]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
tweak some comments
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include <sys/stat.h>
59 #include "completer.h"
60 #include "vec.h"
61 #include "c-lang.h"
62 #include "go-lang.h"
63 #include "valprint.h"
64 #include "gdbcore.h" /* for gnutarget */
65 #include "gdb/gdb-index.h"
66 #include <ctype.h>
67 #include "gdb_bfd.h"
68 #include "f-lang.h"
69 #include "source.h"
70 #include "filestuff.h"
71 #include "build-id.h"
72
73 #include <fcntl.h>
74 #include <sys/types.h>
75
76 typedef struct symbol *symbolp;
77 DEF_VEC_P (symbolp);
78
79 /* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
82 static unsigned int dwarf2_read_debug = 0;
83
84 /* When non-zero, dump DIEs after they are read in. */
85 static unsigned int dwarf2_die_debug = 0;
86
87 /* When non-zero, cross-check physname against demangler. */
88 static int check_physname = 0;
89
90 /* When non-zero, do not reject deprecated .gdb_index sections. */
91 static int use_deprecated_index_sections = 0;
92
93 static const struct objfile_data *dwarf2_objfile_data_key;
94
95 /* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97 static int dwarf2_locexpr_index;
98 static int dwarf2_loclist_index;
99 static int dwarf2_locexpr_block_index;
100 static int dwarf2_loclist_block_index;
101
102 /* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
118 struct dwarf2_section_info
119 {
120 union
121 {
122 /* If this is a real section, the bfd section. */
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
125 section. */
126 struct dwarf2_section_info *containing_section;
127 } s;
128 /* Pointer to section data, only valid if readin. */
129 const gdb_byte *buffer;
130 /* The size of the section, real or virtual. */
131 bfd_size_type size;
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
135 /* True if we have tried to read this section. */
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
140 };
141
142 typedef struct dwarf2_section_info dwarf2_section_info_def;
143 DEF_VEC_O (dwarf2_section_info_def);
144
145 /* All offsets in the index are of this type. It must be
146 architecture-independent. */
147 typedef uint32_t offset_type;
148
149 DEF_VEC_I (offset_type);
150
151 /* Ensure only legit values are used. */
152 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158 /* Ensure only legit values are used. */
159 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
167 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
173 /* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175 struct mapped_index
176 {
177 /* Index data format version. */
178 int version;
179
180 /* The total length of the buffer. */
181 off_t total_size;
182
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
185
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
188
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
191
192 /* Size in slots, each slot is 2 offset_types. */
193 offset_type symbol_table_slots;
194
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197 };
198
199 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200 DEF_VEC_P (dwarf2_per_cu_ptr);
201
202 struct tu_stats
203 {
204 int nr_uniq_abbrev_tables;
205 int nr_symtabs;
206 int nr_symtab_sharers;
207 int nr_stmt_less_type_units;
208 int nr_all_type_units_reallocs;
209 };
210
211 /* Collection of data recorded per objfile.
212 This hangs off of dwarf2_objfile_data_key. */
213
214 struct dwarf2_per_objfile
215 {
216 struct dwarf2_section_info info;
217 struct dwarf2_section_info abbrev;
218 struct dwarf2_section_info line;
219 struct dwarf2_section_info loc;
220 struct dwarf2_section_info macinfo;
221 struct dwarf2_section_info macro;
222 struct dwarf2_section_info str;
223 struct dwarf2_section_info ranges;
224 struct dwarf2_section_info addr;
225 struct dwarf2_section_info frame;
226 struct dwarf2_section_info eh_frame;
227 struct dwarf2_section_info gdb_index;
228
229 VEC (dwarf2_section_info_def) *types;
230
231 /* Back link. */
232 struct objfile *objfile;
233
234 /* Table of all the compilation units. This is used to locate
235 the target compilation unit of a particular reference. */
236 struct dwarf2_per_cu_data **all_comp_units;
237
238 /* The number of compilation units in ALL_COMP_UNITS. */
239 int n_comp_units;
240
241 /* The number of .debug_types-related CUs. */
242 int n_type_units;
243
244 /* The number of elements allocated in all_type_units.
245 If there are skeleton-less TUs, we add them to all_type_units lazily. */
246 int n_allocated_type_units;
247
248 /* The .debug_types-related CUs (TUs).
249 This is stored in malloc space because we may realloc it. */
250 struct signatured_type **all_type_units;
251
252 /* Table of struct type_unit_group objects.
253 The hash key is the DW_AT_stmt_list value. */
254 htab_t type_unit_groups;
255
256 /* A table mapping .debug_types signatures to its signatured_type entry.
257 This is NULL if the .debug_types section hasn't been read in yet. */
258 htab_t signatured_types;
259
260 /* Type unit statistics, to see how well the scaling improvements
261 are doing. */
262 struct tu_stats tu_stats;
263
264 /* A chain of compilation units that are currently read in, so that
265 they can be freed later. */
266 struct dwarf2_per_cu_data *read_in_chain;
267
268 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
269 This is NULL if the table hasn't been allocated yet. */
270 htab_t dwo_files;
271
272 /* Non-zero if we've check for whether there is a DWP file. */
273 int dwp_checked;
274
275 /* The DWP file if there is one, or NULL. */
276 struct dwp_file *dwp_file;
277
278 /* The shared '.dwz' file, if one exists. This is used when the
279 original data was compressed using 'dwz -m'. */
280 struct dwz_file *dwz_file;
281
282 /* A flag indicating wether this objfile has a section loaded at a
283 VMA of 0. */
284 int has_section_at_zero;
285
286 /* True if we are using the mapped index,
287 or we are faking it for OBJF_READNOW's sake. */
288 unsigned char using_index;
289
290 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
291 struct mapped_index *index_table;
292
293 /* When using index_table, this keeps track of all quick_file_names entries.
294 TUs typically share line table entries with a CU, so we maintain a
295 separate table of all line table entries to support the sharing.
296 Note that while there can be way more TUs than CUs, we've already
297 sorted all the TUs into "type unit groups", grouped by their
298 DW_AT_stmt_list value. Therefore the only sharing done here is with a
299 CU and its associated TU group if there is one. */
300 htab_t quick_file_names_table;
301
302 /* Set during partial symbol reading, to prevent queueing of full
303 symbols. */
304 int reading_partial_symbols;
305
306 /* Table mapping type DIEs to their struct type *.
307 This is NULL if not allocated yet.
308 The mapping is done via (CU/TU + DIE offset) -> type. */
309 htab_t die_type_hash;
310
311 /* The CUs we recently read. */
312 VEC (dwarf2_per_cu_ptr) *just_read_cus;
313
314 /* Table containing line_header indexed by offset and offset_in_dwz. */
315 htab_t line_header_hash;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the Fission stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the Fission stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
619 is active. Otherwise, the 'psymtab' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The compunit symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the compunit symtab. */
726 struct compunit_symtab *compunit_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 struct file_entry
1028 {
1029 const char *name;
1030 unsigned int dir_index;
1031 unsigned int mod_time;
1032 unsigned int length;
1033 /* Non-zero if referenced by the Line Number Program. */
1034 int included_p;
1035 /* The associated symbol table, if any. */
1036 struct symtab *symtab;
1037 };
1038
1039 /* The line number information for a compilation unit (found in the
1040 .debug_line section) begins with a "statement program header",
1041 which contains the following information. */
1042 struct line_header
1043 {
1044 /* Offset of line number information in .debug_line section. */
1045 sect_offset offset;
1046
1047 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1048 unsigned offset_in_dwz : 1;
1049
1050 unsigned int total_length;
1051 unsigned short version;
1052 unsigned int header_length;
1053 unsigned char minimum_instruction_length;
1054 unsigned char maximum_ops_per_instruction;
1055 unsigned char default_is_stmt;
1056 int line_base;
1057 unsigned char line_range;
1058 unsigned char opcode_base;
1059
1060 /* standard_opcode_lengths[i] is the number of operands for the
1061 standard opcode whose value is i. This means that
1062 standard_opcode_lengths[0] is unused, and the last meaningful
1063 element is standard_opcode_lengths[opcode_base - 1]. */
1064 unsigned char *standard_opcode_lengths;
1065
1066 /* The include_directories table. NOTE! These strings are not
1067 allocated with xmalloc; instead, they are pointers into
1068 debug_line_buffer. If you try to free them, `free' will get
1069 indigestion. */
1070 unsigned int num_include_dirs, include_dirs_size;
1071 const char **include_dirs;
1072
1073 /* The file_names table. NOTE! These strings are not allocated
1074 with xmalloc; instead, they are pointers into debug_line_buffer.
1075 Don't try to free them directly. */
1076 unsigned int num_file_names, file_names_size;
1077 struct file_entry *file_names;
1078
1079 /* The start and end of the statement program following this
1080 header. These point into dwarf2_per_objfile->line_buffer. */
1081 const gdb_byte *statement_program_start, *statement_program_end;
1082 };
1083
1084 /* When we construct a partial symbol table entry we only
1085 need this much information. */
1086 struct partial_die_info
1087 {
1088 /* Offset of this DIE. */
1089 sect_offset offset;
1090
1091 /* DWARF-2 tag for this DIE. */
1092 ENUM_BITFIELD(dwarf_tag) tag : 16;
1093
1094 /* Assorted flags describing the data found in this DIE. */
1095 unsigned int has_children : 1;
1096 unsigned int is_external : 1;
1097 unsigned int is_declaration : 1;
1098 unsigned int has_type : 1;
1099 unsigned int has_specification : 1;
1100 unsigned int has_pc_info : 1;
1101 unsigned int may_be_inlined : 1;
1102
1103 /* Flag set if the SCOPE field of this structure has been
1104 computed. */
1105 unsigned int scope_set : 1;
1106
1107 /* Flag set if the DIE has a byte_size attribute. */
1108 unsigned int has_byte_size : 1;
1109
1110 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1111 unsigned int has_const_value : 1;
1112
1113 /* Flag set if any of the DIE's children are template arguments. */
1114 unsigned int has_template_arguments : 1;
1115
1116 /* Flag set if fixup_partial_die has been called on this die. */
1117 unsigned int fixup_called : 1;
1118
1119 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1120 unsigned int is_dwz : 1;
1121
1122 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1123 unsigned int spec_is_dwz : 1;
1124
1125 /* The name of this DIE. Normally the value of DW_AT_name, but
1126 sometimes a default name for unnamed DIEs. */
1127 const char *name;
1128
1129 /* The linkage name, if present. */
1130 const char *linkage_name;
1131
1132 /* The scope to prepend to our children. This is generally
1133 allocated on the comp_unit_obstack, so will disappear
1134 when this compilation unit leaves the cache. */
1135 const char *scope;
1136
1137 /* Some data associated with the partial DIE. The tag determines
1138 which field is live. */
1139 union
1140 {
1141 /* The location description associated with this DIE, if any. */
1142 struct dwarf_block *locdesc;
1143 /* The offset of an import, for DW_TAG_imported_unit. */
1144 sect_offset offset;
1145 } d;
1146
1147 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1148 CORE_ADDR lowpc;
1149 CORE_ADDR highpc;
1150
1151 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1152 DW_AT_sibling, if any. */
1153 /* NOTE: This member isn't strictly necessary, read_partial_die could
1154 return DW_AT_sibling values to its caller load_partial_dies. */
1155 const gdb_byte *sibling;
1156
1157 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1158 DW_AT_specification (or DW_AT_abstract_origin or
1159 DW_AT_extension). */
1160 sect_offset spec_offset;
1161
1162 /* Pointers to this DIE's parent, first child, and next sibling,
1163 if any. */
1164 struct partial_die_info *die_parent, *die_child, *die_sibling;
1165 };
1166
1167 /* This data structure holds the information of an abbrev. */
1168 struct abbrev_info
1169 {
1170 unsigned int number; /* number identifying abbrev */
1171 enum dwarf_tag tag; /* dwarf tag */
1172 unsigned short has_children; /* boolean */
1173 unsigned short num_attrs; /* number of attributes */
1174 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1175 struct abbrev_info *next; /* next in chain */
1176 };
1177
1178 struct attr_abbrev
1179 {
1180 ENUM_BITFIELD(dwarf_attribute) name : 16;
1181 ENUM_BITFIELD(dwarf_form) form : 16;
1182 };
1183
1184 /* Size of abbrev_table.abbrev_hash_table. */
1185 #define ABBREV_HASH_SIZE 121
1186
1187 /* Top level data structure to contain an abbreviation table. */
1188
1189 struct abbrev_table
1190 {
1191 /* Where the abbrev table came from.
1192 This is used as a sanity check when the table is used. */
1193 sect_offset offset;
1194
1195 /* Storage for the abbrev table. */
1196 struct obstack abbrev_obstack;
1197
1198 /* Hash table of abbrevs.
1199 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1200 It could be statically allocated, but the previous code didn't so we
1201 don't either. */
1202 struct abbrev_info **abbrevs;
1203 };
1204
1205 /* Attributes have a name and a value. */
1206 struct attribute
1207 {
1208 ENUM_BITFIELD(dwarf_attribute) name : 16;
1209 ENUM_BITFIELD(dwarf_form) form : 15;
1210
1211 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1212 field should be in u.str (existing only for DW_STRING) but it is kept
1213 here for better struct attribute alignment. */
1214 unsigned int string_is_canonical : 1;
1215
1216 union
1217 {
1218 const char *str;
1219 struct dwarf_block *blk;
1220 ULONGEST unsnd;
1221 LONGEST snd;
1222 CORE_ADDR addr;
1223 ULONGEST signature;
1224 }
1225 u;
1226 };
1227
1228 /* This data structure holds a complete die structure. */
1229 struct die_info
1230 {
1231 /* DWARF-2 tag for this DIE. */
1232 ENUM_BITFIELD(dwarf_tag) tag : 16;
1233
1234 /* Number of attributes */
1235 unsigned char num_attrs;
1236
1237 /* True if we're presently building the full type name for the
1238 type derived from this DIE. */
1239 unsigned char building_fullname : 1;
1240
1241 /* True if this die is in process. PR 16581. */
1242 unsigned char in_process : 1;
1243
1244 /* Abbrev number */
1245 unsigned int abbrev;
1246
1247 /* Offset in .debug_info or .debug_types section. */
1248 sect_offset offset;
1249
1250 /* The dies in a compilation unit form an n-ary tree. PARENT
1251 points to this die's parent; CHILD points to the first child of
1252 this node; and all the children of a given node are chained
1253 together via their SIBLING fields. */
1254 struct die_info *child; /* Its first child, if any. */
1255 struct die_info *sibling; /* Its next sibling, if any. */
1256 struct die_info *parent; /* Its parent, if any. */
1257
1258 /* An array of attributes, with NUM_ATTRS elements. There may be
1259 zero, but it's not common and zero-sized arrays are not
1260 sufficiently portable C. */
1261 struct attribute attrs[1];
1262 };
1263
1264 /* Get at parts of an attribute structure. */
1265
1266 #define DW_STRING(attr) ((attr)->u.str)
1267 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1268 #define DW_UNSND(attr) ((attr)->u.unsnd)
1269 #define DW_BLOCK(attr) ((attr)->u.blk)
1270 #define DW_SND(attr) ((attr)->u.snd)
1271 #define DW_ADDR(attr) ((attr)->u.addr)
1272 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1273
1274 /* Blocks are a bunch of untyped bytes. */
1275 struct dwarf_block
1276 {
1277 size_t size;
1278
1279 /* Valid only if SIZE is not zero. */
1280 const gdb_byte *data;
1281 };
1282
1283 #ifndef ATTR_ALLOC_CHUNK
1284 #define ATTR_ALLOC_CHUNK 4
1285 #endif
1286
1287 /* Allocate fields for structs, unions and enums in this size. */
1288 #ifndef DW_FIELD_ALLOC_CHUNK
1289 #define DW_FIELD_ALLOC_CHUNK 4
1290 #endif
1291
1292 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1293 but this would require a corresponding change in unpack_field_as_long
1294 and friends. */
1295 static int bits_per_byte = 8;
1296
1297 struct nextfield
1298 {
1299 struct nextfield *next;
1300 int accessibility;
1301 int virtuality;
1302 struct field field;
1303 };
1304
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 };
1310
1311 struct fnfieldlist
1312 {
1313 const char *name;
1314 int length;
1315 struct nextfnfield *head;
1316 };
1317
1318 struct typedef_field_list
1319 {
1320 struct typedef_field field;
1321 struct typedef_field_list *next;
1322 };
1323
1324 /* The routines that read and process dies for a C struct or C++ class
1325 pass lists of data member fields and lists of member function fields
1326 in an instance of a field_info structure, as defined below. */
1327 struct field_info
1328 {
1329 /* List of data member and baseclasses fields. */
1330 struct nextfield *fields, *baseclasses;
1331
1332 /* Number of fields (including baseclasses). */
1333 int nfields;
1334
1335 /* Number of baseclasses. */
1336 int nbaseclasses;
1337
1338 /* Set if the accesibility of one of the fields is not public. */
1339 int non_public_fields;
1340
1341 /* Member function fields array, entries are allocated in the order they
1342 are encountered in the object file. */
1343 struct nextfnfield *fnfields;
1344
1345 /* Member function fieldlist array, contains name of possibly overloaded
1346 member function, number of overloaded member functions and a pointer
1347 to the head of the member function field chain. */
1348 struct fnfieldlist *fnfieldlists;
1349
1350 /* Number of entries in the fnfieldlists array. */
1351 int nfnfields;
1352
1353 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1354 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1355 struct typedef_field_list *typedef_field_list;
1356 unsigned typedef_field_list_count;
1357 };
1358
1359 /* One item on the queue of compilation units to read in full symbols
1360 for. */
1361 struct dwarf2_queue_item
1362 {
1363 struct dwarf2_per_cu_data *per_cu;
1364 enum language pretend_language;
1365 struct dwarf2_queue_item *next;
1366 };
1367
1368 /* The current queue. */
1369 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1370
1371 /* Loaded secondary compilation units are kept in memory until they
1372 have not been referenced for the processing of this many
1373 compilation units. Set this to zero to disable caching. Cache
1374 sizes of up to at least twenty will improve startup time for
1375 typical inter-CU-reference binaries, at an obvious memory cost. */
1376 static int dwarf2_max_cache_age = 5;
1377 static void
1378 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1379 struct cmd_list_element *c, const char *value)
1380 {
1381 fprintf_filtered (file, _("The upper bound on the age of cached "
1382 "dwarf2 compilation units is %s.\n"),
1383 value);
1384 }
1385 \f
1386 /* local function prototypes */
1387
1388 static const char *get_section_name (const struct dwarf2_section_info *);
1389
1390 static const char *get_section_file_name (const struct dwarf2_section_info *);
1391
1392 static void dwarf2_locate_sections (bfd *, asection *, void *);
1393
1394 static void dwarf2_find_base_address (struct die_info *die,
1395 struct dwarf2_cu *cu);
1396
1397 static struct partial_symtab *create_partial_symtab
1398 (struct dwarf2_per_cu_data *per_cu, const char *name);
1399
1400 static void dwarf2_build_psymtabs_hard (struct objfile *);
1401
1402 static void scan_partial_symbols (struct partial_die_info *,
1403 CORE_ADDR *, CORE_ADDR *,
1404 int, struct dwarf2_cu *);
1405
1406 static void add_partial_symbol (struct partial_die_info *,
1407 struct dwarf2_cu *);
1408
1409 static void add_partial_namespace (struct partial_die_info *pdi,
1410 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1411 int set_addrmap, struct dwarf2_cu *cu);
1412
1413 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1414 CORE_ADDR *highpc, int set_addrmap,
1415 struct dwarf2_cu *cu);
1416
1417 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1418 struct dwarf2_cu *cu);
1419
1420 static void add_partial_subprogram (struct partial_die_info *pdi,
1421 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1422 int need_pc, struct dwarf2_cu *cu);
1423
1424 static void dwarf2_read_symtab (struct partial_symtab *,
1425 struct objfile *);
1426
1427 static void psymtab_to_symtab_1 (struct partial_symtab *);
1428
1429 static struct abbrev_info *abbrev_table_lookup_abbrev
1430 (const struct abbrev_table *, unsigned int);
1431
1432 static struct abbrev_table *abbrev_table_read_table
1433 (struct dwarf2_section_info *, sect_offset);
1434
1435 static void abbrev_table_free (struct abbrev_table *);
1436
1437 static void abbrev_table_free_cleanup (void *);
1438
1439 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1440 struct dwarf2_section_info *);
1441
1442 static void dwarf2_free_abbrev_table (void *);
1443
1444 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1445
1446 static struct partial_die_info *load_partial_dies
1447 (const struct die_reader_specs *, const gdb_byte *, int);
1448
1449 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1450 struct partial_die_info *,
1451 struct abbrev_info *,
1452 unsigned int,
1453 const gdb_byte *);
1454
1455 static struct partial_die_info *find_partial_die (sect_offset, int,
1456 struct dwarf2_cu *);
1457
1458 static void fixup_partial_die (struct partial_die_info *,
1459 struct dwarf2_cu *);
1460
1461 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1462 struct attribute *, struct attr_abbrev *,
1463 const gdb_byte *);
1464
1465 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1466
1467 static int read_1_signed_byte (bfd *, const gdb_byte *);
1468
1469 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1470
1471 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1472
1473 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1474
1475 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1476 unsigned int *);
1477
1478 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static LONGEST read_checked_initial_length_and_offset
1481 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1482 unsigned int *, unsigned int *);
1483
1484 static LONGEST read_offset (bfd *, const gdb_byte *,
1485 const struct comp_unit_head *,
1486 unsigned int *);
1487
1488 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1489
1490 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1491 sect_offset);
1492
1493 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1494
1495 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1496
1497 static const char *read_indirect_string (bfd *, const gdb_byte *,
1498 const struct comp_unit_head *,
1499 unsigned int *);
1500
1501 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1502
1503 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1504
1505 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1506
1507 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1508 const gdb_byte *,
1509 unsigned int *);
1510
1511 static const char *read_str_index (const struct die_reader_specs *reader,
1512 ULONGEST str_index);
1513
1514 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1515
1516 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1517 struct dwarf2_cu *);
1518
1519 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1520 unsigned int);
1521
1522 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1523 struct dwarf2_cu *cu);
1524
1525 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1526
1527 static struct die_info *die_specification (struct die_info *die,
1528 struct dwarf2_cu **);
1529
1530 static void free_line_header (struct line_header *lh);
1531
1532 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1533 struct dwarf2_cu *cu);
1534
1535 static void dwarf_decode_lines (struct line_header *, const char *,
1536 struct dwarf2_cu *, struct partial_symtab *,
1537 CORE_ADDR, int decode_mapping);
1538
1539 static void dwarf2_start_subfile (const char *, const char *);
1540
1541 static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1542 const char *, const char *,
1543 CORE_ADDR);
1544
1545 static struct symbol *new_symbol (struct die_info *, struct type *,
1546 struct dwarf2_cu *);
1547
1548 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1549 struct dwarf2_cu *, struct symbol *);
1550
1551 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1552 struct dwarf2_cu *);
1553
1554 static void dwarf2_const_value_attr (const struct attribute *attr,
1555 struct type *type,
1556 const char *name,
1557 struct obstack *obstack,
1558 struct dwarf2_cu *cu, LONGEST *value,
1559 const gdb_byte **bytes,
1560 struct dwarf2_locexpr_baton **baton);
1561
1562 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1563
1564 static int need_gnat_info (struct dwarf2_cu *);
1565
1566 static struct type *die_descriptive_type (struct die_info *,
1567 struct dwarf2_cu *);
1568
1569 static void set_descriptive_type (struct type *, struct die_info *,
1570 struct dwarf2_cu *);
1571
1572 static struct type *die_containing_type (struct die_info *,
1573 struct dwarf2_cu *);
1574
1575 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1576 struct dwarf2_cu *);
1577
1578 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1579
1580 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1581
1582 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1583
1584 static char *typename_concat (struct obstack *obs, const char *prefix,
1585 const char *suffix, int physname,
1586 struct dwarf2_cu *cu);
1587
1588 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1589
1590 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1591
1592 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1593
1594 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1595
1596 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1597
1598 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1599 struct dwarf2_cu *, struct partial_symtab *);
1600
1601 static int dwarf2_get_pc_bounds (struct die_info *,
1602 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1603 struct partial_symtab *);
1604
1605 static void get_scope_pc_bounds (struct die_info *,
1606 CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *);
1608
1609 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1610 CORE_ADDR, struct dwarf2_cu *);
1611
1612 static void dwarf2_add_field (struct field_info *, struct die_info *,
1613 struct dwarf2_cu *);
1614
1615 static void dwarf2_attach_fields_to_type (struct field_info *,
1616 struct type *, struct dwarf2_cu *);
1617
1618 static void dwarf2_add_member_fn (struct field_info *,
1619 struct die_info *, struct type *,
1620 struct dwarf2_cu *);
1621
1622 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1623 struct type *,
1624 struct dwarf2_cu *);
1625
1626 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1629
1630 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1631
1632 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1633
1634 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1635
1636 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1637
1638 static struct type *read_module_type (struct die_info *die,
1639 struct dwarf2_cu *cu);
1640
1641 static const char *namespace_name (struct die_info *die,
1642 int *is_anonymous, struct dwarf2_cu *);
1643
1644 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1645
1646 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1647
1648 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1649 struct dwarf2_cu *);
1650
1651 static struct die_info *read_die_and_siblings_1
1652 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1653 struct die_info *);
1654
1655 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1656 const gdb_byte *info_ptr,
1657 const gdb_byte **new_info_ptr,
1658 struct die_info *parent);
1659
1660 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1661 struct die_info **, const gdb_byte *,
1662 int *, int);
1663
1664 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1665 struct die_info **, const gdb_byte *,
1666 int *);
1667
1668 static void process_die (struct die_info *, struct dwarf2_cu *);
1669
1670 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1671 struct obstack *);
1672
1673 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1674
1675 static const char *dwarf2_full_name (const char *name,
1676 struct die_info *die,
1677 struct dwarf2_cu *cu);
1678
1679 static const char *dwarf2_physname (const char *name, struct die_info *die,
1680 struct dwarf2_cu *cu);
1681
1682 static struct die_info *dwarf2_extension (struct die_info *die,
1683 struct dwarf2_cu **);
1684
1685 static const char *dwarf_tag_name (unsigned int);
1686
1687 static const char *dwarf_attr_name (unsigned int);
1688
1689 static const char *dwarf_form_name (unsigned int);
1690
1691 static char *dwarf_bool_name (unsigned int);
1692
1693 static const char *dwarf_type_encoding_name (unsigned int);
1694
1695 static struct die_info *sibling_die (struct die_info *);
1696
1697 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1698
1699 static void dump_die_for_error (struct die_info *);
1700
1701 static void dump_die_1 (struct ui_file *, int level, int max_level,
1702 struct die_info *);
1703
1704 /*static*/ void dump_die (struct die_info *, int max_level);
1705
1706 static void store_in_ref_table (struct die_info *,
1707 struct dwarf2_cu *);
1708
1709 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1710
1711 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1712
1713 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1714 const struct attribute *,
1715 struct dwarf2_cu **);
1716
1717 static struct die_info *follow_die_ref (struct die_info *,
1718 const struct attribute *,
1719 struct dwarf2_cu **);
1720
1721 static struct die_info *follow_die_sig (struct die_info *,
1722 const struct attribute *,
1723 struct dwarf2_cu **);
1724
1725 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1726 struct dwarf2_cu *);
1727
1728 static struct type *get_DW_AT_signature_type (struct die_info *,
1729 const struct attribute *,
1730 struct dwarf2_cu *);
1731
1732 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1733
1734 static void read_signatured_type (struct signatured_type *);
1735
1736 /* memory allocation interface */
1737
1738 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1739
1740 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1741
1742 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1743
1744 static int attr_form_is_block (const struct attribute *);
1745
1746 static int attr_form_is_section_offset (const struct attribute *);
1747
1748 static int attr_form_is_constant (const struct attribute *);
1749
1750 static int attr_form_is_ref (const struct attribute *);
1751
1752 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1753 struct dwarf2_loclist_baton *baton,
1754 const struct attribute *attr);
1755
1756 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1757 struct symbol *sym,
1758 struct dwarf2_cu *cu,
1759 int is_block);
1760
1761 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1762 const gdb_byte *info_ptr,
1763 struct abbrev_info *abbrev);
1764
1765 static void free_stack_comp_unit (void *);
1766
1767 static hashval_t partial_die_hash (const void *item);
1768
1769 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1770
1771 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1772 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1773
1774 static void init_one_comp_unit (struct dwarf2_cu *cu,
1775 struct dwarf2_per_cu_data *per_cu);
1776
1777 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1778 struct die_info *comp_unit_die,
1779 enum language pretend_language);
1780
1781 static void free_heap_comp_unit (void *);
1782
1783 static void free_cached_comp_units (void *);
1784
1785 static void age_cached_comp_units (void);
1786
1787 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1788
1789 static struct type *set_die_type (struct die_info *, struct type *,
1790 struct dwarf2_cu *);
1791
1792 static void create_all_comp_units (struct objfile *);
1793
1794 static int create_all_type_units (struct objfile *);
1795
1796 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1797 enum language);
1798
1799 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1800 enum language);
1801
1802 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1803 enum language);
1804
1805 static void dwarf2_add_dependence (struct dwarf2_cu *,
1806 struct dwarf2_per_cu_data *);
1807
1808 static void dwarf2_mark (struct dwarf2_cu *);
1809
1810 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1811
1812 static struct type *get_die_type_at_offset (sect_offset,
1813 struct dwarf2_per_cu_data *);
1814
1815 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1816
1817 static void dwarf2_release_queue (void *dummy);
1818
1819 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1820 enum language pretend_language);
1821
1822 static void process_queue (void);
1823
1824 static void find_file_and_directory (struct die_info *die,
1825 struct dwarf2_cu *cu,
1826 const char **name, const char **comp_dir);
1827
1828 static char *file_full_name (int file, struct line_header *lh,
1829 const char *comp_dir);
1830
1831 static const gdb_byte *read_and_check_comp_unit_head
1832 (struct comp_unit_head *header,
1833 struct dwarf2_section_info *section,
1834 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1835 int is_debug_types_section);
1836
1837 static void init_cutu_and_read_dies
1838 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1839 int use_existing_cu, int keep,
1840 die_reader_func_ftype *die_reader_func, void *data);
1841
1842 static void init_cutu_and_read_dies_simple
1843 (struct dwarf2_per_cu_data *this_cu,
1844 die_reader_func_ftype *die_reader_func, void *data);
1845
1846 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1847
1848 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1849
1850 static struct dwo_unit *lookup_dwo_unit_in_dwp
1851 (struct dwp_file *dwp_file, const char *comp_dir,
1852 ULONGEST signature, int is_debug_types);
1853
1854 static struct dwp_file *get_dwp_file (void);
1855
1856 static struct dwo_unit *lookup_dwo_comp_unit
1857 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1858
1859 static struct dwo_unit *lookup_dwo_type_unit
1860 (struct signatured_type *, const char *, const char *);
1861
1862 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1863
1864 static void free_dwo_file_cleanup (void *);
1865
1866 static void process_cu_includes (void);
1867
1868 static void check_producer (struct dwarf2_cu *cu);
1869
1870 static void free_line_header_voidp (void *arg);
1871 \f
1872 /* Various complaints about symbol reading that don't abort the process. */
1873
1874 static void
1875 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _("statement list doesn't fit in .debug_line section"));
1879 }
1880
1881 static void
1882 dwarf2_debug_line_missing_file_complaint (void)
1883 {
1884 complaint (&symfile_complaints,
1885 _(".debug_line section has line data without a file"));
1886 }
1887
1888 static void
1889 dwarf2_debug_line_missing_end_sequence_complaint (void)
1890 {
1891 complaint (&symfile_complaints,
1892 _(".debug_line section has line "
1893 "program sequence without an end"));
1894 }
1895
1896 static void
1897 dwarf2_complex_location_expr_complaint (void)
1898 {
1899 complaint (&symfile_complaints, _("location expression too complex"));
1900 }
1901
1902 static void
1903 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1904 int arg3)
1905 {
1906 complaint (&symfile_complaints,
1907 _("const value length mismatch for '%s', got %d, expected %d"),
1908 arg1, arg2, arg3);
1909 }
1910
1911 static void
1912 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1913 {
1914 complaint (&symfile_complaints,
1915 _("debug info runs off end of %s section"
1916 " [in module %s]"),
1917 get_section_name (section),
1918 get_section_file_name (section));
1919 }
1920
1921 static void
1922 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1923 {
1924 complaint (&symfile_complaints,
1925 _("macro debug info contains a "
1926 "malformed macro definition:\n`%s'"),
1927 arg1);
1928 }
1929
1930 static void
1931 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1932 {
1933 complaint (&symfile_complaints,
1934 _("invalid attribute class or form for '%s' in '%s'"),
1935 arg1, arg2);
1936 }
1937
1938 /* Hash function for line_header_hash. */
1939
1940 static hashval_t
1941 line_header_hash (const struct line_header *ofs)
1942 {
1943 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1944 }
1945
1946 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1947
1948 static hashval_t
1949 line_header_hash_voidp (const void *item)
1950 {
1951 const struct line_header *ofs = item;
1952
1953 return line_header_hash (ofs);
1954 }
1955
1956 /* Equality function for line_header_hash. */
1957
1958 static int
1959 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1960 {
1961 const struct line_header *ofs_lhs = item_lhs;
1962 const struct line_header *ofs_rhs = item_rhs;
1963
1964 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1965 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1966 }
1967
1968 \f
1969 #if WORDS_BIGENDIAN
1970
1971 /* Convert VALUE between big- and little-endian. */
1972 static offset_type
1973 byte_swap (offset_type value)
1974 {
1975 offset_type result;
1976
1977 result = (value & 0xff) << 24;
1978 result |= (value & 0xff00) << 8;
1979 result |= (value & 0xff0000) >> 8;
1980 result |= (value & 0xff000000) >> 24;
1981 return result;
1982 }
1983
1984 #define MAYBE_SWAP(V) byte_swap (V)
1985
1986 #else
1987 #define MAYBE_SWAP(V) (V)
1988 #endif /* WORDS_BIGENDIAN */
1989
1990 /* Read the given attribute value as an address, taking the attribute's
1991 form into account. */
1992
1993 static CORE_ADDR
1994 attr_value_as_address (struct attribute *attr)
1995 {
1996 CORE_ADDR addr;
1997
1998 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1999 {
2000 /* Aside from a few clearly defined exceptions, attributes that
2001 contain an address must always be in DW_FORM_addr form.
2002 Unfortunately, some compilers happen to be violating this
2003 requirement by encoding addresses using other forms, such
2004 as DW_FORM_data4 for example. For those broken compilers,
2005 we try to do our best, without any guarantee of success,
2006 to interpret the address correctly. It would also be nice
2007 to generate a complaint, but that would require us to maintain
2008 a list of legitimate cases where a non-address form is allowed,
2009 as well as update callers to pass in at least the CU's DWARF
2010 version. This is more overhead than what we're willing to
2011 expand for a pretty rare case. */
2012 addr = DW_UNSND (attr);
2013 }
2014 else
2015 addr = DW_ADDR (attr);
2016
2017 return addr;
2018 }
2019
2020 /* The suffix for an index file. */
2021 #define INDEX_SUFFIX ".gdb-index"
2022
2023 /* Try to locate the sections we need for DWARF 2 debugging
2024 information and return true if we have enough to do something.
2025 NAMES points to the dwarf2 section names, or is NULL if the standard
2026 ELF names are used. */
2027
2028 int
2029 dwarf2_has_info (struct objfile *objfile,
2030 const struct dwarf2_debug_sections *names)
2031 {
2032 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2033 if (!dwarf2_per_objfile)
2034 {
2035 /* Initialize per-objfile state. */
2036 struct dwarf2_per_objfile *data
2037 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
2038
2039 memset (data, 0, sizeof (*data));
2040 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2041 dwarf2_per_objfile = data;
2042
2043 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2044 (void *) names);
2045 dwarf2_per_objfile->objfile = objfile;
2046 }
2047 return (!dwarf2_per_objfile->info.is_virtual
2048 && dwarf2_per_objfile->info.s.asection != NULL
2049 && !dwarf2_per_objfile->abbrev.is_virtual
2050 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2051 }
2052
2053 /* Return the containing section of virtual section SECTION. */
2054
2055 static struct dwarf2_section_info *
2056 get_containing_section (const struct dwarf2_section_info *section)
2057 {
2058 gdb_assert (section->is_virtual);
2059 return section->s.containing_section;
2060 }
2061
2062 /* Return the bfd owner of SECTION. */
2063
2064 static struct bfd *
2065 get_section_bfd_owner (const struct dwarf2_section_info *section)
2066 {
2067 if (section->is_virtual)
2068 {
2069 section = get_containing_section (section);
2070 gdb_assert (!section->is_virtual);
2071 }
2072 return section->s.asection->owner;
2073 }
2074
2075 /* Return the bfd section of SECTION.
2076 Returns NULL if the section is not present. */
2077
2078 static asection *
2079 get_section_bfd_section (const struct dwarf2_section_info *section)
2080 {
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
2086 return section->s.asection;
2087 }
2088
2089 /* Return the name of SECTION. */
2090
2091 static const char *
2092 get_section_name (const struct dwarf2_section_info *section)
2093 {
2094 asection *sectp = get_section_bfd_section (section);
2095
2096 gdb_assert (sectp != NULL);
2097 return bfd_section_name (get_section_bfd_owner (section), sectp);
2098 }
2099
2100 /* Return the name of the file SECTION is in. */
2101
2102 static const char *
2103 get_section_file_name (const struct dwarf2_section_info *section)
2104 {
2105 bfd *abfd = get_section_bfd_owner (section);
2106
2107 return bfd_get_filename (abfd);
2108 }
2109
2110 /* Return the id of SECTION.
2111 Returns 0 if SECTION doesn't exist. */
2112
2113 static int
2114 get_section_id (const struct dwarf2_section_info *section)
2115 {
2116 asection *sectp = get_section_bfd_section (section);
2117
2118 if (sectp == NULL)
2119 return 0;
2120 return sectp->id;
2121 }
2122
2123 /* Return the flags of SECTION.
2124 SECTION (or containing section if this is a virtual section) must exist. */
2125
2126 static int
2127 get_section_flags (const struct dwarf2_section_info *section)
2128 {
2129 asection *sectp = get_section_bfd_section (section);
2130
2131 gdb_assert (sectp != NULL);
2132 return bfd_get_section_flags (sectp->owner, sectp);
2133 }
2134
2135 /* When loading sections, we look either for uncompressed section or for
2136 compressed section names. */
2137
2138 static int
2139 section_is_p (const char *section_name,
2140 const struct dwarf2_section_names *names)
2141 {
2142 if (names->normal != NULL
2143 && strcmp (section_name, names->normal) == 0)
2144 return 1;
2145 if (names->compressed != NULL
2146 && strcmp (section_name, names->compressed) == 0)
2147 return 1;
2148 return 0;
2149 }
2150
2151 /* This function is mapped across the sections and remembers the
2152 offset and size of each of the debugging sections we are interested
2153 in. */
2154
2155 static void
2156 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2157 {
2158 const struct dwarf2_debug_sections *names;
2159 flagword aflag = bfd_get_section_flags (abfd, sectp);
2160
2161 if (vnames == NULL)
2162 names = &dwarf2_elf_names;
2163 else
2164 names = (const struct dwarf2_debug_sections *) vnames;
2165
2166 if ((aflag & SEC_HAS_CONTENTS) == 0)
2167 {
2168 }
2169 else if (section_is_p (sectp->name, &names->info))
2170 {
2171 dwarf2_per_objfile->info.s.asection = sectp;
2172 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->abbrev))
2175 {
2176 dwarf2_per_objfile->abbrev.s.asection = sectp;
2177 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->line))
2180 {
2181 dwarf2_per_objfile->line.s.asection = sectp;
2182 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2183 }
2184 else if (section_is_p (sectp->name, &names->loc))
2185 {
2186 dwarf2_per_objfile->loc.s.asection = sectp;
2187 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2188 }
2189 else if (section_is_p (sectp->name, &names->macinfo))
2190 {
2191 dwarf2_per_objfile->macinfo.s.asection = sectp;
2192 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2193 }
2194 else if (section_is_p (sectp->name, &names->macro))
2195 {
2196 dwarf2_per_objfile->macro.s.asection = sectp;
2197 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2198 }
2199 else if (section_is_p (sectp->name, &names->str))
2200 {
2201 dwarf2_per_objfile->str.s.asection = sectp;
2202 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2203 }
2204 else if (section_is_p (sectp->name, &names->addr))
2205 {
2206 dwarf2_per_objfile->addr.s.asection = sectp;
2207 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2208 }
2209 else if (section_is_p (sectp->name, &names->frame))
2210 {
2211 dwarf2_per_objfile->frame.s.asection = sectp;
2212 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2213 }
2214 else if (section_is_p (sectp->name, &names->eh_frame))
2215 {
2216 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2217 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2218 }
2219 else if (section_is_p (sectp->name, &names->ranges))
2220 {
2221 dwarf2_per_objfile->ranges.s.asection = sectp;
2222 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2223 }
2224 else if (section_is_p (sectp->name, &names->types))
2225 {
2226 struct dwarf2_section_info type_section;
2227
2228 memset (&type_section, 0, sizeof (type_section));
2229 type_section.s.asection = sectp;
2230 type_section.size = bfd_get_section_size (sectp);
2231
2232 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2233 &type_section);
2234 }
2235 else if (section_is_p (sectp->name, &names->gdb_index))
2236 {
2237 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2238 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2239 }
2240
2241 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2242 && bfd_section_vma (abfd, sectp) == 0)
2243 dwarf2_per_objfile->has_section_at_zero = 1;
2244 }
2245
2246 /* A helper function that decides whether a section is empty,
2247 or not present. */
2248
2249 static int
2250 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2251 {
2252 if (section->is_virtual)
2253 return section->size == 0;
2254 return section->s.asection == NULL || section->size == 0;
2255 }
2256
2257 /* Read the contents of the section INFO.
2258 OBJFILE is the main object file, but not necessarily the file where
2259 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2260 of the DWO file.
2261 If the section is compressed, uncompress it before returning. */
2262
2263 static void
2264 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2265 {
2266 asection *sectp;
2267 bfd *abfd;
2268 gdb_byte *buf, *retbuf;
2269
2270 if (info->readin)
2271 return;
2272 info->buffer = NULL;
2273 info->readin = 1;
2274
2275 if (dwarf2_section_empty_p (info))
2276 return;
2277
2278 sectp = get_section_bfd_section (info);
2279
2280 /* If this is a virtual section we need to read in the real one first. */
2281 if (info->is_virtual)
2282 {
2283 struct dwarf2_section_info *containing_section =
2284 get_containing_section (info);
2285
2286 gdb_assert (sectp != NULL);
2287 if ((sectp->flags & SEC_RELOC) != 0)
2288 {
2289 error (_("Dwarf Error: DWP format V2 with relocations is not"
2290 " supported in section %s [in module %s]"),
2291 get_section_name (info), get_section_file_name (info));
2292 }
2293 dwarf2_read_section (objfile, containing_section);
2294 /* Other code should have already caught virtual sections that don't
2295 fit. */
2296 gdb_assert (info->virtual_offset + info->size
2297 <= containing_section->size);
2298 /* If the real section is empty or there was a problem reading the
2299 section we shouldn't get here. */
2300 gdb_assert (containing_section->buffer != NULL);
2301 info->buffer = containing_section->buffer + info->virtual_offset;
2302 return;
2303 }
2304
2305 /* If the section has relocations, we must read it ourselves.
2306 Otherwise we attach it to the BFD. */
2307 if ((sectp->flags & SEC_RELOC) == 0)
2308 {
2309 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2310 return;
2311 }
2312
2313 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2314 info->buffer = buf;
2315
2316 /* When debugging .o files, we may need to apply relocations; see
2317 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2318 We never compress sections in .o files, so we only need to
2319 try this when the section is not compressed. */
2320 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2321 if (retbuf != NULL)
2322 {
2323 info->buffer = retbuf;
2324 return;
2325 }
2326
2327 abfd = get_section_bfd_owner (info);
2328 gdb_assert (abfd != NULL);
2329
2330 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2331 || bfd_bread (buf, info->size, abfd) != info->size)
2332 {
2333 error (_("Dwarf Error: Can't read DWARF data"
2334 " in section %s [in module %s]"),
2335 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2336 }
2337 }
2338
2339 /* A helper function that returns the size of a section in a safe way.
2340 If you are positive that the section has been read before using the
2341 size, then it is safe to refer to the dwarf2_section_info object's
2342 "size" field directly. In other cases, you must call this
2343 function, because for compressed sections the size field is not set
2344 correctly until the section has been read. */
2345
2346 static bfd_size_type
2347 dwarf2_section_size (struct objfile *objfile,
2348 struct dwarf2_section_info *info)
2349 {
2350 if (!info->readin)
2351 dwarf2_read_section (objfile, info);
2352 return info->size;
2353 }
2354
2355 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2356 SECTION_NAME. */
2357
2358 void
2359 dwarf2_get_section_info (struct objfile *objfile,
2360 enum dwarf2_section_enum sect,
2361 asection **sectp, const gdb_byte **bufp,
2362 bfd_size_type *sizep)
2363 {
2364 struct dwarf2_per_objfile *data
2365 = objfile_data (objfile, dwarf2_objfile_data_key);
2366 struct dwarf2_section_info *info;
2367
2368 /* We may see an objfile without any DWARF, in which case we just
2369 return nothing. */
2370 if (data == NULL)
2371 {
2372 *sectp = NULL;
2373 *bufp = NULL;
2374 *sizep = 0;
2375 return;
2376 }
2377 switch (sect)
2378 {
2379 case DWARF2_DEBUG_FRAME:
2380 info = &data->frame;
2381 break;
2382 case DWARF2_EH_FRAME:
2383 info = &data->eh_frame;
2384 break;
2385 default:
2386 gdb_assert_not_reached ("unexpected section");
2387 }
2388
2389 dwarf2_read_section (objfile, info);
2390
2391 *sectp = get_section_bfd_section (info);
2392 *bufp = info->buffer;
2393 *sizep = info->size;
2394 }
2395
2396 /* A helper function to find the sections for a .dwz file. */
2397
2398 static void
2399 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2400 {
2401 struct dwz_file *dwz_file = arg;
2402
2403 /* Note that we only support the standard ELF names, because .dwz
2404 is ELF-only (at the time of writing). */
2405 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2406 {
2407 dwz_file->abbrev.s.asection = sectp;
2408 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2411 {
2412 dwz_file->info.s.asection = sectp;
2413 dwz_file->info.size = bfd_get_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2416 {
2417 dwz_file->str.s.asection = sectp;
2418 dwz_file->str.size = bfd_get_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2421 {
2422 dwz_file->line.s.asection = sectp;
2423 dwz_file->line.size = bfd_get_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2426 {
2427 dwz_file->macro.s.asection = sectp;
2428 dwz_file->macro.size = bfd_get_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2431 {
2432 dwz_file->gdb_index.s.asection = sectp;
2433 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2434 }
2435 }
2436
2437 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2438 there is no .gnu_debugaltlink section in the file. Error if there
2439 is such a section but the file cannot be found. */
2440
2441 static struct dwz_file *
2442 dwarf2_get_dwz_file (void)
2443 {
2444 bfd *dwz_bfd;
2445 char *data;
2446 struct cleanup *cleanup;
2447 const char *filename;
2448 struct dwz_file *result;
2449 bfd_size_type buildid_len_arg;
2450 size_t buildid_len;
2451 bfd_byte *buildid;
2452
2453 if (dwarf2_per_objfile->dwz_file != NULL)
2454 return dwarf2_per_objfile->dwz_file;
2455
2456 bfd_set_error (bfd_error_no_error);
2457 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2458 &buildid_len_arg, &buildid);
2459 if (data == NULL)
2460 {
2461 if (bfd_get_error () == bfd_error_no_error)
2462 return NULL;
2463 error (_("could not read '.gnu_debugaltlink' section: %s"),
2464 bfd_errmsg (bfd_get_error ()));
2465 }
2466 cleanup = make_cleanup (xfree, data);
2467 make_cleanup (xfree, buildid);
2468
2469 buildid_len = (size_t) buildid_len_arg;
2470
2471 filename = (const char *) data;
2472 if (!IS_ABSOLUTE_PATH (filename))
2473 {
2474 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2475 char *rel;
2476
2477 make_cleanup (xfree, abs);
2478 abs = ldirname (abs);
2479 make_cleanup (xfree, abs);
2480
2481 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2482 make_cleanup (xfree, rel);
2483 filename = rel;
2484 }
2485
2486 /* First try the file name given in the section. If that doesn't
2487 work, try to use the build-id instead. */
2488 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2489 if (dwz_bfd != NULL)
2490 {
2491 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2492 {
2493 gdb_bfd_unref (dwz_bfd);
2494 dwz_bfd = NULL;
2495 }
2496 }
2497
2498 if (dwz_bfd == NULL)
2499 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2500
2501 if (dwz_bfd == NULL)
2502 error (_("could not find '.gnu_debugaltlink' file for %s"),
2503 objfile_name (dwarf2_per_objfile->objfile));
2504
2505 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2506 struct dwz_file);
2507 result->dwz_bfd = dwz_bfd;
2508
2509 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2510
2511 do_cleanups (cleanup);
2512
2513 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2514 dwarf2_per_objfile->dwz_file = result;
2515 return result;
2516 }
2517 \f
2518 /* DWARF quick_symbols_functions support. */
2519
2520 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2521 unique line tables, so we maintain a separate table of all .debug_line
2522 derived entries to support the sharing.
2523 All the quick functions need is the list of file names. We discard the
2524 line_header when we're done and don't need to record it here. */
2525 struct quick_file_names
2526 {
2527 /* The data used to construct the hash key. */
2528 struct stmt_list_hash hash;
2529
2530 /* The number of entries in file_names, real_names. */
2531 unsigned int num_file_names;
2532
2533 /* The file names from the line table, after being run through
2534 file_full_name. */
2535 const char **file_names;
2536
2537 /* The file names from the line table after being run through
2538 gdb_realpath. These are computed lazily. */
2539 const char **real_names;
2540 };
2541
2542 /* When using the index (and thus not using psymtabs), each CU has an
2543 object of this type. This is used to hold information needed by
2544 the various "quick" methods. */
2545 struct dwarf2_per_cu_quick_data
2546 {
2547 /* The file table. This can be NULL if there was no file table
2548 or it's currently not read in.
2549 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2550 struct quick_file_names *file_names;
2551
2552 /* The corresponding symbol table. This is NULL if symbols for this
2553 CU have not yet been read. */
2554 struct compunit_symtab *compunit_symtab;
2555
2556 /* A temporary mark bit used when iterating over all CUs in
2557 expand_symtabs_matching. */
2558 unsigned int mark : 1;
2559
2560 /* True if we've tried to read the file table and found there isn't one.
2561 There will be no point in trying to read it again next time. */
2562 unsigned int no_file_data : 1;
2563 };
2564
2565 /* Utility hash function for a stmt_list_hash. */
2566
2567 static hashval_t
2568 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2569 {
2570 hashval_t v = 0;
2571
2572 if (stmt_list_hash->dwo_unit != NULL)
2573 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2574 v += stmt_list_hash->line_offset.sect_off;
2575 return v;
2576 }
2577
2578 /* Utility equality function for a stmt_list_hash. */
2579
2580 static int
2581 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2582 const struct stmt_list_hash *rhs)
2583 {
2584 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2585 return 0;
2586 if (lhs->dwo_unit != NULL
2587 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2588 return 0;
2589
2590 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2591 }
2592
2593 /* Hash function for a quick_file_names. */
2594
2595 static hashval_t
2596 hash_file_name_entry (const void *e)
2597 {
2598 const struct quick_file_names *file_data = e;
2599
2600 return hash_stmt_list_entry (&file_data->hash);
2601 }
2602
2603 /* Equality function for a quick_file_names. */
2604
2605 static int
2606 eq_file_name_entry (const void *a, const void *b)
2607 {
2608 const struct quick_file_names *ea = a;
2609 const struct quick_file_names *eb = b;
2610
2611 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2612 }
2613
2614 /* Delete function for a quick_file_names. */
2615
2616 static void
2617 delete_file_name_entry (void *e)
2618 {
2619 struct quick_file_names *file_data = e;
2620 int i;
2621
2622 for (i = 0; i < file_data->num_file_names; ++i)
2623 {
2624 xfree ((void*) file_data->file_names[i]);
2625 if (file_data->real_names)
2626 xfree ((void*) file_data->real_names[i]);
2627 }
2628
2629 /* The space for the struct itself lives on objfile_obstack,
2630 so we don't free it here. */
2631 }
2632
2633 /* Create a quick_file_names hash table. */
2634
2635 static htab_t
2636 create_quick_file_names_table (unsigned int nr_initial_entries)
2637 {
2638 return htab_create_alloc (nr_initial_entries,
2639 hash_file_name_entry, eq_file_name_entry,
2640 delete_file_name_entry, xcalloc, xfree);
2641 }
2642
2643 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2644 have to be created afterwards. You should call age_cached_comp_units after
2645 processing PER_CU->CU. dw2_setup must have been already called. */
2646
2647 static void
2648 load_cu (struct dwarf2_per_cu_data *per_cu)
2649 {
2650 if (per_cu->is_debug_types)
2651 load_full_type_unit (per_cu);
2652 else
2653 load_full_comp_unit (per_cu, language_minimal);
2654
2655 gdb_assert (per_cu->cu != NULL);
2656
2657 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2658 }
2659
2660 /* Read in the symbols for PER_CU. */
2661
2662 static void
2663 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2664 {
2665 struct cleanup *back_to;
2666
2667 /* Skip type_unit_groups, reading the type units they contain
2668 is handled elsewhere. */
2669 if (IS_TYPE_UNIT_GROUP (per_cu))
2670 return;
2671
2672 back_to = make_cleanup (dwarf2_release_queue, NULL);
2673
2674 if (dwarf2_per_objfile->using_index
2675 ? per_cu->v.quick->compunit_symtab == NULL
2676 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2677 {
2678 queue_comp_unit (per_cu, language_minimal);
2679 load_cu (per_cu);
2680
2681 /* If we just loaded a CU from a DWO, and we're working with an index
2682 that may badly handle TUs, load all the TUs in that DWO as well.
2683 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2684 if (!per_cu->is_debug_types
2685 && per_cu->cu->dwo_unit != NULL
2686 && dwarf2_per_objfile->index_table != NULL
2687 && dwarf2_per_objfile->index_table->version <= 7
2688 /* DWP files aren't supported yet. */
2689 && get_dwp_file () == NULL)
2690 queue_and_load_all_dwo_tus (per_cu);
2691 }
2692
2693 process_queue ();
2694
2695 /* Age the cache, releasing compilation units that have not
2696 been used recently. */
2697 age_cached_comp_units ();
2698
2699 do_cleanups (back_to);
2700 }
2701
2702 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2703 the objfile from which this CU came. Returns the resulting symbol
2704 table. */
2705
2706 static struct compunit_symtab *
2707 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2708 {
2709 gdb_assert (dwarf2_per_objfile->using_index);
2710 if (!per_cu->v.quick->compunit_symtab)
2711 {
2712 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2713 increment_reading_symtab ();
2714 dw2_do_instantiate_symtab (per_cu);
2715 process_cu_includes ();
2716 do_cleanups (back_to);
2717 }
2718
2719 return per_cu->v.quick->compunit_symtab;
2720 }
2721
2722 /* Return the CU/TU given its index.
2723
2724 This is intended for loops like:
2725
2726 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2727 + dwarf2_per_objfile->n_type_units); ++i)
2728 {
2729 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
2730
2731 ...;
2732 }
2733 */
2734
2735 static struct dwarf2_per_cu_data *
2736 dw2_get_cutu (int index)
2737 {
2738 if (index >= dwarf2_per_objfile->n_comp_units)
2739 {
2740 index -= dwarf2_per_objfile->n_comp_units;
2741 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2742 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2743 }
2744
2745 return dwarf2_per_objfile->all_comp_units[index];
2746 }
2747
2748 /* Return the CU given its index.
2749 This differs from dw2_get_cutu in that it's for when you know INDEX
2750 refers to a CU. */
2751
2752 static struct dwarf2_per_cu_data *
2753 dw2_get_cu (int index)
2754 {
2755 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
2756
2757 return dwarf2_per_objfile->all_comp_units[index];
2758 }
2759
2760 /* A helper for create_cus_from_index that handles a given list of
2761 CUs. */
2762
2763 static void
2764 create_cus_from_index_list (struct objfile *objfile,
2765 const gdb_byte *cu_list, offset_type n_elements,
2766 struct dwarf2_section_info *section,
2767 int is_dwz,
2768 int base_offset)
2769 {
2770 offset_type i;
2771
2772 for (i = 0; i < n_elements; i += 2)
2773 {
2774 struct dwarf2_per_cu_data *the_cu;
2775 ULONGEST offset, length;
2776
2777 gdb_static_assert (sizeof (ULONGEST) >= 8);
2778 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2779 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2780 cu_list += 2 * 8;
2781
2782 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2783 struct dwarf2_per_cu_data);
2784 the_cu->offset.sect_off = offset;
2785 the_cu->length = length;
2786 the_cu->objfile = objfile;
2787 the_cu->section = section;
2788 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2789 struct dwarf2_per_cu_quick_data);
2790 the_cu->is_dwz = is_dwz;
2791 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2792 }
2793 }
2794
2795 /* Read the CU list from the mapped index, and use it to create all
2796 the CU objects for this objfile. */
2797
2798 static void
2799 create_cus_from_index (struct objfile *objfile,
2800 const gdb_byte *cu_list, offset_type cu_list_elements,
2801 const gdb_byte *dwz_list, offset_type dwz_elements)
2802 {
2803 struct dwz_file *dwz;
2804
2805 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2806 dwarf2_per_objfile->all_comp_units
2807 = obstack_alloc (&objfile->objfile_obstack,
2808 dwarf2_per_objfile->n_comp_units
2809 * sizeof (struct dwarf2_per_cu_data *));
2810
2811 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2812 &dwarf2_per_objfile->info, 0, 0);
2813
2814 if (dwz_elements == 0)
2815 return;
2816
2817 dwz = dwarf2_get_dwz_file ();
2818 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2819 cu_list_elements / 2);
2820 }
2821
2822 /* Create the signatured type hash table from the index. */
2823
2824 static void
2825 create_signatured_type_table_from_index (struct objfile *objfile,
2826 struct dwarf2_section_info *section,
2827 const gdb_byte *bytes,
2828 offset_type elements)
2829 {
2830 offset_type i;
2831 htab_t sig_types_hash;
2832
2833 dwarf2_per_objfile->n_type_units
2834 = dwarf2_per_objfile->n_allocated_type_units
2835 = elements / 3;
2836 dwarf2_per_objfile->all_type_units
2837 = xmalloc (dwarf2_per_objfile->n_type_units
2838 * sizeof (struct signatured_type *));
2839
2840 sig_types_hash = allocate_signatured_type_table (objfile);
2841
2842 for (i = 0; i < elements; i += 3)
2843 {
2844 struct signatured_type *sig_type;
2845 ULONGEST offset, type_offset_in_tu, signature;
2846 void **slot;
2847
2848 gdb_static_assert (sizeof (ULONGEST) >= 8);
2849 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2850 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2851 BFD_ENDIAN_LITTLE);
2852 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2853 bytes += 3 * 8;
2854
2855 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2856 struct signatured_type);
2857 sig_type->signature = signature;
2858 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2859 sig_type->per_cu.is_debug_types = 1;
2860 sig_type->per_cu.section = section;
2861 sig_type->per_cu.offset.sect_off = offset;
2862 sig_type->per_cu.objfile = objfile;
2863 sig_type->per_cu.v.quick
2864 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2865 struct dwarf2_per_cu_quick_data);
2866
2867 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2868 *slot = sig_type;
2869
2870 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2871 }
2872
2873 dwarf2_per_objfile->signatured_types = sig_types_hash;
2874 }
2875
2876 /* Read the address map data from the mapped index, and use it to
2877 populate the objfile's psymtabs_addrmap. */
2878
2879 static void
2880 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2881 {
2882 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2883 const gdb_byte *iter, *end;
2884 struct obstack temp_obstack;
2885 struct addrmap *mutable_map;
2886 struct cleanup *cleanup;
2887 CORE_ADDR baseaddr;
2888
2889 obstack_init (&temp_obstack);
2890 cleanup = make_cleanup_obstack_free (&temp_obstack);
2891 mutable_map = addrmap_create_mutable (&temp_obstack);
2892
2893 iter = index->address_table;
2894 end = iter + index->address_table_size;
2895
2896 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2897
2898 while (iter < end)
2899 {
2900 ULONGEST hi, lo, cu_index;
2901 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2902 iter += 8;
2903 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2904 iter += 8;
2905 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2906 iter += 4;
2907
2908 if (lo > hi)
2909 {
2910 complaint (&symfile_complaints,
2911 _(".gdb_index address table has invalid range (%s - %s)"),
2912 hex_string (lo), hex_string (hi));
2913 continue;
2914 }
2915
2916 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2917 {
2918 complaint (&symfile_complaints,
2919 _(".gdb_index address table has invalid CU number %u"),
2920 (unsigned) cu_index);
2921 continue;
2922 }
2923
2924 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2925 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2926 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
2927 }
2928
2929 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2930 &objfile->objfile_obstack);
2931 do_cleanups (cleanup);
2932 }
2933
2934 /* The hash function for strings in the mapped index. This is the same as
2935 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2936 implementation. This is necessary because the hash function is tied to the
2937 format of the mapped index file. The hash values do not have to match with
2938 SYMBOL_HASH_NEXT.
2939
2940 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2941
2942 static hashval_t
2943 mapped_index_string_hash (int index_version, const void *p)
2944 {
2945 const unsigned char *str = (const unsigned char *) p;
2946 hashval_t r = 0;
2947 unsigned char c;
2948
2949 while ((c = *str++) != 0)
2950 {
2951 if (index_version >= 5)
2952 c = tolower (c);
2953 r = r * 67 + c - 113;
2954 }
2955
2956 return r;
2957 }
2958
2959 /* Find a slot in the mapped index INDEX for the object named NAME.
2960 If NAME is found, set *VEC_OUT to point to the CU vector in the
2961 constant pool and return 1. If NAME cannot be found, return 0. */
2962
2963 static int
2964 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2965 offset_type **vec_out)
2966 {
2967 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2968 offset_type hash;
2969 offset_type slot, step;
2970 int (*cmp) (const char *, const char *);
2971
2972 if (current_language->la_language == language_cplus
2973 || current_language->la_language == language_java
2974 || current_language->la_language == language_fortran)
2975 {
2976 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2977 not contain any. */
2978
2979 if (strchr (name, '(') != NULL)
2980 {
2981 char *without_params = cp_remove_params (name);
2982
2983 if (without_params != NULL)
2984 {
2985 make_cleanup (xfree, without_params);
2986 name = without_params;
2987 }
2988 }
2989 }
2990
2991 /* Index version 4 did not support case insensitive searches. But the
2992 indices for case insensitive languages are built in lowercase, therefore
2993 simulate our NAME being searched is also lowercased. */
2994 hash = mapped_index_string_hash ((index->version == 4
2995 && case_sensitivity == case_sensitive_off
2996 ? 5 : index->version),
2997 name);
2998
2999 slot = hash & (index->symbol_table_slots - 1);
3000 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
3001 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3002
3003 for (;;)
3004 {
3005 /* Convert a slot number to an offset into the table. */
3006 offset_type i = 2 * slot;
3007 const char *str;
3008 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
3009 {
3010 do_cleanups (back_to);
3011 return 0;
3012 }
3013
3014 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
3015 if (!cmp (name, str))
3016 {
3017 *vec_out = (offset_type *) (index->constant_pool
3018 + MAYBE_SWAP (index->symbol_table[i + 1]));
3019 do_cleanups (back_to);
3020 return 1;
3021 }
3022
3023 slot = (slot + step) & (index->symbol_table_slots - 1);
3024 }
3025 }
3026
3027 /* A helper function that reads the .gdb_index from SECTION and fills
3028 in MAP. FILENAME is the name of the file containing the section;
3029 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3030 ok to use deprecated sections.
3031
3032 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3033 out parameters that are filled in with information about the CU and
3034 TU lists in the section.
3035
3036 Returns 1 if all went well, 0 otherwise. */
3037
3038 static int
3039 read_index_from_section (struct objfile *objfile,
3040 const char *filename,
3041 int deprecated_ok,
3042 struct dwarf2_section_info *section,
3043 struct mapped_index *map,
3044 const gdb_byte **cu_list,
3045 offset_type *cu_list_elements,
3046 const gdb_byte **types_list,
3047 offset_type *types_list_elements)
3048 {
3049 const gdb_byte *addr;
3050 offset_type version;
3051 offset_type *metadata;
3052 int i;
3053
3054 if (dwarf2_section_empty_p (section))
3055 return 0;
3056
3057 /* Older elfutils strip versions could keep the section in the main
3058 executable while splitting it for the separate debug info file. */
3059 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3060 return 0;
3061
3062 dwarf2_read_section (objfile, section);
3063
3064 addr = section->buffer;
3065 /* Version check. */
3066 version = MAYBE_SWAP (*(offset_type *) addr);
3067 /* Versions earlier than 3 emitted every copy of a psymbol. This
3068 causes the index to behave very poorly for certain requests. Version 3
3069 contained incomplete addrmap. So, it seems better to just ignore such
3070 indices. */
3071 if (version < 4)
3072 {
3073 static int warning_printed = 0;
3074 if (!warning_printed)
3075 {
3076 warning (_("Skipping obsolete .gdb_index section in %s."),
3077 filename);
3078 warning_printed = 1;
3079 }
3080 return 0;
3081 }
3082 /* Index version 4 uses a different hash function than index version
3083 5 and later.
3084
3085 Versions earlier than 6 did not emit psymbols for inlined
3086 functions. Using these files will cause GDB not to be able to
3087 set breakpoints on inlined functions by name, so we ignore these
3088 indices unless the user has done
3089 "set use-deprecated-index-sections on". */
3090 if (version < 6 && !deprecated_ok)
3091 {
3092 static int warning_printed = 0;
3093 if (!warning_printed)
3094 {
3095 warning (_("\
3096 Skipping deprecated .gdb_index section in %s.\n\
3097 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3098 to use the section anyway."),
3099 filename);
3100 warning_printed = 1;
3101 }
3102 return 0;
3103 }
3104 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3105 of the TU (for symbols coming from TUs),
3106 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3107 Plus gold-generated indices can have duplicate entries for global symbols,
3108 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3109 These are just performance bugs, and we can't distinguish gdb-generated
3110 indices from gold-generated ones, so issue no warning here. */
3111
3112 /* Indexes with higher version than the one supported by GDB may be no
3113 longer backward compatible. */
3114 if (version > 8)
3115 return 0;
3116
3117 map->version = version;
3118 map->total_size = section->size;
3119
3120 metadata = (offset_type *) (addr + sizeof (offset_type));
3121
3122 i = 0;
3123 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3124 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3125 / 8);
3126 ++i;
3127
3128 *types_list = addr + MAYBE_SWAP (metadata[i]);
3129 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3130 - MAYBE_SWAP (metadata[i]))
3131 / 8);
3132 ++i;
3133
3134 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3135 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3136 - MAYBE_SWAP (metadata[i]));
3137 ++i;
3138
3139 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3140 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3141 - MAYBE_SWAP (metadata[i]))
3142 / (2 * sizeof (offset_type)));
3143 ++i;
3144
3145 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3146
3147 return 1;
3148 }
3149
3150
3151 /* Read the index file. If everything went ok, initialize the "quick"
3152 elements of all the CUs and return 1. Otherwise, return 0. */
3153
3154 static int
3155 dwarf2_read_index (struct objfile *objfile)
3156 {
3157 struct mapped_index local_map, *map;
3158 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3159 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3160 struct dwz_file *dwz;
3161
3162 if (!read_index_from_section (objfile, objfile_name (objfile),
3163 use_deprecated_index_sections,
3164 &dwarf2_per_objfile->gdb_index, &local_map,
3165 &cu_list, &cu_list_elements,
3166 &types_list, &types_list_elements))
3167 return 0;
3168
3169 /* Don't use the index if it's empty. */
3170 if (local_map.symbol_table_slots == 0)
3171 return 0;
3172
3173 /* If there is a .dwz file, read it so we can get its CU list as
3174 well. */
3175 dwz = dwarf2_get_dwz_file ();
3176 if (dwz != NULL)
3177 {
3178 struct mapped_index dwz_map;
3179 const gdb_byte *dwz_types_ignore;
3180 offset_type dwz_types_elements_ignore;
3181
3182 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3183 1,
3184 &dwz->gdb_index, &dwz_map,
3185 &dwz_list, &dwz_list_elements,
3186 &dwz_types_ignore,
3187 &dwz_types_elements_ignore))
3188 {
3189 warning (_("could not read '.gdb_index' section from %s; skipping"),
3190 bfd_get_filename (dwz->dwz_bfd));
3191 return 0;
3192 }
3193 }
3194
3195 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3196 dwz_list_elements);
3197
3198 if (types_list_elements)
3199 {
3200 struct dwarf2_section_info *section;
3201
3202 /* We can only handle a single .debug_types when we have an
3203 index. */
3204 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3205 return 0;
3206
3207 section = VEC_index (dwarf2_section_info_def,
3208 dwarf2_per_objfile->types, 0);
3209
3210 create_signatured_type_table_from_index (objfile, section, types_list,
3211 types_list_elements);
3212 }
3213
3214 create_addrmap_from_index (objfile, &local_map);
3215
3216 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3217 *map = local_map;
3218
3219 dwarf2_per_objfile->index_table = map;
3220 dwarf2_per_objfile->using_index = 1;
3221 dwarf2_per_objfile->quick_file_names_table =
3222 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3223
3224 return 1;
3225 }
3226
3227 /* A helper for the "quick" functions which sets the global
3228 dwarf2_per_objfile according to OBJFILE. */
3229
3230 static void
3231 dw2_setup (struct objfile *objfile)
3232 {
3233 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3234 gdb_assert (dwarf2_per_objfile);
3235 }
3236
3237 /* die_reader_func for dw2_get_file_names. */
3238
3239 static void
3240 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3241 const gdb_byte *info_ptr,
3242 struct die_info *comp_unit_die,
3243 int has_children,
3244 void *data)
3245 {
3246 struct dwarf2_cu *cu = reader->cu;
3247 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3248 struct objfile *objfile = dwarf2_per_objfile->objfile;
3249 struct dwarf2_per_cu_data *lh_cu;
3250 struct line_header *lh;
3251 struct attribute *attr;
3252 int i;
3253 const char *name, *comp_dir;
3254 void **slot;
3255 struct quick_file_names *qfn;
3256 unsigned int line_offset;
3257
3258 gdb_assert (! this_cu->is_debug_types);
3259
3260 /* Our callers never want to match partial units -- instead they
3261 will match the enclosing full CU. */
3262 if (comp_unit_die->tag == DW_TAG_partial_unit)
3263 {
3264 this_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 lh_cu = this_cu;
3269 lh = NULL;
3270 slot = NULL;
3271 line_offset = 0;
3272
3273 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3274 if (attr)
3275 {
3276 struct quick_file_names find_entry;
3277
3278 line_offset = DW_UNSND (attr);
3279
3280 /* We may have already read in this line header (TU line header sharing).
3281 If we have we're done. */
3282 find_entry.hash.dwo_unit = cu->dwo_unit;
3283 find_entry.hash.line_offset.sect_off = line_offset;
3284 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3285 &find_entry, INSERT);
3286 if (*slot != NULL)
3287 {
3288 lh_cu->v.quick->file_names = *slot;
3289 return;
3290 }
3291
3292 lh = dwarf_decode_line_header (line_offset, cu);
3293 }
3294 if (lh == NULL)
3295 {
3296 lh_cu->v.quick->no_file_data = 1;
3297 return;
3298 }
3299
3300 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3301 qfn->hash.dwo_unit = cu->dwo_unit;
3302 qfn->hash.line_offset.sect_off = line_offset;
3303 gdb_assert (slot != NULL);
3304 *slot = qfn;
3305
3306 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3307
3308 qfn->num_file_names = lh->num_file_names;
3309 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3310 lh->num_file_names * sizeof (char *));
3311 for (i = 0; i < lh->num_file_names; ++i)
3312 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3313 qfn->real_names = NULL;
3314
3315 free_line_header (lh);
3316
3317 lh_cu->v.quick->file_names = qfn;
3318 }
3319
3320 /* A helper for the "quick" functions which attempts to read the line
3321 table for THIS_CU. */
3322
3323 static struct quick_file_names *
3324 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3325 {
3326 /* This should never be called for TUs. */
3327 gdb_assert (! this_cu->is_debug_types);
3328 /* Nor type unit groups. */
3329 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3330
3331 if (this_cu->v.quick->file_names != NULL)
3332 return this_cu->v.quick->file_names;
3333 /* If we know there is no line data, no point in looking again. */
3334 if (this_cu->v.quick->no_file_data)
3335 return NULL;
3336
3337 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3338
3339 if (this_cu->v.quick->no_file_data)
3340 return NULL;
3341 return this_cu->v.quick->file_names;
3342 }
3343
3344 /* A helper for the "quick" functions which computes and caches the
3345 real path for a given file name from the line table. */
3346
3347 static const char *
3348 dw2_get_real_path (struct objfile *objfile,
3349 struct quick_file_names *qfn, int index)
3350 {
3351 if (qfn->real_names == NULL)
3352 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3353 qfn->num_file_names, const char *);
3354
3355 if (qfn->real_names[index] == NULL)
3356 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3357
3358 return qfn->real_names[index];
3359 }
3360
3361 static struct symtab *
3362 dw2_find_last_source_symtab (struct objfile *objfile)
3363 {
3364 struct compunit_symtab *cust;
3365 int index;
3366
3367 dw2_setup (objfile);
3368 index = dwarf2_per_objfile->n_comp_units - 1;
3369 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3370 if (cust == NULL)
3371 return NULL;
3372 return compunit_primary_filetab (cust);
3373 }
3374
3375 /* Traversal function for dw2_forget_cached_source_info. */
3376
3377 static int
3378 dw2_free_cached_file_names (void **slot, void *info)
3379 {
3380 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3381
3382 if (file_data->real_names)
3383 {
3384 int i;
3385
3386 for (i = 0; i < file_data->num_file_names; ++i)
3387 {
3388 xfree ((void*) file_data->real_names[i]);
3389 file_data->real_names[i] = NULL;
3390 }
3391 }
3392
3393 return 1;
3394 }
3395
3396 static void
3397 dw2_forget_cached_source_info (struct objfile *objfile)
3398 {
3399 dw2_setup (objfile);
3400
3401 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3402 dw2_free_cached_file_names, NULL);
3403 }
3404
3405 /* Helper function for dw2_map_symtabs_matching_filename that expands
3406 the symtabs and calls the iterator. */
3407
3408 static int
3409 dw2_map_expand_apply (struct objfile *objfile,
3410 struct dwarf2_per_cu_data *per_cu,
3411 const char *name, const char *real_path,
3412 int (*callback) (struct symtab *, void *),
3413 void *data)
3414 {
3415 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3416
3417 /* Don't visit already-expanded CUs. */
3418 if (per_cu->v.quick->compunit_symtab)
3419 return 0;
3420
3421 /* This may expand more than one symtab, and we want to iterate over
3422 all of them. */
3423 dw2_instantiate_symtab (per_cu);
3424
3425 return iterate_over_some_symtabs (name, real_path, callback, data,
3426 objfile->compunit_symtabs, last_made);
3427 }
3428
3429 /* Implementation of the map_symtabs_matching_filename method. */
3430
3431 static int
3432 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3433 const char *real_path,
3434 int (*callback) (struct symtab *, void *),
3435 void *data)
3436 {
3437 int i;
3438 const char *name_basename = lbasename (name);
3439
3440 dw2_setup (objfile);
3441
3442 /* The rule is CUs specify all the files, including those used by
3443 any TU, so there's no need to scan TUs here. */
3444
3445 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3446 {
3447 int j;
3448 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3449 struct quick_file_names *file_data;
3450
3451 /* We only need to look at symtabs not already expanded. */
3452 if (per_cu->v.quick->compunit_symtab)
3453 continue;
3454
3455 file_data = dw2_get_file_names (per_cu);
3456 if (file_data == NULL)
3457 continue;
3458
3459 for (j = 0; j < file_data->num_file_names; ++j)
3460 {
3461 const char *this_name = file_data->file_names[j];
3462 const char *this_real_name;
3463
3464 if (compare_filenames_for_search (this_name, name))
3465 {
3466 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3467 callback, data))
3468 return 1;
3469 continue;
3470 }
3471
3472 /* Before we invoke realpath, which can get expensive when many
3473 files are involved, do a quick comparison of the basenames. */
3474 if (! basenames_may_differ
3475 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3476 continue;
3477
3478 this_real_name = dw2_get_real_path (objfile, file_data, j);
3479 if (compare_filenames_for_search (this_real_name, name))
3480 {
3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3482 callback, data))
3483 return 1;
3484 continue;
3485 }
3486
3487 if (real_path != NULL)
3488 {
3489 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3490 gdb_assert (IS_ABSOLUTE_PATH (name));
3491 if (this_real_name != NULL
3492 && FILENAME_CMP (real_path, this_real_name) == 0)
3493 {
3494 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3495 callback, data))
3496 return 1;
3497 continue;
3498 }
3499 }
3500 }
3501 }
3502
3503 return 0;
3504 }
3505
3506 /* Struct used to manage iterating over all CUs looking for a symbol. */
3507
3508 struct dw2_symtab_iterator
3509 {
3510 /* The internalized form of .gdb_index. */
3511 struct mapped_index *index;
3512 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3513 int want_specific_block;
3514 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3515 Unused if !WANT_SPECIFIC_BLOCK. */
3516 int block_index;
3517 /* The kind of symbol we're looking for. */
3518 domain_enum domain;
3519 /* The list of CUs from the index entry of the symbol,
3520 or NULL if not found. */
3521 offset_type *vec;
3522 /* The next element in VEC to look at. */
3523 int next;
3524 /* The number of elements in VEC, or zero if there is no match. */
3525 int length;
3526 /* Have we seen a global version of the symbol?
3527 If so we can ignore all further global instances.
3528 This is to work around gold/15646, inefficient gold-generated
3529 indices. */
3530 int global_seen;
3531 };
3532
3533 /* Initialize the index symtab iterator ITER.
3534 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3535 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3536
3537 static void
3538 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3539 struct mapped_index *index,
3540 int want_specific_block,
3541 int block_index,
3542 domain_enum domain,
3543 const char *name)
3544 {
3545 iter->index = index;
3546 iter->want_specific_block = want_specific_block;
3547 iter->block_index = block_index;
3548 iter->domain = domain;
3549 iter->next = 0;
3550 iter->global_seen = 0;
3551
3552 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3553 iter->length = MAYBE_SWAP (*iter->vec);
3554 else
3555 {
3556 iter->vec = NULL;
3557 iter->length = 0;
3558 }
3559 }
3560
3561 /* Return the next matching CU or NULL if there are no more. */
3562
3563 static struct dwarf2_per_cu_data *
3564 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3565 {
3566 for ( ; iter->next < iter->length; ++iter->next)
3567 {
3568 offset_type cu_index_and_attrs =
3569 MAYBE_SWAP (iter->vec[iter->next + 1]);
3570 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3571 struct dwarf2_per_cu_data *per_cu;
3572 int want_static = iter->block_index != GLOBAL_BLOCK;
3573 /* This value is only valid for index versions >= 7. */
3574 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3575 gdb_index_symbol_kind symbol_kind =
3576 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3577 /* Only check the symbol attributes if they're present.
3578 Indices prior to version 7 don't record them,
3579 and indices >= 7 may elide them for certain symbols
3580 (gold does this). */
3581 int attrs_valid =
3582 (iter->index->version >= 7
3583 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3584
3585 /* Don't crash on bad data. */
3586 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3587 + dwarf2_per_objfile->n_type_units))
3588 {
3589 complaint (&symfile_complaints,
3590 _(".gdb_index entry has bad CU index"
3591 " [in module %s]"),
3592 objfile_name (dwarf2_per_objfile->objfile));
3593 continue;
3594 }
3595
3596 per_cu = dw2_get_cutu (cu_index);
3597
3598 /* Skip if already read in. */
3599 if (per_cu->v.quick->compunit_symtab)
3600 continue;
3601
3602 /* Check static vs global. */
3603 if (attrs_valid)
3604 {
3605 if (iter->want_specific_block
3606 && want_static != is_static)
3607 continue;
3608 /* Work around gold/15646. */
3609 if (!is_static && iter->global_seen)
3610 continue;
3611 if (!is_static)
3612 iter->global_seen = 1;
3613 }
3614
3615 /* Only check the symbol's kind if it has one. */
3616 if (attrs_valid)
3617 {
3618 switch (iter->domain)
3619 {
3620 case VAR_DOMAIN:
3621 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3622 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3623 /* Some types are also in VAR_DOMAIN. */
3624 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3625 continue;
3626 break;
3627 case STRUCT_DOMAIN:
3628 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3629 continue;
3630 break;
3631 case LABEL_DOMAIN:
3632 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3633 continue;
3634 break;
3635 default:
3636 break;
3637 }
3638 }
3639
3640 ++iter->next;
3641 return per_cu;
3642 }
3643
3644 return NULL;
3645 }
3646
3647 static struct compunit_symtab *
3648 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3649 const char *name, domain_enum domain)
3650 {
3651 struct compunit_symtab *stab_best = NULL;
3652 struct mapped_index *index;
3653
3654 dw2_setup (objfile);
3655
3656 index = dwarf2_per_objfile->index_table;
3657
3658 /* index is NULL if OBJF_READNOW. */
3659 if (index)
3660 {
3661 struct dw2_symtab_iterator iter;
3662 struct dwarf2_per_cu_data *per_cu;
3663
3664 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3665
3666 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3667 {
3668 struct symbol *sym = NULL;
3669 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3670 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3671 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3672
3673 /* Some caution must be observed with overloaded functions
3674 and methods, since the index will not contain any overload
3675 information (but NAME might contain it). */
3676 sym = block_lookup_symbol (block, name, domain);
3677
3678 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3679 {
3680 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3681 return stab;
3682
3683 stab_best = stab;
3684 }
3685
3686 /* Keep looking through other CUs. */
3687 }
3688 }
3689
3690 return stab_best;
3691 }
3692
3693 static void
3694 dw2_print_stats (struct objfile *objfile)
3695 {
3696 int i, total, count;
3697
3698 dw2_setup (objfile);
3699 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3700 count = 0;
3701 for (i = 0; i < total; ++i)
3702 {
3703 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3704
3705 if (!per_cu->v.quick->compunit_symtab)
3706 ++count;
3707 }
3708 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3709 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3710 }
3711
3712 /* This dumps minimal information about the index.
3713 It is called via "mt print objfiles".
3714 One use is to verify .gdb_index has been loaded by the
3715 gdb.dwarf2/gdb-index.exp testcase. */
3716
3717 static void
3718 dw2_dump (struct objfile *objfile)
3719 {
3720 dw2_setup (objfile);
3721 gdb_assert (dwarf2_per_objfile->using_index);
3722 printf_filtered (".gdb_index:");
3723 if (dwarf2_per_objfile->index_table != NULL)
3724 {
3725 printf_filtered (" version %d\n",
3726 dwarf2_per_objfile->index_table->version);
3727 }
3728 else
3729 printf_filtered (" faked for \"readnow\"\n");
3730 printf_filtered ("\n");
3731 }
3732
3733 static void
3734 dw2_relocate (struct objfile *objfile,
3735 const struct section_offsets *new_offsets,
3736 const struct section_offsets *delta)
3737 {
3738 /* There's nothing to relocate here. */
3739 }
3740
3741 static void
3742 dw2_expand_symtabs_for_function (struct objfile *objfile,
3743 const char *func_name)
3744 {
3745 struct mapped_index *index;
3746
3747 dw2_setup (objfile);
3748
3749 index = dwarf2_per_objfile->index_table;
3750
3751 /* index is NULL if OBJF_READNOW. */
3752 if (index)
3753 {
3754 struct dw2_symtab_iterator iter;
3755 struct dwarf2_per_cu_data *per_cu;
3756
3757 /* Note: It doesn't matter what we pass for block_index here. */
3758 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3759 func_name);
3760
3761 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3762 dw2_instantiate_symtab (per_cu);
3763 }
3764 }
3765
3766 static void
3767 dw2_expand_all_symtabs (struct objfile *objfile)
3768 {
3769 int i;
3770
3771 dw2_setup (objfile);
3772
3773 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3774 + dwarf2_per_objfile->n_type_units); ++i)
3775 {
3776 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3777
3778 dw2_instantiate_symtab (per_cu);
3779 }
3780 }
3781
3782 static void
3783 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3784 const char *fullname)
3785 {
3786 int i;
3787
3788 dw2_setup (objfile);
3789
3790 /* We don't need to consider type units here.
