_info *child_die;
4095 struct type *type = NULL;
4096 struct type *element_type, *range_type, *index_type;
4097 struct type **range_types = NULL;
4098 struct attribute *attr;
4099 int ndim = 0;
4100 struct cleanup *back_to;
4101
4102 /* Return if we've already decoded this type. */
4103 if (die->type)
4104 {
4105 return;
4106 }
4107
4108 element_type = die_type (die, cu);
4109
4110 /* Irix 6.2 native cc creates array types without children for
4111 arrays with unspecified length. */
4112 if (die->child == NULL)
4113 {
4114 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4115 range_type = create_range_type (NULL, index_type, 0, -1);
4116 set_die_type (die, create_array_type (NULL, element_type, range_type),
4117 cu);
4118 return;
4119 }
4120
4121 back_to = make_cleanup (null_cleanup, NULL);
4122 child_die = die->child;
4123 while (child_die && child_die->tag)
4124 {
4125 if (child_die->tag == DW_TAG_subrange_type)
4126 {
4127 read_subrange_type (child_die, cu);
4128
4129 if (child_die->type != NULL)
4130 {
4131 /* The range type was succesfully read. Save it for
4132 the array type creation. */
4133 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4134 {
4135 range_types = (struct type **)
4136 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4137 * sizeof (struct type *));
4138 if (ndim == 0)
4139 make_cleanup (free_current_contents, &range_types);
4140 }
4141 range_types[ndim++] = child_die->type;
4142 }
4143 }
4144 child_die = sibling_die (child_die);
4145 }
4146
4147 /* Dwarf2 dimensions are output from left to right, create the
4148 necessary array types in backwards order. */
4149
4150 type = element_type;
4151
4152 if (read_array_order (die, cu) == DW_ORD_col_major)
4153 {
4154 int i = 0;
4155 while (i < ndim)
4156 type = create_array_type (NULL, type, range_types[i++]);
4157 }
4158 else
4159 {
4160 while (ndim-- > 0)
4161 type = create_array_type (NULL, type, range_types[ndim]);
4162 }
4163
4164 /* Understand Dwarf2 support for vector types (like they occur on
4165 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4166 array type. This is not part of the Dwarf2/3 standard yet, but a
4167 custom vendor extension. The main difference between a regular
4168 array and the vector variant is that vectors are passed by value
4169 to functions. */
4170 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4171 if (attr)
4172 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4173
4174 do_cleanups (back_to);
4175
4176 /* Install the type in the die. */
4177 set_die_type (die, type, cu);
4178 }
4179
4180 static enum dwarf_array_dim_ordering
4181 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4182 {
4183 struct attribute *attr;
4184
4185 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4186
4187 if (attr) return DW_SND (attr);
4188
4189 /*
4190 GNU F77 is a special case, as at 08/2004 array type info is the
4191 opposite order to the dwarf2 specification, but data is still
4192 laid out as per normal fortran.
4193
4194 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4195 version checking.
4196 */
4197
4198 if (cu->language == language_fortran &&
4199 cu->producer && strstr (cu->producer, "GNU F77"))
4200 {
4201 return DW_ORD_row_major;
4202 }
4203
4204 switch (cu->language_defn->la_array_ordering)
4205 {
4206 case array_column_major:
4207 return DW_ORD_col_major;
4208 case array_row_major:
4209 default:
4210 return DW_ORD_row_major;
4211 };
4212 }
4213
4214
4215 /* First cut: install each common block member as a global variable. */
4216
4217 static void
4218 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4219 {
4220 struct die_info *child_die;
4221 struct attribute *attr;
4222 struct symbol *sym;
4223 CORE_ADDR base = (CORE_ADDR) 0;
4224
4225 attr = dwarf2_attr (die, DW_AT_location, cu);
4226 if (attr)
4227 {
4228 /* Support the .debug_loc offsets */
4229 if (attr_form_is_block (attr))
4230 {
4231 base = decode_locdesc (DW_BLOCK (attr), cu);
4232 }
4233 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4234 {
4235 dwarf2_complex_location_expr_complaint ();
4236 }
4237 else
4238 {
4239 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4240 "common block member");
4241 }
4242 }
4243 if (die->child != NULL)
4244 {
4245 child_die = die->child;
4246 while (child_die && child_die->tag)
4247 {
4248 sym = new_symbol (child_die, NULL, cu);
4249 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4250 if (attr)
4251 {
4252 SYMBOL_VALUE_ADDRESS (sym) =
4253 base + decode_locdesc (DW_BLOCK (attr), cu);
4254 add_symbol_to_list (sym, &global_symbols);
4255 }
4256 child_die = sibling_die (child_die);
4257 }
4258 }
4259 }
4260
4261 /* Read a C++ namespace. */
4262
4263 static void
4264 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4265 {
4266 struct objfile *objfile = cu->objfile;
4267 const char *previous_prefix = processing_current_prefix;
4268 const char *name;
4269 int is_anonymous;
4270 struct die_info *current_die;
4271 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4272
4273 name = namespace_name (die, &is_anonymous, cu);
4274
4275 /* Now build the name of the current namespace. */
4276
4277 if (previous_prefix[0] == '\0')
4278 {
4279 processing_current_prefix = name;
4280 }
4281 else
4282 {
4283 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4284 make_cleanup (xfree, temp_name);
4285 processing_current_prefix = temp_name;
4286 }
4287
4288 /* Add a symbol associated to this if we haven't seen the namespace
4289 before. Also, add a using directive if it's an anonymous
4290 namespace. */
4291
4292 if (dwarf2_extension (die, cu) == NULL)
4293 {
4294 struct type *type;
4295
4296 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4297 this cast will hopefully become unnecessary. */
4298 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4299 (char *) processing_current_prefix,
4300 objfile);
4301 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4302
4303 new_symbol (die, type, cu);
4304 set_die_type (die, type, cu);
4305
4306 if (is_anonymous)
4307 cp_add_using_directive (processing_current_prefix,
4308 strlen (previous_prefix),
4309 strlen (processing_current_prefix));
4310 }
4311
4312 if (die->child != NULL)
4313 {
4314 struct die_info *child_die = die->child;
4315
4316 while (child_die && child_die->tag)
4317 {
4318 process_die (child_die, cu);
4319 child_die = sibling_die (child_die);
4320 }
4321 }
4322
4323 processing_current_prefix = previous_prefix;
4324 do_cleanups (back_to);
4325 }
4326
4327 /* Return the name of the namespace represented by DIE. Set
4328 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4329 namespace. */
4330
4331 static const char *
4332 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4333 {
4334 struct die_info *current_die;
4335 const char *name = NULL;
4336
4337 /* Loop through the extensions until we find a name. */
4338
4339 for (current_die = die;
4340 current_die != NULL;
4341 current_die = dwarf2_extension (die, cu))
4342 {
4343 name = dwarf2_name (current_die, cu);
4344 if (name != NULL)
4345 break;
4346 }
4347
4348 /* Is it an anonymous namespace? */
4349
4350 *is_anonymous = (name == NULL);
4351 if (*is_anonymous)
4352 name = "(anonymous namespace)";
4353
4354 return name;
4355 }
4356
4357 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4358 the user defined type vector. */
4359
4360 static void
4361 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4362 {
4363 struct comp_unit_head *cu_header = &cu->header;
4364 struct type *type;
4365 struct attribute *attr_byte_size;
4366 struct attribute *attr_address_class;
4367 int byte_size, addr_class;
4368
4369 if (die->type)
4370 {
4371 return;
4372 }
4373
4374 type = lookup_pointer_type (die_type (die, cu));
4375
4376 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4377 if (attr_byte_size)
4378 byte_size = DW_UNSND (attr_byte_size);
4379 else
4380 byte_size = cu_header->addr_size;
4381
4382 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4383 if (attr_address_class)
4384 addr_class = DW_UNSND (attr_address_class);
4385 else
4386 addr_class = DW_ADDR_none;
4387
4388 /* If the pointer size or address class is different than the
4389 default, create a type variant marked as such and set the
4390 length accordingly. */
4391 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4392 {
4393 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4394 {
4395 int type_flags;
4396
4397 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4398 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4399 type = make_type_with_address_space (type, type_flags);
4400 }
4401 else if (TYPE_LENGTH (type) != byte_size)
4402 {
4403 complaint (&symfile_complaints, "invalid pointer size %d", byte_size);
4404 }
4405 else {
4406 /* Should we also complain about unhandled address classes? */
4407 }
4408 }
4409
4410 TYPE_LENGTH (type) = byte_size;
4411 set_die_type (die, type, cu);
4412 }
4413
4414 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4415 the user defined type vector. */
4416
4417 static void
4418 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4419 {
4420 struct objfile *objfile = cu->objfile;
4421 struct type *type;
4422 struct type *to_type;
4423 struct type *domain;
4424
4425 if (die->type)
4426 {
4427 return;
4428 }
4429
4430 type = alloc_type (objfile);
4431 to_type = die_type (die, cu);
4432 domain = die_containing_type (die, cu);
4433 smash_to_member_type (type, domain, to_type);
4434
4435 set_die_type (die, type, cu);
4436 }
4437
4438 /* Extract all information from a DW_TAG_reference_type DIE and add to
4439 the user defined type vector. */
4440
4441 static void
4442 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4443 {
4444 struct comp_unit_head *cu_header = &cu->header;
4445 struct type *type;
4446 struct attribute *attr;
4447
4448 if (die->type)
4449 {
4450 return;
4451 }
4452
4453 type = lookup_reference_type (die_type (die, cu));
4454 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4455 if (attr)
4456 {
4457 TYPE_LENGTH (type) = DW_UNSND (attr);
4458 }
4459 else
4460 {
4461 TYPE_LENGTH (type) = cu_header->addr_size;
4462 }
4463 set_die_type (die, type, cu);
4464 }
4465
4466 static void
4467 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4468 {
4469 struct type *base_type;
4470
4471 if (die->type)
4472 {
4473 return;
4474 }
4475
4476 base_type = die_type (die, cu);
4477 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4478 cu);
4479 }
4480
4481 static void
4482 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4483 {
4484 struct type *base_type;
4485
4486 if (die->type)
4487 {
4488 return;
4489 }
4490
4491 base_type = die_type (die, cu);
4492 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4493 cu);
4494 }
4495
4496 /* Extract all information from a DW_TAG_string_type DIE and add to
4497 the user defined type vector. It isn't really a user defined type,
4498 but it behaves like one, with other DIE's using an AT_user_def_type
4499 attribute to reference it. */
4500
4501 static void
4502 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4503 {
4504 struct objfile *objfile = cu->objfile;
4505 struct type *type, *range_type, *index_type, *char_type;
4506 struct attribute *attr;
4507 unsigned int length;
4508
4509 if (die->type)
4510 {
4511 return;
4512 }
4513
4514 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4515 if (attr)
4516 {
4517 length = DW_UNSND (attr);
4518 }
4519 else
4520 {
4521 /* check for the DW_AT_byte_size attribute */
4522 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4523 if (attr)
4524 {
4525 length = DW_UNSND (attr);
4526 }
4527 else
4528 {
4529 length = 1;
4530 }
4531 }
4532 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4533 range_type = create_range_type (NULL, index_type, 1, length);
4534 if (cu->language == language_fortran)
4535 {
4536 /* Need to create a unique string type for bounds
4537 information */
4538 type = create_string_type (0, range_type);
4539 }
4540 else
4541 {
4542 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4543 type = create_string_type (char_type, range_type);
4544 }
4545 set_die_type (die, type, cu);
4546 }
4547
4548 /* Handle DIES due to C code like:
4549
4550 struct foo
4551 {
4552 int (*funcp)(int a, long l);
4553 int b;
4554 };
4555
4556 ('funcp' generates a DW_TAG_subroutine_type DIE)
4557 */
4558
4559 static void
4560 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4561 {
4562 struct type *type; /* Type that this function returns */
4563 struct type *ftype; /* Function that returns above type */
4564 struct attribute *attr;
4565
4566 /* Decode the type that this subroutine returns */
4567 if (die->type)
4568 {
4569 return;
4570 }
4571 type = die_type (die, cu);
4572 ftype = make_function_type (type, (struct type **) 0);
4573
4574 /* All functions in C++ and Java have prototypes. */
4575 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4576 if ((attr && (DW_UNSND (attr) != 0))
4577 || cu->language == language_cplus
4578 || cu->language == language_java)
4579 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4580
4581 if (die->child != NULL)
4582 {
4583 struct die_info *child_die;
4584 int nparams = 0;
4585 int iparams = 0;
4586
4587 /* Count the number of parameters.
4588 FIXME: GDB currently ignores vararg functions, but knows about
4589 vararg member functions. */
4590 child_die = die->child;
4591 while (child_die && child_die->tag)
4592 {
4593 if (child_die->tag == DW_TAG_formal_parameter)
4594 nparams++;
4595 else if (child_die->tag == DW_TAG_unspecified_parameters)
4596 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4597 child_die = sibling_die (child_die);
4598 }
4599
4600 /* Allocate storage for parameters and fill them in. */
4601 TYPE_NFIELDS (ftype) = nparams;
4602 TYPE_FIELDS (ftype) = (struct field *)
4603 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4604
4605 child_die = die->child;
4606 while (child_die && child_die->tag)
4607 {
4608 if (child_die->tag == DW_TAG_formal_parameter)
4609 {
4610 /* Dwarf2 has no clean way to discern C++ static and non-static
4611 member functions. G++ helps GDB by marking the first
4612 parameter for non-static member functions (which is the
4613 this pointer) as artificial. We pass this information
4614 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4615 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4616 if (attr)
4617 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4618 else
4619 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4620 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4621 iparams++;
4622 }
4623 child_die = sibling_die (child_die);
4624 }
4625 }
4626
4627 set_die_type (die, ftype, cu);
4628 }
4629
4630 static void
4631 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4632 {
4633 struct objfile *objfile = cu->objfile;
4634 struct attribute *attr;
4635 char *name = NULL;
4636
4637 if (!die->type)
4638 {
4639 attr = dwarf2_attr (die, DW_AT_name, cu);
4640 if (attr && DW_STRING (attr))
4641 {
4642 name = DW_STRING (attr);
4643 }
4644 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4645 TYPE_FLAG_TARGET_STUB, name, objfile),
4646 cu);
4647 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4648 }
4649 }
4650
4651 /* Find a representation of a given base type and install
4652 it in the TYPE field of the die. */
4653
4654 static void
4655 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4656 {
4657 struct objfile *objfile = cu->objfile;
4658 struct type *type;
4659 struct attribute *attr;
4660 int encoding = 0, size = 0;
4661
4662 /* If we've already decoded this die, this is a no-op. */
4663 if (die->type)
4664 {
4665 return;
4666 }
4667
4668 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4669 if (attr)
4670 {
4671 encoding = DW_UNSND (attr);
4672 }
4673 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4674 if (attr)
4675 {
4676 size = DW_UNSND (attr);
4677 }
4678 attr = dwarf2_attr (die, DW_AT_name, cu);
4679 if (attr && DW_STRING (attr))
4680 {
4681 enum type_code code = TYPE_CODE_INT;
4682 int type_flags = 0;
4683
4684 switch (encoding)
4685 {
4686 case DW_ATE_address:
4687 /* Turn DW_ATE_address into a void * pointer. */
4688 code = TYPE_CODE_PTR;
4689 type_flags |= TYPE_FLAG_UNSIGNED;
4690 break;
4691 case DW_ATE_boolean:
4692 code = TYPE_CODE_BOOL;
4693 type_flags |= TYPE_FLAG_UNSIGNED;
4694 break;
4695 case DW_ATE_complex_float:
4696 code = TYPE_CODE_COMPLEX;
4697 break;
4698 case DW_ATE_float:
4699 code = TYPE_CODE_FLT;
4700 break;
4701 case DW_ATE_signed:
4702 case DW_ATE_signed_char:
4703 break;
4704 case DW_ATE_unsigned:
4705 case DW_ATE_unsigned_char:
4706 type_flags |= TYPE_FLAG_UNSIGNED;
4707 break;
4708 default:
4709 complaint (&symfile_complaints, "unsupported DW_AT_encoding: '%s'",
4710 dwarf_type_encoding_name (encoding));
4711 break;
4712 }
4713 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4714 if (encoding == DW_ATE_address)
4715 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4716 cu);
4717 else if (encoding == DW_ATE_complex_float)
4718 {
4719 if (size == 32)
4720 TYPE_TARGET_TYPE (type)
4721 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4722 else if (size == 16)
4723 TYPE_TARGET_TYPE (type)
4724 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4725 else if (size == 8)
4726 TYPE_TARGET_TYPE (type)
4727 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4728 }
4729 }
4730 else
4731 {
4732 type = dwarf_base_type (encoding, size, cu);
4733 }
4734 set_die_type (die, type, cu);
4735 }
4736
4737 /* Read the given DW_AT_subrange DIE. */
4738
4739 static void
4740 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4741 {
4742 struct type *base_type;
4743 struct type *range_type;
4744 struct attribute *attr;
4745 int low = 0;
4746 int high = -1;
4747
4748 /* If we have already decoded this die, then nothing more to do. */
4749 if (die->type)
4750 return;
4751
4752 base_type = die_type (die, cu);
4753 if (base_type == NULL)
4754 {
4755 complaint (&symfile_complaints,
4756 "DW_AT_type missing from DW_TAG_subrange_type");
4757 return;
4758 }
4759
4760 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4761 base_type = alloc_type (NULL);
4762
4763 if (cu->language == language_fortran)
4764 {
4765 /* FORTRAN implies a lower bound of 1, if not given. */
4766 low = 1;
4767 }
4768
4769 /* FIXME: For variable sized arrays either of these could be
4770 a variable rather than a constant value. We'll allow it,
4771 but we don't know how to handle it. */
4772 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4773 if (attr)
4774 low = dwarf2_get_attr_constant_value (attr, 0);
4775
4776 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4777 if (attr)
4778 {
4779 if (attr->form == DW_FORM_block1)
4780 {
4781 /* GCC encodes arrays with unspecified or dynamic length
4782 with a DW_FORM_block1 attribute.
4783 FIXME: GDB does not yet know how to handle dynamic
4784 arrays properly, treat them as arrays with unspecified
4785 length for now.
