]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
PR gdb/18021 - defend against "static virtual" methods
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 int included_p; /* Non-zero if referenced by the Line Number Program. */
1034 struct symtab *symtab; /* The associated symbol table, if any. */
1035 };
1036
1037 /* The line number information for a compilation unit (found in the
1038 .debug_line section) begins with a "statement program header",
1039 which contains the following information. */
1040 struct line_header
1041 {
1042 /* Offset of line number information in .debug_line section. */
1043 sect_offset offset;
1044
1045 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1046 unsigned offset_in_dwz : 1;
1047
1048 unsigned int total_length;
1049 unsigned short version;
1050 unsigned int header_length;
1051 unsigned char minimum_instruction_length;
1052 unsigned char maximum_ops_per_instruction;
1053 unsigned char default_is_stmt;
1054 int line_base;
1055 unsigned char line_range;
1056 unsigned char opcode_base;
1057
1058 /* standard_opcode_lengths[i] is the number of operands for the
1059 standard opcode whose value is i. This means that
1060 standard_opcode_lengths[0] is unused, and the last meaningful
1061 element is standard_opcode_lengths[opcode_base - 1]. */
1062 unsigned char *standard_opcode_lengths;
1063
1064 /* The include_directories table. NOTE! These strings are not
1065 allocated with xmalloc; instead, they are pointers into
1066 debug_line_buffer. If you try to free them, `free' will get
1067 indigestion. */
1068 unsigned int num_include_dirs, include_dirs_size;
1069 const char **include_dirs;
1070
1071 /* The file_names table. NOTE! These strings are not allocated
1072 with xmalloc; instead, they are pointers into debug_line_buffer.
1073 Don't try to free them directly. */
1074 unsigned int num_file_names, file_names_size;
1075 struct file_entry *file_names;
1076
1077 /* The start and end of the statement program following this
1078 header. These point into dwarf2_per_objfile->line_buffer. */
1079 const gdb_byte *statement_program_start, *statement_program_end;
1080 };
1081
1082 /* When we construct a partial symbol table entry we only
1083 need this much information. */
1084 struct partial_die_info
1085 {
1086 /* Offset of this DIE. */
1087 sect_offset offset;
1088
1089 /* DWARF-2 tag for this DIE. */
1090 ENUM_BITFIELD(dwarf_tag) tag : 16;
1091
1092 /* Assorted flags describing the data found in this DIE. */
1093 unsigned int has_children : 1;
1094 unsigned int is_external : 1;
1095 unsigned int is_declaration : 1;
1096 unsigned int has_type : 1;
1097 unsigned int has_specification : 1;
1098 unsigned int has_pc_info : 1;
1099 unsigned int may_be_inlined : 1;
1100
1101 /* Flag set if the SCOPE field of this structure has been
1102 computed. */
1103 unsigned int scope_set : 1;
1104
1105 /* Flag set if the DIE has a byte_size attribute. */
1106 unsigned int has_byte_size : 1;
1107
1108 /* Flag set if any of the DIE's children are template arguments. */
1109 unsigned int has_template_arguments : 1;
1110
1111 /* Flag set if fixup_partial_die has been called on this die. */
1112 unsigned int fixup_called : 1;
1113
1114 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1115 unsigned int is_dwz : 1;
1116
1117 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1118 unsigned int spec_is_dwz : 1;
1119
1120 /* The name of this DIE. Normally the value of DW_AT_name, but
1121 sometimes a default name for unnamed DIEs. */
1122 const char *name;
1123
1124 /* The linkage name, if present. */
1125 const char *linkage_name;
1126
1127 /* The scope to prepend to our children. This is generally
1128 allocated on the comp_unit_obstack, so will disappear
1129 when this compilation unit leaves the cache. */
1130 const char *scope;
1131
1132 /* Some data associated with the partial DIE. The tag determines
1133 which field is live. */
1134 union
1135 {
1136 /* The location description associated with this DIE, if any. */
1137 struct dwarf_block *locdesc;
1138 /* The offset of an import, for DW_TAG_imported_unit. */
1139 sect_offset offset;
1140 } d;
1141
1142 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1143 CORE_ADDR lowpc;
1144 CORE_ADDR highpc;
1145
1146 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1147 DW_AT_sibling, if any. */
1148 /* NOTE: This member isn't strictly necessary, read_partial_die could
1149 return DW_AT_sibling values to its caller load_partial_dies. */
1150 const gdb_byte *sibling;
1151
1152 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1153 DW_AT_specification (or DW_AT_abstract_origin or
1154 DW_AT_extension). */
1155 sect_offset spec_offset;
1156
1157 /* Pointers to this DIE's parent, first child, and next sibling,
1158 if any. */
1159 struct partial_die_info *die_parent, *die_child, *die_sibling;
1160 };
1161
1162 /* This data structure holds the information of an abbrev. */
1163 struct abbrev_info
1164 {
1165 unsigned int number; /* number identifying abbrev */
1166 enum dwarf_tag tag; /* dwarf tag */
1167 unsigned short has_children; /* boolean */
1168 unsigned short num_attrs; /* number of attributes */
1169 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1170 struct abbrev_info *next; /* next in chain */
1171 };
1172
1173 struct attr_abbrev
1174 {
1175 ENUM_BITFIELD(dwarf_attribute) name : 16;
1176 ENUM_BITFIELD(dwarf_form) form : 16;
1177 };
1178
1179 /* Size of abbrev_table.abbrev_hash_table. */
1180 #define ABBREV_HASH_SIZE 121
1181
1182 /* Top level data structure to contain an abbreviation table. */
1183
1184 struct abbrev_table
1185 {
1186 /* Where the abbrev table came from.
1187 This is used as a sanity check when the table is used. */
1188 sect_offset offset;
1189
1190 /* Storage for the abbrev table. */
1191 struct obstack abbrev_obstack;
1192
1193 /* Hash table of abbrevs.
1194 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1195 It could be statically allocated, but the previous code didn't so we
1196 don't either. */
1197 struct abbrev_info **abbrevs;
1198 };
1199
1200 /* Attributes have a name and a value. */
1201 struct attribute
1202 {
1203 ENUM_BITFIELD(dwarf_attribute) name : 16;
1204 ENUM_BITFIELD(dwarf_form) form : 15;
1205
1206 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1207 field should be in u.str (existing only for DW_STRING) but it is kept
1208 here for better struct attribute alignment. */
1209 unsigned int string_is_canonical : 1;
1210
1211 union
1212 {
1213 const char *str;
1214 struct dwarf_block *blk;
1215 ULONGEST unsnd;
1216 LONGEST snd;
1217 CORE_ADDR addr;
1218 ULONGEST signature;
1219 }
1220 u;
1221 };
1222
1223 /* This data structure holds a complete die structure. */
1224 struct die_info
1225 {
1226 /* DWARF-2 tag for this DIE. */
1227 ENUM_BITFIELD(dwarf_tag) tag : 16;
1228
1229 /* Number of attributes */
1230 unsigned char num_attrs;
1231
1232 /* True if we're presently building the full type name for the
1233 type derived from this DIE. */
1234 unsigned char building_fullname : 1;
1235
1236 /* True if this die is in process. PR 16581. */
1237 unsigned char in_process : 1;
1238
1239 /* Abbrev number */
1240 unsigned int abbrev;
1241
1242 /* Offset in .debug_info or .debug_types section. */
1243 sect_offset offset;
1244
1245 /* The dies in a compilation unit form an n-ary tree. PARENT
1246 points to this die's parent; CHILD points to the first child of
1247 this node; and all the children of a given node are chained
1248 together via their SIBLING fields. */
1249 struct die_info *child; /* Its first child, if any. */
1250 struct die_info *sibling; /* Its next sibling, if any. */
1251 struct die_info *parent; /* Its parent, if any. */
1252
1253 /* An array of attributes, with NUM_ATTRS elements. There may be
1254 zero, but it's not common and zero-sized arrays are not
1255 sufficiently portable C. */
1256 struct attribute attrs[1];
1257 };
1258
1259 /* Get at parts of an attribute structure. */
1260
1261 #define DW_STRING(attr) ((attr)->u.str)
1262 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1263 #define DW_UNSND(attr) ((attr)->u.unsnd)
1264 #define DW_BLOCK(attr) ((attr)->u.blk)
1265 #define DW_SND(attr) ((attr)->u.snd)
1266 #define DW_ADDR(attr) ((attr)->u.addr)
1267 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1268
1269 /* Blocks are a bunch of untyped bytes. */
1270 struct dwarf_block
1271 {
1272 size_t size;
1273
1274 /* Valid only if SIZE is not zero. */
1275 const gdb_byte *data;
1276 };
1277
1278 #ifndef ATTR_ALLOC_CHUNK
1279 #define ATTR_ALLOC_CHUNK 4
1280 #endif
1281
1282 /* Allocate fields for structs, unions and enums in this size. */
1283 #ifndef DW_FIELD_ALLOC_CHUNK
1284 #define DW_FIELD_ALLOC_CHUNK 4
1285 #endif
1286
1287 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1288 but this would require a corresponding change in unpack_field_as_long
1289 and friends. */
1290 static int bits_per_byte = 8;
1291
1292 struct nextfield
1293 {
1294 struct nextfield *next;
1295 int accessibility;
1296 int virtuality;
1297 struct field field;
1298 };
1299
1300 struct nextfnfield
1301 {
1302 struct nextfnfield *next;
1303 struct fn_field fnfield;
1304 };
1305
1306 struct fnfieldlist
1307 {
1308 const char *name;
1309 int length;
1310 struct nextfnfield *head;
1311 };
1312
1313 struct typedef_field_list
1314 {
1315 struct typedef_field field;
1316 struct typedef_field_list *next;
1317 };
1318
1319 /* The routines that read and process dies for a C struct or C++ class
1320 pass lists of data member fields and lists of member function fields
1321 in an instance of a field_info structure, as defined below. */
1322 struct field_info
1323 {
1324 /* List of data member and baseclasses fields. */
1325 struct nextfield *fields, *baseclasses;
1326
1327 /* Number of fields (including baseclasses). */
1328 int nfields;
1329
1330 /* Number of baseclasses. */
1331 int nbaseclasses;
1332
1333 /* Set if the accesibility of one of the fields is not public. */
1334 int non_public_fields;
1335
1336 /* Member function fields array, entries are allocated in the order they
1337 are encountered in the object file. */
1338 struct nextfnfield *fnfields;
1339
1340 /* Member function fieldlist array, contains name of possibly overloaded
1341 member function, number of overloaded member functions and a pointer
1342 to the head of the member function field chain. */
1343 struct fnfieldlist *fnfieldlists;
1344
1345 /* Number of entries in the fnfieldlists array. */
1346 int nfnfields;
1347
1348 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1349 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1350 struct typedef_field_list *typedef_field_list;
1351 unsigned typedef_field_list_count;
1352 };
1353
1354 /* One item on the queue of compilation units to read in full symbols
1355 for. */
1356 struct dwarf2_queue_item
1357 {
1358 struct dwarf2_per_cu_data *per_cu;
1359 enum language pretend_language;
1360 struct dwarf2_queue_item *next;
1361 };
1362
1363 /* The current queue. */
1364 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1365
1366 /* Loaded secondary compilation units are kept in memory until they
1367 have not been referenced for the processing of this many
1368 compilation units. Set this to zero to disable caching. Cache
1369 sizes of up to at least twenty will improve startup time for
1370 typical inter-CU-reference binaries, at an obvious memory cost. */
1371 static int dwarf2_max_cache_age = 5;
1372 static void
1373 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1374 struct cmd_list_element *c, const char *value)
1375 {
1376 fprintf_filtered (file, _("The upper bound on the age of cached "
1377 "dwarf2 compilation units is %s.\n"),
1378 value);
1379 }
1380 \f
1381 /* local function prototypes */
1382
1383 static const char *get_section_name (const struct dwarf2_section_info *);
1384
1385 static const char *get_section_file_name (const struct dwarf2_section_info *);
1386
1387 static void dwarf2_locate_sections (bfd *, asection *, void *);
1388
1389 static void dwarf2_find_base_address (struct die_info *die,
1390 struct dwarf2_cu *cu);
1391
1392 static struct partial_symtab *create_partial_symtab
1393 (struct dwarf2_per_cu_data *per_cu, const char *name);
1394
1395 static void dwarf2_build_psymtabs_hard (struct objfile *);
1396
1397 static void scan_partial_symbols (struct partial_die_info *,
1398 CORE_ADDR *, CORE_ADDR *,
1399 int, struct dwarf2_cu *);
1400
1401 static void add_partial_symbol (struct partial_die_info *,
1402 struct dwarf2_cu *);
1403
1404 static void add_partial_namespace (struct partial_die_info *pdi,
1405 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1406 int set_addrmap, struct dwarf2_cu *cu);
1407
1408 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1409 CORE_ADDR *highpc, int set_addrmap,
1410 struct dwarf2_cu *cu);
1411
1412 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1413 struct dwarf2_cu *cu);
1414
1415 static void add_partial_subprogram (struct partial_die_info *pdi,
1416 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1417 int need_pc, struct dwarf2_cu *cu);
1418
1419 static void dwarf2_read_symtab (struct partial_symtab *,
1420 struct objfile *);
1421
1422 static void psymtab_to_symtab_1 (struct partial_symtab *);
1423
1424 static struct abbrev_info *abbrev_table_lookup_abbrev
1425 (const struct abbrev_table *, unsigned int);
1426
1427 static struct abbrev_table *abbrev_table_read_table
1428 (struct dwarf2_section_info *, sect_offset);
1429
1430 static void abbrev_table_free (struct abbrev_table *);
1431
1432 static void abbrev_table_free_cleanup (void *);
1433
1434 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1435 struct dwarf2_section_info *);
1436
1437 static void dwarf2_free_abbrev_table (void *);
1438
1439 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1440
1441 static struct partial_die_info *load_partial_dies
1442 (const struct die_reader_specs *, const gdb_byte *, int);
1443
1444 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1445 struct partial_die_info *,
1446 struct abbrev_info *,
1447 unsigned int,
1448 const gdb_byte *);
1449
1450 static struct partial_die_info *find_partial_die (sect_offset, int,
1451 struct dwarf2_cu *);
1452
1453 static void fixup_partial_die (struct partial_die_info *,
1454 struct dwarf2_cu *);
1455
1456 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1457 struct attribute *, struct attr_abbrev *,
1458 const gdb_byte *);
1459
1460 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1461
1462 static int read_1_signed_byte (bfd *, const gdb_byte *);
1463
1464 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1465
1466 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1467
1468 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1469
1470 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1471 unsigned int *);
1472
1473 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1474
1475 static LONGEST read_checked_initial_length_and_offset
1476 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1477 unsigned int *, unsigned int *);
1478
1479 static LONGEST read_offset (bfd *, const gdb_byte *,
1480 const struct comp_unit_head *,
1481 unsigned int *);
1482
1483 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1484
1485 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1486 sect_offset);
1487
1488 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1489
1490 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1491
1492 static const char *read_indirect_string (bfd *, const gdb_byte *,
1493 const struct comp_unit_head *,
1494 unsigned int *);
1495
1496 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1497
1498 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1499
1500 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1501
1502 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1503 const gdb_byte *,
1504 unsigned int *);
1505
1506 static const char *read_str_index (const struct die_reader_specs *reader,
1507 ULONGEST str_index);
1508
1509 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1510
1511 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1512 struct dwarf2_cu *);
1513
1514 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1515 unsigned int);
1516
1517 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1518 struct dwarf2_cu *cu);
1519
1520 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1521
1522 static struct die_info *die_specification (struct die_info *die,
1523 struct dwarf2_cu **);
1524
1525 static void free_line_header (struct line_header *lh);
1526
1527 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1528 struct dwarf2_cu *cu);
1529
1530 static void dwarf_decode_lines (struct line_header *, const char *,
1531 struct dwarf2_cu *, struct partial_symtab *,
1532 CORE_ADDR, int decode_mapping);
1533
1534 static void dwarf2_start_subfile (const char *, const char *);
1535
1536 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1537 const char *, const char *,
1538 CORE_ADDR);
1539
1540 static struct symbol *new_symbol (struct die_info *, struct type *,
1541 struct dwarf2_cu *);
1542
1543 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1544 struct dwarf2_cu *, struct symbol *);
1545
1546 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1547 struct dwarf2_cu *);
1548
1549 static void dwarf2_const_value_attr (const struct attribute *attr,
1550 struct type *type,
1551 const char *name,
1552 struct obstack *obstack,
1553 struct dwarf2_cu *cu, LONGEST *value,
1554 const gdb_byte **bytes,
1555 struct dwarf2_locexpr_baton **baton);
1556
1557 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1558
1559 static int need_gnat_info (struct dwarf2_cu *);
1560
1561 static struct type *die_descriptive_type (struct die_info *,
1562 struct dwarf2_cu *);
1563
1564 static void set_descriptive_type (struct type *, struct die_info *,
1565 struct dwarf2_cu *);
1566
1567 static struct type *die_containing_type (struct die_info *,
1568 struct dwarf2_cu *);
1569
1570 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1571 struct dwarf2_cu *);
1572
1573 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1574
1575 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1576
1577 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1578
1579 static char *typename_concat (struct obstack *obs, const char *prefix,
1580 const char *suffix, int physname,
1581 struct dwarf2_cu *cu);
1582
1583 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1584
1585 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1586
1587 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1588
1589 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1590
1591 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1592
1593 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1594 struct dwarf2_cu *, struct partial_symtab *);
1595
1596 static int dwarf2_get_pc_bounds (struct die_info *,
1597 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1598 struct partial_symtab *);
1599
1600 static void get_scope_pc_bounds (struct die_info *,
1601 CORE_ADDR *, CORE_ADDR *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1605 CORE_ADDR, struct dwarf2_cu *);
1606
1607 static void dwarf2_add_field (struct field_info *, struct die_info *,
1608 struct dwarf2_cu *);
1609
1610 static void dwarf2_attach_fields_to_type (struct field_info *,
1611 struct type *, struct dwarf2_cu *);
1612
1613 static void dwarf2_add_member_fn (struct field_info *,
1614 struct die_info *, struct type *,
1615 struct dwarf2_cu *);
1616
1617 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1618 struct type *,
1619 struct dwarf2_cu *);
1620
1621 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1622
1623 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1624
1625 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1626
1627 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1628
1629 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1630
1631 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1632
1633 static struct type *read_module_type (struct die_info *die,
1634 struct dwarf2_cu *cu);
1635
1636 static const char *namespace_name (struct die_info *die,
1637 int *is_anonymous, struct dwarf2_cu *);
1638
1639 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1640
1641 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1642
1643 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1644 struct dwarf2_cu *);
1645
1646 static struct die_info *read_die_and_siblings_1
1647 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1648 struct die_info *);
1649
1650 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1651 const gdb_byte *info_ptr,
1652 const gdb_byte **new_info_ptr,
1653 struct die_info *parent);
1654
1655 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1656 struct die_info **, const gdb_byte *,
1657 int *, int);
1658
1659 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1660 struct die_info **, const gdb_byte *,
1661 int *);
1662
1663 static void process_die (struct die_info *, struct dwarf2_cu *);
1664
1665 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1666 struct obstack *);
1667
1668 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1669
1670 static const char *dwarf2_full_name (const char *name,
1671 struct die_info *die,
1672 struct dwarf2_cu *cu);
1673
1674 static const char *dwarf2_physname (const char *name, struct die_info *die,
1675 struct dwarf2_cu *cu);
1676
1677 static struct die_info *dwarf2_extension (struct die_info *die,
1678 struct dwarf2_cu **);
1679
1680 static const char *dwarf_tag_name (unsigned int);
1681
1682 static const char *dwarf_attr_name (unsigned int);
1683
1684 static const char *dwarf_form_name (unsigned int);
1685
1686 static char *dwarf_bool_name (unsigned int);
1687
1688 static const char *dwarf_type_encoding_name (unsigned int);
1689
1690 static struct die_info *sibling_die (struct die_info *);
1691
1692 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1693
1694 static void dump_die_for_error (struct die_info *);
1695
1696 static void dump_die_1 (struct ui_file *, int level, int max_level,
1697 struct die_info *);
1698
1699 /*static*/ void dump_die (struct die_info *, int max_level);
1700
1701 static void store_in_ref_table (struct die_info *,
1702 struct dwarf2_cu *);
1703
1704 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1705
1706 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1707
1708 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1709 const struct attribute *,
1710 struct dwarf2_cu **);
1711
1712 static struct die_info *follow_die_ref (struct die_info *,
1713 const struct attribute *,
1714 struct dwarf2_cu **);
1715
1716 static struct die_info *follow_die_sig (struct die_info *,
1717 const struct attribute *,
1718 struct dwarf2_cu **);
1719
1720 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1721 struct dwarf2_cu *);
1722
1723 static struct type *get_DW_AT_signature_type (struct die_info *,
1724 const struct attribute *,
1725 struct dwarf2_cu *);
1726
1727 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1728
1729 static void read_signatured_type (struct signatured_type *);
1730
1731 /* memory allocation interface */
1732
1733 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1734
1735 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1736
1737 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1738
1739 static int attr_form_is_block (const struct attribute *);
1740
1741 static int attr_form_is_section_offset (const struct attribute *);
1742
1743 static int attr_form_is_constant (const struct attribute *);
1744
1745 static int attr_form_is_ref (const struct attribute *);
1746
1747 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1748 struct dwarf2_loclist_baton *baton,
1749 const struct attribute *attr);
1750
1751 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1752 struct symbol *sym,
1753 struct dwarf2_cu *cu,
1754 int is_block);
1755
1756 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1757 const gdb_byte *info_ptr,
1758 struct abbrev_info *abbrev);
1759
1760 static void free_stack_comp_unit (void *);
1761
1762 static hashval_t partial_die_hash (const void *item);
1763
1764 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1765
1766 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1767 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1768
1769 static void init_one_comp_unit (struct dwarf2_cu *cu,
1770 struct dwarf2_per_cu_data *per_cu);
1771
1772 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1773 struct die_info *comp_unit_die,
1774 enum language pretend_language);
1775
1776 static void free_heap_comp_unit (void *);
1777
1778 static void free_cached_comp_units (void *);
1779
1780 static void age_cached_comp_units (void);
1781
1782 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1783
1784 static struct type *set_die_type (struct die_info *, struct type *,
1785 struct dwarf2_cu *);
1786
1787 static void create_all_comp_units (struct objfile *);
1788
1789 static int create_all_type_units (struct objfile *);
1790
1791 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1792 enum language);
1793
1794 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1795 enum language);
1796
1797 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1798 enum language);
1799
1800 static void dwarf2_add_dependence (struct dwarf2_cu *,
1801 struct dwarf2_per_cu_data *);
1802
1803 static void dwarf2_mark (struct dwarf2_cu *);
1804
1805 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1806
1807 static struct type *get_die_type_at_offset (sect_offset,
1808 struct dwarf2_per_cu_data *);
1809
1810 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1811
1812 static void dwarf2_release_queue (void *dummy);
1813
1814 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1815 enum language pretend_language);
1816
1817 static void process_queue (void);
1818
1819 static void find_file_and_directory (struct die_info *die,
1820 struct dwarf2_cu *cu,
1821 const char **name, const char **comp_dir);
1822
1823 static char *file_full_name (int file, struct line_header *lh,
1824 const char *comp_dir);
1825
1826 static const gdb_byte *read_and_check_comp_unit_head
1827 (struct comp_unit_head *header,
1828 struct dwarf2_section_info *section,
1829 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1830 int is_debug_types_section);
1831
1832 static void init_cutu_and_read_dies
1833 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1834 int use_existing_cu, int keep,
1835 die_reader_func_ftype *die_reader_func, void *data);
1836
1837 static void init_cutu_and_read_dies_simple
1838 (struct dwarf2_per_cu_data *this_cu,
1839 die_reader_func_ftype *die_reader_func, void *data);
1840
1841 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1842
1843 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1844
1845 static struct dwo_unit *lookup_dwo_unit_in_dwp
1846 (struct dwp_file *dwp_file, const char *comp_dir,
1847 ULONGEST signature, int is_debug_types);
1848
1849 static struct dwp_file *get_dwp_file (void);
1850
1851 static struct dwo_unit *lookup_dwo_comp_unit
1852 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1853
1854 static struct dwo_unit *lookup_dwo_type_unit
1855 (struct signatured_type *, const char *, const char *);
1856
1857 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1858
1859 static void free_dwo_file_cleanup (void *);
1860
1861 static void process_cu_includes (void);
1862
1863 static void check_producer (struct dwarf2_cu *cu);
1864
1865 static void free_line_header_voidp (void *arg);
1866 \f
1867 /* Various complaints about symbol reading that don't abort the process. */
1868
1869 static void
1870 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1871 {
1872 complaint (&symfile_complaints,
1873 _("statement list doesn't fit in .debug_line section"));
1874 }
1875
1876 static void
1877 dwarf2_debug_line_missing_file_complaint (void)
1878 {
1879 complaint (&symfile_complaints,
1880 _(".debug_line section has line data without a file"));
1881 }
1882
1883 static void
1884 dwarf2_debug_line_missing_end_sequence_complaint (void)
1885 {
1886 complaint (&symfile_complaints,
1887 _(".debug_line section has line "
1888 "program sequence without an end"));
1889 }
1890
1891 static void
1892 dwarf2_complex_location_expr_complaint (void)
1893 {
1894 complaint (&symfile_complaints, _("location expression too complex"));
1895 }
1896
1897 static void
1898 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1899 int arg3)
1900 {
1901 complaint (&symfile_complaints,
1902 _("const value length mismatch for '%s', got %d, expected %d"),
1903 arg1, arg2, arg3);
1904 }
1905
1906 static void
1907 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1908 {
1909 complaint (&symfile_complaints,
1910 _("debug info runs off end of %s section"
1911 " [in module %s]"),
1912 get_section_name (section),
1913 get_section_file_name (section));
1914 }
1915
1916 static void
1917 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1918 {
1919 complaint (&symfile_complaints,
1920 _("macro debug info contains a "
1921 "malformed macro definition:\n`%s'"),
1922 arg1);
1923 }
1924
1925 static void
1926 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1927 {
1928 complaint (&symfile_complaints,
1929 _("invalid attribute class or form for '%s' in '%s'"),
1930 arg1, arg2);
1931 }
1932
1933 /* Hash function for line_header_hash. */
1934
1935 static hashval_t
1936 line_header_hash (const struct line_header *ofs)
1937 {
1938 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1939 }
1940
1941 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1942
1943 static hashval_t
1944 line_header_hash_voidp (const void *item)
1945 {
1946 const struct line_header *ofs = item;
1947
1948 return line_header_hash (ofs);
1949 }
1950
1951 /* Equality function for line_header_hash. */
1952
1953 static int
1954 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1955 {
1956 const struct line_header *ofs_lhs = item_lhs;
1957 const struct line_header *ofs_rhs = item_rhs;
1958
1959 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1960 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1961 }
1962
1963 \f
1964 #if WORDS_BIGENDIAN
1965
1966 /* Convert VALUE between big- and little-endian. */
1967 static offset_type
1968 byte_swap (offset_type value)
1969 {
1970 offset_type result;
1971
1972 result = (value & 0xff) << 24;
1973 result |= (value & 0xff00) << 8;
1974 result |= (value & 0xff0000) >> 8;
1975 result |= (value & 0xff000000) >> 24;
1976 return result;
1977 }
1978
1979 #define MAYBE_SWAP(V) byte_swap (V)
1980
1981 #else
1982 #define MAYBE_SWAP(V) (V)
1983 #endif /* WORDS_BIGENDIAN */
1984
1985 /* Read the given attribute value as an address, taking the attribute's
1986 form into account. */
1987
1988 static CORE_ADDR
1989 attr_value_as_address (struct attribute *attr)
1990 {
1991 CORE_ADDR addr;
1992
1993 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1994 {
1995 /* Aside from a few clearly defined exceptions, attributes that
1996 contain an address must always be in DW_FORM_addr form.
1997 Unfortunately, some compilers happen to be violating this
1998 requirement by encoding addresses using other forms, such
1999 as DW_FORM_data4 for example. For those broken compilers,
2000 we try to do our best, without any guarantee of success,
2001 to interpret the address correctly. It would also be nice
2002 to generate a complaint, but that would require us to maintain
2003 a list of legitimate cases where a non-address form is allowed,
2004 as well as update callers to pass in at least the CU's DWARF
2005 version. This is more overhead than what we're willing to
2006 expand for a pretty rare case. */
2007 addr = DW_UNSND (attr);
2008 }
2009 else
2010 addr = DW_ADDR (attr);
2011
2012 return addr;
2013 }
2014
2015 /* The suffix for an index file. */
2016 #define INDEX_SUFFIX ".gdb-index"
2017
2018 /* Try to locate the sections we need for DWARF 2 debugging
2019 information and return true if we have enough to do something.
2020 NAMES points to the dwarf2 section names, or is NULL if the standard
2021 ELF names are used. */
2022
2023 int
2024 dwarf2_has_info (struct objfile *objfile,
2025 const struct dwarf2_debug_sections *names)
2026 {
2027 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2028 if (!dwarf2_per_objfile)
2029 {
2030 /* Initialize per-objfile state. */
2031 struct dwarf2_per_objfile *data
2032 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2033
2034 memset (data, 0, sizeof (*data));
2035 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2036 dwarf2_per_objfile = data;
2037
2038 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2039 (void *) names);
2040 dwarf2_per_objfile->objfile = objfile;
2041 }
2042 return (!dwarf2_per_objfile->info.is_virtual
2043 && dwarf2_per_objfile->info.s.asection != NULL
2044 && !dwarf2_per_objfile->abbrev.is_virtual
2045 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2046 }
2047
2048 /* Return the containing section of virtual section SECTION. */
2049
2050 static struct dwarf2_section_info *
2051 get_containing_section (const struct dwarf2_section_info *section)
2052 {
2053 gdb_assert (section->is_virtual);
2054 return section->s.containing_section;
2055 }
2056
2057 /* Return the bfd owner of SECTION. */
2058
2059 static struct bfd *
2060 get_section_bfd_owner (const struct dwarf2_section_info *section)
2061 {
2062 if (section->is_virtual)
2063 {
2064 section = get_containing_section (section);
2065 gdb_assert (!section->is_virtual);
2066 }
2067 return section->s.asection->owner;
2068 }
2069
2070 /* Return the bfd section of SECTION.
2071 Returns NULL if the section is not present. */
2072
2073 static asection *
2074 get_section_bfd_section (const struct dwarf2_section_info *section)
2075 {
2076 if (section->is_virtual)
2077 {
2078 section = get_containing_section (section);
2079 gdb_assert (!section->is_virtual);
2080 }
2081 return section->s.asection;
2082 }
2083
2084 /* Return the name of SECTION. */
2085
2086 static const char *
2087 get_section_name (const struct dwarf2_section_info *section)
2088 {
2089 asection *sectp = get_section_bfd_section (section);
2090
2091 gdb_assert (sectp != NULL);
2092 return bfd_section_name (get_section_bfd_owner (section), sectp);
2093 }
2094
2095 /* Return the name of the file SECTION is in. */
2096
2097 static const char *
2098 get_section_file_name (const struct dwarf2_section_info *section)
2099 {
2100 bfd *abfd = get_section_bfd_owner (section);
2101
2102 return bfd_get_filename (abfd);
2103 }
2104
2105 /* Return the id of SECTION.
2106 Returns 0 if SECTION doesn't exist. */
2107
2108 static int
2109 get_section_id (const struct dwarf2_section_info *section)
2110 {
2111 asection *sectp = get_section_bfd_section (section);
2112
2113 if (sectp == NULL)
2114 return 0;
2115 return sectp->id;
2116 }
2117
2118 /* Return the flags of SECTION.
2119 SECTION (or containing section if this is a virtual section) must exist. */
2120
2121 static int
2122 get_section_flags (const struct dwarf2_section_info *section)
2123 {
2124 asection *sectp = get_section_bfd_section (section);
2125
2126 gdb_assert (sectp != NULL);
2127 return bfd_get_section_flags (sectp->owner, sectp);
2128 }
2129
2130 /* When loading sections, we look either for uncompressed section or for
2131 compressed section names. */
2132
2133 static int
2134 section_is_p (const char *section_name,
2135 const struct dwarf2_section_names *names)
2136 {
2137 if (names->normal != NULL
2138 && strcmp (section_name, names->normal) == 0)
2139 return 1;
2140 if (names->compressed != NULL
2141 && strcmp (section_name, names->compressed) == 0)
2142 return 1;
2143 return 0;
2144 }
2145
2146 /* This function is mapped across the sections and remembers the
2147 offset and size of each of the debugging sections we are interested
2148 in. */
2149
2150 static void
2151 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2152 {
2153 const struct dwarf2_debug_sections *names;
2154 flagword aflag = bfd_get_section_flags (abfd, sectp);
2155
2156 if (vnames == NULL)
2157 names = &dwarf2_elf_names;
2158 else
2159 names = (const struct dwarf2_debug_sections *) vnames;
2160
2161 if ((aflag & SEC_HAS_CONTENTS) == 0)
2162 {
2163 }
2164 else if (section_is_p (sectp->name, &names->info))
2165 {
2166 dwarf2_per_objfile->info.s.asection = sectp;
2167 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->abbrev))
2170 {
2171 dwarf2_per_objfile->abbrev.s.asection = sectp;
2172 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->line))
2175 {
2176 dwarf2_per_objfile->line.s.asection = sectp;
2177 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->loc))
2180 {
2181 dwarf2_per_objfile->loc.s.asection = sectp;
2182 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names->macinfo))
2185 {
2186 dwarf2_per_objfile->macinfo.s.asection = sectp;
2187 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->macro))
2190 {
2191 dwarf2_per_objfile->macro.s.asection = sectp;
2192 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->str))
2195 {
2196 dwarf2_per_objfile->str.s.asection = sectp;
2197 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->addr))
2200 {
2201 dwarf2_per_objfile->addr.s.asection = sectp;
2202 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->frame))
2205 {
2206 dwarf2_per_objfile->frame.s.asection = sectp;
2207 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->eh_frame))
2210 {
2211 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2212 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->ranges))
2215 {
2216 dwarf2_per_objfile->ranges.s.asection = sectp;
2217 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->types))
2220 {
2221 struct dwarf2_section_info type_section;
2222
2223 memset (&type_section, 0, sizeof (type_section));
2224 type_section.s.asection = sectp;
2225 type_section.size = bfd_get_section_size (sectp);
2226
2227 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2228 &type_section);
2229 }
2230 else if (section_is_p (sectp->name, &names->gdb_index))
2231 {
2232 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2233 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2234 }
2235
2236 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2237 && bfd_section_vma (abfd, sectp) == 0)
2238 dwarf2_per_objfile->has_section_at_zero = 1;
2239 }
2240
2241 /* A helper function that decides whether a section is empty,
2242 or not present. */
2243
2244 static int
2245 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2246 {
2247 if (section->is_virtual)
2248 return section->size == 0;
2249 return section->s.asection == NULL || section->size == 0;
2250 }
2251
2252 /* Read the contents of the section INFO.
2253 OBJFILE is the main object file, but not necessarily the file where
2254 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2255 of the DWO file.
2256 If the section is compressed, uncompress it before returning. */
2257
2258 static void
2259 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2260 {
2261 asection *sectp;
2262 bfd *abfd;
2263 gdb_byte *buf, *retbuf;
2264
2265 if (info->readin)
2266 return;
2267 info->buffer = NULL;
2268 info->readin = 1;
2269
2270 if (dwarf2_section_empty_p (info))
2271 return;
2272
2273 sectp = get_section_bfd_section (info);
2274
2275 /* If this is a virtual section we need to read in the real one first. */
2276 if (info->is_virtual)
2277 {
2278 struct dwarf2_section_info *containing_section =
2279 get_containing_section (info);
2280
2281 gdb_assert (sectp != NULL);
2282 if ((sectp->flags & SEC_RELOC) != 0)
2283 {
2284 error (_("Dwarf Error: DWP format V2 with relocations is not"
2285 " supported in section %s [in module %s]"),
2286 get_section_name (info), get_section_file_name (info));
2287 }
2288 dwarf2_read_section (objfile, containing_section);
2289 /* Other code should have already caught virtual sections that don't
2290 fit. */
2291 gdb_assert (info->virtual_offset + info->size
2292 <= containing_section->size);
2293 /* If the real section is empty or there was a problem reading the
2294 section we shouldn't get here. */
2295 gdb_assert (containing_section->buffer != NULL);
2296 info->buffer = containing_section->buffer + info->virtual_offset;
2297 return;
2298 }
2299
2300 /* If the section has relocations, we must read it ourselves.
2301 Otherwise we attach it to the BFD. */
2302 if ((sectp->flags & SEC_RELOC) == 0)
2303 {
2304 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2305 return;
2306 }
2307
2308 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2309 info->buffer = buf;
2310
2311 /* When debugging .o files, we may need to apply relocations; see
2312 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2313 We never compress sections in .o files, so we only need to
2314 try this when the section is not compressed. */
2315 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2316 if (retbuf != NULL)
2317 {
2318 info->buffer = retbuf;
2319 return;
2320 }
2321
2322 abfd = get_section_bfd_owner (info);
2323 gdb_assert (abfd != NULL);
2324
2325 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2326 || bfd_bread (buf, info->size, abfd) != info->size)
2327 {
2328 error (_("Dwarf Error: Can't read DWARF data"
2329 " in section %s [in module %s]"),
2330 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2331 }
2332 }
2333
2334 /* A helper function that returns the size of a section in a safe way.
2335 If you are positive that the section has been read before using the
2336 size, then it is safe to refer to the dwarf2_section_info object's
2337 "size" field directly. In other cases, you must call this
2338 function, because for compressed sections the size field is not set
2339 correctly until the section has been read. */
2340
2341 static bfd_size_type
2342 dwarf2_section_size (struct objfile *objfile,
2343 struct dwarf2_section_info *info)
2344 {
2345 if (!info->readin)
2346 dwarf2_read_section (objfile, info);
2347 return info->size;
2348 }
2349
2350 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2351 SECTION_NAME. */
2352
2353 void
2354 dwarf2_get_section_info (struct objfile *objfile,
2355 enum dwarf2_section_enum sect,
2356 asection **sectp, const gdb_byte **bufp,
2357 bfd_size_type *sizep)
2358 {
2359 struct dwarf2_per_objfile *data
2360 = objfile_data (objfile, dwarf2_objfile_data_key);
2361 struct dwarf2_section_info *info;
2362
2363 /* We may see an objfile without any DWARF, in which case we just
2364 return nothing. */
2365 if (data == NULL)
2366 {
2367 *sectp = NULL;
2368 *bufp = NULL;
2369 *sizep = 0;
2370 return;
2371 }
2372 switch (sect)
2373 {
2374 case DWARF2_DEBUG_FRAME:
2375 info = &data->frame;
2376 break;
2377 case DWARF2_EH_FRAME:
2378 info = &data->eh_frame;
2379 break;
2380 default:
2381 gdb_assert_not_reached ("unexpected section");
2382 }
2383
2384 dwarf2_read_section (objfile, info);
2385
2386 *sectp = get_section_bfd_section (info);
2387 *bufp = info->buffer;
2388 *sizep = info->size;
2389 }
2390
2391 /* A helper function to find the sections for a .dwz file. */
2392
2393 static void
2394 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2395 {
2396 struct dwz_file *dwz_file = arg;
2397
2398 /* Note that we only support the standard ELF names, because .dwz
2399 is ELF-only (at the time of writing). */
2400 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2401 {
2402 dwz_file->abbrev.s.asection = sectp;
2403 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2406 {
2407 dwz_file->info.s.asection = sectp;
2408 dwz_file->info.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2411 {
2412 dwz_file->str.s.asection = sectp;
2413 dwz_file->str.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2416 {
2417 dwz_file->line.s.asection = sectp;
2418 dwz_file->line.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2421 {
2422 dwz_file->macro.s.asection = sectp;
2423 dwz_file->macro.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2426 {
2427 dwz_file->gdb_index.s.asection = sectp;
2428 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2429 }
2430 }
2431
2432 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2433 there is no .gnu_debugaltlink section in the file. Error if there
2434 is such a section but the file cannot be found. */
2435
2436 static struct dwz_file *
2437 dwarf2_get_dwz_file (void)
2438 {
2439 bfd *dwz_bfd;
2440 char *data;
2441 struct cleanup *cleanup;
2442 const char *filename;
2443 struct dwz_file *result;
2444 bfd_size_type buildid_len_arg;
2445 size_t buildid_len;
2446 bfd_byte *buildid;
2447
2448 if (dwarf2_per_objfile->dwz_file != NULL)
2449 return dwarf2_per_objfile->dwz_file;
2450
2451 bfd_set_error (bfd_error_no_error);
2452 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2453 &buildid_len_arg, &buildid);
2454 if (data == NULL)
2455 {
2456 if (bfd_get_error () == bfd_error_no_error)
2457 return NULL;
2458 error (_("could not read '.gnu_debugaltlink' section: %s"),
2459 bfd_errmsg (bfd_get_error ()));
2460 }
2461 cleanup = make_cleanup (xfree, data);
2462 make_cleanup (xfree, buildid);
2463
2464 buildid_len = (size_t) buildid_len_arg;
2465
2466 filename = (const char *) data;
2467 if (!IS_ABSOLUTE_PATH (filename))
2468 {
2469 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2470 char *rel;
2471
2472 make_cleanup (xfree, abs);
2473 abs = ldirname (abs);
2474 make_cleanup (xfree, abs);
2475
2476 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2477 make_cleanup (xfree, rel);
2478 filename = rel;
2479 }
2480
2481 /* First try the file name given in the section. If that doesn't
2482 work, try to use the build-id instead. */
2483 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2484 if (dwz_bfd != NULL)
2485 {
2486 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2487 {
2488 gdb_bfd_unref (dwz_bfd);
2489 dwz_bfd = NULL;
2490 }
2491 }
2492
2493 if (dwz_bfd == NULL)
2494 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2495
2496 if (dwz_bfd == NULL)
2497 error (_("could not find '.gnu_debugaltlink' file for %s"),
2498 objfile_name (dwarf2_per_objfile->objfile));
2499
2500 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2501 struct dwz_file);
2502 result->dwz_bfd = dwz_bfd;
2503
2504 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2505
2506 do_cleanups (cleanup);
2507
2508 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2509 dwarf2_per_objfile->dwz_file = result;
2510 return result;
2511 }
2512 \f
2513 /* DWARF quick_symbols_functions support. */
2514
2515 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2516 unique line tables, so we maintain a separate table of all .debug_line
2517 derived entries to support the sharing.
2518 All the quick functions need is the list of file names. We discard the
2519 line_header when we're done and don't need to record it here. */
2520 struct quick_file_names
2521 {
2522 /* The data used to construct the hash key. */
2523 struct stmt_list_hash hash;
2524
2525 /* The number of entries in file_names, real_names. */
2526 unsigned int num_file_names;
2527
2528 /* The file names from the line table, after being run through
2529 file_full_name. */
2530 const char **file_names;
2531
2532 /* The file names from the line table after being run through
2533 gdb_realpath. These are computed lazily. */
2534 const char **real_names;
2535 };
2536
2537 /* When using the index (and thus not using psymtabs), each CU has an
2538 object of this type. This is used to hold information needed by
2539 the various "quick" methods. */
2540 struct dwarf2_per_cu_quick_data
2541 {
2542 /* The file table. This can be NULL if there was no file table
2543 or it's currently not read in.
2544 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2545 struct quick_file_names *file_names;
2546
2547 /* The corresponding symbol table. This is NULL if symbols for this
2548 CU have not yet been read. */
2549 struct compunit_symtab *compunit_symtab;
2550
2551 /* A temporary mark bit used when iterating over all CUs in
2552 expand_symtabs_matching. */
2553 unsigned int mark : 1;
2554
2555 /* True if we've tried to read the file table and found there isn't one.
2556 There will be no point in trying to read it again next time. */
2557 unsigned int no_file_data : 1;
2558 };
2559
2560 /* Utility hash function for a stmt_list_hash. */
2561
2562 static hashval_t
2563 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2564 {
2565 hashval_t v = 0;
2566
2567 if (stmt_list_hash->dwo_unit != NULL)
2568 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2569 v += stmt_list_hash->line_offset.sect_off;
2570 return v;
2571 }
2572
2573 /* Utility equality function for a stmt_list_hash. */
2574
2575 static int
2576 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2577 const struct stmt_list_hash *rhs)
2578 {
2579 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2580 return 0;
2581 if (lhs->dwo_unit != NULL
2582 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2583 return 0;
2584
2585 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2586 }
2587
2588 /* Hash function for a quick_file_names. */
2589
2590 static hashval_t
2591 hash_file_name_entry (const void *e)
2592 {
2593 const struct quick_file_names *file_data = e;
2594
2595 return hash_stmt_list_entry (&file_data->hash);
2596 }
2597
2598 /* Equality function for a quick_file_names. */
2599
2600 static int
2601 eq_file_name_entry (const void *a, const void *b)
2602 {
2603 const struct quick_file_names *ea = a;
2604 const struct quick_file_names *eb = b;
2605
2606 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2607 }
2608
2609 /* Delete function for a quick_file_names. */
2610
2611 static void
2612 delete_file_name_entry (void *e)
2613 {
2614 struct quick_file_names *file_data = e;
2615 int i;
2616
2617 for (i = 0; i < file_data->num_file_names; ++i)
2618 {
2619 xfree ((void*) file_data->file_names[i]);
2620 if (file_data->real_names)
2621 xfree ((void*) file_data->real_names[i]);
2622 }
2623
2624 /* The space for the struct itself lives on objfile_obstack,
2625 so we don't free it here. */
2626 }
2627
2628 /* Create a quick_file_names hash table. */
2629
2630 static htab_t
2631 create_quick_file_names_table (unsigned int nr_initial_entries)
2632 {
2633 return htab_create_alloc (nr_initial_entries,
2634 hash_file_name_entry, eq_file_name_entry,
2635 delete_file_name_entry, xcalloc, xfree);
2636 }
2637
2638 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2639 have to be created afterwards. You should call age_cached_comp_units after
2640 processing PER_CU->CU. dw2_setup must have been already called. */
2641
2642 static void
2643 load_cu (struct dwarf2_per_cu_data *per_cu)
2644 {
2645 if (per_cu->is_debug_types)
2646 load_full_type_unit (per_cu);
2647 else
2648 load_full_comp_unit (per_cu, language_minimal);
2649
2650 gdb_assert (per_cu->cu != NULL);
2651
2652 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2653 }
2654
2655 /* Read in the symbols for PER_CU. */
2656
2657 static void
2658 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2659 {
2660 struct cleanup *back_to;
2661
2662 /* Skip type_unit_groups, reading the type units they contain
2663 is handled elsewhere. */
2664 if (IS_TYPE_UNIT_GROUP (per_cu))
2665 return;
2666
2667 back_to = make_cleanup (dwarf2_release_queue, NULL);
2668
2669 if (dwarf2_per_objfile->using_index
2670 ? per_cu->v.quick->compunit_symtab == NULL
2671 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2672 {
2673 queue_comp_unit (per_cu, language_minimal);
2674 load_cu (per_cu);
2675
2676 /* If we just loaded a CU from a DWO, and we're working with an index
2677 that may badly handle TUs, load all the TUs in that DWO as well.
2678 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2679 if (!per_cu->is_debug_types
2680 && per_cu->cu->dwo_unit != NULL
2681 && dwarf2_per_objfile->index_table != NULL
2682 && dwarf2_per_objfile->index_table->version <= 7
2683 /* DWP files aren't supported yet. */
2684 && get_dwp_file () == NULL)
2685 queue_and_load_all_dwo_tus (per_cu);
2686 }
2687
2688 process_queue ();
2689
2690 /* Age the cache, releasing compilation units that have not
2691 been used recently. */
2692 age_cached_comp_units ();
2693
2694 do_cleanups (back_to);
2695 }
2696
2697 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2698 the objfile from which this CU came. Returns the resulting symbol
2699 table. */
2700
2701 static struct compunit_symtab *
2702 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2703 {
2704 gdb_assert (dwarf2_per_objfile->using_index);
2705 if (!per_cu->v.quick->compunit_symtab)
2706 {
2707 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2708 increment_reading_symtab ();
2709 dw2_do_instantiate_symtab (per_cu);
2710 process_cu_includes ();
2711 do_cleanups (back_to);
2712 }
2713
2714 return per_cu->v.quick->compunit_symtab;
2715 }
2716
2717 /* Return the CU/TU given its index.
2718
2719 This is intended for loops like:
2720
2721 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2722 + dwarf2_per_objfile->n_type_units); ++i)
2723 {
2724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2725
2726 ...;
2727 }
2728 */
2729
2730 static struct dwarf2_per_cu_data *
2731 dw2_get_cutu (int index)
2732 {
2733 if (index >= dwarf2_per_objfile->n_comp_units)
2734 {
2735 index -= dwarf2_per_objfile->n_comp_units;
2736 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2737 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2738 }
2739
2740 return dwarf2_per_objfile->all_comp_units[index];
2741 }
2742
2743 /* Return the CU given its index.
2744 This differs from dw2_get_cutu in that it's for when you know INDEX
2745 refers to a CU. */
2746
2747 static struct dwarf2_per_cu_data *
2748 dw2_get_cu (int index)
2749 {
2750 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2751
2752 return dwarf2_per_objfile->all_comp_units[index];
2753 }
2754
2755 /* A helper for create_cus_from_index that handles a given list of
2756 CUs. */
2757
2758 static void
2759 create_cus_from_index_list (struct objfile *objfile,
2760 const gdb_byte *cu_list, offset_type n_elements,
2761 struct dwarf2_section_info *section,
2762 int is_dwz,
2763 int base_offset)
2764 {
2765 offset_type i;
2766
2767 for (i = 0; i < n_elements; i += 2)
2768 {
2769 struct dwarf2_per_cu_data *the_cu;
2770 ULONGEST offset, length;
2771
2772 gdb_static_assert (sizeof (ULONGEST) >= 8);
2773 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2774 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2775 cu_list += 2 * 8;
2776
2777 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2778 struct dwarf2_per_cu_data);
2779 the_cu->offset.sect_off = offset;
2780 the_cu->length = length;
2781 the_cu->objfile = objfile;
2782 the_cu->section = section;
2783 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2784 struct dwarf2_per_cu_quick_data);
2785 the_cu->is_dwz = is_dwz;
2786 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2787 }
2788 }
2789
2790 /* Read the CU list from the mapped index, and use it to create all
2791 the CU objects for this objfile. */
2792
2793 static void
2794 create_cus_from_index (struct objfile *objfile,
2795 const gdb_byte *cu_list, offset_type cu_list_elements,
2796 const gdb_byte *dwz_list, offset_type dwz_elements)
2797 {
2798 struct dwz_file *dwz;
2799
2800 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2801 dwarf2_per_objfile->all_comp_units
2802 = obstack_alloc (&objfile->objfile_obstack,
2803 dwarf2_per_objfile->n_comp_units
2804 * sizeof (struct dwarf2_per_cu_data *));
2805
2806 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2807 &dwarf2_per_objfile->info, 0, 0);
2808
2809 if (dwz_elements == 0)
2810 return;
2811
2812 dwz = dwarf2_get_dwz_file ();
2813 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2814 cu_list_elements / 2);
2815 }
2816
2817 /* Create the signatured type hash table from the index. */
2818
2819 static void
2820 create_signatured_type_table_from_index (struct objfile *objfile,
2821 struct dwarf2_section_info *section,
2822 const gdb_byte *bytes,
2823 offset_type elements)
2824 {
2825 offset_type i;
2826 htab_t sig_types_hash;
2827
2828 dwarf2_per_objfile->n_type_units
2829 = dwarf2_per_objfile->n_allocated_type_units
2830 = elements / 3;
2831 dwarf2_per_objfile->all_type_units
2832 = xmalloc (dwarf2_per_objfile->n_type_units
2833 * sizeof (struct signatured_type *));
2834
2835 sig_types_hash = allocate_signatured_type_table (objfile);
2836
2837 for (i = 0; i < elements; i += 3)
2838 {
2839 struct signatured_type *sig_type;
2840 ULONGEST offset, type_offset_in_tu, signature;
2841 void **slot;
2842
2843 gdb_static_assert (sizeof (ULONGEST) >= 8);
2844 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2845 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2846 BFD_ENDIAN_LITTLE);
2847 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2848 bytes += 3 * 8;
2849
2850 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2851 struct signatured_type);
2852 sig_type->signature = signature;
2853 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2854 sig_type->per_cu.is_debug_types = 1;
2855 sig_type->per_cu.section = section;
2856 sig_type->per_cu.offset.sect_off = offset;
2857 sig_type->per_cu.objfile = objfile;
2858 sig_type->per_cu.v.quick
2859 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2860 struct dwarf2_per_cu_quick_data);
2861
2862 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2863 *slot = sig_type;
2864
2865 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2866 }
2867
2868 dwarf2_per_objfile->signatured_types = sig_types_hash;
2869 }
2870
2871 /* Read the address map data from the mapped index, and use it to
2872 populate the objfile's psymtabs_addrmap. */
2873
2874 static void
2875 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2876 {
2877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2878 const gdb_byte *iter, *end;
2879 struct obstack temp_obstack;
2880 struct addrmap *mutable_map;
2881 struct cleanup *cleanup;
2882 CORE_ADDR baseaddr;
2883
2884 obstack_init (&temp_obstack);
2885 cleanup = make_cleanup_obstack_free (&temp_obstack);
2886 mutable_map = addrmap_create_mutable (&temp_obstack);
2887
2888 iter = index->address_table;
2889 end = iter + index->address_table_size;
2890
2891 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2892
2893 while (iter < end)
2894 {
2895 ULONGEST hi, lo, cu_index;
2896 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2897 iter += 8;
2898 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2899 iter += 8;
2900 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2901 iter += 4;
2902
2903 if (lo > hi)
2904 {
2905 complaint (&symfile_complaints,
2906 _(".gdb_index address table has invalid range (%s - %s)"),
2907 hex_string (lo), hex_string (hi));
2908 continue;
2909 }
2910
2911 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2912 {
2913 complaint (&symfile_complaints,
2914 _(".gdb_index address table has invalid CU number %u"),
2915 (unsigned) cu_index);
2916 continue;
2917 }
2918
2919 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2920 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2921 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2922 }
2923
2924 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2925 &objfile->objfile_obstack);
2926 do_cleanups (cleanup);
2927 }
2928
2929 /* The hash function for strings in the mapped index. This is the same as
2930 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2931 implementation. This is necessary because the hash function is tied to the
2932 format of the mapped index file. The hash values do not have to match with
2933 SYMBOL_HASH_NEXT.
2934
2935 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2936
2937 static hashval_t
2938 mapped_index_string_hash (int index_version, const void *p)
2939 {
2940 const unsigned char *str = (const unsigned char *) p;
2941 hashval_t r = 0;
2942 unsigned char c;
2943
2944 while ((c = *str++) != 0)
2945 {
2946 if (index_version >= 5)
2947 c = tolower (c);
2948 r = r * 67 + c - 113;
2949 }
2950
2951 return r;
2952 }
2953
2954 /* Find a slot in the mapped index INDEX for the object named NAME.
2955 If NAME is found, set *VEC_OUT to point to the CU vector in the
2956 constant pool and return 1. If NAME cannot be found, return 0. */
2957
2958 static int
2959 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2960 offset_type **vec_out)
2961 {
2962 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2963 offset_type hash;
2964 offset_type slot, step;
2965 int (*cmp) (const char *, const char *);
2966
2967 if (current_language->la_language == language_cplus
2968 || current_language->la_language == language_java
2969 || current_language->la_language == language_fortran)
2970 {
2971 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2972 not contain any. */
2973
2974 if (strchr (name, '(') != NULL)
2975 {
2976 char *without_params = cp_remove_params (name);
2977
2978 if (without_params != NULL)
2979 {
2980 make_cleanup (xfree, without_params);
2981 name = without_params;
2982 }
2983 }
2984 }
2985
2986 /* Index version 4 did not support case insensitive searches. But the
2987 indices for case insensitive languages are built in lowercase, therefore
2988 simulate our NAME being searched is also lowercased. */
2989 hash = mapped_index_string_hash ((index->version == 4
2990 && case_sensitivity == case_sensitive_off
2991 ? 5 : index->version),
2992 name);
2993
2994 slot = hash & (index->symbol_table_slots - 1);
2995 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2996 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2997
2998 for (;;)
2999 {
3000 /* Convert a slot number to an offset into the table. */
3001 offset_type i = 2 * slot;
3002 const char *str;
3003 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3004 {
3005 do_cleanups (back_to);
3006 return 0;
3007 }
3008
3009 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3010 if (!cmp (name, str))
3011 {
3012 *vec_out = (offset_type *) (index->constant_pool
3013 + MAYBE_SWAP (index->symbol_table[i + 1]));
3014 do_cleanups (back_to);
3015 return 1;
3016 }
3017
3018 slot = (slot + step) & (index->symbol_table_slots - 1);
3019 }
3020 }
3021
3022 /* A helper function that reads the .gdb_index from SECTION and fills
3023 in MAP. FILENAME is the name of the file containing the section;
3024 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3025 ok to use deprecated sections.
3026
3027 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3028 out parameters that are filled in with information about the CU and
3029 TU lists in the section.
3030
3031 Returns 1 if all went well, 0 otherwise. */
3032
3033 static int
3034 read_index_from_section (struct objfile *objfile,
3035 const char *filename,
3036 int deprecated_ok,
3037 struct dwarf2_section_info *section,
3038 struct mapped_index *map,
3039 const gdb_byte **cu_list,
3040 offset_type *cu_list_elements,
3041 const gdb_byte **types_list,
3042 offset_type *types_list_elements)
3043 {
3044 const gdb_byte *addr;
3045 offset_type version;
3046 offset_type *metadata;
3047 int i;
3048
3049 if (dwarf2_section_empty_p (section))
3050 return 0;
3051
3052 /* Older elfutils strip versions could keep the section in the main
3053 executable while splitting it for the separate debug info file. */
3054 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3055 return 0;
3056
3057 dwarf2_read_section (objfile, section);
3058
3059 addr = section->buffer;
3060 /* Version check. */
3061 version = MAYBE_SWAP (*(offset_type *) addr);
3062 /* Versions earlier than 3 emitted every copy of a psymbol. This
3063 causes the index to behave very poorly for certain requests. Version 3
3064 contained incomplete addrmap. So, it seems better to just ignore such
3065 indices. */
3066 if (version < 4)
3067 {
3068 static int warning_printed = 0;
3069 if (!warning_printed)
3070 {
3071 warning (_("Skipping obsolete .gdb_index section in %s."),
3072 filename);
3073 warning_printed = 1;
3074 }
3075 return 0;
3076 }
3077 /* Index version 4 uses a different hash function than index version
3078 5 and later.
3079
3080 Versions earlier than 6 did not emit psymbols for inlined
3081 functions. Using these files will cause GDB not to be able to
3082 set breakpoints on inlined functions by name, so we ignore these
3083 indices unless the user has done
3084 "set use-deprecated-index-sections on". */
3085 if (version < 6 && !deprecated_ok)
3086 {
3087 static int warning_printed = 0;
3088 if (!warning_printed)
3089 {
3090 warning (_("\
3091 Skipping deprecated .gdb_index section in %s.\n\
3092 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3093 to use the section anyway."),
3094 filename);
3095 warning_printed = 1;
3096 }
3097 return 0;
3098 }
3099 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3100 of the TU (for symbols coming from TUs),
3101 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3102 Plus gold-generated indices can have duplicate entries for global symbols,
3103 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3104 These are just performance bugs, and we can't distinguish gdb-generated
3105 indices from gold-generated ones, so issue no warning here. */
3106
3107 /* Indexes with higher version than the one supported by GDB may be no
3108 longer backward compatible. */
3109 if (version > 8)
3110 return 0;
3111
3112 map->version = version;
3113 map->total_size = section->size;
3114
3115 metadata = (offset_type *) (addr + sizeof (offset_type));
3116
3117 i = 0;
3118 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3119 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3120 / 8);
3121 ++i;
3122
3123 *types_list = addr + MAYBE_SWAP (metadata[i]);
3124 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3125 - MAYBE_SWAP (metadata[i]))
3126 / 8);
3127 ++i;
3128
3129 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3130 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3131 - MAYBE_SWAP (metadata[i]));
3132 ++i;
3133
3134 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3135 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]))
3137 / (2 * sizeof (offset_type)));
3138 ++i;
3139
3140 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3141
3142 return 1;
3143 }
3144
3145
3146 /* Read the index file. If everything went ok, initialize the "quick"
3147 elements of all the CUs and return 1. Otherwise, return 0. */
3148
3149 static int
3150 dwarf2_read_index (struct objfile *objfile)
3151 {
3152 struct mapped_index local_map, *map;
3153 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3154 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3155 struct dwz_file *dwz;
3156
3157 if (!read_index_from_section (objfile, objfile_name (objfile),
3158 use_deprecated_index_sections,
3159 &dwarf2_per_objfile->gdb_index, &local_map,
3160 &cu_list, &cu_list_elements,
3161 &types_list, &types_list_elements))
3162 return 0;
3163
3164 /* Don't use the index if it's empty. */
3165 if (local_map.symbol_table_slots == 0)
3166 return 0;
3167
3168 /* If there is a .dwz file, read it so we can get its CU list as
3169 well. */
3170 dwz = dwarf2_get_dwz_file ();
3171 if (dwz != NULL)
3172 {
3173 struct mapped_index dwz_map;
3174 const gdb_byte *dwz_types_ignore;
3175 offset_type dwz_types_elements_ignore;
3176
3177 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3178 1,
3179 &dwz->gdb_index, &dwz_map,
3180 &dwz_list, &dwz_list_elements,
3181 &dwz_types_ignore,
3182 &dwz_types_elements_ignore))
3183 {
3184 warning (_("could not read '.gdb_index' section from %s; skipping"),
3185 bfd_get_filename (dwz->dwz_bfd));
3186 return 0;
3187 }
3188 }
3189
3190 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3191 dwz_list_elements);
3192
3193 if (types_list_elements)
3194 {
3195 struct dwarf2_section_info *section;
3196
3197 /* We can only handle a single .debug_types when we have an
3198 index. */
3199 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3200 return 0;
3201
3202 section = VEC_index (dwarf2_section_info_def,
3203 dwarf2_per_objfile->types, 0);
3204
3205 create_signatured_type_table_from_index (objfile, section, types_list,
3206 types_list_elements);
3207 }
3208
3209 create_addrmap_from_index (objfile, &local_map);
3210
3211 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3212 *map = local_map;
3213
3214 dwarf2_per_objfile->index_table = map;
3215 dwarf2_per_objfile->using_index = 1;
3216 dwarf2_per_objfile->quick_file_names_table =
3217 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3218
3219 return 1;
3220 }
3221
3222 /* A helper for the "quick" functions which sets the global
3223 dwarf2_per_objfile according to OBJFILE. */
3224
3225 static void
3226 dw2_setup (struct objfile *objfile)
3227 {
3228 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3229 gdb_assert (dwarf2_per_objfile);
3230 }
3231
3232 /* die_reader_func for dw2_get_file_names. */
3233
3234 static void
3235 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3236 const gdb_byte *info_ptr,
3237 struct die_info *comp_unit_die,
3238 int has_children,
3239 void *data)
3240 {
3241 struct dwarf2_cu *cu = reader->cu;
3242 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3243 struct objfile *objfile = dwarf2_per_objfile->objfile;
3244 struct dwarf2_per_cu_data *lh_cu;
3245 struct line_header *lh;
3246 struct attribute *attr;
3247 int i;
3248 const char *name, *comp_dir;
3249 void **slot;
3250 struct quick_file_names *qfn;
3251 unsigned int line_offset;
3252
3253 gdb_assert (! this_cu->is_debug_types);
3254
3255 /* Our callers never want to match partial units -- instead they
3256 will match the enclosing full CU. */
3257 if (comp_unit_die->tag == DW_TAG_partial_unit)
3258 {
3259 this_cu->v.quick->no_file_data = 1;
3260 return;
3261 }
3262
3263 lh_cu = this_cu;
3264 lh = NULL;
3265 slot = NULL;
3266 line_offset = 0;
3267
3268 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3269 if (attr)
3270 {
3271 struct quick_file_names find_entry;
3272
3273 line_offset = DW_UNSND (attr);
3274
3275 /* We may have already read in this line header (TU line header sharing).
3276 If we have we're done. */
3277 find_entry.hash.dwo_unit = cu->dwo_unit;
3278 find_entry.hash.line_offset.sect_off = line_offset;
3279 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3280 &find_entry, INSERT);
3281 if (*slot != NULL)
3282 {
3283 lh_cu->v.quick->file_names = *slot;
3284 return;
3285 }
3286
3287 lh = dwarf_decode_line_header (line_offset, cu);
3288 }
3289 if (lh == NULL)
3290 {
3291 lh_cu->v.quick->no_file_data = 1;
3292 return;
3293 }
3294
3295 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3296 qfn->hash.dwo_unit = cu->dwo_unit;
3297 qfn->hash.line_offset.sect_off = line_offset;
3298 gdb_assert (slot != NULL);
3299 *slot = qfn;
3300
3301 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3302
3303 qfn->num_file_names = lh->num_file_names;
3304 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3305 lh->num_file_names * sizeof (char *));
3306 for (i = 0; i < lh->num_file_names; ++i)
3307 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3308 qfn->real_names = NULL;
3309
3310 free_line_header (lh);
3311
3312 lh_cu->v.quick->file_names = qfn;
3313 }
3314
3315 /* A helper for the "quick" functions which attempts to read the line
3316 table for THIS_CU. */
3317
3318 static struct quick_file_names *
3319 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3320 {
3321 /* This should never be called for TUs. */
3322 gdb_assert (! this_cu->is_debug_types);
3323 /* Nor type unit groups. */
3324 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3325
3326 if (this_cu->v.quick->file_names != NULL)
3327 return this_cu->v.quick->file_names;
3328 /* If we know there is no line data, no point in looking again. */
3329 if (this_cu->v.quick->no_file_data)
3330 return NULL;
3331
3332 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3333
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336 return this_cu->v.quick->file_names;
3337 }
3338
3339 /* A helper for the "quick" functions which computes and caches the
3340 real path for a given file name from the line table. */
3341
3342 static const char *
3343 dw2_get_real_path (struct objfile *objfile,
3344 struct quick_file_names *qfn, int index)
3345 {
3346 if (qfn->real_names == NULL)
3347 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3348 qfn->num_file_names, const char *);
3349
3350 if (qfn->real_names[index] == NULL)
3351 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3352
3353 return qfn->real_names[index];
3354 }
3355
3356 static struct symtab *
3357 dw2_find_last_source_symtab (struct objfile *objfile)
3358 {
3359 struct compunit_symtab *cust;
3360 int index;
3361
3362 dw2_setup (objfile);
3363 index = dwarf2_per_objfile->n_comp_units - 1;
3364 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3365 if (cust == NULL)
3366 return NULL;
3367 return compunit_primary_filetab (cust);
3368 }
3369
3370 /* Traversal function for dw2_forget_cached_source_info. */
3371
3372 static int
3373 dw2_free_cached_file_names (void **slot, void *info)
3374 {
3375 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3376
3377 if (file_data->real_names)
3378 {
3379 int i;
3380
3381 for (i = 0; i < file_data->num_file_names; ++i)
3382 {
3383 xfree ((void*) file_data->real_names[i]);
3384 file_data->real_names[i] = NULL;
3385 }
3386 }
3387
3388 return 1;
3389 }
3390
3391 static void
3392 dw2_forget_cached_source_info (struct objfile *objfile)
3393 {
3394 dw2_setup (objfile);
3395
3396 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3397 dw2_free_cached_file_names, NULL);
3398 }
3399
3400 /* Helper function for dw2_map_symtabs_matching_filename that expands
3401 the symtabs and calls the iterator. */
3402
3403 static int
3404 dw2_map_expand_apply (struct objfile *objfile,
3405 struct dwarf2_per_cu_data *per_cu,
3406 const char *name, const char *real_path,
3407 int (*callback) (struct symtab *, void *),
3408 void *data)
3409 {
3410 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3411
3412 /* Don't visit already-expanded CUs. */
3413 if (per_cu->v.quick->compunit_symtab)
3414 return 0;
3415
3416 /* This may expand more than one symtab, and we want to iterate over
3417 all of them. */
3418 dw2_instantiate_symtab (per_cu);
3419
3420 return iterate_over_some_symtabs (name, real_path, callback, data,
3421 objfile->compunit_symtabs, last_made);
3422 }
3423
3424 /* Implementation of the map_symtabs_matching_filename method. */
3425
3426 static int
3427 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3428 const char *real_path,
3429 int (*callback) (struct symtab *, void *),
3430 void *data)
3431 {
3432 int i;
3433 const char *name_basename = lbasename (name);
3434
3435 dw2_setup (objfile);
3436
3437 /* The rule is CUs specify all the files, including those used by
3438 any TU, so there's no need to scan TUs here. */
3439
3440 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3441 {
3442 int j;
3443 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3444 struct quick_file_names *file_data;
3445
3446 /* We only need to look at symtabs not already expanded. */
3447 if (per_cu->v.quick->compunit_symtab)
3448 continue;
3449
3450 file_data = dw2_get_file_names (per_cu);
3451 if (file_data == NULL)
3452 continue;
3453
3454 for (j = 0; j < file_data->num_file_names; ++j)
3455 {
3456 const char *this_name = file_data->file_names[j];
3457 const char *this_real_name;
3458
3459 if (compare_filenames_for_search (this_name, name))
3460 {
3461 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3462 callback, data))
3463 return 1;
3464 continue;
3465 }
3466
3467 /* Before we invoke realpath, which can get expensive when many
3468 files are involved, do a quick comparison of the basenames. */
3469 if (! basenames_may_differ
3470 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3471 continue;
3472
3473 this_real_name = dw2_get_real_path (objfile, file_data, j);
3474 if (compare_filenames_for_search (this_real_name, name))
3475 {
3476 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3477 callback, data))
3478 return 1;
3479 continue;
3480 }
3481
3482 if (real_path != NULL)
3483 {
3484 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3485 gdb_assert (IS_ABSOLUTE_PATH (name));
3486 if (this_real_name != NULL
3487 && FILENAME_CMP (real_path, this_real_name) == 0)
3488 {
3489 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3490 callback, data))
3491 return 1;
3492 continue;
3493 }
3494 }
3495 }
3496 }
3497
3498 return 0;
3499 }
3500
3501 /* Struct used to manage iterating over all CUs looking for a symbol. */
3502
3503 struct dw2_symtab_iterator
3504 {
3505 /* The internalized form of .gdb_index. */
3506 struct mapped_index *index;
3507 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3508 int want_specific_block;
3509 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3510 Unused if !WANT_SPECIFIC_BLOCK. */
3511 int block_index;
3512 /* The kind of symbol we're looking for. */
3513 domain_enum domain;
3514 /* The list of CUs from the index entry of the symbol,
3515 or NULL if not found. */
3516 offset_type *vec;
3517 /* The next element in VEC to look at. */
3518 int next;
3519 /* The number of elements in VEC, or zero if there is no match. */
3520 int length;
3521 /* Have we seen a global version of the symbol?
3522 If so we can ignore all further global instances.
3523 This is to work around gold/15646, inefficient gold-generated
3524 indices. */
3525 int global_seen;
3526 };
3527
3528 /* Initialize the index symtab iterator ITER.
3529 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3530 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3531
3532 static void
3533 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3534 struct mapped_index *index,
3535 int want_specific_block,
3536 int block_index,
3537 domain_enum domain,
3538 const char *name)
3539 {
3540 iter->index = index;
3541 iter->want_specific_block = want_specific_block;
3542 iter->block_index = block_index;
3543 iter->domain = domain;
3544 iter->next = 0;
3545 iter->global_seen = 0;
3546
3547 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3548 iter->length = MAYBE_SWAP (*iter->vec);
3549 else
3550 {
3551 iter->vec = NULL;
3552 iter->length = 0;
3553 }
3554 }
3555
3556 /* Return the next matching CU or NULL if there are no more. */
3557
3558 static struct dwarf2_per_cu_data *
3559 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3560 {
3561 for ( ; iter->next < iter->length; ++iter->next)
3562 {
3563 offset_type cu_index_and_attrs =
3564 MAYBE_SWAP (iter->vec[iter->next + 1]);
3565 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3566 struct dwarf2_per_cu_data *per_cu;
3567 int want_static = iter->block_index != GLOBAL_BLOCK;
3568 /* This value is only valid for index versions >= 7. */
3569 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3570 gdb_index_symbol_kind symbol_kind =
3571 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3572 /* Only check the symbol attributes if they're present.
3573 Indices prior to version 7 don't record them,
3574 and indices >= 7 may elide them for certain symbols
3575 (gold does this). */
3576 int attrs_valid =
3577 (iter->index->version >= 7
3578 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3579
3580 /* Don't crash on bad data. */
3581 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3582 + dwarf2_per_objfile->n_type_units))
3583 {
3584 complaint (&symfile_complaints,
3585 _(".gdb_index entry has bad CU index"
3586 " [in module %s]"),
3587 objfile_name (dwarf2_per_objfile->objfile));
3588 continue;
3589 }
3590
3591 per_cu = dw2_get_cutu (cu_index);
3592
3593 /* Skip if already read in. */
3594 if (per_cu->v.quick->compunit_symtab)
3595 continue;
3596
3597 /* Check static vs global. */
3598 if (attrs_valid)
3599 {
3600 if (iter->want_specific_block
3601 && want_static != is_static)
3602 continue;
3603 /* Work around gold/15646. */
3604 if (!is_static && iter->global_seen)
3605 continue;
3606 if (!is_static)
3607 iter->global_seen = 1;
3608 }
3609
3610 /* Only check the symbol's kind if it has one. */
3611 if (attrs_valid)
3612 {
3613 switch (iter->domain)
3614 {
3615 case VAR_DOMAIN:
3616 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3617 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3618 /* Some types are also in VAR_DOMAIN. */
3619 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3620 continue;
3621 break;
3622 case STRUCT_DOMAIN:
3623 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3624 continue;
3625 break;
3626 case LABEL_DOMAIN:
3627 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3628 continue;
3629 break;
3630 default:
3631 break;
3632 }
3633 }
3634
3635 ++iter->next;
3636 return per_cu;
3637 }
3638
3639 return NULL;
3640 }
3641
3642 static struct compunit_symtab *
3643 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3644 const char *name, domain_enum domain)
3645 {
3646 struct compunit_symtab *stab_best = NULL;
3647 struct mapped_index *index;
3648
3649 dw2_setup (objfile);
3650
3651 index = dwarf2_per_objfile->index_table;
3652
3653 /* index is NULL if OBJF_READNOW. */
3654 if (index)
3655 {
3656 struct dw2_symtab_iterator iter;
3657 struct dwarf2_per_cu_data *per_cu;
3658
3659 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3660
3661 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3662 {
3663 struct symbol *sym = NULL;
3664 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3665 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3666 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3667
3668 /* Some caution must be observed with overloaded functions
3669 and methods, since the index will not contain any overload
3670 information (but NAME might contain it). */
3671 sym = block_lookup_symbol (block, name, domain);
3672
3673 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3674 {
3675 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3676 return stab;
3677
3678 stab_best = stab;
3679 }
3680
3681 /* Keep looking through other CUs. */
3682 }
3683 }
3684
3685 return stab_best;
3686 }
3687
3688 static void
3689 dw2_print_stats (struct objfile *objfile)
3690 {
3691 int i, total, count;
3692
3693 dw2_setup (objfile);
3694 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3695 count = 0;
3696 for (i = 0; i < total; ++i)
3697 {
3698 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3699
3700 if (!per_cu->v.quick->compunit_symtab)
3701 ++count;
3702 }
3703 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3704 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3705 }
3706
3707 /* This dumps minimal information about the index.
3708 It is called via "mt print objfiles".
3709 One use is to verify .gdb_index has been loaded by the
3710 gdb.dwarf2/gdb-index.exp testcase. */
3711
3712 static void
3713 dw2_dump (struct objfile *objfile)
3714 {
3715 dw2_setup (objfile);
3716 gdb_assert (dwarf2_per_objfile->using_index);
3717 printf_filtered (".gdb_index:");
3718 if (dwarf2_per_objfile->index_table != NULL)
3719 {
3720 printf_filtered (" version %d\n",
3721 dwarf2_per_objfile->index_table->version);
3722 }
3723 else
3724 printf_filtered (" faked for \"readnow\"\n");
3725 printf_filtered ("\n");
3726 }
3727
3728 static void
3729 dw2_relocate (struct objfile *objfile,
3730 const struct section_offsets *new_offsets,
3731 const struct section_offsets *delta)
3732 {
3733 /* There's nothing to relocate here. */
3734 }
3735
3736 static void
3737 dw2_expand_symtabs_for_function (struct objfile *objfile,
3738 const char *func_name)
3739 {
3740 struct mapped_index *index;
3741
3742 dw2_setup (objfile);
3743
3744 index = dwarf2_per_objfile->index_table;
3745
3746 /* index is NULL if OBJF_READNOW. */
3747 if (index)
3748 {
3749 struct dw2_symtab_iterator iter;
3750 struct dwarf2_per_cu_data *per_cu;
3751
3752 /* Note: It doesn't matter what we pass for block_index here. */
3753 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3754 func_name);
3755
3756 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3757 dw2_instantiate_symtab (per_cu);
3758 }
3759 }
3760
3761 static void
3762 dw2_expand_all_symtabs (struct objfile *objfile)
3763 {
3764 int i;
3765
3766 dw2_setup (objfile);
3767
3768 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3769 + dwarf2_per_objfile->n_type_units); ++i)
3770 {
3771 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3772
3773 dw2_instantiate_symtab (per_cu);
3774 }
3775 }
3776
3777 static void
3778 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3779 const char *fullname)
3780 {
3781 int i;
3782
3783 dw2_setup (objfile);
3784
3785 /* We don't need to consider type units here.
3786 This is only called for examining code, e.g. expand_line_sal.
3787 There can be an order of magnitude (or more) more type units
3788 than comp units, and we avoid them if we can. */
3789
3790 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3791 {
3792 int j;
3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3794 struct quick_file_names *file_data;
3795
3796 /* We only need to look at symtabs not already expanded. */
3797 if (per_cu->v.quick->compunit_symtab)
3798 continue;
3799
3800 file_data = dw2_get_file_names (per_cu);
3801 if (file_data == NULL)
3802 continue;
3803
3804 for (j = 0; j < file_data->num_file_names; ++j)
3805 {
3806 const char *this_fullname = file_data->file_names[j];
3807
3808 if (filename_cmp (this_fullname, fullname) == 0)
3809 {
3810 dw2_instantiate_symtab (per_cu);
3811 break;
3812 }
3813 }
3814 }
3815 }
3816
3817 static void
3818 dw2_map_matching_symbols (struct objfile *objfile,
3819 const char * name, domain_enum domain,
3820 int global,
3821 int (*callback) (struct block *,
3822 struct symbol *, void *),
3823 void *data, symbol_compare_ftype *match,
3824 symbol_compare_ftype *ordered_compare)
3825 {
3826 /* Currently unimplemented; used for Ada. The function can be called if the
3827 current language is Ada for a non-Ada objfile using GNU index. As Ada
3828 does not look for non-Ada symbols this function should just return. */
3829 }
3830
3831 static void
3832 dw2_expand_symtabs_matching
3833 (struct objfile *objfile,
3834 expand_symtabs_file_matcher_ftype *file_matcher,
3835 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3836 expand_symtabs_exp_notify_ftype *expansion_notify,
3837 enum search_domain kind,
3838 void *data)
3839 {
3840 int i;
3841 offset_type iter;
3842 struct mapped_index *index;
3843
3844 dw2_setup (objfile);
3845
3846 /* index_table is NULL if OBJF_READNOW. */
3847 if (!dwarf2_per_objfile->index_table)
3848 return;
3849 index = dwarf2_per_objfile->index_table;
3850
3851 if (file_matcher != NULL)
3852 {
3853 struct cleanup *cleanup;
3854 htab_t visited_found, visited_not_found;
3855
3856 visited_found = htab_create_alloc (10,
3857 htab_hash_pointer, htab_eq_pointer,
3858 NULL, xcalloc, xfree);
3859 cleanup = make_cleanup_htab_delete (visited_found);
3860 visited_not_found = htab_create_alloc (10,
3861 htab_hash_pointer, htab_eq_pointer,
3862 NULL, xcalloc, xfree);
3863 make_cleanup_htab_delete (visited_not_found);
3864
3865 /* The rule is CUs specify all the files, including those used by
3866 any TU, so there's no need to scan TUs here. */
3867
3868 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3869 {
3870 int j;
3871 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3872 struct quick_file_names *file_data;
3873 void **slot;
3874
3875 per_cu->v.quick->mark = 0;
3876
3877 /* We only need to look at symtabs not already expanded. */
3878 if (per_cu->v.quick->compunit_symtab)
3879 continue;
3880
3881 file_data = dw2_get_file_names (per_cu);
3882 if (file_data == NULL)
3883 continue;
3884
3885 if (htab_find (visited_not_found, file_data) != NULL)
3886 continue;
3887 else if (htab_find (visited_found, file_data) != NULL)
3888 {
3889 per_cu->v.quick->mark = 1;
3890 continue;
3891 }
3892
3893 for (j = 0; j < file_data->num_file_names; ++j)
3894 {
3895 const char *this_real_name;
3896
3897 if (file_matcher (file_data->file_names[j], data, 0))
3898 {
3899 per_cu->v.quick->mark = 1;
3900 break;
3901 }
3902
3903 /* Before we invoke realpath, which can get expensive when many
3904 files are involved, do a quick comparison of the basenames. */
3905 if (!basenames_may_differ
3906 && !file_matcher (lbasename (file_data->file_names[j]),
3907 data, 1))
3908 continue;
3909
3910 this_real_name = dw2_get_real_path (objfile, file_data, j);
3911 if (file_matcher (this_real_name, data, 0))
3912 {
3913 per_cu->v.quick->mark = 1;
3914 break;
3915 }
3916 }
3917
3918 slot = htab_find_slot (per_cu->v.quick->mark
3919 ? visited_found
3920 : visited_not_found,
3921 file_data, INSERT);
3922 *slot = file_data;
3923 }
3924
3925 do_cleanups (cleanup);
3926 }
3927
3928 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3929 {
3930 offset_type idx = 2 * iter;
3931 const char *name;
3932 offset_type *vec, vec_len, vec_idx;
3933 int global_seen = 0;
3934
3935 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3936 continue;
3937
3938 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3939
3940 if (! (*symbol_matcher) (name, data))
3941 continue;
3942
3943 /* The name was matched, now expand corresponding CUs that were
3944 marked. */
3945 vec = (offset_type *) (index->constant_pool
3946 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3947 vec_len = MAYBE_SWAP (vec[0]);
3948 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3949 {
3950 struct dwarf2_per_cu_data *per_cu;
3951 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3952 /* This value is only valid for index versions >= 7. */
3953 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3954 gdb_index_symbol_kind symbol_kind =
3955 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3956 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3957 /* Only check the symbol attributes if they're present.