3791 This is only called for examining code, e.g. expand_line_sal.
3792 There can be an order of magnitude (or more) more type units
3793 than comp units, and we avoid them if we can. */
3794
3795 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3796 {
3797 int j;
3798 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
3799 struct quick_file_names *file_data;
3800
3801 /* We only need to look at symtabs not already expanded. */
3802 if (per_cu->v.quick->compunit_symtab)
3803 continue;
3804
3805 file_data = dw2_get_file_names (per_cu);
3806 if (file_data == NULL)
3807 continue;
3808
3809 for (j = 0; j < file_data->num_file_names; ++j)
3810 {
3811 const char *this_fullname = file_data->file_names[j];
3812
3813 if (filename_cmp (this_fullname, fullname) == 0)
3814 {
3815 dw2_instantiate_symtab (per_cu);
3816 break;
3817 }
3818 }
3819 }
3820 }
3821
3822 static void
3823 dw2_map_matching_symbols (struct objfile *objfile,
3824 const char * name, domain_enum domain,
3825 int global,
3826 int (*callback) (struct block *,
3827 struct symbol *, void *),
3828 void *data, symbol_compare_ftype *match,
3829 symbol_compare_ftype *ordered_compare)
3830 {
3831 /* Currently unimplemented; used for Ada. The function can be called if the
3832 current language is Ada for a non-Ada objfile using GNU index. As Ada
3833 does not look for non-Ada symbols this function should just return. */
3834 }
3835
3836 static void
3837 dw2_expand_symtabs_matching
3838 (struct objfile *objfile,
3839 expand_symtabs_file_matcher_ftype *file_matcher,
3840 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3841 expand_symtabs_exp_notify_ftype *expansion_notify,
3842 enum search_domain kind,
3843 void *data)
3844 {
3845 int i;
3846 offset_type iter;
3847 struct mapped_index *index;
3848
3849 dw2_setup (objfile);
3850
3851 /* index_table is NULL if OBJF_READNOW. */
3852 if (!dwarf2_per_objfile->index_table)
3853 return;
3854 index = dwarf2_per_objfile->index_table;
3855
3856 if (file_matcher != NULL)
3857 {
3858 struct cleanup *cleanup;
3859 htab_t visited_found, visited_not_found;
3860
3861 visited_found = htab_create_alloc (10,
3862 htab_hash_pointer, htab_eq_pointer,
3863 NULL, xcalloc, xfree);
3864 cleanup = make_cleanup_htab_delete (visited_found);
3865 visited_not_found = htab_create_alloc (10,
3866 htab_hash_pointer, htab_eq_pointer,
3867 NULL, xcalloc, xfree);
3868 make_cleanup_htab_delete (visited_not_found);
3869
3870 /* The rule is CUs specify all the files, including those used by
3871 any TU, so there's no need to scan TUs here. */
3872
3873 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3874 {
3875 int j;
3876 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3877 struct quick_file_names *file_data;
3878 void **slot;
3879
3880 QUIT;
3881
3882 per_cu->v.quick->mark = 0;
3883
3884 /* We only need to look at symtabs not already expanded. */
3885 if (per_cu->v.quick->compunit_symtab)
3886 continue;
3887
3888 file_data = dw2_get_file_names (per_cu);
3889 if (file_data == NULL)
3890 continue;
3891
3892 if (htab_find (visited_not_found, file_data) != NULL)
3893 continue;
3894 else if (htab_find (visited_found, file_data) != NULL)
3895 {
3896 per_cu->v.quick->mark = 1;
3897 continue;
3898 }
3899
3900 for (j = 0; j < file_data->num_file_names; ++j)
3901 {
3902 const char *this_real_name;
3903
3904 if (file_matcher (file_data->file_names[j], data, 0))
3905 {
3906 per_cu->v.quick->mark = 1;
3907 break;
3908 }
3909
3910 /* Before we invoke realpath, which can get expensive when many
3911 files are involved, do a quick comparison of the basenames. */
3912 if (!basenames_may_differ
3913 && !file_matcher (lbasename (file_data->file_names[j]),
3914 data, 1))
3915 continue;
3916
3917 this_real_name = dw2_get_real_path (objfile, file_data, j);
3918 if (file_matcher (this_real_name, data, 0))
3919 {
3920 per_cu->v.quick->mark = 1;
3921 break;
3922 }
3923 }
3924
3925 slot = htab_find_slot (per_cu->v.quick->mark
3926 ? visited_found
3927 : visited_not_found,
3928 file_data, INSERT);
3929 *slot = file_data;
3930 }
3931
3932 do_cleanups (cleanup);
3933 }
3934
3935 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3936 {
3937 offset_type idx = 2 * iter;
3938 const char *name;
3939 offset_type *vec, vec_len, vec_idx;
3940 int global_seen = 0;
3941
3942 QUIT;
3943
3944 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3945 continue;
3946
3947 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3948
3949 if (! (*symbol_matcher) (name, data))
3950 continue;
3951
3952 /* The name was matched, now expand corresponding CUs that were
3953 marked. */
3954 vec = (offset_type *) (index->constant_pool
3955 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3956 vec_len = MAYBE_SWAP (vec[0]);
3957 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3958 {
3959 struct dwarf2_per_cu_data *per_cu;
3960 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3961 /* This value is only valid for index versions >= 7. */
3962 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3963 gdb_index_symbol_kind symbol_kind =
3964 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3965 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3966 /* Only check the symbol attributes if they're present.
3967 Indices prior to version 7 don't record them,
3968 and indices >= 7 may elide them for certain symbols
3969 (gold does this). */
3970 int attrs_valid =
3971 (index->version >= 7
3972 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3973
3974 /* Work around gold/15646. */
3975 if (attrs_valid)
3976 {
3977 if (!is_static && global_seen)
3978 continue;
3979 if (!is_static)
3980 global_seen = 1;
3981 }
3982
3983 /* Only check the symbol's kind if it has one. */
3984 if (attrs_valid)
3985 {
3986 switch (kind)
3987 {
3988 case VARIABLES_DOMAIN:
3989 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3990 continue;
3991 break;
3992 case FUNCTIONS_DOMAIN:
3993 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3994 continue;
3995 break;
3996 case TYPES_DOMAIN:
3997 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3998 continue;
3999 break;
4000 default:
4001 break;
4002 }
4003 }
4004
4005 /* Don't crash on bad data. */
4006 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4007 + dwarf2_per_objfile->n_type_units))
4008 {
4009 complaint (&symfile_complaints,
4010 _(".gdb_index entry has bad CU index"
4011 " [in module %s]"), objfile_name (objfile));
4012 continue;
4013 }
4014
4015 per_cu = dw2_get_cutu (cu_index);
4016 if (file_matcher == NULL || per_cu->v.quick->mark)
4017 {
4018 int symtab_was_null =
4019 (per_cu->v.quick->compunit_symtab == NULL);
4020
4021 dw2_instantiate_symtab (per_cu);
4022
4023 if (expansion_notify != NULL
4024 && symtab_was_null
4025 && per_cu->v.quick->compunit_symtab != NULL)
4026 {
4027 expansion_notify (per_cu->v.quick->compunit_symtab,
4028 data);
4029 }
4030 }
4031 }
4032 }
4033 }
4034
4035 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4036 symtab. */
4037
4038 static struct compunit_symtab *
4039 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4040 CORE_ADDR pc)
4041 {
4042 int i;
4043
4044 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4045 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4046 return cust;
4047
4048 if (cust->includes == NULL)
4049 return NULL;
4050
4051 for (i = 0; cust->includes[i]; ++i)
4052 {
4053 struct compunit_symtab *s = cust->includes[i];
4054
4055 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4056 if (s != NULL)
4057 return s;
4058 }
4059
4060 return NULL;
4061 }
4062
4063 static struct compunit_symtab *
4064 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4065 struct bound_minimal_symbol msymbol,
4066 CORE_ADDR pc,
4067 struct obj_section *section,
4068 int warn_if_readin)
4069 {
4070 struct dwarf2_per_cu_data *data;
4071 struct compunit_symtab *result;
4072
4073 dw2_setup (objfile);
4074
4075 if (!objfile->psymtabs_addrmap)
4076 return NULL;
4077
4078 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4079 if (!data)
4080 return NULL;
4081
4082 if (warn_if_readin && data->v.quick->compunit_symtab)
4083 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4084 paddress (get_objfile_arch (objfile), pc));
4085
4086 result
4087 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4088 pc);
4089 gdb_assert (result != NULL);
4090 return result;
4091 }
4092
4093 static void
4094 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4095 void *data, int need_fullname)
4096 {
4097 int i;
4098 struct cleanup *cleanup;
4099 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4100 NULL, xcalloc, xfree);
4101
4102 cleanup = make_cleanup_htab_delete (visited);
4103 dw2_setup (objfile);
4104
4105 /* The rule is CUs specify all the files, including those used by
4106 any TU, so there's no need to scan TUs here.
4107 We can ignore file names coming from already-expanded CUs. */
4108
4109 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4110 {
4111 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4112
4113 if (per_cu->v.quick->compunit_symtab)
4114 {
4115 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4116 INSERT);
4117
4118 *slot = per_cu->v.quick->file_names;
4119 }
4120 }
4121
4122 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4123 {
4124 int j;
4125 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4126 struct quick_file_names *file_data;
4127 void **slot;
4128
4129 /* We only need to look at symtabs not already expanded. */
4130 if (per_cu->v.quick->compunit_symtab)
4131 continue;
4132
4133 file_data = dw2_get_file_names (per_cu);
4134 if (file_data == NULL)
4135 continue;
4136
4137 slot = htab_find_slot (visited, file_data, INSERT);
4138 if (*slot)
4139 {
4140 /* Already visited. */
4141 continue;
4142 }
4143 *slot = file_data;
4144
4145 for (j = 0; j < file_data->num_file_names; ++j)
4146 {
4147 const char *this_real_name;
4148
4149 if (need_fullname)
4150 this_real_name = dw2_get_real_path (objfile, file_data, j);
4151 else
4152 this_real_name = NULL;
4153 (*fun) (file_data->file_names[j], this_real_name, data);
4154 }
4155 }
4156
4157 do_cleanups (cleanup);
4158 }
4159
4160 static int
4161 dw2_has_symbols (struct objfile *objfile)
4162 {
4163 return 1;
4164 }
4165
4166 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4167 {
4168 dw2_has_symbols,
4169 dw2_find_last_source_symtab,
4170 dw2_forget_cached_source_info,
4171 dw2_map_symtabs_matching_filename,
4172 dw2_lookup_symbol,
4173 dw2_print_stats,
4174 dw2_dump,
4175 dw2_relocate,
4176 dw2_expand_symtabs_for_function,
4177 dw2_expand_all_symtabs,
4178 dw2_expand_symtabs_with_fullname,
4179 dw2_map_matching_symbols,
4180 dw2_expand_symtabs_matching,
4181 dw2_find_pc_sect_compunit_symtab,
4182 dw2_map_symbol_filenames
4183 };
4184
4185 /* Initialize for reading DWARF for this objfile. Return 0 if this
4186 file will use psymtabs, or 1 if using the GNU index. */
4187
4188 int
4189 dwarf2_initialize_objfile (struct objfile *objfile)
4190 {
4191 /* If we're about to read full symbols, don't bother with the
4192 indices. In this case we also don't care if some other debug
4193 format is making psymtabs, because they are all about to be
4194 expanded anyway. */
4195 if ((objfile->flags & OBJF_READNOW))
4196 {
4197 int i;
4198
4199 dwarf2_per_objfile->using_index = 1;
4200 create_all_comp_units (objfile);
4201 create_all_type_units (objfile);
4202 dwarf2_per_objfile->quick_file_names_table =
4203 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4204
4205 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4206 + dwarf2_per_objfile->n_type_units); ++i)
4207 {
4208 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
4209
4210 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4211 struct dwarf2_per_cu_quick_data);
4212 }
4213
4214 /* Return 1 so that gdb sees the "quick" functions. However,
4215 these functions will be no-ops because we will have expanded
4216 all symtabs. */
4217 return 1;
4218 }
4219
4220 if (dwarf2_read_index (objfile))
4221 return 1;
4222
4223 return 0;
4224 }
4225
4226 \f
4227
4228 /* Build a partial symbol table. */
4229
4230 void
4231 dwarf2_build_psymtabs (struct objfile *objfile)
4232 {
4233
4234 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4235 {
4236 init_psymbol_list (objfile, 1024);
4237 }
4238
4239 TRY
4240 {
4241 /* This isn't really ideal: all the data we allocate on the
4242 objfile's obstack is still uselessly kept around. However,
4243 freeing it seems unsafe. */
4244 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4245
4246 dwarf2_build_psymtabs_hard (objfile);
4247 discard_cleanups (cleanups);
4248 }
4249 CATCH (except, RETURN_MASK_ERROR)
4250 {
4251 exception_print (gdb_stderr, except);
4252 }
4253 END_CATCH
4254 }
4255
4256 /* Return the total length of the CU described by HEADER. */
4257
4258 static unsigned int
4259 get_cu_length (const struct comp_unit_head *header)
4260 {
4261 return header->initial_length_size + header->length;
4262 }
4263
4264 /* Return TRUE if OFFSET is within CU_HEADER. */
4265
4266 static inline int
4267 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4268 {
4269 sect_offset bottom = { cu_header->offset.sect_off };
4270 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4271
4272 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4273 }
4274
4275 /* Find the base address of the compilation unit for range lists and
4276 location lists. It will normally be specified by DW_AT_low_pc.
4277 In DWARF-3 draft 4, the base address could be overridden by
4278 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4279 compilation units with discontinuous ranges. */
4280
4281 static void
4282 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4283 {
4284 struct attribute *attr;
4285
4286 cu->base_known = 0;
4287 cu->base_address = 0;
4288
4289 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4290 if (attr)
4291 {
4292 cu->base_address = attr_value_as_address (attr);
4293 cu->base_known = 1;
4294 }
4295 else
4296 {
4297 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4298 if (attr)
4299 {
4300 cu->base_address = attr_value_as_address (attr);
4301 cu->base_known = 1;
4302 }
4303 }
4304 }
4305
4306 /* Read in the comp unit header information from the debug_info at info_ptr.
4307 NOTE: This leaves members offset, first_die_offset to be filled in
4308 by the caller. */
4309
4310 static const gdb_byte *
4311 read_comp_unit_head (struct comp_unit_head *cu_header,
4312 const gdb_byte *info_ptr, bfd *abfd)
4313 {
4314 int signed_addr;
4315 unsigned int bytes_read;
4316
4317 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4318 cu_header->initial_length_size = bytes_read;
4319 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4320 info_ptr += bytes_read;
4321 cu_header->version = read_2_bytes (abfd, info_ptr);
4322 info_ptr += 2;
4323 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4324 &bytes_read);
4325 info_ptr += bytes_read;
4326 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4327 info_ptr += 1;
4328 signed_addr = bfd_get_sign_extend_vma (abfd);
4329 if (signed_addr < 0)
4330 internal_error (__FILE__, __LINE__,
4331 _("read_comp_unit_head: dwarf from non elf file"));
4332 cu_header->signed_addr_p = signed_addr;
4333
4334 return info_ptr;
4335 }
4336
4337 /* Helper function that returns the proper abbrev section for
4338 THIS_CU. */
4339
4340 static struct dwarf2_section_info *
4341 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4342 {
4343 struct dwarf2_section_info *abbrev;
4344
4345 if (this_cu->is_dwz)
4346 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4347 else
4348 abbrev = &dwarf2_per_objfile->abbrev;
4349
4350 return abbrev;
4351 }
4352
4353 /* Subroutine of read_and_check_comp_unit_head and
4354 read_and_check_type_unit_head to simplify them.
4355 Perform various error checking on the header. */
4356
4357 static void
4358 error_check_comp_unit_head (struct comp_unit_head *header,
4359 struct dwarf2_section_info *section,
4360 struct dwarf2_section_info *abbrev_section)
4361 {
4362 bfd *abfd = get_section_bfd_owner (section);
4363 const char *filename = get_section_file_name (section);
4364
4365 if (header->version != 2 && header->version != 3 && header->version != 4)
4366 error (_("Dwarf Error: wrong version in compilation unit header "
4367 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4368 filename);
4369
4370 if (header->abbrev_offset.sect_off
4371 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4372 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4373 "(offset 0x%lx + 6) [in module %s]"),
4374 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4375 filename);
4376
4377 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4378 avoid potential 32-bit overflow. */
4379 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4380 > section->size)
4381 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4382 "(offset 0x%lx + 0) [in module %s]"),
4383 (long) header->length, (long) header->offset.sect_off,
4384 filename);
4385 }
4386
4387 /* Read in a CU/TU header and perform some basic error checking.
4388 The contents of the header are stored in HEADER.
4389 The result is a pointer to the start of the first DIE. */
4390
4391 static const gdb_byte *
4392 read_and_check_comp_unit_head (struct comp_unit_head *header,
4393 struct dwarf2_section_info *section,
4394 struct dwarf2_section_info *abbrev_section,
4395 const gdb_byte *info_ptr,
4396 int is_debug_types_section)
4397 {
4398 const gdb_byte *beg_of_comp_unit = info_ptr;
4399 bfd *abfd = get_section_bfd_owner (section);
4400
4401 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4402
4403 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4404
4405 /* If we're reading a type unit, skip over the signature and
4406 type_offset fields. */
4407 if (is_debug_types_section)
4408 info_ptr += 8 /*signature*/ + header->offset_size;
4409
4410 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4411
4412 error_check_comp_unit_head (header, section, abbrev_section);
4413
4414 return info_ptr;
4415 }
4416
4417 /* Read in the types comp unit header information from .debug_types entry at
4418 types_ptr. The result is a pointer to one past the end of the header. */
4419
4420 static const gdb_byte *
4421 read_and_check_type_unit_head (struct comp_unit_head *header,
4422 struct dwarf2_section_info *section,
4423 struct dwarf2_section_info *abbrev_section,
4424 const gdb_byte *info_ptr,
4425 ULONGEST *signature,
4426 cu_offset *type_offset_in_tu)
4427 {
4428 const gdb_byte *beg_of_comp_unit = info_ptr;
4429 bfd *abfd = get_section_bfd_owner (section);
4430
4431 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4432
4433 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4434
4435 /* If we're reading a type unit, skip over the signature and
4436 type_offset fields. */
4437 if (signature != NULL)
4438 *signature = read_8_bytes (abfd, info_ptr);
4439 info_ptr += 8;
4440 if (type_offset_in_tu != NULL)
4441 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4442 header->offset_size);
4443 info_ptr += header->offset_size;
4444
4445 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4446
4447 error_check_comp_unit_head (header, section, abbrev_section);
4448
4449 return info_ptr;
4450 }
4451
4452 /* Fetch the abbreviation table offset from a comp or type unit header. */
4453
4454 static sect_offset
4455 read_abbrev_offset (struct dwarf2_section_info *section,
4456 sect_offset offset)
4457 {
4458 bfd *abfd = get_section_bfd_owner (section);
4459 const gdb_byte *info_ptr;
4460 unsigned int length, initial_length_size, offset_size;
4461 sect_offset abbrev_offset;
4462
4463 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4464 info_ptr = section->buffer + offset.sect_off;
4465 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4466 offset_size = initial_length_size == 4 ? 4 : 8;
4467 info_ptr += initial_length_size + 2 /*version*/;
4468 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4469 return abbrev_offset;
4470 }
4471
4472 /* Allocate a new partial symtab for file named NAME and mark this new
4473 partial symtab as being an include of PST. */
4474
4475 static void
4476 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4477 struct objfile *objfile)
4478 {
4479 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4480
4481 if (!IS_ABSOLUTE_PATH (subpst->filename))
4482 {
4483 /* It shares objfile->objfile_obstack. */
4484 subpst->dirname = pst->dirname;
4485 }
4486
4487 subpst->section_offsets = pst->section_offsets;
4488 subpst->textlow = 0;
4489 subpst->texthigh = 0;
4490
4491 subpst->dependencies = (struct partial_symtab **)
4492 obstack_alloc (&objfile->objfile_obstack,
4493 sizeof (struct partial_symtab *));
4494 subpst->dependencies[0] = pst;
4495 subpst->number_of_dependencies = 1;
4496
4497 subpst->globals_offset = 0;
4498 subpst->n_global_syms = 0;
4499 subpst->statics_offset = 0;
4500 subpst->n_static_syms = 0;
4501 subpst->compunit_symtab = NULL;
4502 subpst->read_symtab = pst->read_symtab;
4503 subpst->readin = 0;
4504
4505 /* No private part is necessary for include psymtabs. This property
4506 can be used to differentiate between such include psymtabs and
4507 the regular ones. */
4508 subpst->read_symtab_private = NULL;
4509 }
4510
4511 /* Read the Line Number Program data and extract the list of files
4512 included by the source file represented by PST. Build an include
4513 partial symtab for each of these included files. */
4514
4515 static void
4516 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4517 struct die_info *die,
4518 struct partial_symtab *pst)
4519 {
4520 struct line_header *lh = NULL;
4521 struct attribute *attr;
4522
4523 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4524 if (attr)
4525 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4526 if (lh == NULL)
4527 return; /* No linetable, so no includes. */
4528
4529 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4530 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
4531
4532 free_line_header (lh);
4533 }
4534
4535 static hashval_t
4536 hash_signatured_type (const void *item)
4537 {
4538 const struct signatured_type *sig_type = item;
4539
4540 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4541 return sig_type->signature;
4542 }
4543
4544 static int
4545 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4546 {
4547 const struct signatured_type *lhs = item_lhs;
4548 const struct signatured_type *rhs = item_rhs;
4549
4550 return lhs->signature == rhs->signature;
4551 }
4552
4553 /* Allocate a hash table for signatured types. */
4554
4555 static htab_t
4556 allocate_signatured_type_table (struct objfile *objfile)
4557 {
4558 return htab_create_alloc_ex (41,
4559 hash_signatured_type,
4560 eq_signatured_type,
4561 NULL,
4562 &objfile->objfile_obstack,
4563 hashtab_obstack_allocate,
4564 dummy_obstack_deallocate);
4565 }
4566
4567 /* A helper function to add a signatured type CU to a table. */
4568
4569 static int
4570 add_signatured_type_cu_to_table (void **slot, void *datum)
4571 {
4572 struct signatured_type *sigt = *slot;
4573 struct signatured_type ***datap = datum;
4574
4575 **datap = sigt;
4576 ++*datap;
4577
4578 return 1;
4579 }
4580
4581 /* Create the hash table of all entries in the .debug_types
4582 (or .debug_types.dwo) section(s).
4583 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4584 otherwise it is NULL.
4585
4586 The result is a pointer to the hash table or NULL if there are no types.
4587
4588 Note: This function processes DWO files only, not DWP files. */
4589
4590 static htab_t
4591 create_debug_types_hash_table (struct dwo_file *dwo_file,
4592 VEC (dwarf2_section_info_def) *types)
4593 {
4594 struct objfile *objfile = dwarf2_per_objfile->objfile;
4595 htab_t types_htab = NULL;
4596 int ix;
4597 struct dwarf2_section_info *section;
4598 struct dwarf2_section_info *abbrev_section;
4599
4600 if (VEC_empty (dwarf2_section_info_def, types))
4601 return NULL;
4602
4603 abbrev_section = (dwo_file != NULL
4604 ? &dwo_file->sections.abbrev
4605 : &dwarf2_per_objfile->abbrev);
4606
4607 if (dwarf2_read_debug)
4608 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4609 dwo_file ? ".dwo" : "",
4610 get_section_file_name (abbrev_section));
4611
4612 for (ix = 0;
4613 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4614 ++ix)
4615 {
4616 bfd *abfd;
4617 const gdb_byte *info_ptr, *end_ptr;
4618
4619 dwarf2_read_section (objfile, section);
4620 info_ptr = section->buffer;
4621
4622 if (info_ptr == NULL)
4623 continue;
4624
4625 /* We can't set abfd until now because the section may be empty or
4626 not present, in which case the bfd is unknown. */
4627 abfd = get_section_bfd_owner (section);
4628
4629 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4630 because we don't need to read any dies: the signature is in the
4631 header. */
4632
4633 end_ptr = info_ptr + section->size;
4634 while (info_ptr < end_ptr)
4635 {
4636 sect_offset offset;
4637 cu_offset type_offset_in_tu;
4638 ULONGEST signature;
4639 struct signatured_type *sig_type;
4640 struct dwo_unit *dwo_tu;
4641 void **slot;
4642 const gdb_byte *ptr = info_ptr;
4643 struct comp_unit_head header;
4644 unsigned int length;
4645
4646 offset.sect_off = ptr - section->buffer;
4647
4648 /* We need to read the type's signature in order to build the hash
4649 table, but we don't need anything else just yet. */
4650
4651 ptr = read_and_check_type_unit_head (&header, section,
4652 abbrev_section, ptr,
4653 &signature, &type_offset_in_tu);
4654
4655 length = get_cu_length (&header);
4656
4657 /* Skip dummy type units. */
4658 if (ptr >= info_ptr + length
4659 || peek_abbrev_code (abfd, ptr) == 0)
4660 {
4661 info_ptr += length;
4662 continue;
4663 }
4664
4665 if (types_htab == NULL)
4666 {
4667 if (dwo_file)
4668 types_htab = allocate_dwo_unit_table (objfile);
4669 else
4670 types_htab = allocate_signatured_type_table (objfile);
4671 }
4672
4673 if (dwo_file)
4674 {
4675 sig_type = NULL;
4676 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4677 struct dwo_unit);
4678 dwo_tu->dwo_file = dwo_file;
4679 dwo_tu->signature = signature;
4680 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4681 dwo_tu->section = section;
4682 dwo_tu->offset = offset;
4683 dwo_tu->length = length;
4684 }
4685 else
4686 {
4687 /* N.B.: type_offset is not usable if this type uses a DWO file.
4688 The real type_offset is in the DWO file. */
4689 dwo_tu = NULL;
4690 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4691 struct signatured_type);
4692 sig_type->signature = signature;
4693 sig_type->type_offset_in_tu = type_offset_in_tu;
4694 sig_type->per_cu.objfile = objfile;
4695 sig_type->per_cu.is_debug_types = 1;
4696 sig_type->per_cu.section = section;
4697 sig_type->per_cu.offset = offset;
4698 sig_type->per_cu.length = length;
4699 }
4700
4701 slot = htab_find_slot (types_htab,
4702 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4703 INSERT);
4704 gdb_assert (slot != NULL);
4705 if (*slot != NULL)
4706 {
4707 sect_offset dup_offset;
4708
4709 if (dwo_file)
4710 {
4711 const struct dwo_unit *dup_tu = *slot;
4712
4713 dup_offset = dup_tu->offset;
4714 }
4715 else
4716 {
4717 const struct signatured_type *dup_tu = *slot;
4718
4719 dup_offset = dup_tu->per_cu.offset;
4720 }
4721
4722 complaint (&symfile_complaints,
4723 _("debug type entry at offset 0x%x is duplicate to"
4724 " the entry at offset 0x%x, signature %s"),
4725 offset.sect_off, dup_offset.sect_off,
4726 hex_string (signature));
4727 }
4728 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4729
4730 if (dwarf2_read_debug > 1)
4731 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4732 offset.sect_off,
4733 hex_string (signature));
4734
4735 info_ptr += length;
4736 }
4737 }
4738
4739 return types_htab;
4740 }
4741
4742 /* Create the hash table of all entries in the .debug_types section,
4743 and initialize all_type_units.
4744 The result is zero if there is an error (e.g. missing .debug_types section),
4745 otherwise non-zero. */
4746
4747 static int
4748 create_all_type_units (struct objfile *objfile)
4749 {
4750 htab_t types_htab;
4751 struct signatured_type **iter;
4752
4753 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4754 if (types_htab == NULL)
4755 {
4756 dwarf2_per_objfile->signatured_types = NULL;
4757 return 0;
4758 }
4759
4760 dwarf2_per_objfile->signatured_types = types_htab;
4761
4762 dwarf2_per_objfile->n_type_units
4763 = dwarf2_per_objfile->n_allocated_type_units
4764 = htab_elements (types_htab);
4765 dwarf2_per_objfile->all_type_units
4766 = xmalloc (dwarf2_per_objfile->n_type_units
4767 * sizeof (struct signatured_type *));
4768 iter = &dwarf2_per_objfile->all_type_units[0];
4769 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4770 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4771 == dwarf2_per_objfile->n_type_units);
4772
4773 return 1;
4774 }
4775
4776 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4777 If SLOT is non-NULL, it is the entry to use in the hash table.
4778 Otherwise we find one. */
4779
4780 static struct signatured_type *
4781 add_type_unit (ULONGEST sig, void **slot)
4782 {
4783 struct objfile *objfile = dwarf2_per_objfile->objfile;
4784 int n_type_units = dwarf2_per_objfile->n_type_units;
4785 struct signatured_type *sig_type;
4786
4787 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4788 ++n_type_units;
4789 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4790 {
4791 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4792 dwarf2_per_objfile->n_allocated_type_units = 1;
4793 dwarf2_per_objfile->n_allocated_type_units *= 2;
4794 dwarf2_per_objfile->all_type_units
4795 = xrealloc (dwarf2_per_objfile->all_type_units,
4796 dwarf2_per_objfile->n_allocated_type_units
4797 * sizeof (struct signatured_type *));
4798 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4799 }
4800 dwarf2_per_objfile->n_type_units = n_type_units;
4801
4802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4803 struct signatured_type);
4804 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4805 sig_type->signature = sig;
4806 sig_type->per_cu.is_debug_types = 1;
4807 if (dwarf2_per_objfile->using_index)
4808 {
4809 sig_type->per_cu.v.quick =
4810 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4811 struct dwarf2_per_cu_quick_data);
4812 }
4813
4814 if (slot == NULL)
4815 {
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 sig_type, INSERT);
4818 }
4819 gdb_assert (*slot == NULL);
4820 *slot = sig_type;
4821 /* The rest of sig_type must be filled in by the caller. */
4822 return sig_type;
4823 }
4824
4825 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4826 Fill in SIG_ENTRY with DWO_ENTRY. */
4827
4828 static void
4829 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4830 struct signatured_type *sig_entry,
4831 struct dwo_unit *dwo_entry)
4832 {
4833 /* Make sure we're not clobbering something we don't expect to. */
4834 gdb_assert (! sig_entry->per_cu.queued);
4835 gdb_assert (sig_entry->per_cu.cu == NULL);
4836 if (dwarf2_per_objfile->using_index)
4837 {
4838 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4839 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
4840 }
4841 else
4842 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
4843 gdb_assert (sig_entry->signature == dwo_entry->signature);
4844 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4845 gdb_assert (sig_entry->type_unit_group == NULL);
4846 gdb_assert (sig_entry->dwo_unit == NULL);
4847
4848 sig_entry->per_cu.section = dwo_entry->section;
4849 sig_entry->per_cu.offset = dwo_entry->offset;
4850 sig_entry->per_cu.length = dwo_entry->length;
4851 sig_entry->per_cu.reading_dwo_directly = 1;
4852 sig_entry->per_cu.objfile = objfile;
4853 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4854 sig_entry->dwo_unit = dwo_entry;
4855 }
4856
4857 /* Subroutine of lookup_signatured_type.
4858 If we haven't read the TU yet, create the signatured_type data structure
4859 for a TU to be read in directly from a DWO file, bypassing the stub.
4860 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4861 using .gdb_index, then when reading a CU we want to stay in the DWO file
4862 containing that CU. Otherwise we could end up reading several other DWO
4863 files (due to comdat folding) to process the transitive closure of all the
4864 mentioned TUs, and that can be slow. The current DWO file will have every
4865 type signature that it needs.
4866 We only do this for .gdb_index because in the psymtab case we already have
4867 to read all the DWOs to build the type unit groups. */
4868
4869 static struct signatured_type *
4870 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4871 {
4872 struct objfile *objfile = dwarf2_per_objfile->objfile;
4873 struct dwo_file *dwo_file;
4874 struct dwo_unit find_dwo_entry, *dwo_entry;
4875 struct signatured_type find_sig_entry, *sig_entry;
4876 void **slot;
4877
4878 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4879
4880 /* If TU skeletons have been removed then we may not have read in any
4881 TUs yet. */
4882 if (dwarf2_per_objfile->signatured_types == NULL)
4883 {
4884 dwarf2_per_objfile->signatured_types
4885 = allocate_signatured_type_table (objfile);
4886 }
4887
4888 /* We only ever need to read in one copy of a signatured type.
4889 Use the global signatured_types array to do our own comdat-folding
4890 of types. If this is the first time we're reading this TU, and
4891 the TU has an entry in .gdb_index, replace the recorded data from
4892 .gdb_index with this TU. */
4893
4894 find_sig_entry.signature = sig;
4895 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4896 &find_sig_entry, INSERT);
4897 sig_entry = *slot;
4898
4899 /* We can get here with the TU already read, *or* in the process of being
4900 read. Don't reassign the global entry to point to this DWO if that's
4901 the case. Also note that if the TU is already being read, it may not
4902 have come from a DWO, the program may be a mix of Fission-compiled
4903 code and non-Fission-compiled code. */
4904
4905 /* Have we already tried to read this TU?
4906 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4907 needn't exist in the global table yet). */
4908 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
4909 return sig_entry;
4910
4911 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4912 dwo_unit of the TU itself. */
4913 dwo_file = cu->dwo_unit->dwo_file;
4914
4915 /* Ok, this is the first time we're reading this TU. */
4916 if (dwo_file->tus == NULL)
4917 return NULL;
4918 find_dwo_entry.signature = sig;
4919 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4920 if (dwo_entry == NULL)
4921 return NULL;
4922
4923 /* If the global table doesn't have an entry for this TU, add one. */
4924 if (sig_entry == NULL)
4925 sig_entry = add_type_unit (sig, slot);
4926
4927 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4928 sig_entry->per_cu.tu_read = 1;
4929 return sig_entry;
4930 }
4931
4932 /* Subroutine of lookup_signatured_type.
4933 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4934 then try the DWP file. If the TU stub (skeleton) has been removed then
4935 it won't be in .gdb_index. */
4936
4937 static struct signatured_type *
4938 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4939 {
4940 struct objfile *objfile = dwarf2_per_objfile->objfile;
4941 struct dwp_file *dwp_file = get_dwp_file ();
4942 struct dwo_unit *dwo_entry;
4943 struct signatured_type find_sig_entry, *sig_entry;
4944 void **slot;
4945
4946 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4947 gdb_assert (dwp_file != NULL);
4948
4949 /* If TU skeletons have been removed then we may not have read in any
4950 TUs yet. */
4951 if (dwarf2_per_objfile->signatured_types == NULL)
4952 {
4953 dwarf2_per_objfile->signatured_types
4954 = allocate_signatured_type_table (objfile);
4955 }
4956
4957 find_sig_entry.signature = sig;
4958 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4959 &find_sig_entry, INSERT);
4960 sig_entry = *slot;
4961
4962 /* Have we already tried to read this TU?
4963 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4964 needn't exist in the global table yet). */
4965 if (sig_entry != NULL)
4966 return sig_entry;
4967
4968 if (dwp_file->tus == NULL)
4969 return NULL;
4970 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4971 sig, 1 /* is_debug_types */);
4972 if (dwo_entry == NULL)
4973 return NULL;
4974
4975 sig_entry = add_type_unit (sig, slot);
4976 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4977
4978 return sig_entry;
4979 }
4980
4981 /* Lookup a signature based type for DW_FORM_ref_sig8.
4982 Returns NULL if signature SIG is not present in the table.
4983 It is up to the caller to complain about this. */
4984
4985 static struct signatured_type *
4986 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4987 {
4988 if (cu->dwo_unit
4989 && dwarf2_per_objfile->using_index)
4990 {
4991 /* We're in a DWO/DWP file, and we're using .gdb_index.
4992 These cases require special processing. */
4993 if (get_dwp_file () == NULL)
4994 return lookup_dwo_signatured_type (cu, sig);
4995 else
4996 return lookup_dwp_signatured_type (cu, sig);
4997 }
4998 else
4999 {
5000 struct signatured_type find_entry, *entry;
5001
5002 if (dwarf2_per_objfile->signatured_types == NULL)
5003 return NULL;
5004 find_entry.signature = sig;
5005 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5006 return entry;
5007 }
5008 }
5009 \f
5010 /* Low level DIE reading support. */
5011
5012 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5013
5014 static void
5015 init_cu_die_reader (struct die_reader_specs *reader,
5016 struct dwarf2_cu *cu,
5017 struct dwarf2_section_info *section,
5018 struct dwo_file *dwo_file)
5019 {
5020 gdb_assert (section->readin && section->buffer != NULL);
5021 reader->abfd = get_section_bfd_owner (section);
5022 reader->cu = cu;
5023 reader->dwo_file = dwo_file;
5024 reader->die_section = section;
5025 reader->buffer = section->buffer;
5026 reader->buffer_end = section->buffer + section->size;
5027 reader->comp_dir = NULL;
5028 }
5029
5030 /* Subroutine of init_cutu_and_read_dies to simplify it.
5031 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5032 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5033 already.
5034
5035 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5036 from it to the DIE in the DWO. If NULL we are skipping the stub.
5037 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5038 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
5039 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5040 STUB_COMP_DIR may be non-NULL.
5041 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5042 are filled in with the info of the DIE from the DWO file.
5043 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5044 provided an abbrev table to use.
5045 The result is non-zero if a valid (non-dummy) DIE was found. */
5046
5047 static int
5048 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5049 struct dwo_unit *dwo_unit,
5050 int abbrev_table_provided,
5051 struct die_info *stub_comp_unit_die,
5052 const char *stub_comp_dir,
5053 struct die_reader_specs *result_reader,
5054 const gdb_byte **result_info_ptr,
5055 struct die_info **result_comp_unit_die,
5056 int *result_has_children)
5057 {
5058 struct objfile *objfile = dwarf2_per_objfile->objfile;
5059 struct dwarf2_cu *cu = this_cu->cu;
5060 struct dwarf2_section_info *section;
5061 bfd *abfd;
5062 const gdb_byte *begin_info_ptr, *info_ptr;
5063 ULONGEST signature; /* Or dwo_id. */
5064 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5065 int i,num_extra_attrs;
5066 struct dwarf2_section_info *dwo_abbrev_section;
5067 struct attribute *attr;
5068 struct die_info *comp_unit_die;
5069
5070 /* At most one of these may be provided. */
5071 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
5072
5073 /* These attributes aren't processed until later:
5074 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
5075 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5076 referenced later. However, these attributes are found in the stub
5077 which we won't have later. In order to not impose this complication
5078 on the rest of the code, we read them here and copy them to the
5079 DWO CU/TU die. */
5080
5081 stmt_list = NULL;
5082 low_pc = NULL;
5083 high_pc = NULL;
5084 ranges = NULL;
5085 comp_dir = NULL;
5086
5087 if (stub_comp_unit_die != NULL)
5088 {
5089 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5090 DWO file. */
5091 if (! this_cu->is_debug_types)
5092 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5093 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5094 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5095 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5096 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5097
5098 /* There should be a DW_AT_addr_base attribute here (if needed).
5099 We need the value before we can process DW_FORM_GNU_addr_index. */
5100 cu->addr_base = 0;
5101 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5102 if (attr)
5103 cu->addr_base = DW_UNSND (attr);
5104
5105 /* There should be a DW_AT_ranges_base attribute here (if needed).
5106 We need the value before we can process DW_AT_ranges. */
5107 cu->ranges_base = 0;
5108 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5109 if (attr)
5110 cu->ranges_base = DW_UNSND (attr);
5111 }
5112 else if (stub_comp_dir != NULL)
5113 {
5114 /* Reconstruct the comp_dir attribute to simplify the code below. */
5115 comp_dir = (struct attribute *)
5116 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5117 comp_dir->name = DW_AT_comp_dir;
5118 comp_dir->form = DW_FORM_string;
5119 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5120 DW_STRING (comp_dir) = stub_comp_dir;
5121 }
5122
5123 /* Set up for reading the DWO CU/TU. */
5124 cu->dwo_unit = dwo_unit;
5125 section = dwo_unit->section;
5126 dwarf2_read_section (objfile, section);
5127 abfd = get_section_bfd_owner (section);
5128 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5129 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5130 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5131
5132 if (this_cu->is_debug_types)
5133 {
5134 ULONGEST header_signature;
5135 cu_offset type_offset_in_tu;
5136 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5137
5138 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5139 dwo_abbrev_section,
5140 info_ptr,
5141 &header_signature,
5142 &type_offset_in_tu);
5143 /* This is not an assert because it can be caused by bad debug info. */
5144 if (sig_type->signature != header_signature)
5145 {
5146 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5147 " TU at offset 0x%x [in module %s]"),
5148 hex_string (sig_type->signature),
5149 hex_string (header_signature),
5150 dwo_unit->offset.sect_off,
5151 bfd_get_filename (abfd));
5152 }
5153 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5154 /* For DWOs coming from DWP files, we don't know the CU length
5155 nor the type's offset in the TU until now. */
5156 dwo_unit->length = get_cu_length (&cu->header);
5157 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5158
5159 /* Establish the type offset that can be used to lookup the type.
5160 For DWO files, we don't know it until now. */
5161 sig_type->type_offset_in_section.sect_off =
5162 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5163 }
5164 else
5165 {
5166 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5167 dwo_abbrev_section,
5168 info_ptr, 0);
5169 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5170 /* For DWOs coming from DWP files, we don't know the CU length
5171 until now. */
5172 dwo_unit->length = get_cu_length (&cu->header);
5173 }
5174
5175 /* Replace the CU's original abbrev table with the DWO's.
5176 Reminder: We can't read the abbrev table until we've read the header. */
5177 if (abbrev_table_provided)
5178 {
5179 /* Don't free the provided abbrev table, the caller of
5180 init_cutu_and_read_dies owns it. */
5181 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5182 /* Ensure the DWO abbrev table gets freed. */
5183 make_cleanup (dwarf2_free_abbrev_table, cu);
5184 }
5185 else
5186 {
5187 dwarf2_free_abbrev_table (cu);
5188 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5189 /* Leave any existing abbrev table cleanup as is. */
5190 }
5191
5192 /* Read in the die, but leave space to copy over the attributes
5193 from the stub. This has the benefit of simplifying the rest of
5194 the code - all the work to maintain the illusion of a single
5195 DW_TAG_{compile,type}_unit DIE is done here. */
5196 num_extra_attrs = ((stmt_list != NULL)
5197 + (low_pc != NULL)
5198 + (high_pc != NULL)
5199 + (ranges != NULL)
5200 + (comp_dir != NULL));
5201 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5202 result_has_children, num_extra_attrs);
5203
5204 /* Copy over the attributes from the stub to the DIE we just read in. */
5205 comp_unit_die = *result_comp_unit_die;
5206 i = comp_unit_die->num_attrs;
5207 if (stmt_list != NULL)
5208 comp_unit_die->attrs[i++] = *stmt_list;
5209 if (low_pc != NULL)
5210 comp_unit_die->attrs[i++] = *low_pc;
5211 if (high_pc != NULL)
5212 comp_unit_die->attrs[i++] = *high_pc;
5213 if (ranges != NULL)
5214 comp_unit_die->attrs[i++] = *ranges;
5215 if (comp_dir != NULL)
5216 comp_unit_die->attrs[i++] = *comp_dir;
5217 comp_unit_die->num_attrs += num_extra_attrs;
5218
5219 if (dwarf2_die_debug)
5220 {
5221 fprintf_unfiltered (gdb_stdlog,
5222 "Read die from %s@0x%x of %s:\n",
5223 get_section_name (section),
5224 (unsigned) (begin_info_ptr - section->buffer),
5225 bfd_get_filename (abfd));
5226 dump_die (comp_unit_die, dwarf2_die_debug);
5227 }
5228
5229 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5230 TUs by skipping the stub and going directly to the entry in the DWO file.
5231 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5232 to get it via circuitous means. Blech. */
5233 if (comp_dir != NULL)
5234 result_reader->comp_dir = DW_STRING (comp_dir);
5235
5236 /* Skip dummy compilation units. */
5237 if (info_ptr >= begin_info_ptr + dwo_unit->length
5238 || peek_abbrev_code (abfd, info_ptr) == 0)
5239 return 0;
5240
5241 *result_info_ptr = info_ptr;
5242 return 1;
5243 }
5244
5245 /* Subroutine of init_cutu_and_read_dies to simplify it.
5246 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5247 Returns NULL if the specified DWO unit cannot be found. */
5248
5249 static struct dwo_unit *
5250 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5251 struct die_info *comp_unit_die)
5252 {
5253 struct dwarf2_cu *cu = this_cu->cu;
5254 struct attribute *attr;
5255 ULONGEST signature;
5256 struct dwo_unit *dwo_unit;
5257 const char *comp_dir, *dwo_name;
5258
5259 gdb_assert (cu != NULL);
5260
5261 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5262 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5263 gdb_assert (attr != NULL);
5264 dwo_name = DW_STRING (attr);
5265 comp_dir = NULL;
5266 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5267 if (attr)
5268 comp_dir = DW_STRING (attr);
5269
5270 if (this_cu->is_debug_types)
5271 {
5272 struct signatured_type *sig_type;
5273
5274 /* Since this_cu is the first member of struct signatured_type,
5275 we can go from a pointer to one to a pointer to the other. */
5276 sig_type = (struct signatured_type *) this_cu;
5277 signature = sig_type->signature;
5278 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5279 }
5280 else
5281 {
5282 struct attribute *attr;
5283
5284 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5285 if (! attr)
5286 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5287 " [in module %s]"),
5288 dwo_name, objfile_name (this_cu->objfile));
5289 signature = DW_UNSND (attr);
5290 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5291 signature);
5292 }
5293
5294 return dwo_unit;
5295 }
5296
5297 /* Subroutine of init_cutu_and_read_dies to simplify it.
5298 See it for a description of the parameters.
5299 Read a TU directly from a DWO file, bypassing the stub.
5300
5301 Note: This function could be a little bit simpler if we shared cleanups
5302 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5303 to do, so we keep this function self-contained. Or we could move this
5304 into our caller, but it's complex enough already. */
5305
5306 static void
5307 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5308 int use_existing_cu, int keep,
5309 die_reader_func_ftype *die_reader_func,
5310 void *data)
5311 {
5312 struct dwarf2_cu *cu;
5313 struct signatured_type *sig_type;
5314 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5315 struct die_reader_specs reader;
5316 const gdb_byte *info_ptr;
5317 struct die_info *comp_unit_die;
5318 int has_children;
5319
5320 /* Verify we can do the following downcast, and that we have the
5321 data we need. */
5322 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5323 sig_type = (struct signatured_type *) this_cu;
5324 gdb_assert (sig_type->dwo_unit != NULL);
5325
5326 cleanups = make_cleanup (null_cleanup, NULL);
5327
5328 if (use_existing_cu && this_cu->cu != NULL)
5329 {
5330 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5331 cu = this_cu->cu;
5332 /* There's no need to do the rereading_dwo_cu handling that
5333 init_cutu_and_read_dies does since we don't read the stub. */
5334 }
5335 else
5336 {
5337 /* If !use_existing_cu, this_cu->cu must be NULL. */
5338 gdb_assert (this_cu->cu == NULL);
5339 cu = xmalloc (sizeof (*cu));
5340 init_one_comp_unit (cu, this_cu);
5341 /* If an error occurs while loading, release our storage. */
5342 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5343 }
5344
5345 /* A future optimization, if needed, would be to use an existing
5346 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5347 could share abbrev tables. */
5348
5349 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5350 0 /* abbrev_table_provided */,
5351 NULL /* stub_comp_unit_die */,
5352 sig_type->dwo_unit->dwo_file->comp_dir,
5353 &reader, &info_ptr,
5354 &comp_unit_die, &has_children) == 0)
5355 {
5356 /* Dummy die. */
5357 do_cleanups (cleanups);
5358 return;
5359 }
5360
5361 /* All the "real" work is done here. */
5362 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5363
5364 /* This duplicates the code in init_cutu_and_read_dies,
5365 but the alternative is making the latter more complex.
5366 This function is only for the special case of using DWO files directly:
5367 no point in overly complicating the general case just to handle this. */
5368 if (free_cu_cleanup != NULL)
5369 {
5370 if (keep)
5371 {
5372 /* We've successfully allocated this compilation unit. Let our
5373 caller clean it up when finished with it. */
5374 discard_cleanups (free_cu_cleanup);
5375
5376 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5377 So we have to manually free the abbrev table. */
5378 dwarf2_free_abbrev_table (cu);
5379
5380 /* Link this CU into read_in_chain. */
5381 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5382 dwarf2_per_objfile->read_in_chain = this_cu;
5383 }
5384 else
5385 do_cleanups (free_cu_cleanup);
5386 }
5387
5388 do_cleanups (cleanups);
5389 }
5390
5391 /* Initialize a CU (or TU) and read its DIEs.
5392 If the CU defers to a DWO file, read the DWO file as well.
5393
5394 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5395 Otherwise the table specified in the comp unit header is read in and used.
5396 This is an optimization for when we already have the abbrev table.
5397
5398 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5399 Otherwise, a new CU is allocated with xmalloc.
5400
5401 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5402 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5403
5404 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5405 linker) then DIE_READER_FUNC will not get called. */
5406
5407 static void
5408 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5409 struct abbrev_table *abbrev_table,
5410 int use_existing_cu, int keep,
5411 die_reader_func_ftype *die_reader_func,
5412 void *data)
5413 {
5414 struct objfile *objfile = dwarf2_per_objfile->objfile;
5415 struct dwarf2_section_info *section = this_cu->section;
5416 bfd *abfd = get_section_bfd_owner (section);
5417 struct dwarf2_cu *cu;
5418 const gdb_byte *begin_info_ptr, *info_ptr;
5419 struct die_reader_specs reader;
5420 struct die_info *comp_unit_die;
5421 int has_children;
5422 struct attribute *attr;
5423 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5424 struct signatured_type *sig_type = NULL;
5425 struct dwarf2_section_info *abbrev_section;
5426 /* Non-zero if CU currently points to a DWO file and we need to
5427 reread it. When this happens we need to reread the skeleton die
5428 before we can reread the DWO file (this only applies to CUs, not TUs). */
5429 int rereading_dwo_cu = 0;
5430
5431 if (dwarf2_die_debug)
5432 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5433 this_cu->is_debug_types ? "type" : "comp",
5434 this_cu->offset.sect_off);
5435
5436 if (use_existing_cu)
5437 gdb_assert (keep);
5438
5439 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5440 file (instead of going through the stub), short-circuit all of this. */
5441 if (this_cu->reading_dwo_directly)
5442 {
5443 /* Narrow down the scope of possibilities to have to understand. */
5444 gdb_assert (this_cu->is_debug_types);
5445 gdb_assert (abbrev_table == NULL);
5446 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5447 die_reader_func, data);
5448 return;
5449 }
5450
5451 cleanups = make_cleanup (null_cleanup, NULL);
5452
5453 /* This is cheap if the section is already read in. */
5454 dwarf2_read_section (objfile, section);
5455
5456 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5457
5458 abbrev_section = get_abbrev_section_for_cu (this_cu);
5459
5460 if (use_existing_cu && this_cu->cu != NULL)
5461 {
5462 cu = this_cu->cu;
5463 /* If this CU is from a DWO file we need to start over, we need to
5464 refetch the attributes from the skeleton CU.
5465 This could be optimized by retrieving those attributes from when we
5466 were here the first time: the previous comp_unit_die was stored in
5467 comp_unit_obstack. But there's no data yet that we need this
5468 optimization. */
5469 if (cu->dwo_unit != NULL)
5470 rereading_dwo_cu = 1;
5471 }
5472 else
5473 {
5474 /* If !use_existing_cu, this_cu->cu must be NULL. */
5475 gdb_assert (this_cu->cu == NULL);
5476 cu = xmalloc (sizeof (*cu));
5477 init_one_comp_unit (cu, this_cu);
5478 /* If an error occurs while loading, release our storage. */
5479 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5480 }
5481
5482 /* Get the header. */
5483 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5484 {
5485 /* We already have the header, there's no need to read it in again. */
5486 info_ptr += cu->header.first_die_offset.cu_off;
5487 }
5488 else
5489 {
5490 if (this_cu->is_debug_types)
5491 {
5492 ULONGEST signature;
5493 cu_offset type_offset_in_tu;
5494
5495 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5496 abbrev_section, info_ptr,
5497 &signature,
5498 &type_offset_in_tu);
5499
5500 /* Since per_cu is the first member of struct signatured_type,
5501 we can go from a pointer to one to a pointer to the other. */
5502 sig_type = (struct signatured_type *) this_cu;
5503 gdb_assert (sig_type->signature == signature);
5504 gdb_assert (sig_type->type_offset_in_tu.cu_off
5505 == type_offset_in_tu.cu_off);
5506 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5507
5508 /* LENGTH has not been set yet for type units if we're
5509 using .gdb_index. */
5510 this_cu->length = get_cu_length (&cu->header);
5511
5512 /* Establish the type offset that can be used to lookup the type. */
5513 sig_type->type_offset_in_section.sect_off =
5514 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5515 }
5516 else
5517 {
5518 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5519 abbrev_section,
5520 info_ptr, 0);
5521
5522 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5523 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5524 }
5525 }
5526
5527 /* Skip dummy compilation units. */
5528 if (info_ptr >= begin_info_ptr + this_cu->length
5529 || peek_abbrev_code (abfd, info_ptr) == 0)
5530 {
5531 do_cleanups (cleanups);
5532 return;
5533 }
5534
5535 /* If we don't have them yet, read the abbrevs for this compilation unit.
5536 And if we need to read them now, make sure they're freed when we're
5537 done. Note that it's important that if the CU had an abbrev table
5538 on entry we don't free it when we're done: Somewhere up the call stack
5539 it may be in use. */
5540 if (abbrev_table != NULL)
5541 {
5542 gdb_assert (cu->abbrev_table == NULL);
5543 gdb_assert (cu->header.abbrev_offset.sect_off
5544 == abbrev_table->offset.sect_off);
5545 cu->abbrev_table = abbrev_table;
5546 }
5547 else if (cu->abbrev_table == NULL)
5548 {
5549 dwarf2_read_abbrevs (cu, abbrev_section);
5550 make_cleanup (dwarf2_free_abbrev_table, cu);
5551 }
5552 else if (rereading_dwo_cu)
5553 {
5554 dwarf2_free_abbrev_table (cu);
5555 dwarf2_read_abbrevs (cu, abbrev_section);
5556 }
5557
5558 /* Read the top level CU/TU die. */
5559 init_cu_die_reader (&reader, cu, section, NULL);
5560 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5561
5562 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5563 from the DWO file.
5564 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5565 DWO CU, that this test will fail (the attribute will not be present). */
5566 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5567 if (attr)
5568 {
5569 struct dwo_unit *dwo_unit;
5570 struct die_info *dwo_comp_unit_die;
5571
5572 if (has_children)
5573 {
5574 complaint (&symfile_complaints,
5575 _("compilation unit with DW_AT_GNU_dwo_name"
5576 " has children (offset 0x%x) [in module %s]"),
5577 this_cu->offset.sect_off, bfd_get_filename (abfd));
5578 }
5579 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5580 if (dwo_unit != NULL)
5581 {
5582 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5583 abbrev_table != NULL,
5584 comp_unit_die, NULL,
5585 &reader, &info_ptr,
5586 &dwo_comp_unit_die, &has_children) == 0)
5587 {
5588 /* Dummy die. */
5589 do_cleanups (cleanups);
5590 return;
5591 }
5592 comp_unit_die = dwo_comp_unit_die;
5593 }
5594 else
5595 {
5596 /* Yikes, we couldn't find the rest of the DIE, we only have
5597 the stub. A complaint has already been logged. There's
5598 not much more we can do except pass on the stub DIE to
5599 die_reader_func. We don't want to throw an error on bad
5600 debug info. */
5601 }
5602 }
5603
5604 /* All of the above is setup for this call. Yikes. */
5605 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5606
5607 /* Done, clean up. */
5608 if (free_cu_cleanup != NULL)
5609 {
5610 if (keep)
5611 {
5612 /* We've successfully allocated this compilation unit. Let our
5613 caller clean it up when finished with it. */
5614 discard_cleanups (free_cu_cleanup);
5615
5616 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5617 So we have to manually free the abbrev table. */
5618 dwarf2_free_abbrev_table (cu);
5619
5620 /* Link this CU into read_in_chain. */
5621 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5622 dwarf2_per_objfile->read_in_chain = this_cu;
5623 }
5624 else
5625 do_cleanups (free_cu_cleanup);
5626 }
5627
5628 do_cleanups (cleanups);
5629 }
5630
5631 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5632 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5633 to have already done the lookup to find the DWO file).
5634
5635 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5636 THIS_CU->is_debug_types, but nothing else.
5637
5638 We fill in THIS_CU->length.
5639
5640 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5641 linker) then DIE_READER_FUNC will not get called.
5642
5643 THIS_CU->cu is always freed when done.
5644 This is done in order to not leave THIS_CU->cu in a state where we have
5645 to care whether it refers to the "main" CU or the DWO CU. */
5646
5647 static void
5648 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5649 struct dwo_file *dwo_file,
5650 die_reader_func_ftype *die_reader_func,
5651 void *data)
5652 {
5653 struct objfile *objfile = dwarf2_per_objfile->objfile;
5654 struct dwarf2_section_info *section = this_cu->section;
5655 bfd *abfd = get_section_bfd_owner (section);
5656 struct dwarf2_section_info *abbrev_section;
5657 struct dwarf2_cu cu;
5658 const gdb_byte *begin_info_ptr, *info_ptr;
5659 struct die_reader_specs reader;
5660 struct cleanup *cleanups;
5661 struct die_info *comp_unit_die;
5662 int has_children;
5663
5664 if (dwarf2_die_debug)
5665 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5666 this_cu->is_debug_types ? "type" : "comp",
5667 this_cu->offset.sect_off);
5668
5669 gdb_assert (this_cu->cu == NULL);
5670
5671 abbrev_section = (dwo_file != NULL
5672 ? &dwo_file->sections.abbrev
5673 : get_abbrev_section_for_cu (this_cu));
5674
5675 /* This is cheap if the section is already read in. */
5676 dwarf2_read_section (objfile, section);
5677
5678 init_one_comp_unit (&cu, this_cu);
5679
5680 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5681
5682 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5683 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5684 abbrev_section, info_ptr,
5685 this_cu->is_debug_types);
5686
5687 this_cu->length = get_cu_length (&cu.header);
5688
5689 /* Skip dummy compilation units. */
5690 if (info_ptr >= begin_info_ptr + this_cu->length
5691 || peek_abbrev_code (abfd, info_ptr) == 0)
5692 {
5693 do_cleanups (cleanups);
5694 return;
5695 }
5696
5697 dwarf2_read_abbrevs (&cu, abbrev_section);
5698 make_cleanup (dwarf2_free_abbrev_table, &cu);
5699
5700 init_cu_die_reader (&reader, &cu, section, dwo_file);
5701 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5702
5703 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5704
5705 do_cleanups (cleanups);
5706 }
5707
5708 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5709 does not lookup the specified DWO file.
5710 This cannot be used to read DWO files.
5711
5712 THIS_CU->cu is always freed when done.
5713 This is done in order to not leave THIS_CU->cu in a state where we have
5714 to care whether it refers to the "main" CU or the DWO CU.
5715 We can revisit this if the data shows there's a performance issue. */
5716
5717 static void
5718 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5719 die_reader_func_ftype *die_reader_func,
5720 void *data)
5721 {
5722 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
5723 }
5724 \f
5725 /* Type Unit Groups.
5726
5727 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5728 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5729 so that all types coming from the same compilation (.o file) are grouped
5730 together. A future step could be to put the types in the same symtab as
5731 the CU the types ultimately came from. */
5732
5733 static hashval_t
5734 hash_type_unit_group (const void *item)
5735 {
5736 const struct type_unit_group *tu_group = item;
5737
5738 return hash_stmt_list_entry (&tu_group->hash);
5739 }
5740
5741 static int
5742 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5743 {
5744 const struct type_unit_group *lhs = item_lhs;
5745 const struct type_unit_group *rhs = item_rhs;
5746
5747 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5748 }
5749
5750 /* Allocate a hash table for type unit groups. */
5751
5752 static htab_t
5753 allocate_type_unit_groups_table (void)
5754 {
5755 return htab_create_alloc_ex (3,
5756 hash_type_unit_group,
5757 eq_type_unit_group,
5758 NULL,
5759 &dwarf2_per_objfile->objfile->objfile_obstack,
5760 hashtab_obstack_allocate,
5761 dummy_obstack_deallocate);
5762 }
5763
5764 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5765 partial symtabs. We combine several TUs per psymtab to not let the size
5766 of any one psymtab grow too big. */
5767 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5768 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5769
5770 /* Helper routine for get_type_unit_group.
5771 Create the type_unit_group object used to hold one or more TUs. */
5772
5773 static struct type_unit_group *
5774 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5775 {
5776 struct objfile *objfile = dwarf2_per_objfile->objfile;
5777 struct dwarf2_per_cu_data *per_cu;
5778 struct type_unit_group *tu_group;
5779
5780 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5781 struct type_unit_group);
5782 per_cu = &tu_group->per_cu;
5783 per_cu->objfile = objfile;
5784
5785 if (dwarf2_per_objfile->using_index)
5786 {
5787 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5788 struct dwarf2_per_cu_quick_data);
5789 }
5790 else
5791 {
5792 unsigned int line_offset = line_offset_struct.sect_off;
5793 struct partial_symtab *pst;
5794 char *name;
5795
5796 /* Give the symtab a useful name for debug purposes. */
5797 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5798 name = xstrprintf ("<type_units_%d>",
5799 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5800 else
5801 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5802
5803 pst = create_partial_symtab (per_cu, name);
5804 pst->anonymous = 1;
5805
5806 xfree (name);
5807 }
5808
5809 tu_group->hash.dwo_unit = cu->dwo_unit;
5810 tu_group->hash.line_offset = line_offset_struct;
5811
5812 return tu_group;
5813 }
5814
5815 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5816 STMT_LIST is a DW_AT_stmt_list attribute. */
5817
5818 static struct type_unit_group *
5819 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5820 {
5821 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5822 struct type_unit_group *tu_group;
5823 void **slot;
5824 unsigned int line_offset;
5825 struct type_unit_group type_unit_group_for_lookup;
5826
5827 if (dwarf2_per_objfile->type_unit_groups == NULL)
5828 {
5829 dwarf2_per_objfile->type_unit_groups =
5830 allocate_type_unit_groups_table ();
5831 }
5832
5833 /* Do we need to create a new group, or can we use an existing one? */
5834
5835 if (stmt_list)
5836 {
5837 line_offset = DW_UNSND (stmt_list);
5838 ++tu_stats->nr_symtab_sharers;
5839 }
5840 else
5841 {
5842 /* Ugh, no stmt_list. Rare, but we have to handle it.
5843 We can do various things here like create one group per TU or
5844 spread them over multiple groups to split up the expansion work.
5845 To avoid worst case scenarios (too many groups or too large groups)
5846 we, umm, group them in bunches. */
5847 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5848 | (tu_stats->nr_stmt_less_type_units
5849 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5850 ++tu_stats->nr_stmt_less_type_units;
5851 }
5852
5853 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5854 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5855 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5856 &type_unit_group_for_lookup, INSERT);
5857 if (*slot != NULL)
5858 {
5859 tu_group = *slot;
5860 gdb_assert (tu_group != NULL);
5861 }
5862 else
5863 {
5864 sect_offset line_offset_struct;
5865
5866 line_offset_struct.sect_off = line_offset;
5867 tu_group = create_type_unit_group (cu, line_offset_struct);
5868 *slot = tu_group;
5869 ++tu_stats->nr_symtabs;
5870 }
5871
5872 return tu_group;
5873 }
5874 \f
5875 /* Partial symbol tables. */
5876
5877 /* Create a psymtab named NAME and assign it to PER_CU.
5878
5879 The caller must fill in the following details:
5880 dirname, textlow, texthigh. */
5881
5882 static struct partial_symtab *
5883 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5884 {
5885 struct objfile *objfile = per_cu->objfile;
5886 struct partial_symtab *pst;
5887
5888 pst = start_psymtab_common (objfile, objfile->section_offsets,
5889 name, 0,
5890 objfile->global_psymbols.next,
5891 objfile->static_psymbols.next);
5892
5893 pst->psymtabs_addrmap_supported = 1;
5894
5895 /* This is the glue that links PST into GDB's symbol API. */
5896 pst->read_symtab_private = per_cu;
5897 pst->read_symtab = dwarf2_read_symtab;
5898 per_cu->v.psymtab = pst;
5899
5900 return pst;
5901 }
5902
5903 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5904 type. */
5905
5906 struct process_psymtab_comp_unit_data
5907 {
5908 /* True if we are reading a DW_TAG_partial_unit. */
5909
5910 int want_partial_unit;
5911
5912 /* The "pretend" language that is used if the CU doesn't declare a
5913 language. */
5914
5915 enum language pretend_language;
5916 };
5917
5918 /* die_reader_func for process_psymtab_comp_unit. */
5919
5920 static void
5921 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5922 const gdb_byte *info_ptr,
5923 struct die_info *comp_unit_die,
5924 int has_children,
5925 void *data)
5926 {
5927 struct dwarf2_cu *cu = reader->cu;
5928 struct objfile *objfile = cu->objfile;
5929 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5930 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5931 struct attribute *attr;
5932 CORE_ADDR baseaddr;
5933 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5934 struct partial_symtab *pst;
5935 int has_pc_info;
5936 const char *filename;
5937 struct process_psymtab_comp_unit_data *info = data;
5938
5939 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
5940 return;
5941
5942 gdb_assert (! per_cu->is_debug_types);
5943
5944 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
5945
5946 cu->list_in_scope = &file_symbols;
5947
5948 /* Allocate a new partial symbol table structure. */
5949 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5950 if (attr == NULL || !DW_STRING (attr))
5951 filename = "";
5952 else
5953 filename = DW_STRING (attr);
5954
5955 pst = create_partial_symtab (per_cu, filename);
5956
5957 /* This must be done before calling dwarf2_build_include_psymtabs. */
5958 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5959 if (attr != NULL)
5960 pst->dirname = DW_STRING (attr);
5961
5962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5963
5964 dwarf2_find_base_address (comp_unit_die, cu);
5965
5966 /* Possibly set the default values of LOWPC and HIGHPC from
5967 `DW_AT_ranges'. */
5968 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5969 &best_highpc, cu, pst);
5970 if (has_pc_info == 1 && best_lowpc < best_highpc)
5971 /* Store the contiguous range if it is not empty; it can be empty for
5972 CUs with no code. */
5973 addrmap_set_empty (objfile->psymtabs_addrmap,
5974 gdbarch_adjust_dwarf2_addr (gdbarch,
5975 best_lowpc + baseaddr),
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_highpc + baseaddr) - 1,
5978 pst);
5979
5980 /* Check if comp unit has_children.
5981 If so, read the rest of the partial symbols from this comp unit.
5982 If not, there's no more debug_info for this comp unit. */
5983 if (has_children)
5984 {
5985 struct partial_die_info *first_die;
5986 CORE_ADDR lowpc, highpc;
5987
5988 lowpc = ((CORE_ADDR) -1);
5989 highpc = ((CORE_ADDR) 0);
5990
5991 first_die = load_partial_dies (reader, info_ptr, 1);
5992
5993 scan_partial_symbols (first_die, &lowpc, &highpc,
5994 ! has_pc_info, cu);
5995
5996 /* If we didn't find a lowpc, set it to highpc to avoid
5997 complaints from `maint check'. */
5998 if (lowpc == ((CORE_ADDR) -1))
5999 lowpc = highpc;
6000
6001 /* If the compilation unit didn't have an explicit address range,
6002 then use the information extracted from its child dies. */
6003 if (! has_pc_info)
6004 {
6005 best_lowpc = lowpc;
6006 best_highpc = highpc;
6007 }
6008 }
6009 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6010 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
6011
6012 pst->n_global_syms = objfile->global_psymbols.next -
6013 (objfile->global_psymbols.list + pst->globals_offset);
6014 pst->n_static_syms = objfile->static_psymbols.next -
6015 (objfile->static_psymbols.list + pst->statics_offset);
6016 sort_pst_symbols (objfile, pst);
6017
6018 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6019 {
6020 int i;
6021 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6022 struct dwarf2_per_cu_data *iter;
6023
6024 /* Fill in 'dependencies' here; we fill in 'users' in a
6025 post-pass. */
6026 pst->number_of_dependencies = len;
6027 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6028 len * sizeof (struct symtab *));
6029 for (i = 0;
6030 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6031 i, iter);
6032 ++i)
6033 pst->dependencies[i] = iter->v.psymtab;
6034
6035 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6036 }
6037
6038 /* Get the list of files included in the current compilation unit,
6039 and build a psymtab for each of them. */
6040 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6041
6042 if (dwarf2_read_debug)
6043 {
6044 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6045
6046 fprintf_unfiltered (gdb_stdlog,
6047 "Psymtab for %s unit @0x%x: %s - %s"
6048 ", %d global, %d static syms\n",
6049 per_cu->is_debug_types ? "type" : "comp",
6050 per_cu->offset.sect_off,
6051 paddress (gdbarch, pst->textlow),
6052 paddress (gdbarch, pst->texthigh),
6053 pst->n_global_syms, pst->n_static_syms);
6054 }
6055 }
6056
6057 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6058 Process compilation unit THIS_CU for a psymtab. */
6059
6060 static void
6061 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6062 int want_partial_unit,
6063 enum language pretend_language)
6064 {
6065 struct process_psymtab_comp_unit_data info;
6066
6067 /* If this compilation unit was already read in, free the
6068 cached copy in order to read it in again. This is
6069 necessary because we skipped some symbols when we first
6070 read in the compilation unit (see load_partial_dies).
6071 This problem could be avoided, but the benefit is unclear. */
6072 if (this_cu->cu != NULL)
6073 free_one_cached_comp_unit (this_cu);
6074
6075 gdb_assert (! this_cu->is_debug_types);
6076 info.want_partial_unit = want_partial_unit;
6077 info.pretend_language = pretend_language;
6078 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6079 process_psymtab_comp_unit_reader,
6080 &info);
6081
6082 /* Age out any secondary CUs. */
6083 age_cached_comp_units ();
6084 }
6085
6086 /* Reader function for build_type_psymtabs. */
6087
6088 static void
6089 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6090 const gdb_byte *info_ptr,
6091 struct die_info *type_unit_die,
6092 int has_children,
6093 void *data)
6094 {
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct dwarf2_cu *cu = reader->cu;
6097 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6098 struct signatured_type *sig_type;
6099 struct type_unit_group *tu_group;
6100 struct attribute *attr;
6101 struct partial_die_info *first_die;
6102 CORE_ADDR lowpc, highpc;
6103 struct partial_symtab *pst;
6104
6105 gdb_assert (data == NULL);
6106 gdb_assert (per_cu->is_debug_types);
6107 sig_type = (struct signatured_type *) per_cu;
6108
6109 if (! has_children)
6110 return;
6111
6112 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6113 tu_group = get_type_unit_group (cu, attr);
6114
6115 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6116
6117 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6118 cu->list_in_scope = &file_symbols;
6119 pst = create_partial_symtab (per_cu, "");
6120 pst->anonymous = 1;
6121
6122 first_die = load_partial_dies (reader, info_ptr, 1);
6123
6124 lowpc = (CORE_ADDR) -1;
6125 highpc = (CORE_ADDR) 0;
6126 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6127
6128 pst->n_global_syms = objfile->global_psymbols.next -
6129 (objfile->global_psymbols.list + pst->globals_offset);
6130 pst->n_static_syms = objfile->static_psymbols.next -
6131 (objfile->static_psymbols.list + pst->statics_offset);
6132 sort_pst_symbols (objfile, pst);
6133 }
6134
6135 /* Struct used to sort TUs by their abbreviation table offset. */
6136
6137 struct tu_abbrev_offset
6138 {
6139 struct signatured_type *sig_type;
6140 sect_offset abbrev_offset;
6141 };
6142
6143 /* Helper routine for build_type_psymtabs_1, passed to qsort. */
6144
6145 static int
6146 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6147 {
6148 const struct tu_abbrev_offset * const *a = ap;
6149 const struct tu_abbrev_offset * const *b = bp;
6150 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6151 unsigned int boff = (*b)->abbrev_offset.sect_off;
6152
6153 return (aoff > boff) - (aoff < boff);
6154 }
6155
6156 /* Efficiently read all the type units.
6157 This does the bulk of the work for build_type_psymtabs.
6158
6159 The efficiency is because we sort TUs by the abbrev table they use and
6160 only read each abbrev table once. In one program there are 200K TUs
6161 sharing 8K abbrev tables.
6162
6163 The main purpose of this function is to support building the
6164 dwarf2_per_objfile->type_unit_groups table.
6165 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6166 can collapse the search space by grouping them by stmt_list.
6167 The savings can be significant, in the same program from above the 200K TUs
6168 share 8K stmt_list tables.
6169
6170 FUNC is expected to call get_type_unit_group, which will create the
6171 struct type_unit_group if necessary and add it to
6172 dwarf2_per_objfile->type_unit_groups. */
6173
6174 static void
6175 build_type_psymtabs_1 (void)
6176 {
6177 struct objfile *objfile = dwarf2_per_objfile->objfile;
6178 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6179 struct cleanup *cleanups;
6180 struct abbrev_table *abbrev_table;
6181 sect_offset abbrev_offset;
6182 struct tu_abbrev_offset *sorted_by_abbrev;
6183 struct type_unit_group **iter;
6184 int i;
6185
6186 /* It's up to the caller to not call us multiple times. */
6187 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6188
6189 if (dwarf2_per_objfile->n_type_units == 0)
6190 return;
6191
6192 /* TUs typically share abbrev tables, and there can be way more TUs than
6193 abbrev tables. Sort by abbrev table to reduce the number of times we
6194 read each abbrev table in.
6195 Alternatives are to punt or to maintain a cache of abbrev tables.
6196 This is simpler and efficient enough for now.
6197
6198 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6199 symtab to use). Typically TUs with the same abbrev offset have the same
6200 stmt_list value too so in practice this should work well.
6201
6202 The basic algorithm here is:
6203
6204 sort TUs by abbrev table
6205 for each TU with same abbrev table:
6206 read abbrev table if first user
6207 read TU top level DIE
6208 [IWBN if DWO skeletons had DW_AT_stmt_list]
6209 call FUNC */
6210
6211 if (dwarf2_read_debug)
6212 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6213
6214 /* Sort in a separate table to maintain the order of all_type_units
6215 for .gdb_index: TU indices directly index all_type_units. */
6216 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6217 dwarf2_per_objfile->n_type_units);
6218 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6219 {
6220 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6221
6222 sorted_by_abbrev[i].sig_type = sig_type;
6223 sorted_by_abbrev[i].abbrev_offset =
6224 read_abbrev_offset (sig_type->per_cu.section,
6225 sig_type->per_cu.offset);
6226 }
6227 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6228 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6229 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6230
6231 abbrev_offset.sect_off = ~(unsigned) 0;
6232 abbrev_table = NULL;
6233 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6234
6235 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6236 {
6237 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6238
6239 /* Switch to the next abbrev table if necessary. */
6240 if (abbrev_table == NULL
6241 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6242 {
6243 if (abbrev_table != NULL)
6244 {
6245 abbrev_table_free (abbrev_table);
6246 /* Reset to NULL in case abbrev_table_read_table throws
6247 an error: abbrev_table_free_cleanup will get called. */
6248 abbrev_table = NULL;
6249 }
6250 abbrev_offset = tu->abbrev_offset;
6251 abbrev_table =
6252 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6253 abbrev_offset);
6254 ++tu_stats->nr_uniq_abbrev_tables;
6255 }
6256
6257 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6258 build_type_psymtabs_reader, NULL);
6259 }
6260
6261 do_cleanups (cleanups);
6262 }
6263
6264 /* Print collected type unit statistics. */
6265
6266 static void
6267 print_tu_stats (void)
6268 {
6269 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6270
6271 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6272 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6273 dwarf2_per_objfile->n_type_units);
6274 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6275 tu_stats->nr_uniq_abbrev_tables);
6276 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6277 tu_stats->nr_symtabs);
6278 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6279 tu_stats->nr_symtab_sharers);
6280 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6281 tu_stats->nr_stmt_less_type_units);
6282 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6283 tu_stats->nr_all_type_units_reallocs);
6284 }
6285
6286 /* Traversal function for build_type_psymtabs. */
6287
6288 static int
6289 build_type_psymtab_dependencies (void **slot, void *info)
6290 {
6291 struct objfile *objfile = dwarf2_per_objfile->objfile;
6292 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6293 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6294 struct partial_symtab *pst = per_cu->v.psymtab;
6295 int len = VEC_length (sig_type_ptr, tu_group->tus);
6296 struct signatured_type *iter;
6297 int i;
6298
6299 gdb_assert (len > 0);
6300 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6301
6302 pst->number_of_dependencies = len;
6303 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6304 len * sizeof (struct psymtab *));
6305 for (i = 0;
6306 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6307 ++i)
6308 {
6309 gdb_assert (iter->per_cu.is_debug_types);
6310 pst->dependencies[i] = iter->per_cu.v.psymtab;
6311 iter->type_unit_group = tu_group;
6312 }
6313
6314 VEC_free (sig_type_ptr, tu_group->tus);
6315
6316 return 1;
6317 }
6318
6319 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6320 Build partial symbol tables for the .debug_types comp-units. */
6321
6322 static void
6323 build_type_psymtabs (struct objfile *objfile)
6324 {
6325 if (! create_all_type_units (objfile))
6326 return;
6327
6328 build_type_psymtabs_1 ();
6329 }
6330
6331 /* Traversal function for process_skeletonless_type_unit.
6332 Read a TU in a DWO file and build partial symbols for it. */
6333
6334 static int
6335 process_skeletonless_type_unit (void **slot, void *info)
6336 {
6337 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6338 struct objfile *objfile = info;
6339 struct signatured_type find_entry, *entry;
6340
6341 /* If this TU doesn't exist in the global table, add it and read it in. */
6342
6343 if (dwarf2_per_objfile->signatured_types == NULL)
6344 {
6345 dwarf2_per_objfile->signatured_types
6346 = allocate_signatured_type_table (objfile);
6347 }
6348
6349 find_entry.signature = dwo_unit->signature;
6350 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6351 INSERT);
6352 /* If we've already seen this type there's nothing to do. What's happening
6353 is we're doing our own version of comdat-folding here. */
6354 if (*slot != NULL)
6355 return 1;
6356
6357 /* This does the job that create_all_type_units would have done for
6358 this TU. */
6359 entry = add_type_unit (dwo_unit->signature, slot);
6360 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6361 *slot = entry;
6362
6363 /* This does the job that build_type_psymtabs_1 would have done. */
6364 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6365 build_type_psymtabs_reader, NULL);
6366
6367 return 1;
6368 }
6369
6370 /* Traversal function for process_skeletonless_type_units. */
6371
6372 static int
6373 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6374 {
6375 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6376
6377 if (dwo_file->tus != NULL)
6378 {
6379 htab_traverse_noresize (dwo_file->tus,
6380 process_skeletonless_type_unit, info);
6381 }
6382
6383 return 1;
6384 }
6385
6386 /* Scan all TUs of DWO files, verifying we've processed them.
6387 This is needed in case a TU was emitted without its skeleton.
6388 Note: This can't be done until we know what all the DWO files are. */
6389
6390 static void
6391 process_skeletonless_type_units (struct objfile *objfile)
6392 {
6393 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6394 if (get_dwp_file () == NULL
6395 && dwarf2_per_objfile->dwo_files != NULL)
6396 {
6397 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6398 process_dwo_file_for_skeletonless_type_units,
6399 objfile);
6400 }
6401 }
6402
6403 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6404
6405 static void
6406 psymtabs_addrmap_cleanup (void *o)
6407 {
6408 struct objfile *objfile = o;
6409
6410 objfile->psymtabs_addrmap = NULL;
6411 }
6412
6413 /* Compute the 'user' field for each psymtab in OBJFILE. */
6414
6415 static void
6416 set_partial_user (struct objfile *objfile)
6417 {
6418 int i;
6419
6420 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6421 {
6422 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6423 struct partial_symtab *pst = per_cu->v.psymtab;
6424 int j;
6425
6426 if (pst == NULL)
6427 continue;
6428
6429 for (j = 0; j < pst->number_of_dependencies; ++j)
6430 {
6431 /* Set the 'user' field only if it is not already set. */
6432 if (pst->dependencies[j]->user == NULL)
6433 pst->dependencies[j]->user = pst;
6434 }
6435 }
6436 }
6437
6438 /* Build the partial symbol table by doing a quick pass through the
6439 .debug_info and .debug_abbrev sections. */
6440
6441 static void
6442 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6443 {
6444 struct cleanup *back_to, *addrmap_cleanup;
6445 struct obstack temp_obstack;
6446 int i;
6447
6448 if (dwarf2_read_debug)
6449 {
6450 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6451 objfile_name (objfile));
6452 }
6453
6454 dwarf2_per_objfile->reading_partial_symbols = 1;
6455
6456 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6457
6458 /* Any cached compilation units will be linked by the per-objfile
6459 read_in_chain. Make sure to free them when we're done. */
6460 back_to = make_cleanup (free_cached_comp_units, NULL);
6461
6462 build_type_psymtabs (objfile);
6463
6464 create_all_comp_units (objfile);
6465
6466 /* Create a temporary address map on a temporary obstack. We later
6467 copy this to the final obstack. */
6468 obstack_init (&temp_obstack);
6469 make_cleanup_obstack_free (&temp_obstack);
6470 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6471 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6472
6473 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6474 {
6475 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
6476
6477 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6478 }
6479
6480 /* This has to wait until we read the CUs, we need the list of DWOs. */
6481 process_skeletonless_type_units (objfile);
6482
6483 /* Now that all TUs have been processed we can fill in the dependencies. */
6484 if (dwarf2_per_objfile->type_unit_groups != NULL)
6485 {
6486 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6487 build_type_psymtab_dependencies, NULL);
6488 }
6489
6490 if (dwarf2_read_debug)
6491 print_tu_stats ();
6492
6493 set_partial_user (objfile);
6494
6495 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6496 &objfile->objfile_obstack);
6497 discard_cleanups (addrmap_cleanup);
6498
6499 do_cleanups (back_to);
6500
6501 if (dwarf2_read_debug)
6502 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6503 objfile_name (objfile));
6504 }
6505
6506 /* die_reader_func for load_partial_comp_unit. */
6507
6508 static void
6509 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6510 const gdb_byte *info_ptr,
6511 struct die_info *comp_unit_die,
6512 int has_children,
6513 void *data)
6514 {
6515 struct dwarf2_cu *cu = reader->cu;
6516
6517 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6518
6519 /* Check if comp unit has_children.
6520 If so, read the rest of the partial symbols from this comp unit.
6521 If not, there's no more debug_info for this comp unit. */
6522 if (has_children)
6523 load_partial_dies (reader, info_ptr, 0);
6524 }
6525
6526 /* Load the partial DIEs for a secondary CU into memory.
