]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
2005-02-14 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588 static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595 static int bits_per_byte = 8;
596
597 /* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600 struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645 /* One item on the queue of compilation units to read in full symbols
646 for. */
647 struct dwarf2_queue_item
648 {
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651 };
652
653 /* The current queue. */
654 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656 /* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661 static int dwarf2_max_cache_age = 5;
662
663 /* Various complaints about symbol reading that don't abort the process */
664
665 static void
666 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
667 {
668 complaint (&symfile_complaints,
669 _("statement list doesn't fit in .debug_line section"));
670 }
671
672 static void
673 dwarf2_complex_location_expr_complaint (void)
674 {
675 complaint (&symfile_complaints, _("location expression too complex"));
676 }
677
678 static void
679 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
680 int arg3)
681 {
682 complaint (&symfile_complaints,
683 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
684 arg2, arg3);
685 }
686
687 static void
688 dwarf2_macros_too_long_complaint (void)
689 {
690 complaint (&symfile_complaints,
691 _("macro info runs off end of `.debug_macinfo' section"));
692 }
693
694 static void
695 dwarf2_macro_malformed_definition_complaint (const char *arg1)
696 {
697 complaint (&symfile_complaints,
698 _("macro debug info contains a malformed macro definition:\n`%s'"),
699 arg1);
700 }
701
702 static void
703 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
704 {
705 complaint (&symfile_complaints,
706 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
707 }
708
709 /* local function prototypes */
710
711 static void dwarf2_locate_sections (bfd *, asection *, void *);
712
713 #if 0
714 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
715 #endif
716
717 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
718 struct objfile *);
719
720 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
721 struct partial_die_info *,
722 struct partial_symtab *);
723
724 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
725
726 static void scan_partial_symbols (struct partial_die_info *,
727 CORE_ADDR *, CORE_ADDR *,
728 struct dwarf2_cu *);
729
730 static void add_partial_symbol (struct partial_die_info *,
731 struct dwarf2_cu *);
732
733 static int pdi_needs_namespace (enum dwarf_tag tag);
734
735 static void add_partial_namespace (struct partial_die_info *pdi,
736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
737 struct dwarf2_cu *cu);
738
739 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
740 struct dwarf2_cu *cu);
741
742 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
743 char *info_ptr,
744 bfd *abfd,
745 struct dwarf2_cu *cu);
746
747 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
748
749 static void psymtab_to_symtab_1 (struct partial_symtab *);
750
751 char *dwarf2_read_section (struct objfile *, asection *);
752
753 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
754
755 static void dwarf2_free_abbrev_table (void *);
756
757 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
758
759 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
760 struct dwarf2_cu *);
761
762 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
763 struct dwarf2_cu *);
764
765 static char *read_partial_die (struct partial_die_info *,
766 struct abbrev_info *abbrev, unsigned int,
767 bfd *, char *, struct dwarf2_cu *);
768
769 static struct partial_die_info *find_partial_die (unsigned long,
770 struct dwarf2_cu *);
771
772 static void fixup_partial_die (struct partial_die_info *,
773 struct dwarf2_cu *);
774
775 static char *read_full_die (struct die_info **, bfd *, char *,
776 struct dwarf2_cu *, int *);
777
778 static char *read_attribute (struct attribute *, struct attr_abbrev *,
779 bfd *, char *, struct dwarf2_cu *);
780
781 static char *read_attribute_value (struct attribute *, unsigned,
782 bfd *, char *, struct dwarf2_cu *);
783
784 static unsigned int read_1_byte (bfd *, char *);
785
786 static int read_1_signed_byte (bfd *, char *);
787
788 static unsigned int read_2_bytes (bfd *, char *);
789
790 static unsigned int read_4_bytes (bfd *, char *);
791
792 static unsigned long read_8_bytes (bfd *, char *);
793
794 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
795 int *bytes_read);
796
797 static LONGEST read_initial_length (bfd *, char *,
798 struct comp_unit_head *, int *bytes_read);
799
800 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
801 int *bytes_read);
802
803 static char *read_n_bytes (bfd *, char *, unsigned int);
804
805 static char *read_string (bfd *, char *, unsigned int *);
806
807 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
808 unsigned int *);
809
810 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
811
812 static long read_signed_leb128 (bfd *, char *, unsigned int *);
813
814 static char *skip_leb128 (bfd *, char *);
815
816 static void set_cu_language (unsigned int, struct dwarf2_cu *);
817
818 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
819 struct dwarf2_cu *);
820
821 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
822 struct dwarf2_cu *cu);
823
824 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
825
826 static struct die_info *die_specification (struct die_info *die,
827 struct dwarf2_cu *);
828
829 static void free_line_header (struct line_header *lh);
830
831 static void add_file_name (struct line_header *, char *, unsigned int,
832 unsigned int, unsigned int);
833
834 static struct line_header *(dwarf_decode_line_header
835 (unsigned int offset,
836 bfd *abfd, struct dwarf2_cu *cu));
837
838 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
839 struct dwarf2_cu *, struct partial_symtab *);
840
841 static void dwarf2_start_subfile (char *, char *);
842
843 static struct symbol *new_symbol (struct die_info *, struct type *,
844 struct dwarf2_cu *);
845
846 static void dwarf2_const_value (struct attribute *, struct symbol *,
847 struct dwarf2_cu *);
848
849 static void dwarf2_const_value_data (struct attribute *attr,
850 struct symbol *sym,
851 int bits);
852
853 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
854
855 static struct type *die_containing_type (struct die_info *,
856 struct dwarf2_cu *);
857
858 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
859
860 static void read_type_die (struct die_info *, struct dwarf2_cu *);
861
862 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
863
864 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
865 struct dwarf2_cu *);
866
867 static void read_typedef (struct die_info *, struct dwarf2_cu *);
868
869 static void read_base_type (struct die_info *, struct dwarf2_cu *);
870
871 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
872
873 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
874
875 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
876
877 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
878
879 static int dwarf2_get_pc_bounds (struct die_info *,
880 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
881
882 static void get_scope_pc_bounds (struct die_info *,
883 CORE_ADDR *, CORE_ADDR *,
884 struct dwarf2_cu *);
885
886 static void dwarf2_add_field (struct field_info *, struct die_info *,
887 struct dwarf2_cu *);
888
889 static void dwarf2_attach_fields_to_type (struct field_info *,
890 struct type *, struct dwarf2_cu *);
891
892 static void dwarf2_add_member_fn (struct field_info *,
893 struct die_info *, struct type *,
894 struct dwarf2_cu *);
895
896 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
897 struct type *, struct dwarf2_cu *);
898
899 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
900
901 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
902
903 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
904
905 static void read_common_block (struct die_info *, struct dwarf2_cu *);
906
907 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
908
909 static const char *namespace_name (struct die_info *die,
910 int *is_anonymous, struct dwarf2_cu *);
911
912 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
913
914 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
915
916 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
917
918 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
919
920 static void read_array_type (struct die_info *, struct dwarf2_cu *);
921
922 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
923 struct dwarf2_cu *);
924
925 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
926
927 static void read_tag_ptr_to_member_type (struct die_info *,
928 struct dwarf2_cu *);
929
930 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
931
932 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
933
934 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
937
938 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
939
940 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
941
942 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
943 struct dwarf2_cu *,
944 char **new_info_ptr,
945 struct die_info *parent);
946
947 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
948 struct dwarf2_cu *,
949 char **new_info_ptr,
950 struct die_info *parent);
951
952 static void free_die_list (struct die_info *);
953
954 static void process_die (struct die_info *, struct dwarf2_cu *);
955
956 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
957
958 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
959
960 static struct die_info *dwarf2_extension (struct die_info *die,
961 struct dwarf2_cu *);
962
963 static char *dwarf_tag_name (unsigned int);
964
965 static char *dwarf_attr_name (unsigned int);
966
967 static char *dwarf_form_name (unsigned int);
968
969 static char *dwarf_stack_op_name (unsigned int);
970
971 static char *dwarf_bool_name (unsigned int);
972
973 static char *dwarf_type_encoding_name (unsigned int);
974
975 #if 0
976 static char *dwarf_cfi_name (unsigned int);
977
978 struct die_info *copy_die (struct die_info *);
979 #endif
980
981 static struct die_info *sibling_die (struct die_info *);
982
983 static void dump_die (struct die_info *);
984
985 static void dump_die_list (struct die_info *);
986
987 static void store_in_ref_table (unsigned int, struct die_info *,
988 struct dwarf2_cu *);
989
990 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
991 struct dwarf2_cu *);
992
993 static int dwarf2_get_attr_constant_value (struct attribute *, int);
994
995 static struct die_info *follow_die_ref (struct die_info *,
996 struct attribute *,
997 struct dwarf2_cu *);
998
999 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1000 struct dwarf2_cu *);
1001
1002 /* memory allocation interface */
1003
1004 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1005
1006 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1007
1008 static struct die_info *dwarf_alloc_die (void);
1009
1010 static void initialize_cu_func_list (struct dwarf2_cu *);
1011
1012 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1013 struct dwarf2_cu *);
1014
1015 static void dwarf_decode_macros (struct line_header *, unsigned int,
1016 char *, bfd *, struct dwarf2_cu *);
1017
1018 static int attr_form_is_block (struct attribute *);
1019
1020 static void
1021 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1022 struct dwarf2_cu *cu);
1023
1024 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1025 struct dwarf2_cu *cu);
1026
1027 static void free_stack_comp_unit (void *);
1028
1029 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1030
1031 static void dummy_obstack_deallocate (void *object, void *data);
1032
1033 static hashval_t partial_die_hash (const void *item);
1034
1035 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1036
1037 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1038 (unsigned long offset, struct objfile *objfile);
1039
1040 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1041 (unsigned long offset, struct objfile *objfile);
1042
1043 static void free_one_comp_unit (void *);
1044
1045 static void free_cached_comp_units (void *);
1046
1047 static void age_cached_comp_units (void);
1048
1049 static void free_one_cached_comp_unit (void *);
1050
1051 static void set_die_type (struct die_info *, struct type *,
1052 struct dwarf2_cu *);
1053
1054 static void reset_die_and_siblings_types (struct die_info *,
1055 struct dwarf2_cu *);
1056
1057 static void create_all_comp_units (struct objfile *);
1058
1059 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1060
1061 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063 static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
1066 static void dwarf2_mark (struct dwarf2_cu *);
1067
1068 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
1070 /* Try to locate the sections we need for DWARF 2 debugging
1071 information and return true if we have enough to do something. */
1072
1073 int
1074 dwarf2_has_info (struct objfile *objfile)
1075 {
1076 struct dwarf2_per_objfile *data;
1077
1078 /* Initialize per-objfile state. */
1079 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1080 memset (data, 0, sizeof (*data));
1081 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1082 dwarf2_per_objfile = data;
1083
1084 dwarf_info_section = 0;
1085 dwarf_abbrev_section = 0;
1086 dwarf_line_section = 0;
1087 dwarf_str_section = 0;
1088 dwarf_macinfo_section = 0;
1089 dwarf_frame_section = 0;
1090 dwarf_eh_frame_section = 0;
1091 dwarf_ranges_section = 0;
1092 dwarf_loc_section = 0;
1093
1094 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1095 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1096 }
1097
1098 /* This function is mapped across the sections and remembers the
1099 offset and size of each of the debugging sections we are interested
1100 in. */
1101
1102 static void
1103 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1104 {
1105 if (strcmp (sectp->name, INFO_SECTION) == 0)
1106 {
1107 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1108 dwarf_info_section = sectp;
1109 }
1110 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1111 {
1112 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1113 dwarf_abbrev_section = sectp;
1114 }
1115 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1116 {
1117 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1118 dwarf_line_section = sectp;
1119 }
1120 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1121 {
1122 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1123 dwarf_pubnames_section = sectp;
1124 }
1125 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1126 {
1127 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1128 dwarf_aranges_section = sectp;
1129 }
1130 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1131 {
1132 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1133 dwarf_loc_section = sectp;
1134 }
1135 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1136 {
1137 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1138 dwarf_macinfo_section = sectp;
1139 }
1140 else if (strcmp (sectp->name, STR_SECTION) == 0)
1141 {
1142 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1143 dwarf_str_section = sectp;
1144 }
1145 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1146 {
1147 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1148 dwarf_frame_section = sectp;
1149 }
1150 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1151 {
1152 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1153 if (aflag & SEC_HAS_CONTENTS)
1154 {
1155 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1156 dwarf_eh_frame_section = sectp;
1157 }
1158 }
1159 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1162 dwarf_ranges_section = sectp;
1163 }
1164 }
1165
1166 /* Build a partial symbol table. */
1167
1168 void
1169 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1170 {
1171 /* We definitely need the .debug_info and .debug_abbrev sections */
1172
1173 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1174 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1175
1176 if (dwarf_line_section)
1177 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1178 else
1179 dwarf2_per_objfile->line_buffer = NULL;
1180
1181 if (dwarf_str_section)
1182 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1183 else
1184 dwarf2_per_objfile->str_buffer = NULL;
1185
1186 if (dwarf_macinfo_section)
1187 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1188 dwarf_macinfo_section);
1189 else
1190 dwarf2_per_objfile->macinfo_buffer = NULL;
1191
1192 if (dwarf_ranges_section)
1193 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1194 else
1195 dwarf2_per_objfile->ranges_buffer = NULL;
1196
1197 if (dwarf_loc_section)
1198 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1199 else
1200 dwarf2_per_objfile->loc_buffer = NULL;
1201
1202 if (mainline
1203 || (objfile->global_psymbols.size == 0
1204 && objfile->static_psymbols.size == 0))
1205 {
1206 init_psymbol_list (objfile, 1024);
1207 }
1208
1209 #if 0
1210 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1211 {
1212 /* Things are significantly easier if we have .debug_aranges and
1213 .debug_pubnames sections */
1214
1215 dwarf2_build_psymtabs_easy (objfile, mainline);
1216 }
1217 else
1218 #endif
1219 /* only test this case for now */
1220 {
1221 /* In this case we have to work a bit harder */
1222 dwarf2_build_psymtabs_hard (objfile, mainline);
1223 }
1224 }
1225
1226 #if 0
1227 /* Build the partial symbol table from the information in the
1228 .debug_pubnames and .debug_aranges sections. */
1229
1230 static void
1231 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1232 {
1233 bfd *abfd = objfile->obfd;
1234 char *aranges_buffer, *pubnames_buffer;
1235 char *aranges_ptr, *pubnames_ptr;
1236 unsigned int entry_length, version, info_offset, info_size;
1237
1238 pubnames_buffer = dwarf2_read_section (objfile,
1239 dwarf_pubnames_section);
1240 pubnames_ptr = pubnames_buffer;
1241 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1242 {
1243 struct comp_unit_head cu_header;
1244 int bytes_read;
1245
1246 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1247 &bytes_read);
1248 pubnames_ptr += bytes_read;
1249 version = read_1_byte (abfd, pubnames_ptr);
1250 pubnames_ptr += 1;
1251 info_offset = read_4_bytes (abfd, pubnames_ptr);
1252 pubnames_ptr += 4;
1253 info_size = read_4_bytes (abfd, pubnames_ptr);
1254 pubnames_ptr += 4;
1255 }
1256
1257 aranges_buffer = dwarf2_read_section (objfile,
1258 dwarf_aranges_section);
1259
1260 }
1261 #endif
1262
1263 /* Read in the comp unit header information from the debug_info at
1264 info_ptr. */
1265
1266 static char *
1267 read_comp_unit_head (struct comp_unit_head *cu_header,
1268 char *info_ptr, bfd *abfd)
1269 {
1270 int signed_addr;
1271 int bytes_read;
1272 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1273 &bytes_read);
1274 info_ptr += bytes_read;
1275 cu_header->version = read_2_bytes (abfd, info_ptr);
1276 info_ptr += 2;
1277 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1278 &bytes_read);
1279 info_ptr += bytes_read;
1280 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1281 info_ptr += 1;
1282 signed_addr = bfd_get_sign_extend_vma (abfd);
1283 if (signed_addr < 0)
1284 internal_error (__FILE__, __LINE__,
1285 _("read_comp_unit_head: dwarf from non elf file"));
1286 cu_header->signed_addr_p = signed_addr;
1287 return info_ptr;
1288 }
1289
1290 static char *
1291 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1292 bfd *abfd)
1293 {
1294 char *beg_of_comp_unit = info_ptr;
1295
1296 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1297
1298 if (header->version != 2)
1299 error (_("Dwarf Error: wrong version in compilation unit header "
1300 "(is %d, should be %d) [in module %s]"), header->version,
1301 2, bfd_get_filename (abfd));
1302
1303 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1304 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1305 "(offset 0x%lx + 6) [in module %s]"),
1306 (long) header->abbrev_offset,
1307 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1308 bfd_get_filename (abfd));
1309
1310 if (beg_of_comp_unit + header->length + header->initial_length_size
1311 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1313 "(offset 0x%lx + 0) [in module %s]"),
1314 (long) header->length,
1315 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1316 bfd_get_filename (abfd));
1317
1318 return info_ptr;
1319 }
1320
1321 /* Allocate a new partial symtab for file named NAME and mark this new
1322 partial symtab as being an include of PST. */
1323
1324 static void
1325 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1326 struct objfile *objfile)
1327 {
1328 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1329
1330 subpst->section_offsets = pst->section_offsets;
1331 subpst->textlow = 0;
1332 subpst->texthigh = 0;
1333
1334 subpst->dependencies = (struct partial_symtab **)
1335 obstack_alloc (&objfile->objfile_obstack,
1336 sizeof (struct partial_symtab *));
1337 subpst->dependencies[0] = pst;
1338 subpst->number_of_dependencies = 1;
1339
1340 subpst->globals_offset = 0;
1341 subpst->n_global_syms = 0;
1342 subpst->statics_offset = 0;
1343 subpst->n_static_syms = 0;
1344 subpst->symtab = NULL;
1345 subpst->read_symtab = pst->read_symtab;
1346 subpst->readin = 0;
1347
1348 /* No private part is necessary for include psymtabs. This property
1349 can be used to differentiate between such include psymtabs and
1350 the regular ones. */
1351 subpst->read_symtab_private = NULL;
1352 }
1353
1354 /* Read the Line Number Program data and extract the list of files
1355 included by the source file represented by PST. Build an include
1356 partial symtab for each of these included files.
1357
1358 This procedure assumes that there *is* a Line Number Program in
1359 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1360 before calling this procedure. */
1361
1362 static void
1363 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1364 struct partial_die_info *pdi,
1365 struct partial_symtab *pst)
1366 {
1367 struct objfile *objfile = cu->objfile;
1368 bfd *abfd = objfile->obfd;
1369 struct line_header *lh;
1370
1371 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1372 if (lh == NULL)
1373 return; /* No linetable, so no includes. */
1374
1375 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1376
1377 free_line_header (lh);
1378 }
1379
1380
1381 /* Build the partial symbol table by doing a quick pass through the
1382 .debug_info and .debug_abbrev sections. */
1383
1384 static void
1385 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1386 {
1387 /* Instead of reading this into a big buffer, we should probably use
1388 mmap() on architectures that support it. (FIXME) */
1389 bfd *abfd = objfile->obfd;
1390 char *info_ptr;
1391 char *beg_of_comp_unit;
1392 struct partial_die_info comp_unit_die;
1393 struct partial_symtab *pst;
1394 struct cleanup *back_to;
1395 CORE_ADDR lowpc, highpc, baseaddr;
1396
1397 info_ptr = dwarf2_per_objfile->info_buffer;
1398
1399 /* Any cached compilation units will be linked by the per-objfile
1400 read_in_chain. Make sure to free them when we're done. */
1401 back_to = make_cleanup (free_cached_comp_units, NULL);
1402
1403 create_all_comp_units (objfile);
1404
1405 /* Since the objects we're extracting from .debug_info vary in
1406 length, only the individual functions to extract them (like
1407 read_comp_unit_head and load_partial_die) can really know whether
1408 the buffer is large enough to hold another complete object.
1409
1410 At the moment, they don't actually check that. If .debug_info
1411 holds just one extra byte after the last compilation unit's dies,
1412 then read_comp_unit_head will happily read off the end of the
1413 buffer. read_partial_die is similarly casual. Those functions
1414 should be fixed.
1415
1416 For this loop condition, simply checking whether there's any data
1417 left at all should be sufficient. */
1418 while (info_ptr < (dwarf2_per_objfile->info_buffer
1419 + dwarf2_per_objfile->info_size))
1420 {
1421 struct cleanup *back_to_inner;
1422 struct dwarf2_cu cu;
1423 struct abbrev_info *abbrev;
1424 unsigned int bytes_read;
1425 struct dwarf2_per_cu_data *this_cu;
1426
1427 beg_of_comp_unit = info_ptr;
1428
1429 memset (&cu, 0, sizeof (cu));
1430
1431 obstack_init (&cu.comp_unit_obstack);
1432
1433 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1434
1435 cu.objfile = objfile;
1436 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1437
1438 /* Complete the cu_header */
1439 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1440 cu.header.first_die_ptr = info_ptr;
1441 cu.header.cu_head_ptr = beg_of_comp_unit;
1442
1443 cu.list_in_scope = &file_symbols;
1444
1445 /* Read the abbrevs for this compilation unit into a table */
1446 dwarf2_read_abbrevs (abfd, &cu);
1447 make_cleanup (dwarf2_free_abbrev_table, &cu);
1448
1449 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1450
1451 /* Read the compilation unit die */
1452 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1453 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1454 abfd, info_ptr, &cu);
1455
1456 /* Set the language we're debugging */
1457 set_cu_language (comp_unit_die.language, &cu);
1458
1459 /* Allocate a new partial symbol table structure */
1460 pst = start_psymtab_common (objfile, objfile->section_offsets,
1461 comp_unit_die.name ? comp_unit_die.name : "",
1462 comp_unit_die.lowpc,
1463 objfile->global_psymbols.next,
1464 objfile->static_psymbols.next);
1465
1466 if (comp_unit_die.dirname)
1467 pst->dirname = xstrdup (comp_unit_die.dirname);
1468
1469 pst->read_symtab_private = (char *) this_cu;
1470
1471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1472
1473 /* Store the function that reads in the rest of the symbol table */
1474 pst->read_symtab = dwarf2_psymtab_to_symtab;
1475
1476 /* If this compilation unit was already read in, free the
1477 cached copy in order to read it in again. This is
1478 necessary because we skipped some symbols when we first
1479 read in the compilation unit (see load_partial_dies).
1480 This problem could be avoided, but the benefit is
1481 unclear. */
1482 if (this_cu->cu != NULL)
1483 free_one_cached_comp_unit (this_cu->cu);
1484
1485 cu.per_cu = this_cu;
1486
1487 /* Note that this is a pointer to our stack frame, being
1488 added to a global data structure. It will be cleaned up
1489 in free_stack_comp_unit when we finish with this
1490 compilation unit. */
1491 this_cu->cu = &cu;
1492
1493 this_cu->psymtab = pst;
1494
1495 /* Check if comp unit has_children.
1496 If so, read the rest of the partial symbols from this comp unit.
1497 If not, there's no more debug_info for this comp unit. */
1498 if (comp_unit_die.has_children)
1499 {
1500 struct partial_die_info *first_die;
1501
1502 lowpc = ((CORE_ADDR) -1);
1503 highpc = ((CORE_ADDR) 0);
1504
1505 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1506
1507 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1508
1509 /* If we didn't find a lowpc, set it to highpc to avoid
1510 complaints from `maint check'. */
1511 if (lowpc == ((CORE_ADDR) -1))
1512 lowpc = highpc;
1513
1514 /* If the compilation unit didn't have an explicit address range,
1515 then use the information extracted from its child dies. */
1516 if (! comp_unit_die.has_pc_info)
1517 {
1518 comp_unit_die.lowpc = lowpc;
1519 comp_unit_die.highpc = highpc;
1520 }
1521 }
1522 pst->textlow = comp_unit_die.lowpc + baseaddr;
1523 pst->texthigh = comp_unit_die.highpc + baseaddr;
1524
1525 pst->n_global_syms = objfile->global_psymbols.next -
1526 (objfile->global_psymbols.list + pst->globals_offset);
1527 pst->n_static_syms = objfile->static_psymbols.next -
1528 (objfile->static_psymbols.list + pst->statics_offset);
1529 sort_pst_symbols (pst);
1530
1531 /* If there is already a psymtab or symtab for a file of this
1532 name, remove it. (If there is a symtab, more drastic things
1533 also happen.) This happens in VxWorks. */
1534 free_named_symtabs (pst->filename);
1535
1536 if (comp_unit_die.has_stmt_list)
1537 {
1538 /* Get the list of files included in the current compilation unit,
1539 and build a psymtab for each of them. */
1540 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1541 }
1542
1543 info_ptr = beg_of_comp_unit + cu.header.length
1544 + cu.header.initial_length_size;
1545
1546 do_cleanups (back_to_inner);
1547 }
1548 do_cleanups (back_to);
1549 }
1550
1551 /* Load the DIEs for a secondary CU into memory. */
1552
1553 static void
1554 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1555 {
1556 bfd *abfd = objfile->obfd;
1557 char *info_ptr, *beg_of_comp_unit;
1558 struct partial_die_info comp_unit_die;
1559 struct dwarf2_cu *cu;
1560 struct abbrev_info *abbrev;
1561 unsigned int bytes_read;
1562 struct cleanup *back_to;
1563
1564 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1565 beg_of_comp_unit = info_ptr;
1566
1567 cu = xmalloc (sizeof (struct dwarf2_cu));
1568 memset (cu, 0, sizeof (struct dwarf2_cu));
1569
1570 obstack_init (&cu->comp_unit_obstack);
1571
1572 cu->objfile = objfile;
1573 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1574
1575 /* Complete the cu_header. */
1576 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1577 cu->header.first_die_ptr = info_ptr;
1578 cu->header.cu_head_ptr = beg_of_comp_unit;
1579
1580 /* Read the abbrevs for this compilation unit into a table. */
1581 dwarf2_read_abbrevs (abfd, cu);
1582 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1583
1584 /* Read the compilation unit die. */
1585 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1586 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1587 abfd, info_ptr, cu);
1588
1589 /* Set the language we're debugging. */
1590 set_cu_language (comp_unit_die.language, cu);
1591
1592 /* Link this compilation unit into the compilation unit tree. */
1593 this_cu->cu = cu;
1594 cu->per_cu = this_cu;
1595
1596 /* Check if comp unit has_children.
1597 If so, read the rest of the partial symbols from this comp unit.
1598 If not, there's no more debug_info for this comp unit. */
1599 if (comp_unit_die.has_children)
1600 load_partial_dies (abfd, info_ptr, 0, cu);
1601
1602 do_cleanups (back_to);
1603 }
1604
1605 /* Create a list of all compilation units in OBJFILE. We do this only
1606 if an inter-comp-unit reference is found; presumably if there is one,
1607 there will be many, and one will occur early in the .debug_info section.
1608 So there's no point in building this list incrementally. */
1609
1610 static void
1611 create_all_comp_units (struct objfile *objfile)
1612 {
1613 int n_allocated;
1614 int n_comp_units;
1615 struct dwarf2_per_cu_data **all_comp_units;
1616 char *info_ptr = dwarf2_per_objfile->info_buffer;
1617
1618 n_comp_units = 0;
1619 n_allocated = 10;
1620 all_comp_units = xmalloc (n_allocated
1621 * sizeof (struct dwarf2_per_cu_data *));
1622
1623 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1624 {
1625 struct comp_unit_head cu_header;
1626 char *beg_of_comp_unit;
1627 struct dwarf2_per_cu_data *this_cu;
1628 unsigned long offset;
1629 int bytes_read;
1630
1631 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1632
1633 /* Read just enough information to find out where the next
1634 compilation unit is. */
1635 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1636 &cu_header, &bytes_read);
1637
1638 /* Save the compilation unit for later lookup. */
1639 this_cu = obstack_alloc (&objfile->objfile_obstack,
1640 sizeof (struct dwarf2_per_cu_data));
1641 memset (this_cu, 0, sizeof (*this_cu));
1642 this_cu->offset = offset;
1643 this_cu->length = cu_header.length + cu_header.initial_length_size;
1644
1645 if (n_comp_units == n_allocated)
1646 {
1647 n_allocated *= 2;
1648 all_comp_units = xrealloc (all_comp_units,
1649 n_allocated
1650 * sizeof (struct dwarf2_per_cu_data *));
1651 }
1652 all_comp_units[n_comp_units++] = this_cu;
1653
1654 info_ptr = info_ptr + this_cu->length;
1655 }
1656
1657 dwarf2_per_objfile->all_comp_units
1658 = obstack_alloc (&objfile->objfile_obstack,
1659 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1660 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1661 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1662 xfree (all_comp_units);
1663 dwarf2_per_objfile->n_comp_units = n_comp_units;
1664 }
1665
1666 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1667 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1668 in CU. */
1669
1670 static void
1671 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1672 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1673 {
1674 struct objfile *objfile = cu->objfile;
1675 bfd *abfd = objfile->obfd;
1676 struct partial_die_info *pdi;
1677
1678 /* Now, march along the PDI's, descending into ones which have
1679 interesting children but skipping the children of the other ones,
1680 until we reach the end of the compilation unit. */
1681
1682 pdi = first_die;
1683
1684 while (pdi != NULL)
1685 {
1686 fixup_partial_die (pdi, cu);
1687
1688 /* Anonymous namespaces have no name but have interesting
1689 children, so we need to look at them. Ditto for anonymous
1690 enums. */
1691
1692 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1693 || pdi->tag == DW_TAG_enumeration_type)
1694 {
1695 switch (pdi->tag)
1696 {
1697 case DW_TAG_subprogram:
1698 if (pdi->has_pc_info)
1699 {
1700 if (pdi->lowpc < *lowpc)
1701 {
1702 *lowpc = pdi->lowpc;
1703 }
1704 if (pdi->highpc > *highpc)
1705 {
1706 *highpc = pdi->highpc;
1707 }
1708 if (!pdi->is_declaration)
1709 {
1710 add_partial_symbol (pdi, cu);
1711 }
1712 }
1713 break;
1714 case DW_TAG_variable:
1715 case DW_TAG_typedef:
1716 case DW_TAG_union_type:
1717 if (!pdi->is_declaration)
1718 {
1719 add_partial_symbol (pdi, cu);
1720 }
1721 break;
1722 case DW_TAG_class_type:
1723 case DW_TAG_structure_type:
1724 if (!pdi->is_declaration)
1725 {
1726 add_partial_symbol (pdi, cu);
1727 }
1728 break;
1729 case DW_TAG_enumeration_type:
1730 if (!pdi->is_declaration)
1731 add_partial_enumeration (pdi, cu);
1732 break;
1733 case DW_TAG_base_type:
1734 case DW_TAG_subrange_type:
1735 /* File scope base type definitions are added to the partial
1736 symbol table. */
1737 add_partial_symbol (pdi, cu);
1738 break;
1739 case DW_TAG_namespace:
1740 add_partial_namespace (pdi, lowpc, highpc, cu);
1741 break;
1742 default:
1743 break;
1744 }
1745 }
1746
1747 /* If the die has a sibling, skip to the sibling. */
1748
1749 pdi = pdi->die_sibling;
1750 }
1751 }
1752
1753 /* Functions used to compute the fully scoped name of a partial DIE.
1754
1755 Normally, this is simple. For C++, the parent DIE's fully scoped
1756 name is concatenated with "::" and the partial DIE's name. For
1757 Java, the same thing occurs except that "." is used instead of "::".
1758 Enumerators are an exception; they use the scope of their parent
1759 enumeration type, i.e. the name of the enumeration type is not
1760 prepended to the enumerator.