4786
4787 FIXME: jimb/2003-09-22: GDB does not really know
4788 how to handle arrays of unspecified length
4789 either; we just represent them as zero-length
4790 arrays. Choose an appropriate upper bound given
4791 the lower bound we've computed above. */
4792 high = low - 1;
4793 }
4794 else
4795 high = dwarf2_get_attr_constant_value (attr, 1);
4796 }
4797
4798 range_type = create_range_type (NULL, base_type, low, high);
4799
4800 attr = dwarf2_attr (die, DW_AT_name, cu);
4801 if (attr && DW_STRING (attr))
4802 TYPE_NAME (range_type) = DW_STRING (attr);
4803
4804 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4805 if (attr)
4806 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4807
4808 set_die_type (die, range_type, cu);
4809 }
4810
4811
4812 /* Read a whole compilation unit into a linked list of dies. */
4813
4814 static struct die_info *
4815 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4816 {
4817 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4818 }
4819
4820 /* Read a single die and all its descendents. Set the die's sibling
4821 field to NULL; set other fields in the die correctly, and set all
4822 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4823 location of the info_ptr after reading all of those dies. PARENT
4824 is the parent of the die in question. */
4825
4826 static struct die_info *
4827 read_die_and_children (char *info_ptr, bfd *abfd,
4828 struct dwarf2_cu *cu,
4829 char **new_info_ptr,
4830 struct die_info *parent)
4831 {
4832 struct die_info *die;
4833 char *cur_ptr;
4834 int has_children;
4835
4836 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4837 store_in_ref_table (die->offset, die, cu);
4838
4839 if (has_children)
4840 {
4841 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4842 new_info_ptr, die);
4843 }
4844 else
4845 {
4846 die->child = NULL;
4847 *new_info_ptr = cur_ptr;
4848 }
4849
4850 die->sibling = NULL;
4851 die->parent = parent;
4852 return die;
4853 }
4854
4855 /* Read a die, all of its descendents, and all of its siblings; set
4856 all of the fields of all of the dies correctly. Arguments are as
4857 in read_die_and_children. */
4858
4859 static struct die_info *
4860 read_die_and_siblings (char *info_ptr, bfd *abfd,
4861 struct dwarf2_cu *cu,
4862 char **new_info_ptr,
4863 struct die_info *parent)
4864 {
4865 struct die_info *first_die, *last_sibling;
4866 char *cur_ptr;
4867
4868 cur_ptr = info_ptr;
4869 first_die = last_sibling = NULL;
4870
4871 while (1)
4872 {
4873 struct die_info *die
4874 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4875
4876 if (!first_die)
4877 {
4878 first_die = die;
4879 }
4880 else
4881 {
4882 last_sibling->sibling = die;
4883 }
4884
4885 if (die->tag == 0)
4886 {
4887 *new_info_ptr = cur_ptr;
4888 return first_die;
4889 }
4890 else
4891 {
4892 last_sibling = die;
4893 }
4894 }
4895 }
4896
4897 /* Free a linked list of dies. */
4898
4899 static void
4900 free_die_list (struct die_info *dies)
4901 {
4902 struct die_info *die, *next;
4903
4904 die = dies;
4905 while (die)
4906 {
4907 if (die->child != NULL)
4908 free_die_list (die->child);
4909 next = die->sibling;
4910 xfree (die->attrs);
4911 xfree (die);
4912 die = next;
4913 }
4914 }
4915
4916 /* Read the contents of the section at OFFSET and of size SIZE from the
4917 object file specified by OBJFILE into the objfile_obstack and return it. */
4918
4919 char *
4920 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4921 {
4922 bfd *abfd = objfile->obfd;
4923 char *buf, *retbuf;
4924 bfd_size_type size = bfd_get_section_size (sectp);
4925
4926 if (size == 0)
4927 return NULL;
4928
4929 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4930 retbuf
4931 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4932 if (retbuf != NULL)
4933 return retbuf;
4934
4935 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4936 || bfd_bread (buf, size, abfd) != size)
4937 error ("Dwarf Error: Can't read DWARF data from '%s'",
4938 bfd_get_filename (abfd));
4939
4940 return buf;
4941 }
4942
4943 /* In DWARF version 2, the description of the debugging information is
4944 stored in a separate .debug_abbrev section. Before we read any
4945 dies from a section we read in all abbreviations and install them
4946 in a hash table. This function also sets flags in CU describing
4947 the data found in the abbrev table. */
4948
4949 static void
4950 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4951 {
4952 struct comp_unit_head *cu_header = &cu->header;
4953 char *abbrev_ptr;
4954 struct abbrev_info *cur_abbrev;
4955 unsigned int abbrev_number, bytes_read, abbrev_name;
4956 unsigned int abbrev_form, hash_number;
4957 struct attr_abbrev *cur_attrs;
4958 unsigned int allocated_attrs;
4959
4960 /* Initialize dwarf2 abbrevs */
4961 obstack_init (&cu->abbrev_obstack);
4962 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4963 (ABBREV_HASH_SIZE
4964 * sizeof (struct abbrev_info *)));
4965 memset (cu->dwarf2_abbrevs, 0,
4966 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4967
4968 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4969 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4970 abbrev_ptr += bytes_read;
4971
4972 allocated_attrs = ATTR_ALLOC_CHUNK;
4973 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4974
4975 /* loop until we reach an abbrev number of 0 */
4976 while (abbrev_number)
4977 {
4978 cur_abbrev = dwarf_alloc_abbrev (cu);
4979
4980 /* read in abbrev header */
4981 cur_abbrev->number = abbrev_number;
4982 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4983 abbrev_ptr += bytes_read;
4984 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4985 abbrev_ptr += 1;
4986
4987 if (cur_abbrev->tag == DW_TAG_namespace)
4988 cu->has_namespace_info = 1;
4989
4990 /* now read in declarations */
4991 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4994 abbrev_ptr += bytes_read;
4995 while (abbrev_name)
4996 {
4997 if (cur_abbrev->num_attrs == allocated_attrs)
4998 {
4999 allocated_attrs += ATTR_ALLOC_CHUNK;
5000 cur_attrs
5001 = xrealloc (cur_attrs, (allocated_attrs
5002 * sizeof (struct attr_abbrev)));
5003 }
5004
5005 /* Record whether this compilation unit might have
5006 inter-compilation-unit references. If we don't know what form
5007 this attribute will have, then it might potentially be a
5008 DW_FORM_ref_addr, so we conservatively expect inter-CU
5009 references. */
5010
5011 if (abbrev_form == DW_FORM_ref_addr
5012 || abbrev_form == DW_FORM_indirect)
5013 cu->has_form_ref_addr = 1;
5014
5015 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5016 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5017 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5018 abbrev_ptr += bytes_read;
5019 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5020 abbrev_ptr += bytes_read;
5021 }
5022
5023 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5024 (cur_abbrev->num_attrs
5025 * sizeof (struct attr_abbrev)));
5026 memcpy (cur_abbrev->attrs, cur_attrs,
5027 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5028
5029 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5030 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5031 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5032
5033 /* Get next abbreviation.
5034 Under Irix6 the abbreviations for a compilation unit are not
5035 always properly terminated with an abbrev number of 0.
5036 Exit loop if we encounter an abbreviation which we have
5037 already read (which means we are about to read the abbreviations
5038 for the next compile unit) or if the end of the abbreviation
5039 table is reached. */
5040 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5041 >= dwarf2_per_objfile->abbrev_size)
5042 break;
5043 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5044 abbrev_ptr += bytes_read;
5045 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5046 break;
5047 }
5048
5049 xfree (cur_attrs);
5050 }
5051
5052 /* Release the memory used by the abbrev table for a compilation unit. */
5053
5054 static void
5055 dwarf2_free_abbrev_table (void *ptr_to_cu)
5056 {
5057 struct dwarf2_cu *cu = ptr_to_cu;
5058
5059 obstack_free (&cu->abbrev_obstack, NULL);
5060 cu->dwarf2_abbrevs = NULL;
5061 }
5062
5063 /* Lookup an abbrev_info structure in the abbrev hash table. */
5064
5065 static struct abbrev_info *
5066 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5067 {
5068 unsigned int hash_number;
5069 struct abbrev_info *abbrev;
5070
5071 hash_number = number % ABBREV_HASH_SIZE;
5072 abbrev = cu->dwarf2_abbrevs[hash_number];
5073
5074 while (abbrev)
5075 {
5076 if (abbrev->number == number)
5077 return abbrev;
5078 else
5079 abbrev = abbrev->next;
5080 }
5081 return NULL;
5082 }
5083
5084 /* Returns nonzero if TAG represents a type that we might generate a partial
5085 symbol for. */
5086
5087 static int
5088 is_type_tag_for_partial (int tag)
5089 {
5090 switch (tag)
5091 {
5092 #if 0
5093 /* Some types that would be reasonable to generate partial symbols for,
5094 that we don't at present. */
5095 case DW_TAG_array_type:
5096 case DW_TAG_file_type:
5097 case DW_TAG_ptr_to_member_type:
5098 case DW_TAG_set_type:
5099 case DW_TAG_string_type:
5100 case DW_TAG_subroutine_type:
5101 #endif
5102 case DW_TAG_base_type:
5103 case DW_TAG_class_type:
5104 case DW_TAG_enumeration_type:
5105 case DW_TAG_structure_type:
5106 case DW_TAG_subrange_type:
5107 case DW_TAG_typedef:
5108 case DW_TAG_union_type:
5109 return 1;
5110 default:
5111 return 0;
5112 }
5113 }
5114
5115 /* Load all DIEs that are interesting for partial symbols into memory. */
5116
5117 static struct partial_die_info *
5118 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5119 struct dwarf2_cu *cu)
5120 {
5121 struct partial_die_info *part_die;
5122 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5123 struct abbrev_info *abbrev;
5124 unsigned int bytes_read;
5125
5126 int nesting_level = 1;
5127
5128 parent_die = NULL;
5129 last_die = NULL;
5130
5131 cu->partial_dies
5132 = htab_create_alloc_ex (cu->header.length / 12,
5133 partial_die_hash,
5134 partial_die_eq,
5135 NULL,
5136 &cu->comp_unit_obstack,
5137 hashtab_obstack_allocate,
5138 dummy_obstack_deallocate);
5139
5140 part_die = obstack_alloc (&cu->comp_unit_obstack,
5141 sizeof (struct partial_die_info));
5142
5143 while (1)
5144 {
5145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5146
5147 /* A NULL abbrev means the end of a series of children. */
5148 if (abbrev == NULL)
5149 {
5150 if (--nesting_level == 0)
5151 {
5152 /* PART_DIE was probably the last thing allocated on the
5153 comp_unit_obstack, so we could call obstack_free
5154 here. We don't do that because the waste is small,
5155 and will be cleaned up when we're done with this
5156 compilation unit. This way, we're also more robust
5157 against other users of the comp_unit_obstack. */
5158 return first_die;
5159 }
5160 info_ptr += bytes_read;
5161 last_die = parent_die;
5162 parent_die = parent_die->die_parent;
5163 continue;
5164 }
5165
5166 /* Check whether this DIE is interesting enough to save. */
5167 if (!is_type_tag_for_partial (abbrev->tag)
5168 && abbrev->tag != DW_TAG_enumerator
5169 && abbrev->tag != DW_TAG_subprogram
5170 && abbrev->tag != DW_TAG_variable
5171 && abbrev->tag != DW_TAG_namespace)
5172 {
5173 /* Otherwise we skip to the next sibling, if any. */
5174 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5175 continue;
5176 }
5177
5178 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5179 abfd, info_ptr, cu);
5180
5181 /* This two-pass algorithm for processing partial symbols has a
5182 high cost in cache pressure. Thus, handle some simple cases
5183 here which cover the majority of C partial symbols. DIEs
5184 which neither have specification tags in them, nor could have
5185 specification tags elsewhere pointing at them, can simply be
5186 processed and discarded.
5187
5188 This segment is also optional; scan_partial_symbols and
5189 add_partial_symbol will handle these DIEs if we chain
5190 them in normally. When compilers which do not emit large
5191 quantities of duplicate debug information are more common,
5192 this code can probably be removed. */
5193
5194 /* Any complete simple types at the top level (pretty much all
5195 of them, for a language without namespaces), can be processed
5196 directly. */
5197 if (parent_die == NULL
5198 && part_die->has_specification == 0
5199 && part_die->is_declaration == 0
5200 && (part_die->tag == DW_TAG_typedef
5201 || part_die->tag == DW_TAG_base_type
5202 || part_die->tag == DW_TAG_subrange_type))
5203 {
5204 if (building_psymtab && part_die->name != NULL)
5205 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5206 VAR_DOMAIN, LOC_TYPEDEF,
5207 &cu->objfile->static_psymbols,
5208 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5209 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5210 continue;
5211 }
5212
5213 /* If we're at the second level, and we're an enumerator, and
5214 our parent has no specification (meaning possibly lives in a
5215 namespace elsewhere), then we can add the partial symbol now
5216 instead of queueing it. */
5217 if (part_die->tag == DW_TAG_enumerator
5218 && parent_die != NULL
5219 && parent_die->die_parent == NULL
5220 && parent_die->tag == DW_TAG_enumeration_type
5221 && parent_die->has_specification == 0)
5222 {
5223 if (part_die->name == NULL)
5224 complaint (&symfile_complaints, "malformed enumerator DIE ignored");
5225 else if (building_psymtab)
5226 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5227 VAR_DOMAIN, LOC_CONST,
5228 (cu->language == language_cplus
5229 || cu->language == language_java)
5230 ? &cu->objfile->global_psymbols
5231 : &cu->objfile->static_psymbols,
5232 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5233
5234 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5235 continue;
5236 }
5237
5238 /* We'll save this DIE so link it in. */
5239 part_die->die_parent = parent_die;
5240 part_die->die_sibling = NULL;
5241 part_die->die_child = NULL;
5242
5243 if (last_die && last_die == parent_die)
5244 last_die->die_child = part_die;
5245 else if (last_die)
5246 last_die->die_sibling = part_die;
5247
5248 last_die = part_die;
5249
5250 if (first_die == NULL)
5251 first_die = part_die;
5252
5253 /* Maybe add the DIE to the hash table. Not all DIEs that we
5254 find interesting need to be in the hash table, because we
5255 also have the parent/sibling/child chains; only those that we
5256 might refer to by offset later during partial symbol reading.
5257
5258 For now this means things that might have be the target of a
5259 DW_AT_specification, DW_AT_abstract_origin, or
5260 DW_AT_extension. DW_AT_extension will refer only to
5261 namespaces; DW_AT_abstract_origin refers to functions (and
5262 many things under the function DIE, but we do not recurse
5263 into function DIEs during partial symbol reading) and
5264 possibly variables as well; DW_AT_specification refers to
5265 declarations. Declarations ought to have the DW_AT_declaration
5266 flag. It happens that GCC forgets to put it in sometimes, but
5267 only for functions, not for types.
5268
5269 Adding more things than necessary to the hash table is harmless
5270 except for the performance cost. Adding too few will result in
5271 internal errors in find_partial_die. */
5272
5273 if (abbrev->tag == DW_TAG_subprogram
5274 || abbrev->tag == DW_TAG_variable
5275 || abbrev->tag == DW_TAG_namespace
5276 || part_die->is_declaration)
5277 {
5278 void **slot;
5279
5280 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5281 part_die->offset, INSERT);
5282 *slot = part_die;
5283 }
5284
5285 part_die = obstack_alloc (&cu->comp_unit_obstack,
5286 sizeof (struct partial_die_info));
5287
5288 /* For some DIEs we want to follow their children (if any). For C
5289 we have no reason to follow the children of structures; for other
5290 languages we have to, both so that we can get at method physnames
5291 to infer fully qualified class names, and for DW_AT_specification. */
5292 if (last_die->has_children
5293 && (last_die->tag == DW_TAG_namespace
5294 || last_die->tag == DW_TAG_enumeration_type
5295 || (cu->language != language_c
5296 && (last_die->tag == DW_TAG_class_type
5297 || last_die->tag == DW_TAG_structure_type
5298 || last_die->tag == DW_TAG_union_type))))
5299 {
5300 nesting_level++;
5301 parent_die = last_die;
5302 continue;
5303 }
5304
5305 /* Otherwise we skip to the next sibling, if any. */
5306 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5307
5308 /* Back to the top, do it again. */
5309 }
5310 }
5311
5312 /* Read a minimal amount of information into the minimal die structure. */
5313
5314 static char *
5315 read_partial_die (struct partial_die_info *part_die,
5316 struct abbrev_info *abbrev,
5317 unsigned int abbrev_len, bfd *abfd,
5318 char *info_ptr, struct dwarf2_cu *cu)
5319 {
5320 unsigned int bytes_read, i;
5321 struct attribute attr;
5322 int has_low_pc_attr = 0;
5323 int has_high_pc_attr = 0;
5324
5325 memset (part_die, 0, sizeof (struct partial_die_info));
5326
5327 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5328
5329 info_ptr += abbrev_len;
5330
5331 if (abbrev == NULL)
5332 return info_ptr;
5333
5334 part_die->tag = abbrev->tag;
5335 part_die->has_children = abbrev->has_children;
5336
5337 for (i = 0; i < abbrev->num_attrs; ++i)
5338 {
5339 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5340
5341 /* Store the data if it is of an attribute we want to keep in a
5342 partial symbol table. */
5343 switch (attr.name)
5344 {
5345 case DW_AT_name:
5346
5347 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5348 if (part_die->name == NULL)
5349 part_die->name = DW_STRING (&attr);
5350 break;
5351 case DW_AT_comp_dir:
5352 if (part_die->dirname == NULL)
5353 part_die->dirname = DW_STRING (&attr);
5354 break;
5355 case DW_AT_MIPS_linkage_name:
5356 part_die->name = DW_STRING (&attr);
5357 break;
5358 case DW_AT_low_pc:
5359 has_low_pc_attr = 1;
5360 part_die->lowpc = DW_ADDR (&attr);
5361 break;
5362 case DW_AT_high_pc:
5363 has_high_pc_attr = 1;
5364 part_die->highpc = DW_ADDR (&attr);
5365 break;
5366 case DW_AT_location:
5367 /* Support the .debug_loc offsets */
5368 if (attr_form_is_block (&attr))
5369 {
5370 part_die->locdesc = DW_BLOCK (&attr);
5371 }
5372 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5373 {
5374 dwarf2_complex_location_expr_complaint ();
5375 }
5376 else
5377 {
5378 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5379 "partial symbol information");
5380 }
5381 break;
5382 case DW_AT_language:
5383 part_die->language = DW_UNSND (&attr);
5384 break;
5385 case DW_AT_external:
5386 part_die->is_external = DW_UNSND (&attr);
5387 break;
5388 case DW_AT_declaration:
5389 part_die->is_declaration = DW_UNSND (&attr);
5390 break;
5391 case DW_AT_type:
5392 part_die->has_type = 1;
5393 break;
5394 case DW_AT_abstract_origin:
5395 case DW_AT_specification:
5396 case DW_AT_extension:
5397 part_die->has_specification = 1;
5398 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5399 break;
5400 case DW_AT_sibling:
5401 /* Ignore absolute siblings, they might point outside of
5402 the current compile unit. */
5403 if (attr.form == DW_FORM_ref_addr)
5404 complaint (&symfile_complaints, "ignoring absolute DW_AT_sibling");
5405 else
5406 part_die->sibling = dwarf2_per_objfile->info_buffer
5407 + dwarf2_get_ref_die_offset (&attr, cu);
5408 break;
5409 case DW_AT_stmt_list:
5410 part_die->has_stmt_list = 1;
5411 part_die->line_offset = DW_UNSND (&attr);
5412 break;
5413 default:
5414 break;
5415 }
5416 }
5417
5418 /* When using the GNU linker, .gnu.linkonce. sections are used to
5419 eliminate duplicate copies of functions and vtables and such.
5420 The linker will arbitrarily choose one and discard the others.
5421 The AT_*_pc values for such functions refer to local labels in
5422 these sections. If the section from that file was discarded, the
5423 labels are not in the output, so the relocs get a value of 0.