6527 This is also used when rereading a primary CU with load_all_dies. */
6528
6529 static void
6530 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6531 {
6532 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6533 load_partial_comp_unit_reader, NULL);
6534 }
6535
6536 static void
6537 read_comp_units_from_section (struct objfile *objfile,
6538 struct dwarf2_section_info *section,
6539 unsigned int is_dwz,
6540 int *n_allocated,
6541 int *n_comp_units,
6542 struct dwarf2_per_cu_data ***all_comp_units)
6543 {
6544 const gdb_byte *info_ptr;
6545 bfd *abfd = get_section_bfd_owner (section);
6546
6547 if (dwarf2_read_debug)
6548 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6549 get_section_name (section),
6550 get_section_file_name (section));
6551
6552 dwarf2_read_section (objfile, section);
6553
6554 info_ptr = section->buffer;
6555
6556 while (info_ptr < section->buffer + section->size)
6557 {
6558 unsigned int length, initial_length_size;
6559 struct dwarf2_per_cu_data *this_cu;
6560 sect_offset offset;
6561
6562 offset.sect_off = info_ptr - section->buffer;
6563
6564 /* Read just enough information to find out where the next
6565 compilation unit is. */
6566 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6567
6568 /* Save the compilation unit for later lookup. */
6569 this_cu = obstack_alloc (&objfile->objfile_obstack,
6570 sizeof (struct dwarf2_per_cu_data));
6571 memset (this_cu, 0, sizeof (*this_cu));
6572 this_cu->offset = offset;
6573 this_cu->length = length + initial_length_size;
6574 this_cu->is_dwz = is_dwz;
6575 this_cu->objfile = objfile;
6576 this_cu->section = section;
6577
6578 if (*n_comp_units == *n_allocated)
6579 {
6580 *n_allocated *= 2;
6581 *all_comp_units = xrealloc (*all_comp_units,
6582 *n_allocated
6583 * sizeof (struct dwarf2_per_cu_data *));
6584 }
6585 (*all_comp_units)[*n_comp_units] = this_cu;
6586 ++*n_comp_units;
6587
6588 info_ptr = info_ptr + this_cu->length;
6589 }
6590 }
6591
6592 /* Create a list of all compilation units in OBJFILE.
6593 This is only done for -readnow and building partial symtabs. */
6594
6595 static void
6596 create_all_comp_units (struct objfile *objfile)
6597 {
6598 int n_allocated;
6599 int n_comp_units;
6600 struct dwarf2_per_cu_data **all_comp_units;
6601 struct dwz_file *dwz;
6602
6603 n_comp_units = 0;
6604 n_allocated = 10;
6605 all_comp_units = xmalloc (n_allocated
6606 * sizeof (struct dwarf2_per_cu_data *));
6607
6608 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6609 &n_allocated, &n_comp_units, &all_comp_units);
6610
6611 dwz = dwarf2_get_dwz_file ();
6612 if (dwz != NULL)
6613 read_comp_units_from_section (objfile, &dwz->info, 1,
6614 &n_allocated, &n_comp_units,
6615 &all_comp_units);
6616
6617 dwarf2_per_objfile->all_comp_units
6618 = obstack_alloc (&objfile->objfile_obstack,
6619 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6620 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6621 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6622 xfree (all_comp_units);
6623 dwarf2_per_objfile->n_comp_units = n_comp_units;
6624 }
6625
6626 /* Process all loaded DIEs for compilation unit CU, starting at
6627 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
6628 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6629 DW_AT_ranges). See the comments of add_partial_subprogram on how
6630 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
6631
6632 static void
6633 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6634 CORE_ADDR *highpc, int set_addrmap,
6635 struct dwarf2_cu *cu)
6636 {
6637 struct partial_die_info *pdi;
6638
6639 /* Now, march along the PDI's, descending into ones which have
6640 interesting children but skipping the children of the other ones,
6641 until we reach the end of the compilation unit. */
6642
6643 pdi = first_die;
6644
6645 while (pdi != NULL)
6646 {
6647 fixup_partial_die (pdi, cu);
6648
6649 /* Anonymous namespaces or modules have no name but have interesting
6650 children, so we need to look at them. Ditto for anonymous
6651 enums. */
6652
6653 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6654 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6655 || pdi->tag == DW_TAG_imported_unit)
6656 {
6657 switch (pdi->tag)
6658 {
6659 case DW_TAG_subprogram:
6660 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
6661 break;
6662 case DW_TAG_constant:
6663 case DW_TAG_variable:
6664 case DW_TAG_typedef:
6665 case DW_TAG_union_type:
6666 if (!pdi->is_declaration)
6667 {
6668 add_partial_symbol (pdi, cu);
6669 }
6670 break;
6671 case DW_TAG_class_type:
6672 case DW_TAG_interface_type:
6673 case DW_TAG_structure_type:
6674 if (!pdi->is_declaration)
6675 {
6676 add_partial_symbol (pdi, cu);
6677 }
6678 break;
6679 case DW_TAG_enumeration_type:
6680 if (!pdi->is_declaration)
6681 add_partial_enumeration (pdi, cu);
6682 break;
6683 case DW_TAG_base_type:
6684 case DW_TAG_subrange_type:
6685 /* File scope base type definitions are added to the partial
6686 symbol table. */
6687 add_partial_symbol (pdi, cu);
6688 break;
6689 case DW_TAG_namespace:
6690 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
6691 break;
6692 case DW_TAG_module:
6693 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
6694 break;
6695 case DW_TAG_imported_unit:
6696 {
6697 struct dwarf2_per_cu_data *per_cu;
6698
6699 /* For now we don't handle imported units in type units. */
6700 if (cu->per_cu->is_debug_types)
6701 {
6702 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6703 " supported in type units [in module %s]"),
6704 objfile_name (cu->objfile));
6705 }
6706
6707 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6708 pdi->is_dwz,
6709 cu->objfile);
6710
6711 /* Go read the partial unit, if needed. */
6712 if (per_cu->v.psymtab == NULL)
6713 process_psymtab_comp_unit (per_cu, 1, cu->language);
6714
6715 VEC_safe_push (dwarf2_per_cu_ptr,
6716 cu->per_cu->imported_symtabs, per_cu);
6717 }
6718 break;
6719 case DW_TAG_imported_declaration:
6720 add_partial_symbol (pdi, cu);
6721 break;
6722 default:
6723 break;
6724 }
6725 }
6726
6727 /* If the die has a sibling, skip to the sibling. */
6728
6729 pdi = pdi->die_sibling;
6730 }
6731 }
6732
6733 /* Functions used to compute the fully scoped name of a partial DIE.
6734
6735 Normally, this is simple. For C++, the parent DIE's fully scoped
6736 name is concatenated with "::" and the partial DIE's name. For
6737 Java, the same thing occurs except that "." is used instead of "::".
6738 Enumerators are an exception; they use the scope of their parent
6739 enumeration type, i.e. the name of the enumeration type is not
6740 prepended to the enumerator.
6741
6742 There are two complexities. One is DW_AT_specification; in this
6743 case "parent" means the parent of the target of the specification,
6744 instead of the direct parent of the DIE. The other is compilers
6745 which do not emit DW_TAG_namespace; in this case we try to guess
6746 the fully qualified name of structure types from their members'
6747 linkage names. This must be done using the DIE's children rather
6748 than the children of any DW_AT_specification target. We only need
6749 to do this for structures at the top level, i.e. if the target of
6750 any DW_AT_specification (if any; otherwise the DIE itself) does not
6751 have a parent. */
6752
6753 /* Compute the scope prefix associated with PDI's parent, in
6754 compilation unit CU. The result will be allocated on CU's
6755 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6756 field. NULL is returned if no prefix is necessary. */
6757 static const char *
6758 partial_die_parent_scope (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760 {
6761 const char *grandparent_scope;
6762 struct partial_die_info *parent, *real_pdi;
6763
6764 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6765 then this means the parent of the specification DIE. */
6766
6767 real_pdi = pdi;
6768 while (real_pdi->has_specification)
6769 real_pdi = find_partial_die (real_pdi->spec_offset,
6770 real_pdi->spec_is_dwz, cu);
6771
6772 parent = real_pdi->die_parent;
6773 if (parent == NULL)
6774 return NULL;
6775
6776 if (parent->scope_set)
6777 return parent->scope;
6778
6779 fixup_partial_die (parent, cu);
6780
6781 grandparent_scope = partial_die_parent_scope (parent, cu);
6782
6783 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6784 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6785 Work around this problem here. */
6786 if (cu->language == language_cplus
6787 && parent->tag == DW_TAG_namespace
6788 && strcmp (parent->name, "::") == 0
6789 && grandparent_scope == NULL)
6790 {
6791 parent->scope = NULL;
6792 parent->scope_set = 1;
6793 return NULL;
6794 }
6795
6796 if (pdi->tag == DW_TAG_enumerator)
6797 /* Enumerators should not get the name of the enumeration as a prefix. */
6798 parent->scope = grandparent_scope;
6799 else if (parent->tag == DW_TAG_namespace
6800 || parent->tag == DW_TAG_module
6801 || parent->tag == DW_TAG_structure_type
6802 || parent->tag == DW_TAG_class_type
6803 || parent->tag == DW_TAG_interface_type
6804 || parent->tag == DW_TAG_union_type
6805 || parent->tag == DW_TAG_enumeration_type)
6806 {
6807 if (grandparent_scope == NULL)
6808 parent->scope = parent->name;
6809 else
6810 parent->scope = typename_concat (&cu->comp_unit_obstack,
6811 grandparent_scope,
6812 parent->name, 0, cu);
6813 }
6814 else
6815 {
6816 /* FIXME drow/2004-04-01: What should we be doing with
6817 function-local names? For partial symbols, we should probably be
6818 ignoring them. */
6819 complaint (&symfile_complaints,
6820 _("unhandled containing DIE tag %d for DIE at %d"),
6821 parent->tag, pdi->offset.sect_off);
6822 parent->scope = grandparent_scope;
6823 }
6824
6825 parent->scope_set = 1;
6826 return parent->scope;
6827 }
6828
6829 /* Return the fully scoped name associated with PDI, from compilation unit
6830 CU. The result will be allocated with malloc. */
6831
6832 static char *
6833 partial_die_full_name (struct partial_die_info *pdi,
6834 struct dwarf2_cu *cu)
6835 {
6836 const char *parent_scope;
6837
6838 /* If this is a template instantiation, we can not work out the
6839 template arguments from partial DIEs. So, unfortunately, we have
6840 to go through the full DIEs. At least any work we do building
6841 types here will be reused if full symbols are loaded later. */
6842 if (pdi->has_template_arguments)
6843 {
6844 fixup_partial_die (pdi, cu);
6845
6846 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6847 {
6848 struct die_info *die;
6849 struct attribute attr;
6850 struct dwarf2_cu *ref_cu = cu;
6851
6852 /* DW_FORM_ref_addr is using section offset. */
6853 attr.name = 0;
6854 attr.form = DW_FORM_ref_addr;
6855 attr.u.unsnd = pdi->offset.sect_off;
6856 die = follow_die_ref (NULL, &attr, &ref_cu);
6857
6858 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6859 }
6860 }
6861
6862 parent_scope = partial_die_parent_scope (pdi, cu);
6863 if (parent_scope == NULL)
6864 return NULL;
6865 else
6866 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6867 }
6868
6869 static void
6870 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6871 {
6872 struct objfile *objfile = cu->objfile;
6873 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6874 CORE_ADDR addr = 0;
6875 const char *actual_name = NULL;
6876 CORE_ADDR baseaddr;
6877 char *built_actual_name;
6878
6879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6880
6881 built_actual_name = partial_die_full_name (pdi, cu);
6882 if (built_actual_name != NULL)
6883 actual_name = built_actual_name;
6884
6885 if (actual_name == NULL)
6886 actual_name = pdi->name;
6887
6888 switch (pdi->tag)
6889 {
6890 case DW_TAG_subprogram:
6891 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
6892 if (pdi->is_external || cu->language == language_ada)
6893 {
6894 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6895 of the global scope. But in Ada, we want to be able to access
6896 nested procedures globally. So all Ada subprograms are stored
6897 in the global scope. */
6898 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6899 objfile); */
6900 add_psymbol_to_list (actual_name, strlen (actual_name),
6901 built_actual_name != NULL,
6902 VAR_DOMAIN, LOC_BLOCK,
6903 &objfile->global_psymbols,
6904 0, addr, cu->language, objfile);
6905 }
6906 else
6907 {
6908 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6909 objfile); */
6910 add_psymbol_to_list (actual_name, strlen (actual_name),
6911 built_actual_name != NULL,
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
6914 0, addr, cu->language, objfile);
6915 }
6916 break;
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
6925 add_psymbol_to_list (actual_name, strlen (actual_name),
6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6927 list, 0, 0, cu->language, objfile);
6928 }
6929 break;
6930 case DW_TAG_variable:
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
6933
6934 if (pdi->d.locdesc
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
6958 if (pdi->d.locdesc || pdi->has_type)
6959 add_psymbol_to_list (actual_name, strlen (actual_name),
6960 built_actual_name != NULL,
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
6963 0, addr + baseaddr,
6964 cu->language, objfile);
6965 }
6966 else
6967 {
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
6973 {
6974 xfree (built_actual_name);
6975 return;
6976 }
6977
6978 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6979 mst_file_data, objfile); */
6980 add_psymbol_to_list (actual_name, strlen (actual_name),
6981 built_actual_name != NULL,
6982 VAR_DOMAIN, LOC_STATIC,
6983 &objfile->static_psymbols,
6984 0,
6985 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
6986 cu->language, objfile);
6987 }
6988 break;
6989 case DW_TAG_typedef:
6990 case DW_TAG_base_type:
6991 case DW_TAG_subrange_type:
6992 add_psymbol_to_list (actual_name, strlen (actual_name),
6993 built_actual_name != NULL,
6994 VAR_DOMAIN, LOC_TYPEDEF,
6995 &objfile->static_psymbols,
6996 0, (CORE_ADDR) 0, cu->language, objfile);
6997 break;
6998 case DW_TAG_imported_declaration:
6999 case DW_TAG_namespace:
7000 add_psymbol_to_list (actual_name, strlen (actual_name),
7001 built_actual_name != NULL,
7002 VAR_DOMAIN, LOC_TYPEDEF,
7003 &objfile->global_psymbols,
7004 0, (CORE_ADDR) 0, cu->language, objfile);
7005 break;
7006 case DW_TAG_module:
7007 add_psymbol_to_list (actual_name, strlen (actual_name),
7008 built_actual_name != NULL,
7009 MODULE_DOMAIN, LOC_TYPEDEF,
7010 &objfile->global_psymbols,
7011 0, (CORE_ADDR) 0, cu->language, objfile);
7012 break;
7013 case DW_TAG_class_type:
7014 case DW_TAG_interface_type:
7015 case DW_TAG_structure_type:
7016 case DW_TAG_union_type:
7017 case DW_TAG_enumeration_type:
7018 /* Skip external references. The DWARF standard says in the section
7019 about "Structure, Union, and Class Type Entries": "An incomplete
7020 structure, union or class type is represented by a structure,
7021 union or class entry that does not have a byte size attribute
7022 and that has a DW_AT_declaration attribute." */
7023 if (!pdi->has_byte_size && pdi->is_declaration)
7024 {
7025 xfree (built_actual_name);
7026 return;
7027 }
7028
7029 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7030 static vs. global. */
7031 add_psymbol_to_list (actual_name, strlen (actual_name),
7032 built_actual_name != NULL,
7033 STRUCT_DOMAIN, LOC_TYPEDEF,
7034 (cu->language == language_cplus
7035 || cu->language == language_java)
7036 ? &objfile->global_psymbols
7037 : &objfile->static_psymbols,
7038 0, (CORE_ADDR) 0, cu->language, objfile);
7039
7040 break;
7041 case DW_TAG_enumerator:
7042 add_psymbol_to_list (actual_name, strlen (actual_name),
7043 built_actual_name != NULL,
7044 VAR_DOMAIN, LOC_CONST,
7045 (cu->language == language_cplus
7046 || cu->language == language_java)
7047 ? &objfile->global_psymbols
7048 : &objfile->static_psymbols,
7049 0, (CORE_ADDR) 0, cu->language, objfile);
7050 break;
7051 default:
7052 break;
7053 }
7054
7055 xfree (built_actual_name);
7056 }
7057
7058 /* Read a partial die corresponding to a namespace; also, add a symbol
7059 corresponding to that namespace to the symbol table. NAMESPACE is
7060 the name of the enclosing namespace. */
7061
7062 static void
7063 add_partial_namespace (struct partial_die_info *pdi,
7064 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7065 int set_addrmap, struct dwarf2_cu *cu)
7066 {
7067 /* Add a symbol for the namespace. */
7068
7069 add_partial_symbol (pdi, cu);
7070
7071 /* Now scan partial symbols in that namespace. */
7072
7073 if (pdi->has_children)
7074 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7075 }
7076
7077 /* Read a partial die corresponding to a Fortran module. */
7078
7079 static void
7080 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
7081 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
7082 {
7083 /* Add a symbol for the namespace. */
7084
7085 add_partial_symbol (pdi, cu);
7086
7087 /* Now scan partial symbols in that module. */
7088
7089 if (pdi->has_children)
7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
7091 }
7092
7093 /* Read a partial die corresponding to a subprogram and create a partial
7094 symbol for that subprogram. When the CU language allows it, this
7095 routine also defines a partial symbol for each nested subprogram
7096 that this subprogram contains. If SET_ADDRMAP is true, record the
7097 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7098 and highest PC values found in PDI.
7099
7100 PDI may also be a lexical block, in which case we simply search
7101 recursively for subprograms defined inside that lexical block.
7102 Again, this is only performed when the CU language allows this
7103 type of definitions. */
7104
7105 static void
7106 add_partial_subprogram (struct partial_die_info *pdi,
7107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
7108 int set_addrmap, struct dwarf2_cu *cu)
7109 {
7110 if (pdi->tag == DW_TAG_subprogram)
7111 {
7112 if (pdi->has_pc_info)
7113 {
7114 if (pdi->lowpc < *lowpc)
7115 *lowpc = pdi->lowpc;
7116 if (pdi->highpc > *highpc)
7117 *highpc = pdi->highpc;
7118 if (set_addrmap)
7119 {
7120 struct objfile *objfile = cu->objfile;
7121 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7122 CORE_ADDR baseaddr;
7123 CORE_ADDR highpc;
7124 CORE_ADDR lowpc;
7125
7126 baseaddr = ANOFFSET (objfile->section_offsets,
7127 SECT_OFF_TEXT (objfile));
7128 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7129 pdi->lowpc + baseaddr);
7130 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7131 pdi->highpc + baseaddr);
7132 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
7133 cu->per_cu->v.psymtab);
7134 }
7135 }
7136
7137 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7138 {
7139 if (!pdi->is_declaration)
7140 /* Ignore subprogram DIEs that do not have a name, they are
7141 illegal. Do not emit a complaint at this point, we will
7142 do so when we convert this psymtab into a symtab. */
7143 if (pdi->name)
7144 add_partial_symbol (pdi, cu);
7145 }
7146 }
7147
7148 if (! pdi->has_children)
7149 return;
7150
7151 if (cu->language == language_ada)
7152 {
7153 pdi = pdi->die_child;
7154 while (pdi != NULL)
7155 {
7156 fixup_partial_die (pdi, cu);
7157 if (pdi->tag == DW_TAG_subprogram
7158 || pdi->tag == DW_TAG_lexical_block)
7159 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
7160 pdi = pdi->die_sibling;
7161 }
7162 }
7163 }
7164
7165 /* Read a partial die corresponding to an enumeration type. */
7166
7167 static void
7168 add_partial_enumeration (struct partial_die_info *enum_pdi,
7169 struct dwarf2_cu *cu)
7170 {
7171 struct partial_die_info *pdi;
7172
7173 if (enum_pdi->name != NULL)
7174 add_partial_symbol (enum_pdi, cu);
7175
7176 pdi = enum_pdi->die_child;
7177 while (pdi)
7178 {
7179 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7180 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7181 else
7182 add_partial_symbol (pdi, cu);
7183 pdi = pdi->die_sibling;
7184 }
7185 }
7186
7187 /* Return the initial uleb128 in the die at INFO_PTR. */
7188
7189 static unsigned int
7190 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7191 {
7192 unsigned int bytes_read;
7193
7194 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7195 }
7196
7197 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7198 Return the corresponding abbrev, or NULL if the number is zero (indicating
7199 an empty DIE). In either case *BYTES_READ will be set to the length of
7200 the initial number. */
7201
7202 static struct abbrev_info *
7203 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7204 struct dwarf2_cu *cu)
7205 {
7206 bfd *abfd = cu->objfile->obfd;
7207 unsigned int abbrev_number;
7208 struct abbrev_info *abbrev;
7209
7210 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7211
7212 if (abbrev_number == 0)
7213 return NULL;
7214
7215 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7216 if (!abbrev)
7217 {
7218 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7219 " at offset 0x%x [in module %s]"),
7220 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7221 cu->header.offset.sect_off, bfd_get_filename (abfd));
7222 }
7223
7224 return abbrev;
7225 }
7226
7227 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7228 Returns a pointer to the end of a series of DIEs, terminated by an empty
7229 DIE. Any children of the skipped DIEs will also be skipped. */
7230
7231 static const gdb_byte *
7232 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7233 {
7234 struct dwarf2_cu *cu = reader->cu;
7235 struct abbrev_info *abbrev;
7236 unsigned int bytes_read;
7237
7238 while (1)
7239 {
7240 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7241 if (abbrev == NULL)
7242 return info_ptr + bytes_read;
7243 else
7244 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7245 }
7246 }
7247
7248 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7249 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7250 abbrev corresponding to that skipped uleb128 should be passed in
7251 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7252 children. */
7253
7254 static const gdb_byte *
7255 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7256 struct abbrev_info *abbrev)
7257 {
7258 unsigned int bytes_read;
7259 struct attribute attr;
7260 bfd *abfd = reader->abfd;
7261 struct dwarf2_cu *cu = reader->cu;
7262 const gdb_byte *buffer = reader->buffer;
7263 const gdb_byte *buffer_end = reader->buffer_end;
7264 const gdb_byte *start_info_ptr = info_ptr;
7265 unsigned int form, i;
7266
7267 for (i = 0; i < abbrev->num_attrs; i++)
7268 {
7269 /* The only abbrev we care about is DW_AT_sibling. */
7270 if (abbrev->attrs[i].name == DW_AT_sibling)
7271 {
7272 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7273 if (attr.form == DW_FORM_ref_addr)
7274 complaint (&symfile_complaints,
7275 _("ignoring absolute DW_AT_sibling"));
7276 else
7277 {
7278 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7279 const gdb_byte *sibling_ptr = buffer + off;
7280
7281 if (sibling_ptr < info_ptr)
7282 complaint (&symfile_complaints,
7283 _("DW_AT_sibling points backwards"));
7284 else if (sibling_ptr > reader->buffer_end)
7285 dwarf2_section_buffer_overflow_complaint (reader->die_section);
7286 else
7287 return sibling_ptr;
7288 }
7289 }
7290
7291 /* If it isn't DW_AT_sibling, skip this attribute. */
7292 form = abbrev->attrs[i].form;
7293 skip_attribute:
7294 switch (form)
7295 {
7296 case DW_FORM_ref_addr:
7297 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7298 and later it is offset sized. */
7299 if (cu->header.version == 2)
7300 info_ptr += cu->header.addr_size;
7301 else
7302 info_ptr += cu->header.offset_size;
7303 break;
7304 case DW_FORM_GNU_ref_alt:
7305 info_ptr += cu->header.offset_size;
7306 break;
7307 case DW_FORM_addr:
7308 info_ptr += cu->header.addr_size;
7309 break;
7310 case DW_FORM_data1:
7311 case DW_FORM_ref1:
7312 case DW_FORM_flag:
7313 info_ptr += 1;
7314 break;
7315 case DW_FORM_flag_present:
7316 break;
7317 case DW_FORM_data2:
7318 case DW_FORM_ref2:
7319 info_ptr += 2;
7320 break;
7321 case DW_FORM_data4:
7322 case DW_FORM_ref4:
7323 info_ptr += 4;
7324 break;
7325 case DW_FORM_data8:
7326 case DW_FORM_ref8:
7327 case DW_FORM_ref_sig8:
7328 info_ptr += 8;
7329 break;
7330 case DW_FORM_string:
7331 read_direct_string (abfd, info_ptr, &bytes_read);
7332 info_ptr += bytes_read;
7333 break;
7334 case DW_FORM_sec_offset:
7335 case DW_FORM_strp:
7336 case DW_FORM_GNU_strp_alt:
7337 info_ptr += cu->header.offset_size;
7338 break;
7339 case DW_FORM_exprloc:
7340 case DW_FORM_block:
7341 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7342 info_ptr += bytes_read;
7343 break;
7344 case DW_FORM_block1:
7345 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block2:
7348 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_block4:
7351 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7352 break;
7353 case DW_FORM_sdata:
7354 case DW_FORM_udata:
7355 case DW_FORM_ref_udata:
7356 case DW_FORM_GNU_addr_index:
7357 case DW_FORM_GNU_str_index:
7358 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7359 break;
7360 case DW_FORM_indirect:
7361 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7362 info_ptr += bytes_read;
7363 /* We need to continue parsing from here, so just go back to
7364 the top. */
7365 goto skip_attribute;
7366
7367 default:
7368 error (_("Dwarf Error: Cannot handle %s "
7369 "in DWARF reader [in module %s]"),
7370 dwarf_form_name (form),
7371 bfd_get_filename (abfd));
7372 }
7373 }
7374
7375 if (abbrev->has_children)
7376 return skip_children (reader, info_ptr);
7377 else
7378 return info_ptr;
7379 }
7380
7381 /* Locate ORIG_PDI's sibling.
7382 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7383
7384 static const gdb_byte *
7385 locate_pdi_sibling (const struct die_reader_specs *reader,
7386 struct partial_die_info *orig_pdi,
7387 const gdb_byte *info_ptr)
7388 {
7389 /* Do we know the sibling already? */
7390
7391 if (orig_pdi->sibling)
7392 return orig_pdi->sibling;
7393
7394 /* Are there any children to deal with? */
7395
7396 if (!orig_pdi->has_children)
7397 return info_ptr;
7398
7399 /* Skip the children the long way. */
7400
7401 return skip_children (reader, info_ptr);
7402 }
7403
7404 /* Expand this partial symbol table into a full symbol table. SELF is
7405 not NULL. */
7406
7407 static void
7408 dwarf2_read_symtab (struct partial_symtab *self,
7409 struct objfile *objfile)
7410 {
7411 if (self->readin)
7412 {
7413 warning (_("bug: psymtab for %s is already read in."),
7414 self->filename);
7415 }
7416 else
7417 {
7418 if (info_verbose)
7419 {
7420 printf_filtered (_("Reading in symbols for %s..."),
7421 self->filename);
7422 gdb_flush (gdb_stdout);
7423 }
7424
7425 /* Restore our global data. */
7426 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7427
7428 /* If this psymtab is constructed from a debug-only objfile, the
7429 has_section_at_zero flag will not necessarily be correct. We
7430 can get the correct value for this flag by looking at the data
7431 associated with the (presumably stripped) associated objfile. */
7432 if (objfile->separate_debug_objfile_backlink)
7433 {
7434 struct dwarf2_per_objfile *dpo_backlink
7435 = objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key);
7437
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
7441
7442 dwarf2_per_objfile->reading_partial_symbols = 0;
7443
7444 psymtab_to_symtab_1 (self);
7445
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
7449 }
7450
7451 process_cu_includes ();
7452 }
7453 \f
7454 /* Reading in full CUs. */
7455
7456 /* Add PER_CU to the queue. */
7457
7458 static void
7459 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
7461 {
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
7465 item = xmalloc (sizeof (*item));
7466 item->per_cu = per_cu;
7467 item->pretend_language = pretend_language;
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476 }
7477
7478 /* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
7486
7487 static int
7488 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491 {
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523 }
7524
7525 /* Process the queue. */
7526
7527 static void
7528 process_queue (void)
7529 {
7530 struct dwarf2_queue_item *item, *next_item;
7531
7532 if (dwarf2_read_debug)
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
7536 objfile_name (dwarf2_per_objfile->objfile));
7537 }
7538
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
7543 if (dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 {
7547 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7548 unsigned int debug_print_threshold;
7549 char buf[100];
7550
7551 if (per_cu->is_debug_types)
7552 {
7553 struct signatured_type *sig_type =
7554 (struct signatured_type *) per_cu;
7555
7556 sprintf (buf, "TU %s at offset 0x%x",
7557 hex_string (sig_type->signature),
7558 per_cu->offset.sect_off);
7559 /* There can be 100s of TUs.
7560 Only print them in verbose mode. */
7561 debug_print_threshold = 2;
7562 }
7563 else
7564 {
7565 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7566 debug_print_threshold = 1;
7567 }
7568
7569 if (dwarf2_read_debug >= debug_print_threshold)
7570 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7571
7572 if (per_cu->is_debug_types)
7573 process_full_type_unit (per_cu, item->pretend_language);
7574 else
7575 process_full_comp_unit (per_cu, item->pretend_language);
7576
7577 if (dwarf2_read_debug >= debug_print_threshold)
7578 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7579 }
7580
7581 item->per_cu->queued = 0;
7582 next_item = item->next;
7583 xfree (item);
7584 }
7585
7586 dwarf2_queue_tail = NULL;
7587
7588 if (dwarf2_read_debug)
7589 {
7590 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7591 objfile_name (dwarf2_per_objfile->objfile));
7592 }
7593 }
7594
7595 /* Free all allocated queue entries. This function only releases anything if
7596 an error was thrown; if the queue was processed then it would have been
7597 freed as we went along. */
7598
7599 static void
7600 dwarf2_release_queue (void *dummy)
7601 {
7602 struct dwarf2_queue_item *item, *last;
7603
7604 item = dwarf2_queue;
7605 while (item)
7606 {
7607 /* Anything still marked queued is likely to be in an
7608 inconsistent state, so discard it. */
7609 if (item->per_cu->queued)
7610 {
7611 if (item->per_cu->cu != NULL)
7612 free_one_cached_comp_unit (item->per_cu);
7613 item->per_cu->queued = 0;
7614 }
7615
7616 last = item;
7617 item = item->next;
7618 xfree (last);
7619 }
7620
7621 dwarf2_queue = dwarf2_queue_tail = NULL;
7622 }
7623
7624 /* Read in full symbols for PST, and anything it depends on. */
7625
7626 static void
7627 psymtab_to_symtab_1 (struct partial_symtab *pst)
7628 {
7629 struct dwarf2_per_cu_data *per_cu;
7630 int i;
7631
7632 if (pst->readin)
7633 return;
7634
7635 for (i = 0; i < pst->number_of_dependencies; i++)
7636 if (!pst->dependencies[i]->readin
7637 && pst->dependencies[i]->user == NULL)
7638 {
7639 /* Inform about additional files that need to be read in. */
7640 if (info_verbose)
7641 {
7642 /* FIXME: i18n: Need to make this a single string. */
7643 fputs_filtered (" ", gdb_stdout);
7644 wrap_here ("");
7645 fputs_filtered ("and ", gdb_stdout);
7646 wrap_here ("");
7647 printf_filtered ("%s...", pst->dependencies[i]->filename);
7648 wrap_here (""); /* Flush output. */
7649 gdb_flush (gdb_stdout);
7650 }
7651 psymtab_to_symtab_1 (pst->dependencies[i]);
7652 }
7653
7654 per_cu = pst->read_symtab_private;
7655
7656 if (per_cu == NULL)
7657 {
7658 /* It's an include file, no symbols to read for it.
7659 Everything is in the parent symtab. */
7660 pst->readin = 1;
7661 return;
7662 }
7663
7664 dw2_do_instantiate_symtab (per_cu);
7665 }
7666
7667 /* Trivial hash function for die_info: the hash value of a DIE
7668 is its offset in .debug_info for this objfile. */
7669
7670 static hashval_t
7671 die_hash (const void *item)
7672 {
7673 const struct die_info *die = item;
7674
7675 return die->offset.sect_off;
7676 }
7677
7678 /* Trivial comparison function for die_info structures: two DIEs
7679 are equal if they have the same offset. */
7680
7681 static int
7682 die_eq (const void *item_lhs, const void *item_rhs)
7683 {
7684 const struct die_info *die_lhs = item_lhs;
7685 const struct die_info *die_rhs = item_rhs;
7686
7687 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7688 }
7689
7690 /* die_reader_func for load_full_comp_unit.
7691 This is identical to read_signatured_type_reader,
7692 but is kept separate for now. */
7693
7694 static void
7695 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7696 const gdb_byte *info_ptr,
7697 struct die_info *comp_unit_die,
7698 int has_children,
7699 void *data)
7700 {
7701 struct dwarf2_cu *cu = reader->cu;
7702 enum language *language_ptr = data;
7703
7704 gdb_assert (cu->die_hash == NULL);
7705 cu->die_hash =
7706 htab_create_alloc_ex (cu->header.length / 12,
7707 die_hash,
7708 die_eq,
7709 NULL,
7710 &cu->comp_unit_obstack,
7711 hashtab_obstack_allocate,
7712 dummy_obstack_deallocate);
7713
7714 if (has_children)
7715 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7716 &info_ptr, comp_unit_die);
7717 cu->dies = comp_unit_die;
7718 /* comp_unit_die is not stored in die_hash, no need. */
7719
7720 /* We try not to read any attributes in this function, because not
7721 all CUs needed for references have been loaded yet, and symbol
7722 table processing isn't initialized. But we have to set the CU language,
7723 or we won't be able to build types correctly.
7724 Similarly, if we do not read the producer, we can not apply
7725 producer-specific interpretation. */
7726 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7727 }
7728
7729 /* Load the DIEs associated with PER_CU into memory. */
7730
7731 static void
7732 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7733 enum language pretend_language)
7734 {
7735 gdb_assert (! this_cu->is_debug_types);
7736
7737 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7738 load_full_comp_unit_reader, &pretend_language);
7739 }
7740
7741 /* Add a DIE to the delayed physname list. */
7742
7743 static void
7744 add_to_method_list (struct type *type, int fnfield_index, int index,
7745 const char *name, struct die_info *die,
7746 struct dwarf2_cu *cu)
7747 {
7748 struct delayed_method_info mi;
7749 mi.type = type;
7750 mi.fnfield_index = fnfield_index;
7751 mi.index = index;
7752 mi.name = name;
7753 mi.die = die;
7754 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7755 }
7756
7757 /* A cleanup for freeing the delayed method list. */
7758
7759 static void
7760 free_delayed_list (void *ptr)
7761 {
7762 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7763 if (cu->method_list != NULL)
7764 {
7765 VEC_free (delayed_method_info, cu->method_list);
7766 cu->method_list = NULL;
7767 }
7768 }
7769
7770 /* Compute the physnames of any methods on the CU's method list.
7771
7772 The computation of method physnames is delayed in order to avoid the
7773 (bad) condition that one of the method's formal parameters is of an as yet
7774 incomplete type. */
7775
7776 static void
7777 compute_delayed_physnames (struct dwarf2_cu *cu)
7778 {
7779 int i;
7780 struct delayed_method_info *mi;
7781 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7782 {
7783 const char *physname;
7784 struct fn_fieldlist *fn_flp
7785 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7786 physname = dwarf2_physname (mi->name, mi->die, cu);
7787 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7788 = physname ? physname : "";
7789 }
7790 }
7791
7792 /* Go objects should be embedded in a DW_TAG_module DIE,
7793 and it's not clear if/how imported objects will appear.
7794 To keep Go support simple until that's worked out,
7795 go back through what we've read and create something usable.
7796 We could do this while processing each DIE, and feels kinda cleaner,
7797 but that way is more invasive.
7798 This is to, for example, allow the user to type "p var" or "b main"
7799 without having to specify the package name, and allow lookups
7800 of module.object to work in contexts that use the expression
7801 parser. */
7802
7803 static void
7804 fixup_go_packaging (struct dwarf2_cu *cu)
7805 {
7806 char *package_name = NULL;
7807 struct pending *list;
7808 int i;
7809
7810 for (list = global_symbols; list != NULL; list = list->next)
7811 {
7812 for (i = 0; i < list->nsyms; ++i)
7813 {
7814 struct symbol *sym = list->symbol[i];
7815
7816 if (SYMBOL_LANGUAGE (sym) == language_go
7817 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7818 {
7819 char *this_package_name = go_symbol_package_name (sym);
7820
7821 if (this_package_name == NULL)
7822 continue;
7823 if (package_name == NULL)
7824 package_name = this_package_name;
7825 else
7826 {
7827 if (strcmp (package_name, this_package_name) != 0)
7828 complaint (&symfile_complaints,
7829 _("Symtab %s has objects from two different Go packages: %s and %s"),
7830 (symbol_symtab (sym) != NULL
7831 ? symtab_to_filename_for_display
7832 (symbol_symtab (sym))
7833 : objfile_name (cu->objfile)),
7834 this_package_name, package_name);
7835 xfree (this_package_name);
7836 }
7837 }
7838 }
7839 }
7840
7841 if (package_name != NULL)
7842 {
7843 struct objfile *objfile = cu->objfile;
7844 const char *saved_package_name
7845 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7846 package_name,
7847 strlen (package_name));
7848 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7849 saved_package_name, objfile);
7850 struct symbol *sym;
7851
7852 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7853
7854 sym = allocate_symbol (objfile);
7855 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7856 SYMBOL_SET_NAMES (sym, saved_package_name,
7857 strlen (saved_package_name), 0, objfile);
7858 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7859 e.g., "main" finds the "main" module and not C's main(). */
7860 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7861 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7862 SYMBOL_TYPE (sym) = type;
7863
7864 add_symbol_to_list (sym, &global_symbols);
7865
7866 xfree (package_name);
7867 }
7868 }
7869
7870 /* Return the symtab for PER_CU. This works properly regardless of
7871 whether we're using the index or psymtabs. */
7872
7873 static struct compunit_symtab *
7874 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
7875 {
7876 return (dwarf2_per_objfile->using_index
7877 ? per_cu->v.quick->compunit_symtab
7878 : per_cu->v.psymtab->compunit_symtab);
7879 }
7880
7881 /* A helper function for computing the list of all symbol tables
7882 included by PER_CU. */
7883
7884 static void
7885 recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
7886 htab_t all_children, htab_t all_type_symtabs,
7887 struct dwarf2_per_cu_data *per_cu,
7888 struct compunit_symtab *immediate_parent)
7889 {
7890 void **slot;
7891 int ix;
7892 struct compunit_symtab *cust;
7893 struct dwarf2_per_cu_data *iter;
7894
7895 slot = htab_find_slot (all_children, per_cu, INSERT);
7896 if (*slot != NULL)
7897 {
7898 /* This inclusion and its children have been processed. */
7899 return;
7900 }
7901
7902 *slot = per_cu;
7903 /* Only add a CU if it has a symbol table. */
7904 cust = get_compunit_symtab (per_cu);
7905 if (cust != NULL)
7906 {
7907 /* If this is a type unit only add its symbol table if we haven't
7908 seen it yet (type unit per_cu's can share symtabs). */
7909 if (per_cu->is_debug_types)
7910 {
7911 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
7912 if (*slot == NULL)
7913 {
7914 *slot = cust;
7915 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7916 if (cust->user == NULL)
7917 cust->user = immediate_parent;
7918 }
7919 }
7920 else
7921 {
7922 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7923 if (cust->user == NULL)
7924 cust->user = immediate_parent;
7925 }
7926 }
7927
7928 for (ix = 0;
7929 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7930 ++ix)
7931 {
7932 recursively_compute_inclusions (result, all_children,
7933 all_type_symtabs, iter, cust);
7934 }
7935 }
7936
7937 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
7938 PER_CU. */
7939
7940 static void
7941 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7942 {
7943 gdb_assert (! per_cu->is_debug_types);
7944
7945 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7946 {
7947 int ix, len;
7948 struct dwarf2_per_cu_data *per_cu_iter;
7949 struct compunit_symtab *compunit_symtab_iter;
7950 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
7951 htab_t all_children, all_type_symtabs;
7952 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
7953
7954 /* If we don't have a symtab, we can just skip this case. */
7955 if (cust == NULL)
7956 return;
7957
7958 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7959 NULL, xcalloc, xfree);
7960 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
7962
7963 for (ix = 0;
7964 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7965 ix, per_cu_iter);
7966 ++ix)
7967 {
7968 recursively_compute_inclusions (&result_symtabs, all_children,
7969 all_type_symtabs, per_cu_iter,
7970 cust);
7971 }
7972
7973 /* Now we have a transitive closure of all the included symtabs. */
7974 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7975 cust->includes
7976 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7977 (len + 1) * sizeof (struct symtab *));
7978 for (ix = 0;
7979 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7980 compunit_symtab_iter);
7981 ++ix)
7982 cust->includes[ix] = compunit_symtab_iter;
7983 cust->includes[len] = NULL;
7984
7985 VEC_free (compunit_symtab_ptr, result_symtabs);
7986 htab_delete (all_children);
7987 htab_delete (all_type_symtabs);
7988 }
7989 }
7990
7991 /* Compute the 'includes' field for the symtabs of all the CUs we just
7992 read. */
7993
7994 static void
7995 process_cu_includes (void)
7996 {
7997 int ix;
7998 struct dwarf2_per_cu_data *iter;
7999
8000 for (ix = 0;
8001 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8002 ix, iter);
8003 ++ix)
8004 {
8005 if (! iter->is_debug_types)
8006 compute_compunit_symtab_includes (iter);
8007 }
8008
8009 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8010 }
8011
8012 /* Generate full symbol information for PER_CU, whose DIEs have
8013 already been loaded into memory. */
8014
8015 static void
8016 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8017 enum language pretend_language)
8018 {
8019 struct dwarf2_cu *cu = per_cu->cu;
8020 struct objfile *objfile = per_cu->objfile;
8021 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8022 CORE_ADDR lowpc, highpc;
8023 struct compunit_symtab *cust;
8024 struct cleanup *back_to, *delayed_list_cleanup;
8025 CORE_ADDR baseaddr;
8026 struct block *static_block;
8027 CORE_ADDR addr;
8028
8029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8030
8031 buildsym_init ();
8032 back_to = make_cleanup (really_free_pendings, NULL);
8033 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8034
8035 cu->list_in_scope = &file_symbols;
8036
8037 cu->language = pretend_language;
8038 cu->language_defn = language_def (cu->language);
8039
8040 /* Do line number decoding in read_file_scope () */
8041 process_die (cu->dies, cu);
8042
8043 /* For now fudge the Go package. */
8044 if (cu->language == language_go)
8045 fixup_go_packaging (cu);
8046
8047 /* Now that we have processed all the DIEs in the CU, all the types
8048 should be complete, and it should now be safe to compute all of the
8049 physnames. */
8050 compute_delayed_physnames (cu);
8051 do_cleanups (delayed_list_cleanup);
8052
8053 /* Some compilers don't define a DW_AT_high_pc attribute for the
8054 compilation unit. If the DW_AT_high_pc is missing, synthesize
8055 it, by scanning the DIE's below the compilation unit. */
8056 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
8057
8058 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8059 static_block = end_symtab_get_static_block (addr, 0, 1);
8060
8061 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8062 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8063 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8064 addrmap to help ensure it has an accurate map of pc values belonging to
8065 this comp unit. */
8066 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8067
8068 cust = end_symtab_from_static_block (static_block,
8069 SECT_OFF_TEXT (objfile), 0);
8070
8071 if (cust != NULL)
8072 {
8073 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
8074
8075 /* Set symtab language to language from DW_AT_language. If the
8076 compilation is from a C file generated by language preprocessors, do
8077 not set the language if it was already deduced by start_subfile. */
8078 if (!(cu->language == language_c
8079 && COMPUNIT_FILETABS (cust)->language != language_c))
8080 COMPUNIT_FILETABS (cust)->language = cu->language;
8081
8082 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8083 produce DW_AT_location with location lists but it can be possibly
8084 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8085 there were bugs in prologue debug info, fixed later in GCC-4.5
8086 by "unwind info for epilogues" patch (which is not directly related).
8087
8088 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8089 needed, it would be wrong due to missing DW_AT_producer there.
8090
8091 Still one can confuse GDB by using non-standard GCC compilation
8092 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8093 */
8094 if (cu->has_loclist && gcc_4_minor >= 5)
8095 cust->locations_valid = 1;
8096
8097 if (gcc_4_minor >= 5)
8098 cust->epilogue_unwind_valid = 1;
8099
8100 cust->call_site_htab = cu->call_site_htab;
8101 }
8102
8103 if (dwarf2_per_objfile->using_index)
8104 per_cu->v.quick->compunit_symtab = cust;
8105 else
8106 {
8107 struct partial_symtab *pst = per_cu->v.psymtab;
8108 pst->compunit_symtab = cust;
8109 pst->readin = 1;
8110 }
8111
8112 /* Push it for inclusion processing later. */
8113 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8114
8115 do_cleanups (back_to);
8116 }
8117
8118 /* Generate full symbol information for type unit PER_CU, whose DIEs have
8119 already been loaded into memory. */
8120
8121 static void
8122 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8123 enum language pretend_language)
8124 {
8125 struct dwarf2_cu *cu = per_cu->cu;
8126 struct objfile *objfile = per_cu->objfile;
8127 struct compunit_symtab *cust;
8128 struct cleanup *back_to, *delayed_list_cleanup;
8129 struct signatured_type *sig_type;
8130
8131 gdb_assert (per_cu->is_debug_types);
8132 sig_type = (struct signatured_type *) per_cu;
8133
8134 buildsym_init ();
8135 back_to = make_cleanup (really_free_pendings, NULL);
8136 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8137
8138 cu->list_in_scope = &file_symbols;
8139
8140 cu->language = pretend_language;
8141 cu->language_defn = language_def (cu->language);
8142
8143 /* The symbol tables are set up in read_type_unit_scope. */
8144 process_die (cu->dies, cu);
8145
8146 /* For now fudge the Go package. */
8147 if (cu->language == language_go)
8148 fixup_go_packaging (cu);
8149
8150 /* Now that we have processed all the DIEs in the CU, all the types
8151 should be complete, and it should now be safe to compute all of the
8152 physnames. */
8153 compute_delayed_physnames (cu);
8154 do_cleanups (delayed_list_cleanup);
8155
8156 /* TUs share symbol tables.
8157 If this is the first TU to use this symtab, complete the construction
8158 of it with end_expandable_symtab. Otherwise, complete the addition of
8159 this TU's symbols to the existing symtab. */
8160 if (sig_type->type_unit_group->compunit_symtab == NULL)
8161 {
8162 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8163 sig_type->type_unit_group->compunit_symtab = cust;
8164
8165 if (cust != NULL)
8166 {
8167 /* Set symtab language to language from DW_AT_language. If the
8168 compilation is from a C file generated by language preprocessors,
8169 do not set the language if it was already deduced by
8170 start_subfile. */
8171 if (!(cu->language == language_c
8172 && COMPUNIT_FILETABS (cust)->language != language_c))
8173 COMPUNIT_FILETABS (cust)->language = cu->language;
8174 }
8175 }
8176 else
8177 {
8178 augment_type_symtab ();
8179 cust = sig_type->type_unit_group->compunit_symtab;
8180 }
8181
8182 if (dwarf2_per_objfile->using_index)
8183 per_cu->v.quick->compunit_symtab = cust;
8184 else
8185 {
8186 struct partial_symtab *pst = per_cu->v.psymtab;
8187 pst->compunit_symtab = cust;
8188 pst->readin = 1;
8189 }
8190
8191 do_cleanups (back_to);
8192 }
8193
8194 /* Process an imported unit DIE. */
8195
8196 static void
8197 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8198 {
8199 struct attribute *attr;
8200
8201 /* For now we don't handle imported units in type units. */
8202 if (cu->per_cu->is_debug_types)
8203 {
8204 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8205 " supported in type units [in module %s]"),
8206 objfile_name (cu->objfile));
8207 }
8208
8209 attr = dwarf2_attr (die, DW_AT_import, cu);
8210 if (attr != NULL)
8211 {
8212 struct dwarf2_per_cu_data *per_cu;
8213 struct symtab *imported_symtab;
8214 sect_offset offset;
8215 int is_dwz;
8216
8217 offset = dwarf2_get_ref_die_offset (attr);
8218 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8219 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8220
8221 /* If necessary, add it to the queue and load its DIEs. */
8222 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8223 load_full_comp_unit (per_cu, cu->language);
8224
8225 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8226 per_cu);
8227 }
8228 }
8229
8230 /* Reset the in_process bit of a die. */
8231
8232 static void
8233 reset_die_in_process (void *arg)
8234 {
8235 struct die_info *die = arg;
8236
8237 die->in_process = 0;
8238 }
8239
8240 /* Process a die and its children. */
8241
8242 static void
8243 process_die (struct die_info *die, struct dwarf2_cu *cu)
8244 {
8245 struct cleanup *in_process;
8246
8247 /* We should only be processing those not already in process. */
8248 gdb_assert (!die->in_process);
8249
8250 die->in_process = 1;
8251 in_process = make_cleanup (reset_die_in_process,die);
8252
8253 switch (die->tag)
8254 {
8255 case DW_TAG_padding:
8256 break;
8257 case DW_TAG_compile_unit:
8258 case DW_TAG_partial_unit:
8259 read_file_scope (die, cu);
8260 break;
8261 case DW_TAG_type_unit:
8262 read_type_unit_scope (die, cu);
8263 break;
8264 case DW_TAG_subprogram:
8265 case DW_TAG_inlined_subroutine:
8266 read_func_scope (die, cu);
8267 break;
8268 case DW_TAG_lexical_block:
8269 case DW_TAG_try_block:
8270 case DW_TAG_catch_block:
8271 read_lexical_block_scope (die, cu);
8272 break;
8273 case DW_TAG_GNU_call_site:
8274 read_call_site_scope (die, cu);
8275 break;
8276 case DW_TAG_class_type:
8277 case DW_TAG_interface_type:
8278 case DW_TAG_structure_type:
8279 case DW_TAG_union_type:
8280 process_structure_scope (die, cu);
8281 break;
8282 case DW_TAG_enumeration_type:
8283 process_enumeration_scope (die, cu);
8284 break;
8285
8286 /* These dies have a type, but processing them does not create
8287 a symbol or recurse to process the children. Therefore we can
8288 read them on-demand through read_type_die. */
8289 case DW_TAG_subroutine_type:
8290 case DW_TAG_set_type:
8291 case DW_TAG_array_type:
8292 case DW_TAG_pointer_type:
8293 case DW_TAG_ptr_to_member_type:
8294 case DW_TAG_reference_type:
8295 case DW_TAG_string_type:
8296 break;
8297
8298 case DW_TAG_base_type:
8299 case DW_TAG_subrange_type:
8300 case DW_TAG_typedef:
8301 /* Add a typedef symbol for the type definition, if it has a
8302 DW_AT_name. */
8303 new_symbol (die, read_type_die (die, cu), cu);
8304 break;
8305 case DW_TAG_common_block:
8306 read_common_block (die, cu);
8307 break;
8308 case DW_TAG_common_inclusion:
8309 break;
8310 case DW_TAG_namespace:
8311 cu->processing_has_namespace_info = 1;
8312 read_namespace (die, cu);
8313 break;
8314 case DW_TAG_module:
8315 cu->processing_has_namespace_info = 1;
8316 read_module (die, cu);
8317 break;
8318 case DW_TAG_imported_declaration:
8319 cu->processing_has_namespace_info = 1;
8320 if (read_namespace_alias (die, cu))
8321 break;
8322 /* The declaration is not a global namespace alias: fall through. */
8323 case DW_TAG_imported_module:
8324 cu->processing_has_namespace_info = 1;
8325 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8326 || cu->language != language_fortran))
8327 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8328 dwarf_tag_name (die->tag));
8329 read_import_statement (die, cu);
8330 break;
8331
8332 case DW_TAG_imported_unit:
8333 process_imported_unit_die (die, cu);
8334 break;
8335
8336 default:
8337 new_symbol (die, NULL, cu);
8338 break;
8339 }
8340
8341 do_cleanups (in_process);
8342 }
8343 \f
8344 /* DWARF name computation. */
8345
8346 /* A helper function for dwarf2_compute_name which determines whether DIE
8347 needs to have the name of the scope prepended to the name listed in the
8348 die. */
8349
8350 static int
8351 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8352 {
8353 struct attribute *attr;
8354
8355 switch (die->tag)
8356 {
8357 case DW_TAG_namespace:
8358 case DW_TAG_typedef:
8359 case DW_TAG_class_type:
8360 case DW_TAG_interface_type:
8361 case DW_TAG_structure_type:
8362 case DW_TAG_union_type:
8363 case DW_TAG_enumeration_type:
8364 case DW_TAG_enumerator:
8365 case DW_TAG_subprogram:
8366 case DW_TAG_member:
8367 case DW_TAG_imported_declaration:
8368 return 1;
8369
8370 case DW_TAG_variable:
8371 case DW_TAG_constant:
8372 /* We only need to prefix "globally" visible variables. These include
8373 any variable marked with DW_AT_external or any variable that
8374 lives in a namespace. [Variables in anonymous namespaces
8375 require prefixing, but they are not DW_AT_external.] */
8376
8377 if (dwarf2_attr (die, DW_AT_specification, cu))
8378 {
8379 struct dwarf2_cu *spec_cu = cu;
8380
8381 return die_needs_namespace (die_specification (die, &spec_cu),
8382 spec_cu);
8383 }
8384
8385 attr = dwarf2_attr (die, DW_AT_external, cu);
8386 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8387 && die->parent->tag != DW_TAG_module)
8388 return 0;
8389 /* A variable in a lexical block of some kind does not need a
8390 namespace, even though in C++ such variables may be external
8391 and have a mangled name. */
8392 if (die->parent->tag == DW_TAG_lexical_block
8393 || die->parent->tag == DW_TAG_try_block
8394 || die->parent->tag == DW_TAG_catch_block
8395 || die->parent->tag == DW_TAG_subprogram)
8396 return 0;
8397 return 1;
8398
8399 default:
8400 return 0;
8401 }
8402 }
8403
8404 /* Retrieve the last character from a mem_file. */
8405
8406 static void
8407 do_ui_file_peek_last (void *object, const char *buffer, long length)
8408 {
8409 char *last_char_p = (char *) object;
8410
8411 if (length > 0)
8412 *last_char_p = buffer[length - 1];
8413 }
8414
8415 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8416 compute the physname for the object, which include a method's:
8417 - formal parameters (C++/Java),
8418 - receiver type (Go),
8419 - return type (Java).
8420
8421 The term "physname" is a bit confusing.
8422 For C++, for example, it is the demangled name.
8423 For Go, for example, it's the mangled name.
8424
8425 For Ada, return the DIE's linkage name rather than the fully qualified
8426 name. PHYSNAME is ignored..
8427
8428 The result is allocated on the objfile_obstack and canonicalized. */
8429
8430 static const char *
8431 dwarf2_compute_name (const char *name,
8432 struct die_info *die, struct dwarf2_cu *cu,
8433 int physname)
8434 {
8435 struct objfile *objfile = cu->objfile;
8436
8437 if (name == NULL)
8438 name = dwarf2_name (die, cu);
8439
8440 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8441 compute it by typename_concat inside GDB. */
8442 if (cu->language == language_ada
8443 || (cu->language == language_fortran && physname))
8444 {
8445 /* For Ada unit, we prefer the linkage name over the name, as
8446 the former contains the exported name, which the user expects
8447 to be able to reference. Ideally, we want the user to be able
8448 to reference this entity using either natural or linkage name,
8449 but we haven't started looking at this enhancement yet. */
8450 struct attribute *attr;
8451
8452 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8453 if (attr == NULL)
8454 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8455 if (attr && DW_STRING (attr))
8456 return DW_STRING (attr);
8457 }
8458
8459 /* These are the only languages we know how to qualify names in. */
8460 if (name != NULL
8461 && (cu->language == language_cplus || cu->language == language_java
8462 || cu->language == language_fortran))
8463 {
8464 if (die_needs_namespace (die, cu))
8465 {
8466 long length;
8467 const char *prefix;
8468 struct ui_file *buf;
8469 char *intermediate_name;
8470 const char *canonical_name = NULL;
8471
8472 prefix = determine_prefix (die, cu);
8473 buf = mem_fileopen ();
8474 if (*prefix != '\0')
8475 {
8476 char *prefixed_name = typename_concat (NULL, prefix, name,
8477 physname, cu);
8478
8479 fputs_unfiltered (prefixed_name, buf);
8480 xfree (prefixed_name);
8481 }
8482 else
8483 fputs_unfiltered (name, buf);
8484
8485 /* Template parameters may be specified in the DIE's DW_AT_name, or
8486 as children with DW_TAG_template_type_param or
8487 DW_TAG_value_type_param. If the latter, add them to the name
8488 here. If the name already has template parameters, then
8489 skip this step; some versions of GCC emit both, and
8490 it is more efficient to use the pre-computed name.
8491
8492 Something to keep in mind about this process: it is very
8493 unlikely, or in some cases downright impossible, to produce
8494 something that will match the mangled name of a function.
8495 If the definition of the function has the same debug info,
8496 we should be able to match up with it anyway. But fallbacks
8497 using the minimal symbol, for instance to find a method
8498 implemented in a stripped copy of libstdc++, will not work.
8499 If we do not have debug info for the definition, we will have to
8500 match them up some other way.
8501
8502 When we do name matching there is a related problem with function
8503 templates; two instantiated function templates are allowed to
8504 differ only by their return types, which we do not add here. */
8505
8506 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8507 {
8508 struct attribute *attr;
8509 struct die_info *child;
8510 int first = 1;
8511
8512 die->building_fullname = 1;
8513
8514 for (child = die->child; child != NULL; child = child->sibling)
8515 {
8516 struct type *type;
8517 LONGEST value;
8518 const gdb_byte *bytes;
8519 struct dwarf2_locexpr_baton *baton;
8520 struct value *v;
8521
8522 if (child->tag != DW_TAG_template_type_param
8523 && child->tag != DW_TAG_template_value_param)
8524 continue;
8525
8526 if (first)
8527 {
8528 fputs_unfiltered ("<", buf);
8529 first = 0;
8530 }
8531 else
8532 fputs_unfiltered (", ", buf);
8533
8534 attr = dwarf2_attr (child, DW_AT_type, cu);
8535 if (attr == NULL)
8536 {
8537 complaint (&symfile_complaints,
8538 _("template parameter missing DW_AT_type"));
8539 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8540 continue;
8541 }
8542 type = die_type (child, cu);
8543
8544 if (child->tag == DW_TAG_template_type_param)
8545 {
8546 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8547 continue;
8548 }
8549
8550 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8551 if (attr == NULL)
8552 {
8553 complaint (&symfile_complaints,
8554 _("template parameter missing "
8555 "DW_AT_const_value"));
8556 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8557 continue;
8558 }
8559
8560 dwarf2_const_value_attr (attr, type, name,
8561 &cu->comp_unit_obstack, cu,
8562 &value, &bytes, &baton);
8563
8564 if (TYPE_NOSIGN (type))
8565 /* GDB prints characters as NUMBER 'CHAR'. If that's
8566 changed, this can use value_print instead. */
8567 c_printchar (value, type, buf);
8568 else
8569 {
8570 struct value_print_options opts;
8571
8572 if (baton != NULL)
8573 v = dwarf2_evaluate_loc_desc (type, NULL,
8574 baton->data,
8575 baton->size,
8576 baton->per_cu);
8577 else if (bytes != NULL)
8578 {
8579 v = allocate_value (type);
8580 memcpy (value_contents_writeable (v), bytes,
8581 TYPE_LENGTH (type));
8582 }
8583 else
8584 v = value_from_longest (type, value);
8585
8586 /* Specify decimal so that we do not depend on
8587 the radix. */
8588 get_formatted_print_options (&opts, 'd');
8589 opts.raw = 1;
8590 value_print (v, buf, &opts);
8591 release_value (v);
8592 value_free (v);
8593 }
8594 }
8595
8596 die->building_fullname = 0;
8597
8598 if (!first)
8599 {
8600 /* Close the argument list, with a space if necessary
8601 (nested templates). */
8602 char last_char = '\0';
8603 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8604 if (last_char == '>')
8605 fputs_unfiltered (" >", buf);
8606 else
8607 fputs_unfiltered (">", buf);
8608 }
8609 }
8610
8611 /* For Java and C++ methods, append formal parameter type
8612 information, if PHYSNAME. */
8613
8614 if (physname && die->tag == DW_TAG_subprogram
8615 && (cu->language == language_cplus
8616 || cu->language == language_java))
8617 {
8618 struct type *type = read_type_die (die, cu);
8619
8620 c_type_print_args (type, buf, 1, cu->language,
8621 &type_print_raw_options);
8622
8623 if (cu->language == language_java)
8624 {
8625 /* For java, we must append the return type to method
8626 names. */
8627 if (die->tag == DW_TAG_subprogram)
8628 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8629 0, 0, &type_print_raw_options);
8630 }
8631 else if (cu->language == language_cplus)
8632 {
8633 /* Assume that an artificial first parameter is
8634 "this", but do not crash if it is not. RealView
8635 marks unnamed (and thus unused) parameters as
8636 artificial; there is no way to differentiate
8637 the two cases. */
8638 if (TYPE_NFIELDS (type) > 0
8639 && TYPE_FIELD_ARTIFICIAL (type, 0)
8640 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8641 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8642 0))))
8643 fputs_unfiltered (" const", buf);
8644 }
8645 }
8646
8647 intermediate_name = ui_file_xstrdup (buf, &length);
8648 ui_file_delete (buf);
8649
8650 if (cu->language == language_cplus)
8651 canonical_name
8652 = dwarf2_canonicalize_name (intermediate_name, cu,
8653 &objfile->per_bfd->storage_obstack);
8654
8655 /* If we only computed INTERMEDIATE_NAME, or if
8656 INTERMEDIATE_NAME is already canonical, then we need to
8657 copy it to the appropriate obstack. */
8658 if (canonical_name == NULL || canonical_name == intermediate_name)
8659 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8660 intermediate_name,
8661 strlen (intermediate_name));
8662 else
8663 name = canonical_name;
8664
8665 xfree (intermediate_name);
8666 }
8667 }
8668
8669 return name;
8670 }
8671
8672 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8673 If scope qualifiers are appropriate they will be added. The result
8674 will be allocated on the storage_obstack, or NULL if the DIE does
8675 not have a name. NAME may either be from a previous call to
8676 dwarf2_name or NULL.
8677
8678 The output string will be canonicalized (if C++/Java). */
8679
8680 static const char *
8681 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8682 {
8683 return dwarf2_compute_name (name, die, cu, 0);
8684 }
8685
8686 /* Construct a physname for the given DIE in CU. NAME may either be
8687 from a previous call to dwarf2_name or NULL. The result will be
8688 allocated on the objfile_objstack or NULL if the DIE does not have a
8689 name.
8690
8691 The output string will be canonicalized (if C++/Java). */
8692
8693 static const char *
8694 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8695 {
8696 struct objfile *objfile = cu->objfile;
8697 struct attribute *attr;
8698 const char *retval, *mangled = NULL, *canon = NULL;
8699 struct cleanup *back_to;
8700 int need_copy = 1;
8701
8702 /* In this case dwarf2_compute_name is just a shortcut not building anything
8703 on its own. */
8704 if (!die_needs_namespace (die, cu))
8705 return dwarf2_compute_name (name, die, cu, 1);
8706
8707 back_to = make_cleanup (null_cleanup, NULL);
8708
8709 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8710 if (!attr)
8711 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8712
8713 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8714 has computed. */
8715 if (attr && DW_STRING (attr))
8716 {
8717 char *demangled;
8718
8719 mangled = DW_STRING (attr);
8720
8721 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8722 type. It is easier for GDB users to search for such functions as
8723 `name(params)' than `long name(params)'. In such case the minimal
8724 symbol names do not match the full symbol names but for template
8725 functions there is never a need to look up their definition from their
8726 declaration so the only disadvantage remains the minimal symbol
8727 variant `long name(params)' does not have the proper inferior type.
8728 */
8729
8730 if (cu->language == language_go)
8731 {
8732 /* This is a lie, but we already lie to the caller new_symbol_full.
8733 new_symbol_full assumes we return the mangled name.
8734 This just undoes that lie until things are cleaned up. */
8735 demangled = NULL;
8736 }
8737 else
8738 {
8739 demangled = gdb_demangle (mangled,
8740 (DMGL_PARAMS | DMGL_ANSI
8741 | (cu->language == language_java
8742 ? DMGL_JAVA | DMGL_RET_POSTFIX
8743 : DMGL_RET_DROP)));
8744 }
8745 if (demangled)
8746 {
8747 make_cleanup (xfree, demangled);
8748 canon = demangled;
8749 }
8750 else
8751 {
8752 canon = mangled;
8753 need_copy = 0;
8754 }
8755 }
8756
8757 if (canon == NULL || check_physname)
8758 {
8759 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8760
8761 if (canon != NULL && strcmp (physname, canon) != 0)
8762 {
8763 /* It may not mean a bug in GDB. The compiler could also
8764 compute DW_AT_linkage_name incorrectly. But in such case
8765 GDB would need to be bug-to-bug compatible. */
8766
8767 complaint (&symfile_complaints,
8768 _("Computed physname <%s> does not match demangled <%s> "
8769 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8770 physname, canon, mangled, die->offset.sect_off,
8771 objfile_name (objfile));
8772
8773 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8774 is available here - over computed PHYSNAME. It is safer
8775 against both buggy GDB and buggy compilers. */
8776
8777 retval = canon;
8778 }
8779 else
8780 {
8781 retval = physname;
8782 need_copy = 0;
8783 }
8784 }
8785 else
8786 retval = canon;
8787
8788 if (need_copy)
8789 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8790 retval, strlen (retval));
8791
8792 do_cleanups (back_to);
8793 return retval;
8794 }
8795
8796 /* Inspect DIE in CU for a namespace alias. If one exists, record
8797 a new symbol for it.
8798
8799 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8800
8801 static int
8802 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8803 {
8804 struct attribute *attr;
8805
8806 /* If the die does not have a name, this is not a namespace
8807 alias. */
8808 attr = dwarf2_attr (die, DW_AT_name, cu);
8809 if (attr != NULL)
8810 {
8811 int num;
8812 struct die_info *d = die;
8813 struct dwarf2_cu *imported_cu = cu;
8814
8815 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8816 keep inspecting DIEs until we hit the underlying import. */
8817 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8818 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8819 {
8820 attr = dwarf2_attr (d, DW_AT_import, cu);
8821 if (attr == NULL)
8822 break;
8823
8824 d = follow_die_ref (d, attr, &imported_cu);
8825 if (d->tag != DW_TAG_imported_declaration)
8826 break;
8827 }
8828
8829 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8830 {
8831 complaint (&symfile_complaints,
8832 _("DIE at 0x%x has too many recursively imported "
8833 "declarations"), d->offset.sect_off);
8834 return 0;
8835 }
8836
8837 if (attr != NULL)
8838 {
8839 struct type *type;
8840 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8841
8842 type = get_die_type_at_offset (offset, cu->per_cu);
8843 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8844 {
8845 /* This declaration is a global namespace alias. Add
8846 a symbol for it whose type is the aliased namespace. */
8847 new_symbol (die, type, cu);
8848 return 1;
8849 }
8850 }
8851 }
8852
8853 return 0;
8854 }
8855
8856 /* Read the import statement specified by the given die and record it. */
8857
8858 static void
8859 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8860 {
8861 struct objfile *objfile = cu->objfile;
8862 struct attribute *import_attr;
8863 struct die_info *imported_die, *child_die;
8864 struct dwarf2_cu *imported_cu;
8865 const char *imported_name;
8866 const char *imported_name_prefix;
8867 const char *canonical_name;
8868 const char *import_alias;
8869 const char *imported_declaration = NULL;
8870 const char *import_prefix;
8871 VEC (const_char_ptr) *excludes = NULL;
8872 struct cleanup *cleanups;
8873
8874 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8875 if (import_attr == NULL)
8876 {
8877 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8878 dwarf_tag_name (die->tag));
8879 return;
8880 }
8881
8882 imported_cu = cu;
8883 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8884 imported_name = dwarf2_name (imported_die, imported_cu);
8885 if (imported_name == NULL)
8886 {
8887 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8888
8889 The import in the following code:
8890 namespace A
8891 {
8892 typedef int B;
8893 }
8894
8895 int main ()
8896 {
8897 using A::B;
8898 B b;
8899 return b;
8900 }
8901
8902 ...
8903 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8904 <52> DW_AT_decl_file : 1
8905 <53> DW_AT_decl_line : 6
8906 <54> DW_AT_import : <0x75>
8907 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8908 <59> DW_AT_name : B
8909 <5b> DW_AT_decl_file : 1
8910 <5c> DW_AT_decl_line : 2
8911 <5d> DW_AT_type : <0x6e>
8912 ...
8913 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8914 <76> DW_AT_byte_size : 4
8915 <77> DW_AT_encoding : 5 (signed)
8916
8917 imports the wrong die ( 0x75 instead of 0x58 ).
8918 This case will be ignored until the gcc bug is fixed. */
8919 return;
8920 }
8921
8922 /* Figure out the local name after import. */
8923 import_alias = dwarf2_name (die, cu);
8924
8925 /* Figure out where the statement is being imported to. */
8926 import_prefix = determine_prefix (die, cu);
8927
8928 /* Figure out what the scope of the imported die is and prepend it
8929 to the name of the imported die. */
8930 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8931
8932 if (imported_die->tag != DW_TAG_namespace
8933 && imported_die->tag != DW_TAG_module)
8934 {
8935 imported_declaration = imported_name;
8936 canonical_name = imported_name_prefix;
8937 }
8938 else if (strlen (imported_name_prefix) > 0)
8939 canonical_name = obconcat (&objfile->objfile_obstack,
8940 imported_name_prefix, "::", imported_name,
8941 (char *) NULL);
8942 else
8943 canonical_name = imported_name;
8944
8945 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8946
8947 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8948 for (child_die = die->child; child_die && child_die->tag;
8949 child_die = sibling_die (child_die))
8950 {
8951 /* DWARF-4: A Fortran use statement with a “rename list” may be
8952 represented by an imported module entry with an import attribute
8953 referring to the module and owned entries corresponding to those
8954 entities that are renamed as part of being imported. */
8955
8956 if (child_die->tag != DW_TAG_imported_declaration)
8957 {
8958 complaint (&symfile_complaints,
8959 _("child DW_TAG_imported_declaration expected "
8960 "- DIE at 0x%x [in module %s]"),
8961 child_die->offset.sect_off, objfile_name (objfile));
8962 continue;
8963 }
8964
8965 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8966 if (import_attr == NULL)
8967 {
8968 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8969 dwarf_tag_name (child_die->tag));
8970 continue;
8971 }
8972
8973 imported_cu = cu;
8974 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8975 &imported_cu);
8976 imported_name = dwarf2_name (imported_die, imported_cu);
8977 if (imported_name == NULL)
8978 {
8979 complaint (&symfile_complaints,
8980 _("child DW_TAG_imported_declaration has unknown "
8981 "imported name - DIE at 0x%x [in module %s]"),
8982 child_die->offset.sect_off, objfile_name (objfile));
8983 continue;
8984 }
8985
8986 VEC_safe_push (const_char_ptr, excludes, imported_name);
8987
8988 process_die (child_die, cu);
8989 }
8990
8991 cp_add_using_directive (import_prefix,
8992 canonical_name,
8993 import_alias,
8994 imported_declaration,
8995 excludes,
8996 0,
8997 &objfile->objfile_obstack);
8998
8999 do_cleanups (cleanups);
9000 }
9001
9002 /* Cleanup function for handle_DW_AT_stmt_list. */
9003
9004 static void
9005 free_cu_line_header (void *arg)
9006 {
9007 struct dwarf2_cu *cu = arg;
9008
9009 free_line_header (cu->line_header);
9010 cu->line_header = NULL;
9011 }
9012
9013 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9014 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9015 this, it was first present in GCC release 4.3.0. */
9016
9017 static int
9018 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9019 {
9020 if (!cu->checked_producer)
9021 check_producer (cu);
9022
9023 return cu->producer_is_gcc_lt_4_3;
9024 }
9025
9026 static void
9027 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
9028 const char **name, const char **comp_dir)
9029 {
9030 struct attribute *attr;
9031
9032 *name = NULL;
9033 *comp_dir = NULL;
9034
9035 /* Find the filename. Do not use dwarf2_name here, since the filename
9036 is not a source language identifier. */
9037 attr = dwarf2_attr (die, DW_AT_name, cu);
9038 if (attr)
9039 {
9040 *name = DW_STRING (attr);
9041 }
9042
9043 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
9044 if (attr)
9045 *comp_dir = DW_STRING (attr);
9046 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
9047 && IS_ABSOLUTE_PATH (*name))
9048 {
9049 char *d = ldirname (*name);
9050
9051 *comp_dir = d;
9052 if (d != NULL)
9053 make_cleanup (xfree, d);
9054 }
9055 if (*comp_dir != NULL)
9056 {
9057 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9058 directory, get rid of it. */
9059 char *cp = strchr (*comp_dir, ':');
9060
9061 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9062 *comp_dir = cp + 1;
9063 }
9064
9065 if (*name == NULL)
9066 *name = "<unknown>";
9067 }
9068
9069 /* Handle DW_AT_stmt_list for a compilation unit.
9070 DIE is the DW_TAG_compile_unit die for CU.
9071 COMP_DIR is the compilation directory. LOWPC is passed to
9072 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
9073
9074 static void
9075 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
9076 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
9077 {
9078 struct objfile *objfile = dwarf2_per_objfile->objfile;
9079 struct attribute *attr;
9080 unsigned int line_offset;
9081 struct line_header line_header_local;
9082 hashval_t line_header_local_hash;
9083 unsigned u;
9084 void **slot;
9085 int decode_mapping;
9086
9087 gdb_assert (! cu->per_cu->is_debug_types);
9088
9089 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9090 if (attr == NULL)
9091 return;
9092
9093 line_offset = DW_UNSND (attr);
9094
9095 /* The line header hash table is only created if needed (it exists to
9096 prevent redundant reading of the line table for partial_units).
9097 If we're given a partial_unit, we'll need it. If we're given a
9098 compile_unit, then use the line header hash table if it's already
9099 created, but don't create one just yet. */
9100
9101 if (dwarf2_per_objfile->line_header_hash == NULL
9102 && die->tag == DW_TAG_partial_unit)
9103 {
9104 dwarf2_per_objfile->line_header_hash
9105 = htab_create_alloc_ex (127, line_header_hash_voidp,
9106 line_header_eq_voidp,
9107 free_line_header_voidp,
9108 &objfile->objfile_obstack,
9109 hashtab_obstack_allocate,
9110 dummy_obstack_deallocate);
9111 }
9112
9113 line_header_local.offset.sect_off = line_offset;
9114 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9115 line_header_local_hash = line_header_hash (&line_header_local);
9116 if (dwarf2_per_objfile->line_header_hash != NULL)
9117 {
9118 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9119 &line_header_local,
9120 line_header_local_hash, NO_INSERT);
9121
9122 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9123 is not present in *SLOT (since if there is something in *SLOT then
9124 it will be for a partial_unit). */
9125 if (die->tag == DW_TAG_partial_unit && slot != NULL)
9126 {
9127 gdb_assert (*slot != NULL);
9128 cu->line_header = *slot;
9129 return;
9130 }
9131 }
9132
9133 /* dwarf_decode_line_header does not yet provide sufficient information.
9134 We always have to call also dwarf_decode_lines for it. */
9135 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9136 if (cu->line_header == NULL)
9137 return;
9138
9139 if (dwarf2_per_objfile->line_header_hash == NULL)
9140 slot = NULL;
9141 else
9142 {
9143 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9144 &line_header_local,
9145 line_header_local_hash, INSERT);
9146 gdb_assert (slot != NULL);
9147 }
9148 if (slot != NULL && *slot == NULL)
9149 {
9150 /* This newly decoded line number information unit will be owned
9151 by line_header_hash hash table. */
9152 *slot = cu->line_header;
9153 }
9154 else
9155 {
9156 /* We cannot free any current entry in (*slot) as that struct line_header
9157 may be already used by multiple CUs. Create only temporary decoded
9158 line_header for this CU - it may happen at most once for each line
9159 number information unit. And if we're not using line_header_hash
9160 then this is what we want as well. */
9161 gdb_assert (die->tag != DW_TAG_partial_unit);
9162 make_cleanup (free_cu_line_header, cu);
9163 }
9164 decode_mapping = (die->tag != DW_TAG_partial_unit);
9165 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9166 decode_mapping);
9167 }
9168
9169 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
9170
9171 static void
9172 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
9173 {
9174 struct objfile *objfile = dwarf2_per_objfile->objfile;
9175 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9176 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9177 CORE_ADDR lowpc = ((CORE_ADDR) -1);
9178 CORE_ADDR highpc = ((CORE_ADDR) 0);
9179 struct attribute *attr;
9180 const char *name = NULL;
9181 const char *comp_dir = NULL;
9182 struct die_info *child_die;
9183 bfd *abfd = objfile->obfd;
9184 CORE_ADDR baseaddr;
9185
9186 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9187
9188 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
9189
9190 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9191 from finish_block. */
9192 if (lowpc == ((CORE_ADDR) -1))
9193 lowpc = highpc;
9194 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
9195
9196 find_file_and_directory (die, cu, &name, &comp_dir);
9197
9198 prepare_one_comp_unit (cu, die, cu->language);
9199
9200 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9201 standardised yet. As a workaround for the language detection we fall
9202 back to the DW_AT_producer string. */
9203 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9204 cu->language = language_opencl;
9205
9206 /* Similar hack for Go. */
9207 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9208 set_cu_language (DW_LANG_Go, cu);
9209
9210 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
9211
9212 /* Decode line number information if present. We do this before
9213 processing child DIEs, so that the line header table is available
9214 for DW_AT_decl_file. */
9215 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
9216
9217 /* Process all dies in compilation unit. */
9218 if (die->child != NULL)
9219 {
9220 child_die = die->child;
9221 while (child_die && child_die->tag)
9222 {
9223 process_die (child_die, cu);
9224 child_die = sibling_die (child_die);
9225 }
9226 }
9227
9228 /* Decode macro information, if present. Dwarf 2 macro information
9229 refers to information in the line number info statement program
9230 header, so we can only read it if we've read the header
9231 successfully. */
9232 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9233 if (attr && cu->line_header)
9234 {
9235 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9236 complaint (&symfile_complaints,
9237 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9238
9239 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
9240 }
9241 else
9242 {
9243 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9244 if (attr && cu->line_header)
9245 {
9246 unsigned int macro_offset = DW_UNSND (attr);
9247
9248 dwarf_decode_macros (cu, macro_offset, 0);
9249 }
9250 }
9251
9252 do_cleanups (back_to);
9253 }
9254
9255 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9256 Create the set of symtabs used by this TU, or if this TU is sharing
9257 symtabs with another TU and the symtabs have already been created
9258 then restore those symtabs in the line header.
9259 We don't need the pc/line-number mapping for type units. */
9260
9261 static void
9262 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
9263 {
9264 struct objfile *objfile = dwarf2_per_objfile->objfile;
9265 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9266 struct type_unit_group *tu_group;
9267 int first_time;
9268 struct line_header *lh;
9269 struct attribute *attr;
9270 unsigned int i, line_offset;
9271 struct signatured_type *sig_type;
9272
9273 gdb_assert (per_cu->is_debug_types);
9274 sig_type = (struct signatured_type *) per_cu;
9275
9276 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9277
9278 /* If we're using .gdb_index (includes -readnow) then
9279 per_cu->type_unit_group may not have been set up yet. */
9280 if (sig_type->type_unit_group == NULL)
9281 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9282 tu_group = sig_type->type_unit_group;
9283
9284 /* If we've already processed this stmt_list there's no real need to
9285 do it again, we could fake it and just recreate the part we need
9286 (file name,index -> symtab mapping). If data shows this optimization
9287 is useful we can do it then. */
9288 first_time = tu_group->compunit_symtab == NULL;
9289
9290 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9291 debug info. */
9292 lh = NULL;
9293 if (attr != NULL)
9294 {
9295 line_offset = DW_UNSND (attr);
9296 lh = dwarf_decode_line_header (line_offset, cu);
9297 }
9298 if (lh == NULL)
9299 {
9300 if (first_time)
9301 dwarf2_start_symtab (cu, "", NULL, 0);
9302 else
9303 {
9304 gdb_assert (tu_group->symtabs == NULL);
9305 restart_symtab (tu_group->compunit_symtab, "", 0);
9306 }
9307 return;
9308 }
9309
9310 cu->line_header = lh;
9311 make_cleanup (free_cu_line_header, cu);
9312
9313 if (first_time)
9314 {
9315 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
9316
9317 tu_group->num_symtabs = lh->num_file_names;
9318 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9319
9320 for (i = 0; i < lh->num_file_names; ++i)
9321 {
9322 const char *dir = NULL;
9323 struct file_entry *fe = &lh->file_names[i];
9324
9325 if (fe->dir_index && lh->include_dirs != NULL)
9326 dir = lh->include_dirs[fe->dir_index - 1];
9327 dwarf2_start_subfile (fe->name, dir);
9328
9329 if (current_subfile->symtab == NULL)
9330 {
9331 /* NOTE: start_subfile will recognize when it's been passed
9332 a file it has already seen. So we can't assume there's a
9333 simple mapping from lh->file_names to subfiles, plus
9334 lh->file_names may contain dups. */
9335 current_subfile->symtab
9336 = allocate_symtab (cust, current_subfile->name);
9337 }
9338
9339 fe->symtab = current_subfile->symtab;
9340 tu_group->symtabs[i] = fe->symtab;
9341 }
9342 }
9343 else
9344 {
9345 restart_symtab (tu_group->compunit_symtab, "", 0);
9346
9347 for (i = 0; i < lh->num_file_names; ++i)
9348 {
9349 struct file_entry *fe = &lh->file_names[i];
9350
9351 fe->symtab = tu_group->symtabs[i];
9352 }
9353 }
9354
9355 /* The main symtab is allocated last. Type units don't have DW_AT_name
9356 so they don't have a "real" (so to speak) symtab anyway.
9357 There is later code that will assign the main symtab to all symbols
9358 that don't have one. We need to handle the case of a symbol with a
9359 missing symtab (DW_AT_decl_file) anyway. */
9360 }
9361
9362 /* Process DW_TAG_type_unit.
9363 For TUs we want to skip the first top level sibling if it's not the
9364 actual type being defined by this TU. In this case the first top
9365 level sibling is there to provide context only. */
9366
9367 static void
9368 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9369 {
9370 struct die_info *child_die;
9371
9372 prepare_one_comp_unit (cu, die, language_minimal);
9373
9374 /* Initialize (or reinitialize) the machinery for building symtabs.
9375 We do this before processing child DIEs, so that the line header table
9376 is available for DW_AT_decl_file. */
9377 setup_type_unit_groups (die, cu);
9378
9379 if (die->child != NULL)
9380 {
9381 child_die = die->child;
9382 while (child_die && child_die->tag)
9383 {
9384 process_die (child_die, cu);
9385 child_die = sibling_die (child_die);
9386 }
9387 }
9388 }
9389 \f
9390 /* DWO/DWP files.