1761
1762 There are two complexities. One is DW_AT_specification; in this
1763 case "parent" means the parent of the target of the specification,
1764 instead of the direct parent of the DIE. The other is compilers
1765 which do not emit DW_TAG_namespace; in this case we try to guess
1766 the fully qualified name of structure types from their members'
1767 linkage names. This must be done using the DIE's children rather
1768 than the children of any DW_AT_specification target. We only need
1769 to do this for structures at the top level, i.e. if the target of
1770 any DW_AT_specification (if any; otherwise the DIE itself) does not
1771 have a parent. */
1772
1773 /* Compute the scope prefix associated with PDI's parent, in
1774 compilation unit CU. The result will be allocated on CU's
1775 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1776 field. NULL is returned if no prefix is necessary. */
1777 static char *
1778 partial_die_parent_scope (struct partial_die_info *pdi,
1779 struct dwarf2_cu *cu)
1780 {
1781 char *grandparent_scope;
1782 struct partial_die_info *parent, *real_pdi;
1783
1784 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1785 then this means the parent of the specification DIE. */
1786
1787 real_pdi = pdi;
1788 while (real_pdi->has_specification)
1789 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1790
1791 parent = real_pdi->die_parent;
1792 if (parent == NULL)
1793 return NULL;
1794
1795 if (parent->scope_set)
1796 return parent->scope;
1797
1798 fixup_partial_die (parent, cu);
1799
1800 grandparent_scope = partial_die_parent_scope (parent, cu);
1801
1802 if (parent->tag == DW_TAG_namespace
1803 || parent->tag == DW_TAG_structure_type
1804 || parent->tag == DW_TAG_class_type
1805 || parent->tag == DW_TAG_union_type)
1806 {
1807 if (grandparent_scope == NULL)
1808 parent->scope = parent->name;
1809 else
1810 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1811 parent->name, cu);
1812 }
1813 else if (parent->tag == DW_TAG_enumeration_type)
1814 /* Enumerators should not get the name of the enumeration as a prefix. */
1815 parent->scope = grandparent_scope;
1816 else
1817 {
1818 /* FIXME drow/2004-04-01: What should we be doing with
1819 function-local names? For partial symbols, we should probably be
1820 ignoring them. */
1821 complaint (&symfile_complaints,
1822 _("unhandled containing DIE tag %d for DIE at %d"),
1823 parent->tag, pdi->offset);
1824 parent->scope = grandparent_scope;
1825 }
1826
1827 parent->scope_set = 1;
1828 return parent->scope;
1829 }
1830
1831 /* Return the fully scoped name associated with PDI, from compilation unit
1832 CU. The result will be allocated with malloc. */
1833 static char *
1834 partial_die_full_name (struct partial_die_info *pdi,
1835 struct dwarf2_cu *cu)
1836 {
1837 char *parent_scope;
1838
1839 parent_scope = partial_die_parent_scope (pdi, cu);
1840 if (parent_scope == NULL)
1841 return NULL;
1842 else
1843 return typename_concat (NULL, parent_scope, pdi->name, cu);
1844 }
1845
1846 static void
1847 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1848 {
1849 struct objfile *objfile = cu->objfile;
1850 CORE_ADDR addr = 0;
1851 char *actual_name;
1852 const char *my_prefix;
1853 const struct partial_symbol *psym = NULL;
1854 CORE_ADDR baseaddr;
1855 int built_actual_name = 0;
1856
1857 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1858
1859 actual_name = NULL;
1860
1861 if (pdi_needs_namespace (pdi->tag))
1862 {
1863 actual_name = partial_die_full_name (pdi, cu);
1864 if (actual_name)
1865 built_actual_name = 1;
1866 }
1867
1868 if (actual_name == NULL)
1869 actual_name = pdi->name;
1870
1871 switch (pdi->tag)
1872 {
1873 case DW_TAG_subprogram:
1874 if (pdi->is_external)
1875 {
1876 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1877 mst_text, objfile); */
1878 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1879 VAR_DOMAIN, LOC_BLOCK,
1880 &objfile->global_psymbols,
1881 0, pdi->lowpc + baseaddr,
1882 cu->language, objfile);
1883 }
1884 else
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_file_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->static_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 break;
1895 case DW_TAG_variable:
1896 if (pdi->is_external)
1897 {
1898 /* Global Variable.
1899 Don't enter into the minimal symbol tables as there is
1900 a minimal symbol table entry from the ELF symbols already.
1901 Enter into partial symbol table if it has a location
1902 descriptor or a type.
1903 If the location descriptor is missing, new_symbol will create
1904 a LOC_UNRESOLVED symbol, the address of the variable will then
1905 be determined from the minimal symbol table whenever the variable
1906 is referenced.
1907 The address for the partial symbol table entry is not
1908 used by GDB, but it comes in handy for debugging partial symbol
1909 table building. */
1910
1911 if (pdi->locdesc)
1912 addr = decode_locdesc (pdi->locdesc, cu);
1913 if (pdi->locdesc || pdi->has_type)
1914 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1915 VAR_DOMAIN, LOC_STATIC,
1916 &objfile->global_psymbols,
1917 0, addr + baseaddr,
1918 cu->language, objfile);
1919 }
1920 else
1921 {
1922 /* Static Variable. Skip symbols without location descriptors. */
1923 if (pdi->locdesc == NULL)
1924 return;
1925 addr = decode_locdesc (pdi->locdesc, cu);
1926 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1927 mst_file_data, objfile); */
1928 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1929 VAR_DOMAIN, LOC_STATIC,
1930 &objfile->static_psymbols,
1931 0, addr + baseaddr,
1932 cu->language, objfile);
1933 }
1934 break;
1935 case DW_TAG_typedef:
1936 case DW_TAG_base_type:
1937 case DW_TAG_subrange_type:
1938 add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_TYPEDEF,
1940 &objfile->static_psymbols,
1941 0, (CORE_ADDR) 0, cu->language, objfile);
1942 break;
1943 case DW_TAG_namespace:
1944 add_psymbol_to_list (actual_name, strlen (actual_name),
1945 VAR_DOMAIN, LOC_TYPEDEF,
1946 &objfile->global_psymbols,
1947 0, (CORE_ADDR) 0, cu->language, objfile);
1948 break;
1949 case DW_TAG_class_type:
1950 case DW_TAG_structure_type:
1951 case DW_TAG_union_type:
1952 case DW_TAG_enumeration_type:
1953 /* Skip aggregate types without children, these are external
1954 references. */
1955 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1956 static vs. global. */
1957 if (pdi->has_children == 0)
1958 return;
1959 add_psymbol_to_list (actual_name, strlen (actual_name),
1960 STRUCT_DOMAIN, LOC_TYPEDEF,
1961 (cu->language == language_cplus
1962 || cu->language == language_java)
1963 ? &objfile->global_psymbols
1964 : &objfile->static_psymbols,
1965 0, (CORE_ADDR) 0, cu->language, objfile);
1966
1967 if (cu->language == language_cplus
1968 || cu->language == language_java)
1969 {
1970 /* For C++ and Java, these implicitly act as typedefs as well. */
1971 add_psymbol_to_list (actual_name, strlen (actual_name),
1972 VAR_DOMAIN, LOC_TYPEDEF,
1973 &objfile->global_psymbols,
1974 0, (CORE_ADDR) 0, cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_enumerator:
1978 add_psymbol_to_list (actual_name, strlen (actual_name),
1979 VAR_DOMAIN, LOC_CONST,
1980 (cu->language == language_cplus
1981 || cu->language == language_java)
1982 ? &objfile->global_psymbols
1983 : &objfile->static_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 break;
1986 default:
1987 break;
1988 }
1989
1990 /* Check to see if we should scan the name for possible namespace
1991 info. Only do this if this is C++, if we don't have namespace
1992 debugging info in the file, if the psym is of an appropriate type
1993 (otherwise we'll have psym == NULL), and if we actually had a
1994 mangled name to begin with. */
1995
1996 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1997 cases which do not set PSYM above? */
1998
1999 if (cu->language == language_cplus
2000 && cu->has_namespace_info == 0
2001 && psym != NULL
2002 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2003 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2004 objfile);
2005
2006 if (built_actual_name)
2007 xfree (actual_name);
2008 }
2009
2010 /* Determine whether a die of type TAG living in a C++ class or
2011 namespace needs to have the name of the scope prepended to the
2012 name listed in the die. */
2013
2014 static int
2015 pdi_needs_namespace (enum dwarf_tag tag)
2016 {
2017 switch (tag)
2018 {
2019 case DW_TAG_namespace:
2020 case DW_TAG_typedef:
2021 case DW_TAG_class_type:
2022 case DW_TAG_structure_type:
2023 case DW_TAG_union_type:
2024 case DW_TAG_enumeration_type:
2025 case DW_TAG_enumerator:
2026 return 1;
2027 default:
2028 return 0;
2029 }
2030 }
2031
2032 /* Read a partial die corresponding to a namespace; also, add a symbol
2033 corresponding to that namespace to the symbol table. NAMESPACE is
2034 the name of the enclosing namespace. */
2035
2036 static void
2037 add_partial_namespace (struct partial_die_info *pdi,
2038 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2039 struct dwarf2_cu *cu)
2040 {
2041 struct objfile *objfile = cu->objfile;
2042
2043 /* Add a symbol for the namespace. */
2044
2045 add_partial_symbol (pdi, cu);
2046
2047 /* Now scan partial symbols in that namespace. */
2048
2049 if (pdi->has_children)
2050 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2051 }
2052
2053 /* See if we can figure out if the class lives in a namespace. We do
2054 this by looking for a member function; its demangled name will
2055 contain namespace info, if there is any. */
2056
2057 static void
2058 guess_structure_name (struct partial_die_info *struct_pdi,
2059 struct dwarf2_cu *cu)
2060 {
2061 if ((cu->language == language_cplus
2062 || cu->language == language_java)
2063 && cu->has_namespace_info == 0
2064 && struct_pdi->has_children)
2065 {
2066 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2067 what template types look like, because the demangler
2068 frequently doesn't give the same name as the debug info. We
2069 could fix this by only using the demangled name to get the
2070 prefix (but see comment in read_structure_type). */
2071
2072 struct partial_die_info *child_pdi = struct_pdi->die_child;
2073 struct partial_die_info *real_pdi;
2074
2075 /* If this DIE (this DIE's specification, if any) has a parent, then
2076 we should not do this. We'll prepend the parent's fully qualified
2077 name when we create the partial symbol. */
2078
2079 real_pdi = struct_pdi;
2080 while (real_pdi->has_specification)
2081 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2082
2083 if (real_pdi->die_parent != NULL)
2084 return;
2085
2086 while (child_pdi != NULL)
2087 {
2088 if (child_pdi->tag == DW_TAG_subprogram)
2089 {
2090 char *actual_class_name
2091 = language_class_name_from_physname (cu->language_defn,
2092 child_pdi->name);
2093 if (actual_class_name != NULL)
2094 {
2095 struct_pdi->name
2096 = obsavestring (actual_class_name,
2097 strlen (actual_class_name),
2098 &cu->comp_unit_obstack);
2099 xfree (actual_class_name);
2100 }
2101 break;
2102 }
2103
2104 child_pdi = child_pdi->die_sibling;
2105 }
2106 }
2107 }
2108
2109 /* Read a partial die corresponding to an enumeration type. */
2110
2111 static void
2112 add_partial_enumeration (struct partial_die_info *enum_pdi,
2113 struct dwarf2_cu *cu)
2114 {
2115 struct objfile *objfile = cu->objfile;
2116 bfd *abfd = objfile->obfd;
2117 struct partial_die_info *pdi;
2118
2119 if (enum_pdi->name != NULL)
2120 add_partial_symbol (enum_pdi, cu);
2121
2122 pdi = enum_pdi->die_child;
2123 while (pdi)
2124 {
2125 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2126 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2127 else
2128 add_partial_symbol (pdi, cu);
2129 pdi = pdi->die_sibling;
2130 }
2131 }
2132
2133 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2134 Return the corresponding abbrev, or NULL if the number is zero (indicating
2135 an empty DIE). In either case *BYTES_READ will be set to the length of
2136 the initial number. */
2137
2138 static struct abbrev_info *
2139 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2140 {
2141 bfd *abfd = cu->objfile->obfd;
2142 unsigned int abbrev_number;
2143 struct abbrev_info *abbrev;
2144
2145 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2146
2147 if (abbrev_number == 0)
2148 return NULL;
2149
2150 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2151 if (!abbrev)
2152 {
2153 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2154 bfd_get_filename (abfd));
2155 }
2156
2157 return abbrev;
2158 }
2159
2160 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2161 pointer to the end of a series of DIEs, terminated by an empty
2162 DIE. Any children of the skipped DIEs will also be skipped. */
2163
2164 static char *
2165 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2166 {
2167 struct abbrev_info *abbrev;
2168 unsigned int bytes_read;
2169
2170 while (1)
2171 {
2172 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2173 if (abbrev == NULL)
2174 return info_ptr + bytes_read;
2175 else
2176 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2177 }
2178 }
2179
2180 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2181 should point just after the initial uleb128 of a DIE, and the
2182 abbrev corresponding to that skipped uleb128 should be passed in
2183 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2184 children. */
2185
2186 static char *
2187 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2188 struct dwarf2_cu *cu)
2189 {
2190 unsigned int bytes_read;
2191 struct attribute attr;
2192 bfd *abfd = cu->objfile->obfd;
2193 unsigned int form, i;
2194
2195 for (i = 0; i < abbrev->num_attrs; i++)
2196 {
2197 /* The only abbrev we care about is DW_AT_sibling. */
2198 if (abbrev->attrs[i].name == DW_AT_sibling)
2199 {
2200 read_attribute (&attr, &abbrev->attrs[i],
2201 abfd, info_ptr, cu);
2202 if (attr.form == DW_FORM_ref_addr)
2203 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2204 else
2205 return dwarf2_per_objfile->info_buffer
2206 + dwarf2_get_ref_die_offset (&attr, cu);
2207 }
2208
2209 /* If it isn't DW_AT_sibling, skip this attribute. */
2210 form = abbrev->attrs[i].form;
2211 skip_attribute:
2212 switch (form)
2213 {
2214 case DW_FORM_addr:
2215 case DW_FORM_ref_addr:
2216 info_ptr += cu->header.addr_size;
2217 break;
2218 case DW_FORM_data1:
2219 case DW_FORM_ref1:
2220 case DW_FORM_flag:
2221 info_ptr += 1;
2222 break;
2223 case DW_FORM_data2:
2224 case DW_FORM_ref2:
2225 info_ptr += 2;
2226 break;
2227 case DW_FORM_data4:
2228 case DW_FORM_ref4:
2229 info_ptr += 4;
2230 break;
2231 case DW_FORM_data8:
2232 case DW_FORM_ref8:
2233 info_ptr += 8;
2234 break;
2235 case DW_FORM_string:
2236 read_string (abfd, info_ptr, &bytes_read);
2237 info_ptr += bytes_read;
2238 break;
2239 case DW_FORM_strp:
2240 info_ptr += cu->header.offset_size;
2241 break;
2242 case DW_FORM_block:
2243 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2244 info_ptr += bytes_read;
2245 break;
2246 case DW_FORM_block1:
2247 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2248 break;
2249 case DW_FORM_block2:
2250 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2251 break;
2252 case DW_FORM_block4:
2253 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2254 break;
2255 case DW_FORM_sdata:
2256 case DW_FORM_udata:
2257 case DW_FORM_ref_udata:
2258 info_ptr = skip_leb128 (abfd, info_ptr);
2259 break;
2260 case DW_FORM_indirect:
2261 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2262 info_ptr += bytes_read;
2263 /* We need to continue parsing from here, so just go back to
2264 the top. */
2265 goto skip_attribute;
2266
2267 default:
2268 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2269 dwarf_form_name (form),
2270 bfd_get_filename (abfd));
2271 }
2272 }
2273
2274 if (abbrev->has_children)
2275 return skip_children (info_ptr, cu);
2276 else
2277 return info_ptr;
2278 }
2279
2280 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2281 the next DIE after ORIG_PDI. */
2282
2283 static char *
2284 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2285 bfd *abfd, struct dwarf2_cu *cu)
2286 {
2287 /* Do we know the sibling already? */
2288
2289 if (orig_pdi->sibling)
2290 return orig_pdi->sibling;
2291
2292 /* Are there any children to deal with? */
2293
2294 if (!orig_pdi->has_children)
2295 return info_ptr;
2296
2297 /* Skip the children the long way. */
2298
2299 return skip_children (info_ptr, cu);
2300 }
2301
2302 /* Expand this partial symbol table into a full symbol table. */
2303
2304 static void
2305 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2306 {
2307 /* FIXME: This is barely more than a stub. */
2308 if (pst != NULL)
2309 {
2310 if (pst->readin)
2311 {
2312 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2313 }
2314 else
2315 {
2316 if (info_verbose)
2317 {
2318 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2319 gdb_flush (gdb_stdout);
2320 }
2321
2322 /* Restore our global data. */
2323 dwarf2_per_objfile = objfile_data (pst->objfile,
2324 dwarf2_objfile_data_key);
2325
2326 psymtab_to_symtab_1 (pst);
2327
2328 /* Finish up the debug error message. */
2329 if (info_verbose)
2330 printf_filtered (_("done.\n"));
2331 }
2332 }
2333 }
2334
2335 /* Add PER_CU to the queue. */
2336
2337 static void
2338 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2339 {
2340 struct dwarf2_queue_item *item;
2341
2342 per_cu->queued = 1;
2343 item = xmalloc (sizeof (*item));
2344 item->per_cu = per_cu;
2345 item->next = NULL;
2346
2347 if (dwarf2_queue == NULL)
2348 dwarf2_queue = item;
2349 else
2350 dwarf2_queue_tail->next = item;
2351
2352 dwarf2_queue_tail = item;
2353 }
2354
2355 /* Process the queue. */
2356
2357 static void
2358 process_queue (struct objfile *objfile)
2359 {
2360 struct dwarf2_queue_item *item, *next_item;
2361
2362 /* Initially, there is just one item on the queue. Load its DIEs,
2363 and the DIEs of any other compilation units it requires,
2364 transitively. */
2365
2366 for (item = dwarf2_queue; item != NULL; item = item->next)
2367 {
2368 /* Read in this compilation unit. This may add new items to
2369 the end of the queue. */
2370 load_full_comp_unit (item->per_cu);
2371
2372 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2373 dwarf2_per_objfile->read_in_chain = item->per_cu;
2374
2375 /* If this compilation unit has already had full symbols created,
2376 reset the TYPE fields in each DIE. */
2377 if (item->per_cu->psymtab->readin)
2378 reset_die_and_siblings_types (item->per_cu->cu->dies,
2379 item->per_cu->cu);
2380 }
2381
2382 /* Now everything left on the queue needs to be read in. Process
2383 them, one at a time, removing from the queue as we finish. */
2384 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2385 {
2386 if (!item->per_cu->psymtab->readin)
2387 process_full_comp_unit (item->per_cu);
2388
2389 item->per_cu->queued = 0;
2390 next_item = item->next;
2391 xfree (item);
2392 }
2393
2394 dwarf2_queue_tail = NULL;
2395 }
2396
2397 /* Free all allocated queue entries. This function only releases anything if
2398 an error was thrown; if the queue was processed then it would have been
2399 freed as we went along. */
2400
2401 static void
2402 dwarf2_release_queue (void *dummy)
2403 {
2404 struct dwarf2_queue_item *item, *last;
2405
2406 item = dwarf2_queue;
2407 while (item)
2408 {
2409 /* Anything still marked queued is likely to be in an
2410 inconsistent state, so discard it. */
2411 if (item->per_cu->queued)
2412 {
2413 if (item->per_cu->cu != NULL)
2414 free_one_cached_comp_unit (item->per_cu->cu);
2415 item->per_cu->queued = 0;
2416 }
2417
2418 last = item;
2419 item = item->next;
2420 xfree (last);
2421 }
2422
2423 dwarf2_queue = dwarf2_queue_tail = NULL;
2424 }
2425
2426 /* Read in full symbols for PST, and anything it depends on. */
2427
2428 static void
2429 psymtab_to_symtab_1 (struct partial_symtab *pst)
2430 {
2431 struct dwarf2_per_cu_data *per_cu;
2432 struct cleanup *back_to;
2433 int i;
2434
2435 for (i = 0; i < pst->number_of_dependencies; i++)
2436 if (!pst->dependencies[i]->readin)
2437 {
2438 /* Inform about additional files that need to be read in. */
2439 if (info_verbose)
2440 {
2441 /* FIXME: i18n: Need to make this a single string. */
2442 fputs_filtered (" ", gdb_stdout);
2443 wrap_here ("");
2444 fputs_filtered ("and ", gdb_stdout);
2445 wrap_here ("");
2446 printf_filtered ("%s...", pst->dependencies[i]->filename);
2447 wrap_here (""); /* Flush output */
2448 gdb_flush (gdb_stdout);
2449 }
2450 psymtab_to_symtab_1 (pst->dependencies[i]);
2451 }
2452
2453 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2454
2455 if (per_cu == NULL)
2456 {
2457 /* It's an include file, no symbols to read for it.
2458 Everything is in the parent symtab. */
2459 pst->readin = 1;
2460 return;
2461 }
2462
2463 back_to = make_cleanup (dwarf2_release_queue, NULL);
2464
2465 queue_comp_unit (per_cu);
2466
2467 process_queue (pst->objfile);
2468
2469 /* Age the cache, releasing compilation units that have not
2470 been used recently. */
2471 age_cached_comp_units ();
2472
2473 do_cleanups (back_to);
2474 }
2475
2476 /* Load the DIEs associated with PST and PER_CU into memory. */
2477
2478 static struct dwarf2_cu *
2479 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2480 {
2481 struct partial_symtab *pst = per_cu->psymtab;
2482 bfd *abfd = pst->objfile->obfd;
2483 struct dwarf2_cu *cu;
2484 unsigned long offset;
2485 char *info_ptr;
2486 struct cleanup *back_to, *free_cu_cleanup;
2487 struct attribute *attr;
2488 CORE_ADDR baseaddr;
2489
2490 /* Set local variables from the partial symbol table info. */
2491 offset = per_cu->offset;
2492
2493 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2494
2495 cu = xmalloc (sizeof (struct dwarf2_cu));
2496 memset (cu, 0, sizeof (struct dwarf2_cu));
2497
2498 /* If an error occurs while loading, release our storage. */
2499 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2500
2501 cu->objfile = pst->objfile;
2502
2503 /* read in the comp_unit header */
2504 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2505
2506 /* Read the abbrevs for this compilation unit */
2507 dwarf2_read_abbrevs (abfd, cu);
2508 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2509
2510 cu->header.offset = offset;
2511
2512 cu->per_cu = per_cu;
2513 per_cu->cu = cu;
2514
2515 /* We use this obstack for block values in dwarf_alloc_block. */
2516 obstack_init (&cu->comp_unit_obstack);
2517
2518 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2519
2520 /* We try not to read any attributes in this function, because not
2521 all objfiles needed for references have been loaded yet, and symbol
2522 table processing isn't initialized. But we have to set the CU language,
2523 or we won't be able to build types correctly. */
2524 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2525 if (attr)
2526 set_cu_language (DW_UNSND (attr), cu);
2527 else
2528 set_cu_language (language_minimal, cu);
2529
2530 do_cleanups (back_to);
2531
2532 /* We've successfully allocated this compilation unit. Let our caller
2533 clean it up when finished with it. */
2534 discard_cleanups (free_cu_cleanup);
2535
2536 return cu;
2537 }
2538
2539 /* Generate full symbol information for PST and CU, whose DIEs have
2540 already been loaded into memory. */
2541
2542 static void
2543 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2544 {
2545 struct partial_symtab *pst = per_cu->psymtab;
2546 struct dwarf2_cu *cu = per_cu->cu;
2547 struct objfile *objfile = pst->objfile;
2548 bfd *abfd = objfile->obfd;
2549 CORE_ADDR lowpc, highpc;
2550 struct symtab *symtab;
2551 struct cleanup *back_to;
2552 struct attribute *attr;
2553 CORE_ADDR baseaddr;
2554
2555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2556
2557 /* We're in the global namespace. */
2558 processing_current_prefix = "";
2559
2560 buildsym_init ();
2561 back_to = make_cleanup (really_free_pendings, NULL);
2562
2563 cu->list_in_scope = &file_symbols;
2564
2565 /* Find the base address of the compilation unit for range lists and
2566 location lists. It will normally be specified by DW_AT_low_pc.
2567 In DWARF-3 draft 4, the base address could be overridden by
2568 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2569 compilation units with discontinuous ranges. */
2570
2571 cu->header.base_known = 0;
2572 cu->header.base_address = 0;
2573
2574 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2575 if (attr)
2576 {
2577 cu->header.base_address = DW_ADDR (attr);
2578 cu->header.base_known = 1;
2579 }
2580 else
2581 {
2582 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2583 if (attr)
2584 {
2585 cu->header.base_address = DW_ADDR (attr);
2586 cu->header.base_known = 1;
2587 }
2588 }
2589
2590 /* Do line number decoding in read_file_scope () */
2591 process_die (cu->dies, cu);
2592
2593 /* Some compilers don't define a DW_AT_high_pc attribute for the
2594 compilation unit. If the DW_AT_high_pc is missing, synthesize
2595 it, by scanning the DIE's below the compilation unit. */
2596 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2597
2598 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2599
2600 /* Set symtab language to language from DW_AT_language.
2601 If the compilation is from a C file generated by language preprocessors,
2602 do not set the language if it was already deduced by start_subfile. */
2603 if (symtab != NULL
2604 && !(cu->language == language_c && symtab->language != language_c))
2605 {
2606 symtab->language = cu->language;
2607 }
2608 pst->symtab = symtab;
2609 pst->readin = 1;
2610
2611 do_cleanups (back_to);
2612 }
2613
2614 /* Process a die and its children. */
2615
2616 static void
2617 process_die (struct die_info *die, struct dwarf2_cu *cu)
2618 {
2619 switch (die->tag)
2620 {
2621 case DW_TAG_padding:
2622 break;
2623 case DW_TAG_compile_unit:
2624 read_file_scope (die, cu);
2625 break;
2626 case DW_TAG_subprogram:
2627 read_subroutine_type (die, cu);
2628 read_func_scope (die, cu);
2629 break;
2630 case DW_TAG_inlined_subroutine:
2631 /* FIXME: These are ignored for now.
2632 They could be used to set breakpoints on all inlined instances
2633 of a function and make GDB `next' properly over inlined functions. */
2634 break;
2635 case DW_TAG_lexical_block:
2636 case DW_TAG_try_block:
2637 case DW_TAG_catch_block:
2638 read_lexical_block_scope (die, cu);
2639 break;
2640 case DW_TAG_class_type:
2641 case DW_TAG_structure_type:
2642 case DW_TAG_union_type:
2643 read_structure_type (die, cu);
2644 process_structure_scope (die, cu);
2645 break;
2646 case DW_TAG_enumeration_type:
2647 read_enumeration_type (die, cu);
2648 process_enumeration_scope (die, cu);
2649 break;
2650
2651 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2652 a symbol or process any children. Therefore it doesn't do anything
2653 that won't be done on-demand by read_type_die. */
2654 case DW_TAG_subroutine_type:
2655 read_subroutine_type (die, cu);
2656 break;
2657 case DW_TAG_array_type:
2658 read_array_type (die, cu);
2659 break;
2660 case DW_TAG_pointer_type:
2661 read_tag_pointer_type (die, cu);
2662 break;
2663 case DW_TAG_ptr_to_member_type:
2664 read_tag_ptr_to_member_type (die, cu);
2665 break;
2666 case DW_TAG_reference_type:
2667 read_tag_reference_type (die, cu);
2668 break;
2669 case DW_TAG_string_type:
2670 read_tag_string_type (die, cu);
2671 break;
2672 /* END FIXME */
2673
2674 case DW_TAG_base_type:
2675 read_base_type (die, cu);
2676 /* Add a typedef symbol for the type definition, if it has a
2677 DW_AT_name. */
2678 new_symbol (die, die->type, cu);
2679 break;
2680 case DW_TAG_subrange_type:
2681 read_subrange_type (die, cu);
2682 /* Add a typedef symbol for the type definition, if it has a
2683 DW_AT_name. */
2684 new_symbol (die, die->type, cu);
2685 break;
2686 case DW_TAG_common_block:
2687 read_common_block (die, cu);
2688 break;
2689 case DW_TAG_common_inclusion:
2690 break;
2691 case DW_TAG_namespace:
2692 processing_has_namespace_info = 1;
2693 read_namespace (die, cu);
2694 break;
2695 case DW_TAG_imported_declaration:
2696 case DW_TAG_imported_module:
2697 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2698 information contained in these. DW_TAG_imported_declaration
2699 dies shouldn't have children; DW_TAG_imported_module dies
2700 shouldn't in the C++ case, but conceivably could in the
2701 Fortran case, so we'll have to replace this gdb_assert if
2702 Fortran compilers start generating that info. */
2703 processing_has_namespace_info = 1;
2704 gdb_assert (die->child == NULL);
2705 break;
2706 default:
2707 new_symbol (die, NULL, cu);
2708 break;
2709 }
2710 }
2711
2712 static void
2713 initialize_cu_func_list (struct dwarf2_cu *cu)
2714 {
2715 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2716 }
2717
2718 static void
2719 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2720 {
2721 struct objfile *objfile = cu->objfile;
2722 struct comp_unit_head *cu_header = &cu->header;
2723 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2724 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2725 CORE_ADDR highpc = ((CORE_ADDR) 0);
2726 struct attribute *attr;
2727 char *name = "<unknown>";
2728 char *comp_dir = NULL;
2729 struct die_info *child_die;
2730 bfd *abfd = objfile->obfd;
2731 struct line_header *line_header = 0;
2732 CORE_ADDR baseaddr;
2733
2734 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2735
2736 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2737
2738 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2739 from finish_block. */
2740 if (lowpc == ((CORE_ADDR) -1))
2741 lowpc = highpc;
2742 lowpc += baseaddr;
2743 highpc += baseaddr;
2744
2745 attr = dwarf2_attr (die, DW_AT_name, cu);
2746 if (attr)
2747 {
2748 name = DW_STRING (attr);
2749 }
2750 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2751 if (attr)
2752 {
2753 comp_dir = DW_STRING (attr);
2754 if (comp_dir)
2755 {
2756 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2757 directory, get rid of it. */
2758 char *cp = strchr (comp_dir, ':');
2759
2760 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2761 comp_dir = cp + 1;
2762 }
2763 }
2764
2765 attr = dwarf2_attr (die, DW_AT_language, cu);
2766 if (attr)
2767 {
2768 set_cu_language (DW_UNSND (attr), cu);
2769 }
2770
2771 attr = dwarf2_attr (die, DW_AT_producer, cu);
2772 if (attr)
2773 cu->producer = DW_STRING (attr);
2774
2775 /* We assume that we're processing GCC output. */
2776 processing_gcc_compilation = 2;
2777 #if 0
2778 /* FIXME:Do something here. */
2779 if (dip->at_producer != NULL)
2780 {
2781 handle_producer (dip->at_producer);
2782 }
2783 #endif
2784
2785 /* The compilation unit may be in a different language or objfile,
2786 zero out all remembered fundamental types. */
2787 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2788
2789 start_symtab (name, comp_dir, lowpc);
2790 record_debugformat ("DWARF 2");
2791
2792 initialize_cu_func_list (cu);
2793
2794 /* Process all dies in compilation unit. */
2795 if (die->child != NULL)
2796 {
2797 child_die = die->child;
2798 while (child_die && child_die->tag)
2799 {
2800 process_die (child_die, cu);
2801 child_die = sibling_die (child_die);
2802 }
2803 }
2804
2805 /* Decode line number information if present. */
2806 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2807 if (attr)
2808 {
2809 unsigned int line_offset = DW_UNSND (attr);
2810 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2811 if (line_header)
2812 {
2813 make_cleanup ((make_cleanup_ftype *) free_line_header,
2814 (void *) line_header);
2815 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2816 }
2817 }
2818
2819 /* Decode macro information, if present. Dwarf 2 macro information
2820 refers to information in the line number info statement program
2821 header, so we can only read it if we've read the header
2822 successfully. */
2823 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2824 if (attr && line_header)
2825 {
2826 unsigned int macro_offset = DW_UNSND (attr);
2827 dwarf_decode_macros (line_header, macro_offset,
2828 comp_dir, abfd, cu);
2829 }
2830 do_cleanups (back_to);
2831 }
2832
2833 static void
2834 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2835 struct dwarf2_cu *cu)
2836 {
2837 struct function_range *thisfn;
2838
2839 thisfn = (struct function_range *)
2840 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2841 thisfn->name = name;
2842 thisfn->lowpc = lowpc;
2843 thisfn->highpc = highpc;
2844 thisfn->seen_line = 0;
2845 thisfn->next = NULL;
2846
2847 if (cu->last_fn == NULL)
2848 cu->first_fn = thisfn;
2849 else
2850 cu->last_fn->next = thisfn;
2851
2852 cu->last_fn = thisfn;
2853 }
2854
2855 static void
2856 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2857 {
2858 struct objfile *objfile = cu->objfile;
2859 struct context_stack *new;
2860 CORE_ADDR lowpc;
2861 CORE_ADDR highpc;
2862 struct die_info *child_die;
2863 struct attribute *attr;
2864 char *name;
2865 const char *previous_prefix = processing_current_prefix;
2866 struct cleanup *back_to = NULL;
2867 CORE_ADDR baseaddr;
2868
2869 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2870
2871 name = dwarf2_linkage_name (die, cu);
2872
2873 /* Ignore functions with missing or empty names and functions with
2874 missing or invalid low and high pc attributes. */
2875 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2876 return;
2877
2878 if (cu->language == language_cplus
2879 || cu->language == language_java)
2880 {
2881 struct die_info *spec_die = die_specification (die, cu);
2882
2883 /* NOTE: carlton/2004-01-23: We have to be careful in the
2884 presence of DW_AT_specification. For example, with GCC 3.4,
2885 given the code
2886
2887 namespace N {
2888 void foo() {
2889 // Definition of N::foo.
