]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
Problem printing record with array whose upper bound is record component
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 int included_p; /* Non-zero if referenced by the Line Number Program. */
1034 struct symtab *symtab; /* The associated symbol table, if any. */
1035 };
1036
1037 /* The line number information for a compilation unit (found in the
1038 .debug_line section) begins with a "statement program header",
1039 which contains the following information. */
1040 struct line_header
1041 {
1042 /* Offset of line number information in .debug_line section. */
1043 sect_offset offset;
1044
1045 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1046 unsigned offset_in_dwz : 1;
1047
1048 unsigned int total_length;
1049 unsigned short version;
1050 unsigned int header_length;
1051 unsigned char minimum_instruction_length;
1052 unsigned char maximum_ops_per_instruction;
1053 unsigned char default_is_stmt;
1054 int line_base;
1055 unsigned char line_range;
1056 unsigned char opcode_base;
1057
1058 /* standard_opcode_lengths[i] is the number of operands for the
1059 standard opcode whose value is i. This means that
1060 standard_opcode_lengths[0] is unused, and the last meaningful
1061 element is standard_opcode_lengths[opcode_base - 1]. */
1062 unsigned char *standard_opcode_lengths;
1063
1064 /* The include_directories table. NOTE! These strings are not
1065 allocated with xmalloc; instead, they are pointers into
1066 debug_line_buffer. If you try to free them, `free' will get
1067 indigestion. */
1068 unsigned int num_include_dirs, include_dirs_size;
1069 const char **include_dirs;
1070
1071 /* The file_names table. NOTE! These strings are not allocated
1072 with xmalloc; instead, they are pointers into debug_line_buffer.
1073 Don't try to free them directly. */
1074 unsigned int num_file_names, file_names_size;
1075 struct file_entry *file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start, *statement_program_end;
1080 };
1081
1082 /* When we construct a partial symbol table entry we only
1083 need this much information. */
1084 struct partial_die_info
1085 {
1086 /* Offset of this DIE. */
1087 sect_offset offset;
1088
1089 /* DWARF-2 tag for this DIE. */
1090 ENUM_BITFIELD(dwarf_tag) tag : 16;
1091
1092 /* Assorted flags describing the data found in this DIE. */
1093 unsigned int has_children : 1;
1094 unsigned int is_external : 1;
1095 unsigned int is_declaration : 1;
1096 unsigned int has_type : 1;
1097 unsigned int has_specification : 1;
1098 unsigned int has_pc_info : 1;
1099 unsigned int may_be_inlined : 1;
1100
1101 /* Flag set if the SCOPE field of this structure has been
1102 computed. */
1103 unsigned int scope_set : 1;
1104
1105 /* Flag set if the DIE has a byte_size attribute. */
1106 unsigned int has_byte_size : 1;
1107
1108 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1109 unsigned int has_const_value : 1;
1110
1111 /* Flag set if any of the DIE's children are template arguments. */
1112 unsigned int has_template_arguments : 1;
1113
1114 /* Flag set if fixup_partial_die has been called on this die. */
1115 unsigned int fixup_called : 1;
1116
1117 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1118 unsigned int is_dwz : 1;
1119
1120 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1121 unsigned int spec_is_dwz : 1;
1122
1123 /* The name of this DIE. Normally the value of DW_AT_name, but
1124 sometimes a default name for unnamed DIEs. */
1125 const char *name;
1126
1127 /* The linkage name, if present. */
1128 const char *linkage_name;
1129
1130 /* The scope to prepend to our children. This is generally
1131 allocated on the comp_unit_obstack, so will disappear
1132 when this compilation unit leaves the cache. */
1133 const char *scope;
1134
1135 /* Some data associated with the partial DIE. The tag determines
1136 which field is live. */
1137 union
1138 {
1139 /* The location description associated with this DIE, if any. */
1140 struct dwarf_block *locdesc;
1141 /* The offset of an import, for DW_TAG_imported_unit. */
1142 sect_offset offset;
1143 } d;
1144
1145 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1146 CORE_ADDR lowpc;
1147 CORE_ADDR highpc;
1148
1149 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1150 DW_AT_sibling, if any. */
1151 /* NOTE: This member isn't strictly necessary, read_partial_die could
1152 return DW_AT_sibling values to its caller load_partial_dies. */
1153 const gdb_byte *sibling;
1154
1155 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1156 DW_AT_specification (or DW_AT_abstract_origin or
1157 DW_AT_extension). */
1158 sect_offset spec_offset;
1159
1160 /* Pointers to this DIE's parent, first child, and next sibling,
1161 if any. */
1162 struct partial_die_info *die_parent, *die_child, *die_sibling;
1163 };
1164
1165 /* This data structure holds the information of an abbrev. */
1166 struct abbrev_info
1167 {
1168 unsigned int number; /* number identifying abbrev */
1169 enum dwarf_tag tag; /* dwarf tag */
1170 unsigned short has_children; /* boolean */
1171 unsigned short num_attrs; /* number of attributes */
1172 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1173 struct abbrev_info *next; /* next in chain */
1174 };
1175
1176 struct attr_abbrev
1177 {
1178 ENUM_BITFIELD(dwarf_attribute) name : 16;
1179 ENUM_BITFIELD(dwarf_form) form : 16;
1180 };
1181
1182 /* Size of abbrev_table.abbrev_hash_table. */
1183 #define ABBREV_HASH_SIZE 121
1184
1185 /* Top level data structure to contain an abbreviation table. */
1186
1187 struct abbrev_table
1188 {
1189 /* Where the abbrev table came from.
1190 This is used as a sanity check when the table is used. */
1191 sect_offset offset;
1192
1193 /* Storage for the abbrev table. */
1194 struct obstack abbrev_obstack;
1195
1196 /* Hash table of abbrevs.
1197 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1198 It could be statically allocated, but the previous code didn't so we
1199 don't either. */
1200 struct abbrev_info **abbrevs;
1201 };
1202
1203 /* Attributes have a name and a value. */
1204 struct attribute
1205 {
1206 ENUM_BITFIELD(dwarf_attribute) name : 16;
1207 ENUM_BITFIELD(dwarf_form) form : 15;
1208
1209 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1210 field should be in u.str (existing only for DW_STRING) but it is kept
1211 here for better struct attribute alignment. */
1212 unsigned int string_is_canonical : 1;
1213
1214 union
1215 {
1216 const char *str;
1217 struct dwarf_block *blk;
1218 ULONGEST unsnd;
1219 LONGEST snd;
1220 CORE_ADDR addr;
1221 ULONGEST signature;
1222 }
1223 u;
1224 };
1225
1226 /* This data structure holds a complete die structure. */
1227 struct die_info
1228 {
1229 /* DWARF-2 tag for this DIE. */
1230 ENUM_BITFIELD(dwarf_tag) tag : 16;
1231
1232 /* Number of attributes */
1233 unsigned char num_attrs;
1234
1235 /* True if we're presently building the full type name for the
1236 type derived from this DIE. */
1237 unsigned char building_fullname : 1;
1238
1239 /* True if this die is in process. PR 16581. */
1240 unsigned char in_process : 1;
1241
1242 /* Abbrev number */
1243 unsigned int abbrev;
1244
1245 /* Offset in .debug_info or .debug_types section. */
1246 sect_offset offset;
1247
1248 /* The dies in a compilation unit form an n-ary tree. PARENT
1249 points to this die's parent; CHILD points to the first child of
1250 this node; and all the children of a given node are chained
1251 together via their SIBLING fields. */
1252 struct die_info *child; /* Its first child, if any. */
1253 struct die_info *sibling; /* Its next sibling, if any. */
1254 struct die_info *parent; /* Its parent, if any. */
1255
1256 /* An array of attributes, with NUM_ATTRS elements. There may be
1257 zero, but it's not common and zero-sized arrays are not
1258 sufficiently portable C. */
1259 struct attribute attrs[1];
1260 };
1261
1262 /* Get at parts of an attribute structure. */
1263
1264 #define DW_STRING(attr) ((attr)->u.str)
1265 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1266 #define DW_UNSND(attr) ((attr)->u.unsnd)
1267 #define DW_BLOCK(attr) ((attr)->u.blk)
1268 #define DW_SND(attr) ((attr)->u.snd)
1269 #define DW_ADDR(attr) ((attr)->u.addr)
1270 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1271
1272 /* Blocks are a bunch of untyped bytes. */
1273 struct dwarf_block
1274 {
1275 size_t size;
1276
1277 /* Valid only if SIZE is not zero. */
1278 const gdb_byte *data;
1279 };
1280
1281 #ifndef ATTR_ALLOC_CHUNK
1282 #define ATTR_ALLOC_CHUNK 4
1283 #endif
1284
1285 /* Allocate fields for structs, unions and enums in this size. */
1286 #ifndef DW_FIELD_ALLOC_CHUNK
1287 #define DW_FIELD_ALLOC_CHUNK 4
1288 #endif
1289
1290 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1291 but this would require a corresponding change in unpack_field_as_long
1292 and friends. */
1293 static int bits_per_byte = 8;
1294
1295 struct nextfield
1296 {
1297 struct nextfield *next;
1298 int accessibility;
1299 int virtuality;
1300 struct field field;
1301 };
1302
1303 struct nextfnfield
1304 {
1305 struct nextfnfield *next;
1306 struct fn_field fnfield;
1307 };
1308
1309 struct fnfieldlist
1310 {
1311 const char *name;
1312 int length;
1313 struct nextfnfield *head;
1314 };
1315
1316 struct typedef_field_list
1317 {
1318 struct typedef_field field;
1319 struct typedef_field_list *next;
1320 };
1321
1322 /* The routines that read and process dies for a C struct or C++ class
1323 pass lists of data member fields and lists of member function fields
1324 in an instance of a field_info structure, as defined below. */
1325 struct field_info
1326 {
1327 /* List of data member and baseclasses fields. */
1328 struct nextfield *fields, *baseclasses;
1329
1330 /* Number of fields (including baseclasses). */
1331 int nfields;
1332
1333 /* Number of baseclasses. */
1334 int nbaseclasses;
1335
1336 /* Set if the accesibility of one of the fields is not public. */
1337 int non_public_fields;
1338
1339 /* Member function fields array, entries are allocated in the order they
1340 are encountered in the object file. */
1341 struct nextfnfield *fnfields;
1342
1343 /* Member function fieldlist array, contains name of possibly overloaded
1344 member function, number of overloaded member functions and a pointer
1345 to the head of the member function field chain. */
1346 struct fnfieldlist *fnfieldlists;
1347
1348 /* Number of entries in the fnfieldlists array. */
1349 int nfnfields;
1350
1351 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1352 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1353 struct typedef_field_list *typedef_field_list;
1354 unsigned typedef_field_list_count;
1355 };
1356
1357 /* One item on the queue of compilation units to read in full symbols
1358 for. */
1359 struct dwarf2_queue_item
1360 {
1361 struct dwarf2_per_cu_data *per_cu;
1362 enum language pretend_language;
1363 struct dwarf2_queue_item *next;
1364 };
1365
1366 /* The current queue. */
1367 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1368
1369 /* Loaded secondary compilation units are kept in memory until they
1370 have not been referenced for the processing of this many
1371 compilation units. Set this to zero to disable caching. Cache
1372 sizes of up to at least twenty will improve startup time for
1373 typical inter-CU-reference binaries, at an obvious memory cost. */
1374 static int dwarf2_max_cache_age = 5;
1375 static void
1376 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1377 struct cmd_list_element *c, const char *value)
1378 {
1379 fprintf_filtered (file, _("The upper bound on the age of cached "
1380 "dwarf2 compilation units is %s.\n"),
1381 value);
1382 }
1383 \f
1384 /* local function prototypes */
1385
1386 static const char *get_section_name (const struct dwarf2_section_info *);
1387
1388 static const char *get_section_file_name (const struct dwarf2_section_info *);
1389
1390 static void dwarf2_locate_sections (bfd *, asection *, void *);
1391
1392 static void dwarf2_find_base_address (struct die_info *die,
1393 struct dwarf2_cu *cu);
1394
1395 static struct partial_symtab *create_partial_symtab
1396 (struct dwarf2_per_cu_data *per_cu, const char *name);
1397
1398 static void dwarf2_build_psymtabs_hard (struct objfile *);
1399
1400 static void scan_partial_symbols (struct partial_die_info *,
1401 CORE_ADDR *, CORE_ADDR *,
1402 int, struct dwarf2_cu *);
1403
1404 static void add_partial_symbol (struct partial_die_info *,
1405 struct dwarf2_cu *);
1406
1407 static void add_partial_namespace (struct partial_die_info *pdi,
1408 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1409 int set_addrmap, struct dwarf2_cu *cu);
1410
1411 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1412 CORE_ADDR *highpc, int set_addrmap,
1413 struct dwarf2_cu *cu);
1414
1415 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1416 struct dwarf2_cu *cu);
1417
1418 static void add_partial_subprogram (struct partial_die_info *pdi,
1419 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1420 int need_pc, struct dwarf2_cu *cu);
1421
1422 static void dwarf2_read_symtab (struct partial_symtab *,
1423 struct objfile *);
1424
1425 static void psymtab_to_symtab_1 (struct partial_symtab *);
1426
1427 static struct abbrev_info *abbrev_table_lookup_abbrev
1428 (const struct abbrev_table *, unsigned int);
1429
1430 static struct abbrev_table *abbrev_table_read_table
1431 (struct dwarf2_section_info *, sect_offset);
1432
1433 static void abbrev_table_free (struct abbrev_table *);
1434
1435 static void abbrev_table_free_cleanup (void *);
1436
1437 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1438 struct dwarf2_section_info *);
1439
1440 static void dwarf2_free_abbrev_table (void *);
1441
1442 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1443
1444 static struct partial_die_info *load_partial_dies
1445 (const struct die_reader_specs *, const gdb_byte *, int);
1446
1447 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1448 struct partial_die_info *,
1449 struct abbrev_info *,
1450 unsigned int,
1451 const gdb_byte *);
1452
1453 static struct partial_die_info *find_partial_die (sect_offset, int,
1454 struct dwarf2_cu *);
1455
1456 static void fixup_partial_die (struct partial_die_info *,
1457 struct dwarf2_cu *);
1458
1459 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1460 struct attribute *, struct attr_abbrev *,
1461 const gdb_byte *);
1462
1463 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1464
1465 static int read_1_signed_byte (bfd *, const gdb_byte *);
1466
1467 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1468
1469 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1470
1471 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1472
1473 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1474 unsigned int *);
1475
1476 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1477
1478 static LONGEST read_checked_initial_length_and_offset
1479 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1480 unsigned int *, unsigned int *);
1481
1482 static LONGEST read_offset (bfd *, const gdb_byte *,
1483 const struct comp_unit_head *,
1484 unsigned int *);
1485
1486 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1487
1488 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1489 sect_offset);
1490
1491 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1492
1493 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1494
1495 static const char *read_indirect_string (bfd *, const gdb_byte *,
1496 const struct comp_unit_head *,
1497 unsigned int *);
1498
1499 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1500
1501 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1502
1503 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1506 const gdb_byte *,
1507 unsigned int *);
1508
1509 static const char *read_str_index (const struct die_reader_specs *reader,
1510 ULONGEST str_index);
1511
1512 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1513
1514 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1515 struct dwarf2_cu *);
1516
1517 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1518 unsigned int);
1519
1520 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1521 struct dwarf2_cu *cu);
1522
1523 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1524
1525 static struct die_info *die_specification (struct die_info *die,
1526 struct dwarf2_cu **);
1527
1528 static void free_line_header (struct line_header *lh);
1529
1530 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1531 struct dwarf2_cu *cu);
1532
1533 static void dwarf_decode_lines (struct line_header *, const char *,
1534 struct dwarf2_cu *, struct partial_symtab *,
1535 CORE_ADDR, int decode_mapping);
1536
1537 static void dwarf2_start_subfile (const char *, const char *);
1538
1539 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1540 const char *, const char *,
1541 CORE_ADDR);
1542
1543 static struct symbol *new_symbol (struct die_info *, struct type *,
1544 struct dwarf2_cu *);
1545
1546 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1547 struct dwarf2_cu *, struct symbol *);
1548
1549 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1550 struct dwarf2_cu *);
1551
1552 static void dwarf2_const_value_attr (const struct attribute *attr,
1553 struct type *type,
1554 const char *name,
1555 struct obstack *obstack,
1556 struct dwarf2_cu *cu, LONGEST *value,
1557 const gdb_byte **bytes,
1558 struct dwarf2_locexpr_baton **baton);
1559
1560 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1561
1562 static int need_gnat_info (struct dwarf2_cu *);
1563
1564 static struct type *die_descriptive_type (struct die_info *,
1565 struct dwarf2_cu *);
1566
1567 static void set_descriptive_type (struct type *, struct die_info *,
1568 struct dwarf2_cu *);
1569
1570 static struct type *die_containing_type (struct die_info *,
1571 struct dwarf2_cu *);
1572
1573 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1574 struct dwarf2_cu *);
1575
1576 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1577
1578 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1579
1580 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1581
1582 static char *typename_concat (struct obstack *obs, const char *prefix,
1583 const char *suffix, int physname,
1584 struct dwarf2_cu *cu);
1585
1586 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1587
1588 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1589
1590 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1591
1592 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1593
1594 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1595
1596 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1597 struct dwarf2_cu *, struct partial_symtab *);
1598
1599 static int dwarf2_get_pc_bounds (struct die_info *,
1600 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1601 struct partial_symtab *);
1602
1603 static void get_scope_pc_bounds (struct die_info *,
1604 CORE_ADDR *, CORE_ADDR *,
1605 struct dwarf2_cu *);
1606
1607 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1608 CORE_ADDR, struct dwarf2_cu *);
1609
1610 static void dwarf2_add_field (struct field_info *, struct die_info *,
1611 struct dwarf2_cu *);
1612
1613 static void dwarf2_attach_fields_to_type (struct field_info *,
1614 struct type *, struct dwarf2_cu *);
1615
1616 static void dwarf2_add_member_fn (struct field_info *,
1617 struct die_info *, struct type *,
1618 struct dwarf2_cu *);
1619
1620 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1621 struct type *,
1622 struct dwarf2_cu *);
1623
1624 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1625
1626 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1629
1630 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1631
1632 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1633
1634 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1635
1636 static struct type *read_module_type (struct die_info *die,
1637 struct dwarf2_cu *cu);
1638
1639 static const char *namespace_name (struct die_info *die,
1640 int *is_anonymous, struct dwarf2_cu *);
1641
1642 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1643
1644 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1645
1646 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1647 struct dwarf2_cu *);
1648
1649 static struct die_info *read_die_and_siblings_1
1650 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1651 struct die_info *);
1652
1653 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1654 const gdb_byte *info_ptr,
1655 const gdb_byte **new_info_ptr,
1656 struct die_info *parent);
1657
1658 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1659 struct die_info **, const gdb_byte *,
1660 int *, int);
1661
1662 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1663 struct die_info **, const gdb_byte *,
1664 int *);
1665
1666 static void process_die (struct die_info *, struct dwarf2_cu *);
1667
1668 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1669 struct obstack *);
1670
1671 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1672
1673 static const char *dwarf2_full_name (const char *name,
1674 struct die_info *die,
1675 struct dwarf2_cu *cu);
1676
1677 static const char *dwarf2_physname (const char *name, struct die_info *die,
1678 struct dwarf2_cu *cu);
1679
1680 static struct die_info *dwarf2_extension (struct die_info *die,
1681 struct dwarf2_cu **);
1682
1683 static const char *dwarf_tag_name (unsigned int);
1684
1685 static const char *dwarf_attr_name (unsigned int);
1686
1687 static const char *dwarf_form_name (unsigned int);
1688
1689 static char *dwarf_bool_name (unsigned int);
1690
1691 static const char *dwarf_type_encoding_name (unsigned int);
1692
1693 static struct die_info *sibling_die (struct die_info *);
1694
1695 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1696
1697 static void dump_die_for_error (struct die_info *);
1698
1699 static void dump_die_1 (struct ui_file *, int level, int max_level,
1700 struct die_info *);
1701
1702 /*static*/ void dump_die (struct die_info *, int max_level);
1703
1704 static void store_in_ref_table (struct die_info *,
1705 struct dwarf2_cu *);
1706
1707 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1708
1709 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1710
1711 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1712 const struct attribute *,
1713 struct dwarf2_cu **);
1714
1715 static struct die_info *follow_die_ref (struct die_info *,
1716 const struct attribute *,
1717 struct dwarf2_cu **);
1718
1719 static struct die_info *follow_die_sig (struct die_info *,
1720 const struct attribute *,
1721 struct dwarf2_cu **);
1722
1723 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1724 struct dwarf2_cu *);
1725
1726 static struct type *get_DW_AT_signature_type (struct die_info *,
1727 const struct attribute *,
1728 struct dwarf2_cu *);
1729
1730 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1731
1732 static void read_signatured_type (struct signatured_type *);
1733
1734 /* memory allocation interface */
1735
1736 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1737
1738 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1739
1740 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1741
1742 static int attr_form_is_block (const struct attribute *);
1743
1744 static int attr_form_is_section_offset (const struct attribute *);
1745
1746 static int attr_form_is_constant (const struct attribute *);
1747
1748 static int attr_form_is_ref (const struct attribute *);
1749
1750 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1751 struct dwarf2_loclist_baton *baton,
1752 const struct attribute *attr);
1753
1754 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1755 struct symbol *sym,
1756 struct dwarf2_cu *cu,
1757 int is_block);
1758
1759 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1760 const gdb_byte *info_ptr,
1761 struct abbrev_info *abbrev);
1762
1763 static void free_stack_comp_unit (void *);
1764
1765 static hashval_t partial_die_hash (const void *item);
1766
1767 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1768
1769 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1770 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1771
1772 static void init_one_comp_unit (struct dwarf2_cu *cu,
1773 struct dwarf2_per_cu_data *per_cu);
1774
1775 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1776 struct die_info *comp_unit_die,
1777 enum language pretend_language);
1778
1779 static void free_heap_comp_unit (void *);
1780
1781 static void free_cached_comp_units (void *);
1782
1783 static void age_cached_comp_units (void);
1784
1785 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1786
1787 static struct type *set_die_type (struct die_info *, struct type *,
1788 struct dwarf2_cu *);
1789
1790 static void create_all_comp_units (struct objfile *);
1791
1792 static int create_all_type_units (struct objfile *);
1793
1794 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1795 enum language);
1796
1797 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1798 enum language);
1799
1800 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1801 enum language);
1802
1803 static void dwarf2_add_dependence (struct dwarf2_cu *,
1804 struct dwarf2_per_cu_data *);
1805
1806 static void dwarf2_mark (struct dwarf2_cu *);
1807
1808 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1809
1810 static struct type *get_die_type_at_offset (sect_offset,
1811 struct dwarf2_per_cu_data *);
1812
1813 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1814
1815 static void dwarf2_release_queue (void *dummy);
1816
1817 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1818 enum language pretend_language);
1819
1820 static void process_queue (void);
1821
1822 static void find_file_and_directory (struct die_info *die,
1823 struct dwarf2_cu *cu,
1824 const char **name, const char **comp_dir);
1825
1826 static char *file_full_name (int file, struct line_header *lh,
1827 const char *comp_dir);
1828
1829 static const gdb_byte *read_and_check_comp_unit_head
1830 (struct comp_unit_head *header,
1831 struct dwarf2_section_info *section,
1832 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1833 int is_debug_types_section);
1834
1835 static void init_cutu_and_read_dies
1836 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1837 int use_existing_cu, int keep,
1838 die_reader_func_ftype *die_reader_func, void *data);
1839
1840 static void init_cutu_and_read_dies_simple
1841 (struct dwarf2_per_cu_data *this_cu,
1842 die_reader_func_ftype *die_reader_func, void *data);
1843
1844 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1845
1846 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1847
1848 static struct dwo_unit *lookup_dwo_unit_in_dwp
1849 (struct dwp_file *dwp_file, const char *comp_dir,
1850 ULONGEST signature, int is_debug_types);
1851
1852 static struct dwp_file *get_dwp_file (void);
1853
1854 static struct dwo_unit *lookup_dwo_comp_unit
1855 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1856
1857 static struct dwo_unit *lookup_dwo_type_unit
1858 (struct signatured_type *, const char *, const char *);
1859
1860 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1861
1862 static void free_dwo_file_cleanup (void *);
1863
1864 static void process_cu_includes (void);
1865
1866 static void check_producer (struct dwarf2_cu *cu);
1867
1868 static void free_line_header_voidp (void *arg);
1869 \f
1870 /* Various complaints about symbol reading that don't abort the process. */
1871
1872 static void
1873 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1874 {
1875 complaint (&symfile_complaints,
1876 _("statement list doesn't fit in .debug_line section"));
1877 }
1878
1879 static void
1880 dwarf2_debug_line_missing_file_complaint (void)
1881 {
1882 complaint (&symfile_complaints,
1883 _(".debug_line section has line data without a file"));
1884 }
1885
1886 static void
1887 dwarf2_debug_line_missing_end_sequence_complaint (void)
1888 {
1889 complaint (&symfile_complaints,
1890 _(".debug_line section has line "
1891 "program sequence without an end"));
1892 }
1893
1894 static void
1895 dwarf2_complex_location_expr_complaint (void)
1896 {
1897 complaint (&symfile_complaints, _("location expression too complex"));
1898 }
1899
1900 static void
1901 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1902 int arg3)
1903 {
1904 complaint (&symfile_complaints,
1905 _("const value length mismatch for '%s', got %d, expected %d"),
1906 arg1, arg2, arg3);
1907 }
1908
1909 static void
1910 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1911 {
1912 complaint (&symfile_complaints,
1913 _("debug info runs off end of %s section"
1914 " [in module %s]"),
1915 get_section_name (section),
1916 get_section_file_name (section));
1917 }
1918
1919 static void
1920 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1921 {
1922 complaint (&symfile_complaints,
1923 _("macro debug info contains a "
1924 "malformed macro definition:\n`%s'"),
1925 arg1);
1926 }
1927
1928 static void
1929 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1930 {
1931 complaint (&symfile_complaints,
1932 _("invalid attribute class or form for '%s' in '%s'"),
1933 arg1, arg2);
1934 }
1935
1936 /* Hash function for line_header_hash. */
1937
1938 static hashval_t
1939 line_header_hash (const struct line_header *ofs)
1940 {
1941 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1942 }
1943
1944 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1945
1946 static hashval_t
1947 line_header_hash_voidp (const void *item)
1948 {
1949 const struct line_header *ofs = item;
1950
1951 return line_header_hash (ofs);
1952 }
1953
1954 /* Equality function for line_header_hash. */
1955
1956 static int
1957 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1958 {
1959 const struct line_header *ofs_lhs = item_lhs;
1960 const struct line_header *ofs_rhs = item_rhs;
1961
1962 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1963 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1964 }
1965
1966 \f
1967 #if WORDS_BIGENDIAN
1968
1969 /* Convert VALUE between big- and little-endian. */
1970 static offset_type
1971 byte_swap (offset_type value)
1972 {
1973 offset_type result;
1974
1975 result = (value & 0xff) << 24;
1976 result |= (value & 0xff00) << 8;
1977 result |= (value & 0xff0000) >> 8;
1978 result |= (value & 0xff000000) >> 24;
1979 return result;
1980 }
1981
1982 #define MAYBE_SWAP(V) byte_swap (V)
1983
1984 #else
1985 #define MAYBE_SWAP(V) (V)
1986 #endif /* WORDS_BIGENDIAN */
1987
1988 /* Read the given attribute value as an address, taking the attribute's
1989 form into account. */
1990
1991 static CORE_ADDR
1992 attr_value_as_address (struct attribute *attr)
1993 {
1994 CORE_ADDR addr;
1995
1996 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1997 {
1998 /* Aside from a few clearly defined exceptions, attributes that
1999 contain an address must always be in DW_FORM_addr form.
2000 Unfortunately, some compilers happen to be violating this
2001 requirement by encoding addresses using other forms, such
2002 as DW_FORM_data4 for example. For those broken compilers,
2003 we try to do our best, without any guarantee of success,
2004 to interpret the address correctly. It would also be nice
2005 to generate a complaint, but that would require us to maintain
2006 a list of legitimate cases where a non-address form is allowed,
2007 as well as update callers to pass in at least the CU's DWARF
2008 version. This is more overhead than what we're willing to
2009 expand for a pretty rare case. */
2010 addr = DW_UNSND (attr);
2011 }
2012 else
2013 addr = DW_ADDR (attr);
2014
2015 return addr;
2016 }
2017
2018 /* The suffix for an index file. */
2019 #define INDEX_SUFFIX ".gdb-index"
2020
2021 /* Try to locate the sections we need for DWARF 2 debugging
2022 information and return true if we have enough to do something.
2023 NAMES points to the dwarf2 section names, or is NULL if the standard
2024 ELF names are used. */
2025
2026 int
2027 dwarf2_has_info (struct objfile *objfile,
2028 const struct dwarf2_debug_sections *names)
2029 {
2030 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2031 if (!dwarf2_per_objfile)
2032 {
2033 /* Initialize per-objfile state. */
2034 struct dwarf2_per_objfile *data
2035 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2036
2037 memset (data, 0, sizeof (*data));
2038 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2039 dwarf2_per_objfile = data;
2040
2041 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2042 (void *) names);
2043 dwarf2_per_objfile->objfile = objfile;
2044 }
2045 return (!dwarf2_per_objfile->info.is_virtual
2046 && dwarf2_per_objfile->info.s.asection != NULL
2047 && !dwarf2_per_objfile->abbrev.is_virtual
2048 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2049 }
2050
2051 /* Return the containing section of virtual section SECTION. */
2052
2053 static struct dwarf2_section_info *
2054 get_containing_section (const struct dwarf2_section_info *section)
2055 {
2056 gdb_assert (section->is_virtual);
2057 return section->s.containing_section;
2058 }
2059
2060 /* Return the bfd owner of SECTION. */
2061
2062 static struct bfd *
2063 get_section_bfd_owner (const struct dwarf2_section_info *section)
2064 {
2065 if (section->is_virtual)
2066 {
2067 section = get_containing_section (section);
2068 gdb_assert (!section->is_virtual);
2069 }
2070 return section->s.asection->owner;
2071 }
2072
2073 /* Return the bfd section of SECTION.
2074 Returns NULL if the section is not present. */
2075
2076 static asection *
2077 get_section_bfd_section (const struct dwarf2_section_info *section)
2078 {
2079 if (section->is_virtual)
2080 {
2081 section = get_containing_section (section);
2082 gdb_assert (!section->is_virtual);
2083 }
2084 return section->s.asection;
2085 }
2086
2087 /* Return the name of SECTION. */
2088
2089 static const char *
2090 get_section_name (const struct dwarf2_section_info *section)
2091 {
2092 asection *sectp = get_section_bfd_section (section);
2093
2094 gdb_assert (sectp != NULL);
2095 return bfd_section_name (get_section_bfd_owner (section), sectp);
2096 }
2097
2098 /* Return the name of the file SECTION is in. */
2099
2100 static const char *
2101 get_section_file_name (const struct dwarf2_section_info *section)
2102 {
2103 bfd *abfd = get_section_bfd_owner (section);
2104
2105 return bfd_get_filename (abfd);
2106 }
2107
2108 /* Return the id of SECTION.
2109 Returns 0 if SECTION doesn't exist. */
2110
2111 static int
2112 get_section_id (const struct dwarf2_section_info *section)
2113 {
2114 asection *sectp = get_section_bfd_section (section);
2115
2116 if (sectp == NULL)
2117 return 0;
2118 return sectp->id;
2119 }
2120
2121 /* Return the flags of SECTION.
2122 SECTION (or containing section if this is a virtual section) must exist. */
2123
2124 static int
2125 get_section_flags (const struct dwarf2_section_info *section)
2126 {
2127 asection *sectp = get_section_bfd_section (section);
2128
2129 gdb_assert (sectp != NULL);
2130 return bfd_get_section_flags (sectp->owner, sectp);
2131 }
2132
2133 /* When loading sections, we look either for uncompressed section or for
2134 compressed section names. */
2135
2136 static int
2137 section_is_p (const char *section_name,
2138 const struct dwarf2_section_names *names)
2139 {
2140 if (names->normal != NULL
2141 && strcmp (section_name, names->normal) == 0)
2142 return 1;
2143 if (names->compressed != NULL
2144 && strcmp (section_name, names->compressed) == 0)
2145 return 1;
2146 return 0;
2147 }
2148
2149 /* This function is mapped across the sections and remembers the
2150 offset and size of each of the debugging sections we are interested
2151 in. */
2152
2153 static void
2154 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2155 {
2156 const struct dwarf2_debug_sections *names;
2157 flagword aflag = bfd_get_section_flags (abfd, sectp);
2158
2159 if (vnames == NULL)
2160 names = &dwarf2_elf_names;
2161 else
2162 names = (const struct dwarf2_debug_sections *) vnames;
2163
2164 if ((aflag & SEC_HAS_CONTENTS) == 0)
2165 {
2166 }
2167 else if (section_is_p (sectp->name, &names->info))
2168 {
2169 dwarf2_per_objfile->info.s.asection = sectp;
2170 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2171 }
2172 else if (section_is_p (sectp->name, &names->abbrev))
2173 {
2174 dwarf2_per_objfile->abbrev.s.asection = sectp;
2175 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2176 }
2177 else if (section_is_p (sectp->name, &names->line))
2178 {
2179 dwarf2_per_objfile->line.s.asection = sectp;
2180 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2181 }
2182 else if (section_is_p (sectp->name, &names->loc))
2183 {
2184 dwarf2_per_objfile->loc.s.asection = sectp;
2185 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2186 }
2187 else if (section_is_p (sectp->name, &names->macinfo))
2188 {
2189 dwarf2_per_objfile->macinfo.s.asection = sectp;
2190 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2191 }
2192 else if (section_is_p (sectp->name, &names->macro))
2193 {
2194 dwarf2_per_objfile->macro.s.asection = sectp;
2195 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2196 }
2197 else if (section_is_p (sectp->name, &names->str))
2198 {
2199 dwarf2_per_objfile->str.s.asection = sectp;
2200 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2201 }
2202 else if (section_is_p (sectp->name, &names->addr))
2203 {
2204 dwarf2_per_objfile->addr.s.asection = sectp;
2205 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2206 }
2207 else if (section_is_p (sectp->name, &names->frame))
2208 {
2209 dwarf2_per_objfile->frame.s.asection = sectp;
2210 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2211 }
2212 else if (section_is_p (sectp->name, &names->eh_frame))
2213 {
2214 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2215 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2216 }
2217 else if (section_is_p (sectp->name, &names->ranges))
2218 {
2219 dwarf2_per_objfile->ranges.s.asection = sectp;
2220 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2221 }
2222 else if (section_is_p (sectp->name, &names->types))
2223 {
2224 struct dwarf2_section_info type_section;
2225
2226 memset (&type_section, 0, sizeof (type_section));
2227 type_section.s.asection = sectp;
2228 type_section.size = bfd_get_section_size (sectp);
2229
2230 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2231 &type_section);
2232 }
2233 else if (section_is_p (sectp->name, &names->gdb_index))
2234 {
2235 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2236 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2237 }
2238
2239 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2240 && bfd_section_vma (abfd, sectp) == 0)
2241 dwarf2_per_objfile->has_section_at_zero = 1;
2242 }
2243
2244 /* A helper function that decides whether a section is empty,
2245 or not present. */
2246
2247 static int
2248 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2249 {
2250 if (section->is_virtual)
2251 return section->size == 0;
2252 return section->s.asection == NULL || section->size == 0;
2253 }
2254
2255 /* Read the contents of the section INFO.
2256 OBJFILE is the main object file, but not necessarily the file where
2257 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2258 of the DWO file.
2259 If the section is compressed, uncompress it before returning. */
2260
2261 static void
2262 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2263 {
2264 asection *sectp;
2265 bfd *abfd;
2266 gdb_byte *buf, *retbuf;
2267
2268 if (info->readin)
2269 return;
2270 info->buffer = NULL;
2271 info->readin = 1;
2272
2273 if (dwarf2_section_empty_p (info))
2274 return;
2275
2276 sectp = get_section_bfd_section (info);
2277
2278 /* If this is a virtual section we need to read in the real one first. */
2279 if (info->is_virtual)
2280 {
2281 struct dwarf2_section_info *containing_section =
2282 get_containing_section (info);
2283
2284 gdb_assert (sectp != NULL);
2285 if ((sectp->flags & SEC_RELOC) != 0)
2286 {
2287 error (_("Dwarf Error: DWP format V2 with relocations is not"
2288 " supported in section %s [in module %s]"),
2289 get_section_name (info), get_section_file_name (info));
2290 }
2291 dwarf2_read_section (objfile, containing_section);
2292 /* Other code should have already caught virtual sections that don't
2293 fit. */
2294 gdb_assert (info->virtual_offset + info->size
2295 <= containing_section->size);
2296 /* If the real section is empty or there was a problem reading the
2297 section we shouldn't get here. */
2298 gdb_assert (containing_section->buffer != NULL);
2299 info->buffer = containing_section->buffer + info->virtual_offset;
2300 return;
2301 }
2302
2303 /* If the section has relocations, we must read it ourselves.
2304 Otherwise we attach it to the BFD. */
2305 if ((sectp->flags & SEC_RELOC) == 0)
2306 {
2307 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2308 return;
2309 }
2310
2311 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2312 info->buffer = buf;
2313
2314 /* When debugging .o files, we may need to apply relocations; see
2315 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2316 We never compress sections in .o files, so we only need to
2317 try this when the section is not compressed. */
2318 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2319 if (retbuf != NULL)
2320 {
2321 info->buffer = retbuf;
2322 return;
2323 }
2324
2325 abfd = get_section_bfd_owner (info);
2326 gdb_assert (abfd != NULL);
2327
2328 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2329 || bfd_bread (buf, info->size, abfd) != info->size)
2330 {
2331 error (_("Dwarf Error: Can't read DWARF data"
2332 " in section %s [in module %s]"),
2333 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2334 }
2335 }
2336
2337 /* A helper function that returns the size of a section in a safe way.
2338 If you are positive that the section has been read before using the
2339 size, then it is safe to refer to the dwarf2_section_info object's
2340 "size" field directly. In other cases, you must call this
2341 function, because for compressed sections the size field is not set
2342 correctly until the section has been read. */
2343
2344 static bfd_size_type
2345 dwarf2_section_size (struct objfile *objfile,
2346 struct dwarf2_section_info *info)
2347 {
2348 if (!info->readin)
2349 dwarf2_read_section (objfile, info);
2350 return info->size;
2351 }
2352
2353 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2354 SECTION_NAME. */
2355
2356 void
2357 dwarf2_get_section_info (struct objfile *objfile,
2358 enum dwarf2_section_enum sect,
2359 asection **sectp, const gdb_byte **bufp,
2360 bfd_size_type *sizep)
2361 {
2362 struct dwarf2_per_objfile *data
2363 = objfile_data (objfile, dwarf2_objfile_data_key);
2364 struct dwarf2_section_info *info;
2365
2366 /* We may see an objfile without any DWARF, in which case we just
2367 return nothing. */
2368 if (data == NULL)
2369 {
2370 *sectp = NULL;
2371 *bufp = NULL;
2372 *sizep = 0;
2373 return;
2374 }
2375 switch (sect)
2376 {
2377 case DWARF2_DEBUG_FRAME:
2378 info = &data->frame;
2379 break;
2380 case DWARF2_EH_FRAME:
2381 info = &data->eh_frame;
2382 break;
2383 default:
2384 gdb_assert_not_reached ("unexpected section");
2385 }
2386
2387 dwarf2_read_section (objfile, info);
2388
2389 *sectp = get_section_bfd_section (info);
2390 *bufp = info->buffer;
2391 *sizep = info->size;
2392 }
2393
2394 /* A helper function to find the sections for a .dwz file. */
2395
2396 static void
2397 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2398 {
2399 struct dwz_file *dwz_file = arg;
2400
2401 /* Note that we only support the standard ELF names, because .dwz
2402 is ELF-only (at the time of writing). */
2403 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2404 {
2405 dwz_file->abbrev.s.asection = sectp;
2406 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2407 }
2408 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2409 {
2410 dwz_file->info.s.asection = sectp;
2411 dwz_file->info.size = bfd_get_section_size (sectp);
2412 }
2413 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2414 {
2415 dwz_file->str.s.asection = sectp;
2416 dwz_file->str.size = bfd_get_section_size (sectp);
2417 }
2418 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2419 {
2420 dwz_file->line.s.asection = sectp;
2421 dwz_file->line.size = bfd_get_section_size (sectp);
2422 }
2423 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2424 {
2425 dwz_file->macro.s.asection = sectp;
2426 dwz_file->macro.size = bfd_get_section_size (sectp);
2427 }
2428 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2429 {
2430 dwz_file->gdb_index.s.asection = sectp;
2431 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2432 }
2433 }
2434
2435 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2436 there is no .gnu_debugaltlink section in the file. Error if there
2437 is such a section but the file cannot be found. */
2438
2439 static struct dwz_file *
2440 dwarf2_get_dwz_file (void)
2441 {
2442 bfd *dwz_bfd;
2443 char *data;
2444 struct cleanup *cleanup;
2445 const char *filename;
2446 struct dwz_file *result;
2447 bfd_size_type buildid_len_arg;
2448 size_t buildid_len;
2449 bfd_byte *buildid;
2450
2451 if (dwarf2_per_objfile->dwz_file != NULL)
2452 return dwarf2_per_objfile->dwz_file;
2453
2454 bfd_set_error (bfd_error_no_error);
2455 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2456 &buildid_len_arg, &buildid);
2457 if (data == NULL)
2458 {
2459 if (bfd_get_error () == bfd_error_no_error)
2460 return NULL;
2461 error (_("could not read '.gnu_debugaltlink' section: %s"),
2462 bfd_errmsg (bfd_get_error ()));
2463 }
2464 cleanup = make_cleanup (xfree, data);
2465 make_cleanup (xfree, buildid);
2466
2467 buildid_len = (size_t) buildid_len_arg;
2468
2469 filename = (const char *) data;
2470 if (!IS_ABSOLUTE_PATH (filename))
2471 {
2472 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2473 char *rel;
2474
2475 make_cleanup (xfree, abs);
2476 abs = ldirname (abs);
2477 make_cleanup (xfree, abs);
2478
2479 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2480 make_cleanup (xfree, rel);
2481 filename = rel;
2482 }
2483
2484 /* First try the file name given in the section. If that doesn't
2485 work, try to use the build-id instead. */
2486 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2487 if (dwz_bfd != NULL)
2488 {
2489 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2490 {
2491 gdb_bfd_unref (dwz_bfd);
2492 dwz_bfd = NULL;
2493 }
2494 }
2495
2496 if (dwz_bfd == NULL)
2497 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2498
2499 if (dwz_bfd == NULL)
2500 error (_("could not find '.gnu_debugaltlink' file for %s"),
2501 objfile_name (dwarf2_per_objfile->objfile));
2502
2503 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2504 struct dwz_file);
2505 result->dwz_bfd = dwz_bfd;
2506
2507 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2508
2509 do_cleanups (cleanup);
2510
2511 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2512 dwarf2_per_objfile->dwz_file = result;
2513 return result;
2514 }
2515 \f
2516 /* DWARF quick_symbols_functions support. */
2517
2518 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2519 unique line tables, so we maintain a separate table of all .debug_line
2520 derived entries to support the sharing.
2521 All the quick functions need is the list of file names. We discard the
2522 line_header when we're done and don't need to record it here. */
2523 struct quick_file_names
2524 {
2525 /* The data used to construct the hash key. */
2526 struct stmt_list_hash hash;
2527
2528 /* The number of entries in file_names, real_names. */
2529 unsigned int num_file_names;
2530
2531 /* The file names from the line table, after being run through
2532 file_full_name. */
2533 const char **file_names;
2534
2535 /* The file names from the line table after being run through
2536 gdb_realpath. These are computed lazily. */
2537 const char **real_names;
2538 };
2539
2540 /* When using the index (and thus not using psymtabs), each CU has an
2541 object of this type. This is used to hold information needed by
2542 the various "quick" methods. */
2543 struct dwarf2_per_cu_quick_data
2544 {
2545 /* The file table. This can be NULL if there was no file table
2546 or it's currently not read in.
2547 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2548 struct quick_file_names *file_names;
2549
2550 /* The corresponding symbol table. This is NULL if symbols for this
2551 CU have not yet been read. */
2552 struct compunit_symtab *compunit_symtab;
2553
2554 /* A temporary mark bit used when iterating over all CUs in
2555 expand_symtabs_matching. */
2556 unsigned int mark : 1;
2557
2558 /* True if we've tried to read the file table and found there isn't one.
2559 There will be no point in trying to read it again next time. */
2560 unsigned int no_file_data : 1;
2561 };
2562
2563 /* Utility hash function for a stmt_list_hash. */
2564
2565 static hashval_t
2566 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2567 {
2568 hashval_t v = 0;
2569
2570 if (stmt_list_hash->dwo_unit != NULL)
2571 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2572 v += stmt_list_hash->line_offset.sect_off;
2573 return v;
2574 }
2575
2576 /* Utility equality function for a stmt_list_hash. */
2577
2578 static int
2579 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2580 const struct stmt_list_hash *rhs)
2581 {
2582 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2583 return 0;
2584 if (lhs->dwo_unit != NULL
2585 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2586 return 0;
2587
2588 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2589 }
2590
2591 /* Hash function for a quick_file_names. */
2592
2593 static hashval_t
2594 hash_file_name_entry (const void *e)
2595 {
2596 const struct quick_file_names *file_data = e;
2597
2598 return hash_stmt_list_entry (&file_data->hash);
2599 }
2600
2601 /* Equality function for a quick_file_names. */
2602
2603 static int
2604 eq_file_name_entry (const void *a, const void *b)
2605 {
2606 const struct quick_file_names *ea = a;
2607 const struct quick_file_names *eb = b;
2608
2609 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2610 }
2611
2612 /* Delete function for a quick_file_names. */
2613
2614 static void
2615 delete_file_name_entry (void *e)
2616 {
2617 struct quick_file_names *file_data = e;
2618 int i;
2619
2620 for (i = 0; i < file_data->num_file_names; ++i)
2621 {
2622 xfree ((void*) file_data->file_names[i]);
2623 if (file_data->real_names)
2624 xfree ((void*) file_data->real_names[i]);
2625 }
2626
2627 /* The space for the struct itself lives on objfile_obstack,
2628 so we don't free it here. */
2629 }
2630
2631 /* Create a quick_file_names hash table. */
2632
2633 static htab_t
2634 create_quick_file_names_table (unsigned int nr_initial_entries)
2635 {
2636 return htab_create_alloc (nr_initial_entries,
2637 hash_file_name_entry, eq_file_name_entry,
2638 delete_file_name_entry, xcalloc, xfree);
2639 }
2640
2641 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2642 have to be created afterwards. You should call age_cached_comp_units after
2643 processing PER_CU->CU. dw2_setup must have been already called. */
2644
2645 static void
2646 load_cu (struct dwarf2_per_cu_data *per_cu)
2647 {
2648 if (per_cu->is_debug_types)
2649 load_full_type_unit (per_cu);
2650 else
2651 load_full_comp_unit (per_cu, language_minimal);
2652
2653 gdb_assert (per_cu->cu != NULL);
2654
2655 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2656 }
2657
2658 /* Read in the symbols for PER_CU. */
2659
2660 static void
2661 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2662 {
2663 struct cleanup *back_to;
2664
2665 /* Skip type_unit_groups, reading the type units they contain
2666 is handled elsewhere. */
2667 if (IS_TYPE_UNIT_GROUP (per_cu))
2668 return;
2669
2670 back_to = make_cleanup (dwarf2_release_queue, NULL);
2671
2672 if (dwarf2_per_objfile->using_index
2673 ? per_cu->v.quick->compunit_symtab == NULL
2674 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2675 {
2676 queue_comp_unit (per_cu, language_minimal);
2677 load_cu (per_cu);
2678
2679 /* If we just loaded a CU from a DWO, and we're working with an index
2680 that may badly handle TUs, load all the TUs in that DWO as well.
2681 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2682 if (!per_cu->is_debug_types
2683 && per_cu->cu->dwo_unit != NULL
2684 && dwarf2_per_objfile->index_table != NULL
2685 && dwarf2_per_objfile->index_table->version <= 7
2686 /* DWP files aren't supported yet. */
2687 && get_dwp_file () == NULL)
2688 queue_and_load_all_dwo_tus (per_cu);
2689 }
2690
2691 process_queue ();
2692
2693 /* Age the cache, releasing compilation units that have not
2694 been used recently. */
2695 age_cached_comp_units ();
2696
2697 do_cleanups (back_to);
2698 }
2699
2700 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2701 the objfile from which this CU came. Returns the resulting symbol
2702 table. */
2703
2704 static struct compunit_symtab *
2705 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2706 {
2707 gdb_assert (dwarf2_per_objfile->using_index);
2708 if (!per_cu->v.quick->compunit_symtab)
2709 {
2710 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2711 increment_reading_symtab ();
2712 dw2_do_instantiate_symtab (per_cu);
2713 process_cu_includes ();
2714 do_cleanups (back_to);
2715 }
2716
2717 return per_cu->v.quick->compunit_symtab;
2718 }
2719
2720 /* Return the CU/TU given its index.
2721
2722 This is intended for loops like:
2723
2724 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2725 + dwarf2_per_objfile->n_type_units); ++i)
2726 {
2727 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2728
2729 ...;
2730 }
2731 */
2732
2733 static struct dwarf2_per_cu_data *
2734 dw2_get_cutu (int index)
2735 {
2736 if (index >= dwarf2_per_objfile->n_comp_units)
2737 {
2738 index -= dwarf2_per_objfile->n_comp_units;
2739 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2740 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2741 }
2742
2743 return dwarf2_per_objfile->all_comp_units[index];
2744 }
2745
2746 /* Return the CU given its index.
2747 This differs from dw2_get_cutu in that it's for when you know INDEX
2748 refers to a CU. */
2749
2750 static struct dwarf2_per_cu_data *
2751 dw2_get_cu (int index)
2752 {
2753 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2754
2755 return dwarf2_per_objfile->all_comp_units[index];
2756 }
2757
2758 /* A helper for create_cus_from_index that handles a given list of
2759 CUs. */
2760
2761 static void
2762 create_cus_from_index_list (struct objfile *objfile,
2763 const gdb_byte *cu_list, offset_type n_elements,
2764 struct dwarf2_section_info *section,
2765 int is_dwz,
2766 int base_offset)
2767 {
2768 offset_type i;
2769
2770 for (i = 0; i < n_elements; i += 2)
2771 {
2772 struct dwarf2_per_cu_data *the_cu;
2773 ULONGEST offset, length;
2774
2775 gdb_static_assert (sizeof (ULONGEST) >= 8);
2776 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2777 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2778 cu_list += 2 * 8;
2779
2780 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2781 struct dwarf2_per_cu_data);
2782 the_cu->offset.sect_off = offset;
2783 the_cu->length = length;
2784 the_cu->objfile = objfile;
2785 the_cu->section = section;
2786 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2787 struct dwarf2_per_cu_quick_data);
2788 the_cu->is_dwz = is_dwz;
2789 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2790 }
2791 }
2792
2793 /* Read the CU list from the mapped index, and use it to create all
2794 the CU objects for this objfile. */
2795
2796 static void
2797 create_cus_from_index (struct objfile *objfile,
2798 const gdb_byte *cu_list, offset_type cu_list_elements,
2799 const gdb_byte *dwz_list, offset_type dwz_elements)
2800 {
2801 struct dwz_file *dwz;
2802
2803 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2804 dwarf2_per_objfile->all_comp_units
2805 = obstack_alloc (&objfile->objfile_obstack,
2806 dwarf2_per_objfile->n_comp_units
2807 * sizeof (struct dwarf2_per_cu_data *));
2808
2809 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2810 &dwarf2_per_objfile->info, 0, 0);
2811
2812 if (dwz_elements == 0)
2813 return;
2814
2815 dwz = dwarf2_get_dwz_file ();
2816 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2817 cu_list_elements / 2);
2818 }
2819
2820 /* Create the signatured type hash table from the index. */
2821
2822 static void
2823 create_signatured_type_table_from_index (struct objfile *objfile,
2824 struct dwarf2_section_info *section,
2825 const gdb_byte *bytes,
2826 offset_type elements)
2827 {
2828 offset_type i;
2829 htab_t sig_types_hash;
2830
2831 dwarf2_per_objfile->n_type_units
2832 = dwarf2_per_objfile->n_allocated_type_units
2833 = elements / 3;
2834 dwarf2_per_objfile->all_type_units
2835 = xmalloc (dwarf2_per_objfile->n_type_units
2836 * sizeof (struct signatured_type *));
2837
2838 sig_types_hash = allocate_signatured_type_table (objfile);
2839
2840 for (i = 0; i < elements; i += 3)
2841 {
2842 struct signatured_type *sig_type;
2843 ULONGEST offset, type_offset_in_tu, signature;
2844 void **slot;
2845
2846 gdb_static_assert (sizeof (ULONGEST) >= 8);
2847 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2848 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2849 BFD_ENDIAN_LITTLE);
2850 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2851 bytes += 3 * 8;
2852
2853 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2854 struct signatured_type);
2855 sig_type->signature = signature;
2856 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2857 sig_type->per_cu.is_debug_types = 1;
2858 sig_type->per_cu.section = section;
2859 sig_type->per_cu.offset.sect_off = offset;
2860 sig_type->per_cu.objfile = objfile;
2861 sig_type->per_cu.v.quick
2862 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2863 struct dwarf2_per_cu_quick_data);
2864
2865 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2866 *slot = sig_type;
2867
2868 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2869 }
2870
2871 dwarf2_per_objfile->signatured_types = sig_types_hash;
2872 }
2873
2874 /* Read the address map data from the mapped index, and use it to
2875 populate the objfile's psymtabs_addrmap. */
2876
2877 static void
2878 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2879 {
2880 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2881 const gdb_byte *iter, *end;
2882 struct obstack temp_obstack;
2883 struct addrmap *mutable_map;
2884 struct cleanup *cleanup;
2885 CORE_ADDR baseaddr;
2886
2887 obstack_init (&temp_obstack);
2888 cleanup = make_cleanup_obstack_free (&temp_obstack);
2889 mutable_map = addrmap_create_mutable (&temp_obstack);
2890
2891 iter = index->address_table;
2892 end = iter + index->address_table_size;
2893
2894 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2895
2896 while (iter < end)
2897 {
2898 ULONGEST hi, lo, cu_index;
2899 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2900 iter += 8;
2901 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2904 iter += 4;
2905
2906 if (lo > hi)
2907 {
2908 complaint (&symfile_complaints,
2909 _(".gdb_index address table has invalid range (%s - %s)"),
2910 hex_string (lo), hex_string (hi));
2911 continue;
2912 }
2913
2914 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2915 {
2916 complaint (&symfile_complaints,
2917 _(".gdb_index address table has invalid CU number %u"),
2918 (unsigned) cu_index);
2919 continue;
2920 }
2921
2922 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2923 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2924 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2925 }
2926
2927 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2928 &objfile->objfile_obstack);
2929 do_cleanups (cleanup);
2930 }
2931
2932 /* The hash function for strings in the mapped index. This is the same as
2933 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2934 implementation. This is necessary because the hash function is tied to the
2935 format of the mapped index file. The hash values do not have to match with
2936 SYMBOL_HASH_NEXT.
2937
2938 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2939
2940 static hashval_t
2941 mapped_index_string_hash (int index_version, const void *p)
2942 {
2943 const unsigned char *str = (const unsigned char *) p;
2944 hashval_t r = 0;
2945 unsigned char c;
2946
2947 while ((c = *str++) != 0)
2948 {
2949 if (index_version >= 5)
2950 c = tolower (c);
2951 r = r * 67 + c - 113;
2952 }
2953
2954 return r;
2955 }
2956
2957 /* Find a slot in the mapped index INDEX for the object named NAME.
2958 If NAME is found, set *VEC_OUT to point to the CU vector in the
2959 constant pool and return 1. If NAME cannot be found, return 0. */
2960
2961 static int
2962 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2963 offset_type **vec_out)
2964 {
2965 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2966 offset_type hash;
2967 offset_type slot, step;
2968 int (*cmp) (const char *, const char *);
2969
2970 if (current_language->la_language == language_cplus
2971 || current_language->la_language == language_java
2972 || current_language->la_language == language_fortran)
2973 {
2974 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2975 not contain any. */
2976
2977 if (strchr (name, '(') != NULL)
2978 {
2979 char *without_params = cp_remove_params (name);
2980
2981 if (without_params != NULL)
2982 {
2983 make_cleanup (xfree, without_params);
2984 name = without_params;
2985 }
2986 }
2987 }
2988
2989 /* Index version 4 did not support case insensitive searches. But the
2990 indices for case insensitive languages are built in lowercase, therefore
2991 simulate our NAME being searched is also lowercased. */
2992 hash = mapped_index_string_hash ((index->version == 4
2993 && case_sensitivity == case_sensitive_off
2994 ? 5 : index->version),
2995 name);
2996
2997 slot = hash & (index->symbol_table_slots - 1);
2998 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2999 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3000
3001 for (;;)
3002 {
3003 /* Convert a slot number to an offset into the table. */
3004 offset_type i = 2 * slot;
3005 const char *str;
3006 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3007 {
3008 do_cleanups (back_to);
3009 return 0;
3010 }
3011
3012 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3013 if (!cmp (name, str))
3014 {
3015 *vec_out = (offset_type *) (index->constant_pool
3016 + MAYBE_SWAP (index->symbol_table[i + 1]));
3017 do_cleanups (back_to);
3018 return 1;
3019 }
3020
3021 slot = (slot + step) & (index->symbol_table_slots - 1);
3022 }
3023 }
3024
3025 /* A helper function that reads the .gdb_index from SECTION and fills
3026 in MAP. FILENAME is the name of the file containing the section;
3027 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3028 ok to use deprecated sections.
3029
3030 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3031 out parameters that are filled in with information about the CU and
3032 TU lists in the section.
3033
3034 Returns 1 if all went well, 0 otherwise. */
3035
3036 static int
3037 read_index_from_section (struct objfile *objfile,
3038 const char *filename,
3039 int deprecated_ok,
3040 struct dwarf2_section_info *section,
3041 struct mapped_index *map,
3042 const gdb_byte **cu_list,
3043 offset_type *cu_list_elements,
3044 const gdb_byte **types_list,
3045 offset_type *types_list_elements)
3046 {
3047 const gdb_byte *addr;
3048 offset_type version;
3049 offset_type *metadata;
3050 int i;
3051
3052 if (dwarf2_section_empty_p (section))
3053 return 0;
3054
3055 /* Older elfutils strip versions could keep the section in the main
3056 executable while splitting it for the separate debug info file. */
3057 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3058 return 0;
3059
3060 dwarf2_read_section (objfile, section);
3061
3062 addr = section->buffer;
3063 /* Version check. */
3064 version = MAYBE_SWAP (*(offset_type *) addr);
3065 /* Versions earlier than 3 emitted every copy of a psymbol. This
3066 causes the index to behave very poorly for certain requests. Version 3
3067 contained incomplete addrmap. So, it seems better to just ignore such
3068 indices. */
3069 if (version < 4)
3070 {
3071 static int warning_printed = 0;
3072 if (!warning_printed)
3073 {
3074 warning (_("Skipping obsolete .gdb_index section in %s."),
3075 filename);
3076 warning_printed = 1;
3077 }
3078 return 0;
3079 }
3080 /* Index version 4 uses a different hash function than index version
3081 5 and later.
3082
3083 Versions earlier than 6 did not emit psymbols for inlined
3084 functions. Using these files will cause GDB not to be able to
3085 set breakpoints on inlined functions by name, so we ignore these
3086 indices unless the user has done
3087 "set use-deprecated-index-sections on". */
3088 if (version < 6 && !deprecated_ok)
3089 {
3090 static int warning_printed = 0;
3091 if (!warning_printed)
3092 {
3093 warning (_("\
3094 Skipping deprecated .gdb_index section in %s.\n\
3095 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3096 to use the section anyway."),
3097 filename);
3098 warning_printed = 1;
3099 }
3100 return 0;
3101 }
3102 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3103 of the TU (for symbols coming from TUs),
3104 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3105 Plus gold-generated indices can have duplicate entries for global symbols,
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3107 These are just performance bugs, and we can't distinguish gdb-generated
3108 indices from gold-generated ones, so issue no warning here. */
3109
3110 /* Indexes with higher version than the one supported by GDB may be no
3111 longer backward compatible. */
3112 if (version > 8)
3113 return 0;
3114
3115 map->version = version;
3116 map->total_size = section->size;
3117
3118 metadata = (offset_type *) (addr + sizeof (offset_type));
3119
3120 i = 0;
3121 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3122 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3123 / 8);
3124 ++i;
3125
3126 *types_list = addr + MAYBE_SWAP (metadata[i]);
3127 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3128 - MAYBE_SWAP (metadata[i]))
3129 / 8);
3130 ++i;
3131
3132 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3133 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3134 - MAYBE_SWAP (metadata[i]));
3135 ++i;
3136
3137 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3138 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3139 - MAYBE_SWAP (metadata[i]))
3140 / (2 * sizeof (offset_type)));
3141 ++i;
3142
3143 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3144
3145 return 1;
3146 }
3147
3148
3149 /* Read the index file. If everything went ok, initialize the "quick"
3150 elements of all the CUs and return 1. Otherwise, return 0. */
3151
3152 static int
3153 dwarf2_read_index (struct objfile *objfile)
3154 {
3155 struct mapped_index local_map, *map;
3156 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3157 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3158 struct dwz_file *dwz;
3159
3160 if (!read_index_from_section (objfile, objfile_name (objfile),
3161 use_deprecated_index_sections,
3162 &dwarf2_per_objfile->gdb_index, &local_map,
3163 &cu_list, &cu_list_elements,
3164 &types_list, &types_list_elements))
3165 return 0;
3166
3167 /* Don't use the index if it's empty. */
3168 if (local_map.symbol_table_slots == 0)
3169 return 0;
3170
3171 /* If there is a .dwz file, read it so we can get its CU list as
3172 well. */
3173 dwz = dwarf2_get_dwz_file ();
3174 if (dwz != NULL)
3175 {
3176 struct mapped_index dwz_map;
3177 const gdb_byte *dwz_types_ignore;
3178 offset_type dwz_types_elements_ignore;
3179
3180 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3181 1,
3182 &dwz->gdb_index, &dwz_map,
3183 &dwz_list, &dwz_list_elements,
3184 &dwz_types_ignore,
3185 &dwz_types_elements_ignore))
3186 {
3187 warning (_("could not read '.gdb_index' section from %s; skipping"),
3188 bfd_get_filename (dwz->dwz_bfd));
3189 return 0;
3190 }
3191 }
3192
3193 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3194 dwz_list_elements);
3195
3196 if (types_list_elements)
3197 {
3198 struct dwarf2_section_info *section;
3199
3200 /* We can only handle a single .debug_types when we have an
3201 index. */
3202 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3203 return 0;
3204
3205 section = VEC_index (dwarf2_section_info_def,
3206 dwarf2_per_objfile->types, 0);
3207
3208 create_signatured_type_table_from_index (objfile, section, types_list,
3209 types_list_elements);
3210 }
3211
3212 create_addrmap_from_index (objfile, &local_map);
3213
3214 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3215 *map = local_map;
3216
3217 dwarf2_per_objfile->index_table = map;
3218 dwarf2_per_objfile->using_index = 1;
3219 dwarf2_per_objfile->quick_file_names_table =
3220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3221
3222 return 1;
3223 }
3224
3225 /* A helper for the "quick" functions which sets the global
3226 dwarf2_per_objfile according to OBJFILE. */
3227
3228 static void
3229 dw2_setup (struct objfile *objfile)
3230 {
3231 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3232 gdb_assert (dwarf2_per_objfile);
3233 }
3234
3235 /* die_reader_func for dw2_get_file_names. */
3236
3237 static void
3238 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3239 const gdb_byte *info_ptr,
3240 struct die_info *comp_unit_die,
3241 int has_children,
3242 void *data)
3243 {
3244 struct dwarf2_cu *cu = reader->cu;
3245 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3246 struct objfile *objfile = dwarf2_per_objfile->objfile;
3247 struct dwarf2_per_cu_data *lh_cu;
3248 struct line_header *lh;
3249 struct attribute *attr;
3250 int i;
3251 const char *name, *comp_dir;
3252 void **slot;
3253 struct quick_file_names *qfn;
3254 unsigned int line_offset;
3255
3256 gdb_assert (! this_cu->is_debug_types);
3257
3258 /* Our callers never want to match partial units -- instead they
3259 will match the enclosing full CU. */
3260 if (comp_unit_die->tag == DW_TAG_partial_unit)
3261 {
3262 this_cu->v.quick->no_file_data = 1;
3263 return;
3264 }
3265
3266 lh_cu = this_cu;
3267 lh = NULL;
3268 slot = NULL;
3269 line_offset = 0;
3270
3271 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3272 if (attr)
3273 {
3274 struct quick_file_names find_entry;
3275
3276 line_offset = DW_UNSND (attr);
3277
3278 /* We may have already read in this line header (TU line header sharing).
3279 If we have we're done. */
3280 find_entry.hash.dwo_unit = cu->dwo_unit;
3281 find_entry.hash.line_offset.sect_off = line_offset;
3282 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3283 &find_entry, INSERT);
3284 if (*slot != NULL)
3285 {
3286 lh_cu->v.quick->file_names = *slot;
3287 return;
3288 }
3289
3290 lh = dwarf_decode_line_header (line_offset, cu);
3291 }
3292 if (lh == NULL)
3293 {
3294 lh_cu->v.quick->no_file_data = 1;
3295 return;
3296 }
3297
3298 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3299 qfn->hash.dwo_unit = cu->dwo_unit;
3300 qfn->hash.line_offset.sect_off = line_offset;
3301 gdb_assert (slot != NULL);
3302 *slot = qfn;
3303
3304 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3305
3306 qfn->num_file_names = lh->num_file_names;
3307 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3308 lh->num_file_names * sizeof (char *));
3309 for (i = 0; i < lh->num_file_names; ++i)
3310 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3311 qfn->real_names = NULL;
3312
3313 free_line_header (lh);
3314
3315 lh_cu->v.quick->file_names = qfn;
3316 }
3317
3318 /* A helper for the "quick" functions which attempts to read the line
3319 table for THIS_CU. */
3320
3321 static struct quick_file_names *
3322 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3323 {
3324 /* This should never be called for TUs. */
3325 gdb_assert (! this_cu->is_debug_types);
3326 /* Nor type unit groups. */
3327 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3328
3329 if (this_cu->v.quick->file_names != NULL)
3330 return this_cu->v.quick->file_names;
3331 /* If we know there is no line data, no point in looking again. */
3332 if (this_cu->v.quick->no_file_data)
3333 return NULL;
3334
3335 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3336
3337 if (this_cu->v.quick->no_file_data)
3338 return NULL;
3339 return this_cu->v.quick->file_names;
3340 }
3341
3342 /* A helper for the "quick" functions which computes and caches the
3343 real path for a given file name from the line table. */
3344
3345 static const char *
3346 dw2_get_real_path (struct objfile *objfile,
3347 struct quick_file_names *qfn, int index)
3348 {
3349 if (qfn->real_names == NULL)
3350 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3351 qfn->num_file_names, const char *);
3352
3353 if (qfn->real_names[index] == NULL)
3354 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3355
3356 return qfn->real_names[index];
3357 }
3358
3359 static struct symtab *
3360 dw2_find_last_source_symtab (struct objfile *objfile)
3361 {
3362 struct compunit_symtab *cust;
3363 int index;
3364
3365 dw2_setup (objfile);
3366 index = dwarf2_per_objfile->n_comp_units - 1;
3367 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3368 if (cust == NULL)
3369 return NULL;
3370 return compunit_primary_filetab (cust);
3371 }
3372
3373 /* Traversal function for dw2_forget_cached_source_info. */
3374
3375 static int
3376 dw2_free_cached_file_names (void **slot, void *info)
3377 {
3378 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3379
3380 if (file_data->real_names)
3381 {
3382 int i;
3383
3384 for (i = 0; i < file_data->num_file_names; ++i)
3385 {
3386 xfree ((void*) file_data->real_names[i]);
3387 file_data->real_names[i] = NULL;
3388 }
3389 }
3390
3391 return 1;
3392 }
3393
3394 static void
3395 dw2_forget_cached_source_info (struct objfile *objfile)
3396 {
3397 dw2_setup (objfile);
3398
3399 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3400 dw2_free_cached_file_names, NULL);
3401 }
3402
3403 /* Helper function for dw2_map_symtabs_matching_filename that expands
3404 the symtabs and calls the iterator. */
3405
3406 static int
3407 dw2_map_expand_apply (struct objfile *objfile,
3408 struct dwarf2_per_cu_data *per_cu,
3409 const char *name, const char *real_path,
3410 int (*callback) (struct symtab *, void *),
3411 void *data)
3412 {
3413 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3414
3415 /* Don't visit already-expanded CUs. */
3416 if (per_cu->v.quick->compunit_symtab)
3417 return 0;
3418
3419 /* This may expand more than one symtab, and we want to iterate over
3420 all of them. */
3421 dw2_instantiate_symtab (per_cu);
3422
3423 return iterate_over_some_symtabs (name, real_path, callback, data,
3424 objfile->compunit_symtabs, last_made);
3425 }
3426
3427 /* Implementation of the map_symtabs_matching_filename method. */
3428
3429 static int
3430 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3431 const char *real_path,
3432 int (*callback) (struct symtab *, void *),
3433 void *data)
3434 {
3435 int i;
3436 const char *name_basename = lbasename (name);
3437
3438 dw2_setup (objfile);
3439
3440 /* The rule is CUs specify all the files, including those used by
3441 any TU, so there's no need to scan TUs here. */
3442
3443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3444 {
3445 int j;
3446 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3447 struct quick_file_names *file_data;
3448
3449 /* We only need to look at symtabs not already expanded. */
3450 if (per_cu->v.quick->compunit_symtab)
3451 continue;
3452
3453 file_data = dw2_get_file_names (per_cu);
3454 if (file_data == NULL)
3455 continue;
3456
3457 for (j = 0; j < file_data->num_file_names; ++j)
3458 {
3459 const char *this_name = file_data->file_names[j];
3460 const char *this_real_name;
3461
3462 if (compare_filenames_for_search (this_name, name))
3463 {
3464 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3465 callback, data))
3466 return 1;
3467 continue;
3468 }
3469
3470 /* Before we invoke realpath, which can get expensive when many
3471 files are involved, do a quick comparison of the basenames. */
3472 if (! basenames_may_differ
3473 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3474 continue;
3475
3476 this_real_name = dw2_get_real_path (objfile, file_data, j);
3477 if (compare_filenames_for_search (this_real_name, name))
3478 {
3479 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3480 callback, data))
3481 return 1;
3482 continue;
3483 }
3484
3485 if (real_path != NULL)
3486 {
3487 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3488 gdb_assert (IS_ABSOLUTE_PATH (name));
3489 if (this_real_name != NULL
3490 && FILENAME_CMP (real_path, this_real_name) == 0)
3491 {
3492 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3493 callback, data))
3494 return 1;
3495 continue;
3496 }
3497 }
3498 }
3499 }
3500
3501 return 0;
3502 }
3503
3504 /* Struct used to manage iterating over all CUs looking for a symbol. */
3505
3506 struct dw2_symtab_iterator
3507 {
3508 /* The internalized form of .gdb_index. */
3509 struct mapped_index *index;
3510 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3511 int want_specific_block;
3512 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3513 Unused if !WANT_SPECIFIC_BLOCK. */
3514 int block_index;
3515 /* The kind of symbol we're looking for. */
3516 domain_enum domain;
3517 /* The list of CUs from the index entry of the symbol,
3518 or NULL if not found. */
3519 offset_type *vec;
3520 /* The next element in VEC to look at. */
3521 int next;
3522 /* The number of elements in VEC, or zero if there is no match. */
3523 int length;
3524 /* Have we seen a global version of the symbol?
3525 If so we can ignore all further global instances.
3526 This is to work around gold/15646, inefficient gold-generated
3527 indices. */
3528 int global_seen;
3529 };
3530
3531 /* Initialize the index symtab iterator ITER.
3532 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3533 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3534
3535 static void
3536 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3537 struct mapped_index *index,
3538 int want_specific_block,
3539 int block_index,
3540 domain_enum domain,
3541 const char *name)
3542 {
3543 iter->index = index;
3544 iter->want_specific_block = want_specific_block;
3545 iter->block_index = block_index;
3546 iter->domain = domain;
3547 iter->next = 0;
3548 iter->global_seen = 0;
3549
3550 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3551 iter->length = MAYBE_SWAP (*iter->vec);
3552 else
3553 {
3554 iter->vec = NULL;
3555 iter->length = 0;
3556 }
3557 }
3558
3559 /* Return the next matching CU or NULL if there are no more. */
3560
3561 static struct dwarf2_per_cu_data *
3562 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3563 {
3564 for ( ; iter->next < iter->length; ++iter->next)
3565 {
3566 offset_type cu_index_and_attrs =
3567 MAYBE_SWAP (iter->vec[iter->next + 1]);
3568 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3569 struct dwarf2_per_cu_data *per_cu;
3570 int want_static = iter->block_index != GLOBAL_BLOCK;
3571 /* This value is only valid for index versions >= 7. */
3572 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3573 gdb_index_symbol_kind symbol_kind =
3574 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3575 /* Only check the symbol attributes if they're present.
3576 Indices prior to version 7 don't record them,
3577 and indices >= 7 may elide them for certain symbols
3578 (gold does this). */
3579 int attrs_valid =
3580 (iter->index->version >= 7
3581 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3582
3583 /* Don't crash on bad data. */
3584 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3585 + dwarf2_per_objfile->n_type_units))
3586 {
3587 complaint (&symfile_complaints,
3588 _(".gdb_index entry has bad CU index"
3589 " [in module %s]"),
3590 objfile_name (dwarf2_per_objfile->objfile));
3591 continue;
3592 }
3593
3594 per_cu = dw2_get_cutu (cu_index);
3595
3596 /* Skip if already read in. */
3597 if (per_cu->v.quick->compunit_symtab)
3598 continue;
3599
3600 /* Check static vs global. */
3601 if (attrs_valid)
3602 {
3603 if (iter->want_specific_block
3604 && want_static != is_static)
3605 continue;
3606 /* Work around gold/15646. */
3607 if (!is_static && iter->global_seen)
3608 continue;
3609 if (!is_static)
3610 iter->global_seen = 1;
3611 }
3612
3613 /* Only check the symbol's kind if it has one. */
3614 if (attrs_valid)
3615 {
3616 switch (iter->domain)
3617 {
3618 case VAR_DOMAIN:
3619 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3620 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3621 /* Some types are also in VAR_DOMAIN. */
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3623 continue;
3624 break;
3625 case STRUCT_DOMAIN:
3626 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3627 continue;
3628 break;
3629 case LABEL_DOMAIN:
3630 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3631 continue;
3632 break;
3633 default:
3634 break;
3635 }
3636 }
3637
3638 ++iter->next;
3639 return per_cu;
3640 }
3641
3642 return NULL;
3643 }
3644
3645 static struct compunit_symtab *
3646 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3647 const char *name, domain_enum domain)
3648 {
3649 struct compunit_symtab *stab_best = NULL;
3650 struct mapped_index *index;
3651
3652 dw2_setup (objfile);
3653
3654 index = dwarf2_per_objfile->index_table;
3655
3656 /* index is NULL if OBJF_READNOW. */
3657 if (index)
3658 {
3659 struct dw2_symtab_iterator iter;
3660 struct dwarf2_per_cu_data *per_cu;
3661
3662 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3663
3664 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3665 {
3666 struct symbol *sym = NULL;
3667 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3668 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3669 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3670
3671 /* Some caution must be observed with overloaded functions
3672 and methods, since the index will not contain any overload
3673 information (but NAME might contain it). */
3674 sym = block_lookup_symbol (block, name, domain);
3675
3676 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3677 {
3678 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3679 return stab;
3680
3681 stab_best = stab;
3682 }
3683
3684 /* Keep looking through other CUs. */
3685 }
3686 }
3687
3688 return stab_best;
3689 }
3690
3691 static void
3692 dw2_print_stats (struct objfile *objfile)
3693 {
3694 int i, total, count;
3695
3696 dw2_setup (objfile);
3697 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3698 count = 0;
3699 for (i = 0; i < total; ++i)
3700 {
3701 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3702
3703 if (!per_cu->v.quick->compunit_symtab)
3704 ++count;
3705 }
3706 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3707 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3708 }
3709
3710 /* This dumps minimal information about the index.
3711 It is called via "mt print objfiles".
3712 One use is to verify .gdb_index has been loaded by the
3713 gdb.dwarf2/gdb-index.exp testcase. */
3714
3715 static void
3716 dw2_dump (struct objfile *objfile)
3717 {
3718 dw2_setup (objfile);
3719 gdb_assert (dwarf2_per_objfile->using_index);
3720 printf_filtered (".gdb_index:");
3721 if (dwarf2_per_objfile->index_table != NULL)
3722 {
3723 printf_filtered (" version %d\n",
3724 dwarf2_per_objfile->index_table->version);
3725 }
3726 else
3727 printf_filtered (" faked for \"readnow\"\n");
3728 printf_filtered ("\n");
3729 }
3730
3731 static void
3732 dw2_relocate (struct objfile *objfile,
3733 const struct section_offsets *new_offsets,
3734 const struct section_offsets *delta)
3735 {
3736 /* There's nothing to relocate here. */
3737 }
3738
3739 static void
3740 dw2_expand_symtabs_for_function (struct objfile *objfile,
3741 const char *func_name)
3742 {
3743 struct mapped_index *index;
3744
3745 dw2_setup (objfile);
3746
3747 index = dwarf2_per_objfile->index_table;
3748
3749 /* index is NULL if OBJF_READNOW. */
3750 if (index)
3751 {
3752 struct dw2_symtab_iterator iter;
3753 struct dwarf2_per_cu_data *per_cu;
3754
3755 /* Note: It doesn't matter what we pass for block_index here. */
3756 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3757 func_name);
3758
3759 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3760 dw2_instantiate_symtab (per_cu);
3761 }
3762 }
3763
3764 static void
3765 dw2_expand_all_symtabs (struct objfile *objfile)
3766 {
3767 int i;
3768
3769 dw2_setup (objfile);
3770
3771 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3772 + dwarf2_per_objfile->n_type_units); ++i)
3773 {
3774 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3775
3776 dw2_instantiate_symtab (per_cu);
3777 }
3778 }
3779
3780 static void
3781 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3782 const char *fullname)
3783 {
3784 int i;
3785
3786 dw2_setup (objfile);
3787
3788 /* We don't need to consider type units here.
3789 This is only called for examining code, e.g. expand_line_sal.
3790 There can be an order of magnitude (or more) more type units
3791 than comp units, and we avoid them if we can. */
3792
3793 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3794 {
3795 int j;
3796 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3797 struct quick_file_names *file_data;
3798
3799 /* We only need to look at symtabs not already expanded. */
3800 if (per_cu->v.quick->compunit_symtab)
3801 continue;
3802
3803 file_data = dw2_get_file_names (per_cu);
3804 if (file_data == NULL)
3805 continue;
3806
3807 for (j = 0; j < file_data->num_file_names; ++j)
3808 {
3809 const char *this_fullname = file_data->file_names[j];
3810
3811 if (filename_cmp (this_fullname, fullname) == 0)
3812 {
3813 dw2_instantiate_symtab (per_cu);
3814 break;
3815 }
3816 }
3817 }
3818 }
3819
3820 static void
3821 dw2_map_matching_symbols (struct objfile *objfile,
3822 const char * name, domain_enum domain,
3823 int global,
3824 int (*callback) (struct block *,
3825 struct symbol *, void *),
3826 void *data, symbol_compare_ftype *match,
3827 symbol_compare_ftype *ordered_compare)
3828 {
3829 /* Currently unimplemented; used for Ada. The function can be called if the
3830 current language is Ada for a non-Ada objfile using GNU index. As Ada
3831 does not look for non-Ada symbols this function should just return. */
3832 }
3833
3834 static void
3835 dw2_expand_symtabs_matching
3836 (struct objfile *objfile,
3837 expand_symtabs_file_matcher_ftype *file_matcher,
3838 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3839 expand_symtabs_exp_notify_ftype *expansion_notify,
3840 enum search_domain kind,
3841 void *data)
3842 {
3843 int i;
3844 offset_type iter;
3845 struct mapped_index *index;
3846
3847 dw2_setup (objfile);
3848
3849 /* index_table is NULL if OBJF_READNOW. */
3850 if (!dwarf2_per_objfile->index_table)
3851 return;
3852 index = dwarf2_per_objfile->index_table;
3853
3854 if (file_matcher != NULL)
3855 {
3856 struct cleanup *cleanup;
3857 htab_t visited_found, visited_not_found;
3858
3859 visited_found = htab_create_alloc (10,
3860 htab_hash_pointer, htab_eq_pointer,
3861 NULL, xcalloc, xfree);
3862 cleanup = make_cleanup_htab_delete (visited_found);
3863 visited_not_found = htab_create_alloc (10,
3864 htab_hash_pointer, htab_eq_pointer,
3865 NULL, xcalloc, xfree);
3866 make_cleanup_htab_delete (visited_not_found);
3867
3868 /* The rule is CUs specify all the files, including those used by
3869 any TU, so there's no need to scan TUs here. */
3870
3871 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3872 {
3873 int j;
3874 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3875 struct quick_file_names *file_data;
3876 void **slot;
3877
3878 QUIT;
3879
3880 per_cu->v.quick->mark = 0;
3881
3882 /* We only need to look at symtabs not already expanded. */
3883 if (per_cu->v.quick->compunit_symtab)
3884 continue;
3885
3886 file_data = dw2_get_file_names (per_cu);
3887 if (file_data == NULL)
3888 continue;
3889
3890 if (htab_find (visited_not_found, file_data) != NULL)
3891 continue;
3892 else if (htab_find (visited_found, file_data) != NULL)
3893 {
3894 per_cu->v.quick->mark = 1;
3895 continue;
3896 }
3897
3898 for (j = 0; j < file_data->num_file_names; ++j)
3899 {
3900 const char *this_real_name;
3901
3902 if (file_matcher (file_data->file_names[j], data, 0))
3903 {
3904 per_cu->v.quick->mark = 1;
3905 break;
3906 }
3907
3908 /* Before we invoke realpath, which can get expensive when many
3909 files are involved, do a quick comparison of the basenames. */
3910 if (!basenames_may_differ
3911 && !file_matcher (lbasename (file_data->file_names[j]),
3912 data, 1))
3913 continue;
3914
3915 this_real_name = dw2_get_real_path (objfile, file_data, j);
3916 if (file_matcher (this_real_name, data, 0))
3917 {
3918 per_cu->v.quick->mark = 1;
3919 break;
3920 }
3921 }
3922
3923 slot = htab_find_slot (per_cu->v.quick->mark
3924 ? visited_found
3925 : visited_not_found,
3926 file_data, INSERT);
3927 *slot = file_data;
3928 }
3929
3930 do_cleanups (cleanup);
3931 }
3932
3933 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3934 {
3935 offset_type idx = 2 * iter;
3936 const char *name;
3937 offset_type *vec, vec_len, vec_idx;
3938 int global_seen = 0;
3939
3940 QUIT;
3941
3942 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3943 continue;
3944
3945 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3946
3947 if (! (*symbol_matcher) (name, data))
3948 continue;
3949
3950 /* The name was matched, now expand corresponding CUs that were
3951 marked. */
3952 vec = (offset_type *) (index->constant_pool
3953 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3954 vec_len = MAYBE_SWAP (vec[0]);
3955 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3956 {
3957 struct dwarf2_per_cu_data *per_cu;
3958 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3959 /* This value is only valid for index versions >= 7. */
3960 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3961 gdb_index_symbol_kind symbol_kind =
3962 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3963 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3964 /* Only check the symbol attributes if they're present.