3958 Indices prior to version 7 don't record them,
3959 and indices >= 7 may elide them for certain symbols
3960 (gold does this). */
3961 int attrs_valid =
3962 (index->version >= 7
3963 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3964
3965 /* Work around gold/15646. */
3966 if (attrs_valid)
3967 {
3968 if (!is_static && global_seen)
3969 continue;
3970 if (!is_static)
3971 global_seen = 1;
3972 }
3973
3974 /* Only check the symbol's kind if it has one. */
3975 if (attrs_valid)
3976 {
3977 switch (kind)
3978 {
3979 case VARIABLES_DOMAIN:
3980 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3981 continue;
3982 break;
3983 case FUNCTIONS_DOMAIN:
3984 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3985 continue;
3986 break;
3987 case TYPES_DOMAIN:
3988 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3989 continue;
3990 break;
3991 default:
3992 break;
3993 }
3994 }
3995
3996 /* Don't crash on bad data. */
3997 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3998 + dwarf2_per_objfile->n_type_units))
3999 {
4000 complaint (&symfile_complaints,
4001 _(".gdb_index entry has bad CU index"
4002 " [in module %s]"), objfile_name (objfile));
4003 continue;
4004 }
4005
4006 per_cu = dw2_get_cutu (cu_index);
4007 if (file_matcher == NULL || per_cu->v.quick->mark)
4008 {
4009 int symtab_was_null =
4010 (per_cu->v.quick->compunit_symtab == NULL);
4011
4012 dw2_instantiate_symtab (per_cu);
4013
4014 if (expansion_notify != NULL
4015 && symtab_was_null
4016 && per_cu->v.quick->compunit_symtab != NULL)
4017 {
4018 expansion_notify (per_cu->v.quick->compunit_symtab,
4019 data);
4020 }
4021 }
4022 }
4023 }
4024 }
4025
4026 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4027 symtab. */
4028
4029 static struct compunit_symtab *
4030 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4031 CORE_ADDR pc)
4032 {
4033 int i;
4034
4035 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4036 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4037 return cust;
4038
4039 if (cust->includes == NULL)
4040 return NULL;
4041
4042 for (i = 0; cust->includes[i]; ++i)
4043 {
4044 struct compunit_symtab *s = cust->includes[i];
4045
4046 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4047 if (s != NULL)
4048 return s;
4049 }
4050
4051 return NULL;
4052 }
4053
4054 static struct compunit_symtab *
4055 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4056 struct bound_minimal_symbol msymbol,
4057 CORE_ADDR pc,
4058 struct obj_section *section,
4059 int warn_if_readin)
4060 {
4061 struct dwarf2_per_cu_data *data;
4062 struct compunit_symtab *result;
4063
4064 dw2_setup (objfile);
4065
4066 if (!objfile->psymtabs_addrmap)
4067 return NULL;
4068
4069 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4070 if (!data)
4071 return NULL;
4072
4073 if (warn_if_readin && data->v.quick->compunit_symtab)
4074 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4075 paddress (get_objfile_arch (objfile), pc));
4076
4077 result
4078 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4079 pc);
4080 gdb_assert (result != NULL);
4081 return result;
4082 }
4083
4084 static void
4085 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4086 void *data, int need_fullname)
4087 {
4088 int i;
4089 struct cleanup *cleanup;
4090 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4091 NULL, xcalloc, xfree);
4092
4093 cleanup = make_cleanup_htab_delete (visited);
4094 dw2_setup (objfile);
4095
4096 /* The rule is CUs specify all the files, including those used by
4097 any TU, so there's no need to scan TUs here.
4098 We can ignore file names coming from already-expanded CUs. */
4099
4100 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4101 {
4102 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4103
4104 if (per_cu->v.quick->compunit_symtab)
4105 {
4106 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4107 INSERT);
4108
4109 *slot = per_cu->v.quick->file_names;
4110 }
4111 }
4112
4113 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4114 {
4115 int j;
4116 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4117 struct quick_file_names *file_data;
4118 void **slot;
4119
4120 /* We only need to look at symtabs not already expanded. */
4121 if (per_cu->v.quick->compunit_symtab)
4122 continue;
4123
4124 file_data = dw2_get_file_names (per_cu);
4125 if (file_data == NULL)
4126 continue;
4127
4128 slot = htab_find_slot (visited, file_data, INSERT);
4129 if (*slot)
4130 {
4131 /* Already visited. */
4132 continue;
4133 }
4134 *slot = file_data;
4135
4136 for (j = 0; j < file_data->num_file_names; ++j)
4137 {
4138 const char *this_real_name;
4139
4140 if (need_fullname)
4141 this_real_name = dw2_get_real_path (objfile, file_data, j);
4142 else
4143 this_real_name = NULL;
4144 (*fun) (file_data->file_names[j], this_real_name, data);
4145 }
4146 }
4147
4148 do_cleanups (cleanup);
4149 }
4150
4151 static int
4152 dw2_has_symbols (struct objfile *objfile)
4153 {
4154 return 1;
4155 }
4156
4157 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4158 {
4159 dw2_has_symbols,
4160 dw2_find_last_source_symtab,
4161 dw2_forget_cached_source_info,
4162 dw2_map_symtabs_matching_filename,
4163 dw2_lookup_symbol,
4164 dw2_print_stats,
4165 dw2_dump,
4166 dw2_relocate,
4167 dw2_expand_symtabs_for_function,
4168 dw2_expand_all_symtabs,
4169 dw2_expand_symtabs_with_fullname,
4170 dw2_map_matching_symbols,
4171 dw2_expand_symtabs_matching,
4172 dw2_find_pc_sect_compunit_symtab,
4173 dw2_map_symbol_filenames
4174 };
4175
4176 /* Initialize for reading DWARF for this objfile. Return 0 if this
4177 file will use psymtabs, or 1 if using the GNU index. */
4178
4179 int
4180 dwarf2_initialize_objfile (struct objfile *objfile)
4181 {
4182 /* If we're about to read full symbols, don't bother with the
4183 indices. In this case we also don't care if some other debug
4184 format is making psymtabs, because they are all about to be
4185 expanded anyway. */
4186 if ((objfile->flags & OBJF_READNOW))
4187 {
4188 int i;
4189
4190 dwarf2_per_objfile->using_index = 1;
4191 create_all_comp_units (objfile);
4192 create_all_type_units (objfile);
4193 dwarf2_per_objfile->quick_file_names_table =
4194 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4195
4196 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4197 + dwarf2_per_objfile->n_type_units); ++i)
4198 {
4199 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4200
4201 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4202 struct dwarf2_per_cu_quick_data);
4203 }
4204
4205 /* Return 1 so that gdb sees the "quick" functions. However,
4206 these functions will be no-ops because we will have expanded
4207 all symtabs. */
4208 return 1;
4209 }
4210
4211 if (dwarf2_read_index (objfile))
4212 return 1;
4213
4214 return 0;
4215 }
4216
4217 \f
4218
4219 /* Build a partial symbol table. */
4220
4221 void
4222 dwarf2_build_psymtabs (struct objfile *objfile)
4223 {
4224
4225 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4226 {
4227 init_psymbol_list (objfile, 1024);
4228 }
4229
4230 TRY
4231 {
4232 /* This isn't really ideal: all the data we allocate on the
4233 objfile's obstack is still uselessly kept around. However,
4234 freeing it seems unsafe. */
4235 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4236
4237 dwarf2_build_psymtabs_hard (objfile);
4238 discard_cleanups (cleanups);
4239 }
4240 CATCH (except, RETURN_MASK_ERROR)
4241 {
4242 exception_print (gdb_stderr, except);
4243 }
4244 END_CATCH
4245 }
4246
4247 /* Return the total length of the CU described by HEADER. */
4248
4249 static unsigned int
4250 get_cu_length (const struct comp_unit_head *header)
4251 {
4252 return header->initial_length_size + header->length;
4253 }
4254
4255 /* Return TRUE if OFFSET is within CU_HEADER. */
4256
4257 static inline int
4258 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4259 {
4260 sect_offset bottom = { cu_header->offset.sect_off };
4261 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4262
4263 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4264 }
4265
4266 /* Find the base address of the compilation unit for range lists and
4267 location lists. It will normally be specified by DW_AT_low_pc.
4268 In DWARF-3 draft 4, the base address could be overridden by
4269 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4270 compilation units with discontinuous ranges. */
4271
4272 static void
4273 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4274 {
4275 struct attribute *attr;
4276
4277 cu->base_known = 0;
4278 cu->base_address = 0;
4279
4280 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4281 if (attr)
4282 {
4283 cu->base_address = attr_value_as_address (attr);
4284 cu->base_known = 1;
4285 }
4286 else
4287 {
4288 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4289 if (attr)
4290 {
4291 cu->base_address = attr_value_as_address (attr);
4292 cu->base_known = 1;
4293 }
4294 }
4295 }
4296
4297 /* Read in the comp unit header information from the debug_info at info_ptr.
4298 NOTE: This leaves members offset, first_die_offset to be filled in
4299 by the caller. */
4300
4301 static const gdb_byte *
4302 read_comp_unit_head (struct comp_unit_head *cu_header,
4303 const gdb_byte *info_ptr, bfd *abfd)
4304 {
4305 int signed_addr;
4306 unsigned int bytes_read;
4307
4308 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4309 cu_header->initial_length_size = bytes_read;
4310 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4311 info_ptr += bytes_read;
4312 cu_header->version = read_2_bytes (abfd, info_ptr);
4313 info_ptr += 2;
4314 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4315 &bytes_read);
4316 info_ptr += bytes_read;
4317 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4318 info_ptr += 1;
4319 signed_addr = bfd_get_sign_extend_vma (abfd);
4320 if (signed_addr < 0)
4321 internal_error (__FILE__, __LINE__,
4322 _("read_comp_unit_head: dwarf from non elf file"));
4323 cu_header->signed_addr_p = signed_addr;
4324
4325 return info_ptr;
4326 }
4327
4328 /* Helper function that returns the proper abbrev section for
4329 THIS_CU. */
4330
4331 static struct dwarf2_section_info *
4332 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4333 {
4334 struct dwarf2_section_info *abbrev;
4335
4336 if (this_cu->is_dwz)
4337 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4338 else
4339 abbrev = &dwarf2_per_objfile->abbrev;
4340
4341 return abbrev;
4342 }
4343
4344 /* Subroutine of read_and_check_comp_unit_head and
4345 read_and_check_type_unit_head to simplify them.
4346 Perform various error checking on the header. */
4347
4348 static void
4349 error_check_comp_unit_head (struct comp_unit_head *header,
4350 struct dwarf2_section_info *section,
4351 struct dwarf2_section_info *abbrev_section)
4352 {
4353 bfd *abfd = get_section_bfd_owner (section);
4354 const char *filename = get_section_file_name (section);
4355
4356 if (header->version != 2 && header->version != 3 && header->version != 4)
4357 error (_("Dwarf Error: wrong version in compilation unit header "
4358 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4359 filename);
4360
4361 if (header->abbrev_offset.sect_off
4362 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4363 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4364 "(offset 0x%lx + 6) [in module %s]"),
4365 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4366 filename);
4367
4368 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4369 avoid potential 32-bit overflow. */
4370 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4371 > section->size)
4372 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4373 "(offset 0x%lx + 0) [in module %s]"),
4374 (long) header->length, (long) header->offset.sect_off,
4375 filename);
4376 }
4377
4378 /* Read in a CU/TU header and perform some basic error checking.
4379 The contents of the header are stored in HEADER.
4380 The result is a pointer to the start of the first DIE. */
4381
4382 static const gdb_byte *
4383 read_and_check_comp_unit_head (struct comp_unit_head *header,
4384 struct dwarf2_section_info *section,
4385 struct dwarf2_section_info *abbrev_section,
4386 const gdb_byte *info_ptr,
4387 int is_debug_types_section)
4388 {
4389 const gdb_byte *beg_of_comp_unit = info_ptr;
4390 bfd *abfd = get_section_bfd_owner (section);
4391
4392 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4393
4394 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4395
4396 /* If we're reading a type unit, skip over the signature and
4397 type_offset fields. */
4398 if (is_debug_types_section)
4399 info_ptr += 8 /*signature*/ + header->offset_size;
4400
4401 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4402
4403 error_check_comp_unit_head (header, section, abbrev_section);
4404
4405 return info_ptr;
4406 }
4407
4408 /* Read in the types comp unit header information from .debug_types entry at
4409 types_ptr. The result is a pointer to one past the end of the header. */
4410
4411 static const gdb_byte *
4412 read_and_check_type_unit_head (struct comp_unit_head *header,
4413 struct dwarf2_section_info *section,
4414 struct dwarf2_section_info *abbrev_section,
4415 const gdb_byte *info_ptr,
4416 ULONGEST *signature,
4417 cu_offset *type_offset_in_tu)
4418 {
4419 const gdb_byte *beg_of_comp_unit = info_ptr;
4420 bfd *abfd = get_section_bfd_owner (section);
4421
4422 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4423
4424 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4425
4426 /* If we're reading a type unit, skip over the signature and
4427 type_offset fields. */
4428 if (signature != NULL)
4429 *signature = read_8_bytes (abfd, info_ptr);
4430 info_ptr += 8;
4431 if (type_offset_in_tu != NULL)
4432 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4433 header->offset_size);
4434 info_ptr += header->offset_size;
4435
4436 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4437
4438 error_check_comp_unit_head (header, section, abbrev_section);
4439
4440 return info_ptr;
4441 }
4442
4443 /* Fetch the abbreviation table offset from a comp or type unit header. */
4444
4445 static sect_offset
4446 read_abbrev_offset (struct dwarf2_section_info *section,
4447 sect_offset offset)
4448 {
4449 bfd *abfd = get_section_bfd_owner (section);
4450 const gdb_byte *info_ptr;
4451 unsigned int length, initial_length_size, offset_size;
4452 sect_offset abbrev_offset;
4453
4454 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4455 info_ptr = section->buffer + offset.sect_off;
4456 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4457 offset_size = initial_length_size == 4 ? 4 : 8;
4458 info_ptr += initial_length_size + 2 /*version*/;
4459 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4460 return abbrev_offset;
4461 }
4462
4463 /* Allocate a new partial symtab for file named NAME and mark this new
4464 partial symtab as being an include of PST. */
4465
4466 static void
4467 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4468 struct objfile *objfile)
4469 {
4470 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4471
4472 if (!IS_ABSOLUTE_PATH (subpst->filename))
4473 {
4474 /* It shares objfile->objfile_obstack. */
4475 subpst->dirname = pst->dirname;
4476 }
4477
4478 subpst->section_offsets = pst->section_offsets;
4479 subpst->textlow = 0;
4480 subpst->texthigh = 0;
4481
4482 subpst->dependencies = (struct partial_symtab **)
4483 obstack_alloc (&objfile->objfile_obstack,
4484 sizeof (struct partial_symtab *));
4485 subpst->dependencies[0] = pst;
4486 subpst->number_of_dependencies = 1;
4487
4488 subpst->globals_offset = 0;
4489 subpst->n_global_syms = 0;
4490 subpst->statics_offset = 0;
4491 subpst->n_static_syms = 0;
4492 subpst->compunit_symtab = NULL;
4493 subpst->read_symtab = pst->read_symtab;
4494 subpst->readin = 0;
4495
4496 /* No private part is necessary for include psymtabs. This property
4497 can be used to differentiate between such include psymtabs and
4498 the regular ones. */
4499 subpst->read_symtab_private = NULL;
4500 }
4501
4502 /* Read the Line Number Program data and extract the list of files
4503 included by the source file represented by PST. Build an include
4504 partial symtab for each of these included files. */
4505
4506 static void
4507 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4508 struct die_info *die,
4509 struct partial_symtab *pst)
4510 {
4511 struct line_header *lh = NULL;
4512 struct attribute *attr;
4513
4514 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4515 if (attr)
4516 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4517 if (lh == NULL)
4518 return; /* No linetable, so no includes. */
4519
4520 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4521 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4522
4523 free_line_header (lh);
4524 }
4525
4526 static hashval_t
4527 hash_signatured_type (const void *item)
4528 {
4529 const struct signatured_type *sig_type = item;
4530
4531 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4532 return sig_type->signature;
4533 }
4534
4535 static int
4536 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4537 {
4538 const struct signatured_type *lhs = item_lhs;
4539 const struct signatured_type *rhs = item_rhs;
4540
4541 return lhs->signature == rhs->signature;
4542 }
4543
4544 /* Allocate a hash table for signatured types. */
4545
4546 static htab_t
4547 allocate_signatured_type_table (struct objfile *objfile)
4548 {
4549 return htab_create_alloc_ex (41,
4550 hash_signatured_type,
4551 eq_signatured_type,
4552 NULL,
4553 &objfile->objfile_obstack,
4554 hashtab_obstack_allocate,
4555 dummy_obstack_deallocate);
4556 }
4557
4558 /* A helper function to add a signatured type CU to a table. */
4559
4560 static int
4561 add_signatured_type_cu_to_table (void **slot, void *datum)
4562 {
4563 struct signatured_type *sigt = *slot;
4564 struct signatured_type ***datap = datum;
4565
4566 **datap = sigt;
4567 ++*datap;
4568
4569 return 1;
4570 }
4571
4572 /* Create the hash table of all entries in the .debug_types
4573 (or .debug_types.dwo) section(s).
4574 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4575 otherwise it is NULL.
4576
4577 The result is a pointer to the hash table or NULL if there are no types.
4578
4579 Note: This function processes DWO files only, not DWP files. */
4580
4581 static htab_t
4582 create_debug_types_hash_table (struct dwo_file *dwo_file,
4583 VEC (dwarf2_section_info_def) *types)
4584 {
4585 struct objfile *objfile = dwarf2_per_objfile->objfile;
4586 htab_t types_htab = NULL;
4587 int ix;
4588 struct dwarf2_section_info *section;
4589 struct dwarf2_section_info *abbrev_section;
4590
4591 if (VEC_empty (dwarf2_section_info_def, types))
4592 return NULL;
4593
4594 abbrev_section = (dwo_file != NULL
4595 ? &dwo_file->sections.abbrev
4596 : &dwarf2_per_objfile->abbrev);
4597
4598 if (dwarf2_read_debug)
4599 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4600 dwo_file ? ".dwo" : "",
4601 get_section_file_name (abbrev_section));
4602
4603 for (ix = 0;
4604 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4605 ++ix)
4606 {
4607 bfd *abfd;
4608 const gdb_byte *info_ptr, *end_ptr;
4609
4610 dwarf2_read_section (objfile, section);
4611 info_ptr = section->buffer;
4612
4613 if (info_ptr == NULL)
4614 continue;
4615
4616 /* We can't set abfd until now because the section may be empty or
4617 not present, in which case the bfd is unknown. */
4618 abfd = get_section_bfd_owner (section);
4619
4620 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4621 because we don't need to read any dies: the signature is in the
4622 header. */
4623
4624 end_ptr = info_ptr + section->size;
4625 while (info_ptr < end_ptr)
4626 {
4627 sect_offset offset;
4628 cu_offset type_offset_in_tu;
4629 ULONGEST signature;
4630 struct signatured_type *sig_type;
4631 struct dwo_unit *dwo_tu;
4632 void **slot;
4633 const gdb_byte *ptr = info_ptr;
4634 struct comp_unit_head header;
4635 unsigned int length;
4636
4637 offset.sect_off = ptr - section->buffer;
4638
4639 /* We need to read the type's signature in order to build the hash
4640 table, but we don't need anything else just yet. */
4641
4642 ptr = read_and_check_type_unit_head (&header, section,
4643 abbrev_section, ptr,
4644 &signature, &type_offset_in_tu);
4645
4646 length = get_cu_length (&header);
4647
4648 /* Skip dummy type units. */
4649 if (ptr >= info_ptr + length
4650 || peek_abbrev_code (abfd, ptr) == 0)
4651 {
4652 info_ptr += length;
4653 continue;
4654 }
4655
4656 if (types_htab == NULL)
4657 {
4658 if (dwo_file)
4659 types_htab = allocate_dwo_unit_table (objfile);
4660 else
4661 types_htab = allocate_signatured_type_table (objfile);
4662 }
4663
4664 if (dwo_file)
4665 {
4666 sig_type = NULL;
4667 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4668 struct dwo_unit);
4669 dwo_tu->dwo_file = dwo_file;
4670 dwo_tu->signature = signature;
4671 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4672 dwo_tu->section = section;
4673 dwo_tu->offset = offset;
4674 dwo_tu->length = length;
4675 }
4676 else
4677 {
4678 /* N.B.: type_offset is not usable if this type uses a DWO file.
4679 The real type_offset is in the DWO file. */
4680 dwo_tu = NULL;
4681 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4682 struct signatured_type);
4683 sig_type->signature = signature;
4684 sig_type->type_offset_in_tu = type_offset_in_tu;
4685 sig_type->per_cu.objfile = objfile;
4686 sig_type->per_cu.is_debug_types = 1;
4687 sig_type->per_cu.section = section;
4688 sig_type->per_cu.offset = offset;
4689 sig_type->per_cu.length = length;
4690 }
4691
4692 slot = htab_find_slot (types_htab,
4693 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4694 INSERT);
4695 gdb_assert (slot != NULL);
4696 if (*slot != NULL)
4697 {
4698 sect_offset dup_offset;
4699
4700 if (dwo_file)
4701 {
4702 const struct dwo_unit *dup_tu = *slot;
4703
4704 dup_offset = dup_tu->offset;
4705 }
4706 else
4707 {
4708 const struct signatured_type *dup_tu = *slot;
4709
4710 dup_offset = dup_tu->per_cu.offset;
4711 }
4712
4713 complaint (&symfile_complaints,
4714 _("debug type entry at offset 0x%x is duplicate to"
4715 " the entry at offset 0x%x, signature %s"),
4716 offset.sect_off, dup_offset.sect_off,
4717 hex_string (signature));
4718 }
4719 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4720
4721 if (dwarf2_read_debug > 1)
4722 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4723 offset.sect_off,
4724 hex_string (signature));
4725
4726 info_ptr += length;
4727 }
4728 }
4729
4730 return types_htab;
4731 }
4732
4733 /* Create the hash table of all entries in the .debug_types section,
4734 and initialize all_type_units.
4735 The result is zero if there is an error (e.g. missing .debug_types section),
4736 otherwise non-zero. */
4737
4738 static int
4739 create_all_type_units (struct objfile *objfile)
4740 {
4741 htab_t types_htab;
4742 struct signatured_type **iter;
4743
4744 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4745 if (types_htab == NULL)
4746 {
4747 dwarf2_per_objfile->signatured_types = NULL;
4748 return 0;
4749 }
4750
4751 dwarf2_per_objfile->signatured_types = types_htab;
4752
4753 dwarf2_per_objfile->n_type_units
4754 = dwarf2_per_objfile->n_allocated_type_units
4755 = htab_elements (types_htab);
4756 dwarf2_per_objfile->all_type_units
4757 = xmalloc (dwarf2_per_objfile->n_type_units
4758 * sizeof (struct signatured_type *));
4759 iter = &dwarf2_per_objfile->all_type_units[0];
4760 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4761 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4762 == dwarf2_per_objfile->n_type_units);
4763
4764 return 1;
4765 }
4766
4767 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4768 If SLOT is non-NULL, it is the entry to use in the hash table.
4769 Otherwise we find one. */
4770
4771 static struct signatured_type *
4772 add_type_unit (ULONGEST sig, void **slot)
4773 {
4774 struct objfile *objfile = dwarf2_per_objfile->objfile;
4775 int n_type_units = dwarf2_per_objfile->n_type_units;
4776 struct signatured_type *sig_type;
4777
4778 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4779 ++n_type_units;
4780 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4781 {
4782 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4783 dwarf2_per_objfile->n_allocated_type_units = 1;
4784 dwarf2_per_objfile->n_allocated_type_units *= 2;
4785 dwarf2_per_objfile->all_type_units
4786 = xrealloc (dwarf2_per_objfile->all_type_units,
4787 dwarf2_per_objfile->n_allocated_type_units
4788 * sizeof (struct signatured_type *));
4789 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4790 }
4791 dwarf2_per_objfile->n_type_units = n_type_units;
4792
4793 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4794 struct signatured_type);
4795 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4796 sig_type->signature = sig;
4797 sig_type->per_cu.is_debug_types = 1;
4798 if (dwarf2_per_objfile->using_index)
4799 {
4800 sig_type->per_cu.v.quick =
4801 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4802 struct dwarf2_per_cu_quick_data);
4803 }
4804
4805 if (slot == NULL)
4806 {
4807 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4808 sig_type, INSERT);
4809 }
4810 gdb_assert (*slot == NULL);
4811 *slot = sig_type;
4812 /* The rest of sig_type must be filled in by the caller. */
4813 return sig_type;
4814 }
4815
4816 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4817 Fill in SIG_ENTRY with DWO_ENTRY. */
4818
4819 static void
4820 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4821 struct signatured_type *sig_entry,
4822 struct dwo_unit *dwo_entry)
4823 {
4824 /* Make sure we're not clobbering something we don't expect to. */
4825 gdb_assert (! sig_entry->per_cu.queued);
4826 gdb_assert (sig_entry->per_cu.cu == NULL);
4827 if (dwarf2_per_objfile->using_index)
4828 {
4829 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4830 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4831 }
4832 else
4833 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4834 gdb_assert (sig_entry->signature == dwo_entry->signature);
4835 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4836 gdb_assert (sig_entry->type_unit_group == NULL);
4837 gdb_assert (sig_entry->dwo_unit == NULL);
4838
4839 sig_entry->per_cu.section = dwo_entry->section;
4840 sig_entry->per_cu.offset = dwo_entry->offset;
4841 sig_entry->per_cu.length = dwo_entry->length;
4842 sig_entry->per_cu.reading_dwo_directly = 1;
4843 sig_entry->per_cu.objfile = objfile;
4844 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4845 sig_entry->dwo_unit = dwo_entry;
4846 }
4847
4848 /* Subroutine of lookup_signatured_type.
4849 If we haven't read the TU yet, create the signatured_type data structure
4850 for a TU to be read in directly from a DWO file, bypassing the stub.
4851 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4852 using .gdb_index, then when reading a CU we want to stay in the DWO file
4853 containing that CU. Otherwise we could end up reading several other DWO
4854 files (due to comdat folding) to process the transitive closure of all the
4855 mentioned TUs, and that can be slow. The current DWO file will have every
4856 type signature that it needs.
4857 We only do this for .gdb_index because in the psymtab case we already have
4858 to read all the DWOs to build the type unit groups. */
4859
4860 static struct signatured_type *
4861 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4862 {
4863 struct objfile *objfile = dwarf2_per_objfile->objfile;
4864 struct dwo_file *dwo_file;
4865 struct dwo_unit find_dwo_entry, *dwo_entry;
4866 struct signatured_type find_sig_entry, *sig_entry;
4867 void **slot;
4868
4869 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4870
4871 /* If TU skeletons have been removed then we may not have read in any
4872 TUs yet. */
4873 if (dwarf2_per_objfile->signatured_types == NULL)
4874 {
4875 dwarf2_per_objfile->signatured_types
4876 = allocate_signatured_type_table (objfile);
4877 }
4878
4879 /* We only ever need to read in one copy of a signatured type.
4880 Use the global signatured_types array to do our own comdat-folding
4881 of types. If this is the first time we're reading this TU, and
4882 the TU has an entry in .gdb_index, replace the recorded data from
4883 .gdb_index with this TU. */
4884
4885 find_sig_entry.signature = sig;
4886 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4887 &find_sig_entry, INSERT);
4888 sig_entry = *slot;
4889
4890 /* We can get here with the TU already read, *or* in the process of being
4891 read. Don't reassign the global entry to point to this DWO if that's
4892 the case. Also note that if the TU is already being read, it may not
4893 have come from a DWO, the program may be a mix of Fission-compiled
4894 code and non-Fission-compiled code. */
4895
4896 /* Have we already tried to read this TU?
4897 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4898 needn't exist in the global table yet). */
4899 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4900 return sig_entry;
4901
4902 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4903 dwo_unit of the TU itself. */
4904 dwo_file = cu->dwo_unit->dwo_file;
4905
4906 /* Ok, this is the first time we're reading this TU. */
4907 if (dwo_file->tus == NULL)
4908 return NULL;
4909 find_dwo_entry.signature = sig;
4910 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4911 if (dwo_entry == NULL)
4912 return NULL;
4913
4914 /* If the global table doesn't have an entry for this TU, add one. */
4915 if (sig_entry == NULL)
4916 sig_entry = add_type_unit (sig, slot);
4917
4918 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4919 sig_entry->per_cu.tu_read = 1;
4920 return sig_entry;
4921 }
4922
4923 /* Subroutine of lookup_signatured_type.
4924 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4925 then try the DWP file. If the TU stub (skeleton) has been removed then
4926 it won't be in .gdb_index. */
4927
4928 static struct signatured_type *
4929 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4930 {
4931 struct objfile *objfile = dwarf2_per_objfile->objfile;
4932 struct dwp_file *dwp_file = get_dwp_file ();
4933 struct dwo_unit *dwo_entry;
4934 struct signatured_type find_sig_entry, *sig_entry;
4935 void **slot;
4936
4937 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4938 gdb_assert (dwp_file != NULL);
4939
4940 /* If TU skeletons have been removed then we may not have read in any
4941 TUs yet. */
4942 if (dwarf2_per_objfile->signatured_types == NULL)
4943 {
4944 dwarf2_per_objfile->signatured_types
4945 = allocate_signatured_type_table (objfile);
4946 }
4947
4948 find_sig_entry.signature = sig;
4949 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4950 &find_sig_entry, INSERT);
4951 sig_entry = *slot;
4952
4953 /* Have we already tried to read this TU?
4954 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4955 needn't exist in the global table yet). */
4956 if (sig_entry != NULL)
4957 return sig_entry;
4958
4959 if (dwp_file->tus == NULL)
4960 return NULL;
4961 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4962 sig, 1 /* is_debug_types */);
4963 if (dwo_entry == NULL)
4964 return NULL;
4965
4966 sig_entry = add_type_unit (sig, slot);
4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4968
4969 return sig_entry;
4970 }
4971
4972 /* Lookup a signature based type for DW_FORM_ref_sig8.
4973 Returns NULL if signature SIG is not present in the table.
4974 It is up to the caller to complain about this. */
4975
4976 static struct signatured_type *
4977 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4978 {
4979 if (cu->dwo_unit
4980 && dwarf2_per_objfile->using_index)
4981 {
4982 /* We're in a DWO/DWP file, and we're using .gdb_index.
4983 These cases require special processing. */
4984 if (get_dwp_file () == NULL)
4985 return lookup_dwo_signatured_type (cu, sig);
4986 else
4987 return lookup_dwp_signatured_type (cu, sig);
4988 }
4989 else
4990 {
4991 struct signatured_type find_entry, *entry;
4992
4993 if (dwarf2_per_objfile->signatured_types == NULL)
4994 return NULL;
4995 find_entry.signature = sig;
4996 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4997 return entry;
4998 }
4999 }
5000 \f
5001 /* Low level DIE reading support. */
5002
5003 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5004
5005 static void
5006 init_cu_die_reader (struct die_reader_specs *reader,
5007 struct dwarf2_cu *cu,
5008 struct dwarf2_section_info *section,
5009 struct dwo_file *dwo_file)
5010 {
5011 gdb_assert (section->readin && section->buffer != NULL);
5012 reader->abfd = get_section_bfd_owner (section);
5013 reader->cu = cu;
5014 reader->dwo_file = dwo_file;
5015 reader->die_section = section;
5016 reader->buffer = section->buffer;
5017 reader->buffer_end = section->buffer + section->size;
5018 reader->comp_dir = NULL;
5019 }
5020
5021 /* Subroutine of init_cutu_and_read_dies to simplify it.
5022 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5023 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5024 already.
5025
5026 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5027 from it to the DIE in the DWO. If NULL we are skipping the stub.
5028 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5029 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5030 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5031 STUB_COMP_DIR may be non-NULL.
5032 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5033 are filled in with the info of the DIE from the DWO file.
5034 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5035 provided an abbrev table to use.
5036 The result is non-zero if a valid (non-dummy) DIE was found. */
5037
5038 static int
5039 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5040 struct dwo_unit *dwo_unit,
5041 int abbrev_table_provided,
5042 struct die_info *stub_comp_unit_die,
5043 const char *stub_comp_dir,
5044 struct die_reader_specs *result_reader,
5045 const gdb_byte **result_info_ptr,
5046 struct die_info **result_comp_unit_die,
5047 int *result_has_children)
5048 {
5049 struct objfile *objfile = dwarf2_per_objfile->objfile;
5050 struct dwarf2_cu *cu = this_cu->cu;
5051 struct dwarf2_section_info *section;
5052 bfd *abfd;
5053 const gdb_byte *begin_info_ptr, *info_ptr;
5054 ULONGEST signature; /* Or dwo_id. */
5055 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5056 int i,num_extra_attrs;
5057 struct dwarf2_section_info *dwo_abbrev_section;
5058 struct attribute *attr;
5059 struct die_info *comp_unit_die;
5060
5061 /* At most one of these may be provided. */
5062 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5063
5064 /* These attributes aren't processed until later:
5065 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5066 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5067 referenced later. However, these attributes are found in the stub
5068 which we won't have later. In order to not impose this complication
5069 on the rest of the code, we read them here and copy them to the
5070 DWO CU/TU die. */
5071
5072 stmt_list = NULL;
5073 low_pc = NULL;
5074 high_pc = NULL;
5075 ranges = NULL;
5076 comp_dir = NULL;
5077
5078 if (stub_comp_unit_die != NULL)
5079 {
5080 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5081 DWO file. */
5082 if (! this_cu->is_debug_types)
5083 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5084 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5085 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5086 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5087 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5088
5089 /* There should be a DW_AT_addr_base attribute here (if needed).
5090 We need the value before we can process DW_FORM_GNU_addr_index. */
5091 cu->addr_base = 0;
5092 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5093 if (attr)
5094 cu->addr_base = DW_UNSND (attr);
5095
5096 /* There should be a DW_AT_ranges_base attribute here (if needed).
5097 We need the value before we can process DW_AT_ranges. */
5098 cu->ranges_base = 0;
5099 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5100 if (attr)
5101 cu->ranges_base = DW_UNSND (attr);
5102 }
5103 else if (stub_comp_dir != NULL)
5104 {
5105 /* Reconstruct the comp_dir attribute to simplify the code below. */
5106 comp_dir = (struct attribute *)
5107 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5108 comp_dir->name = DW_AT_comp_dir;
5109 comp_dir->form = DW_FORM_string;
5110 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5111 DW_STRING (comp_dir) = stub_comp_dir;
5112 }
5113
5114 /* Set up for reading the DWO CU/TU. */
5115 cu->dwo_unit = dwo_unit;
5116 section = dwo_unit->section;
5117 dwarf2_read_section (objfile, section);
5118 abfd = get_section_bfd_owner (section);
5119 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5120 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5121 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5122
5123 if (this_cu->is_debug_types)
5124 {
5125 ULONGEST header_signature;
5126 cu_offset type_offset_in_tu;
5127 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5128
5129 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5130 dwo_abbrev_section,
5131 info_ptr,
5132 &header_signature,
5133 &type_offset_in_tu);
5134 /* This is not an assert because it can be caused by bad debug info. */
5135 if (sig_type->signature != header_signature)
5136 {
5137 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5138 " TU at offset 0x%x [in module %s]"),
5139 hex_string (sig_type->signature),
5140 hex_string (header_signature),
5141 dwo_unit->offset.sect_off,
5142 bfd_get_filename (abfd));
5143 }
5144 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5145 /* For DWOs coming from DWP files, we don't know the CU length
5146 nor the type's offset in the TU until now. */
5147 dwo_unit->length = get_cu_length (&cu->header);
5148 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5149
5150 /* Establish the type offset that can be used to lookup the type.
5151 For DWO files, we don't know it until now. */
5152 sig_type->type_offset_in_section.sect_off =
5153 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5154 }
5155 else
5156 {
5157 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5158 dwo_abbrev_section,
5159 info_ptr, 0);
5160 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5161 /* For DWOs coming from DWP files, we don't know the CU length
5162 until now. */
5163 dwo_unit->length = get_cu_length (&cu->header);
5164 }
5165
5166 /* Replace the CU's original abbrev table with the DWO's.
5167 Reminder: We can't read the abbrev table until we've read the header. */
5168 if (abbrev_table_provided)
5169 {
5170 /* Don't free the provided abbrev table, the caller of
5171 init_cutu_and_read_dies owns it. */
5172 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5173 /* Ensure the DWO abbrev table gets freed. */
5174 make_cleanup (dwarf2_free_abbrev_table, cu);
5175 }
5176 else
5177 {
5178 dwarf2_free_abbrev_table (cu);
5179 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5180 /* Leave any existing abbrev table cleanup as is. */
5181 }
5182
5183 /* Read in the die, but leave space to copy over the attributes
5184 from the stub. This has the benefit of simplifying the rest of
5185 the code - all the work to maintain the illusion of a single
5186 DW_TAG_{compile,type}_unit DIE is done here. */
5187 num_extra_attrs = ((stmt_list != NULL)
5188 + (low_pc != NULL)
5189 + (high_pc != NULL)
5190 + (ranges != NULL)
5191 + (comp_dir != NULL));
5192 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5193 result_has_children, num_extra_attrs);
5194
5195 /* Copy over the attributes from the stub to the DIE we just read in. */
5196 comp_unit_die = *result_comp_unit_die;
5197 i = comp_unit_die->num_attrs;
5198 if (stmt_list != NULL)
5199 comp_unit_die->attrs[i++] = *stmt_list;
5200 if (low_pc != NULL)
5201 comp_unit_die->attrs[i++] = *low_pc;
5202 if (high_pc != NULL)
5203 comp_unit_die->attrs[i++] = *high_pc;
5204 if (ranges != NULL)
5205 comp_unit_die->attrs[i++] = *ranges;
5206 if (comp_dir != NULL)
5207 comp_unit_die->attrs[i++] = *comp_dir;
5208 comp_unit_die->num_attrs += num_extra_attrs;
5209
5210 if (dwarf2_die_debug)
5211 {
5212 fprintf_unfiltered (gdb_stdlog,
5213 "Read die from %s@0x%x of %s:\n",
5214 get_section_name (section),
5215 (unsigned) (begin_info_ptr - section->buffer),
5216 bfd_get_filename (abfd));
5217 dump_die (comp_unit_die, dwarf2_die_debug);
5218 }
5219
5220 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5221 TUs by skipping the stub and going directly to the entry in the DWO file.
5222 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5223 to get it via circuitous means. Blech. */
5224 if (comp_dir != NULL)
5225 result_reader->comp_dir = DW_STRING (comp_dir);
5226
5227 /* Skip dummy compilation units. */
5228 if (info_ptr >= begin_info_ptr + dwo_unit->length
5229 || peek_abbrev_code (abfd, info_ptr) == 0)
5230 return 0;
5231
5232 *result_info_ptr = info_ptr;
5233 return 1;
5234 }
5235
5236 /* Subroutine of init_cutu_and_read_dies to simplify it.
5237 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5238 Returns NULL if the specified DWO unit cannot be found. */
5239
5240 static struct dwo_unit *
5241 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5242 struct die_info *comp_unit_die)
5243 {
5244 struct dwarf2_cu *cu = this_cu->cu;
5245 struct attribute *attr;
5246 ULONGEST signature;
5247 struct dwo_unit *dwo_unit;
5248 const char *comp_dir, *dwo_name;
5249
5250 gdb_assert (cu != NULL);
5251
5252 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5253 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5254 gdb_assert (attr != NULL);
5255 dwo_name = DW_STRING (attr);
5256 comp_dir = NULL;
5257 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5258 if (attr)
5259 comp_dir = DW_STRING (attr);
5260
5261 if (this_cu->is_debug_types)
5262 {
5263 struct signatured_type *sig_type;
5264
5265 /* Since this_cu is the first member of struct signatured_type,
5266 we can go from a pointer to one to a pointer to the other. */
5267 sig_type = (struct signatured_type *) this_cu;
5268 signature = sig_type->signature;
5269 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5270 }
5271 else
5272 {
5273 struct attribute *attr;
5274
5275 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5276 if (! attr)
5277 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5278 " [in module %s]"),
5279 dwo_name, objfile_name (this_cu->objfile));
5280 signature = DW_UNSND (attr);
5281 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5282 signature);
5283 }
5284
5285 return dwo_unit;
5286 }
5287
5288 /* Subroutine of init_cutu_and_read_dies to simplify it.
5289 See it for a description of the parameters.
5290 Read a TU directly from a DWO file, bypassing the stub.
5291
5292 Note: This function could be a little bit simpler if we shared cleanups
5293 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5294 to do, so we keep this function self-contained. Or we could move this
5295 into our caller, but it's complex enough already. */
5296
5297 static void
5298 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5299 int use_existing_cu, int keep,
5300 die_reader_func_ftype *die_reader_func,
5301 void *data)
5302 {
5303 struct dwarf2_cu *cu;
5304 struct signatured_type *sig_type;
5305 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5306 struct die_reader_specs reader;
5307 const gdb_byte *info_ptr;
5308 struct die_info *comp_unit_die;
5309 int has_children;
5310
5311 /* Verify we can do the following downcast, and that we have the
5312 data we need. */
5313 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5314 sig_type = (struct signatured_type *) this_cu;
5315 gdb_assert (sig_type->dwo_unit != NULL);
5316
5317 cleanups = make_cleanup (null_cleanup, NULL);
5318
5319 if (use_existing_cu && this_cu->cu != NULL)
5320 {
5321 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5322 cu = this_cu->cu;
5323 /* There's no need to do the rereading_dwo_cu handling that
5324 init_cutu_and_read_dies does since we don't read the stub. */
5325 }
5326 else
5327 {
5328 /* If !use_existing_cu, this_cu->cu must be NULL. */
5329 gdb_assert (this_cu->cu == NULL);
5330 cu = xmalloc (sizeof (*cu));
5331 init_one_comp_unit (cu, this_cu);
5332 /* If an error occurs while loading, release our storage. */
5333 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5334 }
5335
5336 /* A future optimization, if needed, would be to use an existing
5337 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5338 could share abbrev tables. */
5339
5340 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5341 0 /* abbrev_table_provided */,
5342 NULL /* stub_comp_unit_die */,
5343 sig_type->dwo_unit->dwo_file->comp_dir,
5344 &reader, &info_ptr,
5345 &comp_unit_die, &has_children) == 0)
5346 {
5347 /* Dummy die. */
5348 do_cleanups (cleanups);
5349 return;
5350 }
5351
5352 /* All the "real" work is done here. */
5353 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5354
5355 /* This duplicates the code in init_cutu_and_read_dies,
5356 but the alternative is making the latter more complex.
5357 This function is only for the special case of using DWO files directly:
5358 no point in overly complicating the general case just to handle this. */
5359 if (free_cu_cleanup != NULL)
5360 {
5361 if (keep)
5362 {
5363 /* We've successfully allocated this compilation unit. Let our
5364 caller clean it up when finished with it. */
5365 discard_cleanups (free_cu_cleanup);
5366
5367 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5368 So we have to manually free the abbrev table. */
5369 dwarf2_free_abbrev_table (cu);
5370
5371 /* Link this CU into read_in_chain. */
5372 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5373 dwarf2_per_objfile->read_in_chain = this_cu;
5374 }
5375 else
5376 do_cleanups (free_cu_cleanup);
5377 }
5378
5379 do_cleanups (cleanups);
5380 }
5381
5382 /* Initialize a CU (or TU) and read its DIEs.
5383 If the CU defers to a DWO file, read the DWO file as well.
5384
5385 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5386 Otherwise the table specified in the comp unit header is read in and used.
5387 This is an optimization for when we already have the abbrev table.
5388
5389 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5390 Otherwise, a new CU is allocated with xmalloc.
5391
5392 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5393 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5394
5395 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5396 linker) then DIE_READER_FUNC will not get called. */
5397
5398 static void
5399 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5400 struct abbrev_table *abbrev_table,
5401 int use_existing_cu, int keep,
5402 die_reader_func_ftype *die_reader_func,
5403 void *data)
5404 {
5405 struct objfile *objfile = dwarf2_per_objfile->objfile;
5406 struct dwarf2_section_info *section = this_cu->section;
5407 bfd *abfd = get_section_bfd_owner (section);
5408 struct dwarf2_cu *cu;
5409 const gdb_byte *begin_info_ptr, *info_ptr;
5410 struct die_reader_specs reader;
5411 struct die_info *comp_unit_die;
5412 int has_children;
5413 struct attribute *attr;
5414 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5415 struct signatured_type *sig_type = NULL;
5416 struct dwarf2_section_info *abbrev_section;
5417 /* Non-zero if CU currently points to a DWO file and we need to
5418 reread it. When this happens we need to reread the skeleton die
5419 before we can reread the DWO file (this only applies to CUs, not TUs). */
5420 int rereading_dwo_cu = 0;
5421
5422 if (dwarf2_die_debug)
5423 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5424 this_cu->is_debug_types ? "type" : "comp",
5425 this_cu->offset.sect_off);
5426
5427 if (use_existing_cu)
5428 gdb_assert (keep);
5429
5430 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5431 file (instead of going through the stub), short-circuit all of this. */
5432 if (this_cu->reading_dwo_directly)
5433 {
5434 /* Narrow down the scope of possibilities to have to understand. */
5435 gdb_assert (this_cu->is_debug_types);
5436 gdb_assert (abbrev_table == NULL);
5437 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5438 die_reader_func, data);
5439 return;
5440 }
5441
5442 cleanups = make_cleanup (null_cleanup, NULL);
5443
5444 /* This is cheap if the section is already read in. */
5445 dwarf2_read_section (objfile, section);
5446
5447 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5448
5449 abbrev_section = get_abbrev_section_for_cu (this_cu);
5450
5451 if (use_existing_cu && this_cu->cu != NULL)
5452 {
5453 cu = this_cu->cu;
5454 /* If this CU is from a DWO file we need to start over, we need to
5455 refetch the attributes from the skeleton CU.
5456 This could be optimized by retrieving those attributes from when we
5457 were here the first time: the previous comp_unit_die was stored in
5458 comp_unit_obstack. But there's no data yet that we need this
5459 optimization. */
5460 if (cu->dwo_unit != NULL)
5461 rereading_dwo_cu = 1;
5462 }
5463 else
5464 {
5465 /* If !use_existing_cu, this_cu->cu must be NULL. */
5466 gdb_assert (this_cu->cu == NULL);
5467 cu = xmalloc (sizeof (*cu));
5468 init_one_comp_unit (cu, this_cu);
5469 /* If an error occurs while loading, release our storage. */
5470 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5471 }
5472
5473 /* Get the header. */
5474 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5475 {
5476 /* We already have the header, there's no need to read it in again. */
5477 info_ptr += cu->header.first_die_offset.cu_off;
5478 }
5479 else
5480 {
5481 if (this_cu->is_debug_types)
5482 {
5483 ULONGEST signature;
5484 cu_offset type_offset_in_tu;
5485
5486 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5487 abbrev_section, info_ptr,
5488 &signature,
5489 &type_offset_in_tu);
5490
5491 /* Since per_cu is the first member of struct signatured_type,
5492 we can go from a pointer to one to a pointer to the other. */
5493 sig_type = (struct signatured_type *) this_cu;
5494 gdb_assert (sig_type->signature == signature);
5495 gdb_assert (sig_type->type_offset_in_tu.cu_off
5496 == type_offset_in_tu.cu_off);
5497 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5498
5499 /* LENGTH has not been set yet for type units if we're
5500 using .gdb_index. */
5501 this_cu->length = get_cu_length (&cu->header);
5502
5503 /* Establish the type offset that can be used to lookup the type. */
5504 sig_type->type_offset_in_section.sect_off =
5505 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5506 }
5507 else
5508 {
5509 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5510 abbrev_section,
5511 info_ptr, 0);
5512
5513 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5514 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5515 }
5516 }
5517
5518 /* Skip dummy compilation units. */
5519 if (info_ptr >= begin_info_ptr + this_cu->length
5520 || peek_abbrev_code (abfd, info_ptr) == 0)
5521 {
5522 do_cleanups (cleanups);
5523 return;
5524 }
5525
5526 /* If we don't have them yet, read the abbrevs for this compilation unit.
5527 And if we need to read them now, make sure they're freed when we're
5528 done. Note that it's important that if the CU had an abbrev table
5529 on entry we don't free it when we're done: Somewhere up the call stack
5530 it may be in use. */
5531 if (abbrev_table != NULL)
5532 {
5533 gdb_assert (cu->abbrev_table == NULL);
5534 gdb_assert (cu->header.abbrev_offset.sect_off
5535 == abbrev_table->offset.sect_off);
5536 cu->abbrev_table = abbrev_table;
5537 }
5538 else if (cu->abbrev_table == NULL)
5539 {
5540 dwarf2_read_abbrevs (cu, abbrev_section);
5541 make_cleanup (dwarf2_free_abbrev_table, cu);
5542 }
5543 else if (rereading_dwo_cu)
5544 {
5545 dwarf2_free_abbrev_table (cu);
5546 dwarf2_read_abbrevs (cu, abbrev_section);
5547 }
5548
5549 /* Read the top level CU/TU die. */
5550 init_cu_die_reader (&reader, cu, section, NULL);
5551 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5552
5553 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5554 from the DWO file.
5555 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5556 DWO CU, that this test will fail (the attribute will not be present). */
5557 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5558 if (attr)
5559 {
5560 struct dwo_unit *dwo_unit;
5561 struct die_info *dwo_comp_unit_die;
5562
5563 if (has_children)
5564 {
5565 complaint (&symfile_complaints,
5566 _("compilation unit with DW_AT_GNU_dwo_name"
5567 " has children (offset 0x%x) [in module %s]"),
5568 this_cu->offset.sect_off, bfd_get_filename (abfd));
5569 }
5570 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5571 if (dwo_unit != NULL)
5572 {
5573 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5574 abbrev_table != NULL,
5575 comp_unit_die, NULL,
5576 &reader, &info_ptr,
5577 &dwo_comp_unit_die, &has_children) == 0)
5578 {
5579 /* Dummy die. */
5580 do_cleanups (cleanups);
5581 return;
5582 }
5583 comp_unit_die = dwo_comp_unit_die;
5584 }
5585 else
5586 {
5587 /* Yikes, we couldn't find the rest of the DIE, we only have
5588 the stub. A complaint has already been logged. There's
5589 not much more we can do except pass on the stub DIE to
5590 die_reader_func. We don't want to throw an error on bad
5591 debug info. */
5592 }
5593 }
5594
5595 /* All of the above is setup for this call. Yikes. */
5596 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5597
5598 /* Done, clean up. */
5599 if (free_cu_cleanup != NULL)
5600 {
5601 if (keep)
5602 {
5603 /* We've successfully allocated this compilation unit. Let our
5604 caller clean it up when finished with it. */
5605 discard_cleanups (free_cu_cleanup);
5606
5607 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5608 So we have to manually free the abbrev table. */
5609 dwarf2_free_abbrev_table (cu);
5610
5611 /* Link this CU into read_in_chain. */
5612 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5613 dwarf2_per_objfile->read_in_chain = this_cu;
5614 }
5615 else
5616 do_cleanups (free_cu_cleanup);
5617 }
5618
5619 do_cleanups (cleanups);
5620 }
5621
5622 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5623 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5624 to have already done the lookup to find the DWO file).
5625
5626 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5627 THIS_CU->is_debug_types, but nothing else.
5628
5629 We fill in THIS_CU->length.
5630
5631 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5632 linker) then DIE_READER_FUNC will not get called.
5633
5634 THIS_CU->cu is always freed when done.
5635 This is done in order to not leave THIS_CU->cu in a state where we have
5636 to care whether it refers to the "main" CU or the DWO CU. */
5637
5638 static void
5639 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5640 struct dwo_file *dwo_file,
5641 die_reader_func_ftype *die_reader_func,
5642 void *data)
5643 {
5644 struct objfile *objfile = dwarf2_per_objfile->objfile;
5645 struct dwarf2_section_info *section = this_cu->section;
5646 bfd *abfd = get_section_bfd_owner (section);
5647 struct dwarf2_section_info *abbrev_section;
5648 struct dwarf2_cu cu;
5649 const gdb_byte *begin_info_ptr, *info_ptr;
5650 struct die_reader_specs reader;
5651 struct cleanup *cleanups;
5652 struct die_info *comp_unit_die;
5653 int has_children;
5654
5655 if (dwarf2_die_debug)
5656 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5657 this_cu->is_debug_types ? "type" : "comp",
5658 this_cu->offset.sect_off);
5659
5660 gdb_assert (this_cu->cu == NULL);
5661
5662 abbrev_section = (dwo_file != NULL
5663 ? &dwo_file->sections.abbrev
5664 : get_abbrev_section_for_cu (this_cu));
5665
5666 /* This is cheap if the section is already read in. */
5667 dwarf2_read_section (objfile, section);
5668
5669 init_one_comp_unit (&cu, this_cu);
5670
5671 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5672
5673 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5674 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5675 abbrev_section, info_ptr,
5676 this_cu->is_debug_types);
5677
5678 this_cu->length = get_cu_length (&cu.header);
5679
5680 /* Skip dummy compilation units. */
5681 if (info_ptr >= begin_info_ptr + this_cu->length
5682 || peek_abbrev_code (abfd, info_ptr) == 0)
5683 {
5684 do_cleanups (cleanups);
5685 return;
5686 }
5687
5688 dwarf2_read_abbrevs (&cu, abbrev_section);
5689 make_cleanup (dwarf2_free_abbrev_table, &cu);
5690
5691 init_cu_die_reader (&reader, &cu, section, dwo_file);
5692 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5693
5694 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5695
5696 do_cleanups (cleanups);
5697 }
5698
5699 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5700 does not lookup the specified DWO file.
5701 This cannot be used to read DWO files.
5702
5703 THIS_CU->cu is always freed when done.
5704 This is done in order to not leave THIS_CU->cu in a state where we have
5705 to care whether it refers to the "main" CU or the DWO CU.
5706 We can revisit this if the data shows there's a performance issue. */
5707
5708 static void
5709 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5710 die_reader_func_ftype *die_reader_func,
5711 void *data)
5712 {
5713 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5714 }
5715 \f
5716 /* Type Unit Groups.
5717
5718 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5719 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5720 so that all types coming from the same compilation (.o file) are grouped
5721 together. A future step could be to put the types in the same symtab as
5722 the CU the types ultimately came from. */
5723
5724 static hashval_t
5725 hash_type_unit_group (const void *item)
5726 {
5727 const struct type_unit_group *tu_group = item;
5728
5729 return hash_stmt_list_entry (&tu_group->hash);
5730 }
5731
5732 static int
5733 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5734 {
5735 const struct type_unit_group *lhs = item_lhs;
5736 const struct type_unit_group *rhs = item_rhs;
5737
5738 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5739 }
5740
5741 /* Allocate a hash table for type unit groups. */
5742
5743 static htab_t
5744 allocate_type_unit_groups_table (void)
5745 {
5746 return htab_create_alloc_ex (3,
5747 hash_type_unit_group,
5748 eq_type_unit_group,
5749 NULL,
5750 &dwarf2_per_objfile->objfile->objfile_obstack,
5751 hashtab_obstack_allocate,
5752 dummy_obstack_deallocate);
5753 }
5754
5755 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5756 partial symtabs. We combine several TUs per psymtab to not let the size
5757 of any one psymtab grow too big. */
5758 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5759 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5760
5761 /* Helper routine for get_type_unit_group.
5762 Create the type_unit_group object used to hold one or more TUs. */
5763
5764 static struct type_unit_group *
5765 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5766 {
5767 struct objfile *objfile = dwarf2_per_objfile->objfile;
5768 struct dwarf2_per_cu_data *per_cu;
5769 struct type_unit_group *tu_group;
5770
5771 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5772 struct type_unit_group);
5773 per_cu = &tu_group->per_cu;
5774 per_cu->objfile = objfile;
5775
5776 if (dwarf2_per_objfile->using_index)
5777 {
5778 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5779 struct dwarf2_per_cu_quick_data);
5780 }
5781 else
5782 {
5783 unsigned int line_offset = line_offset_struct.sect_off;
5784 struct partial_symtab *pst;
5785 char *name;
5786
5787 /* Give the symtab a useful name for debug purposes. */
5788 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5789 name = xstrprintf ("<type_units_%d>",
5790 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5791 else
5792 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5793
5794 pst = create_partial_symtab (per_cu, name);
5795 pst->anonymous = 1;
5796
5797 xfree (name);
5798 }
5799
5800 tu_group->hash.dwo_unit = cu->dwo_unit;
5801 tu_group->hash.line_offset = line_offset_struct;
5802
5803 return tu_group;
5804 }
5805
5806 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5807 STMT_LIST is a DW_AT_stmt_list attribute. */
5808
5809 static struct type_unit_group *
5810 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5811 {
5812 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5813 struct type_unit_group *tu_group;
5814 void **slot;
5815 unsigned int line_offset;
5816 struct type_unit_group type_unit_group_for_lookup;
5817
5818 if (dwarf2_per_objfile->type_unit_groups == NULL)
5819 {
5820 dwarf2_per_objfile->type_unit_groups =
5821 allocate_type_unit_groups_table ();
5822 }
5823
5824 /* Do we need to create a new group, or can we use an existing one? */
5825
5826 if (stmt_list)
5827 {
5828 line_offset = DW_UNSND (stmt_list);
5829 ++tu_stats->nr_symtab_sharers;
5830 }
5831 else
5832 {
5833 /* Ugh, no stmt_list. Rare, but we have to handle it.
5834 We can do various things here like create one group per TU or
5835 spread them over multiple groups to split up the expansion work.
5836 To avoid worst case scenarios (too many groups or too large groups)
5837 we, umm, group them in bunches. */
5838 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5839 | (tu_stats->nr_stmt_less_type_units
5840 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5841 ++tu_stats->nr_stmt_less_type_units;
5842 }
5843
5844 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5845 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5846 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5847 &type_unit_group_for_lookup, INSERT);
5848 if (*slot != NULL)
5849 {
5850 tu_group = *slot;
5851 gdb_assert (tu_group != NULL);
5852 }
5853 else
5854 {
5855 sect_offset line_offset_struct;
5856
5857 line_offset_struct.sect_off = line_offset;
5858 tu_group = create_type_unit_group (cu, line_offset_struct);
5859 *slot = tu_group;
5860 ++tu_stats->nr_symtabs;
5861 }
5862
5863 return tu_group;
5864 }
5865 \f
5866 /* Partial symbol tables. */
5867
5868 /* Create a psymtab named NAME and assign it to PER_CU.
5869
5870 The caller must fill in the following details:
5871 dirname, textlow, texthigh. */
5872
5873 static struct partial_symtab *
5874 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5875 {
5876 struct objfile *objfile = per_cu->objfile;
5877 struct partial_symtab *pst;
5878
5879 pst = start_psymtab_common (objfile, objfile->section_offsets,
5880 name, 0,
5881 objfile->global_psymbols.next,
5882 objfile->static_psymbols.next);
5883
5884 pst->psymtabs_addrmap_supported = 1;
5885
5886 /* This is the glue that links PST into GDB's symbol API. */
5887 pst->read_symtab_private = per_cu;
5888 pst->read_symtab = dwarf2_read_symtab;
5889 per_cu->v.psymtab = pst;
5890
5891 return pst;
5892 }
5893
5894 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5895 type. */
5896
5897 struct process_psymtab_comp_unit_data
5898 {
5899 /* True if we are reading a DW_TAG_partial_unit. */
5900
5901 int want_partial_unit;
5902
5903 /* The "pretend" language that is used if the CU doesn't declare a
5904 language. */
5905
5906 enum language pretend_language;
5907 };
5908
5909 /* die_reader_func for process_psymtab_comp_unit. */
5910
5911 static void
5912 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5913 const gdb_byte *info_ptr,
5914 struct die_info *comp_unit_die,
5915 int has_children,
5916 void *data)
5917 {
5918 struct dwarf2_cu *cu = reader->cu;
5919 struct objfile *objfile = cu->objfile;
5920 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5921 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5922 struct attribute *attr;
5923 CORE_ADDR baseaddr;
5924 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5925 struct partial_symtab *pst;
5926 int has_pc_info;
5927 const char *filename;
5928 struct process_psymtab_comp_unit_data *info = data;
5929
5930 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5931 return;
5932
5933 gdb_assert (! per_cu->is_debug_types);
5934
5935 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5936
5937 cu->list_in_scope = &file_symbols;
5938
5939 /* Allocate a new partial symbol table structure. */
5940 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5941 if (attr == NULL || !DW_STRING (attr))
5942 filename = "";
5943 else
5944 filename = DW_STRING (attr);
5945
5946 pst = create_partial_symtab (per_cu, filename);
5947
5948 /* This must be done before calling dwarf2_build_include_psymtabs. */
5949 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5950 if (attr != NULL)
5951 pst->dirname = DW_STRING (attr);
5952
5953 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5954
5955 dwarf2_find_base_address (comp_unit_die, cu);
5956
5957 /* Possibly set the default values of LOWPC and HIGHPC from
5958 `DW_AT_ranges'. */
5959 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5960 &best_highpc, cu, pst);
5961 if (has_pc_info == 1 && best_lowpc < best_highpc)
5962 /* Store the contiguous range if it is not empty; it can be empty for
5963 CUs with no code. */
5964 addrmap_set_empty (objfile->psymtabs_addrmap,
5965 gdbarch_adjust_dwarf2_addr (gdbarch,
5966 best_lowpc + baseaddr),
5967 gdbarch_adjust_dwarf2_addr (gdbarch,
5968 best_highpc + baseaddr) - 1,
5969 pst);
5970
5971 /* Check if comp unit has_children.
5972 If so, read the rest of the partial symbols from this comp unit.
5973 If not, there's no more debug_info for this comp unit. */
5974 if (has_children)
5975 {
5976 struct partial_die_info *first_die;
5977 CORE_ADDR lowpc, highpc;
5978
5979 lowpc = ((CORE_ADDR) -1);
5980 highpc = ((CORE_ADDR) 0);
5981
5982 first_die = load_partial_dies (reader, info_ptr, 1);
5983
5984 scan_partial_symbols (first_die, &lowpc, &highpc,
5985 ! has_pc_info, cu);
5986
5987 /* If we didn't find a lowpc, set it to highpc to avoid
5988 complaints from `maint check'. */
5989 if (lowpc == ((CORE_ADDR) -1))
5990 lowpc = highpc;
5991
5992 /* If the compilation unit didn't have an explicit address range,
5993 then use the information extracted from its child dies. */
5994 if (! has_pc_info)
5995 {
5996 best_lowpc = lowpc;
5997 best_highpc = highpc;
5998 }
5999 }
6000 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6001 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6002
6003 pst->n_global_syms = objfile->global_psymbols.next -
6004 (objfile->global_psymbols.list + pst->globals_offset);
6005 pst->n_static_syms = objfile->static_psymbols.next -
6006 (objfile->static_psymbols.list + pst->statics_offset);
6007 sort_pst_symbols (objfile, pst);
6008
6009 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6010 {
6011 int i;
6012 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6013 struct dwarf2_per_cu_data *iter;
6014
6015 /* Fill in 'dependencies' here; we fill in 'users' in a
6016 post-pass. */
6017 pst->number_of_dependencies = len;
6018 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6019 len * sizeof (struct symtab *));
6020 for (i = 0;
6021 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6022 i, iter);
6023 ++i)
6024 pst->dependencies[i] = iter->v.psymtab;
6025
6026 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6027 }
6028
6029 /* Get the list of files included in the current compilation unit,
6030 and build a psymtab for each of them. */
6031 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6032
6033 if (dwarf2_read_debug)
6034 {
6035 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6036
6037 fprintf_unfiltered (gdb_stdlog,
6038 "Psymtab for %s unit @0x%x: %s - %s"
6039 ", %d global, %d static syms\n",
6040 per_cu->is_debug_types ? "type" : "comp",
6041 per_cu->offset.sect_off,
6042 paddress (gdbarch, pst->textlow),
6043 paddress (gdbarch, pst->texthigh),
6044 pst->n_global_syms, pst->n_static_syms);
6045 }
6046 }
6047
6048 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6049 Process compilation unit THIS_CU for a psymtab. */
6050
6051 static void
6052 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6053 int want_partial_unit,
6054 enum language pretend_language)
6055 {
6056 struct process_psymtab_comp_unit_data info;
6057
6058 /* If this compilation unit was already read in, free the
6059 cached copy in order to read it in again. This is
6060 necessary because we skipped some symbols when we first
6061 read in the compilation unit (see load_partial_dies).
6062 This problem could be avoided, but the benefit is unclear. */
6063 if (this_cu->cu != NULL)
6064 free_one_cached_comp_unit (this_cu);
6065
6066 gdb_assert (! this_cu->is_debug_types);
6067 info.want_partial_unit = want_partial_unit;
6068 info.pretend_language = pretend_language;
6069 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6070 process_psymtab_comp_unit_reader,
6071 &info);
6072
6073 /* Age out any secondary CUs. */
6074 age_cached_comp_units ();
6075 }
6076
6077 /* Reader function for build_type_psymtabs. */
6078
6079 static void
6080 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6081 const gdb_byte *info_ptr,
6082 struct die_info *type_unit_die,
6083 int has_children,
6084 void *data)
6085 {
6086 struct objfile *objfile = dwarf2_per_objfile->objfile;
6087 struct dwarf2_cu *cu = reader->cu;
6088 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6089 struct signatured_type *sig_type;
6090 struct type_unit_group *tu_group;
6091 struct attribute *attr;
6092 struct partial_die_info *first_die;
6093 CORE_ADDR lowpc, highpc;
6094 struct partial_symtab *pst;
6095
6096 gdb_assert (data == NULL);
6097 gdb_assert (per_cu->is_debug_types);
6098 sig_type = (struct signatured_type *) per_cu;
6099
6100 if (! has_children)
6101 return;
6102
6103 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6104 tu_group = get_type_unit_group (cu, attr);
6105
6106 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6107
6108 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6109 cu->list_in_scope = &file_symbols;
6110 pst = create_partial_symtab (per_cu, "");
6111 pst->anonymous = 1;
6112
6113 first_die = load_partial_dies (reader, info_ptr, 1);
6114
6115 lowpc = (CORE_ADDR) -1;
6116 highpc = (CORE_ADDR) 0;
6117 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6118
6119 pst->n_global_syms = objfile->global_psymbols.next -
6120 (objfile->global_psymbols.list + pst->globals_offset);
6121 pst->n_static_syms = objfile->static_psymbols.next -
6122 (objfile->static_psymbols.list + pst->statics_offset);
6123 sort_pst_symbols (objfile, pst);
6124 }
6125
6126 /* Struct used to sort TUs by their abbreviation table offset. */
6127
6128 struct tu_abbrev_offset
6129 {
6130 struct signatured_type *sig_type;
6131 sect_offset abbrev_offset;
6132 };
6133
6134 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6135
6136 static int
6137 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6138 {
6139 const struct tu_abbrev_offset * const *a = ap;
6140 const struct tu_abbrev_offset * const *b = bp;
6141 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6142 unsigned int boff = (*b)->abbrev_offset.sect_off;
6143
6144 return (aoff > boff) - (aoff < boff);
6145 }
6146
6147 /* Efficiently read all the type units.
6148 This does the bulk of the work for build_type_psymtabs.
6149
6150 The efficiency is because we sort TUs by the abbrev table they use and
6151 only read each abbrev table once. In one program there are 200K TUs
6152 sharing 8K abbrev tables.
6153
6154 The main purpose of this function is to support building the
6155 dwarf2_per_objfile->type_unit_groups table.
6156 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6157 can collapse the search space by grouping them by stmt_list.
6158 The savings can be significant, in the same program from above the 200K TUs
6159 share 8K stmt_list tables.
6160
6161 FUNC is expected to call get_type_unit_group, which will create the
6162 struct type_unit_group if necessary and add it to
6163 dwarf2_per_objfile->type_unit_groups. */
6164
6165 static void
6166 build_type_psymtabs_1 (void)
6167 {
6168 struct objfile *objfile = dwarf2_per_objfile->objfile;
6169 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6170 struct cleanup *cleanups;
6171 struct abbrev_table *abbrev_table;
6172 sect_offset abbrev_offset;
6173 struct tu_abbrev_offset *sorted_by_abbrev;
6174 struct type_unit_group **iter;
6175 int i;
6176
6177 /* It's up to the caller to not call us multiple times. */
6178 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6179
6180 if (dwarf2_per_objfile->n_type_units == 0)
6181 return;
6182
6183 /* TUs typically share abbrev tables, and there can be way more TUs than
6184 abbrev tables. Sort by abbrev table to reduce the number of times we
6185 read each abbrev table in.
6186 Alternatives are to punt or to maintain a cache of abbrev tables.
6187 This is simpler and efficient enough for now.
6188
6189 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6190 symtab to use). Typically TUs with the same abbrev offset have the same
6191 stmt_list value too so in practice this should work well.
6192
6193 The basic algorithm here is:
6194
6195 sort TUs by abbrev table
6196 for each TU with same abbrev table:
6197 read abbrev table if first user
6198 read TU top level DIE
6199 [IWBN if DWO skeletons had DW_AT_stmt_list]
6200 call FUNC */
6201
6202 if (dwarf2_read_debug)
6203 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6204
6205 /* Sort in a separate table to maintain the order of all_type_units
6206 for .gdb_index: TU indices directly index all_type_units. */
6207 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6208 dwarf2_per_objfile->n_type_units);
6209 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6210 {
6211 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6212
6213 sorted_by_abbrev[i].sig_type = sig_type;
6214 sorted_by_abbrev[i].abbrev_offset =
6215 read_abbrev_offset (sig_type->per_cu.section,
6216 sig_type->per_cu.offset);
6217 }
6218 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6219 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6220 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6221
6222 abbrev_offset.sect_off = ~(unsigned) 0;
6223 abbrev_table = NULL;
6224 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6225
6226 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6227 {
6228 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6229
6230 /* Switch to the next abbrev table if necessary. */
6231 if (abbrev_table == NULL
6232 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6233 {
6234 if (abbrev_table != NULL)
6235 {
6236 abbrev_table_free (abbrev_table);
6237 /* Reset to NULL in case abbrev_table_read_table throws
6238 an error: abbrev_table_free_cleanup will get called. */
6239 abbrev_table = NULL;
6240 }
6241 abbrev_offset = tu->abbrev_offset;
6242 abbrev_table =
6243 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6244 abbrev_offset);
6245 ++tu_stats->nr_uniq_abbrev_tables;
6246 }
6247
6248 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6249 build_type_psymtabs_reader, NULL);
6250 }
6251
6252 do_cleanups (cleanups);
6253 }
6254
6255 /* Print collected type unit statistics. */
6256
6257 static void
6258 print_tu_stats (void)
6259 {
6260 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6261
6262 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6263 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6264 dwarf2_per_objfile->n_type_units);
6265 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6266 tu_stats->nr_uniq_abbrev_tables);
6267 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6268 tu_stats->nr_symtabs);
6269 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6270 tu_stats->nr_symtab_sharers);
6271 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6272 tu_stats->nr_stmt_less_type_units);
6273 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6274 tu_stats->nr_all_type_units_reallocs);
6275 }
6276
6277 /* Traversal function for build_type_psymtabs. */
6278
6279 static int
6280 build_type_psymtab_dependencies (void **slot, void *info)
6281 {
6282 struct objfile *objfile = dwarf2_per_objfile->objfile;
6283 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6284 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6285 struct partial_symtab *pst = per_cu->v.psymtab;
6286 int len = VEC_length (sig_type_ptr, tu_group->tus);
6287 struct signatured_type *iter;
6288 int i;
6289
6290 gdb_assert (len > 0);
6291 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6292
6293 pst->number_of_dependencies = len;
6294 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6295 len * sizeof (struct psymtab *));
6296 for (i = 0;
6297 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6298 ++i)
6299 {
6300 gdb_assert (iter->per_cu.is_debug_types);
6301 pst->dependencies[i] = iter->per_cu.v.psymtab;
6302 iter->type_unit_group = tu_group;
6303 }
6304
6305 VEC_free (sig_type_ptr, tu_group->tus);
6306
6307 return 1;
6308 }
6309
6310 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6311 Build partial symbol tables for the .debug_types comp-units. */
6312
6313 static void
6314 build_type_psymtabs (struct objfile *objfile)
6315 {
6316 if (! create_all_type_units (objfile))
6317 return;
6318
6319 build_type_psymtabs_1 ();
6320 }
6321
6322 /* Traversal function for process_skeletonless_type_unit.
6323 Read a TU in a DWO file and build partial symbols for it. */
6324
6325 static int
6326 process_skeletonless_type_unit (void **slot, void *info)
6327 {
6328 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6329 struct objfile *objfile = info;
6330 struct signatured_type find_entry, *entry;
6331
6332 /* If this TU doesn't exist in the global table, add it and read it in. */
6333
6334 if (dwarf2_per_objfile->signatured_types == NULL)
6335 {
6336 dwarf2_per_objfile->signatured_types
6337 = allocate_signatured_type_table (objfile);
6338 }
6339
6340 find_entry.signature = dwo_unit->signature;
6341 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6342 INSERT);
6343 /* If we've already seen this type there's nothing to do. What's happening
6344 is we're doing our own version of comdat-folding here. */
6345 if (*slot != NULL)
6346 return 1;
6347
6348 /* This does the job that create_all_type_units would have done for
6349 this TU. */
6350 entry = add_type_unit (dwo_unit->signature, slot);
6351 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6352 *slot = entry;
6353
6354 /* This does the job that build_type_psymtabs_1 would have done. */
6355 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6356 build_type_psymtabs_reader, NULL);
6357
6358 return 1;
6359 }
6360
6361 /* Traversal function for process_skeletonless_type_units. */
6362
6363 static int
6364 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6365 {
6366 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6367
6368 if (dwo_file->tus != NULL)
6369 {
6370 htab_traverse_noresize (dwo_file->tus,
6371 process_skeletonless_type_unit, info);
6372 }
6373
6374 return 1;
6375 }
6376
6377 /* Scan all TUs of DWO files, verifying we've processed them.
6378 This is needed in case a TU was emitted without its skeleton.
6379 Note: This can't be done until we know what all the DWO files are. */
6380
6381 static void
6382 process_skeletonless_type_units (struct objfile *objfile)
6383 {
6384 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6385 if (get_dwp_file () == NULL
6386 && dwarf2_per_objfile->dwo_files != NULL)
6387 {
6388 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6389 process_dwo_file_for_skeletonless_type_units,
6390 objfile);
6391 }
6392 }
6393
6394 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6395
6396 static void
6397 psymtabs_addrmap_cleanup (void *o)
6398 {
6399 struct objfile *objfile = o;
6400
6401 objfile->psymtabs_addrmap = NULL;
6402 }
6403
6404 /* Compute the 'user' field for each psymtab in OBJFILE. */
6405
6406 static void
6407 set_partial_user (struct objfile *objfile)
6408 {
6409 int i;
6410
6411 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6412 {
6413 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6414 struct partial_symtab *pst = per_cu->v.psymtab;
6415 int j;
6416
6417 if (pst == NULL)
6418 continue;
6419
6420 for (j = 0; j < pst->number_of_dependencies; ++j)
6421 {
6422 /* Set the 'user' field only if it is not already set. */
6423 if (pst->dependencies[j]->user == NULL)
6424 pst->dependencies[j]->user = pst;
6425 }
6426 }
6427 }
6428
6429 /* Build the partial symbol table by doing a quick pass through the
6430 .debug_info and .debug_abbrev sections. */
6431
6432 static void
6433 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6434 {
6435 struct cleanup *back_to, *addrmap_cleanup;
6436 struct obstack temp_obstack;
6437 int i;
6438
6439 if (dwarf2_read_debug)
6440 {
6441 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6442 objfile_name (objfile));
6443 }
6444
6445 dwarf2_per_objfile->reading_partial_symbols = 1;
6446
6447 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6448
6449 /* Any cached compilation units will be linked by the per-objfile
6450 read_in_chain. Make sure to free them when we're done. */
6451 back_to = make_cleanup (free_cached_comp_units, NULL);
6452
6453 build_type_psymtabs (objfile);
6454
6455 create_all_comp_units (objfile);
6456
6457 /* Create a temporary address map on a temporary obstack. We later
6458 copy this to the final obstack. */
6459 obstack_init (&temp_obstack);
6460 make_cleanup_obstack_free (&temp_obstack);
6461 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6462 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6463
6464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6465 {
6466 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6467
6468 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6469 }
6470
6471 /* This has to wait until we read the CUs, we need the list of DWOs. */
6472 process_skeletonless_type_units (objfile);
6473
6474 /* Now that all TUs have been processed we can fill in the dependencies. */
6475 if (dwarf2_per_objfile->type_unit_groups != NULL)
6476 {
6477 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6478 build_type_psymtab_dependencies, NULL);
6479 }
6480
6481 if (dwarf2_read_debug)
6482 print_tu_stats ();
6483
6484 set_partial_user (objfile);
6485
6486 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6487 &objfile->objfile_obstack);
6488 discard_cleanups (addrmap_cleanup);
6489
6490 do_cleanups (back_to);
6491
6492 if (dwarf2_read_debug)
6493 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6494 objfile_name (objfile));
6495 }
6496
6497 /* die_reader_func for load_partial_comp_unit. */
6498
6499 static void
6500 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6501 const gdb_byte *info_ptr,
6502 struct die_info *comp_unit_die,
6503 int has_children,
6504 void *data)
6505 {
6506 struct dwarf2_cu *cu = reader->cu;
6507
6508 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6509
6510 /* Check if comp unit has_children.
6511 If so, read the rest of the partial symbols from this comp unit.
6512 If not, there's no more debug_info for this comp unit. */
6513 if (has_children)
6514 load_partial_dies (reader, info_ptr, 0);
6515 }
6516
6517 /* Load the partial DIEs for a secondary CU into memory.
6518 This is also used when rereading a primary CU with load_all_dies. */
6519
6520 static void
6521 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6522 {
6523 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6524 load_partial_comp_unit_reader, NULL);
6525 }
6526
6527 static void
6528 read_comp_units_from_section (struct objfile *objfile,
6529 struct dwarf2_section_info *section,
6530 unsigned int is_dwz,
6531 int *n_allocated,
6532 int *n_comp_units,
6533 struct dwarf2_per_cu_data ***all_comp_units)
6534 {
6535 const gdb_byte *info_ptr;
6536 bfd *abfd = get_section_bfd_owner (section);
6537
6538 if (dwarf2_read_debug)
6539 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6540 get_section_name (section),
6541 get_section_file_name (section));
6542
6543 dwarf2_read_section (objfile, section);
6544
6545 info_ptr = section->buffer;
6546
6547 while (info_ptr < section->buffer + section->size)
6548 {
6549 unsigned int length, initial_length_size;
6550 struct dwarf2_per_cu_data *this_cu;
6551 sect_offset offset;
6552
6553 offset.sect_off = info_ptr - section->buffer;
6554
6555 /* Read just enough information to find out where the next
6556 compilation unit is. */
6557 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6558
6559 /* Save the compilation unit for later lookup. */
6560 this_cu = obstack_alloc (&objfile->objfile_obstack,
6561 sizeof (struct dwarf2_per_cu_data));
6562 memset (this_cu, 0, sizeof (*this_cu));
6563 this_cu->offset = offset;
6564 this_cu->length = length + initial_length_size;
6565 this_cu->is_dwz = is_dwz;
6566 this_cu->objfile = objfile;
6567 this_cu->section = section;
6568
6569 if (*n_comp_units == *n_allocated)
6570 {
6571 *n_allocated *= 2;
6572 *all_comp_units = xrealloc (*all_comp_units,
6573 *n_allocated
6574 * sizeof (struct dwarf2_per_cu_data *));
6575 }
6576 (*all_comp_units)[*n_comp_units] = this_cu;
6577 ++*n_comp_units;
6578
6579 info_ptr = info_ptr + this_cu->length;
6580 }
6581 }
6582
6583 /* Create a list of all compilation units in OBJFILE.
6584 This is only done for -readnow and building partial symtabs. */
6585
6586 static void
6587 create_all_comp_units (struct objfile *objfile)
6588 {
6589 int n_allocated;
6590 int n_comp_units;
6591 struct dwarf2_per_cu_data **all_comp_units;
6592 struct dwz_file *dwz;
6593
6594 n_comp_units = 0;
6595 n_allocated = 10;
6596 all_comp_units = xmalloc (n_allocated
6597 * sizeof (struct dwarf2_per_cu_data *));
6598
6599 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6600 &n_allocated, &n_comp_units, &all_comp_units);
6601
6602 dwz = dwarf2_get_dwz_file ();
6603 if (dwz != NULL)
6604 read_comp_units_from_section (objfile, &dwz->info, 1,
6605 &n_allocated, &n_comp_units,
6606 &all_comp_units);
6607
6608 dwarf2_per_objfile->all_comp_units
6609 = obstack_alloc (&objfile->objfile_obstack,
6610 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6611 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6612 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6613 xfree (all_comp_units);
6614 dwarf2_per_objfile->n_comp_units = n_comp_units;
6615 }
6616
6617 /* Process all loaded DIEs for compilation unit CU, starting at
6618 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6619 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6620 DW_AT_ranges). See the comments of add_partial_subprogram on how
6621 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6622
6623 static void
6624 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6625 CORE_ADDR *highpc, int set_addrmap,
6626 struct dwarf2_cu *cu)
6627 {
6628 struct partial_die_info *pdi;
6629
6630 /* Now, march along the PDI's, descending into ones which have
6631 interesting children but skipping the children of the other ones,
6632 until we reach the end of the compilation unit. */
6633
6634 pdi = first_die;
6635
6636 while (pdi != NULL)
6637 {
6638 fixup_partial_die (pdi, cu);
6639
6640 /* Anonymous namespaces or modules have no name but have interesting
6641 children, so we need to look at them. Ditto for anonymous
6642 enums. */
6643
6644 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6645 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6646 || pdi->tag == DW_TAG_imported_unit)
6647 {
6648 switch (pdi->tag)
6649 {
6650 case DW_TAG_subprogram:
6651 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6652 break;
6653 case DW_TAG_constant:
6654 case DW_TAG_variable:
6655 case DW_TAG_typedef:
6656 case DW_TAG_union_type:
6657 if (!pdi->is_declaration)
6658 {
6659 add_partial_symbol (pdi, cu);
6660 }
6661 break;
6662 case DW_TAG_class_type:
6663 case DW_TAG_interface_type:
6664 case DW_TAG_structure_type:
6665 if (!pdi->is_declaration)
6666 {
6667 add_partial_symbol (pdi, cu);
6668 }
6669 break;
6670 case DW_TAG_enumeration_type:
6671 if (!pdi->is_declaration)
6672 add_partial_enumeration (pdi, cu);
6673 break;
6674 case DW_TAG_base_type:
6675 case DW_TAG_subrange_type:
6676 /* File scope base type definitions are added to the partial
6677 symbol table. */
6678 add_partial_symbol (pdi, cu);
6679 break;
6680 case DW_TAG_namespace:
6681 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6682 break;
6683 case DW_TAG_module:
6684 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6685 break;
6686 case DW_TAG_imported_unit:
6687 {
6688 struct dwarf2_per_cu_data *per_cu;
6689
6690 /* For now we don't handle imported units in type units. */
6691 if (cu->per_cu->is_debug_types)
6692 {
6693 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6694 " supported in type units [in module %s]"),
6695 objfile_name (cu->objfile));
6696 }
6697
6698 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6699 pdi->is_dwz,
6700 cu->objfile);
6701
6702 /* Go read the partial unit, if needed. */
6703 if (per_cu->v.psymtab == NULL)
6704 process_psymtab_comp_unit (per_cu, 1, cu->language);
6705
6706 VEC_safe_push (dwarf2_per_cu_ptr,
6707 cu->per_cu->imported_symtabs, per_cu);
6708 }
6709 break;
6710 case DW_TAG_imported_declaration:
6711 add_partial_symbol (pdi, cu);
6712 break;
6713 default:
6714 break;
6715 }
6716 }
6717
6718 /* If the die has a sibling, skip to the sibling. */
6719
6720 pdi = pdi->die_sibling;
6721 }
6722 }
6723
6724 /* Functions used to compute the fully scoped name of a partial DIE.