9391
9392 http://gcc.gnu.org/wiki/DebugFission
9393 http://gcc.gnu.org/wiki/DebugFissionDWP
9394
9395 To simplify handling of both DWO files ("object" files with the DWARF info)
9396 and DWP files (a file with the DWOs packaged up into one file), we treat
9397 DWP files as having a collection of virtual DWO files. */
9398
9399 static hashval_t
9400 hash_dwo_file (const void *item)
9401 {
9402 const struct dwo_file *dwo_file = item;
9403 hashval_t hash;
9404
9405 hash = htab_hash_string (dwo_file->dwo_name);
9406 if (dwo_file->comp_dir != NULL)
9407 hash += htab_hash_string (dwo_file->comp_dir);
9408 return hash;
9409 }
9410
9411 static int
9412 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9413 {
9414 const struct dwo_file *lhs = item_lhs;
9415 const struct dwo_file *rhs = item_rhs;
9416
9417 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9418 return 0;
9419 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9420 return lhs->comp_dir == rhs->comp_dir;
9421 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9422 }
9423
9424 /* Allocate a hash table for DWO files. */
9425
9426 static htab_t
9427 allocate_dwo_file_hash_table (void)
9428 {
9429 struct objfile *objfile = dwarf2_per_objfile->objfile;
9430
9431 return htab_create_alloc_ex (41,
9432 hash_dwo_file,
9433 eq_dwo_file,
9434 NULL,
9435 &objfile->objfile_obstack,
9436 hashtab_obstack_allocate,
9437 dummy_obstack_deallocate);
9438 }
9439
9440 /* Lookup DWO file DWO_NAME. */
9441
9442 static void **
9443 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9444 {
9445 struct dwo_file find_entry;
9446 void **slot;
9447
9448 if (dwarf2_per_objfile->dwo_files == NULL)
9449 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9450
9451 memset (&find_entry, 0, sizeof (find_entry));
9452 find_entry.dwo_name = dwo_name;
9453 find_entry.comp_dir = comp_dir;
9454 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9455
9456 return slot;
9457 }
9458
9459 static hashval_t
9460 hash_dwo_unit (const void *item)
9461 {
9462 const struct dwo_unit *dwo_unit = item;
9463
9464 /* This drops the top 32 bits of the id, but is ok for a hash. */
9465 return dwo_unit->signature;
9466 }
9467
9468 static int
9469 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9470 {
9471 const struct dwo_unit *lhs = item_lhs;
9472 const struct dwo_unit *rhs = item_rhs;
9473
9474 /* The signature is assumed to be unique within the DWO file.
9475 So while object file CU dwo_id's always have the value zero,
9476 that's OK, assuming each object file DWO file has only one CU,
9477 and that's the rule for now. */
9478 return lhs->signature == rhs->signature;
9479 }
9480
9481 /* Allocate a hash table for DWO CUs,TUs.
9482 There is one of these tables for each of CUs,TUs for each DWO file. */
9483
9484 static htab_t
9485 allocate_dwo_unit_table (struct objfile *objfile)
9486 {
9487 /* Start out with a pretty small number.
9488 Generally DWO files contain only one CU and maybe some TUs. */
9489 return htab_create_alloc_ex (3,
9490 hash_dwo_unit,
9491 eq_dwo_unit,
9492 NULL,
9493 &objfile->objfile_obstack,
9494 hashtab_obstack_allocate,
9495 dummy_obstack_deallocate);
9496 }
9497
9498 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9499
9500 struct create_dwo_cu_data
9501 {
9502 struct dwo_file *dwo_file;
9503 struct dwo_unit dwo_unit;
9504 };
9505
9506 /* die_reader_func for create_dwo_cu. */
9507
9508 static void
9509 create_dwo_cu_reader (const struct die_reader_specs *reader,
9510 const gdb_byte *info_ptr,
9511 struct die_info *comp_unit_die,
9512 int has_children,
9513 void *datap)
9514 {
9515 struct dwarf2_cu *cu = reader->cu;
9516 struct objfile *objfile = dwarf2_per_objfile->objfile;
9517 sect_offset offset = cu->per_cu->offset;
9518 struct dwarf2_section_info *section = cu->per_cu->section;
9519 struct create_dwo_cu_data *data = datap;
9520 struct dwo_file *dwo_file = data->dwo_file;
9521 struct dwo_unit *dwo_unit = &data->dwo_unit;
9522 struct attribute *attr;
9523
9524 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9525 if (attr == NULL)
9526 {
9527 complaint (&symfile_complaints,
9528 _("Dwarf Error: debug entry at offset 0x%x is missing"
9529 " its dwo_id [in module %s]"),
9530 offset.sect_off, dwo_file->dwo_name);
9531 return;
9532 }
9533
9534 dwo_unit->dwo_file = dwo_file;
9535 dwo_unit->signature = DW_UNSND (attr);
9536 dwo_unit->section = section;
9537 dwo_unit->offset = offset;
9538 dwo_unit->length = cu->per_cu->length;
9539
9540 if (dwarf2_read_debug)
9541 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9542 offset.sect_off, hex_string (dwo_unit->signature));
9543 }
9544
9545 /* Create the dwo_unit for the lone CU in DWO_FILE.
9546 Note: This function processes DWO files only, not DWP files. */
9547
9548 static struct dwo_unit *
9549 create_dwo_cu (struct dwo_file *dwo_file)
9550 {
9551 struct objfile *objfile = dwarf2_per_objfile->objfile;
9552 struct dwarf2_section_info *section = &dwo_file->sections.info;
9553 bfd *abfd;
9554 htab_t cu_htab;
9555 const gdb_byte *info_ptr, *end_ptr;
9556 struct create_dwo_cu_data create_dwo_cu_data;
9557 struct dwo_unit *dwo_unit;
9558
9559 dwarf2_read_section (objfile, section);
9560 info_ptr = section->buffer;
9561
9562 if (info_ptr == NULL)
9563 return NULL;
9564
9565 /* We can't set abfd until now because the section may be empty or
9566 not present, in which case section->asection will be NULL. */
9567 abfd = get_section_bfd_owner (section);
9568
9569 if (dwarf2_read_debug)
9570 {
9571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9572 get_section_name (section),
9573 get_section_file_name (section));
9574 }
9575
9576 create_dwo_cu_data.dwo_file = dwo_file;
9577 dwo_unit = NULL;
9578
9579 end_ptr = info_ptr + section->size;
9580 while (info_ptr < end_ptr)
9581 {
9582 struct dwarf2_per_cu_data per_cu;
9583
9584 memset (&create_dwo_cu_data.dwo_unit, 0,
9585 sizeof (create_dwo_cu_data.dwo_unit));
9586 memset (&per_cu, 0, sizeof (per_cu));
9587 per_cu.objfile = objfile;
9588 per_cu.is_debug_types = 0;
9589 per_cu.offset.sect_off = info_ptr - section->buffer;
9590 per_cu.section = section;
9591
9592 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
9593 create_dwo_cu_reader,
9594 &create_dwo_cu_data);
9595
9596 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9597 {
9598 /* If we've already found one, complain. We only support one
9599 because having more than one requires hacking the dwo_name of
9600 each to match, which is highly unlikely to happen. */
9601 if (dwo_unit != NULL)
9602 {
9603 complaint (&symfile_complaints,
9604 _("Multiple CUs in DWO file %s [in module %s]"),
9605 dwo_file->dwo_name, objfile_name (objfile));
9606 break;
9607 }
9608
9609 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9610 *dwo_unit = create_dwo_cu_data.dwo_unit;
9611 }
9612
9613 info_ptr += per_cu.length;
9614 }
9615
9616 return dwo_unit;
9617 }
9618
9619 /* DWP file .debug_{cu,tu}_index section format:
9620 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9621
9622 DWP Version 1:
9623
9624 Both index sections have the same format, and serve to map a 64-bit
9625 signature to a set of section numbers. Each section begins with a header,
9626 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9627 indexes, and a pool of 32-bit section numbers. The index sections will be
9628 aligned at 8-byte boundaries in the file.
9629
9630 The index section header consists of:
9631
9632 V, 32 bit version number
9633 -, 32 bits unused
9634 N, 32 bit number of compilation units or type units in the index
9635 M, 32 bit number of slots in the hash table
9636
9637 Numbers are recorded using the byte order of the application binary.
9638
9639 The hash table begins at offset 16 in the section, and consists of an array
9640 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9641 order of the application binary). Unused slots in the hash table are 0.
9642 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9643
9644 The parallel table begins immediately after the hash table
9645 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9646 array of 32-bit indexes (using the byte order of the application binary),
9647 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9648 table contains a 32-bit index into the pool of section numbers. For unused
9649 hash table slots, the corresponding entry in the parallel table will be 0.
9650
9651 The pool of section numbers begins immediately following the hash table
9652 (at offset 16 + 12 * M from the beginning of the section). The pool of
9653 section numbers consists of an array of 32-bit words (using the byte order
9654 of the application binary). Each item in the array is indexed starting
9655 from 0. The hash table entry provides the index of the first section
9656 number in the set. Additional section numbers in the set follow, and the
9657 set is terminated by a 0 entry (section number 0 is not used in ELF).
9658
9659 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9660 section must be the first entry in the set, and the .debug_abbrev.dwo must
9661 be the second entry. Other members of the set may follow in any order.
9662
9663 ---
9664
9665 DWP Version 2:
9666
9667 DWP Version 2 combines all the .debug_info, etc. sections into one,
9668 and the entries in the index tables are now offsets into these sections.
9669 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9670 section.
9671
9672 Index Section Contents:
9673 Header
9674 Hash Table of Signatures dwp_hash_table.hash_table
9675 Parallel Table of Indices dwp_hash_table.unit_table
9676 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9677 Table of Section Sizes dwp_hash_table.v2.sizes
9678
9679 The index section header consists of:
9680
9681 V, 32 bit version number
9682 L, 32 bit number of columns in the table of section offsets
9683 N, 32 bit number of compilation units or type units in the index
9684 M, 32 bit number of slots in the hash table
9685
9686 Numbers are recorded using the byte order of the application binary.
9687
9688 The hash table has the same format as version 1.
9689 The parallel table of indices has the same format as version 1,
9690 except that the entries are origin-1 indices into the table of sections
9691 offsets and the table of section sizes.
9692
9693 The table of offsets begins immediately following the parallel table
9694 (at offset 16 + 12 * M from the beginning of the section). The table is
9695 a two-dimensional array of 32-bit words (using the byte order of the
9696 application binary), with L columns and N+1 rows, in row-major order.
9697 Each row in the array is indexed starting from 0. The first row provides
9698 a key to the remaining rows: each column in this row provides an identifier
9699 for a debug section, and the offsets in the same column of subsequent rows
9700 refer to that section. The section identifiers are:
9701
9702 DW_SECT_INFO 1 .debug_info.dwo
9703 DW_SECT_TYPES 2 .debug_types.dwo
9704 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9705 DW_SECT_LINE 4 .debug_line.dwo
9706 DW_SECT_LOC 5 .debug_loc.dwo
9707 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9708 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9709 DW_SECT_MACRO 8 .debug_macro.dwo
9710
9711 The offsets provided by the CU and TU index sections are the base offsets
9712 for the contributions made by each CU or TU to the corresponding section
9713 in the package file. Each CU and TU header contains an abbrev_offset
9714 field, used to find the abbreviations table for that CU or TU within the
9715 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9716 be interpreted as relative to the base offset given in the index section.
9717 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9718 should be interpreted as relative to the base offset for .debug_line.dwo,
9719 and offsets into other debug sections obtained from DWARF attributes should
9720 also be interpreted as relative to the corresponding base offset.
9721
9722 The table of sizes begins immediately following the table of offsets.
9723 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9724 with L columns and N rows, in row-major order. Each row in the array is
9725 indexed starting from 1 (row 0 is shared by the two tables).
9726
9727 ---
9728
9729 Hash table lookup is handled the same in version 1 and 2:
9730
9731 We assume that N and M will not exceed 2^32 - 1.
9732 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9733
9734 Given a 64-bit compilation unit signature or a type signature S, an entry
9735 in the hash table is located as follows:
9736
9737 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9738 the low-order k bits all set to 1.
9739
9740 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9741
9742 3) If the hash table entry at index H matches the signature, use that
9743 entry. If the hash table entry at index H is unused (all zeroes),
9744 terminate the search: the signature is not present in the table.
9745
9746 4) Let H = (H + H') modulo M. Repeat at Step 3.
9747
9748 Because M > N and H' and M are relatively prime, the search is guaranteed
9749 to stop at an unused slot or find the match. */
9750
9751 /* Create a hash table to map DWO IDs to their CU/TU entry in
9752 .debug_{info,types}.dwo in DWP_FILE.
9753 Returns NULL if there isn't one.
9754 Note: This function processes DWP files only, not DWO files. */
9755
9756 static struct dwp_hash_table *
9757 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9758 {
9759 struct objfile *objfile = dwarf2_per_objfile->objfile;
9760 bfd *dbfd = dwp_file->dbfd;
9761 const gdb_byte *index_ptr, *index_end;
9762 struct dwarf2_section_info *index;
9763 uint32_t version, nr_columns, nr_units, nr_slots;
9764 struct dwp_hash_table *htab;
9765
9766 if (is_debug_types)
9767 index = &dwp_file->sections.tu_index;
9768 else
9769 index = &dwp_file->sections.cu_index;
9770
9771 if (dwarf2_section_empty_p (index))
9772 return NULL;
9773 dwarf2_read_section (objfile, index);
9774
9775 index_ptr = index->buffer;
9776 index_end = index_ptr + index->size;
9777
9778 version = read_4_bytes (dbfd, index_ptr);
9779 index_ptr += 4;
9780 if (version == 2)
9781 nr_columns = read_4_bytes (dbfd, index_ptr);
9782 else
9783 nr_columns = 0;
9784 index_ptr += 4;
9785 nr_units = read_4_bytes (dbfd, index_ptr);
9786 index_ptr += 4;
9787 nr_slots = read_4_bytes (dbfd, index_ptr);
9788 index_ptr += 4;
9789
9790 if (version != 1 && version != 2)
9791 {
9792 error (_("Dwarf Error: unsupported DWP file version (%s)"
9793 " [in module %s]"),
9794 pulongest (version), dwp_file->name);
9795 }
9796 if (nr_slots != (nr_slots & -nr_slots))
9797 {
9798 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9799 " is not power of 2 [in module %s]"),
9800 pulongest (nr_slots), dwp_file->name);
9801 }
9802
9803 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9804 htab->version = version;
9805 htab->nr_columns = nr_columns;
9806 htab->nr_units = nr_units;
9807 htab->nr_slots = nr_slots;
9808 htab->hash_table = index_ptr;
9809 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9810
9811 /* Exit early if the table is empty. */
9812 if (nr_slots == 0 || nr_units == 0
9813 || (version == 2 && nr_columns == 0))
9814 {
9815 /* All must be zero. */
9816 if (nr_slots != 0 || nr_units != 0
9817 || (version == 2 && nr_columns != 0))
9818 {
9819 complaint (&symfile_complaints,
9820 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9821 " all zero [in modules %s]"),
9822 dwp_file->name);
9823 }
9824 return htab;
9825 }
9826
9827 if (version == 1)
9828 {
9829 htab->section_pool.v1.indices =
9830 htab->unit_table + sizeof (uint32_t) * nr_slots;
9831 /* It's harder to decide whether the section is too small in v1.
9832 V1 is deprecated anyway so we punt. */
9833 }
9834 else
9835 {
9836 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9837 int *ids = htab->section_pool.v2.section_ids;
9838 /* Reverse map for error checking. */
9839 int ids_seen[DW_SECT_MAX + 1];
9840 int i;
9841
9842 if (nr_columns < 2)
9843 {
9844 error (_("Dwarf Error: bad DWP hash table, too few columns"
9845 " in section table [in module %s]"),
9846 dwp_file->name);
9847 }
9848 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9849 {
9850 error (_("Dwarf Error: bad DWP hash table, too many columns"
9851 " in section table [in module %s]"),
9852 dwp_file->name);
9853 }
9854 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9855 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 for (i = 0; i < nr_columns; ++i)
9857 {
9858 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9859
9860 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9861 {
9862 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9863 " in section table [in module %s]"),
9864 id, dwp_file->name);
9865 }
9866 if (ids_seen[id] != -1)
9867 {
9868 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9869 " id %d in section table [in module %s]"),
9870 id, dwp_file->name);
9871 }
9872 ids_seen[id] = i;
9873 ids[i] = id;
9874 }
9875 /* Must have exactly one info or types section. */
9876 if (((ids_seen[DW_SECT_INFO] != -1)
9877 + (ids_seen[DW_SECT_TYPES] != -1))
9878 != 1)
9879 {
9880 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9881 " DWO info/types section [in module %s]"),
9882 dwp_file->name);
9883 }
9884 /* Must have an abbrev section. */
9885 if (ids_seen[DW_SECT_ABBREV] == -1)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9888 " section [in module %s]"),
9889 dwp_file->name);
9890 }
9891 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9892 htab->section_pool.v2.sizes =
9893 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9894 * nr_units * nr_columns);
9895 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9896 * nr_units * nr_columns))
9897 > index_end)
9898 {
9899 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9900 " [in module %s]"),
9901 dwp_file->name);
9902 }
9903 }
9904
9905 return htab;
9906 }
9907
9908 /* Update SECTIONS with the data from SECTP.
9909
9910 This function is like the other "locate" section routines that are
9911 passed to bfd_map_over_sections, but in this context the sections to
9912 read comes from the DWP V1 hash table, not the full ELF section table.
9913
9914 The result is non-zero for success, or zero if an error was found. */
9915
9916 static int
9917 locate_v1_virtual_dwo_sections (asection *sectp,
9918 struct virtual_v1_dwo_sections *sections)
9919 {
9920 const struct dwop_section_names *names = &dwop_section_names;
9921
9922 if (section_is_p (sectp->name, &names->abbrev_dwo))
9923 {
9924 /* There can be only one. */
9925 if (sections->abbrev.s.asection != NULL)
9926 return 0;
9927 sections->abbrev.s.asection = sectp;
9928 sections->abbrev.size = bfd_get_section_size (sectp);
9929 }
9930 else if (section_is_p (sectp->name, &names->info_dwo)
9931 || section_is_p (sectp->name, &names->types_dwo))
9932 {
9933 /* There can be only one. */
9934 if (sections->info_or_types.s.asection != NULL)
9935 return 0;
9936 sections->info_or_types.s.asection = sectp;
9937 sections->info_or_types.size = bfd_get_section_size (sectp);
9938 }
9939 else if (section_is_p (sectp->name, &names->line_dwo))
9940 {
9941 /* There can be only one. */
9942 if (sections->line.s.asection != NULL)
9943 return 0;
9944 sections->line.s.asection = sectp;
9945 sections->line.size = bfd_get_section_size (sectp);
9946 }
9947 else if (section_is_p (sectp->name, &names->loc_dwo))
9948 {
9949 /* There can be only one. */
9950 if (sections->loc.s.asection != NULL)
9951 return 0;
9952 sections->loc.s.asection = sectp;
9953 sections->loc.size = bfd_get_section_size (sectp);
9954 }
9955 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9956 {
9957 /* There can be only one. */
9958 if (sections->macinfo.s.asection != NULL)
9959 return 0;
9960 sections->macinfo.s.asection = sectp;
9961 sections->macinfo.size = bfd_get_section_size (sectp);
9962 }
9963 else if (section_is_p (sectp->name, &names->macro_dwo))
9964 {
9965 /* There can be only one. */
9966 if (sections->macro.s.asection != NULL)
9967 return 0;
9968 sections->macro.s.asection = sectp;
9969 sections->macro.size = bfd_get_section_size (sectp);
9970 }
9971 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9972 {
9973 /* There can be only one. */
9974 if (sections->str_offsets.s.asection != NULL)
9975 return 0;
9976 sections->str_offsets.s.asection = sectp;
9977 sections->str_offsets.size = bfd_get_section_size (sectp);
9978 }
9979 else
9980 {
9981 /* No other kind of section is valid. */
9982 return 0;
9983 }
9984
9985 return 1;
9986 }
9987
9988 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9989 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9990 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9991 This is for DWP version 1 files. */
9992
9993 static struct dwo_unit *
9994 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9995 uint32_t unit_index,
9996 const char *comp_dir,
9997 ULONGEST signature, int is_debug_types)
9998 {
9999 struct objfile *objfile = dwarf2_per_objfile->objfile;
10000 const struct dwp_hash_table *dwp_htab =
10001 is_debug_types ? dwp_file->tus : dwp_file->cus;
10002 bfd *dbfd = dwp_file->dbfd;
10003 const char *kind = is_debug_types ? "TU" : "CU";
10004 struct dwo_file *dwo_file;
10005 struct dwo_unit *dwo_unit;
10006 struct virtual_v1_dwo_sections sections;
10007 void **dwo_file_slot;
10008 char *virtual_dwo_name;
10009 struct dwarf2_section_info *cutu;
10010 struct cleanup *cleanups;
10011 int i;
10012
10013 gdb_assert (dwp_file->version == 1);
10014
10015 if (dwarf2_read_debug)
10016 {
10017 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
10018 kind,
10019 pulongest (unit_index), hex_string (signature),
10020 dwp_file->name);
10021 }
10022
10023 /* Fetch the sections of this DWO unit.
10024 Put a limit on the number of sections we look for so that bad data
10025 doesn't cause us to loop forever. */
10026
10027 #define MAX_NR_V1_DWO_SECTIONS \
10028 (1 /* .debug_info or .debug_types */ \
10029 + 1 /* .debug_abbrev */ \
10030 + 1 /* .debug_line */ \
10031 + 1 /* .debug_loc */ \
10032 + 1 /* .debug_str_offsets */ \
10033 + 1 /* .debug_macro or .debug_macinfo */ \
10034 + 1 /* trailing zero */)
10035
10036 memset (&sections, 0, sizeof (sections));
10037 cleanups = make_cleanup (null_cleanup, 0);
10038
10039 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
10040 {
10041 asection *sectp;
10042 uint32_t section_nr =
10043 read_4_bytes (dbfd,
10044 dwp_htab->section_pool.v1.indices
10045 + (unit_index + i) * sizeof (uint32_t));
10046
10047 if (section_nr == 0)
10048 break;
10049 if (section_nr >= dwp_file->num_sections)
10050 {
10051 error (_("Dwarf Error: bad DWP hash table, section number too large"
10052 " [in module %s]"),
10053 dwp_file->name);
10054 }
10055
10056 sectp = dwp_file->elf_sections[section_nr];
10057 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
10058 {
10059 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10060 " [in module %s]"),
10061 dwp_file->name);
10062 }
10063 }
10064
10065 if (i < 2
10066 || dwarf2_section_empty_p (&sections.info_or_types)
10067 || dwarf2_section_empty_p (&sections.abbrev))
10068 {
10069 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10070 " [in module %s]"),
10071 dwp_file->name);
10072 }
10073 if (i == MAX_NR_V1_DWO_SECTIONS)
10074 {
10075 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10076 " [in module %s]"),
10077 dwp_file->name);
10078 }
10079
10080 /* It's easier for the rest of the code if we fake a struct dwo_file and
10081 have dwo_unit "live" in that. At least for now.
10082
10083 The DWP file can be made up of a random collection of CUs and TUs.
10084 However, for each CU + set of TUs that came from the same original DWO
10085 file, we can combine them back into a virtual DWO file to save space
10086 (fewer struct dwo_file objects to allocate). Remember that for really
10087 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10088
10089 virtual_dwo_name =
10090 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
10091 get_section_id (&sections.abbrev),
10092 get_section_id (&sections.line),
10093 get_section_id (&sections.loc),
10094 get_section_id (&sections.str_offsets));
10095 make_cleanup (xfree, virtual_dwo_name);
10096 /* Can we use an existing virtual DWO file? */
10097 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10098 /* Create one if necessary. */
10099 if (*dwo_file_slot == NULL)
10100 {
10101 if (dwarf2_read_debug)
10102 {
10103 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10104 virtual_dwo_name);
10105 }
10106 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10107 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10108 virtual_dwo_name,
10109 strlen (virtual_dwo_name));
10110 dwo_file->comp_dir = comp_dir;
10111 dwo_file->sections.abbrev = sections.abbrev;
10112 dwo_file->sections.line = sections.line;
10113 dwo_file->sections.loc = sections.loc;
10114 dwo_file->sections.macinfo = sections.macinfo;
10115 dwo_file->sections.macro = sections.macro;
10116 dwo_file->sections.str_offsets = sections.str_offsets;
10117 /* The "str" section is global to the entire DWP file. */
10118 dwo_file->sections.str = dwp_file->sections.str;
10119 /* The info or types section is assigned below to dwo_unit,
10120 there's no need to record it in dwo_file.
10121 Also, we can't simply record type sections in dwo_file because
10122 we record a pointer into the vector in dwo_unit. As we collect more
10123 types we'll grow the vector and eventually have to reallocate space
10124 for it, invalidating all copies of pointers into the previous
10125 contents. */
10126 *dwo_file_slot = dwo_file;
10127 }
10128 else
10129 {
10130 if (dwarf2_read_debug)
10131 {
10132 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10133 virtual_dwo_name);
10134 }
10135 dwo_file = *dwo_file_slot;
10136 }
10137 do_cleanups (cleanups);
10138
10139 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10140 dwo_unit->dwo_file = dwo_file;
10141 dwo_unit->signature = signature;
10142 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10143 sizeof (struct dwarf2_section_info));
10144 *dwo_unit->section = sections.info_or_types;
10145 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10146
10147 return dwo_unit;
10148 }
10149
10150 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10151 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10152 piece within that section used by a TU/CU, return a virtual section
10153 of just that piece. */
10154
10155 static struct dwarf2_section_info
10156 create_dwp_v2_section (struct dwarf2_section_info *section,
10157 bfd_size_type offset, bfd_size_type size)
10158 {
10159 struct dwarf2_section_info result;
10160 asection *sectp;
10161
10162 gdb_assert (section != NULL);
10163 gdb_assert (!section->is_virtual);
10164
10165 memset (&result, 0, sizeof (result));
10166 result.s.containing_section = section;
10167 result.is_virtual = 1;
10168
10169 if (size == 0)
10170 return result;
10171
10172 sectp = get_section_bfd_section (section);
10173
10174 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10175 bounds of the real section. This is a pretty-rare event, so just
10176 flag an error (easier) instead of a warning and trying to cope. */
10177 if (sectp == NULL
10178 || offset + size > bfd_get_section_size (sectp))
10179 {
10180 bfd *abfd = sectp->owner;
10181
10182 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10183 " in section %s [in module %s]"),
10184 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10185 objfile_name (dwarf2_per_objfile->objfile));
10186 }
10187
10188 result.virtual_offset = offset;
10189 result.size = size;
10190 return result;
10191 }
10192
10193 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10194 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10195 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10196 This is for DWP version 2 files. */
10197
10198 static struct dwo_unit *
10199 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10200 uint32_t unit_index,
10201 const char *comp_dir,
10202 ULONGEST signature, int is_debug_types)
10203 {
10204 struct objfile *objfile = dwarf2_per_objfile->objfile;
10205 const struct dwp_hash_table *dwp_htab =
10206 is_debug_types ? dwp_file->tus : dwp_file->cus;
10207 bfd *dbfd = dwp_file->dbfd;
10208 const char *kind = is_debug_types ? "TU" : "CU";
10209 struct dwo_file *dwo_file;
10210 struct dwo_unit *dwo_unit;
10211 struct virtual_v2_dwo_sections sections;
10212 void **dwo_file_slot;
10213 char *virtual_dwo_name;
10214 struct dwarf2_section_info *cutu;
10215 struct cleanup *cleanups;
10216 int i;
10217
10218 gdb_assert (dwp_file->version == 2);
10219
10220 if (dwarf2_read_debug)
10221 {
10222 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10223 kind,
10224 pulongest (unit_index), hex_string (signature),
10225 dwp_file->name);
10226 }
10227
10228 /* Fetch the section offsets of this DWO unit. */
10229
10230 memset (&sections, 0, sizeof (sections));
10231 cleanups = make_cleanup (null_cleanup, 0);
10232
10233 for (i = 0; i < dwp_htab->nr_columns; ++i)
10234 {
10235 uint32_t offset = read_4_bytes (dbfd,
10236 dwp_htab->section_pool.v2.offsets
10237 + (((unit_index - 1) * dwp_htab->nr_columns
10238 + i)
10239 * sizeof (uint32_t)));
10240 uint32_t size = read_4_bytes (dbfd,
10241 dwp_htab->section_pool.v2.sizes
10242 + (((unit_index - 1) * dwp_htab->nr_columns
10243 + i)
10244 * sizeof (uint32_t)));
10245
10246 switch (dwp_htab->section_pool.v2.section_ids[i])
10247 {
10248 case DW_SECT_INFO:
10249 case DW_SECT_TYPES:
10250 sections.info_or_types_offset = offset;
10251 sections.info_or_types_size = size;
10252 break;
10253 case DW_SECT_ABBREV:
10254 sections.abbrev_offset = offset;
10255 sections.abbrev_size = size;
10256 break;
10257 case DW_SECT_LINE:
10258 sections.line_offset = offset;
10259 sections.line_size = size;
10260 break;
10261 case DW_SECT_LOC:
10262 sections.loc_offset = offset;
10263 sections.loc_size = size;
10264 break;
10265 case DW_SECT_STR_OFFSETS:
10266 sections.str_offsets_offset = offset;
10267 sections.str_offsets_size = size;
10268 break;
10269 case DW_SECT_MACINFO:
10270 sections.macinfo_offset = offset;
10271 sections.macinfo_size = size;
10272 break;
10273 case DW_SECT_MACRO:
10274 sections.macro_offset = offset;
10275 sections.macro_size = size;
10276 break;
10277 }
10278 }
10279
10280 /* It's easier for the rest of the code if we fake a struct dwo_file and
10281 have dwo_unit "live" in that. At least for now.
10282
10283 The DWP file can be made up of a random collection of CUs and TUs.
10284 However, for each CU + set of TUs that came from the same original DWO
10285 file, we can combine them back into a virtual DWO file to save space
10286 (fewer struct dwo_file objects to allocate). Remember that for really
10287 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10288
10289 virtual_dwo_name =
10290 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10291 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10292 (long) (sections.line_size ? sections.line_offset : 0),
10293 (long) (sections.loc_size ? sections.loc_offset : 0),
10294 (long) (sections.str_offsets_size
10295 ? sections.str_offsets_offset : 0));
10296 make_cleanup (xfree, virtual_dwo_name);
10297 /* Can we use an existing virtual DWO file? */
10298 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10299 /* Create one if necessary. */
10300 if (*dwo_file_slot == NULL)
10301 {
10302 if (dwarf2_read_debug)
10303 {
10304 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10305 virtual_dwo_name);
10306 }
10307 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10308 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10309 virtual_dwo_name,
10310 strlen (virtual_dwo_name));
10311 dwo_file->comp_dir = comp_dir;
10312 dwo_file->sections.abbrev =
10313 create_dwp_v2_section (&dwp_file->sections.abbrev,
10314 sections.abbrev_offset, sections.abbrev_size);
10315 dwo_file->sections.line =
10316 create_dwp_v2_section (&dwp_file->sections.line,
10317 sections.line_offset, sections.line_size);
10318 dwo_file->sections.loc =
10319 create_dwp_v2_section (&dwp_file->sections.loc,
10320 sections.loc_offset, sections.loc_size);
10321 dwo_file->sections.macinfo =
10322 create_dwp_v2_section (&dwp_file->sections.macinfo,
10323 sections.macinfo_offset, sections.macinfo_size);
10324 dwo_file->sections.macro =
10325 create_dwp_v2_section (&dwp_file->sections.macro,
10326 sections.macro_offset, sections.macro_size);
10327 dwo_file->sections.str_offsets =
10328 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10329 sections.str_offsets_offset,
10330 sections.str_offsets_size);
10331 /* The "str" section is global to the entire DWP file. */
10332 dwo_file->sections.str = dwp_file->sections.str;
10333 /* The info or types section is assigned below to dwo_unit,
10334 there's no need to record it in dwo_file.
10335 Also, we can't simply record type sections in dwo_file because
10336 we record a pointer into the vector in dwo_unit. As we collect more
10337 types we'll grow the vector and eventually have to reallocate space
10338 for it, invalidating all copies of pointers into the previous
10339 contents. */
10340 *dwo_file_slot = dwo_file;
10341 }
10342 else
10343 {
10344 if (dwarf2_read_debug)
10345 {
10346 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10347 virtual_dwo_name);
10348 }
10349 dwo_file = *dwo_file_slot;
10350 }
10351 do_cleanups (cleanups);
10352
10353 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10354 dwo_unit->dwo_file = dwo_file;
10355 dwo_unit->signature = signature;
10356 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10357 sizeof (struct dwarf2_section_info));
10358 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10359 ? &dwp_file->sections.types
10360 : &dwp_file->sections.info,
10361 sections.info_or_types_offset,
10362 sections.info_or_types_size);
10363 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10364
10365 return dwo_unit;
10366 }
10367
10368 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10369 Returns NULL if the signature isn't found. */
10370
10371 static struct dwo_unit *
10372 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10373 ULONGEST signature, int is_debug_types)
10374 {
10375 const struct dwp_hash_table *dwp_htab =
10376 is_debug_types ? dwp_file->tus : dwp_file->cus;
10377 bfd *dbfd = dwp_file->dbfd;
10378 uint32_t mask = dwp_htab->nr_slots - 1;
10379 uint32_t hash = signature & mask;
10380 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10381 unsigned int i;
10382 void **slot;
10383 struct dwo_unit find_dwo_cu, *dwo_cu;
10384
10385 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10386 find_dwo_cu.signature = signature;
10387 slot = htab_find_slot (is_debug_types
10388 ? dwp_file->loaded_tus
10389 : dwp_file->loaded_cus,
10390 &find_dwo_cu, INSERT);
10391
10392 if (*slot != NULL)
10393 return *slot;
10394
10395 /* Use a for loop so that we don't loop forever on bad debug info. */
10396 for (i = 0; i < dwp_htab->nr_slots; ++i)
10397 {
10398 ULONGEST signature_in_table;
10399
10400 signature_in_table =
10401 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10402 if (signature_in_table == signature)
10403 {
10404 uint32_t unit_index =
10405 read_4_bytes (dbfd,
10406 dwp_htab->unit_table + hash * sizeof (uint32_t));
10407
10408 if (dwp_file->version == 1)
10409 {
10410 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10411 comp_dir, signature,
10412 is_debug_types);
10413 }
10414 else
10415 {
10416 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10417 comp_dir, signature,
10418 is_debug_types);
10419 }
10420 return *slot;
10421 }
10422 if (signature_in_table == 0)
10423 return NULL;
10424 hash = (hash + hash2) & mask;
10425 }
10426
10427 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10428 " [in module %s]"),
10429 dwp_file->name);
10430 }
10431
10432 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10433 Open the file specified by FILE_NAME and hand it off to BFD for
10434 preliminary analysis. Return a newly initialized bfd *, which
10435 includes a canonicalized copy of FILE_NAME.
10436 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10437 SEARCH_CWD is true if the current directory is to be searched.
10438 It will be searched before debug-file-directory.
10439 If successful, the file is added to the bfd include table of the
10440 objfile's bfd (see gdb_bfd_record_inclusion).
10441 If unable to find/open the file, return NULL.
10442 NOTE: This function is derived from symfile_bfd_open. */
10443
10444 static bfd *
10445 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10446 {
10447 bfd *sym_bfd;
10448 int desc, flags;
10449 char *absolute_name;
10450 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10451 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10452 to debug_file_directory. */
10453 char *search_path;
10454 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10455
10456 if (search_cwd)
10457 {
10458 if (*debug_file_directory != '\0')
10459 search_path = concat (".", dirname_separator_string,
10460 debug_file_directory, NULL);
10461 else
10462 search_path = xstrdup (".");
10463 }
10464 else
10465 search_path = xstrdup (debug_file_directory);
10466
10467 flags = OPF_RETURN_REALPATH;
10468 if (is_dwp)
10469 flags |= OPF_SEARCH_IN_PATH;
10470 desc = openp (search_path, flags, file_name,
10471 O_RDONLY | O_BINARY, &absolute_name);
10472 xfree (search_path);
10473 if (desc < 0)
10474 return NULL;
10475
10476 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10477 xfree (absolute_name);
10478 if (sym_bfd == NULL)
10479 return NULL;
10480 bfd_set_cacheable (sym_bfd, 1);
10481
10482 if (!bfd_check_format (sym_bfd, bfd_object))
10483 {
10484 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10485 return NULL;
10486 }
10487
10488 /* Success. Record the bfd as having been included by the objfile's bfd.
10489 This is important because things like demangled_names_hash lives in the
10490 objfile's per_bfd space and may have references to things like symbol
10491 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10492 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10493
10494 return sym_bfd;
10495 }
10496
10497 /* Try to open DWO file FILE_NAME.
10498 COMP_DIR is the DW_AT_comp_dir attribute.
10499 The result is the bfd handle of the file.
10500 If there is a problem finding or opening the file, return NULL.
10501 Upon success, the canonicalized path of the file is stored in the bfd,
10502 same as symfile_bfd_open. */
10503
10504 static bfd *
10505 open_dwo_file (const char *file_name, const char *comp_dir)
10506 {
10507 bfd *abfd;
10508
10509 if (IS_ABSOLUTE_PATH (file_name))
10510 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10511
10512 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10513
10514 if (comp_dir != NULL)
10515 {
10516 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10517
10518 /* NOTE: If comp_dir is a relative path, this will also try the
10519 search path, which seems useful. */
10520 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10521 xfree (path_to_try);
10522 if (abfd != NULL)
10523 return abfd;
10524 }
10525
10526 /* That didn't work, try debug-file-directory, which, despite its name,
10527 is a list of paths. */
10528
10529 if (*debug_file_directory == '\0')
10530 return NULL;
10531
10532 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10533 }
10534
10535 /* This function is mapped across the sections and remembers the offset and
10536 size of each of the DWO debugging sections we are interested in. */
10537
10538 static void
10539 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10540 {
10541 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10542 const struct dwop_section_names *names = &dwop_section_names;
10543
10544 if (section_is_p (sectp->name, &names->abbrev_dwo))
10545 {
10546 dwo_sections->abbrev.s.asection = sectp;
10547 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->info_dwo))
10550 {
10551 dwo_sections->info.s.asection = sectp;
10552 dwo_sections->info.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->line_dwo))
10555 {
10556 dwo_sections->line.s.asection = sectp;
10557 dwo_sections->line.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->loc_dwo))
10560 {
10561 dwo_sections->loc.s.asection = sectp;
10562 dwo_sections->loc.size = bfd_get_section_size (sectp);
10563 }
10564 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10565 {
10566 dwo_sections->macinfo.s.asection = sectp;
10567 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->macro_dwo))
10570 {
10571 dwo_sections->macro.s.asection = sectp;
10572 dwo_sections->macro.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->str_dwo))
10575 {
10576 dwo_sections->str.s.asection = sectp;
10577 dwo_sections->str.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10580 {
10581 dwo_sections->str_offsets.s.asection = sectp;
10582 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->types_dwo))
10585 {
10586 struct dwarf2_section_info type_section;
10587
10588 memset (&type_section, 0, sizeof (type_section));
10589 type_section.s.asection = sectp;
10590 type_section.size = bfd_get_section_size (sectp);
10591 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10592 &type_section);
10593 }
10594 }
10595
10596 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10597 by PER_CU. This is for the non-DWP case.
10598 The result is NULL if DWO_NAME can't be found. */
10599
10600 static struct dwo_file *
10601 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10602 const char *dwo_name, const char *comp_dir)
10603 {
10604 struct objfile *objfile = dwarf2_per_objfile->objfile;
10605 struct dwo_file *dwo_file;
10606 bfd *dbfd;
10607 struct cleanup *cleanups;
10608
10609 dbfd = open_dwo_file (dwo_name, comp_dir);
10610 if (dbfd == NULL)
10611 {
10612 if (dwarf2_read_debug)
10613 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10614 return NULL;
10615 }
10616 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10617 dwo_file->dwo_name = dwo_name;
10618 dwo_file->comp_dir = comp_dir;
10619 dwo_file->dbfd = dbfd;
10620
10621 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10622
10623 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10624
10625 dwo_file->cu = create_dwo_cu (dwo_file);
10626
10627 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10628 dwo_file->sections.types);
10629
10630 discard_cleanups (cleanups);
10631
10632 if (dwarf2_read_debug)
10633 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10634
10635 return dwo_file;
10636 }
10637
10638 /* This function is mapped across the sections and remembers the offset and
10639 size of each of the DWP debugging sections common to version 1 and 2 that
10640 we are interested in. */
10641
10642 static void
10643 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10644 void *dwp_file_ptr)
10645 {
10646 struct dwp_file *dwp_file = dwp_file_ptr;
10647 const struct dwop_section_names *names = &dwop_section_names;
10648 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10649
10650 /* Record the ELF section number for later lookup: this is what the
10651 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10652 gdb_assert (elf_section_nr < dwp_file->num_sections);
10653 dwp_file->elf_sections[elf_section_nr] = sectp;
10654
10655 /* Look for specific sections that we need. */
10656 if (section_is_p (sectp->name, &names->str_dwo))
10657 {
10658 dwp_file->sections.str.s.asection = sectp;
10659 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10660 }
10661 else if (section_is_p (sectp->name, &names->cu_index))
10662 {
10663 dwp_file->sections.cu_index.s.asection = sectp;
10664 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10665 }
10666 else if (section_is_p (sectp->name, &names->tu_index))
10667 {
10668 dwp_file->sections.tu_index.s.asection = sectp;
10669 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10670 }
10671 }
10672
10673 /* This function is mapped across the sections and remembers the offset and
10674 size of each of the DWP version 2 debugging sections that we are interested
10675 in. This is split into a separate function because we don't know if we
10676 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10677
10678 static void
10679 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10680 {
10681 struct dwp_file *dwp_file = dwp_file_ptr;
10682 const struct dwop_section_names *names = &dwop_section_names;
10683 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10684
10685 /* Record the ELF section number for later lookup: this is what the
10686 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10687 gdb_assert (elf_section_nr < dwp_file->num_sections);
10688 dwp_file->elf_sections[elf_section_nr] = sectp;
10689
10690 /* Look for specific sections that we need. */
10691 if (section_is_p (sectp->name, &names->abbrev_dwo))
10692 {
10693 dwp_file->sections.abbrev.s.asection = sectp;
10694 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10695 }
10696 else if (section_is_p (sectp->name, &names->info_dwo))
10697 {
10698 dwp_file->sections.info.s.asection = sectp;
10699 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10700 }
10701 else if (section_is_p (sectp->name, &names->line_dwo))
10702 {
10703 dwp_file->sections.line.s.asection = sectp;
10704 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10705 }
10706 else if (section_is_p (sectp->name, &names->loc_dwo))
10707 {
10708 dwp_file->sections.loc.s.asection = sectp;
10709 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10710 }
10711 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10712 {
10713 dwp_file->sections.macinfo.s.asection = sectp;
10714 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10715 }
10716 else if (section_is_p (sectp->name, &names->macro_dwo))
10717 {
10718 dwp_file->sections.macro.s.asection = sectp;
10719 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10722 {
10723 dwp_file->sections.str_offsets.s.asection = sectp;
10724 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->types_dwo))
10727 {
10728 dwp_file->sections.types.s.asection = sectp;
10729 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10730 }
10731 }
10732
10733 /* Hash function for dwp_file loaded CUs/TUs. */
10734
10735 static hashval_t
10736 hash_dwp_loaded_cutus (const void *item)
10737 {
10738 const struct dwo_unit *dwo_unit = item;
10739
10740 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10741 return dwo_unit->signature;
10742 }
10743
10744 /* Equality function for dwp_file loaded CUs/TUs. */
10745
10746 static int
10747 eq_dwp_loaded_cutus (const void *a, const void *b)
10748 {
10749 const struct dwo_unit *dua = a;
10750 const struct dwo_unit *dub = b;
10751
10752 return dua->signature == dub->signature;
10753 }
10754
10755 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10756
10757 static htab_t
10758 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10759 {
10760 return htab_create_alloc_ex (3,
10761 hash_dwp_loaded_cutus,
10762 eq_dwp_loaded_cutus,
10763 NULL,
10764 &objfile->objfile_obstack,
10765 hashtab_obstack_allocate,
10766 dummy_obstack_deallocate);
10767 }
10768
10769 /* Try to open DWP file FILE_NAME.
10770 The result is the bfd handle of the file.
10771 If there is a problem finding or opening the file, return NULL.
10772 Upon success, the canonicalized path of the file is stored in the bfd,
10773 same as symfile_bfd_open. */
10774
10775 static bfd *
10776 open_dwp_file (const char *file_name)
10777 {
10778 bfd *abfd;
10779
10780 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10781 if (abfd != NULL)
10782 return abfd;
10783
10784 /* Work around upstream bug 15652.
10785 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10786 [Whether that's a "bug" is debatable, but it is getting in our way.]
10787 We have no real idea where the dwp file is, because gdb's realpath-ing
10788 of the executable's path may have discarded the needed info.
10789 [IWBN if the dwp file name was recorded in the executable, akin to
10790 .gnu_debuglink, but that doesn't exist yet.]
10791 Strip the directory from FILE_NAME and search again. */
10792 if (*debug_file_directory != '\0')
10793 {
10794 /* Don't implicitly search the current directory here.
10795 If the user wants to search "." to handle this case,
10796 it must be added to debug-file-directory. */
10797 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10798 0 /*search_cwd*/);
10799 }
10800
10801 return NULL;
10802 }
10803
10804 /* Initialize the use of the DWP file for the current objfile.
10805 By convention the name of the DWP file is ${objfile}.dwp.
10806 The result is NULL if it can't be found. */
10807
10808 static struct dwp_file *
10809 open_and_init_dwp_file (void)
10810 {
10811 struct objfile *objfile = dwarf2_per_objfile->objfile;
10812 struct dwp_file *dwp_file;
10813 char *dwp_name;
10814 bfd *dbfd;
10815 struct cleanup *cleanups;
10816
10817 /* Try to find first .dwp for the binary file before any symbolic links
10818 resolving. */
10819 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10820 cleanups = make_cleanup (xfree, dwp_name);
10821
10822 dbfd = open_dwp_file (dwp_name);
10823 if (dbfd == NULL
10824 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10825 {
10826 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10827 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10828 make_cleanup (xfree, dwp_name);
10829 dbfd = open_dwp_file (dwp_name);
10830 }
10831
10832 if (dbfd == NULL)
10833 {
10834 if (dwarf2_read_debug)
10835 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10836 do_cleanups (cleanups);
10837 return NULL;
10838 }
10839 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10840 dwp_file->name = bfd_get_filename (dbfd);
10841 dwp_file->dbfd = dbfd;
10842 do_cleanups (cleanups);
10843
10844 /* +1: section 0 is unused */
10845 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10846 dwp_file->elf_sections =
10847 OBSTACK_CALLOC (&objfile->objfile_obstack,
10848 dwp_file->num_sections, asection *);
10849
10850 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10851
10852 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10853
10854 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10855
10856 /* The DWP file version is stored in the hash table. Oh well. */
10857 if (dwp_file->cus->version != dwp_file->tus->version)
10858 {
10859 /* Technically speaking, we should try to limp along, but this is
10860 pretty bizarre. We use pulongest here because that's the established
10861 portability solution (e.g, we cannot use %u for uint32_t). */
10862 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10863 " TU version %s [in DWP file %s]"),
10864 pulongest (dwp_file->cus->version),
10865 pulongest (dwp_file->tus->version), dwp_name);
10866 }
10867 dwp_file->version = dwp_file->cus->version;
10868
10869 if (dwp_file->version == 2)
10870 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10871
10872 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10873 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10874
10875 if (dwarf2_read_debug)
10876 {
10877 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10878 fprintf_unfiltered (gdb_stdlog,
10879 " %s CUs, %s TUs\n",
10880 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10881 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10882 }
10883
10884 return dwp_file;
10885 }
10886
10887 /* Wrapper around open_and_init_dwp_file, only open it once. */
10888
10889 static struct dwp_file *
10890 get_dwp_file (void)
10891 {
10892 if (! dwarf2_per_objfile->dwp_checked)
10893 {
10894 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10895 dwarf2_per_objfile->dwp_checked = 1;
10896 }
10897 return dwarf2_per_objfile->dwp_file;
10898 }
10899
10900 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10901 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10902 or in the DWP file for the objfile, referenced by THIS_UNIT.
10903 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10904 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10905
10906 This is called, for example, when wanting to read a variable with a
10907 complex location. Therefore we don't want to do file i/o for every call.
10908 Therefore we don't want to look for a DWO file on every call.
10909 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10910 then we check if we've already seen DWO_NAME, and only THEN do we check
10911 for a DWO file.
10912
10913 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10914 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10915
10916 static struct dwo_unit *
10917 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10918 const char *dwo_name, const char *comp_dir,
10919 ULONGEST signature, int is_debug_types)
10920 {
10921 struct objfile *objfile = dwarf2_per_objfile->objfile;
10922 const char *kind = is_debug_types ? "TU" : "CU";
10923 void **dwo_file_slot;
10924 struct dwo_file *dwo_file;
10925 struct dwp_file *dwp_file;
10926
10927 /* First see if there's a DWP file.
10928 If we have a DWP file but didn't find the DWO inside it, don't
10929 look for the original DWO file. It makes gdb behave differently
10930 depending on whether one is debugging in the build tree. */
10931
10932 dwp_file = get_dwp_file ();
10933 if (dwp_file != NULL)
10934 {
10935 const struct dwp_hash_table *dwp_htab =
10936 is_debug_types ? dwp_file->tus : dwp_file->cus;
10937
10938 if (dwp_htab != NULL)
10939 {
10940 struct dwo_unit *dwo_cutu =
10941 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10942 signature, is_debug_types);
10943
10944 if (dwo_cutu != NULL)
10945 {
10946 if (dwarf2_read_debug)
10947 {
10948 fprintf_unfiltered (gdb_stdlog,
10949 "Virtual DWO %s %s found: @%s\n",
10950 kind, hex_string (signature),
10951 host_address_to_string (dwo_cutu));
10952 }
10953 return dwo_cutu;
10954 }
10955 }
10956 }
10957 else
10958 {
10959 /* No DWP file, look for the DWO file. */
10960
10961 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10962 if (*dwo_file_slot == NULL)
10963 {
10964 /* Read in the file and build a table of the CUs/TUs it contains. */
10965 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10966 }
10967 /* NOTE: This will be NULL if unable to open the file. */
10968 dwo_file = *dwo_file_slot;
10969
10970 if (dwo_file != NULL)
10971 {
10972 struct dwo_unit *dwo_cutu = NULL;
10973
10974 if (is_debug_types && dwo_file->tus)
10975 {
10976 struct dwo_unit find_dwo_cutu;
10977
10978 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10979 find_dwo_cutu.signature = signature;
10980 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10981 }
10982 else if (!is_debug_types && dwo_file->cu)
10983 {
10984 if (signature == dwo_file->cu->signature)
10985 dwo_cutu = dwo_file->cu;
10986 }
10987
10988 if (dwo_cutu != NULL)
10989 {
10990 if (dwarf2_read_debug)
10991 {
10992 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10993 kind, dwo_name, hex_string (signature),
10994 host_address_to_string (dwo_cutu));
10995 }
10996 return dwo_cutu;
10997 }
10998 }
10999 }
11000
11001 /* We didn't find it. This could mean a dwo_id mismatch, or
11002 someone deleted the DWO/DWP file, or the search path isn't set up
11003 correctly to find the file. */
11004
11005 if (dwarf2_read_debug)
11006 {
11007 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11008 kind, dwo_name, hex_string (signature));
11009 }
11010
11011 /* This is a warning and not a complaint because it can be caused by
11012 pilot error (e.g., user accidentally deleting the DWO). */
11013 {
11014 /* Print the name of the DWP file if we looked there, helps the user
11015 better diagnose the problem. */
11016 char *dwp_text = NULL;
11017 struct cleanup *cleanups;
11018
11019 if (dwp_file != NULL)
11020 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11021 cleanups = make_cleanup (xfree, dwp_text);
11022
11023 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11024 " [in module %s]"),
11025 kind, dwo_name, hex_string (signature),
11026 dwp_text != NULL ? dwp_text : "",
11027 this_unit->is_debug_types ? "TU" : "CU",
11028 this_unit->offset.sect_off, objfile_name (objfile));
11029
11030 do_cleanups (cleanups);
11031 }
11032 return NULL;
11033 }
11034
11035 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11036 See lookup_dwo_cutu_unit for details. */
11037
11038 static struct dwo_unit *
11039 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11040 const char *dwo_name, const char *comp_dir,
11041 ULONGEST signature)
11042 {
11043 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11044 }
11045
11046 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11047 See lookup_dwo_cutu_unit for details. */
11048
11049 static struct dwo_unit *
11050 lookup_dwo_type_unit (struct signatured_type *this_tu,
11051 const char *dwo_name, const char *comp_dir)
11052 {
11053 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11054 }
11055
11056 /* Traversal function for queue_and_load_all_dwo_tus. */
11057
11058 static int
11059 queue_and_load_dwo_tu (void **slot, void *info)
11060 {
11061 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11062 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11063 ULONGEST signature = dwo_unit->signature;
11064 struct signatured_type *sig_type =
11065 lookup_dwo_signatured_type (per_cu->cu, signature);
11066
11067 if (sig_type != NULL)
11068 {
11069 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11070
11071 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11072 a real dependency of PER_CU on SIG_TYPE. That is detected later
11073 while processing PER_CU. */
11074 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11075 load_full_type_unit (sig_cu);
11076 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11077 }
11078
11079 return 1;
11080 }
11081
11082 /* Queue all TUs contained in the DWO of PER_CU to be read in.
11083 The DWO may have the only definition of the type, though it may not be
11084 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11085 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11086
11087 static void
11088 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11089 {
11090 struct dwo_unit *dwo_unit;
11091 struct dwo_file *dwo_file;
11092
11093 gdb_assert (!per_cu->is_debug_types);
11094 gdb_assert (get_dwp_file () == NULL);
11095 gdb_assert (per_cu->cu != NULL);
11096
11097 dwo_unit = per_cu->cu->dwo_unit;
11098 gdb_assert (dwo_unit != NULL);
11099
11100 dwo_file = dwo_unit->dwo_file;
11101 if (dwo_file->tus != NULL)
11102 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11103 }
11104
11105 /* Free all resources associated with DWO_FILE.
11106 Close the DWO file and munmap the sections.
11107 All memory should be on the objfile obstack. */
11108
11109 static void
11110 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
11111 {
11112 int ix;
11113 struct dwarf2_section_info *section;
11114
11115 /* Note: dbfd is NULL for virtual DWO files. */
11116 gdb_bfd_unref (dwo_file->dbfd);
11117
11118 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11119 }
11120
11121 /* Wrapper for free_dwo_file for use in cleanups. */
11122
11123 static void
11124 free_dwo_file_cleanup (void *arg)
11125 {
11126 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11127 struct objfile *objfile = dwarf2_per_objfile->objfile;
11128
11129 free_dwo_file (dwo_file, objfile);
11130 }
11131
11132 /* Traversal function for free_dwo_files. */
11133
11134 static int
11135 free_dwo_file_from_slot (void **slot, void *info)
11136 {
11137 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11138 struct objfile *objfile = (struct objfile *) info;
11139
11140 free_dwo_file (dwo_file, objfile);
11141
11142 return 1;
11143 }
11144
11145 /* Free all resources associated with DWO_FILES. */
11146
11147 static void
11148 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11149 {
11150 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
11151 }
11152 \f
11153 /* Read in various DIEs. */
11154
11155 /* qsort helper for inherit_abstract_dies. */
11156
11157 static int
11158 unsigned_int_compar (const void *ap, const void *bp)
11159 {
11160 unsigned int a = *(unsigned int *) ap;
11161 unsigned int b = *(unsigned int *) bp;
11162
11163 return (a > b) - (b > a);
11164 }
11165
11166 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
11167 Inherit only the children of the DW_AT_abstract_origin DIE not being
11168 already referenced by DW_AT_abstract_origin from the children of the
11169 current DIE. */
11170
11171 static void
11172 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11173 {
11174 struct die_info *child_die;
11175 unsigned die_children_count;
11176 /* CU offsets which were referenced by children of the current DIE. */
11177 sect_offset *offsets;
11178 sect_offset *offsets_end, *offsetp;
11179 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11180 struct die_info *origin_die;
11181 /* Iterator of the ORIGIN_DIE children. */
11182 struct die_info *origin_child_die;
11183 struct cleanup *cleanups;
11184 struct attribute *attr;
11185 struct dwarf2_cu *origin_cu;
11186 struct pending **origin_previous_list_in_scope;
11187
11188 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11189 if (!attr)
11190 return;
11191
11192 /* Note that following die references may follow to a die in a
11193 different cu. */
11194
11195 origin_cu = cu;
11196 origin_die = follow_die_ref (die, attr, &origin_cu);
11197
11198 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11199 symbols in. */
11200 origin_previous_list_in_scope = origin_cu->list_in_scope;
11201 origin_cu->list_in_scope = cu->list_in_scope;
11202
11203 if (die->tag != origin_die->tag
11204 && !(die->tag == DW_TAG_inlined_subroutine
11205 && origin_die->tag == DW_TAG_subprogram))
11206 complaint (&symfile_complaints,
11207 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
11208 die->offset.sect_off, origin_die->offset.sect_off);
11209
11210 child_die = die->child;
11211 die_children_count = 0;
11212 while (child_die && child_die->tag)
11213 {
11214 child_die = sibling_die (child_die);
11215 die_children_count++;
11216 }
11217 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11218 cleanups = make_cleanup (xfree, offsets);
11219
11220 offsets_end = offsets;
11221 for (child_die = die->child;
11222 child_die && child_die->tag;
11223 child_die = sibling_die (child_die))
11224 {
11225 struct die_info *child_origin_die;
11226 struct dwarf2_cu *child_origin_cu;
11227
11228 /* We are trying to process concrete instance entries:
11229 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11230 it's not relevant to our analysis here. i.e. detecting DIEs that are
11231 present in the abstract instance but not referenced in the concrete
11232 one. */
11233 if (child_die->tag == DW_TAG_GNU_call_site)
11234 continue;
11235
11236 /* For each CHILD_DIE, find the corresponding child of
11237 ORIGIN_DIE. If there is more than one layer of
11238 DW_AT_abstract_origin, follow them all; there shouldn't be,
11239 but GCC versions at least through 4.4 generate this (GCC PR
11240 40573). */
11241 child_origin_die = child_die;
11242 child_origin_cu = cu;
11243 while (1)
11244 {
11245 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11246 child_origin_cu);
11247 if (attr == NULL)
11248 break;
11249 child_origin_die = follow_die_ref (child_origin_die, attr,
11250 &child_origin_cu);
11251 }
11252
11253 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11254 counterpart may exist. */
11255 if (child_origin_die != child_die)
11256 {
11257 if (child_die->tag != child_origin_die->tag
11258 && !(child_die->tag == DW_TAG_inlined_subroutine
11259 && child_origin_die->tag == DW_TAG_subprogram))
11260 complaint (&symfile_complaints,
11261 _("Child DIE 0x%x and its abstract origin 0x%x have "
11262 "different tags"), child_die->offset.sect_off,
11263 child_origin_die->offset.sect_off);
11264 if (child_origin_die->parent != origin_die)
11265 complaint (&symfile_complaints,
11266 _("Child DIE 0x%x and its abstract origin 0x%x have "
11267 "different parents"), child_die->offset.sect_off,
11268 child_origin_die->offset.sect_off);
11269 else
11270 *offsets_end++ = child_origin_die->offset;
11271 }
11272 }
11273 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11274 unsigned_int_compar);
11275 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11276 if (offsetp[-1].sect_off == offsetp->sect_off)
11277 complaint (&symfile_complaints,
11278 _("Multiple children of DIE 0x%x refer "
11279 "to DIE 0x%x as their abstract origin"),
11280 die->offset.sect_off, offsetp->sect_off);
11281
11282 offsetp = offsets;
11283 origin_child_die = origin_die->child;
11284 while (origin_child_die && origin_child_die->tag)
11285 {
11286 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11287 while (offsetp < offsets_end
11288 && offsetp->sect_off < origin_child_die->offset.sect_off)
11289 offsetp++;
11290 if (offsetp >= offsets_end
11291 || offsetp->sect_off > origin_child_die->offset.sect_off)
11292 {
11293 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11294 Check whether we're already processing ORIGIN_CHILD_DIE.
11295 This can happen with mutually referenced abstract_origins.
11296 PR 16581. */
11297 if (!origin_child_die->in_process)
11298 process_die (origin_child_die, origin_cu);
11299 }
11300 origin_child_die = sibling_die (origin_child_die);
11301 }
11302 origin_cu->list_in_scope = origin_previous_list_in_scope;
11303
11304 do_cleanups (cleanups);
11305 }
11306
11307 static void
11308 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11309 {
11310 struct objfile *objfile = cu->objfile;
11311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11312 struct context_stack *newobj;
11313 CORE_ADDR lowpc;
11314 CORE_ADDR highpc;
11315 struct die_info *child_die;
11316 struct attribute *attr, *call_line, *call_file;
11317 const char *name;
11318 CORE_ADDR baseaddr;
11319 struct block *block;
11320 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11321 VEC (symbolp) *template_args = NULL;
11322 struct template_symbol *templ_func = NULL;
11323
11324 if (inlined_func)
11325 {
11326 /* If we do not have call site information, we can't show the
11327 caller of this inlined function. That's too confusing, so
11328 only use the scope for local variables. */
11329 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11330 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11331 if (call_line == NULL || call_file == NULL)
11332 {
11333 read_lexical_block_scope (die, cu);
11334 return;
11335 }
11336 }
11337
11338 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11339
11340 name = dwarf2_name (die, cu);
11341
11342 /* Ignore functions with missing or empty names. These are actually
11343 illegal according to the DWARF standard. */
11344 if (name == NULL)
11345 {
11346 complaint (&symfile_complaints,
11347 _("missing name for subprogram DIE at %d"),
11348 die->offset.sect_off);
11349 return;
11350 }
11351
11352 /* Ignore functions with missing or invalid low and high pc attributes. */
11353 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11354 {
11355 attr = dwarf2_attr (die, DW_AT_external, cu);
11356 if (!attr || !DW_UNSND (attr))
11357 complaint (&symfile_complaints,
11358 _("cannot get low and high bounds "
11359 "for subprogram DIE at %d"),
11360 die->offset.sect_off);
11361 return;
11362 }
11363
11364 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11365 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11366
11367 /* If we have any template arguments, then we must allocate a
11368 different sort of symbol. */
11369 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11370 {
11371 if (child_die->tag == DW_TAG_template_type_param
11372 || child_die->tag == DW_TAG_template_value_param)
11373 {
11374 templ_func = allocate_template_symbol (objfile);
11375 templ_func->base.is_cplus_template_function = 1;
11376 break;
11377 }
11378 }
11379
11380 newobj = push_context (0, lowpc);
11381 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
11382 (struct symbol *) templ_func);
11383
11384 /* If there is a location expression for DW_AT_frame_base, record
11385 it. */
11386 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11387 if (attr)
11388 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
11389
11390 cu->list_in_scope = &local_symbols;
11391
11392 if (die->child != NULL)
11393 {
11394 child_die = die->child;
11395 while (child_die && child_die->tag)
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
11400 struct symbol *arg = new_symbol (child_die, NULL, cu);
11401
11402 if (arg != NULL)
11403 VEC_safe_push (symbolp, template_args, arg);
11404 }
11405 else
11406 process_die (child_die, cu);
11407 child_die = sibling_die (child_die);
11408 }
11409 }
11410
11411 inherit_abstract_dies (die, cu);
11412
11413 /* If we have a DW_AT_specification, we might need to import using
11414 directives from the context of the specification DIE. See the
11415 comment in determine_prefix. */
11416 if (cu->language == language_cplus
11417 && dwarf2_attr (die, DW_AT_specification, cu))
11418 {
11419 struct dwarf2_cu *spec_cu = cu;
11420 struct die_info *spec_die = die_specification (die, &spec_cu);
11421
11422 while (spec_die)
11423 {
11424 child_die = spec_die->child;
11425 while (child_die && child_die->tag)
11426 {
11427 if (child_die->tag == DW_TAG_imported_module)
11428 process_die (child_die, spec_cu);
11429 child_die = sibling_die (child_die);
11430 }
11431
11432 /* In some cases, GCC generates specification DIEs that
11433 themselves contain DW_AT_specification attributes. */
11434 spec_die = die_specification (spec_die, &spec_cu);
11435 }
11436 }
11437
11438 newobj = pop_context ();
11439 /* Make a block for the local symbols within. */
11440 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
11441 lowpc, highpc);
11442
11443 /* For C++, set the block's scope. */
11444 if ((cu->language == language_cplus || cu->language == language_fortran)
11445 && cu->processing_has_namespace_info)
11446 block_set_scope (block, determine_prefix (die, cu),
11447 &objfile->objfile_obstack);
11448
11449 /* If we have address ranges, record them. */
11450 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11451
11452 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
11453
11454 /* Attach template arguments to function. */
11455 if (! VEC_empty (symbolp, template_args))
11456 {
11457 gdb_assert (templ_func != NULL);
11458
11459 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11460 templ_func->template_arguments
11461 = obstack_alloc (&objfile->objfile_obstack,
11462 (templ_func->n_template_arguments
11463 * sizeof (struct symbol *)));
11464 memcpy (templ_func->template_arguments,
11465 VEC_address (symbolp, template_args),
11466 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11467 VEC_free (symbolp, template_args);
11468 }
11469
11470 /* In C++, we can have functions nested inside functions (e.g., when
11471 a function declares a class that has methods). This means that
11472 when we finish processing a function scope, we may need to go
11473 back to building a containing block's symbol lists. */
11474 local_symbols = newobj->locals;
11475 using_directives = newobj->using_directives;
11476
11477 /* If we've finished processing a top-level function, subsequent
11478 symbols go in the file symbol list. */
11479 if (outermost_context_p ())
11480 cu->list_in_scope = &file_symbols;
11481 }
11482
11483 /* Process all the DIES contained within a lexical block scope. Start
11484 a new scope, process the dies, and then close the scope. */
11485
11486 static void
11487 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11488 {
11489 struct objfile *objfile = cu->objfile;
11490 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11491 struct context_stack *newobj;
11492 CORE_ADDR lowpc, highpc;
11493 struct die_info *child_die;
11494 CORE_ADDR baseaddr;
11495
11496 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11497
11498 /* Ignore blocks with missing or invalid low and high pc attributes. */
11499 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11500 as multiple lexical blocks? Handling children in a sane way would
11501 be nasty. Might be easier to properly extend generic blocks to
11502 describe ranges. */
11503 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11504 return;
11505 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11506 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
11507
11508 push_context (0, lowpc);
11509 if (die->child != NULL)
11510 {
11511 child_die = die->child;
11512 while (child_die && child_die->tag)
11513 {
11514 process_die (child_die, cu);
11515 child_die = sibling_die (child_die);
11516 }
11517 }
11518 inherit_abstract_dies (die, cu);
11519 newobj = pop_context ();
11520
11521 if (local_symbols != NULL || using_directives != NULL)
11522 {
11523 struct block *block
11524 = finish_block (0, &local_symbols, newobj->old_blocks,
11525 newobj->start_addr, highpc);
11526
11527 /* Note that recording ranges after traversing children, as we
11528 do here, means that recording a parent's ranges entails
11529 walking across all its children's ranges as they appear in
11530 the address map, which is quadratic behavior.
11531
11532 It would be nicer to record the parent's ranges before
11533 traversing its children, simply overriding whatever you find
11534 there. But since we don't even decide whether to create a
11535 block until after we've traversed its children, that's hard
11536 to do. */
11537 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11538 }
11539 local_symbols = newobj->locals;
11540 using_directives = newobj->using_directives;
11541 }
11542
11543 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11544
11545 static void
11546 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11547 {
11548 struct objfile *objfile = cu->objfile;
11549 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11550 CORE_ADDR pc, baseaddr;
11551 struct attribute *attr;
11552 struct call_site *call_site, call_site_local;
11553 void **slot;
11554 int nparams;
11555 struct die_info *child_die;
11556
11557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11558
11559 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11560 if (!attr)
11561 {
11562 complaint (&symfile_complaints,
11563 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11564 "DIE 0x%x [in module %s]"),
11565 die->offset.sect_off, objfile_name (objfile));
11566 return;
11567 }
11568 pc = attr_value_as_address (attr) + baseaddr;
11569 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
11570
11571 if (cu->call_site_htab == NULL)
11572 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11573 NULL, &objfile->objfile_obstack,
11574 hashtab_obstack_allocate, NULL);
11575 call_site_local.pc = pc;
11576 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11577 if (*slot != NULL)
11578 {
11579 complaint (&symfile_complaints,
11580 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11581 "DIE 0x%x [in module %s]"),
11582 paddress (gdbarch, pc), die->offset.sect_off,
11583 objfile_name (objfile));
11584 return;
11585 }
11586
11587 /* Count parameters at the caller. */
11588
11589 nparams = 0;
11590 for (child_die = die->child; child_die && child_die->tag;
11591 child_die = sibling_die (child_die))
11592 {
11593 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11594 {
11595 complaint (&symfile_complaints,
11596 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11597 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11598 child_die->tag, child_die->offset.sect_off,
11599 objfile_name (objfile));
11600 continue;
11601 }
11602
11603 nparams++;
11604 }
11605
11606 call_site = obstack_alloc (&objfile->objfile_obstack,
11607 (sizeof (*call_site)
11608 + (sizeof (*call_site->parameter)
11609 * (nparams - 1))));
11610 *slot = call_site;
11611 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11612 call_site->pc = pc;
11613
11614 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11615 {
11616 struct die_info *func_die;
11617
11618 /* Skip also over DW_TAG_inlined_subroutine. */
11619 for (func_die = die->parent;
11620 func_die && func_die->tag != DW_TAG_subprogram
11621 && func_die->tag != DW_TAG_subroutine_type;
11622 func_die = func_die->parent);
11623
11624 /* DW_AT_GNU_all_call_sites is a superset
11625 of DW_AT_GNU_all_tail_call_sites. */
11626 if (func_die
11627 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11628 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11629 {
11630 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11631 not complete. But keep CALL_SITE for look ups via call_site_htab,
11632 both the initial caller containing the real return address PC and
11633 the final callee containing the current PC of a chain of tail
11634 calls do not need to have the tail call list complete. But any
11635 function candidate for a virtual tail call frame searched via
11636 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11637 determined unambiguously. */
11638 }
11639 else
11640 {
11641 struct type *func_type = NULL;
11642
11643 if (func_die)
11644 func_type = get_die_type (func_die, cu);
11645 if (func_type != NULL)
11646 {
11647 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11648
11649 /* Enlist this call site to the function. */
11650 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11651 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11652 }
11653 else
11654 complaint (&symfile_complaints,
11655 _("Cannot find function owning DW_TAG_GNU_call_site "
11656 "DIE 0x%x [in module %s]"),
11657 die->offset.sect_off, objfile_name (objfile));
11658 }
11659 }
11660
11661 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11662 if (attr == NULL)
11663 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11664 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11665 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11666 /* Keep NULL DWARF_BLOCK. */;
11667 else if (attr_form_is_block (attr))
11668 {
11669 struct dwarf2_locexpr_baton *dlbaton;
11670
11671 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11672 dlbaton->data = DW_BLOCK (attr)->data;
11673 dlbaton->size = DW_BLOCK (attr)->size;
11674 dlbaton->per_cu = cu->per_cu;
11675
11676 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11677 }
11678 else if (attr_form_is_ref (attr))
11679 {
11680 struct dwarf2_cu *target_cu = cu;
11681 struct die_info *target_die;
11682
11683 target_die = follow_die_ref (die, attr, &target_cu);
11684 gdb_assert (target_cu->objfile == objfile);
11685 if (die_is_declaration (target_die, target_cu))
11686 {
11687 const char *target_physname = NULL;
11688 struct attribute *target_attr;
11689
11690 /* Prefer the mangled name; otherwise compute the demangled one. */
11691 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11692 if (target_attr == NULL)
11693 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11694 target_cu);
11695 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11696 target_physname = DW_STRING (target_attr);
11697 else
11698 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11699 if (target_physname == NULL)
11700 complaint (&symfile_complaints,
11701 _("DW_AT_GNU_call_site_target target DIE has invalid "
11702 "physname, for referencing DIE 0x%x [in module %s]"),
11703 die->offset.sect_off, objfile_name (objfile));
11704 else
11705 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11706 }
11707 else
11708 {
11709 CORE_ADDR lowpc;
11710
11711 /* DW_AT_entry_pc should be preferred. */
11712 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11713 complaint (&symfile_complaints,
11714 _("DW_AT_GNU_call_site_target target DIE has invalid "
11715 "low pc, for referencing DIE 0x%x [in module %s]"),
11716 die->offset.sect_off, objfile_name (objfile));
11717 else
11718 {
11719 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11720 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11721 }
11722 }
11723 }
11724 else
11725 complaint (&symfile_complaints,
11726 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11727 "block nor reference, for DIE 0x%x [in module %s]"),
11728 die->offset.sect_off, objfile_name (objfile));
11729
11730 call_site->per_cu = cu->per_cu;
11731
11732 for (child_die = die->child;
11733 child_die && child_die->tag;
11734 child_die = sibling_die (child_die))
11735 {
11736 struct call_site_parameter *parameter;
11737 struct attribute *loc, *origin;
11738
11739 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11740 {
11741 /* Already printed the complaint above. */
11742 continue;
11743 }
11744
11745 gdb_assert (call_site->parameter_count < nparams);
11746 parameter = &call_site->parameter[call_site->parameter_count];
11747
11748 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11749 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11750 register is contained in DW_AT_GNU_call_site_value. */
11751
11752 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11753 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11754 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11755 {
11756 sect_offset offset;
11757
11758 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11759 offset = dwarf2_get_ref_die_offset (origin);
11760 if (!offset_in_cu_p (&cu->header, offset))
11761 {
11762 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11763 binding can be done only inside one CU. Such referenced DIE
11764 therefore cannot be even moved to DW_TAG_partial_unit. */
11765 complaint (&symfile_complaints,
11766 _("DW_AT_abstract_origin offset is not in CU for "
11767 "DW_TAG_GNU_call_site child DIE 0x%x "
11768 "[in module %s]"),
11769 child_die->offset.sect_off, objfile_name (objfile));
11770 continue;
11771 }
11772 parameter->u.param_offset.cu_off = (offset.sect_off
11773 - cu->header.offset.sect_off);
11774 }
11775 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11776 {
11777 complaint (&symfile_complaints,
11778 _("No DW_FORM_block* DW_AT_location for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11780 child_die->offset.sect_off, objfile_name (objfile));
11781 continue;
11782 }
11783 else
11784 {
11785 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11786 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11787 if (parameter->u.dwarf_reg != -1)
11788 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11789 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11790 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11791 &parameter->u.fb_offset))
11792 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11793 else
11794 {
11795 complaint (&symfile_complaints,
11796 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11797 "for DW_FORM_block* DW_AT_location is supported for "
11798 "DW_TAG_GNU_call_site child DIE 0x%x "
11799 "[in module %s]"),
11800 child_die->offset.sect_off, objfile_name (objfile));
11801 continue;
11802 }
11803 }
11804
11805 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11806 if (!attr_form_is_block (attr))
11807 {
11808 complaint (&symfile_complaints,
11809 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11810 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11811 child_die->offset.sect_off, objfile_name (objfile));
11812 continue;
11813 }
11814 parameter->value = DW_BLOCK (attr)->data;
11815 parameter->value_size = DW_BLOCK (attr)->size;
11816
11817 /* Parameters are not pre-cleared by memset above. */
11818 parameter->data_value = NULL;
11819 parameter->data_value_size = 0;
11820 call_site->parameter_count++;
11821
11822 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11823 if (attr)
11824 {
11825 if (!attr_form_is_block (attr))
11826 complaint (&symfile_complaints,
11827 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11828 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11829 child_die->offset.sect_off, objfile_name (objfile));
11830 else
11831 {
11832 parameter->data_value = DW_BLOCK (attr)->data;
11833 parameter->data_value_size = DW_BLOCK (attr)->size;
11834 }
11835 }
11836 }
11837 }
11838
11839 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11840 Return 1 if the attributes are present and valid, otherwise, return 0.
11841 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11842
11843 static int
11844 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11845 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11846 struct partial_symtab *ranges_pst)
11847 {
11848 struct objfile *objfile = cu->objfile;
11849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11850 struct comp_unit_head *cu_header = &cu->header;
11851 bfd *obfd = objfile->obfd;
11852 unsigned int addr_size = cu_header->addr_size;
11853 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11854 /* Base address selection entry. */
11855 CORE_ADDR base;
11856 int found_base;
11857 unsigned int dummy;
11858 const gdb_byte *buffer;
11859 CORE_ADDR marker;
11860 int low_set;
11861 CORE_ADDR low = 0;
11862 CORE_ADDR high = 0;
11863 CORE_ADDR baseaddr;
11864
11865 found_base = cu->base_known;
11866 base = cu->base_address;
11867
11868 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11869 if (offset >= dwarf2_per_objfile->ranges.size)
11870 {
11871 complaint (&symfile_complaints,
11872 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11873 offset);
11874 return 0;
11875 }
11876 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11877
11878 /* Read in the largest possible address. */
11879 marker = read_address (obfd, buffer, cu, &dummy);
11880 if ((marker & mask) == mask)
11881 {
11882 /* If we found the largest possible address, then
11883 read the base address. */
11884 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11885 buffer += 2 * addr_size;
11886 offset += 2 * addr_size;
11887 found_base = 1;
11888 }
11889
11890 low_set = 0;
11891
11892 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11893
11894 while (1)
11895 {
11896 CORE_ADDR range_beginning, range_end;
11897
11898 range_beginning = read_address (obfd, buffer, cu, &dummy);
11899 buffer += addr_size;
11900 range_end = read_address (obfd, buffer, cu, &dummy);
11901 buffer += addr_size;
11902 offset += 2 * addr_size;
11903
11904 /* An end of list marker is a pair of zero addresses. */
11905 if (range_beginning == 0 && range_end == 0)
11906 /* Found the end of list entry. */
11907 break;
11908
11909 /* Each base address selection entry is a pair of 2 values.
11910 The first is the largest possible address, the second is
11911 the base address. Check for a base address here. */
11912 if ((range_beginning & mask) == mask)
11913 {
11914 /* If we found the largest possible address, then
11915 read the base address. */
11916 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11917 found_base = 1;
11918 continue;
11919 }
11920
11921 if (!found_base)
11922 {
11923 /* We have no valid base address for the ranges
11924 data. */
11925 complaint (&symfile_complaints,
11926 _("Invalid .debug_ranges data (no base address)"));
11927 return 0;
11928 }
11929
11930 if (range_beginning > range_end)
11931 {
11932 /* Inverted range entries are invalid. */
11933 complaint (&symfile_complaints,
11934 _("Invalid .debug_ranges data (inverted range)"));
11935 return 0;
11936 }
11937
11938 /* Empty range entries have no effect. */
11939 if (range_beginning == range_end)
11940 continue;
11941
11942 range_beginning += base;
11943 range_end += base;
11944
11945 /* A not-uncommon case of bad debug info.
11946 Don't pollute the addrmap with bad data. */
11947 if (range_beginning + baseaddr == 0
11948 && !dwarf2_per_objfile->has_section_at_zero)
11949 {
11950 complaint (&symfile_complaints,
11951 _(".debug_ranges entry has start address of zero"
11952 " [in module %s]"), objfile_name (objfile));
11953 continue;
11954 }
11955
11956 if (ranges_pst != NULL)
11957 {
11958 CORE_ADDR lowpc;
11959 CORE_ADDR highpc;
11960
11961 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11962 range_beginning + baseaddr);
11963 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11964 range_end + baseaddr);
11965 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11966 ranges_pst);
11967 }
11968
11969 /* FIXME: This is recording everything as a low-high
11970 segment of consecutive addresses. We should have a
11971 data structure for discontiguous block ranges
11972 instead. */
11973 if (! low_set)
11974 {
11975 low = range_beginning;
11976 high = range_end;
11977 low_set = 1;
11978 }
11979 else
11980 {
11981 if (range_beginning < low)
11982 low = range_beginning;
11983 if (range_end > high)
11984 high = range_end;
11985 }
11986 }
11987
11988 if (! low_set)
11989 /* If the first entry is an end-of-list marker, the range
11990 describes an empty scope, i.e. no instructions. */
11991 return 0;
11992
11993 if (low_return)
11994 *low_return = low;
11995 if (high_return)
11996 *high_return = high;
11997 return 1;
11998 }
11999
12000 /* Get low and high pc attributes from a die. Return 1 if the attributes
12001 are present and valid, otherwise, return 0. Return -1 if the range is
12002 discontinuous, i.e. derived from DW_AT_ranges information. */
12003
12004 static int
12005 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
12006 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12007 struct partial_symtab *pst)
12008 {
12009 struct attribute *attr;
12010 struct attribute *attr_high;
12011 CORE_ADDR low = 0;
12012 CORE_ADDR high = 0;
12013 int ret = 0;
12014
12015 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12016 if (attr_high)
12017 {
12018 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12019 if (attr)
12020 {
12021 low = attr_value_as_address (attr);
12022 high = attr_value_as_address (attr_high);
12023 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12024 high += low;
12025 }
12026 else
12027 /* Found high w/o low attribute. */
12028 return 0;
12029
12030 /* Found consecutive range of addresses. */
12031 ret = 1;
12032 }
12033 else
12034 {
12035 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12036 if (attr != NULL)
12037 {
12038 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12039 We take advantage of the fact that DW_AT_ranges does not appear
12040 in DW_TAG_compile_unit of DWO files. */
12041 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12042 unsigned int ranges_offset = (DW_UNSND (attr)
12043 + (need_ranges_base
12044 ? cu->ranges_base
12045 : 0));
12046
12047 /* Value of the DW_AT_ranges attribute is the offset in the
12048 .debug_ranges section. */
12049 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
12050 return 0;
12051 /* Found discontinuous range of addresses. */
12052 ret = -1;
12053 }
12054 }
12055
12056 /* read_partial_die has also the strict LOW < HIGH requirement. */
12057 if (high <= low)
12058 return 0;
12059
12060 /* When using the GNU linker, .gnu.linkonce. sections are used to
12061 eliminate duplicate copies of functions and vtables and such.
12062 The linker will arbitrarily choose one and discard the others.
12063 The AT_*_pc values for such functions refer to local labels in
12064 these sections. If the section from that file was discarded, the
12065 labels are not in the output, so the relocs get a value of 0.
12066 If this is a discarded function, mark the pc bounds as invalid,
12067 so that GDB will ignore it. */
12068 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
12069 return 0;
12070
12071 *lowpc = low;
12072 if (highpc)
12073 *highpc = high;
12074 return ret;
12075 }
12076
12077 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
12078 its low and high PC addresses. Do nothing if these addresses could not
12079 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12080 and HIGHPC to the high address if greater than HIGHPC. */
12081
12082 static void
12083 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12084 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12085 struct dwarf2_cu *cu)
12086 {
12087 CORE_ADDR low, high;
12088 struct die_info *child = die->child;
12089
12090 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
12091 {
12092 *lowpc = min (*lowpc, low);
12093 *highpc = max (*highpc, high);
12094 }
12095
12096 /* If the language does not allow nested subprograms (either inside
12097 subprograms or lexical blocks), we're done. */
12098 if (cu->language != language_ada)
12099 return;
12100
12101 /* Check all the children of the given DIE. If it contains nested
12102 subprograms, then check their pc bounds. Likewise, we need to
12103 check lexical blocks as well, as they may also contain subprogram
12104 definitions. */
12105 while (child && child->tag)
12106 {
12107 if (child->tag == DW_TAG_subprogram
12108 || child->tag == DW_TAG_lexical_block)
12109 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12110 child = sibling_die (child);
12111 }
12112 }
12113
12114 /* Get the low and high pc's represented by the scope DIE, and store
12115 them in *LOWPC and *HIGHPC. If the correct values can't be
12116 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12117
12118 static void
12119 get_scope_pc_bounds (struct die_info *die,
12120 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12121 struct dwarf2_cu *cu)
12122 {
12123 CORE_ADDR best_low = (CORE_ADDR) -1;
12124 CORE_ADDR best_high = (CORE_ADDR) 0;
12125 CORE_ADDR current_low, current_high;
12126
12127 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
12128 {
12129 best_low = current_low;
12130 best_high = current_high;
12131 }
12132 else
12133 {
12134 struct die_info *child = die->child;
12135
12136 while (child && child->tag)
12137 {
12138 switch (child->tag) {
12139 case DW_TAG_subprogram:
12140 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
12141 break;
12142 case DW_TAG_namespace:
12143 case DW_TAG_module:
12144 /* FIXME: carlton/2004-01-16: Should we do this for
12145 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12146 that current GCC's always emit the DIEs corresponding
12147 to definitions of methods of classes as children of a
12148 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12149 the DIEs giving the declarations, which could be
12150 anywhere). But I don't see any reason why the
12151 standards says that they have to be there. */
12152 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12153
12154 if (current_low != ((CORE_ADDR) -1))
12155 {
12156 best_low = min (best_low, current_low);
12157 best_high = max (best_high, current_high);
12158 }
12159 break;
12160 default:
12161 /* Ignore. */
12162 break;
12163 }
12164
12165 child = sibling_die (child);
12166 }
12167 }
12168
12169 *lowpc = best_low;
12170 *highpc = best_high;
12171 }
12172
12173 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
12174 in DIE. */
12175
12176 static void
12177 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12178 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12179 {
12180 struct objfile *objfile = cu->objfile;
12181 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12182 struct attribute *attr;
12183 struct attribute *attr_high;
12184
12185 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12186 if (attr_high)
12187 {
12188 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12189 if (attr)
12190 {
12191 CORE_ADDR low = attr_value_as_address (attr);
12192 CORE_ADDR high = attr_value_as_address (attr_high);
12193
12194 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12195 high += low;
12196
12197 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12198 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12199 record_block_range (block, low, high - 1);
12200 }
12201 }
12202
12203 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12204 if (attr)
12205 {
12206 bfd *obfd = objfile->obfd;
12207 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12208 We take advantage of the fact that DW_AT_ranges does not appear
12209 in DW_TAG_compile_unit of DWO files. */
12210 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12211
12212 /* The value of the DW_AT_ranges attribute is the offset of the
12213 address range list in the .debug_ranges section. */
12214 unsigned long offset = (DW_UNSND (attr)
12215 + (need_ranges_base ? cu->ranges_base : 0));
12216 const gdb_byte *buffer;
12217
12218 /* For some target architectures, but not others, the
12219 read_address function sign-extends the addresses it returns.