3965 Indices prior to version 7 don't record them,
3966 and indices >= 7 may elide them for certain symbols
3967 (gold does this). */
3968 int attrs_valid =
3969 (index->version >= 7
3970 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3971
3972 /* Work around gold/15646. */
3973 if (attrs_valid)
3974 {
3975 if (!is_static && global_seen)
3976 continue;
3977 if (!is_static)
3978 global_seen = 1;
3979 }
3980
3981 /* Only check the symbol's kind if it has one. */
3982 if (attrs_valid)
3983 {
3984 switch (kind)
3985 {
3986 case VARIABLES_DOMAIN:
3987 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3988 continue;
3989 break;
3990 case FUNCTIONS_DOMAIN:
3991 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3992 continue;
3993 break;
3994 case TYPES_DOMAIN:
3995 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3996 continue;
3997 break;
3998 default:
3999 break;
4000 }
4001 }
4002
4003 /* Don't crash on bad data. */
4004 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4005 + dwarf2_per_objfile->n_type_units))
4006 {
4007 complaint (&symfile_complaints,
4008 _(".gdb_index entry has bad CU index"
4009 " [in module %s]"), objfile_name (objfile));
4010 continue;
4011 }
4012
4013 per_cu = dw2_get_cutu (cu_index);
4014 if (file_matcher == NULL || per_cu->v.quick->mark)
4015 {
4016 int symtab_was_null =
4017 (per_cu->v.quick->compunit_symtab == NULL);
4018
4019 dw2_instantiate_symtab (per_cu);
4020
4021 if (expansion_notify != NULL
4022 && symtab_was_null
4023 && per_cu->v.quick->compunit_symtab != NULL)
4024 {
4025 expansion_notify (per_cu->v.quick->compunit_symtab,
4026 data);
4027 }
4028 }
4029 }
4030 }
4031 }
4032
4033 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4034 symtab. */
4035
4036 static struct compunit_symtab *
4037 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4038 CORE_ADDR pc)
4039 {
4040 int i;
4041
4042 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4043 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4044 return cust;
4045
4046 if (cust->includes == NULL)
4047 return NULL;
4048
4049 for (i = 0; cust->includes[i]; ++i)
4050 {
4051 struct compunit_symtab *s = cust->includes[i];
4052
4053 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4054 if (s != NULL)
4055 return s;
4056 }
4057
4058 return NULL;
4059 }
4060
4061 static struct compunit_symtab *
4062 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4063 struct bound_minimal_symbol msymbol,
4064 CORE_ADDR pc,
4065 struct obj_section *section,
4066 int warn_if_readin)
4067 {
4068 struct dwarf2_per_cu_data *data;
4069 struct compunit_symtab *result;
4070
4071 dw2_setup (objfile);
4072
4073 if (!objfile->psymtabs_addrmap)
4074 return NULL;
4075
4076 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4077 if (!data)
4078 return NULL;
4079
4080 if (warn_if_readin && data->v.quick->compunit_symtab)
4081 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4082 paddress (get_objfile_arch (objfile), pc));
4083
4084 result
4085 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4086 pc);
4087 gdb_assert (result != NULL);
4088 return result;
4089 }
4090
4091 static void
4092 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4093 void *data, int need_fullname)
4094 {
4095 int i;
4096 struct cleanup *cleanup;
4097 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4098 NULL, xcalloc, xfree);
4099
4100 cleanup = make_cleanup_htab_delete (visited);
4101 dw2_setup (objfile);
4102
4103 /* The rule is CUs specify all the files, including those used by
4104 any TU, so there's no need to scan TUs here.
4105 We can ignore file names coming from already-expanded CUs. */
4106
4107 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4108 {
4109 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4110
4111 if (per_cu->v.quick->compunit_symtab)
4112 {
4113 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4114 INSERT);
4115
4116 *slot = per_cu->v.quick->file_names;
4117 }
4118 }
4119
4120 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4121 {
4122 int j;
4123 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4124 struct quick_file_names *file_data;
4125 void **slot;
4126
4127 /* We only need to look at symtabs not already expanded. */
4128 if (per_cu->v.quick->compunit_symtab)
4129 continue;
4130
4131 file_data = dw2_get_file_names (per_cu);
4132 if (file_data == NULL)
4133 continue;
4134
4135 slot = htab_find_slot (visited, file_data, INSERT);
4136 if (*slot)
4137 {
4138 /* Already visited. */
4139 continue;
4140 }
4141 *slot = file_data;
4142
4143 for (j = 0; j < file_data->num_file_names; ++j)
4144 {
4145 const char *this_real_name;
4146
4147 if (need_fullname)
4148 this_real_name = dw2_get_real_path (objfile, file_data, j);
4149 else
4150 this_real_name = NULL;
4151 (*fun) (file_data->file_names[j], this_real_name, data);
4152 }
4153 }
4154
4155 do_cleanups (cleanup);
4156 }
4157
4158 static int
4159 dw2_has_symbols (struct objfile *objfile)
4160 {
4161 return 1;
4162 }
4163
4164 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4165 {
4166 dw2_has_symbols,
4167 dw2_find_last_source_symtab,
4168 dw2_forget_cached_source_info,
4169 dw2_map_symtabs_matching_filename,
4170 dw2_lookup_symbol,
4171 dw2_print_stats,
4172 dw2_dump,
4173 dw2_relocate,
4174 dw2_expand_symtabs_for_function,
4175 dw2_expand_all_symtabs,
4176 dw2_expand_symtabs_with_fullname,
4177 dw2_map_matching_symbols,
4178 dw2_expand_symtabs_matching,
4179 dw2_find_pc_sect_compunit_symtab,
4180 dw2_map_symbol_filenames
4181 };
4182
4183 /* Initialize for reading DWARF for this objfile. Return 0 if this
4184 file will use psymtabs, or 1 if using the GNU index. */
4185
4186 int
4187 dwarf2_initialize_objfile (struct objfile *objfile)
4188 {
4189 /* If we're about to read full symbols, don't bother with the
4190 indices. In this case we also don't care if some other debug
4191 format is making psymtabs, because they are all about to be
4192 expanded anyway. */
4193 if ((objfile->flags & OBJF_READNOW))
4194 {
4195 int i;
4196
4197 dwarf2_per_objfile->using_index = 1;
4198 create_all_comp_units (objfile);
4199 create_all_type_units (objfile);
4200 dwarf2_per_objfile->quick_file_names_table =
4201 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4202
4203 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4204 + dwarf2_per_objfile->n_type_units); ++i)
4205 {
4206 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4207
4208 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4209 struct dwarf2_per_cu_quick_data);
4210 }
4211
4212 /* Return 1 so that gdb sees the "quick" functions. However,
4213 these functions will be no-ops because we will have expanded
4214 all symtabs. */
4215 return 1;
4216 }
4217
4218 if (dwarf2_read_index (objfile))
4219 return 1;
4220
4221 return 0;
4222 }
4223
4224 \f
4225
4226 /* Build a partial symbol table. */
4227
4228 void
4229 dwarf2_build_psymtabs (struct objfile *objfile)
4230 {
4231
4232 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4233 {
4234 init_psymbol_list (objfile, 1024);
4235 }
4236
4237 TRY
4238 {
4239 /* This isn't really ideal: all the data we allocate on the
4240 objfile's obstack is still uselessly kept around. However,
4241 freeing it seems unsafe. */
4242 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4243
4244 dwarf2_build_psymtabs_hard (objfile);
4245 discard_cleanups (cleanups);
4246 }
4247 CATCH (except, RETURN_MASK_ERROR)
4248 {
4249 exception_print (gdb_stderr, except);
4250 }
4251 END_CATCH
4252 }
4253
4254 /* Return the total length of the CU described by HEADER. */
4255
4256 static unsigned int
4257 get_cu_length (const struct comp_unit_head *header)
4258 {
4259 return header->initial_length_size + header->length;
4260 }
4261
4262 /* Return TRUE if OFFSET is within CU_HEADER. */
4263
4264 static inline int
4265 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4266 {
4267 sect_offset bottom = { cu_header->offset.sect_off };
4268 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4269
4270 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4271 }
4272
4273 /* Find the base address of the compilation unit for range lists and
4274 location lists. It will normally be specified by DW_AT_low_pc.
4275 In DWARF-3 draft 4, the base address could be overridden by
4276 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4277 compilation units with discontinuous ranges. */
4278
4279 static void
4280 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4281 {
4282 struct attribute *attr;
4283
4284 cu->base_known = 0;
4285 cu->base_address = 0;
4286
4287 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4288 if (attr)
4289 {
4290 cu->base_address = attr_value_as_address (attr);
4291 cu->base_known = 1;
4292 }
4293 else
4294 {
4295 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4296 if (attr)
4297 {
4298 cu->base_address = attr_value_as_address (attr);
4299 cu->base_known = 1;
4300 }
4301 }
4302 }
4303
4304 /* Read in the comp unit header information from the debug_info at info_ptr.
4305 NOTE: This leaves members offset, first_die_offset to be filled in
4306 by the caller. */
4307
4308 static const gdb_byte *
4309 read_comp_unit_head (struct comp_unit_head *cu_header,
4310 const gdb_byte *info_ptr, bfd *abfd)
4311 {
4312 int signed_addr;
4313 unsigned int bytes_read;
4314
4315 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4316 cu_header->initial_length_size = bytes_read;
4317 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4318 info_ptr += bytes_read;
4319 cu_header->version = read_2_bytes (abfd, info_ptr);
4320 info_ptr += 2;
4321 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4322 &bytes_read);
4323 info_ptr += bytes_read;
4324 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4325 info_ptr += 1;
4326 signed_addr = bfd_get_sign_extend_vma (abfd);
4327 if (signed_addr < 0)
4328 internal_error (__FILE__, __LINE__,
4329 _("read_comp_unit_head: dwarf from non elf file"));
4330 cu_header->signed_addr_p = signed_addr;
4331
4332 return info_ptr;
4333 }
4334
4335 /* Helper function that returns the proper abbrev section for
4336 THIS_CU. */
4337
4338 static struct dwarf2_section_info *
4339 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4340 {
4341 struct dwarf2_section_info *abbrev;
4342
4343 if (this_cu->is_dwz)
4344 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4345 else
4346 abbrev = &dwarf2_per_objfile->abbrev;
4347
4348 return abbrev;
4349 }
4350
4351 /* Subroutine of read_and_check_comp_unit_head and
4352 read_and_check_type_unit_head to simplify them.
4353 Perform various error checking on the header. */
4354
4355 static void
4356 error_check_comp_unit_head (struct comp_unit_head *header,
4357 struct dwarf2_section_info *section,
4358 struct dwarf2_section_info *abbrev_section)
4359 {
4360 bfd *abfd = get_section_bfd_owner (section);
4361 const char *filename = get_section_file_name (section);
4362
4363 if (header->version != 2 && header->version != 3 && header->version != 4)
4364 error (_("Dwarf Error: wrong version in compilation unit header "
4365 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4366 filename);
4367
4368 if (header->abbrev_offset.sect_off
4369 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4370 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4371 "(offset 0x%lx + 6) [in module %s]"),
4372 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4373 filename);
4374
4375 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4376 avoid potential 32-bit overflow. */
4377 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4378 > section->size)
4379 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4380 "(offset 0x%lx + 0) [in module %s]"),
4381 (long) header->length, (long) header->offset.sect_off,
4382 filename);
4383 }
4384
4385 /* Read in a CU/TU header and perform some basic error checking.
4386 The contents of the header are stored in HEADER.
4387 The result is a pointer to the start of the first DIE. */
4388
4389 static const gdb_byte *
4390 read_and_check_comp_unit_head (struct comp_unit_head *header,
4391 struct dwarf2_section_info *section,
4392 struct dwarf2_section_info *abbrev_section,
4393 const gdb_byte *info_ptr,
4394 int is_debug_types_section)
4395 {
4396 const gdb_byte *beg_of_comp_unit = info_ptr;
4397 bfd *abfd = get_section_bfd_owner (section);
4398
4399 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4400
4401 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4402
4403 /* If we're reading a type unit, skip over the signature and
4404 type_offset fields. */
4405 if (is_debug_types_section)
4406 info_ptr += 8 /*signature*/ + header->offset_size;
4407
4408 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4409
4410 error_check_comp_unit_head (header, section, abbrev_section);
4411
4412 return info_ptr;
4413 }
4414
4415 /* Read in the types comp unit header information from .debug_types entry at
4416 types_ptr. The result is a pointer to one past the end of the header. */
4417
4418 static const gdb_byte *
4419 read_and_check_type_unit_head (struct comp_unit_head *header,
4420 struct dwarf2_section_info *section,
4421 struct dwarf2_section_info *abbrev_section,
4422 const gdb_byte *info_ptr,
4423 ULONGEST *signature,
4424 cu_offset *type_offset_in_tu)
4425 {
4426 const gdb_byte *beg_of_comp_unit = info_ptr;
4427 bfd *abfd = get_section_bfd_owner (section);
4428
4429 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4430
4431 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4432
4433 /* If we're reading a type unit, skip over the signature and
4434 type_offset fields. */
4435 if (signature != NULL)
4436 *signature = read_8_bytes (abfd, info_ptr);
4437 info_ptr += 8;
4438 if (type_offset_in_tu != NULL)
4439 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4440 header->offset_size);
4441 info_ptr += header->offset_size;
4442
4443 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4444
4445 error_check_comp_unit_head (header, section, abbrev_section);
4446
4447 return info_ptr;
4448 }
4449
4450 /* Fetch the abbreviation table offset from a comp or type unit header. */
4451
4452 static sect_offset
4453 read_abbrev_offset (struct dwarf2_section_info *section,
4454 sect_offset offset)
4455 {
4456 bfd *abfd = get_section_bfd_owner (section);
4457 const gdb_byte *info_ptr;
4458 unsigned int length, initial_length_size, offset_size;
4459 sect_offset abbrev_offset;
4460
4461 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4462 info_ptr = section->buffer + offset.sect_off;
4463 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4464 offset_size = initial_length_size == 4 ? 4 : 8;
4465 info_ptr += initial_length_size + 2 /*version*/;
4466 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4467 return abbrev_offset;
4468 }
4469
4470 /* Allocate a new partial symtab for file named NAME and mark this new
4471 partial symtab as being an include of PST. */
4472
4473 static void
4474 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4475 struct objfile *objfile)
4476 {
4477 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4478
4479 if (!IS_ABSOLUTE_PATH (subpst->filename))
4480 {
4481 /* It shares objfile->objfile_obstack. */
4482 subpst->dirname = pst->dirname;
4483 }
4484
4485 subpst->section_offsets = pst->section_offsets;
4486 subpst->textlow = 0;
4487 subpst->texthigh = 0;
4488
4489 subpst->dependencies = (struct partial_symtab **)
4490 obstack_alloc (&objfile->objfile_obstack,
4491 sizeof (struct partial_symtab *));
4492 subpst->dependencies[0] = pst;
4493 subpst->number_of_dependencies = 1;
4494
4495 subpst->globals_offset = 0;
4496 subpst->n_global_syms = 0;
4497 subpst->statics_offset = 0;
4498 subpst->n_static_syms = 0;
4499 subpst->compunit_symtab = NULL;
4500 subpst->read_symtab = pst->read_symtab;
4501 subpst->readin = 0;
4502
4503 /* No private part is necessary for include psymtabs. This property
4504 can be used to differentiate between such include psymtabs and
4505 the regular ones. */
4506 subpst->read_symtab_private = NULL;
4507 }
4508
4509 /* Read the Line Number Program data and extract the list of files
4510 included by the source file represented by PST. Build an include
4511 partial symtab for each of these included files. */
4512
4513 static void
4514 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4515 struct die_info *die,
4516 struct partial_symtab *pst)
4517 {
4518 struct line_header *lh = NULL;
4519 struct attribute *attr;
4520
4521 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4522 if (attr)
4523 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4524 if (lh == NULL)
4525 return; /* No linetable, so no includes. */
4526
4527 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4528 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4529
4530 free_line_header (lh);
4531 }
4532
4533 static hashval_t
4534 hash_signatured_type (const void *item)
4535 {
4536 const struct signatured_type *sig_type = item;
4537
4538 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4539 return sig_type->signature;
4540 }
4541
4542 static int
4543 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4544 {
4545 const struct signatured_type *lhs = item_lhs;
4546 const struct signatured_type *rhs = item_rhs;
4547
4548 return lhs->signature == rhs->signature;
4549 }
4550
4551 /* Allocate a hash table for signatured types. */
4552
4553 static htab_t
4554 allocate_signatured_type_table (struct objfile *objfile)
4555 {
4556 return htab_create_alloc_ex (41,
4557 hash_signatured_type,
4558 eq_signatured_type,
4559 NULL,
4560 &objfile->objfile_obstack,
4561 hashtab_obstack_allocate,
4562 dummy_obstack_deallocate);
4563 }
4564
4565 /* A helper function to add a signatured type CU to a table. */
4566
4567 static int
4568 add_signatured_type_cu_to_table (void **slot, void *datum)
4569 {
4570 struct signatured_type *sigt = *slot;
4571 struct signatured_type ***datap = datum;
4572
4573 **datap = sigt;
4574 ++*datap;
4575
4576 return 1;
4577 }
4578
4579 /* Create the hash table of all entries in the .debug_types
4580 (or .debug_types.dwo) section(s).
4581 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4582 otherwise it is NULL.
4583
4584 The result is a pointer to the hash table or NULL if there are no types.
4585
4586 Note: This function processes DWO files only, not DWP files. */
4587
4588 static htab_t
4589 create_debug_types_hash_table (struct dwo_file *dwo_file,
4590 VEC (dwarf2_section_info_def) *types)
4591 {
4592 struct objfile *objfile = dwarf2_per_objfile->objfile;
4593 htab_t types_htab = NULL;
4594 int ix;
4595 struct dwarf2_section_info *section;
4596 struct dwarf2_section_info *abbrev_section;
4597
4598 if (VEC_empty (dwarf2_section_info_def, types))
4599 return NULL;
4600
4601 abbrev_section = (dwo_file != NULL
4602 ? &dwo_file->sections.abbrev
4603 : &dwarf2_per_objfile->abbrev);
4604
4605 if (dwarf2_read_debug)
4606 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4607 dwo_file ? ".dwo" : "",
4608 get_section_file_name (abbrev_section));
4609
4610 for (ix = 0;
4611 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4612 ++ix)
4613 {
4614 bfd *abfd;
4615 const gdb_byte *info_ptr, *end_ptr;
4616
4617 dwarf2_read_section (objfile, section);
4618 info_ptr = section->buffer;
4619
4620 if (info_ptr == NULL)
4621 continue;
4622
4623 /* We can't set abfd until now because the section may be empty or
4624 not present, in which case the bfd is unknown. */
4625 abfd = get_section_bfd_owner (section);
4626
4627 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4628 because we don't need to read any dies: the signature is in the
4629 header. */
4630
4631 end_ptr = info_ptr + section->size;
4632 while (info_ptr < end_ptr)
4633 {
4634 sect_offset offset;
4635 cu_offset type_offset_in_tu;
4636 ULONGEST signature;
4637 struct signatured_type *sig_type;
4638 struct dwo_unit *dwo_tu;
4639 void **slot;
4640 const gdb_byte *ptr = info_ptr;
4641 struct comp_unit_head header;
4642 unsigned int length;
4643
4644 offset.sect_off = ptr - section->buffer;
4645
4646 /* We need to read the type's signature in order to build the hash
4647 table, but we don't need anything else just yet. */
4648
4649 ptr = read_and_check_type_unit_head (&header, section,
4650 abbrev_section, ptr,
4651 &signature, &type_offset_in_tu);
4652
4653 length = get_cu_length (&header);
4654
4655 /* Skip dummy type units. */
4656 if (ptr >= info_ptr + length
4657 || peek_abbrev_code (abfd, ptr) == 0)
4658 {
4659 info_ptr += length;
4660 continue;
4661 }
4662
4663 if (types_htab == NULL)
4664 {
4665 if (dwo_file)
4666 types_htab = allocate_dwo_unit_table (objfile);
4667 else
4668 types_htab = allocate_signatured_type_table (objfile);
4669 }
4670
4671 if (dwo_file)
4672 {
4673 sig_type = NULL;
4674 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4675 struct dwo_unit);
4676 dwo_tu->dwo_file = dwo_file;
4677 dwo_tu->signature = signature;
4678 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4679 dwo_tu->section = section;
4680 dwo_tu->offset = offset;
4681 dwo_tu->length = length;
4682 }
4683 else
4684 {
4685 /* N.B.: type_offset is not usable if this type uses a DWO file.
4686 The real type_offset is in the DWO file. */
4687 dwo_tu = NULL;
4688 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4689 struct signatured_type);
4690 sig_type->signature = signature;
4691 sig_type->type_offset_in_tu = type_offset_in_tu;
4692 sig_type->per_cu.objfile = objfile;
4693 sig_type->per_cu.is_debug_types = 1;
4694 sig_type->per_cu.section = section;
4695 sig_type->per_cu.offset = offset;
4696 sig_type->per_cu.length = length;
4697 }
4698
4699 slot = htab_find_slot (types_htab,
4700 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4701 INSERT);
4702 gdb_assert (slot != NULL);
4703 if (*slot != NULL)
4704 {
4705 sect_offset dup_offset;
4706
4707 if (dwo_file)
4708 {
4709 const struct dwo_unit *dup_tu = *slot;
4710
4711 dup_offset = dup_tu->offset;
4712 }
4713 else
4714 {
4715 const struct signatured_type *dup_tu = *slot;
4716
4717 dup_offset = dup_tu->per_cu.offset;
4718 }
4719
4720 complaint (&symfile_complaints,
4721 _("debug type entry at offset 0x%x is duplicate to"
4722 " the entry at offset 0x%x, signature %s"),
4723 offset.sect_off, dup_offset.sect_off,
4724 hex_string (signature));
4725 }
4726 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4727
4728 if (dwarf2_read_debug > 1)
4729 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4730 offset.sect_off,
4731 hex_string (signature));
4732
4733 info_ptr += length;
4734 }
4735 }
4736
4737 return types_htab;
4738 }
4739
4740 /* Create the hash table of all entries in the .debug_types section,
4741 and initialize all_type_units.
4742 The result is zero if there is an error (e.g. missing .debug_types section),
4743 otherwise non-zero. */
4744
4745 static int
4746 create_all_type_units (struct objfile *objfile)
4747 {
4748 htab_t types_htab;
4749 struct signatured_type **iter;
4750
4751 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4752 if (types_htab == NULL)
4753 {
4754 dwarf2_per_objfile->signatured_types = NULL;
4755 return 0;
4756 }
4757
4758 dwarf2_per_objfile->signatured_types = types_htab;
4759
4760 dwarf2_per_objfile->n_type_units
4761 = dwarf2_per_objfile->n_allocated_type_units
4762 = htab_elements (types_htab);
4763 dwarf2_per_objfile->all_type_units
4764 = xmalloc (dwarf2_per_objfile->n_type_units
4765 * sizeof (struct signatured_type *));
4766 iter = &dwarf2_per_objfile->all_type_units[0];
4767 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4768 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4769 == dwarf2_per_objfile->n_type_units);
4770
4771 return 1;
4772 }
4773
4774 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4775 If SLOT is non-NULL, it is the entry to use in the hash table.
4776 Otherwise we find one. */
4777
4778 static struct signatured_type *
4779 add_type_unit (ULONGEST sig, void **slot)
4780 {
4781 struct objfile *objfile = dwarf2_per_objfile->objfile;
4782 int n_type_units = dwarf2_per_objfile->n_type_units;
4783 struct signatured_type *sig_type;
4784
4785 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4786 ++n_type_units;
4787 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4788 {
4789 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4790 dwarf2_per_objfile->n_allocated_type_units = 1;
4791 dwarf2_per_objfile->n_allocated_type_units *= 2;
4792 dwarf2_per_objfile->all_type_units
4793 = xrealloc (dwarf2_per_objfile->all_type_units,
4794 dwarf2_per_objfile->n_allocated_type_units
4795 * sizeof (struct signatured_type *));
4796 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4797 }
4798 dwarf2_per_objfile->n_type_units = n_type_units;
4799
4800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4801 struct signatured_type);
4802 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4803 sig_type->signature = sig;
4804 sig_type->per_cu.is_debug_types = 1;
4805 if (dwarf2_per_objfile->using_index)
4806 {
4807 sig_type->per_cu.v.quick =
4808 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4809 struct dwarf2_per_cu_quick_data);
4810 }
4811
4812 if (slot == NULL)
4813 {
4814 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4815 sig_type, INSERT);
4816 }
4817 gdb_assert (*slot == NULL);
4818 *slot = sig_type;
4819 /* The rest of sig_type must be filled in by the caller. */
4820 return sig_type;
4821 }
4822
4823 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4824 Fill in SIG_ENTRY with DWO_ENTRY. */
4825
4826 static void
4827 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4828 struct signatured_type *sig_entry,
4829 struct dwo_unit *dwo_entry)
4830 {
4831 /* Make sure we're not clobbering something we don't expect to. */
4832 gdb_assert (! sig_entry->per_cu.queued);
4833 gdb_assert (sig_entry->per_cu.cu == NULL);
4834 if (dwarf2_per_objfile->using_index)
4835 {
4836 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4837 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4838 }
4839 else
4840 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4841 gdb_assert (sig_entry->signature == dwo_entry->signature);
4842 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4843 gdb_assert (sig_entry->type_unit_group == NULL);
4844 gdb_assert (sig_entry->dwo_unit == NULL);
4845
4846 sig_entry->per_cu.section = dwo_entry->section;
4847 sig_entry->per_cu.offset = dwo_entry->offset;
4848 sig_entry->per_cu.length = dwo_entry->length;
4849 sig_entry->per_cu.reading_dwo_directly = 1;
4850 sig_entry->per_cu.objfile = objfile;
4851 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4852 sig_entry->dwo_unit = dwo_entry;
4853 }
4854
4855 /* Subroutine of lookup_signatured_type.
4856 If we haven't read the TU yet, create the signatured_type data structure
4857 for a TU to be read in directly from a DWO file, bypassing the stub.
4858 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4859 using .gdb_index, then when reading a CU we want to stay in the DWO file
4860 containing that CU. Otherwise we could end up reading several other DWO
4861 files (due to comdat folding) to process the transitive closure of all the
4862 mentioned TUs, and that can be slow. The current DWO file will have every
4863 type signature that it needs.
4864 We only do this for .gdb_index because in the psymtab case we already have
4865 to read all the DWOs to build the type unit groups. */
4866
4867 static struct signatured_type *
4868 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4869 {
4870 struct objfile *objfile = dwarf2_per_objfile->objfile;
4871 struct dwo_file *dwo_file;
4872 struct dwo_unit find_dwo_entry, *dwo_entry;
4873 struct signatured_type find_sig_entry, *sig_entry;
4874 void **slot;
4875
4876 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4877
4878 /* If TU skeletons have been removed then we may not have read in any
4879 TUs yet. */
4880 if (dwarf2_per_objfile->signatured_types == NULL)
4881 {
4882 dwarf2_per_objfile->signatured_types
4883 = allocate_signatured_type_table (objfile);
4884 }
4885
4886 /* We only ever need to read in one copy of a signatured type.
4887 Use the global signatured_types array to do our own comdat-folding
4888 of types. If this is the first time we're reading this TU, and
4889 the TU has an entry in .gdb_index, replace the recorded data from
4890 .gdb_index with this TU. */
4891
4892 find_sig_entry.signature = sig;
4893 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4894 &find_sig_entry, INSERT);
4895 sig_entry = *slot;
4896
4897 /* We can get here with the TU already read, *or* in the process of being
4898 read. Don't reassign the global entry to point to this DWO if that's
4899 the case. Also note that if the TU is already being read, it may not
4900 have come from a DWO, the program may be a mix of Fission-compiled
4901 code and non-Fission-compiled code. */
4902
4903 /* Have we already tried to read this TU?
4904 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4905 needn't exist in the global table yet). */
4906 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4907 return sig_entry;
4908
4909 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4910 dwo_unit of the TU itself. */
4911 dwo_file = cu->dwo_unit->dwo_file;
4912
4913 /* Ok, this is the first time we're reading this TU. */
4914 if (dwo_file->tus == NULL)
4915 return NULL;
4916 find_dwo_entry.signature = sig;
4917 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4918 if (dwo_entry == NULL)
4919 return NULL;
4920
4921 /* If the global table doesn't have an entry for this TU, add one. */
4922 if (sig_entry == NULL)
4923 sig_entry = add_type_unit (sig, slot);
4924
4925 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4926 sig_entry->per_cu.tu_read = 1;
4927 return sig_entry;
4928 }
4929
4930 /* Subroutine of lookup_signatured_type.
4931 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4932 then try the DWP file. If the TU stub (skeleton) has been removed then
4933 it won't be in .gdb_index. */
4934
4935 static struct signatured_type *
4936 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4937 {
4938 struct objfile *objfile = dwarf2_per_objfile->objfile;
4939 struct dwp_file *dwp_file = get_dwp_file ();
4940 struct dwo_unit *dwo_entry;
4941 struct signatured_type find_sig_entry, *sig_entry;
4942 void **slot;
4943
4944 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4945 gdb_assert (dwp_file != NULL);
4946
4947 /* If TU skeletons have been removed then we may not have read in any
4948 TUs yet. */
4949 if (dwarf2_per_objfile->signatured_types == NULL)
4950 {
4951 dwarf2_per_objfile->signatured_types
4952 = allocate_signatured_type_table (objfile);
4953 }
4954
4955 find_sig_entry.signature = sig;
4956 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4957 &find_sig_entry, INSERT);
4958 sig_entry = *slot;
4959
4960 /* Have we already tried to read this TU?
4961 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4962 needn't exist in the global table yet). */
4963 if (sig_entry != NULL)
4964 return sig_entry;
4965
4966 if (dwp_file->tus == NULL)
4967 return NULL;
4968 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4969 sig, 1 /* is_debug_types */);
4970 if (dwo_entry == NULL)
4971 return NULL;
4972
4973 sig_entry = add_type_unit (sig, slot);
4974 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4975
4976 return sig_entry;
4977 }
4978
4979 /* Lookup a signature based type for DW_FORM_ref_sig8.
4980 Returns NULL if signature SIG is not present in the table.
4981 It is up to the caller to complain about this. */
4982
4983 static struct signatured_type *
4984 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4985 {
4986 if (cu->dwo_unit
4987 && dwarf2_per_objfile->using_index)
4988 {
4989 /* We're in a DWO/DWP file, and we're using .gdb_index.
4990 These cases require special processing. */
4991 if (get_dwp_file () == NULL)
4992 return lookup_dwo_signatured_type (cu, sig);
4993 else
4994 return lookup_dwp_signatured_type (cu, sig);
4995 }
4996 else
4997 {
4998 struct signatured_type find_entry, *entry;
4999
5000 if (dwarf2_per_objfile->signatured_types == NULL)
5001 return NULL;
5002 find_entry.signature = sig;
5003 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5004 return entry;
5005 }
5006 }
5007 \f
5008 /* Low level DIE reading support. */
5009
5010 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5011
5012 static void
5013 init_cu_die_reader (struct die_reader_specs *reader,
5014 struct dwarf2_cu *cu,
5015 struct dwarf2_section_info *section,
5016 struct dwo_file *dwo_file)
5017 {
5018 gdb_assert (section->readin && section->buffer != NULL);
5019 reader->abfd = get_section_bfd_owner (section);
5020 reader->cu = cu;
5021 reader->dwo_file = dwo_file;
5022 reader->die_section = section;
5023 reader->buffer = section->buffer;
5024 reader->buffer_end = section->buffer + section->size;
5025 reader->comp_dir = NULL;
5026 }
5027
5028 /* Subroutine of init_cutu_and_read_dies to simplify it.
5029 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5030 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5031 already.
5032
5033 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5034 from it to the DIE in the DWO. If NULL we are skipping the stub.
5035 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5036 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5037 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5038 STUB_COMP_DIR may be non-NULL.
5039 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5040 are filled in with the info of the DIE from the DWO file.
5041 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5042 provided an abbrev table to use.
5043 The result is non-zero if a valid (non-dummy) DIE was found. */
5044
5045 static int
5046 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5047 struct dwo_unit *dwo_unit,
5048 int abbrev_table_provided,
5049 struct die_info *stub_comp_unit_die,
5050 const char *stub_comp_dir,
5051 struct die_reader_specs *result_reader,
5052 const gdb_byte **result_info_ptr,
5053 struct die_info **result_comp_unit_die,
5054 int *result_has_children)
5055 {
5056 struct objfile *objfile = dwarf2_per_objfile->objfile;
5057 struct dwarf2_cu *cu = this_cu->cu;
5058 struct dwarf2_section_info *section;
5059 bfd *abfd;
5060 const gdb_byte *begin_info_ptr, *info_ptr;
5061 ULONGEST signature; /* Or dwo_id. */
5062 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5063 int i,num_extra_attrs;
5064 struct dwarf2_section_info *dwo_abbrev_section;
5065 struct attribute *attr;
5066 struct die_info *comp_unit_die;
5067
5068 /* At most one of these may be provided. */
5069 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5070
5071 /* These attributes aren't processed until later:
5072 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5073 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5074 referenced later. However, these attributes are found in the stub
5075 which we won't have later. In order to not impose this complication
5076 on the rest of the code, we read them here and copy them to the
5077 DWO CU/TU die. */
5078
5079 stmt_list = NULL;
5080 low_pc = NULL;
5081 high_pc = NULL;
5082 ranges = NULL;
5083 comp_dir = NULL;
5084
5085 if (stub_comp_unit_die != NULL)
5086 {
5087 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5088 DWO file. */
5089 if (! this_cu->is_debug_types)
5090 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5091 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5092 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5093 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5094 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5095
5096 /* There should be a DW_AT_addr_base attribute here (if needed).
5097 We need the value before we can process DW_FORM_GNU_addr_index. */
5098 cu->addr_base = 0;
5099 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5100 if (attr)
5101 cu->addr_base = DW_UNSND (attr);
5102
5103 /* There should be a DW_AT_ranges_base attribute here (if needed).
5104 We need the value before we can process DW_AT_ranges. */
5105 cu->ranges_base = 0;
5106 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5107 if (attr)
5108 cu->ranges_base = DW_UNSND (attr);
5109 }
5110 else if (stub_comp_dir != NULL)
5111 {
5112 /* Reconstruct the comp_dir attribute to simplify the code below. */
5113 comp_dir = (struct attribute *)
5114 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5115 comp_dir->name = DW_AT_comp_dir;
5116 comp_dir->form = DW_FORM_string;
5117 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5118 DW_STRING (comp_dir) = stub_comp_dir;
5119 }
5120
5121 /* Set up for reading the DWO CU/TU. */
5122 cu->dwo_unit = dwo_unit;
5123 section = dwo_unit->section;
5124 dwarf2_read_section (objfile, section);
5125 abfd = get_section_bfd_owner (section);
5126 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5127 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5128 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5129
5130 if (this_cu->is_debug_types)
5131 {
5132 ULONGEST header_signature;
5133 cu_offset type_offset_in_tu;
5134 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5135
5136 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5137 dwo_abbrev_section,
5138 info_ptr,
5139 &header_signature,
5140 &type_offset_in_tu);
5141 /* This is not an assert because it can be caused by bad debug info. */
5142 if (sig_type->signature != header_signature)
5143 {
5144 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5145 " TU at offset 0x%x [in module %s]"),
5146 hex_string (sig_type->signature),
5147 hex_string (header_signature),
5148 dwo_unit->offset.sect_off,
5149 bfd_get_filename (abfd));
5150 }
5151 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5152 /* For DWOs coming from DWP files, we don't know the CU length
5153 nor the type's offset in the TU until now. */
5154 dwo_unit->length = get_cu_length (&cu->header);
5155 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5156
5157 /* Establish the type offset that can be used to lookup the type.
5158 For DWO files, we don't know it until now. */
5159 sig_type->type_offset_in_section.sect_off =
5160 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5161 }
5162 else
5163 {
5164 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5165 dwo_abbrev_section,
5166 info_ptr, 0);
5167 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5168 /* For DWOs coming from DWP files, we don't know the CU length
5169 until now. */
5170 dwo_unit->length = get_cu_length (&cu->header);
5171 }
5172
5173 /* Replace the CU's original abbrev table with the DWO's.
5174 Reminder: We can't read the abbrev table until we've read the header. */
5175 if (abbrev_table_provided)
5176 {
5177 /* Don't free the provided abbrev table, the caller of
5178 init_cutu_and_read_dies owns it. */
5179 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5180 /* Ensure the DWO abbrev table gets freed. */
5181 make_cleanup (dwarf2_free_abbrev_table, cu);
5182 }
5183 else
5184 {
5185 dwarf2_free_abbrev_table (cu);
5186 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5187 /* Leave any existing abbrev table cleanup as is. */
5188 }
5189
5190 /* Read in the die, but leave space to copy over the attributes
5191 from the stub. This has the benefit of simplifying the rest of
5192 the code - all the work to maintain the illusion of a single
5193 DW_TAG_{compile,type}_unit DIE is done here. */
5194 num_extra_attrs = ((stmt_list != NULL)
5195 + (low_pc != NULL)
5196 + (high_pc != NULL)
5197 + (ranges != NULL)
5198 + (comp_dir != NULL));
5199 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5200 result_has_children, num_extra_attrs);
5201
5202 /* Copy over the attributes from the stub to the DIE we just read in. */
5203 comp_unit_die = *result_comp_unit_die;
5204 i = comp_unit_die->num_attrs;
5205 if (stmt_list != NULL)
5206 comp_unit_die->attrs[i++] = *stmt_list;
5207 if (low_pc != NULL)
5208 comp_unit_die->attrs[i++] = *low_pc;
5209 if (high_pc != NULL)
5210 comp_unit_die->attrs[i++] = *high_pc;
5211 if (ranges != NULL)
5212 comp_unit_die->attrs[i++] = *ranges;
5213 if (comp_dir != NULL)
5214 comp_unit_die->attrs[i++] = *comp_dir;
5215 comp_unit_die->num_attrs += num_extra_attrs;
5216
5217 if (dwarf2_die_debug)
5218 {
5219 fprintf_unfiltered (gdb_stdlog,
5220 "Read die from %s@0x%x of %s:\n",
5221 get_section_name (section),
5222 (unsigned) (begin_info_ptr - section->buffer),
5223 bfd_get_filename (abfd));
5224 dump_die (comp_unit_die, dwarf2_die_debug);
5225 }
5226
5227 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5228 TUs by skipping the stub and going directly to the entry in the DWO file.
5229 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5230 to get it via circuitous means. Blech. */
5231 if (comp_dir != NULL)
5232 result_reader->comp_dir = DW_STRING (comp_dir);
5233
5234 /* Skip dummy compilation units. */
5235 if (info_ptr >= begin_info_ptr + dwo_unit->length
5236 || peek_abbrev_code (abfd, info_ptr) == 0)
5237 return 0;
5238
5239 *result_info_ptr = info_ptr;
5240 return 1;
5241 }
5242
5243 /* Subroutine of init_cutu_and_read_dies to simplify it.
5244 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5245 Returns NULL if the specified DWO unit cannot be found. */
5246
5247 static struct dwo_unit *
5248 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5249 struct die_info *comp_unit_die)
5250 {
5251 struct dwarf2_cu *cu = this_cu->cu;
5252 struct attribute *attr;
5253 ULONGEST signature;
5254 struct dwo_unit *dwo_unit;
5255 const char *comp_dir, *dwo_name;
5256
5257 gdb_assert (cu != NULL);
5258
5259 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5260 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5261 gdb_assert (attr != NULL);
5262 dwo_name = DW_STRING (attr);
5263 comp_dir = NULL;
5264 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5265 if (attr)
5266 comp_dir = DW_STRING (attr);
5267
5268 if (this_cu->is_debug_types)
5269 {
5270 struct signatured_type *sig_type;
5271
5272 /* Since this_cu is the first member of struct signatured_type,
5273 we can go from a pointer to one to a pointer to the other. */
5274 sig_type = (struct signatured_type *) this_cu;
5275 signature = sig_type->signature;
5276 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5277 }
5278 else
5279 {
5280 struct attribute *attr;
5281
5282 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5283 if (! attr)
5284 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5285 " [in module %s]"),
5286 dwo_name, objfile_name (this_cu->objfile));
5287 signature = DW_UNSND (attr);
5288 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5289 signature);
5290 }
5291
5292 return dwo_unit;
5293 }
5294
5295 /* Subroutine of init_cutu_and_read_dies to simplify it.
5296 See it for a description of the parameters.
5297 Read a TU directly from a DWO file, bypassing the stub.
5298
5299 Note: This function could be a little bit simpler if we shared cleanups
5300 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5301 to do, so we keep this function self-contained. Or we could move this
5302 into our caller, but it's complex enough already. */
5303
5304 static void
5305 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5306 int use_existing_cu, int keep,
5307 die_reader_func_ftype *die_reader_func,
5308 void *data)
5309 {
5310 struct dwarf2_cu *cu;
5311 struct signatured_type *sig_type;
5312 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5313 struct die_reader_specs reader;
5314 const gdb_byte *info_ptr;
5315 struct die_info *comp_unit_die;
5316 int has_children;
5317
5318 /* Verify we can do the following downcast, and that we have the
5319 data we need. */
5320 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5321 sig_type = (struct signatured_type *) this_cu;
5322 gdb_assert (sig_type->dwo_unit != NULL);
5323
5324 cleanups = make_cleanup (null_cleanup, NULL);
5325
5326 if (use_existing_cu && this_cu->cu != NULL)
5327 {
5328 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5329 cu = this_cu->cu;
5330 /* There's no need to do the rereading_dwo_cu handling that
5331 init_cutu_and_read_dies does since we don't read the stub. */
5332 }
5333 else
5334 {
5335 /* If !use_existing_cu, this_cu->cu must be NULL. */
5336 gdb_assert (this_cu->cu == NULL);
5337 cu = xmalloc (sizeof (*cu));
5338 init_one_comp_unit (cu, this_cu);
5339 /* If an error occurs while loading, release our storage. */
5340 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5341 }
5342
5343 /* A future optimization, if needed, would be to use an existing
5344 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5345 could share abbrev tables. */
5346
5347 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5348 0 /* abbrev_table_provided */,
5349 NULL /* stub_comp_unit_die */,
5350 sig_type->dwo_unit->dwo_file->comp_dir,
5351 &reader, &info_ptr,
5352 &comp_unit_die, &has_children) == 0)
5353 {
5354 /* Dummy die. */
5355 do_cleanups (cleanups);
5356 return;
5357 }
5358
5359 /* All the "real" work is done here. */
5360 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5361
5362 /* This duplicates the code in init_cutu_and_read_dies,
5363 but the alternative is making the latter more complex.
5364 This function is only for the special case of using DWO files directly:
5365 no point in overly complicating the general case just to handle this. */
5366 if (free_cu_cleanup != NULL)
5367 {
5368 if (keep)
5369 {
5370 /* We've successfully allocated this compilation unit. Let our
5371 caller clean it up when finished with it. */
5372 discard_cleanups (free_cu_cleanup);
5373
5374 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5375 So we have to manually free the abbrev table. */
5376 dwarf2_free_abbrev_table (cu);
5377
5378 /* Link this CU into read_in_chain. */
5379 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5380 dwarf2_per_objfile->read_in_chain = this_cu;
5381 }
5382 else
5383 do_cleanups (free_cu_cleanup);
5384 }
5385
5386 do_cleanups (cleanups);
5387 }
5388
5389 /* Initialize a CU (or TU) and read its DIEs.
5390 If the CU defers to a DWO file, read the DWO file as well.
5391
5392 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5393 Otherwise the table specified in the comp unit header is read in and used.
5394 This is an optimization for when we already have the abbrev table.
5395
5396 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5397 Otherwise, a new CU is allocated with xmalloc.
5398
5399 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5400 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5401
5402 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5403 linker) then DIE_READER_FUNC will not get called. */
5404
5405 static void
5406 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5407 struct abbrev_table *abbrev_table,
5408 int use_existing_cu, int keep,
5409 die_reader_func_ftype *die_reader_func,
5410 void *data)
5411 {
5412 struct objfile *objfile = dwarf2_per_objfile->objfile;
5413 struct dwarf2_section_info *section = this_cu->section;
5414 bfd *abfd = get_section_bfd_owner (section);
5415 struct dwarf2_cu *cu;
5416 const gdb_byte *begin_info_ptr, *info_ptr;
5417 struct die_reader_specs reader;
5418 struct die_info *comp_unit_die;
5419 int has_children;
5420 struct attribute *attr;
5421 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5422 struct signatured_type *sig_type = NULL;
5423 struct dwarf2_section_info *abbrev_section;
5424 /* Non-zero if CU currently points to a DWO file and we need to
5425 reread it. When this happens we need to reread the skeleton die
5426 before we can reread the DWO file (this only applies to CUs, not TUs). */
5427 int rereading_dwo_cu = 0;
5428
5429 if (dwarf2_die_debug)
5430 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5431 this_cu->is_debug_types ? "type" : "comp",
5432 this_cu->offset.sect_off);
5433
5434 if (use_existing_cu)
5435 gdb_assert (keep);
5436
5437 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5438 file (instead of going through the stub), short-circuit all of this. */
5439 if (this_cu->reading_dwo_directly)
5440 {
5441 /* Narrow down the scope of possibilities to have to understand. */
5442 gdb_assert (this_cu->is_debug_types);
5443 gdb_assert (abbrev_table == NULL);
5444 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5445 die_reader_func, data);
5446 return;
5447 }
5448
5449 cleanups = make_cleanup (null_cleanup, NULL);
5450
5451 /* This is cheap if the section is already read in. */
5452 dwarf2_read_section (objfile, section);
5453
5454 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5455
5456 abbrev_section = get_abbrev_section_for_cu (this_cu);
5457
5458 if (use_existing_cu && this_cu->cu != NULL)
5459 {
5460 cu = this_cu->cu;
5461 /* If this CU is from a DWO file we need to start over, we need to
5462 refetch the attributes from the skeleton CU.
5463 This could be optimized by retrieving those attributes from when we
5464 were here the first time: the previous comp_unit_die was stored in
5465 comp_unit_obstack. But there's no data yet that we need this
5466 optimization. */
5467 if (cu->dwo_unit != NULL)
5468 rereading_dwo_cu = 1;
5469 }
5470 else
5471 {
5472 /* If !use_existing_cu, this_cu->cu must be NULL. */
5473 gdb_assert (this_cu->cu == NULL);
5474 cu = xmalloc (sizeof (*cu));
5475 init_one_comp_unit (cu, this_cu);
5476 /* If an error occurs while loading, release our storage. */
5477 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5478 }
5479
5480 /* Get the header. */
5481 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5482 {
5483 /* We already have the header, there's no need to read it in again. */
5484 info_ptr += cu->header.first_die_offset.cu_off;
5485 }
5486 else
5487 {
5488 if (this_cu->is_debug_types)
5489 {
5490 ULONGEST signature;
5491 cu_offset type_offset_in_tu;
5492
5493 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5494 abbrev_section, info_ptr,
5495 &signature,
5496 &type_offset_in_tu);
5497
5498 /* Since per_cu is the first member of struct signatured_type,
5499 we can go from a pointer to one to a pointer to the other. */
5500 sig_type = (struct signatured_type *) this_cu;
5501 gdb_assert (sig_type->signature == signature);
5502 gdb_assert (sig_type->type_offset_in_tu.cu_off
5503 == type_offset_in_tu.cu_off);
5504 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5505
5506 /* LENGTH has not been set yet for type units if we're
5507 using .gdb_index. */
5508 this_cu->length = get_cu_length (&cu->header);
5509
5510 /* Establish the type offset that can be used to lookup the type. */
5511 sig_type->type_offset_in_section.sect_off =
5512 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5513 }
5514 else
5515 {
5516 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5517 abbrev_section,
5518 info_ptr, 0);
5519
5520 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5521 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5522 }
5523 }
5524
5525 /* Skip dummy compilation units. */
5526 if (info_ptr >= begin_info_ptr + this_cu->length
5527 || peek_abbrev_code (abfd, info_ptr) == 0)
5528 {
5529 do_cleanups (cleanups);
5530 return;
5531 }
5532
5533 /* If we don't have them yet, read the abbrevs for this compilation unit.
5534 And if we need to read them now, make sure they're freed when we're
5535 done. Note that it's important that if the CU had an abbrev table
5536 on entry we don't free it when we're done: Somewhere up the call stack
5537 it may be in use. */
5538 if (abbrev_table != NULL)
5539 {
5540 gdb_assert (cu->abbrev_table == NULL);
5541 gdb_assert (cu->header.abbrev_offset.sect_off
5542 == abbrev_table->offset.sect_off);
5543 cu->abbrev_table = abbrev_table;
5544 }
5545 else if (cu->abbrev_table == NULL)
5546 {
5547 dwarf2_read_abbrevs (cu, abbrev_section);
5548 make_cleanup (dwarf2_free_abbrev_table, cu);
5549 }
5550 else if (rereading_dwo_cu)
5551 {
5552 dwarf2_free_abbrev_table (cu);
5553 dwarf2_read_abbrevs (cu, abbrev_section);
5554 }
5555
5556 /* Read the top level CU/TU die. */
5557 init_cu_die_reader (&reader, cu, section, NULL);
5558 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5559
5560 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5561 from the DWO file.
5562 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5563 DWO CU, that this test will fail (the attribute will not be present). */
5564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5565 if (attr)
5566 {
5567 struct dwo_unit *dwo_unit;
5568 struct die_info *dwo_comp_unit_die;
5569
5570 if (has_children)
5571 {
5572 complaint (&symfile_complaints,
5573 _("compilation unit with DW_AT_GNU_dwo_name"
5574 " has children (offset 0x%x) [in module %s]"),
5575 this_cu->offset.sect_off, bfd_get_filename (abfd));
5576 }
5577 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5578 if (dwo_unit != NULL)
5579 {
5580 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5581 abbrev_table != NULL,
5582 comp_unit_die, NULL,
5583 &reader, &info_ptr,
5584 &dwo_comp_unit_die, &has_children) == 0)
5585 {
5586 /* Dummy die. */
5587 do_cleanups (cleanups);
5588 return;
5589 }
5590 comp_unit_die = dwo_comp_unit_die;
5591 }
5592 else
5593 {
5594 /* Yikes, we couldn't find the rest of the DIE, we only have
5595 the stub. A complaint has already been logged. There's
5596 not much more we can do except pass on the stub DIE to
5597 die_reader_func. We don't want to throw an error on bad
5598 debug info. */
5599 }
5600 }
5601
5602 /* All of the above is setup for this call. Yikes. */
5603 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5604
5605 /* Done, clean up. */
5606 if (free_cu_cleanup != NULL)
5607 {
5608 if (keep)
5609 {
5610 /* We've successfully allocated this compilation unit. Let our
5611 caller clean it up when finished with it. */
5612 discard_cleanups (free_cu_cleanup);
5613
5614 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5615 So we have to manually free the abbrev table. */
5616 dwarf2_free_abbrev_table (cu);
5617
5618 /* Link this CU into read_in_chain. */
5619 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5620 dwarf2_per_objfile->read_in_chain = this_cu;
5621 }
5622 else
5623 do_cleanups (free_cu_cleanup);
5624 }
5625
5626 do_cleanups (cleanups);
5627 }
5628
5629 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5630 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5631 to have already done the lookup to find the DWO file).
5632
5633 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5634 THIS_CU->is_debug_types, but nothing else.
5635
5636 We fill in THIS_CU->length.
5637
5638 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5639 linker) then DIE_READER_FUNC will not get called.
5640
5641 THIS_CU->cu is always freed when done.
5642 This is done in order to not leave THIS_CU->cu in a state where we have
5643 to care whether it refers to the "main" CU or the DWO CU. */
5644
5645 static void
5646 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5647 struct dwo_file *dwo_file,
5648 die_reader_func_ftype *die_reader_func,
5649 void *data)
5650 {
5651 struct objfile *objfile = dwarf2_per_objfile->objfile;
5652 struct dwarf2_section_info *section = this_cu->section;
5653 bfd *abfd = get_section_bfd_owner (section);
5654 struct dwarf2_section_info *abbrev_section;
5655 struct dwarf2_cu cu;
5656 const gdb_byte *begin_info_ptr, *info_ptr;
5657 struct die_reader_specs reader;
5658 struct cleanup *cleanups;
5659 struct die_info *comp_unit_die;
5660 int has_children;
5661
5662 if (dwarf2_die_debug)
5663 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5664 this_cu->is_debug_types ? "type" : "comp",
5665 this_cu->offset.sect_off);
5666
5667 gdb_assert (this_cu->cu == NULL);
5668
5669 abbrev_section = (dwo_file != NULL
5670 ? &dwo_file->sections.abbrev
5671 : get_abbrev_section_for_cu (this_cu));
5672
5673 /* This is cheap if the section is already read in. */
5674 dwarf2_read_section (objfile, section);
5675
5676 init_one_comp_unit (&cu, this_cu);
5677
5678 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5679
5680 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5681 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5682 abbrev_section, info_ptr,
5683 this_cu->is_debug_types);
5684
5685 this_cu->length = get_cu_length (&cu.header);
5686
5687 /* Skip dummy compilation units. */
5688 if (info_ptr >= begin_info_ptr + this_cu->length
5689 || peek_abbrev_code (abfd, info_ptr) == 0)
5690 {
5691 do_cleanups (cleanups);
5692 return;
5693 }
5694
5695 dwarf2_read_abbrevs (&cu, abbrev_section);
5696 make_cleanup (dwarf2_free_abbrev_table, &cu);
5697
5698 init_cu_die_reader (&reader, &cu, section, dwo_file);
5699 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5700
5701 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5702
5703 do_cleanups (cleanups);
5704 }
5705
5706 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5707 does not lookup the specified DWO file.
5708 This cannot be used to read DWO files.
5709
5710 THIS_CU->cu is always freed when done.
5711 This is done in order to not leave THIS_CU->cu in a state where we have
5712 to care whether it refers to the "main" CU or the DWO CU.
5713 We can revisit this if the data shows there's a performance issue. */
5714
5715 static void
5716 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5717 die_reader_func_ftype *die_reader_func,
5718 void *data)
5719 {
5720 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5721 }
5722 \f
5723 /* Type Unit Groups.
5724
5725 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5726 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5727 so that all types coming from the same compilation (.o file) are grouped
5728 together. A future step could be to put the types in the same symtab as
5729 the CU the types ultimately came from. */
5730
5731 static hashval_t
5732 hash_type_unit_group (const void *item)
5733 {
5734 const struct type_unit_group *tu_group = item;
5735
5736 return hash_stmt_list_entry (&tu_group->hash);
5737 }
5738
5739 static int
5740 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5741 {
5742 const struct type_unit_group *lhs = item_lhs;
5743 const struct type_unit_group *rhs = item_rhs;
5744
5745 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5746 }
5747
5748 /* Allocate a hash table for type unit groups. */
5749
5750 static htab_t
5751 allocate_type_unit_groups_table (void)
5752 {
5753 return htab_create_alloc_ex (3,
5754 hash_type_unit_group,
5755 eq_type_unit_group,
5756 NULL,
5757 &dwarf2_per_objfile->objfile->objfile_obstack,
5758 hashtab_obstack_allocate,
5759 dummy_obstack_deallocate);
5760 }
5761
5762 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5763 partial symtabs. We combine several TUs per psymtab to not let the size
5764 of any one psymtab grow too big. */
5765 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5766 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5767
5768 /* Helper routine for get_type_unit_group.
5769 Create the type_unit_group object used to hold one or more TUs. */
5770
5771 static struct type_unit_group *
5772 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5773 {
5774 struct objfile *objfile = dwarf2_per_objfile->objfile;
5775 struct dwarf2_per_cu_data *per_cu;
5776 struct type_unit_group *tu_group;
5777
5778 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct type_unit_group);
5780 per_cu = &tu_group->per_cu;
5781 per_cu->objfile = objfile;
5782
5783 if (dwarf2_per_objfile->using_index)
5784 {
5785 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5786 struct dwarf2_per_cu_quick_data);
5787 }
5788 else
5789 {
5790 unsigned int line_offset = line_offset_struct.sect_off;
5791 struct partial_symtab *pst;
5792 char *name;
5793
5794 /* Give the symtab a useful name for debug purposes. */
5795 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5796 name = xstrprintf ("<type_units_%d>",
5797 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5798 else
5799 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5800
5801 pst = create_partial_symtab (per_cu, name);
5802 pst->anonymous = 1;
5803
5804 xfree (name);
5805 }
5806
5807 tu_group->hash.dwo_unit = cu->dwo_unit;
5808 tu_group->hash.line_offset = line_offset_struct;
5809
5810 return tu_group;
5811 }
5812
5813 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5814 STMT_LIST is a DW_AT_stmt_list attribute. */
5815
5816 static struct type_unit_group *
5817 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5818 {
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct type_unit_group *tu_group;
5821 void **slot;
5822 unsigned int line_offset;
5823 struct type_unit_group type_unit_group_for_lookup;
5824
5825 if (dwarf2_per_objfile->type_unit_groups == NULL)
5826 {
5827 dwarf2_per_objfile->type_unit_groups =
5828 allocate_type_unit_groups_table ();
5829 }
5830
5831 /* Do we need to create a new group, or can we use an existing one? */
5832
5833 if (stmt_list)
5834 {
5835 line_offset = DW_UNSND (stmt_list);
5836 ++tu_stats->nr_symtab_sharers;
5837 }
5838 else
5839 {
5840 /* Ugh, no stmt_list. Rare, but we have to handle it.
5841 We can do various things here like create one group per TU or
5842 spread them over multiple groups to split up the expansion work.
5843 To avoid worst case scenarios (too many groups or too large groups)
5844 we, umm, group them in bunches. */
5845 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5846 | (tu_stats->nr_stmt_less_type_units
5847 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5848 ++tu_stats->nr_stmt_less_type_units;
5849 }
5850
5851 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5852 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5853 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5854 &type_unit_group_for_lookup, INSERT);
5855 if (*slot != NULL)
5856 {
5857 tu_group = *slot;
5858 gdb_assert (tu_group != NULL);
5859 }
5860 else
5861 {
5862 sect_offset line_offset_struct;
5863
5864 line_offset_struct.sect_off = line_offset;
5865 tu_group = create_type_unit_group (cu, line_offset_struct);
5866 *slot = tu_group;
5867 ++tu_stats->nr_symtabs;
5868 }
5869
5870 return tu_group;
5871 }
5872 \f
5873 /* Partial symbol tables. */
5874
5875 /* Create a psymtab named NAME and assign it to PER_CU.
5876
5877 The caller must fill in the following details:
5878 dirname, textlow, texthigh. */
5879
5880 static struct partial_symtab *
5881 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5882 {
5883 struct objfile *objfile = per_cu->objfile;
5884 struct partial_symtab *pst;
5885
5886 pst = start_psymtab_common (objfile, objfile->section_offsets,
5887 name, 0,
5888 objfile->global_psymbols.next,
5889 objfile->static_psymbols.next);
5890
5891 pst->psymtabs_addrmap_supported = 1;
5892
5893 /* This is the glue that links PST into GDB's symbol API. */
5894 pst->read_symtab_private = per_cu;
5895 pst->read_symtab = dwarf2_read_symtab;
5896 per_cu->v.psymtab = pst;
5897
5898 return pst;
5899 }
5900
5901 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5902 type. */
5903
5904 struct process_psymtab_comp_unit_data
5905 {
5906 /* True if we are reading a DW_TAG_partial_unit. */
5907
5908 int want_partial_unit;
5909
5910 /* The "pretend" language that is used if the CU doesn't declare a
5911 language. */
5912
5913 enum language pretend_language;
5914 };
5915
5916 /* die_reader_func for process_psymtab_comp_unit. */
5917
5918 static void
5919 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5920 const gdb_byte *info_ptr,
5921 struct die_info *comp_unit_die,
5922 int has_children,
5923 void *data)
5924 {
5925 struct dwarf2_cu *cu = reader->cu;
5926 struct objfile *objfile = cu->objfile;
5927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5928 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5929 struct attribute *attr;
5930 CORE_ADDR baseaddr;
5931 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5932 struct partial_symtab *pst;
5933 int has_pc_info;
5934 const char *filename;
5935 struct process_psymtab_comp_unit_data *info = data;
5936
5937 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5938 return;
5939
5940 gdb_assert (! per_cu->is_debug_types);
5941
5942 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5943
5944 cu->list_in_scope = &file_symbols;
5945
5946 /* Allocate a new partial symbol table structure. */
5947 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5948 if (attr == NULL || !DW_STRING (attr))
5949 filename = "";
5950 else
5951 filename = DW_STRING (attr);
5952
5953 pst = create_partial_symtab (per_cu, filename);
5954
5955 /* This must be done before calling dwarf2_build_include_psymtabs. */
5956 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5957 if (attr != NULL)
5958 pst->dirname = DW_STRING (attr);
5959
5960 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5961
5962 dwarf2_find_base_address (comp_unit_die, cu);
5963
5964 /* Possibly set the default values of LOWPC and HIGHPC from
5965 `DW_AT_ranges'. */
5966 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5967 &best_highpc, cu, pst);
5968 if (has_pc_info == 1 && best_lowpc < best_highpc)
5969 /* Store the contiguous range if it is not empty; it can be empty for
5970 CUs with no code. */
5971 addrmap_set_empty (objfile->psymtabs_addrmap,
5972 gdbarch_adjust_dwarf2_addr (gdbarch,
5973 best_lowpc + baseaddr),
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_highpc + baseaddr) - 1,
5976 pst);
5977
5978 /* Check if comp unit has_children.
5979 If so, read the rest of the partial symbols from this comp unit.
5980 If not, there's no more debug_info for this comp unit. */
5981 if (has_children)
5982 {
5983 struct partial_die_info *first_die;
5984 CORE_ADDR lowpc, highpc;
5985
5986 lowpc = ((CORE_ADDR) -1);
5987 highpc = ((CORE_ADDR) 0);
5988
5989 first_die = load_partial_dies (reader, info_ptr, 1);
5990
5991 scan_partial_symbols (first_die, &lowpc, &highpc,
5992 ! has_pc_info, cu);
5993
5994 /* If we didn't find a lowpc, set it to highpc to avoid
5995 complaints from `maint check'. */
5996 if (lowpc == ((CORE_ADDR) -1))
5997 lowpc = highpc;
5998
5999 /* If the compilation unit didn't have an explicit address range,
6000 then use the information extracted from its child dies. */
6001 if (! has_pc_info)
6002 {
6003 best_lowpc = lowpc;
6004 best_highpc = highpc;
6005 }
6006 }
6007 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6008 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6009
6010 pst->n_global_syms = objfile->global_psymbols.next -
6011 (objfile->global_psymbols.list + pst->globals_offset);
6012 pst->n_static_syms = objfile->static_psymbols.next -
6013 (objfile->static_psymbols.list + pst->statics_offset);
6014 sort_pst_symbols (objfile, pst);
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
6025 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6026 len * sizeof (struct symtab *));
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
6040 if (dwarf2_read_debug)
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053 }
6054
6055 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058 static void
6059 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6060 int want_partial_unit,
6061 enum language pretend_language)
6062 {
6063 struct process_psymtab_comp_unit_data info;
6064
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
6078 &info);
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082 }
6083
6084 /* Reader function for build_type_psymtabs. */
6085
6086 static void
6087 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6088 const gdb_byte *info_ptr,
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092 {
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6096 struct signatured_type *sig_type;
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6111 tu_group = get_type_unit_group (cu, attr);
6112
6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
6126 pst->n_global_syms = objfile->global_psymbols.next -
6127 (objfile->global_psymbols.list + pst->globals_offset);
6128 pst->n_static_syms = objfile->static_psymbols.next -
6129 (objfile->static_psymbols.list + pst->statics_offset);
6130 sort_pst_symbols (objfile, pst);
6131 }
6132
6133 /* Struct used to sort TUs by their abbreviation table offset. */
6134
6135 struct tu_abbrev_offset
6136 {
6137 struct signatured_type *sig_type;
6138 sect_offset abbrev_offset;
6139 };
6140
6141 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6142
6143 static int
6144 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6145 {
6146 const struct tu_abbrev_offset * const *a = ap;
6147 const struct tu_abbrev_offset * const *b = bp;
6148 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6149 unsigned int boff = (*b)->abbrev_offset.sect_off;
6150
6151 return (aoff > boff) - (aoff < boff);
6152 }
6153
6154 /* Efficiently read all the type units.
6155 This does the bulk of the work for build_type_psymtabs.
6156
6157 The efficiency is because we sort TUs by the abbrev table they use and
6158 only read each abbrev table once. In one program there are 200K TUs
6159 sharing 8K abbrev tables.
6160
6161 The main purpose of this function is to support building the
6162 dwarf2_per_objfile->type_unit_groups table.
6163 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6164 can collapse the search space by grouping them by stmt_list.
6165 The savings can be significant, in the same program from above the 200K TUs
6166 share 8K stmt_list tables.
6167
6168 FUNC is expected to call get_type_unit_group, which will create the
6169 struct type_unit_group if necessary and add it to
6170 dwarf2_per_objfile->type_unit_groups. */
6171
6172 static void
6173 build_type_psymtabs_1 (void)
6174 {
6175 struct objfile *objfile = dwarf2_per_objfile->objfile;
6176 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6177 struct cleanup *cleanups;
6178 struct abbrev_table *abbrev_table;
6179 sect_offset abbrev_offset;
6180 struct tu_abbrev_offset *sorted_by_abbrev;
6181 struct type_unit_group **iter;
6182 int i;
6183
6184 /* It's up to the caller to not call us multiple times. */
6185 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6186
6187 if (dwarf2_per_objfile->n_type_units == 0)
6188 return;
6189
6190 /* TUs typically share abbrev tables, and there can be way more TUs than
6191 abbrev tables. Sort by abbrev table to reduce the number of times we
6192 read each abbrev table in.
6193 Alternatives are to punt or to maintain a cache of abbrev tables.
6194 This is simpler and efficient enough for now.
6195
6196 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6197 symtab to use). Typically TUs with the same abbrev offset have the same
6198 stmt_list value too so in practice this should work well.
6199
6200 The basic algorithm here is:
6201
6202 sort TUs by abbrev table
6203 for each TU with same abbrev table:
6204 read abbrev table if first user
6205 read TU top level DIE
6206 [IWBN if DWO skeletons had DW_AT_stmt_list]
6207 call FUNC */
6208
6209 if (dwarf2_read_debug)
6210 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6211
6212 /* Sort in a separate table to maintain the order of all_type_units
6213 for .gdb_index: TU indices directly index all_type_units. */
6214 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6215 dwarf2_per_objfile->n_type_units);
6216 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6217 {
6218 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6219
6220 sorted_by_abbrev[i].sig_type = sig_type;
6221 sorted_by_abbrev[i].abbrev_offset =
6222 read_abbrev_offset (sig_type->per_cu.section,
6223 sig_type->per_cu.offset);
6224 }
6225 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6226 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6227 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6228
6229 abbrev_offset.sect_off = ~(unsigned) 0;
6230 abbrev_table = NULL;
6231 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6232
6233 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6234 {
6235 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6236
6237 /* Switch to the next abbrev table if necessary. */
6238 if (abbrev_table == NULL
6239 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6240 {
6241 if (abbrev_table != NULL)
6242 {
6243 abbrev_table_free (abbrev_table);
6244 /* Reset to NULL in case abbrev_table_read_table throws
6245 an error: abbrev_table_free_cleanup will get called. */
6246 abbrev_table = NULL;
6247 }
6248 abbrev_offset = tu->abbrev_offset;
6249 abbrev_table =
6250 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6251 abbrev_offset);
6252 ++tu_stats->nr_uniq_abbrev_tables;
6253 }
6254
6255 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6256 build_type_psymtabs_reader, NULL);
6257 }
6258
6259 do_cleanups (cleanups);
6260 }
6261
6262 /* Print collected type unit statistics. */
6263
6264 static void
6265 print_tu_stats (void)
6266 {
6267 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6268
6269 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6270 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6271 dwarf2_per_objfile->n_type_units);
6272 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6273 tu_stats->nr_uniq_abbrev_tables);
6274 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6275 tu_stats->nr_symtabs);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6277 tu_stats->nr_symtab_sharers);
6278 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6279 tu_stats->nr_stmt_less_type_units);
6280 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6281 tu_stats->nr_all_type_units_reallocs);
6282 }
6283
6284 /* Traversal function for build_type_psymtabs. */
6285
6286 static int
6287 build_type_psymtab_dependencies (void **slot, void *info)
6288 {
6289 struct objfile *objfile = dwarf2_per_objfile->objfile;
6290 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6291 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6292 struct partial_symtab *pst = per_cu->v.psymtab;
6293 int len = VEC_length (sig_type_ptr, tu_group->tus);
6294 struct signatured_type *iter;
6295 int i;
6296
6297 gdb_assert (len > 0);
6298 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6299
6300 pst->number_of_dependencies = len;
6301 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6302 len * sizeof (struct psymtab *));
6303 for (i = 0;
6304 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6305 ++i)
6306 {
6307 gdb_assert (iter->per_cu.is_debug_types);
6308 pst->dependencies[i] = iter->per_cu.v.psymtab;
6309 iter->type_unit_group = tu_group;
6310 }
6311
6312 VEC_free (sig_type_ptr, tu_group->tus);
6313
6314 return 1;
6315 }
6316
6317 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6318 Build partial symbol tables for the .debug_types comp-units. */
6319
6320 static void
6321 build_type_psymtabs (struct objfile *objfile)
6322 {
6323 if (! create_all_type_units (objfile))
6324 return;
6325
6326 build_type_psymtabs_1 ();
6327 }
6328
6329 /* Traversal function for process_skeletonless_type_unit.
6330 Read a TU in a DWO file and build partial symbols for it. */
6331
6332 static int
6333 process_skeletonless_type_unit (void **slot, void *info)
6334 {
6335 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6336 struct objfile *objfile = info;
6337 struct signatured_type find_entry, *entry;
6338
6339 /* If this TU doesn't exist in the global table, add it and read it in. */
6340
6341 if (dwarf2_per_objfile->signatured_types == NULL)
6342 {
6343 dwarf2_per_objfile->signatured_types
6344 = allocate_signatured_type_table (objfile);
6345 }
6346
6347 find_entry.signature = dwo_unit->signature;
6348 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6349 INSERT);
6350 /* If we've already seen this type there's nothing to do. What's happening
6351 is we're doing our own version of comdat-folding here. */
6352 if (*slot != NULL)
6353 return 1;
6354
6355 /* This does the job that create_all_type_units would have done for
6356 this TU. */
6357 entry = add_type_unit (dwo_unit->signature, slot);
6358 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6359 *slot = entry;
6360
6361 /* This does the job that build_type_psymtabs_1 would have done. */
6362 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6363 build_type_psymtabs_reader, NULL);
6364
6365 return 1;
6366 }
6367
6368 /* Traversal function for process_skeletonless_type_units. */
6369
6370 static int
6371 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6372 {
6373 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6374
6375 if (dwo_file->tus != NULL)
6376 {
6377 htab_traverse_noresize (dwo_file->tus,
6378 process_skeletonless_type_unit, info);
6379 }
6380
6381 return 1;
6382 }
6383
6384 /* Scan all TUs of DWO files, verifying we've processed them.
6385 This is needed in case a TU was emitted without its skeleton.
6386 Note: This can't be done until we know what all the DWO files are. */
6387
6388 static void
6389 process_skeletonless_type_units (struct objfile *objfile)
6390 {
6391 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6392 if (get_dwp_file () == NULL
6393 && dwarf2_per_objfile->dwo_files != NULL)
6394 {
6395 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6396 process_dwo_file_for_skeletonless_type_units,
6397 objfile);
6398 }
6399 }
6400
6401 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6402
6403 static void
6404 psymtabs_addrmap_cleanup (void *o)
6405 {
6406 struct objfile *objfile = o;
6407
6408 objfile->psymtabs_addrmap = NULL;
6409 }
6410
6411 /* Compute the 'user' field for each psymtab in OBJFILE. */
6412
6413 static void
6414 set_partial_user (struct objfile *objfile)
6415 {
6416 int i;
6417
6418 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6419 {
6420 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6421 struct partial_symtab *pst = per_cu->v.psymtab;
6422 int j;
6423
6424 if (pst == NULL)
6425 continue;
6426
6427 for (j = 0; j < pst->number_of_dependencies; ++j)
6428 {
6429 /* Set the 'user' field only if it is not already set. */
6430 if (pst->dependencies[j]->user == NULL)
6431 pst->dependencies[j]->user = pst;
6432 }
6433 }
6434 }
6435
6436 /* Build the partial symbol table by doing a quick pass through the
6437 .debug_info and .debug_abbrev sections. */
6438
6439 static void
6440 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6441 {
6442 struct cleanup *back_to, *addrmap_cleanup;
6443 struct obstack temp_obstack;
6444 int i;
6445
6446 if (dwarf2_read_debug)
6447 {
6448 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6449 objfile_name (objfile));
6450 }
6451
6452 dwarf2_per_objfile->reading_partial_symbols = 1;
6453
6454 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6455
6456 /* Any cached compilation units will be linked by the per-objfile
6457 read_in_chain. Make sure to free them when we're done. */
6458 back_to = make_cleanup (free_cached_comp_units, NULL);
6459
6460 build_type_psymtabs (objfile);
6461
6462 create_all_comp_units (objfile);
6463
6464 /* Create a temporary address map on a temporary obstack. We later
6465 copy this to the final obstack. */
6466 obstack_init (&temp_obstack);
6467 make_cleanup_obstack_free (&temp_obstack);
6468 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6469 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6470
6471 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6472 {
6473 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6474
6475 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6476 }
6477
6478 /* This has to wait until we read the CUs, we need the list of DWOs. */
6479 process_skeletonless_type_units (objfile);
6480
6481 /* Now that all TUs have been processed we can fill in the dependencies. */
6482 if (dwarf2_per_objfile->type_unit_groups != NULL)
6483 {
6484 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6485 build_type_psymtab_dependencies, NULL);
6486 }
6487
6488 if (dwarf2_read_debug)
6489 print_tu_stats ();
6490
6491 set_partial_user (objfile);
6492
6493 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6494 &objfile->objfile_obstack);
6495 discard_cleanups (addrmap_cleanup);
6496
6497 do_cleanups (back_to);
6498
6499 if (dwarf2_read_debug)
6500 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6501 objfile_name (objfile));
6502 }
6503
6504 /* die_reader_func for load_partial_comp_unit. */
6505
6506 static void
6507 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6508 const gdb_byte *info_ptr,
6509 struct die_info *comp_unit_die,
6510 int has_children,
6511 void *data)
6512 {
6513 struct dwarf2_cu *cu = reader->cu;
6514
6515 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6516
6517 /* Check if comp unit has_children.
6518 If so, read the rest of the partial symbols from this comp unit.
6519 If not, there's no more debug_info for this comp unit. */
6520 if (has_children)
6521 load_partial_dies (reader, info_ptr, 0);
6522 }
6523
6524 /* Load the partial DIEs for a secondary CU into memory.
6525 This is also used when rereading a primary CU with load_all_dies. */
6526
6527 static void
6528 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6529 {
6530 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6531 load_partial_comp_unit_reader, NULL);
6532 }
6533
6534 static void
6535 read_comp_units_from_section (struct objfile *objfile,
6536 struct dwarf2_section_info *section,
6537 unsigned int is_dwz,
6538 int *n_allocated,
6539 int *n_comp_units,
6540 struct dwarf2_per_cu_data ***all_comp_units)
6541 {
6542 const gdb_byte *info_ptr;
6543 bfd *abfd = get_section_bfd_owner (section);
6544
6545 if (dwarf2_read_debug)
6546 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6547 get_section_name (section),
6548 get_section_file_name (section));
6549
6550 dwarf2_read_section (objfile, section);
6551
6552 info_ptr = section->buffer;
6553
6554 while (info_ptr < section->buffer + section->size)
6555 {
6556 unsigned int length, initial_length_size;
6557 struct dwarf2_per_cu_data *this_cu;
6558 sect_offset offset;
6559
6560 offset.sect_off = info_ptr - section->buffer;
6561
6562 /* Read just enough information to find out where the next
6563 compilation unit is. */
6564 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6565
6566 /* Save the compilation unit for later lookup. */
6567 this_cu = obstack_alloc (&objfile->objfile_obstack,
6568 sizeof (struct dwarf2_per_cu_data));
6569 memset (this_cu, 0, sizeof (*this_cu));
6570 this_cu->offset = offset;
6571 this_cu->length = length + initial_length_size;
6572 this_cu->is_dwz = is_dwz;
6573 this_cu->objfile = objfile;
6574 this_cu->section = section;
6575
6576 if (*n_comp_units == *n_allocated)
6577 {
6578 *n_allocated *= 2;
6579 *all_comp_units = xrealloc (*all_comp_units,
6580 *n_allocated
6581 * sizeof (struct dwarf2_per_cu_data *));
6582 }
6583 (*all_comp_units)[*n_comp_units] = this_cu;
6584 ++*n_comp_units;
6585
6586 info_ptr = info_ptr + this_cu->length;
6587 }
6588 }
6589
6590 /* Create a list of all compilation units in OBJFILE.
6591 This is only done for -readnow and building partial symtabs. */
6592
6593 static void
6594 create_all_comp_units (struct objfile *objfile)
6595 {
6596 int n_allocated;
6597 int n_comp_units;
6598 struct dwarf2_per_cu_data **all_comp_units;
6599 struct dwz_file *dwz;
6600
6601 n_comp_units = 0;
6602 n_allocated = 10;
6603 all_comp_units = xmalloc (n_allocated
6604 * sizeof (struct dwarf2_per_cu_data *));
6605
6606 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6607 &n_allocated, &n_comp_units, &all_comp_units);
6608
6609 dwz = dwarf2_get_dwz_file ();
6610 if (dwz != NULL)
6611 read_comp_units_from_section (objfile, &dwz->info, 1,
6612 &n_allocated, &n_comp_units,
6613 &all_comp_units);
6614
6615 dwarf2_per_objfile->all_comp_units
6616 = obstack_alloc (&objfile->objfile_obstack,
6617 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6618 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 xfree (all_comp_units);
6621 dwarf2_per_objfile->n_comp_units = n_comp_units;
6622 }
6623
6624 /* Process all loaded DIEs for compilation unit CU, starting at
6625 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6626 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6627 DW_AT_ranges). See the comments of add_partial_subprogram on how
6628 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6629
6630 static void
6631 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6632 CORE_ADDR *highpc, int set_addrmap,
6633 struct dwarf2_cu *cu)
6634 {
6635 struct partial_die_info *pdi;
6636
6637 /* Now, march along the PDI's, descending into ones which have
6638 interesting children but skipping the children of the other ones,
6639 until we reach the end of the compilation unit. */
6640
6641 pdi = first_die;
6642
6643 while (pdi != NULL)
6644 {
6645 fixup_partial_die (pdi, cu);
6646
6647 /* Anonymous namespaces or modules have no name but have interesting
6648 children, so we need to look at them. Ditto for anonymous
6649 enums. */
6650
6651 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6652 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6653 || pdi->tag == DW_TAG_imported_unit)
6654 {
6655 switch (pdi->tag)
6656 {
6657 case DW_TAG_subprogram:
6658 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6659 break;
6660 case DW_TAG_constant:
6661 case DW_TAG_variable:
6662 case DW_TAG_typedef:
6663 case DW_TAG_union_type:
6664 if (!pdi->is_declaration)
6665 {
6666 add_partial_symbol (pdi, cu);
6667 }
6668 break;
6669 case DW_TAG_class_type:
6670 case DW_TAG_interface_type:
6671 case DW_TAG_structure_type:
6672 if (!pdi->is_declaration)
6673 {
6674 add_partial_symbol (pdi, cu);
6675 }
6676 break;
6677 case DW_TAG_enumeration_type:
6678 if (!pdi->is_declaration)
6679 add_partial_enumeration (pdi, cu);
6680 break;
6681 case DW_TAG_base_type:
6682 case DW_TAG_subrange_type:
6683 /* File scope base type definitions are added to the partial
6684 symbol table. */
6685 add_partial_symbol (pdi, cu);
6686 break;
6687 case DW_TAG_namespace:
6688 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6689 break;
6690 case DW_TAG_module:
6691 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6692 break;
6693 case DW_TAG_imported_unit:
6694 {
6695 struct dwarf2_per_cu_data *per_cu;
6696
6697 /* For now we don't handle imported units in type units. */
6698 if (cu->per_cu->is_debug_types)
6699 {
6700 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6701 " supported in type units [in module %s]"),
6702 objfile_name (cu->objfile));
6703 }
6704
6705 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6706 pdi->is_dwz,
6707 cu->objfile);
6708
6709 /* Go read the partial unit, if needed. */
6710 if (per_cu->v.psymtab == NULL)
6711 process_psymtab_comp_unit (per_cu, 1, cu->language);
6712
6713 VEC_safe_push (dwarf2_per_cu_ptr,
6714 cu->per_cu->imported_symtabs, per_cu);
6715 }
6716 break;
6717 case DW_TAG_imported_declaration:
6718 add_partial_symbol (pdi, cu);
6719 break;
6720 default:
6721 break;
6722 }
6723 }
6724
6725 /* If the die has a sibling, skip to the sibling. */
6726
6727 pdi = pdi->die_sibling;
6728 }
6729 }
6730
6731 /* Functions used to compute the fully scoped name of a partial DIE.
6732
6733 Normally, this is simple. For C++, the parent DIE's fully scoped
6734 name is concatenated with "::" and the partial DIE's name. For
6735 Java, the same thing occurs except that "." is used instead of "::".
6736 Enumerators are an exception; they use the scope of their parent
6737 enumeration type, i.e. the name of the enumeration type is not
6738 prepended to the enumerator.