6725
6726 Normally, this is simple. For C++, the parent DIE's fully scoped
6727 name is concatenated with "::" and the partial DIE's name. For
6728 Java, the same thing occurs except that "." is used instead of "::".
6729 Enumerators are an exception; they use the scope of their parent
6730 enumeration type, i.e. the name of the enumeration type is not
6731 prepended to the enumerator.
6732
6733 There are two complexities. One is DW_AT_specification; in this
6734 case "parent" means the parent of the target of the specification,
6735 instead of the direct parent of the DIE. The other is compilers
6736 which do not emit DW_TAG_namespace; in this case we try to guess
6737 the fully qualified name of structure types from their members'
6738 linkage names. This must be done using the DIE's children rather
6739 than the children of any DW_AT_specification target. We only need
6740 to do this for structures at the top level, i.e. if the target of
6741 any DW_AT_specification (if any; otherwise the DIE itself) does not
6742 have a parent. */
6743
6744 /* Compute the scope prefix associated with PDI's parent, in
6745 compilation unit CU. The result will be allocated on CU's
6746 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6747 field. NULL is returned if no prefix is necessary. */
6748 static const char *
6749 partial_die_parent_scope (struct partial_die_info *pdi,
6750 struct dwarf2_cu *cu)
6751 {
6752 const char *grandparent_scope;
6753 struct partial_die_info *parent, *real_pdi;
6754
6755 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6756 then this means the parent of the specification DIE. */
6757
6758 real_pdi = pdi;
6759 while (real_pdi->has_specification)
6760 real_pdi = find_partial_die (real_pdi->spec_offset,
6761 real_pdi->spec_is_dwz, cu);
6762
6763 parent = real_pdi->die_parent;
6764 if (parent == NULL)
6765 return NULL;
6766
6767 if (parent->scope_set)
6768 return parent->scope;
6769
6770 fixup_partial_die (parent, cu);
6771
6772 grandparent_scope = partial_die_parent_scope (parent, cu);
6773
6774 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6775 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6776 Work around this problem here. */
6777 if (cu->language == language_cplus
6778 && parent->tag == DW_TAG_namespace
6779 && strcmp (parent->name, "::") == 0
6780 && grandparent_scope == NULL)
6781 {
6782 parent->scope = NULL;
6783 parent->scope_set = 1;
6784 return NULL;
6785 }
6786
6787 if (pdi->tag == DW_TAG_enumerator)
6788 /* Enumerators should not get the name of the enumeration as a prefix. */
6789 parent->scope = grandparent_scope;
6790 else if (parent->tag == DW_TAG_namespace
6791 || parent->tag == DW_TAG_module
6792 || parent->tag == DW_TAG_structure_type
6793 || parent->tag == DW_TAG_class_type
6794 || parent->tag == DW_TAG_interface_type
6795 || parent->tag == DW_TAG_union_type
6796 || parent->tag == DW_TAG_enumeration_type)
6797 {
6798 if (grandparent_scope == NULL)
6799 parent->scope = parent->name;
6800 else
6801 parent->scope = typename_concat (&cu->comp_unit_obstack,
6802 grandparent_scope,
6803 parent->name, 0, cu);
6804 }
6805 else
6806 {
6807 /* FIXME drow/2004-04-01: What should we be doing with
6808 function-local names? For partial symbols, we should probably be
6809 ignoring them. */
6810 complaint (&symfile_complaints,
6811 _("unhandled containing DIE tag %d for DIE at %d"),
6812 parent->tag, pdi->offset.sect_off);
6813 parent->scope = grandparent_scope;
6814 }
6815
6816 parent->scope_set = 1;
6817 return parent->scope;
6818 }
6819
6820 /* Return the fully scoped name associated with PDI, from compilation unit
6821 CU. The result will be allocated with malloc. */
6822
6823 static char *
6824 partial_die_full_name (struct partial_die_info *pdi,
6825 struct dwarf2_cu *cu)
6826 {
6827 const char *parent_scope;
6828
6829 /* If this is a template instantiation, we can not work out the
6830 template arguments from partial DIEs. So, unfortunately, we have
6831 to go through the full DIEs. At least any work we do building
6832 types here will be reused if full symbols are loaded later. */
6833 if (pdi->has_template_arguments)
6834 {
6835 fixup_partial_die (pdi, cu);
6836
6837 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6838 {
6839 struct die_info *die;
6840 struct attribute attr;
6841 struct dwarf2_cu *ref_cu = cu;
6842
6843 /* DW_FORM_ref_addr is using section offset. */
6844 attr.name = 0;
6845 attr.form = DW_FORM_ref_addr;
6846 attr.u.unsnd = pdi->offset.sect_off;
6847 die = follow_die_ref (NULL, &attr, &ref_cu);
6848
6849 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6850 }
6851 }
6852
6853 parent_scope = partial_die_parent_scope (pdi, cu);
6854 if (parent_scope == NULL)
6855 return NULL;
6856 else
6857 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6858 }
6859
6860 static void
6861 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6862 {
6863 struct objfile *objfile = cu->objfile;
6864 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6865 CORE_ADDR addr = 0;
6866 const char *actual_name = NULL;
6867 CORE_ADDR baseaddr;
6868 char *built_actual_name;
6869
6870 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6871
6872 built_actual_name = partial_die_full_name (pdi, cu);
6873 if (built_actual_name != NULL)
6874 actual_name = built_actual_name;
6875
6876 if (actual_name == NULL)
6877 actual_name = pdi->name;
6878
6879 switch (pdi->tag)
6880 {
6881 case DW_TAG_subprogram:
6882 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6883 if (pdi->is_external || cu->language == language_ada)
6884 {
6885 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6886 of the global scope. But in Ada, we want to be able to access
6887 nested procedures globally. So all Ada subprograms are stored
6888 in the global scope. */
6889 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6890 objfile); */
6891 add_psymbol_to_list (actual_name, strlen (actual_name),
6892 built_actual_name != NULL,
6893 VAR_DOMAIN, LOC_BLOCK,
6894 &objfile->global_psymbols,
6895 0, addr, cu->language, objfile);
6896 }
6897 else
6898 {
6899 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6900 objfile); */
6901 add_psymbol_to_list (actual_name, strlen (actual_name),
6902 built_actual_name != NULL,
6903 VAR_DOMAIN, LOC_BLOCK,
6904 &objfile->static_psymbols,
6905 0, addr, cu->language, objfile);
6906 }
6907 break;
6908 case DW_TAG_constant:
6909 {
6910 struct psymbol_allocation_list *list;
6911
6912 if (pdi->is_external)
6913 list = &objfile->global_psymbols;
6914 else
6915 list = &objfile->static_psymbols;
6916 add_psymbol_to_list (actual_name, strlen (actual_name),
6917 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6918 list, 0, 0, cu->language, objfile);
6919 }
6920 break;
6921 case DW_TAG_variable:
6922 if (pdi->d.locdesc)
6923 addr = decode_locdesc (pdi->d.locdesc, cu);
6924
6925 if (pdi->d.locdesc
6926 && addr == 0
6927 && !dwarf2_per_objfile->has_section_at_zero)
6928 {
6929 /* A global or static variable may also have been stripped
6930 out by the linker if unused, in which case its address
6931 will be nullified; do not add such variables into partial
6932 symbol table then. */
6933 }
6934 else if (pdi->is_external)
6935 {
6936 /* Global Variable.
6937 Don't enter into the minimal symbol tables as there is
6938 a minimal symbol table entry from the ELF symbols already.
6939 Enter into partial symbol table if it has a location
6940 descriptor or a type.
6941 If the location descriptor is missing, new_symbol will create
6942 a LOC_UNRESOLVED symbol, the address of the variable will then
6943 be determined from the minimal symbol table whenever the variable
6944 is referenced.
6945 The address for the partial symbol table entry is not
6946 used by GDB, but it comes in handy for debugging partial symbol
6947 table building. */
6948
6949 if (pdi->d.locdesc || pdi->has_type)
6950 add_psymbol_to_list (actual_name, strlen (actual_name),
6951 built_actual_name != NULL,
6952 VAR_DOMAIN, LOC_STATIC,
6953 &objfile->global_psymbols,
6954 0, addr + baseaddr,
6955 cu->language, objfile);
6956 }
6957 else
6958 {
6959 /* Static Variable. Skip symbols without location descriptors. */
6960 if (pdi->d.locdesc == NULL)
6961 {
6962 xfree (built_actual_name);
6963 return;
6964 }
6965 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6966 mst_file_data, objfile); */
6967 add_psymbol_to_list (actual_name, strlen (actual_name),
6968 built_actual_name != NULL,
6969 VAR_DOMAIN, LOC_STATIC,
6970 &objfile->static_psymbols,
6971 0, addr + baseaddr,
6972 cu->language, objfile);
6973 }
6974 break;
6975 case DW_TAG_typedef:
6976 case DW_TAG_base_type:
6977 case DW_TAG_subrange_type:
6978 add_psymbol_to_list (actual_name, strlen (actual_name),
6979 built_actual_name != NULL,
6980 VAR_DOMAIN, LOC_TYPEDEF,
6981 &objfile->static_psymbols,
6982 0, (CORE_ADDR) 0, cu->language, objfile);
6983 break;
6984 case DW_TAG_imported_declaration:
6985 case DW_TAG_namespace:
6986 add_psymbol_to_list (actual_name, strlen (actual_name),
6987 built_actual_name != NULL,
6988 VAR_DOMAIN, LOC_TYPEDEF,
6989 &objfile->global_psymbols,
6990 0, (CORE_ADDR) 0, cu->language, objfile);
6991 break;
6992 case DW_TAG_module:
6993 add_psymbol_to_list (actual_name, strlen (actual_name),
6994 built_actual_name != NULL,
6995 MODULE_DOMAIN, LOC_TYPEDEF,
6996 &objfile->global_psymbols,
6997 0, (CORE_ADDR) 0, cu->language, objfile);
6998 break;
6999 case DW_TAG_class_type:
7000 case DW_TAG_interface_type:
7001 case DW_TAG_structure_type:
7002 case DW_TAG_union_type:
7003 case DW_TAG_enumeration_type:
7004 /* Skip external references. The DWARF standard says in the section
7005 about "Structure, Union, and Class Type Entries": "An incomplete
7006 structure, union or class type is represented by a structure,
7007 union or class entry that does not have a byte size attribute
7008 and that has a DW_AT_declaration attribute." */
7009 if (!pdi->has_byte_size && pdi->is_declaration)
7010 {
7011 xfree (built_actual_name);
7012 return;
7013 }
7014
7015 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7016 static vs. global. */
7017 add_psymbol_to_list (actual_name, strlen (actual_name),
7018 built_actual_name != NULL,
7019 STRUCT_DOMAIN, LOC_TYPEDEF,
7020 (cu->language == language_cplus
7021 || cu->language == language_java)
7022 ? &objfile->global_psymbols
7023 : &objfile->static_psymbols,
7024 0, (CORE_ADDR) 0, cu->language, objfile);
7025
7026 break;
7027 case DW_TAG_enumerator:
7028 add_psymbol_to_list (actual_name, strlen (actual_name),
7029 built_actual_name != NULL,
7030 VAR_DOMAIN, LOC_CONST,
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
7035 0, (CORE_ADDR) 0, cu->language, objfile);
7036 break;
7037 default:
7038 break;
7039 }
7040
7041 xfree (built_actual_name);
7042 }
7043
7044 /* Read a partial die corresponding to a namespace; also, add a symbol
7045 corresponding to that namespace to the symbol table. NAMESPACE is
7046 the name of the enclosing namespace. */
7047
7048 static void
7049 add_partial_namespace (struct partial_die_info *pdi,
7050 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7051 int set_addrmap, struct dwarf2_cu *cu)
7052 {
7053 /* Add a symbol for the namespace. */
7054
7055 add_partial_symbol (pdi, cu);
7056
7057 /* Now scan partial symbols in that namespace. */
7058
7059 if (pdi->has_children)
7060 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7061 }
7062
7063 /* Read a partial die corresponding to a Fortran module. */
7064
7065 static void
7066 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7067 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7068 {
7069 /* Add a symbol for the namespace. */
7070
7071 add_partial_symbol (pdi, cu);
7072
7073 /* Now scan partial symbols in that module. */
7074
7075 if (pdi->has_children)
7076 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7077 }
7078
7079 /* Read a partial die corresponding to a subprogram and create a partial
7080 symbol for that subprogram. When the CU language allows it, this
7081 routine also defines a partial symbol for each nested subprogram
7082 that this subprogram contains. If SET_ADDRMAP is true, record the
7083 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7084 and highest PC values found in PDI.
7085
7086 PDI may also be a lexical block, in which case we simply search
7087 recursively for subprograms defined inside that lexical block.
7088 Again, this is only performed when the CU language allows this
7089 type of definitions. */
7090
7091 static void
7092 add_partial_subprogram (struct partial_die_info *pdi,
7093 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7094 int set_addrmap, struct dwarf2_cu *cu)
7095 {
7096 if (pdi->tag == DW_TAG_subprogram)
7097 {
7098 if (pdi->has_pc_info)
7099 {
7100 if (pdi->lowpc < *lowpc)
7101 *lowpc = pdi->lowpc;
7102 if (pdi->highpc > *highpc)
7103 *highpc = pdi->highpc;
7104 if (set_addrmap)
7105 {
7106 struct objfile *objfile = cu->objfile;
7107 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7108 CORE_ADDR baseaddr;
7109 CORE_ADDR highpc;
7110 CORE_ADDR lowpc;
7111
7112 baseaddr = ANOFFSET (objfile->section_offsets,
7113 SECT_OFF_TEXT (objfile));
7114 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7115 pdi->lowpc + baseaddr);
7116 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7117 pdi->highpc + baseaddr);
7118 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7119 cu->per_cu->v.psymtab);
7120 }
7121 }
7122
7123 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7124 {
7125 if (!pdi->is_declaration)
7126 /* Ignore subprogram DIEs that do not have a name, they are
7127 illegal. Do not emit a complaint at this point, we will
7128 do so when we convert this psymtab into a symtab. */
7129 if (pdi->name)
7130 add_partial_symbol (pdi, cu);
7131 }
7132 }
7133
7134 if (! pdi->has_children)
7135 return;
7136
7137 if (cu->language == language_ada)
7138 {
7139 pdi = pdi->die_child;
7140 while (pdi != NULL)
7141 {
7142 fixup_partial_die (pdi, cu);
7143 if (pdi->tag == DW_TAG_subprogram
7144 || pdi->tag == DW_TAG_lexical_block)
7145 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7146 pdi = pdi->die_sibling;
7147 }
7148 }
7149 }
7150
7151 /* Read a partial die corresponding to an enumeration type. */
7152
7153 static void
7154 add_partial_enumeration (struct partial_die_info *enum_pdi,
7155 struct dwarf2_cu *cu)
7156 {
7157 struct partial_die_info *pdi;
7158
7159 if (enum_pdi->name != NULL)
7160 add_partial_symbol (enum_pdi, cu);
7161
7162 pdi = enum_pdi->die_child;
7163 while (pdi)
7164 {
7165 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7166 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7167 else
7168 add_partial_symbol (pdi, cu);
7169 pdi = pdi->die_sibling;
7170 }
7171 }
7172
7173 /* Return the initial uleb128 in the die at INFO_PTR. */
7174
7175 static unsigned int
7176 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7177 {
7178 unsigned int bytes_read;
7179
7180 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7181 }
7182
7183 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7184 Return the corresponding abbrev, or NULL if the number is zero (indicating
7185 an empty DIE). In either case *BYTES_READ will be set to the length of
7186 the initial number. */
7187
7188 static struct abbrev_info *
7189 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7190 struct dwarf2_cu *cu)
7191 {
7192 bfd *abfd = cu->objfile->obfd;
7193 unsigned int abbrev_number;
7194 struct abbrev_info *abbrev;
7195
7196 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7197
7198 if (abbrev_number == 0)
7199 return NULL;
7200
7201 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7202 if (!abbrev)
7203 {
7204 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7205 " at offset 0x%x [in module %s]"),
7206 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7207 cu->header.offset.sect_off, bfd_get_filename (abfd));
7208 }
7209
7210 return abbrev;
7211 }
7212
7213 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7214 Returns a pointer to the end of a series of DIEs, terminated by an empty
7215 DIE. Any children of the skipped DIEs will also be skipped. */
7216
7217 static const gdb_byte *
7218 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7219 {
7220 struct dwarf2_cu *cu = reader->cu;
7221 struct abbrev_info *abbrev;
7222 unsigned int bytes_read;
7223
7224 while (1)
7225 {
7226 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7227 if (abbrev == NULL)
7228 return info_ptr + bytes_read;
7229 else
7230 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7231 }
7232 }
7233
7234 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7235 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7236 abbrev corresponding to that skipped uleb128 should be passed in
7237 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7238 children. */
7239
7240 static const gdb_byte *
7241 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7242 struct abbrev_info *abbrev)
7243 {
7244 unsigned int bytes_read;
7245 struct attribute attr;
7246 bfd *abfd = reader->abfd;
7247 struct dwarf2_cu *cu = reader->cu;
7248 const gdb_byte *buffer = reader->buffer;
7249 const gdb_byte *buffer_end = reader->buffer_end;
7250 const gdb_byte *start_info_ptr = info_ptr;
7251 unsigned int form, i;
7252
7253 for (i = 0; i < abbrev->num_attrs; i++)
7254 {
7255 /* The only abbrev we care about is DW_AT_sibling. */
7256 if (abbrev->attrs[i].name == DW_AT_sibling)
7257 {
7258 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7259 if (attr.form == DW_FORM_ref_addr)
7260 complaint (&symfile_complaints,
7261 _("ignoring absolute DW_AT_sibling"));
7262 else
7263 {
7264 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7265 const gdb_byte *sibling_ptr = buffer + off;
7266
7267 if (sibling_ptr < info_ptr)
7268 complaint (&symfile_complaints,
7269 _("DW_AT_sibling points backwards"));
7270 else if (sibling_ptr > reader->buffer_end)
7271 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7272 else
7273 return sibling_ptr;
7274 }
7275 }
7276
7277 /* If it isn't DW_AT_sibling, skip this attribute. */
7278 form = abbrev->attrs[i].form;
7279 skip_attribute:
7280 switch (form)
7281 {
7282 case DW_FORM_ref_addr:
7283 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7284 and later it is offset sized. */
7285 if (cu->header.version == 2)
7286 info_ptr += cu->header.addr_size;
7287 else
7288 info_ptr += cu->header.offset_size;
7289 break;
7290 case DW_FORM_GNU_ref_alt:
7291 info_ptr += cu->header.offset_size;
7292 break;
7293 case DW_FORM_addr:
7294 info_ptr += cu->header.addr_size;
7295 break;
7296 case DW_FORM_data1:
7297 case DW_FORM_ref1:
7298 case DW_FORM_flag:
7299 info_ptr += 1;
7300 break;
7301 case DW_FORM_flag_present:
7302 break;
7303 case DW_FORM_data2:
7304 case DW_FORM_ref2:
7305 info_ptr += 2;
7306 break;
7307 case DW_FORM_data4:
7308 case DW_FORM_ref4:
7309 info_ptr += 4;
7310 break;
7311 case DW_FORM_data8:
7312 case DW_FORM_ref8:
7313 case DW_FORM_ref_sig8:
7314 info_ptr += 8;
7315 break;
7316 case DW_FORM_string:
7317 read_direct_string (abfd, info_ptr, &bytes_read);
7318 info_ptr += bytes_read;
7319 break;
7320 case DW_FORM_sec_offset:
7321 case DW_FORM_strp:
7322 case DW_FORM_GNU_strp_alt:
7323 info_ptr += cu->header.offset_size;
7324 break;
7325 case DW_FORM_exprloc:
7326 case DW_FORM_block:
7327 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7328 info_ptr += bytes_read;
7329 break;
7330 case DW_FORM_block1:
7331 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7332 break;
7333 case DW_FORM_block2:
7334 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7335 break;
7336 case DW_FORM_block4:
7337 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7338 break;
7339 case DW_FORM_sdata:
7340 case DW_FORM_udata:
7341 case DW_FORM_ref_udata:
7342 case DW_FORM_GNU_addr_index:
7343 case DW_FORM_GNU_str_index:
7344 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7345 break;
7346 case DW_FORM_indirect:
7347 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7348 info_ptr += bytes_read;
7349 /* We need to continue parsing from here, so just go back to
7350 the top. */
7351 goto skip_attribute;
7352
7353 default:
7354 error (_("Dwarf Error: Cannot handle %s "
7355 "in DWARF reader [in module %s]"),
7356 dwarf_form_name (form),
7357 bfd_get_filename (abfd));
7358 }
7359 }
7360
7361 if (abbrev->has_children)
7362 return skip_children (reader, info_ptr);
7363 else
7364 return info_ptr;
7365 }
7366
7367 /* Locate ORIG_PDI's sibling.
7368 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7369
7370 static const gdb_byte *
7371 locate_pdi_sibling (const struct die_reader_specs *reader,
7372 struct partial_die_info *orig_pdi,
7373 const gdb_byte *info_ptr)
7374 {
7375 /* Do we know the sibling already? */
7376
7377 if (orig_pdi->sibling)
7378 return orig_pdi->sibling;
7379
7380 /* Are there any children to deal with? */
7381
7382 if (!orig_pdi->has_children)
7383 return info_ptr;
7384
7385 /* Skip the children the long way. */
7386
7387 return skip_children (reader, info_ptr);
7388 }
7389
7390 /* Expand this partial symbol table into a full symbol table. SELF is
7391 not NULL. */
7392
7393 static void
7394 dwarf2_read_symtab (struct partial_symtab *self,
7395 struct objfile *objfile)
7396 {
7397 if (self->readin)
7398 {
7399 warning (_("bug: psymtab for %s is already read in."),
7400 self->filename);
7401 }
7402 else
7403 {
7404 if (info_verbose)
7405 {
7406 printf_filtered (_("Reading in symbols for %s..."),
7407 self->filename);
7408 gdb_flush (gdb_stdout);
7409 }
7410
7411 /* Restore our global data. */
7412 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7413
7414 /* If this psymtab is constructed from a debug-only objfile, the
7415 has_section_at_zero flag will not necessarily be correct. We
7416 can get the correct value for this flag by looking at the data
7417 associated with the (presumably stripped) associated objfile. */
7418 if (objfile->separate_debug_objfile_backlink)
7419 {
7420 struct dwarf2_per_objfile *dpo_backlink
7421 = objfile_data (objfile->separate_debug_objfile_backlink,
7422 dwarf2_objfile_data_key);
7423
7424 dwarf2_per_objfile->has_section_at_zero
7425 = dpo_backlink->has_section_at_zero;
7426 }
7427
7428 dwarf2_per_objfile->reading_partial_symbols = 0;
7429
7430 psymtab_to_symtab_1 (self);
7431
7432 /* Finish up the debug error message. */
7433 if (info_verbose)
7434 printf_filtered (_("done.\n"));
7435 }
7436
7437 process_cu_includes ();
7438 }
7439 \f
7440 /* Reading in full CUs. */
7441
7442 /* Add PER_CU to the queue. */
7443
7444 static void
7445 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7446 enum language pretend_language)
7447 {
7448 struct dwarf2_queue_item *item;
7449
7450 per_cu->queued = 1;
7451 item = xmalloc (sizeof (*item));
7452 item->per_cu = per_cu;
7453 item->pretend_language = pretend_language;
7454 item->next = NULL;
7455
7456 if (dwarf2_queue == NULL)
7457 dwarf2_queue = item;
7458 else
7459 dwarf2_queue_tail->next = item;
7460
7461 dwarf2_queue_tail = item;
7462 }
7463
7464 /* If PER_CU is not yet queued, add it to the queue.
7465 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7466 dependency.
7467 The result is non-zero if PER_CU was queued, otherwise the result is zero
7468 meaning either PER_CU is already queued or it is already loaded.
7469
7470 N.B. There is an invariant here that if a CU is queued then it is loaded.
7471 The caller is required to load PER_CU if we return non-zero. */
7472
7473 static int
7474 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7475 struct dwarf2_per_cu_data *per_cu,
7476 enum language pretend_language)
7477 {
7478 /* We may arrive here during partial symbol reading, if we need full
7479 DIEs to process an unusual case (e.g. template arguments). Do
7480 not queue PER_CU, just tell our caller to load its DIEs. */
7481 if (dwarf2_per_objfile->reading_partial_symbols)
7482 {
7483 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7484 return 1;
7485 return 0;
7486 }
7487
7488 /* Mark the dependence relation so that we don't flush PER_CU
7489 too early. */
7490 if (dependent_cu != NULL)
7491 dwarf2_add_dependence (dependent_cu, per_cu);
7492
7493 /* If it's already on the queue, we have nothing to do. */
7494 if (per_cu->queued)
7495 return 0;
7496
7497 /* If the compilation unit is already loaded, just mark it as
7498 used. */
7499 if (per_cu->cu != NULL)
7500 {
7501 per_cu->cu->last_used = 0;
7502 return 0;
7503 }
7504
7505 /* Add it to the queue. */
7506 queue_comp_unit (per_cu, pretend_language);
7507
7508 return 1;
7509 }
7510
7511 /* Process the queue. */
7512
7513 static void
7514 process_queue (void)
7515 {
7516 struct dwarf2_queue_item *item, *next_item;
7517
7518 if (dwarf2_read_debug)
7519 {
7520 fprintf_unfiltered (gdb_stdlog,
7521 "Expanding one or more symtabs of objfile %s ...\n",
7522 objfile_name (dwarf2_per_objfile->objfile));
7523 }
7524
7525 /* The queue starts out with one item, but following a DIE reference
7526 may load a new CU, adding it to the end of the queue. */
7527 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7528 {
7529 if (dwarf2_per_objfile->using_index
7530 ? !item->per_cu->v.quick->compunit_symtab
7531 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7532 {
7533 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7534 unsigned int debug_print_threshold;
7535 char buf[100];
7536
7537 if (per_cu->is_debug_types)
7538 {
7539 struct signatured_type *sig_type =
7540 (struct signatured_type *) per_cu;
7541
7542 sprintf (buf, "TU %s at offset 0x%x",
7543 hex_string (sig_type->signature),
7544 per_cu->offset.sect_off);
7545 /* There can be 100s of TUs.
7546 Only print them in verbose mode. */
7547 debug_print_threshold = 2;
7548 }
7549 else
7550 {
7551 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7552 debug_print_threshold = 1;
7553 }
7554
7555 if (dwarf2_read_debug >= debug_print_threshold)
7556 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7557
7558 if (per_cu->is_debug_types)
7559 process_full_type_unit (per_cu, item->pretend_language);
7560 else
7561 process_full_comp_unit (per_cu, item->pretend_language);
7562
7563 if (dwarf2_read_debug >= debug_print_threshold)
7564 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7565 }
7566
7567 item->per_cu->queued = 0;
7568 next_item = item->next;
7569 xfree (item);
7570 }
7571
7572 dwarf2_queue_tail = NULL;
7573
7574 if (dwarf2_read_debug)
7575 {
7576 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7577 objfile_name (dwarf2_per_objfile->objfile));
7578 }
7579 }
7580
7581 /* Free all allocated queue entries. This function only releases anything if
7582 an error was thrown; if the queue was processed then it would have been
7583 freed as we went along. */
7584
7585 static void
7586 dwarf2_release_queue (void *dummy)
7587 {
7588 struct dwarf2_queue_item *item, *last;
7589
7590 item = dwarf2_queue;
7591 while (item)
7592 {
7593 /* Anything still marked queued is likely to be in an
7594 inconsistent state, so discard it. */
7595 if (item->per_cu->queued)
7596 {
7597 if (item->per_cu->cu != NULL)
7598 free_one_cached_comp_unit (item->per_cu);
7599 item->per_cu->queued = 0;
7600 }
7601
7602 last = item;
7603 item = item->next;
7604 xfree (last);
7605 }
7606
7607 dwarf2_queue = dwarf2_queue_tail = NULL;
7608 }
7609
7610 /* Read in full symbols for PST, and anything it depends on. */
7611
7612 static void
7613 psymtab_to_symtab_1 (struct partial_symtab *pst)
7614 {
7615 struct dwarf2_per_cu_data *per_cu;
7616 int i;
7617
7618 if (pst->readin)
7619 return;
7620
7621 for (i = 0; i < pst->number_of_dependencies; i++)
7622 if (!pst->dependencies[i]->readin
7623 && pst->dependencies[i]->user == NULL)
7624 {
7625 /* Inform about additional files that need to be read in. */
7626 if (info_verbose)
7627 {
7628 /* FIXME: i18n: Need to make this a single string. */
7629 fputs_filtered (" ", gdb_stdout);
7630 wrap_here ("");
7631 fputs_filtered ("and ", gdb_stdout);
7632 wrap_here ("");
7633 printf_filtered ("%s...", pst->dependencies[i]->filename);
7634 wrap_here (""); /* Flush output. */
7635 gdb_flush (gdb_stdout);
7636 }
7637 psymtab_to_symtab_1 (pst->dependencies[i]);
7638 }
7639
7640 per_cu = pst->read_symtab_private;
7641
7642 if (per_cu == NULL)
7643 {
7644 /* It's an include file, no symbols to read for it.
7645 Everything is in the parent symtab. */
7646 pst->readin = 1;
7647 return;
7648 }
7649
7650 dw2_do_instantiate_symtab (per_cu);
7651 }
7652
7653 /* Trivial hash function for die_info: the hash value of a DIE
7654 is its offset in .debug_info for this objfile. */
7655
7656 static hashval_t
7657 die_hash (const void *item)
7658 {
7659 const struct die_info *die = item;
7660
7661 return die->offset.sect_off;
7662 }
7663
7664 /* Trivial comparison function for die_info structures: two DIEs
7665 are equal if they have the same offset. */
7666
7667 static int
7668 die_eq (const void *item_lhs, const void *item_rhs)
7669 {
7670 const struct die_info *die_lhs = item_lhs;
7671 const struct die_info *die_rhs = item_rhs;
7672
7673 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7674 }
7675
7676 /* die_reader_func for load_full_comp_unit.
7677 This is identical to read_signatured_type_reader,
7678 but is kept separate for now. */
7679
7680 static void
7681 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7682 const gdb_byte *info_ptr,
7683 struct die_info *comp_unit_die,
7684 int has_children,
7685 void *data)
7686 {
7687 struct dwarf2_cu *cu = reader->cu;
7688 enum language *language_ptr = data;
7689
7690 gdb_assert (cu->die_hash == NULL);
7691 cu->die_hash =
7692 htab_create_alloc_ex (cu->header.length / 12,
7693 die_hash,
7694 die_eq,
7695 NULL,
7696 &cu->comp_unit_obstack,
7697 hashtab_obstack_allocate,
7698 dummy_obstack_deallocate);
7699
7700 if (has_children)
7701 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7702 &info_ptr, comp_unit_die);
7703 cu->dies = comp_unit_die;
7704 /* comp_unit_die is not stored in die_hash, no need. */
7705
7706 /* We try not to read any attributes in this function, because not
7707 all CUs needed for references have been loaded yet, and symbol
7708 table processing isn't initialized. But we have to set the CU language,
7709 or we won't be able to build types correctly.
7710 Similarly, if we do not read the producer, we can not apply
7711 producer-specific interpretation. */
7712 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7713 }
7714
7715 /* Load the DIEs associated with PER_CU into memory. */
7716
7717 static void
7718 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7719 enum language pretend_language)
7720 {
7721 gdb_assert (! this_cu->is_debug_types);
7722
7723 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7724 load_full_comp_unit_reader, &pretend_language);
7725 }
7726
7727 /* Add a DIE to the delayed physname list. */
7728
7729 static void
7730 add_to_method_list (struct type *type, int fnfield_index, int index,
7731 const char *name, struct die_info *die,
7732 struct dwarf2_cu *cu)
7733 {
7734 struct delayed_method_info mi;
7735 mi.type = type;
7736 mi.fnfield_index = fnfield_index;
7737 mi.index = index;
7738 mi.name = name;
7739 mi.die = die;
7740 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7741 }
7742
7743 /* A cleanup for freeing the delayed method list. */
7744
7745 static void
7746 free_delayed_list (void *ptr)
7747 {
7748 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7749 if (cu->method_list != NULL)
7750 {
7751 VEC_free (delayed_method_info, cu->method_list);
7752 cu->method_list = NULL;
7753 }
7754 }
7755
7756 /* Compute the physnames of any methods on the CU's method list.
7757
7758 The computation of method physnames is delayed in order to avoid the
7759 (bad) condition that one of the method's formal parameters is of an as yet
7760 incomplete type. */
7761
7762 static void
7763 compute_delayed_physnames (struct dwarf2_cu *cu)
7764 {
7765 int i;
7766 struct delayed_method_info *mi;
7767 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7768 {
7769 const char *physname;
7770 struct fn_fieldlist *fn_flp
7771 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7772 physname = dwarf2_physname (mi->name, mi->die, cu);
7773 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7774 = physname ? physname : "";
7775 }
7776 }
7777
7778 /* Go objects should be embedded in a DW_TAG_module DIE,
7779 and it's not clear if/how imported objects will appear.
7780 To keep Go support simple until that's worked out,
7781 go back through what we've read and create something usable.
7782 We could do this while processing each DIE, and feels kinda cleaner,
7783 but that way is more invasive.
7784 This is to, for example, allow the user to type "p var" or "b main"
7785 without having to specify the package name, and allow lookups
7786 of module.object to work in contexts that use the expression
7787 parser. */
7788
7789 static void
7790 fixup_go_packaging (struct dwarf2_cu *cu)
7791 {
7792 char *package_name = NULL;
7793 struct pending *list;
7794 int i;
7795
7796 for (list = global_symbols; list != NULL; list = list->next)
7797 {
7798 for (i = 0; i < list->nsyms; ++i)
7799 {
7800 struct symbol *sym = list->symbol[i];
7801
7802 if (SYMBOL_LANGUAGE (sym) == language_go
7803 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7804 {
7805 char *this_package_name = go_symbol_package_name (sym);
7806
7807 if (this_package_name == NULL)
7808 continue;
7809 if (package_name == NULL)
7810 package_name = this_package_name;
7811 else
7812 {
7813 if (strcmp (package_name, this_package_name) != 0)
7814 complaint (&symfile_complaints,
7815 _("Symtab %s has objects from two different Go packages: %s and %s"),
7816 (symbol_symtab (sym) != NULL
7817 ? symtab_to_filename_for_display
7818 (symbol_symtab (sym))
7819 : objfile_name (cu->objfile)),
7820 this_package_name, package_name);
7821 xfree (this_package_name);
7822 }
7823 }
7824 }
7825 }
7826
7827 if (package_name != NULL)
7828 {
7829 struct objfile *objfile = cu->objfile;
7830 const char *saved_package_name
7831 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7832 package_name,
7833 strlen (package_name));
7834 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7835 saved_package_name, objfile);
7836 struct symbol *sym;
7837
7838 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7839
7840 sym = allocate_symbol (objfile);
7841 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7842 SYMBOL_SET_NAMES (sym, saved_package_name,
7843 strlen (saved_package_name), 0, objfile);
7844 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7845 e.g., "main" finds the "main" module and not C's main(). */
7846 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7847 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7848 SYMBOL_TYPE (sym) = type;
7849
7850 add_symbol_to_list (sym, &global_symbols);
7851
7852 xfree (package_name);
7853 }
7854 }
7855
7856 /* Return the symtab for PER_CU. This works properly regardless of
7857 whether we're using the index or psymtabs. */
7858
7859 static struct compunit_symtab *
7860 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7861 {
7862 return (dwarf2_per_objfile->using_index
7863 ? per_cu->v.quick->compunit_symtab
7864 : per_cu->v.psymtab->compunit_symtab);
7865 }
7866
7867 /* A helper function for computing the list of all symbol tables
7868 included by PER_CU. */
7869
7870 static void
7871 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7872 htab_t all_children, htab_t all_type_symtabs,
7873 struct dwarf2_per_cu_data *per_cu,
7874 struct compunit_symtab *immediate_parent)
7875 {
7876 void **slot;
7877 int ix;
7878 struct compunit_symtab *cust;
7879 struct dwarf2_per_cu_data *iter;
7880
7881 slot = htab_find_slot (all_children, per_cu, INSERT);
7882 if (*slot != NULL)
7883 {
7884 /* This inclusion and its children have been processed. */
7885 return;
7886 }
7887
7888 *slot = per_cu;
7889 /* Only add a CU if it has a symbol table. */
7890 cust = get_compunit_symtab (per_cu);
7891 if (cust != NULL)
7892 {
7893 /* If this is a type unit only add its symbol table if we haven't
7894 seen it yet (type unit per_cu's can share symtabs). */
7895 if (per_cu->is_debug_types)
7896 {
7897 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7898 if (*slot == NULL)
7899 {
7900 *slot = cust;
7901 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7902 if (cust->user == NULL)
7903 cust->user = immediate_parent;
7904 }
7905 }
7906 else
7907 {
7908 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7909 if (cust->user == NULL)
7910 cust->user = immediate_parent;
7911 }
7912 }
7913
7914 for (ix = 0;
7915 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7916 ++ix)
7917 {
7918 recursively_compute_inclusions (result, all_children,
7919 all_type_symtabs, iter, cust);
7920 }
7921 }
7922
7923 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7924 PER_CU. */
7925
7926 static void
7927 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7928 {
7929 gdb_assert (! per_cu->is_debug_types);
7930
7931 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7932 {
7933 int ix, len;
7934 struct dwarf2_per_cu_data *per_cu_iter;
7935 struct compunit_symtab *compunit_symtab_iter;
7936 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7937 htab_t all_children, all_type_symtabs;
7938 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7939
7940 /* If we don't have a symtab, we can just skip this case. */
7941 if (cust == NULL)
7942 return;
7943
7944 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7945 NULL, xcalloc, xfree);
7946 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7947 NULL, xcalloc, xfree);
7948
7949 for (ix = 0;
7950 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7951 ix, per_cu_iter);
7952 ++ix)
7953 {
7954 recursively_compute_inclusions (&result_symtabs, all_children,
7955 all_type_symtabs, per_cu_iter,
7956 cust);
7957 }
7958
7959 /* Now we have a transitive closure of all the included symtabs. */
7960 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7961 cust->includes
7962 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7963 (len + 1) * sizeof (struct symtab *));
7964 for (ix = 0;
7965 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7966 compunit_symtab_iter);
7967 ++ix)
7968 cust->includes[ix] = compunit_symtab_iter;
7969 cust->includes[len] = NULL;
7970
7971 VEC_free (compunit_symtab_ptr, result_symtabs);
7972 htab_delete (all_children);
7973 htab_delete (all_type_symtabs);
7974 }
7975 }
7976
7977 /* Compute the 'includes' field for the symtabs of all the CUs we just
7978 read. */
7979
7980 static void
7981 process_cu_includes (void)
7982 {
7983 int ix;
7984 struct dwarf2_per_cu_data *iter;
7985
7986 for (ix = 0;
7987 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7988 ix, iter);
7989 ++ix)
7990 {
7991 if (! iter->is_debug_types)
7992 compute_compunit_symtab_includes (iter);
7993 }
7994
7995 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7996 }
7997
7998 /* Generate full symbol information for PER_CU, whose DIEs have
7999 already been loaded into memory. */
8000
8001 static void
8002 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8003 enum language pretend_language)
8004 {
8005 struct dwarf2_cu *cu = per_cu->cu;
8006 struct objfile *objfile = per_cu->objfile;
8007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8008 CORE_ADDR lowpc, highpc;
8009 struct compunit_symtab *cust;
8010 struct cleanup *back_to, *delayed_list_cleanup;
8011 CORE_ADDR baseaddr;
8012 struct block *static_block;
8013 CORE_ADDR addr;
8014
8015 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8016
8017 buildsym_init ();
8018 back_to = make_cleanup (really_free_pendings, NULL);
8019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8020
8021 cu->list_in_scope = &file_symbols;
8022
8023 cu->language = pretend_language;
8024 cu->language_defn = language_def (cu->language);
8025
8026 /* Do line number decoding in read_file_scope () */
8027 process_die (cu->dies, cu);
8028
8029 /* For now fudge the Go package. */
8030 if (cu->language == language_go)
8031 fixup_go_packaging (cu);
8032
8033 /* Now that we have processed all the DIEs in the CU, all the types
8034 should be complete, and it should now be safe to compute all of the
8035 physnames. */
8036 compute_delayed_physnames (cu);
8037 do_cleanups (delayed_list_cleanup);
8038
8039 /* Some compilers don't define a DW_AT_high_pc attribute for the
8040 compilation unit. If the DW_AT_high_pc is missing, synthesize
8041 it, by scanning the DIE's below the compilation unit. */
8042 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8043
8044 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8045 static_block = end_symtab_get_static_block (addr, 0, 1);
8046
8047 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8048 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8049 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8050 addrmap to help ensure it has an accurate map of pc values belonging to
8051 this comp unit. */
8052 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8053
8054 cust = end_symtab_from_static_block (static_block,
8055 SECT_OFF_TEXT (objfile), 0);
8056
8057 if (cust != NULL)
8058 {
8059 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8060
8061 /* Set symtab language to language from DW_AT_language. If the
8062 compilation is from a C file generated by language preprocessors, do
8063 not set the language if it was already deduced by start_subfile. */
8064 if (!(cu->language == language_c
8065 && COMPUNIT_FILETABS (cust)->language != language_c))
8066 COMPUNIT_FILETABS (cust)->language = cu->language;
8067
8068 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8069 produce DW_AT_location with location lists but it can be possibly
8070 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8071 there were bugs in prologue debug info, fixed later in GCC-4.5
8072 by "unwind info for epilogues" patch (which is not directly related).
8073
8074 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8075 needed, it would be wrong due to missing DW_AT_producer there.
8076
8077 Still one can confuse GDB by using non-standard GCC compilation
8078 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8079 */
8080 if (cu->has_loclist && gcc_4_minor >= 5)
8081 cust->locations_valid = 1;
8082
8083 if (gcc_4_minor >= 5)
8084 cust->epilogue_unwind_valid = 1;
8085
8086 cust->call_site_htab = cu->call_site_htab;
8087 }
8088
8089 if (dwarf2_per_objfile->using_index)
8090 per_cu->v.quick->compunit_symtab = cust;
8091 else
8092 {
8093 struct partial_symtab *pst = per_cu->v.psymtab;
8094 pst->compunit_symtab = cust;
8095 pst->readin = 1;
8096 }
8097
8098 /* Push it for inclusion processing later. */
8099 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8100
8101 do_cleanups (back_to);
8102 }
8103
8104 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8105 already been loaded into memory. */
8106
8107 static void
8108 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8109 enum language pretend_language)
8110 {
8111 struct dwarf2_cu *cu = per_cu->cu;
8112 struct objfile *objfile = per_cu->objfile;
8113 struct compunit_symtab *cust;
8114 struct cleanup *back_to, *delayed_list_cleanup;
8115 struct signatured_type *sig_type;
8116
8117 gdb_assert (per_cu->is_debug_types);
8118 sig_type = (struct signatured_type *) per_cu;
8119
8120 buildsym_init ();
8121 back_to = make_cleanup (really_free_pendings, NULL);
8122 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8123
8124 cu->list_in_scope = &file_symbols;
8125
8126 cu->language = pretend_language;
8127 cu->language_defn = language_def (cu->language);
8128
8129 /* The symbol tables are set up in read_type_unit_scope. */
8130 process_die (cu->dies, cu);
8131
8132 /* For now fudge the Go package. */
8133 if (cu->language == language_go)
8134 fixup_go_packaging (cu);
8135
8136 /* Now that we have processed all the DIEs in the CU, all the types
8137 should be complete, and it should now be safe to compute all of the
8138 physnames. */
8139 compute_delayed_physnames (cu);
8140 do_cleanups (delayed_list_cleanup);
8141
8142 /* TUs share symbol tables.
8143 If this is the first TU to use this symtab, complete the construction
8144 of it with end_expandable_symtab. Otherwise, complete the addition of
8145 this TU's symbols to the existing symtab. */
8146 if (sig_type->type_unit_group->compunit_symtab == NULL)
8147 {
8148 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8149 sig_type->type_unit_group->compunit_symtab = cust;
8150
8151 if (cust != NULL)
8152 {
8153 /* Set symtab language to language from DW_AT_language. If the
8154 compilation is from a C file generated by language preprocessors,
8155 do not set the language if it was already deduced by
8156 start_subfile. */
8157 if (!(cu->language == language_c
8158 && COMPUNIT_FILETABS (cust)->language != language_c))
8159 COMPUNIT_FILETABS (cust)->language = cu->language;
8160 }
8161 }
8162 else
8163 {
8164 augment_type_symtab ();
8165 cust = sig_type->type_unit_group->compunit_symtab;
8166 }
8167
8168 if (dwarf2_per_objfile->using_index)
8169 per_cu->v.quick->compunit_symtab = cust;
8170 else
8171 {
8172 struct partial_symtab *pst = per_cu->v.psymtab;
8173 pst->compunit_symtab = cust;
8174 pst->readin = 1;
8175 }
8176
8177 do_cleanups (back_to);
8178 }
8179
8180 /* Process an imported unit DIE. */
8181
8182 static void
8183 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8184 {
8185 struct attribute *attr;
8186
8187 /* For now we don't handle imported units in type units. */
8188 if (cu->per_cu->is_debug_types)
8189 {
8190 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8191 " supported in type units [in module %s]"),
8192 objfile_name (cu->objfile));
8193 }
8194
8195 attr = dwarf2_attr (die, DW_AT_import, cu);
8196 if (attr != NULL)
8197 {
8198 struct dwarf2_per_cu_data *per_cu;
8199 struct symtab *imported_symtab;
8200 sect_offset offset;
8201 int is_dwz;
8202
8203 offset = dwarf2_get_ref_die_offset (attr);
8204 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8205 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8206
8207 /* If necessary, add it to the queue and load its DIEs. */
8208 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8209 load_full_comp_unit (per_cu, cu->language);
8210
8211 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8212 per_cu);
8213 }
8214 }
8215
8216 /* Reset the in_process bit of a die. */
8217
8218 static void
8219 reset_die_in_process (void *arg)
8220 {
8221 struct die_info *die = arg;
8222
8223 die->in_process = 0;
8224 }
8225
8226 /* Process a die and its children. */
8227
8228 static void
8229 process_die (struct die_info *die, struct dwarf2_cu *cu)
8230 {
8231 struct cleanup *in_process;
8232
8233 /* We should only be processing those not already in process. */
8234 gdb_assert (!die->in_process);
8235
8236 die->in_process = 1;
8237 in_process = make_cleanup (reset_die_in_process,die);
8238
8239 switch (die->tag)
8240 {
8241 case DW_TAG_padding:
8242 break;
8243 case DW_TAG_compile_unit:
8244 case DW_TAG_partial_unit:
8245 read_file_scope (die, cu);
8246 break;
8247 case DW_TAG_type_unit:
8248 read_type_unit_scope (die, cu);
8249 break;
8250 case DW_TAG_subprogram:
8251 case DW_TAG_inlined_subroutine:
8252 read_func_scope (die, cu);
8253 break;
8254 case DW_TAG_lexical_block:
8255 case DW_TAG_try_block:
8256 case DW_TAG_catch_block:
8257 read_lexical_block_scope (die, cu);
8258 break;
8259 case DW_TAG_GNU_call_site:
8260 read_call_site_scope (die, cu);
8261 break;
8262 case DW_TAG_class_type:
8263 case DW_TAG_interface_type:
8264 case DW_TAG_structure_type:
8265 case DW_TAG_union_type:
8266 process_structure_scope (die, cu);
8267 break;
8268 case DW_TAG_enumeration_type:
8269 process_enumeration_scope (die, cu);
8270 break;
8271
8272 /* These dies have a type, but processing them does not create
8273 a symbol or recurse to process the children. Therefore we can
8274 read them on-demand through read_type_die. */
8275 case DW_TAG_subroutine_type:
8276 case DW_TAG_set_type:
8277 case DW_TAG_array_type:
8278 case DW_TAG_pointer_type:
8279 case DW_TAG_ptr_to_member_type:
8280 case DW_TAG_reference_type:
8281 case DW_TAG_string_type:
8282 break;
8283
8284 case DW_TAG_base_type:
8285 case DW_TAG_subrange_type:
8286 case DW_TAG_typedef:
8287 /* Add a typedef symbol for the type definition, if it has a
8288 DW_AT_name. */
8289 new_symbol (die, read_type_die (die, cu), cu);
8290 break;
8291 case DW_TAG_common_block:
8292 read_common_block (die, cu);
8293 break;
8294 case DW_TAG_common_inclusion:
8295 break;
8296 case DW_TAG_namespace:
8297 cu->processing_has_namespace_info = 1;
8298 read_namespace (die, cu);
8299 break;
8300 case DW_TAG_module:
8301 cu->processing_has_namespace_info = 1;
8302 read_module (die, cu);
8303 break;
8304 case DW_TAG_imported_declaration:
8305 cu->processing_has_namespace_info = 1;
8306 if (read_namespace_alias (die, cu))
8307 break;
8308 /* The declaration is not a global namespace alias: fall through. */
8309 case DW_TAG_imported_module:
8310 cu->processing_has_namespace_info = 1;
8311 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8312 || cu->language != language_fortran))
8313 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8314 dwarf_tag_name (die->tag));
8315 read_import_statement (die, cu);
8316 break;
8317
8318 case DW_TAG_imported_unit:
8319 process_imported_unit_die (die, cu);
8320 break;
8321
8322 default:
8323 new_symbol (die, NULL, cu);
8324 break;
8325 }
8326
8327 do_cleanups (in_process);
8328 }
8329 \f
8330 /* DWARF name computation. */
8331
8332 /* A helper function for dwarf2_compute_name which determines whether DIE
8333 needs to have the name of the scope prepended to the name listed in the
8334 die. */
8335
8336 static int
8337 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8338 {
8339 struct attribute *attr;
8340
8341 switch (die->tag)
8342 {
8343 case DW_TAG_namespace:
8344 case DW_TAG_typedef:
8345 case DW_TAG_class_type:
8346 case DW_TAG_interface_type:
8347 case DW_TAG_structure_type:
8348 case DW_TAG_union_type:
8349 case DW_TAG_enumeration_type:
8350 case DW_TAG_enumerator:
8351 case DW_TAG_subprogram:
8352 case DW_TAG_member:
8353 case DW_TAG_imported_declaration:
8354 return 1;
8355
8356 case DW_TAG_variable:
8357 case DW_TAG_constant:
8358 /* We only need to prefix "globally" visible variables. These include
8359 any variable marked with DW_AT_external or any variable that
8360 lives in a namespace. [Variables in anonymous namespaces
8361 require prefixing, but they are not DW_AT_external.] */
8362
8363 if (dwarf2_attr (die, DW_AT_specification, cu))
8364 {
8365 struct dwarf2_cu *spec_cu = cu;
8366
8367 return die_needs_namespace (die_specification (die, &spec_cu),
8368 spec_cu);
8369 }
8370
8371 attr = dwarf2_attr (die, DW_AT_external, cu);
8372 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8373 && die->parent->tag != DW_TAG_module)
8374 return 0;
8375 /* A variable in a lexical block of some kind does not need a
8376 namespace, even though in C++ such variables may be external
8377 and have a mangled name. */
8378 if (die->parent->tag == DW_TAG_lexical_block
8379 || die->parent->tag == DW_TAG_try_block
8380 || die->parent->tag == DW_TAG_catch_block
8381 || die->parent->tag == DW_TAG_subprogram)
8382 return 0;
8383 return 1;
8384
8385 default:
8386 return 0;
8387 }
8388 }
8389
8390 /* Retrieve the last character from a mem_file. */
8391
8392 static void
8393 do_ui_file_peek_last (void *object, const char *buffer, long length)
8394 {
8395 char *last_char_p = (char *) object;
8396
8397 if (length > 0)
8398 *last_char_p = buffer[length - 1];
8399 }
8400
8401 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8402 compute the physname for the object, which include a method's:
8403 - formal parameters (C++/Java),
8404 - receiver type (Go),
8405 - return type (Java).
8406
8407 The term "physname" is a bit confusing.
8408 For C++, for example, it is the demangled name.
8409 For Go, for example, it's the mangled name.
8410
8411 For Ada, return the DIE's linkage name rather than the fully qualified
8412 name. PHYSNAME is ignored..
8413
8414 The result is allocated on the objfile_obstack and canonicalized. */
8415
8416 static const char *
8417 dwarf2_compute_name (const char *name,
8418 struct die_info *die, struct dwarf2_cu *cu,
8419 int physname)
8420 {
8421 struct objfile *objfile = cu->objfile;
8422
8423 if (name == NULL)
8424 name = dwarf2_name (die, cu);
8425
8426 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8427 compute it by typename_concat inside GDB. */
8428 if (cu->language == language_ada
8429 || (cu->language == language_fortran && physname))
8430 {
8431 /* For Ada unit, we prefer the linkage name over the name, as
8432 the former contains the exported name, which the user expects
8433 to be able to reference. Ideally, we want the user to be able
8434 to reference this entity using either natural or linkage name,
8435 but we haven't started looking at this enhancement yet. */
8436 struct attribute *attr;
8437
8438 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8439 if (attr == NULL)
8440 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8441 if (attr && DW_STRING (attr))
8442 return DW_STRING (attr);
8443 }
8444
8445 /* These are the only languages we know how to qualify names in. */
8446 if (name != NULL
8447 && (cu->language == language_cplus || cu->language == language_java
8448 || cu->language == language_fortran))
8449 {
8450 if (die_needs_namespace (die, cu))
8451 {
8452 long length;
8453 const char *prefix;
8454 struct ui_file *buf;
8455 char *intermediate_name;
8456 const char *canonical_name = NULL;
8457
8458 prefix = determine_prefix (die, cu);
8459 buf = mem_fileopen ();
8460 if (*prefix != '\0')
8461 {
8462 char *prefixed_name = typename_concat (NULL, prefix, name,
8463 physname, cu);
8464
8465 fputs_unfiltered (prefixed_name, buf);
8466 xfree (prefixed_name);
8467 }
8468 else
8469 fputs_unfiltered (name, buf);
8470
8471 /* Template parameters may be specified in the DIE's DW_AT_name, or
8472 as children with DW_TAG_template_type_param or
8473 DW_TAG_value_type_param. If the latter, add them to the name
8474 here. If the name already has template parameters, then
8475 skip this step; some versions of GCC emit both, and
8476 it is more efficient to use the pre-computed name.
8477
8478 Something to keep in mind about this process: it is very
8479 unlikely, or in some cases downright impossible, to produce
8480 something that will match the mangled name of a function.
8481 If the definition of the function has the same debug info,
8482 we should be able to match up with it anyway. But fallbacks
8483 using the minimal symbol, for instance to find a method
8484 implemented in a stripped copy of libstdc++, will not work.
8485 If we do not have debug info for the definition, we will have to
8486 match them up some other way.
8487
8488 When we do name matching there is a related problem with function
8489 templates; two instantiated function templates are allowed to
8490 differ only by their return types, which we do not add here. */
8491
8492 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8493 {
8494 struct attribute *attr;
8495 struct die_info *child;
8496 int first = 1;
8497
8498 die->building_fullname = 1;
8499
8500 for (child = die->child; child != NULL; child = child->sibling)
8501 {
8502 struct type *type;
8503 LONGEST value;
8504 const gdb_byte *bytes;
8505 struct dwarf2_locexpr_baton *baton;
8506 struct value *v;
8507
8508 if (child->tag != DW_TAG_template_type_param
8509 && child->tag != DW_TAG_template_value_param)
8510 continue;
8511
8512 if (first)
8513 {
8514 fputs_unfiltered ("<", buf);
8515 first = 0;
8516 }
8517 else
8518 fputs_unfiltered (", ", buf);
8519
8520 attr = dwarf2_attr (child, DW_AT_type, cu);
8521 if (attr == NULL)
8522 {
8523 complaint (&symfile_complaints,
8524 _("template parameter missing DW_AT_type"));
8525 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8526 continue;
8527 }
8528 type = die_type (child, cu);
8529
8530 if (child->tag == DW_TAG_template_type_param)
8531 {
8532 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8533 continue;
8534 }
8535
8536 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8537 if (attr == NULL)
8538 {
8539 complaint (&symfile_complaints,
8540 _("template parameter missing "
8541 "DW_AT_const_value"));
8542 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8543 continue;
8544 }
8545
8546 dwarf2_const_value_attr (attr, type, name,
8547 &cu->comp_unit_obstack, cu,
8548 &value, &bytes, &baton);
8549
8550 if (TYPE_NOSIGN (type))
8551 /* GDB prints characters as NUMBER 'CHAR'. If that's
8552 changed, this can use value_print instead. */
8553 c_printchar (value, type, buf);
8554 else
8555 {
8556 struct value_print_options opts;
8557
8558 if (baton != NULL)
8559 v = dwarf2_evaluate_loc_desc (type, NULL,
8560 baton->data,
8561 baton->size,
8562 baton->per_cu);
8563 else if (bytes != NULL)
8564 {
8565 v = allocate_value (type);
8566 memcpy (value_contents_writeable (v), bytes,
8567 TYPE_LENGTH (type));
8568 }
8569 else
8570 v = value_from_longest (type, value);
8571
8572 /* Specify decimal so that we do not depend on
8573 the radix. */
8574 get_formatted_print_options (&opts, 'd');
8575 opts.raw = 1;
8576 value_print (v, buf, &opts);
8577 release_value (v);
8578 value_free (v);
8579 }
8580 }
8581
8582 die->building_fullname = 0;
8583
8584 if (!first)
8585 {
8586 /* Close the argument list, with a space if necessary
8587 (nested templates). */
8588 char last_char = '\0';
8589 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8590 if (last_char == '>')
8591 fputs_unfiltered (" >", buf);
8592 else
8593 fputs_unfiltered (">", buf);
8594 }
8595 }
8596
8597 /* For Java and C++ methods, append formal parameter type
8598 information, if PHYSNAME. */
8599
8600 if (physname && die->tag == DW_TAG_subprogram
8601 && (cu->language == language_cplus
8602 || cu->language == language_java))
8603 {
8604 struct type *type = read_type_die (die, cu);
8605
8606 c_type_print_args (type, buf, 1, cu->language,
8607 &type_print_raw_options);
8608
8609 if (cu->language == language_java)
8610 {
8611 /* For java, we must append the return type to method
8612 names. */
8613 if (die->tag == DW_TAG_subprogram)
8614 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8615 0, 0, &type_print_raw_options);
8616 }
8617 else if (cu->language == language_cplus)
8618 {
8619 /* Assume that an artificial first parameter is
8620 "this", but do not crash if it is not. RealView
8621 marks unnamed (and thus unused) parameters as
8622 artificial; there is no way to differentiate
8623 the two cases. */
8624 if (TYPE_NFIELDS (type) > 0
8625 && TYPE_FIELD_ARTIFICIAL (type, 0)
8626 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8627 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8628 0))))
8629 fputs_unfiltered (" const", buf);
8630 }
8631 }
8632
8633 intermediate_name = ui_file_xstrdup (buf, &length);
8634 ui_file_delete (buf);
8635
8636 if (cu->language == language_cplus)
8637 canonical_name
8638 = dwarf2_canonicalize_name (intermediate_name, cu,
8639 &objfile->per_bfd->storage_obstack);
8640
8641 /* If we only computed INTERMEDIATE_NAME, or if
8642 INTERMEDIATE_NAME is already canonical, then we need to
8643 copy it to the appropriate obstack. */
8644 if (canonical_name == NULL || canonical_name == intermediate_name)
8645 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8646 intermediate_name,
8647 strlen (intermediate_name));
8648 else
8649 name = canonical_name;
8650
8651 xfree (intermediate_name);
8652 }
8653 }
8654
8655 return name;
8656 }
8657
8658 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8659 If scope qualifiers are appropriate they will be added. The result
8660 will be allocated on the storage_obstack, or NULL if the DIE does
8661 not have a name. NAME may either be from a previous call to
8662 dwarf2_name or NULL.
8663
8664 The output string will be canonicalized (if C++/Java). */
8665
8666 static const char *
8667 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8668 {
8669 return dwarf2_compute_name (name, die, cu, 0);
8670 }
8671
8672 /* Construct a physname for the given DIE in CU. NAME may either be
8673 from a previous call to dwarf2_name or NULL. The result will be
8674 allocated on the objfile_objstack or NULL if the DIE does not have a
8675 name.
8676
8677 The output string will be canonicalized (if C++/Java). */
8678
8679 static const char *
8680 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8681 {
8682 struct objfile *objfile = cu->objfile;
8683 struct attribute *attr;
8684 const char *retval, *mangled = NULL, *canon = NULL;
8685 struct cleanup *back_to;
8686 int need_copy = 1;
8687
8688 /* In this case dwarf2_compute_name is just a shortcut not building anything
8689 on its own. */
8690 if (!die_needs_namespace (die, cu))
8691 return dwarf2_compute_name (name, die, cu, 1);
8692
8693 back_to = make_cleanup (null_cleanup, NULL);
8694
8695 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8696 if (!attr)
8697 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8698
8699 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8700 has computed. */
8701 if (attr && DW_STRING (attr))
8702 {
8703 char *demangled;
8704
8705 mangled = DW_STRING (attr);
8706
8707 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8708 type. It is easier for GDB users to search for such functions as
8709 `name(params)' than `long name(params)'. In such case the minimal
8710 symbol names do not match the full symbol names but for template
8711 functions there is never a need to look up their definition from their
8712 declaration so the only disadvantage remains the minimal symbol
8713 variant `long name(params)' does not have the proper inferior type.
8714 */
8715
8716 if (cu->language == language_go)
8717 {
8718 /* This is a lie, but we already lie to the caller new_symbol_full.
8719 new_symbol_full assumes we return the mangled name.
8720 This just undoes that lie until things are cleaned up. */
8721 demangled = NULL;
8722 }
8723 else
8724 {
8725 demangled = gdb_demangle (mangled,
8726 (DMGL_PARAMS | DMGL_ANSI
8727 | (cu->language == language_java
8728 ? DMGL_JAVA | DMGL_RET_POSTFIX
8729 : DMGL_RET_DROP)));
8730 }
8731 if (demangled)
8732 {
8733 make_cleanup (xfree, demangled);
8734 canon = demangled;
8735 }
8736 else
8737 {
8738 canon = mangled;
8739 need_copy = 0;
8740 }
8741 }
8742
8743 if (canon == NULL || check_physname)
8744 {
8745 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8746
8747 if (canon != NULL && strcmp (physname, canon) != 0)
8748 {
8749 /* It may not mean a bug in GDB. The compiler could also
8750 compute DW_AT_linkage_name incorrectly. But in such case
8751 GDB would need to be bug-to-bug compatible. */
8752
8753 complaint (&symfile_complaints,
8754 _("Computed physname <%s> does not match demangled <%s> "
8755 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8756 physname, canon, mangled, die->offset.sect_off,
8757 objfile_name (objfile));
8758
8759 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8760 is available here - over computed PHYSNAME. It is safer
8761 against both buggy GDB and buggy compilers. */
8762
8763 retval = canon;
8764 }
8765 else
8766 {
8767 retval = physname;
8768 need_copy = 0;
8769 }
8770 }
8771 else
8772 retval = canon;
8773
8774 if (need_copy)
8775 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8776 retval, strlen (retval));
8777
8778 do_cleanups (back_to);
8779 return retval;
8780 }
8781
8782 /* Inspect DIE in CU for a namespace alias. If one exists, record
8783 a new symbol for it.
8784
8785 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8786
8787 static int
8788 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8789 {
8790 struct attribute *attr;
8791
8792 /* If the die does not have a name, this is not a namespace
8793 alias. */
8794 attr = dwarf2_attr (die, DW_AT_name, cu);
8795 if (attr != NULL)
8796 {
8797 int num;
8798 struct die_info *d = die;
8799 struct dwarf2_cu *imported_cu = cu;
8800
8801 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8802 keep inspecting DIEs until we hit the underlying import. */
8803 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8804 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8805 {
8806 attr = dwarf2_attr (d, DW_AT_import, cu);
8807 if (attr == NULL)
8808 break;
8809
8810 d = follow_die_ref (d, attr, &imported_cu);
8811 if (d->tag != DW_TAG_imported_declaration)
8812 break;
8813 }
8814
8815 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8816 {
8817 complaint (&symfile_complaints,
8818 _("DIE at 0x%x has too many recursively imported "
8819 "declarations"), d->offset.sect_off);
8820 return 0;
8821 }
8822
8823 if (attr != NULL)
8824 {
8825 struct type *type;
8826 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8827
8828 type = get_die_type_at_offset (offset, cu->per_cu);
8829 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8830 {
8831 /* This declaration is a global namespace alias. Add
8832 a symbol for it whose type is the aliased namespace. */
8833 new_symbol (die, type, cu);
8834 return 1;
8835 }
8836 }
8837 }
8838
8839 return 0;
8840 }
8841
8842 /* Read the import statement specified by the given die and record it. */
8843
8844 static void
8845 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8846 {
8847 struct objfile *objfile = cu->objfile;
8848 struct attribute *import_attr;
8849 struct die_info *imported_die, *child_die;
8850 struct dwarf2_cu *imported_cu;
8851 const char *imported_name;
8852 const char *imported_name_prefix;
8853 const char *canonical_name;
8854 const char *import_alias;
8855 const char *imported_declaration = NULL;
8856 const char *import_prefix;
8857 VEC (const_char_ptr) *excludes = NULL;
8858 struct cleanup *cleanups;
8859
8860 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8861 if (import_attr == NULL)
8862 {
8863 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8864 dwarf_tag_name (die->tag));
8865 return;
8866 }
8867
8868 imported_cu = cu;
8869 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8870 imported_name = dwarf2_name (imported_die, imported_cu);
8871 if (imported_name == NULL)
8872 {
8873 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8874
8875 The import in the following code:
8876 namespace A
8877 {
8878 typedef int B;
8879 }
8880
8881 int main ()
8882 {
8883 using A::B;
8884 B b;
8885 return b;
8886 }
8887
8888 ...
8889 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8890 <52> DW_AT_decl_file : 1
8891 <53> DW_AT_decl_line : 6
8892 <54> DW_AT_import : <0x75>
8893 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8894 <59> DW_AT_name : B
8895 <5b> DW_AT_decl_file : 1
8896 <5c> DW_AT_decl_line : 2
8897 <5d> DW_AT_type : <0x6e>
8898 ...
8899 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8900 <76> DW_AT_byte_size : 4
8901 <77> DW_AT_encoding : 5 (signed)
8902
8903 imports the wrong die ( 0x75 instead of 0x58 ).
8904 This case will be ignored until the gcc bug is fixed. */
8905 return;
8906 }
8907
8908 /* Figure out the local name after import. */
8909 import_alias = dwarf2_name (die, cu);
8910
8911 /* Figure out where the statement is being imported to. */
8912 import_prefix = determine_prefix (die, cu);
8913
8914 /* Figure out what the scope of the imported die is and prepend it
8915 to the name of the imported die. */
8916 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8917
8918 if (imported_die->tag != DW_TAG_namespace
8919 && imported_die->tag != DW_TAG_module)
8920 {
8921 imported_declaration = imported_name;
8922 canonical_name = imported_name_prefix;
8923 }
8924 else if (strlen (imported_name_prefix) > 0)
8925 canonical_name = obconcat (&objfile->objfile_obstack,
8926 imported_name_prefix, "::", imported_name,
8927 (char *) NULL);
8928 else
8929 canonical_name = imported_name;
8930
8931 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8932
8933 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8934 for (child_die = die->child; child_die && child_die->tag;
8935 child_die = sibling_die (child_die))
8936 {
8937 /* DWARF-4: A Fortran use statement with a “rename list” may be
8938 represented by an imported module entry with an import attribute
8939 referring to the module and owned entries corresponding to those
8940 entities that are renamed as part of being imported. */
8941
8942 if (child_die->tag != DW_TAG_imported_declaration)
8943 {
8944 complaint (&symfile_complaints,
8945 _("child DW_TAG_imported_declaration expected "
8946 "- DIE at 0x%x [in module %s]"),
8947 child_die->offset.sect_off, objfile_name (objfile));
8948 continue;
8949 }
8950
8951 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8952 if (import_attr == NULL)
8953 {
8954 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8955 dwarf_tag_name (child_die->tag));
8956 continue;
8957 }
8958
8959 imported_cu = cu;
8960 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8961 &imported_cu);
8962 imported_name = dwarf2_name (imported_die, imported_cu);
8963 if (imported_name == NULL)
8964 {
8965 complaint (&symfile_complaints,
8966 _("child DW_TAG_imported_declaration has unknown "
8967 "imported name - DIE at 0x%x [in module %s]"),
8968 child_die->offset.sect_off, objfile_name (objfile));
8969 continue;
8970 }
8971
8972 VEC_safe_push (const_char_ptr, excludes, imported_name);
8973
8974 process_die (child_die, cu);
8975 }
8976
8977 cp_add_using_directive (import_prefix,
8978 canonical_name,
8979 import_alias,
8980 imported_declaration,
8981 excludes,
8982 0,
8983 &objfile->objfile_obstack);
8984
8985 do_cleanups (cleanups);
8986 }
8987
8988 /* Cleanup function for handle_DW_AT_stmt_list. */
8989
8990 static void
8991 free_cu_line_header (void *arg)
8992 {
8993 struct dwarf2_cu *cu = arg;
8994
8995 free_line_header (cu->line_header);
8996 cu->line_header = NULL;
8997 }
8998
8999 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9000 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9001 this, it was first present in GCC release 4.3.0. */
9002
9003 static int
9004 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9005 {
9006 if (!cu->checked_producer)
9007 check_producer (cu);
9008
9009 return cu->producer_is_gcc_lt_4_3;
9010 }
9011
9012 static void
9013 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9014 const char **name, const char **comp_dir)
9015 {
9016 struct attribute *attr;
9017
9018 *name = NULL;
9019 *comp_dir = NULL;
9020
9021 /* Find the filename. Do not use dwarf2_name here, since the filename
9022 is not a source language identifier. */
9023 attr = dwarf2_attr (die, DW_AT_name, cu);
9024 if (attr)
9025 {
9026 *name = DW_STRING (attr);
9027 }
9028
9029 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9030 if (attr)
9031 *comp_dir = DW_STRING (attr);
9032 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9033 && IS_ABSOLUTE_PATH (*name))
9034 {
9035 char *d = ldirname (*name);
9036
9037 *comp_dir = d;
9038 if (d != NULL)
9039 make_cleanup (xfree, d);
9040 }
9041 if (*comp_dir != NULL)
9042 {
9043 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9044 directory, get rid of it. */
9045 char *cp = strchr (*comp_dir, ':');
9046
9047 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9048 *comp_dir = cp + 1;
9049 }
9050
9051 if (*name == NULL)
9052 *name = "<unknown>";
9053 }
9054
9055 /* Handle DW_AT_stmt_list for a compilation unit.
9056 DIE is the DW_TAG_compile_unit die for CU.
9057 COMP_DIR is the compilation directory. LOWPC is passed to
9058 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9059
9060 static void
9061 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9062 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9063 {
9064 struct objfile *objfile = dwarf2_per_objfile->objfile;
9065 struct attribute *attr;
9066 unsigned int line_offset;
9067 struct line_header line_header_local;
9068 hashval_t line_header_local_hash;
9069 unsigned u;
9070 void **slot;
9071 int decode_mapping;
9072
9073 gdb_assert (! cu->per_cu->is_debug_types);
9074
9075 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9076 if (attr == NULL)
9077 return;
9078
9079 line_offset = DW_UNSND (attr);
9080
9081 /* The line header hash table is only created if needed (it exists to
9082 prevent redundant reading of the line table for partial_units).
9083 If we're given a partial_unit, we'll need it. If we're given a
9084 compile_unit, then use the line header hash table if it's already
9085 created, but don't create one just yet. */
9086
9087 if (dwarf2_per_objfile->line_header_hash == NULL
9088 && die->tag == DW_TAG_partial_unit)
9089 {
9090 dwarf2_per_objfile->line_header_hash
9091 = htab_create_alloc_ex (127, line_header_hash_voidp,
9092 line_header_eq_voidp,
9093 free_line_header_voidp,
9094 &objfile->objfile_obstack,
9095 hashtab_obstack_allocate,
9096 dummy_obstack_deallocate);
9097 }
9098
9099 line_header_local.offset.sect_off = line_offset;
9100 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9101 line_header_local_hash = line_header_hash (&line_header_local);
9102 if (dwarf2_per_objfile->line_header_hash != NULL)
9103 {
9104 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9105 &line_header_local,
9106 line_header_local_hash, NO_INSERT);
9107
9108 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9109 is not present in *SLOT (since if there is something in *SLOT then
9110 it will be for a partial_unit). */
9111 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9112 {
9113 gdb_assert (*slot != NULL);
9114 cu->line_header = *slot;
9115 return;
9116 }
9117 }
9118
9119 /* dwarf_decode_line_header does not yet provide sufficient information.
9120 We always have to call also dwarf_decode_lines for it. */
9121 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9122 if (cu->line_header == NULL)
9123 return;
9124
9125 if (dwarf2_per_objfile->line_header_hash == NULL)
9126 slot = NULL;
9127 else
9128 {
9129 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9130 &line_header_local,
9131 line_header_local_hash, INSERT);
9132 gdb_assert (slot != NULL);
9133 }
9134 if (slot != NULL && *slot == NULL)
9135 {
9136 /* This newly decoded line number information unit will be owned
9137 by line_header_hash hash table. */
9138 *slot = cu->line_header;
9139 }
9140 else
9141 {
9142 /* We cannot free any current entry in (*slot) as that struct line_header
9143 may be already used by multiple CUs. Create only temporary decoded
9144 line_header for this CU - it may happen at most once for each line
9145 number information unit. And if we're not using line_header_hash
9146 then this is what we want as well. */
9147 gdb_assert (die->tag != DW_TAG_partial_unit);
9148 make_cleanup (free_cu_line_header, cu);
9149 }
9150 decode_mapping = (die->tag != DW_TAG_partial_unit);
9151 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9152 decode_mapping);
9153 }
9154
9155 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9156
9157 static void
9158 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9159 {
9160 struct objfile *objfile = dwarf2_per_objfile->objfile;
9161 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9162 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9163 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9164 CORE_ADDR highpc = ((CORE_ADDR) 0);
9165 struct attribute *attr;
9166 const char *name = NULL;
9167 const char *comp_dir = NULL;
9168 struct die_info *child_die;
9169 bfd *abfd = objfile->obfd;
9170 CORE_ADDR baseaddr;
9171
9172 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9173
9174 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9175
9176 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9177 from finish_block. */
9178 if (lowpc == ((CORE_ADDR) -1))
9179 lowpc = highpc;
9180 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9181
9182 find_file_and_directory (die, cu, &name, &comp_dir);
9183
9184 prepare_one_comp_unit (cu, die, cu->language);
9185
9186 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9187 standardised yet. As a workaround for the language detection we fall
9188 back to the DW_AT_producer string. */
9189 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9190 cu->language = language_opencl;
9191
9192 /* Similar hack for Go. */
9193 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9194 set_cu_language (DW_LANG_Go, cu);
9195
9196 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9197
9198 /* Decode line number information if present. We do this before
9199 processing child DIEs, so that the line header table is available
9200 for DW_AT_decl_file. */
9201 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9202
9203 /* Process all dies in compilation unit. */
9204 if (die->child != NULL)
9205 {
9206 child_die = die->child;
9207 while (child_die && child_die->tag)
9208 {
9209 process_die (child_die, cu);
9210 child_die = sibling_die (child_die);
9211 }
9212 }
9213
9214 /* Decode macro information, if present. Dwarf 2 macro information
9215 refers to information in the line number info statement program
9216 header, so we can only read it if we've read the header
9217 successfully. */
9218 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9219 if (attr && cu->line_header)
9220 {
9221 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9222 complaint (&symfile_complaints,
9223 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9224
9225 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9226 }
9227 else
9228 {
9229 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9230 if (attr && cu->line_header)
9231 {
9232 unsigned int macro_offset = DW_UNSND (attr);
9233
9234 dwarf_decode_macros (cu, macro_offset, 0);
9235 }
9236 }
9237
9238 do_cleanups (back_to);
9239 }
9240
9241 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9242 Create the set of symtabs used by this TU, or if this TU is sharing
9243 symtabs with another TU and the symtabs have already been created
9244 then restore those symtabs in the line header.
9245 We don't need the pc/line-number mapping for type units. */
9246
9247 static void
9248 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9249 {
9250 struct objfile *objfile = dwarf2_per_objfile->objfile;
9251 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9252 struct type_unit_group *tu_group;
9253 int first_time;
9254 struct line_header *lh;
9255 struct attribute *attr;
9256 unsigned int i, line_offset;
9257 struct signatured_type *sig_type;
9258
9259 gdb_assert (per_cu->is_debug_types);
9260 sig_type = (struct signatured_type *) per_cu;
9261
9262 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9263
9264 /* If we're using .gdb_index (includes -readnow) then
9265 per_cu->type_unit_group may not have been set up yet. */
9266 if (sig_type->type_unit_group == NULL)
9267 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9268 tu_group = sig_type->type_unit_group;
9269
9270 /* If we've already processed this stmt_list there's no real need to
9271 do it again, we could fake it and just recreate the part we need
9272 (file name,index -> symtab mapping). If data shows this optimization
9273 is useful we can do it then. */
9274 first_time = tu_group->compunit_symtab == NULL;
9275
9276 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9277 debug info. */
9278 lh = NULL;
9279 if (attr != NULL)
9280 {
9281 line_offset = DW_UNSND (attr);
9282 lh = dwarf_decode_line_header (line_offset, cu);
9283 }
9284 if (lh == NULL)
9285 {
9286 if (first_time)
9287 dwarf2_start_symtab (cu, "", NULL, 0);
9288 else
9289 {
9290 gdb_assert (tu_group->symtabs == NULL);
9291 restart_symtab (tu_group->compunit_symtab, "", 0);
9292 }
9293 return;
9294 }
9295
9296 cu->line_header = lh;
9297 make_cleanup (free_cu_line_header, cu);
9298
9299 if (first_time)
9300 {
9301 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9302
9303 tu_group->num_symtabs = lh->num_file_names;
9304 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9305
9306 for (i = 0; i < lh->num_file_names; ++i)
9307 {
9308 const char *dir = NULL;
9309 struct file_entry *fe = &lh->file_names[i];
9310
9311 if (fe->dir_index)
9312 dir = lh->include_dirs[fe->dir_index - 1];
9313 dwarf2_start_subfile (fe->name, dir);
9314
9315 if (current_subfile->symtab == NULL)
9316 {
9317 /* NOTE: start_subfile will recognize when it's been passed
9318 a file it has already seen. So we can't assume there's a
9319 simple mapping from lh->file_names to subfiles, plus
9320 lh->file_names may contain dups. */
9321 current_subfile->symtab
9322 = allocate_symtab (cust, current_subfile->name);
9323 }
9324
9325 fe->symtab = current_subfile->symtab;
9326 tu_group->symtabs[i] = fe->symtab;
9327 }
9328 }
9329 else
9330 {
9331 restart_symtab (tu_group->compunit_symtab, "", 0);
9332
9333 for (i = 0; i < lh->num_file_names; ++i)
9334 {
9335 struct file_entry *fe = &lh->file_names[i];
9336
9337 fe->symtab = tu_group->symtabs[i];
9338 }
9339 }
9340
9341 /* The main symtab is allocated last. Type units don't have DW_AT_name
9342 so they don't have a "real" (so to speak) symtab anyway.
9343 There is later code that will assign the main symtab to all symbols
9344 that don't have one. We need to handle the case of a symbol with a
9345 missing symtab (DW_AT_decl_file) anyway. */
9346 }
9347
9348 /* Process DW_TAG_type_unit.
9349 For TUs we want to skip the first top level sibling if it's not the
9350 actual type being defined by this TU. In this case the first top
9351 level sibling is there to provide context only. */
9352
9353 static void
9354 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9355 {
9356 struct die_info *child_die;
9357
9358 prepare_one_comp_unit (cu, die, language_minimal);
9359
9360 /* Initialize (or reinitialize) the machinery for building symtabs.
9361 We do this before processing child DIEs, so that the line header table
9362 is available for DW_AT_decl_file. */
9363 setup_type_unit_groups (die, cu);
9364
9365 if (die->child != NULL)
9366 {
9367 child_die = die->child;
9368 while (child_die && child_die->tag)
9369 {
9370 process_die (child_die, cu);
9371 child_die = sibling_die (child_die);
9372 }
9373 }
9374 }
9375 \f
9376 /* DWO/DWP files.
9377
9378 http://gcc.gnu.org/wiki/DebugFission
9379 http://gcc.gnu.org/wiki/DebugFissionDWP
9380
9381 To simplify handling of both DWO files ("object" files with the DWARF info)
9382 and DWP files (a file with the DWOs packaged up into one file), we treat
9383 DWP files as having a collection of virtual DWO files. */
9384
9385 static hashval_t
9386 hash_dwo_file (const void *item)
9387 {
9388 const struct dwo_file *dwo_file = item;
9389 hashval_t hash;
9390
9391 hash = htab_hash_string (dwo_file->dwo_name);
9392 if (dwo_file->comp_dir != NULL)
9393 hash += htab_hash_string (dwo_file->comp_dir);
9394 return hash;
9395 }
9396
9397 static int
9398 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9399 {
9400 const struct dwo_file *lhs = item_lhs;
9401 const struct dwo_file *rhs = item_rhs;
9402
9403 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9404 return 0;
9405 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9406 return lhs->comp_dir == rhs->comp_dir;
9407 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9408 }
9409
9410 /* Allocate a hash table for DWO files. */
9411
9412 static htab_t
9413 allocate_dwo_file_hash_table (void)
9414 {
9415 struct objfile *objfile = dwarf2_per_objfile->objfile;
9416
9417 return htab_create_alloc_ex (41,
9418 hash_dwo_file,
9419 eq_dwo_file,
9420 NULL,
9421 &objfile->objfile_obstack,
9422 hashtab_obstack_allocate,
9423 dummy_obstack_deallocate);
9424 }
9425
9426 /* Lookup DWO file DWO_NAME. */
9427
9428 static void **
9429 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9430 {
9431 struct dwo_file find_entry;
9432 void **slot;
9433
9434 if (dwarf2_per_objfile->dwo_files == NULL)
9435 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9436
9437 memset (&find_entry, 0, sizeof (find_entry));
9438 find_entry.dwo_name = dwo_name;
9439 find_entry.comp_dir = comp_dir;
9440 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9441
9442 return slot;
9443 }
9444
9445 static hashval_t
9446 hash_dwo_unit (const void *item)
9447 {
9448 const struct dwo_unit *dwo_unit = item;
9449
9450 /* This drops the top 32 bits of the id, but is ok for a hash. */
9451 return dwo_unit->signature;
9452 }
9453
9454 static int
9455 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9456 {
9457 const struct dwo_unit *lhs = item_lhs;
9458 const struct dwo_unit *rhs = item_rhs;
9459
9460 /* The signature is assumed to be unique within the DWO file.
9461 So while object file CU dwo_id's always have the value zero,
9462 that's OK, assuming each object file DWO file has only one CU,
9463 and that's the rule for now. */
9464 return lhs->signature == rhs->signature;
9465 }
9466
9467 /* Allocate a hash table for DWO CUs,TUs.
9468 There is one of these tables for each of CUs,TUs for each DWO file. */
9469
9470 static htab_t
9471 allocate_dwo_unit_table (struct objfile *objfile)
9472 {
9473 /* Start out with a pretty small number.