12220 To recognize base address selection entries, we need a
12221 mask. */
12222 unsigned int addr_size = cu->header.addr_size;
12223 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12224
12225 /* The base address, to which the next pair is relative. Note
12226 that this 'base' is a DWARF concept: most entries in a range
12227 list are relative, to reduce the number of relocs against the
12228 debugging information. This is separate from this function's
12229 'baseaddr' argument, which GDB uses to relocate debugging
12230 information from a shared library based on the address at
12231 which the library was loaded. */
12232 CORE_ADDR base = cu->base_address;
12233 int base_known = cu->base_known;
12234
12235 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
12236 if (offset >= dwarf2_per_objfile->ranges.size)
12237 {
12238 complaint (&symfile_complaints,
12239 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12240 offset);
12241 return;
12242 }
12243 buffer = dwarf2_per_objfile->ranges.buffer + offset;
12244
12245 for (;;)
12246 {
12247 unsigned int bytes_read;
12248 CORE_ADDR start, end;
12249
12250 start = read_address (obfd, buffer, cu, &bytes_read);
12251 buffer += bytes_read;
12252 end = read_address (obfd, buffer, cu, &bytes_read);
12253 buffer += bytes_read;
12254
12255 /* Did we find the end of the range list? */
12256 if (start == 0 && end == 0)
12257 break;
12258
12259 /* Did we find a base address selection entry? */
12260 else if ((start & base_select_mask) == base_select_mask)
12261 {
12262 base = end;
12263 base_known = 1;
12264 }
12265
12266 /* We found an ordinary address range. */
12267 else
12268 {
12269 if (!base_known)
12270 {
12271 complaint (&symfile_complaints,
12272 _("Invalid .debug_ranges data "
12273 "(no base address)"));
12274 return;
12275 }
12276
12277 if (start > end)
12278 {
12279 /* Inverted range entries are invalid. */
12280 complaint (&symfile_complaints,
12281 _("Invalid .debug_ranges data "
12282 "(inverted range)"));
12283 return;
12284 }
12285
12286 /* Empty range entries have no effect. */
12287 if (start == end)
12288 continue;
12289
12290 start += base + baseaddr;
12291 end += base + baseaddr;
12292
12293 /* A not-uncommon case of bad debug info.
12294 Don't pollute the addrmap with bad data. */
12295 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12296 {
12297 complaint (&symfile_complaints,
12298 _(".debug_ranges entry has start address of zero"
12299 " [in module %s]"), objfile_name (objfile));
12300 continue;
12301 }
12302
12303 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12304 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
12305 record_block_range (block, start, end - 1);
12306 }
12307 }
12308 }
12309 }
12310
12311 /* Check whether the producer field indicates either of GCC < 4.6, or the
12312 Intel C/C++ compiler, and cache the result in CU. */
12313
12314 static void
12315 check_producer (struct dwarf2_cu *cu)
12316 {
12317 const char *cs;
12318 int major, minor;
12319
12320 if (cu->producer == NULL)
12321 {
12322 /* For unknown compilers expect their behavior is DWARF version
12323 compliant.
12324
12325 GCC started to support .debug_types sections by -gdwarf-4 since
12326 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12327 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12328 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12329 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12330 }
12331 else if (producer_is_gcc (cu->producer, &major, &minor))
12332 {
12333 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12334 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12335 }
12336 else if (startswith (cu->producer, "Intel(R) C"))
12337 cu->producer_is_icc = 1;
12338 else
12339 {
12340 /* For other non-GCC compilers, expect their behavior is DWARF version
12341 compliant. */
12342 }
12343
12344 cu->checked_producer = 1;
12345 }
12346
12347 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12348 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12349 during 4.6.0 experimental. */
12350
12351 static int
12352 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12353 {
12354 if (!cu->checked_producer)
12355 check_producer (cu);
12356
12357 return cu->producer_is_gxx_lt_4_6;
12358 }
12359
12360 /* Return the default accessibility type if it is not overriden by
12361 DW_AT_accessibility. */
12362
12363 static enum dwarf_access_attribute
12364 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12365 {
12366 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12367 {
12368 /* The default DWARF 2 accessibility for members is public, the default
12369 accessibility for inheritance is private. */
12370
12371 if (die->tag != DW_TAG_inheritance)
12372 return DW_ACCESS_public;
12373 else
12374 return DW_ACCESS_private;
12375 }
12376 else
12377 {
12378 /* DWARF 3+ defines the default accessibility a different way. The same
12379 rules apply now for DW_TAG_inheritance as for the members and it only
12380 depends on the container kind. */
12381
12382 if (die->parent->tag == DW_TAG_class_type)
12383 return DW_ACCESS_private;
12384 else
12385 return DW_ACCESS_public;
12386 }
12387 }
12388
12389 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12390 offset. If the attribute was not found return 0, otherwise return
12391 1. If it was found but could not properly be handled, set *OFFSET
12392 to 0. */
12393
12394 static int
12395 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12396 LONGEST *offset)
12397 {
12398 struct attribute *attr;
12399
12400 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12401 if (attr != NULL)
12402 {
12403 *offset = 0;
12404
12405 /* Note that we do not check for a section offset first here.
12406 This is because DW_AT_data_member_location is new in DWARF 4,
12407 so if we see it, we can assume that a constant form is really
12408 a constant and not a section offset. */
12409 if (attr_form_is_constant (attr))
12410 *offset = dwarf2_get_attr_constant_value (attr, 0);
12411 else if (attr_form_is_section_offset (attr))
12412 dwarf2_complex_location_expr_complaint ();
12413 else if (attr_form_is_block (attr))
12414 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12415 else
12416 dwarf2_complex_location_expr_complaint ();
12417
12418 return 1;
12419 }
12420
12421 return 0;
12422 }
12423
12424 /* Add an aggregate field to the field list. */
12425
12426 static void
12427 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
12429 {
12430 struct objfile *objfile = cu->objfile;
12431 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12432 struct nextfield *new_field;
12433 struct attribute *attr;
12434 struct field *fp;
12435 const char *fieldname = "";
12436
12437 /* Allocate a new field list entry and link it in. */
12438 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12439 make_cleanup (xfree, new_field);
12440 memset (new_field, 0, sizeof (struct nextfield));
12441
12442 if (die->tag == DW_TAG_inheritance)
12443 {
12444 new_field->next = fip->baseclasses;
12445 fip->baseclasses = new_field;
12446 }
12447 else
12448 {
12449 new_field->next = fip->fields;
12450 fip->fields = new_field;
12451 }
12452 fip->nfields++;
12453
12454 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12455 if (attr)
12456 new_field->accessibility = DW_UNSND (attr);
12457 else
12458 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12459 if (new_field->accessibility != DW_ACCESS_public)
12460 fip->non_public_fields = 1;
12461
12462 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12463 if (attr)
12464 new_field->virtuality = DW_UNSND (attr);
12465 else
12466 new_field->virtuality = DW_VIRTUALITY_none;
12467
12468 fp = &new_field->field;
12469
12470 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12471 {
12472 LONGEST offset;
12473
12474 /* Data member other than a C++ static data member. */
12475
12476 /* Get type of field. */
12477 fp->type = die_type (die, cu);
12478
12479 SET_FIELD_BITPOS (*fp, 0);
12480
12481 /* Get bit size of field (zero if none). */
12482 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12483 if (attr)
12484 {
12485 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12486 }
12487 else
12488 {
12489 FIELD_BITSIZE (*fp) = 0;
12490 }
12491
12492 /* Get bit offset of field. */
12493 if (handle_data_member_location (die, cu, &offset))
12494 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12495 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12496 if (attr)
12497 {
12498 if (gdbarch_bits_big_endian (gdbarch))
12499 {
12500 /* For big endian bits, the DW_AT_bit_offset gives the
12501 additional bit offset from the MSB of the containing
12502 anonymous object to the MSB of the field. We don't
12503 have to do anything special since we don't need to
12504 know the size of the anonymous object. */
12505 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12506 }
12507 else
12508 {
12509 /* For little endian bits, compute the bit offset to the
12510 MSB of the anonymous object, subtract off the number of
12511 bits from the MSB of the field to the MSB of the
12512 object, and then subtract off the number of bits of
12513 the field itself. The result is the bit offset of
12514 the LSB of the field. */
12515 int anonymous_size;
12516 int bit_offset = DW_UNSND (attr);
12517
12518 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12519 if (attr)
12520 {
12521 /* The size of the anonymous object containing
12522 the bit field is explicit, so use the
12523 indicated size (in bytes). */
12524 anonymous_size = DW_UNSND (attr);
12525 }
12526 else
12527 {
12528 /* The size of the anonymous object containing
12529 the bit field must be inferred from the type
12530 attribute of the data member containing the
12531 bit field. */
12532 anonymous_size = TYPE_LENGTH (fp->type);
12533 }
12534 SET_FIELD_BITPOS (*fp,
12535 (FIELD_BITPOS (*fp)
12536 + anonymous_size * bits_per_byte
12537 - bit_offset - FIELD_BITSIZE (*fp)));
12538 }
12539 }
12540
12541 /* Get name of field. */
12542 fieldname = dwarf2_name (die, cu);
12543 if (fieldname == NULL)
12544 fieldname = "";
12545
12546 /* The name is already allocated along with this objfile, so we don't
12547 need to duplicate it for the type. */
12548 fp->name = fieldname;
12549
12550 /* Change accessibility for artificial fields (e.g. virtual table
12551 pointer or virtual base class pointer) to private. */
12552 if (dwarf2_attr (die, DW_AT_artificial, cu))
12553 {
12554 FIELD_ARTIFICIAL (*fp) = 1;
12555 new_field->accessibility = DW_ACCESS_private;
12556 fip->non_public_fields = 1;
12557 }
12558 }
12559 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12560 {
12561 /* C++ static member. */
12562
12563 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12564 is a declaration, but all versions of G++ as of this writing
12565 (so through at least 3.2.1) incorrectly generate
12566 DW_TAG_variable tags. */
12567
12568 const char *physname;
12569
12570 /* Get name of field. */
12571 fieldname = dwarf2_name (die, cu);
12572 if (fieldname == NULL)
12573 return;
12574
12575 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12576 if (attr
12577 /* Only create a symbol if this is an external value.
12578 new_symbol checks this and puts the value in the global symbol
12579 table, which we want. If it is not external, new_symbol
12580 will try to put the value in cu->list_in_scope which is wrong. */
12581 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12582 {
12583 /* A static const member, not much different than an enum as far as
12584 we're concerned, except that we can support more types. */
12585 new_symbol (die, NULL, cu);
12586 }
12587
12588 /* Get physical name. */
12589 physname = dwarf2_physname (fieldname, die, cu);
12590
12591 /* The name is already allocated along with this objfile, so we don't
12592 need to duplicate it for the type. */
12593 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12594 FIELD_TYPE (*fp) = die_type (die, cu);
12595 FIELD_NAME (*fp) = fieldname;
12596 }
12597 else if (die->tag == DW_TAG_inheritance)
12598 {
12599 LONGEST offset;
12600
12601 /* C++ base class field. */
12602 if (handle_data_member_location (die, cu, &offset))
12603 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12604 FIELD_BITSIZE (*fp) = 0;
12605 FIELD_TYPE (*fp) = die_type (die, cu);
12606 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12607 fip->nbaseclasses++;
12608 }
12609 }
12610
12611 /* Add a typedef defined in the scope of the FIP's class. */
12612
12613 static void
12614 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12615 struct dwarf2_cu *cu)
12616 {
12617 struct objfile *objfile = cu->objfile;
12618 struct typedef_field_list *new_field;
12619 struct attribute *attr;
12620 struct typedef_field *fp;
12621 char *fieldname = "";
12622
12623 /* Allocate a new field list entry and link it in. */
12624 new_field = xzalloc (sizeof (*new_field));
12625 make_cleanup (xfree, new_field);
12626
12627 gdb_assert (die->tag == DW_TAG_typedef);
12628
12629 fp = &new_field->field;
12630
12631 /* Get name of field. */
12632 fp->name = dwarf2_name (die, cu);
12633 if (fp->name == NULL)
12634 return;
12635
12636 fp->type = read_type_die (die, cu);
12637
12638 new_field->next = fip->typedef_field_list;
12639 fip->typedef_field_list = new_field;
12640 fip->typedef_field_list_count++;
12641 }
12642
12643 /* Create the vector of fields, and attach it to the type. */
12644
12645 static void
12646 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12647 struct dwarf2_cu *cu)
12648 {
12649 int nfields = fip->nfields;
12650
12651 /* Record the field count, allocate space for the array of fields,
12652 and create blank accessibility bitfields if necessary. */
12653 TYPE_NFIELDS (type) = nfields;
12654 TYPE_FIELDS (type) = (struct field *)
12655 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12656 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12657
12658 if (fip->non_public_fields && cu->language != language_ada)
12659 {
12660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12661
12662 TYPE_FIELD_PRIVATE_BITS (type) =
12663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12664 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12665
12666 TYPE_FIELD_PROTECTED_BITS (type) =
12667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12668 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12669
12670 TYPE_FIELD_IGNORE_BITS (type) =
12671 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12672 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12673 }
12674
12675 /* If the type has baseclasses, allocate and clear a bit vector for
12676 TYPE_FIELD_VIRTUAL_BITS. */
12677 if (fip->nbaseclasses && cu->language != language_ada)
12678 {
12679 int num_bytes = B_BYTES (fip->nbaseclasses);
12680 unsigned char *pointer;
12681
12682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12683 pointer = TYPE_ALLOC (type, num_bytes);
12684 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12685 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12686 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12687 }
12688
12689 /* Copy the saved-up fields into the field vector. Start from the head of
12690 the list, adding to the tail of the field array, so that they end up in
12691 the same order in the array in which they were added to the list. */
12692 while (nfields-- > 0)
12693 {
12694 struct nextfield *fieldp;
12695
12696 if (fip->fields)
12697 {
12698 fieldp = fip->fields;
12699 fip->fields = fieldp->next;
12700 }
12701 else
12702 {
12703 fieldp = fip->baseclasses;
12704 fip->baseclasses = fieldp->next;
12705 }
12706
12707 TYPE_FIELD (type, nfields) = fieldp->field;
12708 switch (fieldp->accessibility)
12709 {
12710 case DW_ACCESS_private:
12711 if (cu->language != language_ada)
12712 SET_TYPE_FIELD_PRIVATE (type, nfields);
12713 break;
12714
12715 case DW_ACCESS_protected:
12716 if (cu->language != language_ada)
12717 SET_TYPE_FIELD_PROTECTED (type, nfields);
12718 break;
12719
12720 case DW_ACCESS_public:
12721 break;
12722
12723 default:
12724 /* Unknown accessibility. Complain and treat it as public. */
12725 {
12726 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12727 fieldp->accessibility);
12728 }
12729 break;
12730 }
12731 if (nfields < fip->nbaseclasses)
12732 {
12733 switch (fieldp->virtuality)
12734 {
12735 case DW_VIRTUALITY_virtual:
12736 case DW_VIRTUALITY_pure_virtual:
12737 if (cu->language == language_ada)
12738 error (_("unexpected virtuality in component of Ada type"));
12739 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12740 break;
12741 }
12742 }
12743 }
12744 }
12745
12746 /* Return true if this member function is a constructor, false
12747 otherwise. */
12748
12749 static int
12750 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12751 {
12752 const char *fieldname;
12753 const char *type_name;
12754 int len;
12755
12756 if (die->parent == NULL)
12757 return 0;
12758
12759 if (die->parent->tag != DW_TAG_structure_type
12760 && die->parent->tag != DW_TAG_union_type
12761 && die->parent->tag != DW_TAG_class_type)
12762 return 0;
12763
12764 fieldname = dwarf2_name (die, cu);
12765 type_name = dwarf2_name (die->parent, cu);
12766 if (fieldname == NULL || type_name == NULL)
12767 return 0;
12768
12769 len = strlen (fieldname);
12770 return (strncmp (fieldname, type_name, len) == 0
12771 && (type_name[len] == '\0' || type_name[len] == '<'));
12772 }
12773
12774 /* Add a member function to the proper fieldlist. */
12775
12776 static void
12777 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12778 struct type *type, struct dwarf2_cu *cu)
12779 {
12780 struct objfile *objfile = cu->objfile;
12781 struct attribute *attr;
12782 struct fnfieldlist *flp;
12783 int i;
12784 struct fn_field *fnp;
12785 const char *fieldname;
12786 struct nextfnfield *new_fnfield;
12787 struct type *this_type;
12788 enum dwarf_access_attribute accessibility;
12789
12790 if (cu->language == language_ada)
12791 error (_("unexpected member function in Ada type"));
12792
12793 /* Get name of member function. */
12794 fieldname = dwarf2_name (die, cu);
12795 if (fieldname == NULL)
12796 return;
12797
12798 /* Look up member function name in fieldlist. */
12799 for (i = 0; i < fip->nfnfields; i++)
12800 {
12801 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12802 break;
12803 }
12804
12805 /* Create new list element if necessary. */
12806 if (i < fip->nfnfields)
12807 flp = &fip->fnfieldlists[i];
12808 else
12809 {
12810 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12811 {
12812 fip->fnfieldlists = (struct fnfieldlist *)
12813 xrealloc (fip->fnfieldlists,
12814 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12815 * sizeof (struct fnfieldlist));
12816 if (fip->nfnfields == 0)
12817 make_cleanup (free_current_contents, &fip->fnfieldlists);
12818 }
12819 flp = &fip->fnfieldlists[fip->nfnfields];
12820 flp->name = fieldname;
12821 flp->length = 0;
12822 flp->head = NULL;
12823 i = fip->nfnfields++;
12824 }
12825
12826 /* Create a new member function field and chain it to the field list
12827 entry. */
12828 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12829 make_cleanup (xfree, new_fnfield);
12830 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12831 new_fnfield->next = flp->head;
12832 flp->head = new_fnfield;
12833 flp->length++;
12834
12835 /* Fill in the member function field info. */
12836 fnp = &new_fnfield->fnfield;
12837
12838 /* Delay processing of the physname until later. */
12839 if (cu->language == language_cplus || cu->language == language_java)
12840 {
12841 add_to_method_list (type, i, flp->length - 1, fieldname,
12842 die, cu);
12843 }
12844 else
12845 {
12846 const char *physname = dwarf2_physname (fieldname, die, cu);
12847 fnp->physname = physname ? physname : "";
12848 }
12849
12850 fnp->type = alloc_type (objfile);
12851 this_type = read_type_die (die, cu);
12852 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12853 {
12854 int nparams = TYPE_NFIELDS (this_type);
12855
12856 /* TYPE is the domain of this method, and THIS_TYPE is the type
12857 of the method itself (TYPE_CODE_METHOD). */
12858 smash_to_method_type (fnp->type, type,
12859 TYPE_TARGET_TYPE (this_type),
12860 TYPE_FIELDS (this_type),
12861 TYPE_NFIELDS (this_type),
12862 TYPE_VARARGS (this_type));
12863
12864 /* Handle static member functions.
12865 Dwarf2 has no clean way to discern C++ static and non-static
12866 member functions. G++ helps GDB by marking the first
12867 parameter for non-static member functions (which is the this
12868 pointer) as artificial. We obtain this information from
12869 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12870 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12871 fnp->voffset = VOFFSET_STATIC;
12872 }
12873 else
12874 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12875 dwarf2_full_name (fieldname, die, cu));
12876
12877 /* Get fcontext from DW_AT_containing_type if present. */
12878 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12879 fnp->fcontext = die_containing_type (die, cu);
12880
12881 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12882 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12883
12884 /* Get accessibility. */
12885 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12886 if (attr)
12887 accessibility = DW_UNSND (attr);
12888 else
12889 accessibility = dwarf2_default_access_attribute (die, cu);
12890 switch (accessibility)
12891 {
12892 case DW_ACCESS_private:
12893 fnp->is_private = 1;
12894 break;
12895 case DW_ACCESS_protected:
12896 fnp->is_protected = 1;
12897 break;
12898 }
12899
12900 /* Check for artificial methods. */
12901 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12902 if (attr && DW_UNSND (attr) != 0)
12903 fnp->is_artificial = 1;
12904
12905 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12906
12907 /* Get index in virtual function table if it is a virtual member
12908 function. For older versions of GCC, this is an offset in the
12909 appropriate virtual table, as specified by DW_AT_containing_type.
12910 For everyone else, it is an expression to be evaluated relative
12911 to the object address. */
12912
12913 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12914 if (attr)
12915 {
12916 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12917 {
12918 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12919 {
12920 /* Old-style GCC. */
12921 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12922 }
12923 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12924 || (DW_BLOCK (attr)->size > 1
12925 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12926 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12927 {
12928 struct dwarf_block blk;
12929 int offset;
12930
12931 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12932 ? 1 : 2);
12933 blk.size = DW_BLOCK (attr)->size - offset;
12934 blk.data = DW_BLOCK (attr)->data + offset;
12935 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12936 if ((fnp->voffset % cu->header.addr_size) != 0)
12937 dwarf2_complex_location_expr_complaint ();
12938 else
12939 fnp->voffset /= cu->header.addr_size;
12940 fnp->voffset += 2;
12941 }
12942 else
12943 dwarf2_complex_location_expr_complaint ();
12944
12945 if (!fnp->fcontext)
12946 {
12947 /* If there is no `this' field and no DW_AT_containing_type,
12948 we cannot actually find a base class context for the
12949 vtable! */
12950 if (TYPE_NFIELDS (this_type) == 0
12951 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12952 {
12953 complaint (&symfile_complaints,
12954 _("cannot determine context for virtual member "
12955 "function \"%s\" (offset %d)"),
12956 fieldname, die->offset.sect_off);
12957 }
12958 else
12959 {
12960 fnp->fcontext
12961 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12962 }
12963 }
12964 }
12965 else if (attr_form_is_section_offset (attr))
12966 {
12967 dwarf2_complex_location_expr_complaint ();
12968 }
12969 else
12970 {
12971 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12972 fieldname);
12973 }
12974 }
12975 else
12976 {
12977 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12978 if (attr && DW_UNSND (attr))
12979 {
12980 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12981 complaint (&symfile_complaints,
12982 _("Member function \"%s\" (offset %d) is virtual "
12983 "but the vtable offset is not specified"),
12984 fieldname, die->offset.sect_off);
12985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12986 TYPE_CPLUS_DYNAMIC (type) = 1;
12987 }
12988 }
12989 }
12990
12991 /* Create the vector of member function fields, and attach it to the type. */
12992
12993 static void
12994 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12995 struct dwarf2_cu *cu)
12996 {
12997 struct fnfieldlist *flp;
12998 int i;
12999
13000 if (cu->language == language_ada)
13001 error (_("unexpected member functions in Ada type"));
13002
13003 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13004 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13005 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13006
13007 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13008 {
13009 struct nextfnfield *nfp = flp->head;
13010 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13011 int k;
13012
13013 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13014 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13015 fn_flp->fn_fields = (struct fn_field *)
13016 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13017 for (k = flp->length; (k--, nfp); nfp = nfp->next)
13018 fn_flp->fn_fields[k] = nfp->fnfield;
13019 }
13020
13021 TYPE_NFN_FIELDS (type) = fip->nfnfields;
13022 }
13023
13024 /* Returns non-zero if NAME is the name of a vtable member in CU's
13025 language, zero otherwise. */
13026 static int
13027 is_vtable_name (const char *name, struct dwarf2_cu *cu)
13028 {
13029 static const char vptr[] = "_vptr";
13030 static const char vtable[] = "vtable";
13031
13032 /* Look for the C++ and Java forms of the vtable. */
13033 if ((cu->language == language_java
13034 && startswith (name, vtable))
13035 || (startswith (name, vptr)
13036 && is_cplus_marker (name[sizeof (vptr) - 1])))
13037 return 1;
13038
13039 return 0;
13040 }
13041
13042 /* GCC outputs unnamed structures that are really pointers to member
13043 functions, with the ABI-specified layout. If TYPE describes
13044 such a structure, smash it into a member function type.
13045
13046 GCC shouldn't do this; it should just output pointer to member DIEs.
13047 This is GCC PR debug/28767. */
13048
13049 static void
13050 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
13051 {
13052 struct type *pfn_type, *self_type, *new_type;
13053
13054 /* Check for a structure with no name and two children. */
13055 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13056 return;
13057
13058 /* Check for __pfn and __delta members. */
13059 if (TYPE_FIELD_NAME (type, 0) == NULL
13060 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13061 || TYPE_FIELD_NAME (type, 1) == NULL
13062 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13063 return;
13064
13065 /* Find the type of the method. */
13066 pfn_type = TYPE_FIELD_TYPE (type, 0);
13067 if (pfn_type == NULL
13068 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13069 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
13070 return;
13071
13072 /* Look for the "this" argument. */
13073 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13074 if (TYPE_NFIELDS (pfn_type) == 0
13075 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
13076 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
13077 return;
13078
13079 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
13080 new_type = alloc_type (objfile);
13081 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
13082 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13083 TYPE_VARARGS (pfn_type));
13084 smash_to_methodptr_type (type, new_type);
13085 }
13086
13087 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13088 (icc). */
13089
13090 static int
13091 producer_is_icc (struct dwarf2_cu *cu)
13092 {
13093 if (!cu->checked_producer)
13094 check_producer (cu);
13095
13096 return cu->producer_is_icc;
13097 }
13098
13099 /* Called when we find the DIE that starts a structure or union scope
13100 (definition) to create a type for the structure or union. Fill in
13101 the type's name and general properties; the members will not be
13102 processed until process_structure_scope. A symbol table entry for
13103 the type will also not be done until process_structure_scope (assuming
13104 the type has a name).
13105
13106 NOTE: we need to call these functions regardless of whether or not the
13107 DIE has a DW_AT_name attribute, since it might be an anonymous
13108 structure or union. This gets the type entered into our set of
13109 user defined types. */
13110
13111 static struct type *
13112 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
13113 {
13114 struct objfile *objfile = cu->objfile;
13115 struct type *type;
13116 struct attribute *attr;
13117 const char *name;
13118
13119 /* If the definition of this type lives in .debug_types, read that type.
13120 Don't follow DW_AT_specification though, that will take us back up
13121 the chain and we want to go down. */
13122 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13123 if (attr)
13124 {
13125 type = get_DW_AT_signature_type (die, attr, cu);
13126
13127 /* The type's CU may not be the same as CU.
13128 Ensure TYPE is recorded with CU in die_type_hash. */
13129 return set_die_type (die, type, cu);
13130 }
13131
13132 type = alloc_type (objfile);
13133 INIT_CPLUS_SPECIFIC (type);
13134
13135 name = dwarf2_name (die, cu);
13136 if (name != NULL)
13137 {
13138 if (cu->language == language_cplus
13139 || cu->language == language_java)
13140 {
13141 const char *full_name = dwarf2_full_name (name, die, cu);
13142
13143 /* dwarf2_full_name might have already finished building the DIE's
13144 type. If so, there is no need to continue. */
13145 if (get_die_type (die, cu) != NULL)
13146 return get_die_type (die, cu);
13147
13148 TYPE_TAG_NAME (type) = full_name;
13149 if (die->tag == DW_TAG_structure_type
13150 || die->tag == DW_TAG_class_type)
13151 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13152 }
13153 else
13154 {
13155 /* The name is already allocated along with this objfile, so
13156 we don't need to duplicate it for the type. */
13157 TYPE_TAG_NAME (type) = name;
13158 if (die->tag == DW_TAG_class_type)
13159 TYPE_NAME (type) = TYPE_TAG_NAME (type);
13160 }
13161 }
13162
13163 if (die->tag == DW_TAG_structure_type)
13164 {
13165 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13166 }
13167 else if (die->tag == DW_TAG_union_type)
13168 {
13169 TYPE_CODE (type) = TYPE_CODE_UNION;
13170 }
13171 else
13172 {
13173 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13174 }
13175
13176 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13177 TYPE_DECLARED_CLASS (type) = 1;
13178
13179 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13180 if (attr)
13181 {
13182 TYPE_LENGTH (type) = DW_UNSND (attr);
13183 }
13184 else
13185 {
13186 TYPE_LENGTH (type) = 0;
13187 }
13188
13189 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
13190 {
13191 /* ICC does not output the required DW_AT_declaration
13192 on incomplete types, but gives them a size of zero. */
13193 TYPE_STUB (type) = 1;
13194 }
13195 else
13196 TYPE_STUB_SUPPORTED (type) = 1;
13197
13198 if (die_is_declaration (die, cu))
13199 TYPE_STUB (type) = 1;
13200 else if (attr == NULL && die->child == NULL
13201 && producer_is_realview (cu->producer))
13202 /* RealView does not output the required DW_AT_declaration
13203 on incomplete types. */
13204 TYPE_STUB (type) = 1;
13205
13206 /* We need to add the type field to the die immediately so we don't
13207 infinitely recurse when dealing with pointers to the structure
13208 type within the structure itself. */
13209 set_die_type (die, type, cu);
13210
13211 /* set_die_type should be already done. */
13212 set_descriptive_type (type, die, cu);
13213
13214 return type;
13215 }
13216
13217 /* Finish creating a structure or union type, including filling in
13218 its members and creating a symbol for it. */
13219
13220 static void
13221 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13222 {
13223 struct objfile *objfile = cu->objfile;
13224 struct die_info *child_die;
13225 struct type *type;
13226
13227 type = get_die_type (die, cu);
13228 if (type == NULL)
13229 type = read_structure_type (die, cu);
13230
13231 if (die->child != NULL && ! die_is_declaration (die, cu))
13232 {
13233 struct field_info fi;
13234 VEC (symbolp) *template_args = NULL;
13235 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
13236
13237 memset (&fi, 0, sizeof (struct field_info));
13238
13239 child_die = die->child;
13240
13241 while (child_die && child_die->tag)
13242 {
13243 if (child_die->tag == DW_TAG_member
13244 || child_die->tag == DW_TAG_variable)
13245 {
13246 /* NOTE: carlton/2002-11-05: A C++ static data member
13247 should be a DW_TAG_member that is a declaration, but
13248 all versions of G++ as of this writing (so through at
13249 least 3.2.1) incorrectly generate DW_TAG_variable
13250 tags for them instead. */
13251 dwarf2_add_field (&fi, child_die, cu);
13252 }
13253 else if (child_die->tag == DW_TAG_subprogram)
13254 {
13255 /* C++ member function. */
13256 dwarf2_add_member_fn (&fi, child_die, type, cu);
13257 }
13258 else if (child_die->tag == DW_TAG_inheritance)
13259 {
13260 /* C++ base class field. */
13261 dwarf2_add_field (&fi, child_die, cu);
13262 }
13263 else if (child_die->tag == DW_TAG_typedef)
13264 dwarf2_add_typedef (&fi, child_die, cu);
13265 else if (child_die->tag == DW_TAG_template_type_param
13266 || child_die->tag == DW_TAG_template_value_param)
13267 {
13268 struct symbol *arg = new_symbol (child_die, NULL, cu);
13269
13270 if (arg != NULL)
13271 VEC_safe_push (symbolp, template_args, arg);
13272 }
13273
13274 child_die = sibling_die (child_die);
13275 }
13276
13277 /* Attach template arguments to type. */
13278 if (! VEC_empty (symbolp, template_args))
13279 {
13280 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13281 TYPE_N_TEMPLATE_ARGUMENTS (type)
13282 = VEC_length (symbolp, template_args);
13283 TYPE_TEMPLATE_ARGUMENTS (type)
13284 = obstack_alloc (&objfile->objfile_obstack,
13285 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13286 * sizeof (struct symbol *)));
13287 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13288 VEC_address (symbolp, template_args),
13289 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13290 * sizeof (struct symbol *)));
13291 VEC_free (symbolp, template_args);
13292 }
13293
13294 /* Attach fields and member functions to the type. */
13295 if (fi.nfields)
13296 dwarf2_attach_fields_to_type (&fi, type, cu);
13297 if (fi.nfnfields)
13298 {
13299 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13300
13301 /* Get the type which refers to the base class (possibly this
13302 class itself) which contains the vtable pointer for the current
13303 class from the DW_AT_containing_type attribute. This use of
13304 DW_AT_containing_type is a GNU extension. */
13305
13306 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13307 {
13308 struct type *t = die_containing_type (die, cu);
13309
13310 set_type_vptr_basetype (type, t);
13311 if (type == t)
13312 {
13313 int i;
13314
13315 /* Our own class provides vtbl ptr. */
13316 for (i = TYPE_NFIELDS (t) - 1;
13317 i >= TYPE_N_BASECLASSES (t);
13318 --i)
13319 {
13320 const char *fieldname = TYPE_FIELD_NAME (t, i);
13321
13322 if (is_vtable_name (fieldname, cu))
13323 {
13324 set_type_vptr_fieldno (type, i);
13325 break;
13326 }
13327 }
13328
13329 /* Complain if virtual function table field not found. */
13330 if (i < TYPE_N_BASECLASSES (t))
13331 complaint (&symfile_complaints,
13332 _("virtual function table pointer "
13333 "not found when defining class '%s'"),
13334 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13335 "");
13336 }
13337 else
13338 {
13339 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
13340 }
13341 }
13342 else if (cu->producer
13343 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
13344 {
13345 /* The IBM XLC compiler does not provide direct indication
13346 of the containing type, but the vtable pointer is
13347 always named __vfp. */
13348
13349 int i;
13350
13351 for (i = TYPE_NFIELDS (type) - 1;
13352 i >= TYPE_N_BASECLASSES (type);
13353 --i)
13354 {
13355 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13356 {
13357 set_type_vptr_fieldno (type, i);
13358 set_type_vptr_basetype (type, type);
13359 break;
13360 }
13361 }
13362 }
13363 }
13364
13365 /* Copy fi.typedef_field_list linked list elements content into the
13366 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13367 if (fi.typedef_field_list)
13368 {
13369 int i = fi.typedef_field_list_count;
13370
13371 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13372 TYPE_TYPEDEF_FIELD_ARRAY (type)
13373 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13374 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13375
13376 /* Reverse the list order to keep the debug info elements order. */
13377 while (--i >= 0)
13378 {
13379 struct typedef_field *dest, *src;
13380
13381 dest = &TYPE_TYPEDEF_FIELD (type, i);
13382 src = &fi.typedef_field_list->field;
13383 fi.typedef_field_list = fi.typedef_field_list->next;
13384 *dest = *src;
13385 }
13386 }
13387
13388 do_cleanups (back_to);
13389
13390 if (HAVE_CPLUS_STRUCT (type))
13391 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13392 }
13393
13394 quirk_gcc_member_function_pointer (type, objfile);
13395
13396 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13397 snapshots) has been known to create a die giving a declaration
13398 for a class that has, as a child, a die giving a definition for a
13399 nested class. So we have to process our children even if the
13400 current die is a declaration. Normally, of course, a declaration
13401 won't have any children at all. */
13402
13403 child_die = die->child;
13404
13405 while (child_die != NULL && child_die->tag)
13406 {
13407 if (child_die->tag == DW_TAG_member
13408 || child_die->tag == DW_TAG_variable
13409 || child_die->tag == DW_TAG_inheritance
13410 || child_die->tag == DW_TAG_template_value_param
13411 || child_die->tag == DW_TAG_template_type_param)
13412 {
13413 /* Do nothing. */
13414 }
13415 else
13416 process_die (child_die, cu);
13417
13418 child_die = sibling_die (child_die);
13419 }
13420
13421 /* Do not consider external references. According to the DWARF standard,
13422 these DIEs are identified by the fact that they have no byte_size
13423 attribute, and a declaration attribute. */
13424 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13425 || !die_is_declaration (die, cu))
13426 new_symbol (die, type, cu);
13427 }
13428
13429 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13430 update TYPE using some information only available in DIE's children. */
13431
13432 static void
13433 update_enumeration_type_from_children (struct die_info *die,
13434 struct type *type,
13435 struct dwarf2_cu *cu)
13436 {
13437 struct obstack obstack;
13438 struct die_info *child_die;
13439 int unsigned_enum = 1;
13440 int flag_enum = 1;
13441 ULONGEST mask = 0;
13442 struct cleanup *old_chain;
13443
13444 obstack_init (&obstack);
13445 old_chain = make_cleanup_obstack_free (&obstack);
13446
13447 for (child_die = die->child;
13448 child_die != NULL && child_die->tag;
13449 child_die = sibling_die (child_die))
13450 {
13451 struct attribute *attr;
13452 LONGEST value;
13453 const gdb_byte *bytes;
13454 struct dwarf2_locexpr_baton *baton;
13455 const char *name;
13456
13457 if (child_die->tag != DW_TAG_enumerator)
13458 continue;
13459
13460 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13461 if (attr == NULL)
13462 continue;
13463
13464 name = dwarf2_name (child_die, cu);
13465 if (name == NULL)
13466 name = "<anonymous enumerator>";
13467
13468 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13469 &value, &bytes, &baton);
13470 if (value < 0)
13471 {
13472 unsigned_enum = 0;
13473 flag_enum = 0;
13474 }
13475 else if ((mask & value) != 0)
13476 flag_enum = 0;
13477 else
13478 mask |= value;
13479
13480 /* If we already know that the enum type is neither unsigned, nor
13481 a flag type, no need to look at the rest of the enumerates. */
13482 if (!unsigned_enum && !flag_enum)
13483 break;
13484 }
13485
13486 if (unsigned_enum)
13487 TYPE_UNSIGNED (type) = 1;
13488 if (flag_enum)
13489 TYPE_FLAG_ENUM (type) = 1;
13490
13491 do_cleanups (old_chain);
13492 }
13493
13494 /* Given a DW_AT_enumeration_type die, set its type. We do not
13495 complete the type's fields yet, or create any symbols. */
13496
13497 static struct type *
13498 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13499 {
13500 struct objfile *objfile = cu->objfile;
13501 struct type *type;
13502 struct attribute *attr;
13503 const char *name;
13504
13505 /* If the definition of this type lives in .debug_types, read that type.
13506 Don't follow DW_AT_specification though, that will take us back up
13507 the chain and we want to go down. */
13508 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13509 if (attr)
13510 {
13511 type = get_DW_AT_signature_type (die, attr, cu);
13512
13513 /* The type's CU may not be the same as CU.
13514 Ensure TYPE is recorded with CU in die_type_hash. */
13515 return set_die_type (die, type, cu);
13516 }
13517
13518 type = alloc_type (objfile);
13519
13520 TYPE_CODE (type) = TYPE_CODE_ENUM;
13521 name = dwarf2_full_name (NULL, die, cu);
13522 if (name != NULL)
13523 TYPE_TAG_NAME (type) = name;
13524
13525 attr = dwarf2_attr (die, DW_AT_type, cu);
13526 if (attr != NULL)
13527 {
13528 struct type *underlying_type = die_type (die, cu);
13529
13530 TYPE_TARGET_TYPE (type) = underlying_type;
13531 }
13532
13533 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13534 if (attr)
13535 {
13536 TYPE_LENGTH (type) = DW_UNSND (attr);
13537 }
13538 else
13539 {
13540 TYPE_LENGTH (type) = 0;
13541 }
13542
13543 /* The enumeration DIE can be incomplete. In Ada, any type can be
13544 declared as private in the package spec, and then defined only
13545 inside the package body. Such types are known as Taft Amendment
13546 Types. When another package uses such a type, an incomplete DIE
13547 may be generated by the compiler. */
13548 if (die_is_declaration (die, cu))
13549 TYPE_STUB (type) = 1;
13550
13551 /* Finish the creation of this type by using the enum's children.
13552 We must call this even when the underlying type has been provided
13553 so that we can determine if we're looking at a "flag" enum. */
13554 update_enumeration_type_from_children (die, type, cu);
13555
13556 /* If this type has an underlying type that is not a stub, then we
13557 may use its attributes. We always use the "unsigned" attribute
13558 in this situation, because ordinarily we guess whether the type
13559 is unsigned -- but the guess can be wrong and the underlying type
13560 can tell us the reality. However, we defer to a local size
13561 attribute if one exists, because this lets the compiler override
13562 the underlying type if needed. */
13563 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13564 {
13565 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13566 if (TYPE_LENGTH (type) == 0)
13567 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13568 }
13569
13570 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13571
13572 return set_die_type (die, type, cu);
13573 }
13574
13575 /* Given a pointer to a die which begins an enumeration, process all
13576 the dies that define the members of the enumeration, and create the
13577 symbol for the enumeration type.
13578
13579 NOTE: We reverse the order of the element list. */
13580
13581 static void
13582 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13583 {
13584 struct type *this_type;
13585
13586 this_type = get_die_type (die, cu);
13587 if (this_type == NULL)
13588 this_type = read_enumeration_type (die, cu);
13589
13590 if (die->child != NULL)
13591 {
13592 struct die_info *child_die;
13593 struct symbol *sym;
13594 struct field *fields = NULL;
13595 int num_fields = 0;
13596 const char *name;
13597
13598 child_die = die->child;
13599 while (child_die && child_die->tag)
13600 {
13601 if (child_die->tag != DW_TAG_enumerator)
13602 {
13603 process_die (child_die, cu);
13604 }
13605 else
13606 {
13607 name = dwarf2_name (child_die, cu);
13608 if (name)
13609 {
13610 sym = new_symbol (child_die, this_type, cu);
13611
13612 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13613 {
13614 fields = (struct field *)
13615 xrealloc (fields,
13616 (num_fields + DW_FIELD_ALLOC_CHUNK)
13617 * sizeof (struct field));
13618 }
13619
13620 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13621 FIELD_TYPE (fields[num_fields]) = NULL;
13622 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13623 FIELD_BITSIZE (fields[num_fields]) = 0;
13624
13625 num_fields++;
13626 }
13627 }
13628
13629 child_die = sibling_die (child_die);
13630 }
13631
13632 if (num_fields)
13633 {
13634 TYPE_NFIELDS (this_type) = num_fields;
13635 TYPE_FIELDS (this_type) = (struct field *)
13636 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13637 memcpy (TYPE_FIELDS (this_type), fields,
13638 sizeof (struct field) * num_fields);
13639 xfree (fields);
13640 }
13641 }
13642
13643 /* If we are reading an enum from a .debug_types unit, and the enum
13644 is a declaration, and the enum is not the signatured type in the
13645 unit, then we do not want to add a symbol for it. Adding a
13646 symbol would in some cases obscure the true definition of the
13647 enum, giving users an incomplete type when the definition is
13648 actually available. Note that we do not want to do this for all
13649 enums which are just declarations, because C++0x allows forward
13650 enum declarations. */
13651 if (cu->per_cu->is_debug_types
13652 && die_is_declaration (die, cu))
13653 {
13654 struct signatured_type *sig_type;
13655
13656 sig_type = (struct signatured_type *) cu->per_cu;
13657 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13658 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13659 return;
13660 }
13661
13662 new_symbol (die, this_type, cu);
13663 }
13664
13665 /* Extract all information from a DW_TAG_array_type DIE and put it in
13666 the DIE's type field. For now, this only handles one dimensional
13667 arrays. */
13668
13669 static struct type *
13670 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13671 {
13672 struct objfile *objfile = cu->objfile;
13673 struct die_info *child_die;
13674 struct type *type;
13675 struct type *element_type, *range_type, *index_type;
13676 struct type **range_types = NULL;
13677 struct attribute *attr;
13678 int ndim = 0;
13679 struct cleanup *back_to;
13680 const char *name;
13681 unsigned int bit_stride = 0;
13682
13683 element_type = die_type (die, cu);
13684
13685 /* The die_type call above may have already set the type for this DIE. */
13686 type = get_die_type (die, cu);
13687 if (type)
13688 return type;
13689
13690 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13691 if (attr != NULL)
13692 bit_stride = DW_UNSND (attr) * 8;
13693
13694 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13695 if (attr != NULL)
13696 bit_stride = DW_UNSND (attr);
13697
13698 /* Irix 6.2 native cc creates array types without children for
13699 arrays with unspecified length. */
13700 if (die->child == NULL)
13701 {
13702 index_type = objfile_type (objfile)->builtin_int;
13703 range_type = create_static_range_type (NULL, index_type, 0, -1);
13704 type = create_array_type_with_stride (NULL, element_type, range_type,
13705 bit_stride);
13706 return set_die_type (die, type, cu);
13707 }
13708
13709 back_to = make_cleanup (null_cleanup, NULL);
13710 child_die = die->child;
13711 while (child_die && child_die->tag)
13712 {
13713 if (child_die->tag == DW_TAG_subrange_type)
13714 {
13715 struct type *child_type = read_type_die (child_die, cu);
13716
13717 if (child_type != NULL)
13718 {
13719 /* The range type was succesfully read. Save it for the
13720 array type creation. */
13721 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13722 {
13723 range_types = (struct type **)
13724 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13725 * sizeof (struct type *));
13726 if (ndim == 0)
13727 make_cleanup (free_current_contents, &range_types);
13728 }
13729 range_types[ndim++] = child_type;
13730 }
13731 }
13732 child_die = sibling_die (child_die);
13733 }
13734
13735 /* Dwarf2 dimensions are output from left to right, create the
13736 necessary array types in backwards order. */
13737
13738 type = element_type;
13739
13740 if (read_array_order (die, cu) == DW_ORD_col_major)
13741 {
13742 int i = 0;
13743
13744 while (i < ndim)
13745 type = create_array_type_with_stride (NULL, type, range_types[i++],
13746 bit_stride);
13747 }
13748 else
13749 {
13750 while (ndim-- > 0)
13751 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13752 bit_stride);
13753 }
13754
13755 /* Understand Dwarf2 support for vector types (like they occur on
13756 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13757 array type. This is not part of the Dwarf2/3 standard yet, but a
13758 custom vendor extension. The main difference between a regular
13759 array and the vector variant is that vectors are passed by value
13760 to functions. */
13761 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13762 if (attr)
13763 make_vector_type (type);
13764
13765 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13766 implementation may choose to implement triple vectors using this
13767 attribute. */
13768 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13769 if (attr)
13770 {
13771 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13772 TYPE_LENGTH (type) = DW_UNSND (attr);
13773 else
13774 complaint (&symfile_complaints,
13775 _("DW_AT_byte_size for array type smaller "
13776 "than the total size of elements"));
13777 }
13778
13779 name = dwarf2_name (die, cu);
13780 if (name)
13781 TYPE_NAME (type) = name;
13782
13783 /* Install the type in the die. */
13784 set_die_type (die, type, cu);
13785
13786 /* set_die_type should be already done. */
13787 set_descriptive_type (type, die, cu);
13788
13789 do_cleanups (back_to);
13790
13791 return type;
13792 }
13793
13794 static enum dwarf_array_dim_ordering
13795 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13796 {
13797 struct attribute *attr;
13798
13799 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13800
13801 if (attr) return DW_SND (attr);
13802
13803 /* GNU F77 is a special case, as at 08/2004 array type info is the
13804 opposite order to the dwarf2 specification, but data is still
13805 laid out as per normal fortran.
13806
13807 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13808 version checking. */
13809
13810 if (cu->language == language_fortran
13811 && cu->producer && strstr (cu->producer, "GNU F77"))
13812 {
13813 return DW_ORD_row_major;
13814 }
13815
13816 switch (cu->language_defn->la_array_ordering)
13817 {
13818 case array_column_major:
13819 return DW_ORD_col_major;
13820 case array_row_major:
13821 default:
13822 return DW_ORD_row_major;
13823 };
13824 }
13825
13826 /* Extract all information from a DW_TAG_set_type DIE and put it in
13827 the DIE's type field. */
13828
13829 static struct type *
13830 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13831 {
13832 struct type *domain_type, *set_type;
13833 struct attribute *attr;
13834
13835 domain_type = die_type (die, cu);
13836
13837 /* The die_type call above may have already set the type for this DIE. */
13838 set_type = get_die_type (die, cu);
13839 if (set_type)
13840 return set_type;
13841
13842 set_type = create_set_type (NULL, domain_type);
13843
13844 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13845 if (attr)
13846 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13847
13848 return set_die_type (die, set_type, cu);
13849 }
13850
13851 /* A helper for read_common_block that creates a locexpr baton.
13852 SYM is the symbol which we are marking as computed.
13853 COMMON_DIE is the DIE for the common block.
13854 COMMON_LOC is the location expression attribute for the common
13855 block itself.
13856 MEMBER_LOC is the location expression attribute for the particular
13857 member of the common block that we are processing.
13858 CU is the CU from which the above come. */
13859
13860 static void
13861 mark_common_block_symbol_computed (struct symbol *sym,
13862 struct die_info *common_die,
13863 struct attribute *common_loc,
13864 struct attribute *member_loc,
13865 struct dwarf2_cu *cu)
13866 {
13867 struct objfile *objfile = dwarf2_per_objfile->objfile;
13868 struct dwarf2_locexpr_baton *baton;
13869 gdb_byte *ptr;
13870 unsigned int cu_off;
13871 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13872 LONGEST offset = 0;
13873
13874 gdb_assert (common_loc && member_loc);
13875 gdb_assert (attr_form_is_block (common_loc));
13876 gdb_assert (attr_form_is_block (member_loc)
13877 || attr_form_is_constant (member_loc));
13878
13879 baton = obstack_alloc (&objfile->objfile_obstack,
13880 sizeof (struct dwarf2_locexpr_baton));
13881 baton->per_cu = cu->per_cu;
13882 gdb_assert (baton->per_cu);
13883
13884 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13885
13886 if (attr_form_is_constant (member_loc))
13887 {
13888 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13889 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13890 }
13891 else
13892 baton->size += DW_BLOCK (member_loc)->size;
13893
13894 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13895 baton->data = ptr;
13896
13897 *ptr++ = DW_OP_call4;
13898 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13899 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13900 ptr += 4;
13901
13902 if (attr_form_is_constant (member_loc))
13903 {
13904 *ptr++ = DW_OP_addr;
13905 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13906 ptr += cu->header.addr_size;
13907 }
13908 else
13909 {
13910 /* We have to copy the data here, because DW_OP_call4 will only
13911 use a DW_AT_location attribute. */
13912 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13913 ptr += DW_BLOCK (member_loc)->size;
13914 }
13915
13916 *ptr++ = DW_OP_plus;
13917 gdb_assert (ptr - baton->data == baton->size);
13918
13919 SYMBOL_LOCATION_BATON (sym) = baton;
13920 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13921 }
13922
13923 /* Create appropriate locally-scoped variables for all the
13924 DW_TAG_common_block entries. Also create a struct common_block
13925 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13926 is used to sepate the common blocks name namespace from regular
13927 variable names. */
13928
13929 static void
13930 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13931 {
13932 struct attribute *attr;
13933
13934 attr = dwarf2_attr (die, DW_AT_location, cu);
13935 if (attr)
13936 {
13937 /* Support the .debug_loc offsets. */
13938 if (attr_form_is_block (attr))
13939 {
13940 /* Ok. */
13941 }
13942 else if (attr_form_is_section_offset (attr))
13943 {
13944 dwarf2_complex_location_expr_complaint ();
13945 attr = NULL;
13946 }
13947 else
13948 {
13949 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13950 "common block member");
13951 attr = NULL;
13952 }
13953 }
13954
13955 if (die->child != NULL)
13956 {
13957 struct objfile *objfile = cu->objfile;
13958 struct die_info *child_die;
13959 size_t n_entries = 0, size;
13960 struct common_block *common_block;
13961 struct symbol *sym;
13962
13963 for (child_die = die->child;
13964 child_die && child_die->tag;
13965 child_die = sibling_die (child_die))
13966 ++n_entries;
13967
13968 size = (sizeof (struct common_block)
13969 + (n_entries - 1) * sizeof (struct symbol *));
13970 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13971 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13972 common_block->n_entries = 0;
13973
13974 for (child_die = die->child;
13975 child_die && child_die->tag;
13976 child_die = sibling_die (child_die))
13977 {
13978 /* Create the symbol in the DW_TAG_common_block block in the current
13979 symbol scope. */
13980 sym = new_symbol (child_die, NULL, cu);
13981 if (sym != NULL)
13982 {
13983 struct attribute *member_loc;
13984
13985 common_block->contents[common_block->n_entries++] = sym;
13986
13987 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13988 cu);
13989 if (member_loc)
13990 {
13991 /* GDB has handled this for a long time, but it is
13992 not specified by DWARF. It seems to have been
13993 emitted by gfortran at least as recently as:
13994 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13995 complaint (&symfile_complaints,
13996 _("Variable in common block has "
13997 "DW_AT_data_member_location "
13998 "- DIE at 0x%x [in module %s]"),
13999 child_die->offset.sect_off,
14000 objfile_name (cu->objfile));
14001
14002 if (attr_form_is_section_offset (member_loc))
14003 dwarf2_complex_location_expr_complaint ();
14004 else if (attr_form_is_constant (member_loc)
14005 || attr_form_is_block (member_loc))
14006 {
14007 if (attr)
14008 mark_common_block_symbol_computed (sym, die, attr,
14009 member_loc, cu);
14010 }
14011 else
14012 dwarf2_complex_location_expr_complaint ();
14013 }
14014 }
14015 }
14016
14017 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14018 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
14019 }
14020 }
14021
14022 /* Create a type for a C++ namespace. */
14023
14024 static struct type *
14025 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
14026 {
14027 struct objfile *objfile = cu->objfile;
14028 const char *previous_prefix, *name;
14029 int is_anonymous;
14030 struct type *type;
14031
14032 /* For extensions, reuse the type of the original namespace. */
14033 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14034 {
14035 struct die_info *ext_die;
14036 struct dwarf2_cu *ext_cu = cu;
14037
14038 ext_die = dwarf2_extension (die, &ext_cu);
14039 type = read_type_die (ext_die, ext_cu);
14040
14041 /* EXT_CU may not be the same as CU.
14042 Ensure TYPE is recorded with CU in die_type_hash. */
14043 return set_die_type (die, type, cu);
14044 }
14045
14046 name = namespace_name (die, &is_anonymous, cu);
14047
14048 /* Now build the name of the current namespace. */
14049
14050 previous_prefix = determine_prefix (die, cu);
14051 if (previous_prefix[0] != '\0')
14052 name = typename_concat (&objfile->objfile_obstack,
14053 previous_prefix, name, 0, cu);
14054
14055 /* Create the type. */
14056 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14057 objfile);
14058 TYPE_NAME (type) = name;
14059 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14060
14061 return set_die_type (die, type, cu);
14062 }
14063
14064 /* Read a C++ namespace. */
14065
14066 static void
14067 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14068 {
14069 struct objfile *objfile = cu->objfile;
14070 int is_anonymous;
14071
14072 /* Add a symbol associated to this if we haven't seen the namespace
14073 before. Also, add a using directive if it's an anonymous
14074 namespace. */
14075
14076 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
14077 {
14078 struct type *type;
14079
14080 type = read_type_die (die, cu);
14081 new_symbol (die, type, cu);
14082
14083 namespace_name (die, &is_anonymous, cu);
14084 if (is_anonymous)
14085 {
14086 const char *previous_prefix = determine_prefix (die, cu);
14087
14088 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
14089 NULL, NULL, 0, &objfile->objfile_obstack);
14090 }
14091 }
14092
14093 if (die->child != NULL)
14094 {
14095 struct die_info *child_die = die->child;
14096
14097 while (child_die && child_die->tag)
14098 {
14099 process_die (child_die, cu);
14100 child_die = sibling_die (child_die);
14101 }
14102 }
14103 }
14104
14105 /* Read a Fortran module as type. This DIE can be only a declaration used for
14106 imported module. Still we need that type as local Fortran "use ... only"
14107 declaration imports depend on the created type in determine_prefix. */
14108
14109 static struct type *
14110 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14111 {
14112 struct objfile *objfile = cu->objfile;
14113 const char *module_name;
14114 struct type *type;
14115
14116 module_name = dwarf2_name (die, cu);
14117 if (!module_name)
14118 complaint (&symfile_complaints,
14119 _("DW_TAG_module has no name, offset 0x%x"),
14120 die->offset.sect_off);
14121 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14122
14123 /* determine_prefix uses TYPE_TAG_NAME. */
14124 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14125
14126 return set_die_type (die, type, cu);
14127 }
14128
14129 /* Read a Fortran module. */
14130
14131 static void
14132 read_module (struct die_info *die, struct dwarf2_cu *cu)
14133 {
14134 struct die_info *child_die = die->child;
14135 struct type *type;
14136
14137 type = read_type_die (die, cu);
14138 new_symbol (die, type, cu);
14139
14140 while (child_die && child_die->tag)
14141 {
14142 process_die (child_die, cu);
14143 child_die = sibling_die (child_die);
14144 }
14145 }
14146
14147 /* Return the name of the namespace represented by DIE. Set
14148 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14149 namespace. */
14150
14151 static const char *
14152 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
14153 {
14154 struct die_info *current_die;
14155 const char *name = NULL;
14156
14157 /* Loop through the extensions until we find a name. */
14158
14159 for (current_die = die;
14160 current_die != NULL;
14161 current_die = dwarf2_extension (die, &cu))
14162 {
14163 /* We don't use dwarf2_name here so that we can detect the absence
14164 of a name -> anonymous namespace. */
14165 struct attribute *attr = dwarf2_attr (die, DW_AT_name, cu);
14166
14167 if (attr != NULL)
14168 name = DW_STRING (attr);
14169 if (name != NULL)
14170 break;
14171 }
14172
14173 /* Is it an anonymous namespace? */
14174
14175 *is_anonymous = (name == NULL);
14176 if (*is_anonymous)
14177 name = CP_ANONYMOUS_NAMESPACE_STR;
14178
14179 return name;
14180 }
14181
14182 /* Extract all information from a DW_TAG_pointer_type DIE and add to
14183 the user defined type vector. */
14184
14185 static struct type *
14186 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
14187 {
14188 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
14189 struct comp_unit_head *cu_header = &cu->header;
14190 struct type *type;
14191 struct attribute *attr_byte_size;
14192 struct attribute *attr_address_class;
14193 int byte_size, addr_class;
14194 struct type *target_type;
14195
14196 target_type = die_type (die, cu);
14197
14198 /* The die_type call above may have already set the type for this DIE. */
14199 type = get_die_type (die, cu);
14200 if (type)
14201 return type;
14202
14203 type = lookup_pointer_type (target_type);
14204
14205 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
14206 if (attr_byte_size)
14207 byte_size = DW_UNSND (attr_byte_size);
14208 else
14209 byte_size = cu_header->addr_size;
14210
14211 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
14212 if (attr_address_class)
14213 addr_class = DW_UNSND (attr_address_class);
14214 else
14215 addr_class = DW_ADDR_none;
14216
14217 /* If the pointer size or address class is different than the
14218 default, create a type variant marked as such and set the
14219 length accordingly. */
14220 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
14221 {
14222 if (gdbarch_address_class_type_flags_p (gdbarch))
14223 {
14224 int type_flags;
14225
14226 type_flags = gdbarch_address_class_type_flags
14227 (gdbarch, byte_size, addr_class);
14228 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14229 == 0);
14230 type = make_type_with_address_space (type, type_flags);
14231 }
14232 else if (TYPE_LENGTH (type) != byte_size)
14233 {
14234 complaint (&symfile_complaints,
14235 _("invalid pointer size %d"), byte_size);
14236 }
14237 else
14238 {
14239 /* Should we also complain about unhandled address classes? */
14240 }
14241 }
14242
14243 TYPE_LENGTH (type) = byte_size;
14244 return set_die_type (die, type, cu);
14245 }
14246
14247 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14248 the user defined type vector. */
14249
14250 static struct type *
14251 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
14252 {
14253 struct type *type;
14254 struct type *to_type;
14255 struct type *domain;
14256
14257 to_type = die_type (die, cu);
14258 domain = die_containing_type (die, cu);
14259
14260 /* The calls above may have already set the type for this DIE. */
14261 type = get_die_type (die, cu);
14262 if (type)
14263 return type;
14264
14265 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14266 type = lookup_methodptr_type (to_type);
14267 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14268 {
14269 struct type *new_type = alloc_type (cu->objfile);
14270
14271 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14272 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14273 TYPE_VARARGS (to_type));
14274 type = lookup_methodptr_type (new_type);
14275 }
14276 else
14277 type = lookup_memberptr_type (to_type, domain);
14278
14279 return set_die_type (die, type, cu);
14280 }
14281
14282 /* Extract all information from a DW_TAG_reference_type DIE and add to
14283 the user defined type vector. */
14284
14285 static struct type *
14286 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
14287 {
14288 struct comp_unit_head *cu_header = &cu->header;
14289 struct type *type, *target_type;
14290 struct attribute *attr;
14291
14292 target_type = die_type (die, cu);
14293
14294 /* The die_type call above may have already set the type for this DIE. */
14295 type = get_die_type (die, cu);
14296 if (type)
14297 return type;
14298
14299 type = lookup_reference_type (target_type);
14300 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14301 if (attr)
14302 {
14303 TYPE_LENGTH (type) = DW_UNSND (attr);
14304 }
14305 else
14306 {
14307 TYPE_LENGTH (type) = cu_header->addr_size;
14308 }
14309 return set_die_type (die, type, cu);
14310 }
14311
14312 /* Add the given cv-qualifiers to the element type of the array. GCC
14313 outputs DWARF type qualifiers that apply to an array, not the
14314 element type. But GDB relies on the array element type to carry
14315 the cv-qualifiers. This mimics section 6.7.3 of the C99
14316 specification. */
14317
14318 static struct type *
14319 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14320 struct type *base_type, int cnst, int voltl)
14321 {
14322 struct type *el_type, *inner_array;
14323
14324 base_type = copy_type (base_type);
14325 inner_array = base_type;
14326
14327 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14328 {
14329 TYPE_TARGET_TYPE (inner_array) =
14330 copy_type (TYPE_TARGET_TYPE (inner_array));
14331 inner_array = TYPE_TARGET_TYPE (inner_array);
14332 }
14333
14334 el_type = TYPE_TARGET_TYPE (inner_array);
14335 cnst |= TYPE_CONST (el_type);
14336 voltl |= TYPE_VOLATILE (el_type);
14337 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14338
14339 return set_die_type (die, base_type, cu);
14340 }
14341
14342 static struct type *
14343 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
14344 {
14345 struct type *base_type, *cv_type;
14346
14347 base_type = die_type (die, cu);
14348
14349 /* The die_type call above may have already set the type for this DIE. */
14350 cv_type = get_die_type (die, cu);
14351 if (cv_type)
14352 return cv_type;
14353
14354 /* In case the const qualifier is applied to an array type, the element type
14355 is so qualified, not the array type (section 6.7.3 of C99). */
14356 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14357 return add_array_cv_type (die, cu, base_type, 1, 0);
14358
14359 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14360 return set_die_type (die, cv_type, cu);
14361 }
14362
14363 static struct type *
14364 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14365 {
14366 struct type *base_type, *cv_type;
14367
14368 base_type = die_type (die, cu);
14369
14370 /* The die_type call above may have already set the type for this DIE. */
14371 cv_type = get_die_type (die, cu);
14372 if (cv_type)
14373 return cv_type;
14374
14375 /* In case the volatile qualifier is applied to an array type, the
14376 element type is so qualified, not the array type (section 6.7.3
14377 of C99). */
14378 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14379 return add_array_cv_type (die, cu, base_type, 0, 1);
14380
14381 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14382 return set_die_type (die, cv_type, cu);
14383 }
14384
14385 /* Handle DW_TAG_restrict_type. */
14386
14387 static struct type *
14388 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14389 {
14390 struct type *base_type, *cv_type;
14391
14392 base_type = die_type (die, cu);
14393
14394 /* The die_type call above may have already set the type for this DIE. */
14395 cv_type = get_die_type (die, cu);
14396 if (cv_type)
14397 return cv_type;
14398
14399 cv_type = make_restrict_type (base_type);
14400 return set_die_type (die, cv_type, cu);
14401 }
14402
14403 /* Handle DW_TAG_atomic_type. */
14404
14405 static struct type *
14406 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14407 {
14408 struct type *base_type, *cv_type;
14409
14410 base_type = die_type (die, cu);
14411
14412 /* The die_type call above may have already set the type for this DIE. */
14413 cv_type = get_die_type (die, cu);
14414 if (cv_type)
14415 return cv_type;
14416
14417 cv_type = make_atomic_type (base_type);
14418 return set_die_type (die, cv_type, cu);
14419 }
14420
14421 /* Extract all information from a DW_TAG_string_type DIE and add to
14422 the user defined type vector. It isn't really a user defined type,
14423 but it behaves like one, with other DIE's using an AT_user_def_type
14424 attribute to reference it. */
14425
14426 static struct type *
14427 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14428 {
14429 struct objfile *objfile = cu->objfile;
14430 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14431 struct type *type, *range_type, *index_type, *char_type;
14432 struct attribute *attr;
14433 unsigned int length;
14434
14435 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14436 if (attr)
14437 {
14438 length = DW_UNSND (attr);
14439 }
14440 else
14441 {
14442 /* Check for the DW_AT_byte_size attribute. */
14443 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14444 if (attr)
14445 {
14446 length = DW_UNSND (attr);
14447 }
14448 else
14449 {
14450 length = 1;
14451 }
14452 }
14453
14454 index_type = objfile_type (objfile)->builtin_int;
14455 range_type = create_static_range_type (NULL, index_type, 1, length);
14456 char_type = language_string_char_type (cu->language_defn, gdbarch);
14457 type = create_string_type (NULL, char_type, range_type);
14458
14459 return set_die_type (die, type, cu);
14460 }
14461
14462 /* Assuming that DIE corresponds to a function, returns nonzero
14463 if the function is prototyped. */
14464
14465 static int
14466 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14467 {
14468 struct attribute *attr;
14469
14470 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14471 if (attr && (DW_UNSND (attr) != 0))
14472 return 1;
14473
14474 /* The DWARF standard implies that the DW_AT_prototyped attribute
14475 is only meaninful for C, but the concept also extends to other
14476 languages that allow unprototyped functions (Eg: Objective C).
14477 For all other languages, assume that functions are always
14478 prototyped. */
14479 if (cu->language != language_c
14480 && cu->language != language_objc
14481 && cu->language != language_opencl)
14482 return 1;
14483
14484 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14485 prototyped and unprototyped functions; default to prototyped,
14486 since that is more common in modern code (and RealView warns
14487 about unprototyped functions). */
14488 if (producer_is_realview (cu->producer))
14489 return 1;
14490
14491 return 0;
14492 }
14493
14494 /* Handle DIES due to C code like:
14495
14496 struct foo
14497 {
14498 int (*funcp)(int a, long l);
14499 int b;
14500 };
14501
14502 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14503
14504 static struct type *
14505 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14506 {
14507 struct objfile *objfile = cu->objfile;
14508 struct type *type; /* Type that this function returns. */
14509 struct type *ftype; /* Function that returns above type. */
14510 struct attribute *attr;
14511
14512 type = die_type (die, cu);
14513
14514 /* The die_type call above may have already set the type for this DIE. */
14515 ftype = get_die_type (die, cu);
14516 if (ftype)
14517 return ftype;
14518
14519 ftype = lookup_function_type (type);
14520
14521 if (prototyped_function_p (die, cu))
14522 TYPE_PROTOTYPED (ftype) = 1;
14523
14524 /* Store the calling convention in the type if it's available in
14525 the subroutine die. Otherwise set the calling convention to
14526 the default value DW_CC_normal. */
14527 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14528 if (attr)
14529 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14530 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14531 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14532 else
14533 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14534
14535 /* Record whether the function returns normally to its caller or not
14536 if the DWARF producer set that information. */
14537 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14538 if (attr && (DW_UNSND (attr) != 0))
14539 TYPE_NO_RETURN (ftype) = 1;
14540
14541 /* We need to add the subroutine type to the die immediately so
14542 we don't infinitely recurse when dealing with parameters
14543 declared as the same subroutine type. */
14544 set_die_type (die, ftype, cu);
14545
14546 if (die->child != NULL)
14547 {
14548 struct type *void_type = objfile_type (objfile)->builtin_void;
14549 struct die_info *child_die;
14550 int nparams, iparams;
14551
14552 /* Count the number of parameters.
14553 FIXME: GDB currently ignores vararg functions, but knows about
14554 vararg member functions. */
14555 nparams = 0;
14556 child_die = die->child;
14557 while (child_die && child_die->tag)
14558 {
14559 if (child_die->tag == DW_TAG_formal_parameter)
14560 nparams++;
14561 else if (child_die->tag == DW_TAG_unspecified_parameters)
14562 TYPE_VARARGS (ftype) = 1;
14563 child_die = sibling_die (child_die);
14564 }
14565
14566 /* Allocate storage for parameters and fill them in. */
14567 TYPE_NFIELDS (ftype) = nparams;
14568 TYPE_FIELDS (ftype) = (struct field *)
14569 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14570
14571 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14572 even if we error out during the parameters reading below. */
14573 for (iparams = 0; iparams < nparams; iparams++)
14574 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14575
14576 iparams = 0;
14577 child_die = die->child;
14578 while (child_die && child_die->tag)
14579 {
14580 if (child_die->tag == DW_TAG_formal_parameter)
14581 {
14582 struct type *arg_type;
14583
14584 /* DWARF version 2 has no clean way to discern C++
14585 static and non-static member functions. G++ helps
14586 GDB by marking the first parameter for non-static
14587 member functions (which is the this pointer) as
14588 artificial. We pass this information to
14589 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14590
14591 DWARF version 3 added DW_AT_object_pointer, which GCC
14592 4.5 does not yet generate. */
14593 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14594 if (attr)
14595 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14596 else
14597 {
14598 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14599
14600 /* GCC/43521: In java, the formal parameter
14601 "this" is sometimes not marked with DW_AT_artificial. */
14602 if (cu->language == language_java)
14603 {
14604 const char *name = dwarf2_name (child_die, cu);
14605
14606 if (name && !strcmp (name, "this"))
14607 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14608 }
14609 }
14610 arg_type = die_type (child_die, cu);
14611
14612 /* RealView does not mark THIS as const, which the testsuite
14613 expects. GCC marks THIS as const in method definitions,
14614 but not in the class specifications (GCC PR 43053). */
14615 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14616 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14617 {
14618 int is_this = 0;
14619 struct dwarf2_cu *arg_cu = cu;
14620 const char *name = dwarf2_name (child_die, cu);
14621
14622 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14623 if (attr)
14624 {
14625 /* If the compiler emits this, use it. */
14626 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14627 is_this = 1;
14628 }
14629 else if (name && strcmp (name, "this") == 0)
14630 /* Function definitions will have the argument names. */
14631 is_this = 1;
14632 else if (name == NULL && iparams == 0)
14633 /* Declarations may not have the names, so like
14634 elsewhere in GDB, assume an artificial first
14635 argument is "this". */
14636 is_this = 1;
14637
14638 if (is_this)
14639 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14640 arg_type, 0);
14641 }
14642
14643 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14644 iparams++;
14645 }
14646 child_die = sibling_die (child_die);
14647 }
14648 }
14649
14650 return ftype;
14651 }
14652
14653 static struct type *
14654 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14655 {
14656 struct objfile *objfile = cu->objfile;
14657 const char *name = NULL;
14658 struct type *this_type, *target_type;
14659
14660 name = dwarf2_full_name (NULL, die, cu);
14661 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14662 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14663 TYPE_NAME (this_type) = name;
14664 set_die_type (die, this_type, cu);
14665 target_type = die_type (die, cu);
14666 if (target_type != this_type)
14667 TYPE_TARGET_TYPE (this_type) = target_type;
14668 else
14669 {
14670 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14671 spec and cause infinite loops in GDB. */
14672 complaint (&symfile_complaints,
14673 _("Self-referential DW_TAG_typedef "
14674 "- DIE at 0x%x [in module %s]"),
14675 die->offset.sect_off, objfile_name (objfile));
14676 TYPE_TARGET_TYPE (this_type) = NULL;
14677 }
14678 return this_type;
14679 }
14680
14681 /* Find a representation of a given base type and install
14682 it in the TYPE field of the die. */
14683
14684 static struct type *
14685 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14686 {
14687 struct objfile *objfile = cu->objfile;
14688 struct type *type;
14689 struct attribute *attr;
14690 int encoding = 0, size = 0;
14691 const char *name;
14692 enum type_code code = TYPE_CODE_INT;
14693 int type_flags = 0;
14694 struct type *target_type = NULL;
14695
14696 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14697 if (attr)
14698 {
14699 encoding = DW_UNSND (attr);
14700 }
14701 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14702 if (attr)
14703 {
14704 size = DW_UNSND (attr);
14705 }
14706 name = dwarf2_name (die, cu);
14707 if (!name)
14708 {
14709 complaint (&symfile_complaints,
14710 _("DW_AT_name missing from DW_TAG_base_type"));
14711 }
14712
14713 switch (encoding)
14714 {
14715 case DW_ATE_address:
14716 /* Turn DW_ATE_address into a void * pointer. */
14717 code = TYPE_CODE_PTR;
14718 type_flags |= TYPE_FLAG_UNSIGNED;
14719 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14720 break;
14721 case DW_ATE_boolean:
14722 code = TYPE_CODE_BOOL;
14723 type_flags |= TYPE_FLAG_UNSIGNED;
14724 break;
14725 case DW_ATE_complex_float:
14726 code = TYPE_CODE_COMPLEX;
14727 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14728 break;
14729 case DW_ATE_decimal_float:
14730 code = TYPE_CODE_DECFLOAT;
14731 break;
14732 case DW_ATE_float:
14733 code = TYPE_CODE_FLT;
14734 break;
14735 case DW_ATE_signed:
14736 break;
14737 case DW_ATE_unsigned:
14738 type_flags |= TYPE_FLAG_UNSIGNED;
14739 if (cu->language == language_fortran
14740 && name
14741 && startswith (name, "character("))
14742 code = TYPE_CODE_CHAR;
14743 break;
14744 case DW_ATE_signed_char:
14745 if (cu->language == language_ada || cu->language == language_m2
14746 || cu->language == language_pascal
14747 || cu->language == language_fortran)
14748 code = TYPE_CODE_CHAR;
14749 break;
14750 case DW_ATE_unsigned_char:
14751 if (cu->language == language_ada || cu->language == language_m2
14752 || cu->language == language_pascal
14753 || cu->language == language_fortran)
14754 code = TYPE_CODE_CHAR;
14755 type_flags |= TYPE_FLAG_UNSIGNED;
14756 break;
14757 case DW_ATE_UTF:
14758 /* We just treat this as an integer and then recognize the
14759 type by name elsewhere. */
14760 break;
14761
14762 default:
14763 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14764 dwarf_type_encoding_name (encoding));
14765 break;
14766 }
14767
14768 type = init_type (code, size, type_flags, NULL, objfile);
14769 TYPE_NAME (type) = name;
14770 TYPE_TARGET_TYPE (type) = target_type;
14771
14772 if (name && strcmp (name, "char") == 0)
14773 TYPE_NOSIGN (type) = 1;
14774
14775 return set_die_type (die, type, cu);
14776 }
14777
14778 /* Parse dwarf attribute if it's a block, reference or constant and put the
14779 resulting value of the attribute into struct bound_prop.
14780 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14781
14782 static int
14783 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14784 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14785 {
14786 struct dwarf2_property_baton *baton;
14787 struct obstack *obstack = &cu->objfile->objfile_obstack;
14788
14789 if (attr == NULL || prop == NULL)
14790 return 0;
14791
14792 if (attr_form_is_block (attr))
14793 {
14794 baton = obstack_alloc (obstack, sizeof (*baton));
14795 baton->referenced_type = NULL;
14796 baton->locexpr.per_cu = cu->per_cu;
14797 baton->locexpr.size = DW_BLOCK (attr)->size;
14798 baton->locexpr.data = DW_BLOCK (attr)->data;
14799 prop->data.baton = baton;
14800 prop->kind = PROP_LOCEXPR;
14801 gdb_assert (prop->data.baton != NULL);
14802 }
14803 else if (attr_form_is_ref (attr))
14804 {
14805 struct dwarf2_cu *target_cu = cu;
14806 struct die_info *target_die;
14807 struct attribute *target_attr;
14808
14809 target_die = follow_die_ref (die, attr, &target_cu);
14810 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14811 if (target_attr == NULL)
14812 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14813 target_cu);
14814 if (target_attr == NULL)
14815 return 0;
14816
14817 switch (target_attr->name)
14818 {
14819 case DW_AT_location:
14820 if (attr_form_is_section_offset (target_attr))
14821 {
14822 baton = obstack_alloc (obstack, sizeof (*baton));
14823 baton->referenced_type = die_type (target_die, target_cu);
14824 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14825 prop->data.baton = baton;
14826 prop->kind = PROP_LOCLIST;
14827 gdb_assert (prop->data.baton != NULL);
14828 }
14829 else if (attr_form_is_block (target_attr))
14830 {
14831 baton = obstack_alloc (obstack, sizeof (*baton));
14832 baton->referenced_type = die_type (target_die, target_cu);
14833 baton->locexpr.per_cu = cu->per_cu;
14834 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14835 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14836 prop->data.baton = baton;
14837 prop->kind = PROP_LOCEXPR;
14838 gdb_assert (prop->data.baton != NULL);
14839 }
14840 else
14841 {
14842 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14843 "dynamic property");
14844 return 0;
14845 }
14846 break;
14847 case DW_AT_data_member_location:
14848 {
14849 LONGEST offset;
14850
14851 if (!handle_data_member_location (target_die, target_cu,
14852 &offset))
14853 return 0;
14854
14855 baton = obstack_alloc (obstack, sizeof (*baton));
14856 baton->referenced_type = read_type_die (target_die->parent,
14857 target_cu);
14858 baton->offset_info.offset = offset;
14859 baton->offset_info.type = die_type (target_die, target_cu);
14860 prop->data.baton = baton;
14861 prop->kind = PROP_ADDR_OFFSET;
14862 break;
14863 }
14864 }
14865 }
14866 else if (attr_form_is_constant (attr))
14867 {
14868 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14869 prop->kind = PROP_CONST;
14870 }
14871 else
14872 {
14873 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14874 dwarf2_name (die, cu));
14875 return 0;
14876 }
14877
14878 return 1;
14879 }
14880
14881 /* Read the given DW_AT_subrange DIE. */
14882
14883 static struct type *
14884 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14885 {
14886 struct type *base_type, *orig_base_type;
14887 struct type *range_type;
14888 struct attribute *attr;
14889 struct dynamic_prop low, high;
14890 int low_default_is_valid;
14891 int high_bound_is_count = 0;
14892 const char *name;
14893 LONGEST negative_mask;
14894
14895 orig_base_type = die_type (die, cu);
14896 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14897 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14898 creating the range type, but we use the result of check_typedef
14899 when examining properties of the type. */
14900 base_type = check_typedef (orig_base_type);
14901
14902 /* The die_type call above may have already set the type for this DIE. */
14903 range_type = get_die_type (die, cu);
14904 if (range_type)
14905 return range_type;
14906
14907 low.kind = PROP_CONST;
14908 high.kind = PROP_CONST;
14909 high.data.const_val = 0;
14910
14911 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14912 omitting DW_AT_lower_bound. */
14913 switch (cu->language)
14914 {
14915 case language_c:
14916 case language_cplus:
14917 low.data.const_val = 0;
14918 low_default_is_valid = 1;
14919 break;
14920 case language_fortran:
14921 low.data.const_val = 1;
14922 low_default_is_valid = 1;
14923 break;
14924 case language_d:
14925 case language_java:
14926 case language_objc:
14927 low.data.const_val = 0;
14928 low_default_is_valid = (cu->header.version >= 4);
14929 break;
14930 case language_ada:
14931 case language_m2:
14932 case language_pascal:
14933 low.data.const_val = 1;
14934 low_default_is_valid = (cu->header.version >= 4);
14935 break;
14936 default:
14937 low.data.const_val = 0;
14938 low_default_is_valid = 0;
14939 break;
14940 }
14941
14942 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14943 if (attr)
14944 attr_to_dynamic_prop (attr, die, cu, &low);
14945 else if (!low_default_is_valid)
14946 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14947 "- DIE at 0x%x [in module %s]"),
14948 die->offset.sect_off, objfile_name (cu->objfile));
14949
14950 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14951 if (!attr_to_dynamic_prop (attr, die, cu, &high))
14952 {
14953 attr = dwarf2_attr (die, DW_AT_count, cu);
14954 if (attr_to_dynamic_prop (attr, die, cu, &high))
14955 {
14956 /* If bounds are constant do the final calculation here. */
14957 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14958 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14959 else
14960 high_bound_is_count = 1;
14961 }
14962 }
14963
14964 /* Dwarf-2 specifications explicitly allows to create subrange types
14965 without specifying a base type.
14966 In that case, the base type must be set to the type of
14967 the lower bound, upper bound or count, in that order, if any of these
14968 three attributes references an object that has a type.
14969 If no base type is found, the Dwarf-2 specifications say that
14970 a signed integer type of size equal to the size of an address should
14971 be used.