2890 }
2891 }
2892
2893 then we'll have a tree of DIEs like this:
2894
2895 1: DW_TAG_compile_unit
2896 2: DW_TAG_namespace // N
2897 3: DW_TAG_subprogram // declaration of N::foo
2898 4: DW_TAG_subprogram // definition of N::foo
2899 DW_AT_specification // refers to die #3
2900
2901 Thus, when processing die #4, we have to pretend that we're
2902 in the context of its DW_AT_specification, namely the contex
2903 of die #3. */
2904
2905 if (spec_die != NULL)
2906 {
2907 char *specification_prefix = determine_prefix (spec_die, cu);
2908 processing_current_prefix = specification_prefix;
2909 back_to = make_cleanup (xfree, specification_prefix);
2910 }
2911 }
2912
2913 lowpc += baseaddr;
2914 highpc += baseaddr;
2915
2916 /* Record the function range for dwarf_decode_lines. */
2917 add_to_cu_func_list (name, lowpc, highpc, cu);
2918
2919 new = push_context (0, lowpc);
2920 new->name = new_symbol (die, die->type, cu);
2921
2922 /* If there is a location expression for DW_AT_frame_base, record
2923 it. */
2924 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2925 if (attr)
2926 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2927 expression is being recorded directly in the function's symbol
2928 and not in a separate frame-base object. I guess this hack is
2929 to avoid adding some sort of frame-base adjunct/annex to the
2930 function's symbol :-(. The problem with doing this is that it
2931 results in a function symbol with a location expression that
2932 has nothing to do with the location of the function, ouch! The
2933 relationship should be: a function's symbol has-a frame base; a
2934 frame-base has-a location expression. */
2935 dwarf2_symbol_mark_computed (attr, new->name, cu);
2936
2937 cu->list_in_scope = &local_symbols;
2938
2939 if (die->child != NULL)
2940 {
2941 child_die = die->child;
2942 while (child_die && child_die->tag)
2943 {
2944 process_die (child_die, cu);
2945 child_die = sibling_die (child_die);
2946 }
2947 }
2948
2949 new = pop_context ();
2950 /* Make a block for the local symbols within. */
2951 finish_block (new->name, &local_symbols, new->old_blocks,
2952 lowpc, highpc, objfile);
2953
2954 /* In C++, we can have functions nested inside functions (e.g., when
2955 a function declares a class that has methods). This means that
2956 when we finish processing a function scope, we may need to go
2957 back to building a containing block's symbol lists. */
2958 local_symbols = new->locals;
2959 param_symbols = new->params;
2960
2961 /* If we've finished processing a top-level function, subsequent
2962 symbols go in the file symbol list. */
2963 if (outermost_context_p ())
2964 cu->list_in_scope = &file_symbols;
2965
2966 processing_current_prefix = previous_prefix;
2967 if (back_to != NULL)
2968 do_cleanups (back_to);
2969 }
2970
2971 /* Process all the DIES contained within a lexical block scope. Start
2972 a new scope, process the dies, and then close the scope. */
2973
2974 static void
2975 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2976 {
2977 struct objfile *objfile = cu->objfile;
2978 struct context_stack *new;
2979 CORE_ADDR lowpc, highpc;
2980 struct die_info *child_die;
2981 CORE_ADDR baseaddr;
2982
2983 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2984
2985 /* Ignore blocks with missing or invalid low and high pc attributes. */
2986 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2987 as multiple lexical blocks? Handling children in a sane way would
2988 be nasty. Might be easier to properly extend generic blocks to
2989 describe ranges. */
2990 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2991 return;
2992 lowpc += baseaddr;
2993 highpc += baseaddr;
2994
2995 push_context (0, lowpc);
2996 if (die->child != NULL)
2997 {
2998 child_die = die->child;
2999 while (child_die && child_die->tag)
3000 {
3001 process_die (child_die, cu);
3002 child_die = sibling_die (child_die);
3003 }
3004 }
3005 new = pop_context ();
3006
3007 if (local_symbols != NULL)
3008 {
3009 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3010 highpc, objfile);
3011 }
3012 local_symbols = new->locals;
3013 }
3014
3015 /* Get low and high pc attributes from a die. Return 1 if the attributes
3016 are present and valid, otherwise, return 0. Return -1 if the range is
3017 discontinuous, i.e. derived from DW_AT_ranges information. */
3018 static int
3019 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3020 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3021 {
3022 struct objfile *objfile = cu->objfile;
3023 struct comp_unit_head *cu_header = &cu->header;
3024 struct attribute *attr;
3025 bfd *obfd = objfile->obfd;
3026 CORE_ADDR low = 0;
3027 CORE_ADDR high = 0;
3028 int ret = 0;
3029
3030 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3031 if (attr)
3032 {
3033 high = DW_ADDR (attr);
3034 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3035 if (attr)
3036 low = DW_ADDR (attr);
3037 else
3038 /* Found high w/o low attribute. */
3039 return 0;
3040
3041 /* Found consecutive range of addresses. */
3042 ret = 1;
3043 }
3044 else
3045 {
3046 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3047 if (attr != NULL)
3048 {
3049 unsigned int addr_size = cu_header->addr_size;
3050 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3051 /* Value of the DW_AT_ranges attribute is the offset in the
3052 .debug_ranges section. */
3053 unsigned int offset = DW_UNSND (attr);
3054 /* Base address selection entry. */
3055 CORE_ADDR base;
3056 int found_base;
3057 int dummy;
3058 char *buffer;
3059 CORE_ADDR marker;
3060 int low_set;
3061
3062 found_base = cu_header->base_known;
3063 base = cu_header->base_address;
3064
3065 if (offset >= dwarf2_per_objfile->ranges_size)
3066 {
3067 complaint (&symfile_complaints,
3068 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3069 offset);
3070 return 0;
3071 }
3072 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3073
3074 /* Read in the largest possible address. */
3075 marker = read_address (obfd, buffer, cu, &dummy);
3076 if ((marker & mask) == mask)
3077 {
3078 /* If we found the largest possible address, then
3079 read the base address. */
3080 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3081 buffer += 2 * addr_size;
3082 offset += 2 * addr_size;
3083 found_base = 1;
3084 }
3085
3086 low_set = 0;
3087
3088 while (1)
3089 {
3090 CORE_ADDR range_beginning, range_end;
3091
3092 range_beginning = read_address (obfd, buffer, cu, &dummy);
3093 buffer += addr_size;
3094 range_end = read_address (obfd, buffer, cu, &dummy);
3095 buffer += addr_size;
3096 offset += 2 * addr_size;
3097
3098 /* An end of list marker is a pair of zero addresses. */
3099 if (range_beginning == 0 && range_end == 0)
3100 /* Found the end of list entry. */
3101 break;
3102
3103 /* Each base address selection entry is a pair of 2 values.
3104 The first is the largest possible address, the second is
3105 the base address. Check for a base address here. */
3106 if ((range_beginning & mask) == mask)
3107 {
3108 /* If we found the largest possible address, then
3109 read the base address. */
3110 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3111 found_base = 1;
3112 continue;
3113 }
3114
3115 if (!found_base)
3116 {
3117 /* We have no valid base address for the ranges
3118 data. */
3119 complaint (&symfile_complaints,
3120 _("Invalid .debug_ranges data (no base address)"));
3121 return 0;
3122 }
3123
3124 range_beginning += base;
3125 range_end += base;
3126
3127 /* FIXME: This is recording everything as a low-high
3128 segment of consecutive addresses. We should have a
3129 data structure for discontiguous block ranges
3130 instead. */
3131 if (! low_set)
3132 {
3133 low = range_beginning;
3134 high = range_end;
3135 low_set = 1;
3136 }
3137 else
3138 {
3139 if (range_beginning < low)
3140 low = range_beginning;
3141 if (range_end > high)
3142 high = range_end;
3143 }
3144 }
3145
3146 if (! low_set)
3147 /* If the first entry is an end-of-list marker, the range
3148 describes an empty scope, i.e. no instructions. */
3149 return 0;
3150
3151 ret = -1;
3152 }
3153 }
3154
3155 if (high < low)
3156 return 0;
3157
3158 /* When using the GNU linker, .gnu.linkonce. sections are used to
3159 eliminate duplicate copies of functions and vtables and such.
3160 The linker will arbitrarily choose one and discard the others.
3161 The AT_*_pc values for such functions refer to local labels in
3162 these sections. If the section from that file was discarded, the
3163 labels are not in the output, so the relocs get a value of 0.
3164 If this is a discarded function, mark the pc bounds as invalid,
3165 so that GDB will ignore it. */
3166 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3167 return 0;
3168
3169 *lowpc = low;
3170 *highpc = high;
3171 return ret;
3172 }
3173
3174 /* Get the low and high pc's represented by the scope DIE, and store
3175 them in *LOWPC and *HIGHPC. If the correct values can't be
3176 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3177
3178 static void
3179 get_scope_pc_bounds (struct die_info *die,
3180 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3181 struct dwarf2_cu *cu)
3182 {
3183 CORE_ADDR best_low = (CORE_ADDR) -1;
3184 CORE_ADDR best_high = (CORE_ADDR) 0;
3185 CORE_ADDR current_low, current_high;
3186
3187 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3188 {
3189 best_low = current_low;
3190 best_high = current_high;
3191 }
3192 else
3193 {
3194 struct die_info *child = die->child;
3195
3196 while (child && child->tag)
3197 {
3198 switch (child->tag) {
3199 case DW_TAG_subprogram:
3200 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3201 {
3202 best_low = min (best_low, current_low);
3203 best_high = max (best_high, current_high);
3204 }
3205 break;
3206 case DW_TAG_namespace:
3207 /* FIXME: carlton/2004-01-16: Should we do this for
3208 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3209 that current GCC's always emit the DIEs corresponding
3210 to definitions of methods of classes as children of a
3211 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3212 the DIEs giving the declarations, which could be
3213 anywhere). But I don't see any reason why the
3214 standards says that they have to be there. */
3215 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3216
3217 if (current_low != ((CORE_ADDR) -1))
3218 {
3219 best_low = min (best_low, current_low);
3220 best_high = max (best_high, current_high);
3221 }
3222 break;
3223 default:
3224 /* Ignore. */
3225 break;
3226 }
3227
3228 child = sibling_die (child);
3229 }
3230 }
3231
3232 *lowpc = best_low;
3233 *highpc = best_high;
3234 }
3235
3236 /* Add an aggregate field to the field list. */
3237
3238 static void
3239 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3240 struct dwarf2_cu *cu)
3241 {
3242 struct objfile *objfile = cu->objfile;
3243 struct nextfield *new_field;
3244 struct attribute *attr;
3245 struct field *fp;
3246 char *fieldname = "";
3247
3248 /* Allocate a new field list entry and link it in. */
3249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3250 make_cleanup (xfree, new_field);
3251 memset (new_field, 0, sizeof (struct nextfield));
3252 new_field->next = fip->fields;
3253 fip->fields = new_field;
3254 fip->nfields++;
3255
3256 /* Handle accessibility and virtuality of field.
3257 The default accessibility for members is public, the default
3258 accessibility for inheritance is private. */
3259 if (die->tag != DW_TAG_inheritance)
3260 new_field->accessibility = DW_ACCESS_public;
3261 else
3262 new_field->accessibility = DW_ACCESS_private;
3263 new_field->virtuality = DW_VIRTUALITY_none;
3264
3265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3266 if (attr)
3267 new_field->accessibility = DW_UNSND (attr);
3268 if (new_field->accessibility != DW_ACCESS_public)
3269 fip->non_public_fields = 1;
3270 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3271 if (attr)
3272 new_field->virtuality = DW_UNSND (attr);
3273
3274 fp = &new_field->field;
3275
3276 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3277 {
3278 /* Data member other than a C++ static data member. */
3279
3280 /* Get type of field. */
3281 fp->type = die_type (die, cu);
3282
3283 FIELD_STATIC_KIND (*fp) = 0;
3284
3285 /* Get bit size of field (zero if none). */
3286 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3287 if (attr)
3288 {
3289 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3290 }
3291 else
3292 {
3293 FIELD_BITSIZE (*fp) = 0;
3294 }
3295
3296 /* Get bit offset of field. */
3297 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3298 if (attr)
3299 {
3300 FIELD_BITPOS (*fp) =
3301 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3302 }
3303 else
3304 FIELD_BITPOS (*fp) = 0;
3305 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3306 if (attr)
3307 {
3308 if (BITS_BIG_ENDIAN)
3309 {
3310 /* For big endian bits, the DW_AT_bit_offset gives the
3311 additional bit offset from the MSB of the containing
3312 anonymous object to the MSB of the field. We don't
3313 have to do anything special since we don't need to
3314 know the size of the anonymous object. */
3315 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3316 }
3317 else
3318 {
3319 /* For little endian bits, compute the bit offset to the
3320 MSB of the anonymous object, subtract off the number of
3321 bits from the MSB of the field to the MSB of the
3322 object, and then subtract off the number of bits of
3323 the field itself. The result is the bit offset of
3324 the LSB of the field. */
3325 int anonymous_size;
3326 int bit_offset = DW_UNSND (attr);
3327
3328 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3329 if (attr)
3330 {
3331 /* The size of the anonymous object containing
3332 the bit field is explicit, so use the
3333 indicated size (in bytes). */
3334 anonymous_size = DW_UNSND (attr);
3335 }
3336 else
3337 {
3338 /* The size of the anonymous object containing
3339 the bit field must be inferred from the type
3340 attribute of the data member containing the
3341 bit field. */
3342 anonymous_size = TYPE_LENGTH (fp->type);
3343 }
3344 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3345 - bit_offset - FIELD_BITSIZE (*fp);
3346 }
3347 }
3348
3349 /* Get name of field. */
3350 attr = dwarf2_attr (die, DW_AT_name, cu);
3351 if (attr && DW_STRING (attr))
3352 fieldname = DW_STRING (attr);
3353
3354 /* The name is already allocated along with this objfile, so we don't
3355 need to duplicate it for the type. */
3356 fp->name = fieldname;
3357
3358 /* Change accessibility for artificial fields (e.g. virtual table
3359 pointer or virtual base class pointer) to private. */
3360 if (dwarf2_attr (die, DW_AT_artificial, cu))
3361 {
3362 new_field->accessibility = DW_ACCESS_private;
3363 fip->non_public_fields = 1;
3364 }
3365 }
3366 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3367 {
3368 /* C++ static member. */
3369
3370 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3371 is a declaration, but all versions of G++ as of this writing
3372 (so through at least 3.2.1) incorrectly generate
3373 DW_TAG_variable tags. */
3374
3375 char *physname;
3376
3377 /* Get name of field. */
3378 attr = dwarf2_attr (die, DW_AT_name, cu);
3379 if (attr && DW_STRING (attr))
3380 fieldname = DW_STRING (attr);
3381 else
3382 return;
3383
3384 /* Get physical name. */
3385 physname = dwarf2_linkage_name (die, cu);
3386
3387 /* The name is already allocated along with this objfile, so we don't
3388 need to duplicate it for the type. */
3389 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3390 FIELD_TYPE (*fp) = die_type (die, cu);
3391 FIELD_NAME (*fp) = fieldname;
3392 }
3393 else if (die->tag == DW_TAG_inheritance)
3394 {
3395 /* C++ base class field. */
3396 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3397 if (attr)
3398 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3399 * bits_per_byte);
3400 FIELD_BITSIZE (*fp) = 0;
3401 FIELD_STATIC_KIND (*fp) = 0;
3402 FIELD_TYPE (*fp) = die_type (die, cu);
3403 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3404 fip->nbaseclasses++;
3405 }
3406 }
3407
3408 /* Create the vector of fields, and attach it to the type. */
3409
3410 static void
3411 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3412 struct dwarf2_cu *cu)
3413 {
3414 int nfields = fip->nfields;
3415
3416 /* Record the field count, allocate space for the array of fields,
3417 and create blank accessibility bitfields if necessary. */
3418 TYPE_NFIELDS (type) = nfields;
3419 TYPE_FIELDS (type) = (struct field *)
3420 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3421 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3422
3423 if (fip->non_public_fields)
3424 {
3425 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3426
3427 TYPE_FIELD_PRIVATE_BITS (type) =
3428 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3429 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3430
3431 TYPE_FIELD_PROTECTED_BITS (type) =
3432 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3433 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3434
3435 TYPE_FIELD_IGNORE_BITS (type) =
3436 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3437 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3438 }
3439
3440 /* If the type has baseclasses, allocate and clear a bit vector for
3441 TYPE_FIELD_VIRTUAL_BITS. */
3442 if (fip->nbaseclasses)
3443 {
3444 int num_bytes = B_BYTES (fip->nbaseclasses);
3445 char *pointer;
3446
3447 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3448 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3449 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3450 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3451 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3452 }
3453
3454 /* Copy the saved-up fields into the field vector. Start from the head
3455 of the list, adding to the tail of the field array, so that they end
3456 up in the same order in the array in which they were added to the list. */
3457 while (nfields-- > 0)
3458 {
3459 TYPE_FIELD (type, nfields) = fip->fields->field;
3460 switch (fip->fields->accessibility)
3461 {
3462 case DW_ACCESS_private:
3463 SET_TYPE_FIELD_PRIVATE (type, nfields);
3464 break;
3465
3466 case DW_ACCESS_protected:
3467 SET_TYPE_FIELD_PROTECTED (type, nfields);
3468 break;
3469
3470 case DW_ACCESS_public:
3471 break;
3472
3473 default:
3474 /* Unknown accessibility. Complain and treat it as public. */
3475 {
3476 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3477 fip->fields->accessibility);
3478 }
3479 break;
3480 }
3481 if (nfields < fip->nbaseclasses)
3482 {
3483 switch (fip->fields->virtuality)
3484 {
3485 case DW_VIRTUALITY_virtual:
3486 case DW_VIRTUALITY_pure_virtual:
3487 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3488 break;
3489 }
3490 }
3491 fip->fields = fip->fields->next;
3492 }
3493 }
3494
3495 /* Add a member function to the proper fieldlist. */
3496
3497 static void
3498 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3499 struct type *type, struct dwarf2_cu *cu)
3500 {
3501 struct objfile *objfile = cu->objfile;
3502 struct attribute *attr;
3503 struct fnfieldlist *flp;
3504 int i;
3505 struct fn_field *fnp;
3506 char *fieldname;
3507 char *physname;
3508 struct nextfnfield *new_fnfield;
3509
3510 /* Get name of member function. */
3511 attr = dwarf2_attr (die, DW_AT_name, cu);
3512 if (attr && DW_STRING (attr))
3513 fieldname = DW_STRING (attr);
3514 else
3515 return;
3516
3517 /* Get the mangled name. */
3518 physname = dwarf2_linkage_name (die, cu);
3519
3520 /* Look up member function name in fieldlist. */
3521 for (i = 0; i < fip->nfnfields; i++)
3522 {
3523 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3524 break;
3525 }
3526
3527 /* Create new list element if necessary. */
3528 if (i < fip->nfnfields)
3529 flp = &fip->fnfieldlists[i];
3530 else
3531 {
3532 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3533 {
3534 fip->fnfieldlists = (struct fnfieldlist *)
3535 xrealloc (fip->fnfieldlists,
3536 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3537 * sizeof (struct fnfieldlist));
3538 if (fip->nfnfields == 0)
3539 make_cleanup (free_current_contents, &fip->fnfieldlists);
3540 }
3541 flp = &fip->fnfieldlists[fip->nfnfields];
3542 flp->name = fieldname;
3543 flp->length = 0;
3544 flp->head = NULL;
3545 fip->nfnfields++;
3546 }
3547
3548 /* Create a new member function field and chain it to the field list
3549 entry. */
3550 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3551 make_cleanup (xfree, new_fnfield);
3552 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3553 new_fnfield->next = flp->head;
3554 flp->head = new_fnfield;
3555 flp->length++;
3556
3557 /* Fill in the member function field info. */
3558 fnp = &new_fnfield->fnfield;
3559 /* The name is already allocated along with this objfile, so we don't
3560 need to duplicate it for the type. */
3561 fnp->physname = physname ? physname : "";
3562 fnp->type = alloc_type (objfile);
3563 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3564 {
3565 int nparams = TYPE_NFIELDS (die->type);
3566
3567 /* TYPE is the domain of this method, and DIE->TYPE is the type
3568 of the method itself (TYPE_CODE_METHOD). */
3569 smash_to_method_type (fnp->type, type,
3570 TYPE_TARGET_TYPE (die->type),
3571 TYPE_FIELDS (die->type),
3572 TYPE_NFIELDS (die->type),
3573 TYPE_VARARGS (die->type));
3574
3575 /* Handle static member functions.
3576 Dwarf2 has no clean way to discern C++ static and non-static
3577 member functions. G++ helps GDB by marking the first
3578 parameter for non-static member functions (which is the
3579 this pointer) as artificial. We obtain this information
3580 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3581 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3582 fnp->voffset = VOFFSET_STATIC;
3583 }
3584 else
3585 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3586 physname);
3587
3588 /* Get fcontext from DW_AT_containing_type if present. */
3589 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3590 fnp->fcontext = die_containing_type (die, cu);
3591
3592 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3593 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3594
3595 /* Get accessibility. */
3596 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3597 if (attr)
3598 {
3599 switch (DW_UNSND (attr))
3600 {
3601 case DW_ACCESS_private:
3602 fnp->is_private = 1;
3603 break;
3604 case DW_ACCESS_protected:
3605 fnp->is_protected = 1;
3606 break;
3607 }
3608 }
3609
3610 /* Check for artificial methods. */
3611 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3612 if (attr && DW_UNSND (attr) != 0)
3613 fnp->is_artificial = 1;
3614
3615 /* Get index in virtual function table if it is a virtual member function. */
3616 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3617 if (attr)
3618 {
3619 /* Support the .debug_loc offsets */
3620 if (attr_form_is_block (attr))
3621 {
3622 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3623 }
3624 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3625 {
3626 dwarf2_complex_location_expr_complaint ();
3627 }
3628 else
3629 {
3630 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3631 fieldname);
3632 }
3633 }
3634 }
3635
3636 /* Create the vector of member function fields, and attach it to the type. */
3637
3638 static void
3639 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3640 struct dwarf2_cu *cu)
3641 {
3642 struct fnfieldlist *flp;
3643 int total_length = 0;
3644 int i;
3645
3646 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3647 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3648 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3649
3650 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3651 {
3652 struct nextfnfield *nfp = flp->head;
3653 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3654 int k;
3655
3656 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3657 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3658 fn_flp->fn_fields = (struct fn_field *)
3659 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3660 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3661 fn_flp->fn_fields[k] = nfp->fnfield;
3662
3663 total_length += flp->length;
3664 }
3665
3666 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3667 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3668 }
3669
3670
3671 /* Returns non-zero if NAME is the name of a vtable member in CU's
3672 language, zero otherwise. */
3673 static int
3674 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3675 {
3676 static const char vptr[] = "_vptr";
3677 static const char vtable[] = "vtable";
3678
3679 /* Look for the C++ and Java forms of the vtable. */
3680 if ((cu->language == language_java
3681 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3682 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3683 && is_cplus_marker (name[sizeof (vptr) - 1])))
3684 return 1;
3685
3686 return 0;
3687 }
3688
3689
3690 /* Called when we find the DIE that starts a structure or union scope
3691 (definition) to process all dies that define the members of the
3692 structure or union.
3693
3694 NOTE: we need to call struct_type regardless of whether or not the
3695 DIE has an at_name attribute, since it might be an anonymous
3696 structure or union. This gets the type entered into our set of
3697 user defined types.
3698
3699 However, if the structure is incomplete (an opaque struct/union)
3700 then suppress creating a symbol table entry for it since gdb only
3701 wants to find the one with the complete definition. Note that if
3702 it is complete, we just call new_symbol, which does it's own
3703 checking about whether the struct/union is anonymous or not (and
3704 suppresses creating a symbol table entry itself). */
3705
3706 static void
3707 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3708 {
3709 struct objfile *objfile = cu->objfile;
3710 struct type *type;
3711 struct attribute *attr;
3712 const char *previous_prefix = processing_current_prefix;
3713 struct cleanup *back_to = NULL;
3714
3715 if (die->type)
3716 return;
3717
3718 type = alloc_type (objfile);
3719
3720 INIT_CPLUS_SPECIFIC (type);
3721 attr = dwarf2_attr (die, DW_AT_name, cu);
3722 if (attr && DW_STRING (attr))
3723 {
3724 if (cu->language == language_cplus
3725 || cu->language == language_java)
3726 {
3727 char *new_prefix = determine_class_name (die, cu);
3728 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3729 strlen (new_prefix),
3730 &objfile->objfile_obstack);
3731 back_to = make_cleanup (xfree, new_prefix);
3732 processing_current_prefix = new_prefix;
3733 }
3734 else
3735 {
3736 /* The name is already allocated along with this objfile, so
3737 we don't need to duplicate it for the type. */
3738 TYPE_TAG_NAME (type) = DW_STRING (attr);
3739 }
3740 }
3741
3742 if (die->tag == DW_TAG_structure_type)
3743 {
3744 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3745 }
3746 else if (die->tag == DW_TAG_union_type)
3747 {
3748 TYPE_CODE (type) = TYPE_CODE_UNION;
3749 }
3750 else
3751 {
3752 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3753 in gdbtypes.h. */
3754 TYPE_CODE (type) = TYPE_CODE_CLASS;
3755 }
3756
3757 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3758 if (attr)
3759 {
3760 TYPE_LENGTH (type) = DW_UNSND (attr);
3761 }
3762 else
3763 {
3764 TYPE_LENGTH (type) = 0;
3765 }
3766
3767 if (die_is_declaration (die, cu))
3768 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3769
3770 /* We need to add the type field to the die immediately so we don't
3771 infinitely recurse when dealing with pointers to the structure
3772 type within the structure itself. */
3773 set_die_type (die, type, cu);
3774
3775 if (die->child != NULL && ! die_is_declaration (die, cu))
3776 {
3777 struct field_info fi;
3778 struct die_info *child_die;
3779 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3780
3781 memset (&fi, 0, sizeof (struct field_info));
3782
3783 child_die = die->child;
3784
3785 while (child_die && child_die->tag)
3786 {
3787 if (child_die->tag == DW_TAG_member
3788 || child_die->tag == DW_TAG_variable)
3789 {
3790 /* NOTE: carlton/2002-11-05: A C++ static data member
3791 should be a DW_TAG_member that is a declaration, but
3792 all versions of G++ as of this writing (so through at
3793 least 3.2.1) incorrectly generate DW_TAG_variable
3794 tags for them instead. */
3795 dwarf2_add_field (&fi, child_die, cu);
3796 }
3797 else if (child_die->tag == DW_TAG_subprogram)
3798 {
3799 /* C++ member function. */
3800 read_type_die (child_die, cu);
3801 dwarf2_add_member_fn (&fi, child_die, type, cu);
3802 }
3803 else if (child_die->tag == DW_TAG_inheritance)
3804 {
3805 /* C++ base class field. */
3806 dwarf2_add_field (&fi, child_die, cu);
3807 }
3808 child_die = sibling_die (child_die);
3809 }
3810
3811 /* Attach fields and member functions to the type. */
3812 if (fi.nfields)
3813 dwarf2_attach_fields_to_type (&fi, type, cu);
3814 if (fi.nfnfields)
3815 {
3816 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3817
3818 /* Get the type which refers to the base class (possibly this
3819 class itself) which contains the vtable pointer for the current
3820 class from the DW_AT_containing_type attribute. */
3821
3822 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3823 {
3824 struct type *t = die_containing_type (die, cu);
3825
3826 TYPE_VPTR_BASETYPE (type) = t;
3827 if (type == t)
3828 {
3829 int i;
3830
3831 /* Our own class provides vtbl ptr. */
3832 for (i = TYPE_NFIELDS (t) - 1;
3833 i >= TYPE_N_BASECLASSES (t);
3834 --i)
3835 {
3836 char *fieldname = TYPE_FIELD_NAME (t, i);
3837
3838 if (is_vtable_name (fieldname, cu))
3839 {
3840 TYPE_VPTR_FIELDNO (type) = i;
3841 break;
3842 }
3843 }
3844
3845 /* Complain if virtual function table field not found. */
3846 if (i < TYPE_N_BASECLASSES (t))
3847 complaint (&symfile_complaints,
3848 _("virtual function table pointer not found when defining class '%s'"),
3849 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3850 "");
3851 }
3852 else
3853 {
3854 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3855 }
3856 }
3857 }
3858
3859 do_cleanups (back_to);
3860 }
3861
3862 processing_current_prefix = previous_prefix;
3863 if (back_to != NULL)
3864 do_cleanups (back_to);
3865 }
3866
3867 static void
3868 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3869 {
3870 struct objfile *objfile = cu->objfile;
3871 const char *previous_prefix = processing_current_prefix;
3872 struct die_info *child_die = die->child;
3873
3874 if (TYPE_TAG_NAME (die->type) != NULL)
3875 processing_current_prefix = TYPE_TAG_NAME (die->type);
3876
3877 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3878 snapshots) has been known to create a die giving a declaration
3879 for a class that has, as a child, a die giving a definition for a
3880 nested class. So we have to process our children even if the
3881 current die is a declaration. Normally, of course, a declaration
3882 won't have any children at all. */
3883
3884 while (child_die != NULL && child_die->tag)
3885 {
3886 if (child_die->tag == DW_TAG_member
3887 || child_die->tag == DW_TAG_variable
3888 || child_die->tag == DW_TAG_inheritance)
3889 {
3890 /* Do nothing. */
3891 }
3892 else
3893 process_die (child_die, cu);
3894
3895 child_die = sibling_die (child_die);
3896 }
3897
3898 if (die->child != NULL && ! die_is_declaration (die, cu))
3899 new_symbol (die, die->type, cu);
3900
3901 processing_current_prefix = previous_prefix;
3902 }
3903
3904 /* Given a DW_AT_enumeration_type die, set its type. We do not
3905 complete the type's fields yet, or create any symbols. */
3906
3907 static void
3908 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3909 {
3910 struct objfile *objfile = cu->objfile;
3911 struct type *type;
3912 struct attribute *attr;
3913
3914 if (die->type)
3915 return;
3916
3917 type = alloc_type (objfile);
3918
3919 TYPE_CODE (type) = TYPE_CODE_ENUM;
3920 attr = dwarf2_attr (die, DW_AT_name, cu);
3921 if (attr && DW_STRING (attr))
3922 {
3923 char *name = DW_STRING (attr);
3924
3925 if (processing_has_namespace_info)
3926 {
3927 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3928 processing_current_prefix,
3929 name, cu);
3930 }
3931 else
3932 {
3933 /* The name is already allocated along with this objfile, so
3934 we don't need to duplicate it for the type. */
3935 TYPE_TAG_NAME (type) = name;
3936 }
3937 }
3938
3939 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3940 if (attr)
3941 {
3942 TYPE_LENGTH (type) = DW_UNSND (attr);
3943 }
3944 else
3945 {
3946 TYPE_LENGTH (type) = 0;
3947 }
3948
3949 set_die_type (die, type, cu);
3950 }
3951
3952 /* Determine the name of the type represented by DIE, which should be
3953 a named C++ or Java compound type. Return the name in question; the caller
3954 is responsible for xfree()'ing it. */
3955
3956 static char *
3957 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3958 {
3959 struct cleanup *back_to = NULL;
3960 struct die_info *spec_die = die_specification (die, cu);
3961 char *new_prefix = NULL;
3962
3963 /* If this is the definition of a class that is declared by another
3964 die, then processing_current_prefix may not be accurate; see
3965 read_func_scope for a similar example. */
3966 if (spec_die != NULL)
3967 {
3968 char *specification_prefix = determine_prefix (spec_die, cu);
3969 processing_current_prefix = specification_prefix;
3970 back_to = make_cleanup (xfree, specification_prefix);
3971 }
3972
3973 /* If we don't have namespace debug info, guess the name by trying
3974 to demangle the names of members, just like we did in
3975 guess_structure_name. */
3976 if (!processing_has_namespace_info)
3977 {
3978 struct die_info *child;
3979
3980 for (child = die->child;
3981 child != NULL && child->tag != 0;
3982 child = sibling_die (child))
3983 {
3984 if (child->tag == DW_TAG_subprogram)
3985 {
3986 new_prefix
3987 = language_class_name_from_physname (cu->language_defn,
3988 dwarf2_linkage_name
3989 (child, cu));
3990
3991 if (new_prefix != NULL)
3992 break;
3993 }
3994 }
3995 }
3996
3997 if (new_prefix == NULL)
3998 {
3999 const char *name = dwarf2_name (die, cu);
4000 new_prefix = typename_concat (NULL, processing_current_prefix,
4001 name ? name : "<<anonymous>>",
4002 cu);
4003 }
4004
4005 if (back_to != NULL)
4006 do_cleanups (back_to);
4007
4008 return new_prefix;
4009 }
4010
4011 /* Given a pointer to a die which begins an enumeration, process all
4012 the dies that define the members of the enumeration, and create the
4013 symbol for the enumeration type.