9474 Generally DWO files contain only one CU and maybe some TUs. */
9475 return htab_create_alloc_ex (3,
9476 hash_dwo_unit,
9477 eq_dwo_unit,
9478 NULL,
9479 &objfile->objfile_obstack,
9480 hashtab_obstack_allocate,
9481 dummy_obstack_deallocate);
9482 }
9483
9484 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9485
9486 struct create_dwo_cu_data
9487 {
9488 struct dwo_file *dwo_file;
9489 struct dwo_unit dwo_unit;
9490 };
9491
9492 /* die_reader_func for create_dwo_cu. */
9493
9494 static void
9495 create_dwo_cu_reader (const struct die_reader_specs *reader,
9496 const gdb_byte *info_ptr,
9497 struct die_info *comp_unit_die,
9498 int has_children,
9499 void *datap)
9500 {
9501 struct dwarf2_cu *cu = reader->cu;
9502 struct objfile *objfile = dwarf2_per_objfile->objfile;
9503 sect_offset offset = cu->per_cu->offset;
9504 struct dwarf2_section_info *section = cu->per_cu->section;
9505 struct create_dwo_cu_data *data = datap;
9506 struct dwo_file *dwo_file = data->dwo_file;
9507 struct dwo_unit *dwo_unit = &data->dwo_unit;
9508 struct attribute *attr;
9509
9510 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9511 if (attr == NULL)
9512 {
9513 complaint (&symfile_complaints,
9514 _("Dwarf Error: debug entry at offset 0x%x is missing"
9515 " its dwo_id [in module %s]"),
9516 offset.sect_off, dwo_file->dwo_name);
9517 return;
9518 }
9519
9520 dwo_unit->dwo_file = dwo_file;
9521 dwo_unit->signature = DW_UNSND (attr);
9522 dwo_unit->section = section;
9523 dwo_unit->offset = offset;
9524 dwo_unit->length = cu->per_cu->length;
9525
9526 if (dwarf2_read_debug)
9527 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9528 offset.sect_off, hex_string (dwo_unit->signature));
9529 }
9530
9531 /* Create the dwo_unit for the lone CU in DWO_FILE.
9532 Note: This function processes DWO files only, not DWP files. */
9533
9534 static struct dwo_unit *
9535 create_dwo_cu (struct dwo_file *dwo_file)
9536 {
9537 struct objfile *objfile = dwarf2_per_objfile->objfile;
9538 struct dwarf2_section_info *section = &dwo_file->sections.info;
9539 bfd *abfd;
9540 htab_t cu_htab;
9541 const gdb_byte *info_ptr, *end_ptr;
9542 struct create_dwo_cu_data create_dwo_cu_data;
9543 struct dwo_unit *dwo_unit;
9544
9545 dwarf2_read_section (objfile, section);
9546 info_ptr = section->buffer;
9547
9548 if (info_ptr == NULL)
9549 return NULL;
9550
9551 /* We can't set abfd until now because the section may be empty or
9552 not present, in which case section->asection will be NULL. */
9553 abfd = get_section_bfd_owner (section);
9554
9555 if (dwarf2_read_debug)
9556 {
9557 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9558 get_section_name (section),
9559 get_section_file_name (section));
9560 }
9561
9562 create_dwo_cu_data.dwo_file = dwo_file;
9563 dwo_unit = NULL;
9564
9565 end_ptr = info_ptr + section->size;
9566 while (info_ptr < end_ptr)
9567 {
9568 struct dwarf2_per_cu_data per_cu;
9569
9570 memset (&create_dwo_cu_data.dwo_unit, 0,
9571 sizeof (create_dwo_cu_data.dwo_unit));
9572 memset (&per_cu, 0, sizeof (per_cu));
9573 per_cu.objfile = objfile;
9574 per_cu.is_debug_types = 0;
9575 per_cu.offset.sect_off = info_ptr - section->buffer;
9576 per_cu.section = section;
9577
9578 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9579 create_dwo_cu_reader,
9580 &create_dwo_cu_data);
9581
9582 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9583 {
9584 /* If we've already found one, complain. We only support one
9585 because having more than one requires hacking the dwo_name of
9586 each to match, which is highly unlikely to happen. */
9587 if (dwo_unit != NULL)
9588 {
9589 complaint (&symfile_complaints,
9590 _("Multiple CUs in DWO file %s [in module %s]"),
9591 dwo_file->dwo_name, objfile_name (objfile));
9592 break;
9593 }
9594
9595 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9596 *dwo_unit = create_dwo_cu_data.dwo_unit;
9597 }
9598
9599 info_ptr += per_cu.length;
9600 }
9601
9602 return dwo_unit;
9603 }
9604
9605 /* DWP file .debug_{cu,tu}_index section format:
9606 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9607
9608 DWP Version 1:
9609
9610 Both index sections have the same format, and serve to map a 64-bit
9611 signature to a set of section numbers. Each section begins with a header,
9612 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9613 indexes, and a pool of 32-bit section numbers. The index sections will be
9614 aligned at 8-byte boundaries in the file.
9615
9616 The index section header consists of:
9617
9618 V, 32 bit version number
9619 -, 32 bits unused
9620 N, 32 bit number of compilation units or type units in the index
9621 M, 32 bit number of slots in the hash table
9622
9623 Numbers are recorded using the byte order of the application binary.
9624
9625 The hash table begins at offset 16 in the section, and consists of an array
9626 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9627 order of the application binary). Unused slots in the hash table are 0.
9628 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9629
9630 The parallel table begins immediately after the hash table
9631 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9632 array of 32-bit indexes (using the byte order of the application binary),
9633 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9634 table contains a 32-bit index into the pool of section numbers. For unused
9635 hash table slots, the corresponding entry in the parallel table will be 0.
9636
9637 The pool of section numbers begins immediately following the hash table
9638 (at offset 16 + 12 * M from the beginning of the section). The pool of
9639 section numbers consists of an array of 32-bit words (using the byte order
9640 of the application binary). Each item in the array is indexed starting
9641 from 0. The hash table entry provides the index of the first section
9642 number in the set. Additional section numbers in the set follow, and the
9643 set is terminated by a 0 entry (section number 0 is not used in ELF).
9644
9645 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9646 section must be the first entry in the set, and the .debug_abbrev.dwo must
9647 be the second entry. Other members of the set may follow in any order.
9648
9649 ---
9650
9651 DWP Version 2:
9652
9653 DWP Version 2 combines all the .debug_info, etc. sections into one,
9654 and the entries in the index tables are now offsets into these sections.
9655 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9656 section.
9657
9658 Index Section Contents:
9659 Header
9660 Hash Table of Signatures dwp_hash_table.hash_table
9661 Parallel Table of Indices dwp_hash_table.unit_table
9662 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9663 Table of Section Sizes dwp_hash_table.v2.sizes
9664
9665 The index section header consists of:
9666
9667 V, 32 bit version number
9668 L, 32 bit number of columns in the table of section offsets
9669 N, 32 bit number of compilation units or type units in the index
9670 M, 32 bit number of slots in the hash table
9671
9672 Numbers are recorded using the byte order of the application binary.
9673
9674 The hash table has the same format as version 1.
9675 The parallel table of indices has the same format as version 1,
9676 except that the entries are origin-1 indices into the table of sections
9677 offsets and the table of section sizes.
9678
9679 The table of offsets begins immediately following the parallel table
9680 (at offset 16 + 12 * M from the beginning of the section). The table is
9681 a two-dimensional array of 32-bit words (using the byte order of the
9682 application binary), with L columns and N+1 rows, in row-major order.
9683 Each row in the array is indexed starting from 0. The first row provides
9684 a key to the remaining rows: each column in this row provides an identifier
9685 for a debug section, and the offsets in the same column of subsequent rows
9686 refer to that section. The section identifiers are:
9687
9688 DW_SECT_INFO 1 .debug_info.dwo
9689 DW_SECT_TYPES 2 .debug_types.dwo
9690 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9691 DW_SECT_LINE 4 .debug_line.dwo
9692 DW_SECT_LOC 5 .debug_loc.dwo
9693 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9694 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9695 DW_SECT_MACRO 8 .debug_macro.dwo
9696
9697 The offsets provided by the CU and TU index sections are the base offsets
9698 for the contributions made by each CU or TU to the corresponding section
9699 in the package file. Each CU and TU header contains an abbrev_offset
9700 field, used to find the abbreviations table for that CU or TU within the
9701 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9702 be interpreted as relative to the base offset given in the index section.
9703 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9704 should be interpreted as relative to the base offset for .debug_line.dwo,
9705 and offsets into other debug sections obtained from DWARF attributes should
9706 also be interpreted as relative to the corresponding base offset.
9707
9708 The table of sizes begins immediately following the table of offsets.
9709 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9710 with L columns and N rows, in row-major order. Each row in the array is
9711 indexed starting from 1 (row 0 is shared by the two tables).
9712
9713 ---
9714
9715 Hash table lookup is handled the same in version 1 and 2:
9716
9717 We assume that N and M will not exceed 2^32 - 1.
9718 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9719
9720 Given a 64-bit compilation unit signature or a type signature S, an entry
9721 in the hash table is located as follows:
9722
9723 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9724 the low-order k bits all set to 1.
9725
9726 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9727
9728 3) If the hash table entry at index H matches the signature, use that
9729 entry. If the hash table entry at index H is unused (all zeroes),
9730 terminate the search: the signature is not present in the table.
9731
9732 4) Let H = (H + H') modulo M. Repeat at Step 3.
9733
9734 Because M > N and H' and M are relatively prime, the search is guaranteed
9735 to stop at an unused slot or find the match. */
9736
9737 /* Create a hash table to map DWO IDs to their CU/TU entry in
9738 .debug_{info,types}.dwo in DWP_FILE.
9739 Returns NULL if there isn't one.
9740 Note: This function processes DWP files only, not DWO files. */
9741
9742 static struct dwp_hash_table *
9743 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9744 {
9745 struct objfile *objfile = dwarf2_per_objfile->objfile;
9746 bfd *dbfd = dwp_file->dbfd;
9747 const gdb_byte *index_ptr, *index_end;
9748 struct dwarf2_section_info *index;
9749 uint32_t version, nr_columns, nr_units, nr_slots;
9750 struct dwp_hash_table *htab;
9751
9752 if (is_debug_types)
9753 index = &dwp_file->sections.tu_index;
9754 else
9755 index = &dwp_file->sections.cu_index;
9756
9757 if (dwarf2_section_empty_p (index))
9758 return NULL;
9759 dwarf2_read_section (objfile, index);
9760
9761 index_ptr = index->buffer;
9762 index_end = index_ptr + index->size;
9763
9764 version = read_4_bytes (dbfd, index_ptr);
9765 index_ptr += 4;
9766 if (version == 2)
9767 nr_columns = read_4_bytes (dbfd, index_ptr);
9768 else
9769 nr_columns = 0;
9770 index_ptr += 4;
9771 nr_units = read_4_bytes (dbfd, index_ptr);
9772 index_ptr += 4;
9773 nr_slots = read_4_bytes (dbfd, index_ptr);
9774 index_ptr += 4;
9775
9776 if (version != 1 && version != 2)
9777 {
9778 error (_("Dwarf Error: unsupported DWP file version (%s)"
9779 " [in module %s]"),
9780 pulongest (version), dwp_file->name);
9781 }
9782 if (nr_slots != (nr_slots & -nr_slots))
9783 {
9784 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9785 " is not power of 2 [in module %s]"),
9786 pulongest (nr_slots), dwp_file->name);
9787 }
9788
9789 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9790 htab->version = version;
9791 htab->nr_columns = nr_columns;
9792 htab->nr_units = nr_units;
9793 htab->nr_slots = nr_slots;
9794 htab->hash_table = index_ptr;
9795 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9796
9797 /* Exit early if the table is empty. */
9798 if (nr_slots == 0 || nr_units == 0
9799 || (version == 2 && nr_columns == 0))
9800 {
9801 /* All must be zero. */
9802 if (nr_slots != 0 || nr_units != 0
9803 || (version == 2 && nr_columns != 0))
9804 {
9805 complaint (&symfile_complaints,
9806 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9807 " all zero [in modules %s]"),
9808 dwp_file->name);
9809 }
9810 return htab;
9811 }
9812
9813 if (version == 1)
9814 {
9815 htab->section_pool.v1.indices =
9816 htab->unit_table + sizeof (uint32_t) * nr_slots;
9817 /* It's harder to decide whether the section is too small in v1.
9818 V1 is deprecated anyway so we punt. */
9819 }
9820 else
9821 {
9822 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9823 int *ids = htab->section_pool.v2.section_ids;
9824 /* Reverse map for error checking. */
9825 int ids_seen[DW_SECT_MAX + 1];
9826 int i;
9827
9828 if (nr_columns < 2)
9829 {
9830 error (_("Dwarf Error: bad DWP hash table, too few columns"
9831 " in section table [in module %s]"),
9832 dwp_file->name);
9833 }
9834 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9835 {
9836 error (_("Dwarf Error: bad DWP hash table, too many columns"
9837 " in section table [in module %s]"),
9838 dwp_file->name);
9839 }
9840 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9841 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9842 for (i = 0; i < nr_columns; ++i)
9843 {
9844 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9845
9846 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9847 {
9848 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9849 " in section table [in module %s]"),
9850 id, dwp_file->name);
9851 }
9852 if (ids_seen[id] != -1)
9853 {
9854 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9855 " id %d in section table [in module %s]"),
9856 id, dwp_file->name);
9857 }
9858 ids_seen[id] = i;
9859 ids[i] = id;
9860 }
9861 /* Must have exactly one info or types section. */
9862 if (((ids_seen[DW_SECT_INFO] != -1)
9863 + (ids_seen[DW_SECT_TYPES] != -1))
9864 != 1)
9865 {
9866 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9867 " DWO info/types section [in module %s]"),
9868 dwp_file->name);
9869 }
9870 /* Must have an abbrev section. */
9871 if (ids_seen[DW_SECT_ABBREV] == -1)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9874 " section [in module %s]"),
9875 dwp_file->name);
9876 }
9877 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9878 htab->section_pool.v2.sizes =
9879 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9880 * nr_units * nr_columns);
9881 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9882 * nr_units * nr_columns))
9883 > index_end)
9884 {
9885 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9886 " [in module %s]"),
9887 dwp_file->name);
9888 }
9889 }
9890
9891 return htab;
9892 }
9893
9894 /* Update SECTIONS with the data from SECTP.
9895
9896 This function is like the other "locate" section routines that are
9897 passed to bfd_map_over_sections, but in this context the sections to
9898 read comes from the DWP V1 hash table, not the full ELF section table.
9899
9900 The result is non-zero for success, or zero if an error was found. */
9901
9902 static int
9903 locate_v1_virtual_dwo_sections (asection *sectp,
9904 struct virtual_v1_dwo_sections *sections)
9905 {
9906 const struct dwop_section_names *names = &dwop_section_names;
9907
9908 if (section_is_p (sectp->name, &names->abbrev_dwo))
9909 {
9910 /* There can be only one. */
9911 if (sections->abbrev.s.asection != NULL)
9912 return 0;
9913 sections->abbrev.s.asection = sectp;
9914 sections->abbrev.size = bfd_get_section_size (sectp);
9915 }
9916 else if (section_is_p (sectp->name, &names->info_dwo)
9917 || section_is_p (sectp->name, &names->types_dwo))
9918 {
9919 /* There can be only one. */
9920 if (sections->info_or_types.s.asection != NULL)
9921 return 0;
9922 sections->info_or_types.s.asection = sectp;
9923 sections->info_or_types.size = bfd_get_section_size (sectp);
9924 }
9925 else if (section_is_p (sectp->name, &names->line_dwo))
9926 {
9927 /* There can be only one. */
9928 if (sections->line.s.asection != NULL)
9929 return 0;
9930 sections->line.s.asection = sectp;
9931 sections->line.size = bfd_get_section_size (sectp);
9932 }
9933 else if (section_is_p (sectp->name, &names->loc_dwo))
9934 {
9935 /* There can be only one. */
9936 if (sections->loc.s.asection != NULL)
9937 return 0;
9938 sections->loc.s.asection = sectp;
9939 sections->loc.size = bfd_get_section_size (sectp);
9940 }
9941 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9942 {
9943 /* There can be only one. */
9944 if (sections->macinfo.s.asection != NULL)
9945 return 0;
9946 sections->macinfo.s.asection = sectp;
9947 sections->macinfo.size = bfd_get_section_size (sectp);
9948 }
9949 else if (section_is_p (sectp->name, &names->macro_dwo))
9950 {
9951 /* There can be only one. */
9952 if (sections->macro.s.asection != NULL)
9953 return 0;
9954 sections->macro.s.asection = sectp;
9955 sections->macro.size = bfd_get_section_size (sectp);
9956 }
9957 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9958 {
9959 /* There can be only one. */
9960 if (sections->str_offsets.s.asection != NULL)
9961 return 0;
9962 sections->str_offsets.s.asection = sectp;
9963 sections->str_offsets.size = bfd_get_section_size (sectp);
9964 }
9965 else
9966 {
9967 /* No other kind of section is valid. */
9968 return 0;
9969 }
9970
9971 return 1;
9972 }
9973
9974 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9975 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9976 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9977 This is for DWP version 1 files. */
9978
9979 static struct dwo_unit *
9980 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9981 uint32_t unit_index,
9982 const char *comp_dir,
9983 ULONGEST signature, int is_debug_types)
9984 {
9985 struct objfile *objfile = dwarf2_per_objfile->objfile;
9986 const struct dwp_hash_table *dwp_htab =
9987 is_debug_types ? dwp_file->tus : dwp_file->cus;
9988 bfd *dbfd = dwp_file->dbfd;
9989 const char *kind = is_debug_types ? "TU" : "CU";
9990 struct dwo_file *dwo_file;
9991 struct dwo_unit *dwo_unit;
9992 struct virtual_v1_dwo_sections sections;
9993 void **dwo_file_slot;
9994 char *virtual_dwo_name;
9995 struct dwarf2_section_info *cutu;
9996 struct cleanup *cleanups;
9997 int i;
9998
9999 gdb_assert (dwp_file->version == 1);
10000
10001 if (dwarf2_read_debug)
10002 {
10003 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10004 kind,
10005 pulongest (unit_index), hex_string (signature),
10006 dwp_file->name);
10007 }
10008
10009 /* Fetch the sections of this DWO unit.
10010 Put a limit on the number of sections we look for so that bad data
10011 doesn't cause us to loop forever. */
10012
10013 #define MAX_NR_V1_DWO_SECTIONS \
10014 (1 /* .debug_info or .debug_types */ \
10015 + 1 /* .debug_abbrev */ \
10016 + 1 /* .debug_line */ \
10017 + 1 /* .debug_loc */ \
10018 + 1 /* .debug_str_offsets */ \
10019 + 1 /* .debug_macro or .debug_macinfo */ \
10020 + 1 /* trailing zero */)
10021
10022 memset (&sections, 0, sizeof (sections));
10023 cleanups = make_cleanup (null_cleanup, 0);
10024
10025 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10026 {
10027 asection *sectp;
10028 uint32_t section_nr =
10029 read_4_bytes (dbfd,
10030 dwp_htab->section_pool.v1.indices
10031 + (unit_index + i) * sizeof (uint32_t));
10032
10033 if (section_nr == 0)
10034 break;
10035 if (section_nr >= dwp_file->num_sections)
10036 {
10037 error (_("Dwarf Error: bad DWP hash table, section number too large"
10038 " [in module %s]"),
10039 dwp_file->name);
10040 }
10041
10042 sectp = dwp_file->elf_sections[section_nr];
10043 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10044 {
10045 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10046 " [in module %s]"),
10047 dwp_file->name);
10048 }
10049 }
10050
10051 if (i < 2
10052 || dwarf2_section_empty_p (&sections.info_or_types)
10053 || dwarf2_section_empty_p (&sections.abbrev))
10054 {
10055 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10056 " [in module %s]"),
10057 dwp_file->name);
10058 }
10059 if (i == MAX_NR_V1_DWO_SECTIONS)
10060 {
10061 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10062 " [in module %s]"),
10063 dwp_file->name);
10064 }
10065
10066 /* It's easier for the rest of the code if we fake a struct dwo_file and
10067 have dwo_unit "live" in that. At least for now.
10068
10069 The DWP file can be made up of a random collection of CUs and TUs.
10070 However, for each CU + set of TUs that came from the same original DWO
10071 file, we can combine them back into a virtual DWO file to save space
10072 (fewer struct dwo_file objects to allocate). Remember that for really
10073 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10074
10075 virtual_dwo_name =
10076 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10077 get_section_id (&sections.abbrev),
10078 get_section_id (&sections.line),
10079 get_section_id (&sections.loc),
10080 get_section_id (&sections.str_offsets));
10081 make_cleanup (xfree, virtual_dwo_name);
10082 /* Can we use an existing virtual DWO file? */
10083 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10084 /* Create one if necessary. */
10085 if (*dwo_file_slot == NULL)
10086 {
10087 if (dwarf2_read_debug)
10088 {
10089 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10090 virtual_dwo_name);
10091 }
10092 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10093 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10094 virtual_dwo_name,
10095 strlen (virtual_dwo_name));
10096 dwo_file->comp_dir = comp_dir;
10097 dwo_file->sections.abbrev = sections.abbrev;
10098 dwo_file->sections.line = sections.line;
10099 dwo_file->sections.loc = sections.loc;
10100 dwo_file->sections.macinfo = sections.macinfo;
10101 dwo_file->sections.macro = sections.macro;
10102 dwo_file->sections.str_offsets = sections.str_offsets;
10103 /* The "str" section is global to the entire DWP file. */
10104 dwo_file->sections.str = dwp_file->sections.str;
10105 /* The info or types section is assigned below to dwo_unit,
10106 there's no need to record it in dwo_file.
10107 Also, we can't simply record type sections in dwo_file because
10108 we record a pointer into the vector in dwo_unit. As we collect more
10109 types we'll grow the vector and eventually have to reallocate space
10110 for it, invalidating all copies of pointers into the previous
10111 contents. */
10112 *dwo_file_slot = dwo_file;
10113 }
10114 else
10115 {
10116 if (dwarf2_read_debug)
10117 {
10118 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10119 virtual_dwo_name);
10120 }
10121 dwo_file = *dwo_file_slot;
10122 }
10123 do_cleanups (cleanups);
10124
10125 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10126 dwo_unit->dwo_file = dwo_file;
10127 dwo_unit->signature = signature;
10128 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10129 sizeof (struct dwarf2_section_info));
10130 *dwo_unit->section = sections.info_or_types;
10131 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10132
10133 return dwo_unit;
10134 }
10135
10136 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10137 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10138 piece within that section used by a TU/CU, return a virtual section
10139 of just that piece. */
10140
10141 static struct dwarf2_section_info
10142 create_dwp_v2_section (struct dwarf2_section_info *section,
10143 bfd_size_type offset, bfd_size_type size)
10144 {
10145 struct dwarf2_section_info result;
10146 asection *sectp;
10147
10148 gdb_assert (section != NULL);
10149 gdb_assert (!section->is_virtual);
10150
10151 memset (&result, 0, sizeof (result));
10152 result.s.containing_section = section;
10153 result.is_virtual = 1;
10154
10155 if (size == 0)
10156 return result;
10157
10158 sectp = get_section_bfd_section (section);
10159
10160 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10161 bounds of the real section. This is a pretty-rare event, so just
10162 flag an error (easier) instead of a warning and trying to cope. */
10163 if (sectp == NULL
10164 || offset + size > bfd_get_section_size (sectp))
10165 {
10166 bfd *abfd = sectp->owner;
10167
10168 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10169 " in section %s [in module %s]"),
10170 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10171 objfile_name (dwarf2_per_objfile->objfile));
10172 }
10173
10174 result.virtual_offset = offset;
10175 result.size = size;
10176 return result;
10177 }
10178
10179 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10180 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10181 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10182 This is for DWP version 2 files. */
10183
10184 static struct dwo_unit *
10185 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10186 uint32_t unit_index,
10187 const char *comp_dir,
10188 ULONGEST signature, int is_debug_types)
10189 {
10190 struct objfile *objfile = dwarf2_per_objfile->objfile;
10191 const struct dwp_hash_table *dwp_htab =
10192 is_debug_types ? dwp_file->tus : dwp_file->cus;
10193 bfd *dbfd = dwp_file->dbfd;
10194 const char *kind = is_debug_types ? "TU" : "CU";
10195 struct dwo_file *dwo_file;
10196 struct dwo_unit *dwo_unit;
10197 struct virtual_v2_dwo_sections sections;
10198 void **dwo_file_slot;
10199 char *virtual_dwo_name;
10200 struct dwarf2_section_info *cutu;
10201 struct cleanup *cleanups;
10202 int i;
10203
10204 gdb_assert (dwp_file->version == 2);
10205
10206 if (dwarf2_read_debug)
10207 {
10208 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10209 kind,
10210 pulongest (unit_index), hex_string (signature),
10211 dwp_file->name);
10212 }
10213
10214 /* Fetch the section offsets of this DWO unit. */
10215
10216 memset (&sections, 0, sizeof (sections));
10217 cleanups = make_cleanup (null_cleanup, 0);
10218
10219 for (i = 0; i < dwp_htab->nr_columns; ++i)
10220 {
10221 uint32_t offset = read_4_bytes (dbfd,
10222 dwp_htab->section_pool.v2.offsets
10223 + (((unit_index - 1) * dwp_htab->nr_columns
10224 + i)
10225 * sizeof (uint32_t)));
10226 uint32_t size = read_4_bytes (dbfd,
10227 dwp_htab->section_pool.v2.sizes
10228 + (((unit_index - 1) * dwp_htab->nr_columns
10229 + i)
10230 * sizeof (uint32_t)));
10231
10232 switch (dwp_htab->section_pool.v2.section_ids[i])
10233 {
10234 case DW_SECT_INFO:
10235 case DW_SECT_TYPES:
10236 sections.info_or_types_offset = offset;
10237 sections.info_or_types_size = size;
10238 break;
10239 case DW_SECT_ABBREV:
10240 sections.abbrev_offset = offset;
10241 sections.abbrev_size = size;
10242 break;
10243 case DW_SECT_LINE:
10244 sections.line_offset = offset;
10245 sections.line_size = size;
10246 break;
10247 case DW_SECT_LOC:
10248 sections.loc_offset = offset;
10249 sections.loc_size = size;
10250 break;
10251 case DW_SECT_STR_OFFSETS:
10252 sections.str_offsets_offset = offset;
10253 sections.str_offsets_size = size;
10254 break;
10255 case DW_SECT_MACINFO:
10256 sections.macinfo_offset = offset;
10257 sections.macinfo_size = size;
10258 break;
10259 case DW_SECT_MACRO:
10260 sections.macro_offset = offset;
10261 sections.macro_size = size;
10262 break;
10263 }
10264 }
10265
10266 /* It's easier for the rest of the code if we fake a struct dwo_file and
10267 have dwo_unit "live" in that. At least for now.
10268
10269 The DWP file can be made up of a random collection of CUs and TUs.
10270 However, for each CU + set of TUs that came from the same original DWO
10271 file, we can combine them back into a virtual DWO file to save space
10272 (fewer struct dwo_file objects to allocate). Remember that for really
10273 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10274
10275 virtual_dwo_name =
10276 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10277 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10278 (long) (sections.line_size ? sections.line_offset : 0),
10279 (long) (sections.loc_size ? sections.loc_offset : 0),
10280 (long) (sections.str_offsets_size
10281 ? sections.str_offsets_offset : 0));
10282 make_cleanup (xfree, virtual_dwo_name);
10283 /* Can we use an existing virtual DWO file? */
10284 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10285 /* Create one if necessary. */
10286 if (*dwo_file_slot == NULL)
10287 {
10288 if (dwarf2_read_debug)
10289 {
10290 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10291 virtual_dwo_name);
10292 }
10293 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10294 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10295 virtual_dwo_name,
10296 strlen (virtual_dwo_name));
10297 dwo_file->comp_dir = comp_dir;
10298 dwo_file->sections.abbrev =
10299 create_dwp_v2_section (&dwp_file->sections.abbrev,
10300 sections.abbrev_offset, sections.abbrev_size);
10301 dwo_file->sections.line =
10302 create_dwp_v2_section (&dwp_file->sections.line,
10303 sections.line_offset, sections.line_size);
10304 dwo_file->sections.loc =
10305 create_dwp_v2_section (&dwp_file->sections.loc,
10306 sections.loc_offset, sections.loc_size);
10307 dwo_file->sections.macinfo =
10308 create_dwp_v2_section (&dwp_file->sections.macinfo,
10309 sections.macinfo_offset, sections.macinfo_size);
10310 dwo_file->sections.macro =
10311 create_dwp_v2_section (&dwp_file->sections.macro,
10312 sections.macro_offset, sections.macro_size);
10313 dwo_file->sections.str_offsets =
10314 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10315 sections.str_offsets_offset,
10316 sections.str_offsets_size);
10317 /* The "str" section is global to the entire DWP file. */
10318 dwo_file->sections.str = dwp_file->sections.str;
10319 /* The info or types section is assigned below to dwo_unit,
10320 there's no need to record it in dwo_file.
10321 Also, we can't simply record type sections in dwo_file because
10322 we record a pointer into the vector in dwo_unit. As we collect more
10323 types we'll grow the vector and eventually have to reallocate space
10324 for it, invalidating all copies of pointers into the previous
10325 contents. */
10326 *dwo_file_slot = dwo_file;
10327 }
10328 else
10329 {
10330 if (dwarf2_read_debug)
10331 {
10332 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10333 virtual_dwo_name);
10334 }
10335 dwo_file = *dwo_file_slot;
10336 }
10337 do_cleanups (cleanups);
10338
10339 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10340 dwo_unit->dwo_file = dwo_file;
10341 dwo_unit->signature = signature;
10342 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10343 sizeof (struct dwarf2_section_info));
10344 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10345 ? &dwp_file->sections.types
10346 : &dwp_file->sections.info,
10347 sections.info_or_types_offset,
10348 sections.info_or_types_size);
10349 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10350
10351 return dwo_unit;
10352 }
10353
10354 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10355 Returns NULL if the signature isn't found. */
10356
10357 static struct dwo_unit *
10358 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10359 ULONGEST signature, int is_debug_types)
10360 {
10361 const struct dwp_hash_table *dwp_htab =
10362 is_debug_types ? dwp_file->tus : dwp_file->cus;
10363 bfd *dbfd = dwp_file->dbfd;
10364 uint32_t mask = dwp_htab->nr_slots - 1;
10365 uint32_t hash = signature & mask;
10366 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10367 unsigned int i;
10368 void **slot;
10369 struct dwo_unit find_dwo_cu, *dwo_cu;
10370
10371 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10372 find_dwo_cu.signature = signature;
10373 slot = htab_find_slot (is_debug_types
10374 ? dwp_file->loaded_tus
10375 : dwp_file->loaded_cus,
10376 &find_dwo_cu, INSERT);
10377
10378 if (*slot != NULL)
10379 return *slot;
10380
10381 /* Use a for loop so that we don't loop forever on bad debug info. */
10382 for (i = 0; i < dwp_htab->nr_slots; ++i)
10383 {
10384 ULONGEST signature_in_table;
10385
10386 signature_in_table =
10387 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10388 if (signature_in_table == signature)
10389 {
10390 uint32_t unit_index =
10391 read_4_bytes (dbfd,
10392 dwp_htab->unit_table + hash * sizeof (uint32_t));
10393
10394 if (dwp_file->version == 1)
10395 {
10396 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10397 comp_dir, signature,
10398 is_debug_types);
10399 }
10400 else
10401 {
10402 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10403 comp_dir, signature,
10404 is_debug_types);
10405 }
10406 return *slot;
10407 }
10408 if (signature_in_table == 0)
10409 return NULL;
10410 hash = (hash + hash2) & mask;
10411 }
10412
10413 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10414 " [in module %s]"),
10415 dwp_file->name);
10416 }
10417
10418 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10419 Open the file specified by FILE_NAME and hand it off to BFD for
10420 preliminary analysis. Return a newly initialized bfd *, which
10421 includes a canonicalized copy of FILE_NAME.
10422 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10423 SEARCH_CWD is true if the current directory is to be searched.
10424 It will be searched before debug-file-directory.
10425 If successful, the file is added to the bfd include table of the
10426 objfile's bfd (see gdb_bfd_record_inclusion).
10427 If unable to find/open the file, return NULL.
10428 NOTE: This function is derived from symfile_bfd_open. */
10429
10430 static bfd *
10431 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10432 {
10433 bfd *sym_bfd;
10434 int desc, flags;
10435 char *absolute_name;
10436 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10437 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10438 to debug_file_directory. */
10439 char *search_path;
10440 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10441
10442 if (search_cwd)
10443 {
10444 if (*debug_file_directory != '\0')
10445 search_path = concat (".", dirname_separator_string,
10446 debug_file_directory, NULL);
10447 else
10448 search_path = xstrdup (".");
10449 }
10450 else
10451 search_path = xstrdup (debug_file_directory);
10452
10453 flags = OPF_RETURN_REALPATH;
10454 if (is_dwp)
10455 flags |= OPF_SEARCH_IN_PATH;
10456 desc = openp (search_path, flags, file_name,
10457 O_RDONLY | O_BINARY, &absolute_name);
10458 xfree (search_path);
10459 if (desc < 0)
10460 return NULL;
10461
10462 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10463 xfree (absolute_name);
10464 if (sym_bfd == NULL)
10465 return NULL;
10466 bfd_set_cacheable (sym_bfd, 1);
10467
10468 if (!bfd_check_format (sym_bfd, bfd_object))
10469 {
10470 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10471 return NULL;
10472 }
10473
10474 /* Success. Record the bfd as having been included by the objfile's bfd.
10475 This is important because things like demangled_names_hash lives in the
10476 objfile's per_bfd space and may have references to things like symbol
10477 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10478 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10479
10480 return sym_bfd;
10481 }
10482
10483 /* Try to open DWO file FILE_NAME.
10484 COMP_DIR is the DW_AT_comp_dir attribute.
10485 The result is the bfd handle of the file.
10486 If there is a problem finding or opening the file, return NULL.
10487 Upon success, the canonicalized path of the file is stored in the bfd,
10488 same as symfile_bfd_open. */
10489
10490 static bfd *
10491 open_dwo_file (const char *file_name, const char *comp_dir)
10492 {
10493 bfd *abfd;
10494
10495 if (IS_ABSOLUTE_PATH (file_name))
10496 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10497
10498 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10499
10500 if (comp_dir != NULL)
10501 {
10502 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10503
10504 /* NOTE: If comp_dir is a relative path, this will also try the
10505 search path, which seems useful. */
10506 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10507 xfree (path_to_try);
10508 if (abfd != NULL)
10509 return abfd;
10510 }
10511
10512 /* That didn't work, try debug-file-directory, which, despite its name,
10513 is a list of paths. */
10514
10515 if (*debug_file_directory == '\0')
10516 return NULL;
10517
10518 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10519 }
10520
10521 /* This function is mapped across the sections and remembers the offset and
10522 size of each of the DWO debugging sections we are interested in. */
10523
10524 static void
10525 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10526 {
10527 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10528 const struct dwop_section_names *names = &dwop_section_names;
10529
10530 if (section_is_p (sectp->name, &names->abbrev_dwo))
10531 {
10532 dwo_sections->abbrev.s.asection = sectp;
10533 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10534 }
10535 else if (section_is_p (sectp->name, &names->info_dwo))
10536 {
10537 dwo_sections->info.s.asection = sectp;
10538 dwo_sections->info.size = bfd_get_section_size (sectp);
10539 }
10540 else if (section_is_p (sectp->name, &names->line_dwo))
10541 {
10542 dwo_sections->line.s.asection = sectp;
10543 dwo_sections->line.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->loc_dwo))
10546 {
10547 dwo_sections->loc.s.asection = sectp;
10548 dwo_sections->loc.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10551 {
10552 dwo_sections->macinfo.s.asection = sectp;
10553 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->macro_dwo))
10556 {
10557 dwo_sections->macro.s.asection = sectp;
10558 dwo_sections->macro.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->str_dwo))
10561 {
10562 dwo_sections->str.s.asection = sectp;
10563 dwo_sections->str.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10566 {
10567 dwo_sections->str_offsets.s.asection = sectp;
10568 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->types_dwo))
10571 {
10572 struct dwarf2_section_info type_section;
10573
10574 memset (&type_section, 0, sizeof (type_section));
10575 type_section.s.asection = sectp;
10576 type_section.size = bfd_get_section_size (sectp);
10577 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10578 &type_section);
10579 }
10580 }
10581
10582 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10583 by PER_CU. This is for the non-DWP case.
10584 The result is NULL if DWO_NAME can't be found. */
10585
10586 static struct dwo_file *
10587 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10588 const char *dwo_name, const char *comp_dir)
10589 {
10590 struct objfile *objfile = dwarf2_per_objfile->objfile;
10591 struct dwo_file *dwo_file;
10592 bfd *dbfd;
10593 struct cleanup *cleanups;
10594
10595 dbfd = open_dwo_file (dwo_name, comp_dir);
10596 if (dbfd == NULL)
10597 {
10598 if (dwarf2_read_debug)
10599 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10600 return NULL;
10601 }
10602 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10603 dwo_file->dwo_name = dwo_name;
10604 dwo_file->comp_dir = comp_dir;
10605 dwo_file->dbfd = dbfd;
10606
10607 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10608
10609 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10610
10611 dwo_file->cu = create_dwo_cu (dwo_file);
10612
10613 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10614 dwo_file->sections.types);
10615
10616 discard_cleanups (cleanups);
10617
10618 if (dwarf2_read_debug)
10619 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10620
10621 return dwo_file;
10622 }
10623
10624 /* This function is mapped across the sections and remembers the offset and
10625 size of each of the DWP debugging sections common to version 1 and 2 that
10626 we are interested in. */
10627
10628 static void
10629 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10630 void *dwp_file_ptr)
10631 {
10632 struct dwp_file *dwp_file = dwp_file_ptr;
10633 const struct dwop_section_names *names = &dwop_section_names;
10634 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10635
10636 /* Record the ELF section number for later lookup: this is what the
10637 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10638 gdb_assert (elf_section_nr < dwp_file->num_sections);
10639 dwp_file->elf_sections[elf_section_nr] = sectp;
10640
10641 /* Look for specific sections that we need. */
10642 if (section_is_p (sectp->name, &names->str_dwo))
10643 {
10644 dwp_file->sections.str.s.asection = sectp;
10645 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10646 }
10647 else if (section_is_p (sectp->name, &names->cu_index))
10648 {
10649 dwp_file->sections.cu_index.s.asection = sectp;
10650 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10651 }
10652 else if (section_is_p (sectp->name, &names->tu_index))
10653 {
10654 dwp_file->sections.tu_index.s.asection = sectp;
10655 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10656 }
10657 }
10658
10659 /* This function is mapped across the sections and remembers the offset and
10660 size of each of the DWP version 2 debugging sections that we are interested
10661 in. This is split into a separate function because we don't know if we
10662 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10663
10664 static void
10665 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10666 {
10667 struct dwp_file *dwp_file = dwp_file_ptr;
10668 const struct dwop_section_names *names = &dwop_section_names;
10669 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10670
10671 /* Record the ELF section number for later lookup: this is what the
10672 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10673 gdb_assert (elf_section_nr < dwp_file->num_sections);
10674 dwp_file->elf_sections[elf_section_nr] = sectp;
10675
10676 /* Look for specific sections that we need. */
10677 if (section_is_p (sectp->name, &names->abbrev_dwo))
10678 {
10679 dwp_file->sections.abbrev.s.asection = sectp;
10680 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10681 }
10682 else if (section_is_p (sectp->name, &names->info_dwo))
10683 {
10684 dwp_file->sections.info.s.asection = sectp;
10685 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10686 }
10687 else if (section_is_p (sectp->name, &names->line_dwo))
10688 {
10689 dwp_file->sections.line.s.asection = sectp;
10690 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10691 }
10692 else if (section_is_p (sectp->name, &names->loc_dwo))
10693 {
10694 dwp_file->sections.loc.s.asection = sectp;
10695 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10698 {
10699 dwp_file->sections.macinfo.s.asection = sectp;
10700 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->macro_dwo))
10703 {
10704 dwp_file->sections.macro.s.asection = sectp;
10705 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10706 }
10707 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10708 {
10709 dwp_file->sections.str_offsets.s.asection = sectp;
10710 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10711 }
10712 else if (section_is_p (sectp->name, &names->types_dwo))
10713 {
10714 dwp_file->sections.types.s.asection = sectp;
10715 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10716 }
10717 }
10718
10719 /* Hash function for dwp_file loaded CUs/TUs. */
10720
10721 static hashval_t
10722 hash_dwp_loaded_cutus (const void *item)
10723 {
10724 const struct dwo_unit *dwo_unit = item;
10725
10726 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10727 return dwo_unit->signature;
10728 }
10729
10730 /* Equality function for dwp_file loaded CUs/TUs. */
10731
10732 static int
10733 eq_dwp_loaded_cutus (const void *a, const void *b)
10734 {
10735 const struct dwo_unit *dua = a;
10736 const struct dwo_unit *dub = b;
10737
10738 return dua->signature == dub->signature;
10739 }
10740
10741 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10742
10743 static htab_t
10744 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10745 {
10746 return htab_create_alloc_ex (3,
10747 hash_dwp_loaded_cutus,
10748 eq_dwp_loaded_cutus,
10749 NULL,
10750 &objfile->objfile_obstack,
10751 hashtab_obstack_allocate,
10752 dummy_obstack_deallocate);
10753 }
10754
10755 /* Try to open DWP file FILE_NAME.
10756 The result is the bfd handle of the file.
10757 If there is a problem finding or opening the file, return NULL.
10758 Upon success, the canonicalized path of the file is stored in the bfd,
10759 same as symfile_bfd_open. */
10760
10761 static bfd *
10762 open_dwp_file (const char *file_name)
10763 {
10764 bfd *abfd;
10765
10766 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10767 if (abfd != NULL)
10768 return abfd;
10769
10770 /* Work around upstream bug 15652.
10771 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10772 [Whether that's a "bug" is debatable, but it is getting in our way.]
10773 We have no real idea where the dwp file is, because gdb's realpath-ing
10774 of the executable's path may have discarded the needed info.
10775 [IWBN if the dwp file name was recorded in the executable, akin to
10776 .gnu_debuglink, but that doesn't exist yet.]
10777 Strip the directory from FILE_NAME and search again. */
10778 if (*debug_file_directory != '\0')
10779 {
10780 /* Don't implicitly search the current directory here.
10781 If the user wants to search "." to handle this case,
10782 it must be added to debug-file-directory. */
10783 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10784 0 /*search_cwd*/);
10785 }
10786
10787 return NULL;
10788 }
10789
10790 /* Initialize the use of the DWP file for the current objfile.
10791 By convention the name of the DWP file is ${objfile}.dwp.
10792 The result is NULL if it can't be found. */
10793
10794 static struct dwp_file *
10795 open_and_init_dwp_file (void)
10796 {
10797 struct objfile *objfile = dwarf2_per_objfile->objfile;
10798 struct dwp_file *dwp_file;
10799 char *dwp_name;
10800 bfd *dbfd;
10801 struct cleanup *cleanups;
10802
10803 /* Try to find first .dwp for the binary file before any symbolic links
10804 resolving. */
10805 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10806 cleanups = make_cleanup (xfree, dwp_name);
10807
10808 dbfd = open_dwp_file (dwp_name);
10809 if (dbfd == NULL
10810 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10811 {
10812 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10813 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10814 make_cleanup (xfree, dwp_name);
10815 dbfd = open_dwp_file (dwp_name);
10816 }
10817
10818 if (dbfd == NULL)
10819 {
10820 if (dwarf2_read_debug)
10821 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10822 do_cleanups (cleanups);
10823 return NULL;
10824 }
10825 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10826 dwp_file->name = bfd_get_filename (dbfd);
10827 dwp_file->dbfd = dbfd;
10828 do_cleanups (cleanups);
10829
10830 /* +1: section 0 is unused */
10831 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10832 dwp_file->elf_sections =
10833 OBSTACK_CALLOC (&objfile->objfile_obstack,
10834 dwp_file->num_sections, asection *);
10835
10836 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10837
10838 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10839
10840 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10841
10842 /* The DWP file version is stored in the hash table. Oh well. */
10843 if (dwp_file->cus->version != dwp_file->tus->version)
10844 {
10845 /* Technically speaking, we should try to limp along, but this is
10846 pretty bizarre. We use pulongest here because that's the established
10847 portability solution (e.g, we cannot use %u for uint32_t). */
10848 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10849 " TU version %s [in DWP file %s]"),
10850 pulongest (dwp_file->cus->version),
10851 pulongest (dwp_file->tus->version), dwp_name);
10852 }
10853 dwp_file->version = dwp_file->cus->version;
10854
10855 if (dwp_file->version == 2)
10856 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10857
10858 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10859 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10860
10861 if (dwarf2_read_debug)
10862 {
10863 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10864 fprintf_unfiltered (gdb_stdlog,
10865 " %s CUs, %s TUs\n",
10866 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10867 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10868 }
10869
10870 return dwp_file;
10871 }
10872
10873 /* Wrapper around open_and_init_dwp_file, only open it once. */
10874
10875 static struct dwp_file *
10876 get_dwp_file (void)
10877 {
10878 if (! dwarf2_per_objfile->dwp_checked)
10879 {
10880 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10881 dwarf2_per_objfile->dwp_checked = 1;
10882 }
10883 return dwarf2_per_objfile->dwp_file;
10884 }
10885
10886 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10887 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10888 or in the DWP file for the objfile, referenced by THIS_UNIT.
10889 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10890 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10891
10892 This is called, for example, when wanting to read a variable with a
10893 complex location. Therefore we don't want to do file i/o for every call.
10894 Therefore we don't want to look for a DWO file on every call.
10895 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10896 then we check if we've already seen DWO_NAME, and only THEN do we check
10897 for a DWO file.
10898
10899 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10900 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10901
10902 static struct dwo_unit *
10903 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10904 const char *dwo_name, const char *comp_dir,
10905 ULONGEST signature, int is_debug_types)
10906 {
10907 struct objfile *objfile = dwarf2_per_objfile->objfile;
10908 const char *kind = is_debug_types ? "TU" : "CU";
10909 void **dwo_file_slot;
10910 struct dwo_file *dwo_file;
10911 struct dwp_file *dwp_file;
10912
10913 /* First see if there's a DWP file.
10914 If we have a DWP file but didn't find the DWO inside it, don't
10915 look for the original DWO file. It makes gdb behave differently
10916 depending on whether one is debugging in the build tree. */
10917
10918 dwp_file = get_dwp_file ();
10919 if (dwp_file != NULL)
10920 {
10921 const struct dwp_hash_table *dwp_htab =
10922 is_debug_types ? dwp_file->tus : dwp_file->cus;
10923
10924 if (dwp_htab != NULL)
10925 {
10926 struct dwo_unit *dwo_cutu =
10927 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10928 signature, is_debug_types);
10929
10930 if (dwo_cutu != NULL)
10931 {
10932 if (dwarf2_read_debug)
10933 {
10934 fprintf_unfiltered (gdb_stdlog,
10935 "Virtual DWO %s %s found: @%s\n",
10936 kind, hex_string (signature),
10937 host_address_to_string (dwo_cutu));
10938 }
10939 return dwo_cutu;
10940 }
10941 }
10942 }
10943 else
10944 {
10945 /* No DWP file, look for the DWO file. */
10946
10947 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10948 if (*dwo_file_slot == NULL)
10949 {
10950 /* Read in the file and build a table of the CUs/TUs it contains. */
10951 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10952 }
10953 /* NOTE: This will be NULL if unable to open the file. */
10954 dwo_file = *dwo_file_slot;
10955
10956 if (dwo_file != NULL)
10957 {
10958 struct dwo_unit *dwo_cutu = NULL;
10959
10960 if (is_debug_types && dwo_file->tus)
10961 {
10962 struct dwo_unit find_dwo_cutu;
10963
10964 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10965 find_dwo_cutu.signature = signature;
10966 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10967 }
10968 else if (!is_debug_types && dwo_file->cu)
10969 {
10970 if (signature == dwo_file->cu->signature)
10971 dwo_cutu = dwo_file->cu;
10972 }
10973
10974 if (dwo_cutu != NULL)
10975 {
10976 if (dwarf2_read_debug)
10977 {
10978 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10979 kind, dwo_name, hex_string (signature),
10980 host_address_to_string (dwo_cutu));
10981 }
10982 return dwo_cutu;
10983 }
10984 }
10985 }
10986
10987 /* We didn't find it. This could mean a dwo_id mismatch, or
10988 someone deleted the DWO/DWP file, or the search path isn't set up
10989 correctly to find the file. */
10990
10991 if (dwarf2_read_debug)
10992 {
10993 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10994 kind, dwo_name, hex_string (signature));
10995 }
10996
10997 /* This is a warning and not a complaint because it can be caused by
10998 pilot error (e.g., user accidentally deleting the DWO). */
10999 {
11000 /* Print the name of the DWP file if we looked there, helps the user
11001 better diagnose the problem. */
11002 char *dwp_text = NULL;
11003 struct cleanup *cleanups;
11004
11005 if (dwp_file != NULL)
11006 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11007 cleanups = make_cleanup (xfree, dwp_text);
11008
11009 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11010 " [in module %s]"),
11011 kind, dwo_name, hex_string (signature),
11012 dwp_text != NULL ? dwp_text : "",
11013 this_unit->is_debug_types ? "TU" : "CU",
11014 this_unit->offset.sect_off, objfile_name (objfile));
11015
11016 do_cleanups (cleanups);
11017 }
11018 return NULL;
11019 }
11020
11021 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11022 See lookup_dwo_cutu_unit for details. */
11023
11024 static struct dwo_unit *
11025 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11026 const char *dwo_name, const char *comp_dir,
11027 ULONGEST signature)
11028 {
11029 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11030 }
11031
11032 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11033 See lookup_dwo_cutu_unit for details. */
11034
11035 static struct dwo_unit *
11036 lookup_dwo_type_unit (struct signatured_type *this_tu,
11037 const char *dwo_name, const char *comp_dir)
11038 {
11039 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11040 }
11041
11042 /* Traversal function for queue_and_load_all_dwo_tus. */
11043
11044 static int
11045 queue_and_load_dwo_tu (void **slot, void *info)
11046 {
11047 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11048 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11049 ULONGEST signature = dwo_unit->signature;
11050 struct signatured_type *sig_type =
11051 lookup_dwo_signatured_type (per_cu->cu, signature);
11052
11053 if (sig_type != NULL)
11054 {
11055 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11056
11057 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11058 a real dependency of PER_CU on SIG_TYPE. That is detected later
11059 while processing PER_CU. */
11060 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11061 load_full_type_unit (sig_cu);
11062 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11063 }
11064
11065 return 1;
11066 }
11067
11068 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11069 The DWO may have the only definition of the type, though it may not be
11070 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11071 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11072
11073 static void
11074 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11075 {
11076 struct dwo_unit *dwo_unit;
11077 struct dwo_file *dwo_file;
11078
11079 gdb_assert (!per_cu->is_debug_types);
11080 gdb_assert (get_dwp_file () == NULL);
11081 gdb_assert (per_cu->cu != NULL);
11082
11083 dwo_unit = per_cu->cu->dwo_unit;
11084 gdb_assert (dwo_unit != NULL);
11085
11086 dwo_file = dwo_unit->dwo_file;
11087 if (dwo_file->tus != NULL)
11088 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11089 }
11090
11091 /* Free all resources associated with DWO_FILE.
11092 Close the DWO file and munmap the sections.
11093 All memory should be on the objfile obstack. */
11094
11095 static void
11096 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11097 {
11098 int ix;
11099 struct dwarf2_section_info *section;
11100
11101 /* Note: dbfd is NULL for virtual DWO files. */
11102 gdb_bfd_unref (dwo_file->dbfd);
11103
11104 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11105 }
11106
11107 /* Wrapper for free_dwo_file for use in cleanups. */
11108
11109 static void
11110 free_dwo_file_cleanup (void *arg)
11111 {
11112 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11113 struct objfile *objfile = dwarf2_per_objfile->objfile;
11114
11115 free_dwo_file (dwo_file, objfile);
11116 }
11117
11118 /* Traversal function for free_dwo_files. */
11119
11120 static int
11121 free_dwo_file_from_slot (void **slot, void *info)
11122 {
11123 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11124 struct objfile *objfile = (struct objfile *) info;
11125
11126 free_dwo_file (dwo_file, objfile);
11127
11128 return 1;
11129 }
11130
11131 /* Free all resources associated with DWO_FILES. */
11132
11133 static void
11134 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11135 {
11136 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11137 }
11138 \f
11139 /* Read in various DIEs. */
11140
11141 /* qsort helper for inherit_abstract_dies. */
11142
11143 static int
11144 unsigned_int_compar (const void *ap, const void *bp)
11145 {
11146 unsigned int a = *(unsigned int *) ap;
11147 unsigned int b = *(unsigned int *) bp;
11148
11149 return (a > b) - (b > a);
11150 }
11151
11152 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11153 Inherit only the children of the DW_AT_abstract_origin DIE not being
11154 already referenced by DW_AT_abstract_origin from the children of the
11155 current DIE. */
11156
11157 static void
11158 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11159 {
11160 struct die_info *child_die;
11161 unsigned die_children_count;
11162 /* CU offsets which were referenced by children of the current DIE. */
11163 sect_offset *offsets;
11164 sect_offset *offsets_end, *offsetp;
11165 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11166 struct die_info *origin_die;
11167 /* Iterator of the ORIGIN_DIE children. */
11168 struct die_info *origin_child_die;
11169 struct cleanup *cleanups;
11170 struct attribute *attr;
11171 struct dwarf2_cu *origin_cu;
11172 struct pending **origin_previous_list_in_scope;
11173
11174 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11175 if (!attr)
11176 return;
11177
11178 /* Note that following die references may follow to a die in a
11179 different cu. */
11180
11181 origin_cu = cu;
11182 origin_die = follow_die_ref (die, attr, &origin_cu);
11183
11184 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11185 symbols in. */
11186 origin_previous_list_in_scope = origin_cu->list_in_scope;
11187 origin_cu->list_in_scope = cu->list_in_scope;
11188
11189 if (die->tag != origin_die->tag
11190 && !(die->tag == DW_TAG_inlined_subroutine
11191 && origin_die->tag == DW_TAG_subprogram))
11192 complaint (&symfile_complaints,
11193 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11194 die->offset.sect_off, origin_die->offset.sect_off);
11195
11196 child_die = die->child;
11197 die_children_count = 0;
11198 while (child_die && child_die->tag)
11199 {
11200 child_die = sibling_die (child_die);
11201 die_children_count++;
11202 }
11203 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11204 cleanups = make_cleanup (xfree, offsets);
11205
11206 offsets_end = offsets;
11207 child_die = die->child;
11208 while (child_die && child_die->tag)
11209 {
11210 /* For each CHILD_DIE, find the corresponding child of
11211 ORIGIN_DIE. If there is more than one layer of
11212 DW_AT_abstract_origin, follow them all; there shouldn't be,
11213 but GCC versions at least through 4.4 generate this (GCC PR
11214 40573). */
11215 struct die_info *child_origin_die = child_die;
11216 struct dwarf2_cu *child_origin_cu = cu;
11217
11218 while (1)
11219 {
11220 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11221 child_origin_cu);
11222 if (attr == NULL)
11223 break;
11224 child_origin_die = follow_die_ref (child_origin_die, attr,
11225 &child_origin_cu);
11226 }
11227
11228 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11229 counterpart may exist. */
11230 if (child_origin_die != child_die)
11231 {
11232 if (child_die->tag != child_origin_die->tag
11233 && !(child_die->tag == DW_TAG_inlined_subroutine
11234 && child_origin_die->tag == DW_TAG_subprogram))
11235 complaint (&symfile_complaints,
11236 _("Child DIE 0x%x and its abstract origin 0x%x have "
11237 "different tags"), child_die->offset.sect_off,
11238 child_origin_die->offset.sect_off);
11239 if (child_origin_die->parent != origin_die)
11240 complaint (&symfile_complaints,
11241 _("Child DIE 0x%x and its abstract origin 0x%x have "
11242 "different parents"), child_die->offset.sect_off,
11243 child_origin_die->offset.sect_off);
11244 else
11245 *offsets_end++ = child_origin_die->offset;
11246 }
11247 child_die = sibling_die (child_die);
11248 }
11249 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11250 unsigned_int_compar);
11251 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11252 if (offsetp[-1].sect_off == offsetp->sect_off)
11253 complaint (&symfile_complaints,
11254 _("Multiple children of DIE 0x%x refer "
11255 "to DIE 0x%x as their abstract origin"),
11256 die->offset.sect_off, offsetp->sect_off);
11257
11258 offsetp = offsets;
11259 origin_child_die = origin_die->child;
11260 while (origin_child_die && origin_child_die->tag)
11261 {
11262 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11263 while (offsetp < offsets_end
11264 && offsetp->sect_off < origin_child_die->offset.sect_off)
11265 offsetp++;
11266 if (offsetp >= offsets_end
11267 || offsetp->sect_off > origin_child_die->offset.sect_off)
11268 {
11269 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11270 Check whether we're already processing ORIGIN_CHILD_DIE.
11271 This can happen with mutually referenced abstract_origins.
11272 PR 16581. */
11273 if (!origin_child_die->in_process)
11274 process_die (origin_child_die, origin_cu);
11275 }
11276 origin_child_die = sibling_die (origin_child_die);
11277 }
11278 origin_cu->list_in_scope = origin_previous_list_in_scope;
11279
11280 do_cleanups (cleanups);
11281 }
11282
11283 static void
11284 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11285 {
11286 struct objfile *objfile = cu->objfile;
11287 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11288 struct context_stack *newobj;
11289 CORE_ADDR lowpc;
11290 CORE_ADDR highpc;
11291 struct die_info *child_die;
11292 struct attribute *attr, *call_line, *call_file;
11293 const char *name;
11294 CORE_ADDR baseaddr;
11295 struct block *block;
11296 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11297 VEC (symbolp) *template_args = NULL;
11298 struct template_symbol *templ_func = NULL;
11299
11300 if (inlined_func)
11301 {
11302 /* If we do not have call site information, we can't show the
11303 caller of this inlined function. That's too confusing, so
11304 only use the scope for local variables. */
11305 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11306 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11307 if (call_line == NULL || call_file == NULL)
11308 {
11309 read_lexical_block_scope (die, cu);
11310 return;
11311 }
11312 }
11313
11314 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11315
11316 name = dwarf2_name (die, cu);
11317
11318 /* Ignore functions with missing or empty names. These are actually
11319 illegal according to the DWARF standard. */
11320 if (name == NULL)
11321 {
11322 complaint (&symfile_complaints,
11323 _("missing name for subprogram DIE at %d"),
11324 die->offset.sect_off);
11325 return;
11326 }
11327
11328 /* Ignore functions with missing or invalid low and high pc attributes. */
11329 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11330 {
11331 attr = dwarf2_attr (die, DW_AT_external, cu);
11332 if (!attr || !DW_UNSND (attr))
11333 complaint (&symfile_complaints,
11334 _("cannot get low and high bounds "
11335 "for subprogram DIE at %d"),
11336 die->offset.sect_off);
11337 return;
11338 }
11339
11340 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11341 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11342
11343 /* If we have any template arguments, then we must allocate a
11344 different sort of symbol. */
11345 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11346 {
11347 if (child_die->tag == DW_TAG_template_type_param
11348 || child_die->tag == DW_TAG_template_value_param)
11349 {
11350 templ_func = allocate_template_symbol (objfile);
11351 templ_func->base.is_cplus_template_function = 1;
11352 break;
11353 }
11354 }
11355
11356 newobj = push_context (0, lowpc);
11357 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11358 (struct symbol *) templ_func);
11359
11360 /* If there is a location expression for DW_AT_frame_base, record
11361 it. */
11362 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11363 if (attr)
11364 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11365
11366 cu->list_in_scope = &local_symbols;
11367
11368 if (die->child != NULL)
11369 {
11370 child_die = die->child;
11371 while (child_die && child_die->tag)
11372 {
11373 if (child_die->tag == DW_TAG_template_type_param
11374 || child_die->tag == DW_TAG_template_value_param)
11375 {
11376 struct symbol *arg = new_symbol (child_die, NULL, cu);
11377
11378 if (arg != NULL)
11379 VEC_safe_push (symbolp, template_args, arg);
11380 }
11381 else
11382 process_die (child_die, cu);
11383 child_die = sibling_die (child_die);
11384 }
11385 }
11386
11387 inherit_abstract_dies (die, cu);
11388
11389 /* If we have a DW_AT_specification, we might need to import using
11390 directives from the context of the specification DIE. See the
11391 comment in determine_prefix. */
11392 if (cu->language == language_cplus
11393 && dwarf2_attr (die, DW_AT_specification, cu))
11394 {
11395 struct dwarf2_cu *spec_cu = cu;
11396 struct die_info *spec_die = die_specification (die, &spec_cu);
11397
11398 while (spec_die)
11399 {
11400 child_die = spec_die->child;
11401 while (child_die && child_die->tag)
11402 {
11403 if (child_die->tag == DW_TAG_imported_module)
11404 process_die (child_die, spec_cu);
11405 child_die = sibling_die (child_die);
11406 }
11407
11408 /* In some cases, GCC generates specification DIEs that
11409 themselves contain DW_AT_specification attributes. */
11410 spec_die = die_specification (spec_die, &spec_cu);
11411 }
11412 }
11413
11414 newobj = pop_context ();
11415 /* Make a block for the local symbols within. */
11416 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11417 lowpc, highpc);
11418
11419 /* For C++, set the block's scope. */
11420 if ((cu->language == language_cplus || cu->language == language_fortran)
11421 && cu->processing_has_namespace_info)
11422 block_set_scope (block, determine_prefix (die, cu),
11423 &objfile->objfile_obstack);
11424
11425 /* If we have address ranges, record them. */
11426 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11427
11428 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11429
11430 /* Attach template arguments to function. */
11431 if (! VEC_empty (symbolp, template_args))
11432 {
11433 gdb_assert (templ_func != NULL);
11434
11435 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11436 templ_func->template_arguments
11437 = obstack_alloc (&objfile->objfile_obstack,
11438 (templ_func->n_template_arguments
11439 * sizeof (struct symbol *)));
11440 memcpy (templ_func->template_arguments,
11441 VEC_address (symbolp, template_args),
11442 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11443 VEC_free (symbolp, template_args);
11444 }
11445
11446 /* In C++, we can have functions nested inside functions (e.g., when
11447 a function declares a class that has methods). This means that
11448 when we finish processing a function scope, we may need to go
11449 back to building a containing block's symbol lists. */
11450 local_symbols = newobj->locals;
11451 using_directives = newobj->using_directives;
11452
11453 /* If we've finished processing a top-level function, subsequent
11454 symbols go in the file symbol list. */
11455 if (outermost_context_p ())
11456 cu->list_in_scope = &file_symbols;
11457 }
11458
11459 /* Process all the DIES contained within a lexical block scope. Start
11460 a new scope, process the dies, and then close the scope. */
11461
11462 static void
11463 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11464 {
11465 struct objfile *objfile = cu->objfile;
11466 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11467 struct context_stack *newobj;
11468 CORE_ADDR lowpc, highpc;
11469 struct die_info *child_die;
11470 CORE_ADDR baseaddr;
11471
11472 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11473
11474 /* Ignore blocks with missing or invalid low and high pc attributes. */
11475 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11476 as multiple lexical blocks? Handling children in a sane way would
11477 be nasty. Might be easier to properly extend generic blocks to
11478 describe ranges. */
11479 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11480 return;
11481 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11482 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11483
11484 push_context (0, lowpc);
11485 if (die->child != NULL)
11486 {
11487 child_die = die->child;
11488 while (child_die && child_die->tag)
11489 {
11490 process_die (child_die, cu);
11491 child_die = sibling_die (child_die);
11492 }
11493 }
11494 newobj = pop_context ();
11495
11496 if (local_symbols != NULL || using_directives != NULL)
11497 {
11498 struct block *block
11499 = finish_block (0, &local_symbols, newobj->old_blocks,
11500 newobj->start_addr, highpc);
11501
11502 /* Note that recording ranges after traversing children, as we
11503 do here, means that recording a parent's ranges entails
11504 walking across all its children's ranges as they appear in
11505 the address map, which is quadratic behavior.
11506
11507 It would be nicer to record the parent's ranges before
11508 traversing its children, simply overriding whatever you find
11509 there. But since we don't even decide whether to create a
11510 block until after we've traversed its children, that's hard
11511 to do. */
11512 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11513 }
11514 local_symbols = newobj->locals;
11515 using_directives = newobj->using_directives;
11516 }
11517
11518 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11519
11520 static void
11521 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11522 {
11523 struct objfile *objfile = cu->objfile;
11524 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11525 CORE_ADDR pc, baseaddr;
11526 struct attribute *attr;
11527 struct call_site *call_site, call_site_local;
11528 void **slot;
11529 int nparams;
11530 struct die_info *child_die;
11531
11532 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11533
11534 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11535 if (!attr)
11536 {
11537 complaint (&symfile_complaints,
11538 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11539 "DIE 0x%x [in module %s]"),
11540 die->offset.sect_off, objfile_name (objfile));
11541 return;
11542 }
11543 pc = attr_value_as_address (attr) + baseaddr;
11544 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11545
11546 if (cu->call_site_htab == NULL)
11547 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11548 NULL, &objfile->objfile_obstack,
11549 hashtab_obstack_allocate, NULL);
11550 call_site_local.pc = pc;
11551 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11552 if (*slot != NULL)
11553 {
11554 complaint (&symfile_complaints,
11555 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11556 "DIE 0x%x [in module %s]"),
11557 paddress (gdbarch, pc), die->offset.sect_off,
11558 objfile_name (objfile));
11559 return;
11560 }
11561
11562 /* Count parameters at the caller. */
11563
11564 nparams = 0;
11565 for (child_die = die->child; child_die && child_die->tag;
11566 child_die = sibling_die (child_die))
11567 {
11568 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11569 {
11570 complaint (&symfile_complaints,
11571 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11572 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11573 child_die->tag, child_die->offset.sect_off,
11574 objfile_name (objfile));
11575 continue;
11576 }
11577
11578 nparams++;
11579 }
11580
11581 call_site = obstack_alloc (&objfile->objfile_obstack,
11582 (sizeof (*call_site)
11583 + (sizeof (*call_site->parameter)
11584 * (nparams - 1))));
11585 *slot = call_site;
11586 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11587 call_site->pc = pc;
11588
11589 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11590 {
11591 struct die_info *func_die;
11592
11593 /* Skip also over DW_TAG_inlined_subroutine. */
11594 for (func_die = die->parent;
11595 func_die && func_die->tag != DW_TAG_subprogram
11596 && func_die->tag != DW_TAG_subroutine_type;
11597 func_die = func_die->parent);
11598
11599 /* DW_AT_GNU_all_call_sites is a superset
11600 of DW_AT_GNU_all_tail_call_sites. */
11601 if (func_die
11602 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11603 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11604 {
11605 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11606 not complete. But keep CALL_SITE for look ups via call_site_htab,
11607 both the initial caller containing the real return address PC and
11608 the final callee containing the current PC of a chain of tail
11609 calls do not need to have the tail call list complete. But any
11610 function candidate for a virtual tail call frame searched via
11611 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11612 determined unambiguously. */
11613 }
11614 else
11615 {
11616 struct type *func_type = NULL;
11617
11618 if (func_die)
11619 func_type = get_die_type (func_die, cu);
11620 if (func_type != NULL)
11621 {
11622 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11623
11624 /* Enlist this call site to the function. */
11625 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11626 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11627 }
11628 else
11629 complaint (&symfile_complaints,
11630 _("Cannot find function owning DW_TAG_GNU_call_site "
11631 "DIE 0x%x [in module %s]"),
11632 die->offset.sect_off, objfile_name (objfile));
11633 }
11634 }
11635
11636 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11637 if (attr == NULL)
11638 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11639 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11640 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11641 /* Keep NULL DWARF_BLOCK. */;
11642 else if (attr_form_is_block (attr))
11643 {
11644 struct dwarf2_locexpr_baton *dlbaton;
11645
11646 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11647 dlbaton->data = DW_BLOCK (attr)->data;
11648 dlbaton->size = DW_BLOCK (attr)->size;
11649 dlbaton->per_cu = cu->per_cu;
11650
11651 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11652 }
11653 else if (attr_form_is_ref (attr))
11654 {
11655 struct dwarf2_cu *target_cu = cu;
11656 struct die_info *target_die;
11657
11658 target_die = follow_die_ref (die, attr, &target_cu);
11659 gdb_assert (target_cu->objfile == objfile);
11660 if (die_is_declaration (target_die, target_cu))
11661 {
11662 const char *target_physname = NULL;
11663 struct attribute *target_attr;
11664
11665 /* Prefer the mangled name; otherwise compute the demangled one. */
11666 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11667 if (target_attr == NULL)
11668 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11669 target_cu);
11670 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11671 target_physname = DW_STRING (target_attr);
11672 else
11673 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11674 if (target_physname == NULL)
11675 complaint (&symfile_complaints,
11676 _("DW_AT_GNU_call_site_target target DIE has invalid "
11677 "physname, for referencing DIE 0x%x [in module %s]"),
11678 die->offset.sect_off, objfile_name (objfile));
11679 else
11680 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11681 }
11682 else
11683 {
11684 CORE_ADDR lowpc;
11685
11686 /* DW_AT_entry_pc should be preferred. */
11687 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11688 complaint (&symfile_complaints,
11689 _("DW_AT_GNU_call_site_target target DIE has invalid "
11690 "low pc, for referencing DIE 0x%x [in module %s]"),
11691 die->offset.sect_off, objfile_name (objfile));
11692 else
11693 {
11694 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11695 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11696 }
11697 }
11698 }
11699 else
11700 complaint (&symfile_complaints,
11701 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11702 "block nor reference, for DIE 0x%x [in module %s]"),
11703 die->offset.sect_off, objfile_name (objfile));
11704
11705 call_site->per_cu = cu->per_cu;
11706
11707 for (child_die = die->child;
11708 child_die && child_die->tag;
11709 child_die = sibling_die (child_die))
11710 {
11711 struct call_site_parameter *parameter;
11712 struct attribute *loc, *origin;
11713
11714 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11715 {
11716 /* Already printed the complaint above. */
11717 continue;
11718 }
11719
11720 gdb_assert (call_site->parameter_count < nparams);
11721 parameter = &call_site->parameter[call_site->parameter_count];
11722
11723 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11724 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11725 register is contained in DW_AT_GNU_call_site_value. */
11726
11727 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11728 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11729 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11730 {
11731 sect_offset offset;
11732
11733 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11734 offset = dwarf2_get_ref_die_offset (origin);
11735 if (!offset_in_cu_p (&cu->header, offset))
11736 {
11737 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11738 binding can be done only inside one CU. Such referenced DIE
11739 therefore cannot be even moved to DW_TAG_partial_unit. */
11740 complaint (&symfile_complaints,
11741 _("DW_AT_abstract_origin offset is not in CU for "
11742 "DW_TAG_GNU_call_site child DIE 0x%x "
11743 "[in module %s]"),
11744 child_die->offset.sect_off, objfile_name (objfile));
11745 continue;
11746 }
11747 parameter->u.param_offset.cu_off = (offset.sect_off
11748 - cu->header.offset.sect_off);
11749 }
11750 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11751 {
11752 complaint (&symfile_complaints,
11753 _("No DW_FORM_block* DW_AT_location for "
11754 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11755 child_die->offset.sect_off, objfile_name (objfile));
11756 continue;
11757 }
11758 else
11759 {
11760 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11761 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11762 if (parameter->u.dwarf_reg != -1)
11763 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11764 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11765 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11766 &parameter->u.fb_offset))
11767 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11768 else
11769 {
11770 complaint (&symfile_complaints,
11771 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11772 "for DW_FORM_block* DW_AT_location is supported for "
11773 "DW_TAG_GNU_call_site child DIE 0x%x "
11774 "[in module %s]"),
11775 child_die->offset.sect_off, objfile_name (objfile));
11776 continue;
11777 }
11778 }
11779
11780 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11781 if (!attr_form_is_block (attr))
11782 {
11783 complaint (&symfile_complaints,
11784 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11785 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11786 child_die->offset.sect_off, objfile_name (objfile));
11787 continue;
11788 }
11789 parameter->value = DW_BLOCK (attr)->data;
11790 parameter->value_size = DW_BLOCK (attr)->size;
11791
11792 /* Parameters are not pre-cleared by memset above. */
11793 parameter->data_value = NULL;
11794 parameter->data_value_size = 0;
11795 call_site->parameter_count++;
11796
11797 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11798 if (attr)
11799 {
11800 if (!attr_form_is_block (attr))
11801 complaint (&symfile_complaints,
11802 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11803 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11804 child_die->offset.sect_off, objfile_name (objfile));
11805 else
11806 {
11807 parameter->data_value = DW_BLOCK (attr)->data;
11808 parameter->data_value_size = DW_BLOCK (attr)->size;
11809 }
11810 }
11811 }
11812 }
11813
11814 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11815 Return 1 if the attributes are present and valid, otherwise, return 0.
11816 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11817
11818 static int
11819 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11820 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11821 struct partial_symtab *ranges_pst)
11822 {
11823 struct objfile *objfile = cu->objfile;
11824 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11825 struct comp_unit_head *cu_header = &cu->header;
11826 bfd *obfd = objfile->obfd;
11827 unsigned int addr_size = cu_header->addr_size;
11828 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11829 /* Base address selection entry. */
11830 CORE_ADDR base;
11831 int found_base;
11832 unsigned int dummy;
11833 const gdb_byte *buffer;
11834 CORE_ADDR marker;
11835 int low_set;
11836 CORE_ADDR low = 0;
11837 CORE_ADDR high = 0;
11838 CORE_ADDR baseaddr;
11839
11840 found_base = cu->base_known;
11841 base = cu->base_address;
11842
11843 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11844 if (offset >= dwarf2_per_objfile->ranges.size)
11845 {
11846 complaint (&symfile_complaints,
11847 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11848 offset);
11849 return 0;
11850 }
11851 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11852
11853 /* Read in the largest possible address. */
11854 marker = read_address (obfd, buffer, cu, &dummy);
11855 if ((marker & mask) == mask)
11856 {
11857 /* If we found the largest possible address, then
11858 read the base address. */
11859 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11860 buffer += 2 * addr_size;
11861 offset += 2 * addr_size;
11862 found_base = 1;
11863 }
11864
11865 low_set = 0;
11866
11867 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11868
11869 while (1)
11870 {
11871 CORE_ADDR range_beginning, range_end;
11872
11873 range_beginning = read_address (obfd, buffer, cu, &dummy);
11874 buffer += addr_size;
11875 range_end = read_address (obfd, buffer, cu, &dummy);
11876 buffer += addr_size;
11877 offset += 2 * addr_size;
11878
11879 /* An end of list marker is a pair of zero addresses. */
11880 if (range_beginning == 0 && range_end == 0)
11881 /* Found the end of list entry. */
11882 break;
11883
11884 /* Each base address selection entry is a pair of 2 values.
11885 The first is the largest possible address, the second is
11886 the base address. Check for a base address here. */
11887 if ((range_beginning & mask) == mask)
11888 {
11889 /* If we found the largest possible address, then
11890 read the base address. */
11891 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11892 found_base = 1;
11893 continue;
11894 }
11895
11896 if (!found_base)
11897 {
11898 /* We have no valid base address for the ranges
11899 data. */
11900 complaint (&symfile_complaints,
11901 _("Invalid .debug_ranges data (no base address)"));
11902 return 0;
11903 }
11904
11905 if (range_beginning > range_end)
11906 {
11907 /* Inverted range entries are invalid. */
11908 complaint (&symfile_complaints,
11909 _("Invalid .debug_ranges data (inverted range)"));
11910 return 0;
11911 }
11912
11913 /* Empty range entries have no effect. */
11914 if (range_beginning == range_end)
11915 continue;
11916
11917 range_beginning += base;
11918 range_end += base;
11919
11920 /* A not-uncommon case of bad debug info.
11921 Don't pollute the addrmap with bad data. */
11922 if (range_beginning + baseaddr == 0
11923 && !dwarf2_per_objfile->has_section_at_zero)
11924 {
11925 complaint (&symfile_complaints,
11926 _(".debug_ranges entry has start address of zero"
11927 " [in module %s]"), objfile_name (objfile));
11928 continue;
11929 }
11930
11931 if (ranges_pst != NULL)
11932 {
11933 CORE_ADDR lowpc;
11934 CORE_ADDR highpc;
11935
11936 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11937 range_beginning + baseaddr);
11938 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11939 range_end + baseaddr);
11940 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11941 ranges_pst);
11942 }
11943
11944 /* FIXME: This is recording everything as a low-high
11945 segment of consecutive addresses. We should have a
11946 data structure for discontiguous block ranges
11947 instead. */
11948 if (! low_set)
11949 {
11950 low = range_beginning;
11951 high = range_end;
11952 low_set = 1;
11953 }
11954 else
11955 {
11956 if (range_beginning < low)
11957 low = range_beginning;
11958 if (range_end > high)
11959 high = range_end;
11960 }
11961 }
11962
11963 if (! low_set)
11964 /* If the first entry is an end-of-list marker, the range
11965 describes an empty scope, i.e. no instructions. */
11966 return 0;
11967
11968 if (low_return)
11969 *low_return = low;
11970 if (high_return)
11971 *high_return = high;
11972 return 1;
11973 }
11974
11975 /* Get low and high pc attributes from a die. Return 1 if the attributes
11976 are present and valid, otherwise, return 0. Return -1 if the range is
11977 discontinuous, i.e. derived from DW_AT_ranges information. */
11978
11979 static int
11980 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11981 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11982 struct partial_symtab *pst)
11983 {
11984 struct attribute *attr;
11985 struct attribute *attr_high;
11986 CORE_ADDR low = 0;
11987 CORE_ADDR high = 0;
11988 int ret = 0;
11989
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 if (attr_high)
11992 {
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 if (attr)
11995 {
11996 low = attr_value_as_address (attr);
11997 high = attr_value_as_address (attr_high);
11998 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11999 high += low;
12000 }
12001 else
12002 /* Found high w/o low attribute. */
12003 return 0;
12004
12005 /* Found consecutive range of addresses. */
12006 ret = 1;
12007 }
12008 else
12009 {
12010 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12011 if (attr != NULL)
12012 {
12013 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12014 We take advantage of the fact that DW_AT_ranges does not appear
12015 in DW_TAG_compile_unit of DWO files. */
12016 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12017 unsigned int ranges_offset = (DW_UNSND (attr)
12018 + (need_ranges_base
12019 ? cu->ranges_base
12020 : 0));
12021
12022 /* Value of the DW_AT_ranges attribute is the offset in the
12023 .debug_ranges section. */
12024 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12025 return 0;
12026 /* Found discontinuous range of addresses. */
12027 ret = -1;
12028 }
12029 }
12030
12031 /* read_partial_die has also the strict LOW < HIGH requirement. */
12032 if (high <= low)
12033 return 0;
12034
12035 /* When using the GNU linker, .gnu.linkonce. sections are used to
12036 eliminate duplicate copies of functions and vtables and such.
12037 The linker will arbitrarily choose one and discard the others.
12038 The AT_*_pc values for such functions refer to local labels in
12039 these sections. If the section from that file was discarded, the
12040 labels are not in the output, so the relocs get a value of 0.
12041 If this is a discarded function, mark the pc bounds as invalid,
12042 so that GDB will ignore it. */
12043 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12044 return 0;
12045
12046 *lowpc = low;
12047 if (highpc)
12048 *highpc = high;
12049 return ret;
12050 }
12051
12052 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12053 its low and high PC addresses. Do nothing if these addresses could not
12054 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12055 and HIGHPC to the high address if greater than HIGHPC. */
12056
12057 static void
12058 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12059 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12060 struct dwarf2_cu *cu)
12061 {
12062 CORE_ADDR low, high;
12063 struct die_info *child = die->child;
12064
12065 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12066 {
12067 *lowpc = min (*lowpc, low);
12068 *highpc = max (*highpc, high);
12069 }
12070
12071 /* If the language does not allow nested subprograms (either inside
12072 subprograms or lexical blocks), we're done. */
12073 if (cu->language != language_ada)
12074 return;
12075
12076 /* Check all the children of the given DIE. If it contains nested
12077 subprograms, then check their pc bounds. Likewise, we need to
12078 check lexical blocks as well, as they may also contain subprogram
12079 definitions. */
12080 while (child && child->tag)
12081 {
12082 if (child->tag == DW_TAG_subprogram
12083 || child->tag == DW_TAG_lexical_block)
12084 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12085 child = sibling_die (child);
12086 }
12087 }
12088
12089 /* Get the low and high pc's represented by the scope DIE, and store
12090 them in *LOWPC and *HIGHPC. If the correct values can't be
12091 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12092
12093 static void
12094 get_scope_pc_bounds (struct die_info *die,
12095 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12096 struct dwarf2_cu *cu)
12097 {
12098 CORE_ADDR best_low = (CORE_ADDR) -1;
12099 CORE_ADDR best_high = (CORE_ADDR) 0;
12100 CORE_ADDR current_low, current_high;
12101
12102 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12103 {
12104 best_low = current_low;
12105 best_high = current_high;
12106 }
12107 else
12108 {
12109 struct die_info *child = die->child;
12110
12111 while (child && child->tag)
12112 {
12113 switch (child->tag) {
12114 case DW_TAG_subprogram:
12115 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12116 break;
12117 case DW_TAG_namespace:
12118 case DW_TAG_module:
12119 /* FIXME: carlton/2004-01-16: Should we do this for
12120 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12121 that current GCC's always emit the DIEs corresponding
12122 to definitions of methods of classes as children of a
12123 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12124 the DIEs giving the declarations, which could be
12125 anywhere). But I don't see any reason why the
12126 standards says that they have to be there. */
12127 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12128
12129 if (current_low != ((CORE_ADDR) -1))
12130 {
12131 best_low = min (best_low, current_low);
12132 best_high = max (best_high, current_high);
12133 }
12134 break;
12135 default:
12136 /* Ignore. */
12137 break;
12138 }
12139
12140 child = sibling_die (child);
12141 }
12142 }
12143
12144 *lowpc = best_low;
12145 *highpc = best_high;
12146 }
12147
12148 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12149 in DIE. */
12150
12151 static void
12152 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12153 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12154 {
12155 struct objfile *objfile = cu->objfile;
12156 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12157 struct attribute *attr;
12158 struct attribute *attr_high;
12159
12160 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12161 if (attr_high)
12162 {
12163 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12164 if (attr)
12165 {
12166 CORE_ADDR low = attr_value_as_address (attr);
12167 CORE_ADDR high = attr_value_as_address (attr_high);
12168
12169 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12170 high += low;
12171
12172 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12173 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12174 record_block_range (block, low, high - 1);
12175 }
12176 }
12177
12178 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12179 if (attr)
12180 {
12181 bfd *obfd = objfile->obfd;
12182 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12183 We take advantage of the fact that DW_AT_ranges does not appear
12184 in DW_TAG_compile_unit of DWO files. */
12185 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12186
12187 /* The value of the DW_AT_ranges attribute is the offset of the
12188 address range list in the .debug_ranges section. */
12189 unsigned long offset = (DW_UNSND (attr)
12190 + (need_ranges_base ? cu->ranges_base : 0));
12191 const gdb_byte *buffer;
12192
12193 /* For some target architectures, but not others, the
12194 read_address function sign-extends the addresses it returns.