14972 For the following C code: `extern char gdb_int [];'
14973 GCC produces an empty range DIE.
14974 FIXME: muller/2010-05-28: Possible references to object for low bound,
14975 high bound or count are not yet handled by this code. */
14976 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14977 {
14978 struct objfile *objfile = cu->objfile;
14979 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14980 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14981 struct type *int_type = objfile_type (objfile)->builtin_int;
14982
14983 /* Test "int", "long int", and "long long int" objfile types,
14984 and select the first one having a size above or equal to the
14985 architecture address size. */
14986 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14987 base_type = int_type;
14988 else
14989 {
14990 int_type = objfile_type (objfile)->builtin_long;
14991 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14992 base_type = int_type;
14993 else
14994 {
14995 int_type = objfile_type (objfile)->builtin_long_long;
14996 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14997 base_type = int_type;
14998 }
14999 }
15000 }
15001
15002 /* Normally, the DWARF producers are expected to use a signed
15003 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15004 But this is unfortunately not always the case, as witnessed
15005 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15006 is used instead. To work around that ambiguity, we treat
15007 the bounds as signed, and thus sign-extend their values, when
15008 the base type is signed. */
15009 negative_mask =
15010 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
15011 if (low.kind == PROP_CONST
15012 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15013 low.data.const_val |= negative_mask;
15014 if (high.kind == PROP_CONST
15015 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15016 high.data.const_val |= negative_mask;
15017
15018 range_type = create_range_type (NULL, orig_base_type, &low, &high);
15019
15020 if (high_bound_is_count)
15021 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15022
15023 /* Ada expects an empty array on no boundary attributes. */
15024 if (attr == NULL && cu->language != language_ada)
15025 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
15026
15027 name = dwarf2_name (die, cu);
15028 if (name)
15029 TYPE_NAME (range_type) = name;
15030
15031 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15032 if (attr)
15033 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15034
15035 set_die_type (die, range_type, cu);
15036
15037 /* set_die_type should be already done. */
15038 set_descriptive_type (range_type, die, cu);
15039
15040 return range_type;
15041 }
15042
15043 static struct type *
15044 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15045 {
15046 struct type *type;
15047
15048 /* For now, we only support the C meaning of an unspecified type: void. */
15049
15050 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15051 TYPE_NAME (type) = dwarf2_name (die, cu);
15052
15053 return set_die_type (die, type, cu);
15054 }
15055
15056 /* Read a single die and all its descendents. Set the die's sibling
15057 field to NULL; set other fields in the die correctly, and set all
15058 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15059 location of the info_ptr after reading all of those dies. PARENT
15060 is the parent of the die in question. */
15061
15062 static struct die_info *
15063 read_die_and_children (const struct die_reader_specs *reader,
15064 const gdb_byte *info_ptr,
15065 const gdb_byte **new_info_ptr,
15066 struct die_info *parent)
15067 {
15068 struct die_info *die;
15069 const gdb_byte *cur_ptr;
15070 int has_children;
15071
15072 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
15073 if (die == NULL)
15074 {
15075 *new_info_ptr = cur_ptr;
15076 return NULL;
15077 }
15078 store_in_ref_table (die, reader->cu);
15079
15080 if (has_children)
15081 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
15082 else
15083 {
15084 die->child = NULL;
15085 *new_info_ptr = cur_ptr;
15086 }
15087
15088 die->sibling = NULL;
15089 die->parent = parent;
15090 return die;
15091 }
15092
15093 /* Read a die, all of its descendents, and all of its siblings; set
15094 all of the fields of all of the dies correctly. Arguments are as
15095 in read_die_and_children. */
15096
15097 static struct die_info *
15098 read_die_and_siblings_1 (const struct die_reader_specs *reader,
15099 const gdb_byte *info_ptr,
15100 const gdb_byte **new_info_ptr,
15101 struct die_info *parent)
15102 {
15103 struct die_info *first_die, *last_sibling;
15104 const gdb_byte *cur_ptr;
15105
15106 cur_ptr = info_ptr;
15107 first_die = last_sibling = NULL;
15108
15109 while (1)
15110 {
15111 struct die_info *die
15112 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
15113
15114 if (die == NULL)
15115 {
15116 *new_info_ptr = cur_ptr;
15117 return first_die;
15118 }
15119
15120 if (!first_die)
15121 first_die = die;
15122 else
15123 last_sibling->sibling = die;
15124
15125 last_sibling = die;
15126 }
15127 }
15128
15129 /* Read a die, all of its descendents, and all of its siblings; set
15130 all of the fields of all of the dies correctly. Arguments are as
15131 in read_die_and_children.
15132 This the main entry point for reading a DIE and all its children. */
15133
15134 static struct die_info *
15135 read_die_and_siblings (const struct die_reader_specs *reader,
15136 const gdb_byte *info_ptr,
15137 const gdb_byte **new_info_ptr,
15138 struct die_info *parent)
15139 {
15140 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15141 new_info_ptr, parent);
15142
15143 if (dwarf2_die_debug)
15144 {
15145 fprintf_unfiltered (gdb_stdlog,
15146 "Read die from %s@0x%x of %s:\n",
15147 get_section_name (reader->die_section),
15148 (unsigned) (info_ptr - reader->die_section->buffer),
15149 bfd_get_filename (reader->abfd));
15150 dump_die (die, dwarf2_die_debug);
15151 }
15152
15153 return die;
15154 }
15155
15156 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15157 attributes.
15158 The caller is responsible for filling in the extra attributes
15159 and updating (*DIEP)->num_attrs.
15160 Set DIEP to point to a newly allocated die with its information,
15161 except for its child, sibling, and parent fields.
15162 Set HAS_CHILDREN to tell whether the die has children or not. */
15163
15164 static const gdb_byte *
15165 read_full_die_1 (const struct die_reader_specs *reader,
15166 struct die_info **diep, const gdb_byte *info_ptr,
15167 int *has_children, int num_extra_attrs)
15168 {
15169 unsigned int abbrev_number, bytes_read, i;
15170 sect_offset offset;
15171 struct abbrev_info *abbrev;
15172 struct die_info *die;
15173 struct dwarf2_cu *cu = reader->cu;
15174 bfd *abfd = reader->abfd;
15175
15176 offset.sect_off = info_ptr - reader->buffer;
15177 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15178 info_ptr += bytes_read;
15179 if (!abbrev_number)
15180 {
15181 *diep = NULL;
15182 *has_children = 0;
15183 return info_ptr;
15184 }
15185
15186 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
15187 if (!abbrev)
15188 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15189 abbrev_number,
15190 bfd_get_filename (abfd));
15191
15192 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
15193 die->offset = offset;
15194 die->tag = abbrev->tag;
15195 die->abbrev = abbrev_number;
15196
15197 /* Make the result usable.
15198 The caller needs to update num_attrs after adding the extra
15199 attributes. */
15200 die->num_attrs = abbrev->num_attrs;
15201
15202 for (i = 0; i < abbrev->num_attrs; ++i)
15203 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15204 info_ptr);
15205
15206 *diep = die;
15207 *has_children = abbrev->has_children;
15208 return info_ptr;
15209 }
15210
15211 /* Read a die and all its attributes.
15212 Set DIEP to point to a newly allocated die with its information,
15213 except for its child, sibling, and parent fields.
15214 Set HAS_CHILDREN to tell whether the die has children or not. */
15215
15216 static const gdb_byte *
15217 read_full_die (const struct die_reader_specs *reader,
15218 struct die_info **diep, const gdb_byte *info_ptr,
15219 int *has_children)
15220 {
15221 const gdb_byte *result;
15222
15223 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15224
15225 if (dwarf2_die_debug)
15226 {
15227 fprintf_unfiltered (gdb_stdlog,
15228 "Read die from %s@0x%x of %s:\n",
15229 get_section_name (reader->die_section),
15230 (unsigned) (info_ptr - reader->die_section->buffer),
15231 bfd_get_filename (reader->abfd));
15232 dump_die (*diep, dwarf2_die_debug);
15233 }
15234
15235 return result;
15236 }
15237 \f
15238 /* Abbreviation tables.
15239
15240 In DWARF version 2, the description of the debugging information is
15241 stored in a separate .debug_abbrev section. Before we read any
15242 dies from a section we read in all abbreviations and install them
15243 in a hash table. */
15244
15245 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15246
15247 static struct abbrev_info *
15248 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15249 {
15250 struct abbrev_info *abbrev;
15251
15252 abbrev = (struct abbrev_info *)
15253 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15254 memset (abbrev, 0, sizeof (struct abbrev_info));
15255 return abbrev;
15256 }
15257
15258 /* Add an abbreviation to the table. */
15259
15260 static void
15261 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15262 unsigned int abbrev_number,
15263 struct abbrev_info *abbrev)
15264 {
15265 unsigned int hash_number;
15266
15267 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15268 abbrev->next = abbrev_table->abbrevs[hash_number];
15269 abbrev_table->abbrevs[hash_number] = abbrev;
15270 }
15271
15272 /* Look up an abbrev in the table.
15273 Returns NULL if the abbrev is not found. */
15274
15275 static struct abbrev_info *
15276 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15277 unsigned int abbrev_number)
15278 {
15279 unsigned int hash_number;
15280 struct abbrev_info *abbrev;
15281
15282 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15283 abbrev = abbrev_table->abbrevs[hash_number];
15284
15285 while (abbrev)
15286 {
15287 if (abbrev->number == abbrev_number)
15288 return abbrev;
15289 abbrev = abbrev->next;
15290 }
15291 return NULL;
15292 }
15293
15294 /* Read in an abbrev table. */
15295
15296 static struct abbrev_table *
15297 abbrev_table_read_table (struct dwarf2_section_info *section,
15298 sect_offset offset)
15299 {
15300 struct objfile *objfile = dwarf2_per_objfile->objfile;
15301 bfd *abfd = get_section_bfd_owner (section);
15302 struct abbrev_table *abbrev_table;
15303 const gdb_byte *abbrev_ptr;
15304 struct abbrev_info *cur_abbrev;
15305 unsigned int abbrev_number, bytes_read, abbrev_name;
15306 unsigned int abbrev_form;
15307 struct attr_abbrev *cur_attrs;
15308 unsigned int allocated_attrs;
15309
15310 abbrev_table = XNEW (struct abbrev_table);
15311 abbrev_table->offset = offset;
15312 obstack_init (&abbrev_table->abbrev_obstack);
15313 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15314 (ABBREV_HASH_SIZE
15315 * sizeof (struct abbrev_info *)));
15316 memset (abbrev_table->abbrevs, 0,
15317 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
15318
15319 dwarf2_read_section (objfile, section);
15320 abbrev_ptr = section->buffer + offset.sect_off;
15321 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15322 abbrev_ptr += bytes_read;
15323
15324 allocated_attrs = ATTR_ALLOC_CHUNK;
15325 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
15326
15327 /* Loop until we reach an abbrev number of 0. */
15328 while (abbrev_number)
15329 {
15330 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
15331
15332 /* read in abbrev header */
15333 cur_abbrev->number = abbrev_number;
15334 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15335 abbrev_ptr += bytes_read;
15336 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15337 abbrev_ptr += 1;
15338
15339 /* now read in declarations */
15340 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15341 abbrev_ptr += bytes_read;
15342 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15343 abbrev_ptr += bytes_read;
15344 while (abbrev_name)
15345 {
15346 if (cur_abbrev->num_attrs == allocated_attrs)
15347 {
15348 allocated_attrs += ATTR_ALLOC_CHUNK;
15349 cur_attrs
15350 = xrealloc (cur_attrs, (allocated_attrs
15351 * sizeof (struct attr_abbrev)));
15352 }
15353
15354 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15355 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
15356 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15357 abbrev_ptr += bytes_read;
15358 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15359 abbrev_ptr += bytes_read;
15360 }
15361
15362 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
15363 (cur_abbrev->num_attrs
15364 * sizeof (struct attr_abbrev)));
15365 memcpy (cur_abbrev->attrs, cur_attrs,
15366 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15367
15368 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
15369
15370 /* Get next abbreviation.
15371 Under Irix6 the abbreviations for a compilation unit are not
15372 always properly terminated with an abbrev number of 0.
15373 Exit loop if we encounter an abbreviation which we have
15374 already read (which means we are about to read the abbreviations
15375 for the next compile unit) or if the end of the abbreviation
15376 table is reached. */
15377 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
15378 break;
15379 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15380 abbrev_ptr += bytes_read;
15381 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
15382 break;
15383 }
15384
15385 xfree (cur_attrs);
15386 return abbrev_table;
15387 }
15388
15389 /* Free the resources held by ABBREV_TABLE. */
15390
15391 static void
15392 abbrev_table_free (struct abbrev_table *abbrev_table)
15393 {
15394 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15395 xfree (abbrev_table);
15396 }
15397
15398 /* Same as abbrev_table_free but as a cleanup.
15399 We pass in a pointer to the pointer to the table so that we can
15400 set the pointer to NULL when we're done. It also simplifies
15401 build_type_psymtabs_1. */
15402
15403 static void
15404 abbrev_table_free_cleanup (void *table_ptr)
15405 {
15406 struct abbrev_table **abbrev_table_ptr = table_ptr;
15407
15408 if (*abbrev_table_ptr != NULL)
15409 abbrev_table_free (*abbrev_table_ptr);
15410 *abbrev_table_ptr = NULL;
15411 }
15412
15413 /* Read the abbrev table for CU from ABBREV_SECTION. */
15414
15415 static void
15416 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15417 struct dwarf2_section_info *abbrev_section)
15418 {
15419 cu->abbrev_table =
15420 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15421 }
15422
15423 /* Release the memory used by the abbrev table for a compilation unit. */
15424
15425 static void
15426 dwarf2_free_abbrev_table (void *ptr_to_cu)
15427 {
15428 struct dwarf2_cu *cu = ptr_to_cu;
15429
15430 if (cu->abbrev_table != NULL)
15431 abbrev_table_free (cu->abbrev_table);
15432 /* Set this to NULL so that we SEGV if we try to read it later,
15433 and also because free_comp_unit verifies this is NULL. */
15434 cu->abbrev_table = NULL;
15435 }
15436 \f
15437 /* Returns nonzero if TAG represents a type that we might generate a partial
15438 symbol for. */
15439
15440 static int
15441 is_type_tag_for_partial (int tag)
15442 {
15443 switch (tag)
15444 {
15445 #if 0
15446 /* Some types that would be reasonable to generate partial symbols for,
15447 that we don't at present. */
15448 case DW_TAG_array_type:
15449 case DW_TAG_file_type:
15450 case DW_TAG_ptr_to_member_type:
15451 case DW_TAG_set_type:
15452 case DW_TAG_string_type:
15453 case DW_TAG_subroutine_type:
15454 #endif
15455 case DW_TAG_base_type:
15456 case DW_TAG_class_type:
15457 case DW_TAG_interface_type:
15458 case DW_TAG_enumeration_type:
15459 case DW_TAG_structure_type:
15460 case DW_TAG_subrange_type:
15461 case DW_TAG_typedef:
15462 case DW_TAG_union_type:
15463 return 1;
15464 default:
15465 return 0;
15466 }
15467 }
15468
15469 /* Load all DIEs that are interesting for partial symbols into memory. */
15470
15471 static struct partial_die_info *
15472 load_partial_dies (const struct die_reader_specs *reader,
15473 const gdb_byte *info_ptr, int building_psymtab)
15474 {
15475 struct dwarf2_cu *cu = reader->cu;
15476 struct objfile *objfile = cu->objfile;
15477 struct partial_die_info *part_die;
15478 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15479 struct abbrev_info *abbrev;
15480 unsigned int bytes_read;
15481 unsigned int load_all = 0;
15482 int nesting_level = 1;
15483
15484 parent_die = NULL;
15485 last_die = NULL;
15486
15487 gdb_assert (cu->per_cu != NULL);
15488 if (cu->per_cu->load_all_dies)
15489 load_all = 1;
15490
15491 cu->partial_dies
15492 = htab_create_alloc_ex (cu->header.length / 12,
15493 partial_die_hash,
15494 partial_die_eq,
15495 NULL,
15496 &cu->comp_unit_obstack,
15497 hashtab_obstack_allocate,
15498 dummy_obstack_deallocate);
15499
15500 part_die = obstack_alloc (&cu->comp_unit_obstack,
15501 sizeof (struct partial_die_info));
15502
15503 while (1)
15504 {
15505 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15506
15507 /* A NULL abbrev means the end of a series of children. */
15508 if (abbrev == NULL)
15509 {
15510 if (--nesting_level == 0)
15511 {
15512 /* PART_DIE was probably the last thing allocated on the
15513 comp_unit_obstack, so we could call obstack_free
15514 here. We don't do that because the waste is small,
15515 and will be cleaned up when we're done with this
15516 compilation unit. This way, we're also more robust
15517 against other users of the comp_unit_obstack. */
15518 return first_die;
15519 }
15520 info_ptr += bytes_read;
15521 last_die = parent_die;
15522 parent_die = parent_die->die_parent;
15523 continue;
15524 }
15525
15526 /* Check for template arguments. We never save these; if
15527 they're seen, we just mark the parent, and go on our way. */
15528 if (parent_die != NULL
15529 && cu->language == language_cplus
15530 && (abbrev->tag == DW_TAG_template_type_param
15531 || abbrev->tag == DW_TAG_template_value_param))
15532 {
15533 parent_die->has_template_arguments = 1;
15534
15535 if (!load_all)
15536 {
15537 /* We don't need a partial DIE for the template argument. */
15538 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15539 continue;
15540 }
15541 }
15542
15543 /* We only recurse into c++ subprograms looking for template arguments.
15544 Skip their other children. */
15545 if (!load_all
15546 && cu->language == language_cplus
15547 && parent_die != NULL
15548 && parent_die->tag == DW_TAG_subprogram)
15549 {
15550 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15551 continue;
15552 }
15553
15554 /* Check whether this DIE is interesting enough to save. Normally
15555 we would not be interested in members here, but there may be
15556 later variables referencing them via DW_AT_specification (for
15557 static members). */
15558 if (!load_all
15559 && !is_type_tag_for_partial (abbrev->tag)
15560 && abbrev->tag != DW_TAG_constant
15561 && abbrev->tag != DW_TAG_enumerator
15562 && abbrev->tag != DW_TAG_subprogram
15563 && abbrev->tag != DW_TAG_lexical_block
15564 && abbrev->tag != DW_TAG_variable
15565 && abbrev->tag != DW_TAG_namespace
15566 && abbrev->tag != DW_TAG_module
15567 && abbrev->tag != DW_TAG_member
15568 && abbrev->tag != DW_TAG_imported_unit
15569 && abbrev->tag != DW_TAG_imported_declaration)
15570 {
15571 /* Otherwise we skip to the next sibling, if any. */
15572 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15573 continue;
15574 }
15575
15576 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15577 info_ptr);
15578
15579 /* This two-pass algorithm for processing partial symbols has a
15580 high cost in cache pressure. Thus, handle some simple cases
15581 here which cover the majority of C partial symbols. DIEs
15582 which neither have specification tags in them, nor could have
15583 specification tags elsewhere pointing at them, can simply be
15584 processed and discarded.
15585
15586 This segment is also optional; scan_partial_symbols and
15587 add_partial_symbol will handle these DIEs if we chain
15588 them in normally. When compilers which do not emit large
15589 quantities of duplicate debug information are more common,
15590 this code can probably be removed. */
15591
15592 /* Any complete simple types at the top level (pretty much all
15593 of them, for a language without namespaces), can be processed
15594 directly. */
15595 if (parent_die == NULL
15596 && part_die->has_specification == 0
15597 && part_die->is_declaration == 0
15598 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15599 || part_die->tag == DW_TAG_base_type
15600 || part_die->tag == DW_TAG_subrange_type))
15601 {
15602 if (building_psymtab && part_die->name != NULL)
15603 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15604 VAR_DOMAIN, LOC_TYPEDEF,
15605 &objfile->static_psymbols,
15606 0, (CORE_ADDR) 0, cu->language, objfile);
15607 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15608 continue;
15609 }
15610
15611 /* The exception for DW_TAG_typedef with has_children above is
15612 a workaround of GCC PR debug/47510. In the case of this complaint
15613 type_name_no_tag_or_error will error on such types later.
15614
15615 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15616 it could not find the child DIEs referenced later, this is checked
15617 above. In correct DWARF DW_TAG_typedef should have no children. */
15618
15619 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15620 complaint (&symfile_complaints,
15621 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15622 "- DIE at 0x%x [in module %s]"),
15623 part_die->offset.sect_off, objfile_name (objfile));
15624
15625 /* If we're at the second level, and we're an enumerator, and
15626 our parent has no specification (meaning possibly lives in a
15627 namespace elsewhere), then we can add the partial symbol now
15628 instead of queueing it. */
15629 if (part_die->tag == DW_TAG_enumerator
15630 && parent_die != NULL
15631 && parent_die->die_parent == NULL
15632 && parent_die->tag == DW_TAG_enumeration_type
15633 && parent_die->has_specification == 0)
15634 {
15635 if (part_die->name == NULL)
15636 complaint (&symfile_complaints,
15637 _("malformed enumerator DIE ignored"));
15638 else if (building_psymtab)
15639 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15640 VAR_DOMAIN, LOC_CONST,
15641 (cu->language == language_cplus
15642 || cu->language == language_java)
15643 ? &objfile->global_psymbols
15644 : &objfile->static_psymbols,
15645 0, (CORE_ADDR) 0, cu->language, objfile);
15646
15647 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15648 continue;
15649 }
15650
15651 /* We'll save this DIE so link it in. */
15652 part_die->die_parent = parent_die;
15653 part_die->die_sibling = NULL;
15654 part_die->die_child = NULL;
15655
15656 if (last_die && last_die == parent_die)
15657 last_die->die_child = part_die;
15658 else if (last_die)
15659 last_die->die_sibling = part_die;
15660
15661 last_die = part_die;
15662
15663 if (first_die == NULL)
15664 first_die = part_die;
15665
15666 /* Maybe add the DIE to the hash table. Not all DIEs that we
15667 find interesting need to be in the hash table, because we
15668 also have the parent/sibling/child chains; only those that we
15669 might refer to by offset later during partial symbol reading.
15670
15671 For now this means things that might have be the target of a
15672 DW_AT_specification, DW_AT_abstract_origin, or
15673 DW_AT_extension. DW_AT_extension will refer only to
15674 namespaces; DW_AT_abstract_origin refers to functions (and
15675 many things under the function DIE, but we do not recurse
15676 into function DIEs during partial symbol reading) and
15677 possibly variables as well; DW_AT_specification refers to
15678 declarations. Declarations ought to have the DW_AT_declaration
15679 flag. It happens that GCC forgets to put it in sometimes, but
15680 only for functions, not for types.
15681
15682 Adding more things than necessary to the hash table is harmless
15683 except for the performance cost. Adding too few will result in
15684 wasted time in find_partial_die, when we reread the compilation
15685 unit with load_all_dies set. */
15686
15687 if (load_all
15688 || abbrev->tag == DW_TAG_constant
15689 || abbrev->tag == DW_TAG_subprogram
15690 || abbrev->tag == DW_TAG_variable
15691 || abbrev->tag == DW_TAG_namespace
15692 || part_die->is_declaration)
15693 {
15694 void **slot;
15695
15696 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15697 part_die->offset.sect_off, INSERT);
15698 *slot = part_die;
15699 }
15700
15701 part_die = obstack_alloc (&cu->comp_unit_obstack,
15702 sizeof (struct partial_die_info));
15703
15704 /* For some DIEs we want to follow their children (if any). For C
15705 we have no reason to follow the children of structures; for other
15706 languages we have to, so that we can get at method physnames
15707 to infer fully qualified class names, for DW_AT_specification,
15708 and for C++ template arguments. For C++, we also look one level
15709 inside functions to find template arguments (if the name of the
15710 function does not already contain the template arguments).
15711
15712 For Ada, we need to scan the children of subprograms and lexical
15713 blocks as well because Ada allows the definition of nested
15714 entities that could be interesting for the debugger, such as
15715 nested subprograms for instance. */
15716 if (last_die->has_children
15717 && (load_all
15718 || last_die->tag == DW_TAG_namespace
15719 || last_die->tag == DW_TAG_module
15720 || last_die->tag == DW_TAG_enumeration_type
15721 || (cu->language == language_cplus
15722 && last_die->tag == DW_TAG_subprogram
15723 && (last_die->name == NULL
15724 || strchr (last_die->name, '<') == NULL))
15725 || (cu->language != language_c
15726 && (last_die->tag == DW_TAG_class_type
15727 || last_die->tag == DW_TAG_interface_type
15728 || last_die->tag == DW_TAG_structure_type
15729 || last_die->tag == DW_TAG_union_type))
15730 || (cu->language == language_ada
15731 && (last_die->tag == DW_TAG_subprogram
15732 || last_die->tag == DW_TAG_lexical_block))))
15733 {
15734 nesting_level++;
15735 parent_die = last_die;
15736 continue;
15737 }
15738
15739 /* Otherwise we skip to the next sibling, if any. */
15740 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15741
15742 /* Back to the top, do it again. */
15743 }
15744 }
15745
15746 /* Read a minimal amount of information into the minimal die structure. */
15747
15748 static const gdb_byte *
15749 read_partial_die (const struct die_reader_specs *reader,
15750 struct partial_die_info *part_die,
15751 struct abbrev_info *abbrev, unsigned int abbrev_len,
15752 const gdb_byte *info_ptr)
15753 {
15754 struct dwarf2_cu *cu = reader->cu;
15755 struct objfile *objfile = cu->objfile;
15756 const gdb_byte *buffer = reader->buffer;
15757 unsigned int i;
15758 struct attribute attr;
15759 int has_low_pc_attr = 0;
15760 int has_high_pc_attr = 0;
15761 int high_pc_relative = 0;
15762
15763 memset (part_die, 0, sizeof (struct partial_die_info));
15764
15765 part_die->offset.sect_off = info_ptr - buffer;
15766
15767 info_ptr += abbrev_len;
15768
15769 if (abbrev == NULL)
15770 return info_ptr;
15771
15772 part_die->tag = abbrev->tag;
15773 part_die->has_children = abbrev->has_children;
15774
15775 for (i = 0; i < abbrev->num_attrs; ++i)
15776 {
15777 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15778
15779 /* Store the data if it is of an attribute we want to keep in a
15780 partial symbol table. */
15781 switch (attr.name)
15782 {
15783 case DW_AT_name:
15784 switch (part_die->tag)
15785 {
15786 case DW_TAG_compile_unit:
15787 case DW_TAG_partial_unit:
15788 case DW_TAG_type_unit:
15789 /* Compilation units have a DW_AT_name that is a filename, not
15790 a source language identifier. */
15791 case DW_TAG_enumeration_type:
15792 case DW_TAG_enumerator:
15793 /* These tags always have simple identifiers already; no need
15794 to canonicalize them. */
15795 part_die->name = DW_STRING (&attr);
15796 break;
15797 default:
15798 part_die->name
15799 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15800 &objfile->per_bfd->storage_obstack);
15801 break;
15802 }
15803 break;
15804 case DW_AT_linkage_name:
15805 case DW_AT_MIPS_linkage_name:
15806 /* Note that both forms of linkage name might appear. We
15807 assume they will be the same, and we only store the last
15808 one we see. */
15809 if (cu->language == language_ada)
15810 part_die->name = DW_STRING (&attr);
15811 part_die->linkage_name = DW_STRING (&attr);
15812 break;
15813 case DW_AT_low_pc:
15814 has_low_pc_attr = 1;
15815 part_die->lowpc = attr_value_as_address (&attr);
15816 break;
15817 case DW_AT_high_pc:
15818 has_high_pc_attr = 1;
15819 part_die->highpc = attr_value_as_address (&attr);
15820 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15821 high_pc_relative = 1;
15822 break;
15823 case DW_AT_location:
15824 /* Support the .debug_loc offsets. */
15825 if (attr_form_is_block (&attr))
15826 {
15827 part_die->d.locdesc = DW_BLOCK (&attr);
15828 }
15829 else if (attr_form_is_section_offset (&attr))
15830 {
15831 dwarf2_complex_location_expr_complaint ();
15832 }
15833 else
15834 {
15835 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15836 "partial symbol information");
15837 }
15838 break;
15839 case DW_AT_external:
15840 part_die->is_external = DW_UNSND (&attr);
15841 break;
15842 case DW_AT_declaration:
15843 part_die->is_declaration = DW_UNSND (&attr);
15844 break;
15845 case DW_AT_type:
15846 part_die->has_type = 1;
15847 break;
15848 case DW_AT_abstract_origin:
15849 case DW_AT_specification:
15850 case DW_AT_extension:
15851 part_die->has_specification = 1;
15852 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15853 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15854 || cu->per_cu->is_dwz);
15855 break;
15856 case DW_AT_sibling:
15857 /* Ignore absolute siblings, they might point outside of
15858 the current compile unit. */
15859 if (attr.form == DW_FORM_ref_addr)
15860 complaint (&symfile_complaints,
15861 _("ignoring absolute DW_AT_sibling"));
15862 else
15863 {
15864 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15865 const gdb_byte *sibling_ptr = buffer + off;
15866
15867 if (sibling_ptr < info_ptr)
15868 complaint (&symfile_complaints,
15869 _("DW_AT_sibling points backwards"));
15870 else if (sibling_ptr > reader->buffer_end)
15871 dwarf2_section_buffer_overflow_complaint (reader->die_section);
15872 else
15873 part_die->sibling = sibling_ptr;
15874 }
15875 break;
15876 case DW_AT_byte_size:
15877 part_die->has_byte_size = 1;
15878 break;
15879 case DW_AT_const_value:
15880 part_die->has_const_value = 1;
15881 break;
15882 case DW_AT_calling_convention:
15883 /* DWARF doesn't provide a way to identify a program's source-level
15884 entry point. DW_AT_calling_convention attributes are only meant
15885 to describe functions' calling conventions.
15886
15887 However, because it's a necessary piece of information in
15888 Fortran, and because DW_CC_program is the only piece of debugging
15889 information whose definition refers to a 'main program' at all,
15890 several compilers have begun marking Fortran main programs with
15891 DW_CC_program --- even when those functions use the standard
15892 calling conventions.
15893
15894 So until DWARF specifies a way to provide this information and
15895 compilers pick up the new representation, we'll support this
15896 practice. */
15897 if (DW_UNSND (&attr) == DW_CC_program
15898 && cu->language == language_fortran)
15899 set_objfile_main_name (objfile, part_die->name, language_fortran);
15900 break;
15901 case DW_AT_inline:
15902 if (DW_UNSND (&attr) == DW_INL_inlined
15903 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15904 part_die->may_be_inlined = 1;
15905 break;
15906
15907 case DW_AT_import:
15908 if (part_die->tag == DW_TAG_imported_unit)
15909 {
15910 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15911 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15912 || cu->per_cu->is_dwz);
15913 }
15914 break;
15915
15916 default:
15917 break;
15918 }
15919 }
15920
15921 if (high_pc_relative)
15922 part_die->highpc += part_die->lowpc;
15923
15924 if (has_low_pc_attr && has_high_pc_attr)
15925 {
15926 /* When using the GNU linker, .gnu.linkonce. sections are used to
15927 eliminate duplicate copies of functions and vtables and such.
15928 The linker will arbitrarily choose one and discard the others.
15929 The AT_*_pc values for such functions refer to local labels in
15930 these sections. If the section from that file was discarded, the
15931 labels are not in the output, so the relocs get a value of 0.
15932 If this is a discarded function, mark the pc bounds as invalid,
15933 so that GDB will ignore it. */
15934 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15935 {
15936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15937
15938 complaint (&symfile_complaints,
15939 _("DW_AT_low_pc %s is zero "
15940 "for DIE at 0x%x [in module %s]"),
15941 paddress (gdbarch, part_die->lowpc),
15942 part_die->offset.sect_off, objfile_name (objfile));
15943 }
15944 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15945 else if (part_die->lowpc >= part_die->highpc)
15946 {
15947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15948
15949 complaint (&symfile_complaints,
15950 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15951 "for DIE at 0x%x [in module %s]"),
15952 paddress (gdbarch, part_die->lowpc),
15953 paddress (gdbarch, part_die->highpc),
15954 part_die->offset.sect_off, objfile_name (objfile));
15955 }
15956 else
15957 part_die->has_pc_info = 1;
15958 }
15959
15960 return info_ptr;
15961 }
15962
15963 /* Find a cached partial DIE at OFFSET in CU. */
15964
15965 static struct partial_die_info *
15966 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15967 {
15968 struct partial_die_info *lookup_die = NULL;
15969 struct partial_die_info part_die;
15970
15971 part_die.offset = offset;
15972 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15973 offset.sect_off);
15974
15975 return lookup_die;
15976 }
15977
15978 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15979 except in the case of .debug_types DIEs which do not reference
15980 outside their CU (they do however referencing other types via
15981 DW_FORM_ref_sig8). */
15982
15983 static struct partial_die_info *
15984 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15985 {
15986 struct objfile *objfile = cu->objfile;
15987 struct dwarf2_per_cu_data *per_cu = NULL;
15988 struct partial_die_info *pd = NULL;
15989
15990 if (offset_in_dwz == cu->per_cu->is_dwz
15991 && offset_in_cu_p (&cu->header, offset))
15992 {
15993 pd = find_partial_die_in_comp_unit (offset, cu);
15994 if (pd != NULL)
15995 return pd;
15996 /* We missed recording what we needed.
15997 Load all dies and try again. */
15998 per_cu = cu->per_cu;
15999 }
16000 else
16001 {
16002 /* TUs don't reference other CUs/TUs (except via type signatures). */
16003 if (cu->per_cu->is_debug_types)
16004 {
16005 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16006 " external reference to offset 0x%lx [in module %s].\n"),
16007 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16008 bfd_get_filename (objfile->obfd));
16009 }
16010 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16011 objfile);
16012
16013 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16014 load_partial_comp_unit (per_cu);
16015
16016 per_cu->cu->last_used = 0;
16017 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16018 }
16019
16020 /* If we didn't find it, and not all dies have been loaded,
16021 load them all and try again. */
16022
16023 if (pd == NULL && per_cu->load_all_dies == 0)
16024 {
16025 per_cu->load_all_dies = 1;
16026
16027 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16028 THIS_CU->cu may already be in use. So we can't just free it and
16029 replace its DIEs with the ones we read in. Instead, we leave those
16030 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16031 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16032 set. */
16033 load_partial_comp_unit (per_cu);
16034
16035 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16036 }
16037
16038 if (pd == NULL)
16039 internal_error (__FILE__, __LINE__,
16040 _("could not find partial DIE 0x%x "
16041 "in cache [from module %s]\n"),
16042 offset.sect_off, bfd_get_filename (objfile->obfd));
16043 return pd;
16044 }
16045
16046 /* See if we can figure out if the class lives in a namespace. We do
16047 this by looking for a member function; its demangled name will
16048 contain namespace info, if there is any. */
16049
16050 static void
16051 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16052 struct dwarf2_cu *cu)
16053 {
16054 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16055 what template types look like, because the demangler
16056 frequently doesn't give the same name as the debug info. We
16057 could fix this by only using the demangled name to get the
16058 prefix (but see comment in read_structure_type). */
16059
16060 struct partial_die_info *real_pdi;
16061 struct partial_die_info *child_pdi;
16062
16063 /* If this DIE (this DIE's specification, if any) has a parent, then
16064 we should not do this. We'll prepend the parent's fully qualified
16065 name when we create the partial symbol. */
16066
16067 real_pdi = struct_pdi;
16068 while (real_pdi->has_specification)
16069 real_pdi = find_partial_die (real_pdi->spec_offset,
16070 real_pdi->spec_is_dwz, cu);
16071
16072 if (real_pdi->die_parent != NULL)
16073 return;
16074
16075 for (child_pdi = struct_pdi->die_child;
16076 child_pdi != NULL;
16077 child_pdi = child_pdi->die_sibling)
16078 {
16079 if (child_pdi->tag == DW_TAG_subprogram
16080 && child_pdi->linkage_name != NULL)
16081 {
16082 char *actual_class_name
16083 = language_class_name_from_physname (cu->language_defn,
16084 child_pdi->linkage_name);
16085 if (actual_class_name != NULL)
16086 {
16087 struct_pdi->name
16088 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16089 actual_class_name,
16090 strlen (actual_class_name));
16091 xfree (actual_class_name);
16092 }
16093 break;
16094 }
16095 }
16096 }
16097
16098 /* Adjust PART_DIE before generating a symbol for it. This function
16099 may set the is_external flag or change the DIE's name. */
16100
16101 static void
16102 fixup_partial_die (struct partial_die_info *part_die,
16103 struct dwarf2_cu *cu)
16104 {
16105 /* Once we've fixed up a die, there's no point in doing so again.
16106 This also avoids a memory leak if we were to call
16107 guess_partial_die_structure_name multiple times. */
16108 if (part_die->fixup_called)
16109 return;
16110
16111 /* If we found a reference attribute and the DIE has no name, try
16112 to find a name in the referred to DIE. */
16113
16114 if (part_die->name == NULL && part_die->has_specification)
16115 {
16116 struct partial_die_info *spec_die;
16117
16118 spec_die = find_partial_die (part_die->spec_offset,
16119 part_die->spec_is_dwz, cu);
16120
16121 fixup_partial_die (spec_die, cu);
16122
16123 if (spec_die->name)
16124 {
16125 part_die->name = spec_die->name;
16126
16127 /* Copy DW_AT_external attribute if it is set. */
16128 if (spec_die->is_external)
16129 part_die->is_external = spec_die->is_external;
16130 }
16131 }
16132
16133 /* Set default names for some unnamed DIEs. */
16134
16135 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
16136 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
16137
16138 /* If there is no parent die to provide a namespace, and there are
16139 children, see if we can determine the namespace from their linkage
16140 name. */
16141 if (cu->language == language_cplus
16142 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
16143 && part_die->die_parent == NULL
16144 && part_die->has_children
16145 && (part_die->tag == DW_TAG_class_type
16146 || part_die->tag == DW_TAG_structure_type
16147 || part_die->tag == DW_TAG_union_type))
16148 guess_partial_die_structure_name (part_die, cu);
16149
16150 /* GCC might emit a nameless struct or union that has a linkage
16151 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16152 if (part_die->name == NULL
16153 && (part_die->tag == DW_TAG_class_type
16154 || part_die->tag == DW_TAG_interface_type
16155 || part_die->tag == DW_TAG_structure_type
16156 || part_die->tag == DW_TAG_union_type)
16157 && part_die->linkage_name != NULL)
16158 {
16159 char *demangled;
16160
16161 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
16162 if (demangled)
16163 {
16164 const char *base;
16165
16166 /* Strip any leading namespaces/classes, keep only the base name.
16167 DW_AT_name for named DIEs does not contain the prefixes. */
16168 base = strrchr (demangled, ':');
16169 if (base && base > demangled && base[-1] == ':')
16170 base++;
16171 else
16172 base = demangled;
16173
16174 part_die->name
16175 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16176 base, strlen (base));
16177 xfree (demangled);
16178 }
16179 }
16180
16181 part_die->fixup_called = 1;
16182 }
16183
16184 /* Read an attribute value described by an attribute form. */
16185
16186 static const gdb_byte *
16187 read_attribute_value (const struct die_reader_specs *reader,
16188 struct attribute *attr, unsigned form,
16189 const gdb_byte *info_ptr)
16190 {
16191 struct dwarf2_cu *cu = reader->cu;
16192 struct objfile *objfile = cu->objfile;
16193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16194 bfd *abfd = reader->abfd;
16195 struct comp_unit_head *cu_header = &cu->header;
16196 unsigned int bytes_read;
16197 struct dwarf_block *blk;
16198
16199 attr->form = form;
16200 switch (form)
16201 {
16202 case DW_FORM_ref_addr:
16203 if (cu->header.version == 2)
16204 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16205 else
16206 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16207 &cu->header, &bytes_read);
16208 info_ptr += bytes_read;
16209 break;
16210 case DW_FORM_GNU_ref_alt:
16211 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16212 info_ptr += bytes_read;
16213 break;
16214 case DW_FORM_addr:
16215 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
16216 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
16217 info_ptr += bytes_read;
16218 break;
16219 case DW_FORM_block2:
16220 blk = dwarf_alloc_block (cu);
16221 blk->size = read_2_bytes (abfd, info_ptr);
16222 info_ptr += 2;
16223 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16224 info_ptr += blk->size;
16225 DW_BLOCK (attr) = blk;
16226 break;
16227 case DW_FORM_block4:
16228 blk = dwarf_alloc_block (cu);
16229 blk->size = read_4_bytes (abfd, info_ptr);
16230 info_ptr += 4;
16231 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16232 info_ptr += blk->size;
16233 DW_BLOCK (attr) = blk;
16234 break;
16235 case DW_FORM_data2:
16236 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16237 info_ptr += 2;
16238 break;
16239 case DW_FORM_data4:
16240 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16241 info_ptr += 4;
16242 break;
16243 case DW_FORM_data8:
16244 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16245 info_ptr += 8;
16246 break;
16247 case DW_FORM_sec_offset:
16248 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16249 info_ptr += bytes_read;
16250 break;
16251 case DW_FORM_string:
16252 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
16253 DW_STRING_IS_CANONICAL (attr) = 0;
16254 info_ptr += bytes_read;
16255 break;
16256 case DW_FORM_strp:
16257 if (!cu->per_cu->is_dwz)
16258 {
16259 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16260 &bytes_read);
16261 DW_STRING_IS_CANONICAL (attr) = 0;
16262 info_ptr += bytes_read;
16263 break;
16264 }
16265 /* FALLTHROUGH */
16266 case DW_FORM_GNU_strp_alt:
16267 {
16268 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16269 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16270 &bytes_read);
16271
16272 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16273 DW_STRING_IS_CANONICAL (attr) = 0;
16274 info_ptr += bytes_read;
16275 }
16276 break;
16277 case DW_FORM_exprloc:
16278 case DW_FORM_block:
16279 blk = dwarf_alloc_block (cu);
16280 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16281 info_ptr += bytes_read;
16282 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16283 info_ptr += blk->size;
16284 DW_BLOCK (attr) = blk;
16285 break;
16286 case DW_FORM_block1:
16287 blk = dwarf_alloc_block (cu);
16288 blk->size = read_1_byte (abfd, info_ptr);
16289 info_ptr += 1;
16290 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16291 info_ptr += blk->size;
16292 DW_BLOCK (attr) = blk;
16293 break;
16294 case DW_FORM_data1:
16295 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16296 info_ptr += 1;
16297 break;
16298 case DW_FORM_flag:
16299 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16300 info_ptr += 1;
16301 break;
16302 case DW_FORM_flag_present:
16303 DW_UNSND (attr) = 1;
16304 break;
16305 case DW_FORM_sdata:
16306 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16307 info_ptr += bytes_read;
16308 break;
16309 case DW_FORM_udata:
16310 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16311 info_ptr += bytes_read;
16312 break;
16313 case DW_FORM_ref1:
16314 DW_UNSND (attr) = (cu->header.offset.sect_off
16315 + read_1_byte (abfd, info_ptr));
16316 info_ptr += 1;
16317 break;
16318 case DW_FORM_ref2:
16319 DW_UNSND (attr) = (cu->header.offset.sect_off
16320 + read_2_bytes (abfd, info_ptr));
16321 info_ptr += 2;
16322 break;
16323 case DW_FORM_ref4:
16324 DW_UNSND (attr) = (cu->header.offset.sect_off
16325 + read_4_bytes (abfd, info_ptr));
16326 info_ptr += 4;
16327 break;
16328 case DW_FORM_ref8:
16329 DW_UNSND (attr) = (cu->header.offset.sect_off
16330 + read_8_bytes (abfd, info_ptr));
16331 info_ptr += 8;
16332 break;
16333 case DW_FORM_ref_sig8:
16334 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
16335 info_ptr += 8;
16336 break;
16337 case DW_FORM_ref_udata:
16338 DW_UNSND (attr) = (cu->header.offset.sect_off
16339 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
16340 info_ptr += bytes_read;
16341 break;
16342 case DW_FORM_indirect:
16343 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16344 info_ptr += bytes_read;
16345 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
16346 break;
16347 case DW_FORM_GNU_addr_index:
16348 if (reader->dwo_file == NULL)
16349 {
16350 /* For now flag a hard error.
16351 Later we can turn this into a complaint. */
16352 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16353 dwarf_form_name (form),
16354 bfd_get_filename (abfd));
16355 }
16356 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
16358 break;
16359 case DW_FORM_GNU_str_index:
16360 if (reader->dwo_file == NULL)
16361 {
16362 /* For now flag a hard error.
16363 Later we can turn this into a complaint if warranted. */
16364 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16365 dwarf_form_name (form),
16366 bfd_get_filename (abfd));
16367 }
16368 {
16369 ULONGEST str_index =
16370 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16371
16372 DW_STRING (attr) = read_str_index (reader, str_index);
16373 DW_STRING_IS_CANONICAL (attr) = 0;
16374 info_ptr += bytes_read;
16375 }
16376 break;
16377 default:
16378 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
16379 dwarf_form_name (form),
16380 bfd_get_filename (abfd));
16381 }
16382
16383 /* Super hack. */
16384 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
16385 attr->form = DW_FORM_GNU_ref_alt;
16386
16387 /* We have seen instances where the compiler tried to emit a byte
16388 size attribute of -1 which ended up being encoded as an unsigned
16389 0xffffffff. Although 0xffffffff is technically a valid size value,
16390 an object of this size seems pretty unlikely so we can relatively
16391 safely treat these cases as if the size attribute was invalid and
16392 treat them as zero by default. */
16393 if (attr->name == DW_AT_byte_size
16394 && form == DW_FORM_data4
16395 && DW_UNSND (attr) >= 0xffffffff)
16396 {
16397 complaint
16398 (&symfile_complaints,
16399 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16400 hex_string (DW_UNSND (attr)));
16401 DW_UNSND (attr) = 0;
16402 }
16403
16404 return info_ptr;
16405 }
16406
16407 /* Read an attribute described by an abbreviated attribute. */
16408
16409 static const gdb_byte *
16410 read_attribute (const struct die_reader_specs *reader,
16411 struct attribute *attr, struct attr_abbrev *abbrev,
16412 const gdb_byte *info_ptr)
16413 {
16414 attr->name = abbrev->name;
16415 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
16416 }
16417
16418 /* Read dwarf information from a buffer. */
16419
16420 static unsigned int
16421 read_1_byte (bfd *abfd, const gdb_byte *buf)
16422 {
16423 return bfd_get_8 (abfd, buf);
16424 }
16425
16426 static int
16427 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
16428 {
16429 return bfd_get_signed_8 (abfd, buf);
16430 }
16431
16432 static unsigned int
16433 read_2_bytes (bfd *abfd, const gdb_byte *buf)
16434 {
16435 return bfd_get_16 (abfd, buf);
16436 }
16437
16438 static int
16439 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
16440 {
16441 return bfd_get_signed_16 (abfd, buf);
16442 }
16443
16444 static unsigned int
16445 read_4_bytes (bfd *abfd, const gdb_byte *buf)
16446 {
16447 return bfd_get_32 (abfd, buf);
16448 }
16449
16450 static int
16451 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
16452 {
16453 return bfd_get_signed_32 (abfd, buf);
16454 }
16455
16456 static ULONGEST
16457 read_8_bytes (bfd *abfd, const gdb_byte *buf)
16458 {
16459 return bfd_get_64 (abfd, buf);
16460 }
16461
16462 static CORE_ADDR
16463 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16464 unsigned int *bytes_read)
16465 {
16466 struct comp_unit_head *cu_header = &cu->header;
16467 CORE_ADDR retval = 0;
16468
16469 if (cu_header->signed_addr_p)
16470 {
16471 switch (cu_header->addr_size)
16472 {
16473 case 2:
16474 retval = bfd_get_signed_16 (abfd, buf);
16475 break;
16476 case 4:
16477 retval = bfd_get_signed_32 (abfd, buf);
16478 break;
16479 case 8:
16480 retval = bfd_get_signed_64 (abfd, buf);
16481 break;
16482 default:
16483 internal_error (__FILE__, __LINE__,
16484 _("read_address: bad switch, signed [in module %s]"),
16485 bfd_get_filename (abfd));
16486 }
16487 }
16488 else
16489 {
16490 switch (cu_header->addr_size)
16491 {
16492 case 2:
16493 retval = bfd_get_16 (abfd, buf);
16494 break;
16495 case 4:
16496 retval = bfd_get_32 (abfd, buf);
16497 break;
16498 case 8:
16499 retval = bfd_get_64 (abfd, buf);
16500 break;
16501 default:
16502 internal_error (__FILE__, __LINE__,
16503 _("read_address: bad switch, "
16504 "unsigned [in module %s]"),
16505 bfd_get_filename (abfd));
16506 }
16507 }
16508
16509 *bytes_read = cu_header->addr_size;
16510 return retval;
16511 }
16512
16513 /* Read the initial length from a section. The (draft) DWARF 3
16514 specification allows the initial length to take up either 4 bytes
16515 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16516 bytes describe the length and all offsets will be 8 bytes in length
16517 instead of 4.
16518
16519 An older, non-standard 64-bit format is also handled by this
16520 function. The older format in question stores the initial length
16521 as an 8-byte quantity without an escape value. Lengths greater
16522 than 2^32 aren't very common which means that the initial 4 bytes
16523 is almost always zero. Since a length value of zero doesn't make
16524 sense for the 32-bit format, this initial zero can be considered to
16525 be an escape value which indicates the presence of the older 64-bit
16526 format. As written, the code can't detect (old format) lengths
16527 greater than 4GB. If it becomes necessary to handle lengths
16528 somewhat larger than 4GB, we could allow other small values (such
16529 as the non-sensical values of 1, 2, and 3) to also be used as
16530 escape values indicating the presence of the old format.
16531
16532 The value returned via bytes_read should be used to increment the
16533 relevant pointer after calling read_initial_length().
16534
16535 [ Note: read_initial_length() and read_offset() are based on the
16536 document entitled "DWARF Debugging Information Format", revision
16537 3, draft 8, dated November 19, 2001. This document was obtained
16538 from:
16539
16540 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16541
16542 This document is only a draft and is subject to change. (So beware.)
16543
16544 Details regarding the older, non-standard 64-bit format were
16545 determined empirically by examining 64-bit ELF files produced by
16546 the SGI toolchain on an IRIX 6.5 machine.
16547
16548 - Kevin, July 16, 2002
16549 ] */
16550
16551 static LONGEST
16552 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16553 {
16554 LONGEST length = bfd_get_32 (abfd, buf);
16555
16556 if (length == 0xffffffff)
16557 {
16558 length = bfd_get_64 (abfd, buf + 4);
16559 *bytes_read = 12;
16560 }
16561 else if (length == 0)
16562 {
16563 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16564 length = bfd_get_64 (abfd, buf);
16565 *bytes_read = 8;
16566 }
16567 else
16568 {
16569 *bytes_read = 4;
16570 }
16571
16572 return length;
16573 }
16574
16575 /* Cover function for read_initial_length.
16576 Returns the length of the object at BUF, and stores the size of the
16577 initial length in *BYTES_READ and stores the size that offsets will be in
16578 *OFFSET_SIZE.
16579 If the initial length size is not equivalent to that specified in
16580 CU_HEADER then issue a complaint.
16581 This is useful when reading non-comp-unit headers. */
16582
16583 static LONGEST
16584 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16585 const struct comp_unit_head *cu_header,
16586 unsigned int *bytes_read,
16587 unsigned int *offset_size)
16588 {
16589 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16590
16591 gdb_assert (cu_header->initial_length_size == 4
16592 || cu_header->initial_length_size == 8
16593 || cu_header->initial_length_size == 12);
16594
16595 if (cu_header->initial_length_size != *bytes_read)
16596 complaint (&symfile_complaints,
16597 _("intermixed 32-bit and 64-bit DWARF sections"));
16598
16599 *offset_size = (*bytes_read == 4) ? 4 : 8;
16600 return length;
16601 }
16602
16603 /* Read an offset from the data stream. The size of the offset is
16604 given by cu_header->offset_size. */
16605
16606 static LONGEST
16607 read_offset (bfd *abfd, const gdb_byte *buf,
16608 const struct comp_unit_head *cu_header,
16609 unsigned int *bytes_read)
16610 {
16611 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16612
16613 *bytes_read = cu_header->offset_size;
16614 return offset;
16615 }
16616
16617 /* Read an offset from the data stream. */
16618
16619 static LONGEST
16620 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16621 {
16622 LONGEST retval = 0;
16623
16624 switch (offset_size)
16625 {
16626 case 4:
16627 retval = bfd_get_32 (abfd, buf);
16628 break;
16629 case 8:
16630 retval = bfd_get_64 (abfd, buf);
16631 break;
16632 default:
16633 internal_error (__FILE__, __LINE__,
16634 _("read_offset_1: bad switch [in module %s]"),
16635 bfd_get_filename (abfd));
16636 }
16637
16638 return retval;
16639 }
16640
16641 static const gdb_byte *
16642 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16643 {
16644 /* If the size of a host char is 8 bits, we can return a pointer
16645 to the buffer, otherwise we have to copy the data to a buffer
16646 allocated on the temporary obstack. */
16647 gdb_assert (HOST_CHAR_BIT == 8);
16648 return buf;
16649 }
16650
16651 static const char *
16652 read_direct_string (bfd *abfd, const gdb_byte *buf,
16653 unsigned int *bytes_read_ptr)
16654 {
16655 /* If the size of a host char is 8 bits, we can return a pointer
16656 to the string, otherwise we have to copy the string to a buffer
16657 allocated on the temporary obstack. */
16658 gdb_assert (HOST_CHAR_BIT == 8);
16659 if (*buf == '\0')
16660 {
16661 *bytes_read_ptr = 1;
16662 return NULL;
16663 }
16664 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16665 return (const char *) buf;
16666 }
16667
16668 static const char *
16669 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16670 {
16671 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16672 if (dwarf2_per_objfile->str.buffer == NULL)
16673 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16674 bfd_get_filename (abfd));
16675 if (str_offset >= dwarf2_per_objfile->str.size)
16676 error (_("DW_FORM_strp pointing outside of "
16677 ".debug_str section [in module %s]"),
16678 bfd_get_filename (abfd));
16679 gdb_assert (HOST_CHAR_BIT == 8);
16680 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16681 return NULL;
16682 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16683 }
16684
16685 /* Read a string at offset STR_OFFSET in the .debug_str section from
16686 the .dwz file DWZ. Throw an error if the offset is too large. If
16687 the string consists of a single NUL byte, return NULL; otherwise
16688 return a pointer to the string. */
16689
16690 static const char *
16691 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16692 {
16693 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16694
16695 if (dwz->str.buffer == NULL)
16696 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16697 "section [in module %s]"),
16698 bfd_get_filename (dwz->dwz_bfd));
16699 if (str_offset >= dwz->str.size)
16700 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16701 ".debug_str section [in module %s]"),
16702 bfd_get_filename (dwz->dwz_bfd));
16703 gdb_assert (HOST_CHAR_BIT == 8);
16704 if (dwz->str.buffer[str_offset] == '\0')
16705 return NULL;
16706 return (const char *) (dwz->str.buffer + str_offset);
16707 }
16708
16709 static const char *
16710 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16711 const struct comp_unit_head *cu_header,
16712 unsigned int *bytes_read_ptr)
16713 {
16714 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16715
16716 return read_indirect_string_at_offset (abfd, str_offset);
16717 }
16718
16719 static ULONGEST
16720 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16721 unsigned int *bytes_read_ptr)
16722 {
16723 ULONGEST result;
16724 unsigned int num_read;
16725 int i, shift;
16726 unsigned char byte;
16727
16728 result = 0;
16729 shift = 0;
16730 num_read = 0;
16731 i = 0;
16732 while (1)
16733 {
16734 byte = bfd_get_8 (abfd, buf);
16735 buf++;
16736 num_read++;
16737 result |= ((ULONGEST) (byte & 127) << shift);
16738 if ((byte & 128) == 0)
16739 {
16740 break;
16741 }
16742 shift += 7;
16743 }
16744 *bytes_read_ptr = num_read;
16745 return result;
16746 }
16747
16748 static LONGEST
16749 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16750 unsigned int *bytes_read_ptr)
16751 {
16752 LONGEST result;
16753 int i, shift, num_read;
16754 unsigned char byte;
16755
16756 result = 0;
16757 shift = 0;
16758 num_read = 0;
16759 i = 0;
16760 while (1)
16761 {
16762 byte = bfd_get_8 (abfd, buf);
16763 buf++;
16764 num_read++;
16765 result |= ((LONGEST) (byte & 127) << shift);
16766 shift += 7;
16767 if ((byte & 128) == 0)
16768 {
16769 break;
16770 }
16771 }
16772 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16773 result |= -(((LONGEST) 1) << shift);
16774 *bytes_read_ptr = num_read;
16775 return result;
16776 }
16777
16778 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16779 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16780 ADDR_SIZE is the size of addresses from the CU header. */
16781
16782 static CORE_ADDR
16783 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16784 {
16785 struct objfile *objfile = dwarf2_per_objfile->objfile;
16786 bfd *abfd = objfile->obfd;
16787 const gdb_byte *info_ptr;
16788
16789 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16790 if (dwarf2_per_objfile->addr.buffer == NULL)
16791 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16792 objfile_name (objfile));
16793 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16794 error (_("DW_FORM_addr_index pointing outside of "
16795 ".debug_addr section [in module %s]"),
16796 objfile_name (objfile));
16797 info_ptr = (dwarf2_per_objfile->addr.buffer
16798 + addr_base + addr_index * addr_size);
16799 if (addr_size == 4)
16800 return bfd_get_32 (abfd, info_ptr);
16801 else
16802 return bfd_get_64 (abfd, info_ptr);
16803 }
16804
16805 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16806
16807 static CORE_ADDR
16808 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16809 {
16810 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16811 }
16812
16813 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16814
16815 static CORE_ADDR
16816 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16817 unsigned int *bytes_read)
16818 {
16819 bfd *abfd = cu->objfile->obfd;
16820 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16821
16822 return read_addr_index (cu, addr_index);
16823 }
16824
16825 /* Data structure to pass results from dwarf2_read_addr_index_reader
16826 back to dwarf2_read_addr_index. */
16827
16828 struct dwarf2_read_addr_index_data
16829 {
16830 ULONGEST addr_base;
16831 int addr_size;
16832 };
16833
16834 /* die_reader_func for dwarf2_read_addr_index. */
16835
16836 static void
16837 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16838 const gdb_byte *info_ptr,
16839 struct die_info *comp_unit_die,
16840 int has_children,
16841 void *data)
16842 {
16843 struct dwarf2_cu *cu = reader->cu;
16844 struct dwarf2_read_addr_index_data *aidata =
16845 (struct dwarf2_read_addr_index_data *) data;
16846
16847 aidata->addr_base = cu->addr_base;
16848 aidata->addr_size = cu->header.addr_size;
16849 }
16850
16851 /* Given an index in .debug_addr, fetch the value.
16852 NOTE: This can be called during dwarf expression evaluation,
16853 long after the debug information has been read, and thus per_cu->cu
16854 may no longer exist. */
16855
16856 CORE_ADDR
16857 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16858 unsigned int addr_index)
16859 {
16860 struct objfile *objfile = per_cu->objfile;
16861 struct dwarf2_cu *cu = per_cu->cu;
16862 ULONGEST addr_base;
16863 int addr_size;
16864
16865 /* This is intended to be called from outside this file. */
16866 dw2_setup (objfile);
16867
16868 /* We need addr_base and addr_size.
16869 If we don't have PER_CU->cu, we have to get it.
16870 Nasty, but the alternative is storing the needed info in PER_CU,
16871 which at this point doesn't seem justified: it's not clear how frequently
16872 it would get used and it would increase the size of every PER_CU.
16873 Entry points like dwarf2_per_cu_addr_size do a similar thing
16874 so we're not in uncharted territory here.
16875 Alas we need to be a bit more complicated as addr_base is contained
16876 in the DIE.
16877
16878 We don't need to read the entire CU(/TU).
16879 We just need the header and top level die.
16880
16881 IWBN to use the aging mechanism to let us lazily later discard the CU.
16882 For now we skip this optimization. */
16883
16884 if (cu != NULL)
16885 {
16886 addr_base = cu->addr_base;
16887 addr_size = cu->header.addr_size;
16888 }
16889 else
16890 {
16891 struct dwarf2_read_addr_index_data aidata;
16892
16893 /* Note: We can't use init_cutu_and_read_dies_simple here,
16894 we need addr_base. */
16895 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16896 dwarf2_read_addr_index_reader, &aidata);
16897 addr_base = aidata.addr_base;
16898 addr_size = aidata.addr_size;
16899 }
16900
16901 return read_addr_index_1 (addr_index, addr_base, addr_size);
16902 }
16903
16904 /* Given a DW_FORM_GNU_str_index, fetch the string.
16905 This is only used by the Fission support. */
16906
16907 static const char *
16908 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
16909 {
16910 struct objfile *objfile = dwarf2_per_objfile->objfile;
16911 const char *objf_name = objfile_name (objfile);
16912 bfd *abfd = objfile->obfd;
16913 struct dwarf2_cu *cu = reader->cu;
16914 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16915 struct dwarf2_section_info *str_offsets_section =
16916 &reader->dwo_file->sections.str_offsets;
16917 const gdb_byte *info_ptr;
16918 ULONGEST str_offset;
16919 static const char form_name[] = "DW_FORM_GNU_str_index";
16920
16921 dwarf2_read_section (objfile, str_section);
16922 dwarf2_read_section (objfile, str_offsets_section);
16923 if (str_section->buffer == NULL)
16924 error (_("%s used without .debug_str.dwo section"
16925 " in CU at offset 0x%lx [in module %s]"),
16926 form_name, (long) cu->header.offset.sect_off, objf_name);
16927 if (str_offsets_section->buffer == NULL)
16928 error (_("%s used without .debug_str_offsets.dwo section"
16929 " in CU at offset 0x%lx [in module %s]"),
16930 form_name, (long) cu->header.offset.sect_off, objf_name);
16931 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16932 error (_("%s pointing outside of .debug_str_offsets.dwo"
16933 " section in CU at offset 0x%lx [in module %s]"),
16934 form_name, (long) cu->header.offset.sect_off, objf_name);
16935 info_ptr = (str_offsets_section->buffer
16936 + str_index * cu->header.offset_size);
16937 if (cu->header.offset_size == 4)
16938 str_offset = bfd_get_32 (abfd, info_ptr);
16939 else
16940 str_offset = bfd_get_64 (abfd, info_ptr);
16941 if (str_offset >= str_section->size)
16942 error (_("Offset from %s pointing outside of"
16943 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16944 form_name, (long) cu->header.offset.sect_off, objf_name);
16945 return (const char *) (str_section->buffer + str_offset);
16946 }
16947
16948 /* Return the length of an LEB128 number in BUF. */
16949
16950 static int
16951 leb128_size (const gdb_byte *buf)
16952 {
16953 const gdb_byte *begin = buf;
16954 gdb_byte byte;
16955
16956 while (1)
16957 {
16958 byte = *buf++;
16959 if ((byte & 128) == 0)
16960 return buf - begin;
16961 }
16962 }
16963
16964 static void
16965 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16966 {
16967 switch (lang)
16968 {
16969 case DW_LANG_C89:
16970 case DW_LANG_C99:
16971 case DW_LANG_C11:
16972 case DW_LANG_C:
16973 case DW_LANG_UPC:
16974 cu->language = language_c;
16975 break;
16976 case DW_LANG_C_plus_plus:
16977 case DW_LANG_C_plus_plus_11:
16978 case DW_LANG_C_plus_plus_14:
16979 cu->language = language_cplus;
16980 break;
16981 case DW_LANG_D:
16982 cu->language = language_d;
16983 break;
16984 case DW_LANG_Fortran77:
16985 case DW_LANG_Fortran90:
16986 case DW_LANG_Fortran95:
16987 case DW_LANG_Fortran03:
16988 case DW_LANG_Fortran08:
16989 cu->language = language_fortran;
16990 break;
16991 case DW_LANG_Go:
16992 cu->language = language_go;
16993 break;
16994 case DW_LANG_Mips_Assembler:
16995 cu->language = language_asm;
16996 break;
16997 case DW_LANG_Java:
16998 cu->language = language_java;
16999 break;
17000 case DW_LANG_Ada83:
17001 case DW_LANG_Ada95:
17002 cu->language = language_ada;
17003 break;
17004 case DW_LANG_Modula2:
17005 cu->language = language_m2;
17006 break;
17007 case DW_LANG_Pascal83:
17008 cu->language = language_pascal;
17009 break;
17010 case DW_LANG_ObjC:
17011 cu->language = language_objc;
17012 break;
17013 case DW_LANG_Cobol74:
17014 case DW_LANG_Cobol85:
17015 default:
17016 cu->language = language_minimal;
17017 break;
17018 }
17019 cu->language_defn = language_def (cu->language);
17020 }
17021
17022 /* Return the named attribute or NULL if not there. */
17023
17024 static struct attribute *
17025 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17026 {
17027 for (;;)
17028 {
17029 unsigned int i;
17030 struct attribute *spec = NULL;
17031
17032 for (i = 0; i < die->num_attrs; ++i)
17033 {
17034 if (die->attrs[i].name == name)
17035 return &die->attrs[i];
17036 if (die->attrs[i].name == DW_AT_specification
17037 || die->attrs[i].name == DW_AT_abstract_origin)
17038 spec = &die->attrs[i];
17039 }
17040
17041 if (!spec)
17042 break;
17043
17044 die = follow_die_ref (die, spec, &cu);
17045 }
17046
17047 return NULL;
17048 }
17049
17050 /* Return the named attribute or NULL if not there,
17051 but do not follow DW_AT_specification, etc.
17052 This is for use in contexts where we're reading .debug_types dies.
17053 Following DW_AT_specification, DW_AT_abstract_origin will take us
17054 back up the chain, and we want to go down. */
17055
17056 static struct attribute *
17057 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
17058 {
17059 unsigned int i;
17060
17061 for (i = 0; i < die->num_attrs; ++i)
17062 if (die->attrs[i].name == name)
17063 return &die->attrs[i];
17064
17065 return NULL;
17066 }
17067
17068 /* Return non-zero iff the attribute NAME is defined for the given DIE,
17069 and holds a non-zero value. This function should only be used for
17070 DW_FORM_flag or DW_FORM_flag_present attributes. */
17071
17072 static int
17073 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17074 {
17075 struct attribute *attr = dwarf2_attr (die, name, cu);
17076
17077 return (attr && DW_UNSND (attr));
17078 }
17079
17080 static int
17081 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
17082 {
17083 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17084 which value is non-zero. However, we have to be careful with
17085 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17086 (via dwarf2_flag_true_p) follows this attribute. So we may
17087 end up accidently finding a declaration attribute that belongs
17088 to a different DIE referenced by the specification attribute,
17089 even though the given DIE does not have a declaration attribute. */
17090 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17091 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
17092 }
17093
17094 /* Return the die giving the specification for DIE, if there is
17095 one. *SPEC_CU is the CU containing DIE on input, and the CU
17096 containing the return value on output. If there is no
17097 specification, but there is an abstract origin, that is
17098 returned. */
17099
17100 static struct die_info *
17101 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
17102 {
17103 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17104 *spec_cu);
17105
17106 if (spec_attr == NULL)
17107 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17108
17109 if (spec_attr == NULL)
17110 return NULL;
17111 else
17112 return follow_die_ref (die, spec_attr, spec_cu);
17113 }
17114
17115 /* Free the line_header structure *LH, and any arrays and strings it
17116 refers to.
17117 NOTE: This is also used as a "cleanup" function. */
17118
17119 static void
17120 free_line_header (struct line_header *lh)
17121 {
17122 if (lh->standard_opcode_lengths)
17123 xfree (lh->standard_opcode_lengths);
17124
17125 /* Remember that all the lh->file_names[i].name pointers are
17126 pointers into debug_line_buffer, and don't need to be freed. */
17127 if (lh->file_names)
17128 xfree (lh->file_names);
17129
17130 /* Similarly for the include directory names. */
17131 if (lh->include_dirs)
17132 xfree (lh->include_dirs);
17133
17134 xfree (lh);
17135 }
17136
17137 /* Stub for free_line_header to match void * callback types. */
17138
17139 static void
17140 free_line_header_voidp (void *arg)
17141 {
17142 struct line_header *lh = arg;
17143
17144 free_line_header (lh);
17145 }
17146
17147 /* Add an entry to LH's include directory table. */
17148
17149 static void
17150 add_include_dir (struct line_header *lh, const char *include_dir)
17151 {
17152 /* Grow the array if necessary. */
17153 if (lh->include_dirs_size == 0)
17154 {
17155 lh->include_dirs_size = 1; /* for testing */
17156 lh->include_dirs = xmalloc (lh->include_dirs_size
17157 * sizeof (*lh->include_dirs));
17158 }
17159 else if (lh->num_include_dirs >= lh->include_dirs_size)
17160 {
17161 lh->include_dirs_size *= 2;
17162 lh->include_dirs = xrealloc (lh->include_dirs,
17163 (lh->include_dirs_size
17164 * sizeof (*lh->include_dirs)));
17165 }
17166
17167 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17168 }
17169
17170 /* Add an entry to LH's file name table. */
17171
17172 static void
17173 add_file_name (struct line_header *lh,
17174 const char *name,
17175 unsigned int dir_index,
17176 unsigned int mod_time,
17177 unsigned int length)
17178 {
17179 struct file_entry *fe;
17180
17181 /* Grow the array if necessary. */
17182 if (lh->file_names_size == 0)
17183 {
17184 lh->file_names_size = 1; /* for testing */
17185 lh->file_names = xmalloc (lh->file_names_size
17186 * sizeof (*lh->file_names));
17187 }
17188 else if (lh->num_file_names >= lh->file_names_size)
17189 {
17190 lh->file_names_size *= 2;
17191 lh->file_names = xrealloc (lh->file_names,
17192 (lh->file_names_size
17193 * sizeof (*lh->file_names)));
17194 }
17195
17196 fe = &lh->file_names[lh->num_file_names++];
17197 fe->name = name;
17198 fe->dir_index = dir_index;
17199 fe->mod_time = mod_time;
17200 fe->length = length;
17201 fe->included_p = 0;
17202 fe->symtab = NULL;
17203 }
17204
17205 /* A convenience function to find the proper .debug_line section for a CU. */
17206
17207 static struct dwarf2_section_info *
17208 get_debug_line_section (struct dwarf2_cu *cu)
17209 {
17210 struct dwarf2_section_info *section;
17211
17212 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17213 DWO file. */
17214 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17215 section = &cu->dwo_unit->dwo_file->sections.line;
17216 else if (cu->per_cu->is_dwz)
17217 {
17218 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17219
17220 section = &dwz->line;
17221 }
17222 else
17223 section = &dwarf2_per_objfile->line;
17224
17225 return section;
17226 }
17227
17228 /* Read the statement program header starting at OFFSET in
17229 .debug_line, or .debug_line.dwo. Return a pointer
17230 to a struct line_header, allocated using xmalloc.
17231 Returns NULL if there is a problem reading the header, e.g., if it
17232 has a version we don't understand.
17233
17234 NOTE: the strings in the include directory and file name tables of
17235 the returned object point into the dwarf line section buffer,
17236 and must not be freed. */
17237
17238 static struct line_header *
17239 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
17240 {
17241 struct cleanup *back_to;
17242 struct line_header *lh;
17243 const gdb_byte *line_ptr;
17244 unsigned int bytes_read, offset_size;
17245 int i;
17246 const char *cur_dir, *cur_file;
17247 struct dwarf2_section_info *section;
17248 bfd *abfd;
17249
17250 section = get_debug_line_section (cu);
17251 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17252 if (section->buffer == NULL)
17253 {
17254 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17255 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17256 else
17257 complaint (&symfile_complaints, _("missing .debug_line section"));
17258 return 0;
17259 }
17260
17261 /* We can't do this until we know the section is non-empty.
17262 Only then do we know we have such a section. */
17263 abfd = get_section_bfd_owner (section);
17264
17265 /* Make sure that at least there's room for the total_length field.
17266 That could be 12 bytes long, but we're just going to fudge that. */
17267 if (offset + 4 >= section->size)
17268 {
17269 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17270 return 0;
17271 }
17272
17273 lh = xmalloc (sizeof (*lh));
17274 memset (lh, 0, sizeof (*lh));
17275 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17276 (void *) lh);
17277
17278 lh->offset.sect_off = offset;
17279 lh->offset_in_dwz = cu->per_cu->is_dwz;
17280
17281 line_ptr = section->buffer + offset;
17282
17283 /* Read in the header. */
17284 lh->total_length =
17285 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17286 &bytes_read, &offset_size);
17287 line_ptr += bytes_read;
17288 if (line_ptr + lh->total_length > (section->buffer + section->size))
17289 {
17290 dwarf2_statement_list_fits_in_line_number_section_complaint ();
17291 do_cleanups (back_to);
17292 return 0;
17293 }
17294 lh->statement_program_end = line_ptr + lh->total_length;
17295 lh->version = read_2_bytes (abfd, line_ptr);
17296 line_ptr += 2;
17297 if (lh->version > 4)
17298 {
17299 /* This is a version we don't understand. The format could have
17300 changed in ways we don't handle properly so just punt. */
17301 complaint (&symfile_complaints,
17302 _("unsupported version in .debug_line section"));
17303 return NULL;
17304 }
17305 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17306 line_ptr += offset_size;
17307 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17308 line_ptr += 1;
17309 if (lh->version >= 4)
17310 {
17311 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17312 line_ptr += 1;
17313 }
17314 else
17315 lh->maximum_ops_per_instruction = 1;
17316
17317 if (lh->maximum_ops_per_instruction == 0)
17318 {
17319 lh->maximum_ops_per_instruction = 1;
17320 complaint (&symfile_complaints,
17321 _("invalid maximum_ops_per_instruction "
17322 "in `.debug_line' section"));
17323 }
17324
17325 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17326 line_ptr += 1;
17327 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17328 line_ptr += 1;
17329 lh->line_range = read_1_byte (abfd, line_ptr);
17330 line_ptr += 1;
17331 lh->opcode_base = read_1_byte (abfd, line_ptr);
17332 line_ptr += 1;
17333 lh->standard_opcode_lengths
17334 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
17335
17336 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17337 for (i = 1; i < lh->opcode_base; ++i)
17338 {
17339 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17340 line_ptr += 1;
17341 }
17342
17343 /* Read directory table. */
17344 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17345 {
17346 line_ptr += bytes_read;
17347 add_include_dir (lh, cur_dir);
17348 }
17349 line_ptr += bytes_read;
17350
17351 /* Read file name table. */
17352 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
17353 {
17354 unsigned int dir_index, mod_time, length;
17355
17356 line_ptr += bytes_read;
17357 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17358 line_ptr += bytes_read;
17359 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17360 line_ptr += bytes_read;
17361 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17362 line_ptr += bytes_read;
17363
17364 add_file_name (lh, cur_file, dir_index, mod_time, length);
17365 }
17366 line_ptr += bytes_read;
17367 lh->statement_program_start = line_ptr;
17368
17369 if (line_ptr > (section->buffer + section->size))
17370 complaint (&symfile_complaints,
17371 _("line number info header doesn't "
17372 "fit in `.debug_line' section"));
17373
17374 discard_cleanups (back_to);
17375 return lh;
17376 }
17377
17378 /* Subroutine of dwarf_decode_lines to simplify it.
17379 Return the file name of the psymtab for included file FILE_INDEX
17380 in line header LH of PST.
17381 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17382 If space for the result is malloc'd, it will be freed by a cleanup.
17383 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17384
17385 The function creates dangling cleanup registration. */
17386
17387 static const char *
17388 psymtab_include_file_name (const struct line_header *lh, int file_index,
17389 const struct partial_symtab *pst,
17390 const char *comp_dir)
17391 {
17392 const struct file_entry fe = lh->file_names [file_index];
17393 const char *include_name = fe.name;
17394 const char *include_name_to_compare = include_name;
17395 const char *dir_name = NULL;
17396 const char *pst_filename;
17397 char *copied_name = NULL;
17398 int file_is_pst;
17399
17400 if (fe.dir_index && lh->include_dirs != NULL)
17401 dir_name = lh->include_dirs[fe.dir_index - 1];
17402
17403 if (!IS_ABSOLUTE_PATH (include_name)
17404 && (dir_name != NULL || comp_dir != NULL))
17405 {
17406 /* Avoid creating a duplicate psymtab for PST.
17407 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17408 Before we do the comparison, however, we need to account
17409 for DIR_NAME and COMP_DIR.
17410 First prepend dir_name (if non-NULL). If we still don't
17411 have an absolute path prepend comp_dir (if non-NULL).
17412 However, the directory we record in the include-file's
17413 psymtab does not contain COMP_DIR (to match the
17414 corresponding symtab(s)).
17415
17416 Example:
17417
17418 bash$ cd /tmp
17419 bash$ gcc -g ./hello.c
17420 include_name = "hello.c"
17421 dir_name = "."
17422 DW_AT_comp_dir = comp_dir = "/tmp"
17423 DW_AT_name = "./hello.c"
17424
17425 */
17426
17427 if (dir_name != NULL)
17428 {
17429 char *tem = concat (dir_name, SLASH_STRING,
17430 include_name, (char *)NULL);
17431
17432 make_cleanup (xfree, tem);
17433 include_name = tem;
17434 include_name_to_compare = include_name;
17435 }
17436 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17437 {
17438 char *tem = concat (comp_dir, SLASH_STRING,
17439 include_name, (char *)NULL);
17440
17441 make_cleanup (xfree, tem);
17442 include_name_to_compare = tem;
17443 }
17444 }
17445
17446 pst_filename = pst->filename;
17447 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17448 {
17449 copied_name = concat (pst->dirname, SLASH_STRING,
17450 pst_filename, (char *)NULL);
17451 pst_filename = copied_name;
17452 }
17453
17454 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
17455
17456 if (copied_name != NULL)
17457 xfree (copied_name);
17458
17459 if (file_is_pst)
17460 return NULL;
17461 return include_name;
17462 }
17463
17464 /* Ignore this record_line request. */
17465
17466 static void
17467 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17468 {
17469 return;
17470 }
17471
17472 /* Return non-zero if we should add LINE to the line number table.
17473 LINE is the line to add, LAST_LINE is the last line that was added,
17474 LAST_SUBFILE is the subfile for LAST_LINE.
17475 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17476 had a non-zero discriminator.
17477
17478 We have to be careful in the presence of discriminators.
17479 E.g., for this line:
17480
17481 for (i = 0; i < 100000; i++);
17482
17483 clang can emit four line number entries for that one line,
17484 each with a different discriminator.
17485 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17486
17487 However, we want gdb to coalesce all four entries into one.
17488 Otherwise the user could stepi into the middle of the line and
17489 gdb would get confused about whether the pc really was in the
17490 middle of the line.
17491
17492 Things are further complicated by the fact that two consecutive
17493 line number entries for the same line is a heuristic used by gcc
17494 to denote the end of the prologue. So we can't just discard duplicate
17495 entries, we have to be selective about it. The heuristic we use is
17496 that we only collapse consecutive entries for the same line if at least
17497 one of those entries has a non-zero discriminator. PR 17276.
17498
17499 Note: Addresses in the line number state machine can never go backwards
17500 within one sequence, thus this coalescing is ok. */
17501
17502 static int
17503 dwarf_record_line_p (unsigned int line, unsigned int last_line,
17504 int line_has_non_zero_discriminator,
17505 struct subfile *last_subfile)
17506 {
17507 if (current_subfile != last_subfile)
17508 return 1;
17509 if (line != last_line)
17510 return 1;
17511 /* Same line for the same file that we've seen already.
17512 As a last check, for pr 17276, only record the line if the line
17513 has never had a non-zero discriminator. */
17514 if (!line_has_non_zero_discriminator)
17515 return 1;
17516 return 0;
17517 }
17518
17519 /* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17520 in the line table of subfile SUBFILE. */
17521
17522 static void
17523 dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17524 unsigned int line, CORE_ADDR address,
17525 record_line_ftype p_record_line)
17526 {
17527 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17528
17529 (*p_record_line) (subfile, line, addr);
17530 }
17531
17532 /* Subroutine of dwarf_decode_lines_1 to simplify it.
17533 Mark the end of a set of line number records.
17534 The arguments are the same as for dwarf_record_line.
17535 If SUBFILE is NULL the request is ignored. */
17536
17537 static void
17538 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17539 CORE_ADDR address, record_line_ftype p_record_line)
17540 {
17541 if (subfile != NULL)
17542 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17543 }
17544
17545 /* Subroutine of dwarf_decode_lines to simplify it.
17546 Process the line number information in LH. */
17547
17548 static void
17549 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17550 const int decode_for_pst_p, CORE_ADDR lowpc)
17551 {
17552 const gdb_byte *line_ptr, *extended_end;
17553 const gdb_byte *line_end;
17554 unsigned int bytes_read, extended_len;
17555 unsigned char op_code, extended_op;
17556 CORE_ADDR baseaddr;
17557 struct objfile *objfile = cu->objfile;
17558 bfd *abfd = objfile->obfd;
17559 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17560 struct subfile *last_subfile = NULL;
17561 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17562 = record_line;
17563
17564 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17565
17566 line_ptr = lh->statement_program_start;
17567 line_end = lh->statement_program_end;
17568
17569 /* Read the statement sequences until there's nothing left. */
17570 while (line_ptr < line_end)
17571 {
17572 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17573 on the initial 0 address as if there was a line entry for it
17574 so that the backend has a chance to adjust it and also record
17575 it in case it needs it. This is currently used by MIPS code,
17576 cf. `mips_adjust_dwarf2_line'. */
17577 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
17578 unsigned int file = 1;
17579 unsigned int line = 1;
17580 int is_stmt = lh->default_is_stmt;
17581 int end_sequence = 0;
17582 unsigned char op_index = 0;
17583 unsigned int discriminator = 0;
17584 /* The last line number that was recorded, used to coalesce
17585 consecutive entries for the same line. This can happen, for
17586 example, when discriminators are present. PR 17276. */
17587 unsigned int last_line = 0;
17588 int line_has_non_zero_discriminator = 0;
17589
17590 if (!decode_for_pst_p && lh->num_file_names >= file)
17591 {
17592 /* Start a subfile for the current file of the state machine. */
17593 /* lh->include_dirs and lh->file_names are 0-based, but the
17594 directory and file name numbers in the statement program
17595 are 1-based. */
17596 struct file_entry *fe = &lh->file_names[file - 1];
17597 const char *dir = NULL;
17598
17599 if (fe->dir_index && lh->include_dirs != NULL)
17600 dir = lh->include_dirs[fe->dir_index - 1];
17601
17602 dwarf2_start_subfile (fe->name, dir);
17603 }
17604
17605 /* Decode the table. */
17606 while (!end_sequence)
17607 {
17608 op_code = read_1_byte (abfd, line_ptr);
17609 line_ptr += 1;
17610 if (line_ptr > line_end)
17611 {
17612 dwarf2_debug_line_missing_end_sequence_complaint ();
17613 break;
17614 }
17615
17616 if (op_code >= lh->opcode_base)
17617 {
17618 /* Special opcode. */
17619 unsigned char adj_opcode;
17620 CORE_ADDR addr_adj;
17621 int line_delta;
17622
17623 adj_opcode = op_code - lh->opcode_base;
17624 addr_adj = (((op_index + (adj_opcode / lh->line_range))
17625 / lh->maximum_ops_per_instruction)
17626 * lh->minimum_instruction_length);
17627 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17628 op_index = ((op_index + (adj_opcode / lh->line_range))
17629 % lh->maximum_ops_per_instruction);
17630 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17631 line += line_delta;
17632 if (line_delta != 0)
17633 line_has_non_zero_discriminator = discriminator != 0;
17634 if (lh->num_file_names < file || file == 0)
17635 dwarf2_debug_line_missing_file_complaint ();
17636 /* For now we ignore lines not starting on an
17637 instruction boundary. */
17638 else if (op_index == 0)
17639 {
17640 lh->file_names[file - 1].included_p = 1;
17641 if (!decode_for_pst_p && is_stmt)
17642 {
17643 if (last_subfile != current_subfile)
17644 {
17645 dwarf_finish_line (gdbarch, last_subfile,
17646 address, p_record_line);
17647 }
17648 if (dwarf_record_line_p (line, last_line,
17649 line_has_non_zero_discriminator,
17650 last_subfile))
17651 {
17652 dwarf_record_line (gdbarch, current_subfile,
17653 line, address, p_record_line);
17654 }
17655 last_subfile = current_subfile;
17656 last_line = line;
17657 }
17658 }
17659 discriminator = 0;
17660 }
17661 else switch (op_code)
17662 {
17663 case DW_LNS_extended_op:
17664 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17665 &bytes_read);
17666 line_ptr += bytes_read;
17667 extended_end = line_ptr + extended_len;
17668 extended_op = read_1_byte (abfd, line_ptr);
17669 line_ptr += 1;
17670 switch (extended_op)
17671 {
17672 case DW_LNE_end_sequence:
17673 p_record_line = record_line;
17674 end_sequence = 1;
17675 break;
17676 case DW_LNE_set_address:
17677 address = read_address (abfd, line_ptr, cu, &bytes_read);
17678
17679 /* If address < lowpc then it's not a usable value, it's
17680 outside the pc range of the CU. However, we restrict
17681 the test to only address values of zero to preserve
17682 GDB's previous behaviour which is to handle the specific
17683 case of a function being GC'd by the linker. */
17684 if (address == 0 && address < lowpc)
17685 {
17686 /* This line table is for a function which has been
17687 GCd by the linker. Ignore it. PR gdb/12528 */
17688
17689 long line_offset
17690 = line_ptr - get_debug_line_section (cu)->buffer;
17691
17692 complaint (&symfile_complaints,
17693 _(".debug_line address at offset 0x%lx is 0 "
17694 "[in module %s]"),
17695 line_offset, objfile_name (objfile));
17696 p_record_line = noop_record_line;
17697 /* Note: p_record_line is left as noop_record_line
17698 until we see DW_LNE_end_sequence. */
17699 }
17700
17701 op_index = 0;
17702 line_ptr += bytes_read;
17703 address += baseaddr;
17704 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17705 break;
17706 case DW_LNE_define_file:
17707 {
17708 const char *cur_file;
17709 unsigned int dir_index, mod_time, length;
17710
17711 cur_file = read_direct_string (abfd, line_ptr,
17712 &bytes_read);
17713 line_ptr += bytes_read;
17714 dir_index =
17715 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17716 line_ptr += bytes_read;
17717 mod_time =
17718 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17719 line_ptr += bytes_read;
17720 length =
17721 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17722 line_ptr += bytes_read;
17723 add_file_name (lh, cur_file, dir_index, mod_time, length);
17724 }
17725 break;
17726 case DW_LNE_set_discriminator:
17727 /* The discriminator is not interesting to the debugger;
17728 just ignore it. We still need to check its value though:
17729 if there are consecutive entries for the same
17730 (non-prologue) line we want to coalesce them.