4014
4015 NOTE: We reverse the order of the element list. */
4016
4017 static void
4018 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4019 {
4020 struct objfile *objfile = cu->objfile;
4021 struct die_info *child_die;
4022 struct field *fields;
4023 struct attribute *attr;
4024 struct symbol *sym;
4025 int num_fields;
4026 int unsigned_enum = 1;
4027
4028 num_fields = 0;
4029 fields = NULL;
4030 if (die->child != NULL)
4031 {
4032 child_die = die->child;
4033 while (child_die && child_die->tag)
4034 {
4035 if (child_die->tag != DW_TAG_enumerator)
4036 {
4037 process_die (child_die, cu);
4038 }
4039 else
4040 {
4041 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4042 if (attr)
4043 {
4044 sym = new_symbol (child_die, die->type, cu);
4045 if (SYMBOL_VALUE (sym) < 0)
4046 unsigned_enum = 0;
4047
4048 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4049 {
4050 fields = (struct field *)
4051 xrealloc (fields,
4052 (num_fields + DW_FIELD_ALLOC_CHUNK)
4053 * sizeof (struct field));
4054 }
4055
4056 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4057 FIELD_TYPE (fields[num_fields]) = NULL;
4058 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4059 FIELD_BITSIZE (fields[num_fields]) = 0;
4060 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4061
4062 num_fields++;
4063 }
4064 }
4065
4066 child_die = sibling_die (child_die);
4067 }
4068
4069 if (num_fields)
4070 {
4071 TYPE_NFIELDS (die->type) = num_fields;
4072 TYPE_FIELDS (die->type) = (struct field *)
4073 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4074 memcpy (TYPE_FIELDS (die->type), fields,
4075 sizeof (struct field) * num_fields);
4076 xfree (fields);
4077 }
4078 if (unsigned_enum)
4079 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4080 }
4081
4082 new_symbol (die, die->type, cu);
4083 }
4084
4085 /* Extract all information from a DW_TAG_array_type DIE and put it in
4086 the DIE's type field. For now, this only handles one dimensional
4087 arrays. */
4088
4089 static void
4090 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4091 {
4092 struct objfile *objfile = cu->objfile;
4093 struct die_info *child_die;
4094 struct type *type = NULL;
4095 struct type *element_type, *range_type, *index_type;
4096 struct type **range_types = NULL;
4097 struct attribute *attr;
4098 int ndim = 0;
4099 struct cleanup *back_to;
4100
4101 /* Return if we've already decoded this type. */
4102 if (die->type)
4103 {
4104 return;
4105 }
4106
4107 element_type = die_type (die, cu);
4108
4109 /* Irix 6.2 native cc creates array types without children for
4110 arrays with unspecified length. */
4111 if (die->child == NULL)
4112 {
4113 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4114 range_type = create_range_type (NULL, index_type, 0, -1);
4115 set_die_type (die, create_array_type (NULL, element_type, range_type),
4116 cu);
4117 return;
4118 }
4119
4120 back_to = make_cleanup (null_cleanup, NULL);
4121 child_die = die->child;
4122 while (child_die && child_die->tag)
4123 {
4124 if (child_die->tag == DW_TAG_subrange_type)
4125 {
4126 read_subrange_type (child_die, cu);
4127
4128 if (child_die->type != NULL)
4129 {
4130 /* The range type was succesfully read. Save it for
4131 the array type creation. */
4132 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4133 {
4134 range_types = (struct type **)
4135 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4136 * sizeof (struct type *));
4137 if (ndim == 0)
4138 make_cleanup (free_current_contents, &range_types);
4139 }
4140 range_types[ndim++] = child_die->type;
4141 }
4142 }
4143 child_die = sibling_die (child_die);
4144 }
4145
4146 /* Dwarf2 dimensions are output from left to right, create the
4147 necessary array types in backwards order. */
4148
4149 type = element_type;
4150
4151 if (read_array_order (die, cu) == DW_ORD_col_major)
4152 {
4153 int i = 0;
4154 while (i < ndim)
4155 type = create_array_type (NULL, type, range_types[i++]);
4156 }
4157 else
4158 {
4159 while (ndim-- > 0)
4160 type = create_array_type (NULL, type, range_types[ndim]);
4161 }
4162
4163 /* Understand Dwarf2 support for vector types (like they occur on
4164 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4165 array type. This is not part of the Dwarf2/3 standard yet, but a
4166 custom vendor extension. The main difference between a regular
4167 array and the vector variant is that vectors are passed by value
4168 to functions. */
4169 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4170 if (attr)
4171 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4172
4173 do_cleanups (back_to);
4174
4175 /* Install the type in the die. */
4176 set_die_type (die, type, cu);
4177 }
4178
4179 static enum dwarf_array_dim_ordering
4180 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4181 {
4182 struct attribute *attr;
4183
4184 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4185
4186 if (attr) return DW_SND (attr);
4187
4188 /*
4189 GNU F77 is a special case, as at 08/2004 array type info is the
4190 opposite order to the dwarf2 specification, but data is still
4191 laid out as per normal fortran.
4192
4193 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4194 version checking.
4195 */
4196
4197 if (cu->language == language_fortran &&
4198 cu->producer && strstr (cu->producer, "GNU F77"))
4199 {
4200 return DW_ORD_row_major;
4201 }
4202
4203 switch (cu->language_defn->la_array_ordering)
4204 {
4205 case array_column_major:
4206 return DW_ORD_col_major;
4207 case array_row_major:
4208 default:
4209 return DW_ORD_row_major;
4210 };
4211 }
4212
4213
4214 /* First cut: install each common block member as a global variable. */
4215
4216 static void
4217 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4218 {
4219 struct die_info *child_die;
4220 struct attribute *attr;
4221 struct symbol *sym;
4222 CORE_ADDR base = (CORE_ADDR) 0;
4223
4224 attr = dwarf2_attr (die, DW_AT_location, cu);
4225 if (attr)
4226 {
4227 /* Support the .debug_loc offsets */
4228 if (attr_form_is_block (attr))
4229 {
4230 base = decode_locdesc (DW_BLOCK (attr), cu);
4231 }
4232 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4233 {
4234 dwarf2_complex_location_expr_complaint ();
4235 }
4236 else
4237 {
4238 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4239 "common block member");
4240 }
4241 }
4242 if (die->child != NULL)
4243 {
4244 child_die = die->child;
4245 while (child_die && child_die->tag)
4246 {
4247 sym = new_symbol (child_die, NULL, cu);
4248 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4249 if (attr)
4250 {
4251 SYMBOL_VALUE_ADDRESS (sym) =
4252 base + decode_locdesc (DW_BLOCK (attr), cu);
4253 add_symbol_to_list (sym, &global_symbols);
4254 }
4255 child_die = sibling_die (child_die);
4256 }
4257 }
4258 }
4259
4260 /* Read a C++ namespace. */
4261
4262 static void
4263 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4264 {
4265 struct objfile *objfile = cu->objfile;
4266 const char *previous_prefix = processing_current_prefix;
4267 const char *name;
4268 int is_anonymous;
4269 struct die_info *current_die;
4270 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4271
4272 name = namespace_name (die, &is_anonymous, cu);
4273
4274 /* Now build the name of the current namespace. */
4275
4276 if (previous_prefix[0] == '\0')
4277 {
4278 processing_current_prefix = name;
4279 }
4280 else
4281 {
4282 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4283 make_cleanup (xfree, temp_name);
4284 processing_current_prefix = temp_name;
4285 }
4286
4287 /* Add a symbol associated to this if we haven't seen the namespace
4288 before. Also, add a using directive if it's an anonymous
4289 namespace. */
4290
4291 if (dwarf2_extension (die, cu) == NULL)
4292 {
4293 struct type *type;
4294
4295 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4296 this cast will hopefully become unnecessary. */
4297 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4298 (char *) processing_current_prefix,
4299 objfile);
4300 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4301
4302 new_symbol (die, type, cu);
4303 set_die_type (die, type, cu);
4304
4305 if (is_anonymous)
4306 cp_add_using_directive (processing_current_prefix,
4307 strlen (previous_prefix),
4308 strlen (processing_current_prefix));
4309 }
4310
4311 if (die->child != NULL)
4312 {
4313 struct die_info *child_die = die->child;
4314
4315 while (child_die && child_die->tag)
4316 {
4317 process_die (child_die, cu);
4318 child_die = sibling_die (child_die);
4319 }
4320 }
4321
4322 processing_current_prefix = previous_prefix;
4323 do_cleanups (back_to);
4324 }
4325
4326 /* Return the name of the namespace represented by DIE. Set
4327 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4328 namespace. */
4329
4330 static const char *
4331 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4332 {
4333 struct die_info *current_die;
4334 const char *name = NULL;
4335
4336 /* Loop through the extensions until we find a name. */
4337
4338 for (current_die = die;
4339 current_die != NULL;
4340 current_die = dwarf2_extension (die, cu))
4341 {
4342 name = dwarf2_name (current_die, cu);
4343 if (name != NULL)
4344 break;
4345 }
4346
4347 /* Is it an anonymous namespace? */
4348
4349 *is_anonymous = (name == NULL);
4350 if (*is_anonymous)
4351 name = "(anonymous namespace)";
4352
4353 return name;
4354 }
4355
4356 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4357 the user defined type vector. */
4358
4359 static void
4360 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4361 {
4362 struct comp_unit_head *cu_header = &cu->header;
4363 struct type *type;
4364 struct attribute *attr_byte_size;
4365 struct attribute *attr_address_class;
4366 int byte_size, addr_class;
4367
4368 if (die->type)
4369 {
4370 return;
4371 }
4372
4373 type = lookup_pointer_type (die_type (die, cu));
4374
4375 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4376 if (attr_byte_size)
4377 byte_size = DW_UNSND (attr_byte_size);
4378 else
4379 byte_size = cu_header->addr_size;
4380
4381 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4382 if (attr_address_class)
4383 addr_class = DW_UNSND (attr_address_class);
4384 else
4385 addr_class = DW_ADDR_none;
4386
4387 /* If the pointer size or address class is different than the
4388 default, create a type variant marked as such and set the
4389 length accordingly. */
4390 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4391 {
4392 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4393 {
4394 int type_flags;
4395
4396 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4397 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4398 type = make_type_with_address_space (type, type_flags);
4399 }
4400 else if (TYPE_LENGTH (type) != byte_size)
4401 {
4402 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4403 }
4404 else {
4405 /* Should we also complain about unhandled address classes? */
4406 }
4407 }
4408
4409 TYPE_LENGTH (type) = byte_size;
4410 set_die_type (die, type, cu);
4411 }
4412
4413 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4414 the user defined type vector. */
4415
4416 static void
4417 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4418 {
4419 struct objfile *objfile = cu->objfile;
4420 struct type *type;
4421 struct type *to_type;
4422 struct type *domain;
4423
4424 if (die->type)
4425 {
4426 return;
4427 }
4428
4429 type = alloc_type (objfile);
4430 to_type = die_type (die, cu);
4431 domain = die_containing_type (die, cu);
4432 smash_to_member_type (type, domain, to_type);
4433
4434 set_die_type (die, type, cu);
4435 }
4436
4437 /* Extract all information from a DW_TAG_reference_type DIE and add to
4438 the user defined type vector. */
4439
4440 static void
4441 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4442 {
4443 struct comp_unit_head *cu_header = &cu->header;
4444 struct type *type;
4445 struct attribute *attr;
4446
4447 if (die->type)
4448 {
4449 return;
4450 }
4451
4452 type = lookup_reference_type (die_type (die, cu));
4453 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4454 if (attr)
4455 {
4456 TYPE_LENGTH (type) = DW_UNSND (attr);
4457 }
4458 else
4459 {
4460 TYPE_LENGTH (type) = cu_header->addr_size;
4461 }
4462 set_die_type (die, type, cu);
4463 }
4464
4465 static void
4466 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4467 {
4468 struct type *base_type;
4469
4470 if (die->type)
4471 {
4472 return;
4473 }
4474
4475 base_type = die_type (die, cu);
4476 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4477 cu);
4478 }
4479
4480 static void
4481 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4482 {
4483 struct type *base_type;
4484
4485 if (die->type)
4486 {
4487 return;
4488 }
4489
4490 base_type = die_type (die, cu);
4491 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4492 cu);
4493 }
4494
4495 /* Extract all information from a DW_TAG_string_type DIE and add to
4496 the user defined type vector. It isn't really a user defined type,
4497 but it behaves like one, with other DIE's using an AT_user_def_type
4498 attribute to reference it. */
4499
4500 static void
4501 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4502 {
4503 struct objfile *objfile = cu->objfile;
4504 struct type *type, *range_type, *index_type, *char_type;
4505 struct attribute *attr;
4506 unsigned int length;
4507
4508 if (die->type)
4509 {
4510 return;
4511 }
4512
4513 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4514 if (attr)
4515 {
4516 length = DW_UNSND (attr);
4517 }
4518 else
4519 {
4520 /* check for the DW_AT_byte_size attribute */
4521 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4522 if (attr)
4523 {
4524 length = DW_UNSND (attr);
4525 }
4526 else
4527 {
4528 length = 1;
4529 }
4530 }
4531 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4532 range_type = create_range_type (NULL, index_type, 1, length);
4533 if (cu->language == language_fortran)
4534 {
4535 /* Need to create a unique string type for bounds
4536 information */
4537 type = create_string_type (0, range_type);
4538 }
4539 else
4540 {
4541 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4542 type = create_string_type (char_type, range_type);
4543 }
4544 set_die_type (die, type, cu);
4545 }
4546
4547 /* Handle DIES due to C code like:
4548
4549 struct foo
4550 {
4551 int (*funcp)(int a, long l);
4552 int b;
4553 };
4554
4555 ('funcp' generates a DW_TAG_subroutine_type DIE)
4556 */
4557
4558 static void
4559 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4560 {
4561 struct type *type; /* Type that this function returns */
4562 struct type *ftype; /* Function that returns above type */
4563 struct attribute *attr;
4564
4565 /* Decode the type that this subroutine returns */
4566 if (die->type)
4567 {
4568 return;
4569 }
4570 type = die_type (die, cu);
4571 ftype = make_function_type (type, (struct type **) 0);
4572
4573 /* All functions in C++ and Java have prototypes. */
4574 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4575 if ((attr && (DW_UNSND (attr) != 0))
4576 || cu->language == language_cplus
4577 || cu->language == language_java)
4578 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4579
4580 if (die->child != NULL)
4581 {
4582 struct die_info *child_die;
4583 int nparams = 0;
4584 int iparams = 0;
4585
4586 /* Count the number of parameters.
4587 FIXME: GDB currently ignores vararg functions, but knows about
4588 vararg member functions. */
4589 child_die = die->child;
4590 while (child_die && child_die->tag)
4591 {
4592 if (child_die->tag == DW_TAG_formal_parameter)
4593 nparams++;
4594 else if (child_die->tag == DW_TAG_unspecified_parameters)
4595 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4596 child_die = sibling_die (child_die);
4597 }
4598
4599 /* Allocate storage for parameters and fill them in. */
4600 TYPE_NFIELDS (ftype) = nparams;
4601 TYPE_FIELDS (ftype) = (struct field *)
4602 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4603
4604 child_die = die->child;
4605 while (child_die && child_die->tag)
4606 {
4607 if (child_die->tag == DW_TAG_formal_parameter)
4608 {
4609 /* Dwarf2 has no clean way to discern C++ static and non-static
4610 member functions. G++ helps GDB by marking the first
4611 parameter for non-static member functions (which is the
4612 this pointer) as artificial. We pass this information
4613 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4614 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4615 if (attr)
4616 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4617 else
4618 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4619 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4620 iparams++;
4621 }
4622 child_die = sibling_die (child_die);
4623 }
4624 }
4625
4626 set_die_type (die, ftype, cu);
4627 }
4628
4629 static void
4630 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4631 {
4632 struct objfile *objfile = cu->objfile;
4633 struct attribute *attr;
4634 char *name = NULL;
4635
4636 if (!die->type)
4637 {
4638 attr = dwarf2_attr (die, DW_AT_name, cu);
4639 if (attr && DW_STRING (attr))
4640 {
4641 name = DW_STRING (attr);
4642 }
4643 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4644 TYPE_FLAG_TARGET_STUB, name, objfile),
4645 cu);
4646 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4647 }
4648 }
4649
4650 /* Find a representation of a given base type and install
4651 it in the TYPE field of the die. */
4652
4653 static void
4654 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4655 {
4656 struct objfile *objfile = cu->objfile;
4657 struct type *type;
4658 struct attribute *attr;
4659 int encoding = 0, size = 0;
4660
4661 /* If we've already decoded this die, this is a no-op. */
4662 if (die->type)
4663 {
4664 return;
4665 }
4666
4667 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4668 if (attr)
4669 {
4670 encoding = DW_UNSND (attr);
4671 }
4672 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4673 if (attr)
4674 {
4675 size = DW_UNSND (attr);
4676 }
4677 attr = dwarf2_attr (die, DW_AT_name, cu);
4678 if (attr && DW_STRING (attr))
4679 {
4680 enum type_code code = TYPE_CODE_INT;
4681 int type_flags = 0;
4682
4683 switch (encoding)
4684 {
4685 case DW_ATE_address:
4686 /* Turn DW_ATE_address into a void * pointer. */
4687 code = TYPE_CODE_PTR;
4688 type_flags |= TYPE_FLAG_UNSIGNED;
4689 break;
4690 case DW_ATE_boolean:
4691 code = TYPE_CODE_BOOL;
4692 type_flags |= TYPE_FLAG_UNSIGNED;
4693 break;
4694 case DW_ATE_complex_float:
4695 code = TYPE_CODE_COMPLEX;
4696 break;
4697 case DW_ATE_float:
4698 code = TYPE_CODE_FLT;
4699 break;
4700 case DW_ATE_signed:
4701 case DW_ATE_signed_char:
4702 break;
4703 case DW_ATE_unsigned:
4704 case DW_ATE_unsigned_char:
4705 type_flags |= TYPE_FLAG_UNSIGNED;
4706 break;
4707 default:
4708 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4709 dwarf_type_encoding_name (encoding));
4710 break;
4711 }
4712 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4713 if (encoding == DW_ATE_address)
4714 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4715 cu);
4716 else if (encoding == DW_ATE_complex_float)
4717 {
4718 if (size == 32)
4719 TYPE_TARGET_TYPE (type)
4720 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4721 else if (size == 16)
4722 TYPE_TARGET_TYPE (type)
4723 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4724 else if (size == 8)
4725 TYPE_TARGET_TYPE (type)
4726 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4727 }
4728 }
4729 else
4730 {
4731 type = dwarf_base_type (encoding, size, cu);
4732 }
4733 set_die_type (die, type, cu);
4734 }
4735
4736 /* Read the given DW_AT_subrange DIE. */
4737
4738 static void
4739 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4740 {
4741 struct type *base_type;
4742 struct type *range_type;
4743 struct attribute *attr;
4744 int low = 0;
4745 int high = -1;
4746
4747 /* If we have already decoded this die, then nothing more to do. */
4748 if (die->type)
4749 return;
4750
4751 base_type = die_type (die, cu);
4752 if (base_type == NULL)
4753 {
4754 complaint (&symfile_complaints,
4755 _("DW_AT_type missing from DW_TAG_subrange_type"));
4756 return;
4757 }
4758
4759 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4760 base_type = alloc_type (NULL);
4761
4762 if (cu->language == language_fortran)
4763 {
4764 /* FORTRAN implies a lower bound of 1, if not given. */
4765 low = 1;
4766 }
4767
4768 /* FIXME: For variable sized arrays either of these could be
4769 a variable rather than a constant value. We'll allow it,
4770 but we don't know how to handle it. */
4771 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4772 if (attr)
4773 low = dwarf2_get_attr_constant_value (attr, 0);
4774
4775 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4776 if (attr)
4777 {
4778 if (attr->form == DW_FORM_block1)
4779 {
4780 /* GCC encodes arrays with unspecified or dynamic length
4781 with a DW_FORM_block1 attribute.
4782 FIXME: GDB does not yet know how to handle dynamic
4783 arrays properly, treat them as arrays with unspecified
4784 length for now.
4785
4786 FIXME: jimb/2003-09-22: GDB does not really know
4787 how to handle arrays of unspecified length
4788 either; we just represent them as zero-length
4789 arrays. Choose an appropriate upper bound given
4790 the lower bound we've computed above. */
4791 high = low - 1;
4792 }
4793 else
4794 high = dwarf2_get_attr_constant_value (attr, 1);
4795 }
4796
4797 range_type = create_range_type (NULL, base_type, low, high);
4798
4799 attr = dwarf2_attr (die, DW_AT_name, cu);
4800 if (attr && DW_STRING (attr))
4801 TYPE_NAME (range_type) = DW_STRING (attr);
4802
4803 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4804 if (attr)
4805 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4806
4807 set_die_type (die, range_type, cu);
4808 }
4809
4810
4811 /* Read a whole compilation unit into a linked list of dies. */
4812
4813 static struct die_info *
4814 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4815 {
4816 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4817 }
4818
4819 /* Read a single die and all its descendents. Set the die's sibling
4820 field to NULL; set other fields in the die correctly, and set all
4821 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4822 location of the info_ptr after reading all of those dies. PARENT
4823 is the parent of the die in question. */
4824
4825 static struct die_info *
4826 read_die_and_children (char *info_ptr, bfd *abfd,
4827 struct dwarf2_cu *cu,
4828 char **new_info_ptr,
4829 struct die_info *parent)
4830 {
4831 struct die_info *die;
4832 char *cur_ptr;
4833 int has_children;
4834
4835 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4836 store_in_ref_table (die->offset, die, cu);
4837
4838 if (has_children)
4839 {
4840 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4841 new_info_ptr, die);
4842 }
4843 else
4844 {
4845 die->child = NULL;
4846 *new_info_ptr = cur_ptr;
4847 }
4848
4849 die->sibling = NULL;
4850 die->parent = parent;
4851 return die;
4852 }
4853
4854 /* Read a die, all of its descendents, and all of its siblings; set
4855 all of the fields of all of the dies correctly. Arguments are as
4856 in read_die_and_children. */
4857
4858 static struct die_info *
4859 read_die_and_siblings (char *info_ptr, bfd *abfd,
4860 struct dwarf2_cu *cu,
4861 char **new_info_ptr,
4862 struct die_info *parent)
4863 {
4864 struct die_info *first_die, *last_sibling;
4865 char *cur_ptr;
4866
4867 cur_ptr = info_ptr;
4868 first_die = last_sibling = NULL;
4869
4870 while (1)
4871 {
4872 struct die_info *die
4873 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4874
4875 if (!first_die)
4876 {
4877 first_die = die;
4878 }
4879 else
4880 {
4881 last_sibling->sibling = die;
4882 }
4883
4884 if (die->tag == 0)
4885 {
4886 *new_info_ptr = cur_ptr;
4887 return first_die;
4888 }
4889 else
4890 {
4891 last_sibling = die;
4892 }
4893 }
4894 }
4895
4896 /* Free a linked list of dies. */
4897
4898 static void
4899 free_die_list (struct die_info *dies)
4900 {
4901 struct die_info *die, *next;
4902
4903 die = dies;
4904 while (die)
4905 {
4906 if (die->child != NULL)
4907 free_die_list (die->child);
4908 next = die->sibling;
4909 xfree (die->attrs);
4910 xfree (die);
4911 die = next;
4912 }
4913 }
4914
4915 /* Read the contents of the section at OFFSET and of size SIZE from the
4916 object file specified by OBJFILE into the objfile_obstack and return it. */
4917
4918 char *
4919 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4920 {
4921 bfd *abfd = objfile->obfd;
4922 char *buf, *retbuf;
4923 bfd_size_type size = bfd_get_section_size (sectp);
4924
4925 if (size == 0)
4926 return NULL;
4927
4928 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4929 retbuf
4930 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4931 if (retbuf != NULL)
4932 return retbuf;
4933
4934 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4935 || bfd_bread (buf, size, abfd) != size)
4936 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4937 bfd_get_filename (abfd));
4938
4939 return buf;
4940 }
4941
4942 /* In DWARF version 2, the description of the debugging information is
4943 stored in a separate .debug_abbrev section. Before we read any
4944 dies from a section we read in all abbreviations and install them
4945 in a hash table. This function also sets flags in CU describing
4946 the data found in the abbrev table. */
4947
4948 static void
4949 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4950 {
4951 struct comp_unit_head *cu_header = &cu->header;
4952 char *abbrev_ptr;
4953 struct abbrev_info *cur_abbrev;
4954 unsigned int abbrev_number, bytes_read, abbrev_name;
4955 unsigned int abbrev_form, hash_number;
4956 struct attr_abbrev *cur_attrs;
4957 unsigned int allocated_attrs;
4958
4959 /* Initialize dwarf2 abbrevs */
4960 obstack_init (&cu->abbrev_obstack);
4961 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4962 (ABBREV_HASH_SIZE
4963 * sizeof (struct abbrev_info *)));
4964 memset (cu->dwarf2_abbrevs, 0,
4965 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4966
4967 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4968 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4969 abbrev_ptr += bytes_read;
4970
4971 allocated_attrs = ATTR_ALLOC_CHUNK;
4972 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4973
4974 /* loop until we reach an abbrev number of 0 */
4975 while (abbrev_number)
4976 {
4977 cur_abbrev = dwarf_alloc_abbrev (cu);
4978
4979 /* read in abbrev header */
4980 cur_abbrev->number = abbrev_number;
4981 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4982 abbrev_ptr += bytes_read;
4983 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4984 abbrev_ptr += 1;
4985
4986 if (cur_abbrev->tag == DW_TAG_namespace)
4987 cu->has_namespace_info = 1;
4988
4989 /* now read in declarations */
4990 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4991 abbrev_ptr += bytes_read;
4992 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4993 abbrev_ptr += bytes_read;
4994 while (abbrev_name)
4995 {
4996 if (cur_abbrev->num_attrs == allocated_attrs)
4997 {
4998 allocated_attrs += ATTR_ALLOC_CHUNK;
4999 cur_attrs
5000 = xrealloc (cur_attrs, (allocated_attrs
5001 * sizeof (struct attr_abbrev)));
5002 }
5003
5004 /* Record whether this compilation unit might have
5005 inter-compilation-unit references. If we don't know what form
5006 this attribute will have, then it might potentially be a
5007 DW_FORM_ref_addr, so we conservatively expect inter-CU
5008 references. */
5009
5010 if (abbrev_form == DW_FORM_ref_addr
5011 || abbrev_form == DW_FORM_indirect)
5012 cu->has_form_ref_addr = 1;
5013
5014 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5015 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5016 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5017 abbrev_ptr += bytes_read;
5018 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5019 abbrev_ptr += bytes_read;
5020 }
5021
5022 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5023 (cur_abbrev->num_attrs
5024 * sizeof (struct attr_abbrev)));
5025 memcpy (cur_abbrev->attrs, cur_attrs,
5026 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5027
5028 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5029 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5030 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5031
5032 /* Get next abbreviation.
5033 Under Irix6 the abbreviations for a compilation unit are not
5034 always properly terminated with an abbrev number of 0.
5035 Exit loop if we encounter an abbreviation which we have
5036 already read (which means we are about to read the abbreviations
5037 for the next compile unit) or if the end of the abbreviation
5038 table is reached. */
5039 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5040 >= dwarf2_per_objfile->abbrev_size)
5041 break;
5042 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5043 abbrev_ptr += bytes_read;
5044 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5045 break;
5046 }
5047
5048 xfree (cur_attrs);
5049 }
5050
5051 /* Release the memory used by the abbrev table for a compilation unit. */
5052
5053 static void
5054 dwarf2_free_abbrev_table (void *ptr_to_cu)
5055 {
5056 struct dwarf2_cu *cu = ptr_to_cu;
5057
5058 obstack_free (&cu->abbrev_obstack, NULL);
5059 cu->dwarf2_abbrevs = NULL;
5060 }
5061
5062 /* Lookup an abbrev_info structure in the abbrev hash table. */
5063
5064 static struct abbrev_info *
5065 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5066 {
5067 unsigned int hash_number;
5068 struct abbrev_info *abbrev;
5069
5070 hash_number = number % ABBREV_HASH_SIZE;
5071 abbrev = cu->dwarf2_abbrevs[hash_number];
5072
5073 while (abbrev)
5074 {
5075 if (abbrev->number == number)
5076 return abbrev;
5077 else
5078 abbrev = abbrev->next;
5079 }
5080 return NULL;
5081 }
5082
5083 /* Returns nonzero if TAG represents a type that we might generate a partial
5084 symbol for. */
5085
5086 static int
5087 is_type_tag_for_partial (int tag)
5088 {
5089 switch (tag)
5090 {
5091 #if 0
5092 /* Some types that would be reasonable to generate partial symbols for,
5093 that we don't at present. */
5094 case DW_TAG_array_type:
5095 case DW_TAG_file_type:
5096 case DW_TAG_ptr_to_member_type:
5097 case DW_TAG_set_type:
5098 case DW_TAG_string_type:
5099 case DW_TAG_subroutine_type:
5100 #endif
5101 case DW_TAG_base_type:
5102 case DW_TAG_class_type:
5103 case DW_TAG_enumeration_type:
5104 case DW_TAG_structure_type:
5105 case DW_TAG_subrange_type:
5106 case DW_TAG_typedef:
5107 case DW_TAG_union_type:
5108 return 1;
5109 default:
5110 return 0;
5111 }
5112 }
5113
5114 /* Load all DIEs that are interesting for partial symbols into memory. */
5115
5116 static struct partial_die_info *
5117 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5118 struct dwarf2_cu *cu)
5119 {
5120 struct partial_die_info *part_die;
5121 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5122 struct abbrev_info *abbrev;
5123 unsigned int bytes_read;
5124
5125 int nesting_level = 1;
5126
5127 parent_die = NULL;
5128 last_die = NULL;
5129
5130 cu->partial_dies
5131 = htab_create_alloc_ex (cu->header.length / 12,
5132 partial_die_hash,
5133 partial_die_eq,
5134 NULL,
5135 &cu->comp_unit_obstack,
5136 hashtab_obstack_allocate,
5137 dummy_obstack_deallocate);
5138
5139 part_die = obstack_alloc (&cu->comp_unit_obstack,
5140 sizeof (struct partial_die_info));
5141
5142 while (1)
5143 {
5144 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5145
5146 /* A NULL abbrev means the end of a series of children. */
5147 if (abbrev == NULL)
5148 {
5149 if (--nesting_level == 0)
5150 {
5151 /* PART_DIE was probably the last thing allocated on the
5152 comp_unit_obstack, so we could call obstack_free
5153 here. We don't do that because the waste is small,
5154 and will be cleaned up when we're done with this
5155 compilation unit. This way, we're also more robust
5156 against other users of the comp_unit_obstack. */
5157 return first_die;
5158 }
5159 info_ptr += bytes_read;
5160 last_die = parent_die;
5161 parent_die = parent_die->die_parent;
5162 continue;
5163 }
5164
5165 /* Check whether this DIE is interesting enough to save. */
5166 if (!is_type_tag_for_partial (abbrev->tag)
5167 && abbrev->tag != DW_TAG_enumerator
5168 && abbrev->tag != DW_TAG_subprogram
5169 && abbrev->tag != DW_TAG_variable
5170 && abbrev->tag != DW_TAG_namespace)
5171 {
5172 /* Otherwise we skip to the next sibling, if any. */
5173 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5174 continue;
5175 }
5176
5177 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5178 abfd, info_ptr, cu);
5179
5180 /* This two-pass algorithm for processing partial symbols has a
5181 high cost in cache pressure. Thus, handle some simple cases
5182 here which cover the majority of C partial symbols. DIEs
5183 which neither have specification tags in them, nor could have
5184 specification tags elsewhere pointing at them, can simply be
5185 processed and discarded.
5186
5187 This segment is also optional; scan_partial_symbols and
5188 add_partial_symbol will handle these DIEs if we chain
5189 them in normally. When compilers which do not emit large
5190 quantities of duplicate debug information are more common,
5191 this code can probably be removed. */
5192
5193 /* Any complete simple types at the top level (pretty much all
5194 of them, for a language without namespaces), can be processed
5195 directly. */
5196 if (parent_die == NULL
5197 && part_die->has_specification == 0
5198 && part_die->is_declaration == 0
5199 && (part_die->tag == DW_TAG_typedef
5200 || part_die->tag == DW_TAG_base_type
5201 || part_die->tag == DW_TAG_subrange_type))
5202 {
5203 if (building_psymtab && part_die->name != NULL)
5204 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5205 VAR_DOMAIN, LOC_TYPEDEF,
5206 &cu->objfile->static_psymbols,
5207 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5208 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5209 continue;
5210 }
5211
5212 /* If we're at the second level, and we're an enumerator, and
5213 our parent has no specification (meaning possibly lives in a
5214 namespace elsewhere), then we can add the partial symbol now
5215 instead of queueing it. */
5216 if (part_die->tag == DW_TAG_enumerator
5217 && parent_die != NULL
5218 && parent_die->die_parent == NULL
5219 && parent_die->tag == DW_TAG_enumeration_type
5220 && parent_die->has_specification == 0)
5221 {
5222 if (part_die->name == NULL)
5223 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5224 else if (building_psymtab)
5225 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5226 VAR_DOMAIN, LOC_CONST,
5227 (cu->language == language_cplus
5228 || cu->language == language_java)
5229 ? &cu->objfile->global_psymbols
5230 : &cu->objfile->static_psymbols,
5231 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5232
5233 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5234 continue;
5235 }
5236
5237 /* We'll save this DIE so link it in. */
5238 part_die->die_parent = parent_die;
5239 part_die->die_sibling = NULL;
5240 part_die->die_child = NULL;
5241
5242 if (last_die && last_die == parent_die)
5243 last_die->die_child = part_die;
5244 else if (last_die)
5245 last_die->die_sibling = part_die;
5246
5247 last_die = part_die;
5248
5249 if (first_die == NULL)
5250 first_die = part_die;
5251
5252 /* Maybe add the DIE to the hash table. Not all DIEs that we
5253 find interesting need to be in the hash table, because we
5254 also have the parent/sibling/child chains; only those that we
5255 might refer to by offset later during partial symbol reading.
5256
5257 For now this means things that might have be the target of a
5258 DW_AT_specification, DW_AT_abstract_origin, or
5259 DW_AT_extension. DW_AT_extension will refer only to
5260 namespaces; DW_AT_abstract_origin refers to functions (and
5261 many things under the function DIE, but we do not recurse
5262 into function DIEs during partial symbol reading) and
5263 possibly variables as well; DW_AT_specification refers to
5264 declarations. Declarations ought to have the DW_AT_declaration
5265 flag. It happens that GCC forgets to put it in sometimes, but
5266 only for functions, not for types.