12195 To recognize base address selection entries, we need a
12196 mask. */
12197 unsigned int addr_size = cu->header.addr_size;
12198 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12199
12200 /* The base address, to which the next pair is relative. Note
12201 that this 'base' is a DWARF concept: most entries in a range
12202 list are relative, to reduce the number of relocs against the
12203 debugging information. This is separate from this function's
12204 'baseaddr' argument, which GDB uses to relocate debugging
12205 information from a shared library based on the address at
12206 which the library was loaded. */
12207 CORE_ADDR base = cu->base_address;
12208 int base_known = cu->base_known;
12209
12210 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12211 if (offset >= dwarf2_per_objfile->ranges.size)
12212 {
12213 complaint (&symfile_complaints,
12214 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12215 offset);
12216 return;
12217 }
12218 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12219
12220 for (;;)
12221 {
12222 unsigned int bytes_read;
12223 CORE_ADDR start, end;
12224
12225 start = read_address (obfd, buffer, cu, &bytes_read);
12226 buffer += bytes_read;
12227 end = read_address (obfd, buffer, cu, &bytes_read);
12228 buffer += bytes_read;
12229
12230 /* Did we find the end of the range list? */
12231 if (start == 0 && end == 0)
12232 break;
12233
12234 /* Did we find a base address selection entry? */
12235 else if ((start & base_select_mask) == base_select_mask)
12236 {
12237 base = end;
12238 base_known = 1;
12239 }
12240
12241 /* We found an ordinary address range. */
12242 else
12243 {
12244 if (!base_known)
12245 {
12246 complaint (&symfile_complaints,
12247 _("Invalid .debug_ranges data "
12248 "(no base address)"));
12249 return;
12250 }
12251
12252 if (start > end)
12253 {
12254 /* Inverted range entries are invalid. */
12255 complaint (&symfile_complaints,
12256 _("Invalid .debug_ranges data "
12257 "(inverted range)"));
12258 return;
12259 }
12260
12261 /* Empty range entries have no effect. */
12262 if (start == end)
12263 continue;
12264
12265 start += base + baseaddr;
12266 end += base + baseaddr;
12267
12268 /* A not-uncommon case of bad debug info.
12269 Don't pollute the addrmap with bad data. */
12270 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12271 {
12272 complaint (&symfile_complaints,
12273 _(".debug_ranges entry has start address of zero"
12274 " [in module %s]"), objfile_name (objfile));
12275 continue;
12276 }
12277
12278 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12279 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12280 record_block_range (block, start, end - 1);
12281 }
12282 }
12283 }
12284 }
12285
12286 /* Check whether the producer field indicates either of GCC < 4.6, or the
12287 Intel C/C++ compiler, and cache the result in CU. */
12288
12289 static void
12290 check_producer (struct dwarf2_cu *cu)
12291 {
12292 const char *cs;
12293 int major, minor;
12294
12295 if (cu->producer == NULL)
12296 {
12297 /* For unknown compilers expect their behavior is DWARF version
12298 compliant.
12299
12300 GCC started to support .debug_types sections by -gdwarf-4 since
12301 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12302 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12303 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12304 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12305 }
12306 else if (producer_is_gcc (cu->producer, &major, &minor))
12307 {
12308 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12309 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12310 }
12311 else if (startswith (cu->producer, "Intel(R) C"))
12312 cu->producer_is_icc = 1;
12313 else
12314 {
12315 /* For other non-GCC compilers, expect their behavior is DWARF version
12316 compliant. */
12317 }
12318
12319 cu->checked_producer = 1;
12320 }
12321
12322 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12323 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12324 during 4.6.0 experimental. */
12325
12326 static int
12327 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12328 {
12329 if (!cu->checked_producer)
12330 check_producer (cu);
12331
12332 return cu->producer_is_gxx_lt_4_6;
12333 }
12334
12335 /* Return the default accessibility type if it is not overriden by
12336 DW_AT_accessibility. */
12337
12338 static enum dwarf_access_attribute
12339 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12340 {
12341 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12342 {
12343 /* The default DWARF 2 accessibility for members is public, the default
12344 accessibility for inheritance is private. */
12345
12346 if (die->tag != DW_TAG_inheritance)
12347 return DW_ACCESS_public;
12348 else
12349 return DW_ACCESS_private;
12350 }
12351 else
12352 {
12353 /* DWARF 3+ defines the default accessibility a different way. The same
12354 rules apply now for DW_TAG_inheritance as for the members and it only
12355 depends on the container kind. */
12356
12357 if (die->parent->tag == DW_TAG_class_type)
12358 return DW_ACCESS_private;
12359 else
12360 return DW_ACCESS_public;
12361 }
12362 }
12363
12364 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12365 offset. If the attribute was not found return 0, otherwise return
12366 1. If it was found but could not properly be handled, set *OFFSET
12367 to 0. */
12368
12369 static int
12370 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12371 LONGEST *offset)
12372 {
12373 struct attribute *attr;
12374
12375 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12376 if (attr != NULL)
12377 {
12378 *offset = 0;
12379
12380 /* Note that we do not check for a section offset first here.
12381 This is because DW_AT_data_member_location is new in DWARF 4,
12382 so if we see it, we can assume that a constant form is really
12383 a constant and not a section offset. */
12384 if (attr_form_is_constant (attr))
12385 *offset = dwarf2_get_attr_constant_value (attr, 0);
12386 else if (attr_form_is_section_offset (attr))
12387 dwarf2_complex_location_expr_complaint ();
12388 else if (attr_form_is_block (attr))
12389 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12390 else
12391 dwarf2_complex_location_expr_complaint ();
12392
12393 return 1;
12394 }
12395
12396 return 0;
12397 }
12398
12399 /* Add an aggregate field to the field list. */
12400
12401 static void
12402 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12403 struct dwarf2_cu *cu)
12404 {
12405 struct objfile *objfile = cu->objfile;
12406 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12407 struct nextfield *new_field;
12408 struct attribute *attr;
12409 struct field *fp;
12410 const char *fieldname = "";
12411
12412 /* Allocate a new field list entry and link it in. */
12413 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12414 make_cleanup (xfree, new_field);
12415 memset (new_field, 0, sizeof (struct nextfield));
12416
12417 if (die->tag == DW_TAG_inheritance)
12418 {
12419 new_field->next = fip->baseclasses;
12420 fip->baseclasses = new_field;
12421 }
12422 else
12423 {
12424 new_field->next = fip->fields;
12425 fip->fields = new_field;
12426 }
12427 fip->nfields++;
12428
12429 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12430 if (attr)
12431 new_field->accessibility = DW_UNSND (attr);
12432 else
12433 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12434 if (new_field->accessibility != DW_ACCESS_public)
12435 fip->non_public_fields = 1;
12436
12437 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12438 if (attr)
12439 new_field->virtuality = DW_UNSND (attr);
12440 else
12441 new_field->virtuality = DW_VIRTUALITY_none;
12442
12443 fp = &new_field->field;
12444
12445 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12446 {
12447 LONGEST offset;
12448
12449 /* Data member other than a C++ static data member. */
12450
12451 /* Get type of field. */
12452 fp->type = die_type (die, cu);
12453
12454 SET_FIELD_BITPOS (*fp, 0);
12455
12456 /* Get bit size of field (zero if none). */
12457 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12458 if (attr)
12459 {
12460 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12461 }
12462 else
12463 {
12464 FIELD_BITSIZE (*fp) = 0;
12465 }
12466
12467 /* Get bit offset of field. */
12468 if (handle_data_member_location (die, cu, &offset))
12469 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12470 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12471 if (attr)
12472 {
12473 if (gdbarch_bits_big_endian (gdbarch))
12474 {
12475 /* For big endian bits, the DW_AT_bit_offset gives the
12476 additional bit offset from the MSB of the containing
12477 anonymous object to the MSB of the field. We don't
12478 have to do anything special since we don't need to
12479 know the size of the anonymous object. */
12480 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12481 }
12482 else
12483 {
12484 /* For little endian bits, compute the bit offset to the
12485 MSB of the anonymous object, subtract off the number of
12486 bits from the MSB of the field to the MSB of the
12487 object, and then subtract off the number of bits of
12488 the field itself. The result is the bit offset of
12489 the LSB of the field. */
12490 int anonymous_size;
12491 int bit_offset = DW_UNSND (attr);
12492
12493 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12494 if (attr)
12495 {
12496 /* The size of the anonymous object containing
12497 the bit field is explicit, so use the
12498 indicated size (in bytes). */
12499 anonymous_size = DW_UNSND (attr);
12500 }
12501 else
12502 {
12503 /* The size of the anonymous object containing
12504 the bit field must be inferred from the type
12505 attribute of the data member containing the
12506 bit field. */
12507 anonymous_size = TYPE_LENGTH (fp->type);
12508 }
12509 SET_FIELD_BITPOS (*fp,
12510 (FIELD_BITPOS (*fp)
12511 + anonymous_size * bits_per_byte
12512 - bit_offset - FIELD_BITSIZE (*fp)));
12513 }
12514 }
12515
12516 /* Get name of field. */
12517 fieldname = dwarf2_name (die, cu);
12518 if (fieldname == NULL)
12519 fieldname = "";
12520
12521 /* The name is already allocated along with this objfile, so we don't
12522 need to duplicate it for the type. */
12523 fp->name = fieldname;
12524
12525 /* Change accessibility for artificial fields (e.g. virtual table
12526 pointer or virtual base class pointer) to private. */
12527 if (dwarf2_attr (die, DW_AT_artificial, cu))
12528 {
12529 FIELD_ARTIFICIAL (*fp) = 1;
12530 new_field->accessibility = DW_ACCESS_private;
12531 fip->non_public_fields = 1;
12532 }
12533 }
12534 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12535 {
12536 /* C++ static member. */
12537
12538 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12539 is a declaration, but all versions of G++ as of this writing
12540 (so through at least 3.2.1) incorrectly generate
12541 DW_TAG_variable tags. */
12542
12543 const char *physname;
12544
12545 /* Get name of field. */
12546 fieldname = dwarf2_name (die, cu);
12547 if (fieldname == NULL)
12548 return;
12549
12550 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12551 if (attr
12552 /* Only create a symbol if this is an external value.
12553 new_symbol checks this and puts the value in the global symbol
12554 table, which we want. If it is not external, new_symbol
12555 will try to put the value in cu->list_in_scope which is wrong. */
12556 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12557 {
12558 /* A static const member, not much different than an enum as far as
12559 we're concerned, except that we can support more types. */
12560 new_symbol (die, NULL, cu);
12561 }
12562
12563 /* Get physical name. */
12564 physname = dwarf2_physname (fieldname, die, cu);
12565
12566 /* The name is already allocated along with this objfile, so we don't
12567 need to duplicate it for the type. */
12568 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12569 FIELD_TYPE (*fp) = die_type (die, cu);
12570 FIELD_NAME (*fp) = fieldname;
12571 }
12572 else if (die->tag == DW_TAG_inheritance)
12573 {
12574 LONGEST offset;
12575
12576 /* C++ base class field. */
12577 if (handle_data_member_location (die, cu, &offset))
12578 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12579 FIELD_BITSIZE (*fp) = 0;
12580 FIELD_TYPE (*fp) = die_type (die, cu);
12581 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12582 fip->nbaseclasses++;
12583 }
12584 }
12585
12586 /* Add a typedef defined in the scope of the FIP's class. */
12587
12588 static void
12589 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12590 struct dwarf2_cu *cu)
12591 {
12592 struct objfile *objfile = cu->objfile;
12593 struct typedef_field_list *new_field;
12594 struct attribute *attr;
12595 struct typedef_field *fp;
12596 char *fieldname = "";
12597
12598 /* Allocate a new field list entry and link it in. */
12599 new_field = xzalloc (sizeof (*new_field));
12600 make_cleanup (xfree, new_field);
12601
12602 gdb_assert (die->tag == DW_TAG_typedef);
12603
12604 fp = &new_field->field;
12605
12606 /* Get name of field. */
12607 fp->name = dwarf2_name (die, cu);
12608 if (fp->name == NULL)
12609 return;
12610
12611 fp->type = read_type_die (die, cu);
12612
12613 new_field->next = fip->typedef_field_list;
12614 fip->typedef_field_list = new_field;
12615 fip->typedef_field_list_count++;
12616 }
12617
12618 /* Create the vector of fields, and attach it to the type. */
12619
12620 static void
12621 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12622 struct dwarf2_cu *cu)
12623 {
12624 int nfields = fip->nfields;
12625
12626 /* Record the field count, allocate space for the array of fields,
12627 and create blank accessibility bitfields if necessary. */
12628 TYPE_NFIELDS (type) = nfields;
12629 TYPE_FIELDS (type) = (struct field *)
12630 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12631 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12632
12633 if (fip->non_public_fields && cu->language != language_ada)
12634 {
12635 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12636
12637 TYPE_FIELD_PRIVATE_BITS (type) =
12638 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12639 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12640
12641 TYPE_FIELD_PROTECTED_BITS (type) =
12642 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12643 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12644
12645 TYPE_FIELD_IGNORE_BITS (type) =
12646 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12647 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12648 }
12649
12650 /* If the type has baseclasses, allocate and clear a bit vector for
12651 TYPE_FIELD_VIRTUAL_BITS. */
12652 if (fip->nbaseclasses && cu->language != language_ada)
12653 {
12654 int num_bytes = B_BYTES (fip->nbaseclasses);
12655 unsigned char *pointer;
12656
12657 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12658 pointer = TYPE_ALLOC (type, num_bytes);
12659 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12660 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12661 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12662 }
12663
12664 /* Copy the saved-up fields into the field vector. Start from the head of
12665 the list, adding to the tail of the field array, so that they end up in
12666 the same order in the array in which they were added to the list. */
12667 while (nfields-- > 0)
12668 {
12669 struct nextfield *fieldp;
12670
12671 if (fip->fields)
12672 {
12673 fieldp = fip->fields;
12674 fip->fields = fieldp->next;
12675 }
12676 else
12677 {
12678 fieldp = fip->baseclasses;
12679 fip->baseclasses = fieldp->next;
12680 }
12681
12682 TYPE_FIELD (type, nfields) = fieldp->field;
12683 switch (fieldp->accessibility)
12684 {
12685 case DW_ACCESS_private:
12686 if (cu->language != language_ada)
12687 SET_TYPE_FIELD_PRIVATE (type, nfields);
12688 break;
12689
12690 case DW_ACCESS_protected:
12691 if (cu->language != language_ada)
12692 SET_TYPE_FIELD_PROTECTED (type, nfields);
12693 break;
12694
12695 case DW_ACCESS_public:
12696 break;
12697
12698 default:
12699 /* Unknown accessibility. Complain and treat it as public. */
12700 {
12701 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12702 fieldp->accessibility);
12703 }
12704 break;
12705 }
12706 if (nfields < fip->nbaseclasses)
12707 {
12708 switch (fieldp->virtuality)
12709 {
12710 case DW_VIRTUALITY_virtual:
12711 case DW_VIRTUALITY_pure_virtual:
12712 if (cu->language == language_ada)
12713 error (_("unexpected virtuality in component of Ada type"));
12714 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12715 break;
12716 }
12717 }
12718 }
12719 }
12720
12721 /* Return true if this member function is a constructor, false
12722 otherwise. */
12723
12724 static int
12725 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12726 {
12727 const char *fieldname;
12728 const char *type_name;
12729 int len;
12730
12731 if (die->parent == NULL)
12732 return 0;
12733
12734 if (die->parent->tag != DW_TAG_structure_type
12735 && die->parent->tag != DW_TAG_union_type
12736 && die->parent->tag != DW_TAG_class_type)
12737 return 0;
12738
12739 fieldname = dwarf2_name (die, cu);
12740 type_name = dwarf2_name (die->parent, cu);
12741 if (fieldname == NULL || type_name == NULL)
12742 return 0;
12743
12744 len = strlen (fieldname);
12745 return (strncmp (fieldname, type_name, len) == 0
12746 && (type_name[len] == '\0' || type_name[len] == '<'));
12747 }
12748
12749 /* Add a member function to the proper fieldlist. */
12750
12751 static void
12752 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12753 struct type *type, struct dwarf2_cu *cu)
12754 {
12755 struct objfile *objfile = cu->objfile;
12756 struct attribute *attr;
12757 struct fnfieldlist *flp;
12758 int i;
12759 struct fn_field *fnp;
12760 const char *fieldname;
12761 struct nextfnfield *new_fnfield;
12762 struct type *this_type;
12763 enum dwarf_access_attribute accessibility;
12764
12765 if (cu->language == language_ada)
12766 error (_("unexpected member function in Ada type"));
12767
12768 /* Get name of member function. */
12769 fieldname = dwarf2_name (die, cu);
12770 if (fieldname == NULL)
12771 return;
12772
12773 /* Look up member function name in fieldlist. */
12774 for (i = 0; i < fip->nfnfields; i++)
12775 {
12776 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12777 break;
12778 }
12779
12780 /* Create new list element if necessary. */
12781 if (i < fip->nfnfields)
12782 flp = &fip->fnfieldlists[i];
12783 else
12784 {
12785 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12786 {
12787 fip->fnfieldlists = (struct fnfieldlist *)
12788 xrealloc (fip->fnfieldlists,
12789 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12790 * sizeof (struct fnfieldlist));
12791 if (fip->nfnfields == 0)
12792 make_cleanup (free_current_contents, &fip->fnfieldlists);
12793 }
12794 flp = &fip->fnfieldlists[fip->nfnfields];
12795 flp->name = fieldname;
12796 flp->length = 0;
12797 flp->head = NULL;
12798 i = fip->nfnfields++;
12799 }
12800
12801 /* Create a new member function field and chain it to the field list
12802 entry. */
12803 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12804 make_cleanup (xfree, new_fnfield);
12805 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12806 new_fnfield->next = flp->head;
12807 flp->head = new_fnfield;
12808 flp->length++;
12809
12810 /* Fill in the member function field info. */
12811 fnp = &new_fnfield->fnfield;
12812
12813 /* Delay processing of the physname until later. */
12814 if (cu->language == language_cplus || cu->language == language_java)
12815 {
12816 add_to_method_list (type, i, flp->length - 1, fieldname,
12817 die, cu);
12818 }
12819 else
12820 {
12821 const char *physname = dwarf2_physname (fieldname, die, cu);
12822 fnp->physname = physname ? physname : "";
12823 }
12824
12825 fnp->type = alloc_type (objfile);
12826 this_type = read_type_die (die, cu);
12827 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12828 {
12829 int nparams = TYPE_NFIELDS (this_type);
12830
12831 /* TYPE is the domain of this method, and THIS_TYPE is the type
12832 of the method itself (TYPE_CODE_METHOD). */
12833 smash_to_method_type (fnp->type, type,
12834 TYPE_TARGET_TYPE (this_type),
12835 TYPE_FIELDS (this_type),
12836 TYPE_NFIELDS (this_type),
12837 TYPE_VARARGS (this_type));
12838
12839 /* Handle static member functions.
12840 Dwarf2 has no clean way to discern C++ static and non-static
12841 member functions. G++ helps GDB by marking the first
12842 parameter for non-static member functions (which is the this
12843 pointer) as artificial. We obtain this information from
12844 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12845 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12846 fnp->voffset = VOFFSET_STATIC;
12847 }
12848 else
12849 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12850 dwarf2_full_name (fieldname, die, cu));
12851
12852 /* Get fcontext from DW_AT_containing_type if present. */
12853 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12854 fnp->fcontext = die_containing_type (die, cu);
12855
12856 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12857 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12858
12859 /* Get accessibility. */
12860 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12861 if (attr)
12862 accessibility = DW_UNSND (attr);
12863 else
12864 accessibility = dwarf2_default_access_attribute (die, cu);
12865 switch (accessibility)
12866 {
12867 case DW_ACCESS_private:
12868 fnp->is_private = 1;
12869 break;
12870 case DW_ACCESS_protected:
12871 fnp->is_protected = 1;
12872 break;
12873 }
12874
12875 /* Check for artificial methods. */
12876 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12877 if (attr && DW_UNSND (attr) != 0)
12878 fnp->is_artificial = 1;
12879
12880 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12881
12882 /* Get index in virtual function table if it is a virtual member
12883 function. For older versions of GCC, this is an offset in the
12884 appropriate virtual table, as specified by DW_AT_containing_type.
12885 For everyone else, it is an expression to be evaluated relative
12886 to the object address. */
12887
12888 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12889 if (attr)
12890 {
12891 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12892 {
12893 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12894 {
12895 /* Old-style GCC. */
12896 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12897 }
12898 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12899 || (DW_BLOCK (attr)->size > 1
12900 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12901 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12902 {
12903 struct dwarf_block blk;
12904 int offset;
12905
12906 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12907 ? 1 : 2);
12908 blk.size = DW_BLOCK (attr)->size - offset;
12909 blk.data = DW_BLOCK (attr)->data + offset;
12910 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12911 if ((fnp->voffset % cu->header.addr_size) != 0)
12912 dwarf2_complex_location_expr_complaint ();
12913 else
12914 fnp->voffset /= cu->header.addr_size;
12915 fnp->voffset += 2;
12916 }
12917 else
12918 dwarf2_complex_location_expr_complaint ();
12919
12920 if (!fnp->fcontext)
12921 {
12922 /* If there is no `this' field and no DW_AT_containing_type,
12923 we cannot actually find a base class context for the
12924 vtable! */
12925 if (TYPE_NFIELDS (this_type) == 0
12926 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12927 {
12928 complaint (&symfile_complaints,
12929 _("cannot determine context for virtual member "
12930 "function \"%s\" (offset %d)"),
12931 fieldname, die->offset.sect_off);
12932 }
12933 else
12934 {
12935 fnp->fcontext
12936 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12937 }
12938 }
12939 }
12940 else if (attr_form_is_section_offset (attr))
12941 {
12942 dwarf2_complex_location_expr_complaint ();
12943 }
12944 else
12945 {
12946 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12947 fieldname);
12948 }
12949 }
12950 else
12951 {
12952 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12953 if (attr && DW_UNSND (attr))
12954 {
12955 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12956 complaint (&symfile_complaints,
12957 _("Member function \"%s\" (offset %d) is virtual "
12958 "but the vtable offset is not specified"),
12959 fieldname, die->offset.sect_off);
12960 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12961 TYPE_CPLUS_DYNAMIC (type) = 1;
12962 }
12963 }
12964 }
12965
12966 /* Create the vector of member function fields, and attach it to the type. */
12967
12968 static void
12969 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12970 struct dwarf2_cu *cu)
12971 {
12972 struct fnfieldlist *flp;
12973 int i;
12974
12975 if (cu->language == language_ada)
12976 error (_("unexpected member functions in Ada type"));
12977
12978 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12979 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12980 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12981
12982 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12983 {
12984 struct nextfnfield *nfp = flp->head;
12985 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12986 int k;
12987
12988 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12989 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12990 fn_flp->fn_fields = (struct fn_field *)
12991 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12992 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12993 fn_flp->fn_fields[k] = nfp->fnfield;
12994 }
12995
12996 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12997 }
12998
12999 /* Returns non-zero if NAME is the name of a vtable member in CU's
13000 language, zero otherwise. */
13001 static int
13002 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13003 {
13004 static const char vptr[] = "_vptr";
13005 static const char vtable[] = "vtable";
13006
13007 /* Look for the C++ and Java forms of the vtable. */
13008 if ((cu->language == language_java
13009 && startswith (name, vtable))
13010 || (startswith (name, vptr)
13011 && is_cplus_marker (name[sizeof (vptr) - 1])))
13012 return 1;
13013
13014 return 0;
13015 }
13016
13017 /* GCC outputs unnamed structures that are really pointers to member
13018 functions, with the ABI-specified layout. If TYPE describes
13019 such a structure, smash it into a member function type.
13020
13021 GCC shouldn't do this; it should just output pointer to member DIEs.
13022 This is GCC PR debug/28767. */
13023
13024 static void
13025 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13026 {
13027 struct type *pfn_type, *self_type, *new_type;
13028
13029 /* Check for a structure with no name and two children. */
13030 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13031 return;
13032
13033 /* Check for __pfn and __delta members. */
13034 if (TYPE_FIELD_NAME (type, 0) == NULL
13035 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13036 || TYPE_FIELD_NAME (type, 1) == NULL
13037 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13038 return;
13039
13040 /* Find the type of the method. */
13041 pfn_type = TYPE_FIELD_TYPE (type, 0);
13042 if (pfn_type == NULL
13043 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13044 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13045 return;
13046
13047 /* Look for the "this" argument. */
13048 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13049 if (TYPE_NFIELDS (pfn_type) == 0
13050 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13051 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13052 return;
13053
13054 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13055 new_type = alloc_type (objfile);
13056 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13057 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13058 TYPE_VARARGS (pfn_type));
13059 smash_to_methodptr_type (type, new_type);
13060 }
13061
13062 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13063 (icc). */
13064
13065 static int
13066 producer_is_icc (struct dwarf2_cu *cu)
13067 {
13068 if (!cu->checked_producer)
13069 check_producer (cu);
13070
13071 return cu->producer_is_icc;
13072 }
13073
13074 /* Called when we find the DIE that starts a structure or union scope
13075 (definition) to create a type for the structure or union. Fill in
13076 the type's name and general properties; the members will not be
13077 processed until process_structure_scope. A symbol table entry for
13078 the type will also not be done until process_structure_scope (assuming
13079 the type has a name).
13080
13081 NOTE: we need to call these functions regardless of whether or not the
13082 DIE has a DW_AT_name attribute, since it might be an anonymous
13083 structure or union. This gets the type entered into our set of
13084 user defined types. */
13085
13086 static struct type *
13087 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13088 {
13089 struct objfile *objfile = cu->objfile;
13090 struct type *type;
13091 struct attribute *attr;
13092 const char *name;
13093
13094 /* If the definition of this type lives in .debug_types, read that type.
13095 Don't follow DW_AT_specification though, that will take us back up
13096 the chain and we want to go down. */
13097 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13098 if (attr)
13099 {
13100 type = get_DW_AT_signature_type (die, attr, cu);
13101
13102 /* The type's CU may not be the same as CU.
13103 Ensure TYPE is recorded with CU in die_type_hash. */
13104 return set_die_type (die, type, cu);
13105 }
13106
13107 type = alloc_type (objfile);
13108 INIT_CPLUS_SPECIFIC (type);
13109
13110 name = dwarf2_name (die, cu);
13111 if (name != NULL)
13112 {
13113 if (cu->language == language_cplus
13114 || cu->language == language_java)
13115 {
13116 const char *full_name = dwarf2_full_name (name, die, cu);
13117
13118 /* dwarf2_full_name might have already finished building the DIE's
13119 type. If so, there is no need to continue. */
13120 if (get_die_type (die, cu) != NULL)
13121 return get_die_type (die, cu);
13122
13123 TYPE_TAG_NAME (type) = full_name;
13124 if (die->tag == DW_TAG_structure_type
13125 || die->tag == DW_TAG_class_type)
13126 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13127 }
13128 else
13129 {
13130 /* The name is already allocated along with this objfile, so
13131 we don't need to duplicate it for the type. */
13132 TYPE_TAG_NAME (type) = name;
13133 if (die->tag == DW_TAG_class_type)
13134 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13135 }
13136 }
13137
13138 if (die->tag == DW_TAG_structure_type)
13139 {
13140 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13141 }
13142 else if (die->tag == DW_TAG_union_type)
13143 {
13144 TYPE_CODE (type) = TYPE_CODE_UNION;
13145 }
13146 else
13147 {
13148 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13149 }
13150
13151 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13152 TYPE_DECLARED_CLASS (type) = 1;
13153
13154 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13155 if (attr)
13156 {
13157 TYPE_LENGTH (type) = DW_UNSND (attr);
13158 }
13159 else
13160 {
13161 TYPE_LENGTH (type) = 0;
13162 }
13163
13164 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13165 {
13166 /* ICC does not output the required DW_AT_declaration
13167 on incomplete types, but gives them a size of zero. */
13168 TYPE_STUB (type) = 1;
13169 }
13170 else
13171 TYPE_STUB_SUPPORTED (type) = 1;
13172
13173 if (die_is_declaration (die, cu))
13174 TYPE_STUB (type) = 1;
13175 else if (attr == NULL && die->child == NULL
13176 && producer_is_realview (cu->producer))
13177 /* RealView does not output the required DW_AT_declaration
13178 on incomplete types. */
13179 TYPE_STUB (type) = 1;
13180
13181 /* We need to add the type field to the die immediately so we don't
13182 infinitely recurse when dealing with pointers to the structure
13183 type within the structure itself. */
13184 set_die_type (die, type, cu);
13185
13186 /* set_die_type should be already done. */
13187 set_descriptive_type (type, die, cu);
13188
13189 return type;
13190 }
13191
13192 /* Finish creating a structure or union type, including filling in
13193 its members and creating a symbol for it. */
13194
13195 static void
13196 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13197 {
13198 struct objfile *objfile = cu->objfile;
13199 struct die_info *child_die;
13200 struct type *type;
13201
13202 type = get_die_type (die, cu);
13203 if (type == NULL)
13204 type = read_structure_type (die, cu);
13205
13206 if (die->child != NULL && ! die_is_declaration (die, cu))
13207 {
13208 struct field_info fi;
13209 VEC (symbolp) *template_args = NULL;
13210 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13211
13212 memset (&fi, 0, sizeof (struct field_info));
13213
13214 child_die = die->child;
13215
13216 while (child_die && child_die->tag)
13217 {
13218 if (child_die->tag == DW_TAG_member
13219 || child_die->tag == DW_TAG_variable)
13220 {
13221 /* NOTE: carlton/2002-11-05: A C++ static data member
13222 should be a DW_TAG_member that is a declaration, but
13223 all versions of G++ as of this writing (so through at
13224 least 3.2.1) incorrectly generate DW_TAG_variable
13225 tags for them instead. */
13226 dwarf2_add_field (&fi, child_die, cu);
13227 }
13228 else if (child_die->tag == DW_TAG_subprogram)
13229 {
13230 /* C++ member function. */
13231 dwarf2_add_member_fn (&fi, child_die, type, cu);
13232 }
13233 else if (child_die->tag == DW_TAG_inheritance)
13234 {
13235 /* C++ base class field. */
13236 dwarf2_add_field (&fi, child_die, cu);
13237 }
13238 else if (child_die->tag == DW_TAG_typedef)
13239 dwarf2_add_typedef (&fi, child_die, cu);
13240 else if (child_die->tag == DW_TAG_template_type_param
13241 || child_die->tag == DW_TAG_template_value_param)
13242 {
13243 struct symbol *arg = new_symbol (child_die, NULL, cu);
13244
13245 if (arg != NULL)
13246 VEC_safe_push (symbolp, template_args, arg);
13247 }
13248
13249 child_die = sibling_die (child_die);
13250 }
13251
13252 /* Attach template arguments to type. */
13253 if (! VEC_empty (symbolp, template_args))
13254 {
13255 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13256 TYPE_N_TEMPLATE_ARGUMENTS (type)
13257 = VEC_length (symbolp, template_args);
13258 TYPE_TEMPLATE_ARGUMENTS (type)
13259 = obstack_alloc (&objfile->objfile_obstack,
13260 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13261 * sizeof (struct symbol *)));
13262 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13263 VEC_address (symbolp, template_args),
13264 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13265 * sizeof (struct symbol *)));
13266 VEC_free (symbolp, template_args);
13267 }
13268
13269 /* Attach fields and member functions to the type. */
13270 if (fi.nfields)
13271 dwarf2_attach_fields_to_type (&fi, type, cu);
13272 if (fi.nfnfields)
13273 {
13274 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13275
13276 /* Get the type which refers to the base class (possibly this
13277 class itself) which contains the vtable pointer for the current
13278 class from the DW_AT_containing_type attribute. This use of
13279 DW_AT_containing_type is a GNU extension. */
13280
13281 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13282 {
13283 struct type *t = die_containing_type (die, cu);
13284
13285 set_type_vptr_basetype (type, t);
13286 if (type == t)
13287 {
13288 int i;
13289
13290 /* Our own class provides vtbl ptr. */
13291 for (i = TYPE_NFIELDS (t) - 1;
13292 i >= TYPE_N_BASECLASSES (t);
13293 --i)
13294 {
13295 const char *fieldname = TYPE_FIELD_NAME (t, i);
13296
13297 if (is_vtable_name (fieldname, cu))
13298 {
13299 set_type_vptr_fieldno (type, i);
13300 break;
13301 }
13302 }
13303
13304 /* Complain if virtual function table field not found. */
13305 if (i < TYPE_N_BASECLASSES (t))
13306 complaint (&symfile_complaints,
13307 _("virtual function table pointer "
13308 "not found when defining class '%s'"),
13309 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13310 "");
13311 }
13312 else
13313 {
13314 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13315 }
13316 }
13317 else if (cu->producer
13318 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13319 {
13320 /* The IBM XLC compiler does not provide direct indication
13321 of the containing type, but the vtable pointer is
13322 always named __vfp. */
13323
13324 int i;
13325
13326 for (i = TYPE_NFIELDS (type) - 1;
13327 i >= TYPE_N_BASECLASSES (type);
13328 --i)
13329 {
13330 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13331 {
13332 set_type_vptr_fieldno (type, i);
13333 set_type_vptr_basetype (type, type);
13334 break;
13335 }
13336 }
13337 }
13338 }
13339
13340 /* Copy fi.typedef_field_list linked list elements content into the
13341 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13342 if (fi.typedef_field_list)
13343 {
13344 int i = fi.typedef_field_list_count;
13345
13346 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13347 TYPE_TYPEDEF_FIELD_ARRAY (type)
13348 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13349 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13350
13351 /* Reverse the list order to keep the debug info elements order. */
13352 while (--i >= 0)
13353 {
13354 struct typedef_field *dest, *src;
13355
13356 dest = &TYPE_TYPEDEF_FIELD (type, i);
13357 src = &fi.typedef_field_list->field;
13358 fi.typedef_field_list = fi.typedef_field_list->next;
13359 *dest = *src;
13360 }
13361 }
13362
13363 do_cleanups (back_to);
13364
13365 if (HAVE_CPLUS_STRUCT (type))
13366 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13367 }
13368
13369 quirk_gcc_member_function_pointer (type, objfile);
13370
13371 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13372 snapshots) has been known to create a die giving a declaration
13373 for a class that has, as a child, a die giving a definition for a
13374 nested class. So we have to process our children even if the
13375 current die is a declaration. Normally, of course, a declaration
13376 won't have any children at all. */
13377
13378 child_die = die->child;
13379
13380 while (child_die != NULL && child_die->tag)
13381 {
13382 if (child_die->tag == DW_TAG_member
13383 || child_die->tag == DW_TAG_variable
13384 || child_die->tag == DW_TAG_inheritance
13385 || child_die->tag == DW_TAG_template_value_param
13386 || child_die->tag == DW_TAG_template_type_param)
13387 {
13388 /* Do nothing. */
13389 }
13390 else
13391 process_die (child_die, cu);
13392
13393 child_die = sibling_die (child_die);
13394 }
13395
13396 /* Do not consider external references. According to the DWARF standard,
13397 these DIEs are identified by the fact that they have no byte_size
13398 attribute, and a declaration attribute. */
13399 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13400 || !die_is_declaration (die, cu))
13401 new_symbol (die, type, cu);
13402 }
13403
13404 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13405 update TYPE using some information only available in DIE's children. */
13406
13407 static void
13408 update_enumeration_type_from_children (struct die_info *die,
13409 struct type *type,
13410 struct dwarf2_cu *cu)
13411 {
13412 struct obstack obstack;
13413 struct die_info *child_die;
13414 int unsigned_enum = 1;
13415 int flag_enum = 1;
13416 ULONGEST mask = 0;
13417 struct cleanup *old_chain;
13418
13419 obstack_init (&obstack);
13420 old_chain = make_cleanup_obstack_free (&obstack);
13421
13422 for (child_die = die->child;
13423 child_die != NULL && child_die->tag;
13424 child_die = sibling_die (child_die))
13425 {
13426 struct attribute *attr;
13427 LONGEST value;
13428 const gdb_byte *bytes;
13429 struct dwarf2_locexpr_baton *baton;
13430 const char *name;
13431
13432 if (child_die->tag != DW_TAG_enumerator)
13433 continue;
13434
13435 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13436 if (attr == NULL)
13437 continue;
13438
13439 name = dwarf2_name (child_die, cu);
13440 if (name == NULL)
13441 name = "<anonymous enumerator>";
13442
13443 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13444 &value, &bytes, &baton);
13445 if (value < 0)
13446 {
13447 unsigned_enum = 0;
13448 flag_enum = 0;
13449 }
13450 else if ((mask & value) != 0)
13451 flag_enum = 0;
13452 else
13453 mask |= value;
13454
13455 /* If we already know that the enum type is neither unsigned, nor
13456 a flag type, no need to look at the rest of the enumerates. */
13457 if (!unsigned_enum && !flag_enum)
13458 break;
13459 }
13460
13461 if (unsigned_enum)
13462 TYPE_UNSIGNED (type) = 1;
13463 if (flag_enum)
13464 TYPE_FLAG_ENUM (type) = 1;
13465
13466 do_cleanups (old_chain);
13467 }
13468
13469 /* Given a DW_AT_enumeration_type die, set its type. We do not
13470 complete the type's fields yet, or create any symbols. */
13471
13472 static struct type *
13473 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13474 {
13475 struct objfile *objfile = cu->objfile;
13476 struct type *type;
13477 struct attribute *attr;
13478 const char *name;
13479
13480 /* If the definition of this type lives in .debug_types, read that type.
13481 Don't follow DW_AT_specification though, that will take us back up
13482 the chain and we want to go down. */
13483 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13484 if (attr)
13485 {
13486 type = get_DW_AT_signature_type (die, attr, cu);
13487
13488 /* The type's CU may not be the same as CU.
13489 Ensure TYPE is recorded with CU in die_type_hash. */
13490 return set_die_type (die, type, cu);
13491 }
13492
13493 type = alloc_type (objfile);
13494
13495 TYPE_CODE (type) = TYPE_CODE_ENUM;
13496 name = dwarf2_full_name (NULL, die, cu);
13497 if (name != NULL)
13498 TYPE_TAG_NAME (type) = name;
13499
13500 attr = dwarf2_attr (die, DW_AT_type, cu);
13501 if (attr != NULL)
13502 {
13503 struct type *underlying_type = die_type (die, cu);
13504
13505 TYPE_TARGET_TYPE (type) = underlying_type;
13506 }
13507
13508 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13509 if (attr)
13510 {
13511 TYPE_LENGTH (type) = DW_UNSND (attr);
13512 }
13513 else
13514 {
13515 TYPE_LENGTH (type) = 0;
13516 }
13517
13518 /* The enumeration DIE can be incomplete. In Ada, any type can be
13519 declared as private in the package spec, and then defined only
13520 inside the package body. Such types are known as Taft Amendment
13521 Types. When another package uses such a type, an incomplete DIE
13522 may be generated by the compiler. */
13523 if (die_is_declaration (die, cu))
13524 TYPE_STUB (type) = 1;
13525
13526 /* Finish the creation of this type by using the enum's children.
13527 We must call this even when the underlying type has been provided
13528 so that we can determine if we're looking at a "flag" enum. */
13529 update_enumeration_type_from_children (die, type, cu);
13530
13531 /* If this type has an underlying type that is not a stub, then we
13532 may use its attributes. We always use the "unsigned" attribute
13533 in this situation, because ordinarily we guess whether the type
13534 is unsigned -- but the guess can be wrong and the underlying type
13535 can tell us the reality. However, we defer to a local size
13536 attribute if one exists, because this lets the compiler override
13537 the underlying type if needed. */
13538 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13539 {
13540 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13541 if (TYPE_LENGTH (type) == 0)
13542 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13543 }
13544
13545 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13546
13547 return set_die_type (die, type, cu);
13548 }
13549
13550 /* Given a pointer to a die which begins an enumeration, process all
13551 the dies that define the members of the enumeration, and create the
13552 symbol for the enumeration type.
13553
13554 NOTE: We reverse the order of the element list. */
13555
13556 static void
13557 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13558 {
13559 struct type *this_type;
13560
13561 this_type = get_die_type (die, cu);
13562 if (this_type == NULL)
13563 this_type = read_enumeration_type (die, cu);
13564
13565 if (die->child != NULL)
13566 {
13567 struct die_info *child_die;
13568 struct symbol *sym;
13569 struct field *fields = NULL;
13570 int num_fields = 0;
13571 const char *name;
13572
13573 child_die = die->child;
13574 while (child_die && child_die->tag)
13575 {
13576 if (child_die->tag != DW_TAG_enumerator)
13577 {
13578 process_die (child_die, cu);
13579 }
13580 else
13581 {
13582 name = dwarf2_name (child_die, cu);
13583 if (name)
13584 {
13585 sym = new_symbol (child_die, this_type, cu);
13586
13587 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13588 {
13589 fields = (struct field *)
13590 xrealloc (fields,
13591 (num_fields + DW_FIELD_ALLOC_CHUNK)
13592 * sizeof (struct field));
13593 }
13594
13595 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13596 FIELD_TYPE (fields[num_fields]) = NULL;
13597 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13598 FIELD_BITSIZE (fields[num_fields]) = 0;
13599
13600 num_fields++;
13601 }
13602 }
13603
13604 child_die = sibling_die (child_die);
13605 }
13606
13607 if (num_fields)
13608 {
13609 TYPE_NFIELDS (this_type) = num_fields;
13610 TYPE_FIELDS (this_type) = (struct field *)
13611 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13612 memcpy (TYPE_FIELDS (this_type), fields,
13613 sizeof (struct field) * num_fields);
13614 xfree (fields);
13615 }
13616 }
13617
13618 /* If we are reading an enum from a .debug_types unit, and the enum
13619 is a declaration, and the enum is not the signatured type in the
13620 unit, then we do not want to add a symbol for it. Adding a
13621 symbol would in some cases obscure the true definition of the
13622 enum, giving users an incomplete type when the definition is
13623 actually available. Note that we do not want to do this for all
13624 enums which are just declarations, because C++0x allows forward
13625 enum declarations. */
13626 if (cu->per_cu->is_debug_types
13627 && die_is_declaration (die, cu))
13628 {
13629 struct signatured_type *sig_type;
13630
13631 sig_type = (struct signatured_type *) cu->per_cu;
13632 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13633 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13634 return;
13635 }
13636
13637 new_symbol (die, this_type, cu);
13638 }
13639
13640 /* Extract all information from a DW_TAG_array_type DIE and put it in
13641 the DIE's type field. For now, this only handles one dimensional
13642 arrays. */
13643
13644 static struct type *
13645 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13646 {
13647 struct objfile *objfile = cu->objfile;
13648 struct die_info *child_die;
13649 struct type *type;
13650 struct type *element_type, *range_type, *index_type;
13651 struct type **range_types = NULL;
13652 struct attribute *attr;
13653 int ndim = 0;
13654 struct cleanup *back_to;
13655 const char *name;
13656 unsigned int bit_stride = 0;
13657
13658 element_type = die_type (die, cu);
13659
13660 /* The die_type call above may have already set the type for this DIE. */
13661 type = get_die_type (die, cu);
13662 if (type)
13663 return type;
13664
13665 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13666 if (attr != NULL)
13667 bit_stride = DW_UNSND (attr) * 8;
13668
13669 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13670 if (attr != NULL)
13671 bit_stride = DW_UNSND (attr);
13672
13673 /* Irix 6.2 native cc creates array types without children for
13674 arrays with unspecified length. */
13675 if (die->child == NULL)
13676 {
13677 index_type = objfile_type (objfile)->builtin_int;
13678 range_type = create_static_range_type (NULL, index_type, 0, -1);
13679 type = create_array_type_with_stride (NULL, element_type, range_type,
13680 bit_stride);
13681 return set_die_type (die, type, cu);
13682 }
13683
13684 back_to = make_cleanup (null_cleanup, NULL);
13685 child_die = die->child;
13686 while (child_die && child_die->tag)
13687 {
13688 if (child_die->tag == DW_TAG_subrange_type)
13689 {
13690 struct type *child_type = read_type_die (child_die, cu);
13691
13692 if (child_type != NULL)
13693 {
13694 /* The range type was succesfully read. Save it for the
13695 array type creation. */
13696 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13697 {
13698 range_types = (struct type **)
13699 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13700 * sizeof (struct type *));
13701 if (ndim == 0)
13702 make_cleanup (free_current_contents, &range_types);
13703 }
13704 range_types[ndim++] = child_type;
13705 }
13706 }
13707 child_die = sibling_die (child_die);
13708 }
13709
13710 /* Dwarf2 dimensions are output from left to right, create the
13711 necessary array types in backwards order. */
13712
13713 type = element_type;
13714
13715 if (read_array_order (die, cu) == DW_ORD_col_major)
13716 {
13717 int i = 0;
13718
13719 while (i < ndim)
13720 type = create_array_type_with_stride (NULL, type, range_types[i++],
13721 bit_stride);
13722 }
13723 else
13724 {
13725 while (ndim-- > 0)
13726 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13727 bit_stride);
13728 }
13729
13730 /* Understand Dwarf2 support for vector types (like they occur on
13731 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13732 array type. This is not part of the Dwarf2/3 standard yet, but a
13733 custom vendor extension. The main difference between a regular
13734 array and the vector variant is that vectors are passed by value
13735 to functions. */
13736 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13737 if (attr)
13738 make_vector_type (type);
13739
13740 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13741 implementation may choose to implement triple vectors using this
13742 attribute. */
13743 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13744 if (attr)
13745 {
13746 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13747 TYPE_LENGTH (type) = DW_UNSND (attr);
13748 else
13749 complaint (&symfile_complaints,
13750 _("DW_AT_byte_size for array type smaller "
13751 "than the total size of elements"));
13752 }
13753
13754 name = dwarf2_name (die, cu);
13755 if (name)
13756 TYPE_NAME (type) = name;
13757
13758 /* Install the type in the die. */
13759 set_die_type (die, type, cu);
13760
13761 /* set_die_type should be already done. */
13762 set_descriptive_type (type, die, cu);
13763
13764 do_cleanups (back_to);
13765
13766 return type;
13767 }
13768
13769 static enum dwarf_array_dim_ordering
13770 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13771 {
13772 struct attribute *attr;
13773
13774 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13775
13776 if (attr) return DW_SND (attr);
13777
13778 /* GNU F77 is a special case, as at 08/2004 array type info is the
13779 opposite order to the dwarf2 specification, but data is still
13780 laid out as per normal fortran.
13781
13782 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13783 version checking. */
13784
13785 if (cu->language == language_fortran
13786 && cu->producer && strstr (cu->producer, "GNU F77"))
13787 {
13788 return DW_ORD_row_major;
13789 }
13790
13791 switch (cu->language_defn->la_array_ordering)
13792 {
13793 case array_column_major:
13794 return DW_ORD_col_major;
13795 case array_row_major:
13796 default:
13797 return DW_ORD_row_major;
13798 };
13799 }
13800
13801 /* Extract all information from a DW_TAG_set_type DIE and put it in
13802 the DIE's type field. */
13803
13804 static struct type *
13805 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13806 {
13807 struct type *domain_type, *set_type;
13808 struct attribute *attr;
13809
13810 domain_type = die_type (die, cu);
13811
13812 /* The die_type call above may have already set the type for this DIE. */
13813 set_type = get_die_type (die, cu);
13814 if (set_type)
13815 return set_type;
13816
13817 set_type = create_set_type (NULL, domain_type);
13818
13819 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13820 if (attr)
13821 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13822
13823 return set_die_type (die, set_type, cu);
13824 }
13825
13826 /* A helper for read_common_block that creates a locexpr baton.
13827 SYM is the symbol which we are marking as computed.
13828 COMMON_DIE is the DIE for the common block.
13829 COMMON_LOC is the location expression attribute for the common
13830 block itself.
13831 MEMBER_LOC is the location expression attribute for the particular
13832 member of the common block that we are processing.
13833 CU is the CU from which the above come. */
13834
13835 static void
13836 mark_common_block_symbol_computed (struct symbol *sym,
13837 struct die_info *common_die,
13838 struct attribute *common_loc,
13839 struct attribute *member_loc,
13840 struct dwarf2_cu *cu)
13841 {
13842 struct objfile *objfile = dwarf2_per_objfile->objfile;
13843 struct dwarf2_locexpr_baton *baton;
13844 gdb_byte *ptr;
13845 unsigned int cu_off;
13846 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13847 LONGEST offset = 0;
13848
13849 gdb_assert (common_loc && member_loc);
13850 gdb_assert (attr_form_is_block (common_loc));
13851 gdb_assert (attr_form_is_block (member_loc)
13852 || attr_form_is_constant (member_loc));
13853
13854 baton = obstack_alloc (&objfile->objfile_obstack,
13855 sizeof (struct dwarf2_locexpr_baton));
13856 baton->per_cu = cu->per_cu;
13857 gdb_assert (baton->per_cu);
13858
13859 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13860
13861 if (attr_form_is_constant (member_loc))
13862 {
13863 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13864 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13865 }
13866 else
13867 baton->size += DW_BLOCK (member_loc)->size;
13868
13869 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13870 baton->data = ptr;
13871
13872 *ptr++ = DW_OP_call4;
13873 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13874 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13875 ptr += 4;
13876
13877 if (attr_form_is_constant (member_loc))
13878 {
13879 *ptr++ = DW_OP_addr;
13880 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13881 ptr += cu->header.addr_size;
13882 }
13883 else
13884 {
13885 /* We have to copy the data here, because DW_OP_call4 will only
13886 use a DW_AT_location attribute. */
13887 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13888 ptr += DW_BLOCK (member_loc)->size;
13889 }
13890
13891 *ptr++ = DW_OP_plus;
13892 gdb_assert (ptr - baton->data == baton->size);
13893
13894 SYMBOL_LOCATION_BATON (sym) = baton;
13895 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13896 }
13897
13898 /* Create appropriate locally-scoped variables for all the
13899 DW_TAG_common_block entries. Also create a struct common_block
13900 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13901 is used to sepate the common blocks name namespace from regular
13902 variable names. */
13903
13904 static void
13905 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13906 {
13907 struct attribute *attr;
13908
13909 attr = dwarf2_attr (die, DW_AT_location, cu);
13910 if (attr)
13911 {
13912 /* Support the .debug_loc offsets. */
13913 if (attr_form_is_block (attr))
13914 {
13915 /* Ok. */
13916 }
13917 else if (attr_form_is_section_offset (attr))
13918 {
13919 dwarf2_complex_location_expr_complaint ();
13920 attr = NULL;
13921 }
13922 else
13923 {
13924 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13925 "common block member");
13926 attr = NULL;
13927 }
13928 }
13929
13930 if (die->child != NULL)
13931 {
13932 struct objfile *objfile = cu->objfile;
13933 struct die_info *child_die;
13934 size_t n_entries = 0, size;
13935 struct common_block *common_block;
13936 struct symbol *sym;
13937
13938 for (child_die = die->child;
13939 child_die && child_die->tag;
13940 child_die = sibling_die (child_die))
13941 ++n_entries;
13942
13943 size = (sizeof (struct common_block)
13944 + (n_entries - 1) * sizeof (struct symbol *));
13945 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13946 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13947 common_block->n_entries = 0;
13948
13949 for (child_die = die->child;
13950 child_die && child_die->tag;
13951 child_die = sibling_die (child_die))
13952 {
13953 /* Create the symbol in the DW_TAG_common_block block in the current
13954 symbol scope. */
13955 sym = new_symbol (child_die, NULL, cu);
13956 if (sym != NULL)
13957 {
13958 struct attribute *member_loc;
13959
13960 common_block->contents[common_block->n_entries++] = sym;
13961
13962 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13963 cu);
13964 if (member_loc)
13965 {
13966 /* GDB has handled this for a long time, but it is
13967 not specified by DWARF. It seems to have been
13968 emitted by gfortran at least as recently as:
13969 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13970 complaint (&symfile_complaints,
13971 _("Variable in common block has "
13972 "DW_AT_data_member_location "
13973 "- DIE at 0x%x [in module %s]"),
13974 child_die->offset.sect_off,
13975 objfile_name (cu->objfile));
13976
13977 if (attr_form_is_section_offset (member_loc))
13978 dwarf2_complex_location_expr_complaint ();
13979 else if (attr_form_is_constant (member_loc)
13980 || attr_form_is_block (member_loc))
13981 {
13982 if (attr)
13983 mark_common_block_symbol_computed (sym, die, attr,
13984 member_loc, cu);
13985 }
13986 else
13987 dwarf2_complex_location_expr_complaint ();
13988 }
13989 }
13990 }
13991
13992 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13993 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13994 }
13995 }
13996
13997 /* Create a type for a C++ namespace. */
13998
13999 static struct type *
14000 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14001 {
14002 struct objfile *objfile = cu->objfile;
14003 const char *previous_prefix, *name;
14004 int is_anonymous;
14005 struct type *type;
14006
14007 /* For extensions, reuse the type of the original namespace. */
14008 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14009 {
14010 struct die_info *ext_die;
14011 struct dwarf2_cu *ext_cu = cu;
14012
14013 ext_die = dwarf2_extension (die, &ext_cu);
14014 type = read_type_die (ext_die, ext_cu);
14015
14016 /* EXT_CU may not be the same as CU.
14017 Ensure TYPE is recorded with CU in die_type_hash. */
14018 return set_die_type (die, type, cu);
14019 }
14020
14021 name = namespace_name (die, &is_anonymous, cu);
14022
14023 /* Now build the name of the current namespace. */
14024
14025 previous_prefix = determine_prefix (die, cu);
14026 if (previous_prefix[0] != '\0')
14027 name = typename_concat (&objfile->objfile_obstack,
14028 previous_prefix, name, 0, cu);
14029
14030 /* Create the type. */
14031 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14032 objfile);
14033 TYPE_NAME (type) = name;
14034 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14035
14036 return set_die_type (die, type, cu);
14037 }
14038
14039 /* Read a C++ namespace. */
14040
14041 static void
14042 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14043 {
14044 struct objfile *objfile = cu->objfile;
14045 int is_anonymous;
14046
14047 /* Add a symbol associated to this if we haven't seen the namespace
14048 before. Also, add a using directive if it's an anonymous
14049 namespace. */
14050
14051 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14052 {
14053 struct type *type;
14054
14055 type = read_type_die (die, cu);
14056 new_symbol (die, type, cu);
14057
14058 namespace_name (die, &is_anonymous, cu);
14059 if (is_anonymous)
14060 {
14061 const char *previous_prefix = determine_prefix (die, cu);
14062
14063 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14064 NULL, NULL, 0, &objfile->objfile_obstack);
14065 }
14066 }
14067
14068 if (die->child != NULL)
14069 {
14070 struct die_info *child_die = die->child;
14071
14072 while (child_die && child_die->tag)
14073 {
14074 process_die (child_die, cu);
14075 child_die = sibling_die (child_die);
14076 }
14077 }
14078 }
14079
14080 /* Read a Fortran module as type. This DIE can be only a declaration used for
14081 imported module. Still we need that type as local Fortran "use ... only"
14082 declaration imports depend on the created type in determine_prefix. */
14083
14084 static struct type *
14085 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14086 {
14087 struct objfile *objfile = cu->objfile;
14088 const char *module_name;
14089 struct type *type;
14090
14091 module_name = dwarf2_name (die, cu);
14092 if (!module_name)
14093 complaint (&symfile_complaints,
14094 _("DW_TAG_module has no name, offset 0x%x"),
14095 die->offset.sect_off);
14096 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14097
14098 /* determine_prefix uses TYPE_TAG_NAME. */
14099 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14100
14101 return set_die_type (die, type, cu);
14102 }
14103
14104 /* Read a Fortran module. */
14105
14106 static void
14107 read_module (struct die_info *die, struct dwarf2_cu *cu)
14108 {
14109 struct die_info *child_die = die->child;
14110 struct type *type;
14111
14112 type = read_type_die (die, cu);
14113 new_symbol (die, type, cu);
14114
14115 while (child_die && child_die->tag)
14116 {
14117 process_die (child_die, cu);
14118 child_die = sibling_die (child_die);
14119 }
14120 }
14121
14122 /* Return the name of the namespace represented by DIE. Set
14123 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14124 namespace. */
14125
14126 static const char *
14127 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14128 {
14129 struct die_info *current_die;
14130 const char *name = NULL;
14131
14132 /* Loop through the extensions until we find a name. */
14133
14134 for (current_die = die;
14135 current_die != NULL;
14136 current_die = dwarf2_extension (die, &cu))
14137 {
14138 /* We don't use dwarf2_name here so that we can detect the absence
14139 of a name -> anonymous namespace. */
14140 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14141
14142 if (attr != NULL)
14143 name = DW_STRING (attr);
14144 if (name != NULL)
14145 break;
14146 }
14147
14148 /* Is it an anonymous namespace? */
14149
14150 *is_anonymous = (name == NULL);
14151 if (*is_anonymous)
14152 name = CP_ANONYMOUS_NAMESPACE_STR;
14153
14154 return name;
14155 }
14156
14157 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14158 the user defined type vector. */
14159
14160 static struct type *
14161 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14162 {
14163 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14164 struct comp_unit_head *cu_header = &cu->header;
14165 struct type *type;
14166 struct attribute *attr_byte_size;
14167 struct attribute *attr_address_class;
14168 int byte_size, addr_class;
14169 struct type *target_type;
14170
14171 target_type = die_type (die, cu);
14172
14173 /* The die_type call above may have already set the type for this DIE. */
14174 type = get_die_type (die, cu);
14175 if (type)
14176 return type;
14177
14178 type = lookup_pointer_type (target_type);
14179
14180 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14181 if (attr_byte_size)
14182 byte_size = DW_UNSND (attr_byte_size);
14183 else
14184 byte_size = cu_header->addr_size;
14185
14186 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14187 if (attr_address_class)
14188 addr_class = DW_UNSND (attr_address_class);
14189 else
14190 addr_class = DW_ADDR_none;
14191
14192 /* If the pointer size or address class is different than the
14193 default, create a type variant marked as such and set the
14194 length accordingly. */
14195 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14196 {
14197 if (gdbarch_address_class_type_flags_p (gdbarch))
14198 {
14199 int type_flags;
14200
14201 type_flags = gdbarch_address_class_type_flags
14202 (gdbarch, byte_size, addr_class);
14203 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14204 == 0);
14205 type = make_type_with_address_space (type, type_flags);
14206 }
14207 else if (TYPE_LENGTH (type) != byte_size)
14208 {
14209 complaint (&symfile_complaints,
14210 _("invalid pointer size %d"), byte_size);
14211 }
14212 else
14213 {
14214 /* Should we also complain about unhandled address classes? */
14215 }
14216 }
14217
14218 TYPE_LENGTH (type) = byte_size;
14219 return set_die_type (die, type, cu);
14220 }
14221
14222 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14223 the user defined type vector. */
14224
14225 static struct type *
14226 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14227 {
14228 struct type *type;
14229 struct type *to_type;
14230 struct type *domain;
14231
14232 to_type = die_type (die, cu);
14233 domain = die_containing_type (die, cu);
14234
14235 /* The calls above may have already set the type for this DIE. */
14236 type = get_die_type (die, cu);
14237 if (type)
14238 return type;
14239
14240 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14241 type = lookup_methodptr_type (to_type);
14242 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14243 {
14244 struct type *new_type = alloc_type (cu->objfile);
14245
14246 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14247 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14248 TYPE_VARARGS (to_type));
14249 type = lookup_methodptr_type (new_type);
14250 }
14251 else
14252 type = lookup_memberptr_type (to_type, domain);
14253
14254 return set_die_type (die, type, cu);
14255 }
14256
14257 /* Extract all information from a DW_TAG_reference_type DIE and add to
14258 the user defined type vector. */
14259
14260 static struct type *
14261 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14262 {
14263 struct comp_unit_head *cu_header = &cu->header;
14264 struct type *type, *target_type;
14265 struct attribute *attr;
14266
14267 target_type = die_type (die, cu);
14268
14269 /* The die_type call above may have already set the type for this DIE. */
14270 type = get_die_type (die, cu);
14271 if (type)
14272 return type;
14273
14274 type = lookup_reference_type (target_type);
14275 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14276 if (attr)
14277 {
14278 TYPE_LENGTH (type) = DW_UNSND (attr);
14279 }
14280 else
14281 {
14282 TYPE_LENGTH (type) = cu_header->addr_size;
14283 }
14284 return set_die_type (die, type, cu);
14285 }
14286
14287 /* Add the given cv-qualifiers to the element type of the array. GCC
14288 outputs DWARF type qualifiers that apply to an array, not the
14289 element type. But GDB relies on the array element type to carry
14290 the cv-qualifiers. This mimics section 6.7.3 of the C99
14291 specification. */
14292
14293 static struct type *
14294 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14295 struct type *base_type, int cnst, int voltl)
14296 {
14297 struct type *el_type, *inner_array;
14298
14299 base_type = copy_type (base_type);
14300 inner_array = base_type;
14301
14302 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14303 {
14304 TYPE_TARGET_TYPE (inner_array) =
14305 copy_type (TYPE_TARGET_TYPE (inner_array));
14306 inner_array = TYPE_TARGET_TYPE (inner_array);
14307 }
14308
14309 el_type = TYPE_TARGET_TYPE (inner_array);
14310 cnst |= TYPE_CONST (el_type);
14311 voltl |= TYPE_VOLATILE (el_type);
14312 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14313
14314 return set_die_type (die, base_type, cu);
14315 }
14316
14317 static struct type *
14318 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14319 {
14320 struct type *base_type, *cv_type;
14321
14322 base_type = die_type (die, cu);
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 cv_type = get_die_type (die, cu);
14326 if (cv_type)
14327 return cv_type;
14328
14329 /* In case the const qualifier is applied to an array type, the element type
14330 is so qualified, not the array type (section 6.7.3 of C99). */
14331 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14332 return add_array_cv_type (die, cu, base_type, 1, 0);
14333
14334 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14335 return set_die_type (die, cv_type, cu);
14336 }
14337
14338 static struct type *
14339 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14340 {
14341 struct type *base_type, *cv_type;
14342
14343 base_type = die_type (die, cu);
14344
14345 /* The die_type call above may have already set the type for this DIE. */
14346 cv_type = get_die_type (die, cu);
14347 if (cv_type)
14348 return cv_type;
14349
14350 /* In case the volatile qualifier is applied to an array type, the
14351 element type is so qualified, not the array type (section 6.7.3
14352 of C99). */
14353 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14354 return add_array_cv_type (die, cu, base_type, 0, 1);
14355
14356 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14357 return set_die_type (die, cv_type, cu);
14358 }
14359
14360 /* Handle DW_TAG_restrict_type. */
14361
14362 static struct type *
14363 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14364 {
14365 struct type *base_type, *cv_type;
14366
14367 base_type = die_type (die, cu);
14368
14369 /* The die_type call above may have already set the type for this DIE. */
14370 cv_type = get_die_type (die, cu);
14371 if (cv_type)
14372 return cv_type;
14373
14374 cv_type = make_restrict_type (base_type);
14375 return set_die_type (die, cv_type, cu);
14376 }
14377
14378 /* Handle DW_TAG_atomic_type. */
14379
14380 static struct type *
14381 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14382 {
14383 struct type *base_type, *cv_type;
14384
14385 base_type = die_type (die, cu);
14386
14387 /* The die_type call above may have already set the type for this DIE. */
14388 cv_type = get_die_type (die, cu);
14389 if (cv_type)
14390 return cv_type;
14391
14392 cv_type = make_atomic_type (base_type);
14393 return set_die_type (die, cv_type, cu);
14394 }
14395
14396 /* Extract all information from a DW_TAG_string_type DIE and add to
14397 the user defined type vector. It isn't really a user defined type,
14398 but it behaves like one, with other DIE's using an AT_user_def_type
14399 attribute to reference it. */
14400
14401 static struct type *
14402 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14403 {
14404 struct objfile *objfile = cu->objfile;
14405 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14406 struct type *type, *range_type, *index_type, *char_type;
14407 struct attribute *attr;
14408 unsigned int length;
14409
14410 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14411 if (attr)
14412 {
14413 length = DW_UNSND (attr);
14414 }
14415 else
14416 {
14417 /* Check for the DW_AT_byte_size attribute. */
14418 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14419 if (attr)
14420 {
14421 length = DW_UNSND (attr);
14422 }
14423 else
14424 {
14425 length = 1;
14426 }
14427 }
14428
14429 index_type = objfile_type (objfile)->builtin_int;
14430 range_type = create_static_range_type (NULL, index_type, 1, length);
14431 char_type = language_string_char_type (cu->language_defn, gdbarch);
14432 type = create_string_type (NULL, char_type, range_type);
14433
14434 return set_die_type (die, type, cu);
14435 }
14436
14437 /* Assuming that DIE corresponds to a function, returns nonzero
14438 if the function is prototyped. */
14439
14440 static int
14441 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14442 {
14443 struct attribute *attr;
14444
14445 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14446 if (attr && (DW_UNSND (attr) != 0))
14447 return 1;
14448
14449 /* The DWARF standard implies that the DW_AT_prototyped attribute
14450 is only meaninful for C, but the concept also extends to other
14451 languages that allow unprototyped functions (Eg: Objective C).
14452 For all other languages, assume that functions are always
14453 prototyped. */
14454 if (cu->language != language_c
14455 && cu->language != language_objc
14456 && cu->language != language_opencl)
14457 return 1;
14458
14459 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14460 prototyped and unprototyped functions; default to prototyped,
14461 since that is more common in modern code (and RealView warns
14462 about unprototyped functions). */
14463 if (producer_is_realview (cu->producer))
14464 return 1;
14465
14466 return 0;
14467 }
14468
14469 /* Handle DIES due to C code like:
14470
14471 struct foo
14472 {
14473 int (*funcp)(int a, long l);
14474 int b;
14475 };
14476
14477 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14478
14479 static struct type *
14480 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14481 {
14482 struct objfile *objfile = cu->objfile;
14483 struct type *type; /* Type that this function returns. */
14484 struct type *ftype; /* Function that returns above type. */
14485 struct attribute *attr;
14486
14487 type = die_type (die, cu);
14488
14489 /* The die_type call above may have already set the type for this DIE. */
14490 ftype = get_die_type (die, cu);
14491 if (ftype)
14492 return ftype;
14493
14494 ftype = lookup_function_type (type);
14495
14496 if (prototyped_function_p (die, cu))
14497 TYPE_PROTOTYPED (ftype) = 1;
14498
14499 /* Store the calling convention in the type if it's available in
14500 the subroutine die. Otherwise set the calling convention to
14501 the default value DW_CC_normal. */
14502 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14503 if (attr)
14504 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14505 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14506 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14507 else
14508 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14509
14510 /* Record whether the function returns normally to its caller or not
14511 if the DWARF producer set that information. */
14512 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14513 if (attr && (DW_UNSND (attr) != 0))
14514 TYPE_NO_RETURN (ftype) = 1;
14515
14516 /* We need to add the subroutine type to the die immediately so
14517 we don't infinitely recurse when dealing with parameters
14518 declared as the same subroutine type. */
14519 set_die_type (die, ftype, cu);
14520
14521 if (die->child != NULL)
14522 {
14523 struct type *void_type = objfile_type (objfile)->builtin_void;
14524 struct die_info *child_die;
14525 int nparams, iparams;
14526
14527 /* Count the number of parameters.
14528 FIXME: GDB currently ignores vararg functions, but knows about
14529 vararg member functions. */
14530 nparams = 0;
14531 child_die = die->child;
14532 while (child_die && child_die->tag)
14533 {
14534 if (child_die->tag == DW_TAG_formal_parameter)
14535 nparams++;
14536 else if (child_die->tag == DW_TAG_unspecified_parameters)
14537 TYPE_VARARGS (ftype) = 1;
14538 child_die = sibling_die (child_die);
14539 }
14540
14541 /* Allocate storage for parameters and fill them in. */
14542 TYPE_NFIELDS (ftype) = nparams;
14543 TYPE_FIELDS (ftype) = (struct field *)
14544 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14545
14546 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14547 even if we error out during the parameters reading below. */
14548 for (iparams = 0; iparams < nparams; iparams++)
14549 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14550
14551 iparams = 0;
14552 child_die = die->child;
14553 while (child_die && child_die->tag)
14554 {
14555 if (child_die->tag == DW_TAG_formal_parameter)
14556 {
14557 struct type *arg_type;
14558
14559 /* DWARF version 2 has no clean way to discern C++
14560 static and non-static member functions. G++ helps
14561 GDB by marking the first parameter for non-static
14562 member functions (which is the this pointer) as
14563 artificial. We pass this information to
14564 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14565
14566 DWARF version 3 added DW_AT_object_pointer, which GCC
14567 4.5 does not yet generate. */
14568 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14569 if (attr)
14570 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14571 else
14572 {
14573 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14574
14575 /* GCC/43521: In java, the formal parameter
14576 "this" is sometimes not marked with DW_AT_artificial. */
14577 if (cu->language == language_java)
14578 {
14579 const char *name = dwarf2_name (child_die, cu);
14580
14581 if (name && !strcmp (name, "this"))
14582 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14583 }
14584 }
14585 arg_type = die_type (child_die, cu);
14586
14587 /* RealView does not mark THIS as const, which the testsuite
14588 expects. GCC marks THIS as const in method definitions,
14589 but not in the class specifications (GCC PR 43053). */
14590 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14591 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14592 {
14593 int is_this = 0;
14594 struct dwarf2_cu *arg_cu = cu;
14595 const char *name = dwarf2_name (child_die, cu);
14596
14597 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14598 if (attr)
14599 {
14600 /* If the compiler emits this, use it. */
14601 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14602 is_this = 1;
14603 }
14604 else if (name && strcmp (name, "this") == 0)
14605 /* Function definitions will have the argument names. */
14606 is_this = 1;
14607 else if (name == NULL && iparams == 0)
14608 /* Declarations may not have the names, so like
14609 elsewhere in GDB, assume an artificial first
14610 argument is "this". */
14611 is_this = 1;
14612
14613 if (is_this)
14614 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14615 arg_type, 0);
14616 }
14617
14618 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14619 iparams++;
14620 }
14621 child_die = sibling_die (child_die);
14622 }
14623 }
14624
14625 return ftype;
14626 }
14627
14628 static struct type *
14629 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14630 {
14631 struct objfile *objfile = cu->objfile;
14632 const char *name = NULL;
14633 struct type *this_type, *target_type;
14634
14635 name = dwarf2_full_name (NULL, die, cu);
14636 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14637 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14638 TYPE_NAME (this_type) = name;
14639 set_die_type (die, this_type, cu);
14640 target_type = die_type (die, cu);
14641 if (target_type != this_type)
14642 TYPE_TARGET_TYPE (this_type) = target_type;
14643 else
14644 {
14645 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14646 spec and cause infinite loops in GDB. */
14647 complaint (&symfile_complaints,
14648 _("Self-referential DW_TAG_typedef "
14649 "- DIE at 0x%x [in module %s]"),
14650 die->offset.sect_off, objfile_name (objfile));
14651 TYPE_TARGET_TYPE (this_type) = NULL;
14652 }
14653 return this_type;
14654 }
14655
14656 /* Find a representation of a given base type and install
14657 it in the TYPE field of the die. */
14658
14659 static struct type *
14660 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14661 {
14662 struct objfile *objfile = cu->objfile;
14663 struct type *type;
14664 struct attribute *attr;
14665 int encoding = 0, size = 0;
14666 const char *name;
14667 enum type_code code = TYPE_CODE_INT;
14668 int type_flags = 0;
14669 struct type *target_type = NULL;
14670
14671 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14672 if (attr)
14673 {
14674 encoding = DW_UNSND (attr);
14675 }
14676 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14677 if (attr)
14678 {
14679 size = DW_UNSND (attr);
14680 }
14681 name = dwarf2_name (die, cu);
14682 if (!name)
14683 {
14684 complaint (&symfile_complaints,
14685 _("DW_AT_name missing from DW_TAG_base_type"));
14686 }
14687
14688 switch (encoding)
14689 {
14690 case DW_ATE_address:
14691 /* Turn DW_ATE_address into a void * pointer. */
14692 code = TYPE_CODE_PTR;
14693 type_flags |= TYPE_FLAG_UNSIGNED;
14694 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14695 break;
14696 case DW_ATE_boolean:
14697 code = TYPE_CODE_BOOL;
14698 type_flags |= TYPE_FLAG_UNSIGNED;
14699 break;
14700 case DW_ATE_complex_float:
14701 code = TYPE_CODE_COMPLEX;
14702 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14703 break;
14704 case DW_ATE_decimal_float:
14705 code = TYPE_CODE_DECFLOAT;
14706 break;
14707 case DW_ATE_float:
14708 code = TYPE_CODE_FLT;
14709 break;
14710 case DW_ATE_signed:
14711 break;
14712 case DW_ATE_unsigned:
14713 type_flags |= TYPE_FLAG_UNSIGNED;
14714 if (cu->language == language_fortran
14715 && name
14716 && startswith (name, "character("))
14717 code = TYPE_CODE_CHAR;
14718 break;
14719 case DW_ATE_signed_char:
14720 if (cu->language == language_ada || cu->language == language_m2
14721 || cu->language == language_pascal
14722 || cu->language == language_fortran)
14723 code = TYPE_CODE_CHAR;
14724 break;
14725 case DW_ATE_unsigned_char:
14726 if (cu->language == language_ada || cu->language == language_m2
14727 || cu->language == language_pascal
14728 || cu->language == language_fortran)
14729 code = TYPE_CODE_CHAR;
14730 type_flags |= TYPE_FLAG_UNSIGNED;
14731 break;
14732 case DW_ATE_UTF:
14733 /* We just treat this as an integer and then recognize the
14734 type by name elsewhere. */
14735 break;
14736
14737 default:
14738 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14739 dwarf_type_encoding_name (encoding));
14740 break;
14741 }
14742
14743 type = init_type (code, size, type_flags, NULL, objfile);
14744 TYPE_NAME (type) = name;
14745 TYPE_TARGET_TYPE (type) = target_type;
14746
14747 if (name && strcmp (name, "char") == 0)
14748 TYPE_NOSIGN (type) = 1;
14749
14750 return set_die_type (die, type, cu);
14751 }
14752
14753 /* Parse dwarf attribute if it's a block, reference or constant and put the
14754 resulting value of the attribute into struct bound_prop.
14755 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14756
14757 static int
14758 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14759 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14760 {
14761 struct dwarf2_property_baton *baton;
14762 struct obstack *obstack = &cu->objfile->objfile_obstack;
14763
14764 if (attr == NULL || prop == NULL)
14765 return 0;
14766
14767 if (attr_form_is_block (attr))
14768 {
14769 baton = obstack_alloc (obstack, sizeof (*baton));
14770 baton->referenced_type = NULL;
14771 baton->locexpr.per_cu = cu->per_cu;
14772 baton->locexpr.size = DW_BLOCK (attr)->size;
14773 baton->locexpr.data = DW_BLOCK (attr)->data;
14774 prop->data.baton = baton;
14775 prop->kind = PROP_LOCEXPR;
14776 gdb_assert (prop->data.baton != NULL);
14777 }
14778 else if (attr_form_is_ref (attr))
14779 {
14780 struct dwarf2_cu *target_cu = cu;
14781 struct die_info *target_die;
14782 struct attribute *target_attr;
14783
14784 target_die = follow_die_ref (die, attr, &target_cu);
14785 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14786 if (target_attr == NULL)
14787 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14788 target_cu);
14789 if (target_attr == NULL)
14790 return 0;
14791
14792 switch (target_attr->name)
14793 {
14794 case DW_AT_location:
14795 if (attr_form_is_section_offset (target_attr))
14796 {
14797 baton = obstack_alloc (obstack, sizeof (*baton));
14798 baton->referenced_type = die_type (target_die, target_cu);
14799 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14800 prop->data.baton = baton;
14801 prop->kind = PROP_LOCLIST;
14802 gdb_assert (prop->data.baton != NULL);
14803 }
14804 else if (attr_form_is_block (target_attr))
14805 {
14806 baton = obstack_alloc (obstack, sizeof (*baton));
14807 baton->referenced_type = die_type (target_die, target_cu);
14808 baton->locexpr.per_cu = cu->per_cu;
14809 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14810 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14811 prop->data.baton = baton;
14812 prop->kind = PROP_LOCEXPR;
14813 gdb_assert (prop->data.baton != NULL);
14814 }
14815 else
14816 {
14817 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14818 "dynamic property");
14819 return 0;
14820 }
14821 break;
14822 case DW_AT_data_member_location:
14823 {
14824 LONGEST offset;
14825
14826 if (!handle_data_member_location (target_die, target_cu,
14827 &offset))
14828 return 0;
14829
14830 baton = obstack_alloc (obstack, sizeof (*baton));
14831 baton->referenced_type = get_die_type (target_die->parent,
14832 target_cu);
14833 baton->offset_info.offset = offset;
14834 baton->offset_info.type = die_type (target_die, target_cu);
14835 prop->data.baton = baton;
14836 prop->kind = PROP_ADDR_OFFSET;
14837 break;
14838 }
14839 }
14840 }
14841 else if (attr_form_is_constant (attr))
14842 {
14843 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14844 prop->kind = PROP_CONST;
14845 }
14846 else
14847 {
14848 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14849 dwarf2_name (die, cu));
14850 return 0;
14851 }
14852
14853 return 1;
14854 }
14855
14856 /* Read the given DW_AT_subrange DIE. */
14857
14858 static struct type *
14859 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14860 {
14861 struct type *base_type, *orig_base_type;
14862 struct type *range_type;
14863 struct attribute *attr;
14864 struct dynamic_prop low, high;
14865 int low_default_is_valid;
14866 int high_bound_is_count = 0;
14867 const char *name;
14868 LONGEST negative_mask;
14869
14870 orig_base_type = die_type (die, cu);
14871 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14872 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14873 creating the range type, but we use the result of check_typedef
14874 when examining properties of the type. */
14875 base_type = check_typedef (orig_base_type);
14876
14877 /* The die_type call above may have already set the type for this DIE. */
14878 range_type = get_die_type (die, cu);
14879 if (range_type)
14880 return range_type;
14881
14882 low.kind = PROP_CONST;
14883 high.kind = PROP_CONST;
14884 high.data.const_val = 0;
14885
14886 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14887 omitting DW_AT_lower_bound. */
14888 switch (cu->language)
14889 {
14890 case language_c:
14891 case language_cplus:
14892 low.data.const_val = 0;
14893 low_default_is_valid = 1;
14894 break;
14895 case language_fortran:
14896 low.data.const_val = 1;
14897 low_default_is_valid = 1;
14898 break;
14899 case language_d:
14900 case language_java:
14901 case language_objc:
14902 low.data.const_val = 0;
14903 low_default_is_valid = (cu->header.version >= 4);
14904 break;
14905 case language_ada:
14906 case language_m2:
14907 case language_pascal:
14908 low.data.const_val = 1;
14909 low_default_is_valid = (cu->header.version >= 4);
14910 break;
14911 default:
14912 low.data.const_val = 0;
14913 low_default_is_valid = 0;
14914 break;
14915 }
14916
14917 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14918 if (attr)
14919 attr_to_dynamic_prop (attr, die, cu, &low);
14920 else if (!low_default_is_valid)
14921 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14922 "- DIE at 0x%x [in module %s]"),
14923 die->offset.sect_off, objfile_name (cu->objfile));
14924
14925 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14926 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14927 {
14928 attr = dwarf2_attr (die, DW_AT_count, cu);
14929 if (attr_to_dynamic_prop (attr, die, cu, &high))
14930 {
14931 /* If bounds are constant do the final calculation here. */
14932 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14933 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14934 else
14935 high_bound_is_count = 1;
14936 }
14937 }
14938
14939 /* Dwarf-2 specifications explicitly allows to create subrange types
14940 without specifying a base type.
14941 In that case, the base type must be set to the type of
14942 the lower bound, upper bound or count, in that order, if any of these
14943 three attributes references an object that has a type.
14944 If no base type is found, the Dwarf-2 specifications say that
14945 a signed integer type of size equal to the size of an address should
14946 be used.
14947 For the following C code: `extern char gdb_int [];'
14948 GCC produces an empty range DIE.
14949 FIXME: muller/2010-05-28: Possible references to object for low bound,
14950 high bound or count are not yet handled by this code. */
14951 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14952 {
14953 struct objfile *objfile = cu->objfile;
14954 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14955 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14956 struct type *int_type = objfile_type (objfile)->builtin_int;
14957
14958 /* Test "int", "long int", and "long long int" objfile types,
14959 and select the first one having a size above or equal to the
14960 architecture address size. */
14961 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14962 base_type = int_type;
14963 else
14964 {
14965 int_type = objfile_type (objfile)->builtin_long;
14966 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14967 base_type = int_type;
14968 else
14969 {
14970 int_type = objfile_type (objfile)->builtin_long_long;
14971 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14972 base_type = int_type;
14973 }
14974 }
14975 }
14976
14977 /* Normally, the DWARF producers are expected to use a signed
14978 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14979 But this is unfortunately not always the case, as witnessed
14980 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14981 is used instead. To work around that ambiguity, we treat
14982 the bounds as signed, and thus sign-extend their values, when
14983 the base type is signed. */
14984 negative_mask =
14985 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14986 if (low.kind == PROP_CONST
14987 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14988 low.data.const_val |= negative_mask;
14989 if (high.kind == PROP_CONST
14990 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14991 high.data.const_val |= negative_mask;
14992
14993 range_type = create_range_type (NULL, orig_base_type, &low, &high);
14994
14995 if (high_bound_is_count)
14996 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14997
14998 /* Ada expects an empty array on no boundary attributes. */
14999 if (attr == NULL && cu->language != language_ada)
15000 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15001
15002 name = dwarf2_name (die, cu);
15003 if (name)
15004 TYPE_NAME (range_type) = name;
15005
15006 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15007 if (attr)
15008 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15009
15010 set_die_type (die, range_type, cu);
15011
15012 /* set_die_type should be already done. */
15013 set_descriptive_type (range_type, die, cu);
15014
15015 return range_type;
15016 }
15017
15018 static struct type *
15019 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15020 {
15021 struct type *type;
15022
15023 /* For now, we only support the C meaning of an unspecified type: void. */
15024
15025 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15026 TYPE_NAME (type) = dwarf2_name (die, cu);
15027
15028 return set_die_type (die, type, cu);
15029 }
15030
15031 /* Read a single die and all its descendents. Set the die's sibling
15032 field to NULL; set other fields in the die correctly, and set all
15033 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15034 location of the info_ptr after reading all of those dies. PARENT
15035 is the parent of the die in question. */
15036
15037 static struct die_info *
15038 read_die_and_children (const struct die_reader_specs *reader,
15039 const gdb_byte *info_ptr,
15040 const gdb_byte **new_info_ptr,
15041 struct die_info *parent)
15042 {
15043 struct die_info *die;
15044 const gdb_byte *cur_ptr;
15045 int has_children;
15046
15047 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15048 if (die == NULL)
15049 {
15050 *new_info_ptr = cur_ptr;
15051 return NULL;
15052 }
15053 store_in_ref_table (die, reader->cu);
15054
15055 if (has_children)
15056 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15057 else
15058 {
15059 die->child = NULL;
15060 *new_info_ptr = cur_ptr;
15061 }
15062
15063 die->sibling = NULL;
15064 die->parent = parent;
15065 return die;
15066 }
15067
15068 /* Read a die, all of its descendents, and all of its siblings; set
15069 all of the fields of all of the dies correctly. Arguments are as
15070 in read_die_and_children. */
15071
15072 static struct die_info *
15073 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15074 const gdb_byte *info_ptr,
15075 const gdb_byte **new_info_ptr,
15076 struct die_info *parent)
15077 {
15078 struct die_info *first_die, *last_sibling;
15079 const gdb_byte *cur_ptr;
15080
15081 cur_ptr = info_ptr;
15082 first_die = last_sibling = NULL;
15083
15084 while (1)
15085 {
15086 struct die_info *die
15087 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15088
15089 if (die == NULL)
15090 {
15091 *new_info_ptr = cur_ptr;
15092 return first_die;
15093 }
15094
15095 if (!first_die)
15096 first_die = die;
15097 else
15098 last_sibling->sibling = die;
15099
15100 last_sibling = die;
15101 }
15102 }
15103
15104 /* Read a die, all of its descendents, and all of its siblings; set
15105 all of the fields of all of the dies correctly. Arguments are as
15106 in read_die_and_children.