6739
6740 There are two complexities. One is DW_AT_specification; in this
6741 case "parent" means the parent of the target of the specification,
6742 instead of the direct parent of the DIE. The other is compilers
6743 which do not emit DW_TAG_namespace; in this case we try to guess
6744 the fully qualified name of structure types from their members'
6745 linkage names. This must be done using the DIE's children rather
6746 than the children of any DW_AT_specification target. We only need
6747 to do this for structures at the top level, i.e. if the target of
6748 any DW_AT_specification (if any; otherwise the DIE itself) does not
6749 have a parent. */
6750
6751 /* Compute the scope prefix associated with PDI's parent, in
6752 compilation unit CU. The result will be allocated on CU's
6753 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6754 field. NULL is returned if no prefix is necessary. */
6755 static const char *
6756 partial_die_parent_scope (struct partial_die_info *pdi,
6757 struct dwarf2_cu *cu)
6758 {
6759 const char *grandparent_scope;
6760 struct partial_die_info *parent, *real_pdi;
6761
6762 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6763 then this means the parent of the specification DIE. */
6764
6765 real_pdi = pdi;
6766 while (real_pdi->has_specification)
6767 real_pdi = find_partial_die (real_pdi->spec_offset,
6768 real_pdi->spec_is_dwz, cu);
6769
6770 parent = real_pdi->die_parent;
6771 if (parent == NULL)
6772 return NULL;
6773
6774 if (parent->scope_set)
6775 return parent->scope;
6776
6777 fixup_partial_die (parent, cu);
6778
6779 grandparent_scope = partial_die_parent_scope (parent, cu);
6780
6781 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6782 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6783 Work around this problem here. */
6784 if (cu->language == language_cplus
6785 && parent->tag == DW_TAG_namespace
6786 && strcmp (parent->name, "::") == 0
6787 && grandparent_scope == NULL)
6788 {
6789 parent->scope = NULL;
6790 parent->scope_set = 1;
6791 return NULL;
6792 }
6793
6794 if (pdi->tag == DW_TAG_enumerator)
6795 /* Enumerators should not get the name of the enumeration as a prefix. */
6796 parent->scope = grandparent_scope;
6797 else if (parent->tag == DW_TAG_namespace
6798 || parent->tag == DW_TAG_module
6799 || parent->tag == DW_TAG_structure_type
6800 || parent->tag == DW_TAG_class_type
6801 || parent->tag == DW_TAG_interface_type
6802 || parent->tag == DW_TAG_union_type
6803 || parent->tag == DW_TAG_enumeration_type)
6804 {
6805 if (grandparent_scope == NULL)
6806 parent->scope = parent->name;
6807 else
6808 parent->scope = typename_concat (&cu->comp_unit_obstack,
6809 grandparent_scope,
6810 parent->name, 0, cu);
6811 }
6812 else
6813 {
6814 /* FIXME drow/2004-04-01: What should we be doing with
6815 function-local names? For partial symbols, we should probably be
6816 ignoring them. */
6817 complaint (&symfile_complaints,
6818 _("unhandled containing DIE tag %d for DIE at %d"),
6819 parent->tag, pdi->offset.sect_off);
6820 parent->scope = grandparent_scope;
6821 }
6822
6823 parent->scope_set = 1;
6824 return parent->scope;
6825 }
6826
6827 /* Return the fully scoped name associated with PDI, from compilation unit
6828 CU. The result will be allocated with malloc. */
6829
6830 static char *
6831 partial_die_full_name (struct partial_die_info *pdi,
6832 struct dwarf2_cu *cu)
6833 {
6834 const char *parent_scope;
6835
6836 /* If this is a template instantiation, we can not work out the
6837 template arguments from partial DIEs. So, unfortunately, we have
6838 to go through the full DIEs. At least any work we do building
6839 types here will be reused if full symbols are loaded later. */
6840 if (pdi->has_template_arguments)
6841 {
6842 fixup_partial_die (pdi, cu);
6843
6844 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6845 {
6846 struct die_info *die;
6847 struct attribute attr;
6848 struct dwarf2_cu *ref_cu = cu;
6849
6850 /* DW_FORM_ref_addr is using section offset. */
6851 attr.name = 0;
6852 attr.form = DW_FORM_ref_addr;
6853 attr.u.unsnd = pdi->offset.sect_off;
6854 die = follow_die_ref (NULL, &attr, &ref_cu);
6855
6856 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6857 }
6858 }
6859
6860 parent_scope = partial_die_parent_scope (pdi, cu);
6861 if (parent_scope == NULL)
6862 return NULL;
6863 else
6864 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6865 }
6866
6867 static void
6868 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6869 {
6870 struct objfile *objfile = cu->objfile;
6871 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6872 CORE_ADDR addr = 0;
6873 const char *actual_name = NULL;
6874 CORE_ADDR baseaddr;
6875 char *built_actual_name;
6876
6877 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6878
6879 built_actual_name = partial_die_full_name (pdi, cu);
6880 if (built_actual_name != NULL)
6881 actual_name = built_actual_name;
6882
6883 if (actual_name == NULL)
6884 actual_name = pdi->name;
6885
6886 switch (pdi->tag)
6887 {
6888 case DW_TAG_subprogram:
6889 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6890 if (pdi->is_external || cu->language == language_ada)
6891 {
6892 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6893 of the global scope. But in Ada, we want to be able to access
6894 nested procedures globally. So all Ada subprograms are stored
6895 in the global scope. */
6896 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6897 objfile); */
6898 add_psymbol_to_list (actual_name, strlen (actual_name),
6899 built_actual_name != NULL,
6900 VAR_DOMAIN, LOC_BLOCK,
6901 &objfile->global_psymbols,
6902 0, addr, cu->language, objfile);
6903 }
6904 else
6905 {
6906 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6907 objfile); */
6908 add_psymbol_to_list (actual_name, strlen (actual_name),
6909 built_actual_name != NULL,
6910 VAR_DOMAIN, LOC_BLOCK,
6911 &objfile->static_psymbols,
6912 0, addr, cu->language, objfile);
6913 }
6914 break;
6915 case DW_TAG_constant:
6916 {
6917 struct psymbol_allocation_list *list;
6918
6919 if (pdi->is_external)
6920 list = &objfile->global_psymbols;
6921 else
6922 list = &objfile->static_psymbols;
6923 add_psymbol_to_list (actual_name, strlen (actual_name),
6924 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6925 list, 0, 0, cu->language, objfile);
6926 }
6927 break;
6928 case DW_TAG_variable:
6929 if (pdi->d.locdesc)
6930 addr = decode_locdesc (pdi->d.locdesc, cu);
6931
6932 if (pdi->d.locdesc
6933 && addr == 0
6934 && !dwarf2_per_objfile->has_section_at_zero)
6935 {
6936 /* A global or static variable may also have been stripped
6937 out by the linker if unused, in which case its address
6938 will be nullified; do not add such variables into partial
6939 symbol table then. */
6940 }
6941 else if (pdi->is_external)
6942 {
6943 /* Global Variable.
6944 Don't enter into the minimal symbol tables as there is
6945 a minimal symbol table entry from the ELF symbols already.
6946 Enter into partial symbol table if it has a location
6947 descriptor or a type.
6948 If the location descriptor is missing, new_symbol will create
6949 a LOC_UNRESOLVED symbol, the address of the variable will then
6950 be determined from the minimal symbol table whenever the variable
6951 is referenced.
6952 The address for the partial symbol table entry is not
6953 used by GDB, but it comes in handy for debugging partial symbol
6954 table building. */
6955
6956 if (pdi->d.locdesc || pdi->has_type)
6957 add_psymbol_to_list (actual_name, strlen (actual_name),
6958 built_actual_name != NULL,
6959 VAR_DOMAIN, LOC_STATIC,
6960 &objfile->global_psymbols,
6961 0, addr + baseaddr,
6962 cu->language, objfile);
6963 }
6964 else
6965 {
6966 int has_loc = pdi->d.locdesc != NULL;
6967
6968 /* Static Variable. Skip symbols whose value we cannot know (those
6969 without location descriptors or constant values). */
6970 if (!has_loc && !pdi->has_const_value)
6971 {
6972 xfree (built_actual_name);
6973 return;
6974 }
6975
6976 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6977 mst_file_data, objfile); */
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
6982 0,
6983 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6984 cu->language, objfile);
6985 }
6986 break;
6987 case DW_TAG_typedef:
6988 case DW_TAG_base_type:
6989 case DW_TAG_subrange_type:
6990 add_psymbol_to_list (actual_name, strlen (actual_name),
6991 built_actual_name != NULL,
6992 VAR_DOMAIN, LOC_TYPEDEF,
6993 &objfile->static_psymbols,
6994 0, (CORE_ADDR) 0, cu->language, objfile);
6995 break;
6996 case DW_TAG_imported_declaration:
6997 case DW_TAG_namespace:
6998 add_psymbol_to_list (actual_name, strlen (actual_name),
6999 built_actual_name != NULL,
7000 VAR_DOMAIN, LOC_TYPEDEF,
7001 &objfile->global_psymbols,
7002 0, (CORE_ADDR) 0, cu->language, objfile);
7003 break;
7004 case DW_TAG_module:
7005 add_psymbol_to_list (actual_name, strlen (actual_name),
7006 built_actual_name != NULL,
7007 MODULE_DOMAIN, LOC_TYPEDEF,
7008 &objfile->global_psymbols,
7009 0, (CORE_ADDR) 0, cu->language, objfile);
7010 break;
7011 case DW_TAG_class_type:
7012 case DW_TAG_interface_type:
7013 case DW_TAG_structure_type:
7014 case DW_TAG_union_type:
7015 case DW_TAG_enumeration_type:
7016 /* Skip external references. The DWARF standard says in the section
7017 about "Structure, Union, and Class Type Entries": "An incomplete
7018 structure, union or class type is represented by a structure,
7019 union or class entry that does not have a byte size attribute
7020 and that has a DW_AT_declaration attribute." */
7021 if (!pdi->has_byte_size && pdi->is_declaration)
7022 {
7023 xfree (built_actual_name);
7024 return;
7025 }
7026
7027 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7028 static vs. global. */
7029 add_psymbol_to_list (actual_name, strlen (actual_name),
7030 built_actual_name != NULL,
7031 STRUCT_DOMAIN, LOC_TYPEDEF,
7032 (cu->language == language_cplus
7033 || cu->language == language_java)
7034 ? &objfile->global_psymbols
7035 : &objfile->static_psymbols,
7036 0, (CORE_ADDR) 0, cu->language, objfile);
7037
7038 break;
7039 case DW_TAG_enumerator:
7040 add_psymbol_to_list (actual_name, strlen (actual_name),
7041 built_actual_name != NULL,
7042 VAR_DOMAIN, LOC_CONST,
7043 (cu->language == language_cplus
7044 || cu->language == language_java)
7045 ? &objfile->global_psymbols
7046 : &objfile->static_psymbols,
7047 0, (CORE_ADDR) 0, cu->language, objfile);
7048 break;
7049 default:
7050 break;
7051 }
7052
7053 xfree (built_actual_name);
7054 }
7055
7056 /* Read a partial die corresponding to a namespace; also, add a symbol
7057 corresponding to that namespace to the symbol table. NAMESPACE is
7058 the name of the enclosing namespace. */
7059
7060 static void
7061 add_partial_namespace (struct partial_die_info *pdi,
7062 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7063 int set_addrmap, struct dwarf2_cu *cu)
7064 {
7065 /* Add a symbol for the namespace. */
7066
7067 add_partial_symbol (pdi, cu);
7068
7069 /* Now scan partial symbols in that namespace. */
7070
7071 if (pdi->has_children)
7072 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7073 }
7074
7075 /* Read a partial die corresponding to a Fortran module. */
7076
7077 static void
7078 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7079 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7080 {
7081 /* Add a symbol for the namespace. */
7082
7083 add_partial_symbol (pdi, cu);
7084
7085 /* Now scan partial symbols in that module. */
7086
7087 if (pdi->has_children)
7088 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7089 }
7090
7091 /* Read a partial die corresponding to a subprogram and create a partial
7092 symbol for that subprogram. When the CU language allows it, this
7093 routine also defines a partial symbol for each nested subprogram
7094 that this subprogram contains. If SET_ADDRMAP is true, record the
7095 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7096 and highest PC values found in PDI.
7097
7098 PDI may also be a lexical block, in which case we simply search
7099 recursively for subprograms defined inside that lexical block.
7100 Again, this is only performed when the CU language allows this
7101 type of definitions. */
7102
7103 static void
7104 add_partial_subprogram (struct partial_die_info *pdi,
7105 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7106 int set_addrmap, struct dwarf2_cu *cu)
7107 {
7108 if (pdi->tag == DW_TAG_subprogram)
7109 {
7110 if (pdi->has_pc_info)
7111 {
7112 if (pdi->lowpc < *lowpc)
7113 *lowpc = pdi->lowpc;
7114 if (pdi->highpc > *highpc)
7115 *highpc = pdi->highpc;
7116 if (set_addrmap)
7117 {
7118 struct objfile *objfile = cu->objfile;
7119 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7120 CORE_ADDR baseaddr;
7121 CORE_ADDR highpc;
7122 CORE_ADDR lowpc;
7123
7124 baseaddr = ANOFFSET (objfile->section_offsets,
7125 SECT_OFF_TEXT (objfile));
7126 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7127 pdi->lowpc + baseaddr);
7128 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->highpc + baseaddr);
7130 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7131 cu->per_cu->v.psymtab);
7132 }
7133 }
7134
7135 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7136 {
7137 if (!pdi->is_declaration)
7138 /* Ignore subprogram DIEs that do not have a name, they are
7139 illegal. Do not emit a complaint at this point, we will
7140 do so when we convert this psymtab into a symtab. */
7141 if (pdi->name)
7142 add_partial_symbol (pdi, cu);
7143 }
7144 }
7145
7146 if (! pdi->has_children)
7147 return;
7148
7149 if (cu->language == language_ada)
7150 {
7151 pdi = pdi->die_child;
7152 while (pdi != NULL)
7153 {
7154 fixup_partial_die (pdi, cu);
7155 if (pdi->tag == DW_TAG_subprogram
7156 || pdi->tag == DW_TAG_lexical_block)
7157 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7158 pdi = pdi->die_sibling;
7159 }
7160 }
7161 }
7162
7163 /* Read a partial die corresponding to an enumeration type. */
7164
7165 static void
7166 add_partial_enumeration (struct partial_die_info *enum_pdi,
7167 struct dwarf2_cu *cu)
7168 {
7169 struct partial_die_info *pdi;
7170
7171 if (enum_pdi->name != NULL)
7172 add_partial_symbol (enum_pdi, cu);
7173
7174 pdi = enum_pdi->die_child;
7175 while (pdi)
7176 {
7177 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7178 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7179 else
7180 add_partial_symbol (pdi, cu);
7181 pdi = pdi->die_sibling;
7182 }
7183 }
7184
7185 /* Return the initial uleb128 in the die at INFO_PTR. */
7186
7187 static unsigned int
7188 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7189 {
7190 unsigned int bytes_read;
7191
7192 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7193 }
7194
7195 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7196 Return the corresponding abbrev, or NULL if the number is zero (indicating
7197 an empty DIE). In either case *BYTES_READ will be set to the length of
7198 the initial number. */
7199
7200 static struct abbrev_info *
7201 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7202 struct dwarf2_cu *cu)
7203 {
7204 bfd *abfd = cu->objfile->obfd;
7205 unsigned int abbrev_number;
7206 struct abbrev_info *abbrev;
7207
7208 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7209
7210 if (abbrev_number == 0)
7211 return NULL;
7212
7213 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7214 if (!abbrev)
7215 {
7216 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7217 " at offset 0x%x [in module %s]"),
7218 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7219 cu->header.offset.sect_off, bfd_get_filename (abfd));
7220 }
7221
7222 return abbrev;
7223 }
7224
7225 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7226 Returns a pointer to the end of a series of DIEs, terminated by an empty
7227 DIE. Any children of the skipped DIEs will also be skipped. */
7228
7229 static const gdb_byte *
7230 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7231 {
7232 struct dwarf2_cu *cu = reader->cu;
7233 struct abbrev_info *abbrev;
7234 unsigned int bytes_read;
7235
7236 while (1)
7237 {
7238 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7239 if (abbrev == NULL)
7240 return info_ptr + bytes_read;
7241 else
7242 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7243 }
7244 }
7245
7246 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7247 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7248 abbrev corresponding to that skipped uleb128 should be passed in
7249 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7250 children. */
7251
7252 static const gdb_byte *
7253 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7254 struct abbrev_info *abbrev)
7255 {
7256 unsigned int bytes_read;
7257 struct attribute attr;
7258 bfd *abfd = reader->abfd;
7259 struct dwarf2_cu *cu = reader->cu;
7260 const gdb_byte *buffer = reader->buffer;
7261 const gdb_byte *buffer_end = reader->buffer_end;
7262 const gdb_byte *start_info_ptr = info_ptr;
7263 unsigned int form, i;
7264
7265 for (i = 0; i < abbrev->num_attrs; i++)
7266 {
7267 /* The only abbrev we care about is DW_AT_sibling. */
7268 if (abbrev->attrs[i].name == DW_AT_sibling)
7269 {
7270 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7271 if (attr.form == DW_FORM_ref_addr)
7272 complaint (&symfile_complaints,
7273 _("ignoring absolute DW_AT_sibling"));
7274 else
7275 {
7276 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7277 const gdb_byte *sibling_ptr = buffer + off;
7278
7279 if (sibling_ptr < info_ptr)
7280 complaint (&symfile_complaints,
7281 _("DW_AT_sibling points backwards"));
7282 else if (sibling_ptr > reader->buffer_end)
7283 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7284 else
7285 return sibling_ptr;
7286 }
7287 }
7288
7289 /* If it isn't DW_AT_sibling, skip this attribute. */
7290 form = abbrev->attrs[i].form;
7291 skip_attribute:
7292 switch (form)
7293 {
7294 case DW_FORM_ref_addr:
7295 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7296 and later it is offset sized. */
7297 if (cu->header.version == 2)
7298 info_ptr += cu->header.addr_size;
7299 else
7300 info_ptr += cu->header.offset_size;
7301 break;
7302 case DW_FORM_GNU_ref_alt:
7303 info_ptr += cu->header.offset_size;
7304 break;
7305 case DW_FORM_addr:
7306 info_ptr += cu->header.addr_size;
7307 break;
7308 case DW_FORM_data1:
7309 case DW_FORM_ref1:
7310 case DW_FORM_flag:
7311 info_ptr += 1;
7312 break;
7313 case DW_FORM_flag_present:
7314 break;
7315 case DW_FORM_data2:
7316 case DW_FORM_ref2:
7317 info_ptr += 2;
7318 break;
7319 case DW_FORM_data4:
7320 case DW_FORM_ref4:
7321 info_ptr += 4;
7322 break;
7323 case DW_FORM_data8:
7324 case DW_FORM_ref8:
7325 case DW_FORM_ref_sig8:
7326 info_ptr += 8;
7327 break;
7328 case DW_FORM_string:
7329 read_direct_string (abfd, info_ptr, &bytes_read);
7330 info_ptr += bytes_read;
7331 break;
7332 case DW_FORM_sec_offset:
7333 case DW_FORM_strp:
7334 case DW_FORM_GNU_strp_alt:
7335 info_ptr += cu->header.offset_size;
7336 break;
7337 case DW_FORM_exprloc:
7338 case DW_FORM_block:
7339 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7340 info_ptr += bytes_read;
7341 break;
7342 case DW_FORM_block1:
7343 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7344 break;
7345 case DW_FORM_block2:
7346 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7347 break;
7348 case DW_FORM_block4:
7349 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7350 break;
7351 case DW_FORM_sdata:
7352 case DW_FORM_udata:
7353 case DW_FORM_ref_udata:
7354 case DW_FORM_GNU_addr_index:
7355 case DW_FORM_GNU_str_index:
7356 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7357 break;
7358 case DW_FORM_indirect:
7359 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7360 info_ptr += bytes_read;
7361 /* We need to continue parsing from here, so just go back to
7362 the top. */
7363 goto skip_attribute;
7364
7365 default:
7366 error (_("Dwarf Error: Cannot handle %s "
7367 "in DWARF reader [in module %s]"),
7368 dwarf_form_name (form),
7369 bfd_get_filename (abfd));
7370 }
7371 }
7372
7373 if (abbrev->has_children)
7374 return skip_children (reader, info_ptr);
7375 else
7376 return info_ptr;
7377 }
7378
7379 /* Locate ORIG_PDI's sibling.
7380 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7381
7382 static const gdb_byte *
7383 locate_pdi_sibling (const struct die_reader_specs *reader,
7384 struct partial_die_info *orig_pdi,
7385 const gdb_byte *info_ptr)
7386 {
7387 /* Do we know the sibling already? */
7388
7389 if (orig_pdi->sibling)
7390 return orig_pdi->sibling;
7391
7392 /* Are there any children to deal with? */
7393
7394 if (!orig_pdi->has_children)
7395 return info_ptr;
7396
7397 /* Skip the children the long way. */
7398
7399 return skip_children (reader, info_ptr);
7400 }
7401
7402 /* Expand this partial symbol table into a full symbol table. SELF is
7403 not NULL. */
7404
7405 static void
7406 dwarf2_read_symtab (struct partial_symtab *self,
7407 struct objfile *objfile)
7408 {
7409 if (self->readin)
7410 {
7411 warning (_("bug: psymtab for %s is already read in."),
7412 self->filename);
7413 }
7414 else
7415 {
7416 if (info_verbose)
7417 {
7418 printf_filtered (_("Reading in symbols for %s..."),
7419 self->filename);
7420 gdb_flush (gdb_stdout);
7421 }
7422
7423 /* Restore our global data. */
7424 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7425
7426 /* If this psymtab is constructed from a debug-only objfile, the
7427 has_section_at_zero flag will not necessarily be correct. We
7428 can get the correct value for this flag by looking at the data
7429 associated with the (presumably stripped) associated objfile. */
7430 if (objfile->separate_debug_objfile_backlink)
7431 {
7432 struct dwarf2_per_objfile *dpo_backlink
7433 = objfile_data (objfile->separate_debug_objfile_backlink,
7434 dwarf2_objfile_data_key);
7435
7436 dwarf2_per_objfile->has_section_at_zero
7437 = dpo_backlink->has_section_at_zero;
7438 }
7439
7440 dwarf2_per_objfile->reading_partial_symbols = 0;
7441
7442 psymtab_to_symtab_1 (self);
7443
7444 /* Finish up the debug error message. */
7445 if (info_verbose)
7446 printf_filtered (_("done.\n"));
7447 }
7448
7449 process_cu_includes ();
7450 }
7451 \f
7452 /* Reading in full CUs. */
7453
7454 /* Add PER_CU to the queue. */
7455
7456 static void
7457 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7458 enum language pretend_language)
7459 {
7460 struct dwarf2_queue_item *item;
7461
7462 per_cu->queued = 1;
7463 item = xmalloc (sizeof (*item));
7464 item->per_cu = per_cu;
7465 item->pretend_language = pretend_language;
7466 item->next = NULL;
7467
7468 if (dwarf2_queue == NULL)
7469 dwarf2_queue = item;
7470 else
7471 dwarf2_queue_tail->next = item;
7472
7473 dwarf2_queue_tail = item;
7474 }
7475
7476 /* If PER_CU is not yet queued, add it to the queue.
7477 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7478 dependency.
7479 The result is non-zero if PER_CU was queued, otherwise the result is zero
7480 meaning either PER_CU is already queued or it is already loaded.
7481
7482 N.B. There is an invariant here that if a CU is queued then it is loaded.
7483 The caller is required to load PER_CU if we return non-zero. */
7484
7485 static int
7486 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7487 struct dwarf2_per_cu_data *per_cu,
7488 enum language pretend_language)
7489 {
7490 /* We may arrive here during partial symbol reading, if we need full
7491 DIEs to process an unusual case (e.g. template arguments). Do
7492 not queue PER_CU, just tell our caller to load its DIEs. */
7493 if (dwarf2_per_objfile->reading_partial_symbols)
7494 {
7495 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7496 return 1;
7497 return 0;
7498 }
7499
7500 /* Mark the dependence relation so that we don't flush PER_CU
7501 too early. */
7502 if (dependent_cu != NULL)
7503 dwarf2_add_dependence (dependent_cu, per_cu);
7504
7505 /* If it's already on the queue, we have nothing to do. */
7506 if (per_cu->queued)
7507 return 0;
7508
7509 /* If the compilation unit is already loaded, just mark it as
7510 used. */
7511 if (per_cu->cu != NULL)
7512 {
7513 per_cu->cu->last_used = 0;
7514 return 0;
7515 }
7516
7517 /* Add it to the queue. */
7518 queue_comp_unit (per_cu, pretend_language);
7519
7520 return 1;
7521 }
7522
7523 /* Process the queue. */
7524
7525 static void
7526 process_queue (void)
7527 {
7528 struct dwarf2_queue_item *item, *next_item;
7529
7530 if (dwarf2_read_debug)
7531 {
7532 fprintf_unfiltered (gdb_stdlog,
7533 "Expanding one or more symtabs of objfile %s ...\n",
7534 objfile_name (dwarf2_per_objfile->objfile));
7535 }
7536
7537 /* The queue starts out with one item, but following a DIE reference
7538 may load a new CU, adding it to the end of the queue. */
7539 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7540 {
7541 if (dwarf2_per_objfile->using_index
7542 ? !item->per_cu->v.quick->compunit_symtab
7543 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7544 {
7545 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7546 unsigned int debug_print_threshold;
7547 char buf[100];
7548
7549 if (per_cu->is_debug_types)
7550 {
7551 struct signatured_type *sig_type =
7552 (struct signatured_type *) per_cu;
7553
7554 sprintf (buf, "TU %s at offset 0x%x",
7555 hex_string (sig_type->signature),
7556 per_cu->offset.sect_off);
7557 /* There can be 100s of TUs.
7558 Only print them in verbose mode. */
7559 debug_print_threshold = 2;
7560 }
7561 else
7562 {
7563 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7564 debug_print_threshold = 1;
7565 }
7566
7567 if (dwarf2_read_debug >= debug_print_threshold)
7568 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7569
7570 if (per_cu->is_debug_types)
7571 process_full_type_unit (per_cu, item->pretend_language);
7572 else
7573 process_full_comp_unit (per_cu, item->pretend_language);
7574
7575 if (dwarf2_read_debug >= debug_print_threshold)
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7577 }
7578
7579 item->per_cu->queued = 0;
7580 next_item = item->next;
7581 xfree (item);
7582 }
7583
7584 dwarf2_queue_tail = NULL;
7585
7586 if (dwarf2_read_debug)
7587 {
7588 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7589 objfile_name (dwarf2_per_objfile->objfile));
7590 }
7591 }
7592
7593 /* Free all allocated queue entries. This function only releases anything if
7594 an error was thrown; if the queue was processed then it would have been
7595 freed as we went along. */
7596
7597 static void
7598 dwarf2_release_queue (void *dummy)
7599 {
7600 struct dwarf2_queue_item *item, *last;
7601
7602 item = dwarf2_queue;
7603 while (item)
7604 {
7605 /* Anything still marked queued is likely to be in an
7606 inconsistent state, so discard it. */
7607 if (item->per_cu->queued)
7608 {
7609 if (item->per_cu->cu != NULL)
7610 free_one_cached_comp_unit (item->per_cu);
7611 item->per_cu->queued = 0;
7612 }
7613
7614 last = item;
7615 item = item->next;
7616 xfree (last);
7617 }
7618
7619 dwarf2_queue = dwarf2_queue_tail = NULL;
7620 }
7621
7622 /* Read in full symbols for PST, and anything it depends on. */
7623
7624 static void
7625 psymtab_to_symtab_1 (struct partial_symtab *pst)
7626 {
7627 struct dwarf2_per_cu_data *per_cu;
7628 int i;
7629
7630 if (pst->readin)
7631 return;
7632
7633 for (i = 0; i < pst->number_of_dependencies; i++)
7634 if (!pst->dependencies[i]->readin
7635 && pst->dependencies[i]->user == NULL)
7636 {
7637 /* Inform about additional files that need to be read in. */
7638 if (info_verbose)
7639 {
7640 /* FIXME: i18n: Need to make this a single string. */
7641 fputs_filtered (" ", gdb_stdout);
7642 wrap_here ("");
7643 fputs_filtered ("and ", gdb_stdout);
7644 wrap_here ("");
7645 printf_filtered ("%s...", pst->dependencies[i]->filename);
7646 wrap_here (""); /* Flush output. */
7647 gdb_flush (gdb_stdout);
7648 }
7649 psymtab_to_symtab_1 (pst->dependencies[i]);
7650 }
7651
7652 per_cu = pst->read_symtab_private;
7653
7654 if (per_cu == NULL)
7655 {
7656 /* It's an include file, no symbols to read for it.
7657 Everything is in the parent symtab. */
7658 pst->readin = 1;
7659 return;
7660 }
7661
7662 dw2_do_instantiate_symtab (per_cu);
7663 }
7664
7665 /* Trivial hash function for die_info: the hash value of a DIE
7666 is its offset in .debug_info for this objfile. */
7667
7668 static hashval_t
7669 die_hash (const void *item)
7670 {
7671 const struct die_info *die = item;
7672
7673 return die->offset.sect_off;
7674 }
7675
7676 /* Trivial comparison function for die_info structures: two DIEs
7677 are equal if they have the same offset. */
7678
7679 static int
7680 die_eq (const void *item_lhs, const void *item_rhs)
7681 {
7682 const struct die_info *die_lhs = item_lhs;
7683 const struct die_info *die_rhs = item_rhs;
7684
7685 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7686 }
7687
7688 /* die_reader_func for load_full_comp_unit.
7689 This is identical to read_signatured_type_reader,
7690 but is kept separate for now. */
7691
7692 static void
7693 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7694 const gdb_byte *info_ptr,
7695 struct die_info *comp_unit_die,
7696 int has_children,
7697 void *data)
7698 {
7699 struct dwarf2_cu *cu = reader->cu;
7700 enum language *language_ptr = data;
7701
7702 gdb_assert (cu->die_hash == NULL);
7703 cu->die_hash =
7704 htab_create_alloc_ex (cu->header.length / 12,
7705 die_hash,
7706 die_eq,
7707 NULL,
7708 &cu->comp_unit_obstack,
7709 hashtab_obstack_allocate,
7710 dummy_obstack_deallocate);
7711
7712 if (has_children)
7713 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7714 &info_ptr, comp_unit_die);
7715 cu->dies = comp_unit_die;
7716 /* comp_unit_die is not stored in die_hash, no need. */
7717
7718 /* We try not to read any attributes in this function, because not
7719 all CUs needed for references have been loaded yet, and symbol
7720 table processing isn't initialized. But we have to set the CU language,
7721 or we won't be able to build types correctly.
7722 Similarly, if we do not read the producer, we can not apply
7723 producer-specific interpretation. */
7724 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7725 }
7726
7727 /* Load the DIEs associated with PER_CU into memory. */
7728
7729 static void
7730 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7731 enum language pretend_language)
7732 {
7733 gdb_assert (! this_cu->is_debug_types);
7734
7735 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7736 load_full_comp_unit_reader, &pretend_language);
7737 }
7738
7739 /* Add a DIE to the delayed physname list. */
7740
7741 static void
7742 add_to_method_list (struct type *type, int fnfield_index, int index,
7743 const char *name, struct die_info *die,
7744 struct dwarf2_cu *cu)
7745 {
7746 struct delayed_method_info mi;
7747 mi.type = type;
7748 mi.fnfield_index = fnfield_index;
7749 mi.index = index;
7750 mi.name = name;
7751 mi.die = die;
7752 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7753 }
7754
7755 /* A cleanup for freeing the delayed method list. */
7756
7757 static void
7758 free_delayed_list (void *ptr)
7759 {
7760 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7761 if (cu->method_list != NULL)
7762 {
7763 VEC_free (delayed_method_info, cu->method_list);
7764 cu->method_list = NULL;
7765 }
7766 }
7767
7768 /* Compute the physnames of any methods on the CU's method list.
7769
7770 The computation of method physnames is delayed in order to avoid the
7771 (bad) condition that one of the method's formal parameters is of an as yet
7772 incomplete type. */
7773
7774 static void
7775 compute_delayed_physnames (struct dwarf2_cu *cu)
7776 {
7777 int i;
7778 struct delayed_method_info *mi;
7779 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7780 {
7781 const char *physname;
7782 struct fn_fieldlist *fn_flp
7783 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7784 physname = dwarf2_physname (mi->name, mi->die, cu);
7785 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7786 = physname ? physname : "";
7787 }
7788 }
7789
7790 /* Go objects should be embedded in a DW_TAG_module DIE,
7791 and it's not clear if/how imported objects will appear.
7792 To keep Go support simple until that's worked out,
7793 go back through what we've read and create something usable.
7794 We could do this while processing each DIE, and feels kinda cleaner,
7795 but that way is more invasive.
7796 This is to, for example, allow the user to type "p var" or "b main"
7797 without having to specify the package name, and allow lookups
7798 of module.object to work in contexts that use the expression
7799 parser. */
7800
7801 static void
7802 fixup_go_packaging (struct dwarf2_cu *cu)
7803 {
7804 char *package_name = NULL;
7805 struct pending *list;
7806 int i;
7807
7808 for (list = global_symbols; list != NULL; list = list->next)
7809 {
7810 for (i = 0; i < list->nsyms; ++i)
7811 {
7812 struct symbol *sym = list->symbol[i];
7813
7814 if (SYMBOL_LANGUAGE (sym) == language_go
7815 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7816 {
7817 char *this_package_name = go_symbol_package_name (sym);
7818
7819 if (this_package_name == NULL)
7820 continue;
7821 if (package_name == NULL)
7822 package_name = this_package_name;
7823 else
7824 {
7825 if (strcmp (package_name, this_package_name) != 0)
7826 complaint (&symfile_complaints,
7827 _("Symtab %s has objects from two different Go packages: %s and %s"),
7828 (symbol_symtab (sym) != NULL
7829 ? symtab_to_filename_for_display
7830 (symbol_symtab (sym))
7831 : objfile_name (cu->objfile)),
7832 this_package_name, package_name);
7833 xfree (this_package_name);
7834 }
7835 }
7836 }
7837 }
7838
7839 if (package_name != NULL)
7840 {
7841 struct objfile *objfile = cu->objfile;
7842 const char *saved_package_name
7843 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7844 package_name,
7845 strlen (package_name));
7846 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7847 saved_package_name, objfile);
7848 struct symbol *sym;
7849
7850 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7851
7852 sym = allocate_symbol (objfile);
7853 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7854 SYMBOL_SET_NAMES (sym, saved_package_name,
7855 strlen (saved_package_name), 0, objfile);
7856 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7857 e.g., "main" finds the "main" module and not C's main(). */
7858 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7859 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7860 SYMBOL_TYPE (sym) = type;
7861
7862 add_symbol_to_list (sym, &global_symbols);
7863
7864 xfree (package_name);
7865 }
7866 }
7867
7868 /* Return the symtab for PER_CU. This works properly regardless of
7869 whether we're using the index or psymtabs. */
7870
7871 static struct compunit_symtab *
7872 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7873 {
7874 return (dwarf2_per_objfile->using_index
7875 ? per_cu->v.quick->compunit_symtab
7876 : per_cu->v.psymtab->compunit_symtab);
7877 }
7878
7879 /* A helper function for computing the list of all symbol tables
7880 included by PER_CU. */
7881
7882 static void
7883 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7884 htab_t all_children, htab_t all_type_symtabs,
7885 struct dwarf2_per_cu_data *per_cu,
7886 struct compunit_symtab *immediate_parent)
7887 {
7888 void **slot;
7889 int ix;
7890 struct compunit_symtab *cust;
7891 struct dwarf2_per_cu_data *iter;
7892
7893 slot = htab_find_slot (all_children, per_cu, INSERT);
7894 if (*slot != NULL)
7895 {
7896 /* This inclusion and its children have been processed. */
7897 return;
7898 }
7899
7900 *slot = per_cu;
7901 /* Only add a CU if it has a symbol table. */
7902 cust = get_compunit_symtab (per_cu);
7903 if (cust != NULL)
7904 {
7905 /* If this is a type unit only add its symbol table if we haven't
7906 seen it yet (type unit per_cu's can share symtabs). */
7907 if (per_cu->is_debug_types)
7908 {
7909 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7910 if (*slot == NULL)
7911 {
7912 *slot = cust;
7913 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7914 if (cust->user == NULL)
7915 cust->user = immediate_parent;
7916 }
7917 }
7918 else
7919 {
7920 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7921 if (cust->user == NULL)
7922 cust->user = immediate_parent;
7923 }
7924 }
7925
7926 for (ix = 0;
7927 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7928 ++ix)
7929 {
7930 recursively_compute_inclusions (result, all_children,
7931 all_type_symtabs, iter, cust);
7932 }
7933 }
7934
7935 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7936 PER_CU. */
7937
7938 static void
7939 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7940 {
7941 gdb_assert (! per_cu->is_debug_types);
7942
7943 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7944 {
7945 int ix, len;
7946 struct dwarf2_per_cu_data *per_cu_iter;
7947 struct compunit_symtab *compunit_symtab_iter;
7948 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7949 htab_t all_children, all_type_symtabs;
7950 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7951
7952 /* If we don't have a symtab, we can just skip this case. */
7953 if (cust == NULL)
7954 return;
7955
7956 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7957 NULL, xcalloc, xfree);
7958 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960
7961 for (ix = 0;
7962 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7963 ix, per_cu_iter);
7964 ++ix)
7965 {
7966 recursively_compute_inclusions (&result_symtabs, all_children,
7967 all_type_symtabs, per_cu_iter,
7968 cust);
7969 }
7970
7971 /* Now we have a transitive closure of all the included symtabs. */
7972 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7973 cust->includes
7974 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7975 (len + 1) * sizeof (struct symtab *));
7976 for (ix = 0;
7977 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7978 compunit_symtab_iter);
7979 ++ix)
7980 cust->includes[ix] = compunit_symtab_iter;
7981 cust->includes[len] = NULL;
7982
7983 VEC_free (compunit_symtab_ptr, result_symtabs);
7984 htab_delete (all_children);
7985 htab_delete (all_type_symtabs);
7986 }
7987 }
7988
7989 /* Compute the 'includes' field for the symtabs of all the CUs we just
7990 read. */
7991
7992 static void
7993 process_cu_includes (void)
7994 {
7995 int ix;
7996 struct dwarf2_per_cu_data *iter;
7997
7998 for (ix = 0;
7999 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8000 ix, iter);
8001 ++ix)
8002 {
8003 if (! iter->is_debug_types)
8004 compute_compunit_symtab_includes (iter);
8005 }
8006
8007 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8008 }
8009
8010 /* Generate full symbol information for PER_CU, whose DIEs have
8011 already been loaded into memory. */
8012
8013 static void
8014 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8015 enum language pretend_language)
8016 {
8017 struct dwarf2_cu *cu = per_cu->cu;
8018 struct objfile *objfile = per_cu->objfile;
8019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8020 CORE_ADDR lowpc, highpc;
8021 struct compunit_symtab *cust;
8022 struct cleanup *back_to, *delayed_list_cleanup;
8023 CORE_ADDR baseaddr;
8024 struct block *static_block;
8025 CORE_ADDR addr;
8026
8027 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8028
8029 buildsym_init ();
8030 back_to = make_cleanup (really_free_pendings, NULL);
8031 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8032
8033 cu->list_in_scope = &file_symbols;
8034
8035 cu->language = pretend_language;
8036 cu->language_defn = language_def (cu->language);
8037
8038 /* Do line number decoding in read_file_scope () */
8039 process_die (cu->dies, cu);
8040
8041 /* For now fudge the Go package. */
8042 if (cu->language == language_go)
8043 fixup_go_packaging (cu);
8044
8045 /* Now that we have processed all the DIEs in the CU, all the types
8046 should be complete, and it should now be safe to compute all of the
8047 physnames. */
8048 compute_delayed_physnames (cu);
8049 do_cleanups (delayed_list_cleanup);
8050
8051 /* Some compilers don't define a DW_AT_high_pc attribute for the
8052 compilation unit. If the DW_AT_high_pc is missing, synthesize
8053 it, by scanning the DIE's below the compilation unit. */
8054 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8055
8056 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8057 static_block = end_symtab_get_static_block (addr, 0, 1);
8058
8059 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8060 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8061 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8062 addrmap to help ensure it has an accurate map of pc values belonging to
8063 this comp unit. */
8064 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8065
8066 cust = end_symtab_from_static_block (static_block,
8067 SECT_OFF_TEXT (objfile), 0);
8068
8069 if (cust != NULL)
8070 {
8071 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8072
8073 /* Set symtab language to language from DW_AT_language. If the
8074 compilation is from a C file generated by language preprocessors, do
8075 not set the language if it was already deduced by start_subfile. */
8076 if (!(cu->language == language_c
8077 && COMPUNIT_FILETABS (cust)->language != language_c))
8078 COMPUNIT_FILETABS (cust)->language = cu->language;
8079
8080 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8081 produce DW_AT_location with location lists but it can be possibly
8082 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8083 there were bugs in prologue debug info, fixed later in GCC-4.5
8084 by "unwind info for epilogues" patch (which is not directly related).
8085
8086 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8087 needed, it would be wrong due to missing DW_AT_producer there.
8088
8089 Still one can confuse GDB by using non-standard GCC compilation
8090 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8091 */
8092 if (cu->has_loclist && gcc_4_minor >= 5)
8093 cust->locations_valid = 1;
8094
8095 if (gcc_4_minor >= 5)
8096 cust->epilogue_unwind_valid = 1;
8097
8098 cust->call_site_htab = cu->call_site_htab;
8099 }
8100
8101 if (dwarf2_per_objfile->using_index)
8102 per_cu->v.quick->compunit_symtab = cust;
8103 else
8104 {
8105 struct partial_symtab *pst = per_cu->v.psymtab;
8106 pst->compunit_symtab = cust;
8107 pst->readin = 1;
8108 }
8109
8110 /* Push it for inclusion processing later. */
8111 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8112
8113 do_cleanups (back_to);
8114 }
8115
8116 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8117 already been loaded into memory. */
8118
8119 static void
8120 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8121 enum language pretend_language)
8122 {
8123 struct dwarf2_cu *cu = per_cu->cu;
8124 struct objfile *objfile = per_cu->objfile;
8125 struct compunit_symtab *cust;
8126 struct cleanup *back_to, *delayed_list_cleanup;
8127 struct signatured_type *sig_type;
8128
8129 gdb_assert (per_cu->is_debug_types);
8130 sig_type = (struct signatured_type *) per_cu;
8131
8132 buildsym_init ();
8133 back_to = make_cleanup (really_free_pendings, NULL);
8134 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8135
8136 cu->list_in_scope = &file_symbols;
8137
8138 cu->language = pretend_language;
8139 cu->language_defn = language_def (cu->language);
8140
8141 /* The symbol tables are set up in read_type_unit_scope. */
8142 process_die (cu->dies, cu);
8143
8144 /* For now fudge the Go package. */
8145 if (cu->language == language_go)
8146 fixup_go_packaging (cu);
8147
8148 /* Now that we have processed all the DIEs in the CU, all the types
8149 should be complete, and it should now be safe to compute all of the
8150 physnames. */
8151 compute_delayed_physnames (cu);
8152 do_cleanups (delayed_list_cleanup);
8153
8154 /* TUs share symbol tables.
8155 If this is the first TU to use this symtab, complete the construction
8156 of it with end_expandable_symtab. Otherwise, complete the addition of
8157 this TU's symbols to the existing symtab. */
8158 if (sig_type->type_unit_group->compunit_symtab == NULL)
8159 {
8160 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8161 sig_type->type_unit_group->compunit_symtab = cust;
8162
8163 if (cust != NULL)
8164 {
8165 /* Set symtab language to language from DW_AT_language. If the
8166 compilation is from a C file generated by language preprocessors,
8167 do not set the language if it was already deduced by
8168 start_subfile. */
8169 if (!(cu->language == language_c
8170 && COMPUNIT_FILETABS (cust)->language != language_c))
8171 COMPUNIT_FILETABS (cust)->language = cu->language;
8172 }
8173 }
8174 else
8175 {
8176 augment_type_symtab ();
8177 cust = sig_type->type_unit_group->compunit_symtab;
8178 }
8179
8180 if (dwarf2_per_objfile->using_index)
8181 per_cu->v.quick->compunit_symtab = cust;
8182 else
8183 {
8184 struct partial_symtab *pst = per_cu->v.psymtab;
8185 pst->compunit_symtab = cust;
8186 pst->readin = 1;
8187 }
8188
8189 do_cleanups (back_to);
8190 }
8191
8192 /* Process an imported unit DIE. */
8193
8194 static void
8195 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8196 {
8197 struct attribute *attr;
8198
8199 /* For now we don't handle imported units in type units. */
8200 if (cu->per_cu->is_debug_types)
8201 {
8202 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8203 " supported in type units [in module %s]"),
8204 objfile_name (cu->objfile));
8205 }
8206
8207 attr = dwarf2_attr (die, DW_AT_import, cu);
8208 if (attr != NULL)
8209 {
8210 struct dwarf2_per_cu_data *per_cu;
8211 struct symtab *imported_symtab;
8212 sect_offset offset;
8213 int is_dwz;
8214
8215 offset = dwarf2_get_ref_die_offset (attr);
8216 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8217 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8218
8219 /* If necessary, add it to the queue and load its DIEs. */
8220 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8221 load_full_comp_unit (per_cu, cu->language);
8222
8223 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8224 per_cu);
8225 }
8226 }
8227
8228 /* Reset the in_process bit of a die. */
8229
8230 static void
8231 reset_die_in_process (void *arg)
8232 {
8233 struct die_info *die = arg;
8234
8235 die->in_process = 0;
8236 }
8237
8238 /* Process a die and its children. */
8239
8240 static void
8241 process_die (struct die_info *die, struct dwarf2_cu *cu)
8242 {
8243 struct cleanup *in_process;
8244
8245 /* We should only be processing those not already in process. */
8246 gdb_assert (!die->in_process);
8247
8248 die->in_process = 1;
8249 in_process = make_cleanup (reset_die_in_process,die);
8250
8251 switch (die->tag)
8252 {
8253 case DW_TAG_padding:
8254 break;
8255 case DW_TAG_compile_unit:
8256 case DW_TAG_partial_unit:
8257 read_file_scope (die, cu);
8258 break;
8259 case DW_TAG_type_unit:
8260 read_type_unit_scope (die, cu);
8261 break;
8262 case DW_TAG_subprogram:
8263 case DW_TAG_inlined_subroutine:
8264 read_func_scope (die, cu);
8265 break;
8266 case DW_TAG_lexical_block:
8267 case DW_TAG_try_block:
8268 case DW_TAG_catch_block:
8269 read_lexical_block_scope (die, cu);
8270 break;
8271 case DW_TAG_GNU_call_site:
8272 read_call_site_scope (die, cu);
8273 break;
8274 case DW_TAG_class_type:
8275 case DW_TAG_interface_type:
8276 case DW_TAG_structure_type:
8277 case DW_TAG_union_type:
8278 process_structure_scope (die, cu);
8279 break;
8280 case DW_TAG_enumeration_type:
8281 process_enumeration_scope (die, cu);
8282 break;
8283
8284 /* These dies have a type, but processing them does not create
8285 a symbol or recurse to process the children. Therefore we can
8286 read them on-demand through read_type_die. */
8287 case DW_TAG_subroutine_type:
8288 case DW_TAG_set_type:
8289 case DW_TAG_array_type:
8290 case DW_TAG_pointer_type:
8291 case DW_TAG_ptr_to_member_type:
8292 case DW_TAG_reference_type:
8293 case DW_TAG_string_type:
8294 break;
8295
8296 case DW_TAG_base_type:
8297 case DW_TAG_subrange_type:
8298 case DW_TAG_typedef:
8299 /* Add a typedef symbol for the type definition, if it has a
8300 DW_AT_name. */
8301 new_symbol (die, read_type_die (die, cu), cu);
8302 break;
8303 case DW_TAG_common_block:
8304 read_common_block (die, cu);
8305 break;
8306 case DW_TAG_common_inclusion:
8307 break;
8308 case DW_TAG_namespace:
8309 cu->processing_has_namespace_info = 1;
8310 read_namespace (die, cu);
8311 break;
8312 case DW_TAG_module:
8313 cu->processing_has_namespace_info = 1;
8314 read_module (die, cu);
8315 break;
8316 case DW_TAG_imported_declaration:
8317 cu->processing_has_namespace_info = 1;
8318 if (read_namespace_alias (die, cu))
8319 break;
8320 /* The declaration is not a global namespace alias: fall through. */
8321 case DW_TAG_imported_module:
8322 cu->processing_has_namespace_info = 1;
8323 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8324 || cu->language != language_fortran))
8325 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8326 dwarf_tag_name (die->tag));
8327 read_import_statement (die, cu);
8328 break;
8329
8330 case DW_TAG_imported_unit:
8331 process_imported_unit_die (die, cu);
8332 break;
8333
8334 default:
8335 new_symbol (die, NULL, cu);
8336 break;
8337 }
8338
8339 do_cleanups (in_process);
8340 }
8341 \f
8342 /* DWARF name computation. */
8343
8344 /* A helper function for dwarf2_compute_name which determines whether DIE
8345 needs to have the name of the scope prepended to the name listed in the
8346 die. */
8347
8348 static int
8349 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8350 {
8351 struct attribute *attr;
8352
8353 switch (die->tag)
8354 {
8355 case DW_TAG_namespace:
8356 case DW_TAG_typedef:
8357 case DW_TAG_class_type:
8358 case DW_TAG_interface_type:
8359 case DW_TAG_structure_type:
8360 case DW_TAG_union_type:
8361 case DW_TAG_enumeration_type:
8362 case DW_TAG_enumerator:
8363 case DW_TAG_subprogram:
8364 case DW_TAG_member:
8365 case DW_TAG_imported_declaration:
8366 return 1;
8367
8368 case DW_TAG_variable:
8369 case DW_TAG_constant:
8370 /* We only need to prefix "globally" visible variables. These include
8371 any variable marked with DW_AT_external or any variable that
8372 lives in a namespace. [Variables in anonymous namespaces
8373 require prefixing, but they are not DW_AT_external.] */
8374
8375 if (dwarf2_attr (die, DW_AT_specification, cu))
8376 {
8377 struct dwarf2_cu *spec_cu = cu;
8378
8379 return die_needs_namespace (die_specification (die, &spec_cu),
8380 spec_cu);
8381 }
8382
8383 attr = dwarf2_attr (die, DW_AT_external, cu);
8384 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8385 && die->parent->tag != DW_TAG_module)
8386 return 0;
8387 /* A variable in a lexical block of some kind does not need a
8388 namespace, even though in C++ such variables may be external
8389 and have a mangled name. */
8390 if (die->parent->tag == DW_TAG_lexical_block
8391 || die->parent->tag == DW_TAG_try_block
8392 || die->parent->tag == DW_TAG_catch_block
8393 || die->parent->tag == DW_TAG_subprogram)
8394 return 0;
8395 return 1;
8396
8397 default:
8398 return 0;
8399 }
8400 }
8401
8402 /* Retrieve the last character from a mem_file. */
8403
8404 static void
8405 do_ui_file_peek_last (void *object, const char *buffer, long length)
8406 {
8407 char *last_char_p = (char *) object;
8408
8409 if (length > 0)
8410 *last_char_p = buffer[length - 1];
8411 }
8412
8413 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8414 compute the physname for the object, which include a method's:
8415 - formal parameters (C++/Java),
8416 - receiver type (Go),
8417 - return type (Java).
8418
8419 The term "physname" is a bit confusing.
8420 For C++, for example, it is the demangled name.
8421 For Go, for example, it's the mangled name.
8422
8423 For Ada, return the DIE's linkage name rather than the fully qualified
8424 name. PHYSNAME is ignored..
8425
8426 The result is allocated on the objfile_obstack and canonicalized. */
8427
8428 static const char *
8429 dwarf2_compute_name (const char *name,
8430 struct die_info *die, struct dwarf2_cu *cu,
8431 int physname)
8432 {
8433 struct objfile *objfile = cu->objfile;
8434
8435 if (name == NULL)
8436 name = dwarf2_name (die, cu);
8437
8438 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8439 compute it by typename_concat inside GDB. */
8440 if (cu->language == language_ada
8441 || (cu->language == language_fortran && physname))
8442 {
8443 /* For Ada unit, we prefer the linkage name over the name, as
8444 the former contains the exported name, which the user expects
8445 to be able to reference. Ideally, we want the user to be able
8446 to reference this entity using either natural or linkage name,
8447 but we haven't started looking at this enhancement yet. */
8448 struct attribute *attr;
8449
8450 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8451 if (attr == NULL)
8452 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8453 if (attr && DW_STRING (attr))
8454 return DW_STRING (attr);
8455 }
8456
8457 /* These are the only languages we know how to qualify names in. */
8458 if (name != NULL
8459 && (cu->language == language_cplus || cu->language == language_java
8460 || cu->language == language_fortran))
8461 {
8462 if (die_needs_namespace (die, cu))
8463 {
8464 long length;
8465 const char *prefix;
8466 struct ui_file *buf;
8467 char *intermediate_name;
8468 const char *canonical_name = NULL;
8469
8470 prefix = determine_prefix (die, cu);
8471 buf = mem_fileopen ();
8472 if (*prefix != '\0')
8473 {
8474 char *prefixed_name = typename_concat (NULL, prefix, name,
8475 physname, cu);
8476
8477 fputs_unfiltered (prefixed_name, buf);
8478 xfree (prefixed_name);
8479 }
8480 else
8481 fputs_unfiltered (name, buf);
8482
8483 /* Template parameters may be specified in the DIE's DW_AT_name, or
8484 as children with DW_TAG_template_type_param or
8485 DW_TAG_value_type_param. If the latter, add them to the name
8486 here. If the name already has template parameters, then
8487 skip this step; some versions of GCC emit both, and
8488 it is more efficient to use the pre-computed name.
8489
8490 Something to keep in mind about this process: it is very
8491 unlikely, or in some cases downright impossible, to produce
8492 something that will match the mangled name of a function.
8493 If the definition of the function has the same debug info,
8494 we should be able to match up with it anyway. But fallbacks
8495 using the minimal symbol, for instance to find a method
8496 implemented in a stripped copy of libstdc++, will not work.
8497 If we do not have debug info for the definition, we will have to
8498 match them up some other way.
8499
8500 When we do name matching there is a related problem with function
8501 templates; two instantiated function templates are allowed to
8502 differ only by their return types, which we do not add here. */
8503
8504 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8505 {
8506 struct attribute *attr;
8507 struct die_info *child;
8508 int first = 1;
8509
8510 die->building_fullname = 1;
8511
8512 for (child = die->child; child != NULL; child = child->sibling)
8513 {
8514 struct type *type;
8515 LONGEST value;
8516 const gdb_byte *bytes;
8517 struct dwarf2_locexpr_baton *baton;
8518 struct value *v;
8519
8520 if (child->tag != DW_TAG_template_type_param
8521 && child->tag != DW_TAG_template_value_param)
8522 continue;
8523
8524 if (first)
8525 {
8526 fputs_unfiltered ("<", buf);
8527 first = 0;
8528 }
8529 else
8530 fputs_unfiltered (", ", buf);
8531
8532 attr = dwarf2_attr (child, DW_AT_type, cu);
8533 if (attr == NULL)
8534 {
8535 complaint (&symfile_complaints,
8536 _("template parameter missing DW_AT_type"));
8537 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8538 continue;
8539 }
8540 type = die_type (child, cu);
8541
8542 if (child->tag == DW_TAG_template_type_param)
8543 {
8544 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8545 continue;
8546 }
8547
8548 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8549 if (attr == NULL)
8550 {
8551 complaint (&symfile_complaints,
8552 _("template parameter missing "
8553 "DW_AT_const_value"));
8554 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8555 continue;
8556 }
8557
8558 dwarf2_const_value_attr (attr, type, name,
8559 &cu->comp_unit_obstack, cu,
8560 &value, &bytes, &baton);
8561
8562 if (TYPE_NOSIGN (type))
8563 /* GDB prints characters as NUMBER 'CHAR'. If that's
8564 changed, this can use value_print instead. */
8565 c_printchar (value, type, buf);
8566 else
8567 {
8568 struct value_print_options opts;
8569
8570 if (baton != NULL)
8571 v = dwarf2_evaluate_loc_desc (type, NULL,
8572 baton->data,
8573 baton->size,
8574 baton->per_cu);
8575 else if (bytes != NULL)
8576 {
8577 v = allocate_value (type);
8578 memcpy (value_contents_writeable (v), bytes,
8579 TYPE_LENGTH (type));
8580 }
8581 else
8582 v = value_from_longest (type, value);
8583
8584 /* Specify decimal so that we do not depend on
8585 the radix. */
8586 get_formatted_print_options (&opts, 'd');
8587 opts.raw = 1;
8588 value_print (v, buf, &opts);
8589 release_value (v);
8590 value_free (v);
8591 }
8592 }
8593
8594 die->building_fullname = 0;
8595
8596 if (!first)
8597 {
8598 /* Close the argument list, with a space if necessary
8599 (nested templates). */
8600 char last_char = '\0';
8601 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8602 if (last_char == '>')
8603 fputs_unfiltered (" >", buf);
8604 else
8605 fputs_unfiltered (">", buf);
8606 }
8607 }
8608
8609 /* For Java and C++ methods, append formal parameter type
8610 information, if PHYSNAME. */
8611
8612 if (physname && die->tag == DW_TAG_subprogram
8613 && (cu->language == language_cplus
8614 || cu->language == language_java))
8615 {
8616 struct type *type = read_type_die (die, cu);
8617
8618 c_type_print_args (type, buf, 1, cu->language,
8619 &type_print_raw_options);
8620
8621 if (cu->language == language_java)
8622 {
8623 /* For java, we must append the return type to method
8624 names. */
8625 if (die->tag == DW_TAG_subprogram)
8626 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8627 0, 0, &type_print_raw_options);
8628 }
8629 else if (cu->language == language_cplus)
8630 {
8631 /* Assume that an artificial first parameter is
8632 "this", but do not crash if it is not. RealView
8633 marks unnamed (and thus unused) parameters as
8634 artificial; there is no way to differentiate
8635 the two cases. */
8636 if (TYPE_NFIELDS (type) > 0
8637 && TYPE_FIELD_ARTIFICIAL (type, 0)
8638 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8639 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8640 0))))
8641 fputs_unfiltered (" const", buf);
8642 }
8643 }
8644
8645 intermediate_name = ui_file_xstrdup (buf, &length);
8646 ui_file_delete (buf);
8647
8648 if (cu->language == language_cplus)
8649 canonical_name
8650 = dwarf2_canonicalize_name (intermediate_name, cu,
8651 &objfile->per_bfd->storage_obstack);
8652
8653 /* If we only computed INTERMEDIATE_NAME, or if
8654 INTERMEDIATE_NAME is already canonical, then we need to
8655 copy it to the appropriate obstack. */
8656 if (canonical_name == NULL || canonical_name == intermediate_name)
8657 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8658 intermediate_name,
8659 strlen (intermediate_name));
8660 else
8661 name = canonical_name;
8662
8663 xfree (intermediate_name);
8664 }
8665 }
8666
8667 return name;
8668 }
8669
8670 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8671 If scope qualifiers are appropriate they will be added. The result
8672 will be allocated on the storage_obstack, or NULL if the DIE does
8673 not have a name. NAME may either be from a previous call to
8674 dwarf2_name or NULL.
8675
8676 The output string will be canonicalized (if C++/Java). */
8677
8678 static const char *
8679 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8680 {
8681 return dwarf2_compute_name (name, die, cu, 0);
8682 }
8683
8684 /* Construct a physname for the given DIE in CU. NAME may either be
8685 from a previous call to dwarf2_name or NULL. The result will be
8686 allocated on the objfile_objstack or NULL if the DIE does not have a
8687 name.
8688
8689 The output string will be canonicalized (if C++/Java). */
8690
8691 static const char *
8692 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8693 {
8694 struct objfile *objfile = cu->objfile;
8695 struct attribute *attr;
8696 const char *retval, *mangled = NULL, *canon = NULL;
8697 struct cleanup *back_to;
8698 int need_copy = 1;
8699
8700 /* In this case dwarf2_compute_name is just a shortcut not building anything
8701 on its own. */
8702 if (!die_needs_namespace (die, cu))
8703 return dwarf2_compute_name (name, die, cu, 1);
8704
8705 back_to = make_cleanup (null_cleanup, NULL);
8706
8707 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8708 if (!attr)
8709 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8710
8711 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8712 has computed. */
8713 if (attr && DW_STRING (attr))
8714 {
8715 char *demangled;
8716
8717 mangled = DW_STRING (attr);
8718
8719 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8720 type. It is easier for GDB users to search for such functions as
8721 `name(params)' than `long name(params)'. In such case the minimal
8722 symbol names do not match the full symbol names but for template
8723 functions there is never a need to look up their definition from their
8724 declaration so the only disadvantage remains the minimal symbol
8725 variant `long name(params)' does not have the proper inferior type.
8726 */
8727
8728 if (cu->language == language_go)
8729 {
8730 /* This is a lie, but we already lie to the caller new_symbol_full.
8731 new_symbol_full assumes we return the mangled name.
8732 This just undoes that lie until things are cleaned up. */
8733 demangled = NULL;
8734 }
8735 else
8736 {
8737 demangled = gdb_demangle (mangled,
8738 (DMGL_PARAMS | DMGL_ANSI
8739 | (cu->language == language_java
8740 ? DMGL_JAVA | DMGL_RET_POSTFIX
8741 : DMGL_RET_DROP)));
8742 }
8743 if (demangled)
8744 {
8745 make_cleanup (xfree, demangled);
8746 canon = demangled;
8747 }
8748 else
8749 {
8750 canon = mangled;
8751 need_copy = 0;
8752 }
8753 }
8754
8755 if (canon == NULL || check_physname)
8756 {
8757 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8758
8759 if (canon != NULL && strcmp (physname, canon) != 0)
8760 {
8761 /* It may not mean a bug in GDB. The compiler could also
8762 compute DW_AT_linkage_name incorrectly. But in such case
8763 GDB would need to be bug-to-bug compatible. */
8764
8765 complaint (&symfile_complaints,
8766 _("Computed physname <%s> does not match demangled <%s> "
8767 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8768 physname, canon, mangled, die->offset.sect_off,
8769 objfile_name (objfile));
8770
8771 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8772 is available here - over computed PHYSNAME. It is safer
8773 against both buggy GDB and buggy compilers. */
8774
8775 retval = canon;
8776 }
8777 else
8778 {
8779 retval = physname;
8780 need_copy = 0;
8781 }
8782 }
8783 else
8784 retval = canon;
8785
8786 if (need_copy)
8787 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8788 retval, strlen (retval));
8789
8790 do_cleanups (back_to);
8791 return retval;
8792 }
8793
8794 /* Inspect DIE in CU for a namespace alias. If one exists, record
8795 a new symbol for it.
8796
8797 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8798
8799 static int
8800 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8801 {
8802 struct attribute *attr;
8803
8804 /* If the die does not have a name, this is not a namespace
8805 alias. */
8806 attr = dwarf2_attr (die, DW_AT_name, cu);
8807 if (attr != NULL)
8808 {
8809 int num;
8810 struct die_info *d = die;
8811 struct dwarf2_cu *imported_cu = cu;
8812
8813 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8814 keep inspecting DIEs until we hit the underlying import. */
8815 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8816 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8817 {
8818 attr = dwarf2_attr (d, DW_AT_import, cu);
8819 if (attr == NULL)
8820 break;
8821
8822 d = follow_die_ref (d, attr, &imported_cu);
8823 if (d->tag != DW_TAG_imported_declaration)
8824 break;
8825 }
8826
8827 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8828 {
8829 complaint (&symfile_complaints,
8830 _("DIE at 0x%x has too many recursively imported "
8831 "declarations"), d->offset.sect_off);
8832 return 0;
8833 }
8834
8835 if (attr != NULL)
8836 {
8837 struct type *type;
8838 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8839
8840 type = get_die_type_at_offset (offset, cu->per_cu);
8841 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8842 {
8843 /* This declaration is a global namespace alias. Add
8844 a symbol for it whose type is the aliased namespace. */
8845 new_symbol (die, type, cu);
8846 return 1;
8847 }
8848 }
8849 }
8850
8851 return 0;
8852 }
8853
8854 /* Read the import statement specified by the given die and record it. */
8855
8856 static void
8857 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8858 {
8859 struct objfile *objfile = cu->objfile;
8860 struct attribute *import_attr;
8861 struct die_info *imported_die, *child_die;
8862 struct dwarf2_cu *imported_cu;
8863 const char *imported_name;
8864 const char *imported_name_prefix;
8865 const char *canonical_name;
8866 const char *import_alias;
8867 const char *imported_declaration = NULL;
8868 const char *import_prefix;
8869 VEC (const_char_ptr) *excludes = NULL;
8870 struct cleanup *cleanups;
8871
8872 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8873 if (import_attr == NULL)
8874 {
8875 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8876 dwarf_tag_name (die->tag));
8877 return;
8878 }
8879
8880 imported_cu = cu;
8881 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8882 imported_name = dwarf2_name (imported_die, imported_cu);
8883 if (imported_name == NULL)
8884 {
8885 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8886
8887 The import in the following code:
8888 namespace A
8889 {
8890 typedef int B;
8891 }
8892
8893 int main ()
8894 {
8895 using A::B;
8896 B b;
8897 return b;
8898 }
8899
8900 ...
8901 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8902 <52> DW_AT_decl_file : 1
8903 <53> DW_AT_decl_line : 6
8904 <54> DW_AT_import : <0x75>
8905 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8906 <59> DW_AT_name : B
8907 <5b> DW_AT_decl_file : 1
8908 <5c> DW_AT_decl_line : 2
8909 <5d> DW_AT_type : <0x6e>
8910 ...
8911 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8912 <76> DW_AT_byte_size : 4
8913 <77> DW_AT_encoding : 5 (signed)
8914
8915 imports the wrong die ( 0x75 instead of 0x58 ).
8916 This case will be ignored until the gcc bug is fixed. */
8917 return;
8918 }
8919
8920 /* Figure out the local name after import. */
8921 import_alias = dwarf2_name (die, cu);
8922
8923 /* Figure out where the statement is being imported to. */
8924 import_prefix = determine_prefix (die, cu);
8925
8926 /* Figure out what the scope of the imported die is and prepend it
8927 to the name of the imported die. */
8928 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8929
8930 if (imported_die->tag != DW_TAG_namespace
8931 && imported_die->tag != DW_TAG_module)
8932 {
8933 imported_declaration = imported_name;
8934 canonical_name = imported_name_prefix;
8935 }
8936 else if (strlen (imported_name_prefix) > 0)
8937 canonical_name = obconcat (&objfile->objfile_obstack,
8938 imported_name_prefix, "::", imported_name,
8939 (char *) NULL);
8940 else
8941 canonical_name = imported_name;
8942
8943 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8944
8945 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8946 for (child_die = die->child; child_die && child_die->tag;
8947 child_die = sibling_die (child_die))
8948 {
8949 /* DWARF-4: A Fortran use statement with a “rename list” may be
8950 represented by an imported module entry with an import attribute
8951 referring to the module and owned entries corresponding to those
8952 entities that are renamed as part of being imported. */
8953
8954 if (child_die->tag != DW_TAG_imported_declaration)
8955 {
8956 complaint (&symfile_complaints,
8957 _("child DW_TAG_imported_declaration expected "
8958 "- DIE at 0x%x [in module %s]"),
8959 child_die->offset.sect_off, objfile_name (objfile));
8960 continue;
8961 }
8962
8963 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8964 if (import_attr == NULL)
8965 {
8966 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8967 dwarf_tag_name (child_die->tag));
8968 continue;
8969 }
8970
8971 imported_cu = cu;
8972 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8973 &imported_cu);
8974 imported_name = dwarf2_name (imported_die, imported_cu);
8975 if (imported_name == NULL)
8976 {
8977 complaint (&symfile_complaints,
8978 _("child DW_TAG_imported_declaration has unknown "
8979 "imported name - DIE at 0x%x [in module %s]"),
8980 child_die->offset.sect_off, objfile_name (objfile));
8981 continue;
8982 }
8983
8984 VEC_safe_push (const_char_ptr, excludes, imported_name);
8985
8986 process_die (child_die, cu);
8987 }
8988
8989 cp_add_using_directive (import_prefix,
8990 canonical_name,
8991 import_alias,
8992 imported_declaration,
8993 excludes,
8994 0,
8995 &objfile->objfile_obstack);
8996
8997 do_cleanups (cleanups);
8998 }
8999
9000 /* Cleanup function for handle_DW_AT_stmt_list. */
9001
9002 static void
9003 free_cu_line_header (void *arg)
9004 {
9005 struct dwarf2_cu *cu = arg;
9006
9007 free_line_header (cu->line_header);
9008 cu->line_header = NULL;
9009 }
9010
9011 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9012 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9013 this, it was first present in GCC release 4.3.0. */
9014
9015 static int
9016 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9017 {
9018 if (!cu->checked_producer)
9019 check_producer (cu);
9020
9021 return cu->producer_is_gcc_lt_4_3;
9022 }
9023
9024 static void
9025 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9026 const char **name, const char **comp_dir)
9027 {
9028 struct attribute *attr;
9029
9030 *name = NULL;
9031 *comp_dir = NULL;
9032
9033 /* Find the filename. Do not use dwarf2_name here, since the filename
9034 is not a source language identifier. */
9035 attr = dwarf2_attr (die, DW_AT_name, cu);
9036 if (attr)
9037 {
9038 *name = DW_STRING (attr);
9039 }
9040
9041 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9042 if (attr)
9043 *comp_dir = DW_STRING (attr);
9044 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9045 && IS_ABSOLUTE_PATH (*name))
9046 {
9047 char *d = ldirname (*name);
9048
9049 *comp_dir = d;
9050 if (d != NULL)
9051 make_cleanup (xfree, d);
9052 }
9053 if (*comp_dir != NULL)
9054 {
9055 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9056 directory, get rid of it. */
9057 char *cp = strchr (*comp_dir, ':');
9058
9059 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9060 *comp_dir = cp + 1;
9061 }
9062
9063 if (*name == NULL)
9064 *name = "<unknown>";
9065 }
9066
9067 /* Handle DW_AT_stmt_list for a compilation unit.
9068 DIE is the DW_TAG_compile_unit die for CU.
9069 COMP_DIR is the compilation directory. LOWPC is passed to
9070 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9071
9072 static void
9073 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9074 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9075 {
9076 struct objfile *objfile = dwarf2_per_objfile->objfile;
9077 struct attribute *attr;
9078 unsigned int line_offset;
9079 struct line_header line_header_local;
9080 hashval_t line_header_local_hash;
9081 unsigned u;
9082 void **slot;
9083 int decode_mapping;
9084
9085 gdb_assert (! cu->per_cu->is_debug_types);
9086
9087 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9088 if (attr == NULL)
9089 return;
9090
9091 line_offset = DW_UNSND (attr);
9092
9093 /* The line header hash table is only created if needed (it exists to
9094 prevent redundant reading of the line table for partial_units).
9095 If we're given a partial_unit, we'll need it. If we're given a
9096 compile_unit, then use the line header hash table if it's already
9097 created, but don't create one just yet. */
9098
9099 if (dwarf2_per_objfile->line_header_hash == NULL
9100 && die->tag == DW_TAG_partial_unit)
9101 {
9102 dwarf2_per_objfile->line_header_hash
9103 = htab_create_alloc_ex (127, line_header_hash_voidp,
9104 line_header_eq_voidp,
9105 free_line_header_voidp,
9106 &objfile->objfile_obstack,
9107 hashtab_obstack_allocate,
9108 dummy_obstack_deallocate);
9109 }
9110
9111 line_header_local.offset.sect_off = line_offset;
9112 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9113 line_header_local_hash = line_header_hash (&line_header_local);
9114 if (dwarf2_per_objfile->line_header_hash != NULL)
9115 {
9116 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9117 &line_header_local,
9118 line_header_local_hash, NO_INSERT);
9119
9120 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9121 is not present in *SLOT (since if there is something in *SLOT then
9122 it will be for a partial_unit). */
9123 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9124 {
9125 gdb_assert (*slot != NULL);
9126 cu->line_header = *slot;
9127 return;
9128 }
9129 }
9130
9131 /* dwarf_decode_line_header does not yet provide sufficient information.
9132 We always have to call also dwarf_decode_lines for it. */
9133 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9134 if (cu->line_header == NULL)
9135 return;
9136
9137 if (dwarf2_per_objfile->line_header_hash == NULL)
9138 slot = NULL;
9139 else
9140 {
9141 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9142 &line_header_local,
9143 line_header_local_hash, INSERT);
9144 gdb_assert (slot != NULL);
9145 }
9146 if (slot != NULL && *slot == NULL)
9147 {
9148 /* This newly decoded line number information unit will be owned
9149 by line_header_hash hash table. */
9150 *slot = cu->line_header;
9151 }
9152 else
9153 {
9154 /* We cannot free any current entry in (*slot) as that struct line_header
9155 may be already used by multiple CUs. Create only temporary decoded
9156 line_header for this CU - it may happen at most once for each line
9157 number information unit. And if we're not using line_header_hash
9158 then this is what we want as well. */
9159 gdb_assert (die->tag != DW_TAG_partial_unit);
9160 make_cleanup (free_cu_line_header, cu);
9161 }
9162 decode_mapping = (die->tag != DW_TAG_partial_unit);
9163 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9164 decode_mapping);
9165 }
9166
9167 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9168
9169 static void
9170 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9171 {
9172 struct objfile *objfile = dwarf2_per_objfile->objfile;
9173 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9174 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9175 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9176 CORE_ADDR highpc = ((CORE_ADDR) 0);
9177 struct attribute *attr;
9178 const char *name = NULL;
9179 const char *comp_dir = NULL;
9180 struct die_info *child_die;
9181 bfd *abfd = objfile->obfd;
9182 CORE_ADDR baseaddr;
9183
9184 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9185
9186 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9187
9188 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9189 from finish_block. */
9190 if (lowpc == ((CORE_ADDR) -1))
9191 lowpc = highpc;
9192 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9193
9194 find_file_and_directory (die, cu, &name, &comp_dir);
9195
9196 prepare_one_comp_unit (cu, die, cu->language);
9197
9198 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9199 standardised yet. As a workaround for the language detection we fall
9200 back to the DW_AT_producer string. */
9201 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9202 cu->language = language_opencl;
9203
9204 /* Similar hack for Go. */
9205 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9206 set_cu_language (DW_LANG_Go, cu);
9207
9208 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9209
9210 /* Decode line number information if present. We do this before
9211 processing child DIEs, so that the line header table is available
9212 for DW_AT_decl_file. */
9213 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9214
9215 /* Process all dies in compilation unit. */
9216 if (die->child != NULL)
9217 {
9218 child_die = die->child;
9219 while (child_die && child_die->tag)
9220 {
9221 process_die (child_die, cu);
9222 child_die = sibling_die (child_die);
9223 }
9224 }
9225
9226 /* Decode macro information, if present. Dwarf 2 macro information
9227 refers to information in the line number info statement program
9228 header, so we can only read it if we've read the header
9229 successfully. */
9230 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9231 if (attr && cu->line_header)
9232 {
9233 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9234 complaint (&symfile_complaints,
9235 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9236
9237 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9238 }
9239 else
9240 {
9241 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9242 if (attr && cu->line_header)
9243 {
9244 unsigned int macro_offset = DW_UNSND (attr);
9245
9246 dwarf_decode_macros (cu, macro_offset, 0);
9247 }
9248 }
9249
9250 do_cleanups (back_to);
9251 }
9252
9253 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9254 Create the set of symtabs used by this TU, or if this TU is sharing
9255 symtabs with another TU and the symtabs have already been created
9256 then restore those symtabs in the line header.
9257 We don't need the pc/line-number mapping for type units. */
9258
9259 static void
9260 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9261 {
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9264 struct type_unit_group *tu_group;
9265 int first_time;
9266 struct line_header *lh;
9267 struct attribute *attr;
9268 unsigned int i, line_offset;
9269 struct signatured_type *sig_type;
9270
9271 gdb_assert (per_cu->is_debug_types);
9272 sig_type = (struct signatured_type *) per_cu;
9273
9274 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9275
9276 /* If we're using .gdb_index (includes -readnow) then
9277 per_cu->type_unit_group may not have been set up yet. */
9278 if (sig_type->type_unit_group == NULL)
9279 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9280 tu_group = sig_type->type_unit_group;
9281
9282 /* If we've already processed this stmt_list there's no real need to
9283 do it again, we could fake it and just recreate the part we need
9284 (file name,index -> symtab mapping). If data shows this optimization
9285 is useful we can do it then. */
9286 first_time = tu_group->compunit_symtab == NULL;
9287
9288 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9289 debug info. */
9290 lh = NULL;
9291 if (attr != NULL)
9292 {
9293 line_offset = DW_UNSND (attr);
9294 lh = dwarf_decode_line_header (line_offset, cu);
9295 }
9296 if (lh == NULL)
9297 {
9298 if (first_time)
9299 dwarf2_start_symtab (cu, "", NULL, 0);
9300 else
9301 {
9302 gdb_assert (tu_group->symtabs == NULL);
9303 restart_symtab (tu_group->compunit_symtab, "", 0);
9304 }
9305 return;
9306 }
9307
9308 cu->line_header = lh;
9309 make_cleanup (free_cu_line_header, cu);
9310
9311 if (first_time)
9312 {
9313 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9314
9315 tu_group->num_symtabs = lh->num_file_names;
9316 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9317
9318 for (i = 0; i < lh->num_file_names; ++i)
9319 {
9320 const char *dir = NULL;
9321 struct file_entry *fe = &lh->file_names[i];
9322
9323 if (fe->dir_index)
9324 dir = lh->include_dirs[fe->dir_index - 1];
9325 dwarf2_start_subfile (fe->name, dir);
9326
9327 if (current_subfile->symtab == NULL)
9328 {
9329 /* NOTE: start_subfile will recognize when it's been passed
9330 a file it has already seen. So we can't assume there's a
9331 simple mapping from lh->file_names to subfiles, plus
9332 lh->file_names may contain dups. */
9333 current_subfile->symtab
9334 = allocate_symtab (cust, current_subfile->name);
9335 }
9336
9337 fe->symtab = current_subfile->symtab;
9338 tu_group->symtabs[i] = fe->symtab;
9339 }
9340 }
9341 else
9342 {
9343 restart_symtab (tu_group->compunit_symtab, "", 0);
9344
9345 for (i = 0; i < lh->num_file_names; ++i)
9346 {
9347 struct file_entry *fe = &lh->file_names[i];
9348
9349 fe->symtab = tu_group->symtabs[i];
9350 }
9351 }
9352
9353 /* The main symtab is allocated last. Type units don't have DW_AT_name
9354 so they don't have a "real" (so to speak) symtab anyway.
9355 There is later code that will assign the main symtab to all symbols
9356 that don't have one. We need to handle the case of a symbol with a
9357 missing symtab (DW_AT_decl_file) anyway. */
9358 }
9359
9360 /* Process DW_TAG_type_unit.
9361 For TUs we want to skip the first top level sibling if it's not the
9362 actual type being defined by this TU. In this case the first top
9363 level sibling is there to provide context only. */
9364
9365 static void
9366 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9367 {
9368 struct die_info *child_die;
9369
9370 prepare_one_comp_unit (cu, die, language_minimal);
9371
9372 /* Initialize (or reinitialize) the machinery for building symtabs.
9373 We do this before processing child DIEs, so that the line header table
9374 is available for DW_AT_decl_file. */
9375 setup_type_unit_groups (die, cu);
9376
9377 if (die->child != NULL)
9378 {
9379 child_die = die->child;
9380 while (child_die && child_die->tag)
9381 {
9382 process_die (child_die, cu);
9383 child_die = sibling_die (child_die);
9384 }
9385 }
9386 }
9387 \f
9388 /* DWO/DWP files.
9389
9390 http://gcc.gnu.org/wiki/DebugFission
9391 http://gcc.gnu.org/wiki/DebugFissionDWP
9392
9393 To simplify handling of both DWO files ("object" files with the DWARF info)
9394 and DWP files (a file with the DWOs packaged up into one file), we treat
9395 DWP files as having a collection of virtual DWO files. */
9396
9397 static hashval_t
9398 hash_dwo_file (const void *item)
9399 {
9400 const struct dwo_file *dwo_file = item;
9401 hashval_t hash;
9402
9403 hash = htab_hash_string (dwo_file->dwo_name);
9404 if (dwo_file->comp_dir != NULL)
9405 hash += htab_hash_string (dwo_file->comp_dir);
9406 return hash;
9407 }
9408
9409 static int
9410 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9411 {
9412 const struct dwo_file *lhs = item_lhs;
9413 const struct dwo_file *rhs = item_rhs;
9414
9415 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9416 return 0;
9417 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9418 return lhs->comp_dir == rhs->comp_dir;
9419 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9420 }
9421
9422 /* Allocate a hash table for DWO files. */
9423
9424 static htab_t
9425 allocate_dwo_file_hash_table (void)
9426 {
9427 struct objfile *objfile = dwarf2_per_objfile->objfile;
9428
9429 return htab_create_alloc_ex (41,
9430 hash_dwo_file,
9431 eq_dwo_file,
9432 NULL,
9433 &objfile->objfile_obstack,
9434 hashtab_obstack_allocate,
9435 dummy_obstack_deallocate);
9436 }
9437
9438 /* Lookup DWO file DWO_NAME. */
9439
9440 static void **
9441 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9442 {
9443 struct dwo_file find_entry;
9444 void **slot;
9445
9446 if (dwarf2_per_objfile->dwo_files == NULL)
9447 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9448
9449 memset (&find_entry, 0, sizeof (find_entry));
9450 find_entry.dwo_name = dwo_name;
9451 find_entry.comp_dir = comp_dir;
9452 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9453
9454 return slot;
9455 }
9456
9457 static hashval_t
9458 hash_dwo_unit (const void *item)
9459 {
9460 const struct dwo_unit *dwo_unit = item;
9461
9462 /* This drops the top 32 bits of the id, but is ok for a hash. */
9463 return dwo_unit->signature;
9464 }
9465
9466 static int
9467 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9468 {
9469 const struct dwo_unit *lhs = item_lhs;
9470 const struct dwo_unit *rhs = item_rhs;
9471
9472 /* The signature is assumed to be unique within the DWO file.
9473 So while object file CU dwo_id's always have the value zero,
9474 that's OK, assuming each object file DWO file has only one CU,
9475 and that's the rule for now. */
9476 return lhs->signature == rhs->signature;
9477 }
9478
9479 /* Allocate a hash table for DWO CUs,TUs.
9480 There is one of these tables for each of CUs,TUs for each DWO file. */
9481
9482 static htab_t
9483 allocate_dwo_unit_table (struct objfile *objfile)
9484 {
9485 /* Start out with a pretty small number.
9486 Generally DWO files contain only one CU and maybe some TUs. */
9487 return htab_create_alloc_ex (3,
9488 hash_dwo_unit,
9489 eq_dwo_unit,
9490 NULL,
9491 &objfile->objfile_obstack,
9492 hashtab_obstack_allocate,
9493 dummy_obstack_deallocate);
9494 }
9495
9496 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9497
9498 struct create_dwo_cu_data
9499 {
9500 struct dwo_file *dwo_file;
9501 struct dwo_unit dwo_unit;
9502 };
9503
9504 /* die_reader_func for create_dwo_cu. */
9505
9506 static void
9507 create_dwo_cu_reader (const struct die_reader_specs *reader,
9508 const gdb_byte *info_ptr,
9509 struct die_info *comp_unit_die,
9510 int has_children,
9511 void *datap)
9512 {
9513 struct dwarf2_cu *cu = reader->cu;
9514 struct objfile *objfile = dwarf2_per_objfile->objfile;
9515 sect_offset offset = cu->per_cu->offset;
9516 struct dwarf2_section_info *section = cu->per_cu->section;
9517 struct create_dwo_cu_data *data = datap;
9518 struct dwo_file *dwo_file = data->dwo_file;
9519 struct dwo_unit *dwo_unit = &data->dwo_unit;
9520 struct attribute *attr;
9521
9522 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9523 if (attr == NULL)
9524 {
9525 complaint (&symfile_complaints,
9526 _("Dwarf Error: debug entry at offset 0x%x is missing"
9527 " its dwo_id [in module %s]"),
9528 offset.sect_off, dwo_file->dwo_name);
9529 return;
9530 }
9531
9532 dwo_unit->dwo_file = dwo_file;
9533 dwo_unit->signature = DW_UNSND (attr);
9534 dwo_unit->section = section;
9535 dwo_unit->offset = offset;
9536 dwo_unit->length = cu->per_cu->length;
9537
9538 if (dwarf2_read_debug)
9539 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9540 offset.sect_off, hex_string (dwo_unit->signature));
9541 }
9542
9543 /* Create the dwo_unit for the lone CU in DWO_FILE.