5267
5268 Adding more things than necessary to the hash table is harmless
5269 except for the performance cost. Adding too few will result in
5270 internal errors in find_partial_die. */
5271
5272 if (abbrev->tag == DW_TAG_subprogram
5273 || abbrev->tag == DW_TAG_variable
5274 || abbrev->tag == DW_TAG_namespace
5275 || part_die->is_declaration)
5276 {
5277 void **slot;
5278
5279 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5280 part_die->offset, INSERT);
5281 *slot = part_die;
5282 }
5283
5284 part_die = obstack_alloc (&cu->comp_unit_obstack,
5285 sizeof (struct partial_die_info));
5286
5287 /* For some DIEs we want to follow their children (if any). For C
5288 we have no reason to follow the children of structures; for other
5289 languages we have to, both so that we can get at method physnames
5290 to infer fully qualified class names, and for DW_AT_specification. */
5291 if (last_die->has_children
5292 && (last_die->tag == DW_TAG_namespace
5293 || last_die->tag == DW_TAG_enumeration_type
5294 || (cu->language != language_c
5295 && (last_die->tag == DW_TAG_class_type
5296 || last_die->tag == DW_TAG_structure_type
5297 || last_die->tag == DW_TAG_union_type))))
5298 {
5299 nesting_level++;
5300 parent_die = last_die;
5301 continue;
5302 }
5303
5304 /* Otherwise we skip to the next sibling, if any. */
5305 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5306
5307 /* Back to the top, do it again. */
5308 }
5309 }
5310
5311 /* Read a minimal amount of information into the minimal die structure. */
5312
5313 static char *
5314 read_partial_die (struct partial_die_info *part_die,
5315 struct abbrev_info *abbrev,
5316 unsigned int abbrev_len, bfd *abfd,
5317 char *info_ptr, struct dwarf2_cu *cu)
5318 {
5319 unsigned int bytes_read, i;
5320 struct attribute attr;
5321 int has_low_pc_attr = 0;
5322 int has_high_pc_attr = 0;
5323
5324 memset (part_die, 0, sizeof (struct partial_die_info));
5325
5326 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5327
5328 info_ptr += abbrev_len;
5329
5330 if (abbrev == NULL)
5331 return info_ptr;
5332
5333 part_die->tag = abbrev->tag;
5334 part_die->has_children = abbrev->has_children;
5335
5336 for (i = 0; i < abbrev->num_attrs; ++i)
5337 {
5338 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5339
5340 /* Store the data if it is of an attribute we want to keep in a
5341 partial symbol table. */
5342 switch (attr.name)
5343 {
5344 case DW_AT_name:
5345
5346 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5347 if (part_die->name == NULL)
5348 part_die->name = DW_STRING (&attr);
5349 break;
5350 case DW_AT_comp_dir:
5351 if (part_die->dirname == NULL)
5352 part_die->dirname = DW_STRING (&attr);
5353 break;
5354 case DW_AT_MIPS_linkage_name:
5355 part_die->name = DW_STRING (&attr);
5356 break;
5357 case DW_AT_low_pc:
5358 has_low_pc_attr = 1;
5359 part_die->lowpc = DW_ADDR (&attr);
5360 break;
5361 case DW_AT_high_pc:
5362 has_high_pc_attr = 1;
5363 part_die->highpc = DW_ADDR (&attr);
5364 break;
5365 case DW_AT_location:
5366 /* Support the .debug_loc offsets */
5367 if (attr_form_is_block (&attr))
5368 {
5369 part_die->locdesc = DW_BLOCK (&attr);
5370 }
5371 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5372 {
5373 dwarf2_complex_location_expr_complaint ();
5374 }
5375 else
5376 {
5377 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5378 "partial symbol information");
5379 }
5380 break;
5381 case DW_AT_language:
5382 part_die->language = DW_UNSND (&attr);
5383 break;
5384 case DW_AT_external:
5385 part_die->is_external = DW_UNSND (&attr);
5386 break;
5387 case DW_AT_declaration:
5388 part_die->is_declaration = DW_UNSND (&attr);
5389 break;
5390 case DW_AT_type:
5391 part_die->has_type = 1;
5392 break;
5393 case DW_AT_abstract_origin:
5394 case DW_AT_specification:
5395 case DW_AT_extension:
5396 part_die->has_specification = 1;
5397 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5398 break;
5399 case DW_AT_sibling:
5400 /* Ignore absolute siblings, they might point outside of
5401 the current compile unit. */
5402 if (attr.form == DW_FORM_ref_addr)
5403 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5404 else
5405 part_die->sibling = dwarf2_per_objfile->info_buffer
5406 + dwarf2_get_ref_die_offset (&attr, cu);
5407 break;
5408 case DW_AT_stmt_list:
5409 part_die->has_stmt_list = 1;
5410 part_die->line_offset = DW_UNSND (&attr);
5411 break;
5412 default:
5413 break;
5414 }
5415 }
5416
5417 /* When using the GNU linker, .gnu.linkonce. sections are used to
5418 eliminate duplicate copies of functions and vtables and such.
5419 The linker will arbitrarily choose one and discard the others.
5420 The AT_*_pc values for such functions refer to local labels in
5421 these sections. If the section from that file was discarded, the
5422 labels are not in the output, so the relocs get a value of 0.
5423 If this is a discarded function, mark the pc bounds as invalid,
5424 so that GDB will ignore it. */
5425 if (has_low_pc_attr && has_high_pc_attr
5426 && part_die->lowpc < part_die->highpc
5427 && (part_die->lowpc != 0
5428 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5429 part_die->has_pc_info = 1;
5430 return info_ptr;
5431 }
5432
5433 /* Find a cached partial DIE at OFFSET in CU. */
5434
5435 static struct partial_die_info *
5436 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5437 {
5438 struct partial_die_info *lookup_die = NULL;
5439 struct partial_die_info part_die;
5440
5441 part_die.offset = offset;
5442 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5443
5444 if (lookup_die == NULL)
5445 internal_error (__FILE__, __LINE__,
5446 _("could not find partial DIE in cache\n"));
5447
5448 return lookup_die;
5449 }
5450
5451 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5452
5453 static struct partial_die_info *
5454 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5455 {
5456 struct dwarf2_per_cu_data *per_cu;
5457
5458 if (offset >= cu->header.offset
5459 && offset < cu->header.offset + cu->header.length)
5460 return find_partial_die_in_comp_unit (offset, cu);
5461
5462 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5463
5464 if (per_cu->cu == NULL)
5465 {
5466 load_comp_unit (per_cu, cu->objfile);
5467 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5468 dwarf2_per_objfile->read_in_chain = per_cu;
5469 }
5470
5471 per_cu->cu->last_used = 0;
5472 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5473 }
5474
5475 /* Adjust PART_DIE before generating a symbol for it. This function
5476 may set the is_external flag or change the DIE's name. */
5477
5478 static void
5479 fixup_partial_die (struct partial_die_info *part_die,
5480 struct dwarf2_cu *cu)
5481 {
5482 /* If we found a reference attribute and the DIE has no name, try
5483 to find a name in the referred to DIE. */
5484
5485 if (part_die->name == NULL && part_die->has_specification)
5486 {
5487 struct partial_die_info *spec_die;
5488
5489 spec_die = find_partial_die (part_die->spec_offset, cu);
5490
5491 fixup_partial_die (spec_die, cu);
5492
5493 if (spec_die->name)
5494 {
5495 part_die->name = spec_die->name;
5496
5497 /* Copy DW_AT_external attribute if it is set. */
5498 if (spec_die->is_external)
5499 part_die->is_external = spec_die->is_external;
5500 }
5501 }
5502
5503 /* Set default names for some unnamed DIEs. */
5504 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5505 || part_die->tag == DW_TAG_class_type))
5506 part_die->name = "(anonymous class)";
5507
5508 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5509 part_die->name = "(anonymous namespace)";
5510
5511 if (part_die->tag == DW_TAG_structure_type
5512 || part_die->tag == DW_TAG_class_type
5513 || part_die->tag == DW_TAG_union_type)
5514 guess_structure_name (part_die, cu);
5515 }
5516
5517 /* Read the die from the .debug_info section buffer. Set DIEP to
5518 point to a newly allocated die with its information, except for its
5519 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5520 whether the die has children or not. */
5521
5522 static char *
5523 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5524 struct dwarf2_cu *cu, int *has_children)
5525 {
5526 unsigned int abbrev_number, bytes_read, i, offset;
5527 struct abbrev_info *abbrev;
5528 struct die_info *die;
5529
5530 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5531 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5532 info_ptr += bytes_read;
5533 if (!abbrev_number)
5534 {
5535 die = dwarf_alloc_die ();
5536 die->tag = 0;
5537 die->abbrev = abbrev_number;
5538 die->type = NULL;
5539 *diep = die;
5540 *has_children = 0;
5541 return info_ptr;
5542 }
5543
5544 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5545 if (!abbrev)
5546 {
5547 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5548 abbrev_number,
5549 bfd_get_filename (abfd));
5550 }
5551 die = dwarf_alloc_die ();
5552 die->offset = offset;
5553 die->tag = abbrev->tag;
5554 die->abbrev = abbrev_number;
5555 die->type = NULL;
5556
5557 die->num_attrs = abbrev->num_attrs;
5558 die->attrs = (struct attribute *)
5559 xmalloc (die->num_attrs * sizeof (struct attribute));
5560
5561 for (i = 0; i < abbrev->num_attrs; ++i)
5562 {
5563 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5564 abfd, info_ptr, cu);
5565
5566 /* If this attribute is an absolute reference to a different
5567 compilation unit, make sure that compilation unit is loaded
5568 also. */
5569 if (die->attrs[i].form == DW_FORM_ref_addr
5570 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5571 || (DW_ADDR (&die->attrs[i])
5572 >= cu->header.offset + cu->header.length)))
5573 {
5574 struct dwarf2_per_cu_data *per_cu;
5575 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5576 cu->objfile);
5577
5578 /* Mark the dependence relation so that we don't flush PER_CU
5579 too early. */
5580 dwarf2_add_dependence (cu, per_cu);
5581
5582 /* If it's already on the queue, we have nothing to do. */
5583 if (per_cu->queued)
5584 continue;
5585
5586 /* If the compilation unit is already loaded, just mark it as
5587 used. */
5588 if (per_cu->cu != NULL)
5589 {
5590 per_cu->cu->last_used = 0;
5591 continue;
5592 }
5593
5594 /* Add it to the queue. */
5595 queue_comp_unit (per_cu);
5596 }
5597 }
5598
5599 *diep = die;
5600 *has_children = abbrev->has_children;
5601 return info_ptr;
5602 }
5603
5604 /* Read an attribute value described by an attribute form. */
5605
5606 static char *
5607 read_attribute_value (struct attribute *attr, unsigned form,
5608 bfd *abfd, char *info_ptr,
5609 struct dwarf2_cu *cu)
5610 {
5611 struct comp_unit_head *cu_header = &cu->header;
5612 unsigned int bytes_read;
5613 struct dwarf_block *blk;
5614
5615 attr->form = form;
5616 switch (form)
5617 {
5618 case DW_FORM_addr:
5619 case DW_FORM_ref_addr:
5620 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5621 info_ptr += bytes_read;
5622 break;
5623 case DW_FORM_block2:
5624 blk = dwarf_alloc_block (cu);
5625 blk->size = read_2_bytes (abfd, info_ptr);
5626 info_ptr += 2;
5627 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5628 info_ptr += blk->size;
5629 DW_BLOCK (attr) = blk;
5630 break;
5631 case DW_FORM_block4:
5632 blk = dwarf_alloc_block (cu);
5633 blk->size = read_4_bytes (abfd, info_ptr);
5634 info_ptr += 4;
5635 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5636 info_ptr += blk->size;
5637 DW_BLOCK (attr) = blk;
5638 break;
5639 case DW_FORM_data2:
5640 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5641 info_ptr += 2;
5642 break;
5643 case DW_FORM_data4:
5644 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5645 info_ptr += 4;
5646 break;
5647 case DW_FORM_data8:
5648 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5649 info_ptr += 8;
5650 break;
5651 case DW_FORM_string:
5652 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5653 info_ptr += bytes_read;
5654 break;
5655 case DW_FORM_strp:
5656 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5657 &bytes_read);
5658 info_ptr += bytes_read;
5659 break;
5660 case DW_FORM_block:
5661 blk = dwarf_alloc_block (cu);
5662 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5663 info_ptr += bytes_read;
5664 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5665 info_ptr += blk->size;
5666 DW_BLOCK (attr) = blk;
5667 break;
5668 case DW_FORM_block1:
5669 blk = dwarf_alloc_block (cu);
5670 blk->size = read_1_byte (abfd, info_ptr);
5671 info_ptr += 1;
5672 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5673 info_ptr += blk->size;
5674 DW_BLOCK (attr) = blk;
5675 break;
5676 case DW_FORM_data1:
5677 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5678 info_ptr += 1;
5679 break;
5680 case DW_FORM_flag:
5681 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5682 info_ptr += 1;
5683 break;
5684 case DW_FORM_sdata:
5685 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5686 info_ptr += bytes_read;
5687 break;
5688 case DW_FORM_udata:
5689 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5690 info_ptr += bytes_read;
5691 break;
5692 case DW_FORM_ref1:
5693 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5694 info_ptr += 1;
5695 break;
5696 case DW_FORM_ref2:
5697 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5698 info_ptr += 2;
5699 break;
5700 case DW_FORM_ref4:
5701 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5702 info_ptr += 4;
5703 break;
5704 case DW_FORM_ref8:
5705 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5706 info_ptr += 8;
5707 break;
5708 case DW_FORM_ref_udata:
5709 DW_ADDR (attr) = (cu->header.offset
5710 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5711 info_ptr += bytes_read;
5712 break;
5713 case DW_FORM_indirect:
5714 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5715 info_ptr += bytes_read;
5716 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5717 break;
5718 default:
5719 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5720 dwarf_form_name (form),
5721 bfd_get_filename (abfd));
5722 }
5723 return info_ptr;
5724 }
5725
5726 /* Read an attribute described by an abbreviated attribute. */
5727
5728 static char *
5729 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5730 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5731 {
5732 attr->name = abbrev->name;
5733 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5734 }
5735
5736 /* read dwarf information from a buffer */
5737
5738 static unsigned int
5739 read_1_byte (bfd *abfd, char *buf)
5740 {
5741 return bfd_get_8 (abfd, (bfd_byte *) buf);
5742 }
5743
5744 static int
5745 read_1_signed_byte (bfd *abfd, char *buf)
5746 {
5747 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5748 }
5749
5750 static unsigned int
5751 read_2_bytes (bfd *abfd, char *buf)
5752 {
5753 return bfd_get_16 (abfd, (bfd_byte *) buf);
5754 }
5755
5756 static int
5757 read_2_signed_bytes (bfd *abfd, char *buf)
5758 {
5759 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5760 }
5761
5762 static unsigned int
5763 read_4_bytes (bfd *abfd, char *buf)
5764 {
5765 return bfd_get_32 (abfd, (bfd_byte *) buf);
5766 }
5767
5768 static int
5769 read_4_signed_bytes (bfd *abfd, char *buf)
5770 {
5771 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5772 }
5773
5774 static unsigned long
5775 read_8_bytes (bfd *abfd, char *buf)
5776 {
5777 return bfd_get_64 (abfd, (bfd_byte *) buf);
5778 }
5779
5780 static CORE_ADDR
5781 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5782 {
5783 struct comp_unit_head *cu_header = &cu->header;
5784 CORE_ADDR retval = 0;
5785
5786 if (cu_header->signed_addr_p)
5787 {
5788 switch (cu_header->addr_size)
5789 {
5790 case 2:
5791 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5792 break;
5793 case 4:
5794 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5795 break;
5796 case 8:
5797 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5798 break;
5799 default:
5800 internal_error (__FILE__, __LINE__,
5801 _("read_address: bad switch, signed [in module %s]"),
5802 bfd_get_filename (abfd));
5803 }
5804 }
5805 else
5806 {
5807 switch (cu_header->addr_size)
5808 {
5809 case 2:
5810 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5811 break;
5812 case 4:
5813 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5814 break;
5815 case 8:
5816 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5817 break;
5818 default:
5819 internal_error (__FILE__, __LINE__,
5820 _("read_address: bad switch, unsigned [in module %s]"),
5821 bfd_get_filename (abfd));
5822 }
5823 }
5824
5825 *bytes_read = cu_header->addr_size;
5826 return retval;
5827 }
5828
5829 /* Read the initial length from a section. The (draft) DWARF 3
5830 specification allows the initial length to take up either 4 bytes
5831 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5832 bytes describe the length and all offsets will be 8 bytes in length
5833 instead of 4.
5834
5835 An older, non-standard 64-bit format is also handled by this
5836 function. The older format in question stores the initial length
5837 as an 8-byte quantity without an escape value. Lengths greater
5838 than 2^32 aren't very common which means that the initial 4 bytes
5839 is almost always zero. Since a length value of zero doesn't make
5840 sense for the 32-bit format, this initial zero can be considered to
5841 be an escape value which indicates the presence of the older 64-bit
5842 format. As written, the code can't detect (old format) lengths
5843 greater than 4GB. If it becomes necessary to handle lengths
5844 somewhat larger than 4GB, we could allow other small values (such
5845 as the non-sensical values of 1, 2, and 3) to also be used as
5846 escape values indicating the presence of the old format.
5847
5848 The value returned via bytes_read should be used to increment the
5849 relevant pointer after calling read_initial_length().
5850
5851 As a side effect, this function sets the fields initial_length_size
5852 and offset_size in cu_header to the values appropriate for the
5853 length field. (The format of the initial length field determines
5854 the width of file offsets to be fetched later with fetch_offset().)
5855
5856 [ Note: read_initial_length() and read_offset() are based on the
5857 document entitled "DWARF Debugging Information Format", revision
5858 3, draft 8, dated November 19, 2001. This document was obtained
5859 from:
5860
5861 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5862
5863 This document is only a draft and is subject to change. (So beware.)
5864
5865 Details regarding the older, non-standard 64-bit format were
5866 determined empirically by examining 64-bit ELF files produced by
5867 the SGI toolchain on an IRIX 6.5 machine.
5868
5869 - Kevin, July 16, 2002
5870 ] */
5871
5872 static LONGEST
5873 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5874 int *bytes_read)
5875 {
5876 LONGEST retval = 0;
5877
5878 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5879
5880 if (retval == 0xffffffff)
5881 {
5882 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5883 *bytes_read = 12;
5884 if (cu_header != NULL)
5885 {
5886 cu_header->initial_length_size = 12;
5887 cu_header->offset_size = 8;
5888 }
5889 }
5890 else if (retval == 0)
5891 {
5892 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5893 by IRIX. */
5894 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5895 *bytes_read = 8;
5896 if (cu_header != NULL)
5897 {
5898 cu_header->initial_length_size = 8;
5899 cu_header->offset_size = 8;
5900 }
5901 }
5902 else
5903 {
5904 *bytes_read = 4;
5905 if (cu_header != NULL)
5906 {
5907 cu_header->initial_length_size = 4;
5908 cu_header->offset_size = 4;
5909 }
5910 }
5911
5912 return retval;
5913 }
5914
5915 /* Read an offset from the data stream. The size of the offset is
5916 given by cu_header->offset_size. */
5917
5918 static LONGEST
5919 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5920 int *bytes_read)
5921 {
5922 LONGEST retval = 0;
5923
5924 switch (cu_header->offset_size)
5925 {
5926 case 4:
5927 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5928 *bytes_read = 4;
5929 break;
5930 case 8:
5931 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5932 *bytes_read = 8;
5933 break;
5934 default:
5935 internal_error (__FILE__, __LINE__,
5936 _("read_offset: bad switch [in module %s]"),
5937 bfd_get_filename (abfd));
5938 }
5939
5940 return retval;
5941 }
5942
5943 static char *
5944 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5945 {
5946 /* If the size of a host char is 8 bits, we can return a pointer
5947 to the buffer, otherwise we have to copy the data to a buffer
5948 allocated on the temporary obstack. */
5949 gdb_assert (HOST_CHAR_BIT == 8);
5950 return buf;
5951 }
5952
5953 static char *
5954 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5955 {
5956 /* If the size of a host char is 8 bits, we can return a pointer
5957 to the string, otherwise we have to copy the string to a buffer
5958 allocated on the temporary obstack. */
5959 gdb_assert (HOST_CHAR_BIT == 8);
5960 if (*buf == '\0')
5961 {
5962 *bytes_read_ptr = 1;
5963 return NULL;
5964 }
5965 *bytes_read_ptr = strlen (buf) + 1;
5966 return buf;
5967 }
5968
5969 static char *
5970 read_indirect_string (bfd *abfd, char *buf,
5971 const struct comp_unit_head *cu_header,
5972 unsigned int *bytes_read_ptr)
5973 {
5974 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5975 (int *) bytes_read_ptr);
5976
5977 if (dwarf2_per_objfile->str_buffer == NULL)
5978 {
5979 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5980 bfd_get_filename (abfd));
5981 return NULL;
5982 }
5983 if (str_offset >= dwarf2_per_objfile->str_size)
5984 {
5985 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5986 bfd_get_filename (abfd));
5987 return NULL;
5988 }
5989 gdb_assert (HOST_CHAR_BIT == 8);
5990 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5991 return NULL;
5992 return dwarf2_per_objfile->str_buffer + str_offset;
5993 }
5994
5995 static unsigned long
5996 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5997 {
5998 unsigned long result;
5999 unsigned int num_read;
6000 int i, shift;
6001 unsigned char byte;
6002
6003 result = 0;
6004 shift = 0;
6005 num_read = 0;
6006 i = 0;
6007 while (1)
6008 {
6009 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6010 buf++;
6011 num_read++;
6012 result |= ((unsigned long)(byte & 127) << shift);
6013 if ((byte & 128) == 0)
6014 {
6015 break;
6016 }
6017 shift += 7;
6018 }
6019 *bytes_read_ptr = num_read;
6020 return result;
6021 }
6022
6023 static long
6024 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6025 {
6026 long result;
6027 int i, shift, size, num_read;
6028 unsigned char byte;
6029
6030 result = 0;
6031 shift = 0;
6032 size = 32;
6033 num_read = 0;
6034 i = 0;
6035 while (1)
6036 {
6037 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6038 buf++;
6039 num_read++;
6040 result |= ((long)(byte & 127) << shift);
6041 shift += 7;
6042 if ((byte & 128) == 0)
6043 {
6044 break;
6045 }
6046 }
6047 if ((shift < size) && (byte & 0x40))
6048 {
6049 result |= -(1 << shift);
6050 }
6051 *bytes_read_ptr = num_read;
6052 return result;
6053 }
6054
6055 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6056
6057 static char *
6058 skip_leb128 (bfd *abfd, char *buf)
6059 {
6060 int byte;
6061
6062 while (1)
6063 {
6064 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6065 buf++;
6066 if ((byte & 128) == 0)
6067 return buf;
6068 }
6069 }
6070
6071 static void
6072 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6073 {
6074 switch (lang)
6075 {
6076 case DW_LANG_C89:
6077 case DW_LANG_C:
6078 cu->language = language_c;
6079 break;
6080 case DW_LANG_C_plus_plus:
6081 cu->language = language_cplus;
6082 break;
6083 case DW_LANG_Fortran77:
6084 case DW_LANG_Fortran90:
6085 case DW_LANG_Fortran95:
6086 cu->language = language_fortran;
6087 break;
6088 case DW_LANG_Mips_Assembler:
6089 cu->language = language_asm;
6090 break;
6091 case DW_LANG_Java:
6092 cu->language = language_java;
6093 break;
6094 case DW_LANG_Ada83:
6095 case DW_LANG_Ada95:
6096 cu->language = language_ada;
6097 break;
6098 case DW_LANG_Cobol74:
6099 case DW_LANG_Cobol85:
6100 case DW_LANG_Pascal83:
6101 case DW_LANG_Modula2:
6102 default:
6103 cu->language = language_minimal;
6104 break;
6105 }
6106 cu->language_defn = language_def (cu->language);
6107 }
6108
6109 /* Return the named attribute or NULL if not there. */
6110
6111 static struct attribute *
6112 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6113 {
6114 unsigned int i;
6115 struct attribute *spec = NULL;
6116
6117 for (i = 0; i < die->num_attrs; ++i)
6118 {
6119 if (die->attrs[i].name == name)
6120 return &die->attrs[i];
6121 if (die->attrs[i].name == DW_AT_specification
6122 || die->attrs[i].name == DW_AT_abstract_origin)
6123 spec = &die->attrs[i];
6124 }
6125
6126 if (spec)
6127 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6128
6129 return NULL;
6130 }
6131
6132 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6133 and holds a non-zero value. This function should only be used for
6134 DW_FORM_flag attributes. */
6135
6136 static int
6137 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6138 {
6139 struct attribute *attr = dwarf2_attr (die, name, cu);
6140
6141 return (attr && DW_UNSND (attr));
6142 }
6143
6144 static int
6145 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6146 {
6147 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6148 which value is non-zero. However, we have to be careful with
6149 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6150 (via dwarf2_flag_true_p) follows this attribute. So we may
6151 end up accidently finding a declaration attribute that belongs
6152 to a different DIE referenced by the specification attribute,
6153 even though the given DIE does not have a declaration attribute. */
6154 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6155 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6156 }
6157
6158 /* Return the die giving the specification for DIE, if there is
6159 one. */
6160
6161 static struct die_info *
6162 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6163 {
6164 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6165
6166 if (spec_attr == NULL)
6167 return NULL;
6168 else
6169 return follow_die_ref (die, spec_attr, cu);
6170 }
6171
6172 /* Free the line_header structure *LH, and any arrays and strings it
6173 refers to. */
6174 static void
6175 free_line_header (struct line_header *lh)
6176 {
6177 if (lh->standard_opcode_lengths)
6178 xfree (lh->standard_opcode_lengths);
6179
6180 /* Remember that all the lh->file_names[i].name pointers are
6181 pointers into debug_line_buffer, and don't need to be freed. */
6182 if (lh->file_names)
6183 xfree (lh->file_names);
6184
6185 /* Similarly for the include directory names. */
6186 if (lh->include_dirs)
6187 xfree (lh->include_dirs);
6188
6189 xfree (lh);
6190 }
6191
6192
6193 /* Add an entry to LH's include directory table. */
6194 static void
6195 add_include_dir (struct line_header *lh, char *include_dir)
6196 {
6197 /* Grow the array if necessary. */
6198 if (lh->include_dirs_size == 0)
6199 {
6200 lh->include_dirs_size = 1; /* for testing */
6201 lh->include_dirs = xmalloc (lh->include_dirs_size
6202 * sizeof (*lh->include_dirs));
6203 }
6204 else if (lh->num_include_dirs >= lh->include_dirs_size)
6205 {
6206 lh->include_dirs_size *= 2;
6207 lh->include_dirs = xrealloc (lh->include_dirs,
6208 (lh->include_dirs_size
6209 * sizeof (*lh->include_dirs)));
6210 }
6211
6212 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6213 }
6214
6215
6216 /* Add an entry to LH's file name table. */
6217 static void
6218 add_file_name (struct line_header *lh,
6219 char *name,
6220 unsigned int dir_index,
6221 unsigned int mod_time,
6222 unsigned int length)
6223 {
6224 struct file_entry *fe;
6225
6226 /* Grow the array if necessary. */
6227 if (lh->file_names_size == 0)
6228 {
6229 lh->file_names_size = 1; /* for testing */
6230 lh->file_names = xmalloc (lh->file_names_size
6231 * sizeof (*lh->file_names));
6232 }
6233 else if (lh->num_file_names >= lh->file_names_size)
6234 {
6235 lh->file_names_size *= 2;
6236 lh->file_names = xrealloc (lh->file_names,
6237 (lh->file_names_size
6238 * sizeof (*lh->file_names)));
6239 }
6240
6241 fe = &lh->file_names[lh->num_file_names++];
6242 fe->name = name;
6243 fe->dir_index = dir_index;
6244 fe->mod_time = mod_time;
6245 fe->length = length;
6246 fe->included_p = 0;
6247 }
6248
6249
6250 /* Read the statement program header starting at OFFSET in
6251 .debug_line, according to the endianness of ABFD. Return a pointer
6252 to a struct line_header, allocated using xmalloc.
6253
6254 NOTE: the strings in the include directory and file name tables of
6255 the returned object point into debug_line_buffer, and must not be
6256 freed. */
6257 static struct line_header *
6258 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6259 struct dwarf2_cu *cu)
6260 {
6261 struct cleanup *back_to;
6262 struct line_header *lh;
6263 char *line_ptr;
6264 int bytes_read;
6265 int i;
6266 char *cur_dir, *cur_file;
6267
6268 if (dwarf2_per_objfile->line_buffer == NULL)
6269 {
6270 complaint (&symfile_complaints, _("missing .debug_line section"));
6271 return 0;
6272 }
6273
6274 /* Make sure that at least there's room for the total_length field.
6275 That could be 12 bytes long, but we're just going to fudge that. */
6276 if (offset + 4 >= dwarf2_per_objfile->line_size)
6277 {
6278 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6279 return 0;
6280 }
6281
6282 lh = xmalloc (sizeof (*lh));
6283 memset (lh, 0, sizeof (*lh));
6284 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6285 (void *) lh);
6286
6287 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6288
6289 /* Read in the header. */
6290 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6291 line_ptr += bytes_read;
6292 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6293 + dwarf2_per_objfile->line_size))
6294 {
6295 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6296 return 0;
6297 }
6298 lh->statement_program_end = line_ptr + lh->total_length;
6299 lh->version = read_2_bytes (abfd, line_ptr);
6300 line_ptr += 2;
6301 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6302 line_ptr += bytes_read;
6303 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6304 line_ptr += 1;
6305 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6306 line_ptr += 1;
6307 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6308 line_ptr += 1;
6309 lh->line_range = read_1_byte (abfd, line_ptr);
6310 line_ptr += 1;
6311 lh->opcode_base = read_1_byte (abfd, line_ptr);
6312 line_ptr += 1;
6313 lh->standard_opcode_lengths
6314 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6315
6316 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6317 for (i = 1; i < lh->opcode_base; ++i)
6318 {
6319 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6320 line_ptr += 1;
6321 }
6322
6323 /* Read directory table. */
6324 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6325 {
6326 line_ptr += bytes_read;
6327 add_include_dir (lh, cur_dir);
6328 }
6329 line_ptr += bytes_read;
6330
6331 /* Read file name table. */
6332 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6333 {
6334 unsigned int dir_index, mod_time, length;
6335
6336 line_ptr += bytes_read;
6337 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6338 line_ptr += bytes_read;
6339 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6340 line_ptr += bytes_read;
6341 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6342 line_ptr += bytes_read;
6343
6344 add_file_name (lh, cur_file, dir_index, mod_time, length);
6345 }
6346 line_ptr += bytes_read;
6347 lh->statement_program_start = line_ptr;
6348
6349 if (line_ptr > (dwarf2_per_objfile->line_buffer
6350 + dwarf2_per_objfile->line_size))
6351 complaint (&symfile_complaints,
6352 _("line number info header doesn't fit in `.debug_line' section"));
6353
6354 discard_cleanups (back_to);
6355 return lh;
6356 }
6357
6358 /* This function exists to work around a bug in certain compilers
6359 (particularly GCC 2.95), in which the first line number marker of a
6360 function does not show up until after the prologue, right before
6361 the second line number marker. This function shifts ADDRESS down
6362 to the beginning of the function if necessary, and is called on
6363 addresses passed to record_line. */
6364
6365 static CORE_ADDR
6366 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6367 {
6368 struct function_range *fn;
6369
6370 /* Find the function_range containing address. */
6371 if (!cu->first_fn)
6372 return address;
6373
6374 if (!cu->cached_fn)
6375 cu->cached_fn = cu->first_fn;
6376
6377 fn = cu->cached_fn;
6378 while (fn)
6379 if (fn->lowpc <= address && fn->highpc > address)
6380 goto found;
6381 else
6382 fn = fn->next;
6383
6384 fn = cu->first_fn;
6385 while (fn && fn != cu->cached_fn)
6386 if (fn->lowpc <= address && fn->highpc > address)
6387 goto found;
6388 else
6389 fn = fn->next;
6390
6391 return address;
6392
6393 found:
6394 if (fn->seen_line)
6395 return address;
6396 if (address != fn->lowpc)
6397 complaint (&symfile_complaints,
6398 _("misplaced first line number at 0x%lx for '%s'"),
6399 (unsigned long) address, fn->name);
6400 fn->seen_line = 1;
6401 return fn->lowpc;
6402 }
6403
6404 /* Decode the Line Number Program (LNP) for the given line_header
6405 structure and CU. The actual information extracted and the type
6406 of structures created from the LNP depends on the value of PST.
6407
6408 1. If PST is NULL, then this procedure uses the data from the program
6409 to create all necessary symbol tables, and their linetables.
6410 The compilation directory of the file is passed in COMP_DIR,
6411 and must not be NULL.