15107 This the main entry point for reading a DIE and all its children. */
15108
15109 static struct die_info *
15110 read_die_and_siblings (const struct die_reader_specs *reader,
15111 const gdb_byte *info_ptr,
15112 const gdb_byte **new_info_ptr,
15113 struct die_info *parent)
15114 {
15115 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15116 new_info_ptr, parent);
15117
15118 if (dwarf2_die_debug)
15119 {
15120 fprintf_unfiltered (gdb_stdlog,
15121 "Read die from %s@0x%x of %s:\n",
15122 get_section_name (reader->die_section),
15123 (unsigned) (info_ptr - reader->die_section->buffer),
15124 bfd_get_filename (reader->abfd));
15125 dump_die (die, dwarf2_die_debug);
15126 }
15127
15128 return die;
15129 }
15130
15131 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15132 attributes.
15133 The caller is responsible for filling in the extra attributes
15134 and updating (*DIEP)->num_attrs.
15135 Set DIEP to point to a newly allocated die with its information,
15136 except for its child, sibling, and parent fields.
15137 Set HAS_CHILDREN to tell whether the die has children or not. */
15138
15139 static const gdb_byte *
15140 read_full_die_1 (const struct die_reader_specs *reader,
15141 struct die_info **diep, const gdb_byte *info_ptr,
15142 int *has_children, int num_extra_attrs)
15143 {
15144 unsigned int abbrev_number, bytes_read, i;
15145 sect_offset offset;
15146 struct abbrev_info *abbrev;
15147 struct die_info *die;
15148 struct dwarf2_cu *cu = reader->cu;
15149 bfd *abfd = reader->abfd;
15150
15151 offset.sect_off = info_ptr - reader->buffer;
15152 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15153 info_ptr += bytes_read;
15154 if (!abbrev_number)
15155 {
15156 *diep = NULL;
15157 *has_children = 0;
15158 return info_ptr;
15159 }
15160
15161 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15162 if (!abbrev)
15163 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15164 abbrev_number,
15165 bfd_get_filename (abfd));
15166
15167 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15168 die->offset = offset;
15169 die->tag = abbrev->tag;
15170 die->abbrev = abbrev_number;
15171
15172 /* Make the result usable.
15173 The caller needs to update num_attrs after adding the extra
15174 attributes. */
15175 die->num_attrs = abbrev->num_attrs;
15176
15177 for (i = 0; i < abbrev->num_attrs; ++i)
15178 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15179 info_ptr);
15180
15181 *diep = die;
15182 *has_children = abbrev->has_children;
15183 return info_ptr;
15184 }
15185
15186 /* Read a die and all its attributes.
15187 Set DIEP to point to a newly allocated die with its information,
15188 except for its child, sibling, and parent fields.
15189 Set HAS_CHILDREN to tell whether the die has children or not. */
15190
15191 static const gdb_byte *
15192 read_full_die (const struct die_reader_specs *reader,
15193 struct die_info **diep, const gdb_byte *info_ptr,
15194 int *has_children)
15195 {
15196 const gdb_byte *result;
15197
15198 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15199
15200 if (dwarf2_die_debug)
15201 {
15202 fprintf_unfiltered (gdb_stdlog,
15203 "Read die from %s@0x%x of %s:\n",
15204 get_section_name (reader->die_section),
15205 (unsigned) (info_ptr - reader->die_section->buffer),
15206 bfd_get_filename (reader->abfd));
15207 dump_die (*diep, dwarf2_die_debug);
15208 }
15209
15210 return result;
15211 }
15212 \f
15213 /* Abbreviation tables.
15214
15215 In DWARF version 2, the description of the debugging information is
15216 stored in a separate .debug_abbrev section. Before we read any
15217 dies from a section we read in all abbreviations and install them
15218 in a hash table. */
15219
15220 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15221
15222 static struct abbrev_info *
15223 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15224 {
15225 struct abbrev_info *abbrev;
15226
15227 abbrev = (struct abbrev_info *)
15228 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15229 memset (abbrev, 0, sizeof (struct abbrev_info));
15230 return abbrev;
15231 }
15232
15233 /* Add an abbreviation to the table. */
15234
15235 static void
15236 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15237 unsigned int abbrev_number,
15238 struct abbrev_info *abbrev)
15239 {
15240 unsigned int hash_number;
15241
15242 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15243 abbrev->next = abbrev_table->abbrevs[hash_number];
15244 abbrev_table->abbrevs[hash_number] = abbrev;
15245 }
15246
15247 /* Look up an abbrev in the table.
15248 Returns NULL if the abbrev is not found. */
15249
15250 static struct abbrev_info *
15251 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15252 unsigned int abbrev_number)
15253 {
15254 unsigned int hash_number;
15255 struct abbrev_info *abbrev;
15256
15257 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15258 abbrev = abbrev_table->abbrevs[hash_number];
15259
15260 while (abbrev)
15261 {
15262 if (abbrev->number == abbrev_number)
15263 return abbrev;
15264 abbrev = abbrev->next;
15265 }
15266 return NULL;
15267 }
15268
15269 /* Read in an abbrev table. */
15270
15271 static struct abbrev_table *
15272 abbrev_table_read_table (struct dwarf2_section_info *section,
15273 sect_offset offset)
15274 {
15275 struct objfile *objfile = dwarf2_per_objfile->objfile;
15276 bfd *abfd = get_section_bfd_owner (section);
15277 struct abbrev_table *abbrev_table;
15278 const gdb_byte *abbrev_ptr;
15279 struct abbrev_info *cur_abbrev;
15280 unsigned int abbrev_number, bytes_read, abbrev_name;
15281 unsigned int abbrev_form;
15282 struct attr_abbrev *cur_attrs;
15283 unsigned int allocated_attrs;
15284
15285 abbrev_table = XNEW (struct abbrev_table);
15286 abbrev_table->offset = offset;
15287 obstack_init (&abbrev_table->abbrev_obstack);
15288 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15289 (ABBREV_HASH_SIZE
15290 * sizeof (struct abbrev_info *)));
15291 memset (abbrev_table->abbrevs, 0,
15292 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15293
15294 dwarf2_read_section (objfile, section);
15295 abbrev_ptr = section->buffer + offset.sect_off;
15296 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15297 abbrev_ptr += bytes_read;
15298
15299 allocated_attrs = ATTR_ALLOC_CHUNK;
15300 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15301
15302 /* Loop until we reach an abbrev number of 0. */
15303 while (abbrev_number)
15304 {
15305 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15306
15307 /* read in abbrev header */
15308 cur_abbrev->number = abbrev_number;
15309 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15310 abbrev_ptr += bytes_read;
15311 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15312 abbrev_ptr += 1;
15313
15314 /* now read in declarations */
15315 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15316 abbrev_ptr += bytes_read;
15317 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15318 abbrev_ptr += bytes_read;
15319 while (abbrev_name)
15320 {
15321 if (cur_abbrev->num_attrs == allocated_attrs)
15322 {
15323 allocated_attrs += ATTR_ALLOC_CHUNK;
15324 cur_attrs
15325 = xrealloc (cur_attrs, (allocated_attrs
15326 * sizeof (struct attr_abbrev)));
15327 }
15328
15329 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15330 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15331 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15332 abbrev_ptr += bytes_read;
15333 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15334 abbrev_ptr += bytes_read;
15335 }
15336
15337 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15338 (cur_abbrev->num_attrs
15339 * sizeof (struct attr_abbrev)));
15340 memcpy (cur_abbrev->attrs, cur_attrs,
15341 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15342
15343 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15344
15345 /* Get next abbreviation.
15346 Under Irix6 the abbreviations for a compilation unit are not
15347 always properly terminated with an abbrev number of 0.
15348 Exit loop if we encounter an abbreviation which we have
15349 already read (which means we are about to read the abbreviations
15350 for the next compile unit) or if the end of the abbreviation
15351 table is reached. */
15352 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15353 break;
15354 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15355 abbrev_ptr += bytes_read;
15356 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15357 break;
15358 }
15359
15360 xfree (cur_attrs);
15361 return abbrev_table;
15362 }
15363
15364 /* Free the resources held by ABBREV_TABLE. */
15365
15366 static void
15367 abbrev_table_free (struct abbrev_table *abbrev_table)
15368 {
15369 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15370 xfree (abbrev_table);
15371 }
15372
15373 /* Same as abbrev_table_free but as a cleanup.
15374 We pass in a pointer to the pointer to the table so that we can
15375 set the pointer to NULL when we're done. It also simplifies
15376 build_type_psymtabs_1. */
15377
15378 static void
15379 abbrev_table_free_cleanup (void *table_ptr)
15380 {
15381 struct abbrev_table **abbrev_table_ptr = table_ptr;
15382
15383 if (*abbrev_table_ptr != NULL)
15384 abbrev_table_free (*abbrev_table_ptr);
15385 *abbrev_table_ptr = NULL;
15386 }
15387
15388 /* Read the abbrev table for CU from ABBREV_SECTION. */
15389
15390 static void
15391 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15392 struct dwarf2_section_info *abbrev_section)
15393 {
15394 cu->abbrev_table =
15395 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15396 }
15397
15398 /* Release the memory used by the abbrev table for a compilation unit. */
15399
15400 static void
15401 dwarf2_free_abbrev_table (void *ptr_to_cu)
15402 {
15403 struct dwarf2_cu *cu = ptr_to_cu;
15404
15405 if (cu->abbrev_table != NULL)
15406 abbrev_table_free (cu->abbrev_table);
15407 /* Set this to NULL so that we SEGV if we try to read it later,
15408 and also because free_comp_unit verifies this is NULL. */
15409 cu->abbrev_table = NULL;
15410 }
15411 \f
15412 /* Returns nonzero if TAG represents a type that we might generate a partial
15413 symbol for. */
15414
15415 static int
15416 is_type_tag_for_partial (int tag)
15417 {
15418 switch (tag)
15419 {
15420 #if 0
15421 /* Some types that would be reasonable to generate partial symbols for,
15422 that we don't at present. */
15423 case DW_TAG_array_type:
15424 case DW_TAG_file_type:
15425 case DW_TAG_ptr_to_member_type:
15426 case DW_TAG_set_type:
15427 case DW_TAG_string_type:
15428 case DW_TAG_subroutine_type:
15429 #endif
15430 case DW_TAG_base_type:
15431 case DW_TAG_class_type:
15432 case DW_TAG_interface_type:
15433 case DW_TAG_enumeration_type:
15434 case DW_TAG_structure_type:
15435 case DW_TAG_subrange_type:
15436 case DW_TAG_typedef:
15437 case DW_TAG_union_type:
15438 return 1;
15439 default:
15440 return 0;
15441 }
15442 }
15443
15444 /* Load all DIEs that are interesting for partial symbols into memory. */
15445
15446 static struct partial_die_info *
15447 load_partial_dies (const struct die_reader_specs *reader,
15448 const gdb_byte *info_ptr, int building_psymtab)
15449 {
15450 struct dwarf2_cu *cu = reader->cu;
15451 struct objfile *objfile = cu->objfile;
15452 struct partial_die_info *part_die;
15453 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15454 struct abbrev_info *abbrev;
15455 unsigned int bytes_read;
15456 unsigned int load_all = 0;
15457 int nesting_level = 1;
15458
15459 parent_die = NULL;
15460 last_die = NULL;
15461
15462 gdb_assert (cu->per_cu != NULL);
15463 if (cu->per_cu->load_all_dies)
15464 load_all = 1;
15465
15466 cu->partial_dies
15467 = htab_create_alloc_ex (cu->header.length / 12,
15468 partial_die_hash,
15469 partial_die_eq,
15470 NULL,
15471 &cu->comp_unit_obstack,
15472 hashtab_obstack_allocate,
15473 dummy_obstack_deallocate);
15474
15475 part_die = obstack_alloc (&cu->comp_unit_obstack,
15476 sizeof (struct partial_die_info));
15477
15478 while (1)
15479 {
15480 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15481
15482 /* A NULL abbrev means the end of a series of children. */
15483 if (abbrev == NULL)
15484 {
15485 if (--nesting_level == 0)
15486 {
15487 /* PART_DIE was probably the last thing allocated on the
15488 comp_unit_obstack, so we could call obstack_free
15489 here. We don't do that because the waste is small,
15490 and will be cleaned up when we're done with this
15491 compilation unit. This way, we're also more robust
15492 against other users of the comp_unit_obstack. */
15493 return first_die;
15494 }
15495 info_ptr += bytes_read;
15496 last_die = parent_die;
15497 parent_die = parent_die->die_parent;
15498 continue;
15499 }
15500
15501 /* Check for template arguments. We never save these; if
15502 they're seen, we just mark the parent, and go on our way. */
15503 if (parent_die != NULL
15504 && cu->language == language_cplus
15505 && (abbrev->tag == DW_TAG_template_type_param
15506 || abbrev->tag == DW_TAG_template_value_param))
15507 {
15508 parent_die->has_template_arguments = 1;
15509
15510 if (!load_all)
15511 {
15512 /* We don't need a partial DIE for the template argument. */
15513 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15514 continue;
15515 }
15516 }
15517
15518 /* We only recurse into c++ subprograms looking for template arguments.
15519 Skip their other children. */
15520 if (!load_all
15521 && cu->language == language_cplus
15522 && parent_die != NULL
15523 && parent_die->tag == DW_TAG_subprogram)
15524 {
15525 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15526 continue;
15527 }
15528
15529 /* Check whether this DIE is interesting enough to save. Normally
15530 we would not be interested in members here, but there may be
15531 later variables referencing them via DW_AT_specification (for
15532 static members). */
15533 if (!load_all
15534 && !is_type_tag_for_partial (abbrev->tag)
15535 && abbrev->tag != DW_TAG_constant
15536 && abbrev->tag != DW_TAG_enumerator
15537 && abbrev->tag != DW_TAG_subprogram
15538 && abbrev->tag != DW_TAG_lexical_block
15539 && abbrev->tag != DW_TAG_variable
15540 && abbrev->tag != DW_TAG_namespace
15541 && abbrev->tag != DW_TAG_module
15542 && abbrev->tag != DW_TAG_member
15543 && abbrev->tag != DW_TAG_imported_unit
15544 && abbrev->tag != DW_TAG_imported_declaration)
15545 {
15546 /* Otherwise we skip to the next sibling, if any. */
15547 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15548 continue;
15549 }
15550
15551 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15552 info_ptr);
15553
15554 /* This two-pass algorithm for processing partial symbols has a
15555 high cost in cache pressure. Thus, handle some simple cases
15556 here which cover the majority of C partial symbols. DIEs
15557 which neither have specification tags in them, nor could have
15558 specification tags elsewhere pointing at them, can simply be
15559 processed and discarded.
15560
15561 This segment is also optional; scan_partial_symbols and
15562 add_partial_symbol will handle these DIEs if we chain
15563 them in normally. When compilers which do not emit large
15564 quantities of duplicate debug information are more common,
15565 this code can probably be removed. */
15566
15567 /* Any complete simple types at the top level (pretty much all
15568 of them, for a language without namespaces), can be processed
15569 directly. */
15570 if (parent_die == NULL
15571 && part_die->has_specification == 0
15572 && part_die->is_declaration == 0
15573 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15574 || part_die->tag == DW_TAG_base_type
15575 || part_die->tag == DW_TAG_subrange_type))
15576 {
15577 if (building_psymtab && part_die->name != NULL)
15578 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15579 VAR_DOMAIN, LOC_TYPEDEF,
15580 &objfile->static_psymbols,
15581 0, (CORE_ADDR) 0, cu->language, objfile);
15582 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15583 continue;
15584 }
15585
15586 /* The exception for DW_TAG_typedef with has_children above is
15587 a workaround of GCC PR debug/47510. In the case of this complaint
15588 type_name_no_tag_or_error will error on such types later.
15589
15590 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15591 it could not find the child DIEs referenced later, this is checked
15592 above. In correct DWARF DW_TAG_typedef should have no children. */
15593
15594 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15595 complaint (&symfile_complaints,
15596 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15597 "- DIE at 0x%x [in module %s]"),
15598 part_die->offset.sect_off, objfile_name (objfile));
15599
15600 /* If we're at the second level, and we're an enumerator, and
15601 our parent has no specification (meaning possibly lives in a
15602 namespace elsewhere), then we can add the partial symbol now
15603 instead of queueing it. */
15604 if (part_die->tag == DW_TAG_enumerator
15605 && parent_die != NULL
15606 && parent_die->die_parent == NULL
15607 && parent_die->tag == DW_TAG_enumeration_type
15608 && parent_die->has_specification == 0)
15609 {
15610 if (part_die->name == NULL)
15611 complaint (&symfile_complaints,
15612 _("malformed enumerator DIE ignored"));
15613 else if (building_psymtab)
15614 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15615 VAR_DOMAIN, LOC_CONST,
15616 (cu->language == language_cplus
15617 || cu->language == language_java)
15618 ? &objfile->global_psymbols
15619 : &objfile->static_psymbols,
15620 0, (CORE_ADDR) 0, cu->language, objfile);
15621
15622 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15623 continue;
15624 }
15625
15626 /* We'll save this DIE so link it in. */
15627 part_die->die_parent = parent_die;
15628 part_die->die_sibling = NULL;
15629 part_die->die_child = NULL;
15630
15631 if (last_die && last_die == parent_die)
15632 last_die->die_child = part_die;
15633 else if (last_die)
15634 last_die->die_sibling = part_die;
15635
15636 last_die = part_die;
15637
15638 if (first_die == NULL)
15639 first_die = part_die;
15640
15641 /* Maybe add the DIE to the hash table. Not all DIEs that we
15642 find interesting need to be in the hash table, because we
15643 also have the parent/sibling/child chains; only those that we
15644 might refer to by offset later during partial symbol reading.
15645
15646 For now this means things that might have be the target of a
15647 DW_AT_specification, DW_AT_abstract_origin, or
15648 DW_AT_extension. DW_AT_extension will refer only to
15649 namespaces; DW_AT_abstract_origin refers to functions (and
15650 many things under the function DIE, but we do not recurse
15651 into function DIEs during partial symbol reading) and
15652 possibly variables as well; DW_AT_specification refers to
15653 declarations. Declarations ought to have the DW_AT_declaration
15654 flag. It happens that GCC forgets to put it in sometimes, but
15655 only for functions, not for types.
15656
15657 Adding more things than necessary to the hash table is harmless
15658 except for the performance cost. Adding too few will result in
15659 wasted time in find_partial_die, when we reread the compilation
15660 unit with load_all_dies set. */
15661
15662 if (load_all
15663 || abbrev->tag == DW_TAG_constant
15664 || abbrev->tag == DW_TAG_subprogram
15665 || abbrev->tag == DW_TAG_variable
15666 || abbrev->tag == DW_TAG_namespace
15667 || part_die->is_declaration)
15668 {
15669 void **slot;
15670
15671 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15672 part_die->offset.sect_off, INSERT);
15673 *slot = part_die;
15674 }
15675
15676 part_die = obstack_alloc (&cu->comp_unit_obstack,
15677 sizeof (struct partial_die_info));
15678
15679 /* For some DIEs we want to follow their children (if any). For C
15680 we have no reason to follow the children of structures; for other
15681 languages we have to, so that we can get at method physnames
15682 to infer fully qualified class names, for DW_AT_specification,
15683 and for C++ template arguments. For C++, we also look one level
15684 inside functions to find template arguments (if the name of the
15685 function does not already contain the template arguments).
15686
15687 For Ada, we need to scan the children of subprograms and lexical
15688 blocks as well because Ada allows the definition of nested
15689 entities that could be interesting for the debugger, such as
15690 nested subprograms for instance. */
15691 if (last_die->has_children
15692 && (load_all
15693 || last_die->tag == DW_TAG_namespace
15694 || last_die->tag == DW_TAG_module
15695 || last_die->tag == DW_TAG_enumeration_type
15696 || (cu->language == language_cplus
15697 && last_die->tag == DW_TAG_subprogram
15698 && (last_die->name == NULL
15699 || strchr (last_die->name, '<') == NULL))
15700 || (cu->language != language_c
15701 && (last_die->tag == DW_TAG_class_type
15702 || last_die->tag == DW_TAG_interface_type
15703 || last_die->tag == DW_TAG_structure_type
15704 || last_die->tag == DW_TAG_union_type))
15705 || (cu->language == language_ada
15706 && (last_die->tag == DW_TAG_subprogram
15707 || last_die->tag == DW_TAG_lexical_block))))
15708 {
15709 nesting_level++;
15710 parent_die = last_die;
15711 continue;
15712 }
15713
15714 /* Otherwise we skip to the next sibling, if any. */
15715 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15716
15717 /* Back to the top, do it again. */
15718 }
15719 }
15720
15721 /* Read a minimal amount of information into the minimal die structure. */
15722
15723 static const gdb_byte *
15724 read_partial_die (const struct die_reader_specs *reader,
15725 struct partial_die_info *part_die,
15726 struct abbrev_info *abbrev, unsigned int abbrev_len,
15727 const gdb_byte *info_ptr)
15728 {
15729 struct dwarf2_cu *cu = reader->cu;
15730 struct objfile *objfile = cu->objfile;
15731 const gdb_byte *buffer = reader->buffer;
15732 unsigned int i;
15733 struct attribute attr;
15734 int has_low_pc_attr = 0;
15735 int has_high_pc_attr = 0;
15736 int high_pc_relative = 0;
15737
15738 memset (part_die, 0, sizeof (struct partial_die_info));
15739
15740 part_die->offset.sect_off = info_ptr - buffer;
15741
15742 info_ptr += abbrev_len;
15743
15744 if (abbrev == NULL)
15745 return info_ptr;
15746
15747 part_die->tag = abbrev->tag;
15748 part_die->has_children = abbrev->has_children;
15749
15750 for (i = 0; i < abbrev->num_attrs; ++i)
15751 {
15752 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15753
15754 /* Store the data if it is of an attribute we want to keep in a
15755 partial symbol table. */
15756 switch (attr.name)
15757 {
15758 case DW_AT_name:
15759 switch (part_die->tag)
15760 {
15761 case DW_TAG_compile_unit:
15762 case DW_TAG_partial_unit:
15763 case DW_TAG_type_unit:
15764 /* Compilation units have a DW_AT_name that is a filename, not
15765 a source language identifier. */
15766 case DW_TAG_enumeration_type:
15767 case DW_TAG_enumerator:
15768 /* These tags always have simple identifiers already; no need
15769 to canonicalize them. */
15770 part_die->name = DW_STRING (&attr);
15771 break;
15772 default:
15773 part_die->name
15774 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15775 &objfile->per_bfd->storage_obstack);
15776 break;
15777 }
15778 break;
15779 case DW_AT_linkage_name:
15780 case DW_AT_MIPS_linkage_name:
15781 /* Note that both forms of linkage name might appear. We
15782 assume they will be the same, and we only store the last
15783 one we see. */
15784 if (cu->language == language_ada)
15785 part_die->name = DW_STRING (&attr);
15786 part_die->linkage_name = DW_STRING (&attr);
15787 break;
15788 case DW_AT_low_pc:
15789 has_low_pc_attr = 1;
15790 part_die->lowpc = attr_value_as_address (&attr);
15791 break;
15792 case DW_AT_high_pc:
15793 has_high_pc_attr = 1;
15794 part_die->highpc = attr_value_as_address (&attr);
15795 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15796 high_pc_relative = 1;
15797 break;
15798 case DW_AT_location:
15799 /* Support the .debug_loc offsets. */
15800 if (attr_form_is_block (&attr))
15801 {
15802 part_die->d.locdesc = DW_BLOCK (&attr);
15803 }
15804 else if (attr_form_is_section_offset (&attr))
15805 {
15806 dwarf2_complex_location_expr_complaint ();
15807 }
15808 else
15809 {
15810 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15811 "partial symbol information");
15812 }
15813 break;
15814 case DW_AT_external:
15815 part_die->is_external = DW_UNSND (&attr);
15816 break;
15817 case DW_AT_declaration:
15818 part_die->is_declaration = DW_UNSND (&attr);
15819 break;
15820 case DW_AT_type:
15821 part_die->has_type = 1;
15822 break;
15823 case DW_AT_abstract_origin:
15824 case DW_AT_specification:
15825 case DW_AT_extension:
15826 part_die->has_specification = 1;
15827 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15828 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15829 || cu->per_cu->is_dwz);
15830 break;
15831 case DW_AT_sibling:
15832 /* Ignore absolute siblings, they might point outside of
15833 the current compile unit. */
15834 if (attr.form == DW_FORM_ref_addr)
15835 complaint (&symfile_complaints,
15836 _("ignoring absolute DW_AT_sibling"));
15837 else
15838 {
15839 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15840 const gdb_byte *sibling_ptr = buffer + off;
15841
15842 if (sibling_ptr < info_ptr)
15843 complaint (&symfile_complaints,
15844 _("DW_AT_sibling points backwards"));
15845 else if (sibling_ptr > reader->buffer_end)
15846 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15847 else
15848 part_die->sibling = sibling_ptr;
15849 }
15850 break;
15851 case DW_AT_byte_size:
15852 part_die->has_byte_size = 1;
15853 break;
15854 case DW_AT_calling_convention:
15855 /* DWARF doesn't provide a way to identify a program's source-level
15856 entry point. DW_AT_calling_convention attributes are only meant
15857 to describe functions' calling conventions.
15858
15859 However, because it's a necessary piece of information in
15860 Fortran, and because DW_CC_program is the only piece of debugging
15861 information whose definition refers to a 'main program' at all,
15862 several compilers have begun marking Fortran main programs with
15863 DW_CC_program --- even when those functions use the standard
15864 calling conventions.
15865
15866 So until DWARF specifies a way to provide this information and
15867 compilers pick up the new representation, we'll support this
15868 practice. */
15869 if (DW_UNSND (&attr) == DW_CC_program
15870 && cu->language == language_fortran)
15871 set_objfile_main_name (objfile, part_die->name, language_fortran);
15872 break;
15873 case DW_AT_inline:
15874 if (DW_UNSND (&attr) == DW_INL_inlined
15875 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15876 part_die->may_be_inlined = 1;
15877 break;
15878
15879 case DW_AT_import:
15880 if (part_die->tag == DW_TAG_imported_unit)
15881 {
15882 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15883 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15884 || cu->per_cu->is_dwz);
15885 }
15886 break;
15887
15888 default:
15889 break;
15890 }
15891 }
15892
15893 if (high_pc_relative)
15894 part_die->highpc += part_die->lowpc;
15895
15896 if (has_low_pc_attr && has_high_pc_attr)
15897 {
15898 /* When using the GNU linker, .gnu.linkonce. sections are used to
15899 eliminate duplicate copies of functions and vtables and such.
15900 The linker will arbitrarily choose one and discard the others.
15901 The AT_*_pc values for such functions refer to local labels in
15902 these sections. If the section from that file was discarded, the
15903 labels are not in the output, so the relocs get a value of 0.
15904 If this is a discarded function, mark the pc bounds as invalid,
15905 so that GDB will ignore it. */
15906 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15907 {
15908 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15909
15910 complaint (&symfile_complaints,
15911 _("DW_AT_low_pc %s is zero "
15912 "for DIE at 0x%x [in module %s]"),
15913 paddress (gdbarch, part_die->lowpc),
15914 part_die->offset.sect_off, objfile_name (objfile));
15915 }
15916 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15917 else if (part_die->lowpc >= part_die->highpc)
15918 {
15919 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15920
15921 complaint (&symfile_complaints,
15922 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15923 "for DIE at 0x%x [in module %s]"),
15924 paddress (gdbarch, part_die->lowpc),
15925 paddress (gdbarch, part_die->highpc),
15926 part_die->offset.sect_off, objfile_name (objfile));
15927 }
15928 else
15929 part_die->has_pc_info = 1;
15930 }
15931
15932 return info_ptr;
15933 }
15934
15935 /* Find a cached partial DIE at OFFSET in CU. */
15936
15937 static struct partial_die_info *
15938 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15939 {
15940 struct partial_die_info *lookup_die = NULL;
15941 struct partial_die_info part_die;
15942
15943 part_die.offset = offset;
15944 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15945 offset.sect_off);
15946
15947 return lookup_die;
15948 }
15949
15950 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15951 except in the case of .debug_types DIEs which do not reference
15952 outside their CU (they do however referencing other types via
15953 DW_FORM_ref_sig8). */
15954
15955 static struct partial_die_info *
15956 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15957 {
15958 struct objfile *objfile = cu->objfile;
15959 struct dwarf2_per_cu_data *per_cu = NULL;
15960 struct partial_die_info *pd = NULL;
15961
15962 if (offset_in_dwz == cu->per_cu->is_dwz
15963 && offset_in_cu_p (&cu->header, offset))
15964 {
15965 pd = find_partial_die_in_comp_unit (offset, cu);
15966 if (pd != NULL)
15967 return pd;
15968 /* We missed recording what we needed.
15969 Load all dies and try again. */
15970 per_cu = cu->per_cu;
15971 }
15972 else
15973 {
15974 /* TUs don't reference other CUs/TUs (except via type signatures). */
15975 if (cu->per_cu->is_debug_types)
15976 {
15977 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15978 " external reference to offset 0x%lx [in module %s].\n"),
15979 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15980 bfd_get_filename (objfile->obfd));
15981 }
15982 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15983 objfile);
15984
15985 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15986 load_partial_comp_unit (per_cu);
15987
15988 per_cu->cu->last_used = 0;
15989 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15990 }
15991
15992 /* If we didn't find it, and not all dies have been loaded,
15993 load them all and try again. */
15994
15995 if (pd == NULL && per_cu->load_all_dies == 0)
15996 {
15997 per_cu->load_all_dies = 1;
15998
15999 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16000 THIS_CU->cu may already be in use. So we can't just free it and
16001 replace its DIEs with the ones we read in. Instead, we leave those
16002 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16003 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16004 set. */
16005 load_partial_comp_unit (per_cu);
16006
16007 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16008 }
16009
16010 if (pd == NULL)
16011 internal_error (__FILE__, __LINE__,
16012 _("could not find partial DIE 0x%x "
16013 "in cache [from module %s]\n"),
16014 offset.sect_off, bfd_get_filename (objfile->obfd));
16015 return pd;
16016 }
16017
16018 /* See if we can figure out if the class lives in a namespace. We do
16019 this by looking for a member function; its demangled name will
16020 contain namespace info, if there is any. */
16021
16022 static void
16023 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16024 struct dwarf2_cu *cu)
16025 {
16026 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16027 what template types look like, because the demangler
16028 frequently doesn't give the same name as the debug info. We
16029 could fix this by only using the demangled name to get the
16030 prefix (but see comment in read_structure_type). */
16031
16032 struct partial_die_info *real_pdi;
16033 struct partial_die_info *child_pdi;
16034
16035 /* If this DIE (this DIE's specification, if any) has a parent, then
16036 we should not do this. We'll prepend the parent's fully qualified
16037 name when we create the partial symbol. */
16038
16039 real_pdi = struct_pdi;
16040 while (real_pdi->has_specification)
16041 real_pdi = find_partial_die (real_pdi->spec_offset,
16042 real_pdi->spec_is_dwz, cu);
16043
16044 if (real_pdi->die_parent != NULL)
16045 return;
16046
16047 for (child_pdi = struct_pdi->die_child;
16048 child_pdi != NULL;
16049 child_pdi = child_pdi->die_sibling)
16050 {
16051 if (child_pdi->tag == DW_TAG_subprogram
16052 && child_pdi->linkage_name != NULL)
16053 {
16054 char *actual_class_name
16055 = language_class_name_from_physname (cu->language_defn,
16056 child_pdi->linkage_name);
16057 if (actual_class_name != NULL)
16058 {
16059 struct_pdi->name
16060 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16061 actual_class_name,
16062 strlen (actual_class_name));
16063 xfree (actual_class_name);
16064 }
16065 break;
16066 }
16067 }
16068 }
16069
16070 /* Adjust PART_DIE before generating a symbol for it. This function
16071 may set the is_external flag or change the DIE's name. */
16072
16073 static void
16074 fixup_partial_die (struct partial_die_info *part_die,
16075 struct dwarf2_cu *cu)
16076 {
16077 /* Once we've fixed up a die, there's no point in doing so again.
16078 This also avoids a memory leak if we were to call
16079 guess_partial_die_structure_name multiple times. */
16080 if (part_die->fixup_called)
16081 return;
16082
16083 /* If we found a reference attribute and the DIE has no name, try
16084 to find a name in the referred to DIE. */
16085
16086 if (part_die->name == NULL && part_die->has_specification)
16087 {
16088 struct partial_die_info *spec_die;
16089
16090 spec_die = find_partial_die (part_die->spec_offset,
16091 part_die->spec_is_dwz, cu);
16092
16093 fixup_partial_die (spec_die, cu);
16094
16095 if (spec_die->name)
16096 {
16097 part_die->name = spec_die->name;
16098
16099 /* Copy DW_AT_external attribute if it is set. */
16100 if (spec_die->is_external)
16101 part_die->is_external = spec_die->is_external;
16102 }
16103 }
16104
16105 /* Set default names for some unnamed DIEs. */
16106
16107 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16108 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16109
16110 /* If there is no parent die to provide a namespace, and there are
16111 children, see if we can determine the namespace from their linkage
16112 name. */
16113 if (cu->language == language_cplus
16114 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16115 && part_die->die_parent == NULL
16116 && part_die->has_children
16117 && (part_die->tag == DW_TAG_class_type
16118 || part_die->tag == DW_TAG_structure_type
16119 || part_die->tag == DW_TAG_union_type))
16120 guess_partial_die_structure_name (part_die, cu);
16121
16122 /* GCC might emit a nameless struct or union that has a linkage
16123 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16124 if (part_die->name == NULL
16125 && (part_die->tag == DW_TAG_class_type
16126 || part_die->tag == DW_TAG_interface_type
16127 || part_die->tag == DW_TAG_structure_type
16128 || part_die->tag == DW_TAG_union_type)
16129 && part_die->linkage_name != NULL)
16130 {
16131 char *demangled;
16132
16133 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16134 if (demangled)
16135 {
16136 const char *base;
16137
16138 /* Strip any leading namespaces/classes, keep only the base name.
16139 DW_AT_name for named DIEs does not contain the prefixes. */
16140 base = strrchr (demangled, ':');
16141 if (base && base > demangled && base[-1] == ':')
16142 base++;
16143 else
16144 base = demangled;
16145
16146 part_die->name
16147 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16148 base, strlen (base));
16149 xfree (demangled);
16150 }
16151 }
16152
16153 part_die->fixup_called = 1;
16154 }
16155
16156 /* Read an attribute value described by an attribute form. */
16157
16158 static const gdb_byte *
16159 read_attribute_value (const struct die_reader_specs *reader,
16160 struct attribute *attr, unsigned form,
16161 const gdb_byte *info_ptr)
16162 {
16163 struct dwarf2_cu *cu = reader->cu;
16164 struct objfile *objfile = cu->objfile;
16165 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16166 bfd *abfd = reader->abfd;
16167 struct comp_unit_head *cu_header = &cu->header;
16168 unsigned int bytes_read;
16169 struct dwarf_block *blk;
16170
16171 attr->form = form;
16172 switch (form)
16173 {
16174 case DW_FORM_ref_addr:
16175 if (cu->header.version == 2)
16176 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16177 else
16178 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16179 &cu->header, &bytes_read);
16180 info_ptr += bytes_read;
16181 break;
16182 case DW_FORM_GNU_ref_alt:
16183 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16184 info_ptr += bytes_read;
16185 break;
16186 case DW_FORM_addr:
16187 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16188 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16189 info_ptr += bytes_read;
16190 break;
16191 case DW_FORM_block2:
16192 blk = dwarf_alloc_block (cu);
16193 blk->size = read_2_bytes (abfd, info_ptr);
16194 info_ptr += 2;
16195 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16196 info_ptr += blk->size;
16197 DW_BLOCK (attr) = blk;
16198 break;
16199 case DW_FORM_block4:
16200 blk = dwarf_alloc_block (cu);
16201 blk->size = read_4_bytes (abfd, info_ptr);
16202 info_ptr += 4;
16203 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16204 info_ptr += blk->size;
16205 DW_BLOCK (attr) = blk;
16206 break;
16207 case DW_FORM_data2:
16208 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16209 info_ptr += 2;
16210 break;
16211 case DW_FORM_data4:
16212 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16213 info_ptr += 4;
16214 break;
16215 case DW_FORM_data8:
16216 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16217 info_ptr += 8;
16218 break;
16219 case DW_FORM_sec_offset:
16220 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16221 info_ptr += bytes_read;
16222 break;
16223 case DW_FORM_string:
16224 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16225 DW_STRING_IS_CANONICAL (attr) = 0;
16226 info_ptr += bytes_read;
16227 break;
16228 case DW_FORM_strp:
16229 if (!cu->per_cu->is_dwz)
16230 {
16231 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16232 &bytes_read);
16233 DW_STRING_IS_CANONICAL (attr) = 0;
16234 info_ptr += bytes_read;
16235 break;
16236 }
16237 /* FALLTHROUGH */
16238 case DW_FORM_GNU_strp_alt:
16239 {
16240 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16241 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16242 &bytes_read);
16243
16244 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16245 DW_STRING_IS_CANONICAL (attr) = 0;
16246 info_ptr += bytes_read;
16247 }
16248 break;
16249 case DW_FORM_exprloc:
16250 case DW_FORM_block:
16251 blk = dwarf_alloc_block (cu);
16252 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16253 info_ptr += bytes_read;
16254 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16255 info_ptr += blk->size;
16256 DW_BLOCK (attr) = blk;
16257 break;
16258 case DW_FORM_block1:
16259 blk = dwarf_alloc_block (cu);
16260 blk->size = read_1_byte (abfd, info_ptr);
16261 info_ptr += 1;
16262 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16263 info_ptr += blk->size;
16264 DW_BLOCK (attr) = blk;
16265 break;
16266 case DW_FORM_data1:
16267 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16268 info_ptr += 1;
16269 break;
16270 case DW_FORM_flag:
16271 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16272 info_ptr += 1;
16273 break;
16274 case DW_FORM_flag_present:
16275 DW_UNSND (attr) = 1;
16276 break;
16277 case DW_FORM_sdata:
16278 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16279 info_ptr += bytes_read;
16280 break;
16281 case DW_FORM_udata:
16282 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16283 info_ptr += bytes_read;
16284 break;
16285 case DW_FORM_ref1:
16286 DW_UNSND (attr) = (cu->header.offset.sect_off
16287 + read_1_byte (abfd, info_ptr));
16288 info_ptr += 1;
16289 break;
16290 case DW_FORM_ref2:
16291 DW_UNSND (attr) = (cu->header.offset.sect_off
16292 + read_2_bytes (abfd, info_ptr));
16293 info_ptr += 2;
16294 break;
16295 case DW_FORM_ref4:
16296 DW_UNSND (attr) = (cu->header.offset.sect_off
16297 + read_4_bytes (abfd, info_ptr));
16298 info_ptr += 4;
16299 break;
16300 case DW_FORM_ref8:
16301 DW_UNSND (attr) = (cu->header.offset.sect_off
16302 + read_8_bytes (abfd, info_ptr));
16303 info_ptr += 8;
16304 break;
16305 case DW_FORM_ref_sig8:
16306 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16307 info_ptr += 8;
16308 break;
16309 case DW_FORM_ref_udata:
16310 DW_UNSND (attr) = (cu->header.offset.sect_off
16311 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16312 info_ptr += bytes_read;
16313 break;
16314 case DW_FORM_indirect:
16315 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16316 info_ptr += bytes_read;
16317 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16318 break;
16319 case DW_FORM_GNU_addr_index:
16320 if (reader->dwo_file == NULL)
16321 {
16322 /* For now flag a hard error.
16323 Later we can turn this into a complaint. */
16324 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16325 dwarf_form_name (form),
16326 bfd_get_filename (abfd));
16327 }
16328 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16329 info_ptr += bytes_read;
16330 break;
16331 case DW_FORM_GNU_str_index:
16332 if (reader->dwo_file == NULL)
16333 {
16334 /* For now flag a hard error.
16335 Later we can turn this into a complaint if warranted. */
16336 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16337 dwarf_form_name (form),
16338 bfd_get_filename (abfd));
16339 }
16340 {
16341 ULONGEST str_index =
16342 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16343
16344 DW_STRING (attr) = read_str_index (reader, str_index);
16345 DW_STRING_IS_CANONICAL (attr) = 0;
16346 info_ptr += bytes_read;
16347 }
16348 break;
16349 default:
16350 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16351 dwarf_form_name (form),
16352 bfd_get_filename (abfd));
16353 }
16354
16355 /* Super hack. */
16356 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16357 attr->form = DW_FORM_GNU_ref_alt;
16358
16359 /* We have seen instances where the compiler tried to emit a byte
16360 size attribute of -1 which ended up being encoded as an unsigned
16361 0xffffffff. Although 0xffffffff is technically a valid size value,
16362 an object of this size seems pretty unlikely so we can relatively
16363 safely treat these cases as if the size attribute was invalid and
16364 treat them as zero by default. */
16365 if (attr->name == DW_AT_byte_size
16366 && form == DW_FORM_data4
16367 && DW_UNSND (attr) >= 0xffffffff)
16368 {
16369 complaint
16370 (&symfile_complaints,
16371 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16372 hex_string (DW_UNSND (attr)));
16373 DW_UNSND (attr) = 0;
16374 }
16375
16376 return info_ptr;
16377 }
16378
16379 /* Read an attribute described by an abbreviated attribute. */
16380
16381 static const gdb_byte *
16382 read_attribute (const struct die_reader_specs *reader,
16383 struct attribute *attr, struct attr_abbrev *abbrev,
16384 const gdb_byte *info_ptr)
16385 {
16386 attr->name = abbrev->name;
16387 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16388 }
16389
16390 /* Read dwarf information from a buffer. */
16391
16392 static unsigned int
16393 read_1_byte (bfd *abfd, const gdb_byte *buf)
16394 {
16395 return bfd_get_8 (abfd, buf);
16396 }
16397
16398 static int
16399 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16400 {
16401 return bfd_get_signed_8 (abfd, buf);
16402 }
16403
16404 static unsigned int
16405 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16406 {
16407 return bfd_get_16 (abfd, buf);
16408 }
16409
16410 static int
16411 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16412 {
16413 return bfd_get_signed_16 (abfd, buf);
16414 }
16415
16416 static unsigned int
16417 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16418 {
16419 return bfd_get_32 (abfd, buf);
16420 }
16421
16422 static int
16423 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16424 {
16425 return bfd_get_signed_32 (abfd, buf);
16426 }
16427
16428 static ULONGEST
16429 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16430 {
16431 return bfd_get_64 (abfd, buf);
16432 }
16433
16434 static CORE_ADDR
16435 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16436 unsigned int *bytes_read)
16437 {
16438 struct comp_unit_head *cu_header = &cu->header;
16439 CORE_ADDR retval = 0;
16440
16441 if (cu_header->signed_addr_p)
16442 {
16443 switch (cu_header->addr_size)
16444 {
16445 case 2:
16446 retval = bfd_get_signed_16 (abfd, buf);
16447 break;
16448 case 4:
16449 retval = bfd_get_signed_32 (abfd, buf);
16450 break;
16451 case 8:
16452 retval = bfd_get_signed_64 (abfd, buf);
16453 break;
16454 default:
16455 internal_error (__FILE__, __LINE__,
16456 _("read_address: bad switch, signed [in module %s]"),
16457 bfd_get_filename (abfd));
16458 }
16459 }
16460 else
16461 {
16462 switch (cu_header->addr_size)
16463 {
16464 case 2:
16465 retval = bfd_get_16 (abfd, buf);
16466 break;
16467 case 4:
16468 retval = bfd_get_32 (abfd, buf);
16469 break;
16470 case 8:
16471 retval = bfd_get_64 (abfd, buf);
16472 break;
16473 default:
16474 internal_error (__FILE__, __LINE__,
16475 _("read_address: bad switch, "
16476 "unsigned [in module %s]"),
16477 bfd_get_filename (abfd));
16478 }
16479 }
16480
16481 *bytes_read = cu_header->addr_size;
16482 return retval;
16483 }
16484
16485 /* Read the initial length from a section. The (draft) DWARF 3
16486 specification allows the initial length to take up either 4 bytes
16487 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16488 bytes describe the length and all offsets will be 8 bytes in length
16489 instead of 4.
16490
16491 An older, non-standard 64-bit format is also handled by this
16492 function. The older format in question stores the initial length
16493 as an 8-byte quantity without an escape value. Lengths greater
16494 than 2^32 aren't very common which means that the initial 4 bytes
16495 is almost always zero. Since a length value of zero doesn't make
16496 sense for the 32-bit format, this initial zero can be considered to
16497 be an escape value which indicates the presence of the older 64-bit
16498 format. As written, the code can't detect (old format) lengths
16499 greater than 4GB. If it becomes necessary to handle lengths
16500 somewhat larger than 4GB, we could allow other small values (such
16501 as the non-sensical values of 1, 2, and 3) to also be used as
16502 escape values indicating the presence of the old format.
16503
16504 The value returned via bytes_read should be used to increment the
16505 relevant pointer after calling read_initial_length().
16506
16507 [ Note: read_initial_length() and read_offset() are based on the
16508 document entitled "DWARF Debugging Information Format", revision
16509 3, draft 8, dated November 19, 2001. This document was obtained
16510 from:
16511
16512 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16513
16514 This document is only a draft and is subject to change. (So beware.)
16515
16516 Details regarding the older, non-standard 64-bit format were
16517 determined empirically by examining 64-bit ELF files produced by
16518 the SGI toolchain on an IRIX 6.5 machine.
16519
16520 - Kevin, July 16, 2002
16521 ] */
16522
16523 static LONGEST
16524 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16525 {
16526 LONGEST length = bfd_get_32 (abfd, buf);
16527
16528 if (length == 0xffffffff)
16529 {
16530 length = bfd_get_64 (abfd, buf + 4);
16531 *bytes_read = 12;
16532 }
16533 else if (length == 0)
16534 {
16535 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16536 length = bfd_get_64 (abfd, buf);
16537 *bytes_read = 8;
16538 }
16539 else
16540 {
16541 *bytes_read = 4;
16542 }
16543
16544 return length;
16545 }
16546
16547 /* Cover function for read_initial_length.
16548 Returns the length of the object at BUF, and stores the size of the
16549 initial length in *BYTES_READ and stores the size that offsets will be in
16550 *OFFSET_SIZE.
16551 If the initial length size is not equivalent to that specified in
16552 CU_HEADER then issue a complaint.
16553 This is useful when reading non-comp-unit headers. */
16554
16555 static LONGEST
16556 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16557 const struct comp_unit_head *cu_header,
16558 unsigned int *bytes_read,
16559 unsigned int *offset_size)
16560 {
16561 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16562
16563 gdb_assert (cu_header->initial_length_size == 4
16564 || cu_header->initial_length_size == 8
16565 || cu_header->initial_length_size == 12);
16566
16567 if (cu_header->initial_length_size != *bytes_read)
16568 complaint (&symfile_complaints,
16569 _("intermixed 32-bit and 64-bit DWARF sections"));
16570
16571 *offset_size = (*bytes_read == 4) ? 4 : 8;
16572 return length;
16573 }
16574
16575 /* Read an offset from the data stream. The size of the offset is
16576 given by cu_header->offset_size. */
16577
16578 static LONGEST
16579 read_offset (bfd *abfd, const gdb_byte *buf,
16580 const struct comp_unit_head *cu_header,
16581 unsigned int *bytes_read)
16582 {
16583 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16584
16585 *bytes_read = cu_header->offset_size;
16586 return offset;
16587 }
16588
16589 /* Read an offset from the data stream. */
16590
16591 static LONGEST
16592 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16593 {
16594 LONGEST retval = 0;
16595
16596 switch (offset_size)
16597 {
16598 case 4:
16599 retval = bfd_get_32 (abfd, buf);
16600 break;
16601 case 8:
16602 retval = bfd_get_64 (abfd, buf);
16603 break;
16604 default:
16605 internal_error (__FILE__, __LINE__,
16606 _("read_offset_1: bad switch [in module %s]"),
16607 bfd_get_filename (abfd));
16608 }
16609
16610 return retval;
16611 }
16612
16613 static const gdb_byte *
16614 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16615 {
16616 /* If the size of a host char is 8 bits, we can return a pointer
16617 to the buffer, otherwise we have to copy the data to a buffer
16618 allocated on the temporary obstack. */
16619 gdb_assert (HOST_CHAR_BIT == 8);
16620 return buf;
16621 }
16622
16623 static const char *
16624 read_direct_string (bfd *abfd, const gdb_byte *buf,
16625 unsigned int *bytes_read_ptr)
16626 {
16627 /* If the size of a host char is 8 bits, we can return a pointer
16628 to the string, otherwise we have to copy the string to a buffer
16629 allocated on the temporary obstack. */
16630 gdb_assert (HOST_CHAR_BIT == 8);
16631 if (*buf == '\0')
16632 {
16633 *bytes_read_ptr = 1;
16634 return NULL;
16635 }
16636 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16637 return (const char *) buf;
16638 }
16639
16640 static const char *
16641 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16642 {
16643 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16644 if (dwarf2_per_objfile->str.buffer == NULL)
16645 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16646 bfd_get_filename (abfd));
16647 if (str_offset >= dwarf2_per_objfile->str.size)
16648 error (_("DW_FORM_strp pointing outside of "
16649 ".debug_str section [in module %s]"),
16650 bfd_get_filename (abfd));
16651 gdb_assert (HOST_CHAR_BIT == 8);
16652 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16653 return NULL;
16654 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16655 }
16656
16657 /* Read a string at offset STR_OFFSET in the .debug_str section from
16658 the .dwz file DWZ. Throw an error if the offset is too large. If
16659 the string consists of a single NUL byte, return NULL; otherwise
16660 return a pointer to the string. */
16661
16662 static const char *
16663 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16664 {
16665 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16666
16667 if (dwz->str.buffer == NULL)
16668 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16669 "section [in module %s]"),
16670 bfd_get_filename (dwz->dwz_bfd));
16671 if (str_offset >= dwz->str.size)
16672 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16673 ".debug_str section [in module %s]"),
16674 bfd_get_filename (dwz->dwz_bfd));
16675 gdb_assert (HOST_CHAR_BIT == 8);
16676 if (dwz->str.buffer[str_offset] == '\0')
16677 return NULL;
16678 return (const char *) (dwz->str.buffer + str_offset);
16679 }
16680
16681 static const char *
16682 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16683 const struct comp_unit_head *cu_header,
16684 unsigned int *bytes_read_ptr)
16685 {
16686 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16687
16688 return read_indirect_string_at_offset (abfd, str_offset);
16689 }
16690
16691 static ULONGEST
16692 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16693 unsigned int *bytes_read_ptr)
16694 {
16695 ULONGEST result;
16696 unsigned int num_read;
16697 int i, shift;
16698 unsigned char byte;
16699
16700 result = 0;
16701 shift = 0;
16702 num_read = 0;
16703 i = 0;
16704 while (1)
16705 {
16706 byte = bfd_get_8 (abfd, buf);
16707 buf++;
16708 num_read++;
16709 result |= ((ULONGEST) (byte & 127) << shift);
16710 if ((byte & 128) == 0)
16711 {
16712 break;
16713 }
16714 shift += 7;
16715 }
16716 *bytes_read_ptr = num_read;
16717 return result;
16718 }
16719
16720 static LONGEST
16721 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16722 unsigned int *bytes_read_ptr)
16723 {
16724 LONGEST result;
16725 int i, shift, num_read;
16726 unsigned char byte;
16727
16728 result = 0;
16729 shift = 0;
16730 num_read = 0;
16731 i = 0;
16732 while (1)
16733 {
16734 byte = bfd_get_8 (abfd, buf);
16735 buf++;
16736 num_read++;
16737 result |= ((LONGEST) (byte & 127) << shift);
16738 shift += 7;
16739 if ((byte & 128) == 0)
16740 {
16741 break;
16742 }
16743 }
16744 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16745 result |= -(((LONGEST) 1) << shift);
16746 *bytes_read_ptr = num_read;
16747 return result;
16748 }
16749
16750 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16751 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16752 ADDR_SIZE is the size of addresses from the CU header. */
16753
16754 static CORE_ADDR
16755 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16756 {
16757 struct objfile *objfile = dwarf2_per_objfile->objfile;
16758 bfd *abfd = objfile->obfd;
16759 const gdb_byte *info_ptr;
16760
16761 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16762 if (dwarf2_per_objfile->addr.buffer == NULL)
16763 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16764 objfile_name (objfile));
16765 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16766 error (_("DW_FORM_addr_index pointing outside of "
16767 ".debug_addr section [in module %s]"),
16768 objfile_name (objfile));
16769 info_ptr = (dwarf2_per_objfile->addr.buffer
16770 + addr_base + addr_index * addr_size);
16771 if (addr_size == 4)
16772 return bfd_get_32 (abfd, info_ptr);
16773 else
16774 return bfd_get_64 (abfd, info_ptr);
16775 }
16776
16777 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16778
16779 static CORE_ADDR
16780 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16781 {
16782 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16783 }
16784
16785 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16786
16787 static CORE_ADDR
16788 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16789 unsigned int *bytes_read)
16790 {
16791 bfd *abfd = cu->objfile->obfd;
16792 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16793
16794 return read_addr_index (cu, addr_index);
16795 }
16796
16797 /* Data structure to pass results from dwarf2_read_addr_index_reader
16798 back to dwarf2_read_addr_index. */
16799
16800 struct dwarf2_read_addr_index_data
16801 {
16802 ULONGEST addr_base;
16803 int addr_size;
16804 };
16805
16806 /* die_reader_func for dwarf2_read_addr_index. */
16807
16808 static void
16809 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16810 const gdb_byte *info_ptr,
16811 struct die_info *comp_unit_die,
16812 int has_children,
16813 void *data)
16814 {
16815 struct dwarf2_cu *cu = reader->cu;
16816 struct dwarf2_read_addr_index_data *aidata =
16817 (struct dwarf2_read_addr_index_data *) data;
16818
16819 aidata->addr_base = cu->addr_base;
16820 aidata->addr_size = cu->header.addr_size;
16821 }
16822
16823 /* Given an index in .debug_addr, fetch the value.
16824 NOTE: This can be called during dwarf expression evaluation,
16825 long after the debug information has been read, and thus per_cu->cu
16826 may no longer exist. */
16827
16828 CORE_ADDR
16829 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16830 unsigned int addr_index)
16831 {
16832 struct objfile *objfile = per_cu->objfile;
16833 struct dwarf2_cu *cu = per_cu->cu;
16834 ULONGEST addr_base;
16835 int addr_size;
16836
16837 /* This is intended to be called from outside this file. */
16838 dw2_setup (objfile);
16839
16840 /* We need addr_base and addr_size.
16841 If we don't have PER_CU->cu, we have to get it.
16842 Nasty, but the alternative is storing the needed info in PER_CU,
16843 which at this point doesn't seem justified: it's not clear how frequently
16844 it would get used and it would increase the size of every PER_CU.
16845 Entry points like dwarf2_per_cu_addr_size do a similar thing
16846 so we're not in uncharted territory here.
16847 Alas we need to be a bit more complicated as addr_base is contained
16848 in the DIE.
16849
16850 We don't need to read the entire CU(/TU).
16851 We just need the header and top level die.
16852
16853 IWBN to use the aging mechanism to let us lazily later discard the CU.
16854 For now we skip this optimization. */
16855
16856 if (cu != NULL)
16857 {
16858 addr_base = cu->addr_base;
16859 addr_size = cu->header.addr_size;
16860 }
16861 else
16862 {
16863 struct dwarf2_read_addr_index_data aidata;
16864
16865 /* Note: We can't use init_cutu_and_read_dies_simple here,
16866 we need addr_base. */
16867 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16868 dwarf2_read_addr_index_reader, &aidata);
16869 addr_base = aidata.addr_base;
16870 addr_size = aidata.addr_size;
16871 }
16872
16873 return read_addr_index_1 (addr_index, addr_base, addr_size);
16874 }
16875
16876 /* Given a DW_FORM_GNU_str_index, fetch the string.
16877 This is only used by the Fission support. */
16878
16879 static const char *
16880 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16881 {
16882 struct objfile *objfile = dwarf2_per_objfile->objfile;
16883 const char *objf_name = objfile_name (objfile);
16884 bfd *abfd = objfile->obfd;
16885 struct dwarf2_cu *cu = reader->cu;
16886 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16887 struct dwarf2_section_info *str_offsets_section =
16888 &reader->dwo_file->sections.str_offsets;
16889 const gdb_byte *info_ptr;
16890 ULONGEST str_offset;
16891 static const char form_name[] = "DW_FORM_GNU_str_index";
16892
16893 dwarf2_read_section (objfile, str_section);
16894 dwarf2_read_section (objfile, str_offsets_section);
16895 if (str_section->buffer == NULL)
16896 error (_("%s used without .debug_str.dwo section"
16897 " in CU at offset 0x%lx [in module %s]"),
16898 form_name, (long) cu->header.offset.sect_off, objf_name);
16899 if (str_offsets_section->buffer == NULL)
16900 error (_("%s used without .debug_str_offsets.dwo section"
16901 " in CU at offset 0x%lx [in module %s]"),
16902 form_name, (long) cu->header.offset.sect_off, objf_name);
16903 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16904 error (_("%s pointing outside of .debug_str_offsets.dwo"
16905 " section in CU at offset 0x%lx [in module %s]"),
16906 form_name, (long) cu->header.offset.sect_off, objf_name);
16907 info_ptr = (str_offsets_section->buffer
16908 + str_index * cu->header.offset_size);
16909 if (cu->header.offset_size == 4)
16910 str_offset = bfd_get_32 (abfd, info_ptr);
16911 else
16912 str_offset = bfd_get_64 (abfd, info_ptr);
16913 if (str_offset >= str_section->size)
16914 error (_("Offset from %s pointing outside of"
16915 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16916 form_name, (long) cu->header.offset.sect_off, objf_name);
16917 return (const char *) (str_section->buffer + str_offset);
16918 }
16919
16920 /* Return the length of an LEB128 number in BUF. */
16921
16922 static int
16923 leb128_size (const gdb_byte *buf)
16924 {
16925 const gdb_byte *begin = buf;
16926 gdb_byte byte;
16927
16928 while (1)
16929 {
16930 byte = *buf++;
16931 if ((byte & 128) == 0)
16932 return buf - begin;
16933 }
16934 }
16935
16936 static void
16937 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16938 {
16939 switch (lang)
16940 {
16941 case DW_LANG_C89:
16942 case DW_LANG_C99:
16943 case DW_LANG_C11:
16944 case DW_LANG_C:
16945 case DW_LANG_UPC:
16946 cu->language = language_c;
16947 break;
16948 case DW_LANG_C_plus_plus:
16949 case DW_LANG_C_plus_plus_11:
16950 case DW_LANG_C_plus_plus_14:
16951 cu->language = language_cplus;
16952 break;
16953 case DW_LANG_D:
16954 cu->language = language_d;
16955 break;
16956 case DW_LANG_Fortran77:
16957 case DW_LANG_Fortran90:
16958 case DW_LANG_Fortran95:
16959 case DW_LANG_Fortran03:
16960 case DW_LANG_Fortran08:
16961 cu->language = language_fortran;
16962 break;
16963 case DW_LANG_Go:
16964 cu->language = language_go;
16965 break;
16966 case DW_LANG_Mips_Assembler:
16967 cu->language = language_asm;
16968 break;
16969 case DW_LANG_Java:
16970 cu->language = language_java;
16971 break;
16972 case DW_LANG_Ada83:
16973 case DW_LANG_Ada95:
16974 cu->language = language_ada;
16975 break;
16976 case DW_LANG_Modula2:
16977 cu->language = language_m2;
16978 break;
16979 case DW_LANG_Pascal83:
16980 cu->language = language_pascal;
16981 break;
16982 case DW_LANG_ObjC:
16983 cu->language = language_objc;
16984 break;
16985 case DW_LANG_Cobol74:
16986 case DW_LANG_Cobol85:
16987 default:
16988 cu->language = language_minimal;
16989 break;
16990 }
16991 cu->language_defn = language_def (cu->language);
16992 }
16993
16994 /* Return the named attribute or NULL if not there. */
16995
16996 static struct attribute *
16997 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16998 {
16999 for (;;)
17000 {
17001 unsigned int i;
17002 struct attribute *spec = NULL;
17003
17004 for (i = 0; i < die->num_attrs; ++i)
17005 {
17006 if (die->attrs[i].name == name)
17007 return &die->attrs[i];
17008 if (die->attrs[i].name == DW_AT_specification
17009 || die->attrs[i].name == DW_AT_abstract_origin)
17010 spec = &die->attrs[i];
17011 }
17012
17013 if (!spec)
17014 break;
17015
17016 die = follow_die_ref (die, spec, &cu);
17017 }
17018
17019 return NULL;
17020 }
17021
17022 /* Return the named attribute or NULL if not there,
17023 but do not follow DW_AT_specification, etc.
17024 This is for use in contexts where we're reading .debug_types dies.
17025 Following DW_AT_specification, DW_AT_abstract_origin will take us
17026 back up the chain, and we want to go down. */
17027
17028 static struct attribute *
17029 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17030 {
17031 unsigned int i;
17032
17033 for (i = 0; i < die->num_attrs; ++i)
17034 if (die->attrs[i].name == name)
17035 return &die->attrs[i];
17036
17037 return NULL;
17038 }
17039
17040 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17041 and holds a non-zero value. This function should only be used for
17042 DW_FORM_flag or DW_FORM_flag_present attributes. */
17043
17044 static int
17045 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17046 {
17047 struct attribute *attr = dwarf2_attr (die, name, cu);
17048
17049 return (attr && DW_UNSND (attr));
17050 }
17051
17052 static int
17053 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17054 {
17055 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17056 which value is non-zero. However, we have to be careful with
17057 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17058 (via dwarf2_flag_true_p) follows this attribute. So we may
17059 end up accidently finding a declaration attribute that belongs
17060 to a different DIE referenced by the specification attribute,
17061 even though the given DIE does not have a declaration attribute. */
17062 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17063 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17064 }
17065
17066 /* Return the die giving the specification for DIE, if there is
17067 one. *SPEC_CU is the CU containing DIE on input, and the CU
17068 containing the return value on output. If there is no
17069 specification, but there is an abstract origin, that is
17070 returned. */
17071
17072 static struct die_info *
17073 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17074 {
17075 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17076 *spec_cu);
17077
17078 if (spec_attr == NULL)
17079 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17080
17081 if (spec_attr == NULL)
17082 return NULL;
17083 else
17084 return follow_die_ref (die, spec_attr, spec_cu);
17085 }
17086
17087 /* Free the line_header structure *LH, and any arrays and strings it
17088 refers to.
17089 NOTE: This is also used as a "cleanup" function. */
17090
17091 static void
17092 free_line_header (struct line_header *lh)
17093 {
17094 if (lh->standard_opcode_lengths)
17095 xfree (lh->standard_opcode_lengths);
17096
17097 /* Remember that all the lh->file_names[i].name pointers are
17098 pointers into debug_line_buffer, and don't need to be freed. */
17099 if (lh->file_names)
17100 xfree (lh->file_names);
17101
17102 /* Similarly for the include directory names. */
17103 if (lh->include_dirs)
17104 xfree (lh->include_dirs);
17105
17106 xfree (lh);
17107 }
17108
17109 /* Stub for free_line_header to match void * callback types. */
17110
17111 static void
17112 free_line_header_voidp (void *arg)
17113 {
17114 struct line_header *lh = arg;
17115
17116 free_line_header (lh);
17117 }
17118
17119 /* Add an entry to LH's include directory table. */
17120
17121 static void
17122 add_include_dir (struct line_header *lh, const char *include_dir)
17123 {
17124 /* Grow the array if necessary. */
17125 if (lh->include_dirs_size == 0)
17126 {
17127 lh->include_dirs_size = 1; /* for testing */
17128 lh->include_dirs = xmalloc (lh->include_dirs_size
17129 * sizeof (*lh->include_dirs));
17130 }
17131 else if (lh->num_include_dirs >= lh->include_dirs_size)
17132 {
17133 lh->include_dirs_size *= 2;
17134 lh->include_dirs = xrealloc (lh->include_dirs,
17135 (lh->include_dirs_size
17136 * sizeof (*lh->include_dirs)));
17137 }
17138
17139 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17140 }
17141
17142 /* Add an entry to LH's file name table. */
17143
17144 static void
17145 add_file_name (struct line_header *lh,
17146 const char *name,
17147 unsigned int dir_index,
17148 unsigned int mod_time,
17149 unsigned int length)
17150 {
17151 struct file_entry *fe;
17152
17153 /* Grow the array if necessary. */
17154 if (lh->file_names_size == 0)
17155 {
17156 lh->file_names_size = 1; /* for testing */
17157 lh->file_names = xmalloc (lh->file_names_size
17158 * sizeof (*lh->file_names));
17159 }
17160 else if (lh->num_file_names >= lh->file_names_size)
17161 {
17162 lh->file_names_size *= 2;
17163 lh->file_names = xrealloc (lh->file_names,
17164 (lh->file_names_size
17165 * sizeof (*lh->file_names)));
17166 }
17167
17168 fe = &lh->file_names[lh->num_file_names++];
17169 fe->name = name;
17170 fe->dir_index = dir_index;
17171 fe->mod_time = mod_time;
17172 fe->length = length;
17173 fe->included_p = 0;
17174 fe->symtab = NULL;
17175 }
17176
17177 /* A convenience function to find the proper .debug_line section for a
17178 CU. */
17179
17180 static struct dwarf2_section_info *
17181 get_debug_line_section (struct dwarf2_cu *cu)
17182 {
17183 struct dwarf2_section_info *section;
17184
17185 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17186 DWO file. */
17187 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17188 section = &cu->dwo_unit->dwo_file->sections.line;
17189 else if (cu->per_cu->is_dwz)
17190 {
17191 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17192
17193 section = &dwz->line;
17194 }
17195 else
17196 section = &dwarf2_per_objfile->line;
17197
17198 return section;
17199 }
17200
17201 /* Read the statement program header starting at OFFSET in
17202 .debug_line, or .debug_line.dwo. Return a pointer
17203 to a struct line_header, allocated using xmalloc.
17204 Returns NULL if there is a problem reading the header, e.g., if it
17205 has a version we don't understand.
17206
17207 NOTE: the strings in the include directory and file name tables of
17208 the returned object point into the dwarf line section buffer,
17209 and must not be freed. */
17210
17211 static struct line_header *
17212 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17213 {
17214 struct cleanup *back_to;
17215 struct line_header *lh;
17216 const gdb_byte *line_ptr;
17217 unsigned int bytes_read, offset_size;
17218 int i;
17219 const char *cur_dir, *cur_file;
17220 struct dwarf2_section_info *section;
17221 bfd *abfd;
17222
17223 section = get_debug_line_section (cu);
17224 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17225 if (section->buffer == NULL)
17226 {
17227 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17228 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17229 else
17230 complaint (&symfile_complaints, _("missing .debug_line section"));
17231 return 0;
17232 }
17233
17234 /* We can't do this until we know the section is non-empty.
17235 Only then do we know we have such a section. */
17236 abfd = get_section_bfd_owner (section);
17237
17238 /* Make sure that at least there's room for the total_length field.
17239 That could be 12 bytes long, but we're just going to fudge that. */
17240 if (offset + 4 >= section->size)
17241 {
17242 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17243 return 0;
17244 }
17245
17246 lh = xmalloc (sizeof (*lh));
17247 memset (lh, 0, sizeof (*lh));
17248 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17249 (void *) lh);
17250
17251 lh->offset.sect_off = offset;
17252 lh->offset_in_dwz = cu->per_cu->is_dwz;
17253
17254 line_ptr = section->buffer + offset;
17255
17256 /* Read in the header. */
17257 lh->total_length =
17258 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17259 &bytes_read, &offset_size);
17260 line_ptr += bytes_read;
17261 if (line_ptr + lh->total_length > (section->buffer + section->size))
17262 {
17263 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17264 do_cleanups (back_to);
17265 return 0;
17266 }
17267 lh->statement_program_end = line_ptr + lh->total_length;
17268 lh->version = read_2_bytes (abfd, line_ptr);
17269 line_ptr += 2;
17270 if (lh->version > 4)
17271 {
17272 /* This is a version we don't understand. The format could have
17273 changed in ways we don't handle properly so just punt. */
17274 complaint (&symfile_complaints,
17275 _("unsupported version in .debug_line section"));
17276 return NULL;
17277 }
17278 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17279 line_ptr += offset_size;
17280 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17281 line_ptr += 1;
17282 if (lh->version >= 4)
17283 {
17284 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17285 line_ptr += 1;
17286 }
17287 else
17288 lh->maximum_ops_per_instruction = 1;
17289
17290 if (lh->maximum_ops_per_instruction == 0)
17291 {
17292 lh->maximum_ops_per_instruction = 1;
17293 complaint (&symfile_complaints,
17294 _("invalid maximum_ops_per_instruction "
17295 "in `.debug_line' section"));
17296 }
17297
17298 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17299 line_ptr += 1;
17300 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17301 line_ptr += 1;
17302 lh->line_range = read_1_byte (abfd, line_ptr);
17303 line_ptr += 1;
17304 lh->opcode_base = read_1_byte (abfd, line_ptr);
17305 line_ptr += 1;
17306 lh->standard_opcode_lengths
17307 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17308
17309 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17310 for (i = 1; i < lh->opcode_base; ++i)
17311 {
17312 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17313 line_ptr += 1;
17314 }
17315
17316 /* Read directory table. */
17317 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17318 {
17319 line_ptr += bytes_read;
17320 add_include_dir (lh, cur_dir);
17321 }
17322 line_ptr += bytes_read;
17323
17324 /* Read file name table. */
17325 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17326 {
17327 unsigned int dir_index, mod_time, length;
17328
17329 line_ptr += bytes_read;
17330 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17331 line_ptr += bytes_read;
17332 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17333 line_ptr += bytes_read;
17334 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17335 line_ptr += bytes_read;
17336
17337 add_file_name (lh, cur_file, dir_index, mod_time, length);
17338 }
17339 line_ptr += bytes_read;
17340 lh->statement_program_start = line_ptr;
17341
17342 if (line_ptr > (section->buffer + section->size))
17343 complaint (&symfile_complaints,
17344 _("line number info header doesn't "
17345 "fit in `.debug_line' section"));
17346
17347 discard_cleanups (back_to);
17348 return lh;
17349 }
17350
17351 /* Subroutine of dwarf_decode_lines to simplify it.
17352 Return the file name of the psymtab for included file FILE_INDEX
17353 in line header LH of PST.
17354 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17355 If space for the result is malloc'd, it will be freed by a cleanup.
17356 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17357
17358 The function creates dangling cleanup registration. */
17359
17360 static const char *
17361 psymtab_include_file_name (const struct line_header *lh, int file_index,
17362 const struct partial_symtab *pst,
17363 const char *comp_dir)
17364 {
17365 const struct file_entry fe = lh->file_names [file_index];
17366 const char *include_name = fe.name;
17367 const char *include_name_to_compare = include_name;
17368 const char *dir_name = NULL;
17369 const char *pst_filename;
17370 char *copied_name = NULL;
17371 int file_is_pst;
17372
17373 if (fe.dir_index)
17374 dir_name = lh->include_dirs[fe.dir_index - 1];
17375
17376 if (!IS_ABSOLUTE_PATH (include_name)
17377 && (dir_name != NULL || comp_dir != NULL))
17378 {
17379 /* Avoid creating a duplicate psymtab for PST.
17380 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17381 Before we do the comparison, however, we need to account
17382 for DIR_NAME and COMP_DIR.
17383 First prepend dir_name (if non-NULL). If we still don't
17384 have an absolute path prepend comp_dir (if non-NULL).
17385 However, the directory we record in the include-file's
17386 psymtab does not contain COMP_DIR (to match the
17387 corresponding symtab(s)).
17388
17389 Example:
17390
17391 bash$ cd /tmp
17392 bash$ gcc -g ./hello.c
17393 include_name = "hello.c"
17394 dir_name = "."
17395 DW_AT_comp_dir = comp_dir = "/tmp"
17396 DW_AT_name = "./hello.c"
17397
17398 */
17399
17400 if (dir_name != NULL)
17401 {
17402 char *tem = concat (dir_name, SLASH_STRING,
17403 include_name, (char *)NULL);
17404
17405 make_cleanup (xfree, tem);
17406 include_name = tem;
17407 include_name_to_compare = include_name;
17408 }
17409 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17410 {
17411 char *tem = concat (comp_dir, SLASH_STRING,
17412 include_name, (char *)NULL);
17413
17414 make_cleanup (xfree, tem);
17415 include_name_to_compare = tem;
17416 }
17417 }
17418
17419 pst_filename = pst->filename;
17420 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17421 {
17422 copied_name = concat (pst->dirname, SLASH_STRING,
17423 pst_filename, (char *)NULL);
17424 pst_filename = copied_name;
17425 }
17426
17427 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17428
17429 if (copied_name != NULL)
17430 xfree (copied_name);
17431
17432 if (file_is_pst)
17433 return NULL;
17434 return include_name;
17435 }
17436
17437 /* Ignore this record_line request. */
17438
17439 static void
17440 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17441 {
17442 return;
17443 }
17444
17445 /* Return non-zero if we should add LINE to the line number table.
17446 LINE is the line to add, LAST_LINE is the last line that was added,
17447 LAST_SUBFILE is the subfile for LAST_LINE.
17448 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17449 had a non-zero discriminator.
17450
17451 We have to be careful in the presence of discriminators.
17452 E.g., for this line:
17453
17454 for (i = 0; i < 100000; i++);
17455
17456 clang can emit four line number entries for that one line,
17457 each with a different discriminator.
17458 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17459
17460 However, we want gdb to coalesce all four entries into one.
17461 Otherwise the user could stepi into the middle of the line and
17462 gdb would get confused about whether the pc really was in the
17463 middle of the line.
17464
17465 Things are further complicated by the fact that two consecutive
17466 line number entries for the same line is a heuristic used by gcc
17467 to denote the end of the prologue. So we can't just discard duplicate
17468 entries, we have to be selective about it. The heuristic we use is
17469 that we only collapse consecutive entries for the same line if at least
17470 one of those entries has a non-zero discriminator. PR 17276.
17471
17472 Note: Addresses in the line number state machine can never go backwards
17473 within one sequence, thus this coalescing is ok. */
17474
17475 static int
17476 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17477 int line_has_non_zero_discriminator,
17478 struct subfile *last_subfile)
17479 {
17480 if (current_subfile != last_subfile)
17481 return 1;
17482 if (line != last_line)
17483 return 1;
17484 /* Same line for the same file that we've seen already.
17485 As a last check, for pr 17276, only record the line if the line
17486 has never had a non-zero discriminator. */
17487 if (!line_has_non_zero_discriminator)
17488 return 1;
17489 return 0;
17490 }
17491
17492 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17493 in the line table of subfile SUBFILE. */
17494
17495 static void
17496 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17497 unsigned int line, CORE_ADDR address,
17498 record_line_ftype p_record_line)
17499 {
17500 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17501
17502 (*p_record_line) (subfile, line, addr);
17503 }
17504
17505 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17506 Mark the end of a set of line number records.
17507 The arguments are the same as for dwarf_record_line.
17508 If SUBFILE is NULL the request is ignored. */
17509
17510 static void
17511 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17512 CORE_ADDR address, record_line_ftype p_record_line)
17513 {
17514 if (subfile != NULL)
17515 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17516 }
17517
17518 /* Subroutine of dwarf_decode_lines to simplify it.
17519 Process the line number information in LH. */
17520
17521 static void
17522 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17523 const int decode_for_pst_p, CORE_ADDR lowpc)
17524 {
17525 const gdb_byte *line_ptr, *extended_end;
17526 const gdb_byte *line_end;
17527 unsigned int bytes_read, extended_len;
17528 unsigned char op_code, extended_op;
17529 CORE_ADDR baseaddr;
17530 struct objfile *objfile = cu->objfile;
17531 bfd *abfd = objfile->obfd;
17532 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17533 struct subfile *last_subfile = NULL;
17534 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17535 = record_line;
17536
17537 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17538
17539 line_ptr = lh->statement_program_start;
17540 line_end = lh->statement_program_end;
17541
17542 /* Read the statement sequences until there's nothing left. */
17543 while (line_ptr < line_end)
17544 {
17545 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17546 on the initial 0 address as if there was a line entry for it
17547 so that the backend has a chance to adjust it and also record
17548 it in case it needs it. This is currently used by MIPS code,
17549 cf. `mips_adjust_dwarf2_line'. */
17550 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17551 unsigned int file = 1;
17552 unsigned int line = 1;
17553 int is_stmt = lh->default_is_stmt;
17554 int end_sequence = 0;
17555 unsigned char op_index = 0;
17556 unsigned int discriminator = 0;
17557 /* The last line number that was recorded, used to coalesce
17558 consecutive entries for the same line. This can happen, for
17559 example, when discriminators are present. PR 17276. */
17560 unsigned int last_line = 0;
17561 int line_has_non_zero_discriminator = 0;
17562
17563 if (!decode_for_pst_p && lh->num_file_names >= file)
17564 {
17565 /* Start a subfile for the current file of the state machine. */
17566 /* lh->include_dirs and lh->file_names are 0-based, but the
17567 directory and file name numbers in the statement program
17568 are 1-based. */
17569 struct file_entry *fe = &lh->file_names[file - 1];
17570 const char *dir = NULL;
17571
17572 if (fe->dir_index)
17573 dir = lh->include_dirs[fe->dir_index - 1];
17574
17575 dwarf2_start_subfile (fe->name, dir);
17576 }
17577
17578 /* Decode the table. */
17579 while (!end_sequence)
17580 {
17581 op_code = read_1_byte (abfd, line_ptr);
17582 line_ptr += 1;
17583 if (line_ptr > line_end)
17584 {
17585 dwarf2_debug_line_missing_end_sequence_complaint ();
17586 break;
17587 }
17588
17589 if (op_code >= lh->opcode_base)
17590 {
17591 /* Special opcode. */
17592 unsigned char adj_opcode;
17593 CORE_ADDR addr_adj;
17594 int line_delta;
17595
17596 adj_opcode = op_code - lh->opcode_base;
17597 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17598 / lh->maximum_ops_per_instruction)
17599 * lh->minimum_instruction_length);
17600 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17601 op_index = ((op_index + (adj_opcode / lh->line_range))
17602 % lh->maximum_ops_per_instruction);
17603 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17604 line += line_delta;
17605 if (line_delta != 0)
17606 line_has_non_zero_discriminator = discriminator != 0;
17607 if (lh->num_file_names < file || file == 0)
17608 dwarf2_debug_line_missing_file_complaint ();
17609 /* For now we ignore lines not starting on an
17610 instruction boundary. */
17611 else if (op_index == 0)
17612 {
17613 lh->file_names[file - 1].included_p = 1;
17614 if (!decode_for_pst_p && is_stmt)
17615 {
17616 if (last_subfile != current_subfile)
17617 {
17618 dwarf_finish_line (gdbarch, last_subfile,
17619 address, p_record_line);
17620 }
17621 if (dwarf_record_line_p (line, last_line,
17622 line_has_non_zero_discriminator,
17623 last_subfile))
17624 {
17625 dwarf_record_line (gdbarch, current_subfile,
17626 line, address, p_record_line);
17627 }
17628 last_subfile = current_subfile;
17629 last_line = line;
17630 }
17631 }
17632 discriminator = 0;
17633 }
17634 else switch (op_code)
17635 {
17636 case DW_LNS_extended_op:
17637 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17638 &bytes_read);
17639 line_ptr += bytes_read;
17640 extended_end = line_ptr + extended_len;
17641 extended_op = read_1_byte (abfd, line_ptr);
17642 line_ptr += 1;
17643 switch (extended_op)
17644 {
17645 case DW_LNE_end_sequence:
17646 p_record_line = record_line;
17647 end_sequence = 1;
17648 break;
17649 case DW_LNE_set_address:
17650 address = read_address (abfd, line_ptr, cu, &bytes_read);
17651
17652 /* If address < lowpc then it's not a usable value, it's
17653 outside the pc range of the CU. However, we restrict
17654 the test to only address values of zero to preserve
17655 GDB's previous behaviour which is to handle the specific
17656 case of a function being GC'd by the linker. */
17657 if (address == 0 && address < lowpc)
17658 {
17659 /* This line table is for a function which has been
17660 GCd by the linker. Ignore it. PR gdb/12528 */
17661
17662 long line_offset
17663 = line_ptr - get_debug_line_section (cu)->buffer;
17664
17665 complaint (&symfile_complaints,
17666 _(".debug_line address at offset 0x%lx is 0 "
17667 "[in module %s]"),
17668 line_offset, objfile_name (objfile));
17669 p_record_line = noop_record_line;
17670 /* Note: p_record_line is left as noop_record_line
17671 until we see DW_LNE_end_sequence. */
17672 }
17673
17674 op_index = 0;
17675 line_ptr += bytes_read;
17676 address += baseaddr;
17677 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17678 break;
17679 case DW_LNE_define_file:
17680 {
17681 const char *cur_file;
17682 unsigned int dir_index, mod_time, length;
17683
17684 cur_file = read_direct_string (abfd, line_ptr,
17685 &bytes_read);
17686 line_ptr += bytes_read;
17687 dir_index =
17688 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17689 line_ptr += bytes_read;
17690 mod_time =
17691 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17692 line_ptr += bytes_read;
17693 length =
17694 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17695 line_ptr += bytes_read;
17696 add_file_name (lh, cur_file, dir_index, mod_time, length);
17697 }
17698 break;
17699 case DW_LNE_set_discriminator:
17700 /* The discriminator is not interesting to the debugger;
17701 just ignore it. We still need to check its value though:
17702 if there are consecutive entries for the same
17703 (non-prologue) line we want to coalesce them.
17704 PR 17276. */
17705 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17706 &bytes_read);
17707 line_has_non_zero_discriminator |= discriminator != 0;
17708 line_ptr += bytes_read;
17709 break;
17710 default:
17711 complaint (&symfile_complaints,
17712 _("mangled .debug_line section"));
17713 return;
17714 }
17715 /* Make sure that we parsed the extended op correctly. If e.g.