5424 If this is a discarded function, mark the pc bounds as invalid,
5425 so that GDB will ignore it. */
5426 if (has_low_pc_attr && has_high_pc_attr
5427 && part_die->lowpc < part_die->highpc
5428 && (part_die->lowpc != 0
5429 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5430 part_die->has_pc_info = 1;
5431 return info_ptr;
5432 }
5433
5434 /* Find a cached partial DIE at OFFSET in CU. */
5435
5436 static struct partial_die_info *
5437 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5438 {
5439 struct partial_die_info *lookup_die = NULL;
5440 struct partial_die_info part_die;
5441
5442 part_die.offset = offset;
5443 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5444
5445 if (lookup_die == NULL)
5446 internal_error (__FILE__, __LINE__,
5447 "could not find partial DIE in cache\n");
5448
5449 return lookup_die;
5450 }
5451
5452 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5453
5454 static struct partial_die_info *
5455 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5456 {
5457 struct dwarf2_per_cu_data *per_cu;
5458
5459 if (offset >= cu->header.offset
5460 && offset < cu->header.offset + cu->header.length)
5461 return find_partial_die_in_comp_unit (offset, cu);
5462
5463 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5464
5465 if (per_cu->cu == NULL)
5466 {
5467 load_comp_unit (per_cu, cu->objfile);
5468 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5469 dwarf2_per_objfile->read_in_chain = per_cu;
5470 }
5471
5472 per_cu->cu->last_used = 0;
5473 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5474 }
5475
5476 /* Adjust PART_DIE before generating a symbol for it. This function
5477 may set the is_external flag or change the DIE's name. */
5478
5479 static void
5480 fixup_partial_die (struct partial_die_info *part_die,
5481 struct dwarf2_cu *cu)
5482 {
5483 /* If we found a reference attribute and the DIE has no name, try
5484 to find a name in the referred to DIE. */
5485
5486 if (part_die->name == NULL && part_die->has_specification)
5487 {
5488 struct partial_die_info *spec_die;
5489
5490 spec_die = find_partial_die (part_die->spec_offset, cu);
5491
5492 fixup_partial_die (spec_die, cu);
5493
5494 if (spec_die->name)
5495 {
5496 part_die->name = spec_die->name;
5497
5498 /* Copy DW_AT_external attribute if it is set. */
5499 if (spec_die->is_external)
5500 part_die->is_external = spec_die->is_external;
5501 }
5502 }
5503
5504 /* Set default names for some unnamed DIEs. */
5505 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5506 || part_die->tag == DW_TAG_class_type))
5507 part_die->name = "(anonymous class)";
5508
5509 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5510 part_die->name = "(anonymous namespace)";
5511
5512 if (part_die->tag == DW_TAG_structure_type
5513 || part_die->tag == DW_TAG_class_type
5514 || part_die->tag == DW_TAG_union_type)
5515 guess_structure_name (part_die, cu);
5516 }
5517
5518 /* Read the die from the .debug_info section buffer. Set DIEP to
5519 point to a newly allocated die with its information, except for its
5520 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5521 whether the die has children or not. */
5522
5523 static char *
5524 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5525 struct dwarf2_cu *cu, int *has_children)
5526 {
5527 unsigned int abbrev_number, bytes_read, i, offset;
5528 struct abbrev_info *abbrev;
5529 struct die_info *die;
5530
5531 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5532 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5533 info_ptr += bytes_read;
5534 if (!abbrev_number)
5535 {
5536 die = dwarf_alloc_die ();
5537 die->tag = 0;
5538 die->abbrev = abbrev_number;
5539 die->type = NULL;
5540 *diep = die;
5541 *has_children = 0;
5542 return info_ptr;
5543 }
5544
5545 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5546 if (!abbrev)
5547 {
5548 error ("Dwarf Error: could not find abbrev number %d [in module %s]",
5549 abbrev_number,
5550 bfd_get_filename (abfd));
5551 }
5552 die = dwarf_alloc_die ();
5553 die->offset = offset;
5554 die->tag = abbrev->tag;
5555 die->abbrev = abbrev_number;
5556 die->type = NULL;
5557
5558 die->num_attrs = abbrev->num_attrs;
5559 die->attrs = (struct attribute *)
5560 xmalloc (die->num_attrs * sizeof (struct attribute));
5561
5562 for (i = 0; i < abbrev->num_attrs; ++i)
5563 {
5564 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5565 abfd, info_ptr, cu);
5566
5567 /* If this attribute is an absolute reference to a different
5568 compilation unit, make sure that compilation unit is loaded
5569 also. */
5570 if (die->attrs[i].form == DW_FORM_ref_addr
5571 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5572 || (DW_ADDR (&die->attrs[i])
5573 >= cu->header.offset + cu->header.length)))
5574 {
5575 struct dwarf2_per_cu_data *per_cu;
5576 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5577 cu->objfile);
5578
5579 /* Mark the dependence relation so that we don't flush PER_CU
5580 too early. */
5581 dwarf2_add_dependence (cu, per_cu);
5582
5583 /* If it's already on the queue, we have nothing to do. */
5584 if (per_cu->queued)
5585 continue;
5586
5587 /* If the compilation unit is already loaded, just mark it as
5588 used. */
5589 if (per_cu->cu != NULL)
5590 {
5591 per_cu->cu->last_used = 0;
5592 continue;
5593 }
5594
5595 /* Add it to the queue. */
5596 queue_comp_unit (per_cu);
5597 }
5598 }
5599
5600 *diep = die;
5601 *has_children = abbrev->has_children;
5602 return info_ptr;
5603 }
5604
5605 /* Read an attribute value described by an attribute form. */
5606
5607 static char *
5608 read_attribute_value (struct attribute *attr, unsigned form,
5609 bfd *abfd, char *info_ptr,
5610 struct dwarf2_cu *cu)
5611 {
5612 struct comp_unit_head *cu_header = &cu->header;
5613 unsigned int bytes_read;
5614 struct dwarf_block *blk;
5615
5616 attr->form = form;
5617 switch (form)
5618 {
5619 case DW_FORM_addr:
5620 case DW_FORM_ref_addr:
5621 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5622 info_ptr += bytes_read;
5623 break;
5624 case DW_FORM_block2:
5625 blk = dwarf_alloc_block (cu);
5626 blk->size = read_2_bytes (abfd, info_ptr);
5627 info_ptr += 2;
5628 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5629 info_ptr += blk->size;
5630 DW_BLOCK (attr) = blk;
5631 break;
5632 case DW_FORM_block4:
5633 blk = dwarf_alloc_block (cu);
5634 blk->size = read_4_bytes (abfd, info_ptr);
5635 info_ptr += 4;
5636 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5637 info_ptr += blk->size;
5638 DW_BLOCK (attr) = blk;
5639 break;
5640 case DW_FORM_data2:
5641 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5642 info_ptr += 2;
5643 break;
5644 case DW_FORM_data4:
5645 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5646 info_ptr += 4;
5647 break;
5648 case DW_FORM_data8:
5649 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5650 info_ptr += 8;
5651 break;
5652 case DW_FORM_string:
5653 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5654 info_ptr += bytes_read;
5655 break;
5656 case DW_FORM_strp:
5657 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5658 &bytes_read);
5659 info_ptr += bytes_read;
5660 break;
5661 case DW_FORM_block:
5662 blk = dwarf_alloc_block (cu);
5663 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5664 info_ptr += bytes_read;
5665 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5666 info_ptr += blk->size;
5667 DW_BLOCK (attr) = blk;
5668 break;
5669 case DW_FORM_block1:
5670 blk = dwarf_alloc_block (cu);
5671 blk->size = read_1_byte (abfd, info_ptr);
5672 info_ptr += 1;
5673 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5674 info_ptr += blk->size;
5675 DW_BLOCK (attr) = blk;
5676 break;
5677 case DW_FORM_data1:
5678 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5679 info_ptr += 1;
5680 break;
5681 case DW_FORM_flag:
5682 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5683 info_ptr += 1;
5684 break;
5685 case DW_FORM_sdata:
5686 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5687 info_ptr += bytes_read;
5688 break;
5689 case DW_FORM_udata:
5690 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5691 info_ptr += bytes_read;
5692 break;
5693 case DW_FORM_ref1:
5694 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5695 info_ptr += 1;
5696 break;
5697 case DW_FORM_ref2:
5698 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5699 info_ptr += 2;
5700 break;
5701 case DW_FORM_ref4:
5702 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5703 info_ptr += 4;
5704 break;
5705 case DW_FORM_ref8:
5706 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5707 info_ptr += 8;
5708 break;
5709 case DW_FORM_ref_udata:
5710 DW_ADDR (attr) = (cu->header.offset
5711 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5712 info_ptr += bytes_read;
5713 break;
5714 case DW_FORM_indirect:
5715 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5716 info_ptr += bytes_read;
5717 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5718 break;
5719 default:
5720 error ("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]",
5721 dwarf_form_name (form),
5722 bfd_get_filename (abfd));
5723 }
5724 return info_ptr;
5725 }
5726
5727 /* Read an attribute described by an abbreviated attribute. */
5728
5729 static char *
5730 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5731 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5732 {
5733 attr->name = abbrev->name;
5734 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5735 }
5736
5737 /* read dwarf information from a buffer */
5738
5739 static unsigned int
5740 read_1_byte (bfd *abfd, char *buf)
5741 {
5742 return bfd_get_8 (abfd, (bfd_byte *) buf);
5743 }
5744
5745 static int
5746 read_1_signed_byte (bfd *abfd, char *buf)
5747 {
5748 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5749 }
5750
5751 static unsigned int
5752 read_2_bytes (bfd *abfd, char *buf)
5753 {
5754 return bfd_get_16 (abfd, (bfd_byte *) buf);
5755 }
5756
5757 static int
5758 read_2_signed_bytes (bfd *abfd, char *buf)
5759 {
5760 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5761 }
5762
5763 static unsigned int
5764 read_4_bytes (bfd *abfd, char *buf)
5765 {
5766 return bfd_get_32 (abfd, (bfd_byte *) buf);
5767 }
5768
5769 static int
5770 read_4_signed_bytes (bfd *abfd, char *buf)
5771 {
5772 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5773 }
5774
5775 static unsigned long
5776 read_8_bytes (bfd *abfd, char *buf)
5777 {
5778 return bfd_get_64 (abfd, (bfd_byte *) buf);
5779 }
5780
5781 static CORE_ADDR
5782 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5783 {
5784 struct comp_unit_head *cu_header = &cu->header;
5785 CORE_ADDR retval = 0;
5786
5787 if (cu_header->signed_addr_p)
5788 {
5789 switch (cu_header->addr_size)
5790 {
5791 case 2:
5792 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5793 break;
5794 case 4:
5795 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5796 break;
5797 case 8:
5798 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5799 break;
5800 default:
5801 internal_error (__FILE__, __LINE__,
5802 "read_address: bad switch, signed [in module %s]",
5803 bfd_get_filename (abfd));
5804 }
5805 }
5806 else
5807 {
5808 switch (cu_header->addr_size)
5809 {
5810 case 2:
5811 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5812 break;
5813 case 4:
5814 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5815 break;
5816 case 8:
5817 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5818 break;
5819 default:
5820 internal_error (__FILE__, __LINE__,
5821 "read_address: bad switch, unsigned [in module %s]",
5822 bfd_get_filename (abfd));
5823 }
5824 }
5825
5826 *bytes_read = cu_header->addr_size;
5827 return retval;
5828 }
5829
5830 /* Read the initial length from a section. The (draft) DWARF 3
5831 specification allows the initial length to take up either 4 bytes
5832 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5833 bytes describe the length and all offsets will be 8 bytes in length
5834 instead of 4.
5835
5836 An older, non-standard 64-bit format is also handled by this
5837 function. The older format in question stores the initial length
5838 as an 8-byte quantity without an escape value. Lengths greater
5839 than 2^32 aren't very common which means that the initial 4 bytes
5840 is almost always zero. Since a length value of zero doesn't make
5841 sense for the 32-bit format, this initial zero can be considered to
5842 be an escape value which indicates the presence of the older 64-bit
5843 format. As written, the code can't detect (old format) lengths
5844 greater than 4GB. If it becomes necessary to handle lengths somewhat
5845 larger than 4GB, we could allow other small values (such as the
5846 non-sensical values of 1, 2, and 3) to also be used as escape values
5847 indicating the presence of the old format.
5848
5849 The value returned via bytes_read should be used to increment
5850 the relevant pointer after calling read_initial_length().
5851
5852 As a side effect, this function sets the fields initial_length_size
5853 and offset_size in cu_header to the values appropriate for the
5854 length field. (The format of the initial length field determines
5855 the width of file offsets to be fetched later with fetch_offset().)
5856
5857 [ Note: read_initial_length() and read_offset() are based on the
5858 document entitled "DWARF Debugging Information Format", revision
5859 3, draft 8, dated November 19, 2001. This document was obtained
5860 from:
5861
5862 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5863
5864 This document is only a draft and is subject to change. (So beware.)
5865
5866 Details regarding the older, non-standard 64-bit format were
5867 determined empirically by examining 64-bit ELF files produced
5868 by the SGI toolchain on an IRIX 6.5 machine.
5869
5870 - Kevin, July 16, 2002
5871 ] */
5872
5873 static LONGEST
5874 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5875 int *bytes_read)
5876 {
5877 LONGEST retval = 0;
5878
5879 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5880
5881 if (retval == 0xffffffff)
5882 {
5883 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5884 *bytes_read = 12;
5885 if (cu_header != NULL)
5886 {
5887 cu_header->initial_length_size = 12;
5888 cu_header->offset_size = 8;
5889 }
5890 }
5891 else if (retval == 0)
5892 {
5893 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5894 by IRIX. */
5895 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5896 *bytes_read = 8;
5897 if (cu_header != NULL)
5898 {
5899 cu_header->initial_length_size = 8;
5900 cu_header->offset_size = 8;
5901 }
5902 }
5903 else
5904 {
5905 *bytes_read = 4;
5906 if (cu_header != NULL)
5907 {
5908 cu_header->initial_length_size = 4;
5909 cu_header->offset_size = 4;
5910 }
5911 }
5912
5913 return retval;
5914 }
5915
5916 /* Read an offset from the data stream. The size of the offset is
5917 given by cu_header->offset_size. */
5918
5919 static LONGEST
5920 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5921 int *bytes_read)
5922 {
5923 LONGEST retval = 0;
5924
5925 switch (cu_header->offset_size)
5926 {
5927 case 4:
5928 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5929 *bytes_read = 4;
5930 break;
5931 case 8:
5932 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5933 *bytes_read = 8;
5934 break;
5935 default:
5936 internal_error (__FILE__, __LINE__,
5937 "read_offset: bad switch [in module %s]",
5938 bfd_get_filename (abfd));
5939 }
5940
5941 return retval;
5942 }
5943
5944 static char *
5945 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5946 {
5947 /* If the size of a host char is 8 bits, we can return a pointer
5948 to the buffer, otherwise we have to copy the data to a buffer
5949 allocated on the temporary obstack. */
5950 gdb_assert (HOST_CHAR_BIT == 8);
5951 return buf;
5952 }
5953
5954 static char *
5955 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5956 {
5957 /* If the size of a host char is 8 bits, we can return a pointer
5958 to the string, otherwise we have to copy the string to a buffer
5959 allocated on the temporary obstack. */
5960 gdb_assert (HOST_CHAR_BIT == 8);
5961 if (*buf == '\0')
5962 {
5963 *bytes_read_ptr = 1;
5964 return NULL;
5965 }
5966 *bytes_read_ptr = strlen (buf) + 1;
5967 return buf;
5968 }
5969
5970 static char *
5971 read_indirect_string (bfd *abfd, char *buf,
5972 const struct comp_unit_head *cu_header,
5973 unsigned int *bytes_read_ptr)
5974 {
5975 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5976 (int *) bytes_read_ptr);
5977
5978 if (dwarf2_per_objfile->str_buffer == NULL)
5979 {
5980 error ("DW_FORM_strp used without .debug_str section [in module %s]",
5981 bfd_get_filename (abfd));
5982 return NULL;
5983 }
5984 if (str_offset >= dwarf2_per_objfile->str_size)
5985 {
5986 error ("DW_FORM_strp pointing outside of .debug_str section [in module %s]",
5987 bfd_get_filename (abfd));
5988 return NULL;
5989 }
5990 gdb_assert (HOST_CHAR_BIT == 8);
5991 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5992 return NULL;
5993 return dwarf2_per_objfile->str_buffer + str_offset;
5994 }
5995
5996 static unsigned long
5997 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5998 {
5999 unsigned long result;
6000 unsigned int num_read;
6001 int i, shift;
6002 unsigned char byte;
6003
6004 result = 0;
6005 shift = 0;
6006 num_read = 0;
6007 i = 0;
6008 while (1)
6009 {
6010 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6011 buf++;
6012 num_read++;
6013 result |= ((unsigned long)(byte & 127) << shift);
6014 if ((byte & 128) == 0)
6015 {
6016 break;
6017 }
6018 shift += 7;
6019 }
6020 *bytes_read_ptr = num_read;
6021 return result;
6022 }
6023
6024 static long
6025 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6026 {
6027 long result;
6028 int i, shift, size, num_read;
6029 unsigned char byte;
6030
6031 result = 0;
6032 shift = 0;
6033 size = 32;
6034 num_read = 0;
6035 i = 0;
6036 while (1)
6037 {
6038 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6039 buf++;
6040 num_read++;
6041 result |= ((long)(byte & 127) << shift);
6042 shift += 7;
6043 if ((byte & 128) == 0)
6044 {
6045 break;
6046 }
6047 }
6048 if ((shift < size) && (byte & 0x40))
6049 {
6050 result |= -(1 << shift);
6051 }
6052 *bytes_read_ptr = num_read;
6053 return result;
6054 }
6055
6056 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6057
6058 static char *
6059 skip_leb128 (bfd *abfd, char *buf)
6060 {
6061 int byte;
6062
6063 while (1)
6064 {
6065 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6066 buf++;
6067 if ((byte & 128) == 0)
6068 return buf;
6069 }
6070 }
6071
6072 static void
6073 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6074 {
6075 switch (lang)
6076 {
6077 case DW_LANG_C89:
6078 case DW_LANG_C:
6079 cu->language = language_c;
6080 break;
6081 case DW_LANG_C_plus_plus:
6082 cu->language = language_cplus;
6083 break;
6084 case DW_LANG_Fortran77:
6085 case DW_LANG_Fortran90:
6086 case DW_LANG_Fortran95:
6087 cu->language = language_fortran;
6088 break;
6089 case DW_LANG_Mips_Assembler:
6090 cu->language = language_asm;
6091 break;
6092 case DW_LANG_Java:
6093 cu->language = language_java;
6094 break;
6095 case DW_LANG_Ada83:
6096 case DW_LANG_Ada95:
6097 case DW_LANG_Cobol74:
6098 case DW_LANG_Cobol85:
6099 case DW_LANG_Pascal83:
6100 case DW_LANG_Modula2:
6101 default:
6102 cu->language = language_minimal;
6103 break;
6104 }
6105 cu->language_defn = language_def (cu->language);
6106 }
6107
6108 /* Return the named attribute or NULL if not there. */
6109
6110 static struct attribute *
6111 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6112 {
6113 unsigned int i;
6114 struct attribute *spec = NULL;
6115
6116 for (i = 0; i < die->num_attrs; ++i)
6117 {
6118 if (die->attrs[i].name == name)
6119 return &die->attrs[i];
6120 if (die->attrs[i].name == DW_AT_specification
6121 || die->attrs[i].name == DW_AT_abstract_origin)
6122 spec = &die->attrs[i];
6123 }
6124
6125 if (spec)
6126 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6127
6128 return NULL;
6129 }
6130
6131 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6132 and holds a non-zero value. This function should only be used for
6133 DW_FORM_flag attributes. */
6134
6135 static int
6136 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6137 {
6138 struct attribute *attr = dwarf2_attr (die, name, cu);
6139
6140 return (attr && DW_UNSND (attr));
6141 }
6142
6143 static int
6144 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6145 {
6146 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6147 which value is non-zero. However, we have to be careful with
6148 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6149 (via dwarf2_flag_true_p) follows this attribute. So we may
6150 end up accidently finding a declaration attribute that belongs
6151 to a different DIE referenced by the specification attribute,
6152 even though the given DIE does not have a declaration attribute. */
6153 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6154 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6155 }
6156
6157 /* Return the die giving the specification for DIE, if there is
6158 one. */
6159
6160 static struct die_info *
6161 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6162 {
6163 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6164
6165 if (spec_attr == NULL)
6166 return NULL;
6167 else
6168 return follow_die_ref (die, spec_attr, cu);
6169 }
6170
6171 /* Free the line_header structure *LH, and any arrays and strings it
6172 refers to. */
6173 static void
6174 free_line_header (struct line_header *lh)
6175 {
6176 if (lh->standard_opcode_lengths)
6177 xfree (lh->standard_opcode_lengths);
6178
6179 /* Remember that all the lh->file_names[i].name pointers are
6180 pointers into debug_line_buffer, and don't need to be freed. */
6181 if (lh->file_names)
6182 xfree (lh->file_names);
6183
6184 /* Similarly for the include directory names. */
6185 if (lh->include_dirs)
6186 xfree (lh->include_dirs);
6187
6188 xfree (lh);
6189 }
6190
6191
6192 /* Add an entry to LH's include directory table. */
6193 static void
6194 add_include_dir (struct line_header *lh, char *include_dir)
6195 {
6196 /* Grow the array if necessary. */
6197 if (lh->include_dirs_size == 0)
6198 {
6199 lh->include_dirs_size = 1; /* for testing */
6200 lh->include_dirs = xmalloc (lh->include_dirs_size
6201 * sizeof (*lh->include_dirs));
6202 }
6203 else if (lh->num_include_dirs >= lh->include_dirs_size)
6204 {
6205 lh->include_dirs_size *= 2;
6206 lh->include_dirs = xrealloc (lh->include_dirs,
6207 (lh->include_dirs_size
6208 * sizeof (*lh->include_dirs)));
6209 }
6210
6211 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6212 }
6213
6214
6215 /* Add an entry to LH's file name table. */
6216 static void
6217 add_file_name (struct line_header *lh,
6218 char *name,
6219 unsigned int dir_index,
6220 unsigned int mod_time,
6221 unsigned int length)
6222 {
6223 struct file_entry *fe;
6224
6225 /* Grow the array if necessary. */
6226 if (lh->file_names_size == 0)
6227 {
6228 lh->file_names_size = 1; /* for testing */
6229 lh->file_names = xmalloc (lh->file_names_size
6230 * sizeof (*lh->file_names));
6231 }
6232 else if (lh->num_file_names >= lh->file_names_size)
6233 {
6234 lh->file_names_size *= 2;
6235 lh->file_names = xrealloc (lh->file_names,
6236 (lh->file_names_size
6237 * sizeof (*lh->file_names)));
6238 }
6239
6240 fe = &lh->file_names[lh->num_file_names++];
6241 fe->name = name;
6242 fe->dir_index = dir_index;
6243 fe->mod_time = mod_time;
6244 fe->length = length;
6245 fe->included_p = 0;
6246 }
6247
6248
6249 /* Read the statement program header starting at OFFSET in
6250 .debug_line, according to the endianness of ABFD. Return a pointer
6251 to a struct line_header, allocated using xmalloc.