9544 Note: This function processes DWO files only, not DWP files. */
9545
9546 static struct dwo_unit *
9547 create_dwo_cu (struct dwo_file *dwo_file)
9548 {
9549 struct objfile *objfile = dwarf2_per_objfile->objfile;
9550 struct dwarf2_section_info *section = &dwo_file->sections.info;
9551 bfd *abfd;
9552 htab_t cu_htab;
9553 const gdb_byte *info_ptr, *end_ptr;
9554 struct create_dwo_cu_data create_dwo_cu_data;
9555 struct dwo_unit *dwo_unit;
9556
9557 dwarf2_read_section (objfile, section);
9558 info_ptr = section->buffer;
9559
9560 if (info_ptr == NULL)
9561 return NULL;
9562
9563 /* We can't set abfd until now because the section may be empty or
9564 not present, in which case section->asection will be NULL. */
9565 abfd = get_section_bfd_owner (section);
9566
9567 if (dwarf2_read_debug)
9568 {
9569 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9570 get_section_name (section),
9571 get_section_file_name (section));
9572 }
9573
9574 create_dwo_cu_data.dwo_file = dwo_file;
9575 dwo_unit = NULL;
9576
9577 end_ptr = info_ptr + section->size;
9578 while (info_ptr < end_ptr)
9579 {
9580 struct dwarf2_per_cu_data per_cu;
9581
9582 memset (&create_dwo_cu_data.dwo_unit, 0,
9583 sizeof (create_dwo_cu_data.dwo_unit));
9584 memset (&per_cu, 0, sizeof (per_cu));
9585 per_cu.objfile = objfile;
9586 per_cu.is_debug_types = 0;
9587 per_cu.offset.sect_off = info_ptr - section->buffer;
9588 per_cu.section = section;
9589
9590 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9591 create_dwo_cu_reader,
9592 &create_dwo_cu_data);
9593
9594 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9595 {
9596 /* If we've already found one, complain. We only support one
9597 because having more than one requires hacking the dwo_name of
9598 each to match, which is highly unlikely to happen. */
9599 if (dwo_unit != NULL)
9600 {
9601 complaint (&symfile_complaints,
9602 _("Multiple CUs in DWO file %s [in module %s]"),
9603 dwo_file->dwo_name, objfile_name (objfile));
9604 break;
9605 }
9606
9607 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9608 *dwo_unit = create_dwo_cu_data.dwo_unit;
9609 }
9610
9611 info_ptr += per_cu.length;
9612 }
9613
9614 return dwo_unit;
9615 }
9616
9617 /* DWP file .debug_{cu,tu}_index section format:
9618 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9619
9620 DWP Version 1:
9621
9622 Both index sections have the same format, and serve to map a 64-bit
9623 signature to a set of section numbers. Each section begins with a header,
9624 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9625 indexes, and a pool of 32-bit section numbers. The index sections will be
9626 aligned at 8-byte boundaries in the file.
9627
9628 The index section header consists of:
9629
9630 V, 32 bit version number
9631 -, 32 bits unused
9632 N, 32 bit number of compilation units or type units in the index
9633 M, 32 bit number of slots in the hash table
9634
9635 Numbers are recorded using the byte order of the application binary.
9636
9637 The hash table begins at offset 16 in the section, and consists of an array
9638 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9639 order of the application binary). Unused slots in the hash table are 0.
9640 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9641
9642 The parallel table begins immediately after the hash table
9643 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9644 array of 32-bit indexes (using the byte order of the application binary),
9645 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9646 table contains a 32-bit index into the pool of section numbers. For unused
9647 hash table slots, the corresponding entry in the parallel table will be 0.
9648
9649 The pool of section numbers begins immediately following the hash table
9650 (at offset 16 + 12 * M from the beginning of the section). The pool of
9651 section numbers consists of an array of 32-bit words (using the byte order
9652 of the application binary). Each item in the array is indexed starting
9653 from 0. The hash table entry provides the index of the first section
9654 number in the set. Additional section numbers in the set follow, and the
9655 set is terminated by a 0 entry (section number 0 is not used in ELF).
9656
9657 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9658 section must be the first entry in the set, and the .debug_abbrev.dwo must
9659 be the second entry. Other members of the set may follow in any order.
9660
9661 ---
9662
9663 DWP Version 2:
9664
9665 DWP Version 2 combines all the .debug_info, etc. sections into one,
9666 and the entries in the index tables are now offsets into these sections.
9667 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9668 section.
9669
9670 Index Section Contents:
9671 Header
9672 Hash Table of Signatures dwp_hash_table.hash_table
9673 Parallel Table of Indices dwp_hash_table.unit_table
9674 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9675 Table of Section Sizes dwp_hash_table.v2.sizes
9676
9677 The index section header consists of:
9678
9679 V, 32 bit version number
9680 L, 32 bit number of columns in the table of section offsets
9681 N, 32 bit number of compilation units or type units in the index
9682 M, 32 bit number of slots in the hash table
9683
9684 Numbers are recorded using the byte order of the application binary.
9685
9686 The hash table has the same format as version 1.
9687 The parallel table of indices has the same format as version 1,
9688 except that the entries are origin-1 indices into the table of sections
9689 offsets and the table of section sizes.
9690
9691 The table of offsets begins immediately following the parallel table
9692 (at offset 16 + 12 * M from the beginning of the section). The table is
9693 a two-dimensional array of 32-bit words (using the byte order of the
9694 application binary), with L columns and N+1 rows, in row-major order.
9695 Each row in the array is indexed starting from 0. The first row provides
9696 a key to the remaining rows: each column in this row provides an identifier
9697 for a debug section, and the offsets in the same column of subsequent rows
9698 refer to that section. The section identifiers are:
9699
9700 DW_SECT_INFO 1 .debug_info.dwo
9701 DW_SECT_TYPES 2 .debug_types.dwo
9702 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9703 DW_SECT_LINE 4 .debug_line.dwo
9704 DW_SECT_LOC 5 .debug_loc.dwo
9705 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9706 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9707 DW_SECT_MACRO 8 .debug_macro.dwo
9708
9709 The offsets provided by the CU and TU index sections are the base offsets
9710 for the contributions made by each CU or TU to the corresponding section
9711 in the package file. Each CU and TU header contains an abbrev_offset
9712 field, used to find the abbreviations table for that CU or TU within the
9713 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9714 be interpreted as relative to the base offset given in the index section.
9715 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9716 should be interpreted as relative to the base offset for .debug_line.dwo,
9717 and offsets into other debug sections obtained from DWARF attributes should
9718 also be interpreted as relative to the corresponding base offset.
9719
9720 The table of sizes begins immediately following the table of offsets.
9721 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9722 with L columns and N rows, in row-major order. Each row in the array is
9723 indexed starting from 1 (row 0 is shared by the two tables).
9724
9725 ---
9726
9727 Hash table lookup is handled the same in version 1 and 2:
9728
9729 We assume that N and M will not exceed 2^32 - 1.
9730 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9731
9732 Given a 64-bit compilation unit signature or a type signature S, an entry
9733 in the hash table is located as follows:
9734
9735 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9736 the low-order k bits all set to 1.
9737
9738 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9739
9740 3) If the hash table entry at index H matches the signature, use that
9741 entry. If the hash table entry at index H is unused (all zeroes),
9742 terminate the search: the signature is not present in the table.
9743
9744 4) Let H = (H + H') modulo M. Repeat at Step 3.
9745
9746 Because M > N and H' and M are relatively prime, the search is guaranteed
9747 to stop at an unused slot or find the match. */
9748
9749 /* Create a hash table to map DWO IDs to their CU/TU entry in
9750 .debug_{info,types}.dwo in DWP_FILE.
9751 Returns NULL if there isn't one.
9752 Note: This function processes DWP files only, not DWO files. */
9753
9754 static struct dwp_hash_table *
9755 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9756 {
9757 struct objfile *objfile = dwarf2_per_objfile->objfile;
9758 bfd *dbfd = dwp_file->dbfd;
9759 const gdb_byte *index_ptr, *index_end;
9760 struct dwarf2_section_info *index;
9761 uint32_t version, nr_columns, nr_units, nr_slots;
9762 struct dwp_hash_table *htab;
9763
9764 if (is_debug_types)
9765 index = &dwp_file->sections.tu_index;
9766 else
9767 index = &dwp_file->sections.cu_index;
9768
9769 if (dwarf2_section_empty_p (index))
9770 return NULL;
9771 dwarf2_read_section (objfile, index);
9772
9773 index_ptr = index->buffer;
9774 index_end = index_ptr + index->size;
9775
9776 version = read_4_bytes (dbfd, index_ptr);
9777 index_ptr += 4;
9778 if (version == 2)
9779 nr_columns = read_4_bytes (dbfd, index_ptr);
9780 else
9781 nr_columns = 0;
9782 index_ptr += 4;
9783 nr_units = read_4_bytes (dbfd, index_ptr);
9784 index_ptr += 4;
9785 nr_slots = read_4_bytes (dbfd, index_ptr);
9786 index_ptr += 4;
9787
9788 if (version != 1 && version != 2)
9789 {
9790 error (_("Dwarf Error: unsupported DWP file version (%s)"
9791 " [in module %s]"),
9792 pulongest (version), dwp_file->name);
9793 }
9794 if (nr_slots != (nr_slots & -nr_slots))
9795 {
9796 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9797 " is not power of 2 [in module %s]"),
9798 pulongest (nr_slots), dwp_file->name);
9799 }
9800
9801 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9802 htab->version = version;
9803 htab->nr_columns = nr_columns;
9804 htab->nr_units = nr_units;
9805 htab->nr_slots = nr_slots;
9806 htab->hash_table = index_ptr;
9807 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9808
9809 /* Exit early if the table is empty. */
9810 if (nr_slots == 0 || nr_units == 0
9811 || (version == 2 && nr_columns == 0))
9812 {
9813 /* All must be zero. */
9814 if (nr_slots != 0 || nr_units != 0
9815 || (version == 2 && nr_columns != 0))
9816 {
9817 complaint (&symfile_complaints,
9818 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9819 " all zero [in modules %s]"),
9820 dwp_file->name);
9821 }
9822 return htab;
9823 }
9824
9825 if (version == 1)
9826 {
9827 htab->section_pool.v1.indices =
9828 htab->unit_table + sizeof (uint32_t) * nr_slots;
9829 /* It's harder to decide whether the section is too small in v1.
9830 V1 is deprecated anyway so we punt. */
9831 }
9832 else
9833 {
9834 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9835 int *ids = htab->section_pool.v2.section_ids;
9836 /* Reverse map for error checking. */
9837 int ids_seen[DW_SECT_MAX + 1];
9838 int i;
9839
9840 if (nr_columns < 2)
9841 {
9842 error (_("Dwarf Error: bad DWP hash table, too few columns"
9843 " in section table [in module %s]"),
9844 dwp_file->name);
9845 }
9846 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9847 {
9848 error (_("Dwarf Error: bad DWP hash table, too many columns"
9849 " in section table [in module %s]"),
9850 dwp_file->name);
9851 }
9852 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9853 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9854 for (i = 0; i < nr_columns; ++i)
9855 {
9856 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9857
9858 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9859 {
9860 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9861 " in section table [in module %s]"),
9862 id, dwp_file->name);
9863 }
9864 if (ids_seen[id] != -1)
9865 {
9866 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9867 " id %d in section table [in module %s]"),
9868 id, dwp_file->name);
9869 }
9870 ids_seen[id] = i;
9871 ids[i] = id;
9872 }
9873 /* Must have exactly one info or types section. */
9874 if (((ids_seen[DW_SECT_INFO] != -1)
9875 + (ids_seen[DW_SECT_TYPES] != -1))
9876 != 1)
9877 {
9878 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9879 " DWO info/types section [in module %s]"),
9880 dwp_file->name);
9881 }
9882 /* Must have an abbrev section. */
9883 if (ids_seen[DW_SECT_ABBREV] == -1)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9886 " section [in module %s]"),
9887 dwp_file->name);
9888 }
9889 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9890 htab->section_pool.v2.sizes =
9891 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9892 * nr_units * nr_columns);
9893 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9894 * nr_units * nr_columns))
9895 > index_end)
9896 {
9897 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9898 " [in module %s]"),
9899 dwp_file->name);
9900 }
9901 }
9902
9903 return htab;
9904 }
9905
9906 /* Update SECTIONS with the data from SECTP.
9907
9908 This function is like the other "locate" section routines that are
9909 passed to bfd_map_over_sections, but in this context the sections to
9910 read comes from the DWP V1 hash table, not the full ELF section table.
9911
9912 The result is non-zero for success, or zero if an error was found. */
9913
9914 static int
9915 locate_v1_virtual_dwo_sections (asection *sectp,
9916 struct virtual_v1_dwo_sections *sections)
9917 {
9918 const struct dwop_section_names *names = &dwop_section_names;
9919
9920 if (section_is_p (sectp->name, &names->abbrev_dwo))
9921 {
9922 /* There can be only one. */
9923 if (sections->abbrev.s.asection != NULL)
9924 return 0;
9925 sections->abbrev.s.asection = sectp;
9926 sections->abbrev.size = bfd_get_section_size (sectp);
9927 }
9928 else if (section_is_p (sectp->name, &names->info_dwo)
9929 || section_is_p (sectp->name, &names->types_dwo))
9930 {
9931 /* There can be only one. */
9932 if (sections->info_or_types.s.asection != NULL)
9933 return 0;
9934 sections->info_or_types.s.asection = sectp;
9935 sections->info_or_types.size = bfd_get_section_size (sectp);
9936 }
9937 else if (section_is_p (sectp->name, &names->line_dwo))
9938 {
9939 /* There can be only one. */
9940 if (sections->line.s.asection != NULL)
9941 return 0;
9942 sections->line.s.asection = sectp;
9943 sections->line.size = bfd_get_section_size (sectp);
9944 }
9945 else if (section_is_p (sectp->name, &names->loc_dwo))
9946 {
9947 /* There can be only one. */
9948 if (sections->loc.s.asection != NULL)
9949 return 0;
9950 sections->loc.s.asection = sectp;
9951 sections->loc.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9954 {
9955 /* There can be only one. */
9956 if (sections->macinfo.s.asection != NULL)
9957 return 0;
9958 sections->macinfo.s.asection = sectp;
9959 sections->macinfo.size = bfd_get_section_size (sectp);
9960 }
9961 else if (section_is_p (sectp->name, &names->macro_dwo))
9962 {
9963 /* There can be only one. */
9964 if (sections->macro.s.asection != NULL)
9965 return 0;
9966 sections->macro.s.asection = sectp;
9967 sections->macro.size = bfd_get_section_size (sectp);
9968 }
9969 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9970 {
9971 /* There can be only one. */
9972 if (sections->str_offsets.s.asection != NULL)
9973 return 0;
9974 sections->str_offsets.s.asection = sectp;
9975 sections->str_offsets.size = bfd_get_section_size (sectp);
9976 }
9977 else
9978 {
9979 /* No other kind of section is valid. */
9980 return 0;
9981 }
9982
9983 return 1;
9984 }
9985
9986 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9987 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9988 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9989 This is for DWP version 1 files. */
9990
9991 static struct dwo_unit *
9992 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9993 uint32_t unit_index,
9994 const char *comp_dir,
9995 ULONGEST signature, int is_debug_types)
9996 {
9997 struct objfile *objfile = dwarf2_per_objfile->objfile;
9998 const struct dwp_hash_table *dwp_htab =
9999 is_debug_types ? dwp_file->tus : dwp_file->cus;
10000 bfd *dbfd = dwp_file->dbfd;
10001 const char *kind = is_debug_types ? "TU" : "CU";
10002 struct dwo_file *dwo_file;
10003 struct dwo_unit *dwo_unit;
10004 struct virtual_v1_dwo_sections sections;
10005 void **dwo_file_slot;
10006 char *virtual_dwo_name;
10007 struct dwarf2_section_info *cutu;
10008 struct cleanup *cleanups;
10009 int i;
10010
10011 gdb_assert (dwp_file->version == 1);
10012
10013 if (dwarf2_read_debug)
10014 {
10015 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10016 kind,
10017 pulongest (unit_index), hex_string (signature),
10018 dwp_file->name);
10019 }
10020
10021 /* Fetch the sections of this DWO unit.
10022 Put a limit on the number of sections we look for so that bad data
10023 doesn't cause us to loop forever. */
10024
10025 #define MAX_NR_V1_DWO_SECTIONS \
10026 (1 /* .debug_info or .debug_types */ \
10027 + 1 /* .debug_abbrev */ \
10028 + 1 /* .debug_line */ \
10029 + 1 /* .debug_loc */ \
10030 + 1 /* .debug_str_offsets */ \
10031 + 1 /* .debug_macro or .debug_macinfo */ \
10032 + 1 /* trailing zero */)
10033
10034 memset (&sections, 0, sizeof (sections));
10035 cleanups = make_cleanup (null_cleanup, 0);
10036
10037 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10038 {
10039 asection *sectp;
10040 uint32_t section_nr =
10041 read_4_bytes (dbfd,
10042 dwp_htab->section_pool.v1.indices
10043 + (unit_index + i) * sizeof (uint32_t));
10044
10045 if (section_nr == 0)
10046 break;
10047 if (section_nr >= dwp_file->num_sections)
10048 {
10049 error (_("Dwarf Error: bad DWP hash table, section number too large"
10050 " [in module %s]"),
10051 dwp_file->name);
10052 }
10053
10054 sectp = dwp_file->elf_sections[section_nr];
10055 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10056 {
10057 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10058 " [in module %s]"),
10059 dwp_file->name);
10060 }
10061 }
10062
10063 if (i < 2
10064 || dwarf2_section_empty_p (&sections.info_or_types)
10065 || dwarf2_section_empty_p (&sections.abbrev))
10066 {
10067 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10068 " [in module %s]"),
10069 dwp_file->name);
10070 }
10071 if (i == MAX_NR_V1_DWO_SECTIONS)
10072 {
10073 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10074 " [in module %s]"),
10075 dwp_file->name);
10076 }
10077
10078 /* It's easier for the rest of the code if we fake a struct dwo_file and
10079 have dwo_unit "live" in that. At least for now.
10080
10081 The DWP file can be made up of a random collection of CUs and TUs.
10082 However, for each CU + set of TUs that came from the same original DWO
10083 file, we can combine them back into a virtual DWO file to save space
10084 (fewer struct dwo_file objects to allocate). Remember that for really
10085 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10086
10087 virtual_dwo_name =
10088 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10089 get_section_id (&sections.abbrev),
10090 get_section_id (&sections.line),
10091 get_section_id (&sections.loc),
10092 get_section_id (&sections.str_offsets));
10093 make_cleanup (xfree, virtual_dwo_name);
10094 /* Can we use an existing virtual DWO file? */
10095 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10096 /* Create one if necessary. */
10097 if (*dwo_file_slot == NULL)
10098 {
10099 if (dwarf2_read_debug)
10100 {
10101 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10102 virtual_dwo_name);
10103 }
10104 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10105 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10106 virtual_dwo_name,
10107 strlen (virtual_dwo_name));
10108 dwo_file->comp_dir = comp_dir;
10109 dwo_file->sections.abbrev = sections.abbrev;
10110 dwo_file->sections.line = sections.line;
10111 dwo_file->sections.loc = sections.loc;
10112 dwo_file->sections.macinfo = sections.macinfo;
10113 dwo_file->sections.macro = sections.macro;
10114 dwo_file->sections.str_offsets = sections.str_offsets;
10115 /* The "str" section is global to the entire DWP file. */
10116 dwo_file->sections.str = dwp_file->sections.str;
10117 /* The info or types section is assigned below to dwo_unit,
10118 there's no need to record it in dwo_file.
10119 Also, we can't simply record type sections in dwo_file because
10120 we record a pointer into the vector in dwo_unit. As we collect more
10121 types we'll grow the vector and eventually have to reallocate space
10122 for it, invalidating all copies of pointers into the previous
10123 contents. */
10124 *dwo_file_slot = dwo_file;
10125 }
10126 else
10127 {
10128 if (dwarf2_read_debug)
10129 {
10130 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10131 virtual_dwo_name);
10132 }
10133 dwo_file = *dwo_file_slot;
10134 }
10135 do_cleanups (cleanups);
10136
10137 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10138 dwo_unit->dwo_file = dwo_file;
10139 dwo_unit->signature = signature;
10140 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10141 sizeof (struct dwarf2_section_info));
10142 *dwo_unit->section = sections.info_or_types;
10143 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10144
10145 return dwo_unit;
10146 }
10147
10148 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10149 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10150 piece within that section used by a TU/CU, return a virtual section
10151 of just that piece. */
10152
10153 static struct dwarf2_section_info
10154 create_dwp_v2_section (struct dwarf2_section_info *section,
10155 bfd_size_type offset, bfd_size_type size)
10156 {
10157 struct dwarf2_section_info result;
10158 asection *sectp;
10159
10160 gdb_assert (section != NULL);
10161 gdb_assert (!section->is_virtual);
10162
10163 memset (&result, 0, sizeof (result));
10164 result.s.containing_section = section;
10165 result.is_virtual = 1;
10166
10167 if (size == 0)
10168 return result;
10169
10170 sectp = get_section_bfd_section (section);
10171
10172 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10173 bounds of the real section. This is a pretty-rare event, so just
10174 flag an error (easier) instead of a warning and trying to cope. */
10175 if (sectp == NULL
10176 || offset + size > bfd_get_section_size (sectp))
10177 {
10178 bfd *abfd = sectp->owner;
10179
10180 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10181 " in section %s [in module %s]"),
10182 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10183 objfile_name (dwarf2_per_objfile->objfile));
10184 }
10185
10186 result.virtual_offset = offset;
10187 result.size = size;
10188 return result;
10189 }
10190
10191 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10192 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10193 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10194 This is for DWP version 2 files. */
10195
10196 static struct dwo_unit *
10197 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10198 uint32_t unit_index,
10199 const char *comp_dir,
10200 ULONGEST signature, int is_debug_types)
10201 {
10202 struct objfile *objfile = dwarf2_per_objfile->objfile;
10203 const struct dwp_hash_table *dwp_htab =
10204 is_debug_types ? dwp_file->tus : dwp_file->cus;
10205 bfd *dbfd = dwp_file->dbfd;
10206 const char *kind = is_debug_types ? "TU" : "CU";
10207 struct dwo_file *dwo_file;
10208 struct dwo_unit *dwo_unit;
10209 struct virtual_v2_dwo_sections sections;
10210 void **dwo_file_slot;
10211 char *virtual_dwo_name;
10212 struct dwarf2_section_info *cutu;
10213 struct cleanup *cleanups;
10214 int i;
10215
10216 gdb_assert (dwp_file->version == 2);
10217
10218 if (dwarf2_read_debug)
10219 {
10220 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10221 kind,
10222 pulongest (unit_index), hex_string (signature),
10223 dwp_file->name);
10224 }
10225
10226 /* Fetch the section offsets of this DWO unit. */
10227
10228 memset (&sections, 0, sizeof (sections));
10229 cleanups = make_cleanup (null_cleanup, 0);
10230
10231 for (i = 0; i < dwp_htab->nr_columns; ++i)
10232 {
10233 uint32_t offset = read_4_bytes (dbfd,
10234 dwp_htab->section_pool.v2.offsets
10235 + (((unit_index - 1) * dwp_htab->nr_columns
10236 + i)
10237 * sizeof (uint32_t)));
10238 uint32_t size = read_4_bytes (dbfd,
10239 dwp_htab->section_pool.v2.sizes
10240 + (((unit_index - 1) * dwp_htab->nr_columns
10241 + i)
10242 * sizeof (uint32_t)));
10243
10244 switch (dwp_htab->section_pool.v2.section_ids[i])
10245 {
10246 case DW_SECT_INFO:
10247 case DW_SECT_TYPES:
10248 sections.info_or_types_offset = offset;
10249 sections.info_or_types_size = size;
10250 break;
10251 case DW_SECT_ABBREV:
10252 sections.abbrev_offset = offset;
10253 sections.abbrev_size = size;
10254 break;
10255 case DW_SECT_LINE:
10256 sections.line_offset = offset;
10257 sections.line_size = size;
10258 break;
10259 case DW_SECT_LOC:
10260 sections.loc_offset = offset;
10261 sections.loc_size = size;
10262 break;
10263 case DW_SECT_STR_OFFSETS:
10264 sections.str_offsets_offset = offset;
10265 sections.str_offsets_size = size;
10266 break;
10267 case DW_SECT_MACINFO:
10268 sections.macinfo_offset = offset;
10269 sections.macinfo_size = size;
10270 break;
10271 case DW_SECT_MACRO:
10272 sections.macro_offset = offset;
10273 sections.macro_size = size;
10274 break;
10275 }
10276 }
10277
10278 /* It's easier for the rest of the code if we fake a struct dwo_file and
10279 have dwo_unit "live" in that. At least for now.
10280
10281 The DWP file can be made up of a random collection of CUs and TUs.
10282 However, for each CU + set of TUs that came from the same original DWO
10283 file, we can combine them back into a virtual DWO file to save space
10284 (fewer struct dwo_file objects to allocate). Remember that for really
10285 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10286
10287 virtual_dwo_name =
10288 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10289 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10290 (long) (sections.line_size ? sections.line_offset : 0),
10291 (long) (sections.loc_size ? sections.loc_offset : 0),
10292 (long) (sections.str_offsets_size
10293 ? sections.str_offsets_offset : 0));
10294 make_cleanup (xfree, virtual_dwo_name);
10295 /* Can we use an existing virtual DWO file? */
10296 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10297 /* Create one if necessary. */
10298 if (*dwo_file_slot == NULL)
10299 {
10300 if (dwarf2_read_debug)
10301 {
10302 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10303 virtual_dwo_name);
10304 }
10305 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10306 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10307 virtual_dwo_name,
10308 strlen (virtual_dwo_name));
10309 dwo_file->comp_dir = comp_dir;
10310 dwo_file->sections.abbrev =
10311 create_dwp_v2_section (&dwp_file->sections.abbrev,
10312 sections.abbrev_offset, sections.abbrev_size);
10313 dwo_file->sections.line =
10314 create_dwp_v2_section (&dwp_file->sections.line,
10315 sections.line_offset, sections.line_size);
10316 dwo_file->sections.loc =
10317 create_dwp_v2_section (&dwp_file->sections.loc,
10318 sections.loc_offset, sections.loc_size);
10319 dwo_file->sections.macinfo =
10320 create_dwp_v2_section (&dwp_file->sections.macinfo,
10321 sections.macinfo_offset, sections.macinfo_size);
10322 dwo_file->sections.macro =
10323 create_dwp_v2_section (&dwp_file->sections.macro,
10324 sections.macro_offset, sections.macro_size);
10325 dwo_file->sections.str_offsets =
10326 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10327 sections.str_offsets_offset,
10328 sections.str_offsets_size);
10329 /* The "str" section is global to the entire DWP file. */
10330 dwo_file->sections.str = dwp_file->sections.str;
10331 /* The info or types section is assigned below to dwo_unit,
10332 there's no need to record it in dwo_file.
10333 Also, we can't simply record type sections in dwo_file because
10334 we record a pointer into the vector in dwo_unit. As we collect more
10335 types we'll grow the vector and eventually have to reallocate space
10336 for it, invalidating all copies of pointers into the previous
10337 contents. */
10338 *dwo_file_slot = dwo_file;
10339 }
10340 else
10341 {
10342 if (dwarf2_read_debug)
10343 {
10344 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10345 virtual_dwo_name);
10346 }
10347 dwo_file = *dwo_file_slot;
10348 }
10349 do_cleanups (cleanups);
10350
10351 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10352 dwo_unit->dwo_file = dwo_file;
10353 dwo_unit->signature = signature;
10354 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10355 sizeof (struct dwarf2_section_info));
10356 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10357 ? &dwp_file->sections.types
10358 : &dwp_file->sections.info,
10359 sections.info_or_types_offset,
10360 sections.info_or_types_size);
10361 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10362
10363 return dwo_unit;
10364 }
10365
10366 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10367 Returns NULL if the signature isn't found. */
10368
10369 static struct dwo_unit *
10370 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10371 ULONGEST signature, int is_debug_types)
10372 {
10373 const struct dwp_hash_table *dwp_htab =
10374 is_debug_types ? dwp_file->tus : dwp_file->cus;
10375 bfd *dbfd = dwp_file->dbfd;
10376 uint32_t mask = dwp_htab->nr_slots - 1;
10377 uint32_t hash = signature & mask;
10378 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10379 unsigned int i;
10380 void **slot;
10381 struct dwo_unit find_dwo_cu, *dwo_cu;
10382
10383 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10384 find_dwo_cu.signature = signature;
10385 slot = htab_find_slot (is_debug_types
10386 ? dwp_file->loaded_tus
10387 : dwp_file->loaded_cus,
10388 &find_dwo_cu, INSERT);
10389
10390 if (*slot != NULL)
10391 return *slot;
10392
10393 /* Use a for loop so that we don't loop forever on bad debug info. */
10394 for (i = 0; i < dwp_htab->nr_slots; ++i)
10395 {
10396 ULONGEST signature_in_table;
10397
10398 signature_in_table =
10399 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10400 if (signature_in_table == signature)
10401 {
10402 uint32_t unit_index =
10403 read_4_bytes (dbfd,
10404 dwp_htab->unit_table + hash * sizeof (uint32_t));
10405
10406 if (dwp_file->version == 1)
10407 {
10408 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10409 comp_dir, signature,
10410 is_debug_types);
10411 }
10412 else
10413 {
10414 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10415 comp_dir, signature,
10416 is_debug_types);
10417 }
10418 return *slot;
10419 }
10420 if (signature_in_table == 0)
10421 return NULL;
10422 hash = (hash + hash2) & mask;
10423 }
10424
10425 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10426 " [in module %s]"),
10427 dwp_file->name);
10428 }
10429
10430 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10431 Open the file specified by FILE_NAME and hand it off to BFD for
10432 preliminary analysis. Return a newly initialized bfd *, which
10433 includes a canonicalized copy of FILE_NAME.
10434 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10435 SEARCH_CWD is true if the current directory is to be searched.
10436 It will be searched before debug-file-directory.
10437 If successful, the file is added to the bfd include table of the
10438 objfile's bfd (see gdb_bfd_record_inclusion).
10439 If unable to find/open the file, return NULL.
10440 NOTE: This function is derived from symfile_bfd_open. */
10441
10442 static bfd *
10443 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10444 {
10445 bfd *sym_bfd;
10446 int desc, flags;
10447 char *absolute_name;
10448 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10449 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10450 to debug_file_directory. */
10451 char *search_path;
10452 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10453
10454 if (search_cwd)
10455 {
10456 if (*debug_file_directory != '\0')
10457 search_path = concat (".", dirname_separator_string,
10458 debug_file_directory, NULL);
10459 else
10460 search_path = xstrdup (".");
10461 }
10462 else
10463 search_path = xstrdup (debug_file_directory);
10464
10465 flags = OPF_RETURN_REALPATH;
10466 if (is_dwp)
10467 flags |= OPF_SEARCH_IN_PATH;
10468 desc = openp (search_path, flags, file_name,
10469 O_RDONLY | O_BINARY, &absolute_name);
10470 xfree (search_path);
10471 if (desc < 0)
10472 return NULL;
10473
10474 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10475 xfree (absolute_name);
10476 if (sym_bfd == NULL)
10477 return NULL;
10478 bfd_set_cacheable (sym_bfd, 1);
10479
10480 if (!bfd_check_format (sym_bfd, bfd_object))
10481 {
10482 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10483 return NULL;
10484 }
10485
10486 /* Success. Record the bfd as having been included by the objfile's bfd.
10487 This is important because things like demangled_names_hash lives in the
10488 objfile's per_bfd space and may have references to things like symbol
10489 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10490 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10491
10492 return sym_bfd;
10493 }
10494
10495 /* Try to open DWO file FILE_NAME.
10496 COMP_DIR is the DW_AT_comp_dir attribute.
10497 The result is the bfd handle of the file.
10498 If there is a problem finding or opening the file, return NULL.
10499 Upon success, the canonicalized path of the file is stored in the bfd,
10500 same as symfile_bfd_open. */
10501
10502 static bfd *
10503 open_dwo_file (const char *file_name, const char *comp_dir)
10504 {
10505 bfd *abfd;
10506
10507 if (IS_ABSOLUTE_PATH (file_name))
10508 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10509
10510 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10511
10512 if (comp_dir != NULL)
10513 {
10514 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10515
10516 /* NOTE: If comp_dir is a relative path, this will also try the
10517 search path, which seems useful. */
10518 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10519 xfree (path_to_try);
10520 if (abfd != NULL)
10521 return abfd;
10522 }
10523
10524 /* That didn't work, try debug-file-directory, which, despite its name,
10525 is a list of paths. */
10526
10527 if (*debug_file_directory == '\0')
10528 return NULL;
10529
10530 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10531 }
10532
10533 /* This function is mapped across the sections and remembers the offset and
10534 size of each of the DWO debugging sections we are interested in. */
10535
10536 static void
10537 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10538 {
10539 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10540 const struct dwop_section_names *names = &dwop_section_names;
10541
10542 if (section_is_p (sectp->name, &names->abbrev_dwo))
10543 {
10544 dwo_sections->abbrev.s.asection = sectp;
10545 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->info_dwo))
10548 {
10549 dwo_sections->info.s.asection = sectp;
10550 dwo_sections->info.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->line_dwo))
10553 {
10554 dwo_sections->line.s.asection = sectp;
10555 dwo_sections->line.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->loc_dwo))
10558 {
10559 dwo_sections->loc.s.asection = sectp;
10560 dwo_sections->loc.size = bfd_get_section_size (sectp);
10561 }
10562 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10563 {
10564 dwo_sections->macinfo.s.asection = sectp;
10565 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10566 }
10567 else if (section_is_p (sectp->name, &names->macro_dwo))
10568 {
10569 dwo_sections->macro.s.asection = sectp;
10570 dwo_sections->macro.size = bfd_get_section_size (sectp);
10571 }
10572 else if (section_is_p (sectp->name, &names->str_dwo))
10573 {
10574 dwo_sections->str.s.asection = sectp;
10575 dwo_sections->str.size = bfd_get_section_size (sectp);
10576 }
10577 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10578 {
10579 dwo_sections->str_offsets.s.asection = sectp;
10580 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10581 }
10582 else if (section_is_p (sectp->name, &names->types_dwo))
10583 {
10584 struct dwarf2_section_info type_section;
10585
10586 memset (&type_section, 0, sizeof (type_section));
10587 type_section.s.asection = sectp;
10588 type_section.size = bfd_get_section_size (sectp);
10589 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10590 &type_section);
10591 }
10592 }
10593
10594 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10595 by PER_CU. This is for the non-DWP case.
10596 The result is NULL if DWO_NAME can't be found. */
10597
10598 static struct dwo_file *
10599 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10600 const char *dwo_name, const char *comp_dir)
10601 {
10602 struct objfile *objfile = dwarf2_per_objfile->objfile;
10603 struct dwo_file *dwo_file;
10604 bfd *dbfd;
10605 struct cleanup *cleanups;
10606
10607 dbfd = open_dwo_file (dwo_name, comp_dir);
10608 if (dbfd == NULL)
10609 {
10610 if (dwarf2_read_debug)
10611 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10612 return NULL;
10613 }
10614 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10615 dwo_file->dwo_name = dwo_name;
10616 dwo_file->comp_dir = comp_dir;
10617 dwo_file->dbfd = dbfd;
10618
10619 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10620
10621 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10622
10623 dwo_file->cu = create_dwo_cu (dwo_file);
10624
10625 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10626 dwo_file->sections.types);
10627
10628 discard_cleanups (cleanups);
10629
10630 if (dwarf2_read_debug)
10631 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10632
10633 return dwo_file;
10634 }
10635
10636 /* This function is mapped across the sections and remembers the offset and
10637 size of each of the DWP debugging sections common to version 1 and 2 that
10638 we are interested in. */
10639
10640 static void
10641 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10642 void *dwp_file_ptr)
10643 {
10644 struct dwp_file *dwp_file = dwp_file_ptr;
10645 const struct dwop_section_names *names = &dwop_section_names;
10646 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10647
10648 /* Record the ELF section number for later lookup: this is what the
10649 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10650 gdb_assert (elf_section_nr < dwp_file->num_sections);
10651 dwp_file->elf_sections[elf_section_nr] = sectp;
10652
10653 /* Look for specific sections that we need. */
10654 if (section_is_p (sectp->name, &names->str_dwo))
10655 {
10656 dwp_file->sections.str.s.asection = sectp;
10657 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10658 }
10659 else if (section_is_p (sectp->name, &names->cu_index))
10660 {
10661 dwp_file->sections.cu_index.s.asection = sectp;
10662 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10663 }
10664 else if (section_is_p (sectp->name, &names->tu_index))
10665 {
10666 dwp_file->sections.tu_index.s.asection = sectp;
10667 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10668 }
10669 }
10670
10671 /* This function is mapped across the sections and remembers the offset and
10672 size of each of the DWP version 2 debugging sections that we are interested
10673 in. This is split into a separate function because we don't know if we
10674 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10675
10676 static void
10677 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10678 {
10679 struct dwp_file *dwp_file = dwp_file_ptr;
10680 const struct dwop_section_names *names = &dwop_section_names;
10681 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10682
10683 /* Record the ELF section number for later lookup: this is what the
10684 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10685 gdb_assert (elf_section_nr < dwp_file->num_sections);
10686 dwp_file->elf_sections[elf_section_nr] = sectp;
10687
10688 /* Look for specific sections that we need. */
10689 if (section_is_p (sectp->name, &names->abbrev_dwo))
10690 {
10691 dwp_file->sections.abbrev.s.asection = sectp;
10692 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10693 }
10694 else if (section_is_p (sectp->name, &names->info_dwo))
10695 {
10696 dwp_file->sections.info.s.asection = sectp;
10697 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->line_dwo))
10700 {
10701 dwp_file->sections.line.s.asection = sectp;
10702 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->loc_dwo))
10705 {
10706 dwp_file->sections.loc.s.asection = sectp;
10707 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10708 }
10709 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10710 {
10711 dwp_file->sections.macinfo.s.asection = sectp;
10712 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10713 }
10714 else if (section_is_p (sectp->name, &names->macro_dwo))
10715 {
10716 dwp_file->sections.macro.s.asection = sectp;
10717 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10718 }
10719 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10720 {
10721 dwp_file->sections.str_offsets.s.asection = sectp;
10722 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10723 }
10724 else if (section_is_p (sectp->name, &names->types_dwo))
10725 {
10726 dwp_file->sections.types.s.asection = sectp;
10727 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10728 }
10729 }
10730
10731 /* Hash function for dwp_file loaded CUs/TUs. */
10732
10733 static hashval_t
10734 hash_dwp_loaded_cutus (const void *item)
10735 {
10736 const struct dwo_unit *dwo_unit = item;
10737
10738 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10739 return dwo_unit->signature;
10740 }
10741
10742 /* Equality function for dwp_file loaded CUs/TUs. */
10743
10744 static int
10745 eq_dwp_loaded_cutus (const void *a, const void *b)
10746 {
10747 const struct dwo_unit *dua = a;
10748 const struct dwo_unit *dub = b;
10749
10750 return dua->signature == dub->signature;
10751 }
10752
10753 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10754
10755 static htab_t
10756 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10757 {
10758 return htab_create_alloc_ex (3,
10759 hash_dwp_loaded_cutus,
10760 eq_dwp_loaded_cutus,
10761 NULL,
10762 &objfile->objfile_obstack,
10763 hashtab_obstack_allocate,
10764 dummy_obstack_deallocate);
10765 }
10766
10767 /* Try to open DWP file FILE_NAME.
10768 The result is the bfd handle of the file.
10769 If there is a problem finding or opening the file, return NULL.
10770 Upon success, the canonicalized path of the file is stored in the bfd,
10771 same as symfile_bfd_open. */
10772
10773 static bfd *
10774 open_dwp_file (const char *file_name)
10775 {
10776 bfd *abfd;
10777
10778 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10779 if (abfd != NULL)
10780 return abfd;
10781
10782 /* Work around upstream bug 15652.
10783 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10784 [Whether that's a "bug" is debatable, but it is getting in our way.]
10785 We have no real idea where the dwp file is, because gdb's realpath-ing
10786 of the executable's path may have discarded the needed info.
10787 [IWBN if the dwp file name was recorded in the executable, akin to
10788 .gnu_debuglink, but that doesn't exist yet.]
10789 Strip the directory from FILE_NAME and search again. */
10790 if (*debug_file_directory != '\0')
10791 {
10792 /* Don't implicitly search the current directory here.
10793 If the user wants to search "." to handle this case,
10794 it must be added to debug-file-directory. */
10795 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10796 0 /*search_cwd*/);
10797 }
10798
10799 return NULL;
10800 }
10801
10802 /* Initialize the use of the DWP file for the current objfile.
10803 By convention the name of the DWP file is ${objfile}.dwp.
10804 The result is NULL if it can't be found. */
10805
10806 static struct dwp_file *
10807 open_and_init_dwp_file (void)
10808 {
10809 struct objfile *objfile = dwarf2_per_objfile->objfile;
10810 struct dwp_file *dwp_file;
10811 char *dwp_name;
10812 bfd *dbfd;
10813 struct cleanup *cleanups;
10814
10815 /* Try to find first .dwp for the binary file before any symbolic links
10816 resolving. */
10817 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10818 cleanups = make_cleanup (xfree, dwp_name);
10819
10820 dbfd = open_dwp_file (dwp_name);
10821 if (dbfd == NULL
10822 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10823 {
10824 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10825 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10826 make_cleanup (xfree, dwp_name);
10827 dbfd = open_dwp_file (dwp_name);
10828 }
10829
10830 if (dbfd == NULL)
10831 {
10832 if (dwarf2_read_debug)
10833 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10834 do_cleanups (cleanups);
10835 return NULL;
10836 }
10837 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10838 dwp_file->name = bfd_get_filename (dbfd);
10839 dwp_file->dbfd = dbfd;
10840 do_cleanups (cleanups);
10841
10842 /* +1: section 0 is unused */
10843 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10844 dwp_file->elf_sections =
10845 OBSTACK_CALLOC (&objfile->objfile_obstack,
10846 dwp_file->num_sections, asection *);
10847
10848 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10849
10850 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10851
10852 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10853
10854 /* The DWP file version is stored in the hash table. Oh well. */
10855 if (dwp_file->cus->version != dwp_file->tus->version)
10856 {
10857 /* Technically speaking, we should try to limp along, but this is
10858 pretty bizarre. We use pulongest here because that's the established
10859 portability solution (e.g, we cannot use %u for uint32_t). */
10860 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10861 " TU version %s [in DWP file %s]"),
10862 pulongest (dwp_file->cus->version),
10863 pulongest (dwp_file->tus->version), dwp_name);
10864 }
10865 dwp_file->version = dwp_file->cus->version;
10866
10867 if (dwp_file->version == 2)
10868 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10869
10870 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10871 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10872
10873 if (dwarf2_read_debug)
10874 {
10875 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10876 fprintf_unfiltered (gdb_stdlog,
10877 " %s CUs, %s TUs\n",
10878 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10879 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10880 }
10881
10882 return dwp_file;
10883 }
10884
10885 /* Wrapper around open_and_init_dwp_file, only open it once. */
10886
10887 static struct dwp_file *
10888 get_dwp_file (void)
10889 {
10890 if (! dwarf2_per_objfile->dwp_checked)
10891 {
10892 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10893 dwarf2_per_objfile->dwp_checked = 1;
10894 }
10895 return dwarf2_per_objfile->dwp_file;
10896 }
10897
10898 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10899 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10900 or in the DWP file for the objfile, referenced by THIS_UNIT.
10901 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10902 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10903
10904 This is called, for example, when wanting to read a variable with a
10905 complex location. Therefore we don't want to do file i/o for every call.
10906 Therefore we don't want to look for a DWO file on every call.
10907 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10908 then we check if we've already seen DWO_NAME, and only THEN do we check
10909 for a DWO file.
10910
10911 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10912 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10913
10914 static struct dwo_unit *
10915 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10916 const char *dwo_name, const char *comp_dir,
10917 ULONGEST signature, int is_debug_types)
10918 {
10919 struct objfile *objfile = dwarf2_per_objfile->objfile;
10920 const char *kind = is_debug_types ? "TU" : "CU";
10921 void **dwo_file_slot;
10922 struct dwo_file *dwo_file;
10923 struct dwp_file *dwp_file;
10924
10925 /* First see if there's a DWP file.
10926 If we have a DWP file but didn't find the DWO inside it, don't
10927 look for the original DWO file. It makes gdb behave differently
10928 depending on whether one is debugging in the build tree. */
10929
10930 dwp_file = get_dwp_file ();
10931 if (dwp_file != NULL)
10932 {
10933 const struct dwp_hash_table *dwp_htab =
10934 is_debug_types ? dwp_file->tus : dwp_file->cus;
10935
10936 if (dwp_htab != NULL)
10937 {
10938 struct dwo_unit *dwo_cutu =
10939 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10940 signature, is_debug_types);
10941
10942 if (dwo_cutu != NULL)
10943 {
10944 if (dwarf2_read_debug)
10945 {
10946 fprintf_unfiltered (gdb_stdlog,
10947 "Virtual DWO %s %s found: @%s\n",
10948 kind, hex_string (signature),
10949 host_address_to_string (dwo_cutu));
10950 }
10951 return dwo_cutu;
10952 }
10953 }
10954 }
10955 else
10956 {
10957 /* No DWP file, look for the DWO file. */
10958
10959 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10960 if (*dwo_file_slot == NULL)
10961 {
10962 /* Read in the file and build a table of the CUs/TUs it contains. */
10963 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10964 }
10965 /* NOTE: This will be NULL if unable to open the file. */
10966 dwo_file = *dwo_file_slot;
10967
10968 if (dwo_file != NULL)
10969 {
10970 struct dwo_unit *dwo_cutu = NULL;
10971
10972 if (is_debug_types && dwo_file->tus)
10973 {
10974 struct dwo_unit find_dwo_cutu;
10975
10976 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10977 find_dwo_cutu.signature = signature;
10978 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10979 }
10980 else if (!is_debug_types && dwo_file->cu)
10981 {
10982 if (signature == dwo_file->cu->signature)
10983 dwo_cutu = dwo_file->cu;
10984 }
10985
10986 if (dwo_cutu != NULL)
10987 {
10988 if (dwarf2_read_debug)
10989 {
10990 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10991 kind, dwo_name, hex_string (signature),
10992 host_address_to_string (dwo_cutu));
10993 }
10994 return dwo_cutu;
10995 }
10996 }
10997 }
10998
10999 /* We didn't find it. This could mean a dwo_id mismatch, or
11000 someone deleted the DWO/DWP file, or the search path isn't set up
11001 correctly to find the file. */
11002
11003 if (dwarf2_read_debug)
11004 {
11005 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11006 kind, dwo_name, hex_string (signature));
11007 }
11008
11009 /* This is a warning and not a complaint because it can be caused by
11010 pilot error (e.g., user accidentally deleting the DWO). */
11011 {
11012 /* Print the name of the DWP file if we looked there, helps the user
11013 better diagnose the problem. */
11014 char *dwp_text = NULL;
11015 struct cleanup *cleanups;
11016
11017 if (dwp_file != NULL)
11018 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11019 cleanups = make_cleanup (xfree, dwp_text);
11020
11021 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11022 " [in module %s]"),
11023 kind, dwo_name, hex_string (signature),
11024 dwp_text != NULL ? dwp_text : "",
11025 this_unit->is_debug_types ? "TU" : "CU",
11026 this_unit->offset.sect_off, objfile_name (objfile));
11027
11028 do_cleanups (cleanups);
11029 }
11030 return NULL;
11031 }
11032
11033 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11034 See lookup_dwo_cutu_unit for details. */
11035
11036 static struct dwo_unit *
11037 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11038 const char *dwo_name, const char *comp_dir,
11039 ULONGEST signature)
11040 {
11041 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11042 }
11043
11044 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11045 See lookup_dwo_cutu_unit for details. */
11046
11047 static struct dwo_unit *
11048 lookup_dwo_type_unit (struct signatured_type *this_tu,
11049 const char *dwo_name, const char *comp_dir)
11050 {
11051 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11052 }
11053
11054 /* Traversal function for queue_and_load_all_dwo_tus. */
11055
11056 static int
11057 queue_and_load_dwo_tu (void **slot, void *info)
11058 {
11059 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11060 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11061 ULONGEST signature = dwo_unit->signature;
11062 struct signatured_type *sig_type =
11063 lookup_dwo_signatured_type (per_cu->cu, signature);
11064
11065 if (sig_type != NULL)
11066 {
11067 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11068
11069 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11070 a real dependency of PER_CU on SIG_TYPE. That is detected later
11071 while processing PER_CU. */
11072 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11073 load_full_type_unit (sig_cu);
11074 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11075 }
11076
11077 return 1;
11078 }
11079
11080 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11081 The DWO may have the only definition of the type, though it may not be
11082 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11083 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11084
11085 static void
11086 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11087 {
11088 struct dwo_unit *dwo_unit;
11089 struct dwo_file *dwo_file;
11090
11091 gdb_assert (!per_cu->is_debug_types);
11092 gdb_assert (get_dwp_file () == NULL);
11093 gdb_assert (per_cu->cu != NULL);
11094
11095 dwo_unit = per_cu->cu->dwo_unit;
11096 gdb_assert (dwo_unit != NULL);
11097
11098 dwo_file = dwo_unit->dwo_file;
11099 if (dwo_file->tus != NULL)
11100 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11101 }
11102
11103 /* Free all resources associated with DWO_FILE.
11104 Close the DWO file and munmap the sections.
11105 All memory should be on the objfile obstack. */
11106
11107 static void
11108 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11109 {
11110 int ix;
11111 struct dwarf2_section_info *section;
11112
11113 /* Note: dbfd is NULL for virtual DWO files. */
11114 gdb_bfd_unref (dwo_file->dbfd);
11115
11116 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11117 }
11118
11119 /* Wrapper for free_dwo_file for use in cleanups. */
11120
11121 static void
11122 free_dwo_file_cleanup (void *arg)
11123 {
11124 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11125 struct objfile *objfile = dwarf2_per_objfile->objfile;
11126
11127 free_dwo_file (dwo_file, objfile);
11128 }
11129
11130 /* Traversal function for free_dwo_files. */
11131
11132 static int
11133 free_dwo_file_from_slot (void **slot, void *info)
11134 {
11135 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11136 struct objfile *objfile = (struct objfile *) info;
11137
11138 free_dwo_file (dwo_file, objfile);
11139
11140 return 1;
11141 }
11142
11143 /* Free all resources associated with DWO_FILES. */
11144
11145 static void
11146 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11147 {
11148 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11149 }
11150 \f
11151 /* Read in various DIEs. */
11152
11153 /* qsort helper for inherit_abstract_dies. */
11154
11155 static int
11156 unsigned_int_compar (const void *ap, const void *bp)
11157 {
11158 unsigned int a = *(unsigned int *) ap;
11159 unsigned int b = *(unsigned int *) bp;
11160
11161 return (a > b) - (b > a);
11162 }
11163
11164 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11165 Inherit only the children of the DW_AT_abstract_origin DIE not being
11166 already referenced by DW_AT_abstract_origin from the children of the
11167 current DIE. */
11168
11169 static void
11170 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11171 {
11172 struct die_info *child_die;
11173 unsigned die_children_count;
11174 /* CU offsets which were referenced by children of the current DIE. */
11175 sect_offset *offsets;
11176 sect_offset *offsets_end, *offsetp;
11177 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11178 struct die_info *origin_die;
11179 /* Iterator of the ORIGIN_DIE children. */
11180 struct die_info *origin_child_die;
11181 struct cleanup *cleanups;
11182 struct attribute *attr;
11183 struct dwarf2_cu *origin_cu;
11184 struct pending **origin_previous_list_in_scope;
11185
11186 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11187 if (!attr)
11188 return;
11189
11190 /* Note that following die references may follow to a die in a
11191 different cu. */
11192
11193 origin_cu = cu;
11194 origin_die = follow_die_ref (die, attr, &origin_cu);
11195
11196 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11197 symbols in. */
11198 origin_previous_list_in_scope = origin_cu->list_in_scope;
11199 origin_cu->list_in_scope = cu->list_in_scope;
11200
11201 if (die->tag != origin_die->tag
11202 && !(die->tag == DW_TAG_inlined_subroutine
11203 && origin_die->tag == DW_TAG_subprogram))
11204 complaint (&symfile_complaints,
11205 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11206 die->offset.sect_off, origin_die->offset.sect_off);
11207
11208 child_die = die->child;
11209 die_children_count = 0;
11210 while (child_die && child_die->tag)
11211 {
11212 child_die = sibling_die (child_die);
11213 die_children_count++;
11214 }
11215 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11216 cleanups = make_cleanup (xfree, offsets);
11217
11218 offsets_end = offsets;
11219 for (child_die = die->child;
11220 child_die && child_die->tag;
11221 child_die = sibling_die (child_die))
11222 {
11223 struct die_info *child_origin_die;
11224 struct dwarf2_cu *child_origin_cu;
11225
11226 /* We are trying to process concrete instance entries:
11227 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11228 it's not relevant to our analysis here. i.e. detecting DIEs that are
11229 present in the abstract instance but not referenced in the concrete
11230 one. */
11231 if (child_die->tag == DW_TAG_GNU_call_site)
11232 continue;
11233
11234 /* For each CHILD_DIE, find the corresponding child of
11235 ORIGIN_DIE. If there is more than one layer of
11236 DW_AT_abstract_origin, follow them all; there shouldn't be,
11237 but GCC versions at least through 4.4 generate this (GCC PR
11238 40573). */
11239 child_origin_die = child_die;
11240 child_origin_cu = cu;
11241 while (1)
11242 {
11243 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11244 child_origin_cu);
11245 if (attr == NULL)
11246 break;
11247 child_origin_die = follow_die_ref (child_origin_die, attr,
11248 &child_origin_cu);
11249 }
11250
11251 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11252 counterpart may exist. */
11253 if (child_origin_die != child_die)
11254 {
11255 if (child_die->tag != child_origin_die->tag
11256 && !(child_die->tag == DW_TAG_inlined_subroutine
11257 && child_origin_die->tag == DW_TAG_subprogram))
11258 complaint (&symfile_complaints,
11259 _("Child DIE 0x%x and its abstract origin 0x%x have "
11260 "different tags"), child_die->offset.sect_off,
11261 child_origin_die->offset.sect_off);
11262 if (child_origin_die->parent != origin_die)
11263 complaint (&symfile_complaints,
11264 _("Child DIE 0x%x and its abstract origin 0x%x have "
11265 "different parents"), child_die->offset.sect_off,
11266 child_origin_die->offset.sect_off);
11267 else
11268 *offsets_end++ = child_origin_die->offset;
11269 }
11270 }
11271 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11272 unsigned_int_compar);
11273 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11274 if (offsetp[-1].sect_off == offsetp->sect_off)
11275 complaint (&symfile_complaints,
11276 _("Multiple children of DIE 0x%x refer "
11277 "to DIE 0x%x as their abstract origin"),
11278 die->offset.sect_off, offsetp->sect_off);
11279
11280 offsetp = offsets;
11281 origin_child_die = origin_die->child;
11282 while (origin_child_die && origin_child_die->tag)
11283 {
11284 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11285 while (offsetp < offsets_end
11286 && offsetp->sect_off < origin_child_die->offset.sect_off)
11287 offsetp++;
11288 if (offsetp >= offsets_end
11289 || offsetp->sect_off > origin_child_die->offset.sect_off)
11290 {
11291 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11292 Check whether we're already processing ORIGIN_CHILD_DIE.
11293 This can happen with mutually referenced abstract_origins.
11294 PR 16581. */
11295 if (!origin_child_die->in_process)
11296 process_die (origin_child_die, origin_cu);
11297 }
11298 origin_child_die = sibling_die (origin_child_die);
11299 }
11300 origin_cu->list_in_scope = origin_previous_list_in_scope;
11301
11302 do_cleanups (cleanups);
11303 }
11304
11305 static void
11306 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11307 {
11308 struct objfile *objfile = cu->objfile;
11309 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11310 struct context_stack *newobj;
11311 CORE_ADDR lowpc;
11312 CORE_ADDR highpc;
11313 struct die_info *child_die;
11314 struct attribute *attr, *call_line, *call_file;
11315 const char *name;
11316 CORE_ADDR baseaddr;
11317 struct block *block;
11318 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11319 VEC (symbolp) *template_args = NULL;
11320 struct template_symbol *templ_func = NULL;
11321
11322 if (inlined_func)
11323 {
11324 /* If we do not have call site information, we can't show the
11325 caller of this inlined function. That's too confusing, so
11326 only use the scope for local variables. */
11327 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11328 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11329 if (call_line == NULL || call_file == NULL)
11330 {
11331 read_lexical_block_scope (die, cu);
11332 return;
11333 }
11334 }
11335
11336 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11337
11338 name = dwarf2_name (die, cu);
11339
11340 /* Ignore functions with missing or empty names. These are actually
11341 illegal according to the DWARF standard. */
11342 if (name == NULL)
11343 {
11344 complaint (&symfile_complaints,
11345 _("missing name for subprogram DIE at %d"),
11346 die->offset.sect_off);
11347 return;
11348 }
11349
11350 /* Ignore functions with missing or invalid low and high pc attributes. */
11351 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11352 {
11353 attr = dwarf2_attr (die, DW_AT_external, cu);
11354 if (!attr || !DW_UNSND (attr))
11355 complaint (&symfile_complaints,
11356 _("cannot get low and high bounds "
11357 "for subprogram DIE at %d"),
11358 die->offset.sect_off);
11359 return;
11360 }
11361
11362 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11363 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11364
11365 /* If we have any template arguments, then we must allocate a
11366 different sort of symbol. */
11367 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11368 {
11369 if (child_die->tag == DW_TAG_template_type_param
11370 || child_die->tag == DW_TAG_template_value_param)
11371 {
11372 templ_func = allocate_template_symbol (objfile);
11373 templ_func->base.is_cplus_template_function = 1;
11374 break;
11375 }
11376 }
11377
11378 newobj = push_context (0, lowpc);
11379 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11380 (struct symbol *) templ_func);
11381
11382 /* If there is a location expression for DW_AT_frame_base, record
11383 it. */
11384 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11385 if (attr)
11386 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11387
11388 cu->list_in_scope = &local_symbols;
11389
11390 if (die->child != NULL)
11391 {
11392 child_die = die->child;
11393 while (child_die && child_die->tag)
11394 {
11395 if (child_die->tag == DW_TAG_template_type_param
11396 || child_die->tag == DW_TAG_template_value_param)
11397 {
11398 struct symbol *arg = new_symbol (child_die, NULL, cu);
11399
11400 if (arg != NULL)
11401 VEC_safe_push (symbolp, template_args, arg);
11402 }
11403 else
11404 process_die (child_die, cu);
11405 child_die = sibling_die (child_die);
11406 }
11407 }
11408
11409 inherit_abstract_dies (die, cu);
11410
11411 /* If we have a DW_AT_specification, we might need to import using
11412 directives from the context of the specification DIE. See the
11413 comment in determine_prefix. */
11414 if (cu->language == language_cplus
11415 && dwarf2_attr (die, DW_AT_specification, cu))
11416 {
11417 struct dwarf2_cu *spec_cu = cu;
11418 struct die_info *spec_die = die_specification (die, &spec_cu);
11419
11420 while (spec_die)
11421 {
11422 child_die = spec_die->child;
11423 while (child_die && child_die->tag)
11424 {
11425 if (child_die->tag == DW_TAG_imported_module)
11426 process_die (child_die, spec_cu);
11427 child_die = sibling_die (child_die);
11428 }
11429
11430 /* In some cases, GCC generates specification DIEs that
11431 themselves contain DW_AT_specification attributes. */
11432 spec_die = die_specification (spec_die, &spec_cu);
11433 }
11434 }
11435
11436 newobj = pop_context ();
11437 /* Make a block for the local symbols within. */
11438 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11439 lowpc, highpc);
11440
11441 /* For C++, set the block's scope. */
11442 if ((cu->language == language_cplus || cu->language == language_fortran)
11443 && cu->processing_has_namespace_info)
11444 block_set_scope (block, determine_prefix (die, cu),
11445 &objfile->objfile_obstack);
11446
11447 /* If we have address ranges, record them. */
11448 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11449
11450 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11451
11452 /* Attach template arguments to function. */
11453 if (! VEC_empty (symbolp, template_args))
11454 {
11455 gdb_assert (templ_func != NULL);
11456
11457 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11458 templ_func->template_arguments
11459 = obstack_alloc (&objfile->objfile_obstack,
11460 (templ_func->n_template_arguments
11461 * sizeof (struct symbol *)));
11462 memcpy (templ_func->template_arguments,
11463 VEC_address (symbolp, template_args),
11464 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11465 VEC_free (symbolp, template_args);
11466 }
11467
11468 /* In C++, we can have functions nested inside functions (e.g., when
11469 a function declares a class that has methods). This means that
11470 when we finish processing a function scope, we may need to go
11471 back to building a containing block's symbol lists. */
11472 local_symbols = newobj->locals;
11473 using_directives = newobj->using_directives;
11474
11475 /* If we've finished processing a top-level function, subsequent
11476 symbols go in the file symbol list. */
11477 if (outermost_context_p ())
11478 cu->list_in_scope = &file_symbols;
11479 }
11480
11481 /* Process all the DIES contained within a lexical block scope. Start
11482 a new scope, process the dies, and then close the scope. */
11483
11484 static void
11485 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11486 {
11487 struct objfile *objfile = cu->objfile;
11488 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11489 struct context_stack *newobj;
11490 CORE_ADDR lowpc, highpc;
11491 struct die_info *child_die;
11492 CORE_ADDR baseaddr;
11493
11494 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11495
11496 /* Ignore blocks with missing or invalid low and high pc attributes. */
11497 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11498 as multiple lexical blocks? Handling children in a sane way would
11499 be nasty. Might be easier to properly extend generic blocks to
11500 describe ranges. */
11501 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11502 return;
11503 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11504 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11505
11506 push_context (0, lowpc);
11507 if (die->child != NULL)
11508 {
11509 child_die = die->child;
11510 while (child_die && child_die->tag)
11511 {
11512 process_die (child_die, cu);
11513 child_die = sibling_die (child_die);
11514 }
11515 }
11516 inherit_abstract_dies (die, cu);
11517 newobj = pop_context ();
11518
11519 if (local_symbols != NULL || using_directives != NULL)
11520 {
11521 struct block *block
11522 = finish_block (0, &local_symbols, newobj->old_blocks,
11523 newobj->start_addr, highpc);
11524
11525 /* Note that recording ranges after traversing children, as we
11526 do here, means that recording a parent's ranges entails
11527 walking across all its children's ranges as they appear in
11528 the address map, which is quadratic behavior.
11529
11530 It would be nicer to record the parent's ranges before
11531 traversing its children, simply overriding whatever you find
11532 there. But since we don't even decide whether to create a
11533 block until after we've traversed its children, that's hard
11534 to do. */
11535 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11536 }
11537 local_symbols = newobj->locals;
11538 using_directives = newobj->using_directives;
11539 }
11540
11541 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11542
11543 static void
11544 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11545 {
11546 struct objfile *objfile = cu->objfile;
11547 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11548 CORE_ADDR pc, baseaddr;
11549 struct attribute *attr;
11550 struct call_site *call_site, call_site_local;
11551 void **slot;
11552 int nparams;
11553 struct die_info *child_die;
11554
11555 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11556
11557 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11558 if (!attr)
11559 {
11560 complaint (&symfile_complaints,
11561 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11562 "DIE 0x%x [in module %s]"),
11563 die->offset.sect_off, objfile_name (objfile));
11564 return;
11565 }
11566 pc = attr_value_as_address (attr) + baseaddr;
11567 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11568
11569 if (cu->call_site_htab == NULL)
11570 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11571 NULL, &objfile->objfile_obstack,
11572 hashtab_obstack_allocate, NULL);
11573 call_site_local.pc = pc;
11574 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11575 if (*slot != NULL)
11576 {
11577 complaint (&symfile_complaints,
11578 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11579 "DIE 0x%x [in module %s]"),
11580 paddress (gdbarch, pc), die->offset.sect_off,
11581 objfile_name (objfile));
11582 return;
11583 }
11584
11585 /* Count parameters at the caller. */
11586
11587 nparams = 0;
11588 for (child_die = die->child; child_die && child_die->tag;
11589 child_die = sibling_die (child_die))
11590 {
11591 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11592 {
11593 complaint (&symfile_complaints,
11594 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11595 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11596 child_die->tag, child_die->offset.sect_off,
11597 objfile_name (objfile));
11598 continue;
11599 }
11600
11601 nparams++;
11602 }
11603
11604 call_site = obstack_alloc (&objfile->objfile_obstack,
11605 (sizeof (*call_site)
11606 + (sizeof (*call_site->parameter)
11607 * (nparams - 1))));
11608 *slot = call_site;
11609 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11610 call_site->pc = pc;
11611
11612 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11613 {
11614 struct die_info *func_die;
11615
11616 /* Skip also over DW_TAG_inlined_subroutine. */
11617 for (func_die = die->parent;
11618 func_die && func_die->tag != DW_TAG_subprogram
11619 && func_die->tag != DW_TAG_subroutine_type;
11620 func_die = func_die->parent);
11621
11622 /* DW_AT_GNU_all_call_sites is a superset
11623 of DW_AT_GNU_all_tail_call_sites. */
11624 if (func_die
11625 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11626 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11627 {
11628 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11629 not complete. But keep CALL_SITE for look ups via call_site_htab,
11630 both the initial caller containing the real return address PC and
11631 the final callee containing the current PC of a chain of tail
11632 calls do not need to have the tail call list complete. But any
11633 function candidate for a virtual tail call frame searched via
11634 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11635 determined unambiguously. */
11636 }
11637 else
11638 {
11639 struct type *func_type = NULL;
11640
11641 if (func_die)
11642 func_type = get_die_type (func_die, cu);
11643 if (func_type != NULL)
11644 {
11645 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11646
11647 /* Enlist this call site to the function. */
11648 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11649 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11650 }
11651 else
11652 complaint (&symfile_complaints,
11653 _("Cannot find function owning DW_TAG_GNU_call_site "
11654 "DIE 0x%x [in module %s]"),
11655 die->offset.sect_off, objfile_name (objfile));
11656 }
11657 }
11658
11659 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11660 if (attr == NULL)
11661 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11662 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11663 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11664 /* Keep NULL DWARF_BLOCK. */;
11665 else if (attr_form_is_block (attr))
11666 {
11667 struct dwarf2_locexpr_baton *dlbaton;
11668
11669 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11670 dlbaton->data = DW_BLOCK (attr)->data;
11671 dlbaton->size = DW_BLOCK (attr)->size;
11672 dlbaton->per_cu = cu->per_cu;
11673
11674 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11675 }
11676 else if (attr_form_is_ref (attr))
11677 {
11678 struct dwarf2_cu *target_cu = cu;
11679 struct die_info *target_die;
11680
11681 target_die = follow_die_ref (die, attr, &target_cu);
11682 gdb_assert (target_cu->objfile == objfile);
11683 if (die_is_declaration (target_die, target_cu))
11684 {
11685 const char *target_physname = NULL;
11686 struct attribute *target_attr;
11687
11688 /* Prefer the mangled name; otherwise compute the demangled one. */
11689 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11690 if (target_attr == NULL)
11691 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11692 target_cu);
11693 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11694 target_physname = DW_STRING (target_attr);
11695 else
11696 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11697 if (target_physname == NULL)
11698 complaint (&symfile_complaints,
11699 _("DW_AT_GNU_call_site_target target DIE has invalid "
11700 "physname, for referencing DIE 0x%x [in module %s]"),
11701 die->offset.sect_off, objfile_name (objfile));
11702 else
11703 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11704 }
11705 else
11706 {
11707 CORE_ADDR lowpc;
11708
11709 /* DW_AT_entry_pc should be preferred. */
11710 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11711 complaint (&symfile_complaints,
11712 _("DW_AT_GNU_call_site_target target DIE has invalid "
11713 "low pc, for referencing DIE 0x%x [in module %s]"),
11714 die->offset.sect_off, objfile_name (objfile));
11715 else
11716 {
11717 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11718 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11719 }
11720 }
11721 }
11722 else
11723 complaint (&symfile_complaints,
11724 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11725 "block nor reference, for DIE 0x%x [in module %s]"),
11726 die->offset.sect_off, objfile_name (objfile));
11727
11728 call_site->per_cu = cu->per_cu;
11729
11730 for (child_die = die->child;
11731 child_die && child_die->tag;
11732 child_die = sibling_die (child_die))
11733 {
11734 struct call_site_parameter *parameter;
11735 struct attribute *loc, *origin;
11736
11737 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11738 {
11739 /* Already printed the complaint above. */
11740 continue;
11741 }
11742
11743 gdb_assert (call_site->parameter_count < nparams);
11744 parameter = &call_site->parameter[call_site->parameter_count];
11745
11746 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11747 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11748 register is contained in DW_AT_GNU_call_site_value. */
11749
11750 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11751 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11752 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11753 {
11754 sect_offset offset;
11755
11756 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11757 offset = dwarf2_get_ref_die_offset (origin);
11758 if (!offset_in_cu_p (&cu->header, offset))
11759 {
11760 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11761 binding can be done only inside one CU. Such referenced DIE
11762 therefore cannot be even moved to DW_TAG_partial_unit. */
11763 complaint (&symfile_complaints,
11764 _("DW_AT_abstract_origin offset is not in CU for "
11765 "DW_TAG_GNU_call_site child DIE 0x%x "
11766 "[in module %s]"),
11767 child_die->offset.sect_off, objfile_name (objfile));
11768 continue;
11769 }
11770 parameter->u.param_offset.cu_off = (offset.sect_off
11771 - cu->header.offset.sect_off);
11772 }
11773 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11774 {
11775 complaint (&symfile_complaints,
11776 _("No DW_FORM_block* DW_AT_location for "
11777 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11778 child_die->offset.sect_off, objfile_name (objfile));
11779 continue;
11780 }
11781 else
11782 {
11783 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11784 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11785 if (parameter->u.dwarf_reg != -1)
11786 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11787 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11788 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11789 &parameter->u.fb_offset))
11790 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11791 else
11792 {
11793 complaint (&symfile_complaints,
11794 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11795 "for DW_FORM_block* DW_AT_location is supported for "
11796 "DW_TAG_GNU_call_site child DIE 0x%x "
11797 "[in module %s]"),
11798 child_die->offset.sect_off, objfile_name (objfile));
11799 continue;
11800 }
11801 }
11802
11803 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11804 if (!attr_form_is_block (attr))
11805 {
11806 complaint (&symfile_complaints,
11807 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11808 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11809 child_die->offset.sect_off, objfile_name (objfile));
11810 continue;
11811 }
11812 parameter->value = DW_BLOCK (attr)->data;
11813 parameter->value_size = DW_BLOCK (attr)->size;
11814
11815 /* Parameters are not pre-cleared by memset above. */
11816 parameter->data_value = NULL;
11817 parameter->data_value_size = 0;
11818 call_site->parameter_count++;
11819
11820 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11821 if (attr)
11822 {
11823 if (!attr_form_is_block (attr))
11824 complaint (&symfile_complaints,
11825 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11826 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11827 child_die->offset.sect_off, objfile_name (objfile));
11828 else
11829 {
11830 parameter->data_value = DW_BLOCK (attr)->data;
11831 parameter->data_value_size = DW_BLOCK (attr)->size;
11832 }
11833 }
11834 }
11835 }
11836
11837 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11838 Return 1 if the attributes are present and valid, otherwise, return 0.
11839 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11840
11841 static int
11842 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11843 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11844 struct partial_symtab *ranges_pst)
11845 {
11846 struct objfile *objfile = cu->objfile;
11847 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11848 struct comp_unit_head *cu_header = &cu->header;
11849 bfd *obfd = objfile->obfd;
11850 unsigned int addr_size = cu_header->addr_size;
11851 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11852 /* Base address selection entry. */
11853 CORE_ADDR base;
11854 int found_base;
11855 unsigned int dummy;
11856 const gdb_byte *buffer;
11857 CORE_ADDR marker;
11858 int low_set;
11859 CORE_ADDR low = 0;
11860 CORE_ADDR high = 0;
11861 CORE_ADDR baseaddr;
11862
11863 found_base = cu->base_known;
11864 base = cu->base_address;
11865
11866 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11867 if (offset >= dwarf2_per_objfile->ranges.size)
11868 {
11869 complaint (&symfile_complaints,
11870 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11871 offset);
11872 return 0;
11873 }
11874 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11875
11876 /* Read in the largest possible address. */
11877 marker = read_address (obfd, buffer, cu, &dummy);
11878 if ((marker & mask) == mask)
11879 {
11880 /* If we found the largest possible address, then
11881 read the base address. */
11882 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11883 buffer += 2 * addr_size;
11884 offset += 2 * addr_size;
11885 found_base = 1;
11886 }
11887
11888 low_set = 0;
11889
11890 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11891
11892 while (1)
11893 {
11894 CORE_ADDR range_beginning, range_end;
11895
11896 range_beginning = read_address (obfd, buffer, cu, &dummy);
11897 buffer += addr_size;
11898 range_end = read_address (obfd, buffer, cu, &dummy);
11899 buffer += addr_size;
11900 offset += 2 * addr_size;
11901
11902 /* An end of list marker is a pair of zero addresses. */
11903 if (range_beginning == 0 && range_end == 0)
11904 /* Found the end of list entry. */
11905 break;
11906
11907 /* Each base address selection entry is a pair of 2 values.
11908 The first is the largest possible address, the second is
11909 the base address. Check for a base address here. */
11910 if ((range_beginning & mask) == mask)
11911 {
11912 /* If we found the largest possible address, then
11913 read the base address. */
11914 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11915 found_base = 1;
11916 continue;
11917 }
11918
11919 if (!found_base)
11920 {
11921 /* We have no valid base address for the ranges
11922 data. */
11923 complaint (&symfile_complaints,
11924 _("Invalid .debug_ranges data (no base address)"));
11925 return 0;
11926 }
11927
11928 if (range_beginning > range_end)
11929 {
11930 /* Inverted range entries are invalid. */
11931 complaint (&symfile_complaints,
11932 _("Invalid .debug_ranges data (inverted range)"));
11933 return 0;
11934 }
11935
11936 /* Empty range entries have no effect. */
11937 if (range_beginning == range_end)
11938 continue;
11939
11940 range_beginning += base;
11941 range_end += base;
11942
11943 /* A not-uncommon case of bad debug info.
11944 Don't pollute the addrmap with bad data. */
11945 if (range_beginning + baseaddr == 0
11946 && !dwarf2_per_objfile->has_section_at_zero)
11947 {
11948 complaint (&symfile_complaints,
11949 _(".debug_ranges entry has start address of zero"
11950 " [in module %s]"), objfile_name (objfile));
11951 continue;
11952 }
11953
11954 if (ranges_pst != NULL)
11955 {
11956 CORE_ADDR lowpc;
11957 CORE_ADDR highpc;
11958
11959 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11960 range_beginning + baseaddr);
11961 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11962 range_end + baseaddr);
11963 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11964 ranges_pst);
11965 }
11966
11967 /* FIXME: This is recording everything as a low-high
11968 segment of consecutive addresses. We should have a
11969 data structure for discontiguous block ranges
11970 instead. */
11971 if (! low_set)
11972 {
11973 low = range_beginning;
11974 high = range_end;
11975 low_set = 1;
11976 }
11977 else
11978 {
11979 if (range_beginning < low)
11980 low = range_beginning;
11981 if (range_end > high)
11982 high = range_end;
11983 }
11984 }
11985
11986 if (! low_set)
11987 /* If the first entry is an end-of-list marker, the range
11988 describes an empty scope, i.e. no instructions. */
11989 return 0;
11990
11991 if (low_return)
11992 *low_return = low;
11993 if (high_return)
11994 *high_return = high;
11995 return 1;
11996 }
11997
11998 /* Get low and high pc attributes from a die. Return 1 if the attributes
11999 are present and valid, otherwise, return 0. Return -1 if the range is
12000 discontinuous, i.e. derived from DW_AT_ranges information. */
12001
12002 static int
12003 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12004 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12005 struct partial_symtab *pst)
12006 {
12007 struct attribute *attr;
12008 struct attribute *attr_high;
12009 CORE_ADDR low = 0;
12010 CORE_ADDR high = 0;
12011 int ret = 0;
12012
12013 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12014 if (attr_high)
12015 {
12016 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12017 if (attr)
12018 {
12019 low = attr_value_as_address (attr);
12020 high = attr_value_as_address (attr_high);
12021 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12022 high += low;
12023 }
12024 else
12025 /* Found high w/o low attribute. */
12026 return 0;
12027
12028 /* Found consecutive range of addresses. */
12029 ret = 1;
12030 }
12031 else
12032 {
12033 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12034 if (attr != NULL)
12035 {
12036 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12037 We take advantage of the fact that DW_AT_ranges does not appear
12038 in DW_TAG_compile_unit of DWO files. */
12039 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12040 unsigned int ranges_offset = (DW_UNSND (attr)
12041 + (need_ranges_base
12042 ? cu->ranges_base
12043 : 0));
12044
12045 /* Value of the DW_AT_ranges attribute is the offset in the
12046 .debug_ranges section. */
12047 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12048 return 0;
12049 /* Found discontinuous range of addresses. */
12050 ret = -1;
12051 }
12052 }
12053
12054 /* read_partial_die has also the strict LOW < HIGH requirement. */
12055 if (high <= low)
12056 return 0;
12057
12058 /* When using the GNU linker, .gnu.linkonce. sections are used to
12059 eliminate duplicate copies of functions and vtables and such.
12060 The linker will arbitrarily choose one and discard the others.
12061 The AT_*_pc values for such functions refer to local labels in
12062 these sections. If the section from that file was discarded, the
12063 labels are not in the output, so the relocs get a value of 0.
12064 If this is a discarded function, mark the pc bounds as invalid,
12065 so that GDB will ignore it. */
12066 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12067 return 0;
12068
12069 *lowpc = low;
12070 if (highpc)
12071 *highpc = high;
12072 return ret;
12073 }
12074
12075 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12076 its low and high PC addresses. Do nothing if these addresses could not
12077 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12078 and HIGHPC to the high address if greater than HIGHPC. */
12079
12080 static void
12081 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12082 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12083 struct dwarf2_cu *cu)
12084 {
12085 CORE_ADDR low, high;
12086 struct die_info *child = die->child;
12087
12088 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12089 {
12090 *lowpc = min (*lowpc, low);
12091 *highpc = max (*highpc, high);
12092 }
12093
12094 /* If the language does not allow nested subprograms (either inside
12095 subprograms or lexical blocks), we're done. */
12096 if (cu->language != language_ada)
12097 return;
12098
12099 /* Check all the children of the given DIE. If it contains nested
12100 subprograms, then check their pc bounds. Likewise, we need to
12101 check lexical blocks as well, as they may also contain subprogram
12102 definitions. */
12103 while (child && child->tag)
12104 {
12105 if (child->tag == DW_TAG_subprogram
12106 || child->tag == DW_TAG_lexical_block)
12107 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12108 child = sibling_die (child);
12109 }
12110 }
12111
12112 /* Get the low and high pc's represented by the scope DIE, and store
12113 them in *LOWPC and *HIGHPC. If the correct values can't be
12114 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12115
12116 static void
12117 get_scope_pc_bounds (struct die_info *die,
12118 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12119 struct dwarf2_cu *cu)
12120 {
12121 CORE_ADDR best_low = (CORE_ADDR) -1;
12122 CORE_ADDR best_high = (CORE_ADDR) 0;
12123 CORE_ADDR current_low, current_high;
12124
12125 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12126 {
12127 best_low = current_low;
12128 best_high = current_high;
12129 }
12130 else
12131 {
12132 struct die_info *child = die->child;
12133
12134 while (child && child->tag)
12135 {
12136 switch (child->tag) {
12137 case DW_TAG_subprogram:
12138 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12139 break;
12140 case DW_TAG_namespace:
12141 case DW_TAG_module:
12142 /* FIXME: carlton/2004-01-16: Should we do this for
12143 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12144 that current GCC's always emit the DIEs corresponding
12145 to definitions of methods of classes as children of a
12146 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12147 the DIEs giving the declarations, which could be
12148 anywhere). But I don't see any reason why the
12149 standards says that they have to be there. */
12150 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12151
12152 if (current_low != ((CORE_ADDR) -1))
12153 {
12154 best_low = min (best_low, current_low);
12155 best_high = max (best_high, current_high);
12156 }
12157 break;
12158 default:
12159 /* Ignore. */
12160 break;
12161 }
12162
12163 child = sibling_die (child);
12164 }
12165 }
12166
12167 *lowpc = best_low;
12168 *highpc = best_high;
12169 }
12170
12171 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12172 in DIE. */
12173
12174 static void
12175 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12176 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12177 {
12178 struct objfile *objfile = cu->objfile;
12179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12180 struct attribute *attr;
12181 struct attribute *attr_high;
12182
12183 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12184 if (attr_high)
12185 {
12186 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12187 if (attr)
12188 {
12189 CORE_ADDR low = attr_value_as_address (attr);
12190 CORE_ADDR high = attr_value_as_address (attr_high);
12191
12192 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12193 high += low;
12194
12195 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12196 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12197 record_block_range (block, low, high - 1);
12198 }
12199 }
12200
12201 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12202 if (attr)
12203 {
12204 bfd *obfd = objfile->obfd;
12205 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12206 We take advantage of the fact that DW_AT_ranges does not appear
12207 in DW_TAG_compile_unit of DWO files. */
12208 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12209
12210 /* The value of the DW_AT_ranges attribute is the offset of the
12211 address range list in the .debug_ranges section. */
12212 unsigned long offset = (DW_UNSND (attr)
12213 + (need_ranges_base ? cu->ranges_base : 0));
12214 const gdb_byte *buffer;
12215
12216 /* For some target architectures, but not others, the
12217 read_address function sign-extends the addresses it returns.
12218 To recognize base address selection entries, we need a
12219 mask. */
12220 unsigned int addr_size = cu->header.addr_size;
12221 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12222
12223 /* The base address, to which the next pair is relative. Note
12224 that this 'base' is a DWARF concept: most entries in a range
12225 list are relative, to reduce the number of relocs against the
12226 debugging information. This is separate from this function's
12227 'baseaddr' argument, which GDB uses to relocate debugging
12228 information from a shared library based on the address at
12229 which the library was loaded. */
12230 CORE_ADDR base = cu->base_address;
12231 int base_known = cu->base_known;
12232
12233 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12234 if (offset >= dwarf2_per_objfile->ranges.size)
12235 {
12236 complaint (&symfile_complaints,
12237 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12238 offset);
12239 return;
12240 }
12241 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12242
12243 for (;;)
12244 {
12245 unsigned int bytes_read;
12246 CORE_ADDR start, end;
12247
12248 start = read_address (obfd, buffer, cu, &bytes_read);
12249 buffer += bytes_read;
12250 end = read_address (obfd, buffer, cu, &bytes_read);
12251 buffer += bytes_read;
12252
12253 /* Did we find the end of the range list? */
12254 if (start == 0 && end == 0)
12255 break;
12256
12257 /* Did we find a base address selection entry? */
12258 else if ((start & base_select_mask) == base_select_mask)
12259 {
12260 base = end;
12261 base_known = 1;
12262 }
12263
12264 /* We found an ordinary address range. */
12265 else
12266 {
12267 if (!base_known)
12268 {
12269 complaint (&symfile_complaints,
12270 _("Invalid .debug_ranges data "
12271 "(no base address)"));
12272 return;
12273 }
12274
12275 if (start > end)
12276 {
12277 /* Inverted range entries are invalid. */
12278 complaint (&symfile_complaints,
12279 _("Invalid .debug_ranges data "
12280 "(inverted range)"));
12281 return;
12282 }
12283
12284 /* Empty range entries have no effect. */
12285 if (start == end)
12286 continue;
12287
12288 start += base + baseaddr;
12289 end += base + baseaddr;
12290
12291 /* A not-uncommon case of bad debug info.