17731 PR 17276. */
17732 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17733 &bytes_read);
17734 line_has_non_zero_discriminator |= discriminator != 0;
17735 line_ptr += bytes_read;
17736 break;
17737 default:
17738 complaint (&symfile_complaints,
17739 _("mangled .debug_line section"));
17740 return;
17741 }
17742 /* Make sure that we parsed the extended op correctly. If e.g.
17743 we expected a different address size than the producer used,
17744 we may have read the wrong number of bytes. */
17745 if (line_ptr != extended_end)
17746 {
17747 complaint (&symfile_complaints,
17748 _("mangled .debug_line section"));
17749 return;
17750 }
17751 break;
17752 case DW_LNS_copy:
17753 if (lh->num_file_names < file || file == 0)
17754 dwarf2_debug_line_missing_file_complaint ();
17755 else
17756 {
17757 lh->file_names[file - 1].included_p = 1;
17758 if (!decode_for_pst_p && is_stmt)
17759 {
17760 if (last_subfile != current_subfile)
17761 {
17762 dwarf_finish_line (gdbarch, last_subfile,
17763 address, p_record_line);
17764 }
17765 if (dwarf_record_line_p (line, last_line,
17766 line_has_non_zero_discriminator,
17767 last_subfile))
17768 {
17769 dwarf_record_line (gdbarch, current_subfile,
17770 line, address, p_record_line);
17771 }
17772 last_subfile = current_subfile;
17773 last_line = line;
17774 }
17775 }
17776 discriminator = 0;
17777 break;
17778 case DW_LNS_advance_pc:
17779 {
17780 CORE_ADDR adjust
17781 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17782 CORE_ADDR addr_adj;
17783
17784 addr_adj = (((op_index + adjust)
17785 / lh->maximum_ops_per_instruction)
17786 * lh->minimum_instruction_length);
17787 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17788 op_index = ((op_index + adjust)
17789 % lh->maximum_ops_per_instruction);
17790 line_ptr += bytes_read;
17791 }
17792 break;
17793 case DW_LNS_advance_line:
17794 {
17795 int line_delta
17796 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17797
17798 line += line_delta;
17799 if (line_delta != 0)
17800 line_has_non_zero_discriminator = discriminator != 0;
17801 line_ptr += bytes_read;
17802 }
17803 break;
17804 case DW_LNS_set_file:
17805 {
17806 /* The arrays lh->include_dirs and lh->file_names are
17807 0-based, but the directory and file name numbers in
17808 the statement program are 1-based. */
17809 struct file_entry *fe;
17810 const char *dir = NULL;
17811
17812 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17813 line_ptr += bytes_read;
17814 if (lh->num_file_names < file || file == 0)
17815 dwarf2_debug_line_missing_file_complaint ();
17816 else
17817 {
17818 fe = &lh->file_names[file - 1];
17819 if (fe->dir_index && lh->include_dirs != NULL)
17820 dir = lh->include_dirs[fe->dir_index - 1];
17821 if (!decode_for_pst_p)
17822 {
17823 last_subfile = current_subfile;
17824 line_has_non_zero_discriminator = discriminator != 0;
17825 dwarf2_start_subfile (fe->name, dir);
17826 }
17827 }
17828 }
17829 break;
17830 case DW_LNS_set_column:
17831 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17832 line_ptr += bytes_read;
17833 break;
17834 case DW_LNS_negate_stmt:
17835 is_stmt = (!is_stmt);
17836 break;
17837 case DW_LNS_set_basic_block:
17838 break;
17839 /* Add to the address register of the state machine the
17840 address increment value corresponding to special opcode
17841 255. I.e., this value is scaled by the minimum
17842 instruction length since special opcode 255 would have
17843 scaled the increment. */
17844 case DW_LNS_const_add_pc:
17845 {
17846 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17847 CORE_ADDR addr_adj;
17848
17849 addr_adj = (((op_index + adjust)
17850 / lh->maximum_ops_per_instruction)
17851 * lh->minimum_instruction_length);
17852 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17853 op_index = ((op_index + adjust)
17854 % lh->maximum_ops_per_instruction);
17855 }
17856 break;
17857 case DW_LNS_fixed_advance_pc:
17858 {
17859 CORE_ADDR addr_adj;
17860
17861 addr_adj = read_2_bytes (abfd, line_ptr);
17862 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17863 op_index = 0;
17864 line_ptr += 2;
17865 }
17866 break;
17867 default:
17868 {
17869 /* Unknown standard opcode, ignore it. */
17870 int i;
17871
17872 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17873 {
17874 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17875 line_ptr += bytes_read;
17876 }
17877 }
17878 }
17879 }
17880 if (lh->num_file_names < file || file == 0)
17881 dwarf2_debug_line_missing_file_complaint ();
17882 else
17883 {
17884 lh->file_names[file - 1].included_p = 1;
17885 if (!decode_for_pst_p)
17886 {
17887 dwarf_finish_line (gdbarch, current_subfile, address,
17888 p_record_line);
17889 }
17890 }
17891 }
17892 }
17893
17894 /* Decode the Line Number Program (LNP) for the given line_header
17895 structure and CU. The actual information extracted and the type
17896 of structures created from the LNP depends on the value of PST.
17897
17898 1. If PST is NULL, then this procedure uses the data from the program
17899 to create all necessary symbol tables, and their linetables.
17900
17901 2. If PST is not NULL, this procedure reads the program to determine
17902 the list of files included by the unit represented by PST, and
17903 builds all the associated partial symbol tables.
17904
17905 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17906 It is used for relative paths in the line table.
17907 NOTE: When processing partial symtabs (pst != NULL),
17908 comp_dir == pst->dirname.
17909
17910 NOTE: It is important that psymtabs have the same file name (via strcmp)
17911 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17912 symtab we don't use it in the name of the psymtabs we create.
17913 E.g. expand_line_sal requires this when finding psymtabs to expand.
17914 A good testcase for this is mb-inline.exp.
17915
17916 LOWPC is the lowest address in CU (or 0 if not known).
17917
17918 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
17919 for its PC<->lines mapping information. Otherwise only the filename
17920 table is read in. */
17921
17922 static void
17923 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17924 struct dwarf2_cu *cu, struct partial_symtab *pst,
17925 CORE_ADDR lowpc, int decode_mapping)
17926 {
17927 struct objfile *objfile = cu->objfile;
17928 const int decode_for_pst_p = (pst != NULL);
17929
17930 if (decode_mapping)
17931 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
17932
17933 if (decode_for_pst_p)
17934 {
17935 int file_index;
17936
17937 /* Now that we're done scanning the Line Header Program, we can
17938 create the psymtab of each included file. */
17939 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17940 if (lh->file_names[file_index].included_p == 1)
17941 {
17942 const char *include_name =
17943 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17944 if (include_name != NULL)
17945 dwarf2_create_include_psymtab (include_name, pst, objfile);
17946 }
17947 }
17948 else
17949 {
17950 /* Make sure a symtab is created for every file, even files
17951 which contain only variables (i.e. no code with associated
17952 line numbers). */
17953 struct compunit_symtab *cust = buildsym_compunit_symtab ();
17954 int i;
17955
17956 for (i = 0; i < lh->num_file_names; i++)
17957 {
17958 const char *dir = NULL;
17959 struct file_entry *fe;
17960
17961 fe = &lh->file_names[i];
17962 if (fe->dir_index && lh->include_dirs != NULL)
17963 dir = lh->include_dirs[fe->dir_index - 1];
17964 dwarf2_start_subfile (fe->name, dir);
17965
17966 if (current_subfile->symtab == NULL)
17967 {
17968 current_subfile->symtab
17969 = allocate_symtab (cust, current_subfile->name);
17970 }
17971 fe->symtab = current_subfile->symtab;
17972 }
17973 }
17974 }
17975
17976 /* Start a subfile for DWARF. FILENAME is the name of the file and
17977 DIRNAME the name of the source directory which contains FILENAME
17978 or NULL if not known.
17979 This routine tries to keep line numbers from identical absolute and
17980 relative file names in a common subfile.
17981
17982 Using the `list' example from the GDB testsuite, which resides in
17983 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17984 of /srcdir/list0.c yields the following debugging information for list0.c:
17985
17986 DW_AT_name: /srcdir/list0.c
17987 DW_AT_comp_dir: /compdir
17988 files.files[0].name: list0.h
17989 files.files[0].dir: /srcdir
17990 files.files[1].name: list0.c
17991 files.files[1].dir: /srcdir
17992
17993 The line number information for list0.c has to end up in a single
17994 subfile, so that `break /srcdir/list0.c:1' works as expected.
17995 start_subfile will ensure that this happens provided that we pass the
17996 concatenation of files.files[1].dir and files.files[1].name as the
17997 subfile's name. */
17998
17999 static void
18000 dwarf2_start_subfile (const char *filename, const char *dirname)
18001 {
18002 char *copy = NULL;
18003
18004 /* In order not to lose the line information directory,
18005 we concatenate it to the filename when it makes sense.
18006 Note that the Dwarf3 standard says (speaking of filenames in line
18007 information): ``The directory index is ignored for file names
18008 that represent full path names''. Thus ignoring dirname in the
18009 `else' branch below isn't an issue. */
18010
18011 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
18012 {
18013 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18014 filename = copy;
18015 }
18016
18017 start_subfile (filename);
18018
18019 if (copy != NULL)
18020 xfree (copy);
18021 }
18022
18023 /* Start a symtab for DWARF.
18024 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18025
18026 static struct compunit_symtab *
18027 dwarf2_start_symtab (struct dwarf2_cu *cu,
18028 const char *name, const char *comp_dir, CORE_ADDR low_pc)
18029 {
18030 struct compunit_symtab *cust
18031 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18032
18033 record_debugformat ("DWARF 2");
18034 record_producer (cu->producer);
18035
18036 /* We assume that we're processing GCC output. */
18037 processing_gcc_compilation = 2;
18038
18039 cu->processing_has_namespace_info = 0;
18040
18041 return cust;
18042 }
18043
18044 static void
18045 var_decode_location (struct attribute *attr, struct symbol *sym,
18046 struct dwarf2_cu *cu)
18047 {
18048 struct objfile *objfile = cu->objfile;
18049 struct comp_unit_head *cu_header = &cu->header;
18050
18051 /* NOTE drow/2003-01-30: There used to be a comment and some special
18052 code here to turn a symbol with DW_AT_external and a
18053 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18054 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18055 with some versions of binutils) where shared libraries could have
18056 relocations against symbols in their debug information - the
18057 minimal symbol would have the right address, but the debug info
18058 would not. It's no longer necessary, because we will explicitly
18059 apply relocations when we read in the debug information now. */
18060
18061 /* A DW_AT_location attribute with no contents indicates that a
18062 variable has been optimized away. */
18063 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18064 {
18065 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18066 return;
18067 }
18068
18069 /* Handle one degenerate form of location expression specially, to
18070 preserve GDB's previous behavior when section offsets are
18071 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18072 then mark this symbol as LOC_STATIC. */
18073
18074 if (attr_form_is_block (attr)
18075 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18076 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18077 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18078 && (DW_BLOCK (attr)->size
18079 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
18080 {
18081 unsigned int dummy;
18082
18083 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18084 SYMBOL_VALUE_ADDRESS (sym) =
18085 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18086 else
18087 SYMBOL_VALUE_ADDRESS (sym) =
18088 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
18089 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
18090 fixup_symbol_section (sym, objfile);
18091 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18092 SYMBOL_SECTION (sym));
18093 return;
18094 }
18095
18096 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18097 expression evaluator, and use LOC_COMPUTED only when necessary
18098 (i.e. when the value of a register or memory location is
18099 referenced, or a thread-local block, etc.). Then again, it might
18100 not be worthwhile. I'm assuming that it isn't unless performance
18101 or memory numbers show me otherwise. */
18102
18103 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
18104
18105 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
18106 cu->has_loclist = 1;
18107 }
18108
18109 /* Given a pointer to a DWARF information entry, figure out if we need
18110 to make a symbol table entry for it, and if so, create a new entry
18111 and return a pointer to it.
18112 If TYPE is NULL, determine symbol type from the die, otherwise
18113 used the passed type.
18114 If SPACE is not NULL, use it to hold the new symbol. If it is
18115 NULL, allocate a new symbol on the objfile's obstack. */
18116
18117 static struct symbol *
18118 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18119 struct symbol *space)
18120 {
18121 struct objfile *objfile = cu->objfile;
18122 struct gdbarch *gdbarch = get_objfile_arch (objfile);
18123 struct symbol *sym = NULL;
18124 const char *name;
18125 struct attribute *attr = NULL;
18126 struct attribute *attr2 = NULL;
18127 CORE_ADDR baseaddr;
18128 struct pending **list_to_add = NULL;
18129
18130 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
18131
18132 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
18133
18134 name = dwarf2_name (die, cu);
18135 if (name)
18136 {
18137 const char *linkagename;
18138 int suppress_add = 0;
18139
18140 if (space)
18141 sym = space;
18142 else
18143 sym = allocate_symbol (objfile);
18144 OBJSTAT (objfile, n_syms++);
18145
18146 /* Cache this symbol's name and the name's demangled form (if any). */
18147 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
18148 linkagename = dwarf2_physname (name, die, cu);
18149 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
18150
18151 /* Fortran does not have mangling standard and the mangling does differ
18152 between gfortran, iFort etc. */
18153 if (cu->language == language_fortran
18154 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
18155 symbol_set_demangled_name (&(sym->ginfo),
18156 dwarf2_full_name (name, die, cu),
18157 NULL);
18158
18159 /* Default assumptions.
18160 Use the passed type or decode it from the die. */
18161 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18162 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
18163 if (type != NULL)
18164 SYMBOL_TYPE (sym) = type;
18165 else
18166 SYMBOL_TYPE (sym) = die_type (die, cu);
18167 attr = dwarf2_attr (die,
18168 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18169 cu);
18170 if (attr)
18171 {
18172 SYMBOL_LINE (sym) = DW_UNSND (attr);
18173 }
18174
18175 attr = dwarf2_attr (die,
18176 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18177 cu);
18178 if (attr)
18179 {
18180 int file_index = DW_UNSND (attr);
18181
18182 if (cu->line_header == NULL
18183 || file_index > cu->line_header->num_file_names)
18184 complaint (&symfile_complaints,
18185 _("file index out of range"));
18186 else if (file_index > 0)
18187 {
18188 struct file_entry *fe;
18189
18190 fe = &cu->line_header->file_names[file_index - 1];
18191 symbol_set_symtab (sym, fe->symtab);
18192 }
18193 }
18194
18195 switch (die->tag)
18196 {
18197 case DW_TAG_label:
18198 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
18199 if (attr)
18200 {
18201 CORE_ADDR addr;
18202
18203 addr = attr_value_as_address (attr);
18204 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18205 SYMBOL_VALUE_ADDRESS (sym) = addr;
18206 }
18207 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18208 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
18209 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
18210 add_symbol_to_list (sym, cu->list_in_scope);
18211 break;
18212 case DW_TAG_subprogram:
18213 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18214 finish_block. */
18215 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18216 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18217 if ((attr2 && (DW_UNSND (attr2) != 0))
18218 || cu->language == language_ada)
18219 {
18220 /* Subprograms marked external are stored as a global symbol.
18221 Ada subprograms, whether marked external or not, are always
18222 stored as a global symbol, because we want to be able to
18223 access them globally. For instance, we want to be able
18224 to break on a nested subprogram without having to
18225 specify the context. */
18226 list_to_add = &global_symbols;
18227 }
18228 else
18229 {
18230 list_to_add = cu->list_in_scope;
18231 }
18232 break;
18233 case DW_TAG_inlined_subroutine:
18234 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18235 finish_block. */
18236 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
18237 SYMBOL_INLINED (sym) = 1;
18238 list_to_add = cu->list_in_scope;
18239 break;
18240 case DW_TAG_template_value_param:
18241 suppress_add = 1;
18242 /* Fall through. */
18243 case DW_TAG_constant:
18244 case DW_TAG_variable:
18245 case DW_TAG_member:
18246 /* Compilation with minimal debug info may result in
18247 variables with missing type entries. Change the
18248 misleading `void' type to something sensible. */
18249 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
18250 SYMBOL_TYPE (sym)
18251 = objfile_type (objfile)->nodebug_data_symbol;
18252
18253 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18254 /* In the case of DW_TAG_member, we should only be called for
18255 static const members. */
18256 if (die->tag == DW_TAG_member)
18257 {
18258 /* dwarf2_add_field uses die_is_declaration,
18259 so we do the same. */
18260 gdb_assert (die_is_declaration (die, cu));
18261 gdb_assert (attr);
18262 }
18263 if (attr)
18264 {
18265 dwarf2_const_value (attr, sym, cu);
18266 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18267 if (!suppress_add)
18268 {
18269 if (attr2 && (DW_UNSND (attr2) != 0))
18270 list_to_add = &global_symbols;
18271 else
18272 list_to_add = cu->list_in_scope;
18273 }
18274 break;
18275 }
18276 attr = dwarf2_attr (die, DW_AT_location, cu);
18277 if (attr)
18278 {
18279 var_decode_location (attr, sym, cu);
18280 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18281
18282 /* Fortran explicitly imports any global symbols to the local
18283 scope by DW_TAG_common_block. */
18284 if (cu->language == language_fortran && die->parent
18285 && die->parent->tag == DW_TAG_common_block)
18286 attr2 = NULL;
18287
18288 if (SYMBOL_CLASS (sym) == LOC_STATIC
18289 && SYMBOL_VALUE_ADDRESS (sym) == 0
18290 && !dwarf2_per_objfile->has_section_at_zero)
18291 {
18292 /* When a static variable is eliminated by the linker,
18293 the corresponding debug information is not stripped
18294 out, but the variable address is set to null;
18295 do not add such variables into symbol table. */
18296 }
18297 else if (attr2 && (DW_UNSND (attr2) != 0))
18298 {
18299 /* Workaround gfortran PR debug/40040 - it uses
18300 DW_AT_location for variables in -fPIC libraries which may
18301 get overriden by other libraries/executable and get
18302 a different address. Resolve it by the minimal symbol
18303 which may come from inferior's executable using copy
18304 relocation. Make this workaround only for gfortran as for
18305 other compilers GDB cannot guess the minimal symbol
18306 Fortran mangling kind. */
18307 if (cu->language == language_fortran && die->parent
18308 && die->parent->tag == DW_TAG_module
18309 && cu->producer
18310 && startswith (cu->producer, "GNU Fortran "))
18311 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18312
18313 /* A variable with DW_AT_external is never static,
18314 but it may be block-scoped. */
18315 list_to_add = (cu->list_in_scope == &file_symbols
18316 ? &global_symbols : cu->list_in_scope);
18317 }
18318 else
18319 list_to_add = cu->list_in_scope;
18320 }
18321 else
18322 {
18323 /* We do not know the address of this symbol.
18324 If it is an external symbol and we have type information
18325 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18326 The address of the variable will then be determined from
18327 the minimal symbol table whenever the variable is
18328 referenced. */
18329 attr2 = dwarf2_attr (die, DW_AT_external, cu);
18330
18331 /* Fortran explicitly imports any global symbols to the local
18332 scope by DW_TAG_common_block. */
18333 if (cu->language == language_fortran && die->parent
18334 && die->parent->tag == DW_TAG_common_block)
18335 {
18336 /* SYMBOL_CLASS doesn't matter here because
18337 read_common_block is going to reset it. */
18338 if (!suppress_add)
18339 list_to_add = cu->list_in_scope;
18340 }
18341 else if (attr2 && (DW_UNSND (attr2) != 0)
18342 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
18343 {
18344 /* A variable with DW_AT_external is never static, but it
18345 may be block-scoped. */
18346 list_to_add = (cu->list_in_scope == &file_symbols
18347 ? &global_symbols : cu->list_in_scope);
18348
18349 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
18350 }
18351 else if (!die_is_declaration (die, cu))
18352 {
18353 /* Use the default LOC_OPTIMIZED_OUT class. */
18354 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
18355 if (!suppress_add)
18356 list_to_add = cu->list_in_scope;
18357 }
18358 }
18359 break;
18360 case DW_TAG_formal_parameter:
18361 /* If we are inside a function, mark this as an argument. If
18362 not, we might be looking at an argument to an inlined function
18363 when we do not have enough information to show inlined frames;
18364 pretend it's a local variable in that case so that the user can
18365 still see it. */
18366 if (context_stack_depth > 0
18367 && context_stack[context_stack_depth - 1].name != NULL)
18368 SYMBOL_IS_ARGUMENT (sym) = 1;
18369 attr = dwarf2_attr (die, DW_AT_location, cu);
18370 if (attr)
18371 {
18372 var_decode_location (attr, sym, cu);
18373 }
18374 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18375 if (attr)
18376 {
18377 dwarf2_const_value (attr, sym, cu);
18378 }
18379
18380 list_to_add = cu->list_in_scope;
18381 break;
18382 case DW_TAG_unspecified_parameters:
18383 /* From varargs functions; gdb doesn't seem to have any
18384 interest in this information, so just ignore it for now.
18385 (FIXME?) */
18386 break;
18387 case DW_TAG_template_type_param:
18388 suppress_add = 1;
18389 /* Fall through. */
18390 case DW_TAG_class_type:
18391 case DW_TAG_interface_type:
18392 case DW_TAG_structure_type:
18393 case DW_TAG_union_type:
18394 case DW_TAG_set_type:
18395 case DW_TAG_enumeration_type:
18396 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18397 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
18398
18399 {
18400 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
18401 really ever be static objects: otherwise, if you try
18402 to, say, break of a class's method and you're in a file
18403 which doesn't mention that class, it won't work unless
18404 the check for all static symbols in lookup_symbol_aux
18405 saves you. See the OtherFileClass tests in
18406 gdb.c++/namespace.exp. */
18407
18408 if (!suppress_add)
18409 {
18410 list_to_add = (cu->list_in_scope == &file_symbols
18411 && (cu->language == language_cplus
18412 || cu->language == language_java)
18413 ? &global_symbols : cu->list_in_scope);
18414
18415 /* The semantics of C++ state that "struct foo {
18416 ... }" also defines a typedef for "foo". A Java
18417 class declaration also defines a typedef for the
18418 class. */
18419 if (cu->language == language_cplus
18420 || cu->language == language_java
18421 || cu->language == language_ada)
18422 {
18423 /* The symbol's name is already allocated along
18424 with this objfile, so we don't need to
18425 duplicate it for the type. */
18426 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18427 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18428 }
18429 }
18430 }
18431 break;
18432 case DW_TAG_typedef:
18433 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18434 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18435 list_to_add = cu->list_in_scope;
18436 break;
18437 case DW_TAG_base_type:
18438 case DW_TAG_subrange_type:
18439 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18440 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
18441 list_to_add = cu->list_in_scope;
18442 break;
18443 case DW_TAG_enumerator:
18444 attr = dwarf2_attr (die, DW_AT_const_value, cu);
18445 if (attr)
18446 {
18447 dwarf2_const_value (attr, sym, cu);
18448 }
18449 {
18450 /* NOTE: carlton/2003-11-10: See comment above in the
18451 DW_TAG_class_type, etc. block. */
18452
18453 list_to_add = (cu->list_in_scope == &file_symbols
18454 && (cu->language == language_cplus
18455 || cu->language == language_java)
18456 ? &global_symbols : cu->list_in_scope);
18457 }
18458 break;
18459 case DW_TAG_imported_declaration:
18460 case DW_TAG_namespace:
18461 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18462 list_to_add = &global_symbols;
18463 break;
18464 case DW_TAG_module:
18465 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18466 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18467 list_to_add = &global_symbols;
18468 break;
18469 case DW_TAG_common_block:
18470 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
18471 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18472 add_symbol_to_list (sym, cu->list_in_scope);
18473 break;
18474 default:
18475 /* Not a tag we recognize. Hopefully we aren't processing
18476 trash data, but since we must specifically ignore things
18477 we don't recognize, there is nothing else we should do at
18478 this point. */
18479 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
18480 dwarf_tag_name (die->tag));
18481 break;
18482 }
18483
18484 if (suppress_add)
18485 {
18486 sym->hash_next = objfile->template_symbols;
18487 objfile->template_symbols = sym;
18488 list_to_add = NULL;
18489 }
18490
18491 if (list_to_add != NULL)
18492 add_symbol_to_list (sym, list_to_add);
18493
18494 /* For the benefit of old versions of GCC, check for anonymous
18495 namespaces based on the demangled name. */
18496 if (!cu->processing_has_namespace_info
18497 && cu->language == language_cplus)
18498 cp_scan_for_anonymous_namespaces (sym, objfile);
18499 }
18500 return (sym);
18501 }
18502
18503 /* A wrapper for new_symbol_full that always allocates a new symbol. */
18504
18505 static struct symbol *
18506 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18507 {
18508 return new_symbol_full (die, type, cu, NULL);
18509 }
18510
18511 /* Given an attr with a DW_FORM_dataN value in host byte order,
18512 zero-extend it as appropriate for the symbol's type. The DWARF
18513 standard (v4) is not entirely clear about the meaning of using
18514 DW_FORM_dataN for a constant with a signed type, where the type is
18515 wider than the data. The conclusion of a discussion on the DWARF
18516 list was that this is unspecified. We choose to always zero-extend
18517 because that is the interpretation long in use by GCC. */
18518
18519 static gdb_byte *
18520 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
18521 struct dwarf2_cu *cu, LONGEST *value, int bits)
18522 {
18523 struct objfile *objfile = cu->objfile;
18524 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18525 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
18526 LONGEST l = DW_UNSND (attr);
18527
18528 if (bits < sizeof (*value) * 8)
18529 {
18530 l &= ((LONGEST) 1 << bits) - 1;
18531 *value = l;
18532 }
18533 else if (bits == sizeof (*value) * 8)
18534 *value = l;
18535 else
18536 {
18537 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18538 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18539 return bytes;
18540 }
18541
18542 return NULL;
18543 }
18544
18545 /* Read a constant value from an attribute. Either set *VALUE, or if
18546 the value does not fit in *VALUE, set *BYTES - either already
18547 allocated on the objfile obstack, or newly allocated on OBSTACK,
18548 or, set *BATON, if we translated the constant to a location
18549 expression. */
18550
18551 static void
18552 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
18553 const char *name, struct obstack *obstack,
18554 struct dwarf2_cu *cu,
18555 LONGEST *value, const gdb_byte **bytes,
18556 struct dwarf2_locexpr_baton **baton)
18557 {
18558 struct objfile *objfile = cu->objfile;
18559 struct comp_unit_head *cu_header = &cu->header;
18560 struct dwarf_block *blk;
18561 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18562 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18563
18564 *value = 0;
18565 *bytes = NULL;
18566 *baton = NULL;
18567
18568 switch (attr->form)
18569 {
18570 case DW_FORM_addr:
18571 case DW_FORM_GNU_addr_index:
18572 {
18573 gdb_byte *data;
18574
18575 if (TYPE_LENGTH (type) != cu_header->addr_size)
18576 dwarf2_const_value_length_mismatch_complaint (name,
18577 cu_header->addr_size,
18578 TYPE_LENGTH (type));
18579 /* Symbols of this form are reasonably rare, so we just
18580 piggyback on the existing location code rather than writing
18581 a new implementation of symbol_computed_ops. */
18582 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
18583 (*baton)->per_cu = cu->per_cu;
18584 gdb_assert ((*baton)->per_cu);
18585
18586 (*baton)->size = 2 + cu_header->addr_size;
18587 data = obstack_alloc (obstack, (*baton)->size);
18588 (*baton)->data = data;
18589
18590 data[0] = DW_OP_addr;
18591 store_unsigned_integer (&data[1], cu_header->addr_size,
18592 byte_order, DW_ADDR (attr));
18593 data[cu_header->addr_size + 1] = DW_OP_stack_value;
18594 }
18595 break;
18596 case DW_FORM_string:
18597 case DW_FORM_strp:
18598 case DW_FORM_GNU_str_index:
18599 case DW_FORM_GNU_strp_alt:
18600 /* DW_STRING is already allocated on the objfile obstack, point
18601 directly to it. */
18602 *bytes = (const gdb_byte *) DW_STRING (attr);
18603 break;
18604 case DW_FORM_block1:
18605 case DW_FORM_block2:
18606 case DW_FORM_block4:
18607 case DW_FORM_block:
18608 case DW_FORM_exprloc:
18609 blk = DW_BLOCK (attr);
18610 if (TYPE_LENGTH (type) != blk->size)
18611 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18612 TYPE_LENGTH (type));
18613 *bytes = blk->data;
18614 break;
18615
18616 /* The DW_AT_const_value attributes are supposed to carry the
18617 symbol's value "represented as it would be on the target
18618 architecture." By the time we get here, it's already been
18619 converted to host endianness, so we just need to sign- or
18620 zero-extend it as appropriate. */
18621 case DW_FORM_data1:
18622 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18623 break;
18624 case DW_FORM_data2:
18625 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18626 break;
18627 case DW_FORM_data4:
18628 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18629 break;
18630 case DW_FORM_data8:
18631 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18632 break;
18633
18634 case DW_FORM_sdata:
18635 *value = DW_SND (attr);
18636 break;
18637
18638 case DW_FORM_udata:
18639 *value = DW_UNSND (attr);
18640 break;
18641
18642 default:
18643 complaint (&symfile_complaints,
18644 _("unsupported const value attribute form: '%s'"),
18645 dwarf_form_name (attr->form));
18646 *value = 0;
18647 break;
18648 }
18649 }
18650
18651
18652 /* Copy constant value from an attribute to a symbol. */
18653
18654 static void
18655 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18656 struct dwarf2_cu *cu)
18657 {
18658 struct objfile *objfile = cu->objfile;
18659 struct comp_unit_head *cu_header = &cu->header;
18660 LONGEST value;
18661 const gdb_byte *bytes;
18662 struct dwarf2_locexpr_baton *baton;
18663
18664 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18665 SYMBOL_PRINT_NAME (sym),
18666 &objfile->objfile_obstack, cu,
18667 &value, &bytes, &baton);
18668
18669 if (baton != NULL)
18670 {
18671 SYMBOL_LOCATION_BATON (sym) = baton;
18672 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18673 }
18674 else if (bytes != NULL)
18675 {
18676 SYMBOL_VALUE_BYTES (sym) = bytes;
18677 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18678 }
18679 else
18680 {
18681 SYMBOL_VALUE (sym) = value;
18682 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18683 }
18684 }
18685
18686 /* Return the type of the die in question using its DW_AT_type attribute. */
18687
18688 static struct type *
18689 die_type (struct die_info *die, struct dwarf2_cu *cu)
18690 {
18691 struct attribute *type_attr;
18692
18693 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18694 if (!type_attr)
18695 {
18696 /* A missing DW_AT_type represents a void type. */
18697 return objfile_type (cu->objfile)->builtin_void;
18698 }
18699
18700 return lookup_die_type (die, type_attr, cu);
18701 }
18702
18703 /* True iff CU's producer generates GNAT Ada auxiliary information
18704 that allows to find parallel types through that information instead
18705 of having to do expensive parallel lookups by type name. */
18706
18707 static int
18708 need_gnat_info (struct dwarf2_cu *cu)
18709 {
18710 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18711 of GNAT produces this auxiliary information, without any indication
18712 that it is produced. Part of enhancing the FSF version of GNAT
18713 to produce that information will be to put in place an indicator
18714 that we can use in order to determine whether the descriptive type
18715 info is available or not. One suggestion that has been made is
18716 to use a new attribute, attached to the CU die. For now, assume
18717 that the descriptive type info is not available. */
18718 return 0;
18719 }
18720
18721 /* Return the auxiliary type of the die in question using its
18722 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18723 attribute is not present. */
18724
18725 static struct type *
18726 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18727 {
18728 struct attribute *type_attr;
18729
18730 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18731 if (!type_attr)
18732 return NULL;
18733
18734 return lookup_die_type (die, type_attr, cu);
18735 }
18736
18737 /* If DIE has a descriptive_type attribute, then set the TYPE's
18738 descriptive type accordingly. */
18739
18740 static void
18741 set_descriptive_type (struct type *type, struct die_info *die,
18742 struct dwarf2_cu *cu)
18743 {
18744 struct type *descriptive_type = die_descriptive_type (die, cu);
18745
18746 if (descriptive_type)
18747 {
18748 ALLOCATE_GNAT_AUX_TYPE (type);
18749 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18750 }
18751 }
18752
18753 /* Return the containing type of the die in question using its
18754 DW_AT_containing_type attribute. */
18755
18756 static struct type *
18757 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18758 {
18759 struct attribute *type_attr;
18760
18761 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18762 if (!type_attr)
18763 error (_("Dwarf Error: Problem turning containing type into gdb type "
18764 "[in module %s]"), objfile_name (cu->objfile));
18765
18766 return lookup_die_type (die, type_attr, cu);
18767 }
18768
18769 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18770
18771 static struct type *
18772 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18773 {
18774 struct objfile *objfile = dwarf2_per_objfile->objfile;
18775 char *message, *saved;
18776
18777 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18778 objfile_name (objfile),
18779 cu->header.offset.sect_off,
18780 die->offset.sect_off);
18781 saved = obstack_copy0 (&objfile->objfile_obstack,
18782 message, strlen (message));
18783 xfree (message);
18784
18785 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18786 }
18787
18788 /* Look up the type of DIE in CU using its type attribute ATTR.
18789 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18790 DW_AT_containing_type.
18791 If there is no type substitute an error marker. */
18792
18793 static struct type *
18794 lookup_die_type (struct die_info *die, const struct attribute *attr,
18795 struct dwarf2_cu *cu)
18796 {
18797 struct objfile *objfile = cu->objfile;
18798 struct type *this_type;
18799
18800 gdb_assert (attr->name == DW_AT_type
18801 || attr->name == DW_AT_GNAT_descriptive_type
18802 || attr->name == DW_AT_containing_type);
18803
18804 /* First see if we have it cached. */
18805
18806 if (attr->form == DW_FORM_GNU_ref_alt)
18807 {
18808 struct dwarf2_per_cu_data *per_cu;
18809 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18810
18811 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18812 this_type = get_die_type_at_offset (offset, per_cu);
18813 }
18814 else if (attr_form_is_ref (attr))
18815 {
18816 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18817
18818 this_type = get_die_type_at_offset (offset, cu->per_cu);
18819 }
18820 else if (attr->form == DW_FORM_ref_sig8)
18821 {
18822 ULONGEST signature = DW_SIGNATURE (attr);
18823
18824 return get_signatured_type (die, signature, cu);
18825 }
18826 else
18827 {
18828 complaint (&symfile_complaints,
18829 _("Dwarf Error: Bad type attribute %s in DIE"
18830 " at 0x%x [in module %s]"),
18831 dwarf_attr_name (attr->name), die->offset.sect_off,
18832 objfile_name (objfile));
18833 return build_error_marker_type (cu, die);
18834 }
18835
18836 /* If not cached we need to read it in. */
18837
18838 if (this_type == NULL)
18839 {
18840 struct die_info *type_die = NULL;
18841 struct dwarf2_cu *type_cu = cu;
18842
18843 if (attr_form_is_ref (attr))
18844 type_die = follow_die_ref (die, attr, &type_cu);
18845 if (type_die == NULL)
18846 return build_error_marker_type (cu, die);
18847 /* If we find the type now, it's probably because the type came
18848 from an inter-CU reference and the type's CU got expanded before
18849 ours. */
18850 this_type = read_type_die (type_die, type_cu);
18851 }
18852
18853 /* If we still don't have a type use an error marker. */
18854
18855 if (this_type == NULL)
18856 return build_error_marker_type (cu, die);
18857
18858 return this_type;
18859 }
18860
18861 /* Return the type in DIE, CU.
18862 Returns NULL for invalid types.
18863
18864 This first does a lookup in die_type_hash,
18865 and only reads the die in if necessary.
18866
18867 NOTE: This can be called when reading in partial or full symbols. */
18868
18869 static struct type *
18870 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18871 {
18872 struct type *this_type;
18873
18874 this_type = get_die_type (die, cu);
18875 if (this_type)
18876 return this_type;
18877
18878 return read_type_die_1 (die, cu);
18879 }
18880
18881 /* Read the type in DIE, CU.
18882 Returns NULL for invalid types. */
18883
18884 static struct type *
18885 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18886 {
18887 struct type *this_type = NULL;
18888
18889 switch (die->tag)
18890 {
18891 case DW_TAG_class_type:
18892 case DW_TAG_interface_type:
18893 case DW_TAG_structure_type:
18894 case DW_TAG_union_type:
18895 this_type = read_structure_type (die, cu);
18896 break;
18897 case DW_TAG_enumeration_type:
18898 this_type = read_enumeration_type (die, cu);
18899 break;
18900 case DW_TAG_subprogram:
18901 case DW_TAG_subroutine_type:
18902 case DW_TAG_inlined_subroutine:
18903 this_type = read_subroutine_type (die, cu);
18904 break;
18905 case DW_TAG_array_type:
18906 this_type = read_array_type (die, cu);
18907 break;
18908 case DW_TAG_set_type:
18909 this_type = read_set_type (die, cu);
18910 break;
18911 case DW_TAG_pointer_type:
18912 this_type = read_tag_pointer_type (die, cu);
18913 break;
18914 case DW_TAG_ptr_to_member_type:
18915 this_type = read_tag_ptr_to_member_type (die, cu);
18916 break;
18917 case DW_TAG_reference_type:
18918 this_type = read_tag_reference_type (die, cu);
18919 break;
18920 case DW_TAG_const_type:
18921 this_type = read_tag_const_type (die, cu);
18922 break;
18923 case DW_TAG_volatile_type:
18924 this_type = read_tag_volatile_type (die, cu);
18925 break;
18926 case DW_TAG_restrict_type:
18927 this_type = read_tag_restrict_type (die, cu);
18928 break;
18929 case DW_TAG_string_type:
18930 this_type = read_tag_string_type (die, cu);
18931 break;
18932 case DW_TAG_typedef:
18933 this_type = read_typedef (die, cu);
18934 break;
18935 case DW_TAG_subrange_type:
18936 this_type = read_subrange_type (die, cu);
18937 break;
18938 case DW_TAG_base_type:
18939 this_type = read_base_type (die, cu);
18940 break;
18941 case DW_TAG_unspecified_type:
18942 this_type = read_unspecified_type (die, cu);
18943 break;
18944 case DW_TAG_namespace:
18945 this_type = read_namespace_type (die, cu);
18946 break;
18947 case DW_TAG_module:
18948 this_type = read_module_type (die, cu);
18949 break;
18950 case DW_TAG_atomic_type:
18951 this_type = read_tag_atomic_type (die, cu);
18952 break;
18953 default:
18954 complaint (&symfile_complaints,
18955 _("unexpected tag in read_type_die: '%s'"),
18956 dwarf_tag_name (die->tag));
18957 break;
18958 }
18959
18960 return this_type;
18961 }
18962
18963 /* See if we can figure out if the class lives in a namespace. We do
18964 this by looking for a member function; its demangled name will
18965 contain namespace info, if there is any.
18966 Return the computed name or NULL.
18967 Space for the result is allocated on the objfile's obstack.
18968 This is the full-die version of guess_partial_die_structure_name.
18969 In this case we know DIE has no useful parent. */
18970
18971 static char *
18972 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18973 {
18974 struct die_info *spec_die;
18975 struct dwarf2_cu *spec_cu;
18976 struct die_info *child;
18977
18978 spec_cu = cu;
18979 spec_die = die_specification (die, &spec_cu);
18980 if (spec_die != NULL)
18981 {
18982 die = spec_die;
18983 cu = spec_cu;
18984 }
18985
18986 for (child = die->child;
18987 child != NULL;
18988 child = child->sibling)
18989 {
18990 if (child->tag == DW_TAG_subprogram)
18991 {
18992 struct attribute *attr;
18993
18994 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18995 if (attr == NULL)
18996 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18997 if (attr != NULL)
18998 {
18999 char *actual_name
19000 = language_class_name_from_physname (cu->language_defn,
19001 DW_STRING (attr));
19002 char *name = NULL;
19003
19004 if (actual_name != NULL)
19005 {
19006 const char *die_name = dwarf2_name (die, cu);
19007
19008 if (die_name != NULL
19009 && strcmp (die_name, actual_name) != 0)
19010 {
19011 /* Strip off the class name from the full name.
19012 We want the prefix. */
19013 int die_name_len = strlen (die_name);
19014 int actual_name_len = strlen (actual_name);
19015
19016 /* Test for '::' as a sanity check. */
19017 if (actual_name_len > die_name_len + 2
19018 && actual_name[actual_name_len
19019 - die_name_len - 1] == ':')
19020 name =
19021 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19022 actual_name,
19023 actual_name_len - die_name_len - 2);
19024 }
19025 }
19026 xfree (actual_name);
19027 return name;
19028 }
19029 }
19030 }
19031
19032 return NULL;
19033 }
19034
19035 /* GCC might emit a nameless typedef that has a linkage name. Determine the
19036 prefix part in such case. See
19037 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19038
19039 static char *
19040 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19041 {
19042 struct attribute *attr;
19043 char *base;
19044
19045 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19046 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19047 return NULL;
19048
19049 attr = dwarf2_attr (die, DW_AT_name, cu);
19050 if (attr != NULL && DW_STRING (attr) != NULL)
19051 return NULL;
19052
19053 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19054 if (attr == NULL)
19055 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19056 if (attr == NULL || DW_STRING (attr) == NULL)
19057 return NULL;
19058
19059 /* dwarf2_name had to be already called. */
19060 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19061
19062 /* Strip the base name, keep any leading namespaces/classes. */
19063 base = strrchr (DW_STRING (attr), ':');
19064 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19065 return "";
19066
19067 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19068 DW_STRING (attr), &base[-1] - DW_STRING (attr));
19069 }
19070
19071 /* Return the name of the namespace/class that DIE is defined within,
19072 or "" if we can't tell. The caller should not xfree the result.
19073
19074 For example, if we're within the method foo() in the following
19075 code:
19076
19077 namespace N {
19078 class C {
19079 void foo () {
19080 }
19081 };
19082 }
19083
19084 then determine_prefix on foo's die will return "N::C". */
19085
19086 static const char *
19087 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
19088 {
19089 struct die_info *parent, *spec_die;
19090 struct dwarf2_cu *spec_cu;
19091 struct type *parent_type;
19092 char *retval;
19093
19094 if (cu->language != language_cplus && cu->language != language_java
19095 && cu->language != language_fortran)
19096 return "";
19097
19098 retval = anonymous_struct_prefix (die, cu);
19099 if (retval)
19100 return retval;
19101
19102 /* We have to be careful in the presence of DW_AT_specification.
19103 For example, with GCC 3.4, given the code
19104
19105 namespace N {
19106 void foo() {
19107 // Definition of N::foo.
19108 }
19109 }
19110
19111 then we'll have a tree of DIEs like this:
19112
19113 1: DW_TAG_compile_unit
19114 2: DW_TAG_namespace // N
19115 3: DW_TAG_subprogram // declaration of N::foo
19116 4: DW_TAG_subprogram // definition of N::foo
19117 DW_AT_specification // refers to die #3
19118
19119 Thus, when processing die #4, we have to pretend that we're in
19120 the context of its DW_AT_specification, namely the contex of die
19121 #3. */
19122 spec_cu = cu;
19123 spec_die = die_specification (die, &spec_cu);
19124 if (spec_die == NULL)
19125 parent = die->parent;
19126 else
19127 {
19128 parent = spec_die->parent;
19129 cu = spec_cu;
19130 }
19131
19132 if (parent == NULL)
19133 return "";
19134 else if (parent->building_fullname)
19135 {
19136 const char *name;
19137 const char *parent_name;
19138
19139 /* It has been seen on RealView 2.2 built binaries,
19140 DW_TAG_template_type_param types actually _defined_ as
19141 children of the parent class:
19142
19143 enum E {};
19144 template class <class Enum> Class{};
19145 Class<enum E> class_e;
19146
19147 1: DW_TAG_class_type (Class)
19148 2: DW_TAG_enumeration_type (E)
19149 3: DW_TAG_enumerator (enum1:0)
19150 3: DW_TAG_enumerator (enum2:1)
19151 ...
19152 2: DW_TAG_template_type_param
19153 DW_AT_type DW_FORM_ref_udata (E)
19154
19155 Besides being broken debug info, it can put GDB into an
19156 infinite loop. Consider:
19157
19158 When we're building the full name for Class<E>, we'll start
19159 at Class, and go look over its template type parameters,
19160 finding E. We'll then try to build the full name of E, and
19161 reach here. We're now trying to build the full name of E,
19162 and look over the parent DIE for containing scope. In the
19163 broken case, if we followed the parent DIE of E, we'd again
19164 find Class, and once again go look at its template type
19165 arguments, etc., etc. Simply don't consider such parent die
19166 as source-level parent of this die (it can't be, the language
19167 doesn't allow it), and break the loop here. */
19168 name = dwarf2_name (die, cu);
19169 parent_name = dwarf2_name (parent, cu);
19170 complaint (&symfile_complaints,
19171 _("template param type '%s' defined within parent '%s'"),
19172 name ? name : "<unknown>",
19173 parent_name ? parent_name : "<unknown>");
19174 return "";
19175 }
19176 else
19177 switch (parent->tag)
19178 {
19179 case DW_TAG_namespace:
19180 parent_type = read_type_die (parent, cu);
19181 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19182 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19183 Work around this problem here. */
19184 if (cu->language == language_cplus
19185 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19186 return "";
19187 /* We give a name to even anonymous namespaces. */
19188 return TYPE_TAG_NAME (parent_type);
19189 case DW_TAG_class_type:
19190 case DW_TAG_interface_type:
19191 case DW_TAG_structure_type:
19192 case DW_TAG_union_type:
19193 case DW_TAG_module:
19194 parent_type = read_type_die (parent, cu);
19195 if (TYPE_TAG_NAME (parent_type) != NULL)
19196 return TYPE_TAG_NAME (parent_type);
19197 else
19198 /* An anonymous structure is only allowed non-static data
19199 members; no typedefs, no member functions, et cetera.
19200 So it does not need a prefix. */
19201 return "";
19202 case DW_TAG_compile_unit:
19203 case DW_TAG_partial_unit:
19204 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19205 if (cu->language == language_cplus
19206 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
19207 && die->child != NULL
19208 && (die->tag == DW_TAG_class_type
19209 || die->tag == DW_TAG_structure_type
19210 || die->tag == DW_TAG_union_type))
19211 {
19212 char *name = guess_full_die_structure_name (die, cu);
19213 if (name != NULL)
19214 return name;
19215 }
19216 return "";
19217 case DW_TAG_enumeration_type:
19218 parent_type = read_type_die (parent, cu);
19219 if (TYPE_DECLARED_CLASS (parent_type))
19220 {
19221 if (TYPE_TAG_NAME (parent_type) != NULL)
19222 return TYPE_TAG_NAME (parent_type);
19223 return "";
19224 }
19225 /* Fall through. */
19226 default:
19227 return determine_prefix (parent, cu);
19228 }
19229 }
19230
19231 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19232 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19233 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19234 an obconcat, otherwise allocate storage for the result. The CU argument is
19235 used to determine the language and hence, the appropriate separator. */
19236
19237 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
19238
19239 static char *
19240 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19241 int physname, struct dwarf2_cu *cu)
19242 {
19243 const char *lead = "";
19244 const char *sep;
19245
19246 if (suffix == NULL || suffix[0] == '\0'
19247 || prefix == NULL || prefix[0] == '\0')
19248 sep = "";
19249 else if (cu->language == language_java)
19250 sep = ".";
19251 else if (cu->language == language_fortran && physname)
19252 {
19253 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19254 DW_AT_MIPS_linkage_name is preferred and used instead. */
19255
19256 lead = "__";
19257 sep = "_MOD_";
19258 }
19259 else
19260 sep = "::";
19261
19262 if (prefix == NULL)
19263 prefix = "";
19264 if (suffix == NULL)
19265 suffix = "";
19266
19267 if (obs == NULL)
19268 {
19269 char *retval
19270 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
19271
19272 strcpy (retval, lead);
19273 strcat (retval, prefix);
19274 strcat (retval, sep);
19275 strcat (retval, suffix);
19276 return retval;
19277 }
19278 else
19279 {
19280 /* We have an obstack. */
19281 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
19282 }
19283 }
19284
19285 /* Return sibling of die, NULL if no sibling. */
19286
19287 static struct die_info *
19288 sibling_die (struct die_info *die)
19289 {
19290 return die->sibling;
19291 }
19292
19293 /* Get name of a die, return NULL if not found. */
19294
19295 static const char *
19296 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
19297 struct obstack *obstack)
19298 {
19299 if (name && cu->language == language_cplus)
19300 {
19301 char *canon_name = cp_canonicalize_string (name);
19302
19303 if (canon_name != NULL)
19304 {
19305 if (strcmp (canon_name, name) != 0)
19306 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
19307 xfree (canon_name);
19308 }
19309 }
19310
19311 return name;
19312 }
19313
19314 /* Get name of a die, return NULL if not found.
19315 Anonymous namespaces are converted to their magic string. */
19316
19317 static const char *
19318 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
19319 {
19320 struct attribute *attr;
19321
19322 attr = dwarf2_attr (die, DW_AT_name, cu);
19323 if ((!attr || !DW_STRING (attr))
19324 && die->tag != DW_TAG_namespace
19325 && die->tag != DW_TAG_class_type
19326 && die->tag != DW_TAG_interface_type
19327 && die->tag != DW_TAG_structure_type
19328 && die->tag != DW_TAG_union_type)
19329 return NULL;
19330
19331 switch (die->tag)
19332 {
19333 case DW_TAG_compile_unit:
19334 case DW_TAG_partial_unit:
19335 /* Compilation units have a DW_AT_name that is a filename, not
19336 a source language identifier. */
19337 case DW_TAG_enumeration_type:
19338 case DW_TAG_enumerator:
19339 /* These tags always have simple identifiers already; no need
19340 to canonicalize them. */
19341 return DW_STRING (attr);
19342
19343 case DW_TAG_namespace:
19344 if (attr != NULL && DW_STRING (attr) != NULL)
19345 return DW_STRING (attr);
19346 return CP_ANONYMOUS_NAMESPACE_STR;
19347
19348 case DW_TAG_subprogram:
19349 /* Java constructors will all be named "<init>", so return
19350 the class name when we see this special case. */
19351 if (cu->language == language_java
19352 && DW_STRING (attr) != NULL
19353 && strcmp (DW_STRING (attr), "<init>") == 0)
19354 {
19355 struct dwarf2_cu *spec_cu = cu;
19356 struct die_info *spec_die;
19357
19358 /* GCJ will output '<init>' for Java constructor names.
19359 For this special case, return the name of the parent class. */
19360
19361 /* GCJ may output subprogram DIEs with AT_specification set.
19362 If so, use the name of the specified DIE. */
19363 spec_die = die_specification (die, &spec_cu);
19364 if (spec_die != NULL)
19365 return dwarf2_name (spec_die, spec_cu);
19366
19367 do
19368 {
19369 die = die->parent;
19370 if (die->tag == DW_TAG_class_type)
19371 return dwarf2_name (die, cu);
19372 }
19373 while (die->tag != DW_TAG_compile_unit
19374 && die->tag != DW_TAG_partial_unit);
19375 }
19376 break;
19377
19378 case DW_TAG_class_type:
19379 case DW_TAG_interface_type:
19380 case DW_TAG_structure_type:
19381 case DW_TAG_union_type:
19382 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19383 structures or unions. These were of the form "._%d" in GCC 4.1,
19384 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19385 and GCC 4.4. We work around this problem by ignoring these. */
19386 if (attr && DW_STRING (attr)
19387 && (startswith (DW_STRING (attr), "._")
19388 || startswith (DW_STRING (attr), "<anonymous")))
19389 return NULL;
19390
19391 /* GCC might emit a nameless typedef that has a linkage name. See
19392 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19393 if (!attr || DW_STRING (attr) == NULL)
19394 {
19395 char *demangled = NULL;
19396
19397 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19398 if (attr == NULL)
19399 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19400
19401 if (attr == NULL || DW_STRING (attr) == NULL)
19402 return NULL;
19403
19404 /* Avoid demangling DW_STRING (attr) the second time on a second
19405 call for the same DIE. */
19406 if (!DW_STRING_IS_CANONICAL (attr))
19407 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
19408
19409 if (demangled)
19410 {
19411 char *base;
19412
19413 /* FIXME: we already did this for the partial symbol... */
19414 DW_STRING (attr)
19415 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19416 demangled, strlen (demangled));
19417 DW_STRING_IS_CANONICAL (attr) = 1;
19418 xfree (demangled);
19419
19420 /* Strip any leading namespaces/classes, keep only the base name.
19421 DW_AT_name for named DIEs does not contain the prefixes. */
19422 base = strrchr (DW_STRING (attr), ':');
19423 if (base && base > DW_STRING (attr) && base[-1] == ':')
19424 return &base[1];
19425 else
19426 return DW_STRING (attr);
19427 }
19428 }
19429 break;
19430
19431 default:
19432 break;
19433 }
19434
19435 if (!DW_STRING_IS_CANONICAL (attr))
19436 {
19437 DW_STRING (attr)
19438 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
19439 &cu->objfile->per_bfd->storage_obstack);
19440 DW_STRING_IS_CANONICAL (attr) = 1;
19441 }
19442 return DW_STRING (attr);
19443 }
19444
19445 /* Return the die that this die in an extension of, or NULL if there
19446 is none. *EXT_CU is the CU containing DIE on input, and the CU
19447 containing the return value on output. */
19448
19449 static struct die_info *
19450 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
19451 {
19452 struct attribute *attr;
19453
19454 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
19455 if (attr == NULL)
19456 return NULL;
19457
19458 return follow_die_ref (die, attr, ext_cu);
19459 }
19460
19461 /* Convert a DIE tag into its string name. */
19462
19463 static const char *
19464 dwarf_tag_name (unsigned tag)
19465 {
19466 const char *name = get_DW_TAG_name (tag);
19467
19468 if (name == NULL)
19469 return "DW_TAG_<unknown>";
19470
19471 return name;
19472 }
19473
19474 /* Convert a DWARF attribute code into its string name. */
19475
19476 static const char *
19477 dwarf_attr_name (unsigned attr)
19478 {
19479 const char *name;
19480
19481 #ifdef MIPS /* collides with DW_AT_HP_block_index */
19482 if (attr == DW_AT_MIPS_fde)
19483 return "DW_AT_MIPS_fde";
19484 #else
19485 if (attr == DW_AT_HP_block_index)
19486 return "DW_AT_HP_block_index";
19487 #endif
19488
19489 name = get_DW_AT_name (attr);
19490
19491 if (name == NULL)
19492 return "DW_AT_<unknown>";
19493
19494 return name;
19495 }
19496
19497 /* Convert a DWARF value form code into its string name. */
19498
19499 static const char *
19500 dwarf_form_name (unsigned form)
19501 {
19502 const char *name = get_DW_FORM_name (form);
19503
19504 if (name == NULL)
19505 return "DW_FORM_<unknown>";
19506
19507 return name;
19508 }
19509
19510 static char *
19511 dwarf_bool_name (unsigned mybool)
19512 {
19513 if (mybool)
19514 return "TRUE";
19515 else
19516 return "FALSE";
19517 }
19518
19519 /* Convert a DWARF type code into its string name. */
19520
19521 static const char *
19522 dwarf_type_encoding_name (unsigned enc)
19523 {
19524 const char *name = get_DW_ATE_name (enc);
19525
19526 if (name == NULL)
19527 return "DW_ATE_<unknown>";
19528
19529 return name;
19530 }
19531
19532 static void
19533 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
19534 {
19535 unsigned int i;
19536
19537 print_spaces (indent, f);
19538 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
19539 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
19540
19541 if (die->parent != NULL)
19542 {
19543 print_spaces (indent, f);
19544 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
19545 die->parent->offset.sect_off);
19546 }
19547
19548 print_spaces (indent, f);
19549 fprintf_unfiltered (f, " has children: %s\n",
19550 dwarf_bool_name (die->child != NULL));
19551
19552 print_spaces (indent, f);
19553 fprintf_unfiltered (f, " attributes:\n");
19554
19555 for (i = 0; i < die->num_attrs; ++i)
19556 {
19557 print_spaces (indent, f);
19558 fprintf_unfiltered (f, " %s (%s) ",
19559 dwarf_attr_name (die->attrs[i].name),
19560 dwarf_form_name (die->attrs[i].form));
19561
19562 switch (die->attrs[i].form)
19563 {
19564 case DW_FORM_addr:
19565 case DW_FORM_GNU_addr_index:
19566 fprintf_unfiltered (f, "address: ");
19567 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
19568 break;
19569 case DW_FORM_block2:
19570 case DW_FORM_block4:
19571 case DW_FORM_block:
19572 case DW_FORM_block1:
19573 fprintf_unfiltered (f, "block: size %s",
19574 pulongest (DW_BLOCK (&die->attrs[i])->size));
19575 break;
19576 case DW_FORM_exprloc:
19577 fprintf_unfiltered (f, "expression: size %s",
19578 pulongest (DW_BLOCK (&die->attrs[i])->size));
19579 break;
19580 case DW_FORM_ref_addr:
19581 fprintf_unfiltered (f, "ref address: ");
19582 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19583 break;
19584 case DW_FORM_GNU_ref_alt:
19585 fprintf_unfiltered (f, "alt ref address: ");
19586 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19587 break;
19588 case DW_FORM_ref1:
19589 case DW_FORM_ref2:
19590 case DW_FORM_ref4:
19591 case DW_FORM_ref8:
19592 case DW_FORM_ref_udata:
19593 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
19594 (long) (DW_UNSND (&die->attrs[i])));
19595 break;
19596 case DW_FORM_data1:
19597 case DW_FORM_data2:
19598 case DW_FORM_data4:
19599 case DW_FORM_data8:
19600 case DW_FORM_udata:
19601 case DW_FORM_sdata:
19602 fprintf_unfiltered (f, "constant: %s",
19603 pulongest (DW_UNSND (&die->attrs[i])));
19604 break;
19605 case DW_FORM_sec_offset:
19606 fprintf_unfiltered (f, "section offset: %s",
19607 pulongest (DW_UNSND (&die->attrs[i])));
19608 break;
19609 case DW_FORM_ref_sig8:
19610 fprintf_unfiltered (f, "signature: %s",
19611 hex_string (DW_SIGNATURE (&die->attrs[i])));
19612 break;
19613 case DW_FORM_string:
19614 case DW_FORM_strp:
19615 case DW_FORM_GNU_str_index:
19616 case DW_FORM_GNU_strp_alt:
19617 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
19618 DW_STRING (&die->attrs[i])
19619 ? DW_STRING (&die->attrs[i]) : "",
19620 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
19621 break;
19622 case DW_FORM_flag:
19623 if (DW_UNSND (&die->attrs[i]))
19624 fprintf_unfiltered (f, "flag: TRUE");
19625 else
19626 fprintf_unfiltered (f, "flag: FALSE");
19627 break;
19628 case DW_FORM_flag_present:
19629 fprintf_unfiltered (f, "flag: TRUE");
19630 break;
19631 case DW_FORM_indirect:
19632 /* The reader will have reduced the indirect form to
19633 the "base form" so this form should not occur. */
19634 fprintf_unfiltered (f,
19635 "unexpected attribute form: DW_FORM_indirect");
19636 break;
19637 default:
19638 fprintf_unfiltered (f, "unsupported attribute form: %d.",
19639 die->attrs[i].form);
19640 break;
19641 }
19642 fprintf_unfiltered (f, "\n");
19643 }
19644 }
19645
19646 static void
19647 dump_die_for_error (struct die_info *die)
19648 {
19649 dump_die_shallow (gdb_stderr, 0, die);
19650 }
19651
19652 static void
19653 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19654 {
19655 int indent = level * 4;
19656
19657 gdb_assert (die != NULL);
19658
19659 if (level >= max_level)
19660 return;
19661
19662 dump_die_shallow (f, indent, die);
19663
19664 if (die->child != NULL)
19665 {
19666 print_spaces (indent, f);
19667 fprintf_unfiltered (f, " Children:");
19668 if (level + 1 < max_level)
19669 {
19670 fprintf_unfiltered (f, "\n");
19671 dump_die_1 (f, level + 1, max_level, die->child);
19672 }
19673 else
19674 {
19675 fprintf_unfiltered (f,
19676 " [not printed, max nesting level reached]\n");
19677 }
19678 }
19679
19680 if (die->sibling != NULL && level > 0)
19681 {
19682 dump_die_1 (f, level, max_level, die->sibling);
19683 }
19684 }
19685
19686 /* This is called from the pdie macro in gdbinit.in.
19687 It's not static so gcc will keep a copy callable from gdb. */
19688
19689 void
19690 dump_die (struct die_info *die, int max_level)
19691 {
19692 dump_die_1 (gdb_stdlog, 0, max_level, die);
19693 }
19694
19695 static void
19696 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19697 {
19698 void **slot;
19699
19700 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19701 INSERT);
19702
19703 *slot = die;
19704 }
19705
19706 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19707 required kind. */
19708
19709 static sect_offset
19710 dwarf2_get_ref_die_offset (const struct attribute *attr)
19711 {
19712 sect_offset retval = { DW_UNSND (attr) };
19713
19714 if (attr_form_is_ref (attr))
19715 return retval;
19716
19717 retval.sect_off = 0;
19718 complaint (&symfile_complaints,
19719 _("unsupported die ref attribute form: '%s'"),
19720 dwarf_form_name (attr->form));
19721 return retval;
19722 }
19723
19724 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19725 * the value held by the attribute is not constant. */
19726
19727 static LONGEST
19728 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19729 {
19730 if (attr->form == DW_FORM_sdata)
19731 return DW_SND (attr);
19732 else if (attr->form == DW_FORM_udata
19733 || attr->form == DW_FORM_data1
19734 || attr->form == DW_FORM_data2
19735 || attr->form == DW_FORM_data4
19736 || attr->form == DW_FORM_data8)
19737 return DW_UNSND (attr);
19738 else
19739 {
19740 complaint (&symfile_complaints,
19741 _("Attribute value is not a constant (%s)"),
19742 dwarf_form_name (attr->form));
19743 return default_value;
19744 }
19745 }
19746
19747 /* Follow reference or signature attribute ATTR of SRC_DIE.
19748 On entry *REF_CU is the CU of SRC_DIE.
19749 On exit *REF_CU is the CU of the result. */
19750
19751 static struct die_info *
19752 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19753 struct dwarf2_cu **ref_cu)
19754 {
19755 struct die_info *die;
19756
19757 if (attr_form_is_ref (attr))
19758 die = follow_die_ref (src_die, attr, ref_cu);
19759 else if (attr->form == DW_FORM_ref_sig8)
19760 die = follow_die_sig (src_die, attr, ref_cu);
19761 else
19762 {
19763 dump_die_for_error (src_die);
19764 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19765 objfile_name ((*ref_cu)->objfile));
19766 }
19767
19768 return die;
19769 }
19770
19771 /* Follow reference OFFSET.
19772 On entry *REF_CU is the CU of the source die referencing OFFSET.
19773 On exit *REF_CU is the CU of the result.
19774 Returns NULL if OFFSET is invalid. */
19775
19776 static struct die_info *
19777 follow_die_offset (sect_offset offset, int offset_in_dwz,
19778 struct dwarf2_cu **ref_cu)
19779 {
19780 struct die_info temp_die;
19781 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19782
19783 gdb_assert (cu->per_cu != NULL);
19784
19785 target_cu = cu;
19786
19787 if (cu->per_cu->is_debug_types)
19788 {
19789 /* .debug_types CUs cannot reference anything outside their CU.
19790 If they need to, they have to reference a signatured type via
19791 DW_FORM_ref_sig8. */
19792 if (! offset_in_cu_p (&cu->header, offset))
19793 return NULL;
19794 }
19795 else if (offset_in_dwz != cu->per_cu->is_dwz
19796 || ! offset_in_cu_p (&cu->header, offset))
19797 {
19798 struct dwarf2_per_cu_data *per_cu;
19799
19800 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19801 cu->objfile);
19802
19803 /* If necessary, add it to the queue and load its DIEs. */
19804 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19805 load_full_comp_unit (per_cu, cu->language);
19806
19807 target_cu = per_cu->cu;
19808 }
19809 else if (cu->dies == NULL)
19810 {
19811 /* We're loading full DIEs during partial symbol reading. */
19812 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19813 load_full_comp_unit (cu->per_cu, language_minimal);
19814 }
19815
19816 *ref_cu = target_cu;
19817 temp_die.offset = offset;
19818 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19819 }
19820
19821 /* Follow reference attribute ATTR of SRC_DIE.
19822 On entry *REF_CU is the CU of SRC_DIE.
19823 On exit *REF_CU is the CU of the result. */
19824
19825 static struct die_info *
19826 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19827 struct dwarf2_cu **ref_cu)
19828 {
19829 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19830 struct dwarf2_cu *cu = *ref_cu;
19831 struct die_info *die;
19832
19833 die = follow_die_offset (offset,
19834 (attr->form == DW_FORM_GNU_ref_alt
19835 || cu->per_cu->is_dwz),
19836 ref_cu);
19837 if (!die)
19838 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19839 "at 0x%x [in module %s]"),
19840 offset.sect_off, src_die->offset.sect_off,
19841 objfile_name (cu->objfile));
19842
19843 return die;
19844 }
19845
19846 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19847 Returned value is intended for DW_OP_call*. Returned
19848 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19849
19850 struct dwarf2_locexpr_baton
19851 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19852 struct dwarf2_per_cu_data *per_cu,
19853 CORE_ADDR (*get_frame_pc) (void *baton),
19854 void *baton)
19855 {
19856 struct dwarf2_cu *cu;
19857 struct die_info *die;
19858 struct attribute *attr;
19859 struct dwarf2_locexpr_baton retval;
19860
19861 dw2_setup (per_cu->objfile);
19862
19863 if (per_cu->cu == NULL)
19864 load_cu (per_cu);
19865 cu = per_cu->cu;
19866
19867 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19868 if (!die)
19869 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19870 offset.sect_off, objfile_name (per_cu->objfile));
19871
19872 attr = dwarf2_attr (die, DW_AT_location, cu);
19873 if (!attr)
19874 {
19875 /* DWARF: "If there is no such attribute, then there is no effect.".
19876 DATA is ignored if SIZE is 0. */
19877
19878 retval.data = NULL;
19879 retval.size = 0;
19880 }
19881 else if (attr_form_is_section_offset (attr))
19882 {
19883 struct dwarf2_loclist_baton loclist_baton;
19884 CORE_ADDR pc = (*get_frame_pc) (baton);
19885 size_t size;
19886
19887 fill_in_loclist_baton (cu, &loclist_baton, attr);
19888
19889 retval.data = dwarf2_find_location_expression (&loclist_baton,
19890 &size, pc);
19891 retval.size = size;
19892 }
19893 else
19894 {
19895 if (!attr_form_is_block (attr))
19896 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19897 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19898 offset.sect_off, objfile_name (per_cu->objfile));
19899
19900 retval.data = DW_BLOCK (attr)->data;
19901 retval.size = DW_BLOCK (attr)->size;
19902 }
19903 retval.per_cu = cu->per_cu;
19904
19905 age_cached_comp_units ();
19906
19907 return retval;
19908 }
19909
19910 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19911 offset. */
19912
19913 struct dwarf2_locexpr_baton
19914 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19915 struct dwarf2_per_cu_data *per_cu,
19916 CORE_ADDR (*get_frame_pc) (void *baton),
19917 void *baton)
19918 {
19919 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19920
19921 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19922 }
19923
19924 /* Write a constant of a given type as target-ordered bytes into
19925 OBSTACK. */
19926
19927 static const gdb_byte *
19928 write_constant_as_bytes (struct obstack *obstack,
19929 enum bfd_endian byte_order,
19930 struct type *type,
19931 ULONGEST value,
19932 LONGEST *len)
19933 {
19934 gdb_byte *result;
19935
19936 *len = TYPE_LENGTH (type);
19937 result = obstack_alloc (obstack, *len);
19938 store_unsigned_integer (result, *len, byte_order, value);
19939
19940 return result;
19941 }
19942
19943 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19944 pointer to the constant bytes and set LEN to the length of the
19945 data. If memory is needed, allocate it on OBSTACK. If the DIE
19946 does not have a DW_AT_const_value, return NULL. */
19947
19948 const gdb_byte *
19949 dwarf2_fetch_constant_bytes (sect_offset offset,
19950 struct dwarf2_per_cu_data *per_cu,
19951 struct obstack *obstack,
19952 LONGEST *len)
19953 {
19954 struct dwarf2_cu *cu;
19955 struct die_info *die;
19956 struct attribute *attr;
19957 const gdb_byte *result = NULL;
19958 struct type *type;
19959 LONGEST value;
19960 enum bfd_endian byte_order;
19961
19962 dw2_setup (per_cu->objfile);
19963
19964 if (per_cu->cu == NULL)
19965 load_cu (per_cu);
19966 cu = per_cu->cu;
19967
19968 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19969 if (!die)
19970 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19971 offset.sect_off, objfile_name (per_cu->objfile));
19972
19973
19974 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19975 if (attr == NULL)
19976 return NULL;
19977
19978 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19979 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19980
19981 switch (attr->form)
19982 {
19983 case DW_FORM_addr:
19984 case DW_FORM_GNU_addr_index:
19985 {
19986 gdb_byte *tem;
19987
19988 *len = cu->header.addr_size;
19989 tem = obstack_alloc (obstack, *len);
19990 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19991 result = tem;
19992 }
19993 break;
19994 case DW_FORM_string:
19995 case DW_FORM_strp:
19996 case DW_FORM_GNU_str_index:
19997 case DW_FORM_GNU_strp_alt:
19998 /* DW_STRING is already allocated on the objfile obstack, point
19999 directly to it. */
20000 result = (const gdb_byte *) DW_STRING (attr);
20001 *len = strlen (DW_STRING (attr));
20002 break;
20003 case DW_FORM_block1:
20004 case DW_FORM_block2:
20005 case DW_FORM_block4:
20006 case DW_FORM_block:
20007 case DW_FORM_exprloc:
20008 result = DW_BLOCK (attr)->data;
20009 *len = DW_BLOCK (attr)->size;
20010 break;
20011
20012 /* The DW_AT_const_value attributes are supposed to carry the
20013 symbol's value "represented as it would be on the target
20014 architecture." By the time we get here, it's already been
20015 converted to host endianness, so we just need to sign- or
20016 zero-extend it as appropriate. */
20017 case DW_FORM_data1:
20018 type = die_type (die, cu);
20019 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20020 if (result == NULL)
20021 result = write_constant_as_bytes (obstack, byte_order,
20022 type, value, len);
20023 break;
20024 case DW_FORM_data2:
20025 type = die_type (die, cu);
20026 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20027 if (result == NULL)
20028 result = write_constant_as_bytes (obstack, byte_order,
20029 type, value, len);
20030 break;
20031 case DW_FORM_data4:
20032 type = die_type (die, cu);
20033 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20034 if (result == NULL)
20035 result = write_constant_as_bytes (obstack, byte_order,
20036 type, value, len);
20037 break;
20038 case DW_FORM_data8:
20039 type = die_type (die, cu);
20040 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20041 if (result == NULL)
20042 result = write_constant_as_bytes (obstack, byte_order,
20043 type, value, len);
20044 break;
20045
20046 case DW_FORM_sdata:
20047 type = die_type (die, cu);
20048 result = write_constant_as_bytes (obstack, byte_order,
20049 type, DW_SND (attr), len);
20050 break;
20051
20052 case DW_FORM_udata:
20053 type = die_type (die, cu);
20054 result = write_constant_as_bytes (obstack, byte_order,
20055 type, DW_UNSND (attr), len);
20056 break;
20057
20058 default:
20059 complaint (&symfile_complaints,
20060 _("unsupported const value attribute form: '%s'"),
20061 dwarf_form_name (attr->form));
20062 break;
20063 }
20064
20065 return result;
20066 }
20067
20068 /* Return the type of the DIE at DIE_OFFSET in the CU named by
20069 PER_CU. */
20070
20071 struct type *
20072 dwarf2_get_die_type (cu_offset die_offset,
20073 struct dwarf2_per_cu_data *per_cu)
20074 {
20075 sect_offset die_offset_sect;
20076
20077 dw2_setup (per_cu->objfile);
20078
20079 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20080 return get_die_type_at_offset (die_offset_sect, per_cu);
20081 }
20082
20083 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
20084 On entry *REF_CU is the CU of SRC_DIE.
20085 On exit *REF_CU is the CU of the result.
20086 Returns NULL if the referenced DIE isn't found. */
20087
20088 static struct die_info *
20089 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20090 struct dwarf2_cu **ref_cu)
20091 {
20092 struct objfile *objfile = (*ref_cu)->objfile;
20093 struct die_info temp_die;
20094 struct dwarf2_cu *sig_cu;
20095 struct die_info *die;
20096
20097 /* While it might be nice to assert sig_type->type == NULL here,
20098 we can get here for DW_AT_imported_declaration where we need
20099 the DIE not the type. */
20100
20101 /* If necessary, add it to the queue and load its DIEs. */
20102
20103 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
20104 read_signatured_type (sig_type);
20105
20106 sig_cu = sig_type->per_cu.cu;
20107 gdb_assert (sig_cu != NULL);
20108 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20109 temp_die.offset = sig_type->type_offset_in_section;
20110 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20111 temp_die.offset.sect_off);
20112 if (die)
20113 {
20114 /* For .gdb_index version 7 keep track of included TUs.
20115 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20116 if (dwarf2_per_objfile->index_table != NULL
20117 && dwarf2_per_objfile->index_table->version <= 7)
20118 {
20119 VEC_safe_push (dwarf2_per_cu_ptr,
20120 (*ref_cu)->per_cu->imported_symtabs,
20121 sig_cu->per_cu);
20122 }
20123
20124 *ref_cu = sig_cu;
20125 return die;
20126 }
20127
20128 return NULL;
20129 }
20130
20131 /* Follow signatured type referenced by ATTR in SRC_DIE.
20132 On entry *REF_CU is the CU of SRC_DIE.
20133 On exit *REF_CU is the CU of the result.
20134 The result is the DIE of the type.
20135 If the referenced type cannot be found an error is thrown. */
20136
20137 static struct die_info *
20138 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
20139 struct dwarf2_cu **ref_cu)
20140 {
20141 ULONGEST signature = DW_SIGNATURE (attr);
20142 struct signatured_type *sig_type;
20143 struct die_info *die;
20144
20145 gdb_assert (attr->form == DW_FORM_ref_sig8);
20146
20147 sig_type = lookup_signatured_type (*ref_cu, signature);
20148 /* sig_type will be NULL if the signatured type is missing from
20149 the debug info. */
20150 if (sig_type == NULL)
20151 {
20152 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20153 " from DIE at 0x%x [in module %s]"),
20154 hex_string (signature), src_die->offset.sect_off,
20155 objfile_name ((*ref_cu)->objfile));
20156 }
20157
20158 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20159 if (die == NULL)
20160 {
20161 dump_die_for_error (src_die);
20162 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20163 " from DIE at 0x%x [in module %s]"),
20164 hex_string (signature), src_die->offset.sect_off,
20165 objfile_name ((*ref_cu)->objfile));
20166 }
20167
20168 return die;
20169 }
20170
20171 /* Get the type specified by SIGNATURE referenced in DIE/CU,
20172 reading in and processing the type unit if necessary. */
20173
20174 static struct type *
20175 get_signatured_type (struct die_info *die, ULONGEST signature,
20176 struct dwarf2_cu *cu)
20177 {
20178 struct signatured_type *sig_type;
20179 struct dwarf2_cu *type_cu;
20180 struct die_info *type_die;
20181 struct type *type;
20182
20183 sig_type = lookup_signatured_type (cu, signature);
20184 /* sig_type will be NULL if the signatured type is missing from
20185 the debug info. */
20186 if (sig_type == NULL)
20187 {
20188 complaint (&symfile_complaints,
20189 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20190 " from DIE at 0x%x [in module %s]"),
20191 hex_string (signature), die->offset.sect_off,
20192 objfile_name (dwarf2_per_objfile->objfile));
20193 return build_error_marker_type (cu, die);
20194 }
20195
20196 /* If we already know the type we're done. */
20197 if (sig_type->type != NULL)
20198 return sig_type->type;
20199
20200 type_cu = cu;
20201 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20202 if (type_die != NULL)
20203 {
20204 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20205 is created. This is important, for example, because for c++ classes
20206 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20207 type = read_type_die (type_die, type_cu);
20208 if (type == NULL)
20209 {
20210 complaint (&symfile_complaints,
20211 _("Dwarf Error: Cannot build signatured type %s"
20212 " referenced from DIE at 0x%x [in module %s]"),
20213 hex_string (signature), die->offset.sect_off,
20214 objfile_name (dwarf2_per_objfile->objfile));
20215 type = build_error_marker_type (cu, die);
20216 }
20217 }
20218 else
20219 {
20220 complaint (&symfile_complaints,
20221 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20222 " from DIE at 0x%x [in module %s]"),
20223 hex_string (signature), die->offset.sect_off,
20224 objfile_name (dwarf2_per_objfile->objfile));
20225 type = build_error_marker_type (cu, die);
20226 }
20227 sig_type->type = type;
20228
20229 return type;
20230 }
20231
20232 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20233 reading in and processing the type unit if necessary. */
20234
20235 static struct type *
20236 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
20237 struct dwarf2_cu *cu) /* ARI: editCase function */
20238 {
20239 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
20240 if (attr_form_is_ref (attr))
20241 {
20242 struct dwarf2_cu *type_cu = cu;
20243 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20244
20245 return read_type_die (type_die, type_cu);
20246 }
20247 else if (attr->form == DW_FORM_ref_sig8)
20248 {
20249 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20250 }
20251 else
20252 {
20253 complaint (&symfile_complaints,
20254 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20255 " at 0x%x [in module %s]"),
20256 dwarf_form_name (attr->form), die->offset.sect_off,
20257 objfile_name (dwarf2_per_objfile->objfile));
20258 return build_error_marker_type (cu, die);
20259 }
20260 }
20261
20262 /* Load the DIEs associated with type unit PER_CU into memory. */
20263
20264 static void
20265 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
20266 {
20267 struct signatured_type *sig_type;
20268
20269 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20270 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20271
20272 /* We have the per_cu, but we need the signatured_type.
20273 Fortunately this is an easy translation. */
20274 gdb_assert (per_cu->is_debug_types);
20275 sig_type = (struct signatured_type *) per_cu;
20276
20277 gdb_assert (per_cu->cu == NULL);
20278
20279 read_signatured_type (sig_type);
20280
20281 gdb_assert (per_cu->cu != NULL);
20282 }
20283
20284 /* die_reader_func for read_signatured_type.
20285 This is identical to load_full_comp_unit_reader,
20286 but is kept separate for now. */
20287
20288 static void
20289 read_signatured_type_reader (const struct die_reader_specs *reader,
20290 const gdb_byte *info_ptr,
20291 struct die_info *comp_unit_die,
20292 int has_children,
20293 void *data)
20294 {
20295 struct dwarf2_cu *cu = reader->cu;
20296
20297 gdb_assert (cu->die_hash == NULL);
20298 cu->die_hash =
20299 htab_create_alloc_ex (cu->header.length / 12,
20300 die_hash,
20301 die_eq,
20302 NULL,
20303 &cu->comp_unit_obstack,
20304 hashtab_obstack_allocate,
20305 dummy_obstack_deallocate);
20306
20307 if (has_children)
20308 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20309 &info_ptr, comp_unit_die);
20310 cu->dies = comp_unit_die;
20311 /* comp_unit_die is not stored in die_hash, no need. */
20312
20313 /* We try not to read any attributes in this function, because not
20314 all CUs needed for references have been loaded yet, and symbol
20315 table processing isn't initialized. But we have to set the CU language,
20316 or we won't be able to build types correctly.
20317 Similarly, if we do not read the producer, we can not apply
20318 producer-specific interpretation. */
20319 prepare_one_comp_unit (cu, cu->dies, language_minimal);
20320 }
20321
20322 /* Read in a signatured type and build its CU and DIEs.
20323 If the type is a stub for the real type in a DWO file,
20324 read in the real type from the DWO file as well. */
20325
20326 static void
20327 read_signatured_type (struct signatured_type *sig_type)
20328 {
20329 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
20330
20331 gdb_assert (per_cu->is_debug_types);
20332 gdb_assert (per_cu->cu == NULL);
20333
20334 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20335 read_signatured_type_reader, NULL);
20336 sig_type->per_cu.tu_read = 1;
20337 }
20338
20339 /* Decode simple location descriptions.
20340 Given a pointer to a dwarf block that defines a location, compute
20341 the location and return the value.
20342
20343 NOTE drow/2003-11-18: This function is called in two situations
20344 now: for the address of static or global variables (partial symbols
20345 only) and for offsets into structures which are expected to be
20346 (more or less) constant. The partial symbol case should go away,
20347 and only the constant case should remain. That will let this
20348 function complain more accurately. A few special modes are allowed
20349 without complaint for global variables (for instance, global
20350 register values and thread-local values).
20351
20352 A location description containing no operations indicates that the
20353 object is optimized out. The return value is 0 for that case.
20354 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20355 callers will only want a very basic result and this can become a
20356 complaint.