6252
6253 NOTE: the strings in the include directory and file name tables of
6254 the returned object point into debug_line_buffer, and must not be
6255 freed. */
6256 static struct line_header *
6257 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6258 struct dwarf2_cu *cu)
6259 {
6260 struct cleanup *back_to;
6261 struct line_header *lh;
6262 char *line_ptr;
6263 int bytes_read;
6264 int i;
6265 char *cur_dir, *cur_file;
6266
6267 if (dwarf2_per_objfile->line_buffer == NULL)
6268 {
6269 complaint (&symfile_complaints, "missing .debug_line section");
6270 return 0;
6271 }
6272
6273 /* Make sure that at least there's room for the total_length field. That
6274 could be 12 bytes long, but we're just going to fudge that. */
6275 if (offset + 4 >= dwarf2_per_objfile->line_size)
6276 {
6277 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6278 return 0;
6279 }
6280
6281 lh = xmalloc (sizeof (*lh));
6282 memset (lh, 0, sizeof (*lh));
6283 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6284 (void *) lh);
6285
6286 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6287
6288 /* read in the header */
6289 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6290 line_ptr += bytes_read;
6291 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6292 + dwarf2_per_objfile->line_size))
6293 {
6294 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6295 return 0;
6296 }
6297 lh->statement_program_end = line_ptr + lh->total_length;
6298 lh->version = read_2_bytes (abfd, line_ptr);
6299 line_ptr += 2;
6300 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6301 line_ptr += bytes_read;
6302 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6303 line_ptr += 1;
6304 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6305 line_ptr += 1;
6306 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6307 line_ptr += 1;
6308 lh->line_range = read_1_byte (abfd, line_ptr);
6309 line_ptr += 1;
6310 lh->opcode_base = read_1_byte (abfd, line_ptr);
6311 line_ptr += 1;
6312 lh->standard_opcode_lengths
6313 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6314
6315 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6316 for (i = 1; i < lh->opcode_base; ++i)
6317 {
6318 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6319 line_ptr += 1;
6320 }
6321
6322 /* Read directory table */
6323 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6324 {
6325 line_ptr += bytes_read;
6326 add_include_dir (lh, cur_dir);
6327 }
6328 line_ptr += bytes_read;
6329
6330 /* Read file name table */
6331 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6332 {
6333 unsigned int dir_index, mod_time, length;
6334
6335 line_ptr += bytes_read;
6336 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6337 line_ptr += bytes_read;
6338 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6339 line_ptr += bytes_read;
6340 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6341 line_ptr += bytes_read;
6342
6343 add_file_name (lh, cur_file, dir_index, mod_time, length);
6344 }
6345 line_ptr += bytes_read;
6346 lh->statement_program_start = line_ptr;
6347
6348 if (line_ptr > (dwarf2_per_objfile->line_buffer
6349 + dwarf2_per_objfile->line_size))
6350 complaint (&symfile_complaints,
6351 "line number info header doesn't fit in `.debug_line' section");
6352
6353 discard_cleanups (back_to);
6354 return lh;
6355 }
6356
6357 /* This function exists to work around a bug in certain compilers
6358 (particularly GCC 2.95), in which the first line number marker of a
6359 function does not show up until after the prologue, right before
6360 the second line number marker. This function shifts ADDRESS down
6361 to the beginning of the function if necessary, and is called on
6362 addresses passed to record_line. */
6363
6364 static CORE_ADDR
6365 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6366 {
6367 struct function_range *fn;
6368
6369 /* Find the function_range containing address. */
6370 if (!cu->first_fn)
6371 return address;
6372
6373 if (!cu->cached_fn)
6374 cu->cached_fn = cu->first_fn;
6375
6376 fn = cu->cached_fn;
6377 while (fn)
6378 if (fn->lowpc <= address && fn->highpc > address)
6379 goto found;
6380 else
6381 fn = fn->next;
6382
6383 fn = cu->first_fn;
6384 while (fn && fn != cu->cached_fn)
6385 if (fn->lowpc <= address && fn->highpc > address)
6386 goto found;
6387 else
6388 fn = fn->next;
6389
6390 return address;
6391
6392 found:
6393 if (fn->seen_line)
6394 return address;
6395 if (address != fn->lowpc)
6396 complaint (&symfile_complaints,
6397 "misplaced first line number at 0x%lx for '%s'",
6398 (unsigned long) address, fn->name);
6399 fn->seen_line = 1;
6400 return fn->lowpc;
6401 }
6402
6403 /* Decode the Line Number Program (LNP) for the given line_header
6404 structure and CU. The actual information extracted and the type
6405 of structures created from the LNP depends on the value of PST.
6406
6407 1. If PST is NULL, then this procedure uses the data from the program
6408 to create all necessary symbol tables, and their linetables.
6409 The compilation directory of the file is passed in COMP_DIR,
6410 and must not be NULL.
6411
6412 2. If PST is not NULL, this procedure reads the program to determine
6413 the list of files included by the unit represented by PST, and
6414 builds all the associated partial symbol tables. In this case,
6415 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6416 is not used to compute the full name of the symtab, and therefore
6417 omitting it when building the partial symtab does not introduce
6418 the potential for inconsistency - a partial symtab and its associated
6419 symbtab having a different fullname -). */
6420
6421 static void
6422 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6423 struct dwarf2_cu *cu, struct partial_symtab *pst)
6424 {
6425 char *line_ptr;
6426 char *line_end;
6427 unsigned int bytes_read;
6428 unsigned char op_code, extended_op, adj_opcode;
6429 CORE_ADDR baseaddr;
6430 struct objfile *objfile = cu->objfile;
6431 const int decode_for_pst_p = (pst != NULL);
6432
6433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6434
6435 line_ptr = lh->statement_program_start;
6436 line_end = lh->statement_program_end;
6437
6438 /* Read the statement sequences until there's nothing left. */
6439 while (line_ptr < line_end)
6440 {
6441 /* state machine registers */
6442 CORE_ADDR address = 0;
6443 unsigned int file = 1;
6444 unsigned int line = 1;
6445 unsigned int column = 0;
6446 int is_stmt = lh->default_is_stmt;
6447 int basic_block = 0;
6448 int end_sequence = 0;
6449
6450 if (!decode_for_pst_p && lh->num_file_names >= file)
6451 {
6452 /* Start a subfile for the current file of the state machine. */
6453 /* lh->include_dirs and lh->file_names are 0-based, but the
6454 directory and file name numbers in the statement program
6455 are 1-based. */
6456 struct file_entry *fe = &lh->file_names[file - 1];
6457 char *dir;
6458 if (fe->dir_index)
6459 dir = lh->include_dirs[fe->dir_index - 1];
6460 else
6461 dir = comp_dir;
6462 dwarf2_start_subfile (fe->name, dir);
6463 }
6464
6465 /* Decode the table. */
6466 while (!end_sequence)
6467 {
6468 op_code = read_1_byte (abfd, line_ptr);
6469 line_ptr += 1;
6470
6471 if (op_code >= lh->opcode_base)
6472 { /* Special operand. */
6473 adj_opcode = op_code - lh->opcode_base;
6474 address += (adj_opcode / lh->line_range)
6475 * lh->minimum_instruction_length;
6476 line += lh->line_base + (adj_opcode % lh->line_range);
6477 lh->file_names[file - 1].included_p = 1;
6478 if (!decode_for_pst_p)
6479 {
6480 /* append row to matrix using current values */
6481 record_line (current_subfile, line,
6482 check_cu_functions (address, cu));
6483 }
6484 basic_block = 1;
6485 }
6486 else switch (op_code)
6487 {
6488 case DW_LNS_extended_op:
6489 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6490 line_ptr += bytes_read;
6491 extended_op = read_1_byte (abfd, line_ptr);
6492 line_ptr += 1;
6493 switch (extended_op)
6494 {
6495 case DW_LNE_end_sequence:
6496 end_sequence = 1;
6497 lh->file_names[file - 1].included_p = 1;
6498 if (!decode_for_pst_p)
6499 record_line (current_subfile, 0, address);
6500 break;
6501 case DW_LNE_set_address:
6502 address = read_address (abfd, line_ptr, cu, &bytes_read);
6503 line_ptr += bytes_read;
6504 address += baseaddr;
6505 break;
6506 case DW_LNE_define_file:
6507 {
6508 char *cur_file;
6509 unsigned int dir_index, mod_time, length;
6510
6511 cur_file = read_string (abfd, line_ptr, &bytes_read);
6512 line_ptr += bytes_read;
6513 dir_index =
6514 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6515 line_ptr += bytes_read;
6516 mod_time =
6517 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6518 line_ptr += bytes_read;
6519 length =
6520 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6521 line_ptr += bytes_read;
6522 add_file_name (lh, cur_file, dir_index, mod_time, length);
6523 }
6524 break;
6525 default:
6526 complaint (&symfile_complaints,
6527 "mangled .debug_line section");
6528 return;
6529 }
6530 break;
6531 case DW_LNS_copy:
6532 lh->file_names[file - 1].included_p = 1;
6533 if (!decode_for_pst_p)
6534 record_line (current_subfile, line,
6535 check_cu_functions (address, cu));
6536 basic_block = 0;
6537 break;
6538 case DW_LNS_advance_pc:
6539 address += lh->minimum_instruction_length
6540 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6541 line_ptr += bytes_read;
6542 break;
6543 case DW_LNS_advance_line:
6544 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6545 line_ptr += bytes_read;
6546 break;
6547 case DW_LNS_set_file:
6548 {
6549 /* lh->include_dirs and lh->file_names are 0-based,
6550 but the directory and file name numbers in the
6551 statement program are 1-based. */
6552 struct file_entry *fe;
6553 char *dir;
6554 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6555 line_ptr += bytes_read;
6556 fe = &lh->file_names[file - 1];
6557 if (fe->dir_index)
6558 dir = lh->include_dirs[fe->dir_index - 1];
6559 else
6560 dir = comp_dir;
6561 if (!decode_for_pst_p)
6562 dwarf2_start_subfile (fe->name, dir);
6563 }
6564 break;
6565 case DW_LNS_set_column:
6566 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6567 line_ptr += bytes_read;
6568 break;
6569 case DW_LNS_negate_stmt:
6570 is_stmt = (!is_stmt);
6571 break;
6572 case DW_LNS_set_basic_block:
6573 basic_block = 1;
6574 break;
6575 /* Add to the address register of the state machine the
6576 address increment value corresponding to special opcode
6577 255. Ie, this value is scaled by the minimum instruction
6578 length since special opcode 255 would have scaled the
6579 the increment. */
6580 case DW_LNS_const_add_pc:
6581 address += (lh->minimum_instruction_length
6582 * ((255 - lh->opcode_base) / lh->line_range));
6583 break;
6584 case DW_LNS_fixed_advance_pc:
6585 address += read_2_bytes (abfd, line_ptr);
6586 line_ptr += 2;
6587 break;
6588 default:
6589 { /* Unknown standard opcode, ignore it. */
6590 int i;
6591 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6592 {
6593 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6594 line_ptr += bytes_read;
6595 }
6596 }
6597 }
6598 }
6599 }
6600
6601 if (decode_for_pst_p)
6602 {
6603 int file_index;
6604
6605 /* Now that we're done scanning the Line Header Program, we can
6606 create the psymtab of each included file. */
6607 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6608 if (lh->file_names[file_index].included_p == 1)
6609 {
6610 char *include_name = lh->file_names [file_index].name;
6611
6612 if (strcmp (include_name, pst->filename) != 0)
6613 dwarf2_create_include_psymtab (include_name, pst, objfile);
6614 }
6615 }
6616 }
6617
6618 /* Start a subfile for DWARF. FILENAME is the name of the file and
6619 DIRNAME the name of the source directory which contains FILENAME
6620 or NULL if not known.
6621 This routine tries to keep line numbers from identical absolute and
6622 relative file names in a common subfile.
6623
6624 Using the `list' example from the GDB testsuite, which resides in
6625 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6626 of /srcdir/list0.c yields the following debugging information for list0.c:
6627
6628 DW_AT_name: /srcdir/list0.c
6629 DW_AT_comp_dir: /compdir
6630 files.files[0].name: list0.h
6631 files.files[0].dir: /srcdir
6632 files.files[1].name: list0.c
6633 files.files[1].dir: /srcdir
6634
6635 The line number information for list0.c has to end up in a single
6636 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6637
6638 static void
6639 dwarf2_start_subfile (char *filename, char *dirname)
6640 {
6641 /* If the filename isn't absolute, try to match an existing subfile
6642 with the full pathname. */
6643
6644 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6645 {
6646 struct subfile *subfile;
6647 char *fullname = concat (dirname, "/", filename, NULL);
6648
6649 for (subfile = subfiles; subfile; subfile = subfile->next)
6650 {
6651 if (FILENAME_CMP (subfile->name, fullname) == 0)
6652 {
6653 current_subfile = subfile;
6654 xfree (fullname);
6655 return;
6656 }
6657 }
6658 xfree (fullname);
6659 }
6660 start_subfile (filename, dirname);
6661 }
6662
6663 static void
6664 var_decode_location (struct attribute *attr, struct symbol *sym,
6665 struct dwarf2_cu *cu)
6666 {
6667 struct objfile *objfile = cu->objfile;
6668 struct comp_unit_head *cu_header = &cu->header;
6669
6670 /* NOTE drow/2003-01-30: There used to be a comment and some special
6671 code here to turn a symbol with DW_AT_external and a
6672 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6673 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6674 with some versions of binutils) where shared libraries could have
6675 relocations against symbols in their debug information - the
6676 minimal symbol would have the right address, but the debug info
6677 would not. It's no longer necessary, because we will explicitly
6678 apply relocations when we read in the debug information now. */
6679
6680 /* A DW_AT_location attribute with no contents indicates that a
6681 variable has been optimized away. */
6682 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6683 {
6684 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6685 return;
6686 }
6687
6688 /* Handle one degenerate form of location expression specially, to
6689 preserve GDB's previous behavior when section offsets are
6690 specified. If this is just a DW_OP_addr then mark this symbol
6691 as LOC_STATIC. */
6692
6693 if (attr_form_is_block (attr)
6694 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6695 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6696 {
6697 int dummy;
6698
6699 SYMBOL_VALUE_ADDRESS (sym) =
6700 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6701 fixup_symbol_section (sym, objfile);
6702 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6703 SYMBOL_SECTION (sym));
6704 SYMBOL_CLASS (sym) = LOC_STATIC;
6705 return;
6706 }
6707
6708 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6709 expression evaluator, and use LOC_COMPUTED only when necessary
6710 (i.e. when the value of a register or memory location is
6711 referenced, or a thread-local block, etc.). Then again, it might
6712 not be worthwhile. I'm assuming that it isn't unless performance
6713 or memory numbers show me otherwise. */
6714
6715 dwarf2_symbol_mark_computed (attr, sym, cu);
6716 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6717 }
6718
6719 /* Given a pointer to a DWARF information entry, figure out if we need
6720 to make a symbol table entry for it, and if so, create a new entry
6721 and return a pointer to it.
6722 If TYPE is NULL, determine symbol type from the die, otherwise
6723 used the passed type. */
6724
6725 static struct symbol *
6726 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6727 {
6728 struct objfile *objfile = cu->objfile;
6729 struct symbol *sym = NULL;
6730 char *name;
6731 struct attribute *attr = NULL;
6732 struct attribute *attr2 = NULL;
6733 CORE_ADDR baseaddr;
6734
6735 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6736
6737 if (die->tag != DW_TAG_namespace)
6738 name = dwarf2_linkage_name (die, cu);
6739 else
6740 name = TYPE_NAME (type);
6741
6742 if (name)
6743 {
6744 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6745 sizeof (struct symbol));
6746 OBJSTAT (objfile, n_syms++);
6747 memset (sym, 0, sizeof (struct symbol));
6748
6749 /* Cache this symbol's name and the name's demangled form (if any). */
6750 SYMBOL_LANGUAGE (sym) = cu->language;
6751 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6752
6753 /* Default assumptions.
6754 Use the passed type or decode it from the die. */
6755 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6756 SYMBOL_CLASS (sym) = LOC_STATIC;
6757 if (type != NULL)
6758 SYMBOL_TYPE (sym) = type;
6759 else
6760 SYMBOL_TYPE (sym) = die_type (die, cu);
6761 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6762 if (attr)
6763 {
6764 SYMBOL_LINE (sym) = DW_UNSND (attr);
6765 }
6766 switch (die->tag)
6767 {
6768 case DW_TAG_label:
6769 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6770 if (attr)
6771 {
6772 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6773 }
6774 SYMBOL_CLASS (sym) = LOC_LABEL;
6775 break;
6776 case DW_TAG_subprogram:
6777 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6778 finish_block. */
6779 SYMBOL_CLASS (sym) = LOC_BLOCK;
6780 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6781 if (attr2 && (DW_UNSND (attr2) != 0))
6782 {
6783 add_symbol_to_list (sym, &global_symbols);
6784 }
6785 else
6786 {
6787 add_symbol_to_list (sym, cu->list_in_scope);
6788 }
6789 break;
6790 case DW_TAG_variable:
6791 /* Compilation with minimal debug info may result in variables
6792 with missing type entries. Change the misleading `void' type
6793 to something sensible. */
6794 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6795 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6796 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6797 "<variable, no debug info>",
6798 objfile);
6799 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6800 if (attr)
6801 {
6802 dwarf2_const_value (attr, sym, cu);
6803 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6804 if (attr2 && (DW_UNSND (attr2) != 0))
6805 add_symbol_to_list (sym, &global_symbols);
6806 else
6807 add_symbol_to_list (sym, cu->list_in_scope);
6808 break;
6809 }
6810 attr = dwarf2_attr (die, DW_AT_location, cu);
6811 if (attr)
6812 {
6813 var_decode_location (attr, sym, cu);
6814 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6815 if (attr2 && (DW_UNSND (attr2) != 0))
6816 add_symbol_to_list (sym, &global_symbols);
6817 else
6818 add_symbol_to_list (sym, cu->list_in_scope);
6819 }
6820 else
6821 {
6822 /* We do not know the address of this symbol.
6823 If it is an external symbol and we have type information
6824 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6825 The address of the variable will then be determined from
6826 the minimal symbol table whenever the variable is
6827 referenced. */
6828 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6829 if (attr2 && (DW_UNSND (attr2) != 0)
6830 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6831 {
6832 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6833 add_symbol_to_list (sym, &global_symbols);
6834 }
6835 }
6836 break;
6837 case DW_TAG_formal_parameter:
6838 attr = dwarf2_attr (die, DW_AT_location, cu);
6839 if (attr)
6840 {
6841 var_decode_location (attr, sym, cu);
6842 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6843 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6844 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6845 }
6846 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6847 if (attr)
6848 {
6849 dwarf2_const_value (attr, sym, cu);
6850 }
6851 add_symbol_to_list (sym, cu->list_in_scope);
6852 break;
6853 case DW_TAG_unspecified_parameters:
6854 /* From varargs functions; gdb doesn't seem to have any
6855 interest in this information, so just ignore it for now.