17716 we expected a different address size than the producer used,
17717 we may have read the wrong number of bytes. */
17718 if (line_ptr != extended_end)
17719 {
17720 complaint (&symfile_complaints,
17721 _("mangled .debug_line section"));
17722 return;
17723 }
17724 break;
17725 case DW_LNS_copy:
17726 if (lh->num_file_names < file || file == 0)
17727 dwarf2_debug_line_missing_file_complaint ();
17728 else
17729 {
17730 lh->file_names[file - 1].included_p = 1;
17731 if (!decode_for_pst_p && is_stmt)
17732 {
17733 if (last_subfile != current_subfile)
17734 {
17735 dwarf_finish_line (gdbarch, last_subfile,
17736 address, p_record_line);
17737 }
17738 if (dwarf_record_line_p (line, last_line,
17739 line_has_non_zero_discriminator,
17740 last_subfile))
17741 {
17742 dwarf_record_line (gdbarch, current_subfile,
17743 line, address, p_record_line);
17744 }
17745 last_subfile = current_subfile;
17746 last_line = line;
17747 }
17748 }
17749 discriminator = 0;
17750 break;
17751 case DW_LNS_advance_pc:
17752 {
17753 CORE_ADDR adjust
17754 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17755 CORE_ADDR addr_adj;
17756
17757 addr_adj = (((op_index + adjust)
17758 / lh->maximum_ops_per_instruction)
17759 * lh->minimum_instruction_length);
17760 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17761 op_index = ((op_index + adjust)
17762 % lh->maximum_ops_per_instruction);
17763 line_ptr += bytes_read;
17764 }
17765 break;
17766 case DW_LNS_advance_line:
17767 {
17768 int line_delta
17769 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17770
17771 line += line_delta;
17772 if (line_delta != 0)
17773 line_has_non_zero_discriminator = discriminator != 0;
17774 line_ptr += bytes_read;
17775 }
17776 break;
17777 case DW_LNS_set_file:
17778 {
17779 /* The arrays lh->include_dirs and lh->file_names are
17780 0-based, but the directory and file name numbers in
17781 the statement program are 1-based. */
17782 struct file_entry *fe;
17783 const char *dir = NULL;
17784
17785 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17786 line_ptr += bytes_read;
17787 if (lh->num_file_names < file || file == 0)
17788 dwarf2_debug_line_missing_file_complaint ();
17789 else
17790 {
17791 fe = &lh->file_names[file - 1];
17792 if (fe->dir_index)
17793 dir = lh->include_dirs[fe->dir_index - 1];
17794 if (!decode_for_pst_p)
17795 {
17796 last_subfile = current_subfile;
17797 line_has_non_zero_discriminator = discriminator != 0;
17798 dwarf2_start_subfile (fe->name, dir);
17799 }
17800 }
17801 }
17802 break;
17803 case DW_LNS_set_column:
17804 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17805 line_ptr += bytes_read;
17806 break;
17807 case DW_LNS_negate_stmt:
17808 is_stmt = (!is_stmt);
17809 break;
17810 case DW_LNS_set_basic_block:
17811 break;
17812 /* Add to the address register of the state machine the
17813 address increment value corresponding to special opcode
17814 255. I.e., this value is scaled by the minimum
17815 instruction length since special opcode 255 would have
17816 scaled the increment. */
17817 case DW_LNS_const_add_pc:
17818 {
17819 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17820 CORE_ADDR addr_adj;
17821
17822 addr_adj = (((op_index + adjust)
17823 / lh->maximum_ops_per_instruction)
17824 * lh->minimum_instruction_length);
17825 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17826 op_index = ((op_index + adjust)
17827 % lh->maximum_ops_per_instruction);
17828 }
17829 break;
17830 case DW_LNS_fixed_advance_pc:
17831 {
17832 CORE_ADDR addr_adj;
17833
17834 addr_adj = read_2_bytes (abfd, line_ptr);
17835 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17836 op_index = 0;
17837 line_ptr += 2;
17838 }
17839 break;
17840 default:
17841 {
17842 /* Unknown standard opcode, ignore it. */
17843 int i;
17844
17845 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17846 {
17847 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17848 line_ptr += bytes_read;
17849 }
17850 }
17851 }
17852 }
17853 if (lh->num_file_names < file || file == 0)
17854 dwarf2_debug_line_missing_file_complaint ();
17855 else
17856 {
17857 lh->file_names[file - 1].included_p = 1;
17858 if (!decode_for_pst_p)
17859 {
17860 dwarf_finish_line (gdbarch, current_subfile, address,
17861 p_record_line);
17862 }
17863 }
17864 }
17865 }
17866
17867 /* Decode the Line Number Program (LNP) for the given line_header
17868 structure and CU. The actual information extracted and the type
17869 of structures created from the LNP depends on the value of PST.
17870
17871 1. If PST is NULL, then this procedure uses the data from the program
17872 to create all necessary symbol tables, and their linetables.
17873
17874 2. If PST is not NULL, this procedure reads the program to determine
17875 the list of files included by the unit represented by PST, and
17876 builds all the associated partial symbol tables.
17877
17878 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17879 It is used for relative paths in the line table.
17880 NOTE: When processing partial symtabs (pst != NULL),
17881 comp_dir == pst->dirname.
17882
17883 NOTE: It is important that psymtabs have the same file name (via strcmp)
17884 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17885 symtab we don't use it in the name of the psymtabs we create.
17886 E.g. expand_line_sal requires this when finding psymtabs to expand.
17887 A good testcase for this is mb-inline.exp.
17888
17889 LOWPC is the lowest address in CU (or 0 if not known).
17890
17891 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17892 for its PC<->lines mapping information. Otherwise only the filename
17893 table is read in. */
17894
17895 static void
17896 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17897 struct dwarf2_cu *cu, struct partial_symtab *pst,
17898 CORE_ADDR lowpc, int decode_mapping)
17899 {
17900 struct objfile *objfile = cu->objfile;
17901 const int decode_for_pst_p = (pst != NULL);
17902
17903 if (decode_mapping)
17904 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17905
17906 if (decode_for_pst_p)
17907 {
17908 int file_index;
17909
17910 /* Now that we're done scanning the Line Header Program, we can
17911 create the psymtab of each included file. */
17912 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17913 if (lh->file_names[file_index].included_p == 1)
17914 {
17915 const char *include_name =
17916 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17917 if (include_name != NULL)
17918 dwarf2_create_include_psymtab (include_name, pst, objfile);
17919 }
17920 }
17921 else
17922 {
17923 /* Make sure a symtab is created for every file, even files
17924 which contain only variables (i.e. no code with associated
17925 line numbers). */
17926 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17927 int i;
17928
17929 for (i = 0; i < lh->num_file_names; i++)
17930 {
17931 const char *dir = NULL;
17932 struct file_entry *fe;
17933
17934 fe = &lh->file_names[i];
17935 if (fe->dir_index)
17936 dir = lh->include_dirs[fe->dir_index - 1];
17937 dwarf2_start_subfile (fe->name, dir);
17938
17939 if (current_subfile->symtab == NULL)
17940 {
17941 current_subfile->symtab
17942 = allocate_symtab (cust, current_subfile->name);
17943 }
17944 fe->symtab = current_subfile->symtab;
17945 }
17946 }
17947 }
17948
17949 /* Start a subfile for DWARF. FILENAME is the name of the file and
17950 DIRNAME the name of the source directory which contains FILENAME
17951 or NULL if not known.
17952 This routine tries to keep line numbers from identical absolute and
17953 relative file names in a common subfile.
17954
17955 Using the `list' example from the GDB testsuite, which resides in
17956 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17957 of /srcdir/list0.c yields the following debugging information for list0.c:
17958
17959 DW_AT_name: /srcdir/list0.c
17960 DW_AT_comp_dir: /compdir
17961 files.files[0].name: list0.h
17962 files.files[0].dir: /srcdir
17963 files.files[1].name: list0.c
17964 files.files[1].dir: /srcdir
17965
17966 The line number information for list0.c has to end up in a single
17967 subfile, so that `break /srcdir/list0.c:1' works as expected.
17968 start_subfile will ensure that this happens provided that we pass the
17969 concatenation of files.files[1].dir and files.files[1].name as the
17970 subfile's name. */
17971
17972 static void
17973 dwarf2_start_subfile (const char *filename, const char *dirname)
17974 {
17975 char *copy = NULL;
17976
17977 /* In order not to lose the line information directory,
17978 we concatenate it to the filename when it makes sense.
17979 Note that the Dwarf3 standard says (speaking of filenames in line
17980 information): ``The directory index is ignored for file names
17981 that represent full path names''. Thus ignoring dirname in the
17982 `else' branch below isn't an issue. */
17983
17984 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17985 {
17986 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17987 filename = copy;
17988 }
17989
17990 start_subfile (filename);
17991
17992 if (copy != NULL)
17993 xfree (copy);
17994 }
17995
17996 /* Start a symtab for DWARF.
17997 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17998
17999 static struct compunit_symtab *
18000 dwarf2_start_symtab (struct dwarf2_cu *cu,
18001 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18002 {
18003 struct compunit_symtab *cust
18004 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18005
18006 record_debugformat ("DWARF 2");
18007 record_producer (cu->producer);
18008
18009 /* We assume that we're processing GCC output. */
18010 processing_gcc_compilation = 2;
18011
18012 cu->processing_has_namespace_info = 0;
18013
18014 return cust;
18015 }
18016
18017 static void
18018 var_decode_location (struct attribute *attr, struct symbol *sym,
18019 struct dwarf2_cu *cu)
18020 {
18021 struct objfile *objfile = cu->objfile;
18022 struct comp_unit_head *cu_header = &cu->header;
18023
18024 /* NOTE drow/2003-01-30: There used to be a comment and some special
18025 code here to turn a symbol with DW_AT_external and a
18026 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18027 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18028 with some versions of binutils) where shared libraries could have
18029 relocations against symbols in their debug information - the
18030 minimal symbol would have the right address, but the debug info
18031 would not. It's no longer necessary, because we will explicitly
18032 apply relocations when we read in the debug information now. */
18033
18034 /* A DW_AT_location attribute with no contents indicates that a
18035 variable has been optimized away. */
18036 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18037 {
18038 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18039 return;
18040 }
18041
18042 /* Handle one degenerate form of location expression specially, to
18043 preserve GDB's previous behavior when section offsets are
18044 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18045 then mark this symbol as LOC_STATIC. */
18046
18047 if (attr_form_is_block (attr)
18048 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18049 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18050 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18051 && (DW_BLOCK (attr)->size
18052 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18053 {
18054 unsigned int dummy;
18055
18056 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18057 SYMBOL_VALUE_ADDRESS (sym) =
18058 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18059 else
18060 SYMBOL_VALUE_ADDRESS (sym) =
18061 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18062 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18063 fixup_symbol_section (sym, objfile);
18064 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18065 SYMBOL_SECTION (sym));
18066 return;
18067 }
18068
18069 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18070 expression evaluator, and use LOC_COMPUTED only when necessary
18071 (i.e. when the value of a register or memory location is
18072 referenced, or a thread-local block, etc.). Then again, it might
18073 not be worthwhile. I'm assuming that it isn't unless performance
18074 or memory numbers show me otherwise. */
18075
18076 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18077
18078 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18079 cu->has_loclist = 1;
18080 }
18081
18082 /* Given a pointer to a DWARF information entry, figure out if we need
18083 to make a symbol table entry for it, and if so, create a new entry
18084 and return a pointer to it.
18085 If TYPE is NULL, determine symbol type from the die, otherwise
18086 used the passed type.
18087 If SPACE is not NULL, use it to hold the new symbol. If it is
18088 NULL, allocate a new symbol on the objfile's obstack. */
18089
18090 static struct symbol *
18091 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18092 struct symbol *space)
18093 {
18094 struct objfile *objfile = cu->objfile;
18095 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18096 struct symbol *sym = NULL;
18097 const char *name;
18098 struct attribute *attr = NULL;
18099 struct attribute *attr2 = NULL;
18100 CORE_ADDR baseaddr;
18101 struct pending **list_to_add = NULL;
18102
18103 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18104
18105 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18106
18107 name = dwarf2_name (die, cu);
18108 if (name)
18109 {
18110 const char *linkagename;
18111 int suppress_add = 0;
18112
18113 if (space)
18114 sym = space;
18115 else
18116 sym = allocate_symbol (objfile);
18117 OBJSTAT (objfile, n_syms++);
18118
18119 /* Cache this symbol's name and the name's demangled form (if any). */
18120 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18121 linkagename = dwarf2_physname (name, die, cu);
18122 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18123
18124 /* Fortran does not have mangling standard and the mangling does differ
18125 between gfortran, iFort etc. */
18126 if (cu->language == language_fortran
18127 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18128 symbol_set_demangled_name (&(sym->ginfo),
18129 dwarf2_full_name (name, die, cu),
18130 NULL);
18131
18132 /* Default assumptions.
18133 Use the passed type or decode it from the die. */
18134 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18135 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18136 if (type != NULL)
18137 SYMBOL_TYPE (sym) = type;
18138 else
18139 SYMBOL_TYPE (sym) = die_type (die, cu);
18140 attr = dwarf2_attr (die,
18141 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18142 cu);
18143 if (attr)
18144 {
18145 SYMBOL_LINE (sym) = DW_UNSND (attr);
18146 }
18147
18148 attr = dwarf2_attr (die,
18149 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18150 cu);
18151 if (attr)
18152 {
18153 int file_index = DW_UNSND (attr);
18154
18155 if (cu->line_header == NULL
18156 || file_index > cu->line_header->num_file_names)
18157 complaint (&symfile_complaints,
18158 _("file index out of range"));
18159 else if (file_index > 0)
18160 {
18161 struct file_entry *fe;
18162
18163 fe = &cu->line_header->file_names[file_index - 1];
18164 symbol_set_symtab (sym, fe->symtab);
18165 }
18166 }
18167
18168 switch (die->tag)
18169 {
18170 case DW_TAG_label:
18171 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18172 if (attr)
18173 {
18174 CORE_ADDR addr;
18175
18176 addr = attr_value_as_address (attr);
18177 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18178 SYMBOL_VALUE_ADDRESS (sym) = addr;
18179 }
18180 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18181 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18182 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18183 add_symbol_to_list (sym, cu->list_in_scope);
18184 break;
18185 case DW_TAG_subprogram:
18186 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18187 finish_block. */
18188 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18189 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18190 if ((attr2 && (DW_UNSND (attr2) != 0))
18191 || cu->language == language_ada)
18192 {
18193 /* Subprograms marked external are stored as a global symbol.
18194 Ada subprograms, whether marked external or not, are always
18195 stored as a global symbol, because we want to be able to
18196 access them globally. For instance, we want to be able
18197 to break on a nested subprogram without having to
18198 specify the context. */
18199 list_to_add = &global_symbols;
18200 }
18201 else
18202 {
18203 list_to_add = cu->list_in_scope;
18204 }
18205 break;
18206 case DW_TAG_inlined_subroutine:
18207 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18208 finish_block. */
18209 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18210 SYMBOL_INLINED (sym) = 1;
18211 list_to_add = cu->list_in_scope;
18212 break;
18213 case DW_TAG_template_value_param:
18214 suppress_add = 1;
18215 /* Fall through. */
18216 case DW_TAG_constant:
18217 case DW_TAG_variable:
18218 case DW_TAG_member:
18219 /* Compilation with minimal debug info may result in
18220 variables with missing type entries. Change the
18221 misleading `void' type to something sensible. */
18222 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18223 SYMBOL_TYPE (sym)
18224 = objfile_type (objfile)->nodebug_data_symbol;
18225
18226 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18227 /* In the case of DW_TAG_member, we should only be called for
18228 static const members. */
18229 if (die->tag == DW_TAG_member)
18230 {
18231 /* dwarf2_add_field uses die_is_declaration,
18232 so we do the same. */
18233 gdb_assert (die_is_declaration (die, cu));
18234 gdb_assert (attr);
18235 }
18236 if (attr)
18237 {
18238 dwarf2_const_value (attr, sym, cu);
18239 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18240 if (!suppress_add)
18241 {
18242 if (attr2 && (DW_UNSND (attr2) != 0))
18243 list_to_add = &global_symbols;
18244 else
18245 list_to_add = cu->list_in_scope;
18246 }
18247 break;
18248 }
18249 attr = dwarf2_attr (die, DW_AT_location, cu);
18250 if (attr)
18251 {
18252 var_decode_location (attr, sym, cu);
18253 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18254
18255 /* Fortran explicitly imports any global symbols to the local
18256 scope by DW_TAG_common_block. */
18257 if (cu->language == language_fortran && die->parent
18258 && die->parent->tag == DW_TAG_common_block)
18259 attr2 = NULL;
18260
18261 if (SYMBOL_CLASS (sym) == LOC_STATIC
18262 && SYMBOL_VALUE_ADDRESS (sym) == 0
18263 && !dwarf2_per_objfile->has_section_at_zero)
18264 {
18265 /* When a static variable is eliminated by the linker,
18266 the corresponding debug information is not stripped
18267 out, but the variable address is set to null;
18268 do not add such variables into symbol table. */
18269 }
18270 else if (attr2 && (DW_UNSND (attr2) != 0))
18271 {
18272 /* Workaround gfortran PR debug/40040 - it uses
18273 DW_AT_location for variables in -fPIC libraries which may
18274 get overriden by other libraries/executable and get
18275 a different address. Resolve it by the minimal symbol
18276 which may come from inferior's executable using copy
18277 relocation. Make this workaround only for gfortran as for
18278 other compilers GDB cannot guess the minimal symbol
18279 Fortran mangling kind. */
18280 if (cu->language == language_fortran && die->parent
18281 && die->parent->tag == DW_TAG_module
18282 && cu->producer
18283 && startswith (cu->producer, "GNU Fortran "))
18284 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18285
18286 /* A variable with DW_AT_external is never static,
18287 but it may be block-scoped. */
18288 list_to_add = (cu->list_in_scope == &file_symbols
18289 ? &global_symbols : cu->list_in_scope);
18290 }
18291 else
18292 list_to_add = cu->list_in_scope;
18293 }
18294 else
18295 {
18296 /* We do not know the address of this symbol.
18297 If it is an external symbol and we have type information
18298 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18299 The address of the variable will then be determined from
18300 the minimal symbol table whenever the variable is
18301 referenced. */
18302 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18303
18304 /* Fortran explicitly imports any global symbols to the local
18305 scope by DW_TAG_common_block. */
18306 if (cu->language == language_fortran && die->parent
18307 && die->parent->tag == DW_TAG_common_block)
18308 {
18309 /* SYMBOL_CLASS doesn't matter here because
18310 read_common_block is going to reset it. */
18311 if (!suppress_add)
18312 list_to_add = cu->list_in_scope;
18313 }
18314 else if (attr2 && (DW_UNSND (attr2) != 0)
18315 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18316 {
18317 /* A variable with DW_AT_external is never static, but it
18318 may be block-scoped. */
18319 list_to_add = (cu->list_in_scope == &file_symbols
18320 ? &global_symbols : cu->list_in_scope);
18321
18322 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18323 }
18324 else if (!die_is_declaration (die, cu))
18325 {
18326 /* Use the default LOC_OPTIMIZED_OUT class. */
18327 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18328 if (!suppress_add)
18329 list_to_add = cu->list_in_scope;
18330 }
18331 }
18332 break;
18333 case DW_TAG_formal_parameter:
18334 /* If we are inside a function, mark this as an argument. If
18335 not, we might be looking at an argument to an inlined function
18336 when we do not have enough information to show inlined frames;
18337 pretend it's a local variable in that case so that the user can
18338 still see it. */
18339 if (context_stack_depth > 0
18340 && context_stack[context_stack_depth - 1].name != NULL)
18341 SYMBOL_IS_ARGUMENT (sym) = 1;
18342 attr = dwarf2_attr (die, DW_AT_location, cu);
18343 if (attr)
18344 {
18345 var_decode_location (attr, sym, cu);
18346 }
18347 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18348 if (attr)
18349 {
18350 dwarf2_const_value (attr, sym, cu);
18351 }
18352
18353 list_to_add = cu->list_in_scope;
18354 break;
18355 case DW_TAG_unspecified_parameters:
18356 /* From varargs functions; gdb doesn't seem to have any
18357 interest in this information, so just ignore it for now.
18358 (FIXME?) */
18359 break;
18360 case DW_TAG_template_type_param:
18361 suppress_add = 1;
18362 /* Fall through. */
18363 case DW_TAG_class_type:
18364 case DW_TAG_interface_type:
18365 case DW_TAG_structure_type:
18366 case DW_TAG_union_type:
18367 case DW_TAG_set_type:
18368 case DW_TAG_enumeration_type:
18369 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18370 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18371
18372 {
18373 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18374 really ever be static objects: otherwise, if you try
18375 to, say, break of a class's method and you're in a file
18376 which doesn't mention that class, it won't work unless
18377 the check for all static symbols in lookup_symbol_aux
18378 saves you. See the OtherFileClass tests in
18379 gdb.c++/namespace.exp. */
18380
18381 if (!suppress_add)
18382 {
18383 list_to_add = (cu->list_in_scope == &file_symbols
18384 && (cu->language == language_cplus
18385 || cu->language == language_java)
18386 ? &global_symbols : cu->list_in_scope);
18387
18388 /* The semantics of C++ state that "struct foo {
18389 ... }" also defines a typedef for "foo". A Java
18390 class declaration also defines a typedef for the
18391 class. */
18392 if (cu->language == language_cplus
18393 || cu->language == language_java
18394 || cu->language == language_ada)
18395 {
18396 /* The symbol's name is already allocated along
18397 with this objfile, so we don't need to
18398 duplicate it for the type. */
18399 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18400 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18401 }
18402 }
18403 }
18404 break;
18405 case DW_TAG_typedef:
18406 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18407 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18408 list_to_add = cu->list_in_scope;
18409 break;
18410 case DW_TAG_base_type:
18411 case DW_TAG_subrange_type:
18412 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18413 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18414 list_to_add = cu->list_in_scope;
18415 break;
18416 case DW_TAG_enumerator:
18417 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18418 if (attr)
18419 {
18420 dwarf2_const_value (attr, sym, cu);
18421 }
18422 {
18423 /* NOTE: carlton/2003-11-10: See comment above in the
18424 DW_TAG_class_type, etc. block. */
18425
18426 list_to_add = (cu->list_in_scope == &file_symbols
18427 && (cu->language == language_cplus
18428 || cu->language == language_java)
18429 ? &global_symbols : cu->list_in_scope);
18430 }
18431 break;
18432 case DW_TAG_imported_declaration:
18433 case DW_TAG_namespace:
18434 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18435 list_to_add = &global_symbols;
18436 break;
18437 case DW_TAG_module:
18438 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18439 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18440 list_to_add = &global_symbols;
18441 break;
18442 case DW_TAG_common_block:
18443 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18444 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18445 add_symbol_to_list (sym, cu->list_in_scope);
18446 break;
18447 default:
18448 /* Not a tag we recognize. Hopefully we aren't processing
18449 trash data, but since we must specifically ignore things
18450 we don't recognize, there is nothing else we should do at
18451 this point. */
18452 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18453 dwarf_tag_name (die->tag));
18454 break;
18455 }
18456
18457 if (suppress_add)
18458 {
18459 sym->hash_next = objfile->template_symbols;
18460 objfile->template_symbols = sym;
18461 list_to_add = NULL;
18462 }
18463
18464 if (list_to_add != NULL)
18465 add_symbol_to_list (sym, list_to_add);
18466
18467 /* For the benefit of old versions of GCC, check for anonymous
18468 namespaces based on the demangled name. */
18469 if (!cu->processing_has_namespace_info
18470 && cu->language == language_cplus)
18471 cp_scan_for_anonymous_namespaces (sym, objfile);
18472 }
18473 return (sym);
18474 }
18475
18476 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18477
18478 static struct symbol *
18479 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18480 {
18481 return new_symbol_full (die, type, cu, NULL);
18482 }
18483
18484 /* Given an attr with a DW_FORM_dataN value in host byte order,
18485 zero-extend it as appropriate for the symbol's type. The DWARF
18486 standard (v4) is not entirely clear about the meaning of using
18487 DW_FORM_dataN for a constant with a signed type, where the type is
18488 wider than the data. The conclusion of a discussion on the DWARF
18489 list was that this is unspecified. We choose to always zero-extend
18490 because that is the interpretation long in use by GCC. */
18491
18492 static gdb_byte *
18493 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18494 struct dwarf2_cu *cu, LONGEST *value, int bits)
18495 {
18496 struct objfile *objfile = cu->objfile;
18497 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18498 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18499 LONGEST l = DW_UNSND (attr);
18500
18501 if (bits < sizeof (*value) * 8)
18502 {
18503 l &= ((LONGEST) 1 << bits) - 1;
18504 *value = l;
18505 }
18506 else if (bits == sizeof (*value) * 8)
18507 *value = l;
18508 else
18509 {
18510 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18511 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18512 return bytes;
18513 }
18514
18515 return NULL;
18516 }
18517
18518 /* Read a constant value from an attribute. Either set *VALUE, or if
18519 the value does not fit in *VALUE, set *BYTES - either already
18520 allocated on the objfile obstack, or newly allocated on OBSTACK,
18521 or, set *BATON, if we translated the constant to a location
18522 expression. */
18523
18524 static void
18525 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18526 const char *name, struct obstack *obstack,
18527 struct dwarf2_cu *cu,
18528 LONGEST *value, const gdb_byte **bytes,
18529 struct dwarf2_locexpr_baton **baton)
18530 {
18531 struct objfile *objfile = cu->objfile;
18532 struct comp_unit_head *cu_header = &cu->header;
18533 struct dwarf_block *blk;
18534 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18535 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18536
18537 *value = 0;
18538 *bytes = NULL;
18539 *baton = NULL;
18540
18541 switch (attr->form)
18542 {
18543 case DW_FORM_addr:
18544 case DW_FORM_GNU_addr_index:
18545 {
18546 gdb_byte *data;
18547
18548 if (TYPE_LENGTH (type) != cu_header->addr_size)
18549 dwarf2_const_value_length_mismatch_complaint (name,
18550 cu_header->addr_size,
18551 TYPE_LENGTH (type));
18552 /* Symbols of this form are reasonably rare, so we just
18553 piggyback on the existing location code rather than writing
18554 a new implementation of symbol_computed_ops. */
18555 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18556 (*baton)->per_cu = cu->per_cu;
18557 gdb_assert ((*baton)->per_cu);
18558
18559 (*baton)->size = 2 + cu_header->addr_size;
18560 data = obstack_alloc (obstack, (*baton)->size);
18561 (*baton)->data = data;
18562
18563 data[0] = DW_OP_addr;
18564 store_unsigned_integer (&data[1], cu_header->addr_size,
18565 byte_order, DW_ADDR (attr));
18566 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18567 }
18568 break;
18569 case DW_FORM_string:
18570 case DW_FORM_strp:
18571 case DW_FORM_GNU_str_index:
18572 case DW_FORM_GNU_strp_alt:
18573 /* DW_STRING is already allocated on the objfile obstack, point
18574 directly to it. */
18575 *bytes = (const gdb_byte *) DW_STRING (attr);
18576 break;
18577 case DW_FORM_block1:
18578 case DW_FORM_block2:
18579 case DW_FORM_block4:
18580 case DW_FORM_block:
18581 case DW_FORM_exprloc:
18582 blk = DW_BLOCK (attr);
18583 if (TYPE_LENGTH (type) != blk->size)
18584 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18585 TYPE_LENGTH (type));
18586 *bytes = blk->data;
18587 break;
18588
18589 /* The DW_AT_const_value attributes are supposed to carry the
18590 symbol's value "represented as it would be on the target
18591 architecture." By the time we get here, it's already been
18592 converted to host endianness, so we just need to sign- or
18593 zero-extend it as appropriate. */
18594 case DW_FORM_data1:
18595 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18596 break;
18597 case DW_FORM_data2:
18598 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18599 break;
18600 case DW_FORM_data4:
18601 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18602 break;
18603 case DW_FORM_data8:
18604 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18605 break;
18606
18607 case DW_FORM_sdata:
18608 *value = DW_SND (attr);
18609 break;
18610
18611 case DW_FORM_udata:
18612 *value = DW_UNSND (attr);
18613 break;
18614
18615 default:
18616 complaint (&symfile_complaints,
18617 _("unsupported const value attribute form: '%s'"),
18618 dwarf_form_name (attr->form));
18619 *value = 0;
18620 break;
18621 }
18622 }
18623
18624
18625 /* Copy constant value from an attribute to a symbol. */
18626
18627 static void
18628 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18629 struct dwarf2_cu *cu)
18630 {
18631 struct objfile *objfile = cu->objfile;
18632 struct comp_unit_head *cu_header = &cu->header;
18633 LONGEST value;
18634 const gdb_byte *bytes;
18635 struct dwarf2_locexpr_baton *baton;
18636
18637 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18638 SYMBOL_PRINT_NAME (sym),
18639 &objfile->objfile_obstack, cu,
18640 &value, &bytes, &baton);
18641
18642 if (baton != NULL)
18643 {
18644 SYMBOL_LOCATION_BATON (sym) = baton;
18645 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18646 }
18647 else if (bytes != NULL)
18648 {
18649 SYMBOL_VALUE_BYTES (sym) = bytes;
18650 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18651 }
18652 else
18653 {
18654 SYMBOL_VALUE (sym) = value;
18655 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18656 }
18657 }
18658
18659 /* Return the type of the die in question using its DW_AT_type attribute. */
18660
18661 static struct type *
18662 die_type (struct die_info *die, struct dwarf2_cu *cu)
18663 {
18664 struct attribute *type_attr;
18665
18666 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18667 if (!type_attr)
18668 {
18669 /* A missing DW_AT_type represents a void type. */
18670 return objfile_type (cu->objfile)->builtin_void;
18671 }
18672
18673 return lookup_die_type (die, type_attr, cu);
18674 }
18675
18676 /* True iff CU's producer generates GNAT Ada auxiliary information
18677 that allows to find parallel types through that information instead
18678 of having to do expensive parallel lookups by type name. */
18679
18680 static int
18681 need_gnat_info (struct dwarf2_cu *cu)
18682 {
18683 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18684 of GNAT produces this auxiliary information, without any indication
18685 that it is produced. Part of enhancing the FSF version of GNAT
18686 to produce that information will be to put in place an indicator
18687 that we can use in order to determine whether the descriptive type
18688 info is available or not. One suggestion that has been made is
18689 to use a new attribute, attached to the CU die. For now, assume
18690 that the descriptive type info is not available. */
18691 return 0;
18692 }
18693
18694 /* Return the auxiliary type of the die in question using its
18695 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18696 attribute is not present. */
18697
18698 static struct type *
18699 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18700 {
18701 struct attribute *type_attr;
18702
18703 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18704 if (!type_attr)
18705 return NULL;
18706
18707 return lookup_die_type (die, type_attr, cu);
18708 }
18709
18710 /* If DIE has a descriptive_type attribute, then set the TYPE's
18711 descriptive type accordingly. */
18712
18713 static void
18714 set_descriptive_type (struct type *type, struct die_info *die,
18715 struct dwarf2_cu *cu)
18716 {
18717 struct type *descriptive_type = die_descriptive_type (die, cu);
18718
18719 if (descriptive_type)
18720 {
18721 ALLOCATE_GNAT_AUX_TYPE (type);
18722 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18723 }
18724 }
18725
18726 /* Return the containing type of the die in question using its
18727 DW_AT_containing_type attribute. */
18728
18729 static struct type *
18730 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18731 {
18732 struct attribute *type_attr;
18733
18734 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18735 if (!type_attr)
18736 error (_("Dwarf Error: Problem turning containing type into gdb type "
18737 "[in module %s]"), objfile_name (cu->objfile));
18738
18739 return lookup_die_type (die, type_attr, cu);
18740 }
18741
18742 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18743
18744 static struct type *
18745 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18746 {
18747 struct objfile *objfile = dwarf2_per_objfile->objfile;
18748 char *message, *saved;
18749
18750 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18751 objfile_name (objfile),
18752 cu->header.offset.sect_off,
18753 die->offset.sect_off);
18754 saved = obstack_copy0 (&objfile->objfile_obstack,
18755 message, strlen (message));
18756 xfree (message);
18757
18758 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18759 }
18760
18761 /* Look up the type of DIE in CU using its type attribute ATTR.
18762 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18763 DW_AT_containing_type.
18764 If there is no type substitute an error marker. */
18765
18766 static struct type *
18767 lookup_die_type (struct die_info *die, const struct attribute *attr,
18768 struct dwarf2_cu *cu)
18769 {
18770 struct objfile *objfile = cu->objfile;
18771 struct type *this_type;
18772
18773 gdb_assert (attr->name == DW_AT_type
18774 || attr->name == DW_AT_GNAT_descriptive_type
18775 || attr->name == DW_AT_containing_type);
18776
18777 /* First see if we have it cached. */
18778
18779 if (attr->form == DW_FORM_GNU_ref_alt)
18780 {
18781 struct dwarf2_per_cu_data *per_cu;
18782 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18783
18784 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18785 this_type = get_die_type_at_offset (offset, per_cu);
18786 }
18787 else if (attr_form_is_ref (attr))
18788 {
18789 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18790
18791 this_type = get_die_type_at_offset (offset, cu->per_cu);
18792 }
18793 else if (attr->form == DW_FORM_ref_sig8)
18794 {
18795 ULONGEST signature = DW_SIGNATURE (attr);
18796
18797 return get_signatured_type (die, signature, cu);
18798 }
18799 else
18800 {
18801 complaint (&symfile_complaints,
18802 _("Dwarf Error: Bad type attribute %s in DIE"
18803 " at 0x%x [in module %s]"),
18804 dwarf_attr_name (attr->name), die->offset.sect_off,
18805 objfile_name (objfile));
18806 return build_error_marker_type (cu, die);
18807 }
18808
18809 /* If not cached we need to read it in. */
18810
18811 if (this_type == NULL)
18812 {
18813 struct die_info *type_die = NULL;
18814 struct dwarf2_cu *type_cu = cu;
18815
18816 if (attr_form_is_ref (attr))
18817 type_die = follow_die_ref (die, attr, &type_cu);
18818 if (type_die == NULL)
18819 return build_error_marker_type (cu, die);
18820 /* If we find the type now, it's probably because the type came
18821 from an inter-CU reference and the type's CU got expanded before
18822 ours. */
18823 this_type = read_type_die (type_die, type_cu);
18824 }
18825
18826 /* If we still don't have a type use an error marker. */
18827
18828 if (this_type == NULL)
18829 return build_error_marker_type (cu, die);
18830
18831 return this_type;
18832 }
18833
18834 /* Return the type in DIE, CU.
18835 Returns NULL for invalid types.
18836
18837 This first does a lookup in die_type_hash,
18838 and only reads the die in if necessary.
18839
18840 NOTE: This can be called when reading in partial or full symbols. */
18841
18842 static struct type *
18843 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18844 {
18845 struct type *this_type;
18846
18847 this_type = get_die_type (die, cu);
18848 if (this_type)
18849 return this_type;
18850
18851 return read_type_die_1 (die, cu);
18852 }
18853
18854 /* Read the type in DIE, CU.
18855 Returns NULL for invalid types. */
18856
18857 static struct type *
18858 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18859 {
18860 struct type *this_type = NULL;
18861
18862 switch (die->tag)
18863 {
18864 case DW_TAG_class_type:
18865 case DW_TAG_interface_type:
18866 case DW_TAG_structure_type:
18867 case DW_TAG_union_type:
18868 this_type = read_structure_type (die, cu);
18869 break;
18870 case DW_TAG_enumeration_type:
18871 this_type = read_enumeration_type (die, cu);
18872 break;
18873 case DW_TAG_subprogram:
18874 case DW_TAG_subroutine_type:
18875 case DW_TAG_inlined_subroutine:
18876 this_type = read_subroutine_type (die, cu);
18877 break;
18878 case DW_TAG_array_type:
18879 this_type = read_array_type (die, cu);
18880 break;
18881 case DW_TAG_set_type:
18882 this_type = read_set_type (die, cu);
18883 break;
18884 case DW_TAG_pointer_type:
18885 this_type = read_tag_pointer_type (die, cu);
18886 break;
18887 case DW_TAG_ptr_to_member_type:
18888 this_type = read_tag_ptr_to_member_type (die, cu);
18889 break;
18890 case DW_TAG_reference_type:
18891 this_type = read_tag_reference_type (die, cu);
18892 break;
18893 case DW_TAG_const_type:
18894 this_type = read_tag_const_type (die, cu);
18895 break;
18896 case DW_TAG_volatile_type:
18897 this_type = read_tag_volatile_type (die, cu);
18898 break;
18899 case DW_TAG_restrict_type:
18900 this_type = read_tag_restrict_type (die, cu);
18901 break;
18902 case DW_TAG_string_type:
18903 this_type = read_tag_string_type (die, cu);
18904 break;
18905 case DW_TAG_typedef:
18906 this_type = read_typedef (die, cu);
18907 break;
18908 case DW_TAG_subrange_type:
18909 this_type = read_subrange_type (die, cu);
18910 break;
18911 case DW_TAG_base_type:
18912 this_type = read_base_type (die, cu);
18913 break;
18914 case DW_TAG_unspecified_type:
18915 this_type = read_unspecified_type (die, cu);
18916 break;
18917 case DW_TAG_namespace:
18918 this_type = read_namespace_type (die, cu);
18919 break;
18920 case DW_TAG_module:
18921 this_type = read_module_type (die, cu);
18922 break;
18923 case DW_TAG_atomic_type:
18924 this_type = read_tag_atomic_type (die, cu);
18925 break;
18926 default:
18927 complaint (&symfile_complaints,
18928 _("unexpected tag in read_type_die: '%s'"),
18929 dwarf_tag_name (die->tag));
18930 break;
18931 }
18932
18933 return this_type;
18934 }
18935
18936 /* See if we can figure out if the class lives in a namespace. We do
18937 this by looking for a member function; its demangled name will
18938 contain namespace info, if there is any.
18939 Return the computed name or NULL.
18940 Space for the result is allocated on the objfile's obstack.
18941 This is the full-die version of guess_partial_die_structure_name.
18942 In this case we know DIE has no useful parent. */
18943
18944 static char *
18945 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18946 {
18947 struct die_info *spec_die;
18948 struct dwarf2_cu *spec_cu;
18949 struct die_info *child;
18950
18951 spec_cu = cu;
18952 spec_die = die_specification (die, &spec_cu);
18953 if (spec_die != NULL)
18954 {
18955 die = spec_die;
18956 cu = spec_cu;
18957 }
18958
18959 for (child = die->child;
18960 child != NULL;
18961 child = child->sibling)
18962 {
18963 if (child->tag == DW_TAG_subprogram)
18964 {
18965 struct attribute *attr;
18966
18967 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18968 if (attr == NULL)
18969 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18970 if (attr != NULL)
18971 {
18972 char *actual_name
18973 = language_class_name_from_physname (cu->language_defn,
18974 DW_STRING (attr));
18975 char *name = NULL;
18976
18977 if (actual_name != NULL)
18978 {
18979 const char *die_name = dwarf2_name (die, cu);
18980
18981 if (die_name != NULL
18982 && strcmp (die_name, actual_name) != 0)
18983 {
18984 /* Strip off the class name from the full name.
18985 We want the prefix. */
18986 int die_name_len = strlen (die_name);
18987 int actual_name_len = strlen (actual_name);
18988
18989 /* Test for '::' as a sanity check. */
18990 if (actual_name_len > die_name_len + 2
18991 && actual_name[actual_name_len
18992 - die_name_len - 1] == ':')
18993 name =
18994 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18995 actual_name,
18996 actual_name_len - die_name_len - 2);
18997 }
18998 }
18999 xfree (actual_name);
19000 return name;
19001 }
19002 }
19003 }
19004
19005 return NULL;
19006 }
19007
19008 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19009 prefix part in such case. See
19010 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19011
19012 static char *
19013 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19014 {
19015 struct attribute *attr;
19016 char *base;
19017
19018 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19019 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19020 return NULL;
19021
19022 attr = dwarf2_attr (die, DW_AT_name, cu);
19023 if (attr != NULL && DW_STRING (attr) != NULL)
19024 return NULL;
19025
19026 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19027 if (attr == NULL)
19028 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19029 if (attr == NULL || DW_STRING (attr) == NULL)
19030 return NULL;
19031
19032 /* dwarf2_name had to be already called. */
19033 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19034
19035 /* Strip the base name, keep any leading namespaces/classes. */
19036 base = strrchr (DW_STRING (attr), ':');
19037 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19038 return "";
19039
19040 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19041 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19042 }
19043
19044 /* Return the name of the namespace/class that DIE is defined within,
19045 or "" if we can't tell. The caller should not xfree the result.
19046
19047 For example, if we're within the method foo() in the following
19048 code:
19049
19050 namespace N {
19051 class C {
19052 void foo () {
19053 }
19054 };
19055 }
19056
19057 then determine_prefix on foo's die will return "N::C". */
19058
19059 static const char *
19060 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19061 {
19062 struct die_info *parent, *spec_die;
19063 struct dwarf2_cu *spec_cu;
19064 struct type *parent_type;
19065 char *retval;
19066
19067 if (cu->language != language_cplus && cu->language != language_java
19068 && cu->language != language_fortran)
19069 return "";
19070
19071 retval = anonymous_struct_prefix (die, cu);
19072 if (retval)
19073 return retval;
19074
19075 /* We have to be careful in the presence of DW_AT_specification.
19076 For example, with GCC 3.4, given the code
19077
19078 namespace N {
19079 void foo() {
19080 // Definition of N::foo.
19081 }
19082 }
19083
19084 then we'll have a tree of DIEs like this:
19085
19086 1: DW_TAG_compile_unit
19087 2: DW_TAG_namespace // N
19088 3: DW_TAG_subprogram // declaration of N::foo
19089 4: DW_TAG_subprogram // definition of N::foo
19090 DW_AT_specification // refers to die #3
19091
19092 Thus, when processing die #4, we have to pretend that we're in
19093 the context of its DW_AT_specification, namely the contex of die
19094 #3. */
19095 spec_cu = cu;
19096 spec_die = die_specification (die, &spec_cu);
19097 if (spec_die == NULL)
19098 parent = die->parent;
19099 else
19100 {
19101 parent = spec_die->parent;
19102 cu = spec_cu;
19103 }
19104
19105 if (parent == NULL)
19106 return "";
19107 else if (parent->building_fullname)
19108 {
19109 const char *name;
19110 const char *parent_name;
19111
19112 /* It has been seen on RealView 2.2 built binaries,
19113 DW_TAG_template_type_param types actually _defined_ as
19114 children of the parent class:
19115
19116 enum E {};
19117 template class <class Enum> Class{};
19118 Class<enum E> class_e;
19119
19120 1: DW_TAG_class_type (Class)
19121 2: DW_TAG_enumeration_type (E)
19122 3: DW_TAG_enumerator (enum1:0)
19123 3: DW_TAG_enumerator (enum2:1)
19124 ...
19125 2: DW_TAG_template_type_param
19126 DW_AT_type DW_FORM_ref_udata (E)
19127
19128 Besides being broken debug info, it can put GDB into an
19129 infinite loop. Consider:
19130
19131 When we're building the full name for Class<E>, we'll start
19132 at Class, and go look over its template type parameters,
19133 finding E. We'll then try to build the full name of E, and
19134 reach here. We're now trying to build the full name of E,
19135 and look over the parent DIE for containing scope. In the
19136 broken case, if we followed the parent DIE of E, we'd again
19137 find Class, and once again go look at its template type
19138 arguments, etc., etc. Simply don't consider such parent die
19139 as source-level parent of this die (it can't be, the language
19140 doesn't allow it), and break the loop here. */
19141 name = dwarf2_name (die, cu);
19142 parent_name = dwarf2_name (parent, cu);
19143 complaint (&symfile_complaints,
19144 _("template param type '%s' defined within parent '%s'"),
19145 name ? name : "<unknown>",
19146 parent_name ? parent_name : "<unknown>");
19147 return "";
19148 }
19149 else
19150 switch (parent->tag)
19151 {
19152 case DW_TAG_namespace:
19153 parent_type = read_type_die (parent, cu);
19154 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19155 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19156 Work around this problem here. */
19157 if (cu->language == language_cplus
19158 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19159 return "";
19160 /* We give a name to even anonymous namespaces. */
19161 return TYPE_TAG_NAME (parent_type);
19162 case DW_TAG_class_type:
19163 case DW_TAG_interface_type:
19164 case DW_TAG_structure_type:
19165 case DW_TAG_union_type:
19166 case DW_TAG_module:
19167 parent_type = read_type_die (parent, cu);
19168 if (TYPE_TAG_NAME (parent_type) != NULL)
19169 return TYPE_TAG_NAME (parent_type);
19170 else
19171 /* An anonymous structure is only allowed non-static data
19172 members; no typedefs, no member functions, et cetera.
19173 So it does not need a prefix. */
19174 return "";
19175 case DW_TAG_compile_unit:
19176 case DW_TAG_partial_unit:
19177 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19178 if (cu->language == language_cplus
19179 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19180 && die->child != NULL
19181 && (die->tag == DW_TAG_class_type
19182 || die->tag == DW_TAG_structure_type
19183 || die->tag == DW_TAG_union_type))
19184 {
19185 char *name = guess_full_die_structure_name (die, cu);
19186 if (name != NULL)
19187 return name;
19188 }
19189 return "";
19190 case DW_TAG_enumeration_type:
19191 parent_type = read_type_die (parent, cu);
19192 if (TYPE_DECLARED_CLASS (parent_type))
19193 {
19194 if (TYPE_TAG_NAME (parent_type) != NULL)
19195 return TYPE_TAG_NAME (parent_type);
19196 return "";
19197 }
19198 /* Fall through. */
19199 default:
19200 return determine_prefix (parent, cu);
19201 }
19202 }
19203
19204 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19205 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19206 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19207 an obconcat, otherwise allocate storage for the result. The CU argument is
19208 used to determine the language and hence, the appropriate separator. */
19209
19210 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19211
19212 static char *
19213 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19214 int physname, struct dwarf2_cu *cu)
19215 {
19216 const char *lead = "";
19217 const char *sep;
19218
19219 if (suffix == NULL || suffix[0] == '\0'
19220 || prefix == NULL || prefix[0] == '\0')
19221 sep = "";
19222 else if (cu->language == language_java)
19223 sep = ".";
19224 else if (cu->language == language_fortran && physname)
19225 {
19226 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19227 DW_AT_MIPS_linkage_name is preferred and used instead. */
19228
19229 lead = "__";
19230 sep = "_MOD_";
19231 }
19232 else
19233 sep = "::";
19234
19235 if (prefix == NULL)
19236 prefix = "";
19237 if (suffix == NULL)
19238 suffix = "";
19239
19240 if (obs == NULL)
19241 {
19242 char *retval
19243 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19244
19245 strcpy (retval, lead);
19246 strcat (retval, prefix);
19247 strcat (retval, sep);
19248 strcat (retval, suffix);
19249 return retval;
19250 }
19251 else
19252 {
19253 /* We have an obstack. */
19254 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19255 }
19256 }
19257
19258 /* Return sibling of die, NULL if no sibling. */
19259
19260 static struct die_info *
19261 sibling_die (struct die_info *die)
19262 {
19263 return die->sibling;
19264 }
19265
19266 /* Get name of a die, return NULL if not found. */
19267
19268 static const char *
19269 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19270 struct obstack *obstack)
19271 {
19272 if (name && cu->language == language_cplus)
19273 {
19274 char *canon_name = cp_canonicalize_string (name);
19275
19276 if (canon_name != NULL)
19277 {
19278 if (strcmp (canon_name, name) != 0)
19279 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19280 xfree (canon_name);
19281 }
19282 }
19283
19284 return name;
19285 }
19286
19287 /* Get name of a die, return NULL if not found.
19288 Anonymous namespaces are converted to their magic string. */
19289
19290 static const char *
19291 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19292 {
19293 struct attribute *attr;
19294
19295 attr = dwarf2_attr (die, DW_AT_name, cu);
19296 if ((!attr || !DW_STRING (attr))
19297 && die->tag != DW_TAG_namespace
19298 && die->tag != DW_TAG_class_type
19299 && die->tag != DW_TAG_interface_type
19300 && die->tag != DW_TAG_structure_type
19301 && die->tag != DW_TAG_union_type)
19302 return NULL;
19303
19304 switch (die->tag)
19305 {
19306 case DW_TAG_compile_unit:
19307 case DW_TAG_partial_unit:
19308 /* Compilation units have a DW_AT_name that is a filename, not
19309 a source language identifier. */
19310 case DW_TAG_enumeration_type:
19311 case DW_TAG_enumerator:
19312 /* These tags always have simple identifiers already; no need
19313 to canonicalize them. */
19314 return DW_STRING (attr);
19315
19316 case DW_TAG_namespace:
19317 if (attr != NULL && DW_STRING (attr) != NULL)
19318 return DW_STRING (attr);
19319 return CP_ANONYMOUS_NAMESPACE_STR;
19320
19321 case DW_TAG_subprogram:
19322 /* Java constructors will all be named "<init>", so return
19323 the class name when we see this special case. */
19324 if (cu->language == language_java
19325 && DW_STRING (attr) != NULL
19326 && strcmp (DW_STRING (attr), "<init>") == 0)
19327 {
19328 struct dwarf2_cu *spec_cu = cu;
19329 struct die_info *spec_die;
19330
19331 /* GCJ will output '<init>' for Java constructor names.
19332 For this special case, return the name of the parent class. */
19333
19334 /* GCJ may output subprogram DIEs with AT_specification set.
19335 If so, use the name of the specified DIE. */
19336 spec_die = die_specification (die, &spec_cu);
19337 if (spec_die != NULL)
19338 return dwarf2_name (spec_die, spec_cu);
19339
19340 do
19341 {
19342 die = die->parent;
19343 if (die->tag == DW_TAG_class_type)
19344 return dwarf2_name (die, cu);
19345 }
19346 while (die->tag != DW_TAG_compile_unit
19347 && die->tag != DW_TAG_partial_unit);
19348 }
19349 break;
19350
19351 case DW_TAG_class_type:
19352 case DW_TAG_interface_type:
19353 case DW_TAG_structure_type:
19354 case DW_TAG_union_type:
19355 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19356 structures or unions. These were of the form "._%d" in GCC 4.1,
19357 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19358 and GCC 4.4. We work around this problem by ignoring these. */
19359 if (attr && DW_STRING (attr)
19360 && (startswith (DW_STRING (attr), "._")
19361 || startswith (DW_STRING (attr), "<anonymous")))
19362 return NULL;
19363
19364 /* GCC might emit a nameless typedef that has a linkage name. See
19365 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19366 if (!attr || DW_STRING (attr) == NULL)
19367 {
19368 char *demangled = NULL;
19369
19370 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19371 if (attr == NULL)
19372 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19373
19374 if (attr == NULL || DW_STRING (attr) == NULL)
19375 return NULL;
19376
19377 /* Avoid demangling DW_STRING (attr) the second time on a second
19378 call for the same DIE. */
19379 if (!DW_STRING_IS_CANONICAL (attr))
19380 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19381
19382 if (demangled)
19383 {
19384 char *base;
19385
19386 /* FIXME: we already did this for the partial symbol... */
19387 DW_STRING (attr)
19388 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19389 demangled, strlen (demangled));
19390 DW_STRING_IS_CANONICAL (attr) = 1;
19391 xfree (demangled);
19392
19393 /* Strip any leading namespaces/classes, keep only the base name.
19394 DW_AT_name for named DIEs does not contain the prefixes. */
19395 base = strrchr (DW_STRING (attr), ':');
19396 if (base && base > DW_STRING (attr) && base[-1] == ':')
19397 return &base[1];
19398 else
19399 return DW_STRING (attr);
19400 }
19401 }
19402 break;
19403
19404 default:
19405 break;
19406 }
19407
19408 if (!DW_STRING_IS_CANONICAL (attr))
19409 {
19410 DW_STRING (attr)
19411 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19412 &cu->objfile->per_bfd->storage_obstack);
19413 DW_STRING_IS_CANONICAL (attr) = 1;
19414 }
19415 return DW_STRING (attr);
19416 }
19417
19418 /* Return the die that this die in an extension of, or NULL if there
19419 is none. *EXT_CU is the CU containing DIE on input, and the CU
19420 containing the return value on output. */
19421
19422 static struct die_info *
19423 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19424 {
19425 struct attribute *attr;
19426
19427 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19428 if (attr == NULL)
19429 return NULL;
19430
19431 return follow_die_ref (die, attr, ext_cu);
19432 }
19433
19434 /* Convert a DIE tag into its string name. */
19435
19436 static const char *
19437 dwarf_tag_name (unsigned tag)
19438 {
19439 const char *name = get_DW_TAG_name (tag);
19440
19441 if (name == NULL)
19442 return "DW_TAG_<unknown>";
19443
19444 return name;
19445 }
19446
19447 /* Convert a DWARF attribute code into its string name. */
19448
19449 static const char *
19450 dwarf_attr_name (unsigned attr)
19451 {
19452 const char *name;
19453
19454 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19455 if (attr == DW_AT_MIPS_fde)
19456 return "DW_AT_MIPS_fde";
19457 #else
19458 if (attr == DW_AT_HP_block_index)
19459 return "DW_AT_HP_block_index";
19460 #endif
19461
19462 name = get_DW_AT_name (attr);
19463
19464 if (name == NULL)
19465 return "DW_AT_<unknown>";
19466
19467 return name;
19468 }
19469
19470 /* Convert a DWARF value form code into its string name. */
19471
19472 static const char *
19473 dwarf_form_name (unsigned form)
19474 {
19475 const char *name = get_DW_FORM_name (form);
19476
19477 if (name == NULL)
19478 return "DW_FORM_<unknown>";
19479
19480 return name;
19481 }
19482
19483 static char *
19484 dwarf_bool_name (unsigned mybool)
19485 {
19486 if (mybool)
19487 return "TRUE";
19488 else
19489 return "FALSE";
19490 }
19491
19492 /* Convert a DWARF type code into its string name. */
19493
19494 static const char *
19495 dwarf_type_encoding_name (unsigned enc)
19496 {
19497 const char *name = get_DW_ATE_name (enc);
19498
19499 if (name == NULL)
19500 return "DW_ATE_<unknown>";
19501
19502 return name;
19503 }
19504
19505 static void
19506 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19507 {
19508 unsigned int i;
19509
19510 print_spaces (indent, f);
19511 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19512 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19513
19514 if (die->parent != NULL)
19515 {
19516 print_spaces (indent, f);
19517 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19518 die->parent->offset.sect_off);
19519 }
19520
19521 print_spaces (indent, f);
19522 fprintf_unfiltered (f, " has children: %s\n",
19523 dwarf_bool_name (die->child != NULL));
19524
19525 print_spaces (indent, f);
19526 fprintf_unfiltered (f, " attributes:\n");
19527
19528 for (i = 0; i < die->num_attrs; ++i)
19529 {
19530 print_spaces (indent, f);
19531 fprintf_unfiltered (f, " %s (%s) ",
19532 dwarf_attr_name (die->attrs[i].name),
19533 dwarf_form_name (die->attrs[i].form));
19534
19535 switch (die->attrs[i].form)
19536 {
19537 case DW_FORM_addr:
19538 case DW_FORM_GNU_addr_index:
19539 fprintf_unfiltered (f, "address: ");
19540 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19541 break;
19542 case DW_FORM_block2:
19543 case DW_FORM_block4:
19544 case DW_FORM_block:
19545 case DW_FORM_block1:
19546 fprintf_unfiltered (f, "block: size %s",
19547 pulongest (DW_BLOCK (&die->attrs[i])->size));
19548 break;
19549 case DW_FORM_exprloc:
19550 fprintf_unfiltered (f, "expression: size %s",
19551 pulongest (DW_BLOCK (&die->attrs[i])->size));
19552 break;
19553 case DW_FORM_ref_addr:
19554 fprintf_unfiltered (f, "ref address: ");
19555 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19556 break;
19557 case DW_FORM_GNU_ref_alt:
19558 fprintf_unfiltered (f, "alt ref address: ");
19559 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19560 break;
19561 case DW_FORM_ref1:
19562 case DW_FORM_ref2:
19563 case DW_FORM_ref4:
19564 case DW_FORM_ref8:
19565 case DW_FORM_ref_udata:
19566 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19567 (long) (DW_UNSND (&die->attrs[i])));
19568 break;
19569 case DW_FORM_data1:
19570 case DW_FORM_data2:
19571 case DW_FORM_data4:
19572 case DW_FORM_data8:
19573 case DW_FORM_udata:
19574 case DW_FORM_sdata:
19575 fprintf_unfiltered (f, "constant: %s",
19576 pulongest (DW_UNSND (&die->attrs[i])));
19577 break;
19578 case DW_FORM_sec_offset:
19579 fprintf_unfiltered (f, "section offset: %s",
19580 pulongest (DW_UNSND (&die->attrs[i])));
19581 break;
19582 case DW_FORM_ref_sig8:
19583 fprintf_unfiltered (f, "signature: %s",
19584 hex_string (DW_SIGNATURE (&die->attrs[i])));
19585 break;
19586 case DW_FORM_string:
19587 case DW_FORM_strp:
19588 case DW_FORM_GNU_str_index:
19589 case DW_FORM_GNU_strp_alt:
19590 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19591 DW_STRING (&die->attrs[i])
19592 ? DW_STRING (&die->attrs[i]) : "",
19593 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19594 break;
19595 case DW_FORM_flag:
19596 if (DW_UNSND (&die->attrs[i]))
19597 fprintf_unfiltered (f, "flag: TRUE");
19598 else
19599 fprintf_unfiltered (f, "flag: FALSE");
19600 break;
19601 case DW_FORM_flag_present:
19602 fprintf_unfiltered (f, "flag: TRUE");
19603 break;
19604 case DW_FORM_indirect:
19605 /* The reader will have reduced the indirect form to
19606 the "base form" so this form should not occur. */
19607 fprintf_unfiltered (f,
19608 "unexpected attribute form: DW_FORM_indirect");
19609 break;
19610 default:
19611 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19612 die->attrs[i].form);
19613 break;
19614 }
19615 fprintf_unfiltered (f, "\n");
19616 }
19617 }
19618
19619 static void
19620 dump_die_for_error (struct die_info *die)
19621 {
19622 dump_die_shallow (gdb_stderr, 0, die);
19623 }
19624
19625 static void
19626 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19627 {
19628 int indent = level * 4;
19629
19630 gdb_assert (die != NULL);
19631
19632 if (level >= max_level)
19633 return;
19634
19635 dump_die_shallow (f, indent, die);
19636
19637 if (die->child != NULL)
19638 {
19639 print_spaces (indent, f);
19640 fprintf_unfiltered (f, " Children:");
19641 if (level + 1 < max_level)
19642 {
19643 fprintf_unfiltered (f, "\n");
19644 dump_die_1 (f, level + 1, max_level, die->child);
19645 }
19646 else
19647 {
19648 fprintf_unfiltered (f,
19649 " [not printed, max nesting level reached]\n");
19650 }
19651 }
19652
19653 if (die->sibling != NULL && level > 0)
19654 {
19655 dump_die_1 (f, level, max_level, die->sibling);
19656 }
19657 }
19658
19659 /* This is called from the pdie macro in gdbinit.in.
19660 It's not static so gcc will keep a copy callable from gdb. */
19661
19662 void
19663 dump_die (struct die_info *die, int max_level)
19664 {
19665 dump_die_1 (gdb_stdlog, 0, max_level, die);
19666 }
19667
19668 static void
19669 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19670 {
19671 void **slot;
19672
19673 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19674 INSERT);
19675
19676 *slot = die;
19677 }
19678
19679 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19680 required kind. */
19681
19682 static sect_offset
19683 dwarf2_get_ref_die_offset (const struct attribute *attr)
19684 {
19685 sect_offset retval = { DW_UNSND (attr) };
19686
19687 if (attr_form_is_ref (attr))
19688 return retval;
19689
19690 retval.sect_off = 0;
19691 complaint (&symfile_complaints,
19692 _("unsupported die ref attribute form: '%s'"),
19693 dwarf_form_name (attr->form));
19694 return retval;
19695 }
19696
19697 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19698 * the value held by the attribute is not constant. */
19699
19700 static LONGEST
19701 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19702 {
19703 if (attr->form == DW_FORM_sdata)
19704 return DW_SND (attr);
19705 else if (attr->form == DW_FORM_udata
19706 || attr->form == DW_FORM_data1
19707 || attr->form == DW_FORM_data2
19708 || attr->form == DW_FORM_data4
19709 || attr->form == DW_FORM_data8)
19710 return DW_UNSND (attr);
19711 else
19712 {
19713 complaint (&symfile_complaints,
19714 _("Attribute value is not a constant (%s)"),
19715 dwarf_form_name (attr->form));
19716 return default_value;
19717 }
19718 }
19719
19720 /* Follow reference or signature attribute ATTR of SRC_DIE.
19721 On entry *REF_CU is the CU of SRC_DIE.
19722 On exit *REF_CU is the CU of the result. */
19723
19724 static struct die_info *
19725 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19726 struct dwarf2_cu **ref_cu)
19727 {
19728 struct die_info *die;
19729
19730 if (attr_form_is_ref (attr))
19731 die = follow_die_ref (src_die, attr, ref_cu);
19732 else if (attr->form == DW_FORM_ref_sig8)
19733 die = follow_die_sig (src_die, attr, ref_cu);
19734 else
19735 {
19736 dump_die_for_error (src_die);
19737 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19738 objfile_name ((*ref_cu)->objfile));
19739 }
19740
19741 return die;
19742 }
19743
19744 /* Follow reference OFFSET.
19745 On entry *REF_CU is the CU of the source die referencing OFFSET.
19746 On exit *REF_CU is the CU of the result.
19747 Returns NULL if OFFSET is invalid. */
19748
19749 static struct die_info *
19750 follow_die_offset (sect_offset offset, int offset_in_dwz,
19751 struct dwarf2_cu **ref_cu)
19752 {
19753 struct die_info temp_die;
19754 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19755
19756 gdb_assert (cu->per_cu != NULL);
19757
19758 target_cu = cu;
19759
19760 if (cu->per_cu->is_debug_types)
19761 {
19762 /* .debug_types CUs cannot reference anything outside their CU.
19763 If they need to, they have to reference a signatured type via
19764 DW_FORM_ref_sig8. */
19765 if (! offset_in_cu_p (&cu->header, offset))
19766 return NULL;
19767 }
19768 else if (offset_in_dwz != cu->per_cu->is_dwz
19769 || ! offset_in_cu_p (&cu->header, offset))
19770 {
19771 struct dwarf2_per_cu_data *per_cu;
19772
19773 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19774 cu->objfile);
19775
19776 /* If necessary, add it to the queue and load its DIEs. */
19777 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19778 load_full_comp_unit (per_cu, cu->language);
19779
19780 target_cu = per_cu->cu;
19781 }
19782 else if (cu->dies == NULL)
19783 {
19784 /* We're loading full DIEs during partial symbol reading. */
19785 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19786 load_full_comp_unit (cu->per_cu, language_minimal);
19787 }
19788
19789 *ref_cu = target_cu;
19790 temp_die.offset = offset;
19791 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19792 }
19793
19794 /* Follow reference attribute ATTR of SRC_DIE.
19795 On entry *REF_CU is the CU of SRC_DIE.
19796 On exit *REF_CU is the CU of the result. */
19797
19798 static struct die_info *
19799 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19800 struct dwarf2_cu **ref_cu)
19801 {
19802 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19803 struct dwarf2_cu *cu = *ref_cu;
19804 struct die_info *die;
19805
19806 die = follow_die_offset (offset,
19807 (attr->form == DW_FORM_GNU_ref_alt
19808 || cu->per_cu->is_dwz),
19809 ref_cu);
19810 if (!die)
19811 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19812 "at 0x%x [in module %s]"),
19813 offset.sect_off, src_die->offset.sect_off,
19814 objfile_name (cu->objfile));
19815
19816 return die;
19817 }
19818
19819 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19820 Returned value is intended for DW_OP_call*. Returned
19821 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19822
19823 struct dwarf2_locexpr_baton
19824 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19825 struct dwarf2_per_cu_data *per_cu,
19826 CORE_ADDR (*get_frame_pc) (void *baton),
19827 void *baton)
19828 {
19829 struct dwarf2_cu *cu;
19830 struct die_info *die;
19831 struct attribute *attr;
19832 struct dwarf2_locexpr_baton retval;
19833
19834 dw2_setup (per_cu->objfile);
19835
19836 if (per_cu->cu == NULL)
19837 load_cu (per_cu);
19838 cu = per_cu->cu;
19839
19840 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19841 if (!die)
19842 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19843 offset.sect_off, objfile_name (per_cu->objfile));
19844
19845 attr = dwarf2_attr (die, DW_AT_location, cu);
19846 if (!attr)
19847 {
19848 /* DWARF: "If there is no such attribute, then there is no effect.".
19849 DATA is ignored if SIZE is 0. */
19850
19851 retval.data = NULL;
19852 retval.size = 0;
19853 }
19854 else if (attr_form_is_section_offset (attr))
19855 {
19856 struct dwarf2_loclist_baton loclist_baton;
19857 CORE_ADDR pc = (*get_frame_pc) (baton);
19858 size_t size;
19859
19860 fill_in_loclist_baton (cu, &loclist_baton, attr);
19861
19862 retval.data = dwarf2_find_location_expression (&loclist_baton,
19863 &size, pc);
19864 retval.size = size;
19865 }
19866 else
19867 {
19868 if (!attr_form_is_block (attr))
19869 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19870 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19871 offset.sect_off, objfile_name (per_cu->objfile));
19872
19873 retval.data = DW_BLOCK (attr)->data;
19874 retval.size = DW_BLOCK (attr)->size;
19875 }
19876 retval.per_cu = cu->per_cu;
19877
19878 age_cached_comp_units ();
19879
19880 return retval;
19881 }
19882
19883 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19884 offset. */
19885
19886 struct dwarf2_locexpr_baton
19887 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19888 struct dwarf2_per_cu_data *per_cu,
19889 CORE_ADDR (*get_frame_pc) (void *baton),
19890 void *baton)
19891 {
19892 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19893
19894 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19895 }
19896
19897 /* Write a constant of a given type as target-ordered bytes into
19898 OBSTACK. */
19899
19900 static const gdb_byte *
19901 write_constant_as_bytes (struct obstack *obstack,
19902 enum bfd_endian byte_order,
19903 struct type *type,
19904 ULONGEST value,
19905 LONGEST *len)
19906 {
19907 gdb_byte *result;
19908
19909 *len = TYPE_LENGTH (type);
19910 result = obstack_alloc (obstack, *len);
19911 store_unsigned_integer (result, *len, byte_order, value);
19912
19913 return result;
19914 }
19915
19916 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19917 pointer to the constant bytes and set LEN to the length of the
19918 data. If memory is needed, allocate it on OBSTACK. If the DIE
19919 does not have a DW_AT_const_value, return NULL. */
19920
19921 const gdb_byte *
19922 dwarf2_fetch_constant_bytes (sect_offset offset,
19923 struct dwarf2_per_cu_data *per_cu,
19924 struct obstack *obstack,
19925 LONGEST *len)
19926 {
19927 struct dwarf2_cu *cu;
19928 struct die_info *die;
19929 struct attribute *attr;
19930 const gdb_byte *result = NULL;
19931 struct type *type;
19932 LONGEST value;
19933 enum bfd_endian byte_order;
19934
19935 dw2_setup (per_cu->objfile);
19936
19937 if (per_cu->cu == NULL)
19938 load_cu (per_cu);
19939 cu = per_cu->cu;
19940
19941 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19942 if (!die)
19943 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19944 offset.sect_off, objfile_name (per_cu->objfile));
19945
19946
19947 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19948 if (attr == NULL)
19949 return NULL;
19950
19951 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19952 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19953
19954 switch (attr->form)
19955 {
19956 case DW_FORM_addr:
19957 case DW_FORM_GNU_addr_index:
19958 {
19959 gdb_byte *tem;
19960
19961 *len = cu->header.addr_size;
19962 tem = obstack_alloc (obstack, *len);
19963 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19964 result = tem;
19965 }
19966 break;
19967 case DW_FORM_string:
19968 case DW_FORM_strp:
19969 case DW_FORM_GNU_str_index:
19970 case DW_FORM_GNU_strp_alt:
19971 /* DW_STRING is already allocated on the objfile obstack, point
19972 directly to it. */
19973 result = (const gdb_byte *) DW_STRING (attr);
19974 *len = strlen (DW_STRING (attr));
19975 break;
19976 case DW_FORM_block1:
19977 case DW_FORM_block2:
19978 case DW_FORM_block4:
19979 case DW_FORM_block:
19980 case DW_FORM_exprloc:
19981 result = DW_BLOCK (attr)->data;
19982 *len = DW_BLOCK (attr)->size;
19983 break;
19984
19985 /* The DW_AT_const_value attributes are supposed to carry the
19986 symbol's value "represented as it would be on the target
19987 architecture." By the time we get here, it's already been
19988 converted to host endianness, so we just need to sign- or
19989 zero-extend it as appropriate. */
19990 case DW_FORM_data1:
19991 type = die_type (die, cu);
19992 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19993 if (result == NULL)
19994 result = write_constant_as_bytes (obstack, byte_order,
19995 type, value, len);
19996 break;
19997 case DW_FORM_data2:
19998 type = die_type (die, cu);
19999 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20000 if (result == NULL)
20001 result = write_constant_as_bytes (obstack, byte_order,
20002 type, value, len);
20003 break;
20004 case DW_FORM_data4:
20005 type = die_type (die, cu);
20006 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20007 if (result == NULL)
20008 result = write_constant_as_bytes (obstack, byte_order,
20009 type, value, len);
20010 break;
20011 case DW_FORM_data8:
20012 type = die_type (die, cu);
20013 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20014 if (result == NULL)
20015 result = write_constant_as_bytes (obstack, byte_order,
20016 type, value, len);
20017 break;
20018
20019 case DW_FORM_sdata:
20020 type = die_type (die, cu);
20021 result = write_constant_as_bytes (obstack, byte_order,
20022 type, DW_SND (attr), len);
20023 break;
20024
20025 case DW_FORM_udata:
20026 type = die_type (die, cu);
20027 result = write_constant_as_bytes (obstack, byte_order,
20028 type, DW_UNSND (attr), len);
20029 break;
20030
20031 default:
20032 complaint (&symfile_complaints,
20033 _("unsupported const value attribute form: '%s'"),
20034 dwarf_form_name (attr->form));
20035 break;
20036 }
20037
20038 return result;
20039 }
20040
20041 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20042 PER_CU. */
20043
20044 struct type *
20045 dwarf2_get_die_type (cu_offset die_offset,
20046 struct dwarf2_per_cu_data *per_cu)
20047 {
20048 sect_offset die_offset_sect;
20049
20050 dw2_setup (per_cu->objfile);
20051
20052 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20053 return get_die_type_at_offset (die_offset_sect, per_cu);
20054 }
20055
20056 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20057 On entry *REF_CU is the CU of SRC_DIE.
20058 On exit *REF_CU is the CU of the result.
20059 Returns NULL if the referenced DIE isn't found. */
20060
20061 static struct die_info *
20062 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20063 struct dwarf2_cu **ref_cu)
20064 {
20065 struct objfile *objfile = (*ref_cu)->objfile;
20066 struct die_info temp_die;
20067 struct dwarf2_cu *sig_cu;
20068 struct die_info *die;
20069
20070 /* While it might be nice to assert sig_type->type == NULL here,
20071 we can get here for DW_AT_imported_declaration where we need
20072 the DIE not the type. */
20073
20074 /* If necessary, add it to the queue and load its DIEs. */
20075
20076 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20077 read_signatured_type (sig_type);
20078
20079 sig_cu = sig_type->per_cu.cu;
20080 gdb_assert (sig_cu != NULL);
20081 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20082 temp_die.offset = sig_type->type_offset_in_section;
20083 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20084 temp_die.offset.sect_off);
20085 if (die)
20086 {
20087 /* For .gdb_index version 7 keep track of included TUs.
20088 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20089 if (dwarf2_per_objfile->index_table != NULL
20090 && dwarf2_per_objfile->index_table->version <= 7)
20091 {
20092 VEC_safe_push (dwarf2_per_cu_ptr,
20093 (*ref_cu)->per_cu->imported_symtabs,
20094 sig_cu->per_cu);
20095 }
20096
20097 *ref_cu = sig_cu;
20098 return die;
20099 }
20100
20101 return NULL;
20102 }
20103
20104 /* Follow signatured type referenced by ATTR in SRC_DIE.
20105 On entry *REF_CU is the CU of SRC_DIE.
20106 On exit *REF_CU is the CU of the result.
20107 The result is the DIE of the type.
20108 If the referenced type cannot be found an error is thrown. */
20109
20110 static struct die_info *
20111 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20112 struct dwarf2_cu **ref_cu)
20113 {
20114 ULONGEST signature = DW_SIGNATURE (attr);
20115 struct signatured_type *sig_type;
20116 struct die_info *die;
20117
20118 gdb_assert (attr->form == DW_FORM_ref_sig8);
20119
20120 sig_type = lookup_signatured_type (*ref_cu, signature);
20121 /* sig_type will be NULL if the signatured type is missing from
20122 the debug info. */
20123 if (sig_type == NULL)
20124 {
20125 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20126 " from DIE at 0x%x [in module %s]"),
20127 hex_string (signature), src_die->offset.sect_off,
20128 objfile_name ((*ref_cu)->objfile));
20129 }
20130
20131 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20132 if (die == NULL)
20133 {
20134 dump_die_for_error (src_die);
20135 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20136 " from DIE at 0x%x [in module %s]"),
20137 hex_string (signature), src_die->offset.sect_off,
20138 objfile_name ((*ref_cu)->objfile));
20139 }
20140
20141 return die;
20142 }
20143
20144 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20145 reading in and processing the type unit if necessary. */
20146
20147 static struct type *
20148 get_signatured_type (struct die_info *die, ULONGEST signature,
20149 struct dwarf2_cu *cu)
20150 {
20151 struct signatured_type *sig_type;
20152 struct dwarf2_cu *type_cu;
20153 struct die_info *type_die;
20154 struct type *type;
20155
20156 sig_type = lookup_signatured_type (cu, signature);
20157 /* sig_type will be NULL if the signatured type is missing from
20158 the debug info. */
20159 if (sig_type == NULL)
20160 {
20161 complaint (&symfile_complaints,
20162 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20163 " from DIE at 0x%x [in module %s]"),
20164 hex_string (signature), die->offset.sect_off,
20165 objfile_name (dwarf2_per_objfile->objfile));
20166 return build_error_marker_type (cu, die);
20167 }
20168
20169 /* If we already know the type we're done. */
20170 if (sig_type->type != NULL)
20171 return sig_type->type;
20172
20173 type_cu = cu;
20174 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20175 if (type_die != NULL)
20176 {
20177 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20178 is created. This is important, for example, because for c++ classes
20179 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20180 type = read_type_die (type_die, type_cu);
20181 if (type == NULL)
20182 {
20183 complaint (&symfile_complaints,
20184 _("Dwarf Error: Cannot build signatured type %s"
20185 " referenced from DIE at 0x%x [in module %s]"),
20186 hex_string (signature), die->offset.sect_off,
20187 objfile_name (dwarf2_per_objfile->objfile));
20188 type = build_error_marker_type (cu, die);
20189 }
20190 }
20191 else
20192 {
20193 complaint (&symfile_complaints,
20194 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20195 " from DIE at 0x%x [in module %s]"),
20196 hex_string (signature), die->offset.sect_off,
20197 objfile_name (dwarf2_per_objfile->objfile));
20198 type = build_error_marker_type (cu, die);
20199 }
20200 sig_type->type = type;
20201
20202 return type;
20203 }
20204
20205 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20206 reading in and processing the type unit if necessary. */
20207
20208 static struct type *
20209 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20210 struct dwarf2_cu *cu) /* ARI: editCase function */
20211 {
20212 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20213 if (attr_form_is_ref (attr))
20214 {
20215 struct dwarf2_cu *type_cu = cu;
20216 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20217
20218 return read_type_die (type_die, type_cu);
20219 }
20220 else if (attr->form == DW_FORM_ref_sig8)
20221 {
20222 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20223 }
20224 else
20225 {
20226 complaint (&symfile_complaints,
20227 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20228 " at 0x%x [in module %s]"),
20229 dwarf_form_name (attr->form), die->offset.sect_off,
20230 objfile_name (dwarf2_per_objfile->objfile));
20231 return build_error_marker_type (cu, die);
20232 }
20233 }
20234
20235 /* Load the DIEs associated with type unit PER_CU into memory. */
20236
20237 static void
20238 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20239 {
20240 struct signatured_type *sig_type;
20241
20242 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20243 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20244
20245 /* We have the per_cu, but we need the signatured_type.
20246 Fortunately this is an easy translation. */
20247 gdb_assert (per_cu->is_debug_types);
20248 sig_type = (struct signatured_type *) per_cu;
20249
20250 gdb_assert (per_cu->cu == NULL);
20251
20252 read_signatured_type (sig_type);
20253
20254 gdb_assert (per_cu->cu != NULL);
20255 }
20256
20257 /* die_reader_func for read_signatured_type.
20258 This is identical to load_full_comp_unit_reader,
20259 but is kept separate for now. */
20260
20261 static void
20262 read_signatured_type_reader (const struct die_reader_specs *reader,
20263 const gdb_byte *info_ptr,
20264 struct die_info *comp_unit_die,
20265 int has_children,
20266 void *data)
20267 {
20268 struct dwarf2_cu *cu = reader->cu;
20269
20270 gdb_assert (cu->die_hash == NULL);
20271 cu->die_hash =
20272 htab_create_alloc_ex (cu->header.length / 12,
20273 die_hash,
20274 die_eq,
20275 NULL,
20276 &cu->comp_unit_obstack,
20277 hashtab_obstack_allocate,
20278 dummy_obstack_deallocate);
20279
20280 if (has_children)
20281 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20282 &info_ptr, comp_unit_die);
20283 cu->dies = comp_unit_die;
20284 /* comp_unit_die is not stored in die_hash, no need. */
20285
20286 /* We try not to read any attributes in this function, because not
20287 all CUs needed for references have been loaded yet, and symbol
20288 table processing isn't initialized. But we have to set the CU language,
20289 or we won't be able to build types correctly.
20290 Similarly, if we do not read the producer, we can not apply
20291 producer-specific interpretation. */
20292 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20293 }
20294
20295 /* Read in a signatured type and build its CU and DIEs.
20296 If the type is a stub for the real type in a DWO file,
20297 read in the real type from the DWO file as well. */
20298
20299 static void
20300 read_signatured_type (struct signatured_type *sig_type)
20301 {
20302 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20303
20304 gdb_assert (per_cu->is_debug_types);
20305 gdb_assert (per_cu->cu == NULL);
20306
20307 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20308 read_signatured_type_reader, NULL);
20309 sig_type->per_cu.tu_read = 1;
20310 }
20311
20312 /* Decode simple location descriptions.
20313 Given a pointer to a dwarf block that defines a location, compute
20314 the location and return the value.
20315
20316 NOTE drow/2003-11-18: This function is called in two situations
20317 now: for the address of static or global variables (partial symbols
20318 only) and for offsets into structures which are expected to be
20319 (more or less) constant. The partial symbol case should go away,
20320 and only the constant case should remain. That will let this
20321 function complain more accurately. A few special modes are allowed
20322 without complaint for global variables (for instance, global
20323 register values and thread-local values).
20324
20325 A location description containing no operations indicates that the
20326 object is optimized out. The return value is 0 for that case.
20327 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20328 callers will only want a very basic result and this can become a
20329 complaint.
20330
20331 Note that stack[0] is unused except as a default error return. */
20332
20333 static CORE_ADDR
20334 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20335 {
20336 struct objfile *objfile = cu->objfile;
20337 size_t i;
20338 size_t size = blk->size;
20339 const gdb_byte *data = blk->data;
20340 CORE_ADDR stack[64];
20341 int stacki;
20342 unsigned int bytes_read, unsnd;
20343 gdb_byte op;
20344
20345 i = 0;
20346 stacki = 0;
20347 stack[stacki] = 0;
20348 stack[++stacki] = 0;
20349
20350 while (i < size)
20351 {
20352 op = data[i++];
20353 switch (op)
20354 {
20355 case DW_OP_lit0:
20356 case DW_OP_lit1:
20357 case DW_OP_lit2:
20358 case DW_OP_lit3:
20359 case DW_OP_lit4:
20360 case DW_OP_lit5:
20361 case DW_OP_lit6:
20362 case DW_OP_lit7:
20363 case DW_OP_lit8:
20364 case DW_OP_lit9:
20365 case DW_OP_lit10:
20366 case DW_OP_lit11:
20367 case DW_OP_lit12:
20368 case DW_OP_lit13:
20369 case DW_OP_lit14:
20370 case DW_OP_lit15:
20371 case DW_OP_lit16:
20372 case DW_OP_lit17:
20373 case DW_OP_lit18:
20374 case DW_OP_lit19:
20375 case DW_OP_lit20:
20376 case DW_OP_lit21:
20377 case DW_OP_lit22:
20378 case DW_OP_lit23:
20379 case DW_OP_lit24:
20380 case DW_OP_lit25:
20381 case DW_OP_lit26:
20382 case DW_OP_lit27:
20383 case DW_OP_lit28:
20384 case DW_OP_lit29:
20385 case DW_OP_lit30:
20386 case DW_OP_lit31:
20387 stack[++stacki] = op - DW_OP_lit0;
20388 break;
20389
20390 case DW_OP_reg0:
20391 case DW_OP_reg1:
20392 case DW_OP_reg2:
20393 case DW_OP_reg3:
20394 case DW_OP_reg4:
20395 case DW_OP_reg5:
20396 case DW_OP_reg6:
20397 case DW_OP_reg7:
20398 case DW_OP_reg8:
20399 case DW_OP_reg9:
20400 case DW_OP_reg10:
20401 case DW_OP_reg11:
20402 case DW_OP_reg12:
20403 case DW_OP_reg13:
20404 case DW_OP_reg14:
20405 case DW_OP_reg15:
20406 case DW_OP_reg16:
20407 case DW_OP_reg17:
20408 case DW_OP_reg18:
20409 case DW_OP_reg19:
20410 case DW_OP_reg20:
20411 case DW_OP_reg21:
20412 case DW_OP_reg22:
20413 case DW_OP_reg23:
20414 case DW_OP_reg24:
20415 case DW_OP_reg25:
20416 case DW_OP_reg26:
20417 case DW_OP_reg27:
20418 case DW_OP_reg28:
20419 case DW_OP_reg29:
20420 case DW_OP_reg30:
20421 case DW_OP_reg31:
20422 stack[++stacki] = op - DW_OP_reg0;
20423 if (i < size)
20424 dwarf2_complex_location_expr_complaint ();
20425 break;
20426
20427 case DW_OP_regx:
20428 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20429 i += bytes_read;
20430 stack[++stacki] = unsnd;
20431 if (i < size)
20432 dwarf2_complex_location_expr_complaint ();
20433 break;
20434
20435 case DW_OP_addr:
20436 stack[++stacki] = read_address (objfile->obfd, &data[i],
20437 cu, &bytes_read);
20438 i += bytes_read;
20439 break;
20440
20441 case DW_OP_const1u:
20442 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20443 i += 1;
20444 break;
20445
20446 case DW_OP_const1s:
20447 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20448 i += 1;
20449 break;
20450
20451 case DW_OP_const2u:
20452 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20453 i += 2;
20454 break;
20455
20456 case DW_OP_const2s:
20457 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20458 i += 2;
20459 break;
20460
20461 case DW_OP_const4u:
20462 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20463 i += 4;
20464 break;
20465
20466 case DW_OP_const4s:
20467 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20468 i += 4;
20469 break;
20470
20471 case DW_OP_const8u:
20472 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20473 i += 8;
20474 break;
20475
20476 case DW_OP_constu:
20477 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20478 &bytes_read);
20479 i += bytes_read;
20480 break;
20481
20482 case DW_OP_consts:
20483 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20484 i += bytes_read;
20485 break;
20486
20487 case DW_OP_dup:
20488 stack[stacki + 1] = stack[stacki];
20489 stacki++;
20490 break;
20491
20492 case DW_OP_plus:
20493 stack[stacki - 1] += stack[stacki];
20494 stacki--;
20495 break;
20496
20497 case DW_OP_plus_uconst:
20498 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20499 &bytes_read);
20500 i += bytes_read;
20501 break;
20502
20503 case DW_OP_minus:
20504 stack[stacki - 1] -= stack[stacki];
20505 stacki--;
20506 break;
20507
20508 case DW_OP_deref:
20509 /* If we're not the last op, then we definitely can't encode
20510 this using GDB's address_class enum. This is valid for partial
20511 global symbols, although the variable's address will be bogus
20512 in the psymtab. */
20513 if (i < size)
20514 dwarf2_complex_location_expr_complaint ();
20515 break;
20516
20517 case DW_OP_GNU_push_tls_address:
20518 /* The top of the stack has the offset from the beginning
20519 of the thread control block at which the variable is located. */
20520 /* Nothing should follow this operator, so the top of stack would
20521 be returned. */
20522 /* This is valid for partial global symbols, but the variable's
20523 address will be bogus in the psymtab. Make it always at least
20524 non-zero to not look as a variable garbage collected by linker
20525 which have DW_OP_addr 0. */
20526 if (i < size)
20527 dwarf2_complex_location_expr_complaint ();
20528 stack[stacki]++;
20529 break;
20530
20531 case DW_OP_GNU_uninit:
20532 break;
20533
20534 case DW_OP_GNU_addr_index:
20535 case DW_OP_GNU_const_index:
20536 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20537 &bytes_read);
20538 i += bytes_read;
20539 break;
20540
20541 default:
20542 {
20543 const char *name = get_DW_OP_name (op);
20544
20545 if (name)
20546 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20547 name);
20548 else
20549 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20550 op);
20551 }
20552
20553 return (stack[stacki]);
20554 }
20555
20556 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20557 outside of the allocated space. Also enforce minimum>0. */
20558 if (stacki >= ARRAY_SIZE (stack) - 1)
20559 {
20560 complaint (&symfile_complaints,
20561 _("location description stack overflow"));
20562 return 0;
20563 }
20564
20565 if (stacki <= 0)
20566 {
20567 complaint (&symfile_complaints,
20568 _("location description stack underflow"));
20569 return 0;
20570 }
20571 }
20572 return (stack[stacki]);
20573 }
20574
20575 /* memory allocation interface */
20576
20577 static struct dwarf_block *
20578 dwarf_alloc_block (struct dwarf2_cu *cu)
20579 {
20580 struct dwarf_block *blk;
20581
20582 blk = (struct dwarf_block *)
20583 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20584 return (blk);
20585 }
20586
20587 static struct die_info *
20588 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20589 {
20590 struct die_info *die;
20591 size_t size = sizeof (struct die_info);
20592
20593 if (num_attrs > 1)
20594 size += (num_attrs - 1) * sizeof (struct attribute);
20595
20596 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20597 memset (die, 0, sizeof (struct die_info));
20598 return (die);
20599 }
20600
20601 \f
20602 /* Macro support. */
20603
20604 /* Return file name relative to the compilation directory of file number I in
20605 *LH's file name table. The result is allocated using xmalloc; the caller is
20606 responsible for freeing it. */
20607
20608 static char *
20609 file_file_name (int file, struct line_header *lh)
20610 {
20611 /* Is the file number a valid index into the line header's file name
20612 table? Remember that file numbers start with one, not zero. */
20613 if (1 <= file && file <= lh->num_file_names)
20614 {
20615 struct file_entry *fe = &lh->file_names[file - 1];
20616
20617 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20618 return xstrdup (fe->name);
20619 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20620 fe->name, NULL);
20621 }
20622 else
20623 {
20624 /* The compiler produced a bogus file number. We can at least
20625 record the macro definitions made in the file, even if we
20626 won't be able to find the file by name. */
20627 char fake_name[80];
20628
20629 xsnprintf (fake_name, sizeof (fake_name),
20630 "<bad macro file number %d>", file);
20631
20632 complaint (&symfile_complaints,
20633 _("bad file number in macro information (%d)"),
20634 file);
20635
20636 return xstrdup (fake_name);
20637 }
20638 }
20639
20640 /* Return the full name of file number I in *LH's file name table.