12292 Don't pollute the addrmap with bad data. */
12293 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12294 {
12295 complaint (&symfile_complaints,
12296 _(".debug_ranges entry has start address of zero"
12297 " [in module %s]"), objfile_name (objfile));
12298 continue;
12299 }
12300
12301 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12302 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12303 record_block_range (block, start, end - 1);
12304 }
12305 }
12306 }
12307 }
12308
12309 /* Check whether the producer field indicates either of GCC < 4.6, or the
12310 Intel C/C++ compiler, and cache the result in CU. */
12311
12312 static void
12313 check_producer (struct dwarf2_cu *cu)
12314 {
12315 const char *cs;
12316 int major, minor;
12317
12318 if (cu->producer == NULL)
12319 {
12320 /* For unknown compilers expect their behavior is DWARF version
12321 compliant.
12322
12323 GCC started to support .debug_types sections by -gdwarf-4 since
12324 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12325 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12326 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12327 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12328 }
12329 else if (producer_is_gcc (cu->producer, &major, &minor))
12330 {
12331 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12332 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12333 }
12334 else if (startswith (cu->producer, "Intel(R) C"))
12335 cu->producer_is_icc = 1;
12336 else
12337 {
12338 /* For other non-GCC compilers, expect their behavior is DWARF version
12339 compliant. */
12340 }
12341
12342 cu->checked_producer = 1;
12343 }
12344
12345 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12346 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12347 during 4.6.0 experimental. */
12348
12349 static int
12350 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12351 {
12352 if (!cu->checked_producer)
12353 check_producer (cu);
12354
12355 return cu->producer_is_gxx_lt_4_6;
12356 }
12357
12358 /* Return the default accessibility type if it is not overriden by
12359 DW_AT_accessibility. */
12360
12361 static enum dwarf_access_attribute
12362 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12363 {
12364 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12365 {
12366 /* The default DWARF 2 accessibility for members is public, the default
12367 accessibility for inheritance is private. */
12368
12369 if (die->tag != DW_TAG_inheritance)
12370 return DW_ACCESS_public;
12371 else
12372 return DW_ACCESS_private;
12373 }
12374 else
12375 {
12376 /* DWARF 3+ defines the default accessibility a different way. The same
12377 rules apply now for DW_TAG_inheritance as for the members and it only
12378 depends on the container kind. */
12379
12380 if (die->parent->tag == DW_TAG_class_type)
12381 return DW_ACCESS_private;
12382 else
12383 return DW_ACCESS_public;
12384 }
12385 }
12386
12387 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12388 offset. If the attribute was not found return 0, otherwise return
12389 1. If it was found but could not properly be handled, set *OFFSET
12390 to 0. */
12391
12392 static int
12393 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12394 LONGEST *offset)
12395 {
12396 struct attribute *attr;
12397
12398 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12399 if (attr != NULL)
12400 {
12401 *offset = 0;
12402
12403 /* Note that we do not check for a section offset first here.
12404 This is because DW_AT_data_member_location is new in DWARF 4,
12405 so if we see it, we can assume that a constant form is really
12406 a constant and not a section offset. */
12407 if (attr_form_is_constant (attr))
12408 *offset = dwarf2_get_attr_constant_value (attr, 0);
12409 else if (attr_form_is_section_offset (attr))
12410 dwarf2_complex_location_expr_complaint ();
12411 else if (attr_form_is_block (attr))
12412 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12413 else
12414 dwarf2_complex_location_expr_complaint ();
12415
12416 return 1;
12417 }
12418
12419 return 0;
12420 }
12421
12422 /* Add an aggregate field to the field list. */
12423
12424 static void
12425 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
12427 {
12428 struct objfile *objfile = cu->objfile;
12429 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12430 struct nextfield *new_field;
12431 struct attribute *attr;
12432 struct field *fp;
12433 const char *fieldname = "";
12434
12435 /* Allocate a new field list entry and link it in. */
12436 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12437 make_cleanup (xfree, new_field);
12438 memset (new_field, 0, sizeof (struct nextfield));
12439
12440 if (die->tag == DW_TAG_inheritance)
12441 {
12442 new_field->next = fip->baseclasses;
12443 fip->baseclasses = new_field;
12444 }
12445 else
12446 {
12447 new_field->next = fip->fields;
12448 fip->fields = new_field;
12449 }
12450 fip->nfields++;
12451
12452 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12453 if (attr)
12454 new_field->accessibility = DW_UNSND (attr);
12455 else
12456 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12457 if (new_field->accessibility != DW_ACCESS_public)
12458 fip->non_public_fields = 1;
12459
12460 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12461 if (attr)
12462 new_field->virtuality = DW_UNSND (attr);
12463 else
12464 new_field->virtuality = DW_VIRTUALITY_none;
12465
12466 fp = &new_field->field;
12467
12468 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12469 {
12470 LONGEST offset;
12471
12472 /* Data member other than a C++ static data member. */
12473
12474 /* Get type of field. */
12475 fp->type = die_type (die, cu);
12476
12477 SET_FIELD_BITPOS (*fp, 0);
12478
12479 /* Get bit size of field (zero if none). */
12480 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12481 if (attr)
12482 {
12483 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12484 }
12485 else
12486 {
12487 FIELD_BITSIZE (*fp) = 0;
12488 }
12489
12490 /* Get bit offset of field. */
12491 if (handle_data_member_location (die, cu, &offset))
12492 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12493 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12494 if (attr)
12495 {
12496 if (gdbarch_bits_big_endian (gdbarch))
12497 {
12498 /* For big endian bits, the DW_AT_bit_offset gives the
12499 additional bit offset from the MSB of the containing
12500 anonymous object to the MSB of the field. We don't
12501 have to do anything special since we don't need to
12502 know the size of the anonymous object. */
12503 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12504 }
12505 else
12506 {
12507 /* For little endian bits, compute the bit offset to the
12508 MSB of the anonymous object, subtract off the number of
12509 bits from the MSB of the field to the MSB of the
12510 object, and then subtract off the number of bits of
12511 the field itself. The result is the bit offset of
12512 the LSB of the field. */
12513 int anonymous_size;
12514 int bit_offset = DW_UNSND (attr);
12515
12516 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12517 if (attr)
12518 {
12519 /* The size of the anonymous object containing
12520 the bit field is explicit, so use the
12521 indicated size (in bytes). */
12522 anonymous_size = DW_UNSND (attr);
12523 }
12524 else
12525 {
12526 /* The size of the anonymous object containing
12527 the bit field must be inferred from the type
12528 attribute of the data member containing the
12529 bit field. */
12530 anonymous_size = TYPE_LENGTH (fp->type);
12531 }
12532 SET_FIELD_BITPOS (*fp,
12533 (FIELD_BITPOS (*fp)
12534 + anonymous_size * bits_per_byte
12535 - bit_offset - FIELD_BITSIZE (*fp)));
12536 }
12537 }
12538
12539 /* Get name of field. */
12540 fieldname = dwarf2_name (die, cu);
12541 if (fieldname == NULL)
12542 fieldname = "";
12543
12544 /* The name is already allocated along with this objfile, so we don't
12545 need to duplicate it for the type. */
12546 fp->name = fieldname;
12547
12548 /* Change accessibility for artificial fields (e.g. virtual table
12549 pointer or virtual base class pointer) to private. */
12550 if (dwarf2_attr (die, DW_AT_artificial, cu))
12551 {
12552 FIELD_ARTIFICIAL (*fp) = 1;
12553 new_field->accessibility = DW_ACCESS_private;
12554 fip->non_public_fields = 1;
12555 }
12556 }
12557 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12558 {
12559 /* C++ static member. */
12560
12561 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12562 is a declaration, but all versions of G++ as of this writing
12563 (so through at least 3.2.1) incorrectly generate
12564 DW_TAG_variable tags. */
12565
12566 const char *physname;
12567
12568 /* Get name of field. */
12569 fieldname = dwarf2_name (die, cu);
12570 if (fieldname == NULL)
12571 return;
12572
12573 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12574 if (attr
12575 /* Only create a symbol if this is an external value.
12576 new_symbol checks this and puts the value in the global symbol
12577 table, which we want. If it is not external, new_symbol
12578 will try to put the value in cu->list_in_scope which is wrong. */
12579 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12580 {
12581 /* A static const member, not much different than an enum as far as
12582 we're concerned, except that we can support more types. */
12583 new_symbol (die, NULL, cu);
12584 }
12585
12586 /* Get physical name. */
12587 physname = dwarf2_physname (fieldname, die, cu);
12588
12589 /* The name is already allocated along with this objfile, so we don't
12590 need to duplicate it for the type. */
12591 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12592 FIELD_TYPE (*fp) = die_type (die, cu);
12593 FIELD_NAME (*fp) = fieldname;
12594 }
12595 else if (die->tag == DW_TAG_inheritance)
12596 {
12597 LONGEST offset;
12598
12599 /* C++ base class field. */
12600 if (handle_data_member_location (die, cu, &offset))
12601 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12602 FIELD_BITSIZE (*fp) = 0;
12603 FIELD_TYPE (*fp) = die_type (die, cu);
12604 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12605 fip->nbaseclasses++;
12606 }
12607 }
12608
12609 /* Add a typedef defined in the scope of the FIP's class. */
12610
12611 static void
12612 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12613 struct dwarf2_cu *cu)
12614 {
12615 struct objfile *objfile = cu->objfile;
12616 struct typedef_field_list *new_field;
12617 struct attribute *attr;
12618 struct typedef_field *fp;
12619 char *fieldname = "";
12620
12621 /* Allocate a new field list entry and link it in. */
12622 new_field = xzalloc (sizeof (*new_field));
12623 make_cleanup (xfree, new_field);
12624
12625 gdb_assert (die->tag == DW_TAG_typedef);
12626
12627 fp = &new_field->field;
12628
12629 /* Get name of field. */
12630 fp->name = dwarf2_name (die, cu);
12631 if (fp->name == NULL)
12632 return;
12633
12634 fp->type = read_type_die (die, cu);
12635
12636 new_field->next = fip->typedef_field_list;
12637 fip->typedef_field_list = new_field;
12638 fip->typedef_field_list_count++;
12639 }
12640
12641 /* Create the vector of fields, and attach it to the type. */
12642
12643 static void
12644 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12645 struct dwarf2_cu *cu)
12646 {
12647 int nfields = fip->nfields;
12648
12649 /* Record the field count, allocate space for the array of fields,
12650 and create blank accessibility bitfields if necessary. */
12651 TYPE_NFIELDS (type) = nfields;
12652 TYPE_FIELDS (type) = (struct field *)
12653 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12654 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12655
12656 if (fip->non_public_fields && cu->language != language_ada)
12657 {
12658 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12659
12660 TYPE_FIELD_PRIVATE_BITS (type) =
12661 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12662 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12663
12664 TYPE_FIELD_PROTECTED_BITS (type) =
12665 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12666 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12667
12668 TYPE_FIELD_IGNORE_BITS (type) =
12669 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12670 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12671 }
12672
12673 /* If the type has baseclasses, allocate and clear a bit vector for
12674 TYPE_FIELD_VIRTUAL_BITS. */
12675 if (fip->nbaseclasses && cu->language != language_ada)
12676 {
12677 int num_bytes = B_BYTES (fip->nbaseclasses);
12678 unsigned char *pointer;
12679
12680 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12681 pointer = TYPE_ALLOC (type, num_bytes);
12682 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12683 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12684 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12685 }
12686
12687 /* Copy the saved-up fields into the field vector. Start from the head of
12688 the list, adding to the tail of the field array, so that they end up in
12689 the same order in the array in which they were added to the list. */
12690 while (nfields-- > 0)
12691 {
12692 struct nextfield *fieldp;
12693
12694 if (fip->fields)
12695 {
12696 fieldp = fip->fields;
12697 fip->fields = fieldp->next;
12698 }
12699 else
12700 {
12701 fieldp = fip->baseclasses;
12702 fip->baseclasses = fieldp->next;
12703 }
12704
12705 TYPE_FIELD (type, nfields) = fieldp->field;
12706 switch (fieldp->accessibility)
12707 {
12708 case DW_ACCESS_private:
12709 if (cu->language != language_ada)
12710 SET_TYPE_FIELD_PRIVATE (type, nfields);
12711 break;
12712
12713 case DW_ACCESS_protected:
12714 if (cu->language != language_ada)
12715 SET_TYPE_FIELD_PROTECTED (type, nfields);
12716 break;
12717
12718 case DW_ACCESS_public:
12719 break;
12720
12721 default:
12722 /* Unknown accessibility. Complain and treat it as public. */
12723 {
12724 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12725 fieldp->accessibility);
12726 }
12727 break;
12728 }
12729 if (nfields < fip->nbaseclasses)
12730 {
12731 switch (fieldp->virtuality)
12732 {
12733 case DW_VIRTUALITY_virtual:
12734 case DW_VIRTUALITY_pure_virtual:
12735 if (cu->language == language_ada)
12736 error (_("unexpected virtuality in component of Ada type"));
12737 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12738 break;
12739 }
12740 }
12741 }
12742 }
12743
12744 /* Return true if this member function is a constructor, false
12745 otherwise. */
12746
12747 static int
12748 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12749 {
12750 const char *fieldname;
12751 const char *type_name;
12752 int len;
12753
12754 if (die->parent == NULL)
12755 return 0;
12756
12757 if (die->parent->tag != DW_TAG_structure_type
12758 && die->parent->tag != DW_TAG_union_type
12759 && die->parent->tag != DW_TAG_class_type)
12760 return 0;
12761
12762 fieldname = dwarf2_name (die, cu);
12763 type_name = dwarf2_name (die->parent, cu);
12764 if (fieldname == NULL || type_name == NULL)
12765 return 0;
12766
12767 len = strlen (fieldname);
12768 return (strncmp (fieldname, type_name, len) == 0
12769 && (type_name[len] == '\0' || type_name[len] == '<'));
12770 }
12771
12772 /* Add a member function to the proper fieldlist. */
12773
12774 static void
12775 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12776 struct type *type, struct dwarf2_cu *cu)
12777 {
12778 struct objfile *objfile = cu->objfile;
12779 struct attribute *attr;
12780 struct fnfieldlist *flp;
12781 int i;
12782 struct fn_field *fnp;
12783 const char *fieldname;
12784 struct nextfnfield *new_fnfield;
12785 struct type *this_type;
12786 enum dwarf_access_attribute accessibility;
12787
12788 if (cu->language == language_ada)
12789 error (_("unexpected member function in Ada type"));
12790
12791 /* Get name of member function. */
12792 fieldname = dwarf2_name (die, cu);
12793 if (fieldname == NULL)
12794 return;
12795
12796 /* Look up member function name in fieldlist. */
12797 for (i = 0; i < fip->nfnfields; i++)
12798 {
12799 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12800 break;
12801 }
12802
12803 /* Create new list element if necessary. */
12804 if (i < fip->nfnfields)
12805 flp = &fip->fnfieldlists[i];
12806 else
12807 {
12808 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12809 {
12810 fip->fnfieldlists = (struct fnfieldlist *)
12811 xrealloc (fip->fnfieldlists,
12812 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12813 * sizeof (struct fnfieldlist));
12814 if (fip->nfnfields == 0)
12815 make_cleanup (free_current_contents, &fip->fnfieldlists);
12816 }
12817 flp = &fip->fnfieldlists[fip->nfnfields];
12818 flp->name = fieldname;
12819 flp->length = 0;
12820 flp->head = NULL;
12821 i = fip->nfnfields++;
12822 }
12823
12824 /* Create a new member function field and chain it to the field list
12825 entry. */
12826 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12827 make_cleanup (xfree, new_fnfield);
12828 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12829 new_fnfield->next = flp->head;
12830 flp->head = new_fnfield;
12831 flp->length++;
12832
12833 /* Fill in the member function field info. */
12834 fnp = &new_fnfield->fnfield;
12835
12836 /* Delay processing of the physname until later. */
12837 if (cu->language == language_cplus || cu->language == language_java)
12838 {
12839 add_to_method_list (type, i, flp->length - 1, fieldname,
12840 die, cu);
12841 }
12842 else
12843 {
12844 const char *physname = dwarf2_physname (fieldname, die, cu);
12845 fnp->physname = physname ? physname : "";
12846 }
12847
12848 fnp->type = alloc_type (objfile);
12849 this_type = read_type_die (die, cu);
12850 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12851 {
12852 int nparams = TYPE_NFIELDS (this_type);
12853
12854 /* TYPE is the domain of this method, and THIS_TYPE is the type
12855 of the method itself (TYPE_CODE_METHOD). */
12856 smash_to_method_type (fnp->type, type,
12857 TYPE_TARGET_TYPE (this_type),
12858 TYPE_FIELDS (this_type),
12859 TYPE_NFIELDS (this_type),
12860 TYPE_VARARGS (this_type));
12861
12862 /* Handle static member functions.
12863 Dwarf2 has no clean way to discern C++ static and non-static
12864 member functions. G++ helps GDB by marking the first
12865 parameter for non-static member functions (which is the this
12866 pointer) as artificial. We obtain this information from
12867 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12868 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12869 fnp->voffset = VOFFSET_STATIC;
12870 }
12871 else
12872 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12873 dwarf2_full_name (fieldname, die, cu));
12874
12875 /* Get fcontext from DW_AT_containing_type if present. */
12876 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12877 fnp->fcontext = die_containing_type (die, cu);
12878
12879 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12880 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12881
12882 /* Get accessibility. */
12883 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12884 if (attr)
12885 accessibility = DW_UNSND (attr);
12886 else
12887 accessibility = dwarf2_default_access_attribute (die, cu);
12888 switch (accessibility)
12889 {
12890 case DW_ACCESS_private:
12891 fnp->is_private = 1;
12892 break;
12893 case DW_ACCESS_protected:
12894 fnp->is_protected = 1;
12895 break;
12896 }
12897
12898 /* Check for artificial methods. */
12899 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12900 if (attr && DW_UNSND (attr) != 0)
12901 fnp->is_artificial = 1;
12902
12903 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12904
12905 /* Get index in virtual function table if it is a virtual member
12906 function. For older versions of GCC, this is an offset in the
12907 appropriate virtual table, as specified by DW_AT_containing_type.
12908 For everyone else, it is an expression to be evaluated relative
12909 to the object address. */
12910
12911 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12912 if (attr)
12913 {
12914 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12915 {
12916 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12917 {
12918 /* Old-style GCC. */
12919 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12920 }
12921 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12922 || (DW_BLOCK (attr)->size > 1
12923 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12924 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12925 {
12926 struct dwarf_block blk;
12927 int offset;
12928
12929 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12930 ? 1 : 2);
12931 blk.size = DW_BLOCK (attr)->size - offset;
12932 blk.data = DW_BLOCK (attr)->data + offset;
12933 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12934 if ((fnp->voffset % cu->header.addr_size) != 0)
12935 dwarf2_complex_location_expr_complaint ();
12936 else
12937 fnp->voffset /= cu->header.addr_size;
12938 fnp->voffset += 2;
12939 }
12940 else
12941 dwarf2_complex_location_expr_complaint ();
12942
12943 if (!fnp->fcontext)
12944 {
12945 /* If there is no `this' field and no DW_AT_containing_type,
12946 we cannot actually find a base class context for the
12947 vtable! */
12948 if (TYPE_NFIELDS (this_type) == 0
12949 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12950 {
12951 complaint (&symfile_complaints,
12952 _("cannot determine context for virtual member "
12953 "function \"%s\" (offset %d)"),
12954 fieldname, die->offset.sect_off);
12955 }
12956 else
12957 {
12958 fnp->fcontext
12959 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12960 }
12961 }
12962 }
12963 else if (attr_form_is_section_offset (attr))
12964 {
12965 dwarf2_complex_location_expr_complaint ();
12966 }
12967 else
12968 {
12969 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12970 fieldname);
12971 }
12972 }
12973 else
12974 {
12975 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12976 if (attr && DW_UNSND (attr))
12977 {
12978 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12979 complaint (&symfile_complaints,
12980 _("Member function \"%s\" (offset %d) is virtual "
12981 "but the vtable offset is not specified"),
12982 fieldname, die->offset.sect_off);
12983 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12984 TYPE_CPLUS_DYNAMIC (type) = 1;
12985 }
12986 }
12987 }
12988
12989 /* Create the vector of member function fields, and attach it to the type. */
12990
12991 static void
12992 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12993 struct dwarf2_cu *cu)
12994 {
12995 struct fnfieldlist *flp;
12996 int i;
12997
12998 if (cu->language == language_ada)
12999 error (_("unexpected member functions in Ada type"));
13000
13001 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13002 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13003 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13004
13005 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13006 {
13007 struct nextfnfield *nfp = flp->head;
13008 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13009 int k;
13010
13011 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13012 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13013 fn_flp->fn_fields = (struct fn_field *)
13014 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13015 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13016 fn_flp->fn_fields[k] = nfp->fnfield;
13017 }
13018
13019 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13020 }
13021
13022 /* Returns non-zero if NAME is the name of a vtable member in CU's
13023 language, zero otherwise. */
13024 static int
13025 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13026 {
13027 static const char vptr[] = "_vptr";
13028 static const char vtable[] = "vtable";
13029
13030 /* Look for the C++ and Java forms of the vtable. */
13031 if ((cu->language == language_java
13032 && startswith (name, vtable))
13033 || (startswith (name, vptr)
13034 && is_cplus_marker (name[sizeof (vptr) - 1])))
13035 return 1;
13036
13037 return 0;
13038 }
13039
13040 /* GCC outputs unnamed structures that are really pointers to member
13041 functions, with the ABI-specified layout. If TYPE describes
13042 such a structure, smash it into a member function type.
13043
13044 GCC shouldn't do this; it should just output pointer to member DIEs.
13045 This is GCC PR debug/28767. */
13046
13047 static void
13048 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13049 {
13050 struct type *pfn_type, *self_type, *new_type;
13051
13052 /* Check for a structure with no name and two children. */
13053 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13054 return;
13055
13056 /* Check for __pfn and __delta members. */
13057 if (TYPE_FIELD_NAME (type, 0) == NULL
13058 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13059 || TYPE_FIELD_NAME (type, 1) == NULL
13060 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13061 return;
13062
13063 /* Find the type of the method. */
13064 pfn_type = TYPE_FIELD_TYPE (type, 0);
13065 if (pfn_type == NULL
13066 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13067 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13068 return;
13069
13070 /* Look for the "this" argument. */
13071 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13072 if (TYPE_NFIELDS (pfn_type) == 0
13073 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13074 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13075 return;
13076
13077 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13078 new_type = alloc_type (objfile);
13079 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13080 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13081 TYPE_VARARGS (pfn_type));
13082 smash_to_methodptr_type (type, new_type);
13083 }
13084
13085 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13086 (icc). */
13087
13088 static int
13089 producer_is_icc (struct dwarf2_cu *cu)
13090 {
13091 if (!cu->checked_producer)
13092 check_producer (cu);
13093
13094 return cu->producer_is_icc;
13095 }
13096
13097 /* Called when we find the DIE that starts a structure or union scope
13098 (definition) to create a type for the structure or union. Fill in
13099 the type's name and general properties; the members will not be
13100 processed until process_structure_scope. A symbol table entry for
13101 the type will also not be done until process_structure_scope (assuming
13102 the type has a name).
13103
13104 NOTE: we need to call these functions regardless of whether or not the
13105 DIE has a DW_AT_name attribute, since it might be an anonymous
13106 structure or union. This gets the type entered into our set of
13107 user defined types. */
13108
13109 static struct type *
13110 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13111 {
13112 struct objfile *objfile = cu->objfile;
13113 struct type *type;
13114 struct attribute *attr;
13115 const char *name;
13116
13117 /* If the definition of this type lives in .debug_types, read that type.
13118 Don't follow DW_AT_specification though, that will take us back up
13119 the chain and we want to go down. */
13120 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13121 if (attr)
13122 {
13123 type = get_DW_AT_signature_type (die, attr, cu);
13124
13125 /* The type's CU may not be the same as CU.
13126 Ensure TYPE is recorded with CU in die_type_hash. */
13127 return set_die_type (die, type, cu);
13128 }
13129
13130 type = alloc_type (objfile);
13131 INIT_CPLUS_SPECIFIC (type);
13132
13133 name = dwarf2_name (die, cu);
13134 if (name != NULL)
13135 {
13136 if (cu->language == language_cplus
13137 || cu->language == language_java)
13138 {
13139 const char *full_name = dwarf2_full_name (name, die, cu);
13140
13141 /* dwarf2_full_name might have already finished building the DIE's
13142 type. If so, there is no need to continue. */
13143 if (get_die_type (die, cu) != NULL)
13144 return get_die_type (die, cu);
13145
13146 TYPE_TAG_NAME (type) = full_name;
13147 if (die->tag == DW_TAG_structure_type
13148 || die->tag == DW_TAG_class_type)
13149 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13150 }
13151 else
13152 {
13153 /* The name is already allocated along with this objfile, so
13154 we don't need to duplicate it for the type. */
13155 TYPE_TAG_NAME (type) = name;
13156 if (die->tag == DW_TAG_class_type)
13157 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13158 }
13159 }
13160
13161 if (die->tag == DW_TAG_structure_type)
13162 {
13163 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13164 }
13165 else if (die->tag == DW_TAG_union_type)
13166 {
13167 TYPE_CODE (type) = TYPE_CODE_UNION;
13168 }
13169 else
13170 {
13171 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13172 }
13173
13174 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13175 TYPE_DECLARED_CLASS (type) = 1;
13176
13177 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13178 if (attr)
13179 {
13180 TYPE_LENGTH (type) = DW_UNSND (attr);
13181 }
13182 else
13183 {
13184 TYPE_LENGTH (type) = 0;
13185 }
13186
13187 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13188 {
13189 /* ICC does not output the required DW_AT_declaration
13190 on incomplete types, but gives them a size of zero. */
13191 TYPE_STUB (type) = 1;
13192 }
13193 else
13194 TYPE_STUB_SUPPORTED (type) = 1;
13195
13196 if (die_is_declaration (die, cu))
13197 TYPE_STUB (type) = 1;
13198 else if (attr == NULL && die->child == NULL
13199 && producer_is_realview (cu->producer))
13200 /* RealView does not output the required DW_AT_declaration
13201 on incomplete types. */
13202 TYPE_STUB (type) = 1;
13203
13204 /* We need to add the type field to the die immediately so we don't
13205 infinitely recurse when dealing with pointers to the structure
13206 type within the structure itself. */
13207 set_die_type (die, type, cu);
13208
13209 /* set_die_type should be already done. */
13210 set_descriptive_type (type, die, cu);
13211
13212 return type;
13213 }
13214
13215 /* Finish creating a structure or union type, including filling in
13216 its members and creating a symbol for it. */
13217
13218 static void
13219 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13220 {
13221 struct objfile *objfile = cu->objfile;
13222 struct die_info *child_die;
13223 struct type *type;
13224
13225 type = get_die_type (die, cu);
13226 if (type == NULL)
13227 type = read_structure_type (die, cu);
13228
13229 if (die->child != NULL && ! die_is_declaration (die, cu))
13230 {
13231 struct field_info fi;
13232 VEC (symbolp) *template_args = NULL;
13233 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13234
13235 memset (&fi, 0, sizeof (struct field_info));
13236
13237 child_die = die->child;
13238
13239 while (child_die && child_die->tag)
13240 {
13241 if (child_die->tag == DW_TAG_member
13242 || child_die->tag == DW_TAG_variable)
13243 {
13244 /* NOTE: carlton/2002-11-05: A C++ static data member
13245 should be a DW_TAG_member that is a declaration, but
13246 all versions of G++ as of this writing (so through at
13247 least 3.2.1) incorrectly generate DW_TAG_variable
13248 tags for them instead. */
13249 dwarf2_add_field (&fi, child_die, cu);
13250 }
13251 else if (child_die->tag == DW_TAG_subprogram)
13252 {
13253 /* C++ member function. */
13254 dwarf2_add_member_fn (&fi, child_die, type, cu);
13255 }
13256 else if (child_die->tag == DW_TAG_inheritance)
13257 {
13258 /* C++ base class field. */
13259 dwarf2_add_field (&fi, child_die, cu);
13260 }
13261 else if (child_die->tag == DW_TAG_typedef)
13262 dwarf2_add_typedef (&fi, child_die, cu);
13263 else if (child_die->tag == DW_TAG_template_type_param
13264 || child_die->tag == DW_TAG_template_value_param)
13265 {
13266 struct symbol *arg = new_symbol (child_die, NULL, cu);
13267
13268 if (arg != NULL)
13269 VEC_safe_push (symbolp, template_args, arg);
13270 }
13271
13272 child_die = sibling_die (child_die);
13273 }
13274
13275 /* Attach template arguments to type. */
13276 if (! VEC_empty (symbolp, template_args))
13277 {
13278 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13279 TYPE_N_TEMPLATE_ARGUMENTS (type)
13280 = VEC_length (symbolp, template_args);
13281 TYPE_TEMPLATE_ARGUMENTS (type)
13282 = obstack_alloc (&objfile->objfile_obstack,
13283 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13284 * sizeof (struct symbol *)));
13285 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13286 VEC_address (symbolp, template_args),
13287 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13288 * sizeof (struct symbol *)));
13289 VEC_free (symbolp, template_args);
13290 }
13291
13292 /* Attach fields and member functions to the type. */
13293 if (fi.nfields)
13294 dwarf2_attach_fields_to_type (&fi, type, cu);
13295 if (fi.nfnfields)
13296 {
13297 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13298
13299 /* Get the type which refers to the base class (possibly this
13300 class itself) which contains the vtable pointer for the current
13301 class from the DW_AT_containing_type attribute. This use of
13302 DW_AT_containing_type is a GNU extension. */
13303
13304 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13305 {
13306 struct type *t = die_containing_type (die, cu);
13307
13308 set_type_vptr_basetype (type, t);
13309 if (type == t)
13310 {
13311 int i;
13312
13313 /* Our own class provides vtbl ptr. */
13314 for (i = TYPE_NFIELDS (t) - 1;
13315 i >= TYPE_N_BASECLASSES (t);
13316 --i)
13317 {
13318 const char *fieldname = TYPE_FIELD_NAME (t, i);
13319
13320 if (is_vtable_name (fieldname, cu))
13321 {
13322 set_type_vptr_fieldno (type, i);
13323 break;
13324 }
13325 }
13326
13327 /* Complain if virtual function table field not found. */
13328 if (i < TYPE_N_BASECLASSES (t))
13329 complaint (&symfile_complaints,
13330 _("virtual function table pointer "
13331 "not found when defining class '%s'"),
13332 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13333 "");
13334 }
13335 else
13336 {
13337 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13338 }
13339 }
13340 else if (cu->producer
13341 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13342 {
13343 /* The IBM XLC compiler does not provide direct indication
13344 of the containing type, but the vtable pointer is
13345 always named __vfp. */
13346
13347 int i;
13348
13349 for (i = TYPE_NFIELDS (type) - 1;
13350 i >= TYPE_N_BASECLASSES (type);
13351 --i)
13352 {
13353 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13354 {
13355 set_type_vptr_fieldno (type, i);
13356 set_type_vptr_basetype (type, type);
13357 break;
13358 }
13359 }
13360 }
13361 }
13362
13363 /* Copy fi.typedef_field_list linked list elements content into the
13364 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13365 if (fi.typedef_field_list)
13366 {
13367 int i = fi.typedef_field_list_count;
13368
13369 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13370 TYPE_TYPEDEF_FIELD_ARRAY (type)
13371 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13372 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13373
13374 /* Reverse the list order to keep the debug info elements order. */
13375 while (--i >= 0)
13376 {
13377 struct typedef_field *dest, *src;
13378
13379 dest = &TYPE_TYPEDEF_FIELD (type, i);
13380 src = &fi.typedef_field_list->field;
13381 fi.typedef_field_list = fi.typedef_field_list->next;
13382 *dest = *src;
13383 }
13384 }
13385
13386 do_cleanups (back_to);
13387
13388 if (HAVE_CPLUS_STRUCT (type))
13389 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13390 }
13391
13392 quirk_gcc_member_function_pointer (type, objfile);
13393
13394 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13395 snapshots) has been known to create a die giving a declaration
13396 for a class that has, as a child, a die giving a definition for a
13397 nested class. So we have to process our children even if the
13398 current die is a declaration. Normally, of course, a declaration
13399 won't have any children at all. */
13400
13401 child_die = die->child;
13402
13403 while (child_die != NULL && child_die->tag)
13404 {
13405 if (child_die->tag == DW_TAG_member
13406 || child_die->tag == DW_TAG_variable
13407 || child_die->tag == DW_TAG_inheritance
13408 || child_die->tag == DW_TAG_template_value_param
13409 || child_die->tag == DW_TAG_template_type_param)
13410 {
13411 /* Do nothing. */
13412 }
13413 else
13414 process_die (child_die, cu);
13415
13416 child_die = sibling_die (child_die);
13417 }
13418
13419 /* Do not consider external references. According to the DWARF standard,
13420 these DIEs are identified by the fact that they have no byte_size
13421 attribute, and a declaration attribute. */
13422 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13423 || !die_is_declaration (die, cu))
13424 new_symbol (die, type, cu);
13425 }
13426
13427 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13428 update TYPE using some information only available in DIE's children. */
13429
13430 static void
13431 update_enumeration_type_from_children (struct die_info *die,
13432 struct type *type,
13433 struct dwarf2_cu *cu)
13434 {
13435 struct obstack obstack;
13436 struct die_info *child_die;
13437 int unsigned_enum = 1;
13438 int flag_enum = 1;
13439 ULONGEST mask = 0;
13440 struct cleanup *old_chain;
13441
13442 obstack_init (&obstack);
13443 old_chain = make_cleanup_obstack_free (&obstack);
13444
13445 for (child_die = die->child;
13446 child_die != NULL && child_die->tag;
13447 child_die = sibling_die (child_die))
13448 {
13449 struct attribute *attr;
13450 LONGEST value;
13451 const gdb_byte *bytes;
13452 struct dwarf2_locexpr_baton *baton;
13453 const char *name;
13454
13455 if (child_die->tag != DW_TAG_enumerator)
13456 continue;
13457
13458 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13459 if (attr == NULL)
13460 continue;
13461
13462 name = dwarf2_name (child_die, cu);
13463 if (name == NULL)
13464 name = "<anonymous enumerator>";
13465
13466 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13467 &value, &bytes, &baton);
13468 if (value < 0)
13469 {
13470 unsigned_enum = 0;
13471 flag_enum = 0;
13472 }
13473 else if ((mask & value) != 0)
13474 flag_enum = 0;
13475 else
13476 mask |= value;
13477
13478 /* If we already know that the enum type is neither unsigned, nor
13479 a flag type, no need to look at the rest of the enumerates. */
13480 if (!unsigned_enum && !flag_enum)
13481 break;
13482 }
13483
13484 if (unsigned_enum)
13485 TYPE_UNSIGNED (type) = 1;
13486 if (flag_enum)
13487 TYPE_FLAG_ENUM (type) = 1;
13488
13489 do_cleanups (old_chain);
13490 }
13491
13492 /* Given a DW_AT_enumeration_type die, set its type. We do not
13493 complete the type's fields yet, or create any symbols. */
13494
13495 static struct type *
13496 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13497 {
13498 struct objfile *objfile = cu->objfile;
13499 struct type *type;
13500 struct attribute *attr;
13501 const char *name;
13502
13503 /* If the definition of this type lives in .debug_types, read that type.
13504 Don't follow DW_AT_specification though, that will take us back up
13505 the chain and we want to go down. */
13506 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13507 if (attr)
13508 {
13509 type = get_DW_AT_signature_type (die, attr, cu);
13510
13511 /* The type's CU may not be the same as CU.
13512 Ensure TYPE is recorded with CU in die_type_hash. */
13513 return set_die_type (die, type, cu);
13514 }
13515
13516 type = alloc_type (objfile);
13517
13518 TYPE_CODE (type) = TYPE_CODE_ENUM;
13519 name = dwarf2_full_name (NULL, die, cu);
13520 if (name != NULL)
13521 TYPE_TAG_NAME (type) = name;
13522
13523 attr = dwarf2_attr (die, DW_AT_type, cu);
13524 if (attr != NULL)
13525 {
13526 struct type *underlying_type = die_type (die, cu);
13527
13528 TYPE_TARGET_TYPE (type) = underlying_type;
13529 }
13530
13531 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13532 if (attr)
13533 {
13534 TYPE_LENGTH (type) = DW_UNSND (attr);
13535 }
13536 else
13537 {
13538 TYPE_LENGTH (type) = 0;
13539 }
13540
13541 /* The enumeration DIE can be incomplete. In Ada, any type can be
13542 declared as private in the package spec, and then defined only
13543 inside the package body. Such types are known as Taft Amendment
13544 Types. When another package uses such a type, an incomplete DIE
13545 may be generated by the compiler. */
13546 if (die_is_declaration (die, cu))
13547 TYPE_STUB (type) = 1;
13548
13549 /* Finish the creation of this type by using the enum's children.
13550 We must call this even when the underlying type has been provided
13551 so that we can determine if we're looking at a "flag" enum. */
13552 update_enumeration_type_from_children (die, type, cu);
13553
13554 /* If this type has an underlying type that is not a stub, then we
13555 may use its attributes. We always use the "unsigned" attribute
13556 in this situation, because ordinarily we guess whether the type
13557 is unsigned -- but the guess can be wrong and the underlying type
13558 can tell us the reality. However, we defer to a local size
13559 attribute if one exists, because this lets the compiler override
13560 the underlying type if needed. */
13561 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13562 {
13563 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13564 if (TYPE_LENGTH (type) == 0)
13565 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13566 }
13567
13568 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13569
13570 return set_die_type (die, type, cu);
13571 }
13572
13573 /* Given a pointer to a die which begins an enumeration, process all
13574 the dies that define the members of the enumeration, and create the
13575 symbol for the enumeration type.
13576
13577 NOTE: We reverse the order of the element list. */
13578
13579 static void
13580 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13581 {
13582 struct type *this_type;
13583
13584 this_type = get_die_type (die, cu);
13585 if (this_type == NULL)
13586 this_type = read_enumeration_type (die, cu);
13587
13588 if (die->child != NULL)
13589 {
13590 struct die_info *child_die;
13591 struct symbol *sym;
13592 struct field *fields = NULL;
13593 int num_fields = 0;
13594 const char *name;
13595
13596 child_die = die->child;
13597 while (child_die && child_die->tag)
13598 {
13599 if (child_die->tag != DW_TAG_enumerator)
13600 {
13601 process_die (child_die, cu);
13602 }
13603 else
13604 {
13605 name = dwarf2_name (child_die, cu);
13606 if (name)
13607 {
13608 sym = new_symbol (child_die, this_type, cu);
13609
13610 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13611 {
13612 fields = (struct field *)
13613 xrealloc (fields,
13614 (num_fields + DW_FIELD_ALLOC_CHUNK)
13615 * sizeof (struct field));
13616 }
13617
13618 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13619 FIELD_TYPE (fields[num_fields]) = NULL;
13620 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13621 FIELD_BITSIZE (fields[num_fields]) = 0;
13622
13623 num_fields++;
13624 }
13625 }
13626
13627 child_die = sibling_die (child_die);
13628 }
13629
13630 if (num_fields)
13631 {
13632 TYPE_NFIELDS (this_type) = num_fields;
13633 TYPE_FIELDS (this_type) = (struct field *)
13634 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13635 memcpy (TYPE_FIELDS (this_type), fields,
13636 sizeof (struct field) * num_fields);
13637 xfree (fields);
13638 }
13639 }
13640
13641 /* If we are reading an enum from a .debug_types unit, and the enum
13642 is a declaration, and the enum is not the signatured type in the
13643 unit, then we do not want to add a symbol for it. Adding a
13644 symbol would in some cases obscure the true definition of the
13645 enum, giving users an incomplete type when the definition is
13646 actually available. Note that we do not want to do this for all
13647 enums which are just declarations, because C++0x allows forward
13648 enum declarations. */
13649 if (cu->per_cu->is_debug_types
13650 && die_is_declaration (die, cu))
13651 {
13652 struct signatured_type *sig_type;
13653
13654 sig_type = (struct signatured_type *) cu->per_cu;
13655 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13656 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13657 return;
13658 }
13659
13660 new_symbol (die, this_type, cu);
13661 }
13662
13663 /* Extract all information from a DW_TAG_array_type DIE and put it in
13664 the DIE's type field. For now, this only handles one dimensional
13665 arrays. */
13666
13667 static struct type *
13668 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13669 {
13670 struct objfile *objfile = cu->objfile;
13671 struct die_info *child_die;
13672 struct type *type;
13673 struct type *element_type, *range_type, *index_type;
13674 struct type **range_types = NULL;
13675 struct attribute *attr;
13676 int ndim = 0;
13677 struct cleanup *back_to;
13678 const char *name;
13679 unsigned int bit_stride = 0;
13680
13681 element_type = die_type (die, cu);
13682
13683 /* The die_type call above may have already set the type for this DIE. */
13684 type = get_die_type (die, cu);
13685 if (type)
13686 return type;
13687
13688 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13689 if (attr != NULL)
13690 bit_stride = DW_UNSND (attr) * 8;
13691
13692 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13693 if (attr != NULL)
13694 bit_stride = DW_UNSND (attr);
13695
13696 /* Irix 6.2 native cc creates array types without children for
13697 arrays with unspecified length. */
13698 if (die->child == NULL)
13699 {
13700 index_type = objfile_type (objfile)->builtin_int;
13701 range_type = create_static_range_type (NULL, index_type, 0, -1);
13702 type = create_array_type_with_stride (NULL, element_type, range_type,
13703 bit_stride);
13704 return set_die_type (die, type, cu);
13705 }
13706
13707 back_to = make_cleanup (null_cleanup, NULL);
13708 child_die = die->child;
13709 while (child_die && child_die->tag)
13710 {
13711 if (child_die->tag == DW_TAG_subrange_type)
13712 {
13713 struct type *child_type = read_type_die (child_die, cu);
13714
13715 if (child_type != NULL)
13716 {
13717 /* The range type was succesfully read. Save it for the
13718 array type creation. */
13719 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13720 {
13721 range_types = (struct type **)
13722 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13723 * sizeof (struct type *));
13724 if (ndim == 0)
13725 make_cleanup (free_current_contents, &range_types);
13726 }
13727 range_types[ndim++] = child_type;
13728 }
13729 }
13730 child_die = sibling_die (child_die);
13731 }
13732
13733 /* Dwarf2 dimensions are output from left to right, create the
13734 necessary array types in backwards order. */
13735
13736 type = element_type;
13737
13738 if (read_array_order (die, cu) == DW_ORD_col_major)
13739 {
13740 int i = 0;
13741
13742 while (i < ndim)
13743 type = create_array_type_with_stride (NULL, type, range_types[i++],
13744 bit_stride);
13745 }
13746 else
13747 {
13748 while (ndim-- > 0)
13749 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13750 bit_stride);
13751 }
13752
13753 /* Understand Dwarf2 support for vector types (like they occur on
13754 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13755 array type. This is not part of the Dwarf2/3 standard yet, but a
13756 custom vendor extension. The main difference between a regular
13757 array and the vector variant is that vectors are passed by value
13758 to functions. */
13759 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13760 if (attr)
13761 make_vector_type (type);
13762
13763 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13764 implementation may choose to implement triple vectors using this
13765 attribute. */
13766 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13767 if (attr)
13768 {
13769 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13770 TYPE_LENGTH (type) = DW_UNSND (attr);
13771 else
13772 complaint (&symfile_complaints,
13773 _("DW_AT_byte_size for array type smaller "
13774 "than the total size of elements"));
13775 }
13776
13777 name = dwarf2_name (die, cu);
13778 if (name)
13779 TYPE_NAME (type) = name;
13780
13781 /* Install the type in the die. */
13782 set_die_type (die, type, cu);
13783
13784 /* set_die_type should be already done. */
13785 set_descriptive_type (type, die, cu);
13786
13787 do_cleanups (back_to);
13788
13789 return type;
13790 }
13791
13792 static enum dwarf_array_dim_ordering
13793 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13794 {
13795 struct attribute *attr;
13796
13797 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13798
13799 if (attr) return DW_SND (attr);
13800
13801 /* GNU F77 is a special case, as at 08/2004 array type info is the
13802 opposite order to the dwarf2 specification, but data is still
13803 laid out as per normal fortran.
13804
13805 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13806 version checking. */
13807
13808 if (cu->language == language_fortran
13809 && cu->producer && strstr (cu->producer, "GNU F77"))
13810 {
13811 return DW_ORD_row_major;
13812 }
13813
13814 switch (cu->language_defn->la_array_ordering)
13815 {
13816 case array_column_major:
13817 return DW_ORD_col_major;
13818 case array_row_major:
13819 default:
13820 return DW_ORD_row_major;
13821 };
13822 }
13823
13824 /* Extract all information from a DW_TAG_set_type DIE and put it in
13825 the DIE's type field. */
13826
13827 static struct type *
13828 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13829 {
13830 struct type *domain_type, *set_type;
13831 struct attribute *attr;
13832
13833 domain_type = die_type (die, cu);
13834
13835 /* The die_type call above may have already set the type for this DIE. */
13836 set_type = get_die_type (die, cu);
13837 if (set_type)
13838 return set_type;
13839
13840 set_type = create_set_type (NULL, domain_type);
13841
13842 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13843 if (attr)
13844 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13845
13846 return set_die_type (die, set_type, cu);
13847 }
13848
13849 /* A helper for read_common_block that creates a locexpr baton.
13850 SYM is the symbol which we are marking as computed.
13851 COMMON_DIE is the DIE for the common block.
13852 COMMON_LOC is the location expression attribute for the common
13853 block itself.
13854 MEMBER_LOC is the location expression attribute for the particular
13855 member of the common block that we are processing.
13856 CU is the CU from which the above come. */
13857
13858 static void
13859 mark_common_block_symbol_computed (struct symbol *sym,
13860 struct die_info *common_die,
13861 struct attribute *common_loc,
13862 struct attribute *member_loc,
13863 struct dwarf2_cu *cu)
13864 {
13865 struct objfile *objfile = dwarf2_per_objfile->objfile;
13866 struct dwarf2_locexpr_baton *baton;
13867 gdb_byte *ptr;
13868 unsigned int cu_off;
13869 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13870 LONGEST offset = 0;
13871
13872 gdb_assert (common_loc && member_loc);
13873 gdb_assert (attr_form_is_block (common_loc));
13874 gdb_assert (attr_form_is_block (member_loc)
13875 || attr_form_is_constant (member_loc));
13876
13877 baton = obstack_alloc (&objfile->objfile_obstack,
13878 sizeof (struct dwarf2_locexpr_baton));
13879 baton->per_cu = cu->per_cu;
13880 gdb_assert (baton->per_cu);
13881
13882 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13883
13884 if (attr_form_is_constant (member_loc))
13885 {
13886 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13887 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13888 }
13889 else
13890 baton->size += DW_BLOCK (member_loc)->size;
13891
13892 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13893 baton->data = ptr;
13894
13895 *ptr++ = DW_OP_call4;
13896 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13897 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13898 ptr += 4;
13899
13900 if (attr_form_is_constant (member_loc))
13901 {
13902 *ptr++ = DW_OP_addr;
13903 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13904 ptr += cu->header.addr_size;
13905 }
13906 else
13907 {
13908 /* We have to copy the data here, because DW_OP_call4 will only
13909 use a DW_AT_location attribute. */
13910 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13911 ptr += DW_BLOCK (member_loc)->size;
13912 }
13913
13914 *ptr++ = DW_OP_plus;
13915 gdb_assert (ptr - baton->data == baton->size);
13916
13917 SYMBOL_LOCATION_BATON (sym) = baton;
13918 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13919 }
13920
13921 /* Create appropriate locally-scoped variables for all the
13922 DW_TAG_common_block entries. Also create a struct common_block
13923 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13924 is used to sepate the common blocks name namespace from regular
13925 variable names. */
13926
13927 static void
13928 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13929 {
13930 struct attribute *attr;
13931
13932 attr = dwarf2_attr (die, DW_AT_location, cu);
13933 if (attr)
13934 {
13935 /* Support the .debug_loc offsets. */
13936 if (attr_form_is_block (attr))
13937 {
13938 /* Ok. */
13939 }
13940 else if (attr_form_is_section_offset (attr))
13941 {
13942 dwarf2_complex_location_expr_complaint ();
13943 attr = NULL;
13944 }
13945 else
13946 {
13947 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13948 "common block member");
13949 attr = NULL;
13950 }
13951 }
13952
13953 if (die->child != NULL)
13954 {
13955 struct objfile *objfile = cu->objfile;
13956 struct die_info *child_die;
13957 size_t n_entries = 0, size;
13958 struct common_block *common_block;
13959 struct symbol *sym;
13960
13961 for (child_die = die->child;
13962 child_die && child_die->tag;
13963 child_die = sibling_die (child_die))
13964 ++n_entries;
13965
13966 size = (sizeof (struct common_block)
13967 + (n_entries - 1) * sizeof (struct symbol *));
13968 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13969 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13970 common_block->n_entries = 0;
13971
13972 for (child_die = die->child;
13973 child_die && child_die->tag;
13974 child_die = sibling_die (child_die))
13975 {
13976 /* Create the symbol in the DW_TAG_common_block block in the current
13977 symbol scope. */
13978 sym = new_symbol (child_die, NULL, cu);
13979 if (sym != NULL)
13980 {
13981 struct attribute *member_loc;
13982
13983 common_block->contents[common_block->n_entries++] = sym;
13984
13985 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13986 cu);
13987 if (member_loc)
13988 {
13989 /* GDB has handled this for a long time, but it is
13990 not specified by DWARF. It seems to have been
13991 emitted by gfortran at least as recently as:
13992 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13993 complaint (&symfile_complaints,
13994 _("Variable in common block has "
13995 "DW_AT_data_member_location "
13996 "- DIE at 0x%x [in module %s]"),
13997 child_die->offset.sect_off,
13998 objfile_name (cu->objfile));
13999
14000 if (attr_form_is_section_offset (member_loc))
14001 dwarf2_complex_location_expr_complaint ();
14002 else if (attr_form_is_constant (member_loc)
14003 || attr_form_is_block (member_loc))
14004 {
14005 if (attr)
14006 mark_common_block_symbol_computed (sym, die, attr,
14007 member_loc, cu);
14008 }
14009 else
14010 dwarf2_complex_location_expr_complaint ();
14011 }
14012 }
14013 }
14014
14015 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14016 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14017 }
14018 }
14019
14020 /* Create a type for a C++ namespace. */
14021
14022 static struct type *
14023 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14024 {
14025 struct objfile *objfile = cu->objfile;
14026 const char *previous_prefix, *name;
14027 int is_anonymous;
14028 struct type *type;
14029
14030 /* For extensions, reuse the type of the original namespace. */
14031 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14032 {
14033 struct die_info *ext_die;
14034 struct dwarf2_cu *ext_cu = cu;
14035
14036 ext_die = dwarf2_extension (die, &ext_cu);
14037 type = read_type_die (ext_die, ext_cu);
14038
14039 /* EXT_CU may not be the same as CU.
14040 Ensure TYPE is recorded with CU in die_type_hash. */
14041 return set_die_type (die, type, cu);
14042 }
14043
14044 name = namespace_name (die, &is_anonymous, cu);
14045
14046 /* Now build the name of the current namespace. */
14047
14048 previous_prefix = determine_prefix (die, cu);
14049 if (previous_prefix[0] != '\0')
14050 name = typename_concat (&objfile->objfile_obstack,
14051 previous_prefix, name, 0, cu);
14052
14053 /* Create the type. */
14054 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14055 objfile);
14056 TYPE_NAME (type) = name;
14057 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14058
14059 return set_die_type (die, type, cu);
14060 }
14061
14062 /* Read a C++ namespace. */
14063
14064 static void
14065 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14066 {
14067 struct objfile *objfile = cu->objfile;
14068 int is_anonymous;
14069
14070 /* Add a symbol associated to this if we haven't seen the namespace
14071 before. Also, add a using directive if it's an anonymous
14072 namespace. */
14073
14074 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14075 {
14076 struct type *type;
14077
14078 type = read_type_die (die, cu);
14079 new_symbol (die, type, cu);
14080
14081 namespace_name (die, &is_anonymous, cu);
14082 if (is_anonymous)
14083 {
14084 const char *previous_prefix = determine_prefix (die, cu);
14085
14086 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14087 NULL, NULL, 0, &objfile->objfile_obstack);
14088 }
14089 }
14090
14091 if (die->child != NULL)
14092 {
14093 struct die_info *child_die = die->child;
14094
14095 while (child_die && child_die->tag)
14096 {
14097 process_die (child_die, cu);
14098 child_die = sibling_die (child_die);
14099 }
14100 }
14101 }
14102
14103 /* Read a Fortran module as type. This DIE can be only a declaration used for
14104 imported module. Still we need that type as local Fortran "use ... only"
14105 declaration imports depend on the created type in determine_prefix. */
14106
14107 static struct type *
14108 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14109 {
14110 struct objfile *objfile = cu->objfile;
14111 const char *module_name;
14112 struct type *type;
14113
14114 module_name = dwarf2_name (die, cu);
14115 if (!module_name)
14116 complaint (&symfile_complaints,
14117 _("DW_TAG_module has no name, offset 0x%x"),
14118 die->offset.sect_off);
14119 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14120
14121 /* determine_prefix uses TYPE_TAG_NAME. */
14122 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14123
14124 return set_die_type (die, type, cu);
14125 }
14126
14127 /* Read a Fortran module. */
14128
14129 static void
14130 read_module (struct die_info *die, struct dwarf2_cu *cu)
14131 {
14132 struct die_info *child_die = die->child;
14133 struct type *type;
14134
14135 type = read_type_die (die, cu);
14136 new_symbol (die, type, cu);
14137
14138 while (child_die && child_die->tag)
14139 {
14140 process_die (child_die, cu);
14141 child_die = sibling_die (child_die);
14142 }
14143 }
14144
14145 /* Return the name of the namespace represented by DIE. Set
14146 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14147 namespace. */
14148
14149 static const char *
14150 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14151 {
14152 struct die_info *current_die;
14153 const char *name = NULL;
14154
14155 /* Loop through the extensions until we find a name. */
14156
14157 for (current_die = die;
14158 current_die != NULL;
14159 current_die = dwarf2_extension (die, &cu))
14160 {
14161 /* We don't use dwarf2_name here so that we can detect the absence
14162 of a name -> anonymous namespace. */
14163 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14164
14165 if (attr != NULL)
14166 name = DW_STRING (attr);
14167 if (name != NULL)
14168 break;
14169 }
14170
14171 /* Is it an anonymous namespace? */
14172
14173 *is_anonymous = (name == NULL);
14174 if (*is_anonymous)
14175 name = CP_ANONYMOUS_NAMESPACE_STR;
14176
14177 return name;
14178 }
14179
14180 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14181 the user defined type vector. */
14182
14183 static struct type *
14184 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14185 {
14186 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14187 struct comp_unit_head *cu_header = &cu->header;
14188 struct type *type;
14189 struct attribute *attr_byte_size;
14190 struct attribute *attr_address_class;
14191 int byte_size, addr_class;
14192 struct type *target_type;
14193
14194 target_type = die_type (die, cu);
14195
14196 /* The die_type call above may have already set the type for this DIE. */
14197 type = get_die_type (die, cu);
14198 if (type)
14199 return type;
14200
14201 type = lookup_pointer_type (target_type);
14202
14203 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14204 if (attr_byte_size)
14205 byte_size = DW_UNSND (attr_byte_size);
14206 else
14207 byte_size = cu_header->addr_size;
14208
14209 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14210 if (attr_address_class)
14211 addr_class = DW_UNSND (attr_address_class);
14212 else
14213 addr_class = DW_ADDR_none;
14214
14215 /* If the pointer size or address class is different than the
14216 default, create a type variant marked as such and set the
14217 length accordingly. */
14218 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14219 {
14220 if (gdbarch_address_class_type_flags_p (gdbarch))
14221 {
14222 int type_flags;
14223
14224 type_flags = gdbarch_address_class_type_flags
14225 (gdbarch, byte_size, addr_class);
14226 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14227 == 0);
14228 type = make_type_with_address_space (type, type_flags);
14229 }
14230 else if (TYPE_LENGTH (type) != byte_size)
14231 {
14232 complaint (&symfile_complaints,
14233 _("invalid pointer size %d"), byte_size);
14234 }
14235 else
14236 {
14237 /* Should we also complain about unhandled address classes? */
14238 }
14239 }
14240
14241 TYPE_LENGTH (type) = byte_size;
14242 return set_die_type (die, type, cu);
14243 }
14244
14245 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14246 the user defined type vector. */
14247
14248 static struct type *
14249 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14250 {
14251 struct type *type;
14252 struct type *to_type;
14253 struct type *domain;
14254
14255 to_type = die_type (die, cu);
14256 domain = die_containing_type (die, cu);
14257
14258 /* The calls above may have already set the type for this DIE. */
14259 type = get_die_type (die, cu);
14260 if (type)
14261 return type;
14262
14263 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14264 type = lookup_methodptr_type (to_type);
14265 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14266 {
14267 struct type *new_type = alloc_type (cu->objfile);
14268
14269 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14270 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14271 TYPE_VARARGS (to_type));
14272 type = lookup_methodptr_type (new_type);
14273 }
14274 else
14275 type = lookup_memberptr_type (to_type, domain);
14276
14277 return set_die_type (die, type, cu);
14278 }
14279
14280 /* Extract all information from a DW_TAG_reference_type DIE and add to
14281 the user defined type vector. */
14282
14283 static struct type *
14284 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14285 {
14286 struct comp_unit_head *cu_header = &cu->header;
14287 struct type *type, *target_type;
14288 struct attribute *attr;
14289
14290 target_type = die_type (die, cu);
14291
14292 /* The die_type call above may have already set the type for this DIE. */
14293 type = get_die_type (die, cu);
14294 if (type)
14295 return type;
14296
14297 type = lookup_reference_type (target_type);
14298 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14299 if (attr)
14300 {
14301 TYPE_LENGTH (type) = DW_UNSND (attr);
14302 }
14303 else
14304 {
14305 TYPE_LENGTH (type) = cu_header->addr_size;
14306 }
14307 return set_die_type (die, type, cu);
14308 }
14309
14310 /* Add the given cv-qualifiers to the element type of the array. GCC
14311 outputs DWARF type qualifiers that apply to an array, not the
14312 element type. But GDB relies on the array element type to carry
14313 the cv-qualifiers. This mimics section 6.7.3 of the C99
14314 specification. */
14315
14316 static struct type *
14317 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14318 struct type *base_type, int cnst, int voltl)
14319 {
14320 struct type *el_type, *inner_array;
14321
14322 base_type = copy_type (base_type);
14323 inner_array = base_type;
14324
14325 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14326 {
14327 TYPE_TARGET_TYPE (inner_array) =
14328 copy_type (TYPE_TARGET_TYPE (inner_array));
14329 inner_array = TYPE_TARGET_TYPE (inner_array);
14330 }
14331
14332 el_type = TYPE_TARGET_TYPE (inner_array);
14333 cnst |= TYPE_CONST (el_type);
14334 voltl |= TYPE_VOLATILE (el_type);
14335 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14336
14337 return set_die_type (die, base_type, cu);
14338 }
14339
14340 static struct type *
14341 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14342 {
14343 struct type *base_type, *cv_type;
14344
14345 base_type = die_type (die, cu);
14346
14347 /* The die_type call above may have already set the type for this DIE. */
14348 cv_type = get_die_type (die, cu);
14349 if (cv_type)
14350 return cv_type;
14351
14352 /* In case the const qualifier is applied to an array type, the element type
14353 is so qualified, not the array type (section 6.7.3 of C99). */
14354 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14355 return add_array_cv_type (die, cu, base_type, 1, 0);
14356
14357 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14358 return set_die_type (die, cv_type, cu);
14359 }
14360
14361 static struct type *
14362 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14363 {
14364 struct type *base_type, *cv_type;
14365
14366 base_type = die_type (die, cu);
14367
14368 /* The die_type call above may have already set the type for this DIE. */
14369 cv_type = get_die_type (die, cu);
14370 if (cv_type)
14371 return cv_type;
14372
14373 /* In case the volatile qualifier is applied to an array type, the
14374 element type is so qualified, not the array type (section 6.7.3
14375 of C99). */
14376 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14377 return add_array_cv_type (die, cu, base_type, 0, 1);
14378
14379 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14380 return set_die_type (die, cv_type, cu);
14381 }
14382
14383 /* Handle DW_TAG_restrict_type. */
14384
14385 static struct type *
14386 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14387 {
14388 struct type *base_type, *cv_type;
14389
14390 base_type = die_type (die, cu);
14391
14392 /* The die_type call above may have already set the type for this DIE. */
14393 cv_type = get_die_type (die, cu);
14394 if (cv_type)
14395 return cv_type;
14396
14397 cv_type = make_restrict_type (base_type);
14398 return set_die_type (die, cv_type, cu);
14399 }
14400
14401 /* Handle DW_TAG_atomic_type. */
14402
14403 static struct type *
14404 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14405 {
14406 struct type *base_type, *cv_type;
14407
14408 base_type = die_type (die, cu);
14409
14410 /* The die_type call above may have already set the type for this DIE. */
14411 cv_type = get_die_type (die, cu);
14412 if (cv_type)
14413 return cv_type;
14414
14415 cv_type = make_atomic_type (base_type);
14416 return set_die_type (die, cv_type, cu);
14417 }
14418
14419 /* Extract all information from a DW_TAG_string_type DIE and add to
14420 the user defined type vector. It isn't really a user defined type,
14421 but it behaves like one, with other DIE's using an AT_user_def_type
14422 attribute to reference it. */
14423
14424 static struct type *
14425 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14426 {
14427 struct objfile *objfile = cu->objfile;
14428 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14429 struct type *type, *range_type, *index_type, *char_type;
14430 struct attribute *attr;
14431 unsigned int length;
14432
14433 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14434 if (attr)
14435 {
14436 length = DW_UNSND (attr);
14437 }
14438 else
14439 {
14440 /* Check for the DW_AT_byte_size attribute. */
14441 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14442 if (attr)
14443 {
14444 length = DW_UNSND (attr);
14445 }
14446 else
14447 {
14448 length = 1;
14449 }
14450 }
14451
14452 index_type = objfile_type (objfile)->builtin_int;
14453 range_type = create_static_range_type (NULL, index_type, 1, length);
14454 char_type = language_string_char_type (cu->language_defn, gdbarch);
14455 type = create_string_type (NULL, char_type, range_type);
14456
14457 return set_die_type (die, type, cu);
14458 }
14459
14460 /* Assuming that DIE corresponds to a function, returns nonzero
14461 if the function is prototyped. */
14462
14463 static int
14464 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14465 {
14466 struct attribute *attr;
14467
14468 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14469 if (attr && (DW_UNSND (attr) != 0))
14470 return 1;
14471
14472 /* The DWARF standard implies that the DW_AT_prototyped attribute
14473 is only meaninful for C, but the concept also extends to other
14474 languages that allow unprototyped functions (Eg: Objective C).
14475 For all other languages, assume that functions are always
14476 prototyped. */
14477 if (cu->language != language_c
14478 && cu->language != language_objc
14479 && cu->language != language_opencl)
14480 return 1;
14481
14482 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14483 prototyped and unprototyped functions; default to prototyped,
14484 since that is more common in modern code (and RealView warns
14485 about unprototyped functions). */
14486 if (producer_is_realview (cu->producer))
14487 return 1;
14488
14489 return 0;
14490 }
14491
14492 /* Handle DIES due to C code like:
14493
14494 struct foo
14495 {
14496 int (*funcp)(int a, long l);
14497 int b;
14498 };
14499
14500 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14501
14502 static struct type *
14503 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14504 {
14505 struct objfile *objfile = cu->objfile;
14506 struct type *type; /* Type that this function returns. */
14507 struct type *ftype; /* Function that returns above type. */
14508 struct attribute *attr;
14509
14510 type = die_type (die, cu);
14511
14512 /* The die_type call above may have already set the type for this DIE. */
14513 ftype = get_die_type (die, cu);
14514 if (ftype)
14515 return ftype;
14516
14517 ftype = lookup_function_type (type);
14518
14519 if (prototyped_function_p (die, cu))
14520 TYPE_PROTOTYPED (ftype) = 1;
14521
14522 /* Store the calling convention in the type if it's available in
14523 the subroutine die. Otherwise set the calling convention to
14524 the default value DW_CC_normal. */
14525 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14526 if (attr)
14527 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14528 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14529 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14530 else
14531 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14532
14533 /* Record whether the function returns normally to its caller or not
14534 if the DWARF producer set that information. */
14535 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14536 if (attr && (DW_UNSND (attr) != 0))
14537 TYPE_NO_RETURN (ftype) = 1;
14538
14539 /* We need to add the subroutine type to the die immediately so
14540 we don't infinitely recurse when dealing with parameters
14541 declared as the same subroutine type. */
14542 set_die_type (die, ftype, cu);
14543
14544 if (die->child != NULL)
14545 {
14546 struct type *void_type = objfile_type (objfile)->builtin_void;
14547 struct die_info *child_die;
14548 int nparams, iparams;
14549
14550 /* Count the number of parameters.
14551 FIXME: GDB currently ignores vararg functions, but knows about
14552 vararg member functions. */
14553 nparams = 0;
14554 child_die = die->child;
14555 while (child_die && child_die->tag)
14556 {
14557 if (child_die->tag == DW_TAG_formal_parameter)
14558 nparams++;
14559 else if (child_die->tag == DW_TAG_unspecified_parameters)
14560 TYPE_VARARGS (ftype) = 1;
14561 child_die = sibling_die (child_die);
14562 }
14563
14564 /* Allocate storage for parameters and fill them in. */
14565 TYPE_NFIELDS (ftype) = nparams;
14566 TYPE_FIELDS (ftype) = (struct field *)
14567 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14568
14569 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14570 even if we error out during the parameters reading below. */
14571 for (iparams = 0; iparams < nparams; iparams++)
14572 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14573
14574 iparams = 0;
14575 child_die = die->child;
14576 while (child_die && child_die->tag)
14577 {
14578 if (child_die->tag == DW_TAG_formal_parameter)
14579 {
14580 struct type *arg_type;
14581
14582 /* DWARF version 2 has no clean way to discern C++
14583 static and non-static member functions. G++ helps
14584 GDB by marking the first parameter for non-static
14585 member functions (which is the this pointer) as
14586 artificial. We pass this information to
14587 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14588
14589 DWARF version 3 added DW_AT_object_pointer, which GCC
14590 4.5 does not yet generate. */
14591 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14592 if (attr)
14593 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14594 else
14595 {
14596 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14597
14598 /* GCC/43521: In java, the formal parameter
14599 "this" is sometimes not marked with DW_AT_artificial. */
14600 if (cu->language == language_java)
14601 {
14602 const char *name = dwarf2_name (child_die, cu);
14603
14604 if (name && !strcmp (name, "this"))
14605 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14606 }
14607 }
14608 arg_type = die_type (child_die, cu);
14609
14610 /* RealView does not mark THIS as const, which the testsuite
14611 expects. GCC marks THIS as const in method definitions,
14612 but not in the class specifications (GCC PR 43053). */
14613 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14614 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14615 {
14616 int is_this = 0;
14617 struct dwarf2_cu *arg_cu = cu;
14618 const char *name = dwarf2_name (child_die, cu);
14619
14620 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14621 if (attr)
14622 {
14623 /* If the compiler emits this, use it. */
14624 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14625 is_this = 1;
14626 }
14627 else if (name && strcmp (name, "this") == 0)
14628 /* Function definitions will have the argument names. */
14629 is_this = 1;
14630 else if (name == NULL && iparams == 0)
14631 /* Declarations may not have the names, so like
14632 elsewhere in GDB, assume an artificial first
14633 argument is "this". */
14634 is_this = 1;
14635
14636 if (is_this)
14637 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14638 arg_type, 0);
14639 }
14640
14641 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14642 iparams++;
14643 }
14644 child_die = sibling_die (child_die);
14645 }
14646 }
14647
14648 return ftype;
14649 }
14650
14651 static struct type *
14652 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14653 {
14654 struct objfile *objfile = cu->objfile;
14655 const char *name = NULL;
14656 struct type *this_type, *target_type;
14657
14658 name = dwarf2_full_name (NULL, die, cu);
14659 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14660 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14661 TYPE_NAME (this_type) = name;
14662 set_die_type (die, this_type, cu);
14663 target_type = die_type (die, cu);
14664 if (target_type != this_type)
14665 TYPE_TARGET_TYPE (this_type) = target_type;
14666 else
14667 {
14668 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14669 spec and cause infinite loops in GDB. */
14670 complaint (&symfile_complaints,
14671 _("Self-referential DW_TAG_typedef "
14672 "- DIE at 0x%x [in module %s]"),
14673 die->offset.sect_off, objfile_name (objfile));
14674 TYPE_TARGET_TYPE (this_type) = NULL;
14675 }
14676 return this_type;
14677 }
14678
14679 /* Find a representation of a given base type and install
14680 it in the TYPE field of the die. */
14681
14682 static struct type *
14683 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14684 {
14685 struct objfile *objfile = cu->objfile;
14686 struct type *type;
14687 struct attribute *attr;
14688 int encoding = 0, size = 0;
14689 const char *name;
14690 enum type_code code = TYPE_CODE_INT;
14691 int type_flags = 0;
14692 struct type *target_type = NULL;
14693
14694 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14695 if (attr)
14696 {
14697 encoding = DW_UNSND (attr);
14698 }
14699 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14700 if (attr)
14701 {
14702 size = DW_UNSND (attr);
14703 }
14704 name = dwarf2_name (die, cu);
14705 if (!name)
14706 {
14707 complaint (&symfile_complaints,
14708 _("DW_AT_name missing from DW_TAG_base_type"));
14709 }
14710
14711 switch (encoding)
14712 {
14713 case DW_ATE_address:
14714 /* Turn DW_ATE_address into a void * pointer. */
14715 code = TYPE_CODE_PTR;
14716 type_flags |= TYPE_FLAG_UNSIGNED;
14717 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14718 break;
14719 case DW_ATE_boolean:
14720 code = TYPE_CODE_BOOL;
14721 type_flags |= TYPE_FLAG_UNSIGNED;
14722 break;
14723 case DW_ATE_complex_float:
14724 code = TYPE_CODE_COMPLEX;
14725 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14726 break;
14727 case DW_ATE_decimal_float:
14728 code = TYPE_CODE_DECFLOAT;
14729 break;
14730 case DW_ATE_float:
14731 code = TYPE_CODE_FLT;
14732 break;
14733 case DW_ATE_signed:
14734 break;
14735 case DW_ATE_unsigned:
14736 type_flags |= TYPE_FLAG_UNSIGNED;
14737 if (cu->language == language_fortran
14738 && name
14739 && startswith (name, "character("))
14740 code = TYPE_CODE_CHAR;
14741 break;
14742 case DW_ATE_signed_char:
14743 if (cu->language == language_ada || cu->language == language_m2
14744 || cu->language == language_pascal
14745 || cu->language == language_fortran)
14746 code = TYPE_CODE_CHAR;
14747 break;
14748 case DW_ATE_unsigned_char:
14749 if (cu->language == language_ada || cu->language == language_m2
14750 || cu->language == language_pascal
14751 || cu->language == language_fortran)
14752 code = TYPE_CODE_CHAR;
14753 type_flags |= TYPE_FLAG_UNSIGNED;
14754 break;
14755 case DW_ATE_UTF:
14756 /* We just treat this as an integer and then recognize the
14757 type by name elsewhere. */
14758 break;
14759
14760 default:
14761 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14762 dwarf_type_encoding_name (encoding));
14763 break;
14764 }
14765
14766 type = init_type (code, size, type_flags, NULL, objfile);
14767 TYPE_NAME (type) = name;
14768 TYPE_TARGET_TYPE (type) = target_type;
14769
14770 if (name && strcmp (name, "char") == 0)
14771 TYPE_NOSIGN (type) = 1;
14772
14773 return set_die_type (die, type, cu);
14774 }
14775
14776 /* Parse dwarf attribute if it's a block, reference or constant and put the
14777 resulting value of the attribute into struct bound_prop.
14778 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14779
14780 static int
14781 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14782 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14783 {
14784 struct dwarf2_property_baton *baton;
14785 struct obstack *obstack = &cu->objfile->objfile_obstack;
14786
14787 if (attr == NULL || prop == NULL)
14788 return 0;
14789
14790 if (attr_form_is_block (attr))
14791 {
14792 baton = obstack_alloc (obstack, sizeof (*baton));
14793 baton->referenced_type = NULL;
14794 baton->locexpr.per_cu = cu->per_cu;
14795 baton->locexpr.size = DW_BLOCK (attr)->size;
14796 baton->locexpr.data = DW_BLOCK (attr)->data;
14797 prop->data.baton = baton;
14798 prop->kind = PROP_LOCEXPR;
14799 gdb_assert (prop->data.baton != NULL);
14800 }
14801 else if (attr_form_is_ref (attr))
14802 {
14803 struct dwarf2_cu *target_cu = cu;
14804 struct die_info *target_die;
14805 struct attribute *target_attr;
14806
14807 target_die = follow_die_ref (die, attr, &target_cu);
14808 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14809 if (target_attr == NULL)
14810 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14811 target_cu);
14812 if (target_attr == NULL)
14813 return 0;
14814
14815 switch (target_attr->name)
14816 {
14817 case DW_AT_location:
14818 if (attr_form_is_section_offset (target_attr))
14819 {
14820 baton = obstack_alloc (obstack, sizeof (*baton));
14821 baton->referenced_type = die_type (target_die, target_cu);
14822 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14823 prop->data.baton = baton;
14824 prop->kind = PROP_LOCLIST;
14825 gdb_assert (prop->data.baton != NULL);
14826 }
14827 else if (attr_form_is_block (target_attr))
14828 {
14829 baton = obstack_alloc (obstack, sizeof (*baton));
14830 baton->referenced_type = die_type (target_die, target_cu);
14831 baton->locexpr.per_cu = cu->per_cu;
14832 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14833 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14834 prop->data.baton = baton;
14835 prop->kind = PROP_LOCEXPR;
14836 gdb_assert (prop->data.baton != NULL);
14837 }
14838 else
14839 {
14840 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14841 "dynamic property");
14842 return 0;
14843 }
14844 break;
14845 case DW_AT_data_member_location:
14846 {
14847 LONGEST offset;
14848
14849 if (!handle_data_member_location (target_die, target_cu,
14850 &offset))
14851 return 0;
14852
14853 baton = obstack_alloc (obstack, sizeof (*baton));
14854 baton->referenced_type = read_type_die (target_die->parent,
14855 target_cu);
14856 baton->offset_info.offset = offset;
14857 baton->offset_info.type = die_type (target_die, target_cu);
14858 prop->data.baton = baton;
14859 prop->kind = PROP_ADDR_OFFSET;
14860 break;
14861 }
14862 }
14863 }
14864 else if (attr_form_is_constant (attr))
14865 {
14866 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14867 prop->kind = PROP_CONST;
14868 }
14869 else
14870 {
14871 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14872 dwarf2_name (die, cu));
14873 return 0;
14874 }
14875
14876 return 1;
14877 }
14878
14879 /* Read the given DW_AT_subrange DIE. */
14880
14881 static struct type *
14882 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14883 {
14884 struct type *base_type, *orig_base_type;
14885 struct type *range_type;
14886 struct attribute *attr;
14887 struct dynamic_prop low, high;
14888 int low_default_is_valid;
14889 int high_bound_is_count = 0;
14890 const char *name;
14891 LONGEST negative_mask;
14892
14893 orig_base_type = die_type (die, cu);
14894 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14895 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14896 creating the range type, but we use the result of check_typedef
14897 when examining properties of the type. */
14898 base_type = check_typedef (orig_base_type);
14899
14900 /* The die_type call above may have already set the type for this DIE. */
14901 range_type = get_die_type (die, cu);
14902 if (range_type)
14903 return range_type;
14904
14905 low.kind = PROP_CONST;
14906 high.kind = PROP_CONST;
14907 high.data.const_val = 0;
14908
14909 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14910 omitting DW_AT_lower_bound. */
14911 switch (cu->language)
14912 {
14913 case language_c:
14914 case language_cplus:
14915 low.data.const_val = 0;
14916 low_default_is_valid = 1;
14917 break;
14918 case language_fortran:
14919 low.data.const_val = 1;
14920 low_default_is_valid = 1;
14921 break;
14922 case language_d:
14923 case language_java:
14924 case language_objc:
14925 low.data.const_val = 0;
14926 low_default_is_valid = (cu->header.version >= 4);
14927 break;
14928 case language_ada:
14929 case language_m2:
14930 case language_pascal:
14931 low.data.const_val = 1;
14932 low_default_is_valid = (cu->header.version >= 4);
14933 break;
14934 default:
14935 low.data.const_val = 0;
14936 low_default_is_valid = 0;
14937 break;
14938 }
14939
14940 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14941 if (attr)
14942 attr_to_dynamic_prop (attr, die, cu, &low);
14943 else if (!low_default_is_valid)
14944 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14945 "- DIE at 0x%x [in module %s]"),
14946 die->offset.sect_off, objfile_name (cu->objfile));
14947
14948 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14949 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14950 {
14951 attr = dwarf2_attr (die, DW_AT_count, cu);
14952 if (attr_to_dynamic_prop (attr, die, cu, &high))
14953 {
14954 /* If bounds are constant do the final calculation here. */
14955 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14956 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14957 else
14958 high_bound_is_count = 1;
14959 }
14960 }
14961
14962 /* Dwarf-2 specifications explicitly allows to create subrange types
14963 without specifying a base type.
14964 In that case, the base type must be set to the type of
14965 the lower bound, upper bound or count, in that order, if any of these
14966 three attributes references an object that has a type.
14967 If no base type is found, the Dwarf-2 specifications say that
14968 a signed integer type of size equal to the size of an address should
14969 be used.
14970 For the following C code: `extern char gdb_int [];'
14971 GCC produces an empty range DIE.
14972 FIXME: muller/2010-05-28: Possible references to object for low bound,
14973 high bound or count are not yet handled by this code. */
14974 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14975 {
14976 struct objfile *objfile = cu->objfile;
14977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14978 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14979 struct type *int_type = objfile_type (objfile)->builtin_int;
14980
14981 /* Test "int", "long int", and "long long int" objfile types,
14982 and select the first one having a size above or equal to the
14983 architecture address size. */
14984 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14985 base_type = int_type;
14986 else
14987 {
14988 int_type = objfile_type (objfile)->builtin_long;
14989 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14990 base_type = int_type;
14991 else
14992 {
14993 int_type = objfile_type (objfile)->builtin_long_long;
14994 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14995 base_type = int_type;
14996 }
14997 }
14998 }
14999
15000 /* Normally, the DWARF producers are expected to use a signed
15001 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15002 But this is unfortunately not always the case, as witnessed
15003 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15004 is used instead. To work around that ambiguity, we treat
15005 the bounds as signed, and thus sign-extend their values, when
15006 the base type is signed. */
15007 negative_mask =
15008 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15009 if (low.kind == PROP_CONST
15010 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15011 low.data.const_val |= negative_mask;
15012 if (high.kind == PROP_CONST
15013 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15014 high.data.const_val |= negative_mask;
15015
15016 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15017
15018 if (high_bound_is_count)
15019 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15020
15021 /* Ada expects an empty array on no boundary attributes. */
15022 if (attr == NULL && cu->language != language_ada)
15023 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15024
15025 name = dwarf2_name (die, cu);
15026 if (name)
15027 TYPE_NAME (range_type) = name;
15028
15029 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15030 if (attr)
15031 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15032
15033 set_die_type (die, range_type, cu);
15034
15035 /* set_die_type should be already done. */
15036 set_descriptive_type (range_type, die, cu);
15037
15038 return range_type;
15039 }
15040
15041 static struct type *
15042 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15043 {
15044 struct type *type;
15045
15046 /* For now, we only support the C meaning of an unspecified type: void. */
15047
15048 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15049 TYPE_NAME (type) = dwarf2_name (die, cu);
15050
15051 return set_die_type (die, type, cu);
15052 }
15053
15054 /* Read a single die and all its descendents. Set the die's sibling
15055 field to NULL; set other fields in the die correctly, and set all
15056 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15057 location of the info_ptr after reading all of those dies. PARENT
15058 is the parent of the die in question. */
15059
15060 static struct die_info *
15061 read_die_and_children (const struct die_reader_specs *reader,
15062 const gdb_byte *info_ptr,
15063 const gdb_byte **new_info_ptr,
15064 struct die_info *parent)
15065 {
15066 struct die_info *die;
15067 const gdb_byte *cur_ptr;
15068 int has_children;
15069
15070 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15071 if (die == NULL)
15072 {
15073 *new_info_ptr = cur_ptr;
15074 return NULL;
15075 }
15076 store_in_ref_table (die, reader->cu);
15077
15078 if (has_children)
15079 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15080 else
15081 {
15082 die->child = NULL;
15083 *new_info_ptr = cur_ptr;
15084 }
15085
15086 die->sibling = NULL;
15087 die->parent = parent;
15088 return die;
15089 }
15090
15091 /* Read a die, all of its descendents, and all of its siblings; set
15092 all of the fields of all of the dies correctly. Arguments are as
15093 in read_die_and_children. */
15094
15095 static struct die_info *
15096 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15097 const gdb_byte *info_ptr,
15098 const gdb_byte **new_info_ptr,
15099 struct die_info *parent)
15100 {
15101 struct die_info *first_die, *last_sibling;
15102 const gdb_byte *cur_ptr;
15103
15104 cur_ptr = info_ptr;
15105 first_die = last_sibling = NULL;
15106
15107 while (1)
15108 {
15109 struct die_info *die
15110 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15111
15112 if (die == NULL)
15113 {
15114 *new_info_ptr = cur_ptr;
15115 return first_die;
15116 }
15117
15118 if (!first_die)
15119 first_die = die;
15120 else
15121 last_sibling->sibling = die;
15122
15123 last_sibling = die;
15124 }
15125 }
15126
15127 /* Read a die, all of its descendents, and all of its siblings; set
15128 all of the fields of all of the dies correctly. Arguments are as
15129 in read_die_and_children.