6856 (FIXME?) */
6857 break;
6858 case DW_TAG_class_type:
6859 case DW_TAG_structure_type:
6860 case DW_TAG_union_type:
6861 case DW_TAG_enumeration_type:
6862 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6863 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6864
6865 /* Make sure that the symbol includes appropriate enclosing
6866 classes/namespaces in its name. These are calculated in
6867 read_structure_type, and the correct name is saved in
6868 the type. */
6869
6870 if (cu->language == language_cplus
6871 || cu->language == language_java)
6872 {
6873 struct type *type = SYMBOL_TYPE (sym);
6874
6875 if (TYPE_TAG_NAME (type) != NULL)
6876 {
6877 /* FIXME: carlton/2003-11-10: Should this use
6878 SYMBOL_SET_NAMES instead? (The same problem also
6879 arises further down in this function.) */
6880 /* The type's name is already allocated along with
6881 this objfile, so we don't need to duplicate it
6882 for the symbol. */
6883 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6884 }
6885 }
6886
6887 {
6888 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6889 really ever be static objects: otherwise, if you try
6890 to, say, break of a class's method and you're in a file
6891 which doesn't mention that class, it won't work unless
6892 the check for all static symbols in lookup_symbol_aux
6893 saves you. See the OtherFileClass tests in
6894 gdb.c++/namespace.exp. */
6895
6896 struct pending **list_to_add;
6897
6898 list_to_add = (cu->list_in_scope == &file_symbols
6899 && (cu->language == language_cplus
6900 || cu->language == language_java)
6901 ? &global_symbols : cu->list_in_scope);
6902
6903 add_symbol_to_list (sym, list_to_add);
6904
6905 /* The semantics of C++ state that "struct foo { ... }" also
6906 defines a typedef for "foo". A Java class declaration also
6907 defines a typedef for the class. Synthesize a typedef symbol
6908 so that "ptype foo" works as expected. */
6909 if (cu->language == language_cplus
6910 || cu->language == language_java)
6911 {
6912 struct symbol *typedef_sym = (struct symbol *)
6913 obstack_alloc (&objfile->objfile_obstack,
6914 sizeof (struct symbol));
6915 *typedef_sym = *sym;
6916 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6917 /* The symbol's name is already allocated along with
6918 this objfile, so we don't need to duplicate it for
6919 the type. */
6920 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6921 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6922 add_symbol_to_list (typedef_sym, list_to_add);
6923 }
6924 }
6925 break;
6926 case DW_TAG_typedef:
6927 if (processing_has_namespace_info
6928 && processing_current_prefix[0] != '\0')
6929 {
6930 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6931 processing_current_prefix,
6932 name, cu);
6933 }
6934 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6935 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6936 add_symbol_to_list (sym, cu->list_in_scope);
6937 break;
6938 case DW_TAG_base_type:
6939 case DW_TAG_subrange_type:
6940 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6942 add_symbol_to_list (sym, cu->list_in_scope);
6943 break;
6944 case DW_TAG_enumerator:
6945 if (processing_has_namespace_info
6946 && processing_current_prefix[0] != '\0')
6947 {
6948 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6949 processing_current_prefix,
6950 name, cu);
6951 }
6952 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6953 if (attr)
6954 {
6955 dwarf2_const_value (attr, sym, cu);
6956 }
6957 {
6958 /* NOTE: carlton/2003-11-10: See comment above in the
6959 DW_TAG_class_type, etc. block. */
6960
6961 struct pending **list_to_add;
6962
6963 list_to_add = (cu->list_in_scope == &file_symbols
6964 && (cu->language == language_cplus
6965 || cu->language == language_java)
6966 ? &global_symbols : cu->list_in_scope);
6967
6968 add_symbol_to_list (sym, list_to_add);
6969 }
6970 break;
6971 case DW_TAG_namespace:
6972 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6973 add_symbol_to_list (sym, &global_symbols);
6974 break;
6975 default:
6976 /* Not a tag we recognize. Hopefully we aren't processing
6977 trash data, but since we must specifically ignore things
6978 we don't recognize, there is nothing else we should do at
6979 this point. */
6980 complaint (&symfile_complaints, "unsupported tag: '%s'",
6981 dwarf_tag_name (die->tag));
6982 break;
6983 }
6984 }
6985 return (sym);
6986 }
6987
6988 /* Copy constant value from an attribute to a symbol. */
6989
6990 static void
6991 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6992 struct dwarf2_cu *cu)
6993 {
6994 struct objfile *objfile = cu->objfile;
6995 struct comp_unit_head *cu_header = &cu->header;
6996 struct dwarf_block *blk;
6997
6998 switch (attr->form)
6999 {
7000 case DW_FORM_addr:
7001 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7002 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7003 cu_header->addr_size,
7004 TYPE_LENGTH (SYMBOL_TYPE
7005 (sym)));
7006 SYMBOL_VALUE_BYTES (sym) = (char *)
7007 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7008 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7009 it's body - store_unsigned_integer. */
7010 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7011 DW_ADDR (attr));
7012 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7013 break;
7014 case DW_FORM_block1:
7015 case DW_FORM_block2:
7016 case DW_FORM_block4:
7017 case DW_FORM_block:
7018 blk = DW_BLOCK (attr);
7019 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7020 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7021 blk->size,
7022 TYPE_LENGTH (SYMBOL_TYPE
7023 (sym)));
7024 SYMBOL_VALUE_BYTES (sym) = (char *)
7025 obstack_alloc (&objfile->objfile_obstack, blk->size);
7026 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7027 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7028 break;
7029
7030 /* The DW_AT_const_value attributes are supposed to carry the
7031 symbol's value "represented as it would be on the target
7032 architecture." By the time we get here, it's already been
7033 converted to host endianness, so we just need to sign- or
7034 zero-extend it as appropriate. */
7035 case DW_FORM_data1:
7036 dwarf2_const_value_data (attr, sym, 8);
7037 break;
7038 case DW_FORM_data2:
7039 dwarf2_const_value_data (attr, sym, 16);
7040 break;
7041 case DW_FORM_data4:
7042 dwarf2_const_value_data (attr, sym, 32);
7043 break;
7044 case DW_FORM_data8:
7045 dwarf2_const_value_data (attr, sym, 64);
7046 break;
7047
7048 case DW_FORM_sdata:
7049 SYMBOL_VALUE (sym) = DW_SND (attr);
7050 SYMBOL_CLASS (sym) = LOC_CONST;
7051 break;
7052
7053 case DW_FORM_udata:
7054 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7055 SYMBOL_CLASS (sym) = LOC_CONST;
7056 break;
7057
7058 default:
7059 complaint (&symfile_complaints,
7060 "unsupported const value attribute form: '%s'",
7061 dwarf_form_name (attr->form));
7062 SYMBOL_VALUE (sym) = 0;
7063 SYMBOL_CLASS (sym) = LOC_CONST;
7064 break;
7065 }
7066 }
7067
7068
7069 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7070 or zero-extend it as appropriate for the symbol's type. */
7071 static void
7072 dwarf2_const_value_data (struct attribute *attr,
7073 struct symbol *sym,
7074 int bits)
7075 {
7076 LONGEST l = DW_UNSND (attr);
7077
7078 if (bits < sizeof (l) * 8)
7079 {
7080 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7081 l &= ((LONGEST) 1 << bits) - 1;
7082 else
7083 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7084 }
7085
7086 SYMBOL_VALUE (sym) = l;
7087 SYMBOL_CLASS (sym) = LOC_CONST;
7088 }
7089
7090
7091 /* Return the type of the die in question using its DW_AT_type attribute. */
7092
7093 static struct type *
7094 die_type (struct die_info *die, struct dwarf2_cu *cu)
7095 {
7096 struct type *type;
7097 struct attribute *type_attr;
7098 struct die_info *type_die;
7099
7100 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7101 if (!type_attr)
7102 {
7103 /* A missing DW_AT_type represents a void type. */
7104 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7105 }
7106 else
7107 type_die = follow_die_ref (die, type_attr, cu);
7108
7109 type = tag_type_to_type (type_die, cu);
7110 if (!type)
7111 {
7112 dump_die (type_die);
7113 error ("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]",
7114 cu->objfile->name);
7115 }
7116 return type;
7117 }
7118
7119 /* Return the containing type of the die in question using its
7120 DW_AT_containing_type attribute. */
7121
7122 static struct type *
7123 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7124 {
7125 struct type *type = NULL;
7126 struct attribute *type_attr;
7127 struct die_info *type_die = NULL;
7128
7129 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7130 if (type_attr)
7131 {
7132 type_die = follow_die_ref (die, type_attr, cu);
7133 type = tag_type_to_type (type_die, cu);
7134 }
7135 if (!type)
7136 {
7137 if (type_die)
7138 dump_die (type_die);
7139 error ("Dwarf Error: Problem turning containing type into gdb type [in module %s]",
7140 cu->objfile->name);
7141 }
7142 return type;
7143 }
7144
7145 static struct type *
7146 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7147 {
7148 if (die->type)
7149 {
7150 return die->type;
7151 }
7152 else
7153 {
7154 read_type_die (die, cu);
7155 if (!die->type)
7156 {
7157 dump_die (die);
7158 error ("Dwarf Error: Cannot find type of die [in module %s]",
7159 cu->objfile->name);
7160 }
7161 return die->type;
7162 }
7163 }
7164
7165 static void
7166 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7167 {
7168 char *prefix = determine_prefix (die, cu);
7169 const char *old_prefix = processing_current_prefix;
7170 struct cleanup *back_to = make_cleanup (xfree, prefix);
7171 processing_current_prefix = prefix;
7172
7173 switch (die->tag)
7174 {
7175 case DW_TAG_class_type:
7176 case DW_TAG_structure_type:
7177 case DW_TAG_union_type:
7178 read_structure_type (die, cu);
7179 break;
7180 case DW_TAG_enumeration_type:
7181 read_enumeration_type (die, cu);
7182 break;
7183 case DW_TAG_subprogram:
7184 case DW_TAG_subroutine_type:
7185 read_subroutine_type (die, cu);
7186 break;
7187 case DW_TAG_array_type:
7188 read_array_type (die, cu);
7189 break;
7190 case DW_TAG_pointer_type:
7191 read_tag_pointer_type (die, cu);
7192 break;
7193 case DW_TAG_ptr_to_member_type:
7194 read_tag_ptr_to_member_type (die, cu);
7195 break;
7196 case DW_TAG_reference_type:
7197 read_tag_reference_type (die, cu);
7198 break;
7199 case DW_TAG_const_type:
7200 read_tag_const_type (die, cu);
7201 break;
7202 case DW_TAG_volatile_type:
7203 read_tag_volatile_type (die, cu);
7204 break;
7205 case DW_TAG_string_type:
7206 read_tag_string_type (die, cu);
7207 break;
7208 case DW_TAG_typedef:
7209 read_typedef (die, cu);
7210 break;
7211 case DW_TAG_subrange_type:
7212 read_subrange_type (die, cu);
7213 break;
7214 case DW_TAG_base_type:
7215 read_base_type (die, cu);
7216 break;
7217 default:
7218 complaint (&symfile_complaints, "unexepected tag in read_type_die: '%s'",
7219 dwarf_tag_name (die->tag));
7220 break;
7221 }
7222
7223 processing_current_prefix = old_prefix;
7224 do_cleanups (back_to);
7225 }
7226
7227 /* Return the name of the namespace/class that DIE is defined within,
7228 or "" if we can't tell. The caller should xfree the result. */
7229
7230 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7231 therein) for an example of how to use this function to deal with
7232 DW_AT_specification. */
7233
7234 static char *
7235 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7236 {
7237 struct die_info *parent;
7238
7239 if (cu->language != language_cplus
7240 && cu->language != language_java)
7241 return NULL;
7242
7243 parent = die->parent;
7244
7245 if (parent == NULL)
7246 {
7247 return xstrdup ("");
7248 }
7249 else
7250 {
7251 switch (parent->tag) {
7252 case DW_TAG_namespace:
7253 {
7254 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7255 before doing this check? */
7256 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7257 {
7258 return xstrdup (TYPE_TAG_NAME (parent->type));
7259 }
7260 else
7261 {
7262 int dummy;
7263 char *parent_prefix = determine_prefix (parent, cu);
7264 char *retval = typename_concat (NULL, parent_prefix,
7265 namespace_name (parent, &dummy,
7266 cu),
7267 cu);
7268 xfree (parent_prefix);
7269 return retval;
7270 }
7271 }
7272 break;
7273 case DW_TAG_class_type:
7274 case DW_TAG_structure_type:
7275 {
7276 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7277 {
7278 return xstrdup (TYPE_TAG_NAME (parent->type));
7279 }
7280 else
7281 {
7282 const char *old_prefix = processing_current_prefix;
7283 char *new_prefix = determine_prefix (parent, cu);
7284 char *retval;
7285
7286 processing_current_prefix = new_prefix;
7287 retval = determine_class_name (parent, cu);
7288 processing_current_prefix = old_prefix;
7289
7290 xfree (new_prefix);
7291 return retval;
7292 }
7293 }
7294 default:
7295 return determine_prefix (parent, cu);
7296 }
7297 }
7298 }
7299
7300 /* Return a newly-allocated string formed by concatenating PREFIX and
7301 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7302 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7303 perform an obconcat, otherwise allocate storage for the result. The CU argument
7304 is used to determine the language and hence, the appropriate separator. */
7305
7306 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7307
7308 static char *
7309 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7310 struct dwarf2_cu *cu)
7311 {
7312 char *sep;
7313
7314 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7315 sep = "";
7316 else if (cu->language == language_java)
7317 sep = ".";
7318 else
7319 sep = "::";
7320
7321 if (obs == NULL)
7322 {
7323 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7324 retval[0] = '\0';
7325
7326 if (prefix)
7327 {
7328 strcpy (retval, prefix);
7329 strcat (retval, sep);
7330 }
7331 if (suffix)
7332 strcat (retval, suffix);
7333
7334 return retval;
7335 }
7336 else
7337 {
7338 /* We have an obstack. */
7339 return obconcat (obs, prefix, sep, suffix);
7340 }
7341 }
7342
7343 static struct type *
7344 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7345 {
7346 struct objfile *objfile = cu->objfile;
7347
7348 /* FIXME - this should not produce a new (struct type *)
7349 every time. It should cache base types. */
7350 struct type *type;
7351 switch (encoding)
7352 {
7353 case DW_ATE_address:
7354 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7355 return type;
7356 case DW_ATE_boolean:
7357 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7358 return type;
7359 case DW_ATE_complex_float:
7360 if (size == 16)
7361 {
7362 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7363 }
7364 else
7365 {
7366 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7367 }
7368 return type;
7369 case DW_ATE_float:
7370 if (size == 8)
7371 {
7372 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7373 }
7374 else
7375 {
7376 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7377 }
7378 return type;
7379 case DW_ATE_signed:
7380 switch (size)
7381 {
7382 case 1:
7383 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7384 break;
7385 case 2:
7386 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7387 break;
7388 default:
7389 case 4:
7390 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7391 break;
7392 }
7393 return type;
7394 case DW_ATE_signed_char:
7395 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7396 return type;
7397 case DW_ATE_unsigned:
7398 switch (size)
7399 {
7400 case 1:
7401 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7402 break;
7403 case 2:
7404 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7405 break;
7406 default:
7407 case 4:
7408 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7409 break;
7410 }
7411 return type;
7412 case DW_ATE_unsigned_char:
7413 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7414 return type;
7415 default:
7416 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7417 return type;
7418 }
7419 }
7420
7421 #if 0
7422 struct die_info *
7423 copy_die (struct die_info *old_die)
7424 {
7425 struct die_info *new_die;
7426 int i, num_attrs;
7427
7428 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7429 memset (new_die, 0, sizeof (struct die_info));
7430
7431 new_die->tag = old_die->tag;
7432 new_die->has_children = old_die->has_children;
7433 new_die->abbrev = old_die->abbrev;
7434 new_die->offset = old_die->offset;
7435 new_die->type = NULL;
7436
7437 num_attrs = old_die->num_attrs;
7438 new_die->num_attrs = num_attrs;
7439 new_die->attrs = (struct attribute *)
7440 xmalloc (num_attrs * sizeof (struct attribute));
7441
7442 for (i = 0; i < old_die->num_attrs; ++i)
7443 {
7444 new_die->attrs[i].name = old_die->attrs[i].name;
7445 new_die->attrs[i].form = old_die->attrs[i].form;
7446 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7447 }
7448
7449 new_die->next = NULL;
7450 return new_die;
7451 }
7452 #endif
7453
7454 /* Return sibling of die, NULL if no sibling. */
7455
7456 static struct die_info *
7457 sibling_die (struct die_info *die)
7458 {
7459 return die->sibling;
7460 }
7461
7462 /* Get linkage name of a die, return NULL if not found. */
7463
7464 static char *
7465 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7466 {
7467 struct attribute *attr;
7468
7469 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7470 if (attr && DW_STRING (attr))
7471 return DW_STRING (attr);
7472 attr = dwarf2_attr (die, DW_AT_name, cu);
7473 if (attr && DW_STRING (attr))
7474 return DW_STRING (attr);
7475 return NULL;
7476 }
7477
7478 /* Get name of a die, return NULL if not found. */
7479
7480 static char *
7481 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7482 {
7483 struct attribute *attr;
7484
7485 attr = dwarf2_attr (die, DW_AT_name, cu);
7486 if (attr && DW_STRING (attr))
7487 return DW_STRING (attr);
7488 return NULL;
7489 }
7490
7491 /* Return the die that this die in an extension of, or NULL if there
7492 is none. */
7493
7494 static struct die_info *
7495 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7496 {
7497 struct attribute *attr;
7498
7499 attr = dwarf2_attr (die, DW_AT_extension, cu);
7500 if (attr == NULL)
7501 return NULL;
7502
7503 return follow_die_ref (die, attr, cu);
7504 }
7505
7506 /* Convert a DIE tag into its string name. */
7507
7508 static char *
7509 dwarf_tag_name (unsigned tag)
7510 {
7511 switch (tag)
7512 {
7513 case DW_TAG_padding:
7514 return "DW_TAG_padding";
7515 case DW_TAG_array_type:
7516 return "DW_TAG_array_type";
7517 case DW_TAG_class_type:
7518 return "DW_TAG_class_type";
7519 case DW_TAG_entry_point:
7520 return "DW_TAG_entry_point";
7521 case DW_TAG_enumeration_type:
7522 return "DW_TAG_enumeration_type";
7523 case DW_TAG_formal_parameter:
7524 return "DW_TAG_formal_parameter";
7525 case DW_TAG_imported_declaration:
7526 return "DW_TAG_imported_declaration";
7527 case DW_TAG_label:
7528 return "DW_TAG_label";
7529 case DW_TAG_lexical_block:
7530 return "DW_TAG_lexical_block";
7531 case DW_TAG_member:
7532 return "DW_TAG_member";
7533 case DW_TAG_pointer_type:
7534 return "DW_TAG_pointer_type";
7535 case DW_TAG_reference_type:
7536 return "DW_TAG_reference_type";
7537 case DW_TAG_compile_unit:
7538 return "DW_TAG_compile_unit";
7539 case DW_TAG_string_type:
7540 return "DW_TAG_string_type";
7541 case DW_TAG_structure_type:
7542 return "DW_TAG_structure_type";
7543 case DW_TAG_subroutine_type:
7544 return "DW_TAG_subroutine_type";
7545 case DW_TAG_typedef:
7546 return "DW_TAG_typedef";
7547 case DW_TAG_union_type:
7548 return "DW_TAG_union_type";
7549 case DW_TAG_unspecified_parameters:
7550 return "DW_TAG_unspecified_parameters";
7551 case DW_TAG_variant:
7552 return "DW_TAG_variant";
7553 case DW_TAG_common_block:
7554 return "DW_TAG_common_block";
7555 case DW_TAG_common_inclusion:
7556 return "DW_TAG_common_inclusion";
7557 case DW_TAG_inheritance:
7558 return "DW_TAG_inheritance";
7559 case DW_TAG_inlined_subroutine:
7560 return "DW_TAG_inlined_subroutine";
7561 case DW_TAG_module:
7562 return "DW_TAG_module";
7563 case DW_TAG_ptr_to_member_type:
7564 return "DW_TAG_ptr_to_member_type";
7565 case DW_TAG_set_type:
7566 return "DW_TAG_set_type";
7567 case DW_TAG_subrange_type:
7568 return "DW_TAG_subrange_type";
7569 case DW_TAG_with_stmt:
7570 return "DW_TAG_with_stmt";
7571 case DW_TAG_access_declaration:
7572 return "DW_TAG_access_declaration";
7573 case DW_TAG_base_type:
7574 return "DW_TAG_base_type";
7575 case DW_TAG_catch_block:
7576 return "DW_TAG_catch_block";
7577 case DW_TAG_const_type:
7578 return "DW_TAG_const_type";
7579 case DW_TAG_constant:
7580 return "DW_TAG_constant";
7581 case DW_TAG_enumerator:
7582 return "DW_TAG_enumerator";
7583 case DW_TAG_file_type:
7584 return "DW_TAG_file_type";
7585 case DW_TAG_friend:
7586 return "DW_TAG_friend";
7587 case DW_TAG_namelist:
7588 return "DW_TAG_namelist";
7589 case DW_TAG_namelist_item:
7590 return "DW_TAG_namelist_item";
7591 case DW_TAG_packed_type:
7592 return "DW_TAG_packed_type";
7593 case DW_TAG_subprogram:
7594 return "DW_TAG_subprogram";
7595 case DW_TAG_template_type_param:
7596 return "DW_TAG_template_type_param";
7597 case DW_TAG_template_value_param:
7598 return "DW_TAG_template_value_param";
7599 case DW_TAG_thrown_type:
7600 return "DW_TAG_thrown_type";
7601 case DW_TAG_try_block:
7602 return "DW_TAG_try_block";
7603 case DW_TAG_variant_part:
7604 return "DW_TAG_variant_part";
7605 case DW_TAG_variable:
7606 return "DW_TAG_variable";
7607 case DW_TAG_volatile_type:
7608 return "DW_TAG_volatile_type";
7609 case DW_TAG_dwarf_procedure:
7610 return "DW_TAG_dwarf_procedure";
7611 case DW_TAG_restrict_type:
7612 return "DW_TAG_restrict_type";
7613 case DW_TAG_interface_type:
7614 return "DW_TAG_interface_type";
7615 case DW_TAG_namespace:
7616 return "DW_TAG_namespace";
7617 case DW_TAG_imported_module:
7618 return "DW_TAG_imported_module";
7619 case DW_TAG_unspecified_type:
7620 return "DW_TAG_unspecified_type";
7621 case DW_TAG_partial_unit:
7622 return "DW_TAG_partial_unit";
7623 case DW_TAG_imported_unit:
7624 return "DW_TAG_imported_unit";
7625 case DW_TAG_MIPS_loop:
7626 return "DW_TAG_MIPS_loop";
7627 case DW_TAG_format_label:
7628 return "DW_TAG_format_label";
7629 case DW_TAG_function_template:
7630 return "DW_TAG_function_template";
7631 case DW_TAG_class_template:
7632 return "DW_TAG_class_template";
7633 default:
7634 return "DW_TAG_<unknown>";
7635 }
7636 }
7637
7638 /* Convert a DWARF attribute code into its string name. */
7639
7640 static char *
7641 dwarf_attr_name (unsigned attr)
7642 {
7643 switch (attr)
7644 {
7645 case DW_AT_sibling:
7646 return "DW_AT_sibling";
7647 case DW_AT_location:
7648 return "DW_AT_location";
7649 case DW_AT_name:
7650 return "DW_AT_name";
7651 case DW_AT_ordering:
7652 return "DW_AT_ordering";
7653 case DW_AT_subscr_data:
7654 return "DW_AT_subscr_data";
7655 case DW_AT_byte_size:
7656 return "DW_AT_byte_size";
7657 case DW_AT_bit_offset:
7658 return "DW_AT_bit_offset";
7659 case DW_AT_bit_size:
7660 return "DW_AT_bit_size";
7661 case DW_AT_element_list:
7662 return "DW_AT_element_list";
7663 case DW_AT_stmt_list:
7664 return "DW_AT_stmt_list";
7665 case DW_AT_low_pc:
7666 return "DW_AT_low_pc";
7667 case DW_AT_high_pc:
7668 return "DW_AT_high_pc";
7669 case DW_AT_language:
7670 return "DW_AT_language";
7671 case DW_AT_member:
7672 return "DW_AT_member";
7673 case DW_AT_discr:
7674 return "DW_AT_discr";
7675 case DW_AT_discr_value:
7676 return "DW_AT_discr_value";
7677 case DW_AT_visibility:
7678 return "DW_AT_visibility";
7679 case DW_AT_import:
7680 return "DW_AT_import";
7681 case DW_AT_string_length:
7682 return "DW_AT_string_length";
7683 case DW_AT_common_reference:
7684 return "DW_AT_common_reference";
7685 case DW_AT_comp_dir:
7686 return "DW_AT_comp_dir";
7687 case DW_AT_const_value:
7688 return "DW_AT_const_value";
7689 case DW_AT_containing_type:
7690 return "DW_AT_containing_type";
7691 case DW_AT_default_value:
7692 return "DW_AT_default_value";
7693 case DW_AT_inline:
7694 return "DW_AT_inline";
7695 case DW_AT_is_optional:
7696 return "DW_AT_is_optional";
7697 case DW_AT_lower_bound:
7698 return "DW_AT_lower_bound";
7699 case DW_AT_producer:
7700 return "DW_AT_producer";
7701 case DW_AT_prototyped:
7702 return "DW_AT_prototyped";
7703 case DW_AT_return_addr:
7704 return "DW_AT_return_addr";
7705 case DW_AT_start_scope:
7706 return "DW_AT_start_scope";
7707 case DW_AT_stride_size:
7708 return "DW_AT_stride_size";
7709 case DW_AT_upper_bound:
7710 return "DW_AT_upper_bound";
7711 case DW_AT_abstract_origin:
7712 return "DW_AT_abstract_origin";
7713 case DW_AT_accessibility:
7714 return "DW_AT_accessibility";
7715 case DW_AT_address_class:
7716 return "DW_AT_address_class";
7717 case DW_AT_artificial:
7718 return "DW_AT_artificial";
7719 case DW_AT_base_types:
7720 return "DW_AT_base_types";
7721 case DW_AT_calling_convention:
7722 return "DW_AT_calling_convention";
7723 case DW_AT_count:
7724 return "DW_AT_count";
7725 case DW_AT_data_member_location:
7726 return "DW_AT_data_member_location";
7727 case DW_AT_decl_column:
7728 return "DW_AT_decl_column";
7729 case DW_AT_decl_file:
7730 return "DW_AT_decl_file";
7731 case DW_AT_decl_line:
7732 return "DW_AT_decl_line";
7733 case DW_AT_declaration:
7734 return "DW_AT_declaration";
7735 case DW_AT_discr_list:
7736 return "DW_AT_discr_list";
7737 case DW_AT_encoding:
7738 return "DW_AT_encoding";
7739 case DW_AT_external:
7740 return "DW_AT_external";
7741 case DW_AT_frame_base:
7742 return "DW_AT_frame_base";
7743 case DW_AT_friend:
7744 return "DW_AT_friend";
7745 case DW_AT_identifier_case:
7746 return "DW_AT_identifier_case";
7747 case DW_AT_macro_info:
7748 return "DW_AT_macro_info";
7749 case DW_AT_namelist_items:
7750 return "DW_AT_namelist_items";
7751 case DW_AT_priority:
7752 return "DW_AT_priority";
7753 case DW_AT_segment:
7754 return "DW_AT_segment";
7755 case DW_AT_specification:
7756 return "DW_AT_specification";
7757 case DW_AT_static_link:
7758 return "DW_AT_static_link";
7759 case DW_AT_type:
7760 return "DW_AT_type";
7761 case DW_AT_use_location:
7762 return "DW_AT_use_location";
7763 case DW_AT_variable_parameter:
7764 return "DW_AT_variable_parameter";
7765 case DW_AT_virtuality:
7766 return "DW_AT_virtuality";
7767 case DW_AT_vtable_elem_location:
7768 return "DW_AT_vtable_elem_location";
7769 case DW_AT_allocated:
7770 return "DW_AT_allocated";
7771 case DW_AT_associated:
7772 return "DW_AT_associated";
7773 case DW_AT_data_location:
7774 return "DW_AT_data_location";
7775 case DW_AT_stride:
7776 return "DW_AT_stride";
7777 case DW_AT_entry_pc:
7778 return "DW_AT_entry_pc";
7779 case DW_AT_use_UTF8:
7780 return "DW_AT_use_UTF8";
7781 case DW_AT_extension:
7782 return "DW_AT_extension";
7783 case DW_AT_ranges:
7784 return "DW_AT_ranges";
7785 case DW_AT_trampoline:
7786 return "DW_AT_trampoline";
7787 case DW_AT_call_column:
7788 return "DW_AT_call_column";
7789 case DW_AT_call_file:
7790 return "DW_AT_call_file";
7791 case DW_AT_call_line:
7792 return "DW_AT_call_line";
7793 #ifdef MIPS
7794 case DW_AT_MIPS_fde:
7795 return "DW_AT_MIPS_fde";
7796 case DW_AT_MIPS_loop_begin:
7797 return "DW_AT_MIPS_loop_begin";
7798 case DW_AT_MIPS_tail_loop_begin:
7799 return "DW_AT_MIPS_tail_loop_begin";
7800 case DW_AT_MIPS_epilog_begin:
7801 return "DW_AT_MIPS_epilog_begin";
7802 case DW_AT_MIPS_loop_unroll_factor:
7803 return "DW_AT_MIPS_loop_unroll_factor";
7804 case DW_AT_MIPS_software_pipeline_depth:
7805 return "DW_AT_MIPS_software_pipeline_depth";
7806 #endif
7807 case DW_AT_MIPS_linkage_name:
7808 return "DW_AT_MIPS_linkage_name";
7809
7810 case DW_AT_sf_names:
7811 return "DW_AT_sf_names";
7812 case DW_AT_src_info:
7813 return "DW_AT_src_info";
7814 case DW_AT_mac_info:
7815 return "DW_AT_mac_info";
7816 case DW_AT_src_coords:
7817 return "DW_AT_src_coords";
7818 case DW_AT_body_begin:
7819 return "DW_AT_body_begin";
7820 case DW_AT_body_end:
7821 return "DW_AT_body_end";
7822 case DW_AT_GNU_vector:
7823 return "DW_AT_GNU_vector";
7824 default:
7825 return "DW_AT_<unknown>";
7826 }
7827 }
7828
7829 /* Convert a DWARF value form code into its string name. */
7830
7831 static char *
7832 dwarf_form_name (unsigned form)
7833 {
7834 switch (form)
7835 {
7836 case DW_FORM_addr:
7837 return "DW_FORM_addr";
7838 case DW_FORM_block2:
7839 return "DW_FORM_block2";
7840 case DW_FORM_block4:
7841 return "DW_FORM_block4";
7842 case DW_FORM_data2:
7843 return "DW_FORM_data2";
7844 case DW_FORM_data4:
7845 return "DW_FORM_data4";
7846 case DW_FORM_data8:
7847 return "DW_FORM_data8";
7848 case DW_FORM_string:
7849 return "DW_FORM_string";
7850 case DW_FORM_block:
7851 return "DW_FORM_block";
7852 case DW_FORM_block1:
7853 return "DW_FORM_block1";
7854 case DW_FORM_data1:
7855 return "DW_FORM_data1";
7856 case DW_FORM_flag:
7857 return "DW_FORM_flag";
7858 case DW_FORM_sdata:
7859 return "DW_FORM_sdata";
7860 case DW_FORM_strp:
7861 return "DW_FORM_strp";
7862 case DW_FORM_udata:
7863 return "DW_FORM_udata";
7864 case DW_FORM_ref_addr:
7865 return "DW_FORM_ref_addr";
7866 case DW_FORM_ref1:
7867 return "DW_FORM_ref1";
7868 case DW_FORM_ref2:
7869 return "DW_FORM_ref2";
7870 case DW_FORM_ref4:
7871 return "DW_FORM_ref4";
7872 case DW_FORM_ref8:
7873 return "DW_FORM_ref8";
7874 case DW_FORM_ref_udata:
7875 return "DW_FORM_ref_udata";
7876 case DW_FORM_indirect:
7877 return "DW_FORM_indirect";
7878 default:
7879 return "DW_FORM_<unknown>";
7880 }
7881 }
7882
7883 /* Convert a DWARF stack opcode into its string name. */
7884
7885 static char *
7886 dwarf_stack_op_name (unsigned op)
7887 {
7888 switch (op)
7889 {
7890 case DW_OP_addr:
7891 return "DW_OP_addr";
7892 case DW_OP_deref:
7893 return "DW_OP_deref";
7894 case DW_OP_const1u:
7895 return "DW_OP_const1u";
7896 case DW_OP_const1s:
7897 return "DW_OP_const1s";
7898 case DW_OP_const2u:
7899 return "DW_OP_const2u";
7900 case DW_OP_const2s:
7901 return "DW_OP_const2s";
7902 case DW_OP_const4u:
7903 return "DW_OP_const4u";
7904 case DW_OP_const4s:
7905 return "DW_OP_const4s";
7906 case DW_OP_const8u:
7907 return "DW_OP_const8u";
7908 case DW_OP_const8s:
7909 return "DW_OP_const8s";
7910 case DW_OP_constu:
7911 return "DW_OP_constu";
7912 case DW_OP_consts:
7913 return "DW_OP_consts";
7914 case DW_OP_dup:
7915 return "DW_OP_dup";
7916 case DW_OP_drop:
7917 return "DW_OP_drop";
7918 case DW_OP_over:
7919 return "DW_OP_over";
7920 case DW_OP_pick:
7921 return "DW_OP_pick";
7922 case DW_OP_swap:
7923 return "DW_OP_swap";
7924 case DW_OP_rot:
7925 return "DW_OP_rot";
7926 case DW_OP_xderef:
7927 return "DW_OP_xderef";
7928 case DW_OP_abs:
7929 return "DW_OP_abs";
7930 case DW_OP_and:
7931 return "DW_OP_and";
7932 case DW_OP_div:
7933 return "DW_OP_div";
7934 case DW_OP_minus:
7935 return "DW_OP_minus";
7936 case DW_OP_mod:
7937 return "DW_OP_mod";
7938 case DW_OP_mul:
7939 return "DW_OP_mul";
7940 case DW_OP_neg:
7941 return "DW_OP_neg";
7942 case DW_OP_not:
7943 return "DW_OP_not";
7944 case DW_OP_or:
7945 return "DW_OP_or";
7946 case DW_OP_plus:
7947 return "DW_OP_plus";
7948 case DW_OP_plus_uconst:
7949 return "DW_OP_plus_uconst";
7950 case DW_OP_shl:
7951 return "DW_OP_shl";
7952 case DW_OP_shr:
7953 return "DW_OP_shr";
7954 case DW_OP_shra:
7955 return "DW_OP_shra";
7956 case DW_OP_xor:
7957 return "DW_OP_xor";
7958 case DW_OP_bra:
7959 return "DW_OP_bra";
7960 case DW_OP_eq:
7961 return "DW_OP_eq";
7962 case DW_OP_ge:
7963 return "DW_OP_ge";
7964 case DW_OP_gt:
7965 return "DW_OP_gt";
7966 case DW_OP_le:
7967 return "DW_OP_le";
7968 case DW_OP_lt:
7969 return "DW_OP_lt";
7970 case DW_OP_ne:
7971 return "DW_OP_ne";
7972 case DW_OP_skip:
7973 return "DW_OP_skip";
7974 case DW_OP_lit0:
7975 return "DW_OP_lit0";
7976 case DW_OP_lit1:
7977 return "DW_OP_lit1";
7978 case DW_OP_lit2:
7979 return "DW_OP_lit2";
7980 case DW_OP_lit3:
7981 return "DW_OP_lit3";
7982 case DW_OP_lit4:
7983 return "DW_OP_lit4";
7984 case DW_OP_lit5:
7985 return "DW_OP_lit5";
7986 case DW_OP_lit6:
7987 return "DW_OP_lit6";
7988 case DW_OP_lit7:
7989 return "DW_OP_lit7";
7990 case DW_OP_lit8:
7991 return "DW_OP_lit8";
7992 case DW_OP_lit9:
7993 return "DW_OP_lit9";
7994 case DW_OP_lit10:
7995 return "DW_OP_lit10";
7996 case DW_OP_lit11:
7997 return "DW_OP_lit11";
7998 case DW_OP_lit12:
7999 return "DW_OP_lit12";
8000 case DW_OP_lit13:
8001 return "DW_OP_lit13";
8002 case DW_OP_lit14:
8003 return "DW_OP_lit14";
8004 case DW_OP_lit15:
8005 return "DW_OP_lit15";
8006 case DW_OP_lit16:
8007 return "DW_OP_lit16";
8008 case DW_OP_lit17:
8009 return "DW_OP_lit17";
8010 case DW_OP_lit18:
8011 return "DW_OP_lit18";
8012 case DW_OP_lit19:
8013 return "DW_OP_lit19";
8014 case DW_OP_lit20:
8015 return "DW_OP_lit20";
8016 case DW_OP_lit21:
8017 return "DW_OP_lit21";
8018 case DW_OP_lit22:
8019 return "DW_OP_lit22";
8020 case DW_OP_lit23:
8021 return "DW_OP_lit23";
8022 case DW_OP_lit24:
8023 return "DW_OP_lit24";
8024 case DW_OP_lit25:
8025 return "DW_OP_lit25";
8026 case DW_OP_lit26:
8027 return "DW_OP_lit26";
8028 case DW_OP_lit27:
8029 return "DW_OP_lit27";
8030 case DW_OP_lit28:
8031 return "DW_OP_lit28";
8032 case DW_OP_lit29:
8033 return "DW_OP_lit29";
8034 case DW_OP_lit30:
8035 return "DW_OP_lit30";
8036 case DW_OP_lit31:
8037 return "DW_OP_lit31";
8038 case DW_OP_reg0:
8039 return "DW_OP_reg0";
8040 case DW_OP_reg1:
8041 return "DW_OP_reg1";
8042 case DW_OP_reg2:
8043 return "DW_OP_reg2";
8044 case DW_OP_reg3:
8045 return "DW_OP_reg3";
8046 case DW_OP_reg4:
8047 return "DW_OP_reg4";
8048 case DW_OP_reg5:
8049 return "DW_OP_reg5";
8050 case DW_OP_reg6:
8051 return "DW_OP_reg6";
8052 case DW_OP_reg7:
8053 return "DW_OP_reg7";
8054 case DW_OP_reg8:
8055 return "DW_OP_reg8";
8056 case DW_OP_reg9:
8057 return "DW_OP_reg9";
8058 case DW_OP_reg10:
8059 return "DW_OP_reg10";
8060 case DW_OP_reg11:
8061 return "DW_OP_reg11";
8062 case DW_OP_reg12:
8063 return "DW_OP_reg12";
8064 case DW_OP_reg13:
8065 return "DW_OP_reg13";
8066 case DW_OP_reg14:
8067 return "DW_OP_reg14";
8068 case DW_OP_reg15:
8069 return "DW_OP_reg15";
8070 case DW_OP_reg16:
8071 return "DW_OP_reg16";
8072 case DW_OP_reg17:
8073 return "DW_OP_reg17";
8074 case DW_OP_reg18:
8075 return "DW_OP_reg18";
8076 case DW_OP_reg19:
8077 return "DW_OP_reg19";
8078 case DW_OP_reg20:
8079 return "DW_OP_reg20";
8080 case DW_OP_reg21:
8081 return "DW_OP_reg21";
8082 case DW_OP_reg22:
8083 return "DW_OP_reg22";
8084 case DW_OP_reg23:
8085 return "DW_OP_reg23";
8086 case DW_OP_reg24:
8087 return "DW_OP_reg24";
8088 case DW_OP_reg25:
8089 return "DW_OP_reg25";
8090 case DW_OP_reg26:
8091 return "DW_OP_reg26";
8092 case DW_OP_reg27:
8093 return "DW_OP_reg27";
8094 case DW_OP_reg28:
8095 return "DW_OP_reg28";
8096 case DW_OP_reg29:
8097 return "DW_OP_reg29";
8098 case DW_OP_reg30:
8099 return "DW_OP_reg30";
8100 case DW_OP_reg31:
8101 return "DW_OP_reg31";
8102 case DW_OP_breg0:
8103 return "DW_OP_breg0";
8104 case DW_OP_breg1:
8105 return "DW_OP_breg1";
8106 case DW_OP_breg2:
8107 return "DW_OP_breg2";
8108 case DW_OP_breg3:
8109 return "DW_OP_breg3";
8110 case DW_OP_breg4:
8111 return "DW_OP_breg4";
8112 case DW_OP_breg5:
8113 return "DW_OP_breg5";
8114 case DW_OP_breg6:
8115 return "DW_OP_breg6";
8116 case DW_OP_breg7:
8117 return "DW_OP_breg7";
8118 case DW_OP_breg8:
8119 return "DW_OP_breg8";
8120 case DW_OP_breg9:
8121 return "DW_OP_breg9";
8122 case DW_OP_breg10:
8123 return "DW_OP_breg10";
8124 case DW_OP_breg11:
8125 return "DW_OP_breg11";
8126 case DW_OP_breg12:
8127 return "DW_OP_breg12";
8128 case DW_OP_breg13:
8129 return "DW_OP_breg13";
8130 case DW_OP_breg14:
8131 return "DW_OP_breg14";
8132 case DW_OP_breg15:
8133 return "DW_OP_breg15";
8134 case DW_OP_breg16:
8135 return "DW_OP_breg16";
8136 case DW_OP_breg17:
8137 return "DW_OP_breg17";
8138 case DW_OP_breg18:
8139 return "DW_OP_breg18";
8140 case DW_OP_breg19:
8141 return "DW_OP_breg19";
8142 case DW_OP_breg20:
8143 return "DW_OP_breg20";
8144 case DW_OP_breg21:
8145 return "DW_OP_breg21";
8146 case DW_OP_breg22:
8147 return "DW_OP_breg22";
8148 case DW_OP_breg23:
8149 return "DW_OP_breg23";
8150 case DW_OP_breg24:
8151 return "DW_OP_breg24";
8152 case DW_OP_breg25:
8153 return "DW_OP_breg25";
8154 case DW_OP_breg26:
8155 return "DW_OP_breg26";
8156 case DW_OP_breg27:
8157 return "DW_OP_breg27";
8158 case DW_OP_breg28:
8159 return "DW_OP_breg28";
8160 case DW_OP_breg29:
8161 return "DW_OP_breg29";
8162 case DW_OP_breg30:
8163 return "DW_OP_breg30";
8164 case DW_OP_breg31:
8165 return "DW_OP_breg31";
8166 case DW_OP_regx:
8167 return "DW_OP_regx";
8168 case DW_OP_fbreg:
8169 return "DW_OP_fbreg";
8170 case DW_OP_bregx:
8171 return "DW_OP_bregx";
8172 case DW_OP_piece:
8173 return "DW_OP_piece";
8174 case DW_OP_deref_size:
8175 return "DW_OP_deref_size";
8176 case DW_OP_xderef_size:
8177 return "DW_OP_xderef_size";
8178 case DW_OP_nop:
8179 return "DW_OP_nop";
8180 /* DWARF 3 extensions. */
8181 case DW_OP_push_object_address:
8182 return "DW_OP_push_object_address";
8183 case DW_OP_call2:
8184 return "DW_OP_call2";
8185 case DW_OP_call4:
8186 return "DW_OP_call4";
8187 case DW_OP_call_ref:
8188 return "DW_OP_call_ref";
8189 /* GNU extensions. */
8190 case DW_OP_GNU_push_tls_address:
8191 return "DW_OP_GNU_push_tls_address";
8192 default:
8193 return "OP_<unknown>";
8194 }
8195 }
8196
8197 static char *
8198 dwarf_bool_name (unsigned mybool)
8199 {
8200 if (mybool)
8201 return "TRUE";
8202 else
8203 return "FALSE";
8204 }