20641 Use COMP_DIR as the name of the current directory of the
20642 compilation. The result is allocated using xmalloc; the caller is
20643 responsible for freeing it. */
20644 static char *
20645 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20646 {
20647 /* Is the file number a valid index into the line header's file name
20648 table? Remember that file numbers start with one, not zero. */
20649 if (1 <= file && file <= lh->num_file_names)
20650 {
20651 char *relative = file_file_name (file, lh);
20652
20653 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20654 return relative;
20655 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20656 }
20657 else
20658 return file_file_name (file, lh);
20659 }
20660
20661
20662 static struct macro_source_file *
20663 macro_start_file (int file, int line,
20664 struct macro_source_file *current_file,
20665 struct line_header *lh)
20666 {
20667 /* File name relative to the compilation directory of this source file. */
20668 char *file_name = file_file_name (file, lh);
20669
20670 if (! current_file)
20671 {
20672 /* Note: We don't create a macro table for this compilation unit
20673 at all until we actually get a filename. */
20674 struct macro_table *macro_table = get_macro_table ();
20675
20676 /* If we have no current file, then this must be the start_file
20677 directive for the compilation unit's main source file. */
20678 current_file = macro_set_main (macro_table, file_name);
20679 macro_define_special (macro_table);
20680 }
20681 else
20682 current_file = macro_include (current_file, line, file_name);
20683
20684 xfree (file_name);
20685
20686 return current_file;
20687 }
20688
20689
20690 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20691 followed by a null byte. */
20692 static char *
20693 copy_string (const char *buf, int len)
20694 {
20695 char *s = xmalloc (len + 1);
20696
20697 memcpy (s, buf, len);
20698 s[len] = '\0';
20699 return s;
20700 }
20701
20702
20703 static const char *
20704 consume_improper_spaces (const char *p, const char *body)
20705 {
20706 if (*p == ' ')
20707 {
20708 complaint (&symfile_complaints,
20709 _("macro definition contains spaces "
20710 "in formal argument list:\n`%s'"),
20711 body);
20712
20713 while (*p == ' ')
20714 p++;
20715 }
20716
20717 return p;
20718 }
20719
20720
20721 static void
20722 parse_macro_definition (struct macro_source_file *file, int line,
20723 const char *body)
20724 {
20725 const char *p;
20726
20727 /* The body string takes one of two forms. For object-like macro
20728 definitions, it should be:
20729
20730 <macro name> " " <definition>
20731
20732 For function-like macro definitions, it should be:
20733
20734 <macro name> "() " <definition>
20735 or
20736 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20737
20738 Spaces may appear only where explicitly indicated, and in the
20739 <definition>.
20740
20741 The Dwarf 2 spec says that an object-like macro's name is always
20742 followed by a space, but versions of GCC around March 2002 omit
20743 the space when the macro's definition is the empty string.
20744
20745 The Dwarf 2 spec says that there should be no spaces between the
20746 formal arguments in a function-like macro's formal argument list,
20747 but versions of GCC around March 2002 include spaces after the
20748 commas. */
20749
20750
20751 /* Find the extent of the macro name. The macro name is terminated
20752 by either a space or null character (for an object-like macro) or
20753 an opening paren (for a function-like macro). */
20754 for (p = body; *p; p++)
20755 if (*p == ' ' || *p == '(')
20756 break;
20757
20758 if (*p == ' ' || *p == '\0')
20759 {
20760 /* It's an object-like macro. */
20761 int name_len = p - body;
20762 char *name = copy_string (body, name_len);
20763 const char *replacement;
20764
20765 if (*p == ' ')
20766 replacement = body + name_len + 1;
20767 else
20768 {
20769 dwarf2_macro_malformed_definition_complaint (body);
20770 replacement = body + name_len;
20771 }
20772
20773 macro_define_object (file, line, name, replacement);
20774
20775 xfree (name);
20776 }
20777 else if (*p == '(')
20778 {
20779 /* It's a function-like macro. */
20780 char *name = copy_string (body, p - body);
20781 int argc = 0;
20782 int argv_size = 1;
20783 char **argv = xmalloc (argv_size * sizeof (*argv));
20784
20785 p++;
20786
20787 p = consume_improper_spaces (p, body);
20788
20789 /* Parse the formal argument list. */
20790 while (*p && *p != ')')
20791 {
20792 /* Find the extent of the current argument name. */
20793 const char *arg_start = p;
20794
20795 while (*p && *p != ',' && *p != ')' && *p != ' ')
20796 p++;
20797
20798 if (! *p || p == arg_start)
20799 dwarf2_macro_malformed_definition_complaint (body);
20800 else
20801 {
20802 /* Make sure argv has room for the new argument. */
20803 if (argc >= argv_size)
20804 {
20805 argv_size *= 2;
20806 argv = xrealloc (argv, argv_size * sizeof (*argv));
20807 }
20808
20809 argv[argc++] = copy_string (arg_start, p - arg_start);
20810 }
20811
20812 p = consume_improper_spaces (p, body);
20813
20814 /* Consume the comma, if present. */
20815 if (*p == ',')
20816 {
20817 p++;
20818
20819 p = consume_improper_spaces (p, body);
20820 }
20821 }
20822
20823 if (*p == ')')
20824 {
20825 p++;
20826
20827 if (*p == ' ')
20828 /* Perfectly formed definition, no complaints. */
20829 macro_define_function (file, line, name,
20830 argc, (const char **) argv,
20831 p + 1);
20832 else if (*p == '\0')
20833 {
20834 /* Complain, but do define it. */
20835 dwarf2_macro_malformed_definition_complaint (body);
20836 macro_define_function (file, line, name,
20837 argc, (const char **) argv,
20838 p);
20839 }
20840 else
20841 /* Just complain. */
20842 dwarf2_macro_malformed_definition_complaint (body);
20843 }
20844 else
20845 /* Just complain. */
20846 dwarf2_macro_malformed_definition_complaint (body);
20847
20848 xfree (name);
20849 {
20850 int i;
20851
20852 for (i = 0; i < argc; i++)
20853 xfree (argv[i]);
20854 }
20855 xfree (argv);
20856 }
20857 else
20858 dwarf2_macro_malformed_definition_complaint (body);
20859 }
20860
20861 /* Skip some bytes from BYTES according to the form given in FORM.
20862 Returns the new pointer. */
20863
20864 static const gdb_byte *
20865 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20866 enum dwarf_form form,
20867 unsigned int offset_size,
20868 struct dwarf2_section_info *section)
20869 {
20870 unsigned int bytes_read;
20871
20872 switch (form)
20873 {
20874 case DW_FORM_data1:
20875 case DW_FORM_flag:
20876 ++bytes;
20877 break;
20878
20879 case DW_FORM_data2:
20880 bytes += 2;
20881 break;
20882
20883 case DW_FORM_data4:
20884 bytes += 4;
20885 break;
20886
20887 case DW_FORM_data8:
20888 bytes += 8;
20889 break;
20890
20891 case DW_FORM_string:
20892 read_direct_string (abfd, bytes, &bytes_read);
20893 bytes += bytes_read;
20894 break;
20895
20896 case DW_FORM_sec_offset:
20897 case DW_FORM_strp:
20898 case DW_FORM_GNU_strp_alt:
20899 bytes += offset_size;
20900 break;
20901
20902 case DW_FORM_block:
20903 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20904 bytes += bytes_read;
20905 break;
20906
20907 case DW_FORM_block1:
20908 bytes += 1 + read_1_byte (abfd, bytes);
20909 break;
20910 case DW_FORM_block2:
20911 bytes += 2 + read_2_bytes (abfd, bytes);
20912 break;
20913 case DW_FORM_block4:
20914 bytes += 4 + read_4_bytes (abfd, bytes);
20915 break;
20916
20917 case DW_FORM_sdata:
20918 case DW_FORM_udata:
20919 case DW_FORM_GNU_addr_index:
20920 case DW_FORM_GNU_str_index:
20921 bytes = gdb_skip_leb128 (bytes, buffer_end);
20922 if (bytes == NULL)
20923 {
20924 dwarf2_section_buffer_overflow_complaint (section);
20925 return NULL;
20926 }
20927 break;
20928
20929 default:
20930 {
20931 complain:
20932 complaint (&symfile_complaints,
20933 _("invalid form 0x%x in `%s'"),
20934 form, get_section_name (section));
20935 return NULL;
20936 }
20937 }
20938
20939 return bytes;
20940 }
20941
20942 /* A helper for dwarf_decode_macros that handles skipping an unknown
20943 opcode. Returns an updated pointer to the macro data buffer; or,
20944 on error, issues a complaint and returns NULL. */
20945
20946 static const gdb_byte *
20947 skip_unknown_opcode (unsigned int opcode,
20948 const gdb_byte **opcode_definitions,
20949 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20950 bfd *abfd,
20951 unsigned int offset_size,
20952 struct dwarf2_section_info *section)
20953 {
20954 unsigned int bytes_read, i;
20955 unsigned long arg;
20956 const gdb_byte *defn;
20957
20958 if (opcode_definitions[opcode] == NULL)
20959 {
20960 complaint (&symfile_complaints,
20961 _("unrecognized DW_MACFINO opcode 0x%x"),
20962 opcode);
20963 return NULL;
20964 }
20965
20966 defn = opcode_definitions[opcode];
20967 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20968 defn += bytes_read;
20969
20970 for (i = 0; i < arg; ++i)
20971 {
20972 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20973 section);
20974 if (mac_ptr == NULL)
20975 {
20976 /* skip_form_bytes already issued the complaint. */
20977 return NULL;
20978 }
20979 }
20980
20981 return mac_ptr;
20982 }
20983
20984 /* A helper function which parses the header of a macro section.
20985 If the macro section is the extended (for now called "GNU") type,
20986 then this updates *OFFSET_SIZE. Returns a pointer to just after
20987 the header, or issues a complaint and returns NULL on error. */
20988
20989 static const gdb_byte *
20990 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20991 bfd *abfd,
20992 const gdb_byte *mac_ptr,
20993 unsigned int *offset_size,
20994 int section_is_gnu)
20995 {
20996 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20997
20998 if (section_is_gnu)
20999 {
21000 unsigned int version, flags;
21001
21002 version = read_2_bytes (abfd, mac_ptr);
21003 if (version != 4)
21004 {
21005 complaint (&symfile_complaints,
21006 _("unrecognized version `%d' in .debug_macro section"),
21007 version);
21008 return NULL;
21009 }
21010 mac_ptr += 2;
21011
21012 flags = read_1_byte (abfd, mac_ptr);
21013 ++mac_ptr;
21014 *offset_size = (flags & 1) ? 8 : 4;
21015
21016 if ((flags & 2) != 0)
21017 /* We don't need the line table offset. */
21018 mac_ptr += *offset_size;
21019
21020 /* Vendor opcode descriptions. */
21021 if ((flags & 4) != 0)
21022 {
21023 unsigned int i, count;
21024
21025 count = read_1_byte (abfd, mac_ptr);
21026 ++mac_ptr;
21027 for (i = 0; i < count; ++i)
21028 {
21029 unsigned int opcode, bytes_read;
21030 unsigned long arg;
21031
21032 opcode = read_1_byte (abfd, mac_ptr);
21033 ++mac_ptr;
21034 opcode_definitions[opcode] = mac_ptr;
21035 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21036 mac_ptr += bytes_read;
21037 mac_ptr += arg;
21038 }
21039 }
21040 }
21041
21042 return mac_ptr;
21043 }
21044
21045 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21046 including DW_MACRO_GNU_transparent_include. */
21047
21048 static void
21049 dwarf_decode_macro_bytes (bfd *abfd,
21050 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21051 struct macro_source_file *current_file,
21052 struct line_header *lh,
21053 struct dwarf2_section_info *section,
21054 int section_is_gnu, int section_is_dwz,
21055 unsigned int offset_size,
21056 htab_t include_hash)
21057 {
21058 struct objfile *objfile = dwarf2_per_objfile->objfile;
21059 enum dwarf_macro_record_type macinfo_type;
21060 int at_commandline;
21061 const gdb_byte *opcode_definitions[256];
21062
21063 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21064 &offset_size, section_is_gnu);
21065 if (mac_ptr == NULL)
21066 {
21067 /* We already issued a complaint. */
21068 return;
21069 }
21070
21071 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21072 GDB is still reading the definitions from command line. First
21073 DW_MACINFO_start_file will need to be ignored as it was already executed
21074 to create CURRENT_FILE for the main source holding also the command line
21075 definitions. On first met DW_MACINFO_start_file this flag is reset to
21076 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21077
21078 at_commandline = 1;
21079
21080 do
21081 {
21082 /* Do we at least have room for a macinfo type byte? */
21083 if (mac_ptr >= mac_end)
21084 {
21085 dwarf2_section_buffer_overflow_complaint (section);
21086 break;
21087 }
21088
21089 macinfo_type = read_1_byte (abfd, mac_ptr);
21090 mac_ptr++;
21091
21092 /* Note that we rely on the fact that the corresponding GNU and
21093 DWARF constants are the same. */
21094 switch (macinfo_type)
21095 {
21096 /* A zero macinfo type indicates the end of the macro
21097 information. */
21098 case 0:
21099 break;
21100
21101 case DW_MACRO_GNU_define:
21102 case DW_MACRO_GNU_undef:
21103 case DW_MACRO_GNU_define_indirect:
21104 case DW_MACRO_GNU_undef_indirect:
21105 case DW_MACRO_GNU_define_indirect_alt:
21106 case DW_MACRO_GNU_undef_indirect_alt:
21107 {
21108 unsigned int bytes_read;
21109 int line;
21110 const char *body;
21111 int is_define;
21112
21113 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21114 mac_ptr += bytes_read;
21115
21116 if (macinfo_type == DW_MACRO_GNU_define
21117 || macinfo_type == DW_MACRO_GNU_undef)
21118 {
21119 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21120 mac_ptr += bytes_read;
21121 }
21122 else
21123 {
21124 LONGEST str_offset;
21125
21126 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21127 mac_ptr += offset_size;
21128
21129 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21130 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21131 || section_is_dwz)
21132 {
21133 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21134
21135 body = read_indirect_string_from_dwz (dwz, str_offset);
21136 }
21137 else
21138 body = read_indirect_string_at_offset (abfd, str_offset);
21139 }
21140
21141 is_define = (macinfo_type == DW_MACRO_GNU_define
21142 || macinfo_type == DW_MACRO_GNU_define_indirect
21143 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21144 if (! current_file)
21145 {
21146 /* DWARF violation as no main source is present. */
21147 complaint (&symfile_complaints,
21148 _("debug info with no main source gives macro %s "
21149 "on line %d: %s"),
21150 is_define ? _("definition") : _("undefinition"),
21151 line, body);
21152 break;
21153 }
21154 if ((line == 0 && !at_commandline)
21155 || (line != 0 && at_commandline))
21156 complaint (&symfile_complaints,
21157 _("debug info gives %s macro %s with %s line %d: %s"),
21158 at_commandline ? _("command-line") : _("in-file"),
21159 is_define ? _("definition") : _("undefinition"),
21160 line == 0 ? _("zero") : _("non-zero"), line, body);
21161
21162 if (is_define)
21163 parse_macro_definition (current_file, line, body);
21164 else
21165 {
21166 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21167 || macinfo_type == DW_MACRO_GNU_undef_indirect
21168 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21169 macro_undef (current_file, line, body);
21170 }
21171 }
21172 break;
21173
21174 case DW_MACRO_GNU_start_file:
21175 {
21176 unsigned int bytes_read;
21177 int line, file;
21178
21179 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21180 mac_ptr += bytes_read;
21181 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21182 mac_ptr += bytes_read;
21183
21184 if ((line == 0 && !at_commandline)
21185 || (line != 0 && at_commandline))
21186 complaint (&symfile_complaints,
21187 _("debug info gives source %d included "
21188 "from %s at %s line %d"),
21189 file, at_commandline ? _("command-line") : _("file"),
21190 line == 0 ? _("zero") : _("non-zero"), line);
21191
21192 if (at_commandline)
21193 {
21194 /* This DW_MACRO_GNU_start_file was executed in the
21195 pass one. */
21196 at_commandline = 0;
21197 }
21198 else
21199 current_file = macro_start_file (file, line, current_file, lh);
21200 }
21201 break;
21202
21203 case DW_MACRO_GNU_end_file:
21204 if (! current_file)
21205 complaint (&symfile_complaints,
21206 _("macro debug info has an unmatched "
21207 "`close_file' directive"));
21208 else
21209 {
21210 current_file = current_file->included_by;
21211 if (! current_file)
21212 {
21213 enum dwarf_macro_record_type next_type;
21214
21215 /* GCC circa March 2002 doesn't produce the zero
21216 type byte marking the end of the compilation
21217 unit. Complain if it's not there, but exit no
21218 matter what. */
21219
21220 /* Do we at least have room for a macinfo type byte? */
21221 if (mac_ptr >= mac_end)
21222 {
21223 dwarf2_section_buffer_overflow_complaint (section);
21224 return;
21225 }
21226
21227 /* We don't increment mac_ptr here, so this is just
21228 a look-ahead. */
21229 next_type = read_1_byte (abfd, mac_ptr);
21230 if (next_type != 0)
21231 complaint (&symfile_complaints,
21232 _("no terminating 0-type entry for "
21233 "macros in `.debug_macinfo' section"));
21234
21235 return;
21236 }
21237 }
21238 break;
21239
21240 case DW_MACRO_GNU_transparent_include:
21241 case DW_MACRO_GNU_transparent_include_alt:
21242 {
21243 LONGEST offset;
21244 void **slot;
21245 bfd *include_bfd = abfd;
21246 struct dwarf2_section_info *include_section = section;
21247 struct dwarf2_section_info alt_section;
21248 const gdb_byte *include_mac_end = mac_end;
21249 int is_dwz = section_is_dwz;
21250 const gdb_byte *new_mac_ptr;
21251
21252 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21253 mac_ptr += offset_size;
21254
21255 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21256 {
21257 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21258
21259 dwarf2_read_section (objfile, &dwz->macro);
21260
21261 include_section = &dwz->macro;
21262 include_bfd = get_section_bfd_owner (include_section);
21263 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21264 is_dwz = 1;
21265 }
21266
21267 new_mac_ptr = include_section->buffer + offset;
21268 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21269
21270 if (*slot != NULL)
21271 {
21272 /* This has actually happened; see
21273 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21274 complaint (&symfile_complaints,
21275 _("recursive DW_MACRO_GNU_transparent_include in "
21276 ".debug_macro section"));
21277 }
21278 else
21279 {
21280 *slot = (void *) new_mac_ptr;
21281
21282 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21283 include_mac_end, current_file, lh,
21284 section, section_is_gnu, is_dwz,
21285 offset_size, include_hash);
21286
21287 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21288 }
21289 }
21290 break;
21291
21292 case DW_MACINFO_vendor_ext:
21293 if (!section_is_gnu)
21294 {
21295 unsigned int bytes_read;
21296 int constant;
21297
21298 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21299 mac_ptr += bytes_read;
21300 read_direct_string (abfd, mac_ptr, &bytes_read);
21301 mac_ptr += bytes_read;
21302
21303 /* We don't recognize any vendor extensions. */
21304 break;
21305 }
21306 /* FALLTHROUGH */
21307
21308 default:
21309 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21310 mac_ptr, mac_end, abfd, offset_size,
21311 section);
21312 if (mac_ptr == NULL)
21313 return;
21314 break;
21315 }
21316 } while (macinfo_type != 0);
21317 }
21318
21319 static void
21320 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21321 int section_is_gnu)
21322 {
21323 struct objfile *objfile = dwarf2_per_objfile->objfile;
21324 struct line_header *lh = cu->line_header;
21325 bfd *abfd;
21326 const gdb_byte *mac_ptr, *mac_end;
21327 struct macro_source_file *current_file = 0;
21328 enum dwarf_macro_record_type macinfo_type;
21329 unsigned int offset_size = cu->header.offset_size;
21330 const gdb_byte *opcode_definitions[256];
21331 struct cleanup *cleanup;
21332 htab_t include_hash;
21333 void **slot;
21334 struct dwarf2_section_info *section;
21335 const char *section_name;
21336
21337 if (cu->dwo_unit != NULL)
21338 {
21339 if (section_is_gnu)
21340 {
21341 section = &cu->dwo_unit->dwo_file->sections.macro;
21342 section_name = ".debug_macro.dwo";
21343 }
21344 else
21345 {
21346 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21347 section_name = ".debug_macinfo.dwo";
21348 }
21349 }
21350 else
21351 {
21352 if (section_is_gnu)
21353 {
21354 section = &dwarf2_per_objfile->macro;
21355 section_name = ".debug_macro";
21356 }
21357 else
21358 {
21359 section = &dwarf2_per_objfile->macinfo;
21360 section_name = ".debug_macinfo";
21361 }
21362 }
21363
21364 dwarf2_read_section (objfile, section);
21365 if (section->buffer == NULL)
21366 {
21367 complaint (&symfile_complaints, _("missing %s section"), section_name);
21368 return;
21369 }
21370 abfd = get_section_bfd_owner (section);
21371
21372 /* First pass: Find the name of the base filename.
21373 This filename is needed in order to process all macros whose definition
21374 (or undefinition) comes from the command line. These macros are defined
21375 before the first DW_MACINFO_start_file entry, and yet still need to be
21376 associated to the base file.
21377
21378 To determine the base file name, we scan the macro definitions until we
21379 reach the first DW_MACINFO_start_file entry. We then initialize
21380 CURRENT_FILE accordingly so that any macro definition found before the
21381 first DW_MACINFO_start_file can still be associated to the base file. */
21382
21383 mac_ptr = section->buffer + offset;
21384 mac_end = section->buffer + section->size;
21385
21386 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21387 &offset_size, section_is_gnu);
21388 if (mac_ptr == NULL)
21389 {
21390 /* We already issued a complaint. */
21391 return;
21392 }
21393
21394 do
21395 {
21396 /* Do we at least have room for a macinfo type byte? */
21397 if (mac_ptr >= mac_end)
21398 {
21399 /* Complaint is printed during the second pass as GDB will probably
21400 stop the first pass earlier upon finding
21401 DW_MACINFO_start_file. */
21402 break;
21403 }
21404
21405 macinfo_type = read_1_byte (abfd, mac_ptr);
21406 mac_ptr++;
21407
21408 /* Note that we rely on the fact that the corresponding GNU and
21409 DWARF constants are the same. */
21410 switch (macinfo_type)
21411 {
21412 /* A zero macinfo type indicates the end of the macro
21413 information. */
21414 case 0:
21415 break;
21416
21417 case DW_MACRO_GNU_define:
21418 case DW_MACRO_GNU_undef:
21419 /* Only skip the data by MAC_PTR. */
21420 {
21421 unsigned int bytes_read;
21422
21423 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21424 mac_ptr += bytes_read;
21425 read_direct_string (abfd, mac_ptr, &bytes_read);
21426 mac_ptr += bytes_read;
21427 }
21428 break;
21429
21430 case DW_MACRO_GNU_start_file:
21431 {
21432 unsigned int bytes_read;
21433 int line, file;
21434
21435 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21436 mac_ptr += bytes_read;
21437 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21438 mac_ptr += bytes_read;
21439
21440 current_file = macro_start_file (file, line, current_file, lh);
21441 }
21442 break;
21443
21444 case DW_MACRO_GNU_end_file:
21445 /* No data to skip by MAC_PTR. */
21446 break;
21447
21448 case DW_MACRO_GNU_define_indirect:
21449 case DW_MACRO_GNU_undef_indirect:
21450 case DW_MACRO_GNU_define_indirect_alt:
21451 case DW_MACRO_GNU_undef_indirect_alt:
21452 {
21453 unsigned int bytes_read;
21454
21455 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21456 mac_ptr += bytes_read;
21457 mac_ptr += offset_size;
21458 }
21459 break;
21460
21461 case DW_MACRO_GNU_transparent_include:
21462 case DW_MACRO_GNU_transparent_include_alt:
21463 /* Note that, according to the spec, a transparent include
21464 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21465 skip this opcode. */
21466 mac_ptr += offset_size;
21467 break;
21468
21469 case DW_MACINFO_vendor_ext:
21470 /* Only skip the data by MAC_PTR. */
21471 if (!section_is_gnu)
21472 {
21473 unsigned int bytes_read;
21474
21475 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21476 mac_ptr += bytes_read;
21477 read_direct_string (abfd, mac_ptr, &bytes_read);
21478 mac_ptr += bytes_read;
21479 }
21480 /* FALLTHROUGH */
21481
21482 default:
21483 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21484 mac_ptr, mac_end, abfd, offset_size,
21485 section);
21486 if (mac_ptr == NULL)
21487 return;
21488 break;
21489 }
21490 } while (macinfo_type != 0 && current_file == NULL);
21491
21492 /* Second pass: Process all entries.
21493
21494 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21495 command-line macro definitions/undefinitions. This flag is unset when we
21496 reach the first DW_MACINFO_start_file entry. */
21497
21498 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21499 NULL, xcalloc, xfree);
21500 cleanup = make_cleanup_htab_delete (include_hash);
21501 mac_ptr = section->buffer + offset;
21502 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21503 *slot = (void *) mac_ptr;
21504 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21505 current_file, lh, section,
21506 section_is_gnu, 0, offset_size, include_hash);
21507 do_cleanups (cleanup);
21508 }
21509
21510 /* Check if the attribute's form is a DW_FORM_block*
21511 if so return true else false. */
21512
21513 static int
21514 attr_form_is_block (const struct attribute *attr)
21515 {
21516 return (attr == NULL ? 0 :
21517 attr->form == DW_FORM_block1
21518 || attr->form == DW_FORM_block2
21519 || attr->form == DW_FORM_block4
21520 || attr->form == DW_FORM_block
21521 || attr->form == DW_FORM_exprloc);
21522 }
21523
21524 /* Return non-zero if ATTR's value is a section offset --- classes
21525 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21526 You may use DW_UNSND (attr) to retrieve such offsets.
21527
21528 Section 7.5.4, "Attribute Encodings", explains that no attribute
21529 may have a value that belongs to more than one of these classes; it
21530 would be ambiguous if we did, because we use the same forms for all
21531 of them. */
21532
21533 static int
21534 attr_form_is_section_offset (const struct attribute *attr)
21535 {
21536 return (attr->form == DW_FORM_data4
21537 || attr->form == DW_FORM_data8
21538 || attr->form == DW_FORM_sec_offset);
21539 }
21540
21541 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21542 zero otherwise. When this function returns true, you can apply
21543 dwarf2_get_attr_constant_value to it.
21544
21545 However, note that for some attributes you must check
21546 attr_form_is_section_offset before using this test. DW_FORM_data4
21547 and DW_FORM_data8 are members of both the constant class, and of
21548 the classes that contain offsets into other debug sections
21549 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21550 that, if an attribute's can be either a constant or one of the
21551 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21552 taken as section offsets, not constants. */
21553
21554 static int
21555 attr_form_is_constant (const struct attribute *attr)
21556 {
21557 switch (attr->form)
21558 {
21559 case DW_FORM_sdata:
21560 case DW_FORM_udata:
21561 case DW_FORM_data1:
21562 case DW_FORM_data2:
21563 case DW_FORM_data4:
21564 case DW_FORM_data8:
21565 return 1;
21566 default:
21567 return 0;
21568 }
21569 }
21570
21571
21572 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21573 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21574
21575 static int
21576 attr_form_is_ref (const struct attribute *attr)
21577 {
21578 switch (attr->form)
21579 {
21580 case DW_FORM_ref_addr:
21581 case DW_FORM_ref1:
21582 case DW_FORM_ref2:
21583 case DW_FORM_ref4:
21584 case DW_FORM_ref8:
21585 case DW_FORM_ref_udata:
21586 case DW_FORM_GNU_ref_alt:
21587 return 1;
21588 default:
21589 return 0;
21590 }
21591 }
21592
21593 /* Return the .debug_loc section to use for CU.
21594 For DWO files use .debug_loc.dwo. */
21595
21596 static struct dwarf2_section_info *
21597 cu_debug_loc_section (struct dwarf2_cu *cu)
21598 {
21599 if (cu->dwo_unit)
21600 return &cu->dwo_unit->dwo_file->sections.loc;
21601 return &dwarf2_per_objfile->loc;
21602 }
21603
21604 /* A helper function that fills in a dwarf2_loclist_baton. */
21605
21606 static void
21607 fill_in_loclist_baton (struct dwarf2_cu *cu,
21608 struct dwarf2_loclist_baton *baton,
21609 const struct attribute *attr)
21610 {
21611 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21612
21613 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21614
21615 baton->per_cu = cu->per_cu;
21616 gdb_assert (baton->per_cu);
21617 /* We don't know how long the location list is, but make sure we
21618 don't run off the edge of the section. */
21619 baton->size = section->size - DW_UNSND (attr);
21620 baton->data = section->buffer + DW_UNSND (attr);
21621 baton->base_address = cu->base_address;
21622 baton->from_dwo = cu->dwo_unit != NULL;
21623 }
21624
21625 static void
21626 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21627 struct dwarf2_cu *cu, int is_block)
21628 {
21629 struct objfile *objfile = dwarf2_per_objfile->objfile;
21630 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21631
21632 if (attr_form_is_section_offset (attr)
21633 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21634 the section. If so, fall through to the complaint in the
21635 other branch. */
21636 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21637 {
21638 struct dwarf2_loclist_baton *baton;
21639
21640 baton = obstack_alloc (&objfile->objfile_obstack,
21641 sizeof (struct dwarf2_loclist_baton));
21642
21643 fill_in_loclist_baton (cu, baton, attr);
21644
21645 if (cu->base_known == 0)
21646 complaint (&symfile_complaints,
21647 _("Location list used without "
21648 "specifying the CU base address."));
21649
21650 SYMBOL_ACLASS_INDEX (sym) = (is_block
21651 ? dwarf2_loclist_block_index
21652 : dwarf2_loclist_index);
21653 SYMBOL_LOCATION_BATON (sym) = baton;
21654 }
21655 else
21656 {
21657 struct dwarf2_locexpr_baton *baton;
21658
21659 baton = obstack_alloc (&objfile->objfile_obstack,
21660 sizeof (struct dwarf2_locexpr_baton));
21661 baton->per_cu = cu->per_cu;
21662 gdb_assert (baton->per_cu);
21663
21664 if (attr_form_is_block (attr))
21665 {
21666 /* Note that we're just copying the block's data pointer
21667 here, not the actual data. We're still pointing into the
21668 info_buffer for SYM's objfile; right now we never release
21669 that buffer, but when we do clean up properly this may
21670 need to change. */
21671 baton->size = DW_BLOCK (attr)->size;
21672 baton->data = DW_BLOCK (attr)->data;
21673 }
21674 else
21675 {
21676 dwarf2_invalid_attrib_class_complaint ("location description",
21677 SYMBOL_NATURAL_NAME (sym));
21678 baton->size = 0;
21679 }
21680
21681 SYMBOL_ACLASS_INDEX (sym) = (is_block
21682 ? dwarf2_locexpr_block_index
21683 : dwarf2_locexpr_index);
21684 SYMBOL_LOCATION_BATON (sym) = baton;
21685 }
21686 }
21687
21688 /* Return the OBJFILE associated with the compilation unit CU. If CU
21689 came from a separate debuginfo file, then the master objfile is
21690 returned. */
21691
21692 struct objfile *
21693 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21694 {
21695 struct objfile *objfile = per_cu->objfile;
21696
21697 /* Return the master objfile, so that we can report and look up the
21698 correct file containing this variable. */
21699 if (objfile->separate_debug_objfile_backlink)
21700 objfile = objfile->separate_debug_objfile_backlink;
21701
21702 return objfile;
21703 }
21704
21705 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21706 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21707 CU_HEADERP first. */
21708
21709 static const struct comp_unit_head *
21710 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21711 struct dwarf2_per_cu_data *per_cu)
21712 {
21713 const gdb_byte *info_ptr;
21714
21715 if (per_cu->cu)
21716 return &per_cu->cu->header;
21717
21718 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21719
21720 memset (cu_headerp, 0, sizeof (*cu_headerp));
21721 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21722
21723 return cu_headerp;
21724 }
21725
21726 /* Return the address size given in the compilation unit header for CU. */
21727
21728 int
21729 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21730 {
21731 struct comp_unit_head cu_header_local;
21732 const struct comp_unit_head *cu_headerp;
21733
21734 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21735
21736 return cu_headerp->addr_size;
21737 }
21738
21739 /* Return the offset size given in the compilation unit header for CU. */
21740
21741 int
21742 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21743 {
21744 struct comp_unit_head cu_header_local;
21745 const struct comp_unit_head *cu_headerp;
21746
21747 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21748
21749 return cu_headerp->offset_size;
21750 }
21751
21752 /* See its dwarf2loc.h declaration. */
21753
21754 int
21755 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21756 {
21757 struct comp_unit_head cu_header_local;
21758 const struct comp_unit_head *cu_headerp;
21759
21760 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21761
21762 if (cu_headerp->version == 2)
21763 return cu_headerp->addr_size;
21764 else
21765 return cu_headerp->offset_size;
21766 }
21767
21768 /* Return the text offset of the CU. The returned offset comes from
21769 this CU's objfile. If this objfile came from a separate debuginfo
21770 file, then the offset may be different from the corresponding
21771 offset in the parent objfile. */
21772
21773 CORE_ADDR
21774 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21775 {
21776 struct objfile *objfile = per_cu->objfile;
21777
21778 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21779 }
21780
21781 /* Locate the .debug_info compilation unit from CU's objfile which contains
21782 the DIE at OFFSET. Raises an error on failure. */
21783
21784 static struct dwarf2_per_cu_data *
21785 dwarf2_find_containing_comp_unit (sect_offset offset,
21786 unsigned int offset_in_dwz,
21787 struct objfile *objfile)
21788 {
21789 struct dwarf2_per_cu_data *this_cu;
21790 int low, high;
21791 const sect_offset *cu_off;
21792
21793 low = 0;
21794 high = dwarf2_per_objfile->n_comp_units - 1;
21795 while (high > low)
21796 {
21797 struct dwarf2_per_cu_data *mid_cu;
21798 int mid = low + (high - low) / 2;
21799
21800 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21801 cu_off = &mid_cu->offset;
21802 if (mid_cu->is_dwz > offset_in_dwz
21803 || (mid_cu->is_dwz == offset_in_dwz
21804 && cu_off->sect_off >= offset.sect_off))
21805 high = mid;
21806 else
21807 low = mid + 1;
21808 }
21809 gdb_assert (low == high);
21810 this_cu = dwarf2_per_objfile->all_comp_units[low];
21811 cu_off = &this_cu->offset;
21812 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21813 {
21814 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21815 error (_("Dwarf Error: could not find partial DIE containing "
21816 "offset 0x%lx [in module %s]"),
21817 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21818
21819 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21820 <= offset.sect_off);
21821 return dwarf2_per_objfile->all_comp_units[low-1];
21822 }
21823 else
21824 {
21825 this_cu = dwarf2_per_objfile->all_comp_units[low];
21826 if (low == dwarf2_per_objfile->n_comp_units - 1
21827 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21828 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21829 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21830 return this_cu;
21831 }
21832 }
21833
21834 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21835
21836 static void
21837 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21838 {
21839 memset (cu, 0, sizeof (*cu));
21840 per_cu->cu = cu;
21841 cu->per_cu = per_cu;
21842 cu->objfile = per_cu->objfile;
21843 obstack_init (&cu->comp_unit_obstack);
21844 }
21845
21846 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21847
21848 static void
21849 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21850 enum language pretend_language)
21851 {
21852 struct attribute *attr;
21853
21854 /* Set the language we're debugging. */
21855 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21856 if (attr)
21857 set_cu_language (DW_UNSND (attr), cu);
21858 else
21859 {
21860 cu->language = pretend_language;
21861 cu->language_defn = language_def (cu->language);
21862 }
21863
21864 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21865 if (attr)
21866 cu->producer = DW_STRING (attr);
21867 }
21868
21869 /* Release one cached compilation unit, CU. We unlink it from the tree
21870 of compilation units, but we don't remove it from the read_in_chain;
21871 the caller is responsible for that.
21872 NOTE: DATA is a void * because this function is also used as a
21873 cleanup routine. */
21874
21875 static void
21876 free_heap_comp_unit (void *data)
21877 {
21878 struct dwarf2_cu *cu = data;
21879
21880 gdb_assert (cu->per_cu != NULL);
21881 cu->per_cu->cu = NULL;
21882 cu->per_cu = NULL;
21883
21884 obstack_free (&cu->comp_unit_obstack, NULL);
21885
21886 xfree (cu);
21887 }
21888
21889 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21890 when we're finished with it. We can't free the pointer itself, but be
21891 sure to unlink it from the cache. Also release any associated storage. */
21892
21893 static void
21894 free_stack_comp_unit (void *data)
21895 {
21896 struct dwarf2_cu *cu = data;
21897
21898 gdb_assert (cu->per_cu != NULL);
21899 cu->per_cu->cu = NULL;
21900 cu->per_cu = NULL;
21901
21902 obstack_free (&cu->comp_unit_obstack, NULL);
21903 cu->partial_dies = NULL;
21904 }
21905
21906 /* Free all cached compilation units. */
21907
21908 static void
21909 free_cached_comp_units (void *data)
21910 {
21911 struct dwarf2_per_cu_data *per_cu, **last_chain;
21912
21913 per_cu = dwarf2_per_objfile->read_in_chain;
21914 last_chain = &dwarf2_per_objfile->read_in_chain;
21915 while (per_cu != NULL)
21916 {
21917 struct dwarf2_per_cu_data *next_cu;
21918
21919 next_cu = per_cu->cu->read_in_chain;
21920
21921 free_heap_comp_unit (per_cu->cu);
21922 *last_chain = next_cu;
21923
21924 per_cu = next_cu;
21925 }
21926 }
21927
21928 /* Increase the age counter on each cached compilation unit, and free
21929 any that are too old. */
21930
21931 static void
21932 age_cached_comp_units (void)
21933 {
21934 struct dwarf2_per_cu_data *per_cu, **last_chain;
21935
21936 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21937 per_cu = dwarf2_per_objfile->read_in_chain;
21938 while (per_cu != NULL)
21939 {
21940 per_cu->cu->last_used ++;
21941 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21942 dwarf2_mark (per_cu->cu);
21943 per_cu = per_cu->cu->read_in_chain;
21944 }
21945
21946 per_cu = dwarf2_per_objfile->read_in_chain;
21947 last_chain = &dwarf2_per_objfile->read_in_chain;
21948 while (per_cu != NULL)
21949 {
21950 struct dwarf2_per_cu_data *next_cu;
21951
21952 next_cu = per_cu->cu->read_in_chain;
21953
21954 if (!per_cu->cu->mark)
21955 {
21956 free_heap_comp_unit (per_cu->cu);
21957 *last_chain = next_cu;
21958 }
21959 else
21960 last_chain = &per_cu->cu->read_in_chain;
21961
21962 per_cu = next_cu;
21963 }
21964 }
21965
21966 /* Remove a single compilation unit from the cache. */
21967
21968 static void
21969 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21970 {
21971 struct dwarf2_per_cu_data *per_cu, **last_chain;
21972
21973 per_cu = dwarf2_per_objfile->read_in_chain;
21974 last_chain = &dwarf2_per_objfile->read_in_chain;
21975 while (per_cu != NULL)
21976 {
21977 struct dwarf2_per_cu_data *next_cu;
21978
21979 next_cu = per_cu->cu->read_in_chain;
21980
21981 if (per_cu == target_per_cu)
21982 {
21983 free_heap_comp_unit (per_cu->cu);
21984 per_cu->cu = NULL;
21985 *last_chain = next_cu;
21986 break;
21987 }
21988 else
21989 last_chain = &per_cu->cu->read_in_chain;
21990
21991 per_cu = next_cu;
21992 }
21993 }
21994
21995 /* Release all extra memory associated with OBJFILE. */
21996
21997 void
21998 dwarf2_free_objfile (struct objfile *objfile)
21999 {
22000 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22001
22002 if (dwarf2_per_objfile == NULL)
22003 return;
22004
22005 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22006 free_cached_comp_units (NULL);
22007
22008 if (dwarf2_per_objfile->quick_file_names_table)
22009 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22010
22011 if (dwarf2_per_objfile->line_header_hash)
22012 htab_delete (dwarf2_per_objfile->line_header_hash);
22013
22014 /* Everything else should be on the objfile obstack. */
22015 }
22016
22017 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22018 We store these in a hash table separate from the DIEs, and preserve them
22019 when the DIEs are flushed out of cache.
22020
22021 The CU "per_cu" pointer is needed because offset alone is not enough to
22022 uniquely identify the type. A file may have multiple .debug_types sections,
22023 or the type may come from a DWO file. Furthermore, while it's more logical
22024 to use per_cu->section+offset, with Fission the section with the data is in
22025 the DWO file but we don't know that section at the point we need it.
22026 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22027 because we can enter the lookup routine, get_die_type_at_offset, from
22028 outside this file, and thus won't necessarily have PER_CU->cu.
22029 Fortunately, PER_CU is stable for the life of the objfile. */
22030
22031 struct dwarf2_per_cu_offset_and_type
22032 {
22033 const struct dwarf2_per_cu_data *per_cu;
22034 sect_offset offset;
22035 struct type *type;
22036 };
22037
22038 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22039
22040 static hashval_t
22041 per_cu_offset_and_type_hash (const void *item)
22042 {
22043 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22044
22045 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22046 }
22047
22048 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22049
22050 static int
22051 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22052 {
22053 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22054 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22055
22056 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22057 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22058 }
22059
22060 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22061 table if necessary. For convenience, return TYPE.
22062
22063 The DIEs reading must have careful ordering to:
22064 * Not cause infite loops trying to read in DIEs as a prerequisite for
22065 reading current DIE.
22066 * Not trying to dereference contents of still incompletely read in types
22067 while reading in other DIEs.
22068 * Enable referencing still incompletely read in types just by a pointer to
22069 the type without accessing its fields.
22070
22071 Therefore caller should follow these rules:
22072 * Try to fetch any prerequisite types we may need to build this DIE type
22073 before building the type and calling set_die_type.
22074 * After building type call set_die_type for current DIE as soon as
22075 possible before fetching more types to complete the current type.
22076 * Make the type as complete as possible before fetching more types. */
22077
22078 static struct type *
22079 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22080 {
22081 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22082 struct objfile *objfile = cu->objfile;
22083 struct attribute *attr;
22084 struct dynamic_prop prop;
22085
22086 /* For Ada types, make sure that the gnat-specific data is always
22087 initialized (if not already set). There are a few types where
22088 we should not be doing so, because the type-specific area is
22089 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22090 where the type-specific area is used to store the floatformat).
22091 But this is not a problem, because the gnat-specific information
22092 is actually not needed for these types. */
22093 if (need_gnat_info (cu)
22094 && TYPE_CODE (type) != TYPE_CODE_FUNC
22095 && TYPE_CODE (type) != TYPE_CODE_FLT
22096 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22097 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22098 && TYPE_CODE (type) != TYPE_CODE_METHOD
22099 && !HAVE_GNAT_AUX_INFO (type))
22100 INIT_GNAT_SPECIFIC (type);
22101
22102 /* Read DW_AT_data_location and set in type. */
22103 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22104 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22105 add_dyn_prop (DYN_ATTR_DATA_LOCATION, prop, type, objfile);
22106
22107 if (dwarf2_per_objfile->die_type_hash == NULL)
22108 {
22109 dwarf2_per_objfile->die_type_hash =
22110 htab_create_alloc_ex (127,
22111 per_cu_offset_and_type_hash,
22112 per_cu_offset_and_type_eq,
22113 NULL,
22114 &objfile->objfile_obstack,
22115 hashtab_obstack_allocate,
22116 dummy_obstack_deallocate);
22117 }
22118
22119 ofs.per_cu = cu->per_cu;
22120 ofs.offset = die->offset;
22121 ofs.type = type;
22122 slot = (struct dwarf2_per_cu_offset_and_type **)
22123 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22124 if (*slot)
22125 complaint (&symfile_complaints,
22126 _("A problem internal to GDB: DIE 0x%x has type already set"),
22127 die->offset.sect_off);
22128 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22129 **slot = ofs;
22130 return type;
22131 }
22132
22133 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22134 or return NULL if the die does not have a saved type. */
22135
22136 static struct type *
22137 get_die_type_at_offset (sect_offset offset,
22138 struct dwarf2_per_cu_data *per_cu)
22139 {
22140 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22141
22142 if (dwarf2_per_objfile->die_type_hash == NULL)
22143 return NULL;
22144
22145 ofs.per_cu = per_cu;
22146 ofs.offset = offset;
22147 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22148 if (slot)
22149 return slot->type;
22150 else
22151 return NULL;
22152 }
22153
22154 /* Look up the type for DIE in CU in die_type_hash,
22155 or return NULL if DIE does not have a saved type. */
22156
22157 static struct type *
22158 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22159 {
22160 return get_die_type_at_offset (die->offset, cu->per_cu);
22161 }
22162
22163 /* Add a dependence relationship from CU to REF_PER_CU. */
22164
22165 static void
22166 dwarf2_add_dependence (struct dwarf2_cu *cu,
22167 struct dwarf2_per_cu_data *ref_per_cu)
22168 {
22169 void **slot;
22170
22171 if (cu->dependencies == NULL)
22172 cu->dependencies
22173 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22174 NULL, &cu->comp_unit_obstack,
22175 hashtab_obstack_allocate,
22176 dummy_obstack_deallocate);
22177
22178 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22179 if (*slot == NULL)
22180 *slot = ref_per_cu;
22181 }
22182
22183 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22184 Set the mark field in every compilation unit in the
22185 cache that we must keep because we are keeping CU. */
22186
22187 static int
22188 dwarf2_mark_helper (void **slot, void *data)
22189 {
22190 struct dwarf2_per_cu_data *per_cu;
22191
22192 per_cu = (struct dwarf2_per_cu_data *) *slot;
22193
22194 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22195 reading of the chain. As such dependencies remain valid it is not much
22196 useful to track and undo them during QUIT cleanups. */
22197 if (per_cu->cu == NULL)
22198 return 1;
22199
22200 if (per_cu->cu->mark)
22201 return 1;
22202 per_cu->cu->mark = 1;
22203
22204 if (per_cu->cu->dependencies != NULL)
22205 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22206
22207 return 1;
22208 }
22209
22210 /* Set the mark field in CU and in every other compilation unit in the
22211 cache that we must keep because we are keeping CU. */
22212
22213 static void
22214 dwarf2_mark (struct dwarf2_cu *cu)
22215 {
22216 if (cu->mark)
22217 return;
22218 cu->mark = 1;
22219 if (cu->dependencies != NULL)
22220 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22221 }
22222
22223 static void
22224 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22225 {
22226 while (per_cu)
22227 {
22228 per_cu->cu->mark = 0;
22229 per_cu = per_cu->cu->read_in_chain;
22230 }
22231 }
22232
22233 /* Trivial hash function for partial_die_info: the hash value of a DIE
22234 is its offset in .debug_info for this objfile. */
22235
22236 static hashval_t
22237 partial_die_hash (const void *item)
22238 {
22239 const struct partial_die_info *part_die = item;
22240
22241 return part_die->offset.sect_off;
22242 }
22243
22244 /* Trivial comparison function for partial_die_info structures: two DIEs
22245 are equal if they have the same offset. */
22246
22247 static int
22248 partial_die_eq (const void *item_lhs, const void *item_rhs)
22249 {
22250 const struct partial_die_info *part_die_lhs = item_lhs;
22251 const struct partial_die_info *part_die_rhs = item_rhs;
22252
22253 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22254 }
22255
22256 static struct cmd_list_element *set_dwarf2_cmdlist;
22257 static struct cmd_list_element *show_dwarf2_cmdlist;
22258
22259 static void
22260 set_dwarf2_cmd (char *args, int from_tty)
22261 {
22262 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22263 gdb_stdout);
22264 }
22265
22266 static void
22267 show_dwarf2_cmd (char *args, int from_tty)
22268 {
22269 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22270 }
22271
22272 /* Free data associated with OBJFILE, if necessary. */
22273
22274 static void
22275 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22276 {
22277 struct dwarf2_per_objfile *data = d;
22278 int ix;
22279
22280 /* Make sure we don't accidentally use dwarf2_per_objfile while
22281 cleaning up. */
22282 dwarf2_per_objfile = NULL;
22283
22284 for (ix = 0; ix < data->n_comp_units; ++ix)
22285 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22286
22287 for (ix = 0; ix < data->n_type_units; ++ix)
22288 VEC_free (dwarf2_per_cu_ptr,
22289 data->all_type_units[ix]->per_cu.imported_symtabs);
22290 xfree (data->all_type_units);
22291
22292 VEC_free (dwarf2_section_info_def, data->types);
22293
22294 if (data->dwo_files)
22295 free_dwo_files (data->dwo_files, objfile);
22296 if (data->dwp_file)
22297 gdb_bfd_unref (data->dwp_file->dbfd);
22298
22299 if (data->dwz_file && data->dwz_file->dwz_bfd)
22300 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22301 }
22302
22303 \f
22304 /* The "save gdb-index" command. */
22305
22306 /* The contents of the hash table we create when building the string
22307 table. */
22308 struct strtab_entry
22309 {
22310 offset_type offset;
22311 const char *str;
22312 };
22313
22314 /* Hash function for a strtab_entry.
22315
22316 Function is used only during write_hash_table so no index format backward
22317 compatibility is needed. */
22318
22319 static hashval_t
22320 hash_strtab_entry (const void *e)
22321 {
22322 const struct strtab_entry *entry = e;
22323 return mapped_index_string_hash (INT_MAX, entry->str);
22324 }
22325
22326 /* Equality function for a strtab_entry. */
22327
22328 static int
22329 eq_strtab_entry (const void *a, const void *b)
22330 {
22331 const struct strtab_entry *ea = a;
22332 const struct strtab_entry *eb = b;
22333 return !strcmp (ea->str, eb->str);
22334 }
22335
22336 /* Create a strtab_entry hash table. */
22337
22338 static htab_t
22339 create_strtab (void)
22340 {
22341 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22342 xfree, xcalloc, xfree);
22343 }
22344
22345 /* Add a string to the constant pool. Return the string's offset in
22346 host order. */
22347
22348 static offset_type
22349 add_string (htab_t table, struct obstack *cpool, const char *str)
22350 {
22351 void **slot;
22352 struct strtab_entry entry;
22353 struct strtab_entry *result;
22354
22355 entry.str = str;
22356 slot = htab_find_slot (table, &entry, INSERT);
22357 if (*slot)
22358 result = *slot;
22359 else
22360 {
22361 result = XNEW (struct strtab_entry);
22362 result->offset = obstack_object_size (cpool);
22363 result->str = str;
22364 obstack_grow_str0 (cpool, str);
22365 *slot = result;
22366 }
22367 return result->offset;
22368 }
22369
22370 /* An entry in the symbol table. */
22371 struct symtab_index_entry
22372 {
22373 /* The name of the symbol. */
22374 const char *name;
22375 /* The offset of the name in the constant pool. */
22376 offset_type index_offset;
22377 /* A sorted vector of the indices of all the CUs that hold an object
22378 of this name. */
22379 VEC (offset_type) *cu_indices;
22380 };
22381
22382 /* The symbol table. This is a power-of-2-sized hash table. */
22383 struct mapped_symtab
22384 {
22385 offset_type n_elements;
22386 offset_type size;
22387 struct symtab_index_entry **data;
22388 };
22389
22390 /* Hash function for a symtab_index_entry. */
22391
22392 static hashval_t
22393 hash_symtab_entry (const void *e)
22394 {
22395 const struct symtab_index_entry *entry = e;
22396 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22397 sizeof (offset_type) * VEC_length (offset_type,
22398 entry->cu_indices),
22399 0);
22400 }
22401
22402 /* Equality function for a symtab_index_entry. */
22403
22404 static int
22405 eq_symtab_entry (const void *a, const void *b)
22406 {
22407 const struct symtab_index_entry *ea = a;
22408 const struct symtab_index_entry *eb = b;
22409 int len = VEC_length (offset_type, ea->cu_indices);
22410 if (len != VEC_length (offset_type, eb->cu_indices))
22411 return 0;
22412 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22413 VEC_address (offset_type, eb->cu_indices),
22414 sizeof (offset_type) * len);
22415 }
22416
22417 /* Destroy a symtab_index_entry. */
22418
22419 static void
22420 delete_symtab_entry (void *p)
22421 {
22422 struct symtab_index_entry *entry = p;
22423 VEC_free (offset_type, entry->cu_indices);
22424 xfree (entry);
22425 }
22426
22427 /* Create a hash table holding symtab_index_entry objects. */
22428
22429 static htab_t
22430 create_symbol_hash_table (void)
22431 {
22432 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22433 delete_symtab_entry, xcalloc, xfree);
22434 }
22435
22436 /* Create a new mapped symtab object. */
22437
22438 static struct mapped_symtab *
22439 create_mapped_symtab (void)
22440 {
22441 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22442 symtab->n_elements = 0;
22443 symtab->size = 1024;
22444 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22445 return symtab;
22446 }
22447
22448 /* Destroy a mapped_symtab. */
22449
22450 static void
22451 cleanup_mapped_symtab (void *p)
22452 {
22453 struct mapped_symtab *symtab = p;
22454 /* The contents of the array are freed when the other hash table is
22455 destroyed. */
22456 xfree (symtab->data);
22457 xfree (symtab);
22458 }
22459
22460 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22461 the slot.
22462
22463 Function is used only during write_hash_table so no index format backward
22464 compatibility is needed. */
22465
22466 static struct symtab_index_entry **
22467 find_slot (struct mapped_symtab *symtab, const char *name)
22468 {
22469 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22470
22471 index = hash & (symtab->size - 1);
22472 step = ((hash * 17) & (symtab->size - 1)) | 1;
22473
22474 for (;;)
22475 {
22476 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22477 return &symtab->data[index];
22478 index = (index + step) & (symtab->size - 1);
22479 }
22480 }
22481
22482 /* Expand SYMTAB's hash table. */
22483
22484 static void
22485 hash_expand (struct mapped_symtab *symtab)
22486 {
22487 offset_type old_size = symtab->size;
22488 offset_type i;
22489 struct symtab_index_entry **old_entries = symtab->data;
22490
22491 symtab->size *= 2;
22492 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22493
22494 for (i = 0; i < old_size; ++i)
22495 {
22496 if (old_entries[i])
22497 {
22498 struct symtab_index_entry **slot = find_slot (symtab,
22499 old_entries[i]->name);
22500 *slot = old_entries[i];
22501 }
22502 }
22503
22504 xfree (old_entries);
22505 }
22506
22507 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22508 CU_INDEX is the index of the CU in which the symbol appears.
22509 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22510
22511 static void
22512 add_index_entry (struct mapped_symtab *symtab, const char *name,
22513 int is_static, gdb_index_symbol_kind kind,
22514 offset_type cu_index)
22515 {
22516 struct symtab_index_entry **slot;
22517 offset_type cu_index_and_attrs;
22518
22519 ++symtab->n_elements;
22520 if (4 * symtab->n_elements / 3 >= symtab->size)
22521 hash_expand (symtab);
22522
22523 slot = find_slot (symtab, name);
22524 if (!*slot)
22525 {
22526 *slot = XNEW (struct symtab_index_entry);
22527 (*slot)->name = name;
22528 /* index_offset is set later. */
22529 (*slot)->cu_indices = NULL;
22530 }
22531
22532 cu_index_and_attrs = 0;
22533 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22534 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22535 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22536
22537 /* We don't want to record an index value twice as we want to avoid the
22538 duplication.
22539 We process all global symbols and then all static symbols
22540 (which would allow us to avoid the duplication by only having to check
22541 the last entry pushed), but a symbol could have multiple kinds in one CU.
22542 To keep things simple we don't worry about the duplication here and
22543 sort and uniqufy the list after we've processed all symbols. */
22544 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22545 }
22546
22547 /* qsort helper routine for uniquify_cu_indices. */
22548
22549 static int
22550 offset_type_compare (const void *ap, const void *bp)
22551 {
22552 offset_type a = *(offset_type *) ap;
22553 offset_type b = *(offset_type *) bp;
22554
22555 return (a > b) - (b > a);
22556 }
22557
22558 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22559
22560 static void
22561 uniquify_cu_indices (struct mapped_symtab *symtab)
22562 {
22563 int i;
22564
22565 for (i = 0; i < symtab->size; ++i)
22566 {
22567 struct symtab_index_entry *entry = symtab->data[i];
22568
22569 if (entry
22570 && entry->cu_indices != NULL)
22571 {
22572 unsigned int next_to_insert, next_to_check;
22573 offset_type last_value;
22574
22575 qsort (VEC_address (offset_type, entry->cu_indices),
22576 VEC_length (offset_type, entry->cu_indices),
22577 sizeof (offset_type), offset_type_compare);
22578
22579 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22580 next_to_insert = 1;
22581 for (next_to_check = 1;
22582 next_to_check < VEC_length (offset_type, entry->cu_indices);
22583 ++next_to_check)
22584 {
22585 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22586 != last_value)
22587 {
22588 last_value = VEC_index (offset_type, entry->cu_indices,
22589 next_to_check);
22590 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22591 last_value);
22592 ++next_to_insert;
22593 }
22594 }
22595 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22596 }
22597 }
22598 }
22599
22600 /* Add a vector of indices to the constant pool. */
22601
22602 static offset_type
22603 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22604 struct symtab_index_entry *entry)
22605 {
22606 void **slot;
22607
22608 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22609 if (!*slot)
22610 {
22611 offset_type len = VEC_length (offset_type, entry->cu_indices);
22612 offset_type val = MAYBE_SWAP (len);
22613 offset_type iter;
22614 int i;
22615
22616 *slot = entry;
22617 entry->index_offset = obstack_object_size (cpool);
22618
22619 obstack_grow (cpool, &val, sizeof (val));
22620 for (i = 0;
22621 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22622 ++i)
22623 {
22624 val = MAYBE_SWAP (iter);
22625 obstack_grow (cpool, &val, sizeof (val));
22626 }
22627 }
22628 else
22629 {
22630 struct symtab_index_entry *old_entry = *slot;
22631 entry->index_offset = old_entry->index_offset;
22632 entry = old_entry;
22633 }
22634 return entry->index_offset;
22635 }
22636
22637 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22638 constant pool entries going into the obstack CPOOL. */
22639
22640 static void
22641 write_hash_table (struct mapped_symtab *symtab,
22642 struct obstack *output, struct obstack *cpool)
22643 {
22644 offset_type i;
22645 htab_t symbol_hash_table;
22646 htab_t str_table;
22647
22648 symbol_hash_table = create_symbol_hash_table ();
22649 str_table = create_strtab ();
22650
22651 /* We add all the index vectors to the constant pool first, to
22652 ensure alignment is ok. */
22653 for (i = 0; i < symtab->size; ++i)
22654 {
22655 if (symtab->data[i])
22656 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22657 }
22658
22659 /* Now write out the hash table. */
22660 for (i = 0; i < symtab->size; ++i)
22661 {
22662 offset_type str_off, vec_off;
22663
22664 if (symtab->data[i])
22665 {
22666 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22667 vec_off = symtab->data[i]->index_offset;
22668 }
22669 else
22670 {
22671 /* While 0 is a valid constant pool index, it is not valid
22672 to have 0 for both offsets. */
22673 str_off = 0;
22674 vec_off = 0;
22675 }
22676
22677 str_off = MAYBE_SWAP (str_off);
22678 vec_off = MAYBE_SWAP (vec_off);
22679
22680 obstack_grow (output, &str_off, sizeof (str_off));
22681 obstack_grow (output, &vec_off, sizeof (vec_off));
22682 }
22683
22684 htab_delete (str_table);
22685 htab_delete (symbol_hash_table);
22686 }
22687
22688 /* Struct to map psymtab to CU index in the index file. */
22689 struct psymtab_cu_index_map
22690 {
22691 struct partial_symtab *psymtab;
22692 unsigned int cu_index;
22693 };
22694
22695 static hashval_t
22696 hash_psymtab_cu_index (const void *item)
22697 {
22698 const struct psymtab_cu_index_map *map = item;
22699
22700 return htab_hash_pointer (map->psymtab);
22701 }
22702
22703 static int
22704 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22705 {
22706 const struct psymtab_cu_index_map *lhs = item_lhs;
22707 const struct psymtab_cu_index_map *rhs = item_rhs;
22708
22709 return lhs->psymtab == rhs->psymtab;
22710 }
22711
22712 /* Helper struct for building the address table. */
22713 struct addrmap_index_data
22714 {
22715 struct objfile *objfile;
22716 struct obstack *addr_obstack;
22717 htab_t cu_index_htab;
22718
22719 /* Non-zero if the previous_* fields are valid.
22720 We can't write an entry until we see the next entry (since it is only then
22721 that we know the end of the entry). */
22722 int previous_valid;
22723 /* Index of the CU in the table of all CUs in the index file. */
22724 unsigned int previous_cu_index;
22725 /* Start address of the CU. */
22726 CORE_ADDR previous_cu_start;
22727 };
22728
22729 /* Write an address entry to OBSTACK. */
22730
22731 static void
22732 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22733 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22734 {
22735 offset_type cu_index_to_write;
22736 gdb_byte addr[8];
22737 CORE_ADDR baseaddr;
22738
22739 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22740
22741 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22742 obstack_grow (obstack, addr, 8);
22743 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22744 obstack_grow (obstack, addr, 8);
22745 cu_index_to_write = MAYBE_SWAP (cu_index);
22746 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22747 }
22748
22749 /* Worker function for traversing an addrmap to build the address table. */
22750
22751 static int
22752 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22753 {
22754 struct addrmap_index_data *data = datap;
22755 struct partial_symtab *pst = obj;
22756
22757 if (data->previous_valid)
22758 add_address_entry (data->objfile, data->addr_obstack,
22759 data->previous_cu_start, start_addr,
22760 data->previous_cu_index);
22761
22762 data->previous_cu_start = start_addr;
22763 if (pst != NULL)
22764 {
22765 struct psymtab_cu_index_map find_map, *map;
22766 find_map.psymtab = pst;
22767 map = htab_find (data->cu_index_htab, &find_map);
22768 gdb_assert (map != NULL);
22769 data->previous_cu_index = map->cu_index;
22770 data->previous_valid = 1;
22771 }
22772 else
22773 data->previous_valid = 0;
22774
22775 return 0;
22776 }
22777
22778 /* Write OBJFILE's address map to OBSTACK.
22779 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22780 in the index file. */
22781
22782 static void
22783 write_address_map (struct objfile *objfile, struct obstack *obstack,
22784 htab_t cu_index_htab)
22785 {
22786 struct addrmap_index_data addrmap_index_data;
22787
22788 /* When writing the address table, we have to cope with the fact that
22789 the addrmap iterator only provides the start of a region; we have to
22790 wait until the next invocation to get the start of the next region. */
22791
22792 addrmap_index_data.objfile = objfile;
22793 addrmap_index_data.addr_obstack = obstack;
22794 addrmap_index_data.cu_index_htab = cu_index_htab;
22795 addrmap_index_data.previous_valid = 0;
22796
22797 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22798 &addrmap_index_data);
22799
22800 /* It's highly unlikely the last entry (end address = 0xff...ff)
22801 is valid, but we should still handle it.
22802 The end address is recorded as the start of the next region, but that
22803 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22804 anyway. */
22805 if (addrmap_index_data.previous_valid)
22806 add_address_entry (objfile, obstack,
22807 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22808 addrmap_index_data.previous_cu_index);
22809 }
22810
22811 /* Return the symbol kind of PSYM. */
22812
22813 static gdb_index_symbol_kind
22814 symbol_kind (struct partial_symbol *psym)
22815 {
22816 domain_enum domain = PSYMBOL_DOMAIN (psym);
22817 enum address_class aclass = PSYMBOL_CLASS (psym);
22818
22819 switch (domain)
22820 {
22821 case VAR_DOMAIN:
22822 switch (aclass)
22823 {
22824 case LOC_BLOCK:
22825 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22826 case LOC_TYPEDEF:
22827 return GDB_INDEX_SYMBOL_KIND_TYPE;
22828 case LOC_COMPUTED:
22829 case LOC_CONST_BYTES:
22830 case LOC_OPTIMIZED_OUT:
22831 case LOC_STATIC:
22832 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22833 case LOC_CONST:
22834 /* Note: It's currently impossible to recognize psyms as enum values
22835 short of reading the type info. For now punt. */
22836 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22837 default:
22838 /* There are other LOC_FOO values that one might want to classify
22839 as variables, but dwarf2read.c doesn't currently use them. */
22840 return GDB_INDEX_SYMBOL_KIND_OTHER;
22841 }
22842 case STRUCT_DOMAIN:
22843 return GDB_INDEX_SYMBOL_KIND_TYPE;
22844 default:
22845 return GDB_INDEX_SYMBOL_KIND_OTHER;
22846 }
22847 }
22848
22849 /* Add a list of partial symbols to SYMTAB. */
22850
22851 static void
22852 write_psymbols (struct mapped_symtab *symtab,
22853 htab_t psyms_seen,
22854 struct partial_symbol **psymp,
22855 int count,
22856 offset_type cu_index,
22857 int is_static)
22858 {
22859 for (; count-- > 0; ++psymp)
22860 {
22861 struct partial_symbol *psym = *psymp;
22862 void **slot;
22863
22864 if (SYMBOL_LANGUAGE (psym) == language_ada)
22865 error (_("Ada is not currently supported by the index"));
22866
22867 /* Only add a given psymbol once. */
22868 slot = htab_find_slot (psyms_seen, psym, INSERT);
22869 if (!*slot)
22870 {
22871 gdb_index_symbol_kind kind = symbol_kind (psym);
22872
22873 *slot = psym;
22874 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22875 is_static, kind, cu_index);
22876 }
22877 }
22878 }
22879
22880 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22881 exception if there is an error. */
22882
22883 static void
22884 write_obstack (FILE *file, struct obstack *obstack)
22885 {
22886 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22887 file)
22888 != obstack_object_size (obstack))
22889 error (_("couldn't data write to file"));
22890 }
22891
22892 /* Unlink a file if the argument is not NULL. */
22893
22894 static void
22895 unlink_if_set (void *p)
22896 {
22897 char **filename = p;
22898 if (*filename)
22899 unlink (*filename);
22900 }
22901
22902 /* A helper struct used when iterating over debug_types. */
22903 struct signatured_type_index_data
22904 {
22905 struct objfile *objfile;
22906 struct mapped_symtab *symtab;
22907 struct obstack *types_list;
22908 htab_t psyms_seen;
22909 int cu_index;
22910 };
22911
22912 /* A helper function that writes a single signatured_type to an
22913 obstack. */
22914
22915 static int
22916 write_one_signatured_type (void **slot, void *d)
22917 {
22918 struct signatured_type_index_data *info = d;
22919 struct signatured_type *entry = (struct signatured_type *) *slot;
22920 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22921 gdb_byte val[8];
22922
22923 write_psymbols (info->symtab,
22924 info->psyms_seen,
22925 info->objfile->global_psymbols.list
22926 + psymtab->globals_offset,
22927 psymtab->n_global_syms, info->cu_index,
22928 0);
22929 write_psymbols (info->symtab,
22930 info->psyms_seen,
22931 info->objfile->static_psymbols.list
22932 + psymtab->statics_offset,
22933 psymtab->n_static_syms, info->cu_index,
22934 1);
22935
22936 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22937 entry->per_cu.offset.sect_off);
22938 obstack_grow (info->types_list, val, 8);
22939 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22940 entry->type_offset_in_tu.cu_off);
22941 obstack_grow (info->types_list, val, 8);
22942 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22943 obstack_grow (info->types_list, val, 8);
22944
22945 ++info->cu_index;
22946
22947 return 1;
22948 }
22949
22950 /* Recurse into all "included" dependencies and write their symbols as
22951 if they appeared in this psymtab. */
22952
22953 static void
22954 recursively_write_psymbols (struct objfile *objfile,
22955 struct partial_symtab *psymtab,
22956 struct mapped_symtab *symtab,
22957 htab_t psyms_seen,
22958 offset_type cu_index)
22959 {
22960 int i;
22961
22962 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22963 if (psymtab->dependencies[i]->user != NULL)
22964 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22965 symtab, psyms_seen, cu_index);
22966
22967 write_psymbols (symtab,
22968 psyms_seen,
22969 objfile->global_psymbols.list + psymtab->globals_offset,
22970 psymtab->n_global_syms, cu_index,
22971 0);
22972 write_psymbols (symtab,
22973 psyms_seen,
22974 objfile->static_psymbols.list + psymtab->statics_offset,
22975 psymtab->n_static_syms, cu_index,
22976 1);
22977 }
22978
22979 /* Create an index file for OBJFILE in the directory DIR. */
22980
22981 static void
22982 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22983 {
22984 struct cleanup *cleanup;
22985 char *filename, *cleanup_filename;
22986 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22987 struct obstack cu_list, types_cu_list;
22988 int i;
22989 FILE *out_file;
22990 struct mapped_symtab *symtab;
22991 offset_type val, size_of_contents, total_len;
22992 struct stat st;
22993 htab_t psyms_seen;
22994 htab_t cu_index_htab;
22995 struct psymtab_cu_index_map *psymtab_cu_index_map;
22996
22997 if (dwarf2_per_objfile->using_index)
22998 error (_("Cannot use an index to create the index"));
22999
23000 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23001 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23002
23003 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23004 return;
23005
23006 if (stat (objfile_name (objfile), &st) < 0)
23007 perror_with_name (objfile_name (objfile));
23008
23009 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23010 INDEX_SUFFIX, (char *) NULL);
23011 cleanup = make_cleanup (xfree, filename);
23012
23013 out_file = gdb_fopen_cloexec (filename, "wb");
23014 if (!out_file)
23015 error (_("Can't open `%s' for writing"), filename);
23016
23017 cleanup_filename = filename;
23018 make_cleanup (unlink_if_set, &cleanup_filename);
23019
23020 symtab = create_mapped_symtab ();
23021 make_cleanup (cleanup_mapped_symtab, symtab);
23022
23023 obstack_init (&addr_obstack);
23024 make_cleanup_obstack_free (&addr_obstack);
23025
23026 obstack_init (&cu_list);
23027 make_cleanup_obstack_free (&cu_list);
23028
23029 obstack_init (&types_cu_list);
23030 make_cleanup_obstack_free (&types_cu_list);
23031
23032 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23033 NULL, xcalloc, xfree);
23034 make_cleanup_htab_delete (psyms_seen);
23035
23036 /* While we're scanning CU's create a table that maps a psymtab pointer
23037 (which is what addrmap records) to its index (which is what is recorded
23038 in the index file). This will later be needed to write the address
23039 table. */
23040 cu_index_htab = htab_create_alloc (100,
23041 hash_psymtab_cu_index,
23042 eq_psymtab_cu_index,
23043 NULL, xcalloc, xfree);
23044 make_cleanup_htab_delete (cu_index_htab);
23045 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23046 xmalloc (sizeof (struct psymtab_cu_index_map)
23047 * dwarf2_per_objfile->n_comp_units);
23048 make_cleanup (xfree, psymtab_cu_index_map);
23049
23050 /* The CU list is already sorted, so we don't need to do additional
23051 work here. Also, the debug_types entries do not appear in
23052 all_comp_units, but only in their own hash table. */
23053 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23054 {
23055 struct dwarf2_per_cu_data *per_cu
23056 = dwarf2_per_objfile->all_comp_units[i];
23057 struct partial_symtab *psymtab = per_cu->v.psymtab;
23058 gdb_byte val[8];
23059 struct psymtab_cu_index_map *map;
23060 void **slot;
23061
23062 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23063 It may be referenced from a local scope but in such case it does not
23064 need to be present in .gdb_index. */
23065 if (psymtab == NULL)
23066 continue;
23067
23068 if (psymtab->user == NULL)
23069 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23070
23071 map = &psymtab_cu_index_map[i];
23072 map->psymtab = psymtab;
23073 map->cu_index = i;
23074 slot = htab_find_slot (cu_index_htab, map, INSERT);
23075 gdb_assert (slot != NULL);
23076 gdb_assert (*slot == NULL);
23077 *slot = map;
23078
23079 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23080 per_cu->offset.sect_off);
23081 obstack_grow (&cu_list, val, 8);
23082 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23083 obstack_grow (&cu_list, val, 8);
23084 }
23085
23086 /* Dump the address map. */
23087 write_address_map (objfile, &addr_obstack, cu_index_htab);
23088
23089 /* Write out the .debug_type entries, if any. */
23090 if (dwarf2_per_objfile->signatured_types)
23091 {
23092 struct signatured_type_index_data sig_data;
23093
23094 sig_data.objfile = objfile;
23095 sig_data.symtab = symtab;
23096 sig_data.types_list = &types_cu_list;
23097 sig_data.psyms_seen = psyms_seen;
23098 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23099 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23100 write_one_signatured_type, &sig_data);
23101 }
23102
23103 /* Now that we've processed all symbols we can shrink their cu_indices
23104 lists. */
23105 uniquify_cu_indices (symtab);
23106
23107 obstack_init (&constant_pool);
23108 make_cleanup_obstack_free (&constant_pool);
23109 obstack_init (&symtab_obstack);
23110 make_cleanup_obstack_free (&symtab_obstack);
23111 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23112
23113 obstack_init (&contents);
23114 make_cleanup_obstack_free (&contents);
23115 size_of_contents = 6 * sizeof (offset_type);
23116 total_len = size_of_contents;
23117
23118 /* The version number. */
23119 val = MAYBE_SWAP (8);
23120 obstack_grow (&contents, &val, sizeof (val));
23121
23122 /* The offset of the CU list from the start of the file. */
23123 val = MAYBE_SWAP (total_len);
23124 obstack_grow (&contents, &val, sizeof (val));
23125 total_len += obstack_object_size (&cu_list);
23126
23127 /* The offset of the types CU list from the start of the file. */
23128 val = MAYBE_SWAP (total_len);
23129 obstack_grow (&contents, &val, sizeof (val));
23130 total_len += obstack_object_size (&types_cu_list);
23131
23132 /* The offset of the address table from the start of the file. */
23133 val = MAYBE_SWAP (total_len);
23134 obstack_grow (&contents, &val, sizeof (val));
23135 total_len += obstack_object_size (&addr_obstack);
23136
23137 /* The offset of the symbol table from the start of the file. */
23138 val = MAYBE_SWAP (total_len);
23139 obstack_grow (&contents, &val, sizeof (val));
23140 total_len += obstack_object_size (&symtab_obstack);
23141
23142 /* The offset of the constant pool from the start of the file. */
23143 val = MAYBE_SWAP (total_len);
23144 obstack_grow (&contents, &val, sizeof (val));
23145 total_len += obstack_object_size (&constant_pool);
23146
23147 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23148
23149 write_obstack (out_file, &contents);
23150 write_obstack (out_file, &cu_list);
23151 write_obstack (out_file, &types_cu_list);
23152 write_obstack (out_file, &addr_obstack);
23153 write_obstack (out_file, &symtab_obstack);
23154 write_obstack (out_file, &constant_pool);
23155
23156 fclose (out_file);
23157
23158 /* We want to keep the file, so we set cleanup_filename to NULL
23159 here. See unlink_if_set. */
23160 cleanup_filename = NULL;
23161
23162 do_cleanups (cleanup);
23163 }
23164
23165 /* Implementation of the `save gdb-index' command.
23166
23167 Note that the file format used by this command is documented in the
23168 GDB manual. Any changes here must be documented there. */
23169
23170 static void
23171 save_gdb_index_command (char *arg, int from_tty)
23172 {
23173 struct objfile *objfile;
23174
23175 if (!arg || !*arg)
23176 error (_("usage: save gdb-index DIRECTORY"));
23177
23178 ALL_OBJFILES (objfile)
23179 {
23180 struct stat st;
23181
23182 /* If the objfile does not correspond to an actual file, skip it. */
23183 if (stat (objfile_name (objfile), &st) < 0)
23184 continue;
23185
23186 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23187 if (dwarf2_per_objfile)
23188 {
23189
23190 TRY
23191 {
23192 write_psymtabs_to_index (objfile, arg);
23193 }
23194 CATCH (except, RETURN_MASK_ERROR)
23195 {
23196 exception_fprintf (gdb_stderr, except,
23197 _("Error while writing index for `%s': "),
23198 objfile_name (objfile));
23199 }
23200 END_CATCH
23201 }
23202 }
23203 }
23204
23205 \f
23206
23207 int dwarf2_always_disassemble;
23208
23209 static void
23210 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23211 struct cmd_list_element *c, const char *value)
23212 {
23213 fprintf_filtered (file,
23214 _("Whether to always disassemble "
23215 "DWARF expressions is %s.\n"),
23216 value);
23217 }
23218
23219 static void
23220 show_check_physname (struct ui_file *file, int from_tty,
23221 struct cmd_list_element *c, const char *value)
23222 {
23223 fprintf_filtered (file,
23224 _("Whether to check \"physname\" is %s.\n"),
23225 value);
23226 }
23227
23228 void _initialize_dwarf2_read (void);
23229
23230 void
23231 _initialize_dwarf2_read (void)
23232 {
23233 struct cmd_list_element *c;
23234
23235 dwarf2_objfile_data_key
23236 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23237
23238 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23239 Set DWARF 2 specific variables.\n\
23240 Configure DWARF 2 variables such as the cache size"),
23241 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23242 0/*allow-unknown*/, &maintenance_set_cmdlist);
23243
23244 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23245 Show DWARF 2 specific variables\n\
23246 Show DWARF 2 variables such as the cache size"),
23247 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23248 0/*allow-unknown*/, &maintenance_show_cmdlist);
23249
23250 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23251 &dwarf2_max_cache_age, _("\
23252 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23253 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23254 A higher limit means that cached compilation units will be stored\n\
23255 in memory longer, and more total memory will be used. Zero disables\n\
23256 caching, which can slow down startup."),
23257 NULL,
23258 show_dwarf2_max_cache_age,
23259 &set_dwarf2_cmdlist,
23260 &show_dwarf2_cmdlist);
23261
23262 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23263 &dwarf2_always_disassemble, _("\
23264 Set whether `info address' always disassembles DWARF expressions."), _("\
23265 Show whether `info address' always disassembles DWARF expressions."), _("\
23266 When enabled, DWARF expressions are always printed in an assembly-like\n\
23267 syntax. When disabled, expressions will be printed in a more\n\
23268 conversational style, when possible."),
23269 NULL,
23270 show_dwarf2_always_disassemble,
23271 &set_dwarf2_cmdlist,
23272 &show_dwarf2_cmdlist);
23273
23274 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23275 Set debugging of the dwarf2 reader."), _("\
23276 Show debugging of the dwarf2 reader."), _("\
23277 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23278 reading and symtab expansion. A value of 1 (one) provides basic\n\
23279 information. A value greater than 1 provides more verbose information."),
23280 NULL,
23281 NULL,
23282 &setdebuglist, &showdebuglist);
23283
23284 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23285 Set debugging of the dwarf2 DIE reader."), _("\
23286 Show debugging of the dwarf2 DIE reader."), _("\
23287 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23288 The value is the maximum depth to print."),
23289 NULL,
23290 NULL,
23291 &setdebuglist, &showdebuglist);
23292
23293 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23294 Set cross-checking of \"physname\" code against demangler."), _("\
23295 Show cross-checking of \"physname\" code against demangler."), _("\
23296 When enabled, GDB's internal \"physname\" code is checked against\n\
23297 the demangler."),
23298 NULL, show_check_physname,
23299 &setdebuglist, &showdebuglist);
23300
23301 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23302 no_class, &use_deprecated_index_sections, _("\
23303 Set whether to use deprecated gdb_index sections."), _("\
23304 Show whether to use deprecated gdb_index sections."), _("\
23305 When enabled, deprecated .gdb_index sections are used anyway.\n\
23306 Normally they are ignored either because of a missing feature or\n\
23307 performance issue.\n\
23308 Warning: This option must be enabled before gdb reads the file."),
23309 NULL,
23310 NULL,
23311 &setlist, &showlist);
23312
23313 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23314 _("\
23315 Save a gdb-index file.\n\
23316 Usage: save gdb-index DIRECTORY"),
23317 &save_cmdlist);
23318 set_cmd_completer (c, filename_completer);
23319
23320 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23321 &dwarf2_locexpr_funcs);
23322 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23323 &dwarf2_loclist_funcs);
23324
23325 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23326 &dwarf2_block_frame_base_locexpr_funcs);
23327 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23328 &dwarf2_block_frame_base_loclist_funcs);
23329 }