6412
6413 2. If PST is not NULL, this procedure reads the program to determine
6414 the list of files included by the unit represented by PST, and
6415 builds all the associated partial symbol tables. In this case,
6416 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6417 is not used to compute the full name of the symtab, and therefore
6418 omitting it when building the partial symtab does not introduce
6419 the potential for inconsistency - a partial symtab and its associated
6420 symbtab having a different fullname -). */
6421
6422 static void
6423 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6424 struct dwarf2_cu *cu, struct partial_symtab *pst)
6425 {
6426 char *line_ptr;
6427 char *line_end;
6428 unsigned int bytes_read;
6429 unsigned char op_code, extended_op, adj_opcode;
6430 CORE_ADDR baseaddr;
6431 struct objfile *objfile = cu->objfile;
6432 const int decode_for_pst_p = (pst != NULL);
6433
6434 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6435
6436 line_ptr = lh->statement_program_start;
6437 line_end = lh->statement_program_end;
6438
6439 /* Read the statement sequences until there's nothing left. */
6440 while (line_ptr < line_end)
6441 {
6442 /* state machine registers */
6443 CORE_ADDR address = 0;
6444 unsigned int file = 1;
6445 unsigned int line = 1;
6446 unsigned int column = 0;
6447 int is_stmt = lh->default_is_stmt;
6448 int basic_block = 0;
6449 int end_sequence = 0;
6450
6451 if (!decode_for_pst_p && lh->num_file_names >= file)
6452 {
6453 /* Start a subfile for the current file of the state machine. */
6454 /* lh->include_dirs and lh->file_names are 0-based, but the
6455 directory and file name numbers in the statement program
6456 are 1-based. */
6457 struct file_entry *fe = &lh->file_names[file - 1];
6458 char *dir;
6459
6460 if (fe->dir_index)
6461 dir = lh->include_dirs[fe->dir_index - 1];
6462 else
6463 dir = comp_dir;
6464 dwarf2_start_subfile (fe->name, dir);
6465 }
6466
6467 /* Decode the table. */
6468 while (!end_sequence)
6469 {
6470 op_code = read_1_byte (abfd, line_ptr);
6471 line_ptr += 1;
6472
6473 if (op_code >= lh->opcode_base)
6474 {
6475 /* Special operand. */
6476 adj_opcode = op_code - lh->opcode_base;
6477 address += (adj_opcode / lh->line_range)
6478 * lh->minimum_instruction_length;
6479 line += lh->line_base + (adj_opcode % lh->line_range);
6480 lh->file_names[file - 1].included_p = 1;
6481 if (!decode_for_pst_p)
6482 {
6483 /* Append row to matrix using current values. */
6484 record_line (current_subfile, line,
6485 check_cu_functions (address, cu));
6486 }
6487 basic_block = 1;
6488 }
6489 else switch (op_code)
6490 {
6491 case DW_LNS_extended_op:
6492 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6493 line_ptr += bytes_read;
6494 extended_op = read_1_byte (abfd, line_ptr);
6495 line_ptr += 1;
6496 switch (extended_op)
6497 {
6498 case DW_LNE_end_sequence:
6499 end_sequence = 1;
6500 lh->file_names[file - 1].included_p = 1;
6501 if (!decode_for_pst_p)
6502 record_line (current_subfile, 0, address);
6503 break;
6504 case DW_LNE_set_address:
6505 address = read_address (abfd, line_ptr, cu, &bytes_read);
6506 line_ptr += bytes_read;
6507 address += baseaddr;
6508 break;
6509 case DW_LNE_define_file:
6510 {
6511 char *cur_file;
6512 unsigned int dir_index, mod_time, length;
6513
6514 cur_file = read_string (abfd, line_ptr, &bytes_read);
6515 line_ptr += bytes_read;
6516 dir_index =
6517 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6518 line_ptr += bytes_read;
6519 mod_time =
6520 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6521 line_ptr += bytes_read;
6522 length =
6523 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6524 line_ptr += bytes_read;
6525 add_file_name (lh, cur_file, dir_index, mod_time, length);
6526 }
6527 break;
6528 default:
6529 complaint (&symfile_complaints,
6530 _("mangled .debug_line section"));
6531 return;
6532 }
6533 break;
6534 case DW_LNS_copy:
6535 lh->file_names[file - 1].included_p = 1;
6536 if (!decode_for_pst_p)
6537 record_line (current_subfile, line,
6538 check_cu_functions (address, cu));
6539 basic_block = 0;
6540 break;
6541 case DW_LNS_advance_pc:
6542 address += lh->minimum_instruction_length
6543 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6544 line_ptr += bytes_read;
6545 break;
6546 case DW_LNS_advance_line:
6547 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6548 line_ptr += bytes_read;
6549 break;
6550 case DW_LNS_set_file:
6551 {
6552 /* The arrays lh->include_dirs and lh->file_names are
6553 0-based, but the directory and file name numbers in
6554 the statement program are 1-based. */
6555 struct file_entry *fe;
6556 char *dir;
6557
6558 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6559 line_ptr += bytes_read;
6560 fe = &lh->file_names[file - 1];
6561 if (fe->dir_index)
6562 dir = lh->include_dirs[fe->dir_index - 1];
6563 else
6564 dir = comp_dir;
6565 if (!decode_for_pst_p)
6566 dwarf2_start_subfile (fe->name, dir);
6567 }
6568 break;
6569 case DW_LNS_set_column:
6570 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6571 line_ptr += bytes_read;
6572 break;
6573 case DW_LNS_negate_stmt:
6574 is_stmt = (!is_stmt);
6575 break;
6576 case DW_LNS_set_basic_block:
6577 basic_block = 1;
6578 break;
6579 /* Add to the address register of the state machine the
6580 address increment value corresponding to special opcode
6581 255. I.e., this value is scaled by the minimum
6582 instruction length since special opcode 255 would have
6583 scaled the the increment. */
6584 case DW_LNS_const_add_pc:
6585 address += (lh->minimum_instruction_length
6586 * ((255 - lh->opcode_base) / lh->line_range));
6587 break;
6588 case DW_LNS_fixed_advance_pc:
6589 address += read_2_bytes (abfd, line_ptr);
6590 line_ptr += 2;
6591 break;
6592 default:
6593 {
6594 /* Unknown standard opcode, ignore it. */
6595 int i;
6596
6597 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6598 {
6599 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6600 line_ptr += bytes_read;
6601 }
6602 }
6603 }
6604 }
6605 }
6606
6607 if (decode_for_pst_p)
6608 {
6609 int file_index;
6610
6611 /* Now that we're done scanning the Line Header Program, we can
6612 create the psymtab of each included file. */
6613 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6614 if (lh->file_names[file_index].included_p == 1)
6615 {
6616 char *include_name = lh->file_names [file_index].name;
6617
6618 if (strcmp (include_name, pst->filename) != 0)
6619 dwarf2_create_include_psymtab (include_name, pst, objfile);
6620 }
6621 }
6622 }
6623
6624 /* Start a subfile for DWARF. FILENAME is the name of the file and
6625 DIRNAME the name of the source directory which contains FILENAME
6626 or NULL if not known.
6627 This routine tries to keep line numbers from identical absolute and
6628 relative file names in a common subfile.
6629
6630 Using the `list' example from the GDB testsuite, which resides in
6631 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6632 of /srcdir/list0.c yields the following debugging information for list0.c:
6633
6634 DW_AT_name: /srcdir/list0.c
6635 DW_AT_comp_dir: /compdir
6636 files.files[0].name: list0.h
6637 files.files[0].dir: /srcdir
6638 files.files[1].name: list0.c
6639 files.files[1].dir: /srcdir
6640
6641 The line number information for list0.c has to end up in a single
6642 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6643
6644 static void
6645 dwarf2_start_subfile (char *filename, char *dirname)
6646 {
6647 /* If the filename isn't absolute, try to match an existing subfile
6648 with the full pathname. */
6649
6650 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6651 {
6652 struct subfile *subfile;
6653 char *fullname = concat (dirname, "/", filename, NULL);
6654
6655 for (subfile = subfiles; subfile; subfile = subfile->next)
6656 {
6657 if (FILENAME_CMP (subfile->name, fullname) == 0)
6658 {
6659 current_subfile = subfile;
6660 xfree (fullname);
6661 return;
6662 }
6663 }
6664 xfree (fullname);
6665 }
6666 start_subfile (filename, dirname);
6667 }
6668
6669 static void
6670 var_decode_location (struct attribute *attr, struct symbol *sym,
6671 struct dwarf2_cu *cu)
6672 {
6673 struct objfile *objfile = cu->objfile;
6674 struct comp_unit_head *cu_header = &cu->header;
6675
6676 /* NOTE drow/2003-01-30: There used to be a comment and some special
6677 code here to turn a symbol with DW_AT_external and a
6678 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6679 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6680 with some versions of binutils) where shared libraries could have
6681 relocations against symbols in their debug information - the
6682 minimal symbol would have the right address, but the debug info
6683 would not. It's no longer necessary, because we will explicitly
6684 apply relocations when we read in the debug information now. */
6685
6686 /* A DW_AT_location attribute with no contents indicates that a
6687 variable has been optimized away. */
6688 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6689 {
6690 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6691 return;
6692 }
6693
6694 /* Handle one degenerate form of location expression specially, to
6695 preserve GDB's previous behavior when section offsets are
6696 specified. If this is just a DW_OP_addr then mark this symbol
6697 as LOC_STATIC. */
6698
6699 if (attr_form_is_block (attr)
6700 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6701 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6702 {
6703 int dummy;
6704
6705 SYMBOL_VALUE_ADDRESS (sym) =
6706 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6707 fixup_symbol_section (sym, objfile);
6708 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6709 SYMBOL_SECTION (sym));
6710 SYMBOL_CLASS (sym) = LOC_STATIC;
6711 return;
6712 }
6713
6714 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6715 expression evaluator, and use LOC_COMPUTED only when necessary
6716 (i.e. when the value of a register or memory location is
6717 referenced, or a thread-local block, etc.). Then again, it might
6718 not be worthwhile. I'm assuming that it isn't unless performance
6719 or memory numbers show me otherwise. */
6720
6721 dwarf2_symbol_mark_computed (attr, sym, cu);
6722 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6723 }
6724
6725 /* Given a pointer to a DWARF information entry, figure out if we need
6726 to make a symbol table entry for it, and if so, create a new entry
6727 and return a pointer to it.
6728 If TYPE is NULL, determine symbol type from the die, otherwise
6729 used the passed type. */
6730
6731 static struct symbol *
6732 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6733 {
6734 struct objfile *objfile = cu->objfile;
6735 struct symbol *sym = NULL;
6736 char *name;
6737 struct attribute *attr = NULL;
6738 struct attribute *attr2 = NULL;
6739 CORE_ADDR baseaddr;
6740
6741 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6742
6743 if (die->tag != DW_TAG_namespace)
6744 name = dwarf2_linkage_name (die, cu);
6745 else
6746 name = TYPE_NAME (type);
6747
6748 if (name)
6749 {
6750 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6751 sizeof (struct symbol));
6752 OBJSTAT (objfile, n_syms++);
6753 memset (sym, 0, sizeof (struct symbol));
6754
6755 /* Cache this symbol's name and the name's demangled form (if any). */
6756 SYMBOL_LANGUAGE (sym) = cu->language;
6757 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6758
6759 /* Default assumptions.
6760 Use the passed type or decode it from the die. */
6761 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6762 SYMBOL_CLASS (sym) = LOC_STATIC;
6763 if (type != NULL)
6764 SYMBOL_TYPE (sym) = type;
6765 else
6766 SYMBOL_TYPE (sym) = die_type (die, cu);
6767 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6768 if (attr)
6769 {
6770 SYMBOL_LINE (sym) = DW_UNSND (attr);
6771 }
6772 switch (die->tag)
6773 {
6774 case DW_TAG_label:
6775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6776 if (attr)
6777 {
6778 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6779 }
6780 SYMBOL_CLASS (sym) = LOC_LABEL;
6781 break;
6782 case DW_TAG_subprogram:
6783 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6784 finish_block. */
6785 SYMBOL_CLASS (sym) = LOC_BLOCK;
6786 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6787 if (attr2 && (DW_UNSND (attr2) != 0))
6788 {
6789 add_symbol_to_list (sym, &global_symbols);
6790 }
6791 else
6792 {
6793 add_symbol_to_list (sym, cu->list_in_scope);
6794 }
6795 break;
6796 case DW_TAG_variable:
6797 /* Compilation with minimal debug info may result in variables
6798 with missing type entries. Change the misleading `void' type
6799 to something sensible. */
6800 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6801 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6802 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6803 "<variable, no debug info>",
6804 objfile);
6805 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6806 if (attr)
6807 {
6808 dwarf2_const_value (attr, sym, cu);
6809 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6810 if (attr2 && (DW_UNSND (attr2) != 0))
6811 add_symbol_to_list (sym, &global_symbols);
6812 else
6813 add_symbol_to_list (sym, cu->list_in_scope);
6814 break;
6815 }
6816 attr = dwarf2_attr (die, DW_AT_location, cu);
6817 if (attr)
6818 {
6819 var_decode_location (attr, sym, cu);
6820 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6821 if (attr2 && (DW_UNSND (attr2) != 0))
6822 add_symbol_to_list (sym, &global_symbols);
6823 else
6824 add_symbol_to_list (sym, cu->list_in_scope);
6825 }
6826 else
6827 {
6828 /* We do not know the address of this symbol.
6829 If it is an external symbol and we have type information
6830 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6831 The address of the variable will then be determined from
6832 the minimal symbol table whenever the variable is
6833 referenced. */
6834 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6835 if (attr2 && (DW_UNSND (attr2) != 0)
6836 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6837 {
6838 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6839 add_symbol_to_list (sym, &global_symbols);
6840 }
6841 }
6842 break;
6843 case DW_TAG_formal_parameter:
6844 attr = dwarf2_attr (die, DW_AT_location, cu);
6845 if (attr)
6846 {
6847 var_decode_location (attr, sym, cu);
6848 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6849 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6850 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6851 }
6852 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6853 if (attr)
6854 {
6855 dwarf2_const_value (attr, sym, cu);
6856 }
6857 add_symbol_to_list (sym, cu->list_in_scope);
6858 break;
6859 case DW_TAG_unspecified_parameters:
6860 /* From varargs functions; gdb doesn't seem to have any
6861 interest in this information, so just ignore it for now.
6862 (FIXME?) */
6863 break;
6864 case DW_TAG_class_type:
6865 case DW_TAG_structure_type:
6866 case DW_TAG_union_type:
6867 case DW_TAG_enumeration_type:
6868 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6869 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6870
6871 /* Make sure that the symbol includes appropriate enclosing
6872 classes/namespaces in its name. These are calculated in
6873 read_structure_type, and the correct name is saved in
6874 the type. */
6875
6876 if (cu->language == language_cplus
6877 || cu->language == language_java)
6878 {
6879 struct type *type = SYMBOL_TYPE (sym);
6880
6881 if (TYPE_TAG_NAME (type) != NULL)
6882 {
6883 /* FIXME: carlton/2003-11-10: Should this use
6884 SYMBOL_SET_NAMES instead? (The same problem also
6885 arises further down in this function.) */
6886 /* The type's name is already allocated along with
6887 this objfile, so we don't need to duplicate it
6888 for the symbol. */
6889 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6890 }
6891 }
6892
6893 {
6894 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6895 really ever be static objects: otherwise, if you try
6896 to, say, break of a class's method and you're in a file
6897 which doesn't mention that class, it won't work unless
6898 the check for all static symbols in lookup_symbol_aux
6899 saves you. See the OtherFileClass tests in
6900 gdb.c++/namespace.exp. */
6901
6902 struct pending **list_to_add;
6903
6904 list_to_add = (cu->list_in_scope == &file_symbols
6905 && (cu->language == language_cplus
6906 || cu->language == language_java)
6907 ? &global_symbols : cu->list_in_scope);
6908
6909 add_symbol_to_list (sym, list_to_add);
6910
6911 /* The semantics of C++ state that "struct foo { ... }" also
6912 defines a typedef for "foo". A Java class declaration also
6913 defines a typedef for the class. Synthesize a typedef symbol
6914 so that "ptype foo" works as expected. */
6915 if (cu->language == language_cplus
6916 || cu->language == language_java)
6917 {
6918 struct symbol *typedef_sym = (struct symbol *)
6919 obstack_alloc (&objfile->objfile_obstack,
6920 sizeof (struct symbol));
6921 *typedef_sym = *sym;
6922 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6923 /* The symbol's name is already allocated along with
6924 this objfile, so we don't need to duplicate it for
6925 the type. */
6926 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6927 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6928 add_symbol_to_list (typedef_sym, list_to_add);
6929 }
6930 }
6931 break;
6932 case DW_TAG_typedef:
6933 if (processing_has_namespace_info
6934 && processing_current_prefix[0] != '\0')
6935 {
6936 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6937 processing_current_prefix,
6938 name, cu);
6939 }
6940 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6941 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6942 add_symbol_to_list (sym, cu->list_in_scope);
6943 break;
6944 case DW_TAG_base_type:
6945 case DW_TAG_subrange_type:
6946 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6947 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6948 add_symbol_to_list (sym, cu->list_in_scope);
6949 break;
6950 case DW_TAG_enumerator:
6951 if (processing_has_namespace_info
6952 && processing_current_prefix[0] != '\0')
6953 {
6954 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6955 processing_current_prefix,
6956 name, cu);
6957 }
6958 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6959 if (attr)
6960 {
6961 dwarf2_const_value (attr, sym, cu);
6962 }
6963 {
6964 /* NOTE: carlton/2003-11-10: See comment above in the
6965 DW_TAG_class_type, etc. block. */
6966
6967 struct pending **list_to_add;
6968
6969 list_to_add = (cu->list_in_scope == &file_symbols
6970 && (cu->language == language_cplus
6971 || cu->language == language_java)
6972 ? &global_symbols : cu->list_in_scope);
6973
6974 add_symbol_to_list (sym, list_to_add);
6975 }
6976 break;
6977 case DW_TAG_namespace:
6978 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6979 add_symbol_to_list (sym, &global_symbols);
6980 break;
6981 default:
6982 /* Not a tag we recognize. Hopefully we aren't processing
6983 trash data, but since we must specifically ignore things
6984 we don't recognize, there is nothing else we should do at
6985 this point. */
6986 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
6987 dwarf_tag_name (die->tag));
6988 break;
6989 }
6990 }
6991 return (sym);
6992 }
6993
6994 /* Copy constant value from an attribute to a symbol. */
6995
6996 static void
6997 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6998 struct dwarf2_cu *cu)
6999 {
7000 struct objfile *objfile = cu->objfile;
7001 struct comp_unit_head *cu_header = &cu->header;
7002 struct dwarf_block *blk;
7003
7004 switch (attr->form)
7005 {
7006 case DW_FORM_addr:
7007 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7008 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7009 cu_header->addr_size,
7010 TYPE_LENGTH (SYMBOL_TYPE
7011 (sym)));
7012 SYMBOL_VALUE_BYTES (sym) = (char *)
7013 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7014 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7015 it's body - store_unsigned_integer. */
7016 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7017 DW_ADDR (attr));
7018 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7019 break;
7020 case DW_FORM_block1:
7021 case DW_FORM_block2:
7022 case DW_FORM_block4:
7023 case DW_FORM_block:
7024 blk = DW_BLOCK (attr);
7025 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7026 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7027 blk->size,
7028 TYPE_LENGTH (SYMBOL_TYPE
7029 (sym)));
7030 SYMBOL_VALUE_BYTES (sym) = (char *)
7031 obstack_alloc (&objfile->objfile_obstack, blk->size);
7032 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7033 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7034 break;
7035
7036 /* The DW_AT_const_value attributes are supposed to carry the
7037 symbol's value "represented as it would be on the target
7038 architecture." By the time we get here, it's already been
7039 converted to host endianness, so we just need to sign- or
7040 zero-extend it as appropriate. */
7041 case DW_FORM_data1:
7042 dwarf2_const_value_data (attr, sym, 8);
7043 break;
7044 case DW_FORM_data2:
7045 dwarf2_const_value_data (attr, sym, 16);
7046 break;
7047 case DW_FORM_data4:
7048 dwarf2_const_value_data (attr, sym, 32);
7049 break;
7050 case DW_FORM_data8:
7051 dwarf2_const_value_data (attr, sym, 64);
7052 break;
7053
7054 case DW_FORM_sdata:
7055 SYMBOL_VALUE (sym) = DW_SND (attr);
7056 SYMBOL_CLASS (sym) = LOC_CONST;
7057 break;
7058
7059 case DW_FORM_udata:
7060 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7061 SYMBOL_CLASS (sym) = LOC_CONST;
7062 break;
7063
7064 default:
7065 complaint (&symfile_complaints,
7066 _("unsupported const value attribute form: '%s'"),
7067 dwarf_form_name (attr->form));
7068 SYMBOL_VALUE (sym) = 0;
7069 SYMBOL_CLASS (sym) = LOC_CONST;
7070 break;
7071 }
7072 }
7073
7074
7075 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7076 or zero-extend it as appropriate for the symbol's type. */
7077 static void
7078 dwarf2_const_value_data (struct attribute *attr,
7079 struct symbol *sym,
7080 int bits)
7081 {
7082 LONGEST l = DW_UNSND (attr);
7083
7084 if (bits < sizeof (l) * 8)
7085 {
7086 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7087 l &= ((LONGEST) 1 << bits) - 1;
7088 else
7089 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7090 }
7091
7092 SYMBOL_VALUE (sym) = l;
7093 SYMBOL_CLASS (sym) = LOC_CONST;
7094 }
7095
7096
7097 /* Return the type of the die in question using its DW_AT_type attribute. */
7098
7099 static struct type *
7100 die_type (struct die_info *die, struct dwarf2_cu *cu)
7101 {
7102 struct type *type;
7103 struct attribute *type_attr;
7104 struct die_info *type_die;
7105
7106 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7107 if (!type_attr)
7108 {
7109 /* A missing DW_AT_type represents a void type. */
7110 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7111 }
7112 else
7113 type_die = follow_die_ref (die, type_attr, cu);
7114
7115 type = tag_type_to_type (type_die, cu);
7116 if (!type)
7117 {
7118 dump_die (type_die);
7119 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7120 cu->objfile->name);
7121 }
7122 return type;
7123 }
7124
7125 /* Return the containing type of the die in question using its
7126 DW_AT_containing_type attribute. */
7127
7128 static struct type *
7129 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7130 {
7131 struct type *type = NULL;
7132 struct attribute *type_attr;
7133 struct die_info *type_die = NULL;
7134
7135 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7136 if (type_attr)
7137 {
7138 type_die = follow_die_ref (die, type_attr, cu);
7139 type = tag_type_to_type (type_die, cu);
7140 }
7141 if (!type)
7142 {
7143 if (type_die)
7144 dump_die (type_die);
7145 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7146 cu->objfile->name);
7147 }
7148 return type;
7149 }
7150
7151 static struct type *
7152 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7153 {
7154 if (die->type)
7155 {
7156 return die->type;
7157 }
7158 else
7159 {
7160 read_type_die (die, cu);
7161 if (!die->type)
7162 {
7163 dump_die (die);
7164 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7165 cu->objfile->name);
7166 }
7167 return die->type;
7168 }
7169 }
7170
7171 static void
7172 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7173 {
7174 char *prefix = determine_prefix (die, cu);
7175 const char *old_prefix = processing_current_prefix;
7176 struct cleanup *back_to = make_cleanup (xfree, prefix);
7177 processing_current_prefix = prefix;
7178
7179 switch (die->tag)
7180 {
7181 case DW_TAG_class_type:
7182 case DW_TAG_structure_type:
7183 case DW_TAG_union_type:
7184 read_structure_type (die, cu);
7185 break;
7186 case DW_TAG_enumeration_type:
7187 read_enumeration_type (die, cu);
7188 break;
7189 case DW_TAG_subprogram:
7190 case DW_TAG_subroutine_type:
7191 read_subroutine_type (die, cu);
7192 break;
7193 case DW_TAG_array_type:
7194 read_array_type (die, cu);
7195 break;
7196 case DW_TAG_pointer_type:
7197 read_tag_pointer_type (die, cu);
7198 break;
7199 case DW_TAG_ptr_to_member_type:
7200 read_tag_ptr_to_member_type (die, cu);
7201 break;
7202 case DW_TAG_reference_type:
7203 read_tag_reference_type (die, cu);
7204 break;
7205 case DW_TAG_const_type:
7206 read_tag_const_type (die, cu);
7207 break;
7208 case DW_TAG_volatile_type:
7209 read_tag_volatile_type (die, cu);
7210 break;
7211 case DW_TAG_string_type:
7212 read_tag_string_type (die, cu);
7213 break;
7214 case DW_TAG_typedef:
7215 read_typedef (die, cu);
7216 break;
7217 case DW_TAG_subrange_type:
7218 read_subrange_type (die, cu);
7219 break;
7220 case DW_TAG_base_type:
7221 read_base_type (die, cu);
7222 break;
7223 default:
7224 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7225 dwarf_tag_name (die->tag));
7226 break;
7227 }
7228
7229 processing_current_prefix = old_prefix;
7230 do_cleanups (back_to);
7231 }
7232
7233 /* Return the name of the namespace/class that DIE is defined within,
7234 or "" if we can't tell. The caller should xfree the result. */
7235
7236 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7237 therein) for an example of how to use this function to deal with
7238 DW_AT_specification. */
7239
7240 static char *
7241 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7242 {
7243 struct die_info *parent;
7244
7245 if (cu->language != language_cplus
7246 && cu->language != language_java)
7247 return NULL;
7248
7249 parent = die->parent;
7250
7251 if (parent == NULL)
7252 {
7253 return xstrdup ("");
7254 }
7255 else
7256 {
7257 switch (parent->tag) {
7258 case DW_TAG_namespace:
7259 {
7260 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7261 before doing this check? */
7262 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7263 {
7264 return xstrdup (TYPE_TAG_NAME (parent->type));
7265 }
7266 else
7267 {
7268 int dummy;
7269 char *parent_prefix = determine_prefix (parent, cu);
7270 char *retval = typename_concat (NULL, parent_prefix,
7271 namespace_name (parent, &dummy,
7272 cu),
7273 cu);
7274 xfree (parent_prefix);
7275 return retval;
7276 }
7277 }
7278 break;
7279 case DW_TAG_class_type:
7280 case DW_TAG_structure_type:
7281 {
7282 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7283 {
7284 return xstrdup (TYPE_TAG_NAME (parent->type));
7285 }
7286 else
7287 {
7288 const char *old_prefix = processing_current_prefix;
7289 char *new_prefix = determine_prefix (parent, cu);
7290 char *retval;
7291
7292 processing_current_prefix = new_prefix;
7293 retval = determine_class_name (parent, cu);
7294 processing_current_prefix = old_prefix;
7295
7296 xfree (new_prefix);
7297 return retval;
7298 }
7299 }
7300 default:
7301 return determine_prefix (parent, cu);
7302 }
7303 }
7304 }
7305
7306 /* Return a newly-allocated string formed by concatenating PREFIX and
7307 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7308 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7309 perform an obconcat, otherwise allocate storage for the result. The CU argument
7310 is used to determine the language and hence, the appropriate separator. */
7311
7312 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7313
7314 static char *
7315 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7316 struct dwarf2_cu *cu)
7317 {
7318 char *sep;
7319
7320 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7321 sep = "";
7322 else if (cu->language == language_java)
7323 sep = ".";
7324 else
7325 sep = "::";
7326
7327 if (obs == NULL)
7328 {
7329 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7330 retval[0] = '\0';
7331
7332 if (prefix)
7333 {
7334 strcpy (retval, prefix);
7335 strcat (retval, sep);
7336 }
7337 if (suffix)
7338 strcat (retval, suffix);
7339
7340 return retval;
7341 }
7342 else
7343 {
7344 /* We have an obstack. */
7345 return obconcat (obs, prefix, sep, suffix);
7346 }
7347 }
7348
7349 static struct type *
7350 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7351 {
7352 struct objfile *objfile = cu->objfile;
7353
7354 /* FIXME - this should not produce a new (struct type *)
7355 every time. It should cache base types. */
7356 struct type *type;
7357 switch (encoding)
7358 {
7359 case DW_ATE_address:
7360 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7361 return type;
7362 case DW_ATE_boolean:
7363 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7364 return type;
7365 case DW_ATE_complex_float:
7366 if (size == 16)
7367 {
7368 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7369 }
7370 else
7371 {
7372 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7373 }
7374 return type;
7375 case DW_ATE_float:
7376 if (size == 8)
7377 {
7378 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7379 }
7380 else
7381 {
7382 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7383 }
7384 return type;
7385 case DW_ATE_signed:
7386 switch (size)
7387 {
7388 case 1:
7389 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7390 break;
7391 case 2:
7392 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7393 break;
7394 default:
7395 case 4:
7396 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7397 break;
7398 }
7399 return type;
7400 case DW_ATE_signed_char:
7401 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7402 return type;
7403 case DW_ATE_unsigned:
7404 switch (size)
7405 {
7406 case 1:
7407 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7408 break;
7409 case 2:
7410 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7411 break;
7412 default:
7413 case 4:
7414 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7415 break;
7416 }
7417 return type;
7418 case DW_ATE_unsigned_char:
7419 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7420 return type;
7421 default:
7422 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7423 return type;
7424 }
7425 }
7426
7427 #if 0
7428 struct die_info *
7429 copy_die (struct die_info *old_die)
7430 {
7431 struct die_info *new_die;
7432 int i, num_attrs;
7433
7434 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7435 memset (new_die, 0, sizeof (struct die_info));
7436
7437 new_die->tag = old_die->tag;
7438 new_die->has_children = old_die->has_children;
7439 new_die->abbrev = old_die->abbrev;
7440 new_die->offset = old_die->offset;
7441 new_die->type = NULL;
7442
7443 num_attrs = old_die->num_attrs;
7444 new_die->num_attrs = num_attrs;
7445 new_die->attrs = (struct attribute *)
7446 xmalloc (num_attrs * sizeof (struct attribute));
7447
7448 for (i = 0; i < old_die->num_attrs; ++i)
7449 {
7450 new_die->attrs[i].name = old_die->attrs[i].name;
7451 new_die->attrs[i].form = old_die->attrs[i].form;
7452 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7453 }
7454
7455 new_die->next = NULL;
7456 return new_die;
7457 }
7458 #endif
7459
7460 /* Return sibling of die, NULL if no sibling. */
7461
7462 static struct die_info *
7463 sibling_die (struct die_info *die)
7464 {
7465 return die->sibling;
7466 }
7467
7468 /* Get linkage name of a die, return NULL if not found. */
7469
7470 static char *
7471 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7472 {
7473 struct attribute *attr;
7474
7475 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7476 if (attr && DW_STRING (attr))
7477 return DW_STRING (attr);
7478 attr = dwarf2_attr (die, DW_AT_name, cu);
7479 if (attr && DW_STRING (attr))
7480 return DW_STRING (attr);
7481 return NULL;
7482 }
7483
7484 /* Get name of a die, return NULL if not found. */
7485
7486 static char *
7487 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7488 {
7489 struct attribute *attr;
7490
7491 attr = dwarf2_attr (die, DW_AT_name, cu);
7492 if (attr && DW_STRING (attr))
7493 return DW_STRING (attr);
7494 return NULL;
7495 }
7496
7497 /* Return the die that this die in an extension of, or NULL if there
7498 is none. */
7499
7500 static struct die_info *
7501 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7502 {
7503 struct attribute *attr;
7504
7505 attr = dwarf2_attr (die, DW_AT_extension, cu);
7506 if (attr == NULL)
7507 return NULL;
7508
7509 return follow_die_ref (die, attr, cu);
7510 }
7511
7512 /* Convert a DIE tag into its string name. */
7513
7514 static char *
7515 dwarf_tag_name (unsigned tag)
7516 {
7517 switch (tag)
7518 {
7519 case DW_TAG_padding:
7520 return "DW_TAG_padding";
7521 case DW_TAG_array_type:
7522 return "DW_TAG_array_type";
7523 case DW_TAG_class_type:
7524 return "DW_TAG_class_type";
7525 case DW_TAG_entry_point:
7526 return "DW_TAG_entry_point";
7527 case DW_TAG_enumeration_type:
7528 return "DW_TAG_enumeration_type";
7529 case DW_TAG_formal_parameter:
7530 return "DW_TAG_formal_parameter";
7531 case DW_TAG_imported_declaration:
7532 return "DW_TAG_imported_declaration";
7533 case DW_TAG_label:
7534 return "DW_TAG_label";
7535 case DW_TAG_lexical_block:
7536 return "DW_TAG_lexical_block";
7537 case DW_TAG_member:
7538 return "DW_TAG_member";
7539 case DW_TAG_pointer_type:
7540 return "DW_TAG_pointer_type";
7541 case DW_TAG_reference_type:
7542 return "DW_TAG_reference_type";
7543 case DW_TAG_compile_unit:
7544 return "DW_TAG_compile_unit";
7545 case DW_TAG_string_type:
7546 return "DW_TAG_string_type";
7547 case DW_TAG_structure_type:
7548 return "DW_TAG_structure_type";
7549 case DW_TAG_subroutine_type:
7550 return "DW_TAG_subroutine_type";
7551 case DW_TAG_typedef:
7552 return "DW_TAG_typedef";
7553 case DW_TAG_union_type:
7554 return "DW_TAG_union_type";
7555 case DW_TAG_unspecified_parameters:
7556 return "DW_TAG_unspecified_parameters";
7557 case DW_TAG_variant:
7558 return "DW_TAG_variant";
7559 case DW_TAG_common_block:
7560 return "DW_TAG_common_block";
7561 case DW_TAG_common_inclusion:
7562 return "DW_TAG_common_inclusion";
7563 case DW_TAG_inheritance:
7564 return "DW_TAG_inheritance";
7565 case DW_TAG_inlined_subroutine:
7566 return "DW_TAG_inlined_subroutine";
7567 case DW_TAG_module:
7568 return "DW_TAG_module";
7569 case DW_TAG_ptr_to_member_type:
7570 return "DW_TAG_ptr_to_member_type";
7571 case DW_TAG_set_type:
7572 return "DW_TAG_set_type";
7573 case DW_TAG_subrange_type:
7574 return "DW_TAG_subrange_type";
7575 case DW_TAG_with_stmt:
7576 return "DW_TAG_with_stmt";
7577 case DW_TAG_access_declaration:
7578 return "DW_TAG_access_declaration";
7579 case DW_TAG_base_type:
7580 return "DW_TAG_base_type";
7581 case DW_TAG_catch_block:
7582 return "DW_TAG_catch_block";
7583 case DW_TAG_const_type:
7584 return "DW_TAG_const_type";
7585 case DW_TAG_constant:
7586 return "DW_TAG_constant";
7587 case DW_TAG_enumerator:
7588 return "DW_TAG_enumerator";
7589 case DW_TAG_file_type:
7590 return "DW_TAG_file_type";
7591 case DW_TAG_friend:
7592 return "DW_TAG_friend";
7593 case DW_TAG_namelist:
7594 return "DW_TAG_namelist";
7595 case DW_TAG_namelist_item:
7596 return "DW_TAG_namelist_item";
7597 case DW_TAG_packed_type:
7598 return "DW_TAG_packed_type";
7599 case DW_TAG_subprogram:
7600 return "DW_TAG_subprogram";
7601 case DW_TAG_template_type_param:
7602 return "DW_TAG_template_type_param";
7603 case DW_TAG_template_value_param:
7604 return "DW_TAG_template_value_param";
7605 case DW_TAG_thrown_type:
7606 return "DW_TAG_thrown_type";
7607 case DW_TAG_try_block:
7608 return "DW_TAG_try_block";
7609 case DW_TAG_variant_part:
7610 return "DW_TAG_variant_part";
7611 case DW_TAG_variable:
7612 return "DW_TAG_variable";
7613 case DW_TAG_volatile_type:
7614 return "DW_TAG_volatile_type";
7615 case DW_TAG_dwarf_procedure:
7616 return "DW_TAG_dwarf_procedure";
7617 case DW_TAG_restrict_type:
7618 return "DW_TAG_restrict_type";
7619 case DW_TAG_interface_type:
7620 return "DW_TAG_interface_type";
7621 case DW_TAG_namespace:
7622 return "DW_TAG_namespace";
7623 case DW_TAG_imported_module:
7624 return "DW_TAG_imported_module";
7625 case DW_TAG_unspecified_type:
7626 return "DW_TAG_unspecified_type";
7627 case DW_TAG_partial_unit:
7628 return "DW_TAG_partial_unit";
7629 case DW_TAG_imported_unit:
7630 return "DW_TAG_imported_unit";
7631 case DW_TAG_MIPS_loop:
7632 return "DW_TAG_MIPS_loop";
7633 case DW_TAG_format_label:
7634 return "DW_TAG_format_label";
7635 case DW_TAG_function_template:
7636 return "DW_TAG_function_template";
7637 case DW_TAG_class_template:
7638 return "DW_TAG_class_template";
7639 default:
7640 return "DW_TAG_<unknown>";
7641 }
7642 }
7643
7644 /* Convert a DWARF attribute code into its string name. */
7645
7646 static char *
7647 dwarf_attr_name (unsigned attr)
7648 {
7649 switch (attr)
7650 {
7651 case DW_AT_sibling:
7652 return "DW_AT_sibling";
7653 case DW_AT_location:
7654 return "DW_AT_location";
7655 case DW_AT_name:
7656 return "DW_AT_name";
7657 case DW_AT_ordering:
7658 return "DW_AT_ordering";
7659 case DW_AT_subscr_data:
7660 return "DW_AT_subscr_data";
7661 case DW_AT_byte_size:
7662 return "DW_AT_byte_size";
7663 case DW_AT_bit_offset:
7664 return "DW_AT_bit_offset";
7665 case DW_AT_bit_size:
7666 return "DW_AT_bit_size";
7667 case DW_AT_element_list:
7668 return "DW_AT_element_list";
7669 case DW_AT_stmt_list:
7670 return "DW_AT_stmt_list";
7671 case DW_AT_low_pc:
7672 return "DW_AT_low_pc";
7673 case DW_AT_high_pc:
7674 return "DW_AT_high_pc";
7675 case DW_AT_language:
7676 return "DW_AT_language";
7677 case DW_AT_member:
7678 return "DW_AT_member";
7679 case DW_AT_discr:
7680 return "DW_AT_discr";
7681 case DW_AT_discr_value:
7682 return "DW_AT_discr_value";
7683 case DW_AT_visibility:
7684 return "DW_AT_visibility";
7685 case DW_AT_import:
7686 return "DW_AT_import";
7687 case DW_AT_string_length:
7688 return "DW_AT_string_length";
7689 case DW_AT_common_reference:
7690 return "DW_AT_common_reference";
7691 case DW_AT_comp_dir:
7692 return "DW_AT_comp_dir";
7693 case DW_AT_const_value:
7694 return "DW_AT_const_value";
7695 case DW_AT_containing_type:
7696 return "DW_AT_containing_type";
7697 case DW_AT_default_value:
7698 return "DW_AT_default_value";
7699 case DW_AT_inline:
7700 return "DW_AT_inline";
7701 case DW_AT_is_optional:
7702 return "DW_AT_is_optional";
7703 case DW_AT_lower_bound:
7704 return "DW_AT_lower_bound";
7705 case DW_AT_producer:
7706 return "DW_AT_producer";
7707 case DW_AT_prototyped:
7708 return "DW_AT_prototyped";
7709 case DW_AT_return_addr:
7710 return "DW_AT_return_addr";
7711 case DW_AT_start_scope:
7712 return "DW_AT_start_scope";
7713 case DW_AT_stride_size:
7714 return "DW_AT_stride_size";
7715 case DW_AT_upper_bound:
7716 return "DW_AT_upper_bound";
7717 case DW_AT_abstract_origin:
7718 return "DW_AT_abstract_origin";
7719 case DW_AT_accessibility:
7720 return "DW_AT_accessibility";
7721 case DW_AT_address_class:
7722 return "DW_AT_address_class";
7723 case DW_AT_artificial:
7724 return "DW_AT_artificial";
7725 case DW_AT_base_types:
7726 return "DW_AT_base_types";
7727 case DW_AT_calling_convention:
7728 return "DW_AT_calling_convention";
7729 case DW_AT_count:
7730 return "DW_AT_count";
7731 case DW_AT_data_member_location:
7732 return "DW_AT_data_member_location";
7733 case DW_AT_decl_column:
7734 return "DW_AT_decl_column";
7735 case DW_AT_decl_file:
7736 return "DW_AT_decl_file";
7737 case DW_AT_decl_line:
7738 return "DW_AT_decl_line";
7739 case DW_AT_declaration:
7740 return "DW_AT_declaration";
7741 case DW_AT_discr_list:
7742 return "DW_AT_discr_list";
7743 case DW_AT_encoding:
7744 return "DW_AT_encoding";
7745 case DW_AT_external:
7746 return "DW_AT_external";
7747 case DW_AT_frame_base:
7748 return "DW_AT_frame_base";
7749 case DW_AT_friend:
7750 return "DW_AT_friend";
7751 case DW_AT_identifier_case:
7752 return "DW_AT_identifier_case";
7753 case DW_AT_macro_info:
7754 return "DW_AT_macro_info";
7755 case DW_AT_namelist_items:
7756 return "DW_AT_namelist_items";
7757 case DW_AT_priority:
7758 return "DW_AT_priority";
7759 case DW_AT_segment:
7760 return "DW_AT_segment";
7761 case DW_AT_specification:
7762 return "DW_AT_specification";
7763 case DW_AT_static_link:
7764 return "DW_AT_static_link";
7765 case DW_AT_type:
7766 return "DW_AT_type";
7767 case DW_AT_use_location:
7768 return "DW_AT_use_location";
7769 case DW_AT_variable_parameter:
7770 return "DW_AT_variable_parameter";
7771 case DW_AT_virtuality:
7772 return "DW_AT_virtuality";
7773 case DW_AT_vtable_elem_location:
7774 return "DW_AT_vtable_elem_location";
7775 case DW_AT_allocated:
7776 return "DW_AT_allocated";
7777 case DW_AT_associated:
7778 return "DW_AT_associated";
7779 case DW_AT_data_location:
7780 return "DW_AT_data_location";
7781 case DW_AT_stride:
7782 return "DW_AT_stride";
7783 case DW_AT_entry_pc:
7784 return "DW_AT_entry_pc";
7785 case DW_AT_use_UTF8:
7786 return "DW_AT_use_UTF8";
7787 case DW_AT_extension:
7788 return "DW_AT_extension";
7789 case DW_AT_ranges:
7790 return "DW_AT_ranges";
7791 case DW_AT_trampoline:
7792 return "DW_AT_trampoline";
7793 case DW_AT_call_column:
7794 return "DW_AT_call_column";
7795 case DW_AT_call_file:
7796 return "DW_AT_call_file";
7797 case DW_AT_call_line:
7798 return "DW_AT_call_line";
7799 #ifdef MIPS
7800 case DW_AT_MIPS_fde:
7801 return "DW_AT_MIPS_fde";
7802 case DW_AT_MIPS_loop_begin:
7803 return "DW_AT_MIPS_loop_begin";
7804 case DW_AT_MIPS_tail_loop_begin:
7805 return "DW_AT_MIPS_tail_loop_begin";
7806 case DW_AT_MIPS_epilog_begin:
7807 return "DW_AT_MIPS_epilog_begin";
7808 case DW_AT_MIPS_loop_unroll_factor:
7809 return "DW_AT_MIPS_loop_unroll_factor";
7810 case DW_AT_MIPS_software_pipeline_depth:
7811 return "DW_AT_MIPS_software_pipeline_depth";
7812 #endif
7813 case DW_AT_MIPS_linkage_name:
7814 return "DW_AT_MIPS_linkage_name";
7815
7816 case DW_AT_sf_names:
7817 return "DW_AT_sf_names";
7818 case DW_AT_src_info:
7819 return "DW_AT_src_info";
7820 case DW_AT_mac_info:
7821 return "DW_AT_mac_info";
7822 case DW_AT_src_coords:
7823 return "DW_AT_src_coords";
7824 case DW_AT_body_begin:
7825 return "DW_AT_body_begin";
7826 case DW_AT_body_end:
7827 return "DW_AT_body_end";
7828 case DW_AT_GNU_vector:
7829 return "DW_AT_GNU_vector";
7830 default:
7831 return "DW_AT_<unknown>";
7832 }
7833 }
7834
7835 /* Convert a DWARF value form code into its string name. */
7836
7837 static char *
7838 dwarf_form_name (unsigned form)
7839 {
7840 switch (form)
7841 {
7842 case DW_FORM_addr:
7843 return "DW_FORM_addr";
7844 case DW_FORM_block2:
7845 return "DW_FORM_block2";
7846 case DW_FORM_block4:
7847 return "DW_FORM_block4";
7848 case DW_FORM_data2:
7849 return "DW_FORM_data2";
7850 case DW_FORM_data4:
7851 return "DW_FORM_data4";
7852 case DW_FORM_data8:
7853 return "DW_FORM_data8";
7854 case DW_FORM_string:
7855 return "DW_FORM_string";
7856 case DW_FORM_block:
7857 return "DW_FORM_block";
7858 case DW_FORM_block1:
7859 return "DW_FORM_block1";
7860 case DW_FORM_data1:
7861 return "DW_FORM_data1";
7862 case DW_FORM_flag:
7863 return "DW_FORM_flag";
7864 case DW_FORM_sdata:
7865 return "DW_FORM_sdata";
7866 case DW_FORM_strp:
7867 return "DW_FORM_strp";
7868 case DW_FORM_udata:
7869 return "DW_FORM_udata";
7870 case DW_FORM_ref_addr:
7871 return "DW_FORM_ref_addr";
7872 case DW_FORM_ref1:
7873 return "DW_FORM_ref1";
7874 case DW_FORM_ref2:
7875 return "DW_FORM_ref2";
7876 case DW_FORM_ref4:
7877 return "DW_FORM_ref4";
7878 case DW_FORM_ref8:
7879 return "DW_FORM_ref8";
7880 case DW_FORM_ref_udata:
7881 return "DW_FORM_ref_udata";
7882 case DW_FORM_indirect:
7883 return "DW_FORM_indirect";
7884 default:
7885 return "DW_FORM_<unknown>";
7886 }
7887 }
7888
7889 /* Convert a DWARF stack opcode into its string name. */
7890
7891 static char *
7892 dwarf_stack_op_name (unsigned op)
7893 {
7894 switch (op)
7895 {
7896 case DW_OP_addr:
7897 return "DW_OP_addr";
7898 case DW_OP_deref:
7899 return "DW_OP_deref";
7900 case DW_OP_const1u:
7901 return "DW_OP_const1u";
7902 case DW_OP_const1s:
7903 return "DW_OP_const1s";
7904 case DW_OP_const2u:
7905 return "DW_OP_const2u";
7906 case DW_OP_const2s:
7907 return "DW_OP_const2s";
7908 case DW_OP_const4u:
7909 return "DW_OP_const4u";
7910 case DW_OP_const4s:
7911 return "DW_OP_const4s";
7912 case DW_OP_const8u:
7913 return "DW_OP_const8u";
7914 case DW_OP_const8s:
7915 return "DW_OP_const8s";
7916 case DW_OP_constu:
7917 return "DW_OP_constu";
7918 case DW_OP_consts:
7919 return "DW_OP_consts";
7920 case DW_OP_dup:
7921 return "DW_OP_dup";
7922 case DW_OP_drop:
7923 return "DW_OP_drop";
7924 case DW_OP_over:
7925 return "DW_OP_over";
7926 case DW_OP_pick:
7927 return "DW_OP_pick";
7928 case DW_OP_swap:
7929 return "DW_OP_swap";
7930 case DW_OP_rot:
7931 return "DW_OP_rot";
7932 case DW_OP_xderef:
7933 return "DW_OP_xderef";
7934 case DW_OP_abs:
7935 return "DW_OP_abs";
7936 case DW_OP_and:
7937 return "DW_OP_and";
7938 case DW_OP_div:
7939 return "DW_OP_div";
7940 case DW_OP_minus:
7941 return "DW_OP_minus";
7942 case DW_OP_mod:
7943 return "DW_OP_mod";
7944 case DW_OP_mul:
7945 return "DW_OP_mul";
7946 case DW_OP_neg:
7947 return "DW_OP_neg";
7948 case DW_OP_not:
7949 return "DW_OP_not";
7950 case DW_OP_or:
7951 return "DW_OP_or";
7952 case DW_OP_plus:
7953 return "DW_OP_plus";
7954 case DW_OP_plus_uconst:
7955 return "DW_OP_plus_uconst";
7956 case DW_OP_shl:
7957 return "DW_OP_shl";
7958 case DW_OP_shr:
7959 return "DW_OP_shr";
7960 case DW_OP_shra:
7961 return "DW_OP_shra";
7962 case DW_OP_xor:
7963 return "DW_OP_xor";
7964 case DW_OP_bra:
7965 return "DW_OP_bra";
7966 case DW_OP_eq:
7967 return "DW_OP_eq";
7968 case DW_OP_ge:
7969 return "DW_OP_ge";
7970 case DW_OP_gt:
7971 return "DW_OP_gt";
7972 case DW_OP_le:
7973 return "DW_OP_le";
7974 case DW_OP_lt:
7975 return "DW_OP_lt";
7976 case DW_OP_ne:
7977 return "DW_OP_ne";
7978 case DW_OP_skip:
7979 return "DW_OP_skip";
7980 case DW_OP_lit0:
7981 return "DW_OP_lit0";
7982 case DW_OP_lit1:
7983 return "DW_OP_lit1";
7984 case DW_OP_lit2:
7985 return "DW_OP_lit2";
7986 case DW_OP_lit3:
7987 return "DW_OP_lit3";
7988 case DW_OP_lit4:
7989 return "DW_OP_lit4";
7990 case DW_OP_lit5:
7991 return "DW_OP_lit5";
7992 case DW_OP_lit6:
7993 return "DW_OP_lit6";
7994 case DW_OP_lit7:
7995 return "DW_OP_lit7";
7996 case DW_OP_lit8:
7997 return "DW_OP_lit8";
7998 case DW_OP_lit9:
7999 return "DW_OP_lit9";
8000 case DW_OP_lit10:
8001 return "DW_OP_lit10";
8002 case DW_OP_lit11:
8003 return "DW_OP_lit11";
8004 case DW_OP_lit12:
8005 return "DW_OP_lit12";
8006 case DW_OP_lit13:
8007 return "DW_OP_lit13";
8008 case DW_OP_lit14:
8009 return "DW_OP_lit14";
8010 case DW_OP_lit15:
8011 return "DW_OP_lit15";
8012 case DW_OP_lit16:
8013 return "DW_OP_lit16";
8014 case DW_OP_lit17:
8015 return "DW_OP_lit17";
8016 case DW_OP_lit18:
8017 return "DW_OP_lit18";
8018 case DW_OP_lit19:
8019 return "DW_OP_lit19";
8020 case DW_OP_lit20:
8021 return "DW_OP_lit20";
8022 case DW_OP_lit21:
8023 return "DW_OP_lit21";
8024 case DW_OP_lit22:
8025 return "DW_OP_lit22";
8026 case DW_OP_lit23:
8027 return "DW_OP_lit23";
8028 case DW_OP_lit24:
8029 return "DW_OP_lit24";
8030 case DW_OP_lit25:
8031 return "DW_OP_lit25";
8032 case DW_OP_lit26:
8033 return "DW_OP_lit26";
8034 case DW_OP_lit27:
8035 return "DW_OP_lit27";
8036 case DW_OP_lit28:
8037 return "DW_OP_lit28";
8038 case DW_OP_lit29:
8039 return "DW_OP_lit29";
8040 case DW_OP_lit30:
8041 return "DW_OP_lit30";
8042 case DW_OP_lit31:
8043 return "DW_OP_lit31";
8044 case DW_OP_reg0:
8045 return "DW_OP_reg0";
8046 case DW_OP_reg1:
8047 return "DW_OP_reg1";
8048 case DW_OP_reg2:
8049 return "DW_OP_reg2";
8050 case DW_OP_reg3:
8051 return "DW_OP_reg3";
8052 case DW_OP_reg4:
8053 return "DW_OP_reg4";
8054 case DW_OP_reg5:
8055 return "DW_OP_reg5";
8056 case DW_OP_reg6:
8057 return "DW_OP_reg6";
8058 case DW_OP_reg7:
8059 return "DW_OP_reg7";
8060 case DW_OP_reg8:
8061 return "DW_OP_reg8";
8062 case DW_OP_reg9:
8063 return "DW_OP_reg9";
8064 case DW_OP_reg10:
8065 return "DW_OP_reg10";
8066 case DW_OP_reg11:
8067 return "DW_OP_reg11";
8068 case DW_OP_reg12:
8069 return "DW_OP_reg12";
8070 case DW_OP_reg13:
8071 return "DW_OP_reg13";
8072 case DW_OP_reg14:
8073 return "DW_OP_reg14";
8074 case DW_OP_reg15:
8075 return "DW_OP_reg15";
8076 case DW_OP_reg16:
8077 return "DW_OP_reg16";
8078 case DW_OP_reg17:
8079 return "DW_OP_reg17";
8080 case DW_OP_reg18:
8081 return "DW_OP_reg18";
8082 case DW_OP_reg19:
8083 return "DW_OP_reg19";
8084 case DW_OP_reg20:
8085 return "DW_OP_reg20";
8086 case DW_OP_reg21:
8087 return "DW_OP_reg21";
8088 case DW_OP_reg22:
8089 return "DW_OP_reg22";
8090 case DW_OP_reg23:
8091 return "DW_OP_reg23";
8092 case DW_OP_reg24:
8093 return "DW_OP_reg24";
8094 case DW_OP_reg25:
8095 return "DW_OP_reg25";
8096 case DW_OP_reg26:
8097 return "DW_OP_reg26";
8098 case DW_OP_reg27:
8099 return "DW_OP_reg27";
8100 case DW_OP_reg28:
8101 return "DW_OP_reg28";
8102 case DW_OP_reg29:
8103 return "DW_OP_reg29";
8104 case DW_OP_reg30:
8105 return "DW_OP_reg30";
8106 case DW_OP_reg31:
8107 return "DW_OP_reg31";
8108 case DW_OP_breg0:
8109 return "DW_OP_breg0";
8110 case DW_OP_breg1:
8111 return "DW_OP_breg1";
8112 case DW_OP_breg2:
8113 return "DW_OP_breg2";
8114 case DW_OP_breg3:
8115 return "DW_OP_breg3";
8116 case DW_OP_breg4:
8117 return "DW_OP_breg4";
8118 case DW_OP_breg5:
8119 return "DW_OP_breg5";
8120 case DW_OP_breg6:
8121 return "DW_OP_breg6";
8122 case DW_OP_breg7:
8123 return "DW_OP_breg7";
8124 case DW_OP_breg8:
8125 return "DW_OP_breg8";
8126 case DW_OP_breg9:
8127 return "DW_OP_breg9";
8128 case DW_OP_breg10:
8129 return "DW_OP_breg10";
8130 case DW_OP_breg11:
8131 return "DW_OP_breg11";
8132 case DW_OP_breg12:
8133 return "DW_OP_breg12";
8134 case DW_OP_breg13:
8135 return "DW_OP_breg13";
8136 case DW_OP_breg14:
8137 return "DW_OP_breg14";
8138 case DW_OP_breg15:
8139 return "DW_OP_breg15";
8140 case DW_OP_breg16:
8141 return "DW_OP_breg16";
8142 case DW_OP_breg17:
8143 return "DW_OP_breg17";
8144 case DW_OP_breg18:
8145 return "DW_OP_breg18";
8146 case DW_OP_breg19:
8147 return "DW_OP_breg19";
8148 case DW_OP_breg20:
8149 return "DW_OP_breg20";
8150 case DW_OP_breg21:
8151 return "DW_OP_breg21";
8152 case DW_OP_breg22:
8153 return "DW_OP_breg22";
8154 case DW_OP_breg23:
8155 return "DW_OP_breg23";
8156 case DW_OP_breg24:
8157 return "DW_OP_breg24";
8158 case DW_OP_breg25:
8159 return "DW_OP_breg25";
8160 case DW_OP_breg26:
8161 return "DW_OP_breg26";
8162 case DW_OP_breg27:
8163 return "DW_OP_breg27";
8164 case DW_OP_breg28:
8165 return "DW_OP_breg28";
8166 case DW_OP_breg29:
8167 return "DW_OP_breg29";
8168 case DW_OP_breg30:
8169 return "DW_OP_breg30";
8170 case DW_OP_breg31:
8171 return "DW_OP_breg31";
8172 case DW_OP_regx:
8173 return "DW_OP_regx";
8174 case DW_OP_fbreg:
8175 return "DW_OP_fbreg";
8176 case DW_OP_bregx:
8177 return "DW_OP_bregx";
8178 case DW_OP_piece:
8179 return "DW_OP_piece";
8180 case DW_OP_deref_size:
8181 return "DW_OP_deref_size";
8182 case DW_OP_xderef_size:
8183 return "DW_OP_xderef_size";
8184 case DW_OP_nop:
8185 return "DW_OP_nop";
8186 /* DWARF 3 extensions. */
8187 case DW_OP_push_object_address:
8188 return "DW_OP_push_object_address";
8189 case DW_OP_call2:
8190 return "DW_OP_call2";
8191 case DW_OP_call4:
8192 return "DW_OP_call4";
8193 case DW_OP_call_ref:
8194 return "DW_OP_call_ref";
8195 /* GNU extensions. */
8196 case DW_OP_GNU_push_tls_address:
8197 return "DW_OP_GNU_push_tls_address";
8198 default:
8199 return "OP_<unknown>";
8200 }
8201 }
8202
8203 static char *
8204 dwarf_bool_name (unsigned mybool)
8205 {
8206 if (mybool)
8207 return "TRUE";
8208 else
8209 return "FALSE";
8210 }
8211
8212 /* Convert a DWARF type code into its string name. */
8213
8214 static char *
8215 dwarf_type_encoding_name (unsigned enc)
8216 {
8217 switch (enc)
8218 {
8219 case DW_ATE_address:
8220 return "DW_ATE_address";
8221 case DW_ATE_boolean:
8222 return "DW_ATE_boolean";
8223 case DW_ATE_complex_float:
8224 return "DW_ATE_complex_float";
8225 case DW_ATE_float:
8226 return "DW_ATE_float";
8227 case DW_ATE_signed:
8228 return "DW_ATE_signed";
8229 case DW_ATE_signed_char:
8230 return "DW_ATE_signed_char";
8231 case DW_ATE_unsigned:
8232 return "DW_ATE_unsigned";
8233 case DW_ATE_unsigned_char:
8234 return "DW_ATE_unsigned_char";
8235 case DW_ATE_imaginary_float:
8236 return "DW_ATE_imaginary_float";
8237 default:
8238 return "DW_ATE_<unknown>";
8239 }
8240 }
8241
8242 /* Convert a DWARF call frame info operation to its string name. */
8243
8244 #if 0
8245 static char *
8246 dwarf_cfi_name (unsigned cfi_opc)
8247 {
8248 switch (cfi_opc)
8249 {
8250 case DW_CFA_advance_loc:
8251 return "DW_CFA_advance_loc";
8252 case DW_CFA_offset:
8253 return "DW_CFA_offset";
8254 case DW_CFA_restore:
8255 return "DW_CFA_restore";
8256 case DW_CFA_nop:
8257 return "DW_CFA_nop";
8258 case DW_CFA_set_loc:
8259 return "DW_CFA_set_loc";
8260 case DW_CFA_advance_loc1:
8261 return "DW_CFA_advance_loc1";
8262 case DW_CFA_advance_loc2:
8263 return "DW_CFA_advance_loc2";
8264 case DW_CFA_advance_loc4:
8265 return "DW_CFA_advance_loc4";
8266 case DW_CFA_offset_extended:
8267 return "DW_CFA_offset_extended";
8268 case DW_CFA_restore_extended:
8269 return "DW_CFA_restore_extended";
8270 case DW_CFA_undefined:
8271 return "DW_CFA_undefined";
8272 case DW_CFA_same_value:
8273 return "DW_CFA_same_value";
8274 case DW_CFA_register:
8275 return "DW_CFA_register";
8276 case DW_CFA_remember_state:
8277 return "DW_CFA_remember_state";
8278 case DW_CFA_restore_state:
8279 return "DW_CFA_restore_state";
8280 case DW_CFA_def_cfa:
8281 return "DW_CFA_def_cfa";
8282 case DW_CFA_def_cfa_register:
8283 return "DW_CFA_def_cfa_register";
8284 case DW_CFA_def_cfa_offset:
8285 return "DW_CFA_def_cfa_offset";
8286
8287 /* DWARF 3 */
8288 case DW_CFA_def_cfa_expression:
8289 return "DW_CFA_def_cfa_expression";
8290 case DW_CFA_expression:
8291 return "DW_CFA_expression";
8292 case DW_CFA_offset_extended_sf:
8293 return "DW_CFA_offset_extended_sf";
8294 case DW_CFA_def_cfa_sf:
8295 return "DW_CFA_def_cfa_sf";
8296 case DW_CFA_def_cfa_offset_sf:
8297 return "DW_CFA_def_cfa_offset_sf";
8298
8299 /* SGI/MIPS specific */
8300 case DW_CFA_MIPS_advance_loc8:
8301 return "DW_CFA_MIPS_advance_loc8";
8302
8303 /* GNU extensions */
8304 case DW_CFA_GNU_window_save:
8305 return "DW_CFA_GNU_window_save";
8306 case DW_CFA_GNU_args_size:
8307 return "DW_CFA_GNU_args_size";
8308 case DW_CFA_GNU_negative_offset_extended:
8309 return "DW_CFA_GNU_negative_offset_extended";
8310
8311 default:
8312 return "DW_CFA_<unknown>";
8313 }
8314 }
8315 #endif
8316
8317 static void
8318 dump_die (struct die_info *die)
8319 {
8320 unsigned int i;
8321
8322 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8323 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8324 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8325 dwarf_bool_name (die->child != NULL));
8326
8327 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8328 for (i = 0; i < die->num_attrs; ++i)
8329 {
8330 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8331 dwarf_attr_name (die->attrs[i].name),
8332 dwarf_form_name (die->attrs[i].form));
8333 switch (die->attrs[i].form)
8334 {
8335 case DW_FORM_ref_addr:
8336 case DW_FORM_addr:
8337 fprintf_unfiltered (gdb_stderr, "address: ");
8338 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8339 break;
8340 case DW_FORM_block2:
8341 case DW_FORM_block4:
8342 case DW_FORM_block:
8343 case DW_FORM_block1:
8344 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8345 break;
8346 case DW_FORM_ref1:
8347 case DW_FORM_ref2:
8348 case DW_FORM_ref4:
8349 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8350 (long) (DW_ADDR (&die->attrs[i])));
8351 break;
8352 case DW_FORM_data1:
8353 case DW_FORM_data2:
8354 case DW_FORM_data4:
8355 case DW_FORM_data8:
8356 case DW_FORM_udata:
8357 case DW_FORM_sdata:
8358 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8359 break;
8360 case DW_FORM_string:
8361 case DW_FORM_strp:
8362 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8363 DW_STRING (&die->attrs[i])
8364 ? DW_STRING (&die->attrs[i]) : "");
8365 break;
8366 case DW_FORM_flag:
8367 if (DW_UNSND (&die->attrs[i]))
8368 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8369 else
8370 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8371 break;
8372 case DW_FORM_indirect:
8373 /* the reader will have reduced the indirect form to
8374 the "base form" so this form should not occur */
8375 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8376 break;
8377 default:
8378 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8379 die->attrs[i].form);
8380 }
8381 fprintf_unfiltered (gdb_stderr, "\n");
8382 }
8383 }
8384
8385 static void
8386 dump_die_list (struct die_info *die)
8387 {
8388 while (die)
8389 {
8390 dump_die (die);
8391 if (die->child != NULL)
8392 dump_die_list (die->child);
8393 if (die->sibling != NULL)
8394 dump_die_list (die->sibling);
8395 }
8396 }
8397
8398 static void
8399 store_in_ref_table (unsigned int offset, struct die_info *die,
8400 struct dwarf2_cu *cu)
8401 {
8402 int h;
8403 struct die_info *old;
8404
8405 h = (offset % REF_HASH_SIZE);
8406 old = cu->die_ref_table[h];
8407 die->next_ref = old;
8408 cu->die_ref_table[h] = die;
8409 }
8410
8411 static unsigned int
8412 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8413 {
8414 unsigned int result = 0;
8415
8416 switch (attr->form)
8417 {
8418 case DW_FORM_ref_addr:
8419 case DW_FORM_ref1:
8420 case DW_FORM_ref2:
8421 case DW_FORM_ref4:
8422 case DW_FORM_ref8:
8423 case DW_FORM_ref_udata:
8424 result = DW_ADDR (attr);
8425 break;
8426 default:
8427 complaint (&symfile_complaints,
8428 _("unsupported die ref attribute form: '%s'"),
8429 dwarf_form_name (attr->form));
8430 }
8431 return result;
8432 }
8433
8434 /* Return the constant value held by the given attribute. Return -1
8435 if the value held by the attribute is not constant. */
8436
8437 static int
8438 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8439 {
8440 if (attr->form == DW_FORM_sdata)
8441 return DW_SND (attr);
8442 else if (attr->form == DW_FORM_udata
8443 || attr->form == DW_FORM_data1
8444 || attr->form == DW_FORM_data2
8445 || attr->form == DW_FORM_data4
8446 || attr->form == DW_FORM_data8)
8447 return DW_UNSND (attr);
8448 else
8449 {
8450 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8451 dwarf_form_name (attr->form));
8452 return default_value;
8453 }
8454 }
8455
8456 static struct die_info *
8457 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8458 struct dwarf2_cu *cu)
8459 {
8460 struct die_info *die;
8461 unsigned int offset;
8462 int h;
8463 struct die_info temp_die;
8464 struct dwarf2_cu *target_cu;
8465
8466 offset = dwarf2_get_ref_die_offset (attr, cu);
8467
8468 if (DW_ADDR (attr) < cu->header.offset
8469 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8470 {
8471 struct dwarf2_per_cu_data *per_cu;
8472 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8473 cu->objfile);
8474 target_cu = per_cu->cu;
8475 }
8476 else
8477 target_cu = cu;
8478
8479 h = (offset % REF_HASH_SIZE);
8480 die = target_cu->die_ref_table[h];
8481 while (die)
8482 {
8483 if (die->offset == offset)
8484 return die;
8485 die = die->next_ref;
8486 }
8487
8488 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8489 "at 0x%lx [in module %s]"),
8490 (long) src_die->offset, (long) offset, cu->objfile->name);
8491
8492 return NULL;
8493 }
8494
8495 static struct type *
8496 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8497 struct dwarf2_cu *cu)
8498 {
8499 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8500 {
8501 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8502 typeid, objfile->name);
8503 }
8504
8505 /* Look for this particular type in the fundamental type vector. If
8506 one is not found, create and install one appropriate for the
8507 current language and the current target machine. */
8508
8509 if (cu->ftypes[typeid] == NULL)
8510 {
8511 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8512 }
8513
8514 return (cu->ftypes[typeid]);
8515 }
8516
8517 /* Decode simple location descriptions.