8205
8206 /* Convert a DWARF type code into its string name. */
8207
8208 static char *
8209 dwarf_type_encoding_name (unsigned enc)
8210 {
8211 switch (enc)
8212 {
8213 case DW_ATE_address:
8214 return "DW_ATE_address";
8215 case DW_ATE_boolean:
8216 return "DW_ATE_boolean";
8217 case DW_ATE_complex_float:
8218 return "DW_ATE_complex_float";
8219 case DW_ATE_float:
8220 return "DW_ATE_float";
8221 case DW_ATE_signed:
8222 return "DW_ATE_signed";
8223 case DW_ATE_signed_char:
8224 return "DW_ATE_signed_char";
8225 case DW_ATE_unsigned:
8226 return "DW_ATE_unsigned";
8227 case DW_ATE_unsigned_char:
8228 return "DW_ATE_unsigned_char";
8229 case DW_ATE_imaginary_float:
8230 return "DW_ATE_imaginary_float";
8231 default:
8232 return "DW_ATE_<unknown>";
8233 }
8234 }
8235
8236 /* Convert a DWARF call frame info operation to its string name. */
8237
8238 #if 0
8239 static char *
8240 dwarf_cfi_name (unsigned cfi_opc)
8241 {
8242 switch (cfi_opc)
8243 {
8244 case DW_CFA_advance_loc:
8245 return "DW_CFA_advance_loc";
8246 case DW_CFA_offset:
8247 return "DW_CFA_offset";
8248 case DW_CFA_restore:
8249 return "DW_CFA_restore";
8250 case DW_CFA_nop:
8251 return "DW_CFA_nop";
8252 case DW_CFA_set_loc:
8253 return "DW_CFA_set_loc";
8254 case DW_CFA_advance_loc1:
8255 return "DW_CFA_advance_loc1";
8256 case DW_CFA_advance_loc2:
8257 return "DW_CFA_advance_loc2";
8258 case DW_CFA_advance_loc4:
8259 return "DW_CFA_advance_loc4";
8260 case DW_CFA_offset_extended:
8261 return "DW_CFA_offset_extended";
8262 case DW_CFA_restore_extended:
8263 return "DW_CFA_restore_extended";
8264 case DW_CFA_undefined:
8265 return "DW_CFA_undefined";
8266 case DW_CFA_same_value:
8267 return "DW_CFA_same_value";
8268 case DW_CFA_register:
8269 return "DW_CFA_register";
8270 case DW_CFA_remember_state:
8271 return "DW_CFA_remember_state";
8272 case DW_CFA_restore_state:
8273 return "DW_CFA_restore_state";
8274 case DW_CFA_def_cfa:
8275 return "DW_CFA_def_cfa";
8276 case DW_CFA_def_cfa_register:
8277 return "DW_CFA_def_cfa_register";
8278 case DW_CFA_def_cfa_offset:
8279 return "DW_CFA_def_cfa_offset";
8280
8281 /* DWARF 3 */
8282 case DW_CFA_def_cfa_expression:
8283 return "DW_CFA_def_cfa_expression";
8284 case DW_CFA_expression:
8285 return "DW_CFA_expression";
8286 case DW_CFA_offset_extended_sf:
8287 return "DW_CFA_offset_extended_sf";
8288 case DW_CFA_def_cfa_sf:
8289 return "DW_CFA_def_cfa_sf";
8290 case DW_CFA_def_cfa_offset_sf:
8291 return "DW_CFA_def_cfa_offset_sf";
8292
8293 /* SGI/MIPS specific */
8294 case DW_CFA_MIPS_advance_loc8:
8295 return "DW_CFA_MIPS_advance_loc8";
8296
8297 /* GNU extensions */
8298 case DW_CFA_GNU_window_save:
8299 return "DW_CFA_GNU_window_save";
8300 case DW_CFA_GNU_args_size:
8301 return "DW_CFA_GNU_args_size";
8302 case DW_CFA_GNU_negative_offset_extended:
8303 return "DW_CFA_GNU_negative_offset_extended";
8304
8305 default:
8306 return "DW_CFA_<unknown>";
8307 }
8308 }
8309 #endif
8310
8311 static void
8312 dump_die (struct die_info *die)
8313 {
8314 unsigned int i;
8315
8316 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8317 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8318 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8319 dwarf_bool_name (die->child != NULL));
8320
8321 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8322 for (i = 0; i < die->num_attrs; ++i)
8323 {
8324 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8325 dwarf_attr_name (die->attrs[i].name),
8326 dwarf_form_name (die->attrs[i].form));
8327 switch (die->attrs[i].form)
8328 {
8329 case DW_FORM_ref_addr:
8330 case DW_FORM_addr:
8331 fprintf_unfiltered (gdb_stderr, "address: ");
8332 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8333 break;
8334 case DW_FORM_block2:
8335 case DW_FORM_block4:
8336 case DW_FORM_block:
8337 case DW_FORM_block1:
8338 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8339 break;
8340 case DW_FORM_ref1:
8341 case DW_FORM_ref2:
8342 case DW_FORM_ref4:
8343 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8344 (long) (DW_ADDR (&die->attrs[i])));
8345 break;
8346 case DW_FORM_data1:
8347 case DW_FORM_data2:
8348 case DW_FORM_data4:
8349 case DW_FORM_data8:
8350 case DW_FORM_udata:
8351 case DW_FORM_sdata:
8352 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8353 break;
8354 case DW_FORM_string:
8355 case DW_FORM_strp:
8356 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8357 DW_STRING (&die->attrs[i])
8358 ? DW_STRING (&die->attrs[i]) : "");
8359 break;
8360 case DW_FORM_flag:
8361 if (DW_UNSND (&die->attrs[i]))
8362 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8363 else
8364 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8365 break;
8366 case DW_FORM_indirect:
8367 /* the reader will have reduced the indirect form to
8368 the "base form" so this form should not occur */
8369 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8370 break;
8371 default:
8372 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8373 die->attrs[i].form);
8374 }
8375 fprintf_unfiltered (gdb_stderr, "\n");
8376 }
8377 }
8378
8379 static void
8380 dump_die_list (struct die_info *die)
8381 {
8382 while (die)
8383 {
8384 dump_die (die);
8385 if (die->child != NULL)
8386 dump_die_list (die->child);
8387 if (die->sibling != NULL)
8388 dump_die_list (die->sibling);
8389 }
8390 }
8391
8392 static void
8393 store_in_ref_table (unsigned int offset, struct die_info *die,
8394 struct dwarf2_cu *cu)
8395 {
8396 int h;
8397 struct die_info *old;
8398
8399 h = (offset % REF_HASH_SIZE);
8400 old = cu->die_ref_table[h];
8401 die->next_ref = old;
8402 cu->die_ref_table[h] = die;
8403 }
8404
8405 static unsigned int
8406 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8407 {
8408 unsigned int result = 0;
8409
8410 switch (attr->form)
8411 {
8412 case DW_FORM_ref_addr:
8413 case DW_FORM_ref1:
8414 case DW_FORM_ref2:
8415 case DW_FORM_ref4:
8416 case DW_FORM_ref8:
8417 case DW_FORM_ref_udata:
8418 result = DW_ADDR (attr);
8419 break;
8420 default:
8421 complaint (&symfile_complaints,
8422 "unsupported die ref attribute form: '%s'",
8423 dwarf_form_name (attr->form));
8424 }
8425 return result;
8426 }
8427
8428 /* Return the constant value held by the given attribute. Return -1
8429 if the value held by the attribute is not constant. */
8430
8431 static int
8432 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8433 {
8434 if (attr->form == DW_FORM_sdata)
8435 return DW_SND (attr);
8436 else if (attr->form == DW_FORM_udata
8437 || attr->form == DW_FORM_data1
8438 || attr->form == DW_FORM_data2
8439 || attr->form == DW_FORM_data4
8440 || attr->form == DW_FORM_data8)
8441 return DW_UNSND (attr);
8442 else
8443 {
8444 complaint (&symfile_complaints, "Attribute value is not a constant (%s)",
8445 dwarf_form_name (attr->form));
8446 return default_value;
8447 }
8448 }
8449
8450 static struct die_info *
8451 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8452 struct dwarf2_cu *cu)
8453 {
8454 struct die_info *die;
8455 unsigned int offset;
8456 int h;
8457 struct die_info temp_die;
8458 struct dwarf2_cu *target_cu;
8459
8460 offset = dwarf2_get_ref_die_offset (attr, cu);
8461
8462 if (DW_ADDR (attr) < cu->header.offset
8463 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8464 {
8465 struct dwarf2_per_cu_data *per_cu;
8466 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8467 cu->objfile);
8468 target_cu = per_cu->cu;
8469 }
8470 else
8471 target_cu = cu;
8472
8473 h = (offset % REF_HASH_SIZE);
8474 die = target_cu->die_ref_table[h];
8475 while (die)
8476 {
8477 if (die->offset == offset)
8478 return die;
8479 die = die->next_ref;
8480 }
8481
8482 error ("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8483 "at 0x%lx [in module %s]",
8484 (long) src_die->offset, (long) offset, cu->objfile->name);
8485
8486 return NULL;
8487 }
8488
8489 static struct type *
8490 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8491 struct dwarf2_cu *cu)
8492 {
8493 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8494 {
8495 error ("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]",
8496 typeid, objfile->name);
8497 }
8498
8499 /* Look for this particular type in the fundamental type vector. If
8500 one is not found, create and install one appropriate for the
8501 current language and the current target machine. */
8502
8503 if (cu->ftypes[typeid] == NULL)
8504 {
8505 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8506 }
8507
8508 return (cu->ftypes[typeid]);
8509 }
8510
8511 /* Decode simple location descriptions.
8512 Given a pointer to a dwarf block that defines a location, compute
8513 the location and return the value.
8514
8515 NOTE drow/2003-11-18: This function is called in two situations
8516 now: for the address of static or global variables (partial symbols
8517 only) and for offsets into structures which are expected to be
8518 (more or less) constant. The partial symbol case should go away,
8519 and only the constant case should remain. That will let this
8520 function complain more accurately. A few special modes are allowed
8521 without complaint for global variables (for instance, global
8522 register values and thread-local values).
8523
8524 A location description containing no operations indicates that the
8525 object is optimized out. The return value is 0 for that case.
8526 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8527 callers will only want a very basic result and this can become a
8528 complaint.
8529
8530 When the result is a register number, the global isreg flag is set,
8531 otherwise it is cleared.
8532
8533 Note that stack[0] is unused except as a default error return.
8534 Note that stack overflow is not yet handled. */
8535
8536 static CORE_ADDR
8537 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8538 {
8539 struct objfile *objfile = cu->objfile;
8540 struct comp_unit_head *cu_header = &cu->header;
8541 int i;
8542 int size = blk->size;
8543 char *data = blk->data;
8544 CORE_ADDR stack[64];
8545 int stacki;
8546 unsigned int bytes_read, unsnd;
8547 unsigned char op;
8548
8549 i = 0;
8550 stacki = 0;
8551 stack[stacki] = 0;
8552 isreg = 0;
8553
8554 while (i < size)
8555 {
8556 op = data[i++];
8557 switch (op)
8558 {
8559 case DW_OP_lit0:
8560 case DW_OP_lit1:
8561 case DW_OP_lit2:
8562 case DW_OP_lit3:
8563 case DW_OP_lit4:
8564 case DW_OP_lit5:
8565 case DW_OP_lit6:
8566 case DW_OP_lit7:
8567 case DW_OP_lit8:
8568 case DW_OP_lit9:
8569 case DW_OP_lit10:
8570 case DW_OP_lit11:
8571 case DW_OP_lit12:
8572 case DW_OP_lit13:
8573 case DW_OP_lit14:
8574 case DW_OP_lit15:
8575 case DW_OP_lit16:
8576 case DW_OP_lit17:
8577 case DW_OP_lit18:
8578 case DW_OP_lit19:
8579 case DW_OP_lit20:
8580 case DW_OP_lit21:
8581 case DW_OP_lit22:
8582 case DW_OP_lit23:
8583 case DW_OP_lit24:
8584 case DW_OP_lit25:
8585 case DW_OP_lit26:
8586 case DW_OP_lit27:
8587 case DW_OP_lit28:
8588 case DW_OP_lit29:
8589 case DW_OP_lit30:
8590 case DW_OP_lit31:
8591 stack[++stacki] = op - DW_OP_lit0;
8592 break;
8593
8594 case DW_OP_reg0:
8595 case DW_OP_reg1:
8596 case DW_OP_reg2:
8597 case DW_OP_reg3:
8598 case DW_OP_reg4:
8599 case DW_OP_reg5:
8600 case DW_OP_reg6:
8601 case DW_OP_reg7:
8602 case DW_OP_reg8:
8603 case DW_OP_reg9:
8604 case DW_OP_reg10:
8605 case DW_OP_reg11:
8606 case DW_OP_reg12:
8607 case DW_OP_reg13:
8608 case DW_OP_reg14:
8609 case DW_OP_reg15:
8610 case DW_OP_reg16:
8611 case DW_OP_reg17:
8612 case DW_OP_reg18:
8613 case DW_OP_reg19:
8614 case DW_OP_reg20:
8615 case DW_OP_reg21:
8616 case DW_OP_reg22:
8617 case DW_OP_reg23:
8618 case DW_OP_reg24:
8619 case DW_OP_reg25:
8620 case DW_OP_reg26:
8621 case DW_OP_reg27:
8622 case DW_OP_reg28:
8623 case DW_OP_reg29:
8624 case DW_OP_reg30:
8625 case DW_OP_reg31:
8626 isreg = 1;
8627 stack[++stacki] = op - DW_OP_reg0;
8628 if (i < size)
8629 dwarf2_complex_location_expr_complaint ();
8630 break;
8631
8632 case DW_OP_regx:
8633 isreg = 1;
8634 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8635 i += bytes_read;
8636 stack[++stacki] = unsnd;
8637 if (i < size)
8638 dwarf2_complex_location_expr_complaint ();
8639 break;
8640
8641 case DW_OP_addr:
8642 stack[++stacki] = read_address (objfile->obfd, &data[i],
8643 cu, &bytes_read);
8644 i += bytes_read;
8645 break;
8646
8647 case DW_OP_const1u:
8648 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8649 i += 1;
8650 break;
8651
8652 case DW_OP_const1s:
8653 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8654 i += 1;
8655 break;
8656
8657 case DW_OP_const2u:
8658 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8659 i += 2;
8660 break;
8661
8662 case DW_OP_const2s:
8663 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8664 i += 2;
8665 break;
8666
8667 case DW_OP_const4u:
8668 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8669 i += 4;
8670 break;
8671
8672 case DW_OP_const4s:
8673 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8674 i += 4;
8675 break;
8676
8677 case DW_OP_constu:
8678 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8679 &bytes_read);
8680 i += bytes_read;
8681 break;
8682
8683 case DW_OP_consts:
8684 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8685 i += bytes_read;
8686 break;
8687
8688 case DW_OP_dup:
8689 stack[stacki + 1] = stack[stacki];
8690 stacki++;
8691 break;
8692
8693 case DW_OP_plus:
8694 stack[stacki - 1] += stack[stacki];
8695 stacki--;
8696 break;
8697
8698 case DW_OP_plus_uconst:
8699 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8700 i += bytes_read;
8701 break;
8702
8703 case DW_OP_minus:
8704 stack[stacki - 1] -= stack[stacki];
8705 stacki--;
8706 break;
8707
8708 case DW_OP_deref:
8709 /* If we're not the last op, then we definitely can't encode
8710 this using GDB's address_class enum. This is valid for partial
8711 global symbols, although the variable's address will be bogus
8712 in the psymtab. */
8713 if (i < size)
8714 dwarf2_complex_location_expr_complaint ();
8715 break;
8716
8717 case DW_OP_GNU_push_tls_address:
8718 /* The top of the stack has the offset from the beginning
8719 of the thread control block at which the variable is located. */
8720 /* Nothing should follow this operator, so the top of stack would
8721 be returned. */
8722 /* This is valid for partial global symbols, but the variable's
8723 address will be bogus in the psymtab. */
8724 if (i < size)
8725 dwarf2_complex_location_expr_complaint ();
8726 break;
8727
8728 default:
8729 complaint (&symfile_complaints, "unsupported stack op: '%s'",
8730 dwarf_stack_op_name (op));
8731 return (stack[stacki]);
8732 }
8733 }
8734 return (stack[stacki]);
8735 }
8736
8737 /* memory allocation interface */
8738
8739 static struct dwarf_block *
8740 dwarf_alloc_block (struct dwarf2_cu *cu)
8741 {
8742 struct dwarf_block *blk;
8743
8744 blk = (struct dwarf_block *)
8745 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8746 return (blk);
8747 }
8748
8749 static struct abbrev_info *
8750 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8751 {
8752 struct abbrev_info *abbrev;
8753
8754 abbrev = (struct abbrev_info *)
8755 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8756 memset (abbrev, 0, sizeof (struct abbrev_info));
8757 return (abbrev);
8758 }
8759
8760 static struct die_info *
8761 dwarf_alloc_die (void)
8762 {
8763 struct die_info *die;
8764
8765 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8766 memset (die, 0, sizeof (struct die_info));
8767 return (die);
8768 }
8769
8770 \f
8771 /* Macro support. */
8772
8773
8774 /* Return the full name of file number I in *LH's file name table.
8775 Use COMP_DIR as the name of the current directory of the
8776 compilation. The result is allocated using xmalloc; the caller is
8777 responsible for freeing it. */
8778 static char *
8779 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8780 {
8781 struct file_entry *fe = &lh->file_names[file - 1];
8782
8783 if (IS_ABSOLUTE_PATH (fe->name))
8784 return xstrdup (fe->name);
8785 else
8786 {
8787 const char *dir;
8788 int dir_len;
8789 char *full_name;
8790
8791 if (fe->dir_index)
8792 dir = lh->include_dirs[fe->dir_index - 1];
8793 else
8794 dir = comp_dir;
8795
8796 if (dir)
8797 {
8798 dir_len = strlen (dir);
8799 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8800 strcpy (full_name, dir);
8801 full_name[dir_len] = '/';
8802 strcpy (full_name + dir_len + 1, fe->name);
8803 return full_name;
8804 }
8805 else
8806 return xstrdup (fe->name);
8807 }
8808 }
8809
8810
8811 static struct macro_source_file *
8812 macro_start_file (int file, int line,
8813 struct macro_source_file *current_file,
8814 const char *comp_dir,
8815 struct line_header *lh, struct objfile *objfile)
8816 {
8817 /* The full name of this source file. */
8818 char *full_name = file_full_name (file, lh, comp_dir);
8819
8820 /* We don't create a macro table for this compilation unit
8821 at all until we actually get a filename. */
8822 if (! pending_macros)
8823 pending_macros = new_macro_table (&objfile->objfile_obstack,
8824 objfile->macro_cache);
8825
8826 if (! current_file)
8827 /* If we have no current file, then this must be the start_file
8828 directive for the compilation unit's main source file. */
8829 current_file = macro_set_main (pending_macros, full_name);
8830 else
8831 current_file = macro_include (current_file, line, full_name);
8832
8833 xfree (full_name);
8834
8835 return current_file;
8836 }
8837
8838
8839 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8840 followed by a null byte. */
8841 static char *
8842 copy_string (const char *buf, int len)
8843 {
8844 char *s = xmalloc (len + 1);
8845 memcpy (s, buf, len);
8846 s[len] = '\0';
8847
8848 return s;
8849 }
8850
8851
8852 static const char *
8853 consume_improper_spaces (const char *p, const char *body)
8854 {
8855 if (*p == ' ')
8856 {
8857 complaint (&symfile_complaints,
8858 "macro definition contains spaces in formal argument list:\n`%s'",
8859 body);
8860
8861 while (*p == ' ')
8862 p++;
8863 }
8864
8865 return p;
8866 }
8867
8868
8869 static void
8870 parse_macro_definition (struct macro_source_file *file, int line,
8871 const char *body)
8872 {
8873 const char *p;
8874
8875 /* The body string takes one of two forms. For object-like macro
8876 definitions, it should be:
8877
8878 <macro name> " " <definition>
8879
8880 For function-like macro definitions, it should be:
8881
8882 <macro name> "() " <definition>
8883 or
8884 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8885
8886 Spaces may appear only where explicitly indicated, and in the
8887 <definition>.
8888
8889 The Dwarf 2 spec says that an object-like macro's name is always
8890 followed by a space, but versions of GCC around March 2002 omit
8891 the space when the macro's definition is the empty string.