15130 This the main entry point for reading a DIE and all its children. */
15131
15132 static struct die_info *
15133 read_die_and_siblings (const struct die_reader_specs *reader,
15134 const gdb_byte *info_ptr,
15135 const gdb_byte **new_info_ptr,
15136 struct die_info *parent)
15137 {
15138 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15139 new_info_ptr, parent);
15140
15141 if (dwarf2_die_debug)
15142 {
15143 fprintf_unfiltered (gdb_stdlog,
15144 "Read die from %s@0x%x of %s:\n",
15145 get_section_name (reader->die_section),
15146 (unsigned) (info_ptr - reader->die_section->buffer),
15147 bfd_get_filename (reader->abfd));
15148 dump_die (die, dwarf2_die_debug);
15149 }
15150
15151 return die;
15152 }
15153
15154 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15155 attributes.
15156 The caller is responsible for filling in the extra attributes
15157 and updating (*DIEP)->num_attrs.
15158 Set DIEP to point to a newly allocated die with its information,
15159 except for its child, sibling, and parent fields.
15160 Set HAS_CHILDREN to tell whether the die has children or not. */
15161
15162 static const gdb_byte *
15163 read_full_die_1 (const struct die_reader_specs *reader,
15164 struct die_info **diep, const gdb_byte *info_ptr,
15165 int *has_children, int num_extra_attrs)
15166 {
15167 unsigned int abbrev_number, bytes_read, i;
15168 sect_offset offset;
15169 struct abbrev_info *abbrev;
15170 struct die_info *die;
15171 struct dwarf2_cu *cu = reader->cu;
15172 bfd *abfd = reader->abfd;
15173
15174 offset.sect_off = info_ptr - reader->buffer;
15175 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15176 info_ptr += bytes_read;
15177 if (!abbrev_number)
15178 {
15179 *diep = NULL;
15180 *has_children = 0;
15181 return info_ptr;
15182 }
15183
15184 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15185 if (!abbrev)
15186 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15187 abbrev_number,
15188 bfd_get_filename (abfd));
15189
15190 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15191 die->offset = offset;
15192 die->tag = abbrev->tag;
15193 die->abbrev = abbrev_number;
15194
15195 /* Make the result usable.
15196 The caller needs to update num_attrs after adding the extra
15197 attributes. */
15198 die->num_attrs = abbrev->num_attrs;
15199
15200 for (i = 0; i < abbrev->num_attrs; ++i)
15201 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15202 info_ptr);
15203
15204 *diep = die;
15205 *has_children = abbrev->has_children;
15206 return info_ptr;
15207 }
15208
15209 /* Read a die and all its attributes.
15210 Set DIEP to point to a newly allocated die with its information,
15211 except for its child, sibling, and parent fields.
15212 Set HAS_CHILDREN to tell whether the die has children or not. */
15213
15214 static const gdb_byte *
15215 read_full_die (const struct die_reader_specs *reader,
15216 struct die_info **diep, const gdb_byte *info_ptr,
15217 int *has_children)
15218 {
15219 const gdb_byte *result;
15220
15221 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15222
15223 if (dwarf2_die_debug)
15224 {
15225 fprintf_unfiltered (gdb_stdlog,
15226 "Read die from %s@0x%x of %s:\n",
15227 get_section_name (reader->die_section),
15228 (unsigned) (info_ptr - reader->die_section->buffer),
15229 bfd_get_filename (reader->abfd));
15230 dump_die (*diep, dwarf2_die_debug);
15231 }
15232
15233 return result;
15234 }
15235 \f
15236 /* Abbreviation tables.
15237
15238 In DWARF version 2, the description of the debugging information is
15239 stored in a separate .debug_abbrev section. Before we read any
15240 dies from a section we read in all abbreviations and install them
15241 in a hash table. */
15242
15243 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15244
15245 static struct abbrev_info *
15246 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15247 {
15248 struct abbrev_info *abbrev;
15249
15250 abbrev = (struct abbrev_info *)
15251 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15252 memset (abbrev, 0, sizeof (struct abbrev_info));
15253 return abbrev;
15254 }
15255
15256 /* Add an abbreviation to the table. */
15257
15258 static void
15259 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15260 unsigned int abbrev_number,
15261 struct abbrev_info *abbrev)
15262 {
15263 unsigned int hash_number;
15264
15265 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15266 abbrev->next = abbrev_table->abbrevs[hash_number];
15267 abbrev_table->abbrevs[hash_number] = abbrev;
15268 }
15269
15270 /* Look up an abbrev in the table.
15271 Returns NULL if the abbrev is not found. */
15272
15273 static struct abbrev_info *
15274 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15275 unsigned int abbrev_number)
15276 {
15277 unsigned int hash_number;
15278 struct abbrev_info *abbrev;
15279
15280 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15281 abbrev = abbrev_table->abbrevs[hash_number];
15282
15283 while (abbrev)
15284 {
15285 if (abbrev->number == abbrev_number)
15286 return abbrev;
15287 abbrev = abbrev->next;
15288 }
15289 return NULL;
15290 }
15291
15292 /* Read in an abbrev table. */
15293
15294 static struct abbrev_table *
15295 abbrev_table_read_table (struct dwarf2_section_info *section,
15296 sect_offset offset)
15297 {
15298 struct objfile *objfile = dwarf2_per_objfile->objfile;
15299 bfd *abfd = get_section_bfd_owner (section);
15300 struct abbrev_table *abbrev_table;
15301 const gdb_byte *abbrev_ptr;
15302 struct abbrev_info *cur_abbrev;
15303 unsigned int abbrev_number, bytes_read, abbrev_name;
15304 unsigned int abbrev_form;
15305 struct attr_abbrev *cur_attrs;
15306 unsigned int allocated_attrs;
15307
15308 abbrev_table = XNEW (struct abbrev_table);
15309 abbrev_table->offset = offset;
15310 obstack_init (&abbrev_table->abbrev_obstack);
15311 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15312 (ABBREV_HASH_SIZE
15313 * sizeof (struct abbrev_info *)));
15314 memset (abbrev_table->abbrevs, 0,
15315 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15316
15317 dwarf2_read_section (objfile, section);
15318 abbrev_ptr = section->buffer + offset.sect_off;
15319 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15320 abbrev_ptr += bytes_read;
15321
15322 allocated_attrs = ATTR_ALLOC_CHUNK;
15323 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15324
15325 /* Loop until we reach an abbrev number of 0. */
15326 while (abbrev_number)
15327 {
15328 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15329
15330 /* read in abbrev header */
15331 cur_abbrev->number = abbrev_number;
15332 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15333 abbrev_ptr += bytes_read;
15334 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15335 abbrev_ptr += 1;
15336
15337 /* now read in declarations */
15338 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15339 abbrev_ptr += bytes_read;
15340 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342 while (abbrev_name)
15343 {
15344 if (cur_abbrev->num_attrs == allocated_attrs)
15345 {
15346 allocated_attrs += ATTR_ALLOC_CHUNK;
15347 cur_attrs
15348 = xrealloc (cur_attrs, (allocated_attrs
15349 * sizeof (struct attr_abbrev)));
15350 }
15351
15352 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15353 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15354 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15355 abbrev_ptr += bytes_read;
15356 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15357 abbrev_ptr += bytes_read;
15358 }
15359
15360 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15361 (cur_abbrev->num_attrs
15362 * sizeof (struct attr_abbrev)));
15363 memcpy (cur_abbrev->attrs, cur_attrs,
15364 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15365
15366 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15367
15368 /* Get next abbreviation.
15369 Under Irix6 the abbreviations for a compilation unit are not
15370 always properly terminated with an abbrev number of 0.
15371 Exit loop if we encounter an abbreviation which we have
15372 already read (which means we are about to read the abbreviations
15373 for the next compile unit) or if the end of the abbreviation
15374 table is reached. */
15375 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15376 break;
15377 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15378 abbrev_ptr += bytes_read;
15379 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15380 break;
15381 }
15382
15383 xfree (cur_attrs);
15384 return abbrev_table;
15385 }
15386
15387 /* Free the resources held by ABBREV_TABLE. */
15388
15389 static void
15390 abbrev_table_free (struct abbrev_table *abbrev_table)
15391 {
15392 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15393 xfree (abbrev_table);
15394 }
15395
15396 /* Same as abbrev_table_free but as a cleanup.
15397 We pass in a pointer to the pointer to the table so that we can
15398 set the pointer to NULL when we're done. It also simplifies
15399 build_type_psymtabs_1. */
15400
15401 static void
15402 abbrev_table_free_cleanup (void *table_ptr)
15403 {
15404 struct abbrev_table **abbrev_table_ptr = table_ptr;
15405
15406 if (*abbrev_table_ptr != NULL)
15407 abbrev_table_free (*abbrev_table_ptr);
15408 *abbrev_table_ptr = NULL;
15409 }
15410
15411 /* Read the abbrev table for CU from ABBREV_SECTION. */
15412
15413 static void
15414 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15415 struct dwarf2_section_info *abbrev_section)
15416 {
15417 cu->abbrev_table =
15418 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15419 }
15420
15421 /* Release the memory used by the abbrev table for a compilation unit. */
15422
15423 static void
15424 dwarf2_free_abbrev_table (void *ptr_to_cu)
15425 {
15426 struct dwarf2_cu *cu = ptr_to_cu;
15427
15428 if (cu->abbrev_table != NULL)
15429 abbrev_table_free (cu->abbrev_table);
15430 /* Set this to NULL so that we SEGV if we try to read it later,
15431 and also because free_comp_unit verifies this is NULL. */
15432 cu->abbrev_table = NULL;
15433 }
15434 \f
15435 /* Returns nonzero if TAG represents a type that we might generate a partial
15436 symbol for. */
15437
15438 static int
15439 is_type_tag_for_partial (int tag)
15440 {
15441 switch (tag)
15442 {
15443 #if 0
15444 /* Some types that would be reasonable to generate partial symbols for,
15445 that we don't at present. */
15446 case DW_TAG_array_type:
15447 case DW_TAG_file_type:
15448 case DW_TAG_ptr_to_member_type:
15449 case DW_TAG_set_type:
15450 case DW_TAG_string_type:
15451 case DW_TAG_subroutine_type:
15452 #endif
15453 case DW_TAG_base_type:
15454 case DW_TAG_class_type:
15455 case DW_TAG_interface_type:
15456 case DW_TAG_enumeration_type:
15457 case DW_TAG_structure_type:
15458 case DW_TAG_subrange_type:
15459 case DW_TAG_typedef:
15460 case DW_TAG_union_type:
15461 return 1;
15462 default:
15463 return 0;
15464 }
15465 }
15466
15467 /* Load all DIEs that are interesting for partial symbols into memory. */
15468
15469 static struct partial_die_info *
15470 load_partial_dies (const struct die_reader_specs *reader,
15471 const gdb_byte *info_ptr, int building_psymtab)
15472 {
15473 struct dwarf2_cu *cu = reader->cu;
15474 struct objfile *objfile = cu->objfile;
15475 struct partial_die_info *part_die;
15476 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15477 struct abbrev_info *abbrev;
15478 unsigned int bytes_read;
15479 unsigned int load_all = 0;
15480 int nesting_level = 1;
15481
15482 parent_die = NULL;
15483 last_die = NULL;
15484
15485 gdb_assert (cu->per_cu != NULL);
15486 if (cu->per_cu->load_all_dies)
15487 load_all = 1;
15488
15489 cu->partial_dies
15490 = htab_create_alloc_ex (cu->header.length / 12,
15491 partial_die_hash,
15492 partial_die_eq,
15493 NULL,
15494 &cu->comp_unit_obstack,
15495 hashtab_obstack_allocate,
15496 dummy_obstack_deallocate);
15497
15498 part_die = obstack_alloc (&cu->comp_unit_obstack,
15499 sizeof (struct partial_die_info));
15500
15501 while (1)
15502 {
15503 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15504
15505 /* A NULL abbrev means the end of a series of children. */
15506 if (abbrev == NULL)
15507 {
15508 if (--nesting_level == 0)
15509 {
15510 /* PART_DIE was probably the last thing allocated on the
15511 comp_unit_obstack, so we could call obstack_free
15512 here. We don't do that because the waste is small,
15513 and will be cleaned up when we're done with this
15514 compilation unit. This way, we're also more robust
15515 against other users of the comp_unit_obstack. */
15516 return first_die;
15517 }
15518 info_ptr += bytes_read;
15519 last_die = parent_die;
15520 parent_die = parent_die->die_parent;
15521 continue;
15522 }
15523
15524 /* Check for template arguments. We never save these; if
15525 they're seen, we just mark the parent, and go on our way. */
15526 if (parent_die != NULL
15527 && cu->language == language_cplus
15528 && (abbrev->tag == DW_TAG_template_type_param
15529 || abbrev->tag == DW_TAG_template_value_param))
15530 {
15531 parent_die->has_template_arguments = 1;
15532
15533 if (!load_all)
15534 {
15535 /* We don't need a partial DIE for the template argument. */
15536 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15537 continue;
15538 }
15539 }
15540
15541 /* We only recurse into c++ subprograms looking for template arguments.
15542 Skip their other children. */
15543 if (!load_all
15544 && cu->language == language_cplus
15545 && parent_die != NULL
15546 && parent_die->tag == DW_TAG_subprogram)
15547 {
15548 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15549 continue;
15550 }
15551
15552 /* Check whether this DIE is interesting enough to save. Normally
15553 we would not be interested in members here, but there may be
15554 later variables referencing them via DW_AT_specification (for
15555 static members). */
15556 if (!load_all
15557 && !is_type_tag_for_partial (abbrev->tag)
15558 && abbrev->tag != DW_TAG_constant
15559 && abbrev->tag != DW_TAG_enumerator
15560 && abbrev->tag != DW_TAG_subprogram
15561 && abbrev->tag != DW_TAG_lexical_block
15562 && abbrev->tag != DW_TAG_variable
15563 && abbrev->tag != DW_TAG_namespace
15564 && abbrev->tag != DW_TAG_module
15565 && abbrev->tag != DW_TAG_member
15566 && abbrev->tag != DW_TAG_imported_unit
15567 && abbrev->tag != DW_TAG_imported_declaration)
15568 {
15569 /* Otherwise we skip to the next sibling, if any. */
15570 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15571 continue;
15572 }
15573
15574 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15575 info_ptr);
15576
15577 /* This two-pass algorithm for processing partial symbols has a
15578 high cost in cache pressure. Thus, handle some simple cases
15579 here which cover the majority of C partial symbols. DIEs
15580 which neither have specification tags in them, nor could have
15581 specification tags elsewhere pointing at them, can simply be
15582 processed and discarded.
15583
15584 This segment is also optional; scan_partial_symbols and
15585 add_partial_symbol will handle these DIEs if we chain
15586 them in normally. When compilers which do not emit large
15587 quantities of duplicate debug information are more common,
15588 this code can probably be removed. */
15589
15590 /* Any complete simple types at the top level (pretty much all
15591 of them, for a language without namespaces), can be processed
15592 directly. */
15593 if (parent_die == NULL
15594 && part_die->has_specification == 0
15595 && part_die->is_declaration == 0
15596 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15597 || part_die->tag == DW_TAG_base_type
15598 || part_die->tag == DW_TAG_subrange_type))
15599 {
15600 if (building_psymtab && part_die->name != NULL)
15601 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15602 VAR_DOMAIN, LOC_TYPEDEF,
15603 &objfile->static_psymbols,
15604 0, (CORE_ADDR) 0, cu->language, objfile);
15605 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15606 continue;
15607 }
15608
15609 /* The exception for DW_TAG_typedef with has_children above is
15610 a workaround of GCC PR debug/47510. In the case of this complaint
15611 type_name_no_tag_or_error will error on such types later.
15612
15613 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15614 it could not find the child DIEs referenced later, this is checked
15615 above. In correct DWARF DW_TAG_typedef should have no children. */
15616
15617 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15618 complaint (&symfile_complaints,
15619 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15620 "- DIE at 0x%x [in module %s]"),
15621 part_die->offset.sect_off, objfile_name (objfile));
15622
15623 /* If we're at the second level, and we're an enumerator, and
15624 our parent has no specification (meaning possibly lives in a
15625 namespace elsewhere), then we can add the partial symbol now
15626 instead of queueing it. */
15627 if (part_die->tag == DW_TAG_enumerator
15628 && parent_die != NULL
15629 && parent_die->die_parent == NULL
15630 && parent_die->tag == DW_TAG_enumeration_type
15631 && parent_die->has_specification == 0)
15632 {
15633 if (part_die->name == NULL)
15634 complaint (&symfile_complaints,
15635 _("malformed enumerator DIE ignored"));
15636 else if (building_psymtab)
15637 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15638 VAR_DOMAIN, LOC_CONST,
15639 (cu->language == language_cplus
15640 || cu->language == language_java)
15641 ? &objfile->global_psymbols
15642 : &objfile->static_psymbols,
15643 0, (CORE_ADDR) 0, cu->language, objfile);
15644
15645 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15646 continue;
15647 }
15648
15649 /* We'll save this DIE so link it in. */
15650 part_die->die_parent = parent_die;
15651 part_die->die_sibling = NULL;
15652 part_die->die_child = NULL;
15653
15654 if (last_die && last_die == parent_die)
15655 last_die->die_child = part_die;
15656 else if (last_die)
15657 last_die->die_sibling = part_die;
15658
15659 last_die = part_die;
15660
15661 if (first_die == NULL)
15662 first_die = part_die;
15663
15664 /* Maybe add the DIE to the hash table. Not all DIEs that we
15665 find interesting need to be in the hash table, because we
15666 also have the parent/sibling/child chains; only those that we
15667 might refer to by offset later during partial symbol reading.
15668
15669 For now this means things that might have be the target of a
15670 DW_AT_specification, DW_AT_abstract_origin, or
15671 DW_AT_extension. DW_AT_extension will refer only to
15672 namespaces; DW_AT_abstract_origin refers to functions (and
15673 many things under the function DIE, but we do not recurse
15674 into function DIEs during partial symbol reading) and
15675 possibly variables as well; DW_AT_specification refers to
15676 declarations. Declarations ought to have the DW_AT_declaration
15677 flag. It happens that GCC forgets to put it in sometimes, but
15678 only for functions, not for types.
15679
15680 Adding more things than necessary to the hash table is harmless
15681 except for the performance cost. Adding too few will result in
15682 wasted time in find_partial_die, when we reread the compilation
15683 unit with load_all_dies set. */
15684
15685 if (load_all
15686 || abbrev->tag == DW_TAG_constant
15687 || abbrev->tag == DW_TAG_subprogram
15688 || abbrev->tag == DW_TAG_variable
15689 || abbrev->tag == DW_TAG_namespace
15690 || part_die->is_declaration)
15691 {
15692 void **slot;
15693
15694 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15695 part_die->offset.sect_off, INSERT);
15696 *slot = part_die;
15697 }
15698
15699 part_die = obstack_alloc (&cu->comp_unit_obstack,
15700 sizeof (struct partial_die_info));
15701
15702 /* For some DIEs we want to follow their children (if any). For C
15703 we have no reason to follow the children of structures; for other
15704 languages we have to, so that we can get at method physnames
15705 to infer fully qualified class names, for DW_AT_specification,
15706 and for C++ template arguments. For C++, we also look one level
15707 inside functions to find template arguments (if the name of the
15708 function does not already contain the template arguments).
15709
15710 For Ada, we need to scan the children of subprograms and lexical
15711 blocks as well because Ada allows the definition of nested
15712 entities that could be interesting for the debugger, such as
15713 nested subprograms for instance. */
15714 if (last_die->has_children
15715 && (load_all
15716 || last_die->tag == DW_TAG_namespace
15717 || last_die->tag == DW_TAG_module
15718 || last_die->tag == DW_TAG_enumeration_type
15719 || (cu->language == language_cplus
15720 && last_die->tag == DW_TAG_subprogram
15721 && (last_die->name == NULL
15722 || strchr (last_die->name, '<') == NULL))
15723 || (cu->language != language_c
15724 && (last_die->tag == DW_TAG_class_type
15725 || last_die->tag == DW_TAG_interface_type
15726 || last_die->tag == DW_TAG_structure_type
15727 || last_die->tag == DW_TAG_union_type))
15728 || (cu->language == language_ada
15729 && (last_die->tag == DW_TAG_subprogram
15730 || last_die->tag == DW_TAG_lexical_block))))
15731 {
15732 nesting_level++;
15733 parent_die = last_die;
15734 continue;
15735 }
15736
15737 /* Otherwise we skip to the next sibling, if any. */
15738 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15739
15740 /* Back to the top, do it again. */
15741 }
15742 }
15743
15744 /* Read a minimal amount of information into the minimal die structure. */
15745
15746 static const gdb_byte *
15747 read_partial_die (const struct die_reader_specs *reader,
15748 struct partial_die_info *part_die,
15749 struct abbrev_info *abbrev, unsigned int abbrev_len,
15750 const gdb_byte *info_ptr)
15751 {
15752 struct dwarf2_cu *cu = reader->cu;
15753 struct objfile *objfile = cu->objfile;
15754 const gdb_byte *buffer = reader->buffer;
15755 unsigned int i;
15756 struct attribute attr;
15757 int has_low_pc_attr = 0;
15758 int has_high_pc_attr = 0;
15759 int high_pc_relative = 0;
15760
15761 memset (part_die, 0, sizeof (struct partial_die_info));
15762
15763 part_die->offset.sect_off = info_ptr - buffer;
15764
15765 info_ptr += abbrev_len;
15766
15767 if (abbrev == NULL)
15768 return info_ptr;
15769
15770 part_die->tag = abbrev->tag;
15771 part_die->has_children = abbrev->has_children;
15772
15773 for (i = 0; i < abbrev->num_attrs; ++i)
15774 {
15775 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15776
15777 /* Store the data if it is of an attribute we want to keep in a
15778 partial symbol table. */
15779 switch (attr.name)
15780 {
15781 case DW_AT_name:
15782 switch (part_die->tag)
15783 {
15784 case DW_TAG_compile_unit:
15785 case DW_TAG_partial_unit:
15786 case DW_TAG_type_unit:
15787 /* Compilation units have a DW_AT_name that is a filename, not
15788 a source language identifier. */
15789 case DW_TAG_enumeration_type:
15790 case DW_TAG_enumerator:
15791 /* These tags always have simple identifiers already; no need
15792 to canonicalize them. */
15793 part_die->name = DW_STRING (&attr);
15794 break;
15795 default:
15796 part_die->name
15797 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15798 &objfile->per_bfd->storage_obstack);
15799 break;
15800 }
15801 break;
15802 case DW_AT_linkage_name:
15803 case DW_AT_MIPS_linkage_name:
15804 /* Note that both forms of linkage name might appear. We
15805 assume they will be the same, and we only store the last
15806 one we see. */
15807 if (cu->language == language_ada)
15808 part_die->name = DW_STRING (&attr);
15809 part_die->linkage_name = DW_STRING (&attr);
15810 break;
15811 case DW_AT_low_pc:
15812 has_low_pc_attr = 1;
15813 part_die->lowpc = attr_value_as_address (&attr);
15814 break;
15815 case DW_AT_high_pc:
15816 has_high_pc_attr = 1;
15817 part_die->highpc = attr_value_as_address (&attr);
15818 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15819 high_pc_relative = 1;
15820 break;
15821 case DW_AT_location:
15822 /* Support the .debug_loc offsets. */
15823 if (attr_form_is_block (&attr))
15824 {
15825 part_die->d.locdesc = DW_BLOCK (&attr);
15826 }
15827 else if (attr_form_is_section_offset (&attr))
15828 {
15829 dwarf2_complex_location_expr_complaint ();
15830 }
15831 else
15832 {
15833 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15834 "partial symbol information");
15835 }
15836 break;
15837 case DW_AT_external:
15838 part_die->is_external = DW_UNSND (&attr);
15839 break;
15840 case DW_AT_declaration:
15841 part_die->is_declaration = DW_UNSND (&attr);
15842 break;
15843 case DW_AT_type:
15844 part_die->has_type = 1;
15845 break;
15846 case DW_AT_abstract_origin:
15847 case DW_AT_specification:
15848 case DW_AT_extension:
15849 part_die->has_specification = 1;
15850 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15851 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15852 || cu->per_cu->is_dwz);
15853 break;
15854 case DW_AT_sibling:
15855 /* Ignore absolute siblings, they might point outside of
15856 the current compile unit. */
15857 if (attr.form == DW_FORM_ref_addr)
15858 complaint (&symfile_complaints,
15859 _("ignoring absolute DW_AT_sibling"));
15860 else
15861 {
15862 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15863 const gdb_byte *sibling_ptr = buffer + off;
15864
15865 if (sibling_ptr < info_ptr)
15866 complaint (&symfile_complaints,
15867 _("DW_AT_sibling points backwards"));
15868 else if (sibling_ptr > reader->buffer_end)
15869 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15870 else
15871 part_die->sibling = sibling_ptr;
15872 }
15873 break;
15874 case DW_AT_byte_size:
15875 part_die->has_byte_size = 1;
15876 break;
15877 case DW_AT_const_value:
15878 part_die->has_const_value = 1;
15879 break;
15880 case DW_AT_calling_convention:
15881 /* DWARF doesn't provide a way to identify a program's source-level
15882 entry point. DW_AT_calling_convention attributes are only meant
15883 to describe functions' calling conventions.
15884
15885 However, because it's a necessary piece of information in
15886 Fortran, and because DW_CC_program is the only piece of debugging
15887 information whose definition refers to a 'main program' at all,
15888 several compilers have begun marking Fortran main programs with
15889 DW_CC_program --- even when those functions use the standard
15890 calling conventions.
15891
15892 So until DWARF specifies a way to provide this information and
15893 compilers pick up the new representation, we'll support this
15894 practice. */
15895 if (DW_UNSND (&attr) == DW_CC_program
15896 && cu->language == language_fortran)
15897 set_objfile_main_name (objfile, part_die->name, language_fortran);
15898 break;
15899 case DW_AT_inline:
15900 if (DW_UNSND (&attr) == DW_INL_inlined
15901 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15902 part_die->may_be_inlined = 1;
15903 break;
15904
15905 case DW_AT_import:
15906 if (part_die->tag == DW_TAG_imported_unit)
15907 {
15908 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15909 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15910 || cu->per_cu->is_dwz);
15911 }
15912 break;
15913
15914 default:
15915 break;
15916 }
15917 }
15918
15919 if (high_pc_relative)
15920 part_die->highpc += part_die->lowpc;
15921
15922 if (has_low_pc_attr && has_high_pc_attr)
15923 {
15924 /* When using the GNU linker, .gnu.linkonce. sections are used to
15925 eliminate duplicate copies of functions and vtables and such.
15926 The linker will arbitrarily choose one and discard the others.
15927 The AT_*_pc values for such functions refer to local labels in
15928 these sections. If the section from that file was discarded, the
15929 labels are not in the output, so the relocs get a value of 0.
15930 If this is a discarded function, mark the pc bounds as invalid,
15931 so that GDB will ignore it. */
15932 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15933 {
15934 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15935
15936 complaint (&symfile_complaints,
15937 _("DW_AT_low_pc %s is zero "
15938 "for DIE at 0x%x [in module %s]"),
15939 paddress (gdbarch, part_die->lowpc),
15940 part_die->offset.sect_off, objfile_name (objfile));
15941 }
15942 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15943 else if (part_die->lowpc >= part_die->highpc)
15944 {
15945 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15946
15947 complaint (&symfile_complaints,
15948 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15949 "for DIE at 0x%x [in module %s]"),
15950 paddress (gdbarch, part_die->lowpc),
15951 paddress (gdbarch, part_die->highpc),
15952 part_die->offset.sect_off, objfile_name (objfile));
15953 }
15954 else
15955 part_die->has_pc_info = 1;
15956 }
15957
15958 return info_ptr;
15959 }
15960
15961 /* Find a cached partial DIE at OFFSET in CU. */
15962
15963 static struct partial_die_info *
15964 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15965 {
15966 struct partial_die_info *lookup_die = NULL;
15967 struct partial_die_info part_die;
15968
15969 part_die.offset = offset;
15970 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15971 offset.sect_off);
15972
15973 return lookup_die;
15974 }
15975
15976 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15977 except in the case of .debug_types DIEs which do not reference
15978 outside their CU (they do however referencing other types via
15979 DW_FORM_ref_sig8). */
15980
15981 static struct partial_die_info *
15982 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15983 {
15984 struct objfile *objfile = cu->objfile;
15985 struct dwarf2_per_cu_data *per_cu = NULL;
15986 struct partial_die_info *pd = NULL;
15987
15988 if (offset_in_dwz == cu->per_cu->is_dwz
15989 && offset_in_cu_p (&cu->header, offset))
15990 {
15991 pd = find_partial_die_in_comp_unit (offset, cu);
15992 if (pd != NULL)
15993 return pd;
15994 /* We missed recording what we needed.
15995 Load all dies and try again. */
15996 per_cu = cu->per_cu;
15997 }
15998 else
15999 {
16000 /* TUs don't reference other CUs/TUs (except via type signatures). */
16001 if (cu->per_cu->is_debug_types)
16002 {
16003 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16004 " external reference to offset 0x%lx [in module %s].\n"),
16005 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16006 bfd_get_filename (objfile->obfd));
16007 }
16008 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16009 objfile);
16010
16011 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16012 load_partial_comp_unit (per_cu);
16013
16014 per_cu->cu->last_used = 0;
16015 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16016 }
16017
16018 /* If we didn't find it, and not all dies have been loaded,
16019 load them all and try again. */
16020
16021 if (pd == NULL && per_cu->load_all_dies == 0)
16022 {
16023 per_cu->load_all_dies = 1;
16024
16025 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16026 THIS_CU->cu may already be in use. So we can't just free it and
16027 replace its DIEs with the ones we read in. Instead, we leave those
16028 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16029 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16030 set. */
16031 load_partial_comp_unit (per_cu);
16032
16033 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16034 }
16035
16036 if (pd == NULL)
16037 internal_error (__FILE__, __LINE__,
16038 _("could not find partial DIE 0x%x "
16039 "in cache [from module %s]\n"),
16040 offset.sect_off, bfd_get_filename (objfile->obfd));
16041 return pd;
16042 }
16043
16044 /* See if we can figure out if the class lives in a namespace. We do
16045 this by looking for a member function; its demangled name will
16046 contain namespace info, if there is any. */
16047
16048 static void
16049 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16050 struct dwarf2_cu *cu)
16051 {
16052 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16053 what template types look like, because the demangler
16054 frequently doesn't give the same name as the debug info. We
16055 could fix this by only using the demangled name to get the
16056 prefix (but see comment in read_structure_type). */
16057
16058 struct partial_die_info *real_pdi;
16059 struct partial_die_info *child_pdi;
16060
16061 /* If this DIE (this DIE's specification, if any) has a parent, then
16062 we should not do this. We'll prepend the parent's fully qualified
16063 name when we create the partial symbol. */
16064
16065 real_pdi = struct_pdi;
16066 while (real_pdi->has_specification)
16067 real_pdi = find_partial_die (real_pdi->spec_offset,
16068 real_pdi->spec_is_dwz, cu);
16069
16070 if (real_pdi->die_parent != NULL)
16071 return;
16072
16073 for (child_pdi = struct_pdi->die_child;
16074 child_pdi != NULL;
16075 child_pdi = child_pdi->die_sibling)
16076 {
16077 if (child_pdi->tag == DW_TAG_subprogram
16078 && child_pdi->linkage_name != NULL)
16079 {
16080 char *actual_class_name
16081 = language_class_name_from_physname (cu->language_defn,
16082 child_pdi->linkage_name);
16083 if (actual_class_name != NULL)
16084 {
16085 struct_pdi->name
16086 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16087 actual_class_name,
16088 strlen (actual_class_name));
16089 xfree (actual_class_name);
16090 }
16091 break;
16092 }
16093 }
16094 }
16095
16096 /* Adjust PART_DIE before generating a symbol for it. This function
16097 may set the is_external flag or change the DIE's name. */
16098
16099 static void
16100 fixup_partial_die (struct partial_die_info *part_die,
16101 struct dwarf2_cu *cu)
16102 {
16103 /* Once we've fixed up a die, there's no point in doing so again.
16104 This also avoids a memory leak if we were to call
16105 guess_partial_die_structure_name multiple times. */
16106 if (part_die->fixup_called)
16107 return;
16108
16109 /* If we found a reference attribute and the DIE has no name, try
16110 to find a name in the referred to DIE. */
16111
16112 if (part_die->name == NULL && part_die->has_specification)
16113 {
16114 struct partial_die_info *spec_die;
16115
16116 spec_die = find_partial_die (part_die->spec_offset,
16117 part_die->spec_is_dwz, cu);
16118
16119 fixup_partial_die (spec_die, cu);
16120
16121 if (spec_die->name)
16122 {
16123 part_die->name = spec_die->name;
16124
16125 /* Copy DW_AT_external attribute if it is set. */
16126 if (spec_die->is_external)
16127 part_die->is_external = spec_die->is_external;
16128 }
16129 }
16130
16131 /* Set default names for some unnamed DIEs. */
16132
16133 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16134 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16135
16136 /* If there is no parent die to provide a namespace, and there are
16137 children, see if we can determine the namespace from their linkage
16138 name. */
16139 if (cu->language == language_cplus
16140 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16141 && part_die->die_parent == NULL
16142 && part_die->has_children
16143 && (part_die->tag == DW_TAG_class_type
16144 || part_die->tag == DW_TAG_structure_type
16145 || part_die->tag == DW_TAG_union_type))
16146 guess_partial_die_structure_name (part_die, cu);
16147
16148 /* GCC might emit a nameless struct or union that has a linkage
16149 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16150 if (part_die->name == NULL
16151 && (part_die->tag == DW_TAG_class_type
16152 || part_die->tag == DW_TAG_interface_type
16153 || part_die->tag == DW_TAG_structure_type
16154 || part_die->tag == DW_TAG_union_type)
16155 && part_die->linkage_name != NULL)
16156 {
16157 char *demangled;
16158
16159 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16160 if (demangled)
16161 {
16162 const char *base;
16163
16164 /* Strip any leading namespaces/classes, keep only the base name.
16165 DW_AT_name for named DIEs does not contain the prefixes. */
16166 base = strrchr (demangled, ':');
16167 if (base && base > demangled && base[-1] == ':')
16168 base++;
16169 else
16170 base = demangled;
16171
16172 part_die->name
16173 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16174 base, strlen (base));
16175 xfree (demangled);
16176 }
16177 }
16178
16179 part_die->fixup_called = 1;
16180 }
16181
16182 /* Read an attribute value described by an attribute form. */
16183
16184 static const gdb_byte *
16185 read_attribute_value (const struct die_reader_specs *reader,
16186 struct attribute *attr, unsigned form,
16187 const gdb_byte *info_ptr)
16188 {
16189 struct dwarf2_cu *cu = reader->cu;
16190 struct objfile *objfile = cu->objfile;
16191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16192 bfd *abfd = reader->abfd;
16193 struct comp_unit_head *cu_header = &cu->header;
16194 unsigned int bytes_read;
16195 struct dwarf_block *blk;
16196
16197 attr->form = form;
16198 switch (form)
16199 {
16200 case DW_FORM_ref_addr:
16201 if (cu->header.version == 2)
16202 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16203 else
16204 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16205 &cu->header, &bytes_read);
16206 info_ptr += bytes_read;
16207 break;
16208 case DW_FORM_GNU_ref_alt:
16209 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16210 info_ptr += bytes_read;
16211 break;
16212 case DW_FORM_addr:
16213 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16214 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16215 info_ptr += bytes_read;
16216 break;
16217 case DW_FORM_block2:
16218 blk = dwarf_alloc_block (cu);
16219 blk->size = read_2_bytes (abfd, info_ptr);
16220 info_ptr += 2;
16221 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16222 info_ptr += blk->size;
16223 DW_BLOCK (attr) = blk;
16224 break;
16225 case DW_FORM_block4:
16226 blk = dwarf_alloc_block (cu);
16227 blk->size = read_4_bytes (abfd, info_ptr);
16228 info_ptr += 4;
16229 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16230 info_ptr += blk->size;
16231 DW_BLOCK (attr) = blk;
16232 break;
16233 case DW_FORM_data2:
16234 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16235 info_ptr += 2;
16236 break;
16237 case DW_FORM_data4:
16238 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16239 info_ptr += 4;
16240 break;
16241 case DW_FORM_data8:
16242 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16243 info_ptr += 8;
16244 break;
16245 case DW_FORM_sec_offset:
16246 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16247 info_ptr += bytes_read;
16248 break;
16249 case DW_FORM_string:
16250 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16251 DW_STRING_IS_CANONICAL (attr) = 0;
16252 info_ptr += bytes_read;
16253 break;
16254 case DW_FORM_strp:
16255 if (!cu->per_cu->is_dwz)
16256 {
16257 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16258 &bytes_read);
16259 DW_STRING_IS_CANONICAL (attr) = 0;
16260 info_ptr += bytes_read;
16261 break;
16262 }
16263 /* FALLTHROUGH */
16264 case DW_FORM_GNU_strp_alt:
16265 {
16266 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16267 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16268 &bytes_read);
16269
16270 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16271 DW_STRING_IS_CANONICAL (attr) = 0;
16272 info_ptr += bytes_read;
16273 }
16274 break;
16275 case DW_FORM_exprloc:
16276 case DW_FORM_block:
16277 blk = dwarf_alloc_block (cu);
16278 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16279 info_ptr += bytes_read;
16280 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16281 info_ptr += blk->size;
16282 DW_BLOCK (attr) = blk;
16283 break;
16284 case DW_FORM_block1:
16285 blk = dwarf_alloc_block (cu);
16286 blk->size = read_1_byte (abfd, info_ptr);
16287 info_ptr += 1;
16288 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16289 info_ptr += blk->size;
16290 DW_BLOCK (attr) = blk;
16291 break;
16292 case DW_FORM_data1:
16293 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16294 info_ptr += 1;
16295 break;
16296 case DW_FORM_flag:
16297 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16298 info_ptr += 1;
16299 break;
16300 case DW_FORM_flag_present:
16301 DW_UNSND (attr) = 1;
16302 break;
16303 case DW_FORM_sdata:
16304 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16305 info_ptr += bytes_read;
16306 break;
16307 case DW_FORM_udata:
16308 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16309 info_ptr += bytes_read;
16310 break;
16311 case DW_FORM_ref1:
16312 DW_UNSND (attr) = (cu->header.offset.sect_off
16313 + read_1_byte (abfd, info_ptr));
16314 info_ptr += 1;
16315 break;
16316 case DW_FORM_ref2:
16317 DW_UNSND (attr) = (cu->header.offset.sect_off
16318 + read_2_bytes (abfd, info_ptr));
16319 info_ptr += 2;
16320 break;
16321 case DW_FORM_ref4:
16322 DW_UNSND (attr) = (cu->header.offset.sect_off
16323 + read_4_bytes (abfd, info_ptr));
16324 info_ptr += 4;
16325 break;
16326 case DW_FORM_ref8:
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_8_bytes (abfd, info_ptr));
16329 info_ptr += 8;
16330 break;
16331 case DW_FORM_ref_sig8:
16332 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16333 info_ptr += 8;
16334 break;
16335 case DW_FORM_ref_udata:
16336 DW_UNSND (attr) = (cu->header.offset.sect_off
16337 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16338 info_ptr += bytes_read;
16339 break;
16340 case DW_FORM_indirect:
16341 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16342 info_ptr += bytes_read;
16343 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16344 break;
16345 case DW_FORM_GNU_addr_index:
16346 if (reader->dwo_file == NULL)
16347 {
16348 /* For now flag a hard error.
16349 Later we can turn this into a complaint. */
16350 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16351 dwarf_form_name (form),
16352 bfd_get_filename (abfd));
16353 }
16354 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16355 info_ptr += bytes_read;
16356 break;
16357 case DW_FORM_GNU_str_index:
16358 if (reader->dwo_file == NULL)
16359 {
16360 /* For now flag a hard error.
16361 Later we can turn this into a complaint if warranted. */
16362 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16363 dwarf_form_name (form),
16364 bfd_get_filename (abfd));
16365 }
16366 {
16367 ULONGEST str_index =
16368 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16369
16370 DW_STRING (attr) = read_str_index (reader, str_index);
16371 DW_STRING_IS_CANONICAL (attr) = 0;
16372 info_ptr += bytes_read;
16373 }
16374 break;
16375 default:
16376 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16377 dwarf_form_name (form),
16378 bfd_get_filename (abfd));
16379 }
16380
16381 /* Super hack. */
16382 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16383 attr->form = DW_FORM_GNU_ref_alt;
16384
16385 /* We have seen instances where the compiler tried to emit a byte
16386 size attribute of -1 which ended up being encoded as an unsigned
16387 0xffffffff. Although 0xffffffff is technically a valid size value,
16388 an object of this size seems pretty unlikely so we can relatively
16389 safely treat these cases as if the size attribute was invalid and
16390 treat them as zero by default. */
16391 if (attr->name == DW_AT_byte_size
16392 && form == DW_FORM_data4
16393 && DW_UNSND (attr) >= 0xffffffff)
16394 {
16395 complaint
16396 (&symfile_complaints,
16397 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16398 hex_string (DW_UNSND (attr)));
16399 DW_UNSND (attr) = 0;
16400 }
16401
16402 return info_ptr;
16403 }
16404
16405 /* Read an attribute described by an abbreviated attribute. */
16406
16407 static const gdb_byte *
16408 read_attribute (const struct die_reader_specs *reader,
16409 struct attribute *attr, struct attr_abbrev *abbrev,
16410 const gdb_byte *info_ptr)
16411 {
16412 attr->name = abbrev->name;
16413 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16414 }
16415
16416 /* Read dwarf information from a buffer. */
16417
16418 static unsigned int
16419 read_1_byte (bfd *abfd, const gdb_byte *buf)
16420 {
16421 return bfd_get_8 (abfd, buf);
16422 }
16423
16424 static int
16425 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16426 {
16427 return bfd_get_signed_8 (abfd, buf);
16428 }
16429
16430 static unsigned int
16431 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16432 {
16433 return bfd_get_16 (abfd, buf);
16434 }
16435
16436 static int
16437 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16438 {
16439 return bfd_get_signed_16 (abfd, buf);
16440 }
16441
16442 static unsigned int
16443 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16444 {
16445 return bfd_get_32 (abfd, buf);
16446 }
16447
16448 static int
16449 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16450 {
16451 return bfd_get_signed_32 (abfd, buf);
16452 }
16453
16454 static ULONGEST
16455 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16456 {
16457 return bfd_get_64 (abfd, buf);
16458 }
16459
16460 static CORE_ADDR
16461 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16462 unsigned int *bytes_read)
16463 {
16464 struct comp_unit_head *cu_header = &cu->header;
16465 CORE_ADDR retval = 0;
16466
16467 if (cu_header->signed_addr_p)
16468 {
16469 switch (cu_header->addr_size)
16470 {
16471 case 2:
16472 retval = bfd_get_signed_16 (abfd, buf);
16473 break;
16474 case 4:
16475 retval = bfd_get_signed_32 (abfd, buf);
16476 break;
16477 case 8:
16478 retval = bfd_get_signed_64 (abfd, buf);
16479 break;
16480 default:
16481 internal_error (__FILE__, __LINE__,
16482 _("read_address: bad switch, signed [in module %s]"),
16483 bfd_get_filename (abfd));
16484 }
16485 }
16486 else
16487 {
16488 switch (cu_header->addr_size)
16489 {
16490 case 2:
16491 retval = bfd_get_16 (abfd, buf);
16492 break;
16493 case 4:
16494 retval = bfd_get_32 (abfd, buf);
16495 break;
16496 case 8:
16497 retval = bfd_get_64 (abfd, buf);
16498 break;
16499 default:
16500 internal_error (__FILE__, __LINE__,
16501 _("read_address: bad switch, "
16502 "unsigned [in module %s]"),
16503 bfd_get_filename (abfd));
16504 }
16505 }
16506
16507 *bytes_read = cu_header->addr_size;
16508 return retval;
16509 }
16510
16511 /* Read the initial length from a section. The (draft) DWARF 3
16512 specification allows the initial length to take up either 4 bytes
16513 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16514 bytes describe the length and all offsets will be 8 bytes in length
16515 instead of 4.
16516
16517 An older, non-standard 64-bit format is also handled by this
16518 function. The older format in question stores the initial length
16519 as an 8-byte quantity without an escape value. Lengths greater
16520 than 2^32 aren't very common which means that the initial 4 bytes
16521 is almost always zero. Since a length value of zero doesn't make
16522 sense for the 32-bit format, this initial zero can be considered to
16523 be an escape value which indicates the presence of the older 64-bit
16524 format. As written, the code can't detect (old format) lengths
16525 greater than 4GB. If it becomes necessary to handle lengths
16526 somewhat larger than 4GB, we could allow other small values (such
16527 as the non-sensical values of 1, 2, and 3) to also be used as
16528 escape values indicating the presence of the old format.
16529
16530 The value returned via bytes_read should be used to increment the
16531 relevant pointer after calling read_initial_length().
16532
16533 [ Note: read_initial_length() and read_offset() are based on the
16534 document entitled "DWARF Debugging Information Format", revision
16535 3, draft 8, dated November 19, 2001. This document was obtained
16536 from:
16537
16538 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16539
16540 This document is only a draft and is subject to change. (So beware.)
16541
16542 Details regarding the older, non-standard 64-bit format were
16543 determined empirically by examining 64-bit ELF files produced by
16544 the SGI toolchain on an IRIX 6.5 machine.
16545
16546 - Kevin, July 16, 2002
16547 ] */
16548
16549 static LONGEST
16550 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16551 {
16552 LONGEST length = bfd_get_32 (abfd, buf);
16553
16554 if (length == 0xffffffff)
16555 {
16556 length = bfd_get_64 (abfd, buf + 4);
16557 *bytes_read = 12;
16558 }
16559 else if (length == 0)
16560 {
16561 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16562 length = bfd_get_64 (abfd, buf);
16563 *bytes_read = 8;
16564 }
16565 else
16566 {
16567 *bytes_read = 4;
16568 }
16569
16570 return length;
16571 }
16572
16573 /* Cover function for read_initial_length.
16574 Returns the length of the object at BUF, and stores the size of the
16575 initial length in *BYTES_READ and stores the size that offsets will be in
16576 *OFFSET_SIZE.
16577 If the initial length size is not equivalent to that specified in
16578 CU_HEADER then issue a complaint.
16579 This is useful when reading non-comp-unit headers. */
16580
16581 static LONGEST
16582 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16583 const struct comp_unit_head *cu_header,
16584 unsigned int *bytes_read,
16585 unsigned int *offset_size)
16586 {
16587 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16588
16589 gdb_assert (cu_header->initial_length_size == 4
16590 || cu_header->initial_length_size == 8
16591 || cu_header->initial_length_size == 12);
16592
16593 if (cu_header->initial_length_size != *bytes_read)
16594 complaint (&symfile_complaints,
16595 _("intermixed 32-bit and 64-bit DWARF sections"));
16596
16597 *offset_size = (*bytes_read == 4) ? 4 : 8;
16598 return length;
16599 }
16600
16601 /* Read an offset from the data stream. The size of the offset is
16602 given by cu_header->offset_size. */
16603
16604 static LONGEST
16605 read_offset (bfd *abfd, const gdb_byte *buf,
16606 const struct comp_unit_head *cu_header,
16607 unsigned int *bytes_read)
16608 {
16609 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16610
16611 *bytes_read = cu_header->offset_size;
16612 return offset;
16613 }
16614
16615 /* Read an offset from the data stream. */
16616
16617 static LONGEST
16618 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16619 {
16620 LONGEST retval = 0;
16621
16622 switch (offset_size)
16623 {
16624 case 4:
16625 retval = bfd_get_32 (abfd, buf);
16626 break;
16627 case 8:
16628 retval = bfd_get_64 (abfd, buf);
16629 break;
16630 default:
16631 internal_error (__FILE__, __LINE__,
16632 _("read_offset_1: bad switch [in module %s]"),
16633 bfd_get_filename (abfd));
16634 }
16635
16636 return retval;
16637 }
16638
16639 static const gdb_byte *
16640 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16641 {
16642 /* If the size of a host char is 8 bits, we can return a pointer
16643 to the buffer, otherwise we have to copy the data to a buffer
16644 allocated on the temporary obstack. */
16645 gdb_assert (HOST_CHAR_BIT == 8);
16646 return buf;
16647 }
16648
16649 static const char *
16650 read_direct_string (bfd *abfd, const gdb_byte *buf,
16651 unsigned int *bytes_read_ptr)
16652 {
16653 /* If the size of a host char is 8 bits, we can return a pointer
16654 to the string, otherwise we have to copy the string to a buffer
16655 allocated on the temporary obstack. */
16656 gdb_assert (HOST_CHAR_BIT == 8);
16657 if (*buf == '\0')
16658 {
16659 *bytes_read_ptr = 1;
16660 return NULL;
16661 }
16662 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16663 return (const char *) buf;
16664 }
16665
16666 static const char *
16667 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16668 {
16669 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16670 if (dwarf2_per_objfile->str.buffer == NULL)
16671 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16672 bfd_get_filename (abfd));
16673 if (str_offset >= dwarf2_per_objfile->str.size)
16674 error (_("DW_FORM_strp pointing outside of "
16675 ".debug_str section [in module %s]"),
16676 bfd_get_filename (abfd));
16677 gdb_assert (HOST_CHAR_BIT == 8);
16678 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16679 return NULL;
16680 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16681 }
16682
16683 /* Read a string at offset STR_OFFSET in the .debug_str section from
16684 the .dwz file DWZ. Throw an error if the offset is too large. If
16685 the string consists of a single NUL byte, return NULL; otherwise
16686 return a pointer to the string. */
16687
16688 static const char *
16689 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16690 {
16691 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16692
16693 if (dwz->str.buffer == NULL)
16694 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16695 "section [in module %s]"),
16696 bfd_get_filename (dwz->dwz_bfd));
16697 if (str_offset >= dwz->str.size)
16698 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16699 ".debug_str section [in module %s]"),
16700 bfd_get_filename (dwz->dwz_bfd));
16701 gdb_assert (HOST_CHAR_BIT == 8);
16702 if (dwz->str.buffer[str_offset] == '\0')
16703 return NULL;
16704 return (const char *) (dwz->str.buffer + str_offset);
16705 }
16706
16707 static const char *
16708 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16709 const struct comp_unit_head *cu_header,
16710 unsigned int *bytes_read_ptr)
16711 {
16712 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16713
16714 return read_indirect_string_at_offset (abfd, str_offset);
16715 }
16716
16717 static ULONGEST
16718 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16719 unsigned int *bytes_read_ptr)
16720 {
16721 ULONGEST result;
16722 unsigned int num_read;
16723 int i, shift;
16724 unsigned char byte;
16725
16726 result = 0;
16727 shift = 0;
16728 num_read = 0;
16729 i = 0;
16730 while (1)
16731 {
16732 byte = bfd_get_8 (abfd, buf);
16733 buf++;
16734 num_read++;
16735 result |= ((ULONGEST) (byte & 127) << shift);
16736 if ((byte & 128) == 0)
16737 {
16738 break;
16739 }
16740 shift += 7;
16741 }
16742 *bytes_read_ptr = num_read;
16743 return result;
16744 }
16745
16746 static LONGEST
16747 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16748 unsigned int *bytes_read_ptr)
16749 {
16750 LONGEST result;
16751 int i, shift, num_read;
16752 unsigned char byte;
16753
16754 result = 0;
16755 shift = 0;
16756 num_read = 0;
16757 i = 0;
16758 while (1)
16759 {
16760 byte = bfd_get_8 (abfd, buf);
16761 buf++;
16762 num_read++;
16763 result |= ((LONGEST) (byte & 127) << shift);
16764 shift += 7;
16765 if ((byte & 128) == 0)
16766 {
16767 break;
16768 }
16769 }
16770 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16771 result |= -(((LONGEST) 1) << shift);
16772 *bytes_read_ptr = num_read;
16773 return result;
16774 }
16775
16776 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16777 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16778 ADDR_SIZE is the size of addresses from the CU header. */
16779
16780 static CORE_ADDR
16781 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16782 {
16783 struct objfile *objfile = dwarf2_per_objfile->objfile;
16784 bfd *abfd = objfile->obfd;
16785 const gdb_byte *info_ptr;
16786
16787 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16788 if (dwarf2_per_objfile->addr.buffer == NULL)
16789 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16790 objfile_name (objfile));
16791 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16792 error (_("DW_FORM_addr_index pointing outside of "
16793 ".debug_addr section [in module %s]"),
16794 objfile_name (objfile));
16795 info_ptr = (dwarf2_per_objfile->addr.buffer
16796 + addr_base + addr_index * addr_size);
16797 if (addr_size == 4)
16798 return bfd_get_32 (abfd, info_ptr);
16799 else
16800 return bfd_get_64 (abfd, info_ptr);
16801 }
16802
16803 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16804
16805 static CORE_ADDR
16806 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16807 {
16808 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16809 }
16810
16811 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16812
16813 static CORE_ADDR
16814 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16815 unsigned int *bytes_read)
16816 {
16817 bfd *abfd = cu->objfile->obfd;
16818 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16819
16820 return read_addr_index (cu, addr_index);
16821 }
16822
16823 /* Data structure to pass results from dwarf2_read_addr_index_reader
16824 back to dwarf2_read_addr_index. */
16825
16826 struct dwarf2_read_addr_index_data
16827 {
16828 ULONGEST addr_base;
16829 int addr_size;
16830 };
16831
16832 /* die_reader_func for dwarf2_read_addr_index. */
16833
16834 static void
16835 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16836 const gdb_byte *info_ptr,
16837 struct die_info *comp_unit_die,
16838 int has_children,
16839 void *data)
16840 {
16841 struct dwarf2_cu *cu = reader->cu;
16842 struct dwarf2_read_addr_index_data *aidata =
16843 (struct dwarf2_read_addr_index_data *) data;
16844
16845 aidata->addr_base = cu->addr_base;
16846 aidata->addr_size = cu->header.addr_size;
16847 }
16848
16849 /* Given an index in .debug_addr, fetch the value.
16850 NOTE: This can be called during dwarf expression evaluation,
16851 long after the debug information has been read, and thus per_cu->cu
16852 may no longer exist. */
16853
16854 CORE_ADDR
16855 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16856 unsigned int addr_index)
16857 {
16858 struct objfile *objfile = per_cu->objfile;
16859 struct dwarf2_cu *cu = per_cu->cu;
16860 ULONGEST addr_base;
16861 int addr_size;
16862
16863 /* This is intended to be called from outside this file. */
16864 dw2_setup (objfile);
16865
16866 /* We need addr_base and addr_size.
16867 If we don't have PER_CU->cu, we have to get it.
16868 Nasty, but the alternative is storing the needed info in PER_CU,
16869 which at this point doesn't seem justified: it's not clear how frequently
16870 it would get used and it would increase the size of every PER_CU.
16871 Entry points like dwarf2_per_cu_addr_size do a similar thing
16872 so we're not in uncharted territory here.
16873 Alas we need to be a bit more complicated as addr_base is contained
16874 in the DIE.
16875
16876 We don't need to read the entire CU(/TU).
16877 We just need the header and top level die.
16878
16879 IWBN to use the aging mechanism to let us lazily later discard the CU.
16880 For now we skip this optimization. */
16881
16882 if (cu != NULL)
16883 {
16884 addr_base = cu->addr_base;
16885 addr_size = cu->header.addr_size;
16886 }
16887 else
16888 {
16889 struct dwarf2_read_addr_index_data aidata;
16890
16891 /* Note: We can't use init_cutu_and_read_dies_simple here,
16892 we need addr_base. */
16893 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16894 dwarf2_read_addr_index_reader, &aidata);
16895 addr_base = aidata.addr_base;
16896 addr_size = aidata.addr_size;
16897 }
16898
16899 return read_addr_index_1 (addr_index, addr_base, addr_size);
16900 }
16901
16902 /* Given a DW_FORM_GNU_str_index, fetch the string.
16903 This is only used by the Fission support. */
16904
16905 static const char *
16906 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16907 {
16908 struct objfile *objfile = dwarf2_per_objfile->objfile;
16909 const char *objf_name = objfile_name (objfile);
16910 bfd *abfd = objfile->obfd;
16911 struct dwarf2_cu *cu = reader->cu;
16912 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16913 struct dwarf2_section_info *str_offsets_section =
16914 &reader->dwo_file->sections.str_offsets;
16915 const gdb_byte *info_ptr;
16916 ULONGEST str_offset;
16917 static const char form_name[] = "DW_FORM_GNU_str_index";
16918
16919 dwarf2_read_section (objfile, str_section);
16920 dwarf2_read_section (objfile, str_offsets_section);
16921 if (str_section->buffer == NULL)
16922 error (_("%s used without .debug_str.dwo section"
16923 " in CU at offset 0x%lx [in module %s]"),
16924 form_name, (long) cu->header.offset.sect_off, objf_name);
16925 if (str_offsets_section->buffer == NULL)
16926 error (_("%s used without .debug_str_offsets.dwo section"
16927 " in CU at offset 0x%lx [in module %s]"),
16928 form_name, (long) cu->header.offset.sect_off, objf_name);
16929 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16930 error (_("%s pointing outside of .debug_str_offsets.dwo"
16931 " section in CU at offset 0x%lx [in module %s]"),
16932 form_name, (long) cu->header.offset.sect_off, objf_name);
16933 info_ptr = (str_offsets_section->buffer
16934 + str_index * cu->header.offset_size);
16935 if (cu->header.offset_size == 4)
16936 str_offset = bfd_get_32 (abfd, info_ptr);
16937 else
16938 str_offset = bfd_get_64 (abfd, info_ptr);
16939 if (str_offset >= str_section->size)
16940 error (_("Offset from %s pointing outside of"
16941 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16942 form_name, (long) cu->header.offset.sect_off, objf_name);
16943 return (const char *) (str_section->buffer + str_offset);
16944 }
16945
16946 /* Return the length of an LEB128 number in BUF. */
16947
16948 static int
16949 leb128_size (const gdb_byte *buf)
16950 {
16951 const gdb_byte *begin = buf;
16952 gdb_byte byte;
16953
16954 while (1)
16955 {
16956 byte = *buf++;
16957 if ((byte & 128) == 0)
16958 return buf - begin;
16959 }
16960 }
16961
16962 static void
16963 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16964 {
16965 switch (lang)
16966 {
16967 case DW_LANG_C89:
16968 case DW_LANG_C99:
16969 case DW_LANG_C11:
16970 case DW_LANG_C:
16971 case DW_LANG_UPC:
16972 cu->language = language_c;
16973 break;
16974 case DW_LANG_C_plus_plus:
16975 case DW_LANG_C_plus_plus_11:
16976 case DW_LANG_C_plus_plus_14:
16977 cu->language = language_cplus;
16978 break;
16979 case DW_LANG_D:
16980 cu->language = language_d;
16981 break;
16982 case DW_LANG_Fortran77:
16983 case DW_LANG_Fortran90:
16984 case DW_LANG_Fortran95:
16985 case DW_LANG_Fortran03:
16986 case DW_LANG_Fortran08:
16987 cu->language = language_fortran;
16988 break;
16989 case DW_LANG_Go:
16990 cu->language = language_go;
16991 break;
16992 case DW_LANG_Mips_Assembler:
16993 cu->language = language_asm;
16994 break;
16995 case DW_LANG_Java:
16996 cu->language = language_java;
16997 break;
16998 case DW_LANG_Ada83:
16999 case DW_LANG_Ada95:
17000 cu->language = language_ada;
17001 break;
17002 case DW_LANG_Modula2:
17003 cu->language = language_m2;
17004 break;
17005 case DW_LANG_Pascal83:
17006 cu->language = language_pascal;
17007 break;
17008 case DW_LANG_ObjC:
17009 cu->language = language_objc;
17010 break;
17011 case DW_LANG_Cobol74:
17012 case DW_LANG_Cobol85:
17013 default:
17014 cu->language = language_minimal;
17015 break;
17016 }
17017 cu->language_defn = language_def (cu->language);
17018 }
17019
17020 /* Return the named attribute or NULL if not there. */
17021
17022 static struct attribute *
17023 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17024 {
17025 for (;;)
17026 {
17027 unsigned int i;
17028 struct attribute *spec = NULL;
17029
17030 for (i = 0; i < die->num_attrs; ++i)
17031 {
17032 if (die->attrs[i].name == name)
17033 return &die->attrs[i];
17034 if (die->attrs[i].name == DW_AT_specification
17035 || die->attrs[i].name == DW_AT_abstract_origin)
17036 spec = &die->attrs[i];
17037 }
17038
17039 if (!spec)
17040 break;
17041
17042 die = follow_die_ref (die, spec, &cu);
17043 }
17044
17045 return NULL;
17046 }
17047
17048 /* Return the named attribute or NULL if not there,
17049 but do not follow DW_AT_specification, etc.
17050 This is for use in contexts where we're reading .debug_types dies.
17051 Following DW_AT_specification, DW_AT_abstract_origin will take us
17052 back up the chain, and we want to go down. */
17053
17054 static struct attribute *
17055 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17056 {
17057 unsigned int i;
17058
17059 for (i = 0; i < die->num_attrs; ++i)
17060 if (die->attrs[i].name == name)
17061 return &die->attrs[i];
17062
17063 return NULL;
17064 }
17065
17066 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17067 and holds a non-zero value. This function should only be used for
17068 DW_FORM_flag or DW_FORM_flag_present attributes. */
17069
17070 static int
17071 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17072 {
17073 struct attribute *attr = dwarf2_attr (die, name, cu);
17074
17075 return (attr && DW_UNSND (attr));
17076 }
17077
17078 static int
17079 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17080 {
17081 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17082 which value is non-zero. However, we have to be careful with
17083 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17084 (via dwarf2_flag_true_p) follows this attribute. So we may
17085 end up accidently finding a declaration attribute that belongs
17086 to a different DIE referenced by the specification attribute,
17087 even though the given DIE does not have a declaration attribute. */
17088 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17089 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17090 }
17091
17092 /* Return the die giving the specification for DIE, if there is
17093 one. *SPEC_CU is the CU containing DIE on input, and the CU
17094 containing the return value on output. If there is no
17095 specification, but there is an abstract origin, that is
17096 returned. */
17097
17098 static struct die_info *
17099 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17100 {
17101 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17102 *spec_cu);
17103
17104 if (spec_attr == NULL)
17105 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17106
17107 if (spec_attr == NULL)
17108 return NULL;
17109 else
17110 return follow_die_ref (die, spec_attr, spec_cu);
17111 }
17112
17113 /* Free the line_header structure *LH, and any arrays and strings it
17114 refers to.
17115 NOTE: This is also used as a "cleanup" function. */
17116
17117 static void
17118 free_line_header (struct line_header *lh)
17119 {
17120 if (lh->standard_opcode_lengths)
17121 xfree (lh->standard_opcode_lengths);
17122
17123 /* Remember that all the lh->file_names[i].name pointers are
17124 pointers into debug_line_buffer, and don't need to be freed. */
17125 if (lh->file_names)
17126 xfree (lh->file_names);
17127
17128 /* Similarly for the include directory names. */
17129 if (lh->include_dirs)
17130 xfree (lh->include_dirs);
17131
17132 xfree (lh);
17133 }
17134
17135 /* Stub for free_line_header to match void * callback types. */
17136
17137 static void
17138 free_line_header_voidp (void *arg)
17139 {
17140 struct line_header *lh = arg;
17141
17142 free_line_header (lh);
17143 }
17144
17145 /* Add an entry to LH's include directory table. */
17146
17147 static void
17148 add_include_dir (struct line_header *lh, const char *include_dir)
17149 {
17150 /* Grow the array if necessary. */
17151 if (lh->include_dirs_size == 0)
17152 {
17153 lh->include_dirs_size = 1; /* for testing */
17154 lh->include_dirs = xmalloc (lh->include_dirs_size
17155 * sizeof (*lh->include_dirs));
17156 }
17157 else if (lh->num_include_dirs >= lh->include_dirs_size)
17158 {
17159 lh->include_dirs_size *= 2;
17160 lh->include_dirs = xrealloc (lh->include_dirs,
17161 (lh->include_dirs_size
17162 * sizeof (*lh->include_dirs)));
17163 }
17164
17165 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17166 }
17167
17168 /* Add an entry to LH's file name table. */
17169
17170 static void
17171 add_file_name (struct line_header *lh,
17172 const char *name,
17173 unsigned int dir_index,
17174 unsigned int mod_time,
17175 unsigned int length)
17176 {
17177 struct file_entry *fe;
17178
17179 /* Grow the array if necessary. */
17180 if (lh->file_names_size == 0)
17181 {
17182 lh->file_names_size = 1; /* for testing */
17183 lh->file_names = xmalloc (lh->file_names_size
17184 * sizeof (*lh->file_names));
17185 }
17186 else if (lh->num_file_names >= lh->file_names_size)
17187 {
17188 lh->file_names_size *= 2;
17189 lh->file_names = xrealloc (lh->file_names,
17190 (lh->file_names_size
17191 * sizeof (*lh->file_names)));
17192 }
17193
17194 fe = &lh->file_names[lh->num_file_names++];
17195 fe->name = name;
17196 fe->dir_index = dir_index;
17197 fe->mod_time = mod_time;
17198 fe->length = length;
17199 fe->included_p = 0;
17200 fe->symtab = NULL;
17201 }
17202
17203 /* A convenience function to find the proper .debug_line section for a
17204 CU. */
17205
17206 static struct dwarf2_section_info *
17207 get_debug_line_section (struct dwarf2_cu *cu)
17208 {
17209 struct dwarf2_section_info *section;
17210
17211 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17212 DWO file. */
17213 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17214 section = &cu->dwo_unit->dwo_file->sections.line;
17215 else if (cu->per_cu->is_dwz)
17216 {
17217 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17218
17219 section = &dwz->line;
17220 }
17221 else
17222 section = &dwarf2_per_objfile->line;
17223
17224 return section;
17225 }
17226
17227 /* Read the statement program header starting at OFFSET in
17228 .debug_line, or .debug_line.dwo. Return a pointer
17229 to a struct line_header, allocated using xmalloc.
17230 Returns NULL if there is a problem reading the header, e.g., if it
17231 has a version we don't understand.
17232
17233 NOTE: the strings in the include directory and file name tables of
17234 the returned object point into the dwarf line section buffer,
17235 and must not be freed. */
17236
17237 static struct line_header *
17238 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17239 {
17240 struct cleanup *back_to;
17241 struct line_header *lh;
17242 const gdb_byte *line_ptr;
17243 unsigned int bytes_read, offset_size;
17244 int i;
17245 const char *cur_dir, *cur_file;
17246 struct dwarf2_section_info *section;
17247 bfd *abfd;
17248
17249 section = get_debug_line_section (cu);
17250 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17251 if (section->buffer == NULL)
17252 {
17253 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17254 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17255 else
17256 complaint (&symfile_complaints, _("missing .debug_line section"));
17257 return 0;
17258 }
17259
17260 /* We can't do this until we know the section is non-empty.
17261 Only then do we know we have such a section. */
17262 abfd = get_section_bfd_owner (section);
17263
17264 /* Make sure that at least there's room for the total_length field.
17265 That could be 12 bytes long, but we're just going to fudge that. */
17266 if (offset + 4 >= section->size)
17267 {
17268 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17269 return 0;
17270 }
17271
17272 lh = xmalloc (sizeof (*lh));
17273 memset (lh, 0, sizeof (*lh));
17274 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17275 (void *) lh);
17276
17277 lh->offset.sect_off = offset;
17278 lh->offset_in_dwz = cu->per_cu->is_dwz;
17279
17280 line_ptr = section->buffer + offset;
17281
17282 /* Read in the header. */
17283 lh->total_length =
17284 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17285 &bytes_read, &offset_size);
17286 line_ptr += bytes_read;
17287 if (line_ptr + lh->total_length > (section->buffer + section->size))
17288 {
17289 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17290 do_cleanups (back_to);
17291 return 0;
17292 }
17293 lh->statement_program_end = line_ptr + lh->total_length;
17294 lh->version = read_2_bytes (abfd, line_ptr);
17295 line_ptr += 2;
17296 if (lh->version > 4)
17297 {
17298 /* This is a version we don't understand. The format could have
17299 changed in ways we don't handle properly so just punt. */
17300 complaint (&symfile_complaints,
17301 _("unsupported version in .debug_line section"));
17302 return NULL;
17303 }
17304 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17305 line_ptr += offset_size;
17306 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17307 line_ptr += 1;
17308 if (lh->version >= 4)
17309 {
17310 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17311 line_ptr += 1;
17312 }
17313 else
17314 lh->maximum_ops_per_instruction = 1;
17315
17316 if (lh->maximum_ops_per_instruction == 0)
17317 {
17318 lh->maximum_ops_per_instruction = 1;
17319 complaint (&symfile_complaints,
17320 _("invalid maximum_ops_per_instruction "
17321 "in `.debug_line' section"));
17322 }
17323
17324 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17325 line_ptr += 1;
17326 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17327 line_ptr += 1;
17328 lh->line_range = read_1_byte (abfd, line_ptr);
17329 line_ptr += 1;
17330 lh->opcode_base = read_1_byte (abfd, line_ptr);
17331 line_ptr += 1;
17332 lh->standard_opcode_lengths
17333 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17334
17335 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17336 for (i = 1; i < lh->opcode_base; ++i)
17337 {
17338 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17339 line_ptr += 1;
17340 }
17341
17342 /* Read directory table. */
17343 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17344 {
17345 line_ptr += bytes_read;
17346 add_include_dir (lh, cur_dir);
17347 }
17348 line_ptr += bytes_read;
17349
17350 /* Read file name table. */
17351 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17352 {
17353 unsigned int dir_index, mod_time, length;
17354
17355 line_ptr += bytes_read;
17356 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17357 line_ptr += bytes_read;
17358 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17359 line_ptr += bytes_read;
17360 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17361 line_ptr += bytes_read;
17362
17363 add_file_name (lh, cur_file, dir_index, mod_time, length);
17364 }
17365 line_ptr += bytes_read;
17366 lh->statement_program_start = line_ptr;
17367
17368 if (line_ptr > (section->buffer + section->size))
17369 complaint (&symfile_complaints,
17370 _("line number info header doesn't "
17371 "fit in `.debug_line' section"));
17372
17373 discard_cleanups (back_to);
17374 return lh;
17375 }
17376
17377 /* Subroutine of dwarf_decode_lines to simplify it.
17378 Return the file name of the psymtab for included file FILE_INDEX
17379 in line header LH of PST.
17380 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17381 If space for the result is malloc'd, it will be freed by a cleanup.
17382 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17383
17384 The function creates dangling cleanup registration. */
17385
17386 static const char *
17387 psymtab_include_file_name (const struct line_header *lh, int file_index,
17388 const struct partial_symtab *pst,
17389 const char *comp_dir)
17390 {
17391 const struct file_entry fe = lh->file_names [file_index];
17392 const char *include_name = fe.name;
17393 const char *include_name_to_compare = include_name;
17394 const char *dir_name = NULL;
17395 const char *pst_filename;
17396 char *copied_name = NULL;
17397 int file_is_pst;
17398
17399 if (fe.dir_index)
17400 dir_name = lh->include_dirs[fe.dir_index - 1];
17401
17402 if (!IS_ABSOLUTE_PATH (include_name)
17403 && (dir_name != NULL || comp_dir != NULL))
17404 {
17405 /* Avoid creating a duplicate psymtab for PST.
17406 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17407 Before we do the comparison, however, we need to account
17408 for DIR_NAME and COMP_DIR.
17409 First prepend dir_name (if non-NULL). If we still don't
17410 have an absolute path prepend comp_dir (if non-NULL).
17411 However, the directory we record in the include-file's
17412 psymtab does not contain COMP_DIR (to match the
17413 corresponding symtab(s)).
17414
17415 Example:
17416
17417 bash$ cd /tmp
17418 bash$ gcc -g ./hello.c
17419 include_name = "hello.c"
17420 dir_name = "."
17421 DW_AT_comp_dir = comp_dir = "/tmp"
17422 DW_AT_name = "./hello.c"
17423
17424 */
17425
17426 if (dir_name != NULL)
17427 {
17428 char *tem = concat (dir_name, SLASH_STRING,
17429 include_name, (char *)NULL);
17430
17431 make_cleanup (xfree, tem);
17432 include_name = tem;
17433 include_name_to_compare = include_name;
17434 }
17435 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17436 {
17437 char *tem = concat (comp_dir, SLASH_STRING,
17438 include_name, (char *)NULL);
17439
17440 make_cleanup (xfree, tem);
17441 include_name_to_compare = tem;
17442 }
17443 }
17444
17445 pst_filename = pst->filename;
17446 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17447 {
17448 copied_name = concat (pst->dirname, SLASH_STRING,
17449 pst_filename, (char *)NULL);
17450 pst_filename = copied_name;
17451 }
17452
17453 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17454
17455 if (copied_name != NULL)
17456 xfree (copied_name);
17457
17458 if (file_is_pst)
17459 return NULL;
17460 return include_name;
17461 }
17462
17463 /* Ignore this record_line request. */
17464
17465 static void
17466 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17467 {
17468 return;
17469 }
17470
17471 /* Return non-zero if we should add LINE to the line number table.
17472 LINE is the line to add, LAST_LINE is the last line that was added,
17473 LAST_SUBFILE is the subfile for LAST_LINE.
17474 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17475 had a non-zero discriminator.
17476
17477 We have to be careful in the presence of discriminators.
17478 E.g., for this line:
17479
17480 for (i = 0; i < 100000; i++);
17481
17482 clang can emit four line number entries for that one line,
17483 each with a different discriminator.
17484 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17485
17486 However, we want gdb to coalesce all four entries into one.
17487 Otherwise the user could stepi into the middle of the line and
17488 gdb would get confused about whether the pc really was in the
17489 middle of the line.
17490
17491 Things are further complicated by the fact that two consecutive
17492 line number entries for the same line is a heuristic used by gcc
17493 to denote the end of the prologue. So we can't just discard duplicate
17494 entries, we have to be selective about it. The heuristic we use is
17495 that we only collapse consecutive entries for the same line if at least
17496 one of those entries has a non-zero discriminator. PR 17276.
17497
17498 Note: Addresses in the line number state machine can never go backwards
17499 within one sequence, thus this coalescing is ok. */
17500
17501 static int
17502 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17503 int line_has_non_zero_discriminator,
17504 struct subfile *last_subfile)
17505 {
17506 if (current_subfile != last_subfile)
17507 return 1;
17508 if (line != last_line)
17509 return 1;
17510 /* Same line for the same file that we've seen already.
17511 As a last check, for pr 17276, only record the line if the line
17512 has never had a non-zero discriminator. */
17513 if (!line_has_non_zero_discriminator)
17514 return 1;
17515 return 0;
17516 }
17517
17518 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17519 in the line table of subfile SUBFILE. */
17520
17521 static void
17522 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17523 unsigned int line, CORE_ADDR address,
17524 record_line_ftype p_record_line)
17525 {
17526 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17527
17528 (*p_record_line) (subfile, line, addr);
17529 }
17530
17531 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17532 Mark the end of a set of line number records.
17533 The arguments are the same as for dwarf_record_line.
17534 If SUBFILE is NULL the request is ignored. */
17535
17536 static void
17537 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17538 CORE_ADDR address, record_line_ftype p_record_line)
17539 {
17540 if (subfile != NULL)
17541 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17542 }
17543
17544 /* Subroutine of dwarf_decode_lines to simplify it.
17545 Process the line number information in LH. */
17546
17547 static void
17548 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17549 const int decode_for_pst_p, CORE_ADDR lowpc)
17550 {
17551 const gdb_byte *line_ptr, *extended_end;
17552 const gdb_byte *line_end;
17553 unsigned int bytes_read, extended_len;
17554 unsigned char op_code, extended_op;
17555 CORE_ADDR baseaddr;
17556 struct objfile *objfile = cu->objfile;
17557 bfd *abfd = objfile->obfd;
17558 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17559 struct subfile *last_subfile = NULL;
17560 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17561 = record_line;
17562
17563 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17564
17565 line_ptr = lh->statement_program_start;
17566 line_end = lh->statement_program_end;
17567
17568 /* Read the statement sequences until there's nothing left. */
17569 while (line_ptr < line_end)
17570 {
17571 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17572 on the initial 0 address as if there was a line entry for it
17573 so that the backend has a chance to adjust it and also record
17574 it in case it needs it. This is currently used by MIPS code,
17575 cf. `mips_adjust_dwarf2_line'. */
17576 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17577 unsigned int file = 1;
17578 unsigned int line = 1;
17579 int is_stmt = lh->default_is_stmt;
17580 int end_sequence = 0;
17581 unsigned char op_index = 0;
17582 unsigned int discriminator = 0;
17583 /* The last line number that was recorded, used to coalesce
17584 consecutive entries for the same line. This can happen, for
17585 example, when discriminators are present. PR 17276. */
17586 unsigned int last_line = 0;
17587 int line_has_non_zero_discriminator = 0;
17588
17589 if (!decode_for_pst_p && lh->num_file_names >= file)
17590 {
17591 /* Start a subfile for the current file of the state machine. */
17592 /* lh->include_dirs and lh->file_names are 0-based, but the
17593 directory and file name numbers in the statement program
17594 are 1-based. */
17595 struct file_entry *fe = &lh->file_names[file - 1];
17596 const char *dir = NULL;
17597
17598 if (fe->dir_index)
17599 dir = lh->include_dirs[fe->dir_index - 1];
17600
17601 dwarf2_start_subfile (fe->name, dir);
17602 }
17603
17604 /* Decode the table. */
17605 while (!end_sequence)
17606 {
17607 op_code = read_1_byte (abfd, line_ptr);
17608 line_ptr += 1;
17609 if (line_ptr > line_end)
17610 {
17611 dwarf2_debug_line_missing_end_sequence_complaint ();
17612 break;
17613 }
17614
17615 if (op_code >= lh->opcode_base)
17616 {
17617 /* Special opcode. */
17618 unsigned char adj_opcode;
17619 CORE_ADDR addr_adj;
17620 int line_delta;
17621
17622 adj_opcode = op_code - lh->opcode_base;
17623 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17624 / lh->maximum_ops_per_instruction)
17625 * lh->minimum_instruction_length);
17626 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17627 op_index = ((op_index + (adj_opcode / lh->line_range))
17628 % lh->maximum_ops_per_instruction);
17629 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17630 line += line_delta;
17631 if (line_delta != 0)
17632 line_has_non_zero_discriminator = discriminator != 0;
17633 if (lh->num_file_names < file || file == 0)
17634 dwarf2_debug_line_missing_file_complaint ();
17635 /* For now we ignore lines not starting on an
17636 instruction boundary. */
17637 else if (op_index == 0)
17638 {
17639 lh->file_names[file - 1].included_p = 1;
17640 if (!decode_for_pst_p && is_stmt)
17641 {
17642 if (last_subfile != current_subfile)
17643 {
17644 dwarf_finish_line (gdbarch, last_subfile,
17645 address, p_record_line);
17646 }
17647 if (dwarf_record_line_p (line, last_line,
17648 line_has_non_zero_discriminator,
17649 last_subfile))
17650 {
17651 dwarf_record_line (gdbarch, current_subfile,
17652 line, address, p_record_line);
17653 }
17654 last_subfile = current_subfile;
17655 last_line = line;
17656 }
17657 }
17658 discriminator = 0;
17659 }
17660 else switch (op_code)
17661 {
17662 case DW_LNS_extended_op:
17663 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17664 &bytes_read);
17665 line_ptr += bytes_read;
17666 extended_end = line_ptr + extended_len;
17667 extended_op = read_1_byte (abfd, line_ptr);
17668 line_ptr += 1;
17669 switch (extended_op)
17670 {
17671 case DW_LNE_end_sequence:
17672 p_record_line = record_line;
17673 end_sequence = 1;
17674 break;
17675 case DW_LNE_set_address:
17676 address = read_address (abfd, line_ptr, cu, &bytes_read);
17677
17678 /* If address < lowpc then it's not a usable value, it's
17679 outside the pc range of the CU. However, we restrict
17680 the test to only address values of zero to preserve
17681 GDB's previous behaviour which is to handle the specific
17682 case of a function being GC'd by the linker. */
17683 if (address == 0 && address < lowpc)
17684 {
17685 /* This line table is for a function which has been
17686 GCd by the linker. Ignore it. PR gdb/12528 */
17687
17688 long line_offset
17689 = line_ptr - get_debug_line_section (cu)->buffer;
17690
17691 complaint (&symfile_complaints,
17692 _(".debug_line address at offset 0x%lx is 0 "
17693 "[in module %s]"),
17694 line_offset, objfile_name (objfile));
17695 p_record_line = noop_record_line;
17696 /* Note: p_record_line is left as noop_record_line
17697 until we see DW_LNE_end_sequence. */
17698 }
17699
17700 op_index = 0;
17701 line_ptr += bytes_read;
17702 address += baseaddr;
17703 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17704 break;
17705 case DW_LNE_define_file:
17706 {
17707 const char *cur_file;
17708 unsigned int dir_index, mod_time, length;
17709
17710 cur_file = read_direct_string (abfd, line_ptr,
17711 &bytes_read);
17712 line_ptr += bytes_read;
17713 dir_index =
17714 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17715 line_ptr += bytes_read;
17716 mod_time =
17717 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17718 line_ptr += bytes_read;
17719 length =
17720 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17721 line_ptr += bytes_read;
17722 add_file_name (lh, cur_file, dir_index, mod_time, length);
17723 }
17724 break;
17725 case DW_LNE_set_discriminator:
17726 /* The discriminator is not interesting to the debugger;
17727 just ignore it. We still need to check its value though:
17728 if there are consecutive entries for the same
17729 (non-prologue) line we want to coalesce them.
17730 PR 17276. */
17731 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17732 &bytes_read);
17733 line_has_non_zero_discriminator |= discriminator != 0;
17734 line_ptr += bytes_read;
17735 break;
17736 default:
17737 complaint (&symfile_complaints,
17738 _("mangled .debug_line section"));
17739 return;
17740 }
17741 /* Make sure that we parsed the extended op correctly. If e.g.