8518 Given a pointer to a dwarf block that defines a location, compute
8519 the location and return the value.
8520
8521 NOTE drow/2003-11-18: This function is called in two situations
8522 now: for the address of static or global variables (partial symbols
8523 only) and for offsets into structures which are expected to be
8524 (more or less) constant. The partial symbol case should go away,
8525 and only the constant case should remain. That will let this
8526 function complain more accurately. A few special modes are allowed
8527 without complaint for global variables (for instance, global
8528 register values and thread-local values).
8529
8530 A location description containing no operations indicates that the
8531 object is optimized out. The return value is 0 for that case.
8532 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8533 callers will only want a very basic result and this can become a
8534 complaint.
8535
8536 When the result is a register number, the global isreg flag is set,
8537 otherwise it is cleared.
8538
8539 Note that stack[0] is unused except as a default error return.
8540 Note that stack overflow is not yet handled. */
8541
8542 static CORE_ADDR
8543 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8544 {
8545 struct objfile *objfile = cu->objfile;
8546 struct comp_unit_head *cu_header = &cu->header;
8547 int i;
8548 int size = blk->size;
8549 char *data = blk->data;
8550 CORE_ADDR stack[64];
8551 int stacki;
8552 unsigned int bytes_read, unsnd;
8553 unsigned char op;
8554
8555 i = 0;
8556 stacki = 0;
8557 stack[stacki] = 0;
8558 isreg = 0;
8559
8560 while (i < size)
8561 {
8562 op = data[i++];
8563 switch (op)
8564 {
8565 case DW_OP_lit0:
8566 case DW_OP_lit1:
8567 case DW_OP_lit2:
8568 case DW_OP_lit3:
8569 case DW_OP_lit4:
8570 case DW_OP_lit5:
8571 case DW_OP_lit6:
8572 case DW_OP_lit7:
8573 case DW_OP_lit8:
8574 case DW_OP_lit9:
8575 case DW_OP_lit10:
8576 case DW_OP_lit11:
8577 case DW_OP_lit12:
8578 case DW_OP_lit13:
8579 case DW_OP_lit14:
8580 case DW_OP_lit15:
8581 case DW_OP_lit16:
8582 case DW_OP_lit17:
8583 case DW_OP_lit18:
8584 case DW_OP_lit19:
8585 case DW_OP_lit20:
8586 case DW_OP_lit21:
8587 case DW_OP_lit22:
8588 case DW_OP_lit23:
8589 case DW_OP_lit24:
8590 case DW_OP_lit25:
8591 case DW_OP_lit26:
8592 case DW_OP_lit27:
8593 case DW_OP_lit28:
8594 case DW_OP_lit29:
8595 case DW_OP_lit30:
8596 case DW_OP_lit31:
8597 stack[++stacki] = op - DW_OP_lit0;
8598 break;
8599
8600 case DW_OP_reg0:
8601 case DW_OP_reg1:
8602 case DW_OP_reg2:
8603 case DW_OP_reg3:
8604 case DW_OP_reg4:
8605 case DW_OP_reg5:
8606 case DW_OP_reg6:
8607 case DW_OP_reg7:
8608 case DW_OP_reg8:
8609 case DW_OP_reg9:
8610 case DW_OP_reg10:
8611 case DW_OP_reg11:
8612 case DW_OP_reg12:
8613 case DW_OP_reg13:
8614 case DW_OP_reg14:
8615 case DW_OP_reg15:
8616 case DW_OP_reg16:
8617 case DW_OP_reg17:
8618 case DW_OP_reg18:
8619 case DW_OP_reg19:
8620 case DW_OP_reg20:
8621 case DW_OP_reg21:
8622 case DW_OP_reg22:
8623 case DW_OP_reg23:
8624 case DW_OP_reg24:
8625 case DW_OP_reg25:
8626 case DW_OP_reg26:
8627 case DW_OP_reg27:
8628 case DW_OP_reg28:
8629 case DW_OP_reg29:
8630 case DW_OP_reg30:
8631 case DW_OP_reg31:
8632 isreg = 1;
8633 stack[++stacki] = op - DW_OP_reg0;
8634 if (i < size)
8635 dwarf2_complex_location_expr_complaint ();
8636 break;
8637
8638 case DW_OP_regx:
8639 isreg = 1;
8640 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8641 i += bytes_read;
8642 stack[++stacki] = unsnd;
8643 if (i < size)
8644 dwarf2_complex_location_expr_complaint ();
8645 break;
8646
8647 case DW_OP_addr:
8648 stack[++stacki] = read_address (objfile->obfd, &data[i],
8649 cu, &bytes_read);
8650 i += bytes_read;
8651 break;
8652
8653 case DW_OP_const1u:
8654 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8655 i += 1;
8656 break;
8657
8658 case DW_OP_const1s:
8659 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8660 i += 1;
8661 break;
8662
8663 case DW_OP_const2u:
8664 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8665 i += 2;
8666 break;
8667
8668 case DW_OP_const2s:
8669 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8670 i += 2;
8671 break;
8672
8673 case DW_OP_const4u:
8674 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8675 i += 4;
8676 break;
8677
8678 case DW_OP_const4s:
8679 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8680 i += 4;
8681 break;
8682
8683 case DW_OP_constu:
8684 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8685 &bytes_read);
8686 i += bytes_read;
8687 break;
8688
8689 case DW_OP_consts:
8690 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8691 i += bytes_read;
8692 break;
8693
8694 case DW_OP_dup:
8695 stack[stacki + 1] = stack[stacki];
8696 stacki++;
8697 break;
8698
8699 case DW_OP_plus:
8700 stack[stacki - 1] += stack[stacki];
8701 stacki--;
8702 break;
8703
8704 case DW_OP_plus_uconst:
8705 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8706 i += bytes_read;
8707 break;
8708
8709 case DW_OP_minus:
8710 stack[stacki - 1] -= stack[stacki];
8711 stacki--;
8712 break;
8713
8714 case DW_OP_deref:
8715 /* If we're not the last op, then we definitely can't encode
8716 this using GDB's address_class enum. This is valid for partial
8717 global symbols, although the variable's address will be bogus
8718 in the psymtab. */
8719 if (i < size)
8720 dwarf2_complex_location_expr_complaint ();
8721 break;
8722
8723 case DW_OP_GNU_push_tls_address:
8724 /* The top of the stack has the offset from the beginning
8725 of the thread control block at which the variable is located. */
8726 /* Nothing should follow this operator, so the top of stack would
8727 be returned. */
8728 /* This is valid for partial global symbols, but the variable's
8729 address will be bogus in the psymtab. */
8730 if (i < size)
8731 dwarf2_complex_location_expr_complaint ();
8732 break;
8733
8734 default:
8735 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8736 dwarf_stack_op_name (op));
8737 return (stack[stacki]);
8738 }
8739 }
8740 return (stack[stacki]);
8741 }
8742
8743 /* memory allocation interface */
8744
8745 static struct dwarf_block *
8746 dwarf_alloc_block (struct dwarf2_cu *cu)
8747 {
8748 struct dwarf_block *blk;
8749
8750 blk = (struct dwarf_block *)
8751 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8752 return (blk);
8753 }
8754
8755 static struct abbrev_info *
8756 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8757 {
8758 struct abbrev_info *abbrev;
8759
8760 abbrev = (struct abbrev_info *)
8761 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8762 memset (abbrev, 0, sizeof (struct abbrev_info));
8763 return (abbrev);
8764 }
8765
8766 static struct die_info *
8767 dwarf_alloc_die (void)
8768 {
8769 struct die_info *die;
8770
8771 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8772 memset (die, 0, sizeof (struct die_info));
8773 return (die);
8774 }
8775
8776 \f
8777 /* Macro support. */
8778
8779
8780 /* Return the full name of file number I in *LH's file name table.
8781 Use COMP_DIR as the name of the current directory of the
8782 compilation. The result is allocated using xmalloc; the caller is
8783 responsible for freeing it. */
8784 static char *
8785 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8786 {
8787 struct file_entry *fe = &lh->file_names[file - 1];
8788
8789 if (IS_ABSOLUTE_PATH (fe->name))
8790 return xstrdup (fe->name);
8791 else
8792 {
8793 const char *dir;
8794 int dir_len;
8795 char *full_name;
8796
8797 if (fe->dir_index)
8798 dir = lh->include_dirs[fe->dir_index - 1];
8799 else
8800 dir = comp_dir;
8801
8802 if (dir)
8803 {
8804 dir_len = strlen (dir);
8805 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8806 strcpy (full_name, dir);
8807 full_name[dir_len] = '/';
8808 strcpy (full_name + dir_len + 1, fe->name);
8809 return full_name;
8810 }
8811 else
8812 return xstrdup (fe->name);
8813 }
8814 }
8815
8816
8817 static struct macro_source_file *
8818 macro_start_file (int file, int line,
8819 struct macro_source_file *current_file,
8820 const char *comp_dir,
8821 struct line_header *lh, struct objfile *objfile)
8822 {
8823 /* The full name of this source file. */
8824 char *full_name = file_full_name (file, lh, comp_dir);
8825
8826 /* We don't create a macro table for this compilation unit
8827 at all until we actually get a filename. */
8828 if (! pending_macros)
8829 pending_macros = new_macro_table (&objfile->objfile_obstack,
8830 objfile->macro_cache);
8831
8832 if (! current_file)
8833 /* If we have no current file, then this must be the start_file
8834 directive for the compilation unit's main source file. */
8835 current_file = macro_set_main (pending_macros, full_name);
8836 else
8837 current_file = macro_include (current_file, line, full_name);
8838
8839 xfree (full_name);
8840
8841 return current_file;
8842 }
8843
8844
8845 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8846 followed by a null byte. */
8847 static char *
8848 copy_string (const char *buf, int len)
8849 {
8850 char *s = xmalloc (len + 1);
8851 memcpy (s, buf, len);
8852 s[len] = '\0';
8853
8854 return s;
8855 }
8856
8857
8858 static const char *
8859 consume_improper_spaces (const char *p, const char *body)
8860 {
8861 if (*p == ' ')
8862 {
8863 complaint (&symfile_complaints,
8864 _("macro definition contains spaces in formal argument list:\n`%s'"),
8865 body);
8866
8867 while (*p == ' ')
8868 p++;
8869 }
8870
8871 return p;
8872 }
8873
8874
8875 static void
8876 parse_macro_definition (struct macro_source_file *file, int line,
8877 const char *body)
8878 {
8879 const char *p;
8880
8881 /* The body string takes one of two forms. For object-like macro
8882 definitions, it should be:
8883
8884 <macro name> " " <definition>
8885
8886 For function-like macro definitions, it should be:
8887
8888 <macro name> "() " <definition>
8889 or
8890 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8891
8892 Spaces may appear only where explicitly indicated, and in the
8893 <definition>.
8894
8895 The Dwarf 2 spec says that an object-like macro's name is always
8896 followed by a space, but versions of GCC around March 2002 omit
8897 the space when the macro's definition is the empty string.
8898
8899 The Dwarf 2 spec says that there should be no spaces between the
8900 formal arguments in a function-like macro's formal argument list,
8901 but versions of GCC around March 2002 include spaces after the
8902 commas. */
8903
8904
8905 /* Find the extent of the macro name. The macro name is terminated
8906 by either a space or null character (for an object-like macro) or
8907 an opening paren (for a function-like macro). */
8908 for (p = body; *p; p++)
8909 if (*p == ' ' || *p == '(')
8910 break;
8911
8912 if (*p == ' ' || *p == '\0')
8913 {
8914 /* It's an object-like macro. */
8915 int name_len = p - body;
8916 char *name = copy_string (body, name_len);
8917 const char *replacement;
8918
8919 if (*p == ' ')
8920 replacement = body + name_len + 1;
8921 else
8922 {
8923 dwarf2_macro_malformed_definition_complaint (body);
8924 replacement = body + name_len;
8925 }
8926
8927 macro_define_object (file, line, name, replacement);
8928
8929 xfree (name);
8930 }
8931 else if (*p == '(')
8932 {
8933 /* It's a function-like macro. */
8934 char *name = copy_string (body, p - body);
8935 int argc = 0;
8936 int argv_size = 1;
8937 char **argv = xmalloc (argv_size * sizeof (*argv));
8938
8939 p++;
8940
8941 p = consume_improper_spaces (p, body);
8942
8943 /* Parse the formal argument list. */
8944 while (*p && *p != ')')
8945 {
8946 /* Find the extent of the current argument name. */
8947 const char *arg_start = p;
8948
8949 while (*p && *p != ',' && *p != ')' && *p != ' ')
8950 p++;
8951
8952 if (! *p || p == arg_start)
8953 dwarf2_macro_malformed_definition_complaint (body);
8954 else
8955 {
8956 /* Make sure argv has room for the new argument. */
8957 if (argc >= argv_size)
8958 {
8959 argv_size *= 2;
8960 argv = xrealloc (argv, argv_size * sizeof (*argv));
8961 }
8962
8963 argv[argc++] = copy_string (arg_start, p - arg_start);
8964 }
8965
8966 p = consume_improper_spaces (p, body);
8967
8968 /* Consume the comma, if present. */
8969 if (*p == ',')
8970 {
8971 p++;
8972
8973 p = consume_improper_spaces (p, body);
8974 }
8975 }
8976
8977 if (*p == ')')
8978 {
8979 p++;
8980
8981 if (*p == ' ')
8982 /* Perfectly formed definition, no complaints. */
8983 macro_define_function (file, line, name,
8984 argc, (const char **) argv,
8985 p + 1);
8986 else if (*p == '\0')
8987 {
8988 /* Complain, but do define it. */
8989 dwarf2_macro_malformed_definition_complaint (body);
8990 macro_define_function (file, line, name,
8991 argc, (const char **) argv,
8992 p);
8993 }
8994 else
8995 /* Just complain. */
8996 dwarf2_macro_malformed_definition_complaint (body);
8997 }
8998 else
8999 /* Just complain. */
9000 dwarf2_macro_malformed_definition_complaint (body);
9001
9002 xfree (name);
9003 {
9004 int i;
9005
9006 for (i = 0; i < argc; i++)
9007 xfree (argv[i]);
9008 }
9009 xfree (argv);
9010 }
9011 else
9012 dwarf2_macro_malformed_definition_complaint (body);
9013 }
9014
9015
9016 static void
9017 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9018 char *comp_dir, bfd *abfd,
9019 struct dwarf2_cu *cu)
9020 {
9021 char *mac_ptr, *mac_end;
9022 struct macro_source_file *current_file = 0;
9023
9024 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9025 {
9026 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9027 return;
9028 }
9029
9030 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9031 mac_end = dwarf2_per_objfile->macinfo_buffer
9032 + dwarf2_per_objfile->macinfo_size;
9033
9034 for (;;)
9035 {
9036 enum dwarf_macinfo_record_type macinfo_type;
9037
9038 /* Do we at least have room for a macinfo type byte? */
9039 if (mac_ptr >= mac_end)
9040 {
9041 dwarf2_macros_too_long_complaint ();
9042 return;
9043 }
9044
9045 macinfo_type = read_1_byte (abfd, mac_ptr);
9046 mac_ptr++;
9047
9048 switch (macinfo_type)
9049 {
9050 /* A zero macinfo type indicates the end of the macro
9051 information. */
9052 case 0:
9053 return;
9054
9055 case DW_MACINFO_define:
9056 case DW_MACINFO_undef:
9057 {
9058 int bytes_read;
9059 int line;
9060 char *body;
9061
9062 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9063 mac_ptr += bytes_read;
9064 body = read_string (abfd, mac_ptr, &bytes_read);
9065 mac_ptr += bytes_read;
9066
9067 if (! current_file)
9068 complaint (&symfile_complaints,
9069 _("debug info gives macro %s outside of any file: %s"),
9070 macinfo_type ==
9071 DW_MACINFO_define ? "definition" : macinfo_type ==
9072 DW_MACINFO_undef ? "undefinition" :
9073 "something-or-other", body);
9074 else
9075 {
9076 if (macinfo_type == DW_MACINFO_define)
9077 parse_macro_definition (current_file, line, body);
9078 else if (macinfo_type == DW_MACINFO_undef)
9079 macro_undef (current_file, line, body);
9080 }
9081 }
9082 break;
9083
9084 case DW_MACINFO_start_file:
9085 {
9086 int bytes_read;
9087 int line, file;
9088
9089 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9090 mac_ptr += bytes_read;
9091 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9092 mac_ptr += bytes_read;
9093
9094 current_file = macro_start_file (file, line,
9095 current_file, comp_dir,
9096 lh, cu->objfile);
9097 }
9098 break;
9099
9100 case DW_MACINFO_end_file:
9101 if (! current_file)
9102 complaint (&symfile_complaints,
9103 _("macro debug info has an unmatched `close_file' directive"));
9104 else
9105 {
9106 current_file = current_file->included_by;
9107 if (! current_file)
9108 {
9109 enum dwarf_macinfo_record_type next_type;
9110
9111 /* GCC circa March 2002 doesn't produce the zero
9112 type byte marking the end of the compilation
9113 unit. Complain if it's not there, but exit no
9114 matter what. */
9115
9116 /* Do we at least have room for a macinfo type byte? */
9117 if (mac_ptr >= mac_end)
9118 {
9119 dwarf2_macros_too_long_complaint ();
9120 return;
9121 }
9122
9123 /* We don't increment mac_ptr here, so this is just
9124 a look-ahead. */
9125 next_type = read_1_byte (abfd, mac_ptr);
9126 if (next_type != 0)
9127 complaint (&symfile_complaints,
9128 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9129
9130 return;
9131 }
9132 }
9133 break;
9134
9135 case DW_MACINFO_vendor_ext:
9136 {
9137 int bytes_read;
9138 int constant;
9139 char *string;
9140
9141 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9142 mac_ptr += bytes_read;
9143 string = read_string (abfd, mac_ptr, &bytes_read);
9144 mac_ptr += bytes_read;
9145
9146 /* We don't recognize any vendor extensions. */
9147 }
9148 break;
9149 }
9150 }
9151 }
9152
9153 /* Check if the attribute's form is a DW_FORM_block*
9154 if so return true else false. */
9155 static int
9156 attr_form_is_block (struct attribute *attr)
9157 {
9158 return (attr == NULL ? 0 :
9159 attr->form == DW_FORM_block1
9160 || attr->form == DW_FORM_block2
9161 || attr->form == DW_FORM_block4
9162 || attr->form == DW_FORM_block);
9163 }
9164
9165 static void
9166 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9167 struct dwarf2_cu *cu)
9168 {
9169 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9170 {
9171 struct dwarf2_loclist_baton *baton;
9172
9173 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9174 sizeof (struct dwarf2_loclist_baton));
9175 baton->objfile = cu->objfile;
9176
9177 /* We don't know how long the location list is, but make sure we
9178 don't run off the edge of the section. */
9179 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9180 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9181 baton->base_address = cu->header.base_address;
9182 if (cu->header.base_known == 0)
9183 complaint (&symfile_complaints,
9184 _("Location list used without specifying the CU base address."));
9185
9186 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9187 SYMBOL_LOCATION_BATON (sym) = baton;
9188 }
9189 else
9190 {
9191 struct dwarf2_locexpr_baton *baton;
9192
9193 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9194 sizeof (struct dwarf2_locexpr_baton));
9195 baton->objfile = cu->objfile;
9196
9197 if (attr_form_is_block (attr))
9198 {
9199 /* Note that we're just copying the block's data pointer
9200 here, not the actual data. We're still pointing into the
9201 info_buffer for SYM's objfile; right now we never release
9202 that buffer, but when we do clean up properly this may
9203 need to change. */
9204 baton->size = DW_BLOCK (attr)->size;
9205 baton->data = DW_BLOCK (attr)->data;
9206 }
9207 else
9208 {
9209 dwarf2_invalid_attrib_class_complaint ("location description",
9210 SYMBOL_NATURAL_NAME (sym));
9211 baton->size = 0;
9212 baton->data = NULL;
9213 }
9214
9215 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9216 SYMBOL_LOCATION_BATON (sym) = baton;
9217 }
9218 }
9219
9220 /* Locate the compilation unit from CU's objfile which contains the
9221 DIE at OFFSET. Raises an error on failure. */
9222
9223 static struct dwarf2_per_cu_data *
9224 dwarf2_find_containing_comp_unit (unsigned long offset,
9225 struct objfile *objfile)
9226 {
9227 struct dwarf2_per_cu_data *this_cu;
9228 int low, high;
9229
9230 low = 0;
9231 high = dwarf2_per_objfile->n_comp_units - 1;
9232 while (high > low)
9233 {
9234 int mid = low + (high - low) / 2;
9235 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9236 high = mid;
9237 else
9238 low = mid + 1;
9239 }
9240 gdb_assert (low == high);
9241 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9242 {
9243 if (low == 0)
9244 error (_("Dwarf Error: could not find partial DIE containing "
9245 "offset 0x%lx [in module %s]"),
9246 (long) offset, bfd_get_filename (objfile->obfd));
9247
9248 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9249 return dwarf2_per_objfile->all_comp_units[low-1];
9250 }
9251 else
9252 {
9253 this_cu = dwarf2_per_objfile->all_comp_units[low];
9254 if (low == dwarf2_per_objfile->n_comp_units - 1
9255 && offset >= this_cu->offset + this_cu->length)
9256 error (_("invalid dwarf2 offset %ld"), offset);
9257 gdb_assert (offset < this_cu->offset + this_cu->length);
9258 return this_cu;
9259 }
9260 }
9261
9262 /* Locate the compilation unit from OBJFILE which is located at exactly
9263 OFFSET. Raises an error on failure. */
9264
9265 static struct dwarf2_per_cu_data *
9266 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9267 {
9268 struct dwarf2_per_cu_data *this_cu;
9269 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9270 if (this_cu->offset != offset)
9271 error (_("no compilation unit with offset %ld."), offset);
9272 return this_cu;
9273 }
9274
9275 /* Release one cached compilation unit, CU. We unlink it from the tree
9276 of compilation units, but we don't remove it from the read_in_chain;
9277 the caller is responsible for that. */
9278
9279 static void
9280 free_one_comp_unit (void *data)
9281 {
9282 struct dwarf2_cu *cu = data;
9283
9284 if (cu->per_cu != NULL)
9285 cu->per_cu->cu = NULL;
9286 cu->per_cu = NULL;
9287
9288 obstack_free (&cu->comp_unit_obstack, NULL);
9289 if (cu->dies)
9290 free_die_list (cu->dies);
9291
9292 xfree (cu);
9293 }
9294
9295 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9296 when we're finished with it. We can't free the pointer itself, but be
9297 sure to unlink it from the cache. Also release any associated storage
9298 and perform cache maintenance.
9299
9300 Only used during partial symbol parsing. */
9301
9302 static void
9303 free_stack_comp_unit (void *data)
9304 {
9305 struct dwarf2_cu *cu = data;
9306
9307 obstack_free (&cu->comp_unit_obstack, NULL);
9308 cu->partial_dies = NULL;
9309
9310 if (cu->per_cu != NULL)
9311 {
9312 /* This compilation unit is on the stack in our caller, so we
9313 should not xfree it. Just unlink it. */
9314 cu->per_cu->cu = NULL;
9315 cu->per_cu = NULL;
9316
9317 /* If we had a per-cu pointer, then we may have other compilation
9318 units loaded, so age them now. */
9319 age_cached_comp_units ();
9320 }
9321 }
9322
9323 /* Free all cached compilation units. */
9324
9325 static void
9326 free_cached_comp_units (void *data)
9327 {
9328 struct dwarf2_per_cu_data *per_cu, **last_chain;
9329
9330 per_cu = dwarf2_per_objfile->read_in_chain;
9331 last_chain = &dwarf2_per_objfile->read_in_chain;
9332 while (per_cu != NULL)
9333 {
9334 struct dwarf2_per_cu_data *next_cu;
9335
9336 next_cu = per_cu->cu->read_in_chain;
9337
9338 free_one_comp_unit (per_cu->cu);
9339 *last_chain = next_cu;
9340
9341 per_cu = next_cu;
9342 }
9343 }
9344
9345 /* Increase the age counter on each cached compilation unit, and free
9346 any that are too old. */
9347
9348 static void
9349 age_cached_comp_units (void)
9350 {
9351 struct dwarf2_per_cu_data *per_cu, **last_chain;
9352
9353 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9354 per_cu = dwarf2_per_objfile->read_in_chain;
9355 while (per_cu != NULL)
9356 {
9357 per_cu->cu->last_used ++;
9358 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9359 dwarf2_mark (per_cu->cu);
9360 per_cu = per_cu->cu->read_in_chain;
9361 }
9362
9363 per_cu = dwarf2_per_objfile->read_in_chain;
9364 last_chain = &dwarf2_per_objfile->read_in_chain;
9365 while (per_cu != NULL)
9366 {
9367 struct dwarf2_per_cu_data *next_cu;
9368
9369 next_cu = per_cu->cu->read_in_chain;
9370
9371 if (!per_cu->cu->mark)
9372 {
9373 free_one_comp_unit (per_cu->cu);
9374 *last_chain = next_cu;
9375 }
9376 else
9377 last_chain = &per_cu->cu->read_in_chain;
9378
9379 per_cu = next_cu;
9380 }
9381 }
9382
9383 /* Remove a single compilation unit from the cache. */
9384
9385 static void
9386 free_one_cached_comp_unit (void *target_cu)
9387 {
9388 struct dwarf2_per_cu_data *per_cu, **last_chain;
9389
9390 per_cu = dwarf2_per_objfile->read_in_chain;
9391 last_chain = &dwarf2_per_objfile->read_in_chain;
9392 while (per_cu != NULL)
9393 {
9394 struct dwarf2_per_cu_data *next_cu;
9395
9396 next_cu = per_cu->cu->read_in_chain;
9397
9398 if (per_cu->cu == target_cu)
9399 {
9400 free_one_comp_unit (per_cu->cu);
9401 *last_chain = next_cu;
9402 break;
9403 }
9404 else
9405 last_chain = &per_cu->cu->read_in_chain;
9406
9407 per_cu = next_cu;
9408 }
9409 }
9410
9411 /* A pair of DIE offset and GDB type pointer. We store these
9412 in a hash table separate from the DIEs, and preserve them
9413 when the DIEs are flushed out of cache. */
9414
9415 struct dwarf2_offset_and_type
9416 {
9417 unsigned int offset;
9418 struct type *type;
9419 };
9420
9421 /* Hash function for a dwarf2_offset_and_type. */
9422
9423 static hashval_t
9424 offset_and_type_hash (const void *item)
9425 {
9426 const struct dwarf2_offset_and_type *ofs = item;
9427 return ofs->offset;
9428 }
9429
9430 /* Equality function for a dwarf2_offset_and_type. */
9431
9432 static int
9433 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9434 {
9435 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9436 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9437 return ofs_lhs->offset == ofs_rhs->offset;
9438 }
9439
9440 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9441 table if necessary. */
9442
9443 static void
9444 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9445 {
9446 struct dwarf2_offset_and_type **slot, ofs;
9447
9448 die->type = type;
9449
9450 if (cu->per_cu == NULL)
9451 return;
9452
9453 if (cu->per_cu->type_hash == NULL)
9454 cu->per_cu->type_hash
9455 = htab_create_alloc_ex (cu->header.length / 24,
9456 offset_and_type_hash,
9457 offset_and_type_eq,
9458 NULL,
9459 &cu->objfile->objfile_obstack,
9460 hashtab_obstack_allocate,
9461 dummy_obstack_deallocate);
9462
9463 ofs.offset = die->offset;
9464 ofs.type = type;
9465 slot = (struct dwarf2_offset_and_type **)
9466 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9467 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9468 **slot = ofs;
9469 }
9470
9471 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9472 have a saved type. */
9473
9474 static struct type *
9475 get_die_type (struct die_info *die, htab_t type_hash)
9476 {
9477 struct dwarf2_offset_and_type *slot, ofs;
9478
9479 ofs.offset = die->offset;
9480 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9481 if (slot)
9482 return slot->type;
9483 else
9484 return NULL;
9485 }
9486
9487 /* Restore the types of the DIE tree starting at START_DIE from the hash
9488 table saved in CU. */
9489
9490 static void
9491 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9492 {
9493 struct die_info *die;
9494
9495 if (cu->per_cu->type_hash == NULL)
9496 return;
9497
9498 for (die = start_die; die != NULL; die = die->sibling)
9499 {
9500 die->type = get_die_type (die, cu->per_cu->type_hash);
9501 if (die->child != NULL)
9502 reset_die_and_siblings_types (die->child, cu);
9503 }
9504 }
9505
9506 /* Set the mark field in CU and in every other compilation unit in the
9507 cache that we must keep because we are keeping CU. */
9508
9509 /* Add a dependence relationship from CU to REF_PER_CU. */
9510
9511 static void
9512 dwarf2_add_dependence (struct dwarf2_cu *cu,
9513 struct dwarf2_per_cu_data *ref_per_cu)
9514 {
9515 void **slot;
9516
9517 if (cu->dependencies == NULL)
9518 cu->dependencies
9519 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9520 NULL, &cu->comp_unit_obstack,
9521 hashtab_obstack_allocate,
9522 dummy_obstack_deallocate);
9523
9524 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9525 if (*slot == NULL)
9526 *slot = ref_per_cu;
9527 }
9528
9529 /* Set the mark field in CU and in every other compilation unit in the
9530 cache that we must keep because we are keeping CU. */
9531
9532 static int
9533 dwarf2_mark_helper (void **slot, void *data)
9534 {
9535 struct dwarf2_per_cu_data *per_cu;
9536
9537 per_cu = (struct dwarf2_per_cu_data *) *slot;
9538 if (per_cu->cu->mark)
9539 return 1;
9540 per_cu->cu->mark = 1;
9541
9542 if (per_cu->cu->dependencies != NULL)
9543 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9544
9545 return 1;
9546 }
9547
9548 static void
9549 dwarf2_mark (struct dwarf2_cu *cu)
9550 {
9551 if (cu->mark)
9552 return;
9553 cu->mark = 1;
9554 if (cu->dependencies != NULL)
9555 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9556 }
9557
9558 static void
9559 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9560 {
9561 while (per_cu)
9562 {
9563 per_cu->cu->mark = 0;
9564 per_cu = per_cu->cu->read_in_chain;
9565 }
9566 }
9567
9568 /* Allocation function for the libiberty hash table which uses an
9569 obstack. */
9570
9571 static void *
9572 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9573 {
9574 unsigned int total = size * count;
9575 void *ptr = obstack_alloc ((struct obstack *) data, total);
9576 memset (ptr, 0, total);
9577 return ptr;
9578 }
9579
9580 /* Trivial deallocation function for the libiberty splay tree and hash
9581 table - don't deallocate anything. Rely on later deletion of the
9582 obstack. */
9583
9584 static void
9585 dummy_obstack_deallocate (void *object, void *data)
9586 {
9587 return;
9588 }
9589
9590 /* Trivial hash function for partial_die_info: the hash value of a DIE
9591 is its offset in .debug_info for this objfile. */
9592
9593 static hashval_t
9594 partial_die_hash (const void *item)
9595 {
9596 const struct partial_die_info *part_die = item;
9597 return part_die->offset;
9598 }
9599
9600 /* Trivial comparison function for partial_die_info structures: two DIEs
9601 are equal if they have the same offset. */
9602
9603 static int
9604 partial_die_eq (const void *item_lhs, const void *item_rhs)
9605 {
9606 const struct partial_die_info *part_die_lhs = item_lhs;
9607 const struct partial_die_info *part_die_rhs = item_rhs;
9608 return part_die_lhs->offset == part_die_rhs->offset;
9609 }
9610
9611 static struct cmd_list_element *set_dwarf2_cmdlist;
9612 static struct cmd_list_element *show_dwarf2_cmdlist;
9613
9614 static void
9615 set_dwarf2_cmd (char *args, int from_tty)
9616 {
9617 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9618 }
9619
9620 static void
9621 show_dwarf2_cmd (char *args, int from_tty)
9622 {
9623 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9624 }
9625
9626 void _initialize_dwarf2_read (void);
9627
9628 void
9629 _initialize_dwarf2_read (void)
9630 {
9631 dwarf2_objfile_data_key = register_objfile_data ();
9632
9633 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd,
9634 "Set DWARF 2 specific variables.\n"
9635 "Configure DWARF 2 variables such as the cache size",
9636 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9637 0/*allow-unknown*/, &maintenance_set_cmdlist);
9638
9639 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd,
9640 "Show DWARF 2 specific variables\n"
9641 "Show DWARF 2 variables such as the cache size",
9642 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9643 0/*allow-unknown*/, &maintenance_show_cmdlist);
9644
9645 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9646 &dwarf2_max_cache_age,
9647 "Set the upper bound on the age of cached "
9648 "dwarf2 compilation units.",
9649 "Show the upper bound on the age of cached "
9650 "dwarf2 compilation units.",
9651 "A higher limit means that cached "
9652 "compilation units will be stored\n"
9653 "in memory longer, and more total memory will "
9654 "be used. Zero disables\n"
9655 "caching, which can slow down startup.",
9656 NULL, /* PRINT: The upper bound on the age of cached dwarf2 compilation units is %d. */
9657 NULL, NULL, &set_dwarf2_cmdlist,
9658 &show_dwarf2_cmdlist);
9659 }