8892
8893 The Dwarf 2 spec says that there should be no spaces between the
8894 formal arguments in a function-like macro's formal argument list,
8895 but versions of GCC around March 2002 include spaces after the
8896 commas. */
8897
8898
8899 /* Find the extent of the macro name. The macro name is terminated
8900 by either a space or null character (for an object-like macro) or
8901 an opening paren (for a function-like macro). */
8902 for (p = body; *p; p++)
8903 if (*p == ' ' || *p == '(')
8904 break;
8905
8906 if (*p == ' ' || *p == '\0')
8907 {
8908 /* It's an object-like macro. */
8909 int name_len = p - body;
8910 char *name = copy_string (body, name_len);
8911 const char *replacement;
8912
8913 if (*p == ' ')
8914 replacement = body + name_len + 1;
8915 else
8916 {
8917 dwarf2_macro_malformed_definition_complaint (body);
8918 replacement = body + name_len;
8919 }
8920
8921 macro_define_object (file, line, name, replacement);
8922
8923 xfree (name);
8924 }
8925 else if (*p == '(')
8926 {
8927 /* It's a function-like macro. */
8928 char *name = copy_string (body, p - body);
8929 int argc = 0;
8930 int argv_size = 1;
8931 char **argv = xmalloc (argv_size * sizeof (*argv));
8932
8933 p++;
8934
8935 p = consume_improper_spaces (p, body);
8936
8937 /* Parse the formal argument list. */
8938 while (*p && *p != ')')
8939 {
8940 /* Find the extent of the current argument name. */
8941 const char *arg_start = p;
8942
8943 while (*p && *p != ',' && *p != ')' && *p != ' ')
8944 p++;
8945
8946 if (! *p || p == arg_start)
8947 dwarf2_macro_malformed_definition_complaint (body);
8948 else
8949 {
8950 /* Make sure argv has room for the new argument. */
8951 if (argc >= argv_size)
8952 {
8953 argv_size *= 2;
8954 argv = xrealloc (argv, argv_size * sizeof (*argv));
8955 }
8956
8957 argv[argc++] = copy_string (arg_start, p - arg_start);
8958 }
8959
8960 p = consume_improper_spaces (p, body);
8961
8962 /* Consume the comma, if present. */
8963 if (*p == ',')
8964 {
8965 p++;
8966
8967 p = consume_improper_spaces (p, body);
8968 }
8969 }
8970
8971 if (*p == ')')
8972 {
8973 p++;
8974
8975 if (*p == ' ')
8976 /* Perfectly formed definition, no complaints. */
8977 macro_define_function (file, line, name,
8978 argc, (const char **) argv,
8979 p + 1);
8980 else if (*p == '\0')
8981 {
8982 /* Complain, but do define it. */
8983 dwarf2_macro_malformed_definition_complaint (body);
8984 macro_define_function (file, line, name,
8985 argc, (const char **) argv,
8986 p);
8987 }
8988 else
8989 /* Just complain. */
8990 dwarf2_macro_malformed_definition_complaint (body);
8991 }
8992 else
8993 /* Just complain. */
8994 dwarf2_macro_malformed_definition_complaint (body);
8995
8996 xfree (name);
8997 {
8998 int i;
8999
9000 for (i = 0; i < argc; i++)
9001 xfree (argv[i]);
9002 }
9003 xfree (argv);
9004 }
9005 else
9006 dwarf2_macro_malformed_definition_complaint (body);
9007 }
9008
9009
9010 static void
9011 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9012 char *comp_dir, bfd *abfd,
9013 struct dwarf2_cu *cu)
9014 {
9015 char *mac_ptr, *mac_end;
9016 struct macro_source_file *current_file = 0;
9017
9018 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9019 {
9020 complaint (&symfile_complaints, "missing .debug_macinfo section");
9021 return;
9022 }
9023
9024 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9025 mac_end = dwarf2_per_objfile->macinfo_buffer
9026 + dwarf2_per_objfile->macinfo_size;
9027
9028 for (;;)
9029 {
9030 enum dwarf_macinfo_record_type macinfo_type;
9031
9032 /* Do we at least have room for a macinfo type byte? */
9033 if (mac_ptr >= mac_end)
9034 {
9035 dwarf2_macros_too_long_complaint ();
9036 return;
9037 }
9038
9039 macinfo_type = read_1_byte (abfd, mac_ptr);
9040 mac_ptr++;
9041
9042 switch (macinfo_type)
9043 {
9044 /* A zero macinfo type indicates the end of the macro
9045 information. */
9046 case 0:
9047 return;
9048
9049 case DW_MACINFO_define:
9050 case DW_MACINFO_undef:
9051 {
9052 int bytes_read;
9053 int line;
9054 char *body;
9055
9056 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9057 mac_ptr += bytes_read;
9058 body = read_string (abfd, mac_ptr, &bytes_read);
9059 mac_ptr += bytes_read;
9060
9061 if (! current_file)
9062 complaint (&symfile_complaints,
9063 "debug info gives macro %s outside of any file: %s",
9064 macinfo_type ==
9065 DW_MACINFO_define ? "definition" : macinfo_type ==
9066 DW_MACINFO_undef ? "undefinition" :
9067 "something-or-other", body);
9068 else
9069 {
9070 if (macinfo_type == DW_MACINFO_define)
9071 parse_macro_definition (current_file, line, body);
9072 else if (macinfo_type == DW_MACINFO_undef)
9073 macro_undef (current_file, line, body);
9074 }
9075 }
9076 break;
9077
9078 case DW_MACINFO_start_file:
9079 {
9080 int bytes_read;
9081 int line, file;
9082
9083 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9084 mac_ptr += bytes_read;
9085 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9086 mac_ptr += bytes_read;
9087
9088 current_file = macro_start_file (file, line,
9089 current_file, comp_dir,
9090 lh, cu->objfile);
9091 }
9092 break;
9093
9094 case DW_MACINFO_end_file:
9095 if (! current_file)
9096 complaint (&symfile_complaints,
9097 "macro debug info has an unmatched `close_file' directive");
9098 else
9099 {
9100 current_file = current_file->included_by;
9101 if (! current_file)
9102 {
9103 enum dwarf_macinfo_record_type next_type;
9104
9105 /* GCC circa March 2002 doesn't produce the zero
9106 type byte marking the end of the compilation
9107 unit. Complain if it's not there, but exit no
9108 matter what. */
9109
9110 /* Do we at least have room for a macinfo type byte? */
9111 if (mac_ptr >= mac_end)
9112 {
9113 dwarf2_macros_too_long_complaint ();
9114 return;
9115 }
9116
9117 /* We don't increment mac_ptr here, so this is just
9118 a look-ahead. */
9119 next_type = read_1_byte (abfd, mac_ptr);
9120 if (next_type != 0)
9121 complaint (&symfile_complaints,
9122 "no terminating 0-type entry for macros in `.debug_macinfo' section");
9123
9124 return;
9125 }
9126 }
9127 break;
9128
9129 case DW_MACINFO_vendor_ext:
9130 {
9131 int bytes_read;
9132 int constant;
9133 char *string;
9134
9135 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9136 mac_ptr += bytes_read;
9137 string = read_string (abfd, mac_ptr, &bytes_read);
9138 mac_ptr += bytes_read;
9139
9140 /* We don't recognize any vendor extensions. */
9141 }
9142 break;
9143 }
9144 }
9145 }
9146
9147 /* Check if the attribute's form is a DW_FORM_block*
9148 if so return true else false. */
9149 static int
9150 attr_form_is_block (struct attribute *attr)
9151 {
9152 return (attr == NULL ? 0 :
9153 attr->form == DW_FORM_block1
9154 || attr->form == DW_FORM_block2
9155 || attr->form == DW_FORM_block4
9156 || attr->form == DW_FORM_block);
9157 }
9158
9159 static void
9160 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9161 struct dwarf2_cu *cu)
9162 {
9163 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9164 {
9165 struct dwarf2_loclist_baton *baton;
9166
9167 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9168 sizeof (struct dwarf2_loclist_baton));
9169 baton->objfile = cu->objfile;
9170
9171 /* We don't know how long the location list is, but make sure we
9172 don't run off the edge of the section. */
9173 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9174 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9175 baton->base_address = cu->header.base_address;
9176 if (cu->header.base_known == 0)
9177 complaint (&symfile_complaints,
9178 "Location list used without specifying the CU base address.");
9179
9180 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9181 SYMBOL_LOCATION_BATON (sym) = baton;
9182 }
9183 else
9184 {
9185 struct dwarf2_locexpr_baton *baton;
9186
9187 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9188 sizeof (struct dwarf2_locexpr_baton));
9189 baton->objfile = cu->objfile;
9190
9191 if (attr_form_is_block (attr))
9192 {
9193 /* Note that we're just copying the block's data pointer
9194 here, not the actual data. We're still pointing into the
9195 info_buffer for SYM's objfile; right now we never release
9196 that buffer, but when we do clean up properly this may
9197 need to change. */
9198 baton->size = DW_BLOCK (attr)->size;
9199 baton->data = DW_BLOCK (attr)->data;
9200 }
9201 else
9202 {
9203 dwarf2_invalid_attrib_class_complaint ("location description",
9204 SYMBOL_NATURAL_NAME (sym));
9205 baton->size = 0;
9206 baton->data = NULL;
9207 }
9208
9209 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9210 SYMBOL_LOCATION_BATON (sym) = baton;
9211 }
9212 }
9213
9214 /* Locate the compilation unit from CU's objfile which contains the
9215 DIE at OFFSET. Raises an error on failure. */
9216
9217 static struct dwarf2_per_cu_data *
9218 dwarf2_find_containing_comp_unit (unsigned long offset,
9219 struct objfile *objfile)
9220 {
9221 struct dwarf2_per_cu_data *this_cu;
9222 int low, high;
9223
9224 low = 0;
9225 high = dwarf2_per_objfile->n_comp_units - 1;
9226 while (high > low)
9227 {
9228 int mid = low + (high - low) / 2;
9229 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9230 high = mid;
9231 else
9232 low = mid + 1;
9233 }
9234 gdb_assert (low == high);
9235 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9236 {
9237 if (low == 0)
9238 error ("Dwarf Error: could not find partial DIE containing "
9239 "offset 0x%lx [in module %s]",
9240 (long) offset, bfd_get_filename (objfile->obfd));
9241
9242 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9243 return dwarf2_per_objfile->all_comp_units[low-1];
9244 }
9245 else
9246 {
9247 this_cu = dwarf2_per_objfile->all_comp_units[low];
9248 if (low == dwarf2_per_objfile->n_comp_units - 1
9249 && offset >= this_cu->offset + this_cu->length)
9250 error ("invalid dwarf2 offset %ld", offset);
9251 gdb_assert (offset < this_cu->offset + this_cu->length);
9252 return this_cu;
9253 }
9254 }
9255
9256 /* Locate the compilation unit from OBJFILE which is located at exactly
9257 OFFSET. Raises an error on failure. */
9258
9259 static struct dwarf2_per_cu_data *
9260 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9261 {
9262 struct dwarf2_per_cu_data *this_cu;
9263 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9264 if (this_cu->offset != offset)
9265 error ("no compilation unit with offset %ld\n", offset);
9266 return this_cu;
9267 }
9268
9269 /* Release one cached compilation unit, CU. We unlink it from the tree
9270 of compilation units, but we don't remove it from the read_in_chain;
9271 the caller is responsible for that. */
9272
9273 static void
9274 free_one_comp_unit (void *data)
9275 {
9276 struct dwarf2_cu *cu = data;
9277
9278 if (cu->per_cu != NULL)
9279 cu->per_cu->cu = NULL;
9280 cu->per_cu = NULL;
9281
9282 obstack_free (&cu->comp_unit_obstack, NULL);
9283 if (cu->dies)
9284 free_die_list (cu->dies);
9285
9286 xfree (cu);
9287 }
9288
9289 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9290 when we're finished with it. We can't free the pointer itself, but be
9291 sure to unlink it from the cache. Also release any associated storage
9292 and perform cache maintenance.
9293
9294 Only used during partial symbol parsing. */
9295
9296 static void
9297 free_stack_comp_unit (void *data)
9298 {
9299 struct dwarf2_cu *cu = data;
9300
9301 obstack_free (&cu->comp_unit_obstack, NULL);
9302 cu->partial_dies = NULL;
9303
9304 if (cu->per_cu != NULL)
9305 {
9306 /* This compilation unit is on the stack in our caller, so we
9307 should not xfree it. Just unlink it. */
9308 cu->per_cu->cu = NULL;
9309 cu->per_cu = NULL;
9310
9311 /* If we had a per-cu pointer, then we may have other compilation
9312 units loaded, so age them now. */
9313 age_cached_comp_units ();
9314 }
9315 }
9316
9317 /* Free all cached compilation units. */
9318
9319 static void
9320 free_cached_comp_units (void *data)
9321 {
9322 struct dwarf2_per_cu_data *per_cu, **last_chain;
9323
9324 per_cu = dwarf2_per_objfile->read_in_chain;
9325 last_chain = &dwarf2_per_objfile->read_in_chain;
9326 while (per_cu != NULL)
9327 {
9328 struct dwarf2_per_cu_data *next_cu;
9329
9330 next_cu = per_cu->cu->read_in_chain;
9331
9332 free_one_comp_unit (per_cu->cu);
9333 *last_chain = next_cu;
9334
9335 per_cu = next_cu;
9336 }
9337 }
9338
9339 /* Increase the age counter on each cached compilation unit, and free
9340 any that are too old. */
9341
9342 static void
9343 age_cached_comp_units (void)
9344 {
9345 struct dwarf2_per_cu_data *per_cu, **last_chain;
9346
9347 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9348 per_cu = dwarf2_per_objfile->read_in_chain;
9349 while (per_cu != NULL)
9350 {
9351 per_cu->cu->last_used ++;
9352 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9353 dwarf2_mark (per_cu->cu);
9354 per_cu = per_cu->cu->read_in_chain;
9355 }
9356
9357 per_cu = dwarf2_per_objfile->read_in_chain;
9358 last_chain = &dwarf2_per_objfile->read_in_chain;
9359 while (per_cu != NULL)
9360 {
9361 struct dwarf2_per_cu_data *next_cu;
9362
9363 next_cu = per_cu->cu->read_in_chain;
9364
9365 if (!per_cu->cu->mark)
9366 {
9367 free_one_comp_unit (per_cu->cu);
9368 *last_chain = next_cu;
9369 }
9370 else
9371 last_chain = &per_cu->cu->read_in_chain;
9372
9373 per_cu = next_cu;
9374 }
9375 }
9376
9377 /* Remove a single compilation unit from the cache. */
9378
9379 static void
9380 free_one_cached_comp_unit (void *target_cu)
9381 {
9382 struct dwarf2_per_cu_data *per_cu, **last_chain;
9383
9384 per_cu = dwarf2_per_objfile->read_in_chain;
9385 last_chain = &dwarf2_per_objfile->read_in_chain;
9386 while (per_cu != NULL)
9387 {
9388 struct dwarf2_per_cu_data *next_cu;
9389
9390 next_cu = per_cu->cu->read_in_chain;
9391
9392 if (per_cu->cu == target_cu)
9393 {
9394 free_one_comp_unit (per_cu->cu);
9395 *last_chain = next_cu;
9396 break;
9397 }
9398 else
9399 last_chain = &per_cu->cu->read_in_chain;
9400
9401 per_cu = next_cu;
9402 }
9403 }
9404
9405 /* A pair of DIE offset and GDB type pointer. We store these
9406 in a hash table separate from the DIEs, and preserve them
9407 when the DIEs are flushed out of cache. */
9408
9409 struct dwarf2_offset_and_type
9410 {
9411 unsigned int offset;
9412 struct type *type;
9413 };
9414
9415 /* Hash function for a dwarf2_offset_and_type. */
9416
9417 static hashval_t
9418 offset_and_type_hash (const void *item)
9419 {
9420 const struct dwarf2_offset_and_type *ofs = item;
9421 return ofs->offset;
9422 }
9423
9424 /* Equality function for a dwarf2_offset_and_type. */
9425
9426 static int
9427 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9428 {
9429 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9430 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9431 return ofs_lhs->offset == ofs_rhs->offset;
9432 }
9433
9434 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9435 table if necessary. */
9436
9437 static void
9438 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9439 {
9440 struct dwarf2_offset_and_type **slot, ofs;
9441
9442 die->type = type;
9443
9444 if (cu->per_cu == NULL)
9445 return;
9446
9447 if (cu->per_cu->type_hash == NULL)
9448 cu->per_cu->type_hash
9449 = htab_create_alloc_ex (cu->header.length / 24,
9450 offset_and_type_hash,
9451 offset_and_type_eq,
9452 NULL,
9453 &cu->objfile->objfile_obstack,
9454 hashtab_obstack_allocate,
9455 dummy_obstack_deallocate);
9456
9457 ofs.offset = die->offset;
9458 ofs.type = type;
9459 slot = (struct dwarf2_offset_and_type **)
9460 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9461 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9462 **slot = ofs;
9463 }
9464
9465 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9466 have a saved type. */
9467
9468 static struct type *
9469 get_die_type (struct die_info *die, htab_t type_hash)
9470 {
9471 struct dwarf2_offset_and_type *slot, ofs;
9472
9473 ofs.offset = die->offset;
9474 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9475 if (slot)
9476 return slot->type;
9477 else
9478 return NULL;
9479 }
9480
9481 /* Restore the types of the DIE tree starting at START_DIE from the hash
9482 table saved in CU. */
9483
9484 static void
9485 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9486 {
9487 struct die_info *die;
9488
9489 if (cu->per_cu->type_hash == NULL)
9490 return;
9491
9492 for (die = start_die; die != NULL; die = die->sibling)
9493 {
9494 die->type = get_die_type (die, cu->per_cu->type_hash);
9495 if (die->child != NULL)
9496 reset_die_and_siblings_types (die->child, cu);
9497 }
9498 }
9499
9500 /* Set the mark field in CU and in every other compilation unit in the
9501 cache that we must keep because we are keeping CU. */
9502
9503 /* Add a dependence relationship from CU to REF_PER_CU. */
9504
9505 static void
9506 dwarf2_add_dependence (struct dwarf2_cu *cu,
9507 struct dwarf2_per_cu_data *ref_per_cu)
9508 {
9509 void **slot;
9510
9511 if (cu->dependencies == NULL)
9512 cu->dependencies
9513 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9514 NULL, &cu->comp_unit_obstack,
9515 hashtab_obstack_allocate,
9516 dummy_obstack_deallocate);
9517
9518 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9519 if (*slot == NULL)
9520 *slot = ref_per_cu;
9521 }
9522
9523 /* Set the mark field in CU and in every other compilation unit in the
9524 cache that we must keep because we are keeping CU. */
9525
9526 static int
9527 dwarf2_mark_helper (void **slot, void *data)
9528 {
9529 struct dwarf2_per_cu_data *per_cu;
9530
9531 per_cu = (struct dwarf2_per_cu_data *) *slot;
9532 if (per_cu->cu->mark)
9533 return 1;
9534 per_cu->cu->mark = 1;
9535
9536 if (per_cu->cu->dependencies != NULL)
9537 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9538
9539 return 1;
9540 }
9541
9542 static void
9543 dwarf2_mark (struct dwarf2_cu *cu)
9544 {
9545 if (cu->mark)
9546 return;
9547 cu->mark = 1;
9548 if (cu->dependencies != NULL)
9549 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9550 }
9551
9552 static void
9553 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9554 {
9555 while (per_cu)
9556 {
9557 per_cu->cu->mark = 0;
9558 per_cu = per_cu->cu->read_in_chain;
9559 }
9560 }
9561
9562 /* Allocation function for the libiberty hash table which uses an
9563 obstack. */
9564
9565 static void *
9566 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9567 {
9568 unsigned int total = size * count;
9569 void *ptr = obstack_alloc ((struct obstack *) data, total);
9570 memset (ptr, 0, total);
9571 return ptr;
9572 }
9573
9574 /* Trivial deallocation function for the libiberty splay tree and hash
9575 table - don't deallocate anything. Rely on later deletion of the
9576 obstack. */
9577
9578 static void
9579 dummy_obstack_deallocate (void *object, void *data)
9580 {
9581 return;
9582 }
9583
9584 /* Trivial hash function for partial_die_info: the hash value of a DIE
9585 is its offset in .debug_info for this objfile. */
9586
9587 static hashval_t
9588 partial_die_hash (const void *item)
9589 {
9590 const struct partial_die_info *part_die = item;
9591 return part_die->offset;
9592 }
9593
9594 /* Trivial comparison function for partial_die_info structures: two DIEs
9595 are equal if they have the same offset. */
9596
9597 static int
9598 partial_die_eq (const void *item_lhs, const void *item_rhs)
9599 {
9600 const struct partial_die_info *part_die_lhs = item_lhs;
9601 const struct partial_die_info *part_die_rhs = item_rhs;
9602 return part_die_lhs->offset == part_die_rhs->offset;
9603 }
9604
9605 static struct cmd_list_element *set_dwarf2_cmdlist;
9606 static struct cmd_list_element *show_dwarf2_cmdlist;
9607
9608 static void
9609 set_dwarf2_cmd (char *args, int from_tty)
9610 {
9611 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9612 }
9613
9614 static void
9615 show_dwarf2_cmd (char *args, int from_tty)
9616 {
9617 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9618 }
9619
9620 void _initialize_dwarf2_read (void);
9621
9622 void
9623 _initialize_dwarf2_read (void)
9624 {
9625 dwarf2_objfile_data_key = register_objfile_data ();
9626
9627 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd,
9628 "Set DWARF 2 specific variables.\n"
9629 "Configure DWARF 2 variables such as the cache size",
9630 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9631 0/*allow-unknown*/, &maintenance_set_cmdlist);
9632
9633 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd,
9634 "Show DWARF 2 specific variables\n"
9635 "Show DWARF 2 variables such as the cache size",
9636 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9637 0/*allow-unknown*/, &maintenance_show_cmdlist);
9638
9639 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9640 &dwarf2_max_cache_age,
9641 "Set the upper bound on the age of cached "
9642 "dwarf2 compilation units.",
9643 "Show the upper bound on the age of cached "
9644 "dwarf2 compilation units.",
9645 "A higher limit means that cached "
9646 "compilation units will be stored\n"
9647 "in memory longer, and more total memory will "
9648 "be used. Zero disables\n"
9649 "caching, which can slow down startup.",
9650 "The upper bound on the age of cached "
9651 "dwarf2 compilation units is %d.",
9652 NULL, NULL, &set_dwarf2_cmdlist,
9653 &show_dwarf2_cmdlist);
9654 }