17742 we expected a different address size than the producer used,
17743 we may have read the wrong number of bytes. */
17744 if (line_ptr != extended_end)
17745 {
17746 complaint (&symfile_complaints,
17747 _("mangled .debug_line section"));
17748 return;
17749 }
17750 break;
17751 case DW_LNS_copy:
17752 if (lh->num_file_names < file || file == 0)
17753 dwarf2_debug_line_missing_file_complaint ();
17754 else
17755 {
17756 lh->file_names[file - 1].included_p = 1;
17757 if (!decode_for_pst_p && is_stmt)
17758 {
17759 if (last_subfile != current_subfile)
17760 {
17761 dwarf_finish_line (gdbarch, last_subfile,
17762 address, p_record_line);
17763 }
17764 if (dwarf_record_line_p (line, last_line,
17765 line_has_non_zero_discriminator,
17766 last_subfile))
17767 {
17768 dwarf_record_line (gdbarch, current_subfile,
17769 line, address, p_record_line);
17770 }
17771 last_subfile = current_subfile;
17772 last_line = line;
17773 }
17774 }
17775 discriminator = 0;
17776 break;
17777 case DW_LNS_advance_pc:
17778 {
17779 CORE_ADDR adjust
17780 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17781 CORE_ADDR addr_adj;
17782
17783 addr_adj = (((op_index + adjust)
17784 / lh->maximum_ops_per_instruction)
17785 * lh->minimum_instruction_length);
17786 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17787 op_index = ((op_index + adjust)
17788 % lh->maximum_ops_per_instruction);
17789 line_ptr += bytes_read;
17790 }
17791 break;
17792 case DW_LNS_advance_line:
17793 {
17794 int line_delta
17795 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17796
17797 line += line_delta;
17798 if (line_delta != 0)
17799 line_has_non_zero_discriminator = discriminator != 0;
17800 line_ptr += bytes_read;
17801 }
17802 break;
17803 case DW_LNS_set_file:
17804 {
17805 /* The arrays lh->include_dirs and lh->file_names are
17806 0-based, but the directory and file name numbers in
17807 the statement program are 1-based. */
17808 struct file_entry *fe;
17809 const char *dir = NULL;
17810
17811 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17812 line_ptr += bytes_read;
17813 if (lh->num_file_names < file || file == 0)
17814 dwarf2_debug_line_missing_file_complaint ();
17815 else
17816 {
17817 fe = &lh->file_names[file - 1];
17818 if (fe->dir_index)
17819 dir = lh->include_dirs[fe->dir_index - 1];
17820 if (!decode_for_pst_p)
17821 {
17822 last_subfile = current_subfile;
17823 line_has_non_zero_discriminator = discriminator != 0;
17824 dwarf2_start_subfile (fe->name, dir);
17825 }
17826 }
17827 }
17828 break;
17829 case DW_LNS_set_column:
17830 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17831 line_ptr += bytes_read;
17832 break;
17833 case DW_LNS_negate_stmt:
17834 is_stmt = (!is_stmt);
17835 break;
17836 case DW_LNS_set_basic_block:
17837 break;
17838 /* Add to the address register of the state machine the
17839 address increment value corresponding to special opcode
17840 255. I.e., this value is scaled by the minimum
17841 instruction length since special opcode 255 would have
17842 scaled the increment. */
17843 case DW_LNS_const_add_pc:
17844 {
17845 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17846 CORE_ADDR addr_adj;
17847
17848 addr_adj = (((op_index + adjust)
17849 / lh->maximum_ops_per_instruction)
17850 * lh->minimum_instruction_length);
17851 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17852 op_index = ((op_index + adjust)
17853 % lh->maximum_ops_per_instruction);
17854 }
17855 break;
17856 case DW_LNS_fixed_advance_pc:
17857 {
17858 CORE_ADDR addr_adj;
17859
17860 addr_adj = read_2_bytes (abfd, line_ptr);
17861 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17862 op_index = 0;
17863 line_ptr += 2;
17864 }
17865 break;
17866 default:
17867 {
17868 /* Unknown standard opcode, ignore it. */
17869 int i;
17870
17871 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17872 {
17873 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17874 line_ptr += bytes_read;
17875 }
17876 }
17877 }
17878 }
17879 if (lh->num_file_names < file || file == 0)
17880 dwarf2_debug_line_missing_file_complaint ();
17881 else
17882 {
17883 lh->file_names[file - 1].included_p = 1;
17884 if (!decode_for_pst_p)
17885 {
17886 dwarf_finish_line (gdbarch, current_subfile, address,
17887 p_record_line);
17888 }
17889 }
17890 }
17891 }
17892
17893 /* Decode the Line Number Program (LNP) for the given line_header
17894 structure and CU. The actual information extracted and the type
17895 of structures created from the LNP depends on the value of PST.
17896
17897 1. If PST is NULL, then this procedure uses the data from the program
17898 to create all necessary symbol tables, and their linetables.
17899
17900 2. If PST is not NULL, this procedure reads the program to determine
17901 the list of files included by the unit represented by PST, and
17902 builds all the associated partial symbol tables.
17903
17904 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17905 It is used for relative paths in the line table.
17906 NOTE: When processing partial symtabs (pst != NULL),
17907 comp_dir == pst->dirname.
17908
17909 NOTE: It is important that psymtabs have the same file name (via strcmp)
17910 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17911 symtab we don't use it in the name of the psymtabs we create.
17912 E.g. expand_line_sal requires this when finding psymtabs to expand.
17913 A good testcase for this is mb-inline.exp.
17914
17915 LOWPC is the lowest address in CU (or 0 if not known).
17916
17917 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17918 for its PC<->lines mapping information. Otherwise only the filename
17919 table is read in. */
17920
17921 static void
17922 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17923 struct dwarf2_cu *cu, struct partial_symtab *pst,
17924 CORE_ADDR lowpc, int decode_mapping)
17925 {
17926 struct objfile *objfile = cu->objfile;
17927 const int decode_for_pst_p = (pst != NULL);
17928
17929 if (decode_mapping)
17930 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17931
17932 if (decode_for_pst_p)
17933 {
17934 int file_index;
17935
17936 /* Now that we're done scanning the Line Header Program, we can
17937 create the psymtab of each included file. */
17938 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17939 if (lh->file_names[file_index].included_p == 1)
17940 {
17941 const char *include_name =
17942 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17943 if (include_name != NULL)
17944 dwarf2_create_include_psymtab (include_name, pst, objfile);
17945 }
17946 }
17947 else
17948 {
17949 /* Make sure a symtab is created for every file, even files
17950 which contain only variables (i.e. no code with associated
17951 line numbers). */
17952 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17953 int i;
17954
17955 for (i = 0; i < lh->num_file_names; i++)
17956 {
17957 const char *dir = NULL;
17958 struct file_entry *fe;
17959
17960 fe = &lh->file_names[i];
17961 if (fe->dir_index)
17962 dir = lh->include_dirs[fe->dir_index - 1];
17963 dwarf2_start_subfile (fe->name, dir);
17964
17965 if (current_subfile->symtab == NULL)
17966 {
17967 current_subfile->symtab
17968 = allocate_symtab (cust, current_subfile->name);
17969 }
17970 fe->symtab = current_subfile->symtab;
17971 }
17972 }
17973 }
17974
17975 /* Start a subfile for DWARF. FILENAME is the name of the file and
17976 DIRNAME the name of the source directory which contains FILENAME
17977 or NULL if not known.
17978 This routine tries to keep line numbers from identical absolute and
17979 relative file names in a common subfile.
17980
17981 Using the `list' example from the GDB testsuite, which resides in
17982 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17983 of /srcdir/list0.c yields the following debugging information for list0.c:
17984
17985 DW_AT_name: /srcdir/list0.c
17986 DW_AT_comp_dir: /compdir
17987 files.files[0].name: list0.h
17988 files.files[0].dir: /srcdir
17989 files.files[1].name: list0.c
17990 files.files[1].dir: /srcdir
17991
17992 The line number information for list0.c has to end up in a single
17993 subfile, so that `break /srcdir/list0.c:1' works as expected.
17994 start_subfile will ensure that this happens provided that we pass the
17995 concatenation of files.files[1].dir and files.files[1].name as the
17996 subfile's name. */
17997
17998 static void
17999 dwarf2_start_subfile (const char *filename, const char *dirname)
18000 {
18001 char *copy = NULL;
18002
18003 /* In order not to lose the line information directory,
18004 we concatenate it to the filename when it makes sense.
18005 Note that the Dwarf3 standard says (speaking of filenames in line
18006 information): ``The directory index is ignored for file names
18007 that represent full path names''. Thus ignoring dirname in the
18008 `else' branch below isn't an issue. */
18009
18010 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18011 {
18012 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18013 filename = copy;
18014 }
18015
18016 start_subfile (filename);
18017
18018 if (copy != NULL)
18019 xfree (copy);
18020 }
18021
18022 /* Start a symtab for DWARF.
18023 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18024
18025 static struct compunit_symtab *
18026 dwarf2_start_symtab (struct dwarf2_cu *cu,
18027 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18028 {
18029 struct compunit_symtab *cust
18030 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18031
18032 record_debugformat ("DWARF 2");
18033 record_producer (cu->producer);
18034
18035 /* We assume that we're processing GCC output. */
18036 processing_gcc_compilation = 2;
18037
18038 cu->processing_has_namespace_info = 0;
18039
18040 return cust;
18041 }
18042
18043 static void
18044 var_decode_location (struct attribute *attr, struct symbol *sym,
18045 struct dwarf2_cu *cu)
18046 {
18047 struct objfile *objfile = cu->objfile;
18048 struct comp_unit_head *cu_header = &cu->header;
18049
18050 /* NOTE drow/2003-01-30: There used to be a comment and some special
18051 code here to turn a symbol with DW_AT_external and a
18052 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18053 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18054 with some versions of binutils) where shared libraries could have
18055 relocations against symbols in their debug information - the
18056 minimal symbol would have the right address, but the debug info
18057 would not. It's no longer necessary, because we will explicitly
18058 apply relocations when we read in the debug information now. */
18059
18060 /* A DW_AT_location attribute with no contents indicates that a
18061 variable has been optimized away. */
18062 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18063 {
18064 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18065 return;
18066 }
18067
18068 /* Handle one degenerate form of location expression specially, to
18069 preserve GDB's previous behavior when section offsets are
18070 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18071 then mark this symbol as LOC_STATIC. */
18072
18073 if (attr_form_is_block (attr)
18074 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18075 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18076 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18077 && (DW_BLOCK (attr)->size
18078 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18079 {
18080 unsigned int dummy;
18081
18082 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18083 SYMBOL_VALUE_ADDRESS (sym) =
18084 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18085 else
18086 SYMBOL_VALUE_ADDRESS (sym) =
18087 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18088 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18089 fixup_symbol_section (sym, objfile);
18090 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18091 SYMBOL_SECTION (sym));
18092 return;
18093 }
18094
18095 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18096 expression evaluator, and use LOC_COMPUTED only when necessary
18097 (i.e. when the value of a register or memory location is
18098 referenced, or a thread-local block, etc.). Then again, it might
18099 not be worthwhile. I'm assuming that it isn't unless performance
18100 or memory numbers show me otherwise. */
18101
18102 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18103
18104 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18105 cu->has_loclist = 1;
18106 }
18107
18108 /* Given a pointer to a DWARF information entry, figure out if we need
18109 to make a symbol table entry for it, and if so, create a new entry
18110 and return a pointer to it.
18111 If TYPE is NULL, determine symbol type from the die, otherwise
18112 used the passed type.
18113 If SPACE is not NULL, use it to hold the new symbol. If it is
18114 NULL, allocate a new symbol on the objfile's obstack. */
18115
18116 static struct symbol *
18117 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18118 struct symbol *space)
18119 {
18120 struct objfile *objfile = cu->objfile;
18121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18122 struct symbol *sym = NULL;
18123 const char *name;
18124 struct attribute *attr = NULL;
18125 struct attribute *attr2 = NULL;
18126 CORE_ADDR baseaddr;
18127 struct pending **list_to_add = NULL;
18128
18129 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18130
18131 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18132
18133 name = dwarf2_name (die, cu);
18134 if (name)
18135 {
18136 const char *linkagename;
18137 int suppress_add = 0;
18138
18139 if (space)
18140 sym = space;
18141 else
18142 sym = allocate_symbol (objfile);
18143 OBJSTAT (objfile, n_syms++);
18144
18145 /* Cache this symbol's name and the name's demangled form (if any). */
18146 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18147 linkagename = dwarf2_physname (name, die, cu);
18148 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18149
18150 /* Fortran does not have mangling standard and the mangling does differ
18151 between gfortran, iFort etc. */
18152 if (cu->language == language_fortran
18153 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18154 symbol_set_demangled_name (&(sym->ginfo),
18155 dwarf2_full_name (name, die, cu),
18156 NULL);
18157
18158 /* Default assumptions.
18159 Use the passed type or decode it from the die. */
18160 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18161 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18162 if (type != NULL)
18163 SYMBOL_TYPE (sym) = type;
18164 else
18165 SYMBOL_TYPE (sym) = die_type (die, cu);
18166 attr = dwarf2_attr (die,
18167 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18168 cu);
18169 if (attr)
18170 {
18171 SYMBOL_LINE (sym) = DW_UNSND (attr);
18172 }
18173
18174 attr = dwarf2_attr (die,
18175 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18176 cu);
18177 if (attr)
18178 {
18179 int file_index = DW_UNSND (attr);
18180
18181 if (cu->line_header == NULL
18182 || file_index > cu->line_header->num_file_names)
18183 complaint (&symfile_complaints,
18184 _("file index out of range"));
18185 else if (file_index > 0)
18186 {
18187 struct file_entry *fe;
18188
18189 fe = &cu->line_header->file_names[file_index - 1];
18190 symbol_set_symtab (sym, fe->symtab);
18191 }
18192 }
18193
18194 switch (die->tag)
18195 {
18196 case DW_TAG_label:
18197 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18198 if (attr)
18199 {
18200 CORE_ADDR addr;
18201
18202 addr = attr_value_as_address (attr);
18203 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18204 SYMBOL_VALUE_ADDRESS (sym) = addr;
18205 }
18206 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18207 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18208 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18209 add_symbol_to_list (sym, cu->list_in_scope);
18210 break;
18211 case DW_TAG_subprogram:
18212 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18213 finish_block. */
18214 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18215 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18216 if ((attr2 && (DW_UNSND (attr2) != 0))
18217 || cu->language == language_ada)
18218 {
18219 /* Subprograms marked external are stored as a global symbol.
18220 Ada subprograms, whether marked external or not, are always
18221 stored as a global symbol, because we want to be able to
18222 access them globally. For instance, we want to be able
18223 to break on a nested subprogram without having to
18224 specify the context. */
18225 list_to_add = &global_symbols;
18226 }
18227 else
18228 {
18229 list_to_add = cu->list_in_scope;
18230 }
18231 break;
18232 case DW_TAG_inlined_subroutine:
18233 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18234 finish_block. */
18235 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18236 SYMBOL_INLINED (sym) = 1;
18237 list_to_add = cu->list_in_scope;
18238 break;
18239 case DW_TAG_template_value_param:
18240 suppress_add = 1;
18241 /* Fall through. */
18242 case DW_TAG_constant:
18243 case DW_TAG_variable:
18244 case DW_TAG_member:
18245 /* Compilation with minimal debug info may result in
18246 variables with missing type entries. Change the
18247 misleading `void' type to something sensible. */
18248 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18249 SYMBOL_TYPE (sym)
18250 = objfile_type (objfile)->nodebug_data_symbol;
18251
18252 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18253 /* In the case of DW_TAG_member, we should only be called for
18254 static const members. */
18255 if (die->tag == DW_TAG_member)
18256 {
18257 /* dwarf2_add_field uses die_is_declaration,
18258 so we do the same. */
18259 gdb_assert (die_is_declaration (die, cu));
18260 gdb_assert (attr);
18261 }
18262 if (attr)
18263 {
18264 dwarf2_const_value (attr, sym, cu);
18265 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18266 if (!suppress_add)
18267 {
18268 if (attr2 && (DW_UNSND (attr2) != 0))
18269 list_to_add = &global_symbols;
18270 else
18271 list_to_add = cu->list_in_scope;
18272 }
18273 break;
18274 }
18275 attr = dwarf2_attr (die, DW_AT_location, cu);
18276 if (attr)
18277 {
18278 var_decode_location (attr, sym, cu);
18279 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18280
18281 /* Fortran explicitly imports any global symbols to the local
18282 scope by DW_TAG_common_block. */
18283 if (cu->language == language_fortran && die->parent
18284 && die->parent->tag == DW_TAG_common_block)
18285 attr2 = NULL;
18286
18287 if (SYMBOL_CLASS (sym) == LOC_STATIC
18288 && SYMBOL_VALUE_ADDRESS (sym) == 0
18289 && !dwarf2_per_objfile->has_section_at_zero)
18290 {
18291 /* When a static variable is eliminated by the linker,
18292 the corresponding debug information is not stripped
18293 out, but the variable address is set to null;
18294 do not add such variables into symbol table. */
18295 }
18296 else if (attr2 && (DW_UNSND (attr2) != 0))
18297 {
18298 /* Workaround gfortran PR debug/40040 - it uses
18299 DW_AT_location for variables in -fPIC libraries which may
18300 get overriden by other libraries/executable and get
18301 a different address. Resolve it by the minimal symbol
18302 which may come from inferior's executable using copy
18303 relocation. Make this workaround only for gfortran as for
18304 other compilers GDB cannot guess the minimal symbol
18305 Fortran mangling kind. */
18306 if (cu->language == language_fortran && die->parent
18307 && die->parent->tag == DW_TAG_module
18308 && cu->producer
18309 && startswith (cu->producer, "GNU Fortran "))
18310 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18311
18312 /* A variable with DW_AT_external is never static,
18313 but it may be block-scoped. */
18314 list_to_add = (cu->list_in_scope == &file_symbols
18315 ? &global_symbols : cu->list_in_scope);
18316 }
18317 else
18318 list_to_add = cu->list_in_scope;
18319 }
18320 else
18321 {
18322 /* We do not know the address of this symbol.
18323 If it is an external symbol and we have type information
18324 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18325 The address of the variable will then be determined from
18326 the minimal symbol table whenever the variable is
18327 referenced. */
18328 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18329
18330 /* Fortran explicitly imports any global symbols to the local
18331 scope by DW_TAG_common_block. */
18332 if (cu->language == language_fortran && die->parent
18333 && die->parent->tag == DW_TAG_common_block)
18334 {
18335 /* SYMBOL_CLASS doesn't matter here because
18336 read_common_block is going to reset it. */
18337 if (!suppress_add)
18338 list_to_add = cu->list_in_scope;
18339 }
18340 else if (attr2 && (DW_UNSND (attr2) != 0)
18341 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18342 {
18343 /* A variable with DW_AT_external is never static, but it
18344 may be block-scoped. */
18345 list_to_add = (cu->list_in_scope == &file_symbols
18346 ? &global_symbols : cu->list_in_scope);
18347
18348 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18349 }
18350 else if (!die_is_declaration (die, cu))
18351 {
18352 /* Use the default LOC_OPTIMIZED_OUT class. */
18353 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18354 if (!suppress_add)
18355 list_to_add = cu->list_in_scope;
18356 }
18357 }
18358 break;
18359 case DW_TAG_formal_parameter:
18360 /* If we are inside a function, mark this as an argument. If
18361 not, we might be looking at an argument to an inlined function
18362 when we do not have enough information to show inlined frames;
18363 pretend it's a local variable in that case so that the user can
18364 still see it. */
18365 if (context_stack_depth > 0
18366 && context_stack[context_stack_depth - 1].name != NULL)
18367 SYMBOL_IS_ARGUMENT (sym) = 1;
18368 attr = dwarf2_attr (die, DW_AT_location, cu);
18369 if (attr)
18370 {
18371 var_decode_location (attr, sym, cu);
18372 }
18373 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18374 if (attr)
18375 {
18376 dwarf2_const_value (attr, sym, cu);
18377 }
18378
18379 list_to_add = cu->list_in_scope;
18380 break;
18381 case DW_TAG_unspecified_parameters:
18382 /* From varargs functions; gdb doesn't seem to have any
18383 interest in this information, so just ignore it for now.
18384 (FIXME?) */
18385 break;
18386 case DW_TAG_template_type_param:
18387 suppress_add = 1;
18388 /* Fall through. */
18389 case DW_TAG_class_type:
18390 case DW_TAG_interface_type:
18391 case DW_TAG_structure_type:
18392 case DW_TAG_union_type:
18393 case DW_TAG_set_type:
18394 case DW_TAG_enumeration_type:
18395 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18396 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18397
18398 {
18399 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18400 really ever be static objects: otherwise, if you try
18401 to, say, break of a class's method and you're in a file
18402 which doesn't mention that class, it won't work unless
18403 the check for all static symbols in lookup_symbol_aux
18404 saves you. See the OtherFileClass tests in
18405 gdb.c++/namespace.exp. */
18406
18407 if (!suppress_add)
18408 {
18409 list_to_add = (cu->list_in_scope == &file_symbols
18410 && (cu->language == language_cplus
18411 || cu->language == language_java)
18412 ? &global_symbols : cu->list_in_scope);
18413
18414 /* The semantics of C++ state that "struct foo {
18415 ... }" also defines a typedef for "foo". A Java
18416 class declaration also defines a typedef for the
18417 class. */
18418 if (cu->language == language_cplus
18419 || cu->language == language_java
18420 || cu->language == language_ada)
18421 {
18422 /* The symbol's name is already allocated along
18423 with this objfile, so we don't need to
18424 duplicate it for the type. */
18425 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18426 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18427 }
18428 }
18429 }
18430 break;
18431 case DW_TAG_typedef:
18432 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18433 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18434 list_to_add = cu->list_in_scope;
18435 break;
18436 case DW_TAG_base_type:
18437 case DW_TAG_subrange_type:
18438 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18439 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18440 list_to_add = cu->list_in_scope;
18441 break;
18442 case DW_TAG_enumerator:
18443 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18444 if (attr)
18445 {
18446 dwarf2_const_value (attr, sym, cu);
18447 }
18448 {
18449 /* NOTE: carlton/2003-11-10: See comment above in the
18450 DW_TAG_class_type, etc. block. */
18451
18452 list_to_add = (cu->list_in_scope == &file_symbols
18453 && (cu->language == language_cplus
18454 || cu->language == language_java)
18455 ? &global_symbols : cu->list_in_scope);
18456 }
18457 break;
18458 case DW_TAG_imported_declaration:
18459 case DW_TAG_namespace:
18460 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18461 list_to_add = &global_symbols;
18462 break;
18463 case DW_TAG_module:
18464 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18465 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18466 list_to_add = &global_symbols;
18467 break;
18468 case DW_TAG_common_block:
18469 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18470 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18471 add_symbol_to_list (sym, cu->list_in_scope);
18472 break;
18473 default:
18474 /* Not a tag we recognize. Hopefully we aren't processing
18475 trash data, but since we must specifically ignore things
18476 we don't recognize, there is nothing else we should do at
18477 this point. */
18478 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18479 dwarf_tag_name (die->tag));
18480 break;
18481 }
18482
18483 if (suppress_add)
18484 {
18485 sym->hash_next = objfile->template_symbols;
18486 objfile->template_symbols = sym;
18487 list_to_add = NULL;
18488 }
18489
18490 if (list_to_add != NULL)
18491 add_symbol_to_list (sym, list_to_add);
18492
18493 /* For the benefit of old versions of GCC, check for anonymous
18494 namespaces based on the demangled name. */
18495 if (!cu->processing_has_namespace_info
18496 && cu->language == language_cplus)
18497 cp_scan_for_anonymous_namespaces (sym, objfile);
18498 }
18499 return (sym);
18500 }
18501
18502 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18503
18504 static struct symbol *
18505 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18506 {
18507 return new_symbol_full (die, type, cu, NULL);
18508 }
18509
18510 /* Given an attr with a DW_FORM_dataN value in host byte order,
18511 zero-extend it as appropriate for the symbol's type. The DWARF
18512 standard (v4) is not entirely clear about the meaning of using
18513 DW_FORM_dataN for a constant with a signed type, where the type is
18514 wider than the data. The conclusion of a discussion on the DWARF
18515 list was that this is unspecified. We choose to always zero-extend
18516 because that is the interpretation long in use by GCC. */
18517
18518 static gdb_byte *
18519 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18520 struct dwarf2_cu *cu, LONGEST *value, int bits)
18521 {
18522 struct objfile *objfile = cu->objfile;
18523 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18524 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18525 LONGEST l = DW_UNSND (attr);
18526
18527 if (bits < sizeof (*value) * 8)
18528 {
18529 l &= ((LONGEST) 1 << bits) - 1;
18530 *value = l;
18531 }
18532 else if (bits == sizeof (*value) * 8)
18533 *value = l;
18534 else
18535 {
18536 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18537 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18538 return bytes;
18539 }
18540
18541 return NULL;
18542 }
18543
18544 /* Read a constant value from an attribute. Either set *VALUE, or if
18545 the value does not fit in *VALUE, set *BYTES - either already
18546 allocated on the objfile obstack, or newly allocated on OBSTACK,
18547 or, set *BATON, if we translated the constant to a location
18548 expression. */
18549
18550 static void
18551 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18552 const char *name, struct obstack *obstack,
18553 struct dwarf2_cu *cu,
18554 LONGEST *value, const gdb_byte **bytes,
18555 struct dwarf2_locexpr_baton **baton)
18556 {
18557 struct objfile *objfile = cu->objfile;
18558 struct comp_unit_head *cu_header = &cu->header;
18559 struct dwarf_block *blk;
18560 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18561 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18562
18563 *value = 0;
18564 *bytes = NULL;
18565 *baton = NULL;
18566
18567 switch (attr->form)
18568 {
18569 case DW_FORM_addr:
18570 case DW_FORM_GNU_addr_index:
18571 {
18572 gdb_byte *data;
18573
18574 if (TYPE_LENGTH (type) != cu_header->addr_size)
18575 dwarf2_const_value_length_mismatch_complaint (name,
18576 cu_header->addr_size,
18577 TYPE_LENGTH (type));
18578 /* Symbols of this form are reasonably rare, so we just
18579 piggyback on the existing location code rather than writing
18580 a new implementation of symbol_computed_ops. */
18581 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18582 (*baton)->per_cu = cu->per_cu;
18583 gdb_assert ((*baton)->per_cu);
18584
18585 (*baton)->size = 2 + cu_header->addr_size;
18586 data = obstack_alloc (obstack, (*baton)->size);
18587 (*baton)->data = data;
18588
18589 data[0] = DW_OP_addr;
18590 store_unsigned_integer (&data[1], cu_header->addr_size,
18591 byte_order, DW_ADDR (attr));
18592 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18593 }
18594 break;
18595 case DW_FORM_string:
18596 case DW_FORM_strp:
18597 case DW_FORM_GNU_str_index:
18598 case DW_FORM_GNU_strp_alt:
18599 /* DW_STRING is already allocated on the objfile obstack, point
18600 directly to it. */
18601 *bytes = (const gdb_byte *) DW_STRING (attr);
18602 break;
18603 case DW_FORM_block1:
18604 case DW_FORM_block2:
18605 case DW_FORM_block4:
18606 case DW_FORM_block:
18607 case DW_FORM_exprloc:
18608 blk = DW_BLOCK (attr);
18609 if (TYPE_LENGTH (type) != blk->size)
18610 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18611 TYPE_LENGTH (type));
18612 *bytes = blk->data;
18613 break;
18614
18615 /* The DW_AT_const_value attributes are supposed to carry the
18616 symbol's value "represented as it would be on the target
18617 architecture." By the time we get here, it's already been
18618 converted to host endianness, so we just need to sign- or
18619 zero-extend it as appropriate. */
18620 case DW_FORM_data1:
18621 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18622 break;
18623 case DW_FORM_data2:
18624 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18625 break;
18626 case DW_FORM_data4:
18627 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18628 break;
18629 case DW_FORM_data8:
18630 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18631 break;
18632
18633 case DW_FORM_sdata:
18634 *value = DW_SND (attr);
18635 break;
18636
18637 case DW_FORM_udata:
18638 *value = DW_UNSND (attr);
18639 break;
18640
18641 default:
18642 complaint (&symfile_complaints,
18643 _("unsupported const value attribute form: '%s'"),
18644 dwarf_form_name (attr->form));
18645 *value = 0;
18646 break;
18647 }
18648 }
18649
18650
18651 /* Copy constant value from an attribute to a symbol. */
18652
18653 static void
18654 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18655 struct dwarf2_cu *cu)
18656 {
18657 struct objfile *objfile = cu->objfile;
18658 struct comp_unit_head *cu_header = &cu->header;
18659 LONGEST value;
18660 const gdb_byte *bytes;
18661 struct dwarf2_locexpr_baton *baton;
18662
18663 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18664 SYMBOL_PRINT_NAME (sym),
18665 &objfile->objfile_obstack, cu,
18666 &value, &bytes, &baton);
18667
18668 if (baton != NULL)
18669 {
18670 SYMBOL_LOCATION_BATON (sym) = baton;
18671 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18672 }
18673 else if (bytes != NULL)
18674 {
18675 SYMBOL_VALUE_BYTES (sym) = bytes;
18676 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18677 }
18678 else
18679 {
18680 SYMBOL_VALUE (sym) = value;
18681 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18682 }
18683 }
18684
18685 /* Return the type of the die in question using its DW_AT_type attribute. */
18686
18687 static struct type *
18688 die_type (struct die_info *die, struct dwarf2_cu *cu)
18689 {
18690 struct attribute *type_attr;
18691
18692 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18693 if (!type_attr)
18694 {
18695 /* A missing DW_AT_type represents a void type. */
18696 return objfile_type (cu->objfile)->builtin_void;
18697 }
18698
18699 return lookup_die_type (die, type_attr, cu);
18700 }
18701
18702 /* True iff CU's producer generates GNAT Ada auxiliary information
18703 that allows to find parallel types through that information instead
18704 of having to do expensive parallel lookups by type name. */
18705
18706 static int
18707 need_gnat_info (struct dwarf2_cu *cu)
18708 {
18709 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18710 of GNAT produces this auxiliary information, without any indication
18711 that it is produced. Part of enhancing the FSF version of GNAT
18712 to produce that information will be to put in place an indicator
18713 that we can use in order to determine whether the descriptive type
18714 info is available or not. One suggestion that has been made is
18715 to use a new attribute, attached to the CU die. For now, assume
18716 that the descriptive type info is not available. */
18717 return 0;
18718 }
18719
18720 /* Return the auxiliary type of the die in question using its
18721 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18722 attribute is not present. */
18723
18724 static struct type *
18725 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18726 {
18727 struct attribute *type_attr;
18728
18729 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18730 if (!type_attr)
18731 return NULL;
18732
18733 return lookup_die_type (die, type_attr, cu);
18734 }
18735
18736 /* If DIE has a descriptive_type attribute, then set the TYPE's
18737 descriptive type accordingly. */
18738
18739 static void
18740 set_descriptive_type (struct type *type, struct die_info *die,
18741 struct dwarf2_cu *cu)
18742 {
18743 struct type *descriptive_type = die_descriptive_type (die, cu);
18744
18745 if (descriptive_type)
18746 {
18747 ALLOCATE_GNAT_AUX_TYPE (type);
18748 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18749 }
18750 }
18751
18752 /* Return the containing type of the die in question using its
18753 DW_AT_containing_type attribute. */
18754
18755 static struct type *
18756 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18757 {
18758 struct attribute *type_attr;
18759
18760 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18761 if (!type_attr)
18762 error (_("Dwarf Error: Problem turning containing type into gdb type "
18763 "[in module %s]"), objfile_name (cu->objfile));
18764
18765 return lookup_die_type (die, type_attr, cu);
18766 }
18767
18768 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18769
18770 static struct type *
18771 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18772 {
18773 struct objfile *objfile = dwarf2_per_objfile->objfile;
18774 char *message, *saved;
18775
18776 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18777 objfile_name (objfile),
18778 cu->header.offset.sect_off,
18779 die->offset.sect_off);
18780 saved = obstack_copy0 (&objfile->objfile_obstack,
18781 message, strlen (message));
18782 xfree (message);
18783
18784 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18785 }
18786
18787 /* Look up the type of DIE in CU using its type attribute ATTR.
18788 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18789 DW_AT_containing_type.
18790 If there is no type substitute an error marker. */
18791
18792 static struct type *
18793 lookup_die_type (struct die_info *die, const struct attribute *attr,
18794 struct dwarf2_cu *cu)
18795 {
18796 struct objfile *objfile = cu->objfile;
18797 struct type *this_type;
18798
18799 gdb_assert (attr->name == DW_AT_type
18800 || attr->name == DW_AT_GNAT_descriptive_type
18801 || attr->name == DW_AT_containing_type);
18802
18803 /* First see if we have it cached. */
18804
18805 if (attr->form == DW_FORM_GNU_ref_alt)
18806 {
18807 struct dwarf2_per_cu_data *per_cu;
18808 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18809
18810 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18811 this_type = get_die_type_at_offset (offset, per_cu);
18812 }
18813 else if (attr_form_is_ref (attr))
18814 {
18815 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18816
18817 this_type = get_die_type_at_offset (offset, cu->per_cu);
18818 }
18819 else if (attr->form == DW_FORM_ref_sig8)
18820 {
18821 ULONGEST signature = DW_SIGNATURE (attr);
18822
18823 return get_signatured_type (die, signature, cu);
18824 }
18825 else
18826 {
18827 complaint (&symfile_complaints,
18828 _("Dwarf Error: Bad type attribute %s in DIE"
18829 " at 0x%x [in module %s]"),
18830 dwarf_attr_name (attr->name), die->offset.sect_off,
18831 objfile_name (objfile));
18832 return build_error_marker_type (cu, die);
18833 }
18834
18835 /* If not cached we need to read it in. */
18836
18837 if (this_type == NULL)
18838 {
18839 struct die_info *type_die = NULL;
18840 struct dwarf2_cu *type_cu = cu;
18841
18842 if (attr_form_is_ref (attr))
18843 type_die = follow_die_ref (die, attr, &type_cu);
18844 if (type_die == NULL)
18845 return build_error_marker_type (cu, die);
18846 /* If we find the type now, it's probably because the type came
18847 from an inter-CU reference and the type's CU got expanded before
18848 ours. */
18849 this_type = read_type_die (type_die, type_cu);
18850 }
18851
18852 /* If we still don't have a type use an error marker. */
18853
18854 if (this_type == NULL)
18855 return build_error_marker_type (cu, die);
18856
18857 return this_type;
18858 }
18859
18860 /* Return the type in DIE, CU.
18861 Returns NULL for invalid types.
18862
18863 This first does a lookup in die_type_hash,
18864 and only reads the die in if necessary.
18865
18866 NOTE: This can be called when reading in partial or full symbols. */
18867
18868 static struct type *
18869 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18870 {
18871 struct type *this_type;
18872
18873 this_type = get_die_type (die, cu);
18874 if (this_type)
18875 return this_type;
18876
18877 return read_type_die_1 (die, cu);
18878 }
18879
18880 /* Read the type in DIE, CU.
18881 Returns NULL for invalid types. */
18882
18883 static struct type *
18884 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18885 {
18886 struct type *this_type = NULL;
18887
18888 switch (die->tag)
18889 {
18890 case DW_TAG_class_type:
18891 case DW_TAG_interface_type:
18892 case DW_TAG_structure_type:
18893 case DW_TAG_union_type:
18894 this_type = read_structure_type (die, cu);
18895 break;
18896 case DW_TAG_enumeration_type:
18897 this_type = read_enumeration_type (die, cu);
18898 break;
18899 case DW_TAG_subprogram:
18900 case DW_TAG_subroutine_type:
18901 case DW_TAG_inlined_subroutine:
18902 this_type = read_subroutine_type (die, cu);
18903 break;
18904 case DW_TAG_array_type:
18905 this_type = read_array_type (die, cu);
18906 break;
18907 case DW_TAG_set_type:
18908 this_type = read_set_type (die, cu);
18909 break;
18910 case DW_TAG_pointer_type:
18911 this_type = read_tag_pointer_type (die, cu);
18912 break;
18913 case DW_TAG_ptr_to_member_type:
18914 this_type = read_tag_ptr_to_member_type (die, cu);
18915 break;
18916 case DW_TAG_reference_type:
18917 this_type = read_tag_reference_type (die, cu);
18918 break;
18919 case DW_TAG_const_type:
18920 this_type = read_tag_const_type (die, cu);
18921 break;
18922 case DW_TAG_volatile_type:
18923 this_type = read_tag_volatile_type (die, cu);
18924 break;
18925 case DW_TAG_restrict_type:
18926 this_type = read_tag_restrict_type (die, cu);
18927 break;
18928 case DW_TAG_string_type:
18929 this_type = read_tag_string_type (die, cu);
18930 break;
18931 case DW_TAG_typedef:
18932 this_type = read_typedef (die, cu);
18933 break;
18934 case DW_TAG_subrange_type:
18935 this_type = read_subrange_type (die, cu);
18936 break;
18937 case DW_TAG_base_type:
18938 this_type = read_base_type (die, cu);
18939 break;
18940 case DW_TAG_unspecified_type:
18941 this_type = read_unspecified_type (die, cu);
18942 break;
18943 case DW_TAG_namespace:
18944 this_type = read_namespace_type (die, cu);
18945 break;
18946 case DW_TAG_module:
18947 this_type = read_module_type (die, cu);
18948 break;
18949 case DW_TAG_atomic_type:
18950 this_type = read_tag_atomic_type (die, cu);
18951 break;
18952 default:
18953 complaint (&symfile_complaints,
18954 _("unexpected tag in read_type_die: '%s'"),
18955 dwarf_tag_name (die->tag));
18956 break;
18957 }
18958
18959 return this_type;
18960 }
18961
18962 /* See if we can figure out if the class lives in a namespace. We do
18963 this by looking for a member function; its demangled name will
18964 contain namespace info, if there is any.
18965 Return the computed name or NULL.
18966 Space for the result is allocated on the objfile's obstack.
18967 This is the full-die version of guess_partial_die_structure_name.
18968 In this case we know DIE has no useful parent. */
18969
18970 static char *
18971 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18972 {
18973 struct die_info *spec_die;
18974 struct dwarf2_cu *spec_cu;
18975 struct die_info *child;
18976
18977 spec_cu = cu;
18978 spec_die = die_specification (die, &spec_cu);
18979 if (spec_die != NULL)
18980 {
18981 die = spec_die;
18982 cu = spec_cu;
18983 }
18984
18985 for (child = die->child;
18986 child != NULL;
18987 child = child->sibling)
18988 {
18989 if (child->tag == DW_TAG_subprogram)
18990 {
18991 struct attribute *attr;
18992
18993 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18994 if (attr == NULL)
18995 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18996 if (attr != NULL)
18997 {
18998 char *actual_name
18999 = language_class_name_from_physname (cu->language_defn,
19000 DW_STRING (attr));
19001 char *name = NULL;
19002
19003 if (actual_name != NULL)
19004 {
19005 const char *die_name = dwarf2_name (die, cu);
19006
19007 if (die_name != NULL
19008 && strcmp (die_name, actual_name) != 0)
19009 {
19010 /* Strip off the class name from the full name.
19011 We want the prefix. */
19012 int die_name_len = strlen (die_name);
19013 int actual_name_len = strlen (actual_name);
19014
19015 /* Test for '::' as a sanity check. */
19016 if (actual_name_len > die_name_len + 2
19017 && actual_name[actual_name_len
19018 - die_name_len - 1] == ':')
19019 name =
19020 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19021 actual_name,
19022 actual_name_len - die_name_len - 2);
19023 }
19024 }
19025 xfree (actual_name);
19026 return name;
19027 }
19028 }
19029 }
19030
19031 return NULL;
19032 }
19033
19034 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19035 prefix part in such case. See
19036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19037
19038 static char *
19039 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19040 {
19041 struct attribute *attr;
19042 char *base;
19043
19044 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19045 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19046 return NULL;
19047
19048 attr = dwarf2_attr (die, DW_AT_name, cu);
19049 if (attr != NULL && DW_STRING (attr) != NULL)
19050 return NULL;
19051
19052 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19053 if (attr == NULL)
19054 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19055 if (attr == NULL || DW_STRING (attr) == NULL)
19056 return NULL;
19057
19058 /* dwarf2_name had to be already called. */
19059 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19060
19061 /* Strip the base name, keep any leading namespaces/classes. */
19062 base = strrchr (DW_STRING (attr), ':');
19063 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19064 return "";
19065
19066 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19067 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19068 }
19069
19070 /* Return the name of the namespace/class that DIE is defined within,
19071 or "" if we can't tell. The caller should not xfree the result.
19072
19073 For example, if we're within the method foo() in the following
19074 code:
19075
19076 namespace N {
19077 class C {
19078 void foo () {
19079 }
19080 };
19081 }
19082
19083 then determine_prefix on foo's die will return "N::C". */
19084
19085 static const char *
19086 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19087 {
19088 struct die_info *parent, *spec_die;
19089 struct dwarf2_cu *spec_cu;
19090 struct type *parent_type;
19091 char *retval;
19092
19093 if (cu->language != language_cplus && cu->language != language_java
19094 && cu->language != language_fortran)
19095 return "";
19096
19097 retval = anonymous_struct_prefix (die, cu);
19098 if (retval)
19099 return retval;
19100
19101 /* We have to be careful in the presence of DW_AT_specification.
19102 For example, with GCC 3.4, given the code
19103
19104 namespace N {
19105 void foo() {
19106 // Definition of N::foo.
19107 }
19108 }
19109
19110 then we'll have a tree of DIEs like this:
19111
19112 1: DW_TAG_compile_unit
19113 2: DW_TAG_namespace // N
19114 3: DW_TAG_subprogram // declaration of N::foo
19115 4: DW_TAG_subprogram // definition of N::foo
19116 DW_AT_specification // refers to die #3
19117
19118 Thus, when processing die #4, we have to pretend that we're in
19119 the context of its DW_AT_specification, namely the contex of die
19120 #3. */
19121 spec_cu = cu;
19122 spec_die = die_specification (die, &spec_cu);
19123 if (spec_die == NULL)
19124 parent = die->parent;
19125 else
19126 {
19127 parent = spec_die->parent;
19128 cu = spec_cu;
19129 }
19130
19131 if (parent == NULL)
19132 return "";
19133 else if (parent->building_fullname)
19134 {
19135 const char *name;
19136 const char *parent_name;
19137
19138 /* It has been seen on RealView 2.2 built binaries,
19139 DW_TAG_template_type_param types actually _defined_ as
19140 children of the parent class:
19141
19142 enum E {};
19143 template class <class Enum> Class{};
19144 Class<enum E> class_e;
19145
19146 1: DW_TAG_class_type (Class)
19147 2: DW_TAG_enumeration_type (E)
19148 3: DW_TAG_enumerator (enum1:0)
19149 3: DW_TAG_enumerator (enum2:1)
19150 ...
19151 2: DW_TAG_template_type_param
19152 DW_AT_type DW_FORM_ref_udata (E)
19153
19154 Besides being broken debug info, it can put GDB into an
19155 infinite loop. Consider:
19156
19157 When we're building the full name for Class<E>, we'll start
19158 at Class, and go look over its template type parameters,
19159 finding E. We'll then try to build the full name of E, and
19160 reach here. We're now trying to build the full name of E,
19161 and look over the parent DIE for containing scope. In the
19162 broken case, if we followed the parent DIE of E, we'd again
19163 find Class, and once again go look at its template type
19164 arguments, etc., etc. Simply don't consider such parent die
19165 as source-level parent of this die (it can't be, the language
19166 doesn't allow it), and break the loop here. */
19167 name = dwarf2_name (die, cu);
19168 parent_name = dwarf2_name (parent, cu);
19169 complaint (&symfile_complaints,
19170 _("template param type '%s' defined within parent '%s'"),
19171 name ? name : "<unknown>",
19172 parent_name ? parent_name : "<unknown>");
19173 return "";
19174 }
19175 else
19176 switch (parent->tag)
19177 {
19178 case DW_TAG_namespace:
19179 parent_type = read_type_die (parent, cu);
19180 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19181 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19182 Work around this problem here. */
19183 if (cu->language == language_cplus
19184 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19185 return "";
19186 /* We give a name to even anonymous namespaces. */
19187 return TYPE_TAG_NAME (parent_type);
19188 case DW_TAG_class_type:
19189 case DW_TAG_interface_type:
19190 case DW_TAG_structure_type:
19191 case DW_TAG_union_type:
19192 case DW_TAG_module:
19193 parent_type = read_type_die (parent, cu);
19194 if (TYPE_TAG_NAME (parent_type) != NULL)
19195 return TYPE_TAG_NAME (parent_type);
19196 else
19197 /* An anonymous structure is only allowed non-static data
19198 members; no typedefs, no member functions, et cetera.
19199 So it does not need a prefix. */
19200 return "";
19201 case DW_TAG_compile_unit:
19202 case DW_TAG_partial_unit:
19203 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19204 if (cu->language == language_cplus
19205 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19206 && die->child != NULL
19207 && (die->tag == DW_TAG_class_type
19208 || die->tag == DW_TAG_structure_type
19209 || die->tag == DW_TAG_union_type))
19210 {
19211 char *name = guess_full_die_structure_name (die, cu);
19212 if (name != NULL)
19213 return name;
19214 }
19215 return "";
19216 case DW_TAG_enumeration_type:
19217 parent_type = read_type_die (parent, cu);
19218 if (TYPE_DECLARED_CLASS (parent_type))
19219 {
19220 if (TYPE_TAG_NAME (parent_type) != NULL)
19221 return TYPE_TAG_NAME (parent_type);
19222 return "";
19223 }
19224 /* Fall through. */
19225 default:
19226 return determine_prefix (parent, cu);
19227 }
19228 }
19229
19230 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19231 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19232 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19233 an obconcat, otherwise allocate storage for the result. The CU argument is
19234 used to determine the language and hence, the appropriate separator. */
19235
19236 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19237
19238 static char *
19239 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19240 int physname, struct dwarf2_cu *cu)
19241 {
19242 const char *lead = "";
19243 const char *sep;
19244
19245 if (suffix == NULL || suffix[0] == '\0'
19246 || prefix == NULL || prefix[0] == '\0')
19247 sep = "";
19248 else if (cu->language == language_java)
19249 sep = ".";
19250 else if (cu->language == language_fortran && physname)
19251 {
19252 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19253 DW_AT_MIPS_linkage_name is preferred and used instead. */
19254
19255 lead = "__";
19256 sep = "_MOD_";
19257 }
19258 else
19259 sep = "::";
19260
19261 if (prefix == NULL)
19262 prefix = "";
19263 if (suffix == NULL)
19264 suffix = "";
19265
19266 if (obs == NULL)
19267 {
19268 char *retval
19269 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19270
19271 strcpy (retval, lead);
19272 strcat (retval, prefix);
19273 strcat (retval, sep);
19274 strcat (retval, suffix);
19275 return retval;
19276 }
19277 else
19278 {
19279 /* We have an obstack. */
19280 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19281 }
19282 }
19283
19284 /* Return sibling of die, NULL if no sibling. */
19285
19286 static struct die_info *
19287 sibling_die (struct die_info *die)
19288 {
19289 return die->sibling;
19290 }
19291
19292 /* Get name of a die, return NULL if not found. */
19293
19294 static const char *
19295 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19296 struct obstack *obstack)
19297 {
19298 if (name && cu->language == language_cplus)
19299 {
19300 char *canon_name = cp_canonicalize_string (name);
19301
19302 if (canon_name != NULL)
19303 {
19304 if (strcmp (canon_name, name) != 0)
19305 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19306 xfree (canon_name);
19307 }
19308 }
19309
19310 return name;
19311 }
19312
19313 /* Get name of a die, return NULL if not found.
19314 Anonymous namespaces are converted to their magic string. */
19315
19316 static const char *
19317 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19318 {
19319 struct attribute *attr;
19320
19321 attr = dwarf2_attr (die, DW_AT_name, cu);
19322 if ((!attr || !DW_STRING (attr))
19323 && die->tag != DW_TAG_namespace
19324 && die->tag != DW_TAG_class_type
19325 && die->tag != DW_TAG_interface_type
19326 && die->tag != DW_TAG_structure_type
19327 && die->tag != DW_TAG_union_type)
19328 return NULL;
19329
19330 switch (die->tag)
19331 {
19332 case DW_TAG_compile_unit:
19333 case DW_TAG_partial_unit:
19334 /* Compilation units have a DW_AT_name that is a filename, not
19335 a source language identifier. */
19336 case DW_TAG_enumeration_type:
19337 case DW_TAG_enumerator:
19338 /* These tags always have simple identifiers already; no need
19339 to canonicalize them. */
19340 return DW_STRING (attr);
19341
19342 case DW_TAG_namespace:
19343 if (attr != NULL && DW_STRING (attr) != NULL)
19344 return DW_STRING (attr);
19345 return CP_ANONYMOUS_NAMESPACE_STR;
19346
19347 case DW_TAG_subprogram:
19348 /* Java constructors will all be named "<init>", so return
19349 the class name when we see this special case. */
19350 if (cu->language == language_java
19351 && DW_STRING (attr) != NULL
19352 && strcmp (DW_STRING (attr), "<init>") == 0)
19353 {
19354 struct dwarf2_cu *spec_cu = cu;
19355 struct die_info *spec_die;
19356
19357 /* GCJ will output '<init>' for Java constructor names.
19358 For this special case, return the name of the parent class. */
19359
19360 /* GCJ may output subprogram DIEs with AT_specification set.
19361 If so, use the name of the specified DIE. */
19362 spec_die = die_specification (die, &spec_cu);
19363 if (spec_die != NULL)
19364 return dwarf2_name (spec_die, spec_cu);
19365
19366 do
19367 {
19368 die = die->parent;
19369 if (die->tag == DW_TAG_class_type)
19370 return dwarf2_name (die, cu);
19371 }
19372 while (die->tag != DW_TAG_compile_unit
19373 && die->tag != DW_TAG_partial_unit);
19374 }
19375 break;
19376
19377 case DW_TAG_class_type:
19378 case DW_TAG_interface_type:
19379 case DW_TAG_structure_type:
19380 case DW_TAG_union_type:
19381 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19382 structures or unions. These were of the form "._%d" in GCC 4.1,
19383 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19384 and GCC 4.4. We work around this problem by ignoring these. */
19385 if (attr && DW_STRING (attr)
19386 && (startswith (DW_STRING (attr), "._")
19387 || startswith (DW_STRING (attr), "<anonymous")))
19388 return NULL;
19389
19390 /* GCC might emit a nameless typedef that has a linkage name. See
19391 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19392 if (!attr || DW_STRING (attr) == NULL)
19393 {
19394 char *demangled = NULL;
19395
19396 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19397 if (attr == NULL)
19398 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19399
19400 if (attr == NULL || DW_STRING (attr) == NULL)
19401 return NULL;
19402
19403 /* Avoid demangling DW_STRING (attr) the second time on a second
19404 call for the same DIE. */
19405 if (!DW_STRING_IS_CANONICAL (attr))
19406 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19407
19408 if (demangled)
19409 {
19410 char *base;
19411
19412 /* FIXME: we already did this for the partial symbol... */
19413 DW_STRING (attr)
19414 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19415 demangled, strlen (demangled));
19416 DW_STRING_IS_CANONICAL (attr) = 1;
19417 xfree (demangled);
19418
19419 /* Strip any leading namespaces/classes, keep only the base name.
19420 DW_AT_name for named DIEs does not contain the prefixes. */
19421 base = strrchr (DW_STRING (attr), ':');
19422 if (base && base > DW_STRING (attr) && base[-1] == ':')
19423 return &base[1];
19424 else
19425 return DW_STRING (attr);
19426 }
19427 }
19428 break;
19429
19430 default:
19431 break;
19432 }
19433
19434 if (!DW_STRING_IS_CANONICAL (attr))
19435 {
19436 DW_STRING (attr)
19437 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19438 &cu->objfile->per_bfd->storage_obstack);
19439 DW_STRING_IS_CANONICAL (attr) = 1;
19440 }
19441 return DW_STRING (attr);
19442 }
19443
19444 /* Return the die that this die in an extension of, or NULL if there
19445 is none. *EXT_CU is the CU containing DIE on input, and the CU
19446 containing the return value on output. */
19447
19448 static struct die_info *
19449 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19450 {
19451 struct attribute *attr;
19452
19453 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19454 if (attr == NULL)
19455 return NULL;
19456
19457 return follow_die_ref (die, attr, ext_cu);
19458 }
19459
19460 /* Convert a DIE tag into its string name. */
19461
19462 static const char *
19463 dwarf_tag_name (unsigned tag)
19464 {
19465 const char *name = get_DW_TAG_name (tag);
19466
19467 if (name == NULL)
19468 return "DW_TAG_<unknown>";
19469
19470 return name;
19471 }
19472
19473 /* Convert a DWARF attribute code into its string name. */
19474
19475 static const char *
19476 dwarf_attr_name (unsigned attr)
19477 {
19478 const char *name;
19479
19480 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19481 if (attr == DW_AT_MIPS_fde)
19482 return "DW_AT_MIPS_fde";
19483 #else
19484 if (attr == DW_AT_HP_block_index)
19485 return "DW_AT_HP_block_index";
19486 #endif
19487
19488 name = get_DW_AT_name (attr);
19489
19490 if (name == NULL)
19491 return "DW_AT_<unknown>";
19492
19493 return name;
19494 }
19495
19496 /* Convert a DWARF value form code into its string name. */
19497
19498 static const char *
19499 dwarf_form_name (unsigned form)
19500 {
19501 const char *name = get_DW_FORM_name (form);
19502
19503 if (name == NULL)
19504 return "DW_FORM_<unknown>";
19505
19506 return name;
19507 }
19508
19509 static char *
19510 dwarf_bool_name (unsigned mybool)
19511 {
19512 if (mybool)
19513 return "TRUE";
19514 else
19515 return "FALSE";
19516 }
19517
19518 /* Convert a DWARF type code into its string name. */
19519
19520 static const char *
19521 dwarf_type_encoding_name (unsigned enc)
19522 {
19523 const char *name = get_DW_ATE_name (enc);
19524
19525 if (name == NULL)
19526 return "DW_ATE_<unknown>";
19527
19528 return name;
19529 }
19530
19531 static void
19532 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19533 {
19534 unsigned int i;
19535
19536 print_spaces (indent, f);
19537 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19538 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19539
19540 if (die->parent != NULL)
19541 {
19542 print_spaces (indent, f);
19543 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19544 die->parent->offset.sect_off);
19545 }
19546
19547 print_spaces (indent, f);
19548 fprintf_unfiltered (f, " has children: %s\n",
19549 dwarf_bool_name (die->child != NULL));
19550
19551 print_spaces (indent, f);
19552 fprintf_unfiltered (f, " attributes:\n");
19553
19554 for (i = 0; i < die->num_attrs; ++i)
19555 {
19556 print_spaces (indent, f);
19557 fprintf_unfiltered (f, " %s (%s) ",
19558 dwarf_attr_name (die->attrs[i].name),
19559 dwarf_form_name (die->attrs[i].form));
19560
19561 switch (die->attrs[i].form)
19562 {
19563 case DW_FORM_addr:
19564 case DW_FORM_GNU_addr_index:
19565 fprintf_unfiltered (f, "address: ");
19566 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19567 break;
19568 case DW_FORM_block2:
19569 case DW_FORM_block4:
19570 case DW_FORM_block:
19571 case DW_FORM_block1:
19572 fprintf_unfiltered (f, "block: size %s",
19573 pulongest (DW_BLOCK (&die->attrs[i])->size));
19574 break;
19575 case DW_FORM_exprloc:
19576 fprintf_unfiltered (f, "expression: size %s",
19577 pulongest (DW_BLOCK (&die->attrs[i])->size));
19578 break;
19579 case DW_FORM_ref_addr:
19580 fprintf_unfiltered (f, "ref address: ");
19581 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19582 break;
19583 case DW_FORM_GNU_ref_alt:
19584 fprintf_unfiltered (f, "alt ref address: ");
19585 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19586 break;
19587 case DW_FORM_ref1:
19588 case DW_FORM_ref2:
19589 case DW_FORM_ref4:
19590 case DW_FORM_ref8:
19591 case DW_FORM_ref_udata:
19592 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19593 (long) (DW_UNSND (&die->attrs[i])));
19594 break;
19595 case DW_FORM_data1:
19596 case DW_FORM_data2:
19597 case DW_FORM_data4:
19598 case DW_FORM_data8:
19599 case DW_FORM_udata:
19600 case DW_FORM_sdata:
19601 fprintf_unfiltered (f, "constant: %s",
19602 pulongest (DW_UNSND (&die->attrs[i])));
19603 break;
19604 case DW_FORM_sec_offset:
19605 fprintf_unfiltered (f, "section offset: %s",
19606 pulongest (DW_UNSND (&die->attrs[i])));
19607 break;
19608 case DW_FORM_ref_sig8:
19609 fprintf_unfiltered (f, "signature: %s",
19610 hex_string (DW_SIGNATURE (&die->attrs[i])));
19611 break;
19612 case DW_FORM_string:
19613 case DW_FORM_strp:
19614 case DW_FORM_GNU_str_index:
19615 case DW_FORM_GNU_strp_alt:
19616 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19617 DW_STRING (&die->attrs[i])
19618 ? DW_STRING (&die->attrs[i]) : "",
19619 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19620 break;
19621 case DW_FORM_flag:
19622 if (DW_UNSND (&die->attrs[i]))
19623 fprintf_unfiltered (f, "flag: TRUE");
19624 else
19625 fprintf_unfiltered (f, "flag: FALSE");
19626 break;
19627 case DW_FORM_flag_present:
19628 fprintf_unfiltered (f, "flag: TRUE");
19629 break;
19630 case DW_FORM_indirect:
19631 /* The reader will have reduced the indirect form to
19632 the "base form" so this form should not occur. */
19633 fprintf_unfiltered (f,
19634 "unexpected attribute form: DW_FORM_indirect");
19635 break;
19636 default:
19637 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19638 die->attrs[i].form);
19639 break;
19640 }
19641 fprintf_unfiltered (f, "\n");
19642 }
19643 }
19644
19645 static void
19646 dump_die_for_error (struct die_info *die)
19647 {
19648 dump_die_shallow (gdb_stderr, 0, die);
19649 }
19650
19651 static void
19652 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19653 {
19654 int indent = level * 4;
19655
19656 gdb_assert (die != NULL);
19657
19658 if (level >= max_level)
19659 return;
19660
19661 dump_die_shallow (f, indent, die);
19662
19663 if (die->child != NULL)
19664 {
19665 print_spaces (indent, f);
19666 fprintf_unfiltered (f, " Children:");
19667 if (level + 1 < max_level)
19668 {
19669 fprintf_unfiltered (f, "\n");
19670 dump_die_1 (f, level + 1, max_level, die->child);
19671 }
19672 else
19673 {
19674 fprintf_unfiltered (f,
19675 " [not printed, max nesting level reached]\n");
19676 }
19677 }
19678
19679 if (die->sibling != NULL && level > 0)
19680 {
19681 dump_die_1 (f, level, max_level, die->sibling);
19682 }
19683 }
19684
19685 /* This is called from the pdie macro in gdbinit.in.
19686 It's not static so gcc will keep a copy callable from gdb. */
19687
19688 void
19689 dump_die (struct die_info *die, int max_level)
19690 {
19691 dump_die_1 (gdb_stdlog, 0, max_level, die);
19692 }
19693
19694 static void
19695 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19696 {
19697 void **slot;
19698
19699 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19700 INSERT);
19701
19702 *slot = die;
19703 }
19704
19705 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19706 required kind. */
19707
19708 static sect_offset
19709 dwarf2_get_ref_die_offset (const struct attribute *attr)
19710 {
19711 sect_offset retval = { DW_UNSND (attr) };
19712
19713 if (attr_form_is_ref (attr))
19714 return retval;
19715
19716 retval.sect_off = 0;
19717 complaint (&symfile_complaints,
19718 _("unsupported die ref attribute form: '%s'"),
19719 dwarf_form_name (attr->form));
19720 return retval;
19721 }
19722
19723 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19724 * the value held by the attribute is not constant. */
19725
19726 static LONGEST
19727 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19728 {
19729 if (attr->form == DW_FORM_sdata)
19730 return DW_SND (attr);
19731 else if (attr->form == DW_FORM_udata
19732 || attr->form == DW_FORM_data1
19733 || attr->form == DW_FORM_data2
19734 || attr->form == DW_FORM_data4
19735 || attr->form == DW_FORM_data8)
19736 return DW_UNSND (attr);
19737 else
19738 {
19739 complaint (&symfile_complaints,
19740 _("Attribute value is not a constant (%s)"),
19741 dwarf_form_name (attr->form));
19742 return default_value;
19743 }
19744 }
19745
19746 /* Follow reference or signature attribute ATTR of SRC_DIE.
19747 On entry *REF_CU is the CU of SRC_DIE.
19748 On exit *REF_CU is the CU of the result. */
19749
19750 static struct die_info *
19751 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19752 struct dwarf2_cu **ref_cu)
19753 {
19754 struct die_info *die;
19755
19756 if (attr_form_is_ref (attr))
19757 die = follow_die_ref (src_die, attr, ref_cu);
19758 else if (attr->form == DW_FORM_ref_sig8)
19759 die = follow_die_sig (src_die, attr, ref_cu);
19760 else
19761 {
19762 dump_die_for_error (src_die);
19763 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19764 objfile_name ((*ref_cu)->objfile));
19765 }
19766
19767 return die;
19768 }
19769
19770 /* Follow reference OFFSET.
19771 On entry *REF_CU is the CU of the source die referencing OFFSET.
19772 On exit *REF_CU is the CU of the result.
19773 Returns NULL if OFFSET is invalid. */
19774
19775 static struct die_info *
19776 follow_die_offset (sect_offset offset, int offset_in_dwz,
19777 struct dwarf2_cu **ref_cu)
19778 {
19779 struct die_info temp_die;
19780 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19781
19782 gdb_assert (cu->per_cu != NULL);
19783
19784 target_cu = cu;
19785
19786 if (cu->per_cu->is_debug_types)
19787 {
19788 /* .debug_types CUs cannot reference anything outside their CU.
19789 If they need to, they have to reference a signatured type via
19790 DW_FORM_ref_sig8. */
19791 if (! offset_in_cu_p (&cu->header, offset))
19792 return NULL;
19793 }
19794 else if (offset_in_dwz != cu->per_cu->is_dwz
19795 || ! offset_in_cu_p (&cu->header, offset))
19796 {
19797 struct dwarf2_per_cu_data *per_cu;
19798
19799 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19800 cu->objfile);
19801
19802 /* If necessary, add it to the queue and load its DIEs. */
19803 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19804 load_full_comp_unit (per_cu, cu->language);
19805
19806 target_cu = per_cu->cu;
19807 }
19808 else if (cu->dies == NULL)
19809 {
19810 /* We're loading full DIEs during partial symbol reading. */
19811 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19812 load_full_comp_unit (cu->per_cu, language_minimal);
19813 }
19814
19815 *ref_cu = target_cu;
19816 temp_die.offset = offset;
19817 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19818 }
19819
19820 /* Follow reference attribute ATTR of SRC_DIE.
19821 On entry *REF_CU is the CU of SRC_DIE.
19822 On exit *REF_CU is the CU of the result. */
19823
19824 static struct die_info *
19825 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19826 struct dwarf2_cu **ref_cu)
19827 {
19828 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19829 struct dwarf2_cu *cu = *ref_cu;
19830 struct die_info *die;
19831
19832 die = follow_die_offset (offset,
19833 (attr->form == DW_FORM_GNU_ref_alt
19834 || cu->per_cu->is_dwz),
19835 ref_cu);
19836 if (!die)
19837 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19838 "at 0x%x [in module %s]"),
19839 offset.sect_off, src_die->offset.sect_off,
19840 objfile_name (cu->objfile));
19841
19842 return die;
19843 }
19844
19845 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19846 Returned value is intended for DW_OP_call*. Returned
19847 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19848
19849 struct dwarf2_locexpr_baton
19850 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19851 struct dwarf2_per_cu_data *per_cu,
19852 CORE_ADDR (*get_frame_pc) (void *baton),
19853 void *baton)
19854 {
19855 struct dwarf2_cu *cu;
19856 struct die_info *die;
19857 struct attribute *attr;
19858 struct dwarf2_locexpr_baton retval;
19859
19860 dw2_setup (per_cu->objfile);
19861
19862 if (per_cu->cu == NULL)
19863 load_cu (per_cu);
19864 cu = per_cu->cu;
19865
19866 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19867 if (!die)
19868 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19869 offset.sect_off, objfile_name (per_cu->objfile));
19870
19871 attr = dwarf2_attr (die, DW_AT_location, cu);
19872 if (!attr)
19873 {
19874 /* DWARF: "If there is no such attribute, then there is no effect.".
19875 DATA is ignored if SIZE is 0. */
19876
19877 retval.data = NULL;
19878 retval.size = 0;
19879 }
19880 else if (attr_form_is_section_offset (attr))
19881 {
19882 struct dwarf2_loclist_baton loclist_baton;
19883 CORE_ADDR pc = (*get_frame_pc) (baton);
19884 size_t size;
19885
19886 fill_in_loclist_baton (cu, &loclist_baton, attr);
19887
19888 retval.data = dwarf2_find_location_expression (&loclist_baton,
19889 &size, pc);
19890 retval.size = size;
19891 }
19892 else
19893 {
19894 if (!attr_form_is_block (attr))
19895 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19896 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19897 offset.sect_off, objfile_name (per_cu->objfile));
19898
19899 retval.data = DW_BLOCK (attr)->data;
19900 retval.size = DW_BLOCK (attr)->size;
19901 }
19902 retval.per_cu = cu->per_cu;
19903
19904 age_cached_comp_units ();
19905
19906 return retval;
19907 }
19908
19909 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19910 offset. */
19911
19912 struct dwarf2_locexpr_baton
19913 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19914 struct dwarf2_per_cu_data *per_cu,
19915 CORE_ADDR (*get_frame_pc) (void *baton),
19916 void *baton)
19917 {
19918 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19919
19920 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19921 }
19922
19923 /* Write a constant of a given type as target-ordered bytes into
19924 OBSTACK. */
19925
19926 static const gdb_byte *
19927 write_constant_as_bytes (struct obstack *obstack,
19928 enum bfd_endian byte_order,
19929 struct type *type,
19930 ULONGEST value,
19931 LONGEST *len)
19932 {
19933 gdb_byte *result;
19934
19935 *len = TYPE_LENGTH (type);
19936 result = obstack_alloc (obstack, *len);
19937 store_unsigned_integer (result, *len, byte_order, value);
19938
19939 return result;
19940 }
19941
19942 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19943 pointer to the constant bytes and set LEN to the length of the
19944 data. If memory is needed, allocate it on OBSTACK. If the DIE
19945 does not have a DW_AT_const_value, return NULL. */
19946
19947 const gdb_byte *
19948 dwarf2_fetch_constant_bytes (sect_offset offset,
19949 struct dwarf2_per_cu_data *per_cu,
19950 struct obstack *obstack,
19951 LONGEST *len)
19952 {
19953 struct dwarf2_cu *cu;
19954 struct die_info *die;
19955 struct attribute *attr;
19956 const gdb_byte *result = NULL;
19957 struct type *type;
19958 LONGEST value;
19959 enum bfd_endian byte_order;
19960
19961 dw2_setup (per_cu->objfile);
19962
19963 if (per_cu->cu == NULL)
19964 load_cu (per_cu);
19965 cu = per_cu->cu;
19966
19967 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19968 if (!die)
19969 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19970 offset.sect_off, objfile_name (per_cu->objfile));
19971
19972
19973 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19974 if (attr == NULL)
19975 return NULL;
19976
19977 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19978 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19979
19980 switch (attr->form)
19981 {
19982 case DW_FORM_addr:
19983 case DW_FORM_GNU_addr_index:
19984 {
19985 gdb_byte *tem;
19986
19987 *len = cu->header.addr_size;
19988 tem = obstack_alloc (obstack, *len);
19989 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19990 result = tem;
19991 }
19992 break;
19993 case DW_FORM_string:
19994 case DW_FORM_strp:
19995 case DW_FORM_GNU_str_index:
19996 case DW_FORM_GNU_strp_alt:
19997 /* DW_STRING is already allocated on the objfile obstack, point
19998 directly to it. */
19999 result = (const gdb_byte *) DW_STRING (attr);
20000 *len = strlen (DW_STRING (attr));
20001 break;
20002 case DW_FORM_block1:
20003 case DW_FORM_block2:
20004 case DW_FORM_block4:
20005 case DW_FORM_block:
20006 case DW_FORM_exprloc:
20007 result = DW_BLOCK (attr)->data;
20008 *len = DW_BLOCK (attr)->size;
20009 break;
20010
20011 /* The DW_AT_const_value attributes are supposed to carry the
20012 symbol's value "represented as it would be on the target
20013 architecture." By the time we get here, it's already been
20014 converted to host endianness, so we just need to sign- or
20015 zero-extend it as appropriate. */
20016 case DW_FORM_data1:
20017 type = die_type (die, cu);
20018 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20019 if (result == NULL)
20020 result = write_constant_as_bytes (obstack, byte_order,
20021 type, value, len);
20022 break;
20023 case DW_FORM_data2:
20024 type = die_type (die, cu);
20025 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20026 if (result == NULL)
20027 result = write_constant_as_bytes (obstack, byte_order,
20028 type, value, len);
20029 break;
20030 case DW_FORM_data4:
20031 type = die_type (die, cu);
20032 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20033 if (result == NULL)
20034 result = write_constant_as_bytes (obstack, byte_order,
20035 type, value, len);
20036 break;
20037 case DW_FORM_data8:
20038 type = die_type (die, cu);
20039 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20040 if (result == NULL)
20041 result = write_constant_as_bytes (obstack, byte_order,
20042 type, value, len);
20043 break;
20044
20045 case DW_FORM_sdata:
20046 type = die_type (die, cu);
20047 result = write_constant_as_bytes (obstack, byte_order,
20048 type, DW_SND (attr), len);
20049 break;
20050
20051 case DW_FORM_udata:
20052 type = die_type (die, cu);
20053 result = write_constant_as_bytes (obstack, byte_order,
20054 type, DW_UNSND (attr), len);
20055 break;
20056
20057 default:
20058 complaint (&symfile_complaints,
20059 _("unsupported const value attribute form: '%s'"),
20060 dwarf_form_name (attr->form));
20061 break;
20062 }
20063
20064 return result;
20065 }
20066
20067 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20068 PER_CU. */
20069
20070 struct type *
20071 dwarf2_get_die_type (cu_offset die_offset,
20072 struct dwarf2_per_cu_data *per_cu)
20073 {
20074 sect_offset die_offset_sect;
20075
20076 dw2_setup (per_cu->objfile);
20077
20078 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20079 return get_die_type_at_offset (die_offset_sect, per_cu);
20080 }
20081
20082 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20083 On entry *REF_CU is the CU of SRC_DIE.
20084 On exit *REF_CU is the CU of the result.
20085 Returns NULL if the referenced DIE isn't found. */
20086
20087 static struct die_info *
20088 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20089 struct dwarf2_cu **ref_cu)
20090 {
20091 struct objfile *objfile = (*ref_cu)->objfile;
20092 struct die_info temp_die;
20093 struct dwarf2_cu *sig_cu;
20094 struct die_info *die;
20095
20096 /* While it might be nice to assert sig_type->type == NULL here,
20097 we can get here for DW_AT_imported_declaration where we need
20098 the DIE not the type. */
20099
20100 /* If necessary, add it to the queue and load its DIEs. */
20101
20102 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20103 read_signatured_type (sig_type);
20104
20105 sig_cu = sig_type->per_cu.cu;
20106 gdb_assert (sig_cu != NULL);
20107 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20108 temp_die.offset = sig_type->type_offset_in_section;
20109 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20110 temp_die.offset.sect_off);
20111 if (die)
20112 {
20113 /* For .gdb_index version 7 keep track of included TUs.
20114 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20115 if (dwarf2_per_objfile->index_table != NULL
20116 && dwarf2_per_objfile->index_table->version <= 7)
20117 {
20118 VEC_safe_push (dwarf2_per_cu_ptr,
20119 (*ref_cu)->per_cu->imported_symtabs,
20120 sig_cu->per_cu);
20121 }
20122
20123 *ref_cu = sig_cu;
20124 return die;
20125 }
20126
20127 return NULL;
20128 }
20129
20130 /* Follow signatured type referenced by ATTR in SRC_DIE.
20131 On entry *REF_CU is the CU of SRC_DIE.
20132 On exit *REF_CU is the CU of the result.
20133 The result is the DIE of the type.
20134 If the referenced type cannot be found an error is thrown. */
20135
20136 static struct die_info *
20137 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20138 struct dwarf2_cu **ref_cu)
20139 {
20140 ULONGEST signature = DW_SIGNATURE (attr);
20141 struct signatured_type *sig_type;
20142 struct die_info *die;
20143
20144 gdb_assert (attr->form == DW_FORM_ref_sig8);
20145
20146 sig_type = lookup_signatured_type (*ref_cu, signature);
20147 /* sig_type will be NULL if the signatured type is missing from
20148 the debug info. */
20149 if (sig_type == NULL)
20150 {
20151 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20152 " from DIE at 0x%x [in module %s]"),
20153 hex_string (signature), src_die->offset.sect_off,
20154 objfile_name ((*ref_cu)->objfile));
20155 }
20156
20157 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20158 if (die == NULL)
20159 {
20160 dump_die_for_error (src_die);
20161 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20162 " from DIE at 0x%x [in module %s]"),
20163 hex_string (signature), src_die->offset.sect_off,
20164 objfile_name ((*ref_cu)->objfile));
20165 }
20166
20167 return die;
20168 }
20169
20170 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20171 reading in and processing the type unit if necessary. */
20172
20173 static struct type *
20174 get_signatured_type (struct die_info *die, ULONGEST signature,
20175 struct dwarf2_cu *cu)
20176 {
20177 struct signatured_type *sig_type;
20178 struct dwarf2_cu *type_cu;
20179 struct die_info *type_die;
20180 struct type *type;
20181
20182 sig_type = lookup_signatured_type (cu, signature);
20183 /* sig_type will be NULL if the signatured type is missing from
20184 the debug info. */
20185 if (sig_type == NULL)
20186 {
20187 complaint (&symfile_complaints,
20188 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20189 " from DIE at 0x%x [in module %s]"),
20190 hex_string (signature), die->offset.sect_off,
20191 objfile_name (dwarf2_per_objfile->objfile));
20192 return build_error_marker_type (cu, die);
20193 }
20194
20195 /* If we already know the type we're done. */
20196 if (sig_type->type != NULL)
20197 return sig_type->type;
20198
20199 type_cu = cu;
20200 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20201 if (type_die != NULL)
20202 {
20203 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20204 is created. This is important, for example, because for c++ classes
20205 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20206 type = read_type_die (type_die, type_cu);
20207 if (type == NULL)
20208 {
20209 complaint (&symfile_complaints,
20210 _("Dwarf Error: Cannot build signatured type %s"
20211 " referenced from DIE at 0x%x [in module %s]"),
20212 hex_string (signature), die->offset.sect_off,
20213 objfile_name (dwarf2_per_objfile->objfile));
20214 type = build_error_marker_type (cu, die);
20215 }
20216 }
20217 else
20218 {
20219 complaint (&symfile_complaints,
20220 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20221 " from DIE at 0x%x [in module %s]"),
20222 hex_string (signature), die->offset.sect_off,
20223 objfile_name (dwarf2_per_objfile->objfile));
20224 type = build_error_marker_type (cu, die);
20225 }
20226 sig_type->type = type;
20227
20228 return type;
20229 }
20230
20231 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20232 reading in and processing the type unit if necessary. */
20233
20234 static struct type *
20235 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20236 struct dwarf2_cu *cu) /* ARI: editCase function */
20237 {
20238 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20239 if (attr_form_is_ref (attr))
20240 {
20241 struct dwarf2_cu *type_cu = cu;
20242 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20243
20244 return read_type_die (type_die, type_cu);
20245 }
20246 else if (attr->form == DW_FORM_ref_sig8)
20247 {
20248 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20249 }
20250 else
20251 {
20252 complaint (&symfile_complaints,
20253 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20254 " at 0x%x [in module %s]"),
20255 dwarf_form_name (attr->form), die->offset.sect_off,
20256 objfile_name (dwarf2_per_objfile->objfile));
20257 return build_error_marker_type (cu, die);
20258 }
20259 }
20260
20261 /* Load the DIEs associated with type unit PER_CU into memory. */
20262
20263 static void
20264 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20265 {
20266 struct signatured_type *sig_type;
20267
20268 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20269 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20270
20271 /* We have the per_cu, but we need the signatured_type.
20272 Fortunately this is an easy translation. */
20273 gdb_assert (per_cu->is_debug_types);
20274 sig_type = (struct signatured_type *) per_cu;
20275
20276 gdb_assert (per_cu->cu == NULL);
20277
20278 read_signatured_type (sig_type);
20279
20280 gdb_assert (per_cu->cu != NULL);
20281 }
20282
20283 /* die_reader_func for read_signatured_type.
20284 This is identical to load_full_comp_unit_reader,
20285 but is kept separate for now. */
20286
20287 static void
20288 read_signatured_type_reader (const struct die_reader_specs *reader,
20289 const gdb_byte *info_ptr,
20290 struct die_info *comp_unit_die,
20291 int has_children,
20292 void *data)
20293 {
20294 struct dwarf2_cu *cu = reader->cu;
20295
20296 gdb_assert (cu->die_hash == NULL);
20297 cu->die_hash =
20298 htab_create_alloc_ex (cu->header.length / 12,
20299 die_hash,
20300 die_eq,
20301 NULL,
20302 &cu->comp_unit_obstack,
20303 hashtab_obstack_allocate,
20304 dummy_obstack_deallocate);
20305
20306 if (has_children)
20307 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20308 &info_ptr, comp_unit_die);
20309 cu->dies = comp_unit_die;
20310 /* comp_unit_die is not stored in die_hash, no need. */
20311
20312 /* We try not to read any attributes in this function, because not
20313 all CUs needed for references have been loaded yet, and symbol
20314 table processing isn't initialized. But we have to set the CU language,
20315 or we won't be able to build types correctly.
20316 Similarly, if we do not read the producer, we can not apply
20317 producer-specific interpretation. */
20318 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20319 }
20320
20321 /* Read in a signatured type and build its CU and DIEs.
20322 If the type is a stub for the real type in a DWO file,
20323 read in the real type from the DWO file as well. */
20324
20325 static void
20326 read_signatured_type (struct signatured_type *sig_type)
20327 {
20328 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20329
20330 gdb_assert (per_cu->is_debug_types);
20331 gdb_assert (per_cu->cu == NULL);
20332
20333 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20334 read_signatured_type_reader, NULL);
20335 sig_type->per_cu.tu_read = 1;
20336 }
20337
20338 /* Decode simple location descriptions.
20339 Given a pointer to a dwarf block that defines a location, compute
20340 the location and return the value.
20341
20342 NOTE drow/2003-11-18: This function is called in two situations
20343 now: for the address of static or global variables (partial symbols
20344 only) and for offsets into structures which are expected to be
20345 (more or less) constant. The partial symbol case should go away,
20346 and only the constant case should remain. That will let this
20347 function complain more accurately. A few special modes are allowed
20348 without complaint for global variables (for instance, global
20349 register values and thread-local values).
20350
20351 A location description containing no operations indicates that the
20352 object is optimized out. The return value is 0 for that case.
20353 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20354 callers will only want a very basic result and this can become a
20355 complaint.
20356
20357 Note that stack[0] is unused except as a default error return. */
20358
20359 static CORE_ADDR
20360 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20361 {
20362 struct objfile *objfile = cu->objfile;
20363 size_t i;
20364 size_t size = blk->size;
20365 const gdb_byte *data = blk->data;
20366 CORE_ADDR stack[64];
20367 int stacki;
20368 unsigned int bytes_read, unsnd;
20369 gdb_byte op;
20370
20371 i = 0;
20372 stacki = 0;
20373 stack[stacki] = 0;
20374 stack[++stacki] = 0;
20375
20376 while (i < size)
20377 {
20378 op = data[i++];
20379 switch (op)
20380 {
20381 case DW_OP_lit0:
20382 case DW_OP_lit1:
20383 case DW_OP_lit2:
20384 case DW_OP_lit3:
20385 case DW_OP_lit4:
20386 case DW_OP_lit5:
20387 case DW_OP_lit6:
20388 case DW_OP_lit7:
20389 case DW_OP_lit8:
20390 case DW_OP_lit9:
20391 case DW_OP_lit10:
20392 case DW_OP_lit11:
20393 case DW_OP_lit12:
20394 case DW_OP_lit13:
20395 case DW_OP_lit14:
20396 case DW_OP_lit15:
20397 case DW_OP_lit16:
20398 case DW_OP_lit17:
20399 case DW_OP_lit18:
20400 case DW_OP_lit19:
20401 case DW_OP_lit20:
20402 case DW_OP_lit21:
20403 case DW_OP_lit22:
20404 case DW_OP_lit23:
20405 case DW_OP_lit24:
20406 case DW_OP_lit25:
20407 case DW_OP_lit26:
20408 case DW_OP_lit27:
20409 case DW_OP_lit28:
20410 case DW_OP_lit29:
20411 case DW_OP_lit30:
20412 case DW_OP_lit31:
20413 stack[++stacki] = op - DW_OP_lit0;
20414 break;
20415
20416 case DW_OP_reg0:
20417 case DW_OP_reg1:
20418 case DW_OP_reg2:
20419 case DW_OP_reg3:
20420 case DW_OP_reg4:
20421 case DW_OP_reg5:
20422 case DW_OP_reg6:
20423 case DW_OP_reg7:
20424 case DW_OP_reg8:
20425 case DW_OP_reg9:
20426 case DW_OP_reg10:
20427 case DW_OP_reg11:
20428 case DW_OP_reg12:
20429 case DW_OP_reg13:
20430 case DW_OP_reg14:
20431 case DW_OP_reg15:
20432 case DW_OP_reg16:
20433 case DW_OP_reg17:
20434 case DW_OP_reg18:
20435 case DW_OP_reg19:
20436 case DW_OP_reg20:
20437 case DW_OP_reg21:
20438 case DW_OP_reg22:
20439 case DW_OP_reg23:
20440 case DW_OP_reg24:
20441 case DW_OP_reg25:
20442 case DW_OP_reg26:
20443 case DW_OP_reg27:
20444 case DW_OP_reg28:
20445 case DW_OP_reg29:
20446 case DW_OP_reg30:
20447 case DW_OP_reg31:
20448 stack[++stacki] = op - DW_OP_reg0;
20449 if (i < size)
20450 dwarf2_complex_location_expr_complaint ();
20451 break;
20452
20453 case DW_OP_regx:
20454 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20455 i += bytes_read;
20456 stack[++stacki] = unsnd;
20457 if (i < size)
20458 dwarf2_complex_location_expr_complaint ();
20459 break;
20460
20461 case DW_OP_addr:
20462 stack[++stacki] = read_address (objfile->obfd, &data[i],
20463 cu, &bytes_read);
20464 i += bytes_read;
20465 break;
20466
20467 case DW_OP_const1u:
20468 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20469 i += 1;
20470 break;
20471
20472 case DW_OP_const1s:
20473 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20474 i += 1;
20475 break;
20476
20477 case DW_OP_const2u:
20478 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20479 i += 2;
20480 break;
20481
20482 case DW_OP_const2s:
20483 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20484 i += 2;
20485 break;
20486
20487 case DW_OP_const4u:
20488 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20489 i += 4;
20490 break;
20491
20492 case DW_OP_const4s:
20493 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20494 i += 4;
20495 break;
20496
20497 case DW_OP_const8u:
20498 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20499 i += 8;
20500 break;
20501
20502 case DW_OP_constu:
20503 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20504 &bytes_read);
20505 i += bytes_read;
20506 break;
20507
20508 case DW_OP_consts:
20509 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20510 i += bytes_read;
20511 break;
20512
20513 case DW_OP_dup:
20514 stack[stacki + 1] = stack[stacki];
20515 stacki++;
20516 break;
20517
20518 case DW_OP_plus:
20519 stack[stacki - 1] += stack[stacki];
20520 stacki--;
20521 break;
20522
20523 case DW_OP_plus_uconst:
20524 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20525 &bytes_read);
20526 i += bytes_read;
20527 break;
20528
20529 case DW_OP_minus:
20530 stack[stacki - 1] -= stack[stacki];
20531 stacki--;
20532 break;
20533
20534 case DW_OP_deref:
20535 /* If we're not the last op, then we definitely can't encode
20536 this using GDB's address_class enum. This is valid for partial
20537 global symbols, although the variable's address will be bogus
20538 in the psymtab. */
20539 if (i < size)
20540 dwarf2_complex_location_expr_complaint ();
20541 break;
20542
20543 case DW_OP_GNU_push_tls_address:
20544 /* The top of the stack has the offset from the beginning
20545 of the thread control block at which the variable is located. */
20546 /* Nothing should follow this operator, so the top of stack would
20547 be returned. */
20548 /* This is valid for partial global symbols, but the variable's
20549 address will be bogus in the psymtab. Make it always at least
20550 non-zero to not look as a variable garbage collected by linker
20551 which have DW_OP_addr 0. */
20552 if (i < size)
20553 dwarf2_complex_location_expr_complaint ();
20554 stack[stacki]++;
20555 break;
20556
20557 case DW_OP_GNU_uninit:
20558 break;
20559
20560 case DW_OP_GNU_addr_index:
20561 case DW_OP_GNU_const_index:
20562 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20563 &bytes_read);
20564 i += bytes_read;
20565 break;
20566
20567 default:
20568 {
20569 const char *name = get_DW_OP_name (op);
20570
20571 if (name)
20572 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20573 name);
20574 else
20575 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20576 op);
20577 }
20578
20579 return (stack[stacki]);
20580 }
20581
20582 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20583 outside of the allocated space. Also enforce minimum>0. */
20584 if (stacki >= ARRAY_SIZE (stack) - 1)
20585 {
20586 complaint (&symfile_complaints,
20587 _("location description stack overflow"));
20588 return 0;
20589 }
20590
20591 if (stacki <= 0)
20592 {
20593 complaint (&symfile_complaints,
20594 _("location description stack underflow"));
20595 return 0;
20596 }
20597 }
20598 return (stack[stacki]);
20599 }
20600
20601 /* memory allocation interface */
20602
20603 static struct dwarf_block *
20604 dwarf_alloc_block (struct dwarf2_cu *cu)
20605 {
20606 struct dwarf_block *blk;
20607
20608 blk = (struct dwarf_block *)
20609 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20610 return (blk);
20611 }
20612
20613 static struct die_info *
20614 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20615 {
20616 struct die_info *die;
20617 size_t size = sizeof (struct die_info);
20618
20619 if (num_attrs > 1)
20620 size += (num_attrs - 1) * sizeof (struct attribute);
20621
20622 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20623 memset (die, 0, sizeof (struct die_info));
20624 return (die);
20625 }
20626
20627 \f
20628 /* Macro support. */
20629
20630 /* Return file name relative to the compilation directory of file number I in
20631 *LH's file name table. The result is allocated using xmalloc; the caller is
20632 responsible for freeing it. */
20633
20634 static char *
20635 file_file_name (int file, struct line_header *lh)
20636 {
20637 /* Is the file number a valid index into the line header's file name
20638 table? Remember that file numbers start with one, not zero. */
20639 if (1 <= file && file <= lh->num_file_names)
20640 {
20641 struct file_entry *fe = &lh->file_names[file - 1];
20642
20643 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20644 return xstrdup (fe->name);
20645 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20646 fe->name, NULL);
20647 }
20648 else
20649 {
20650 /* The compiler produced a bogus file number. We can at least
20651 record the macro definitions made in the file, even if we
20652 won't be able to find the file by name. */
20653 char fake_name[80];
20654
20655 xsnprintf (fake_name, sizeof (fake_name),
20656 "<bad macro file number %d>", file);
20657
20658 complaint (&symfile_complaints,
20659 _("bad file number in macro information (%d)"),
20660 file);
20661
20662 return xstrdup (fake_name);
20663 }
20664 }
20665
20666 /* Return the full name of file number I in *LH's file name table.
20667 Use COMP_DIR as the name of the current directory of the
20668 compilation. The result is allocated using xmalloc; the caller is
20669 responsible for freeing it. */
20670 static char *
20671 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20672 {
20673 /* Is the file number a valid index into the line header's file name
20674 table? Remember that file numbers start with one, not zero. */
20675 if (1 <= file && file <= lh->num_file_names)
20676 {
20677 char *relative = file_file_name (file, lh);
20678
20679 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20680 return relative;
20681 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20682 }
20683 else
20684 return file_file_name (file, lh);
20685 }
20686
20687
20688 static struct macro_source_file *
20689 macro_start_file (int file, int line,
20690 struct macro_source_file *current_file,
20691 struct line_header *lh)
20692 {
20693 /* File name relative to the compilation directory of this source file. */
20694 char *file_name = file_file_name (file, lh);
20695
20696 if (! current_file)
20697 {
20698 /* Note: We don't create a macro table for this compilation unit
20699 at all until we actually get a filename. */
20700 struct macro_table *macro_table = get_macro_table ();
20701
20702 /* If we have no current file, then this must be the start_file
20703 directive for the compilation unit's main source file. */
20704 current_file = macro_set_main (macro_table, file_name);
20705 macro_define_special (macro_table);
20706 }
20707 else
20708 current_file = macro_include (current_file, line, file_name);
20709
20710 xfree (file_name);
20711
20712 return current_file;
20713 }
20714
20715
20716 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20717 followed by a null byte. */
20718 static char *
20719 copy_string (const char *buf, int len)
20720 {
20721 char *s = xmalloc (len + 1);
20722
20723 memcpy (s, buf, len);
20724 s[len] = '\0';
20725 return s;
20726 }
20727
20728
20729 static const char *
20730 consume_improper_spaces (const char *p, const char *body)
20731 {
20732 if (*p == ' ')
20733 {
20734 complaint (&symfile_complaints,
20735 _("macro definition contains spaces "
20736 "in formal argument list:\n`%s'"),
20737 body);
20738
20739 while (*p == ' ')
20740 p++;
20741 }
20742
20743 return p;
20744 }
20745
20746
20747 static void
20748 parse_macro_definition (struct macro_source_file *file, int line,
20749 const char *body)
20750 {
20751 const char *p;
20752
20753 /* The body string takes one of two forms. For object-like macro
20754 definitions, it should be:
20755
20756 <macro name> " " <definition>
20757
20758 For function-like macro definitions, it should be:
20759
20760 <macro name> "() " <definition>
20761 or
20762 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20763
20764 Spaces may appear only where explicitly indicated, and in the
20765 <definition>.
20766
20767 The Dwarf 2 spec says that an object-like macro's name is always
20768 followed by a space, but versions of GCC around March 2002 omit
20769 the space when the macro's definition is the empty string.
20770
20771 The Dwarf 2 spec says that there should be no spaces between the
20772 formal arguments in a function-like macro's formal argument list,
20773 but versions of GCC around March 2002 include spaces after the
20774 commas. */
20775
20776
20777 /* Find the extent of the macro name. The macro name is terminated
20778 by either a space or null character (for an object-like macro) or
20779 an opening paren (for a function-like macro). */
20780 for (p = body; *p; p++)
20781 if (*p == ' ' || *p == '(')
20782 break;
20783
20784 if (*p == ' ' || *p == '\0')
20785 {
20786 /* It's an object-like macro. */
20787 int name_len = p - body;
20788 char *name = copy_string (body, name_len);
20789 const char *replacement;
20790
20791 if (*p == ' ')
20792 replacement = body + name_len + 1;
20793 else
20794 {
20795 dwarf2_macro_malformed_definition_complaint (body);
20796 replacement = body + name_len;
20797 }
20798
20799 macro_define_object (file, line, name, replacement);
20800
20801 xfree (name);
20802 }
20803 else if (*p == '(')
20804 {
20805 /* It's a function-like macro. */
20806 char *name = copy_string (body, p - body);
20807 int argc = 0;
20808 int argv_size = 1;
20809 char **argv = xmalloc (argv_size * sizeof (*argv));
20810
20811 p++;
20812
20813 p = consume_improper_spaces (p, body);
20814
20815 /* Parse the formal argument list. */
20816 while (*p && *p != ')')
20817 {
20818 /* Find the extent of the current argument name. */
20819 const char *arg_start = p;
20820
20821 while (*p && *p != ',' && *p != ')' && *p != ' ')
20822 p++;
20823
20824 if (! *p || p == arg_start)
20825 dwarf2_macro_malformed_definition_complaint (body);
20826 else
20827 {
20828 /* Make sure argv has room for the new argument. */
20829 if (argc >= argv_size)
20830 {
20831 argv_size *= 2;
20832 argv = xrealloc (argv, argv_size * sizeof (*argv));
20833 }
20834
20835 argv[argc++] = copy_string (arg_start, p - arg_start);
20836 }
20837
20838 p = consume_improper_spaces (p, body);
20839
20840 /* Consume the comma, if present. */
20841 if (*p == ',')
20842 {
20843 p++;
20844
20845 p = consume_improper_spaces (p, body);
20846 }
20847 }
20848
20849 if (*p == ')')
20850 {
20851 p++;
20852
20853 if (*p == ' ')
20854 /* Perfectly formed definition, no complaints. */
20855 macro_define_function (file, line, name,
20856 argc, (const char **) argv,
20857 p + 1);
20858 else if (*p == '\0')
20859 {
20860 /* Complain, but do define it. */
20861 dwarf2_macro_malformed_definition_complaint (body);
20862 macro_define_function (file, line, name,
20863 argc, (const char **) argv,
20864 p);
20865 }
20866 else
20867 /* Just complain. */
20868 dwarf2_macro_malformed_definition_complaint (body);
20869 }
20870 else
20871 /* Just complain. */
20872 dwarf2_macro_malformed_definition_complaint (body);
20873
20874 xfree (name);
20875 {
20876 int i;
20877
20878 for (i = 0; i < argc; i++)
20879 xfree (argv[i]);
20880 }
20881 xfree (argv);
20882 }
20883 else
20884 dwarf2_macro_malformed_definition_complaint (body);
20885 }
20886
20887 /* Skip some bytes from BYTES according to the form given in FORM.
20888 Returns the new pointer. */
20889
20890 static const gdb_byte *
20891 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20892 enum dwarf_form form,
20893 unsigned int offset_size,
20894 struct dwarf2_section_info *section)
20895 {
20896 unsigned int bytes_read;
20897
20898 switch (form)
20899 {
20900 case DW_FORM_data1:
20901 case DW_FORM_flag:
20902 ++bytes;
20903 break;
20904
20905 case DW_FORM_data2:
20906 bytes += 2;
20907 break;
20908
20909 case DW_FORM_data4:
20910 bytes += 4;
20911 break;
20912
20913 case DW_FORM_data8:
20914 bytes += 8;
20915 break;
20916
20917 case DW_FORM_string:
20918 read_direct_string (abfd, bytes, &bytes_read);
20919 bytes += bytes_read;
20920 break;
20921
20922 case DW_FORM_sec_offset:
20923 case DW_FORM_strp:
20924 case DW_FORM_GNU_strp_alt:
20925 bytes += offset_size;
20926 break;
20927
20928 case DW_FORM_block:
20929 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20930 bytes += bytes_read;
20931 break;
20932
20933 case DW_FORM_block1:
20934 bytes += 1 + read_1_byte (abfd, bytes);
20935 break;
20936 case DW_FORM_block2:
20937 bytes += 2 + read_2_bytes (abfd, bytes);
20938 break;
20939 case DW_FORM_block4:
20940 bytes += 4 + read_4_bytes (abfd, bytes);
20941 break;
20942
20943 case DW_FORM_sdata:
20944 case DW_FORM_udata:
20945 case DW_FORM_GNU_addr_index:
20946 case DW_FORM_GNU_str_index:
20947 bytes = gdb_skip_leb128 (bytes, buffer_end);
20948 if (bytes == NULL)
20949 {
20950 dwarf2_section_buffer_overflow_complaint (section);
20951 return NULL;
20952 }
20953 break;
20954
20955 default:
20956 {
20957 complain:
20958 complaint (&symfile_complaints,
20959 _("invalid form 0x%x in `%s'"),
20960 form, get_section_name (section));
20961 return NULL;
20962 }
20963 }
20964
20965 return bytes;
20966 }
20967
20968 /* A helper for dwarf_decode_macros that handles skipping an unknown
20969 opcode. Returns an updated pointer to the macro data buffer; or,
20970 on error, issues a complaint and returns NULL. */
20971
20972 static const gdb_byte *
20973 skip_unknown_opcode (unsigned int opcode,
20974 const gdb_byte **opcode_definitions,
20975 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20976 bfd *abfd,
20977 unsigned int offset_size,
20978 struct dwarf2_section_info *section)
20979 {
20980 unsigned int bytes_read, i;
20981 unsigned long arg;
20982 const gdb_byte *defn;
20983
20984 if (opcode_definitions[opcode] == NULL)
20985 {
20986 complaint (&symfile_complaints,
20987 _("unrecognized DW_MACFINO opcode 0x%x"),
20988 opcode);
20989 return NULL;
20990 }
20991
20992 defn = opcode_definitions[opcode];
20993 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20994 defn += bytes_read;
20995
20996 for (i = 0; i < arg; ++i)
20997 {
20998 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20999 section);
21000 if (mac_ptr == NULL)
21001 {
21002 /* skip_form_bytes already issued the complaint. */
21003 return NULL;
21004 }
21005 }
21006
21007 return mac_ptr;
21008 }
21009
21010 /* A helper function which parses the header of a macro section.
21011 If the macro section is the extended (for now called "GNU") type,
21012 then this updates *OFFSET_SIZE. Returns a pointer to just after
21013 the header, or issues a complaint and returns NULL on error. */
21014
21015 static const gdb_byte *
21016 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21017 bfd *abfd,
21018 const gdb_byte *mac_ptr,
21019 unsigned int *offset_size,
21020 int section_is_gnu)
21021 {
21022 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21023
21024 if (section_is_gnu)
21025 {
21026 unsigned int version, flags;
21027
21028 version = read_2_bytes (abfd, mac_ptr);
21029 if (version != 4)
21030 {
21031 complaint (&symfile_complaints,
21032 _("unrecognized version `%d' in .debug_macro section"),
21033 version);
21034 return NULL;
21035 }
21036 mac_ptr += 2;
21037
21038 flags = read_1_byte (abfd, mac_ptr);
21039 ++mac_ptr;
21040 *offset_size = (flags & 1) ? 8 : 4;
21041
21042 if ((flags & 2) != 0)
21043 /* We don't need the line table offset. */
21044 mac_ptr += *offset_size;
21045
21046 /* Vendor opcode descriptions. */
21047 if ((flags & 4) != 0)
21048 {
21049 unsigned int i, count;
21050
21051 count = read_1_byte (abfd, mac_ptr);
21052 ++mac_ptr;
21053 for (i = 0; i < count; ++i)
21054 {
21055 unsigned int opcode, bytes_read;
21056 unsigned long arg;
21057
21058 opcode = read_1_byte (abfd, mac_ptr);
21059 ++mac_ptr;
21060 opcode_definitions[opcode] = mac_ptr;
21061 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21062 mac_ptr += bytes_read;
21063 mac_ptr += arg;
21064 }
21065 }
21066 }
21067
21068 return mac_ptr;
21069 }
21070
21071 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21072 including DW_MACRO_GNU_transparent_include. */
21073
21074 static void
21075 dwarf_decode_macro_bytes (bfd *abfd,
21076 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21077 struct macro_source_file *current_file,
21078 struct line_header *lh,
21079 struct dwarf2_section_info *section,
21080 int section_is_gnu, int section_is_dwz,
21081 unsigned int offset_size,
21082 htab_t include_hash)
21083 {
21084 struct objfile *objfile = dwarf2_per_objfile->objfile;
21085 enum dwarf_macro_record_type macinfo_type;
21086 int at_commandline;
21087 const gdb_byte *opcode_definitions[256];
21088
21089 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21090 &offset_size, section_is_gnu);
21091 if (mac_ptr == NULL)
21092 {
21093 /* We already issued a complaint. */
21094 return;
21095 }
21096
21097 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21098 GDB is still reading the definitions from command line. First
21099 DW_MACINFO_start_file will need to be ignored as it was already executed
21100 to create CURRENT_FILE for the main source holding also the command line
21101 definitions. On first met DW_MACINFO_start_file this flag is reset to
21102 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21103
21104 at_commandline = 1;
21105
21106 do
21107 {
21108 /* Do we at least have room for a macinfo type byte? */
21109 if (mac_ptr >= mac_end)
21110 {
21111 dwarf2_section_buffer_overflow_complaint (section);
21112 break;
21113 }
21114
21115 macinfo_type = read_1_byte (abfd, mac_ptr);
21116 mac_ptr++;
21117
21118 /* Note that we rely on the fact that the corresponding GNU and
21119 DWARF constants are the same. */
21120 switch (macinfo_type)
21121 {
21122 /* A zero macinfo type indicates the end of the macro
21123 information. */
21124 case 0:
21125 break;
21126
21127 case DW_MACRO_GNU_define:
21128 case DW_MACRO_GNU_undef:
21129 case DW_MACRO_GNU_define_indirect:
21130 case DW_MACRO_GNU_undef_indirect:
21131 case DW_MACRO_GNU_define_indirect_alt:
21132 case DW_MACRO_GNU_undef_indirect_alt:
21133 {
21134 unsigned int bytes_read;
21135 int line;
21136 const char *body;
21137 int is_define;
21138
21139 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21140 mac_ptr += bytes_read;
21141
21142 if (macinfo_type == DW_MACRO_GNU_define
21143 || macinfo_type == DW_MACRO_GNU_undef)
21144 {
21145 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21146 mac_ptr += bytes_read;
21147 }
21148 else
21149 {
21150 LONGEST str_offset;
21151
21152 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21153 mac_ptr += offset_size;
21154
21155 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21156 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21157 || section_is_dwz)
21158 {
21159 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21160
21161 body = read_indirect_string_from_dwz (dwz, str_offset);
21162 }
21163 else
21164 body = read_indirect_string_at_offset (abfd, str_offset);
21165 }
21166
21167 is_define = (macinfo_type == DW_MACRO_GNU_define
21168 || macinfo_type == DW_MACRO_GNU_define_indirect
21169 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21170 if (! current_file)
21171 {
21172 /* DWARF violation as no main source is present. */
21173 complaint (&symfile_complaints,
21174 _("debug info with no main source gives macro %s "
21175 "on line %d: %s"),
21176 is_define ? _("definition") : _("undefinition"),
21177 line, body);
21178 break;
21179 }
21180 if ((line == 0 && !at_commandline)
21181 || (line != 0 && at_commandline))
21182 complaint (&symfile_complaints,
21183 _("debug info gives %s macro %s with %s line %d: %s"),
21184 at_commandline ? _("command-line") : _("in-file"),
21185 is_define ? _("definition") : _("undefinition"),
21186 line == 0 ? _("zero") : _("non-zero"), line, body);
21187
21188 if (is_define)
21189 parse_macro_definition (current_file, line, body);
21190 else
21191 {
21192 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21193 || macinfo_type == DW_MACRO_GNU_undef_indirect
21194 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21195 macro_undef (current_file, line, body);
21196 }
21197 }
21198 break;
21199
21200 case DW_MACRO_GNU_start_file:
21201 {
21202 unsigned int bytes_read;
21203 int line, file;
21204
21205 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21206 mac_ptr += bytes_read;
21207 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21208 mac_ptr += bytes_read;
21209
21210 if ((line == 0 && !at_commandline)
21211 || (line != 0 && at_commandline))
21212 complaint (&symfile_complaints,
21213 _("debug info gives source %d included "
21214 "from %s at %s line %d"),
21215 file, at_commandline ? _("command-line") : _("file"),
21216 line == 0 ? _("zero") : _("non-zero"), line);
21217
21218 if (at_commandline)
21219 {
21220 /* This DW_MACRO_GNU_start_file was executed in the
21221 pass one. */
21222 at_commandline = 0;
21223 }
21224 else
21225 current_file = macro_start_file (file, line, current_file, lh);
21226 }
21227 break;
21228
21229 case DW_MACRO_GNU_end_file:
21230 if (! current_file)
21231 complaint (&symfile_complaints,
21232 _("macro debug info has an unmatched "
21233 "`close_file' directive"));
21234 else
21235 {
21236 current_file = current_file->included_by;
21237 if (! current_file)
21238 {
21239 enum dwarf_macro_record_type next_type;
21240
21241 /* GCC circa March 2002 doesn't produce the zero
21242 type byte marking the end of the compilation
21243 unit. Complain if it's not there, but exit no
21244 matter what. */
21245
21246 /* Do we at least have room for a macinfo type byte? */
21247 if (mac_ptr >= mac_end)
21248 {
21249 dwarf2_section_buffer_overflow_complaint (section);
21250 return;
21251 }
21252
21253 /* We don't increment mac_ptr here, so this is just
21254 a look-ahead. */
21255 next_type = read_1_byte (abfd, mac_ptr);
21256 if (next_type != 0)
21257 complaint (&symfile_complaints,
21258 _("no terminating 0-type entry for "
21259 "macros in `.debug_macinfo' section"));
21260
21261 return;
21262 }
21263 }
21264 break;
21265
21266 case DW_MACRO_GNU_transparent_include:
21267 case DW_MACRO_GNU_transparent_include_alt:
21268 {
21269 LONGEST offset;
21270 void **slot;
21271 bfd *include_bfd = abfd;
21272 struct dwarf2_section_info *include_section = section;
21273 struct dwarf2_section_info alt_section;
21274 const gdb_byte *include_mac_end = mac_end;
21275 int is_dwz = section_is_dwz;
21276 const gdb_byte *new_mac_ptr;
21277
21278 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21279 mac_ptr += offset_size;
21280
21281 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21282 {
21283 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21284
21285 dwarf2_read_section (objfile, &dwz->macro);
21286
21287 include_section = &dwz->macro;
21288 include_bfd = get_section_bfd_owner (include_section);
21289 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21290 is_dwz = 1;
21291 }
21292
21293 new_mac_ptr = include_section->buffer + offset;
21294 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21295
21296 if (*slot != NULL)
21297 {
21298 /* This has actually happened; see
21299 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21300 complaint (&symfile_complaints,
21301 _("recursive DW_MACRO_GNU_transparent_include in "
21302 ".debug_macro section"));
21303 }
21304 else
21305 {
21306 *slot = (void *) new_mac_ptr;
21307
21308 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21309 include_mac_end, current_file, lh,
21310 section, section_is_gnu, is_dwz,
21311 offset_size, include_hash);
21312
21313 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21314 }
21315 }
21316 break;
21317
21318 case DW_MACINFO_vendor_ext:
21319 if (!section_is_gnu)
21320 {
21321 unsigned int bytes_read;
21322 int constant;
21323
21324 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21325 mac_ptr += bytes_read;
21326 read_direct_string (abfd, mac_ptr, &bytes_read);
21327 mac_ptr += bytes_read;
21328
21329 /* We don't recognize any vendor extensions. */
21330 break;
21331 }
21332 /* FALLTHROUGH */
21333
21334 default:
21335 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21336 mac_ptr, mac_end, abfd, offset_size,
21337 section);
21338 if (mac_ptr == NULL)
21339 return;
21340 break;
21341 }
21342 } while (macinfo_type != 0);
21343 }
21344
21345 static void
21346 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21347 int section_is_gnu)
21348 {
21349 struct objfile *objfile = dwarf2_per_objfile->objfile;
21350 struct line_header *lh = cu->line_header;
21351 bfd *abfd;
21352 const gdb_byte *mac_ptr, *mac_end;
21353 struct macro_source_file *current_file = 0;
21354 enum dwarf_macro_record_type macinfo_type;
21355 unsigned int offset_size = cu->header.offset_size;
21356 const gdb_byte *opcode_definitions[256];
21357 struct cleanup *cleanup;
21358 htab_t include_hash;
21359 void **slot;
21360 struct dwarf2_section_info *section;
21361 const char *section_name;
21362
21363 if (cu->dwo_unit != NULL)
21364 {
21365 if (section_is_gnu)
21366 {
21367 section = &cu->dwo_unit->dwo_file->sections.macro;
21368 section_name = ".debug_macro.dwo";
21369 }
21370 else
21371 {
21372 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21373 section_name = ".debug_macinfo.dwo";
21374 }
21375 }
21376 else
21377 {
21378 if (section_is_gnu)
21379 {
21380 section = &dwarf2_per_objfile->macro;
21381 section_name = ".debug_macro";
21382 }
21383 else
21384 {
21385 section = &dwarf2_per_objfile->macinfo;
21386 section_name = ".debug_macinfo";
21387 }
21388 }
21389
21390 dwarf2_read_section (objfile, section);
21391 if (section->buffer == NULL)
21392 {
21393 complaint (&symfile_complaints, _("missing %s section"), section_name);
21394 return;
21395 }
21396 abfd = get_section_bfd_owner (section);
21397
21398 /* First pass: Find the name of the base filename.
21399 This filename is needed in order to process all macros whose definition
21400 (or undefinition) comes from the command line. These macros are defined
21401 before the first DW_MACINFO_start_file entry, and yet still need to be
21402 associated to the base file.
21403
21404 To determine the base file name, we scan the macro definitions until we
21405 reach the first DW_MACINFO_start_file entry. We then initialize
21406 CURRENT_FILE accordingly so that any macro definition found before the
21407 first DW_MACINFO_start_file can still be associated to the base file. */
21408
21409 mac_ptr = section->buffer + offset;
21410 mac_end = section->buffer + section->size;
21411
21412 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21413 &offset_size, section_is_gnu);
21414 if (mac_ptr == NULL)
21415 {
21416 /* We already issued a complaint. */
21417 return;
21418 }
21419
21420 do
21421 {
21422 /* Do we at least have room for a macinfo type byte? */
21423 if (mac_ptr >= mac_end)
21424 {
21425 /* Complaint is printed during the second pass as GDB will probably
21426 stop the first pass earlier upon finding
21427 DW_MACINFO_start_file. */
21428 break;
21429 }
21430
21431 macinfo_type = read_1_byte (abfd, mac_ptr);
21432 mac_ptr++;
21433
21434 /* Note that we rely on the fact that the corresponding GNU and
21435 DWARF constants are the same. */
21436 switch (macinfo_type)
21437 {
21438 /* A zero macinfo type indicates the end of the macro
21439 information. */
21440 case 0:
21441 break;
21442
21443 case DW_MACRO_GNU_define:
21444 case DW_MACRO_GNU_undef:
21445 /* Only skip the data by MAC_PTR. */
21446 {
21447 unsigned int bytes_read;
21448
21449 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21450 mac_ptr += bytes_read;
21451 read_direct_string (abfd, mac_ptr, &bytes_read);
21452 mac_ptr += bytes_read;
21453 }
21454 break;
21455
21456 case DW_MACRO_GNU_start_file:
21457 {
21458 unsigned int bytes_read;
21459 int line, file;
21460
21461 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21462 mac_ptr += bytes_read;
21463 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21464 mac_ptr += bytes_read;
21465
21466 current_file = macro_start_file (file, line, current_file, lh);
21467 }
21468 break;
21469
21470 case DW_MACRO_GNU_end_file:
21471 /* No data to skip by MAC_PTR. */
21472 break;
21473
21474 case DW_MACRO_GNU_define_indirect:
21475 case DW_MACRO_GNU_undef_indirect:
21476 case DW_MACRO_GNU_define_indirect_alt:
21477 case DW_MACRO_GNU_undef_indirect_alt:
21478 {
21479 unsigned int bytes_read;
21480
21481 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21482 mac_ptr += bytes_read;
21483 mac_ptr += offset_size;
21484 }
21485 break;
21486
21487 case DW_MACRO_GNU_transparent_include:
21488 case DW_MACRO_GNU_transparent_include_alt:
21489 /* Note that, according to the spec, a transparent include
21490 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21491 skip this opcode. */
21492 mac_ptr += offset_size;
21493 break;
21494
21495 case DW_MACINFO_vendor_ext:
21496 /* Only skip the data by MAC_PTR. */
21497 if (!section_is_gnu)
21498 {
21499 unsigned int bytes_read;
21500
21501 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21502 mac_ptr += bytes_read;
21503 read_direct_string (abfd, mac_ptr, &bytes_read);
21504 mac_ptr += bytes_read;
21505 }
21506 /* FALLTHROUGH */
21507
21508 default:
21509 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21510 mac_ptr, mac_end, abfd, offset_size,
21511 section);
21512 if (mac_ptr == NULL)
21513 return;
21514 break;
21515 }
21516 } while (macinfo_type != 0 && current_file == NULL);
21517
21518 /* Second pass: Process all entries.
21519
21520 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21521 command-line macro definitions/undefinitions. This flag is unset when we
21522 reach the first DW_MACINFO_start_file entry. */
21523
21524 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21525 NULL, xcalloc, xfree);
21526 cleanup = make_cleanup_htab_delete (include_hash);
21527 mac_ptr = section->buffer + offset;
21528 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21529 *slot = (void *) mac_ptr;
21530 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21531 current_file, lh, section,
21532 section_is_gnu, 0, offset_size, include_hash);
21533 do_cleanups (cleanup);
21534 }
21535
21536 /* Check if the attribute's form is a DW_FORM_block*
21537 if so return true else false. */
21538
21539 static int
21540 attr_form_is_block (const struct attribute *attr)
21541 {
21542 return (attr == NULL ? 0 :
21543 attr->form == DW_FORM_block1
21544 || attr->form == DW_FORM_block2
21545 || attr->form == DW_FORM_block4
21546 || attr->form == DW_FORM_block
21547 || attr->form == DW_FORM_exprloc);
21548 }
21549
21550 /* Return non-zero if ATTR's value is a section offset --- classes
21551 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21552 You may use DW_UNSND (attr) to retrieve such offsets.
21553
21554 Section 7.5.4, "Attribute Encodings", explains that no attribute
21555 may have a value that belongs to more than one of these classes; it
21556 would be ambiguous if we did, because we use the same forms for all
21557 of them. */
21558
21559 static int
21560 attr_form_is_section_offset (const struct attribute *attr)
21561 {
21562 return (attr->form == DW_FORM_data4
21563 || attr->form == DW_FORM_data8
21564 || attr->form == DW_FORM_sec_offset);
21565 }
21566
21567 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21568 zero otherwise. When this function returns true, you can apply
21569 dwarf2_get_attr_constant_value to it.
21570
21571 However, note that for some attributes you must check
21572 attr_form_is_section_offset before using this test. DW_FORM_data4
21573 and DW_FORM_data8 are members of both the constant class, and of
21574 the classes that contain offsets into other debug sections
21575 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21576 that, if an attribute's can be either a constant or one of the
21577 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21578 taken as section offsets, not constants. */
21579
21580 static int
21581 attr_form_is_constant (const struct attribute *attr)
21582 {
21583 switch (attr->form)
21584 {
21585 case DW_FORM_sdata:
21586 case DW_FORM_udata:
21587 case DW_FORM_data1:
21588 case DW_FORM_data2:
21589 case DW_FORM_data4:
21590 case DW_FORM_data8:
21591 return 1;
21592 default:
21593 return 0;
21594 }
21595 }
21596
21597
21598 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21599 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21600
21601 static int
21602 attr_form_is_ref (const struct attribute *attr)
21603 {
21604 switch (attr->form)
21605 {
21606 case DW_FORM_ref_addr:
21607 case DW_FORM_ref1:
21608 case DW_FORM_ref2:
21609 case DW_FORM_ref4:
21610 case DW_FORM_ref8:
21611 case DW_FORM_ref_udata:
21612 case DW_FORM_GNU_ref_alt:
21613 return 1;
21614 default:
21615 return 0;
21616 }
21617 }
21618
21619 /* Return the .debug_loc section to use for CU.
21620 For DWO files use .debug_loc.dwo. */
21621
21622 static struct dwarf2_section_info *
21623 cu_debug_loc_section (struct dwarf2_cu *cu)
21624 {
21625 if (cu->dwo_unit)
21626 return &cu->dwo_unit->dwo_file->sections.loc;
21627 return &dwarf2_per_objfile->loc;
21628 }
21629
21630 /* A helper function that fills in a dwarf2_loclist_baton. */
21631
21632 static void
21633 fill_in_loclist_baton (struct dwarf2_cu *cu,
21634 struct dwarf2_loclist_baton *baton,
21635 const struct attribute *attr)
21636 {
21637 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21638
21639 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21640
21641 baton->per_cu = cu->per_cu;
21642 gdb_assert (baton->per_cu);
21643 /* We don't know how long the location list is, but make sure we
21644 don't run off the edge of the section. */
21645 baton->size = section->size - DW_UNSND (attr);
21646 baton->data = section->buffer + DW_UNSND (attr);
21647 baton->base_address = cu->base_address;
21648 baton->from_dwo = cu->dwo_unit != NULL;
21649 }
21650
21651 static void
21652 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21653 struct dwarf2_cu *cu, int is_block)
21654 {
21655 struct objfile *objfile = dwarf2_per_objfile->objfile;
21656 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21657
21658 if (attr_form_is_section_offset (attr)
21659 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21660 the section. If so, fall through to the complaint in the
21661 other branch. */
21662 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21663 {
21664 struct dwarf2_loclist_baton *baton;
21665
21666 baton = obstack_alloc (&objfile->objfile_obstack,
21667 sizeof (struct dwarf2_loclist_baton));
21668
21669 fill_in_loclist_baton (cu, baton, attr);
21670
21671 if (cu->base_known == 0)
21672 complaint (&symfile_complaints,
21673 _("Location list used without "
21674 "specifying the CU base address."));
21675
21676 SYMBOL_ACLASS_INDEX (sym) = (is_block
21677 ? dwarf2_loclist_block_index
21678 : dwarf2_loclist_index);
21679 SYMBOL_LOCATION_BATON (sym) = baton;
21680 }
21681 else
21682 {
21683 struct dwarf2_locexpr_baton *baton;
21684
21685 baton = obstack_alloc (&objfile->objfile_obstack,
21686 sizeof (struct dwarf2_locexpr_baton));
21687 baton->per_cu = cu->per_cu;
21688 gdb_assert (baton->per_cu);
21689
21690 if (attr_form_is_block (attr))
21691 {
21692 /* Note that we're just copying the block's data pointer
21693 here, not the actual data. We're still pointing into the
21694 info_buffer for SYM's objfile; right now we never release
21695 that buffer, but when we do clean up properly this may
21696 need to change. */
21697 baton->size = DW_BLOCK (attr)->size;
21698 baton->data = DW_BLOCK (attr)->data;
21699 }
21700 else
21701 {
21702 dwarf2_invalid_attrib_class_complaint ("location description",
21703 SYMBOL_NATURAL_NAME (sym));
21704 baton->size = 0;
21705 }
21706
21707 SYMBOL_ACLASS_INDEX (sym) = (is_block
21708 ? dwarf2_locexpr_block_index
21709 : dwarf2_locexpr_index);
21710 SYMBOL_LOCATION_BATON (sym) = baton;
21711 }
21712 }
21713
21714 /* Return the OBJFILE associated with the compilation unit CU. If CU
21715 came from a separate debuginfo file, then the master objfile is
21716 returned. */
21717
21718 struct objfile *
21719 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21720 {
21721 struct objfile *objfile = per_cu->objfile;
21722
21723 /* Return the master objfile, so that we can report and look up the
21724 correct file containing this variable. */
21725 if (objfile->separate_debug_objfile_backlink)
21726 objfile = objfile->separate_debug_objfile_backlink;
21727
21728 return objfile;
21729 }
21730
21731 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21732 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21733 CU_HEADERP first. */
21734
21735 static const struct comp_unit_head *
21736 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21737 struct dwarf2_per_cu_data *per_cu)
21738 {
21739 const gdb_byte *info_ptr;
21740
21741 if (per_cu->cu)
21742 return &per_cu->cu->header;
21743
21744 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21745
21746 memset (cu_headerp, 0, sizeof (*cu_headerp));
21747 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21748
21749 return cu_headerp;
21750 }
21751
21752 /* Return the address size given in the compilation unit header for CU. */
21753
21754 int
21755 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21756 {
21757 struct comp_unit_head cu_header_local;
21758 const struct comp_unit_head *cu_headerp;
21759
21760 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21761
21762 return cu_headerp->addr_size;
21763 }
21764
21765 /* Return the offset size given in the compilation unit header for CU. */
21766
21767 int
21768 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21769 {
21770 struct comp_unit_head cu_header_local;
21771 const struct comp_unit_head *cu_headerp;
21772
21773 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21774
21775 return cu_headerp->offset_size;
21776 }
21777
21778 /* See its dwarf2loc.h declaration. */
21779
21780 int
21781 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21782 {
21783 struct comp_unit_head cu_header_local;
21784 const struct comp_unit_head *cu_headerp;
21785
21786 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21787
21788 if (cu_headerp->version == 2)
21789 return cu_headerp->addr_size;
21790 else
21791 return cu_headerp->offset_size;
21792 }
21793
21794 /* Return the text offset of the CU. The returned offset comes from
21795 this CU's objfile. If this objfile came from a separate debuginfo
21796 file, then the offset may be different from the corresponding
21797 offset in the parent objfile. */
21798
21799 CORE_ADDR
21800 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21801 {
21802 struct objfile *objfile = per_cu->objfile;
21803
21804 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21805 }
21806
21807 /* Locate the .debug_info compilation unit from CU's objfile which contains
21808 the DIE at OFFSET. Raises an error on failure. */
21809
21810 static struct dwarf2_per_cu_data *
21811 dwarf2_find_containing_comp_unit (sect_offset offset,
21812 unsigned int offset_in_dwz,
21813 struct objfile *objfile)
21814 {
21815 struct dwarf2_per_cu_data *this_cu;
21816 int low, high;
21817 const sect_offset *cu_off;
21818
21819 low = 0;
21820 high = dwarf2_per_objfile->n_comp_units - 1;
21821 while (high > low)
21822 {
21823 struct dwarf2_per_cu_data *mid_cu;
21824 int mid = low + (high - low) / 2;
21825
21826 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21827 cu_off = &mid_cu->offset;
21828 if (mid_cu->is_dwz > offset_in_dwz
21829 || (mid_cu->is_dwz == offset_in_dwz
21830 && cu_off->sect_off >= offset.sect_off))
21831 high = mid;
21832 else
21833 low = mid + 1;
21834 }
21835 gdb_assert (low == high);
21836 this_cu = dwarf2_per_objfile->all_comp_units[low];
21837 cu_off = &this_cu->offset;
21838 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21839 {
21840 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21841 error (_("Dwarf Error: could not find partial DIE containing "
21842 "offset 0x%lx [in module %s]"),
21843 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21844
21845 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21846 <= offset.sect_off);
21847 return dwarf2_per_objfile->all_comp_units[low-1];
21848 }
21849 else
21850 {
21851 this_cu = dwarf2_per_objfile->all_comp_units[low];
21852 if (low == dwarf2_per_objfile->n_comp_units - 1
21853 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21854 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21855 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21856 return this_cu;
21857 }
21858 }
21859
21860 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21861
21862 static void
21863 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21864 {
21865 memset (cu, 0, sizeof (*cu));
21866 per_cu->cu = cu;
21867 cu->per_cu = per_cu;
21868 cu->objfile = per_cu->objfile;
21869 obstack_init (&cu->comp_unit_obstack);
21870 }
21871
21872 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21873
21874 static void
21875 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21876 enum language pretend_language)
21877 {
21878 struct attribute *attr;
21879
21880 /* Set the language we're debugging. */
21881 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21882 if (attr)
21883 set_cu_language (DW_UNSND (attr), cu);
21884 else
21885 {
21886 cu->language = pretend_language;
21887 cu->language_defn = language_def (cu->language);
21888 }
21889
21890 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21891 if (attr)
21892 cu->producer = DW_STRING (attr);
21893 }
21894
21895 /* Release one cached compilation unit, CU. We unlink it from the tree
21896 of compilation units, but we don't remove it from the read_in_chain;
21897 the caller is responsible for that.
21898 NOTE: DATA is a void * because this function is also used as a
21899 cleanup routine. */
21900
21901 static void
21902 free_heap_comp_unit (void *data)
21903 {
21904 struct dwarf2_cu *cu = data;
21905
21906 gdb_assert (cu->per_cu != NULL);
21907 cu->per_cu->cu = NULL;
21908 cu->per_cu = NULL;
21909
21910 obstack_free (&cu->comp_unit_obstack, NULL);
21911
21912 xfree (cu);
21913 }
21914
21915 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21916 when we're finished with it. We can't free the pointer itself, but be
21917 sure to unlink it from the cache. Also release any associated storage. */
21918
21919 static void
21920 free_stack_comp_unit (void *data)
21921 {
21922 struct dwarf2_cu *cu = data;
21923
21924 gdb_assert (cu->per_cu != NULL);
21925 cu->per_cu->cu = NULL;
21926 cu->per_cu = NULL;
21927
21928 obstack_free (&cu->comp_unit_obstack, NULL);
21929 cu->partial_dies = NULL;
21930 }
21931
21932 /* Free all cached compilation units. */
21933
21934 static void
21935 free_cached_comp_units (void *data)
21936 {
21937 struct dwarf2_per_cu_data *per_cu, **last_chain;
21938
21939 per_cu = dwarf2_per_objfile->read_in_chain;
21940 last_chain = &dwarf2_per_objfile->read_in_chain;
21941 while (per_cu != NULL)
21942 {
21943 struct dwarf2_per_cu_data *next_cu;
21944
21945 next_cu = per_cu->cu->read_in_chain;
21946
21947 free_heap_comp_unit (per_cu->cu);
21948 *last_chain = next_cu;
21949
21950 per_cu = next_cu;
21951 }
21952 }
21953
21954 /* Increase the age counter on each cached compilation unit, and free
21955 any that are too old. */
21956
21957 static void
21958 age_cached_comp_units (void)
21959 {
21960 struct dwarf2_per_cu_data *per_cu, **last_chain;
21961
21962 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21963 per_cu = dwarf2_per_objfile->read_in_chain;
21964 while (per_cu != NULL)
21965 {
21966 per_cu->cu->last_used ++;
21967 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21968 dwarf2_mark (per_cu->cu);
21969 per_cu = per_cu->cu->read_in_chain;
21970 }
21971
21972 per_cu = dwarf2_per_objfile->read_in_chain;
21973 last_chain = &dwarf2_per_objfile->read_in_chain;
21974 while (per_cu != NULL)
21975 {
21976 struct dwarf2_per_cu_data *next_cu;
21977
21978 next_cu = per_cu->cu->read_in_chain;
21979
21980 if (!per_cu->cu->mark)
21981 {
21982 free_heap_comp_unit (per_cu->cu);
21983 *last_chain = next_cu;
21984 }
21985 else
21986 last_chain = &per_cu->cu->read_in_chain;
21987
21988 per_cu = next_cu;
21989 }
21990 }
21991
21992 /* Remove a single compilation unit from the cache. */
21993
21994 static void
21995 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21996 {
21997 struct dwarf2_per_cu_data *per_cu, **last_chain;
21998
21999 per_cu = dwarf2_per_objfile->read_in_chain;
22000 last_chain = &dwarf2_per_objfile->read_in_chain;
22001 while (per_cu != NULL)
22002 {
22003 struct dwarf2_per_cu_data *next_cu;
22004
22005 next_cu = per_cu->cu->read_in_chain;
22006
22007 if (per_cu == target_per_cu)
22008 {
22009 free_heap_comp_unit (per_cu->cu);
22010 per_cu->cu = NULL;
22011 *last_chain = next_cu;
22012 break;
22013 }
22014 else
22015 last_chain = &per_cu->cu->read_in_chain;
22016
22017 per_cu = next_cu;
22018 }
22019 }
22020
22021 /* Release all extra memory associated with OBJFILE. */
22022
22023 void
22024 dwarf2_free_objfile (struct objfile *objfile)
22025 {
22026 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22027
22028 if (dwarf2_per_objfile == NULL)
22029 return;
22030
22031 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22032 free_cached_comp_units (NULL);
22033
22034 if (dwarf2_per_objfile->quick_file_names_table)
22035 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22036
22037 if (dwarf2_per_objfile->line_header_hash)
22038 htab_delete (dwarf2_per_objfile->line_header_hash);
22039
22040 /* Everything else should be on the objfile obstack. */
22041 }
22042
22043 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22044 We store these in a hash table separate from the DIEs, and preserve them
22045 when the DIEs are flushed out of cache.
22046
22047 The CU "per_cu" pointer is needed because offset alone is not enough to
22048 uniquely identify the type. A file may have multiple .debug_types sections,
22049 or the type may come from a DWO file. Furthermore, while it's more logical
22050 to use per_cu->section+offset, with Fission the section with the data is in
22051 the DWO file but we don't know that section at the point we need it.
22052 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22053 because we can enter the lookup routine, get_die_type_at_offset, from
22054 outside this file, and thus won't necessarily have PER_CU->cu.
22055 Fortunately, PER_CU is stable for the life of the objfile. */
22056
22057 struct dwarf2_per_cu_offset_and_type
22058 {
22059 const struct dwarf2_per_cu_data *per_cu;
22060 sect_offset offset;
22061 struct type *type;
22062 };
22063
22064 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22065
22066 static hashval_t
22067 per_cu_offset_and_type_hash (const void *item)
22068 {
22069 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22070
22071 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22072 }
22073
22074 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22075
22076 static int
22077 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22078 {
22079 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22080 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22081
22082 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22083 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22084 }
22085
22086 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22087 table if necessary. For convenience, return TYPE.
22088
22089 The DIEs reading must have careful ordering to:
22090 * Not cause infite loops trying to read in DIEs as a prerequisite for
22091 reading current DIE.
22092 * Not trying to dereference contents of still incompletely read in types
22093 while reading in other DIEs.
22094 * Enable referencing still incompletely read in types just by a pointer to
22095 the type without accessing its fields.
22096
22097 Therefore caller should follow these rules:
22098 * Try to fetch any prerequisite types we may need to build this DIE type
22099 before building the type and calling set_die_type.
22100 * After building type call set_die_type for current DIE as soon as
22101 possible before fetching more types to complete the current type.
22102 * Make the type as complete as possible before fetching more types. */
22103
22104 static struct type *
22105 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22106 {
22107 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22108 struct objfile *objfile = cu->objfile;
22109 struct attribute *attr;
22110 struct dynamic_prop prop;
22111
22112 /* For Ada types, make sure that the gnat-specific data is always
22113 initialized (if not already set). There are a few types where
22114 we should not be doing so, because the type-specific area is
22115 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22116 where the type-specific area is used to store the floatformat).
22117 But this is not a problem, because the gnat-specific information
22118 is actually not needed for these types. */
22119 if (need_gnat_info (cu)
22120 && TYPE_CODE (type) != TYPE_CODE_FUNC
22121 && TYPE_CODE (type) != TYPE_CODE_FLT
22122 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22123 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22124 && TYPE_CODE (type) != TYPE_CODE_METHOD
22125 && !HAVE_GNAT_AUX_INFO (type))
22126 INIT_GNAT_SPECIFIC (type);
22127
22128 /* Read DW_AT_data_location and set in type. */
22129 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22130 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22131 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22132
22133 if (dwarf2_per_objfile->die_type_hash == NULL)
22134 {
22135 dwarf2_per_objfile->die_type_hash =
22136 htab_create_alloc_ex (127,
22137 per_cu_offset_and_type_hash,
22138 per_cu_offset_and_type_eq,
22139 NULL,
22140 &objfile->objfile_obstack,
22141 hashtab_obstack_allocate,
22142 dummy_obstack_deallocate);
22143 }
22144
22145 ofs.per_cu = cu->per_cu;
22146 ofs.offset = die->offset;
22147 ofs.type = type;
22148 slot = (struct dwarf2_per_cu_offset_and_type **)
22149 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22150 if (*slot)
22151 complaint (&symfile_complaints,
22152 _("A problem internal to GDB: DIE 0x%x has type already set"),
22153 die->offset.sect_off);
22154 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22155 **slot = ofs;
22156 return type;
22157 }
22158
22159 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22160 or return NULL if the die does not have a saved type. */
22161
22162 static struct type *
22163 get_die_type_at_offset (sect_offset offset,
22164 struct dwarf2_per_cu_data *per_cu)
22165 {
22166 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22167
22168 if (dwarf2_per_objfile->die_type_hash == NULL)
22169 return NULL;
22170
22171 ofs.per_cu = per_cu;
22172 ofs.offset = offset;
22173 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22174 if (slot)
22175 return slot->type;
22176 else
22177 return NULL;
22178 }
22179
22180 /* Look up the type for DIE in CU in die_type_hash,
22181 or return NULL if DIE does not have a saved type. */
22182
22183 static struct type *
22184 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22185 {
22186 return get_die_type_at_offset (die->offset, cu->per_cu);
22187 }
22188
22189 /* Add a dependence relationship from CU to REF_PER_CU. */
22190
22191 static void
22192 dwarf2_add_dependence (struct dwarf2_cu *cu,
22193 struct dwarf2_per_cu_data *ref_per_cu)
22194 {
22195 void **slot;
22196
22197 if (cu->dependencies == NULL)
22198 cu->dependencies
22199 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22200 NULL, &cu->comp_unit_obstack,
22201 hashtab_obstack_allocate,
22202 dummy_obstack_deallocate);
22203
22204 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22205 if (*slot == NULL)
22206 *slot = ref_per_cu;
22207 }
22208
22209 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22210 Set the mark field in every compilation unit in the
22211 cache that we must keep because we are keeping CU. */
22212
22213 static int
22214 dwarf2_mark_helper (void **slot, void *data)
22215 {
22216 struct dwarf2_per_cu_data *per_cu;
22217
22218 per_cu = (struct dwarf2_per_cu_data *) *slot;
22219
22220 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22221 reading of the chain. As such dependencies remain valid it is not much
22222 useful to track and undo them during QUIT cleanups. */
22223 if (per_cu->cu == NULL)
22224 return 1;
22225
22226 if (per_cu->cu->mark)
22227 return 1;
22228 per_cu->cu->mark = 1;
22229
22230 if (per_cu->cu->dependencies != NULL)
22231 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22232
22233 return 1;
22234 }
22235
22236 /* Set the mark field in CU and in every other compilation unit in the
22237 cache that we must keep because we are keeping CU. */
22238
22239 static void
22240 dwarf2_mark (struct dwarf2_cu *cu)
22241 {
22242 if (cu->mark)
22243 return;
22244 cu->mark = 1;
22245 if (cu->dependencies != NULL)
22246 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22247 }
22248
22249 static void
22250 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22251 {
22252 while (per_cu)
22253 {
22254 per_cu->cu->mark = 0;
22255 per_cu = per_cu->cu->read_in_chain;
22256 }
22257 }
22258
22259 /* Trivial hash function for partial_die_info: the hash value of a DIE
22260 is its offset in .debug_info for this objfile. */
22261
22262 static hashval_t
22263 partial_die_hash (const void *item)
22264 {
22265 const struct partial_die_info *part_die = item;
22266
22267 return part_die->offset.sect_off;
22268 }
22269
22270 /* Trivial comparison function for partial_die_info structures: two DIEs
22271 are equal if they have the same offset. */
22272
22273 static int
22274 partial_die_eq (const void *item_lhs, const void *item_rhs)
22275 {
22276 const struct partial_die_info *part_die_lhs = item_lhs;
22277 const struct partial_die_info *part_die_rhs = item_rhs;
22278
22279 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22280 }
22281
22282 static struct cmd_list_element *set_dwarf2_cmdlist;
22283 static struct cmd_list_element *show_dwarf2_cmdlist;
22284
22285 static void
22286 set_dwarf2_cmd (char *args, int from_tty)
22287 {
22288 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22289 gdb_stdout);
22290 }
22291
22292 static void
22293 show_dwarf2_cmd (char *args, int from_tty)
22294 {
22295 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22296 }
22297
22298 /* Free data associated with OBJFILE, if necessary. */
22299
22300 static void
22301 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22302 {
22303 struct dwarf2_per_objfile *data = d;
22304 int ix;
22305
22306 /* Make sure we don't accidentally use dwarf2_per_objfile while
22307 cleaning up. */
22308 dwarf2_per_objfile = NULL;
22309
22310 for (ix = 0; ix < data->n_comp_units; ++ix)
22311 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22312
22313 for (ix = 0; ix < data->n_type_units; ++ix)
22314 VEC_free (dwarf2_per_cu_ptr,
22315 data->all_type_units[ix]->per_cu.imported_symtabs);
22316 xfree (data->all_type_units);
22317
22318 VEC_free (dwarf2_section_info_def, data->types);
22319
22320 if (data->dwo_files)
22321 free_dwo_files (data->dwo_files, objfile);
22322 if (data->dwp_file)
22323 gdb_bfd_unref (data->dwp_file->dbfd);
22324
22325 if (data->dwz_file && data->dwz_file->dwz_bfd)
22326 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22327 }
22328
22329 \f
22330 /* The "save gdb-index" command. */
22331
22332 /* The contents of the hash table we create when building the string
22333 table. */
22334 struct strtab_entry
22335 {
22336 offset_type offset;
22337 const char *str;
22338 };
22339
22340 /* Hash function for a strtab_entry.
22341
22342 Function is used only during write_hash_table so no index format backward
22343 compatibility is needed. */
22344
22345 static hashval_t
22346 hash_strtab_entry (const void *e)
22347 {
22348 const struct strtab_entry *entry = e;
22349 return mapped_index_string_hash (INT_MAX, entry->str);
22350 }
22351
22352 /* Equality function for a strtab_entry. */
22353
22354 static int
22355 eq_strtab_entry (const void *a, const void *b)
22356 {
22357 const struct strtab_entry *ea = a;
22358 const struct strtab_entry *eb = b;
22359 return !strcmp (ea->str, eb->str);
22360 }
22361
22362 /* Create a strtab_entry hash table. */
22363
22364 static htab_t
22365 create_strtab (void)
22366 {
22367 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22368 xfree, xcalloc, xfree);
22369 }
22370
22371 /* Add a string to the constant pool. Return the string's offset in
22372 host order. */
22373
22374 static offset_type
22375 add_string (htab_t table, struct obstack *cpool, const char *str)
22376 {
22377 void **slot;
22378 struct strtab_entry entry;
22379 struct strtab_entry *result;
22380
22381 entry.str = str;
22382 slot = htab_find_slot (table, &entry, INSERT);
22383 if (*slot)
22384 result = *slot;
22385 else
22386 {
22387 result = XNEW (struct strtab_entry);
22388 result->offset = obstack_object_size (cpool);
22389 result->str = str;
22390 obstack_grow_str0 (cpool, str);
22391 *slot = result;
22392 }
22393 return result->offset;
22394 }
22395
22396 /* An entry in the symbol table. */
22397 struct symtab_index_entry
22398 {
22399 /* The name of the symbol. */
22400 const char *name;
22401 /* The offset of the name in the constant pool. */
22402 offset_type index_offset;
22403 /* A sorted vector of the indices of all the CUs that hold an object
22404 of this name. */
22405 VEC (offset_type) *cu_indices;
22406 };
22407
22408 /* The symbol table. This is a power-of-2-sized hash table. */
22409 struct mapped_symtab
22410 {
22411 offset_type n_elements;
22412 offset_type size;
22413 struct symtab_index_entry **data;
22414 };
22415
22416 /* Hash function for a symtab_index_entry. */
22417
22418 static hashval_t
22419 hash_symtab_entry (const void *e)
22420 {
22421 const struct symtab_index_entry *entry = e;
22422 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22423 sizeof (offset_type) * VEC_length (offset_type,
22424 entry->cu_indices),
22425 0);
22426 }
22427
22428 /* Equality function for a symtab_index_entry. */
22429
22430 static int
22431 eq_symtab_entry (const void *a, const void *b)
22432 {
22433 const struct symtab_index_entry *ea = a;
22434 const struct symtab_index_entry *eb = b;
22435 int len = VEC_length (offset_type, ea->cu_indices);
22436 if (len != VEC_length (offset_type, eb->cu_indices))
22437 return 0;
22438 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22439 VEC_address (offset_type, eb->cu_indices),
22440 sizeof (offset_type) * len);
22441 }
22442
22443 /* Destroy a symtab_index_entry. */
22444
22445 static void
22446 delete_symtab_entry (void *p)
22447 {
22448 struct symtab_index_entry *entry = p;
22449 VEC_free (offset_type, entry->cu_indices);
22450 xfree (entry);
22451 }
22452
22453 /* Create a hash table holding symtab_index_entry objects. */
22454
22455 static htab_t
22456 create_symbol_hash_table (void)
22457 {
22458 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22459 delete_symtab_entry, xcalloc, xfree);
22460 }
22461
22462 /* Create a new mapped symtab object. */
22463
22464 static struct mapped_symtab *
22465 create_mapped_symtab (void)
22466 {
22467 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22468 symtab->n_elements = 0;
22469 symtab->size = 1024;
22470 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22471 return symtab;
22472 }
22473
22474 /* Destroy a mapped_symtab. */
22475
22476 static void
22477 cleanup_mapped_symtab (void *p)
22478 {
22479 struct mapped_symtab *symtab = p;
22480 /* The contents of the array are freed when the other hash table is
22481 destroyed. */
22482 xfree (symtab->data);
22483 xfree (symtab);
22484 }
22485
22486 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22487 the slot.
22488
22489 Function is used only during write_hash_table so no index format backward
22490 compatibility is needed. */
22491
22492 static struct symtab_index_entry **
22493 find_slot (struct mapped_symtab *symtab, const char *name)
22494 {
22495 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22496
22497 index = hash & (symtab->size - 1);
22498 step = ((hash * 17) & (symtab->size - 1)) | 1;
22499
22500 for (;;)
22501 {
22502 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22503 return &symtab->data[index];
22504 index = (index + step) & (symtab->size - 1);
22505 }
22506 }
22507
22508 /* Expand SYMTAB's hash table. */
22509
22510 static void
22511 hash_expand (struct mapped_symtab *symtab)
22512 {
22513 offset_type old_size = symtab->size;
22514 offset_type i;
22515 struct symtab_index_entry **old_entries = symtab->data;
22516
22517 symtab->size *= 2;
22518 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22519
22520 for (i = 0; i < old_size; ++i)
22521 {
22522 if (old_entries[i])
22523 {
22524 struct symtab_index_entry **slot = find_slot (symtab,
22525 old_entries[i]->name);
22526 *slot = old_entries[i];
22527 }
22528 }
22529
22530 xfree (old_entries);
22531 }
22532
22533 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22534 CU_INDEX is the index of the CU in which the symbol appears.
22535 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22536
22537 static void
22538 add_index_entry (struct mapped_symtab *symtab, const char *name,
22539 int is_static, gdb_index_symbol_kind kind,
22540 offset_type cu_index)
22541 {
22542 struct symtab_index_entry **slot;
22543 offset_type cu_index_and_attrs;
22544
22545 ++symtab->n_elements;
22546 if (4 * symtab->n_elements / 3 >= symtab->size)
22547 hash_expand (symtab);
22548
22549 slot = find_slot (symtab, name);
22550 if (!*slot)
22551 {
22552 *slot = XNEW (struct symtab_index_entry);
22553 (*slot)->name = name;
22554 /* index_offset is set later. */
22555 (*slot)->cu_indices = NULL;
22556 }
22557
22558 cu_index_and_attrs = 0;
22559 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22560 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22561 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22562
22563 /* We don't want to record an index value twice as we want to avoid the
22564 duplication.
22565 We process all global symbols and then all static symbols
22566 (which would allow us to avoid the duplication by only having to check
22567 the last entry pushed), but a symbol could have multiple kinds in one CU.
22568 To keep things simple we don't worry about the duplication here and
22569 sort and uniqufy the list after we've processed all symbols. */
22570 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22571 }
22572
22573 /* qsort helper routine for uniquify_cu_indices. */
22574
22575 static int
22576 offset_type_compare (const void *ap, const void *bp)
22577 {
22578 offset_type a = *(offset_type *) ap;
22579 offset_type b = *(offset_type *) bp;
22580
22581 return (a > b) - (b > a);
22582 }
22583
22584 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22585
22586 static void
22587 uniquify_cu_indices (struct mapped_symtab *symtab)
22588 {
22589 int i;
22590
22591 for (i = 0; i < symtab->size; ++i)
22592 {
22593 struct symtab_index_entry *entry = symtab->data[i];
22594
22595 if (entry
22596 && entry->cu_indices != NULL)
22597 {
22598 unsigned int next_to_insert, next_to_check;
22599 offset_type last_value;
22600
22601 qsort (VEC_address (offset_type, entry->cu_indices),
22602 VEC_length (offset_type, entry->cu_indices),
22603 sizeof (offset_type), offset_type_compare);
22604
22605 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22606 next_to_insert = 1;
22607 for (next_to_check = 1;
22608 next_to_check < VEC_length (offset_type, entry->cu_indices);
22609 ++next_to_check)
22610 {
22611 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22612 != last_value)
22613 {
22614 last_value = VEC_index (offset_type, entry->cu_indices,
22615 next_to_check);
22616 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22617 last_value);
22618 ++next_to_insert;
22619 }
22620 }
22621 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22622 }
22623 }
22624 }
22625
22626 /* Add a vector of indices to the constant pool. */
22627
22628 static offset_type
22629 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22630 struct symtab_index_entry *entry)
22631 {
22632 void **slot;
22633
22634 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22635 if (!*slot)
22636 {
22637 offset_type len = VEC_length (offset_type, entry->cu_indices);
22638 offset_type val = MAYBE_SWAP (len);
22639 offset_type iter;
22640 int i;
22641
22642 *slot = entry;
22643 entry->index_offset = obstack_object_size (cpool);
22644
22645 obstack_grow (cpool, &val, sizeof (val));
22646 for (i = 0;
22647 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22648 ++i)
22649 {
22650 val = MAYBE_SWAP (iter);
22651 obstack_grow (cpool, &val, sizeof (val));
22652 }
22653 }
22654 else
22655 {
22656 struct symtab_index_entry *old_entry = *slot;
22657 entry->index_offset = old_entry->index_offset;
22658 entry = old_entry;
22659 }
22660 return entry->index_offset;
22661 }
22662
22663 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22664 constant pool entries going into the obstack CPOOL. */
22665
22666 static void
22667 write_hash_table (struct mapped_symtab *symtab,
22668 struct obstack *output, struct obstack *cpool)
22669 {
22670 offset_type i;
22671 htab_t symbol_hash_table;
22672 htab_t str_table;
22673
22674 symbol_hash_table = create_symbol_hash_table ();
22675 str_table = create_strtab ();
22676
22677 /* We add all the index vectors to the constant pool first, to
22678 ensure alignment is ok. */
22679 for (i = 0; i < symtab->size; ++i)
22680 {
22681 if (symtab->data[i])
22682 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22683 }
22684
22685 /* Now write out the hash table. */
22686 for (i = 0; i < symtab->size; ++i)
22687 {
22688 offset_type str_off, vec_off;
22689
22690 if (symtab->data[i])
22691 {
22692 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22693 vec_off = symtab->data[i]->index_offset;
22694 }
22695 else
22696 {
22697 /* While 0 is a valid constant pool index, it is not valid
22698 to have 0 for both offsets. */
22699 str_off = 0;
22700 vec_off = 0;
22701 }
22702
22703 str_off = MAYBE_SWAP (str_off);
22704 vec_off = MAYBE_SWAP (vec_off);
22705
22706 obstack_grow (output, &str_off, sizeof (str_off));
22707 obstack_grow (output, &vec_off, sizeof (vec_off));
22708 }
22709
22710 htab_delete (str_table);
22711 htab_delete (symbol_hash_table);
22712 }
22713
22714 /* Struct to map psymtab to CU index in the index file. */
22715 struct psymtab_cu_index_map
22716 {
22717 struct partial_symtab *psymtab;
22718 unsigned int cu_index;
22719 };
22720
22721 static hashval_t
22722 hash_psymtab_cu_index (const void *item)
22723 {
22724 const struct psymtab_cu_index_map *map = item;
22725
22726 return htab_hash_pointer (map->psymtab);
22727 }
22728
22729 static int
22730 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22731 {
22732 const struct psymtab_cu_index_map *lhs = item_lhs;
22733 const struct psymtab_cu_index_map *rhs = item_rhs;
22734
22735 return lhs->psymtab == rhs->psymtab;
22736 }
22737
22738 /* Helper struct for building the address table. */
22739 struct addrmap_index_data
22740 {
22741 struct objfile *objfile;
22742 struct obstack *addr_obstack;
22743 htab_t cu_index_htab;
22744
22745 /* Non-zero if the previous_* fields are valid.
22746 We can't write an entry until we see the next entry (since it is only then
22747 that we know the end of the entry). */
22748 int previous_valid;
22749 /* Index of the CU in the table of all CUs in the index file. */
22750 unsigned int previous_cu_index;
22751 /* Start address of the CU. */
22752 CORE_ADDR previous_cu_start;
22753 };
22754
22755 /* Write an address entry to OBSTACK. */
22756
22757 static void
22758 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22759 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22760 {
22761 offset_type cu_index_to_write;
22762 gdb_byte addr[8];
22763 CORE_ADDR baseaddr;
22764
22765 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22766
22767 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22768 obstack_grow (obstack, addr, 8);
22769 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22770 obstack_grow (obstack, addr, 8);
22771 cu_index_to_write = MAYBE_SWAP (cu_index);
22772 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22773 }
22774
22775 /* Worker function for traversing an addrmap to build the address table. */
22776
22777 static int
22778 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22779 {
22780 struct addrmap_index_data *data = datap;
22781 struct partial_symtab *pst = obj;
22782
22783 if (data->previous_valid)
22784 add_address_entry (data->objfile, data->addr_obstack,
22785 data->previous_cu_start, start_addr,
22786 data->previous_cu_index);
22787
22788 data->previous_cu_start = start_addr;
22789 if (pst != NULL)
22790 {
22791 struct psymtab_cu_index_map find_map, *map;
22792 find_map.psymtab = pst;
22793 map = htab_find (data->cu_index_htab, &find_map);
22794 gdb_assert (map != NULL);
22795 data->previous_cu_index = map->cu_index;
22796 data->previous_valid = 1;
22797 }
22798 else
22799 data->previous_valid = 0;
22800
22801 return 0;
22802 }
22803
22804 /* Write OBJFILE's address map to OBSTACK.
22805 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22806 in the index file. */
22807
22808 static void
22809 write_address_map (struct objfile *objfile, struct obstack *obstack,
22810 htab_t cu_index_htab)
22811 {
22812 struct addrmap_index_data addrmap_index_data;
22813
22814 /* When writing the address table, we have to cope with the fact that
22815 the addrmap iterator only provides the start of a region; we have to
22816 wait until the next invocation to get the start of the next region. */
22817
22818 addrmap_index_data.objfile = objfile;
22819 addrmap_index_data.addr_obstack = obstack;
22820 addrmap_index_data.cu_index_htab = cu_index_htab;
22821 addrmap_index_data.previous_valid = 0;
22822
22823 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22824 &addrmap_index_data);
22825
22826 /* It's highly unlikely the last entry (end address = 0xff...ff)
22827 is valid, but we should still handle it.
22828 The end address is recorded as the start of the next region, but that
22829 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22830 anyway. */
22831 if (addrmap_index_data.previous_valid)
22832 add_address_entry (objfile, obstack,
22833 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22834 addrmap_index_data.previous_cu_index);
22835 }
22836
22837 /* Return the symbol kind of PSYM. */
22838
22839 static gdb_index_symbol_kind
22840 symbol_kind (struct partial_symbol *psym)
22841 {
22842 domain_enum domain = PSYMBOL_DOMAIN (psym);
22843 enum address_class aclass = PSYMBOL_CLASS (psym);
22844
22845 switch (domain)
22846 {
22847 case VAR_DOMAIN:
22848 switch (aclass)
22849 {
22850 case LOC_BLOCK:
22851 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22852 case LOC_TYPEDEF:
22853 return GDB_INDEX_SYMBOL_KIND_TYPE;
22854 case LOC_COMPUTED:
22855 case LOC_CONST_BYTES:
22856 case LOC_OPTIMIZED_OUT:
22857 case LOC_STATIC:
22858 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22859 case LOC_CONST:
22860 /* Note: It's currently impossible to recognize psyms as enum values
22861 short of reading the type info. For now punt. */
22862 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22863 default:
22864 /* There are other LOC_FOO values that one might want to classify
22865 as variables, but dwarf2read.c doesn't currently use them. */
22866 return GDB_INDEX_SYMBOL_KIND_OTHER;
22867 }
22868 case STRUCT_DOMAIN:
22869 return GDB_INDEX_SYMBOL_KIND_TYPE;
22870 default:
22871 return GDB_INDEX_SYMBOL_KIND_OTHER;
22872 }
22873 }
22874
22875 /* Add a list of partial symbols to SYMTAB. */
22876
22877 static void
22878 write_psymbols (struct mapped_symtab *symtab,
22879 htab_t psyms_seen,
22880 struct partial_symbol **psymp,
22881 int count,
22882 offset_type cu_index,
22883 int is_static)
22884 {
22885 for (; count-- > 0; ++psymp)
22886 {
22887 struct partial_symbol *psym = *psymp;
22888 void **slot;
22889
22890 if (SYMBOL_LANGUAGE (psym) == language_ada)
22891 error (_("Ada is not currently supported by the index"));
22892
22893 /* Only add a given psymbol once. */
22894 slot = htab_find_slot (psyms_seen, psym, INSERT);
22895 if (!*slot)
22896 {
22897 gdb_index_symbol_kind kind = symbol_kind (psym);
22898
22899 *slot = psym;
22900 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22901 is_static, kind, cu_index);
22902 }
22903 }
22904 }
22905
22906 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22907 exception if there is an error. */
22908
22909 static void
22910 write_obstack (FILE *file, struct obstack *obstack)
22911 {
22912 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22913 file)
22914 != obstack_object_size (obstack))
22915 error (_("couldn't data write to file"));
22916 }
22917
22918 /* Unlink a file if the argument is not NULL. */
22919
22920 static void
22921 unlink_if_set (void *p)
22922 {
22923 char **filename = p;
22924 if (*filename)
22925 unlink (*filename);
22926 }
22927
22928 /* A helper struct used when iterating over debug_types. */
22929 struct signatured_type_index_data
22930 {
22931 struct objfile *objfile;
22932 struct mapped_symtab *symtab;
22933 struct obstack *types_list;
22934 htab_t psyms_seen;
22935 int cu_index;
22936 };
22937
22938 /* A helper function that writes a single signatured_type to an
22939 obstack. */
22940
22941 static int
22942 write_one_signatured_type (void **slot, void *d)
22943 {
22944 struct signatured_type_index_data *info = d;
22945 struct signatured_type *entry = (struct signatured_type *) *slot;
22946 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22947 gdb_byte val[8];
22948
22949 write_psymbols (info->symtab,
22950 info->psyms_seen,
22951 info->objfile->global_psymbols.list
22952 + psymtab->globals_offset,
22953 psymtab->n_global_syms, info->cu_index,
22954 0);
22955 write_psymbols (info->symtab,
22956 info->psyms_seen,
22957 info->objfile->static_psymbols.list
22958 + psymtab->statics_offset,
22959 psymtab->n_static_syms, info->cu_index,
22960 1);
22961
22962 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22963 entry->per_cu.offset.sect_off);
22964 obstack_grow (info->types_list, val, 8);
22965 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22966 entry->type_offset_in_tu.cu_off);
22967 obstack_grow (info->types_list, val, 8);
22968 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22969 obstack_grow (info->types_list, val, 8);
22970
22971 ++info->cu_index;
22972
22973 return 1;
22974 }
22975
22976 /* Recurse into all "included" dependencies and write their symbols as
22977 if they appeared in this psymtab. */
22978
22979 static void
22980 recursively_write_psymbols (struct objfile *objfile,
22981 struct partial_symtab *psymtab,
22982 struct mapped_symtab *symtab,
22983 htab_t psyms_seen,
22984 offset_type cu_index)
22985 {
22986 int i;
22987
22988 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22989 if (psymtab->dependencies[i]->user != NULL)
22990 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22991 symtab, psyms_seen, cu_index);
22992
22993 write_psymbols (symtab,
22994 psyms_seen,
22995 objfile->global_psymbols.list + psymtab->globals_offset,
22996 psymtab->n_global_syms, cu_index,
22997 0);
22998 write_psymbols (symtab,
22999 psyms_seen,
23000 objfile->static_psymbols.list + psymtab->statics_offset,
23001 psymtab->n_static_syms, cu_index,
23002 1);
23003 }
23004
23005 /* Create an index file for OBJFILE in the directory DIR. */
23006
23007 static void
23008 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23009 {
23010 struct cleanup *cleanup;
23011 char *filename, *cleanup_filename;
23012 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23013 struct obstack cu_list, types_cu_list;
23014 int i;
23015 FILE *out_file;
23016 struct mapped_symtab *symtab;
23017 offset_type val, size_of_contents, total_len;
23018 struct stat st;
23019 htab_t psyms_seen;
23020 htab_t cu_index_htab;
23021 struct psymtab_cu_index_map *psymtab_cu_index_map;
23022
23023 if (dwarf2_per_objfile->using_index)
23024 error (_("Cannot use an index to create the index"));
23025
23026 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23027 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23028
23029 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23030 return;
23031
23032 if (stat (objfile_name (objfile), &st) < 0)
23033 perror_with_name (objfile_name (objfile));
23034
23035 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23036 INDEX_SUFFIX, (char *) NULL);
23037 cleanup = make_cleanup (xfree, filename);
23038
23039 out_file = gdb_fopen_cloexec (filename, "wb");
23040 if (!out_file)
23041 error (_("Can't open `%s' for writing"), filename);
23042
23043 cleanup_filename = filename;
23044 make_cleanup (unlink_if_set, &cleanup_filename);
23045
23046 symtab = create_mapped_symtab ();
23047 make_cleanup (cleanup_mapped_symtab, symtab);
23048
23049 obstack_init (&addr_obstack);
23050 make_cleanup_obstack_free (&addr_obstack);
23051
23052 obstack_init (&cu_list);
23053 make_cleanup_obstack_free (&cu_list);
23054
23055 obstack_init (&types_cu_list);
23056 make_cleanup_obstack_free (&types_cu_list);
23057
23058 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23059 NULL, xcalloc, xfree);
23060 make_cleanup_htab_delete (psyms_seen);
23061
23062 /* While we're scanning CU's create a table that maps a psymtab pointer
23063 (which is what addrmap records) to its index (which is what is recorded
23064 in the index file). This will later be needed to write the address
23065 table. */
23066 cu_index_htab = htab_create_alloc (100,
23067 hash_psymtab_cu_index,
23068 eq_psymtab_cu_index,
23069 NULL, xcalloc, xfree);
23070 make_cleanup_htab_delete (cu_index_htab);
23071 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23072 xmalloc (sizeof (struct psymtab_cu_index_map)
23073 * dwarf2_per_objfile->n_comp_units);
23074 make_cleanup (xfree, psymtab_cu_index_map);
23075
23076 /* The CU list is already sorted, so we don't need to do additional
23077 work here. Also, the debug_types entries do not appear in
23078 all_comp_units, but only in their own hash table. */
23079 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23080 {
23081 struct dwarf2_per_cu_data *per_cu
23082 = dwarf2_per_objfile->all_comp_units[i];
23083 struct partial_symtab *psymtab = per_cu->v.psymtab;
23084 gdb_byte val[8];
23085 struct psymtab_cu_index_map *map;
23086 void **slot;
23087
23088 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23089 It may be referenced from a local scope but in such case it does not
23090 need to be present in .gdb_index. */
23091 if (psymtab == NULL)
23092 continue;
23093
23094 if (psymtab->user == NULL)
23095 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23096
23097 map = &psymtab_cu_index_map[i];
23098 map->psymtab = psymtab;
23099 map->cu_index = i;
23100 slot = htab_find_slot (cu_index_htab, map, INSERT);
23101 gdb_assert (slot != NULL);
23102 gdb_assert (*slot == NULL);
23103 *slot = map;
23104
23105 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23106 per_cu->offset.sect_off);
23107 obstack_grow (&cu_list, val, 8);
23108 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23109 obstack_grow (&cu_list, val, 8);
23110 }
23111
23112 /* Dump the address map. */
23113 write_address_map (objfile, &addr_obstack, cu_index_htab);
23114
23115 /* Write out the .debug_type entries, if any. */
23116 if (dwarf2_per_objfile->signatured_types)
23117 {
23118 struct signatured_type_index_data sig_data;
23119
23120 sig_data.objfile = objfile;
23121 sig_data.symtab = symtab;
23122 sig_data.types_list = &types_cu_list;
23123 sig_data.psyms_seen = psyms_seen;
23124 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23125 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23126 write_one_signatured_type, &sig_data);
23127 }
23128
23129 /* Now that we've processed all symbols we can shrink their cu_indices
23130 lists. */
23131 uniquify_cu_indices (symtab);
23132
23133 obstack_init (&constant_pool);
23134 make_cleanup_obstack_free (&constant_pool);
23135 obstack_init (&symtab_obstack);
23136 make_cleanup_obstack_free (&symtab_obstack);
23137 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23138
23139 obstack_init (&contents);
23140 make_cleanup_obstack_free (&contents);
23141 size_of_contents = 6 * sizeof (offset_type);
23142 total_len = size_of_contents;
23143
23144 /* The version number. */
23145 val = MAYBE_SWAP (8);
23146 obstack_grow (&contents, &val, sizeof (val));
23147
23148 /* The offset of the CU list from the start of the file. */
23149 val = MAYBE_SWAP (total_len);
23150 obstack_grow (&contents, &val, sizeof (val));
23151 total_len += obstack_object_size (&cu_list);
23152
23153 /* The offset of the types CU list from the start of the file. */
23154 val = MAYBE_SWAP (total_len);
23155 obstack_grow (&contents, &val, sizeof (val));
23156 total_len += obstack_object_size (&types_cu_list);
23157
23158 /* The offset of the address table from the start of the file. */
23159 val = MAYBE_SWAP (total_len);
23160 obstack_grow (&contents, &val, sizeof (val));
23161 total_len += obstack_object_size (&addr_obstack);
23162
23163 /* The offset of the symbol table from the start of the file. */
23164 val = MAYBE_SWAP (total_len);
23165 obstack_grow (&contents, &val, sizeof (val));
23166 total_len += obstack_object_size (&symtab_obstack);
23167
23168 /* The offset of the constant pool from the start of the file. */
23169 val = MAYBE_SWAP (total_len);
23170 obstack_grow (&contents, &val, sizeof (val));
23171 total_len += obstack_object_size (&constant_pool);
23172
23173 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23174
23175 write_obstack (out_file, &contents);
23176 write_obstack (out_file, &cu_list);
23177 write_obstack (out_file, &types_cu_list);
23178 write_obstack (out_file, &addr_obstack);
23179 write_obstack (out_file, &symtab_obstack);
23180 write_obstack (out_file, &constant_pool);
23181
23182 fclose (out_file);
23183
23184 /* We want to keep the file, so we set cleanup_filename to NULL
23185 here. See unlink_if_set. */
23186 cleanup_filename = NULL;
23187
23188 do_cleanups (cleanup);
23189 }
23190
23191 /* Implementation of the `save gdb-index' command.
23192
23193 Note that the file format used by this command is documented in the
23194 GDB manual. Any changes here must be documented there. */
23195
23196 static void
23197 save_gdb_index_command (char *arg, int from_tty)
23198 {
23199 struct objfile *objfile;
23200
23201 if (!arg || !*arg)
23202 error (_("usage: save gdb-index DIRECTORY"));
23203
23204 ALL_OBJFILES (objfile)
23205 {
23206 struct stat st;
23207
23208 /* If the objfile does not correspond to an actual file, skip it. */
23209 if (stat (objfile_name (objfile), &st) < 0)
23210 continue;
23211
23212 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23213 if (dwarf2_per_objfile)
23214 {
23215
23216 TRY
23217 {
23218 write_psymtabs_to_index (objfile, arg);
23219 }
23220 CATCH (except, RETURN_MASK_ERROR)
23221 {
23222 exception_fprintf (gdb_stderr, except,
23223 _("Error while writing index for `%s': "),
23224 objfile_name (objfile));
23225 }
23226 END_CATCH
23227 }
23228 }
23229 }
23230
23231 \f
23232
23233 int dwarf2_always_disassemble;
23234
23235 static void
23236 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23237 struct cmd_list_element *c, const char *value)
23238 {
23239 fprintf_filtered (file,
23240 _("Whether to always disassemble "
23241 "DWARF expressions is %s.\n"),
23242 value);
23243 }
23244
23245 static void
23246 show_check_physname (struct ui_file *file, int from_tty,
23247 struct cmd_list_element *c, const char *value)
23248 {
23249 fprintf_filtered (file,
23250 _("Whether to check \"physname\" is %s.\n"),
23251 value);
23252 }
23253
23254 void _initialize_dwarf2_read (void);
23255
23256 void
23257 _initialize_dwarf2_read (void)
23258 {
23259 struct cmd_list_element *c;
23260
23261 dwarf2_objfile_data_key
23262 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23263
23264 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23265 Set DWARF 2 specific variables.\n\
23266 Configure DWARF 2 variables such as the cache size"),
23267 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23268 0/*allow-unknown*/, &maintenance_set_cmdlist);
23269
23270 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23271 Show DWARF 2 specific variables\n\
23272 Show DWARF 2 variables such as the cache size"),
23273 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23274 0/*allow-unknown*/, &maintenance_show_cmdlist);
23275
23276 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23277 &dwarf2_max_cache_age, _("\
23278 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23279 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23280 A higher limit means that cached compilation units will be stored\n\
23281 in memory longer, and more total memory will be used. Zero disables\n\
23282 caching, which can slow down startup."),
23283 NULL,
23284 show_dwarf2_max_cache_age,
23285 &set_dwarf2_cmdlist,
23286 &show_dwarf2_cmdlist);
23287
23288 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23289 &dwarf2_always_disassemble, _("\
23290 Set whether `info address' always disassembles DWARF expressions."), _("\
23291 Show whether `info address' always disassembles DWARF expressions."), _("\
23292 When enabled, DWARF expressions are always printed in an assembly-like\n\
23293 syntax. When disabled, expressions will be printed in a more\n\
23294 conversational style, when possible."),
23295 NULL,
23296 show_dwarf2_always_disassemble,
23297 &set_dwarf2_cmdlist,
23298 &show_dwarf2_cmdlist);
23299
23300 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23301 Set debugging of the dwarf2 reader."), _("\
23302 Show debugging of the dwarf2 reader."), _("\
23303 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23304 reading and symtab expansion. A value of 1 (one) provides basic\n\
23305 information. A value greater than 1 provides more verbose information."),
23306 NULL,
23307 NULL,
23308 &setdebuglist, &showdebuglist);
23309
23310 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23311 Set debugging of the dwarf2 DIE reader."), _("\
23312 Show debugging of the dwarf2 DIE reader."), _("\
23313 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23314 The value is the maximum depth to print."),
23315 NULL,
23316 NULL,
23317 &setdebuglist, &showdebuglist);
23318
23319 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23320 Set cross-checking of \"physname\" code against demangler."), _("\
23321 Show cross-checking of \"physname\" code against demangler."), _("\
23322 When enabled, GDB's internal \"physname\" code is checked against\n\
23323 the demangler."),
23324 NULL, show_check_physname,
23325 &setdebuglist, &showdebuglist);
23326
23327 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23328 no_class, &use_deprecated_index_sections, _("\
23329 Set whether to use deprecated gdb_index sections."), _("\
23330 Show whether to use deprecated gdb_index sections."), _("\
23331 When enabled, deprecated .gdb_index sections are used anyway.\n\
23332 Normally they are ignored either because of a missing feature or\n\
23333 performance issue.\n\
23334 Warning: This option must be enabled before gdb reads the file."),
23335 NULL,
23336 NULL,
23337 &setlist, &showlist);
23338
23339 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23340 _("\
23341 Save a gdb-index file.\n\
23342 Usage: save gdb-index DIRECTORY"),
23343 &save_cmdlist);
23344 set_cmd_completer (c, filename_completer);
23345
23346 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23347 &dwarf2_locexpr_funcs);
23348 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23349 &dwarf2_loclist_funcs);
23350
23351 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23352 &dwarf2_block_frame_base_locexpr_funcs);
23353 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23354 &dwarf2_block_frame_base_loclist_funcs);
23355 }