20357
20358 Note that stack[0] is unused except as a default error return. */
20359
20360 static CORE_ADDR
20361 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
20362 {
20363 struct objfile *objfile = cu->objfile;
20364 size_t i;
20365 size_t size = blk->size;
20366 const gdb_byte *data = blk->data;
20367 CORE_ADDR stack[64];
20368 int stacki;
20369 unsigned int bytes_read, unsnd;
20370 gdb_byte op;
20371
20372 i = 0;
20373 stacki = 0;
20374 stack[stacki] = 0;
20375 stack[++stacki] = 0;
20376
20377 while (i < size)
20378 {
20379 op = data[i++];
20380 switch (op)
20381 {
20382 case DW_OP_lit0:
20383 case DW_OP_lit1:
20384 case DW_OP_lit2:
20385 case DW_OP_lit3:
20386 case DW_OP_lit4:
20387 case DW_OP_lit5:
20388 case DW_OP_lit6:
20389 case DW_OP_lit7:
20390 case DW_OP_lit8:
20391 case DW_OP_lit9:
20392 case DW_OP_lit10:
20393 case DW_OP_lit11:
20394 case DW_OP_lit12:
20395 case DW_OP_lit13:
20396 case DW_OP_lit14:
20397 case DW_OP_lit15:
20398 case DW_OP_lit16:
20399 case DW_OP_lit17:
20400 case DW_OP_lit18:
20401 case DW_OP_lit19:
20402 case DW_OP_lit20:
20403 case DW_OP_lit21:
20404 case DW_OP_lit22:
20405 case DW_OP_lit23:
20406 case DW_OP_lit24:
20407 case DW_OP_lit25:
20408 case DW_OP_lit26:
20409 case DW_OP_lit27:
20410 case DW_OP_lit28:
20411 case DW_OP_lit29:
20412 case DW_OP_lit30:
20413 case DW_OP_lit31:
20414 stack[++stacki] = op - DW_OP_lit0;
20415 break;
20416
20417 case DW_OP_reg0:
20418 case DW_OP_reg1:
20419 case DW_OP_reg2:
20420 case DW_OP_reg3:
20421 case DW_OP_reg4:
20422 case DW_OP_reg5:
20423 case DW_OP_reg6:
20424 case DW_OP_reg7:
20425 case DW_OP_reg8:
20426 case DW_OP_reg9:
20427 case DW_OP_reg10:
20428 case DW_OP_reg11:
20429 case DW_OP_reg12:
20430 case DW_OP_reg13:
20431 case DW_OP_reg14:
20432 case DW_OP_reg15:
20433 case DW_OP_reg16:
20434 case DW_OP_reg17:
20435 case DW_OP_reg18:
20436 case DW_OP_reg19:
20437 case DW_OP_reg20:
20438 case DW_OP_reg21:
20439 case DW_OP_reg22:
20440 case DW_OP_reg23:
20441 case DW_OP_reg24:
20442 case DW_OP_reg25:
20443 case DW_OP_reg26:
20444 case DW_OP_reg27:
20445 case DW_OP_reg28:
20446 case DW_OP_reg29:
20447 case DW_OP_reg30:
20448 case DW_OP_reg31:
20449 stack[++stacki] = op - DW_OP_reg0;
20450 if (i < size)
20451 dwarf2_complex_location_expr_complaint ();
20452 break;
20453
20454 case DW_OP_regx:
20455 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20456 i += bytes_read;
20457 stack[++stacki] = unsnd;
20458 if (i < size)
20459 dwarf2_complex_location_expr_complaint ();
20460 break;
20461
20462 case DW_OP_addr:
20463 stack[++stacki] = read_address (objfile->obfd, &data[i],
20464 cu, &bytes_read);
20465 i += bytes_read;
20466 break;
20467
20468 case DW_OP_const1u:
20469 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20470 i += 1;
20471 break;
20472
20473 case DW_OP_const1s:
20474 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20475 i += 1;
20476 break;
20477
20478 case DW_OP_const2u:
20479 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20480 i += 2;
20481 break;
20482
20483 case DW_OP_const2s:
20484 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20485 i += 2;
20486 break;
20487
20488 case DW_OP_const4u:
20489 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20490 i += 4;
20491 break;
20492
20493 case DW_OP_const4s:
20494 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20495 i += 4;
20496 break;
20497
20498 case DW_OP_const8u:
20499 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20500 i += 8;
20501 break;
20502
20503 case DW_OP_constu:
20504 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20505 &bytes_read);
20506 i += bytes_read;
20507 break;
20508
20509 case DW_OP_consts:
20510 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20511 i += bytes_read;
20512 break;
20513
20514 case DW_OP_dup:
20515 stack[stacki + 1] = stack[stacki];
20516 stacki++;
20517 break;
20518
20519 case DW_OP_plus:
20520 stack[stacki - 1] += stack[stacki];
20521 stacki--;
20522 break;
20523
20524 case DW_OP_plus_uconst:
20525 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20526 &bytes_read);
20527 i += bytes_read;
20528 break;
20529
20530 case DW_OP_minus:
20531 stack[stacki - 1] -= stack[stacki];
20532 stacki--;
20533 break;
20534
20535 case DW_OP_deref:
20536 /* If we're not the last op, then we definitely can't encode
20537 this using GDB's address_class enum. This is valid for partial
20538 global symbols, although the variable's address will be bogus
20539 in the psymtab. */
20540 if (i < size)
20541 dwarf2_complex_location_expr_complaint ();
20542 break;
20543
20544 case DW_OP_GNU_push_tls_address:
20545 /* The top of the stack has the offset from the beginning
20546 of the thread control block at which the variable is located. */
20547 /* Nothing should follow this operator, so the top of stack would
20548 be returned. */
20549 /* This is valid for partial global symbols, but the variable's
20550 address will be bogus in the psymtab. Make it always at least
20551 non-zero to not look as a variable garbage collected by linker
20552 which have DW_OP_addr 0. */
20553 if (i < size)
20554 dwarf2_complex_location_expr_complaint ();
20555 stack[stacki]++;
20556 break;
20557
20558 case DW_OP_GNU_uninit:
20559 break;
20560
20561 case DW_OP_GNU_addr_index:
20562 case DW_OP_GNU_const_index:
20563 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20564 &bytes_read);
20565 i += bytes_read;
20566 break;
20567
20568 default:
20569 {
20570 const char *name = get_DW_OP_name (op);
20571
20572 if (name)
20573 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20574 name);
20575 else
20576 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20577 op);
20578 }
20579
20580 return (stack[stacki]);
20581 }
20582
20583 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20584 outside of the allocated space. Also enforce minimum>0. */
20585 if (stacki >= ARRAY_SIZE (stack) - 1)
20586 {
20587 complaint (&symfile_complaints,
20588 _("location description stack overflow"));
20589 return 0;
20590 }
20591
20592 if (stacki <= 0)
20593 {
20594 complaint (&symfile_complaints,
20595 _("location description stack underflow"));
20596 return 0;
20597 }
20598 }
20599 return (stack[stacki]);
20600 }
20601
20602 /* memory allocation interface */
20603
20604 static struct dwarf_block *
20605 dwarf_alloc_block (struct dwarf2_cu *cu)
20606 {
20607 struct dwarf_block *blk;
20608
20609 blk = (struct dwarf_block *)
20610 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
20611 return (blk);
20612 }
20613
20614 static struct die_info *
20615 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
20616 {
20617 struct die_info *die;
20618 size_t size = sizeof (struct die_info);
20619
20620 if (num_attrs > 1)
20621 size += (num_attrs - 1) * sizeof (struct attribute);
20622
20623 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
20624 memset (die, 0, sizeof (struct die_info));
20625 return (die);
20626 }
20627
20628 \f
20629 /* Macro support. */
20630
20631 /* Return file name relative to the compilation directory of file number I in
20632 *LH's file name table. The result is allocated using xmalloc; the caller is
20633 responsible for freeing it. */
20634
20635 static char *
20636 file_file_name (int file, struct line_header *lh)
20637 {
20638 /* Is the file number a valid index into the line header's file name
20639 table? Remember that file numbers start with one, not zero. */
20640 if (1 <= file && file <= lh->num_file_names)
20641 {
20642 struct file_entry *fe = &lh->file_names[file - 1];
20643
20644 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20645 || lh->include_dirs == NULL)
20646 return xstrdup (fe->name);
20647 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20648 fe->name, NULL);
20649 }
20650 else
20651 {
20652 /* The compiler produced a bogus file number. We can at least
20653 record the macro definitions made in the file, even if we
20654 won't be able to find the file by name. */
20655 char fake_name[80];
20656
20657 xsnprintf (fake_name, sizeof (fake_name),
20658 "<bad macro file number %d>", file);
20659
20660 complaint (&symfile_complaints,
20661 _("bad file number in macro information (%d)"),
20662 file);
20663
20664 return xstrdup (fake_name);
20665 }
20666 }
20667
20668 /* Return the full name of file number I in *LH's file name table.
20669 Use COMP_DIR as the name of the current directory of the
20670 compilation. The result is allocated using xmalloc; the caller is
20671 responsible for freeing it. */
20672 static char *
20673 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20674 {
20675 /* Is the file number a valid index into the line header's file name
20676 table? Remember that file numbers start with one, not zero. */
20677 if (1 <= file && file <= lh->num_file_names)
20678 {
20679 char *relative = file_file_name (file, lh);
20680
20681 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20682 return relative;
20683 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20684 }
20685 else
20686 return file_file_name (file, lh);
20687 }
20688
20689
20690 static struct macro_source_file *
20691 macro_start_file (int file, int line,
20692 struct macro_source_file *current_file,
20693 struct line_header *lh)
20694 {
20695 /* File name relative to the compilation directory of this source file. */
20696 char *file_name = file_file_name (file, lh);
20697
20698 if (! current_file)
20699 {
20700 /* Note: We don't create a macro table for this compilation unit
20701 at all until we actually get a filename. */
20702 struct macro_table *macro_table = get_macro_table ();
20703
20704 /* If we have no current file, then this must be the start_file
20705 directive for the compilation unit's main source file. */
20706 current_file = macro_set_main (macro_table, file_name);
20707 macro_define_special (macro_table);
20708 }
20709 else
20710 current_file = macro_include (current_file, line, file_name);
20711
20712 xfree (file_name);
20713
20714 return current_file;
20715 }
20716
20717
20718 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20719 followed by a null byte. */
20720 static char *
20721 copy_string (const char *buf, int len)
20722 {
20723 char *s = xmalloc (len + 1);
20724
20725 memcpy (s, buf, len);
20726 s[len] = '\0';
20727 return s;
20728 }
20729
20730
20731 static const char *
20732 consume_improper_spaces (const char *p, const char *body)
20733 {
20734 if (*p == ' ')
20735 {
20736 complaint (&symfile_complaints,
20737 _("macro definition contains spaces "
20738 "in formal argument list:\n`%s'"),
20739 body);
20740
20741 while (*p == ' ')
20742 p++;
20743 }
20744
20745 return p;
20746 }
20747
20748
20749 static void
20750 parse_macro_definition (struct macro_source_file *file, int line,
20751 const char *body)
20752 {
20753 const char *p;
20754
20755 /* The body string takes one of two forms. For object-like macro
20756 definitions, it should be:
20757
20758 <macro name> " " <definition>
20759
20760 For function-like macro definitions, it should be:
20761
20762 <macro name> "() " <definition>
20763 or
20764 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20765
20766 Spaces may appear only where explicitly indicated, and in the
20767 <definition>.
20768
20769 The Dwarf 2 spec says that an object-like macro's name is always
20770 followed by a space, but versions of GCC around March 2002 omit
20771 the space when the macro's definition is the empty string.
20772
20773 The Dwarf 2 spec says that there should be no spaces between the
20774 formal arguments in a function-like macro's formal argument list,
20775 but versions of GCC around March 2002 include spaces after the
20776 commas. */
20777
20778
20779 /* Find the extent of the macro name. The macro name is terminated
20780 by either a space or null character (for an object-like macro) or
20781 an opening paren (for a function-like macro). */
20782 for (p = body; *p; p++)
20783 if (*p == ' ' || *p == '(')
20784 break;
20785
20786 if (*p == ' ' || *p == '\0')
20787 {
20788 /* It's an object-like macro. */
20789 int name_len = p - body;
20790 char *name = copy_string (body, name_len);
20791 const char *replacement;
20792
20793 if (*p == ' ')
20794 replacement = body + name_len + 1;
20795 else
20796 {
20797 dwarf2_macro_malformed_definition_complaint (body);
20798 replacement = body + name_len;
20799 }
20800
20801 macro_define_object (file, line, name, replacement);
20802
20803 xfree (name);
20804 }
20805 else if (*p == '(')
20806 {
20807 /* It's a function-like macro. */
20808 char *name = copy_string (body, p - body);
20809 int argc = 0;
20810 int argv_size = 1;
20811 char **argv = xmalloc (argv_size * sizeof (*argv));
20812
20813 p++;
20814
20815 p = consume_improper_spaces (p, body);
20816
20817 /* Parse the formal argument list. */
20818 while (*p && *p != ')')
20819 {
20820 /* Find the extent of the current argument name. */
20821 const char *arg_start = p;
20822
20823 while (*p && *p != ',' && *p != ')' && *p != ' ')
20824 p++;
20825
20826 if (! *p || p == arg_start)
20827 dwarf2_macro_malformed_definition_complaint (body);
20828 else
20829 {
20830 /* Make sure argv has room for the new argument. */
20831 if (argc >= argv_size)
20832 {
20833 argv_size *= 2;
20834 argv = xrealloc (argv, argv_size * sizeof (*argv));
20835 }
20836
20837 argv[argc++] = copy_string (arg_start, p - arg_start);
20838 }
20839
20840 p = consume_improper_spaces (p, body);
20841
20842 /* Consume the comma, if present. */
20843 if (*p == ',')
20844 {
20845 p++;
20846
20847 p = consume_improper_spaces (p, body);
20848 }
20849 }
20850
20851 if (*p == ')')
20852 {
20853 p++;
20854
20855 if (*p == ' ')
20856 /* Perfectly formed definition, no complaints. */
20857 macro_define_function (file, line, name,
20858 argc, (const char **) argv,
20859 p + 1);
20860 else if (*p == '\0')
20861 {
20862 /* Complain, but do define it. */
20863 dwarf2_macro_malformed_definition_complaint (body);
20864 macro_define_function (file, line, name,
20865 argc, (const char **) argv,
20866 p);
20867 }
20868 else
20869 /* Just complain. */
20870 dwarf2_macro_malformed_definition_complaint (body);
20871 }
20872 else
20873 /* Just complain. */
20874 dwarf2_macro_malformed_definition_complaint (body);
20875
20876 xfree (name);
20877 {
20878 int i;
20879
20880 for (i = 0; i < argc; i++)
20881 xfree (argv[i]);
20882 }
20883 xfree (argv);
20884 }
20885 else
20886 dwarf2_macro_malformed_definition_complaint (body);
20887 }
20888
20889 /* Skip some bytes from BYTES according to the form given in FORM.
20890 Returns the new pointer. */
20891
20892 static const gdb_byte *
20893 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20894 enum dwarf_form form,
20895 unsigned int offset_size,
20896 struct dwarf2_section_info *section)
20897 {
20898 unsigned int bytes_read;
20899
20900 switch (form)
20901 {
20902 case DW_FORM_data1:
20903 case DW_FORM_flag:
20904 ++bytes;
20905 break;
20906
20907 case DW_FORM_data2:
20908 bytes += 2;
20909 break;
20910
20911 case DW_FORM_data4:
20912 bytes += 4;
20913 break;
20914
20915 case DW_FORM_data8:
20916 bytes += 8;
20917 break;
20918
20919 case DW_FORM_string:
20920 read_direct_string (abfd, bytes, &bytes_read);
20921 bytes += bytes_read;
20922 break;
20923
20924 case DW_FORM_sec_offset:
20925 case DW_FORM_strp:
20926 case DW_FORM_GNU_strp_alt:
20927 bytes += offset_size;
20928 break;
20929
20930 case DW_FORM_block:
20931 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20932 bytes += bytes_read;
20933 break;
20934
20935 case DW_FORM_block1:
20936 bytes += 1 + read_1_byte (abfd, bytes);
20937 break;
20938 case DW_FORM_block2:
20939 bytes += 2 + read_2_bytes (abfd, bytes);
20940 break;
20941 case DW_FORM_block4:
20942 bytes += 4 + read_4_bytes (abfd, bytes);
20943 break;
20944
20945 case DW_FORM_sdata:
20946 case DW_FORM_udata:
20947 case DW_FORM_GNU_addr_index:
20948 case DW_FORM_GNU_str_index:
20949 bytes = gdb_skip_leb128 (bytes, buffer_end);
20950 if (bytes == NULL)
20951 {
20952 dwarf2_section_buffer_overflow_complaint (section);
20953 return NULL;
20954 }
20955 break;
20956
20957 default:
20958 {
20959 complain:
20960 complaint (&symfile_complaints,
20961 _("invalid form 0x%x in `%s'"),
20962 form, get_section_name (section));
20963 return NULL;
20964 }
20965 }
20966
20967 return bytes;
20968 }
20969
20970 /* A helper for dwarf_decode_macros that handles skipping an unknown
20971 opcode. Returns an updated pointer to the macro data buffer; or,
20972 on error, issues a complaint and returns NULL. */
20973
20974 static const gdb_byte *
20975 skip_unknown_opcode (unsigned int opcode,
20976 const gdb_byte **opcode_definitions,
20977 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20978 bfd *abfd,
20979 unsigned int offset_size,
20980 struct dwarf2_section_info *section)
20981 {
20982 unsigned int bytes_read, i;
20983 unsigned long arg;
20984 const gdb_byte *defn;
20985
20986 if (opcode_definitions[opcode] == NULL)
20987 {
20988 complaint (&symfile_complaints,
20989 _("unrecognized DW_MACFINO opcode 0x%x"),
20990 opcode);
20991 return NULL;
20992 }
20993
20994 defn = opcode_definitions[opcode];
20995 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20996 defn += bytes_read;
20997
20998 for (i = 0; i < arg; ++i)
20999 {
21000 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
21001 section);
21002 if (mac_ptr == NULL)
21003 {
21004 /* skip_form_bytes already issued the complaint. */
21005 return NULL;
21006 }
21007 }
21008
21009 return mac_ptr;
21010 }
21011
21012 /* A helper function which parses the header of a macro section.
21013 If the macro section is the extended (for now called "GNU") type,
21014 then this updates *OFFSET_SIZE. Returns a pointer to just after
21015 the header, or issues a complaint and returns NULL on error. */
21016
21017 static const gdb_byte *
21018 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
21019 bfd *abfd,
21020 const gdb_byte *mac_ptr,
21021 unsigned int *offset_size,
21022 int section_is_gnu)
21023 {
21024 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
21025
21026 if (section_is_gnu)
21027 {
21028 unsigned int version, flags;
21029
21030 version = read_2_bytes (abfd, mac_ptr);
21031 if (version != 4)
21032 {
21033 complaint (&symfile_complaints,
21034 _("unrecognized version `%d' in .debug_macro section"),
21035 version);
21036 return NULL;
21037 }
21038 mac_ptr += 2;
21039
21040 flags = read_1_byte (abfd, mac_ptr);
21041 ++mac_ptr;
21042 *offset_size = (flags & 1) ? 8 : 4;
21043
21044 if ((flags & 2) != 0)
21045 /* We don't need the line table offset. */
21046 mac_ptr += *offset_size;
21047
21048 /* Vendor opcode descriptions. */
21049 if ((flags & 4) != 0)
21050 {
21051 unsigned int i, count;
21052
21053 count = read_1_byte (abfd, mac_ptr);
21054 ++mac_ptr;
21055 for (i = 0; i < count; ++i)
21056 {
21057 unsigned int opcode, bytes_read;
21058 unsigned long arg;
21059
21060 opcode = read_1_byte (abfd, mac_ptr);
21061 ++mac_ptr;
21062 opcode_definitions[opcode] = mac_ptr;
21063 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21064 mac_ptr += bytes_read;
21065 mac_ptr += arg;
21066 }
21067 }
21068 }
21069
21070 return mac_ptr;
21071 }
21072
21073 /* A helper for dwarf_decode_macros that handles the GNU extensions,
21074 including DW_MACRO_GNU_transparent_include. */
21075
21076 static void
21077 dwarf_decode_macro_bytes (bfd *abfd,
21078 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
21079 struct macro_source_file *current_file,
21080 struct line_header *lh,
21081 struct dwarf2_section_info *section,
21082 int section_is_gnu, int section_is_dwz,
21083 unsigned int offset_size,
21084 htab_t include_hash)
21085 {
21086 struct objfile *objfile = dwarf2_per_objfile->objfile;
21087 enum dwarf_macro_record_type macinfo_type;
21088 int at_commandline;
21089 const gdb_byte *opcode_definitions[256];
21090
21091 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21092 &offset_size, section_is_gnu);
21093 if (mac_ptr == NULL)
21094 {
21095 /* We already issued a complaint. */
21096 return;
21097 }
21098
21099 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21100 GDB is still reading the definitions from command line. First
21101 DW_MACINFO_start_file will need to be ignored as it was already executed
21102 to create CURRENT_FILE for the main source holding also the command line
21103 definitions. On first met DW_MACINFO_start_file this flag is reset to
21104 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21105
21106 at_commandline = 1;
21107
21108 do
21109 {
21110 /* Do we at least have room for a macinfo type byte? */
21111 if (mac_ptr >= mac_end)
21112 {
21113 dwarf2_section_buffer_overflow_complaint (section);
21114 break;
21115 }
21116
21117 macinfo_type = read_1_byte (abfd, mac_ptr);
21118 mac_ptr++;
21119
21120 /* Note that we rely on the fact that the corresponding GNU and
21121 DWARF constants are the same. */
21122 switch (macinfo_type)
21123 {
21124 /* A zero macinfo type indicates the end of the macro
21125 information. */
21126 case 0:
21127 break;
21128
21129 case DW_MACRO_GNU_define:
21130 case DW_MACRO_GNU_undef:
21131 case DW_MACRO_GNU_define_indirect:
21132 case DW_MACRO_GNU_undef_indirect:
21133 case DW_MACRO_GNU_define_indirect_alt:
21134 case DW_MACRO_GNU_undef_indirect_alt:
21135 {
21136 unsigned int bytes_read;
21137 int line;
21138 const char *body;
21139 int is_define;
21140
21141 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21142 mac_ptr += bytes_read;
21143
21144 if (macinfo_type == DW_MACRO_GNU_define
21145 || macinfo_type == DW_MACRO_GNU_undef)
21146 {
21147 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21148 mac_ptr += bytes_read;
21149 }
21150 else
21151 {
21152 LONGEST str_offset;
21153
21154 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21155 mac_ptr += offset_size;
21156
21157 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
21158 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21159 || section_is_dwz)
21160 {
21161 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21162
21163 body = read_indirect_string_from_dwz (dwz, str_offset);
21164 }
21165 else
21166 body = read_indirect_string_at_offset (abfd, str_offset);
21167 }
21168
21169 is_define = (macinfo_type == DW_MACRO_GNU_define
21170 || macinfo_type == DW_MACRO_GNU_define_indirect
21171 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
21172 if (! current_file)
21173 {
21174 /* DWARF violation as no main source is present. */
21175 complaint (&symfile_complaints,
21176 _("debug info with no main source gives macro %s "
21177 "on line %d: %s"),
21178 is_define ? _("definition") : _("undefinition"),
21179 line, body);
21180 break;
21181 }
21182 if ((line == 0 && !at_commandline)
21183 || (line != 0 && at_commandline))
21184 complaint (&symfile_complaints,
21185 _("debug info gives %s macro %s with %s line %d: %s"),
21186 at_commandline ? _("command-line") : _("in-file"),
21187 is_define ? _("definition") : _("undefinition"),
21188 line == 0 ? _("zero") : _("non-zero"), line, body);
21189
21190 if (is_define)
21191 parse_macro_definition (current_file, line, body);
21192 else
21193 {
21194 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
21195 || macinfo_type == DW_MACRO_GNU_undef_indirect
21196 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
21197 macro_undef (current_file, line, body);
21198 }
21199 }
21200 break;
21201
21202 case DW_MACRO_GNU_start_file:
21203 {
21204 unsigned int bytes_read;
21205 int line, file;
21206
21207 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21208 mac_ptr += bytes_read;
21209 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21210 mac_ptr += bytes_read;
21211
21212 if ((line == 0 && !at_commandline)
21213 || (line != 0 && at_commandline))
21214 complaint (&symfile_complaints,
21215 _("debug info gives source %d included "
21216 "from %s at %s line %d"),
21217 file, at_commandline ? _("command-line") : _("file"),
21218 line == 0 ? _("zero") : _("non-zero"), line);
21219
21220 if (at_commandline)
21221 {
21222 /* This DW_MACRO_GNU_start_file was executed in the
21223 pass one. */
21224 at_commandline = 0;
21225 }
21226 else
21227 current_file = macro_start_file (file, line, current_file, lh);
21228 }
21229 break;
21230
21231 case DW_MACRO_GNU_end_file:
21232 if (! current_file)
21233 complaint (&symfile_complaints,
21234 _("macro debug info has an unmatched "
21235 "`close_file' directive"));
21236 else
21237 {
21238 current_file = current_file->included_by;
21239 if (! current_file)
21240 {
21241 enum dwarf_macro_record_type next_type;
21242
21243 /* GCC circa March 2002 doesn't produce the zero
21244 type byte marking the end of the compilation
21245 unit. Complain if it's not there, but exit no
21246 matter what. */
21247
21248 /* Do we at least have room for a macinfo type byte? */
21249 if (mac_ptr >= mac_end)
21250 {
21251 dwarf2_section_buffer_overflow_complaint (section);
21252 return;
21253 }
21254
21255 /* We don't increment mac_ptr here, so this is just
21256 a look-ahead. */
21257 next_type = read_1_byte (abfd, mac_ptr);
21258 if (next_type != 0)
21259 complaint (&symfile_complaints,
21260 _("no terminating 0-type entry for "
21261 "macros in `.debug_macinfo' section"));
21262
21263 return;
21264 }
21265 }
21266 break;
21267
21268 case DW_MACRO_GNU_transparent_include:
21269 case DW_MACRO_GNU_transparent_include_alt:
21270 {
21271 LONGEST offset;
21272 void **slot;
21273 bfd *include_bfd = abfd;
21274 struct dwarf2_section_info *include_section = section;
21275 struct dwarf2_section_info alt_section;
21276 const gdb_byte *include_mac_end = mac_end;
21277 int is_dwz = section_is_dwz;
21278 const gdb_byte *new_mac_ptr;
21279
21280 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21281 mac_ptr += offset_size;
21282
21283 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21284 {
21285 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21286
21287 dwarf2_read_section (objfile, &dwz->macro);
21288
21289 include_section = &dwz->macro;
21290 include_bfd = get_section_bfd_owner (include_section);
21291 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21292 is_dwz = 1;
21293 }
21294
21295 new_mac_ptr = include_section->buffer + offset;
21296 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21297
21298 if (*slot != NULL)
21299 {
21300 /* This has actually happened; see
21301 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21302 complaint (&symfile_complaints,
21303 _("recursive DW_MACRO_GNU_transparent_include in "
21304 ".debug_macro section"));
21305 }
21306 else
21307 {
21308 *slot = (void *) new_mac_ptr;
21309
21310 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
21311 include_mac_end, current_file, lh,
21312 section, section_is_gnu, is_dwz,
21313 offset_size, include_hash);
21314
21315 htab_remove_elt (include_hash, (void *) new_mac_ptr);
21316 }
21317 }
21318 break;
21319
21320 case DW_MACINFO_vendor_ext:
21321 if (!section_is_gnu)
21322 {
21323 unsigned int bytes_read;
21324 int constant;
21325
21326 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21327 mac_ptr += bytes_read;
21328 read_direct_string (abfd, mac_ptr, &bytes_read);
21329 mac_ptr += bytes_read;
21330
21331 /* We don't recognize any vendor extensions. */
21332 break;
21333 }
21334 /* FALLTHROUGH */
21335
21336 default:
21337 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21338 mac_ptr, mac_end, abfd, offset_size,
21339 section);
21340 if (mac_ptr == NULL)
21341 return;
21342 break;
21343 }
21344 } while (macinfo_type != 0);
21345 }
21346
21347 static void
21348 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
21349 int section_is_gnu)
21350 {
21351 struct objfile *objfile = dwarf2_per_objfile->objfile;
21352 struct line_header *lh = cu->line_header;
21353 bfd *abfd;
21354 const gdb_byte *mac_ptr, *mac_end;
21355 struct macro_source_file *current_file = 0;
21356 enum dwarf_macro_record_type macinfo_type;
21357 unsigned int offset_size = cu->header.offset_size;
21358 const gdb_byte *opcode_definitions[256];
21359 struct cleanup *cleanup;
21360 htab_t include_hash;
21361 void **slot;
21362 struct dwarf2_section_info *section;
21363 const char *section_name;
21364
21365 if (cu->dwo_unit != NULL)
21366 {
21367 if (section_is_gnu)
21368 {
21369 section = &cu->dwo_unit->dwo_file->sections.macro;
21370 section_name = ".debug_macro.dwo";
21371 }
21372 else
21373 {
21374 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21375 section_name = ".debug_macinfo.dwo";
21376 }
21377 }
21378 else
21379 {
21380 if (section_is_gnu)
21381 {
21382 section = &dwarf2_per_objfile->macro;
21383 section_name = ".debug_macro";
21384 }
21385 else
21386 {
21387 section = &dwarf2_per_objfile->macinfo;
21388 section_name = ".debug_macinfo";
21389 }
21390 }
21391
21392 dwarf2_read_section (objfile, section);
21393 if (section->buffer == NULL)
21394 {
21395 complaint (&symfile_complaints, _("missing %s section"), section_name);
21396 return;
21397 }
21398 abfd = get_section_bfd_owner (section);
21399
21400 /* First pass: Find the name of the base filename.
21401 This filename is needed in order to process all macros whose definition
21402 (or undefinition) comes from the command line. These macros are defined
21403 before the first DW_MACINFO_start_file entry, and yet still need to be
21404 associated to the base file.
21405
21406 To determine the base file name, we scan the macro definitions until we
21407 reach the first DW_MACINFO_start_file entry. We then initialize
21408 CURRENT_FILE accordingly so that any macro definition found before the
21409 first DW_MACINFO_start_file can still be associated to the base file. */
21410
21411 mac_ptr = section->buffer + offset;
21412 mac_end = section->buffer + section->size;
21413
21414 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21415 &offset_size, section_is_gnu);
21416 if (mac_ptr == NULL)
21417 {
21418 /* We already issued a complaint. */
21419 return;
21420 }
21421
21422 do
21423 {
21424 /* Do we at least have room for a macinfo type byte? */
21425 if (mac_ptr >= mac_end)
21426 {
21427 /* Complaint is printed during the second pass as GDB will probably
21428 stop the first pass earlier upon finding
21429 DW_MACINFO_start_file. */
21430 break;
21431 }
21432
21433 macinfo_type = read_1_byte (abfd, mac_ptr);
21434 mac_ptr++;
21435
21436 /* Note that we rely on the fact that the corresponding GNU and
21437 DWARF constants are the same. */
21438 switch (macinfo_type)
21439 {
21440 /* A zero macinfo type indicates the end of the macro
21441 information. */
21442 case 0:
21443 break;
21444
21445 case DW_MACRO_GNU_define:
21446 case DW_MACRO_GNU_undef:
21447 /* Only skip the data by MAC_PTR. */
21448 {
21449 unsigned int bytes_read;
21450
21451 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21452 mac_ptr += bytes_read;
21453 read_direct_string (abfd, mac_ptr, &bytes_read);
21454 mac_ptr += bytes_read;
21455 }
21456 break;
21457
21458 case DW_MACRO_GNU_start_file:
21459 {
21460 unsigned int bytes_read;
21461 int line, file;
21462
21463 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21464 mac_ptr += bytes_read;
21465 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21466 mac_ptr += bytes_read;
21467
21468 current_file = macro_start_file (file, line, current_file, lh);
21469 }
21470 break;
21471
21472 case DW_MACRO_GNU_end_file:
21473 /* No data to skip by MAC_PTR. */
21474 break;
21475
21476 case DW_MACRO_GNU_define_indirect:
21477 case DW_MACRO_GNU_undef_indirect:
21478 case DW_MACRO_GNU_define_indirect_alt:
21479 case DW_MACRO_GNU_undef_indirect_alt:
21480 {
21481 unsigned int bytes_read;
21482
21483 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21484 mac_ptr += bytes_read;
21485 mac_ptr += offset_size;
21486 }
21487 break;
21488
21489 case DW_MACRO_GNU_transparent_include:
21490 case DW_MACRO_GNU_transparent_include_alt:
21491 /* Note that, according to the spec, a transparent include
21492 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21493 skip this opcode. */
21494 mac_ptr += offset_size;
21495 break;
21496
21497 case DW_MACINFO_vendor_ext:
21498 /* Only skip the data by MAC_PTR. */
21499 if (!section_is_gnu)
21500 {
21501 unsigned int bytes_read;
21502
21503 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21504 mac_ptr += bytes_read;
21505 read_direct_string (abfd, mac_ptr, &bytes_read);
21506 mac_ptr += bytes_read;
21507 }
21508 /* FALLTHROUGH */
21509
21510 default:
21511 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
21512 mac_ptr, mac_end, abfd, offset_size,
21513 section);
21514 if (mac_ptr == NULL)
21515 return;
21516 break;
21517 }
21518 } while (macinfo_type != 0 && current_file == NULL);
21519
21520 /* Second pass: Process all entries.
21521
21522 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21523 command-line macro definitions/undefinitions. This flag is unset when we
21524 reach the first DW_MACINFO_start_file entry. */
21525
21526 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21527 NULL, xcalloc, xfree);
21528 cleanup = make_cleanup_htab_delete (include_hash);
21529 mac_ptr = section->buffer + offset;
21530 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
21531 *slot = (void *) mac_ptr;
21532 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
21533 current_file, lh, section,
21534 section_is_gnu, 0, offset_size, include_hash);
21535 do_cleanups (cleanup);
21536 }
21537
21538 /* Check if the attribute's form is a DW_FORM_block*
21539 if so return true else false. */
21540
21541 static int
21542 attr_form_is_block (const struct attribute *attr)
21543 {
21544 return (attr == NULL ? 0 :
21545 attr->form == DW_FORM_block1
21546 || attr->form == DW_FORM_block2
21547 || attr->form == DW_FORM_block4
21548 || attr->form == DW_FORM_block
21549 || attr->form == DW_FORM_exprloc);
21550 }
21551
21552 /* Return non-zero if ATTR's value is a section offset --- classes
21553 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21554 You may use DW_UNSND (attr) to retrieve such offsets.
21555
21556 Section 7.5.4, "Attribute Encodings", explains that no attribute
21557 may have a value that belongs to more than one of these classes; it
21558 would be ambiguous if we did, because we use the same forms for all
21559 of them. */
21560
21561 static int
21562 attr_form_is_section_offset (const struct attribute *attr)
21563 {
21564 return (attr->form == DW_FORM_data4
21565 || attr->form == DW_FORM_data8
21566 || attr->form == DW_FORM_sec_offset);
21567 }
21568
21569 /* Return non-zero if ATTR's value falls in the 'constant' class, or
21570 zero otherwise. When this function returns true, you can apply
21571 dwarf2_get_attr_constant_value to it.
21572
21573 However, note that for some attributes you must check
21574 attr_form_is_section_offset before using this test. DW_FORM_data4
21575 and DW_FORM_data8 are members of both the constant class, and of
21576 the classes that contain offsets into other debug sections
21577 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21578 that, if an attribute's can be either a constant or one of the
21579 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21580 taken as section offsets, not constants. */
21581
21582 static int
21583 attr_form_is_constant (const struct attribute *attr)
21584 {
21585 switch (attr->form)
21586 {
21587 case DW_FORM_sdata:
21588 case DW_FORM_udata:
21589 case DW_FORM_data1:
21590 case DW_FORM_data2:
21591 case DW_FORM_data4:
21592 case DW_FORM_data8:
21593 return 1;
21594 default:
21595 return 0;
21596 }
21597 }
21598
21599
21600 /* DW_ADDR is always stored already as sect_offset; despite for the forms
21601 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21602
21603 static int
21604 attr_form_is_ref (const struct attribute *attr)
21605 {
21606 switch (attr->form)
21607 {
21608 case DW_FORM_ref_addr:
21609 case DW_FORM_ref1:
21610 case DW_FORM_ref2:
21611 case DW_FORM_ref4:
21612 case DW_FORM_ref8:
21613 case DW_FORM_ref_udata:
21614 case DW_FORM_GNU_ref_alt:
21615 return 1;
21616 default:
21617 return 0;
21618 }
21619 }
21620
21621 /* Return the .debug_loc section to use for CU.
21622 For DWO files use .debug_loc.dwo. */
21623
21624 static struct dwarf2_section_info *
21625 cu_debug_loc_section (struct dwarf2_cu *cu)
21626 {
21627 if (cu->dwo_unit)
21628 return &cu->dwo_unit->dwo_file->sections.loc;
21629 return &dwarf2_per_objfile->loc;
21630 }
21631
21632 /* A helper function that fills in a dwarf2_loclist_baton. */
21633
21634 static void
21635 fill_in_loclist_baton (struct dwarf2_cu *cu,
21636 struct dwarf2_loclist_baton *baton,
21637 const struct attribute *attr)
21638 {
21639 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21640
21641 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21642
21643 baton->per_cu = cu->per_cu;
21644 gdb_assert (baton->per_cu);
21645 /* We don't know how long the location list is, but make sure we
21646 don't run off the edge of the section. */
21647 baton->size = section->size - DW_UNSND (attr);
21648 baton->data = section->buffer + DW_UNSND (attr);
21649 baton->base_address = cu->base_address;
21650 baton->from_dwo = cu->dwo_unit != NULL;
21651 }
21652
21653 static void
21654 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21655 struct dwarf2_cu *cu, int is_block)
21656 {
21657 struct objfile *objfile = dwarf2_per_objfile->objfile;
21658 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21659
21660 if (attr_form_is_section_offset (attr)
21661 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21662 the section. If so, fall through to the complaint in the
21663 other branch. */
21664 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21665 {
21666 struct dwarf2_loclist_baton *baton;
21667
21668 baton = obstack_alloc (&objfile->objfile_obstack,
21669 sizeof (struct dwarf2_loclist_baton));
21670
21671 fill_in_loclist_baton (cu, baton, attr);
21672
21673 if (cu->base_known == 0)
21674 complaint (&symfile_complaints,
21675 _("Location list used without "
21676 "specifying the CU base address."));
21677
21678 SYMBOL_ACLASS_INDEX (sym) = (is_block
21679 ? dwarf2_loclist_block_index
21680 : dwarf2_loclist_index);
21681 SYMBOL_LOCATION_BATON (sym) = baton;
21682 }
21683 else
21684 {
21685 struct dwarf2_locexpr_baton *baton;
21686
21687 baton = obstack_alloc (&objfile->objfile_obstack,
21688 sizeof (struct dwarf2_locexpr_baton));
21689 baton->per_cu = cu->per_cu;
21690 gdb_assert (baton->per_cu);
21691
21692 if (attr_form_is_block (attr))
21693 {
21694 /* Note that we're just copying the block's data pointer
21695 here, not the actual data. We're still pointing into the
21696 info_buffer for SYM's objfile; right now we never release
21697 that buffer, but when we do clean up properly this may
21698 need to change. */
21699 baton->size = DW_BLOCK (attr)->size;
21700 baton->data = DW_BLOCK (attr)->data;
21701 }
21702 else
21703 {
21704 dwarf2_invalid_attrib_class_complaint ("location description",
21705 SYMBOL_NATURAL_NAME (sym));
21706 baton->size = 0;
21707 }
21708
21709 SYMBOL_ACLASS_INDEX (sym) = (is_block
21710 ? dwarf2_locexpr_block_index
21711 : dwarf2_locexpr_index);
21712 SYMBOL_LOCATION_BATON (sym) = baton;
21713 }
21714 }
21715
21716 /* Return the OBJFILE associated with the compilation unit CU. If CU
21717 came from a separate debuginfo file, then the master objfile is
21718 returned. */
21719
21720 struct objfile *
21721 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21722 {
21723 struct objfile *objfile = per_cu->objfile;
21724
21725 /* Return the master objfile, so that we can report and look up the
21726 correct file containing this variable. */
21727 if (objfile->separate_debug_objfile_backlink)
21728 objfile = objfile->separate_debug_objfile_backlink;
21729
21730 return objfile;
21731 }
21732
21733 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21734 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21735 CU_HEADERP first. */
21736
21737 static const struct comp_unit_head *
21738 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21739 struct dwarf2_per_cu_data *per_cu)
21740 {
21741 const gdb_byte *info_ptr;
21742
21743 if (per_cu->cu)
21744 return &per_cu->cu->header;
21745
21746 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21747
21748 memset (cu_headerp, 0, sizeof (*cu_headerp));
21749 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21750
21751 return cu_headerp;
21752 }
21753
21754 /* Return the address size given in the compilation unit header for CU. */
21755
21756 int
21757 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21758 {
21759 struct comp_unit_head cu_header_local;
21760 const struct comp_unit_head *cu_headerp;
21761
21762 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21763
21764 return cu_headerp->addr_size;
21765 }
21766
21767 /* Return the offset size given in the compilation unit header for CU. */
21768
21769 int
21770 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21771 {
21772 struct comp_unit_head cu_header_local;
21773 const struct comp_unit_head *cu_headerp;
21774
21775 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21776
21777 return cu_headerp->offset_size;
21778 }
21779
21780 /* See its dwarf2loc.h declaration. */
21781
21782 int
21783 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21784 {
21785 struct comp_unit_head cu_header_local;
21786 const struct comp_unit_head *cu_headerp;
21787
21788 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21789
21790 if (cu_headerp->version == 2)
21791 return cu_headerp->addr_size;
21792 else
21793 return cu_headerp->offset_size;
21794 }
21795
21796 /* Return the text offset of the CU. The returned offset comes from
21797 this CU's objfile. If this objfile came from a separate debuginfo
21798 file, then the offset may be different from the corresponding
21799 offset in the parent objfile. */
21800
21801 CORE_ADDR
21802 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21803 {
21804 struct objfile *objfile = per_cu->objfile;
21805
21806 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21807 }
21808
21809 /* Locate the .debug_info compilation unit from CU's objfile which contains
21810 the DIE at OFFSET. Raises an error on failure. */
21811
21812 static struct dwarf2_per_cu_data *
21813 dwarf2_find_containing_comp_unit (sect_offset offset,
21814 unsigned int offset_in_dwz,
21815 struct objfile *objfile)
21816 {
21817 struct dwarf2_per_cu_data *this_cu;
21818 int low, high;
21819 const sect_offset *cu_off;
21820
21821 low = 0;
21822 high = dwarf2_per_objfile->n_comp_units - 1;
21823 while (high > low)
21824 {
21825 struct dwarf2_per_cu_data *mid_cu;
21826 int mid = low + (high - low) / 2;
21827
21828 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21829 cu_off = &mid_cu->offset;
21830 if (mid_cu->is_dwz > offset_in_dwz
21831 || (mid_cu->is_dwz == offset_in_dwz
21832 && cu_off->sect_off >= offset.sect_off))
21833 high = mid;
21834 else
21835 low = mid + 1;
21836 }
21837 gdb_assert (low == high);
21838 this_cu = dwarf2_per_objfile->all_comp_units[low];
21839 cu_off = &this_cu->offset;
21840 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21841 {
21842 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21843 error (_("Dwarf Error: could not find partial DIE containing "
21844 "offset 0x%lx [in module %s]"),
21845 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21846
21847 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21848 <= offset.sect_off);
21849 return dwarf2_per_objfile->all_comp_units[low-1];
21850 }
21851 else
21852 {
21853 this_cu = dwarf2_per_objfile->all_comp_units[low];
21854 if (low == dwarf2_per_objfile->n_comp_units - 1
21855 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21856 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21857 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21858 return this_cu;
21859 }
21860 }
21861
21862 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21863
21864 static void
21865 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21866 {
21867 memset (cu, 0, sizeof (*cu));
21868 per_cu->cu = cu;
21869 cu->per_cu = per_cu;
21870 cu->objfile = per_cu->objfile;
21871 obstack_init (&cu->comp_unit_obstack);
21872 }
21873
21874 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21875
21876 static void
21877 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21878 enum language pretend_language)
21879 {
21880 struct attribute *attr;
21881
21882 /* Set the language we're debugging. */
21883 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21884 if (attr)
21885 set_cu_language (DW_UNSND (attr), cu);
21886 else
21887 {
21888 cu->language = pretend_language;
21889 cu->language_defn = language_def (cu->language);
21890 }
21891
21892 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21893 if (attr)
21894 cu->producer = DW_STRING (attr);
21895 }
21896
21897 /* Release one cached compilation unit, CU. We unlink it from the tree
21898 of compilation units, but we don't remove it from the read_in_chain;
21899 the caller is responsible for that.
21900 NOTE: DATA is a void * because this function is also used as a
21901 cleanup routine. */
21902
21903 static void
21904 free_heap_comp_unit (void *data)
21905 {
21906 struct dwarf2_cu *cu = data;
21907
21908 gdb_assert (cu->per_cu != NULL);
21909 cu->per_cu->cu = NULL;
21910 cu->per_cu = NULL;
21911
21912 obstack_free (&cu->comp_unit_obstack, NULL);
21913
21914 xfree (cu);
21915 }
21916
21917 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21918 when we're finished with it. We can't free the pointer itself, but be
21919 sure to unlink it from the cache. Also release any associated storage. */
21920
21921 static void
21922 free_stack_comp_unit (void *data)
21923 {
21924 struct dwarf2_cu *cu = data;
21925
21926 gdb_assert (cu->per_cu != NULL);
21927 cu->per_cu->cu = NULL;
21928 cu->per_cu = NULL;
21929
21930 obstack_free (&cu->comp_unit_obstack, NULL);
21931 cu->partial_dies = NULL;
21932 }
21933
21934 /* Free all cached compilation units. */
21935
21936 static void
21937 free_cached_comp_units (void *data)
21938 {
21939 struct dwarf2_per_cu_data *per_cu, **last_chain;
21940
21941 per_cu = dwarf2_per_objfile->read_in_chain;
21942 last_chain = &dwarf2_per_objfile->read_in_chain;
21943 while (per_cu != NULL)
21944 {
21945 struct dwarf2_per_cu_data *next_cu;
21946
21947 next_cu = per_cu->cu->read_in_chain;
21948
21949 free_heap_comp_unit (per_cu->cu);
21950 *last_chain = next_cu;
21951
21952 per_cu = next_cu;
21953 }
21954 }
21955
21956 /* Increase the age counter on each cached compilation unit, and free
21957 any that are too old. */
21958
21959 static void
21960 age_cached_comp_units (void)
21961 {
21962 struct dwarf2_per_cu_data *per_cu, **last_chain;
21963
21964 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21965 per_cu = dwarf2_per_objfile->read_in_chain;
21966 while (per_cu != NULL)
21967 {
21968 per_cu->cu->last_used ++;
21969 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21970 dwarf2_mark (per_cu->cu);
21971 per_cu = per_cu->cu->read_in_chain;
21972 }
21973
21974 per_cu = dwarf2_per_objfile->read_in_chain;
21975 last_chain = &dwarf2_per_objfile->read_in_chain;
21976 while (per_cu != NULL)
21977 {
21978 struct dwarf2_per_cu_data *next_cu;
21979
21980 next_cu = per_cu->cu->read_in_chain;
21981
21982 if (!per_cu->cu->mark)
21983 {
21984 free_heap_comp_unit (per_cu->cu);
21985 *last_chain = next_cu;
21986 }
21987 else
21988 last_chain = &per_cu->cu->read_in_chain;
21989
21990 per_cu = next_cu;
21991 }
21992 }
21993
21994 /* Remove a single compilation unit from the cache. */
21995
21996 static void
21997 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21998 {
21999 struct dwarf2_per_cu_data *per_cu, **last_chain;
22000
22001 per_cu = dwarf2_per_objfile->read_in_chain;
22002 last_chain = &dwarf2_per_objfile->read_in_chain;
22003 while (per_cu != NULL)
22004 {
22005 struct dwarf2_per_cu_data *next_cu;
22006
22007 next_cu = per_cu->cu->read_in_chain;
22008
22009 if (per_cu == target_per_cu)
22010 {
22011 free_heap_comp_unit (per_cu->cu);
22012 per_cu->cu = NULL;
22013 *last_chain = next_cu;
22014 break;
22015 }
22016 else
22017 last_chain = &per_cu->cu->read_in_chain;
22018
22019 per_cu = next_cu;
22020 }
22021 }
22022
22023 /* Release all extra memory associated with OBJFILE. */
22024
22025 void
22026 dwarf2_free_objfile (struct objfile *objfile)
22027 {
22028 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22029
22030 if (dwarf2_per_objfile == NULL)
22031 return;
22032
22033 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22034 free_cached_comp_units (NULL);
22035
22036 if (dwarf2_per_objfile->quick_file_names_table)
22037 htab_delete (dwarf2_per_objfile->quick_file_names_table);
22038
22039 if (dwarf2_per_objfile->line_header_hash)
22040 htab_delete (dwarf2_per_objfile->line_header_hash);
22041
22042 /* Everything else should be on the objfile obstack. */
22043 }
22044
22045 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22046 We store these in a hash table separate from the DIEs, and preserve them
22047 when the DIEs are flushed out of cache.
22048
22049 The CU "per_cu" pointer is needed because offset alone is not enough to
22050 uniquely identify the type. A file may have multiple .debug_types sections,
22051 or the type may come from a DWO file. Furthermore, while it's more logical
22052 to use per_cu->section+offset, with Fission the section with the data is in
22053 the DWO file but we don't know that section at the point we need it.
22054 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22055 because we can enter the lookup routine, get_die_type_at_offset, from
22056 outside this file, and thus won't necessarily have PER_CU->cu.
22057 Fortunately, PER_CU is stable for the life of the objfile. */
22058
22059 struct dwarf2_per_cu_offset_and_type
22060 {
22061 const struct dwarf2_per_cu_data *per_cu;
22062 sect_offset offset;
22063 struct type *type;
22064 };
22065
22066 /* Hash function for a dwarf2_per_cu_offset_and_type. */
22067
22068 static hashval_t
22069 per_cu_offset_and_type_hash (const void *item)
22070 {
22071 const struct dwarf2_per_cu_offset_and_type *ofs = item;
22072
22073 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
22074 }
22075
22076 /* Equality function for a dwarf2_per_cu_offset_and_type. */
22077
22078 static int
22079 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
22080 {
22081 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22082 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
22083
22084 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22085 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
22086 }
22087
22088 /* Set the type associated with DIE to TYPE. Save it in CU's hash
22089 table if necessary. For convenience, return TYPE.
22090
22091 The DIEs reading must have careful ordering to:
22092 * Not cause infite loops trying to read in DIEs as a prerequisite for
22093 reading current DIE.
22094 * Not trying to dereference contents of still incompletely read in types
22095 while reading in other DIEs.
22096 * Enable referencing still incompletely read in types just by a pointer to
22097 the type without accessing its fields.
22098
22099 Therefore caller should follow these rules:
22100 * Try to fetch any prerequisite types we may need to build this DIE type
22101 before building the type and calling set_die_type.
22102 * After building type call set_die_type for current DIE as soon as
22103 possible before fetching more types to complete the current type.
22104 * Make the type as complete as possible before fetching more types. */
22105
22106 static struct type *
22107 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22108 {
22109 struct dwarf2_per_cu_offset_and_type **slot, ofs;
22110 struct objfile *objfile = cu->objfile;
22111 struct attribute *attr;
22112 struct dynamic_prop prop;
22113
22114 /* For Ada types, make sure that the gnat-specific data is always
22115 initialized (if not already set). There are a few types where
22116 we should not be doing so, because the type-specific area is
22117 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22118 where the type-specific area is used to store the floatformat).
22119 But this is not a problem, because the gnat-specific information
22120 is actually not needed for these types. */
22121 if (need_gnat_info (cu)
22122 && TYPE_CODE (type) != TYPE_CODE_FUNC
22123 && TYPE_CODE (type) != TYPE_CODE_FLT
22124 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22125 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22126 && TYPE_CODE (type) != TYPE_CODE_METHOD
22127 && !HAVE_GNAT_AUX_INFO (type))
22128 INIT_GNAT_SPECIFIC (type);
22129
22130 /* Read DW_AT_data_location and set in type. */
22131 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22132 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22133 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
22134
22135 if (dwarf2_per_objfile->die_type_hash == NULL)
22136 {
22137 dwarf2_per_objfile->die_type_hash =
22138 htab_create_alloc_ex (127,
22139 per_cu_offset_and_type_hash,
22140 per_cu_offset_and_type_eq,
22141 NULL,
22142 &objfile->objfile_obstack,
22143 hashtab_obstack_allocate,
22144 dummy_obstack_deallocate);
22145 }
22146
22147 ofs.per_cu = cu->per_cu;
22148 ofs.offset = die->offset;
22149 ofs.type = type;
22150 slot = (struct dwarf2_per_cu_offset_and_type **)
22151 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
22152 if (*slot)
22153 complaint (&symfile_complaints,
22154 _("A problem internal to GDB: DIE 0x%x has type already set"),
22155 die->offset.sect_off);
22156 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
22157 **slot = ofs;
22158 return type;
22159 }
22160
22161 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22162 or return NULL if the die does not have a saved type. */
22163
22164 static struct type *
22165 get_die_type_at_offset (sect_offset offset,
22166 struct dwarf2_per_cu_data *per_cu)
22167 {
22168 struct dwarf2_per_cu_offset_and_type *slot, ofs;
22169
22170 if (dwarf2_per_objfile->die_type_hash == NULL)
22171 return NULL;
22172
22173 ofs.per_cu = per_cu;
22174 ofs.offset = offset;
22175 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
22176 if (slot)
22177 return slot->type;
22178 else
22179 return NULL;
22180 }
22181
22182 /* Look up the type for DIE in CU in die_type_hash,
22183 or return NULL if DIE does not have a saved type. */
22184
22185 static struct type *
22186 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22187 {
22188 return get_die_type_at_offset (die->offset, cu->per_cu);
22189 }
22190
22191 /* Add a dependence relationship from CU to REF_PER_CU. */
22192
22193 static void
22194 dwarf2_add_dependence (struct dwarf2_cu *cu,
22195 struct dwarf2_per_cu_data *ref_per_cu)
22196 {
22197 void **slot;
22198
22199 if (cu->dependencies == NULL)
22200 cu->dependencies
22201 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22202 NULL, &cu->comp_unit_obstack,
22203 hashtab_obstack_allocate,
22204 dummy_obstack_deallocate);
22205
22206 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22207 if (*slot == NULL)
22208 *slot = ref_per_cu;
22209 }
22210
22211 /* Subroutine of dwarf2_mark to pass to htab_traverse.
22212 Set the mark field in every compilation unit in the
22213 cache that we must keep because we are keeping CU. */
22214
22215 static int
22216 dwarf2_mark_helper (void **slot, void *data)
22217 {
22218 struct dwarf2_per_cu_data *per_cu;
22219
22220 per_cu = (struct dwarf2_per_cu_data *) *slot;
22221
22222 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22223 reading of the chain. As such dependencies remain valid it is not much
22224 useful to track and undo them during QUIT cleanups. */
22225 if (per_cu->cu == NULL)
22226 return 1;
22227
22228 if (per_cu->cu->mark)
22229 return 1;
22230 per_cu->cu->mark = 1;
22231
22232 if (per_cu->cu->dependencies != NULL)
22233 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22234
22235 return 1;
22236 }
22237
22238 /* Set the mark field in CU and in every other compilation unit in the
22239 cache that we must keep because we are keeping CU. */
22240
22241 static void
22242 dwarf2_mark (struct dwarf2_cu *cu)
22243 {
22244 if (cu->mark)
22245 return;
22246 cu->mark = 1;
22247 if (cu->dependencies != NULL)
22248 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
22249 }
22250
22251 static void
22252 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22253 {
22254 while (per_cu)
22255 {
22256 per_cu->cu->mark = 0;
22257 per_cu = per_cu->cu->read_in_chain;
22258 }
22259 }
22260
22261 /* Trivial hash function for partial_die_info: the hash value of a DIE
22262 is its offset in .debug_info for this objfile. */
22263
22264 static hashval_t
22265 partial_die_hash (const void *item)
22266 {
22267 const struct partial_die_info *part_die = item;
22268
22269 return part_die->offset.sect_off;
22270 }
22271
22272 /* Trivial comparison function for partial_die_info structures: two DIEs
22273 are equal if they have the same offset. */
22274
22275 static int
22276 partial_die_eq (const void *item_lhs, const void *item_rhs)
22277 {
22278 const struct partial_die_info *part_die_lhs = item_lhs;
22279 const struct partial_die_info *part_die_rhs = item_rhs;
22280
22281 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
22282 }
22283
22284 static struct cmd_list_element *set_dwarf2_cmdlist;
22285 static struct cmd_list_element *show_dwarf2_cmdlist;
22286
22287 static void
22288 set_dwarf2_cmd (char *args, int from_tty)
22289 {
22290 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22291 gdb_stdout);
22292 }
22293
22294 static void
22295 show_dwarf2_cmd (char *args, int from_tty)
22296 {
22297 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22298 }
22299
22300 /* Free data associated with OBJFILE, if necessary. */
22301
22302 static void
22303 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
22304 {
22305 struct dwarf2_per_objfile *data = d;
22306 int ix;
22307
22308 /* Make sure we don't accidentally use dwarf2_per_objfile while
22309 cleaning up. */
22310 dwarf2_per_objfile = NULL;
22311
22312 for (ix = 0; ix < data->n_comp_units; ++ix)
22313 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
22314
22315 for (ix = 0; ix < data->n_type_units; ++ix)
22316 VEC_free (dwarf2_per_cu_ptr,
22317 data->all_type_units[ix]->per_cu.imported_symtabs);
22318 xfree (data->all_type_units);
22319
22320 VEC_free (dwarf2_section_info_def, data->types);
22321
22322 if (data->dwo_files)
22323 free_dwo_files (data->dwo_files, objfile);
22324 if (data->dwp_file)
22325 gdb_bfd_unref (data->dwp_file->dbfd);
22326
22327 if (data->dwz_file && data->dwz_file->dwz_bfd)
22328 gdb_bfd_unref (data->dwz_file->dwz_bfd);
22329 }
22330
22331 \f
22332 /* The "save gdb-index" command. */
22333
22334 /* The contents of the hash table we create when building the string
22335 table. */
22336 struct strtab_entry
22337 {
22338 offset_type offset;
22339 const char *str;
22340 };
22341
22342 /* Hash function for a strtab_entry.
22343
22344 Function is used only during write_hash_table so no index format backward
22345 compatibility is needed. */
22346
22347 static hashval_t
22348 hash_strtab_entry (const void *e)
22349 {
22350 const struct strtab_entry *entry = e;
22351 return mapped_index_string_hash (INT_MAX, entry->str);
22352 }
22353
22354 /* Equality function for a strtab_entry. */
22355
22356 static int
22357 eq_strtab_entry (const void *a, const void *b)
22358 {
22359 const struct strtab_entry *ea = a;
22360 const struct strtab_entry *eb = b;
22361 return !strcmp (ea->str, eb->str);
22362 }
22363
22364 /* Create a strtab_entry hash table. */
22365
22366 static htab_t
22367 create_strtab (void)
22368 {
22369 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22370 xfree, xcalloc, xfree);
22371 }
22372
22373 /* Add a string to the constant pool. Return the string's offset in
22374 host order. */
22375
22376 static offset_type
22377 add_string (htab_t table, struct obstack *cpool, const char *str)
22378 {
22379 void **slot;
22380 struct strtab_entry entry;
22381 struct strtab_entry *result;
22382
22383 entry.str = str;
22384 slot = htab_find_slot (table, &entry, INSERT);
22385 if (*slot)
22386 result = *slot;
22387 else
22388 {
22389 result = XNEW (struct strtab_entry);
22390 result->offset = obstack_object_size (cpool);
22391 result->str = str;
22392 obstack_grow_str0 (cpool, str);
22393 *slot = result;
22394 }
22395 return result->offset;
22396 }
22397
22398 /* An entry in the symbol table. */
22399 struct symtab_index_entry
22400 {
22401 /* The name of the symbol. */
22402 const char *name;
22403 /* The offset of the name in the constant pool. */
22404 offset_type index_offset;
22405 /* A sorted vector of the indices of all the CUs that hold an object
22406 of this name. */
22407 VEC (offset_type) *cu_indices;
22408 };
22409
22410 /* The symbol table. This is a power-of-2-sized hash table. */
22411 struct mapped_symtab
22412 {
22413 offset_type n_elements;
22414 offset_type size;
22415 struct symtab_index_entry **data;
22416 };
22417
22418 /* Hash function for a symtab_index_entry. */
22419
22420 static hashval_t
22421 hash_symtab_entry (const void *e)
22422 {
22423 const struct symtab_index_entry *entry = e;
22424 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22425 sizeof (offset_type) * VEC_length (offset_type,
22426 entry->cu_indices),
22427 0);
22428 }
22429
22430 /* Equality function for a symtab_index_entry. */
22431
22432 static int
22433 eq_symtab_entry (const void *a, const void *b)
22434 {
22435 const struct symtab_index_entry *ea = a;
22436 const struct symtab_index_entry *eb = b;
22437 int len = VEC_length (offset_type, ea->cu_indices);
22438 if (len != VEC_length (offset_type, eb->cu_indices))
22439 return 0;
22440 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22441 VEC_address (offset_type, eb->cu_indices),
22442 sizeof (offset_type) * len);
22443 }
22444
22445 /* Destroy a symtab_index_entry. */
22446
22447 static void
22448 delete_symtab_entry (void *p)
22449 {
22450 struct symtab_index_entry *entry = p;
22451 VEC_free (offset_type, entry->cu_indices);
22452 xfree (entry);
22453 }
22454
22455 /* Create a hash table holding symtab_index_entry objects. */
22456
22457 static htab_t
22458 create_symbol_hash_table (void)
22459 {
22460 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22461 delete_symtab_entry, xcalloc, xfree);
22462 }
22463
22464 /* Create a new mapped symtab object. */
22465
22466 static struct mapped_symtab *
22467 create_mapped_symtab (void)
22468 {
22469 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22470 symtab->n_elements = 0;
22471 symtab->size = 1024;
22472 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22473 return symtab;
22474 }
22475
22476 /* Destroy a mapped_symtab. */
22477
22478 static void
22479 cleanup_mapped_symtab (void *p)
22480 {
22481 struct mapped_symtab *symtab = p;
22482 /* The contents of the array are freed when the other hash table is
22483 destroyed. */
22484 xfree (symtab->data);
22485 xfree (symtab);
22486 }
22487
22488 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
22489 the slot.
22490
22491 Function is used only during write_hash_table so no index format backward
22492 compatibility is needed. */
22493
22494 static struct symtab_index_entry **
22495 find_slot (struct mapped_symtab *symtab, const char *name)
22496 {
22497 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
22498
22499 index = hash & (symtab->size - 1);
22500 step = ((hash * 17) & (symtab->size - 1)) | 1;
22501
22502 for (;;)
22503 {
22504 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22505 return &symtab->data[index];
22506 index = (index + step) & (symtab->size - 1);
22507 }
22508 }
22509
22510 /* Expand SYMTAB's hash table. */
22511
22512 static void
22513 hash_expand (struct mapped_symtab *symtab)
22514 {
22515 offset_type old_size = symtab->size;
22516 offset_type i;
22517 struct symtab_index_entry **old_entries = symtab->data;
22518
22519 symtab->size *= 2;
22520 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22521
22522 for (i = 0; i < old_size; ++i)
22523 {
22524 if (old_entries[i])
22525 {
22526 struct symtab_index_entry **slot = find_slot (symtab,
22527 old_entries[i]->name);
22528 *slot = old_entries[i];
22529 }
22530 }
22531
22532 xfree (old_entries);
22533 }
22534
22535 /* Add an entry to SYMTAB. NAME is the name of the symbol.
22536 CU_INDEX is the index of the CU in which the symbol appears.
22537 IS_STATIC is one if the symbol is static, otherwise zero (global). */
22538
22539 static void
22540 add_index_entry (struct mapped_symtab *symtab, const char *name,
22541 int is_static, gdb_index_symbol_kind kind,
22542 offset_type cu_index)
22543 {
22544 struct symtab_index_entry **slot;
22545 offset_type cu_index_and_attrs;
22546
22547 ++symtab->n_elements;
22548 if (4 * symtab->n_elements / 3 >= symtab->size)
22549 hash_expand (symtab);
22550
22551 slot = find_slot (symtab, name);
22552 if (!*slot)
22553 {
22554 *slot = XNEW (struct symtab_index_entry);
22555 (*slot)->name = name;
22556 /* index_offset is set later. */
22557 (*slot)->cu_indices = NULL;
22558 }
22559
22560 cu_index_and_attrs = 0;
22561 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22562 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22563 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22564
22565 /* We don't want to record an index value twice as we want to avoid the
22566 duplication.
22567 We process all global symbols and then all static symbols
22568 (which would allow us to avoid the duplication by only having to check
22569 the last entry pushed), but a symbol could have multiple kinds in one CU.
22570 To keep things simple we don't worry about the duplication here and
22571 sort and uniqufy the list after we've processed all symbols. */
22572 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22573 }
22574
22575 /* qsort helper routine for uniquify_cu_indices. */
22576
22577 static int
22578 offset_type_compare (const void *ap, const void *bp)
22579 {
22580 offset_type a = *(offset_type *) ap;
22581 offset_type b = *(offset_type *) bp;
22582
22583 return (a > b) - (b > a);
22584 }
22585
22586 /* Sort and remove duplicates of all symbols' cu_indices lists. */
22587
22588 static void
22589 uniquify_cu_indices (struct mapped_symtab *symtab)
22590 {
22591 int i;
22592
22593 for (i = 0; i < symtab->size; ++i)
22594 {
22595 struct symtab_index_entry *entry = symtab->data[i];
22596
22597 if (entry
22598 && entry->cu_indices != NULL)
22599 {
22600 unsigned int next_to_insert, next_to_check;
22601 offset_type last_value;
22602
22603 qsort (VEC_address (offset_type, entry->cu_indices),
22604 VEC_length (offset_type, entry->cu_indices),
22605 sizeof (offset_type), offset_type_compare);
22606
22607 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22608 next_to_insert = 1;
22609 for (next_to_check = 1;
22610 next_to_check < VEC_length (offset_type, entry->cu_indices);
22611 ++next_to_check)
22612 {
22613 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22614 != last_value)
22615 {
22616 last_value = VEC_index (offset_type, entry->cu_indices,
22617 next_to_check);
22618 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22619 last_value);
22620 ++next_to_insert;
22621 }
22622 }
22623 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22624 }
22625 }
22626 }
22627
22628 /* Add a vector of indices to the constant pool. */
22629
22630 static offset_type
22631 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
22632 struct symtab_index_entry *entry)
22633 {
22634 void **slot;
22635
22636 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
22637 if (!*slot)
22638 {
22639 offset_type len = VEC_length (offset_type, entry->cu_indices);
22640 offset_type val = MAYBE_SWAP (len);
22641 offset_type iter;
22642 int i;
22643
22644 *slot = entry;
22645 entry->index_offset = obstack_object_size (cpool);
22646
22647 obstack_grow (cpool, &val, sizeof (val));
22648 for (i = 0;
22649 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22650 ++i)
22651 {
22652 val = MAYBE_SWAP (iter);
22653 obstack_grow (cpool, &val, sizeof (val));
22654 }
22655 }
22656 else
22657 {
22658 struct symtab_index_entry *old_entry = *slot;
22659 entry->index_offset = old_entry->index_offset;
22660 entry = old_entry;
22661 }
22662 return entry->index_offset;
22663 }
22664
22665 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22666 constant pool entries going into the obstack CPOOL. */
22667
22668 static void
22669 write_hash_table (struct mapped_symtab *symtab,
22670 struct obstack *output, struct obstack *cpool)
22671 {
22672 offset_type i;
22673 htab_t symbol_hash_table;
22674 htab_t str_table;
22675
22676 symbol_hash_table = create_symbol_hash_table ();
22677 str_table = create_strtab ();
22678
22679 /* We add all the index vectors to the constant pool first, to
22680 ensure alignment is ok. */
22681 for (i = 0; i < symtab->size; ++i)
22682 {
22683 if (symtab->data[i])
22684 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22685 }
22686
22687 /* Now write out the hash table. */
22688 for (i = 0; i < symtab->size; ++i)
22689 {
22690 offset_type str_off, vec_off;
22691
22692 if (symtab->data[i])
22693 {
22694 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22695 vec_off = symtab->data[i]->index_offset;
22696 }
22697 else
22698 {
22699 /* While 0 is a valid constant pool index, it is not valid
22700 to have 0 for both offsets. */
22701 str_off = 0;
22702 vec_off = 0;
22703 }
22704
22705 str_off = MAYBE_SWAP (str_off);
22706 vec_off = MAYBE_SWAP (vec_off);
22707
22708 obstack_grow (output, &str_off, sizeof (str_off));
22709 obstack_grow (output, &vec_off, sizeof (vec_off));
22710 }
22711
22712 htab_delete (str_table);
22713 htab_delete (symbol_hash_table);
22714 }
22715
22716 /* Struct to map psymtab to CU index in the index file. */
22717 struct psymtab_cu_index_map
22718 {
22719 struct partial_symtab *psymtab;
22720 unsigned int cu_index;
22721 };
22722
22723 static hashval_t
22724 hash_psymtab_cu_index (const void *item)
22725 {
22726 const struct psymtab_cu_index_map *map = item;
22727
22728 return htab_hash_pointer (map->psymtab);
22729 }
22730
22731 static int
22732 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22733 {
22734 const struct psymtab_cu_index_map *lhs = item_lhs;
22735 const struct psymtab_cu_index_map *rhs = item_rhs;
22736
22737 return lhs->psymtab == rhs->psymtab;
22738 }
22739
22740 /* Helper struct for building the address table. */
22741 struct addrmap_index_data
22742 {
22743 struct objfile *objfile;
22744 struct obstack *addr_obstack;
22745 htab_t cu_index_htab;
22746
22747 /* Non-zero if the previous_* fields are valid.
22748 We can't write an entry until we see the next entry (since it is only then
22749 that we know the end of the entry). */
22750 int previous_valid;
22751 /* Index of the CU in the table of all CUs in the index file. */
22752 unsigned int previous_cu_index;
22753 /* Start address of the CU. */
22754 CORE_ADDR previous_cu_start;
22755 };
22756
22757 /* Write an address entry to OBSTACK. */
22758
22759 static void
22760 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22761 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22762 {
22763 offset_type cu_index_to_write;
22764 gdb_byte addr[8];
22765 CORE_ADDR baseaddr;
22766
22767 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22768
22769 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22770 obstack_grow (obstack, addr, 8);
22771 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22772 obstack_grow (obstack, addr, 8);
22773 cu_index_to_write = MAYBE_SWAP (cu_index);
22774 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22775 }
22776
22777 /* Worker function for traversing an addrmap to build the address table. */
22778
22779 static int
22780 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22781 {
22782 struct addrmap_index_data *data = datap;
22783 struct partial_symtab *pst = obj;
22784
22785 if (data->previous_valid)
22786 add_address_entry (data->objfile, data->addr_obstack,
22787 data->previous_cu_start, start_addr,
22788 data->previous_cu_index);
22789
22790 data->previous_cu_start = start_addr;
22791 if (pst != NULL)
22792 {
22793 struct psymtab_cu_index_map find_map, *map;
22794 find_map.psymtab = pst;
22795 map = htab_find (data->cu_index_htab, &find_map);
22796 gdb_assert (map != NULL);
22797 data->previous_cu_index = map->cu_index;
22798 data->previous_valid = 1;
22799 }
22800 else
22801 data->previous_valid = 0;
22802
22803 return 0;
22804 }
22805
22806 /* Write OBJFILE's address map to OBSTACK.
22807 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22808 in the index file. */
22809
22810 static void
22811 write_address_map (struct objfile *objfile, struct obstack *obstack,
22812 htab_t cu_index_htab)
22813 {
22814 struct addrmap_index_data addrmap_index_data;
22815
22816 /* When writing the address table, we have to cope with the fact that
22817 the addrmap iterator only provides the start of a region; we have to
22818 wait until the next invocation to get the start of the next region. */
22819
22820 addrmap_index_data.objfile = objfile;
22821 addrmap_index_data.addr_obstack = obstack;
22822 addrmap_index_data.cu_index_htab = cu_index_htab;
22823 addrmap_index_data.previous_valid = 0;
22824
22825 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22826 &addrmap_index_data);
22827
22828 /* It's highly unlikely the last entry (end address = 0xff...ff)
22829 is valid, but we should still handle it.
22830 The end address is recorded as the start of the next region, but that
22831 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22832 anyway. */
22833 if (addrmap_index_data.previous_valid)
22834 add_address_entry (objfile, obstack,
22835 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22836 addrmap_index_data.previous_cu_index);
22837 }
22838
22839 /* Return the symbol kind of PSYM. */
22840
22841 static gdb_index_symbol_kind
22842 symbol_kind (struct partial_symbol *psym)
22843 {
22844 domain_enum domain = PSYMBOL_DOMAIN (psym);
22845 enum address_class aclass = PSYMBOL_CLASS (psym);
22846
22847 switch (domain)
22848 {
22849 case VAR_DOMAIN:
22850 switch (aclass)
22851 {
22852 case LOC_BLOCK:
22853 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22854 case LOC_TYPEDEF:
22855 return GDB_INDEX_SYMBOL_KIND_TYPE;
22856 case LOC_COMPUTED:
22857 case LOC_CONST_BYTES:
22858 case LOC_OPTIMIZED_OUT:
22859 case LOC_STATIC:
22860 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22861 case LOC_CONST:
22862 /* Note: It's currently impossible to recognize psyms as enum values
22863 short of reading the type info. For now punt. */
22864 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22865 default:
22866 /* There are other LOC_FOO values that one might want to classify
22867 as variables, but dwarf2read.c doesn't currently use them. */
22868 return GDB_INDEX_SYMBOL_KIND_OTHER;
22869 }
22870 case STRUCT_DOMAIN:
22871 return GDB_INDEX_SYMBOL_KIND_TYPE;
22872 default:
22873 return GDB_INDEX_SYMBOL_KIND_OTHER;
22874 }
22875 }
22876
22877 /* Add a list of partial symbols to SYMTAB. */
22878
22879 static void
22880 write_psymbols (struct mapped_symtab *symtab,
22881 htab_t psyms_seen,
22882 struct partial_symbol **psymp,
22883 int count,
22884 offset_type cu_index,
22885 int is_static)
22886 {
22887 for (; count-- > 0; ++psymp)
22888 {
22889 struct partial_symbol *psym = *psymp;
22890 void **slot;
22891
22892 if (SYMBOL_LANGUAGE (psym) == language_ada)
22893 error (_("Ada is not currently supported by the index"));
22894
22895 /* Only add a given psymbol once. */
22896 slot = htab_find_slot (psyms_seen, psym, INSERT);
22897 if (!*slot)
22898 {
22899 gdb_index_symbol_kind kind = symbol_kind (psym);
22900
22901 *slot = psym;
22902 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22903 is_static, kind, cu_index);
22904 }
22905 }
22906 }
22907
22908 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22909 exception if there is an error. */
22910
22911 static void
22912 write_obstack (FILE *file, struct obstack *obstack)
22913 {
22914 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22915 file)
22916 != obstack_object_size (obstack))
22917 error (_("couldn't data write to file"));
22918 }
22919
22920 /* Unlink a file if the argument is not NULL. */
22921
22922 static void
22923 unlink_if_set (void *p)
22924 {
22925 char **filename = p;
22926 if (*filename)
22927 unlink (*filename);
22928 }
22929
22930 /* A helper struct used when iterating over debug_types. */
22931 struct signatured_type_index_data
22932 {
22933 struct objfile *objfile;
22934 struct mapped_symtab *symtab;
22935 struct obstack *types_list;
22936 htab_t psyms_seen;
22937 int cu_index;
22938 };
22939
22940 /* A helper function that writes a single signatured_type to an
22941 obstack. */
22942
22943 static int
22944 write_one_signatured_type (void **slot, void *d)
22945 {
22946 struct signatured_type_index_data *info = d;
22947 struct signatured_type *entry = (struct signatured_type *) *slot;
22948 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22949 gdb_byte val[8];
22950
22951 write_psymbols (info->symtab,
22952 info->psyms_seen,
22953 info->objfile->global_psymbols.list
22954 + psymtab->globals_offset,
22955 psymtab->n_global_syms, info->cu_index,
22956 0);
22957 write_psymbols (info->symtab,
22958 info->psyms_seen,
22959 info->objfile->static_psymbols.list
22960 + psymtab->statics_offset,
22961 psymtab->n_static_syms, info->cu_index,
22962 1);
22963
22964 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22965 entry->per_cu.offset.sect_off);
22966 obstack_grow (info->types_list, val, 8);
22967 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22968 entry->type_offset_in_tu.cu_off);
22969 obstack_grow (info->types_list, val, 8);
22970 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22971 obstack_grow (info->types_list, val, 8);
22972
22973 ++info->cu_index;
22974
22975 return 1;
22976 }
22977
22978 /* Recurse into all "included" dependencies and write their symbols as
22979 if they appeared in this psymtab. */
22980
22981 static void
22982 recursively_write_psymbols (struct objfile *objfile,
22983 struct partial_symtab *psymtab,
22984 struct mapped_symtab *symtab,
22985 htab_t psyms_seen,
22986 offset_type cu_index)
22987 {
22988 int i;
22989
22990 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22991 if (psymtab->dependencies[i]->user != NULL)
22992 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22993 symtab, psyms_seen, cu_index);
22994
22995 write_psymbols (symtab,
22996 psyms_seen,
22997 objfile->global_psymbols.list + psymtab->globals_offset,
22998 psymtab->n_global_syms, cu_index,
22999 0);
23000 write_psymbols (symtab,
23001 psyms_seen,
23002 objfile->static_psymbols.list + psymtab->statics_offset,
23003 psymtab->n_static_syms, cu_index,
23004 1);
23005 }
23006
23007 /* Create an index file for OBJFILE in the directory DIR. */
23008
23009 static void
23010 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23011 {
23012 struct cleanup *cleanup;
23013 char *filename, *cleanup_filename;
23014 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23015 struct obstack cu_list, types_cu_list;
23016 int i;
23017 FILE *out_file;
23018 struct mapped_symtab *symtab;
23019 offset_type val, size_of_contents, total_len;
23020 struct stat st;
23021 htab_t psyms_seen;
23022 htab_t cu_index_htab;
23023 struct psymtab_cu_index_map *psymtab_cu_index_map;
23024
23025 if (dwarf2_per_objfile->using_index)
23026 error (_("Cannot use an index to create the index"));
23027
23028 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23029 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23030
23031 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23032 return;
23033
23034 if (stat (objfile_name (objfile), &st) < 0)
23035 perror_with_name (objfile_name (objfile));
23036
23037 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
23038 INDEX_SUFFIX, (char *) NULL);
23039 cleanup = make_cleanup (xfree, filename);
23040
23041 out_file = gdb_fopen_cloexec (filename, "wb");
23042 if (!out_file)
23043 error (_("Can't open `%s' for writing"), filename);
23044
23045 cleanup_filename = filename;
23046 make_cleanup (unlink_if_set, &cleanup_filename);
23047
23048 symtab = create_mapped_symtab ();
23049 make_cleanup (cleanup_mapped_symtab, symtab);
23050
23051 obstack_init (&addr_obstack);
23052 make_cleanup_obstack_free (&addr_obstack);
23053
23054 obstack_init (&cu_list);
23055 make_cleanup_obstack_free (&cu_list);
23056
23057 obstack_init (&types_cu_list);
23058 make_cleanup_obstack_free (&types_cu_list);
23059
23060 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23061 NULL, xcalloc, xfree);
23062 make_cleanup_htab_delete (psyms_seen);
23063
23064 /* While we're scanning CU's create a table that maps a psymtab pointer
23065 (which is what addrmap records) to its index (which is what is recorded
23066 in the index file). This will later be needed to write the address
23067 table. */
23068 cu_index_htab = htab_create_alloc (100,
23069 hash_psymtab_cu_index,
23070 eq_psymtab_cu_index,
23071 NULL, xcalloc, xfree);
23072 make_cleanup_htab_delete (cu_index_htab);
23073 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
23074 xmalloc (sizeof (struct psymtab_cu_index_map)
23075 * dwarf2_per_objfile->n_comp_units);
23076 make_cleanup (xfree, psymtab_cu_index_map);
23077
23078 /* The CU list is already sorted, so we don't need to do additional
23079 work here. Also, the debug_types entries do not appear in
23080 all_comp_units, but only in their own hash table. */
23081 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23082 {
23083 struct dwarf2_per_cu_data *per_cu
23084 = dwarf2_per_objfile->all_comp_units[i];
23085 struct partial_symtab *psymtab = per_cu->v.psymtab;
23086 gdb_byte val[8];
23087 struct psymtab_cu_index_map *map;
23088 void **slot;
23089
23090 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23091 It may be referenced from a local scope but in such case it does not
23092 need to be present in .gdb_index. */
23093 if (psymtab == NULL)
23094 continue;
23095
23096 if (psymtab->user == NULL)
23097 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
23098
23099 map = &psymtab_cu_index_map[i];
23100 map->psymtab = psymtab;
23101 map->cu_index = i;
23102 slot = htab_find_slot (cu_index_htab, map, INSERT);
23103 gdb_assert (slot != NULL);
23104 gdb_assert (*slot == NULL);
23105 *slot = map;
23106
23107 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23108 per_cu->offset.sect_off);
23109 obstack_grow (&cu_list, val, 8);
23110 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
23111 obstack_grow (&cu_list, val, 8);
23112 }
23113
23114 /* Dump the address map. */
23115 write_address_map (objfile, &addr_obstack, cu_index_htab);
23116
23117 /* Write out the .debug_type entries, if any. */
23118 if (dwarf2_per_objfile->signatured_types)
23119 {
23120 struct signatured_type_index_data sig_data;
23121
23122 sig_data.objfile = objfile;
23123 sig_data.symtab = symtab;
23124 sig_data.types_list = &types_cu_list;
23125 sig_data.psyms_seen = psyms_seen;
23126 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23127 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23128 write_one_signatured_type, &sig_data);
23129 }
23130
23131 /* Now that we've processed all symbols we can shrink their cu_indices
23132 lists. */
23133 uniquify_cu_indices (symtab);
23134
23135 obstack_init (&constant_pool);
23136 make_cleanup_obstack_free (&constant_pool);
23137 obstack_init (&symtab_obstack);
23138 make_cleanup_obstack_free (&symtab_obstack);
23139 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23140
23141 obstack_init (&contents);
23142 make_cleanup_obstack_free (&contents);
23143 size_of_contents = 6 * sizeof (offset_type);
23144 total_len = size_of_contents;
23145
23146 /* The version number. */
23147 val = MAYBE_SWAP (8);
23148 obstack_grow (&contents, &val, sizeof (val));
23149
23150 /* The offset of the CU list from the start of the file. */
23151 val = MAYBE_SWAP (total_len);
23152 obstack_grow (&contents, &val, sizeof (val));
23153 total_len += obstack_object_size (&cu_list);
23154
23155 /* The offset of the types CU list from the start of the file. */
23156 val = MAYBE_SWAP (total_len);
23157 obstack_grow (&contents, &val, sizeof (val));
23158 total_len += obstack_object_size (&types_cu_list);
23159
23160 /* The offset of the address table from the start of the file. */
23161 val = MAYBE_SWAP (total_len);
23162 obstack_grow (&contents, &val, sizeof (val));
23163 total_len += obstack_object_size (&addr_obstack);
23164
23165 /* The offset of the symbol table from the start of the file. */
23166 val = MAYBE_SWAP (total_len);
23167 obstack_grow (&contents, &val, sizeof (val));
23168 total_len += obstack_object_size (&symtab_obstack);
23169
23170 /* The offset of the constant pool from the start of the file. */
23171 val = MAYBE_SWAP (total_len);
23172 obstack_grow (&contents, &val, sizeof (val));
23173 total_len += obstack_object_size (&constant_pool);
23174
23175 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23176
23177 write_obstack (out_file, &contents);
23178 write_obstack (out_file, &cu_list);
23179 write_obstack (out_file, &types_cu_list);
23180 write_obstack (out_file, &addr_obstack);
23181 write_obstack (out_file, &symtab_obstack);
23182 write_obstack (out_file, &constant_pool);
23183
23184 fclose (out_file);
23185
23186 /* We want to keep the file, so we set cleanup_filename to NULL
23187 here. See unlink_if_set. */
23188 cleanup_filename = NULL;
23189
23190 do_cleanups (cleanup);
23191 }
23192
23193 /* Implementation of the `save gdb-index' command.
23194
23195 Note that the file format used by this command is documented in the
23196 GDB manual. Any changes here must be documented there. */
23197
23198 static void
23199 save_gdb_index_command (char *arg, int from_tty)
23200 {
23201 struct objfile *objfile;
23202
23203 if (!arg || !*arg)
23204 error (_("usage: save gdb-index DIRECTORY"));
23205
23206 ALL_OBJFILES (objfile)
23207 {
23208 struct stat st;
23209
23210 /* If the objfile does not correspond to an actual file, skip it. */
23211 if (stat (objfile_name (objfile), &st) < 0)
23212 continue;
23213
23214 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23215 if (dwarf2_per_objfile)
23216 {
23217
23218 TRY
23219 {
23220 write_psymtabs_to_index (objfile, arg);
23221 }
23222 CATCH (except, RETURN_MASK_ERROR)
23223 {
23224 exception_fprintf (gdb_stderr, except,
23225 _("Error while writing index for `%s': "),
23226 objfile_name (objfile));
23227 }
23228 END_CATCH
23229 }
23230 }
23231 }
23232
23233 \f
23234
23235 int dwarf2_always_disassemble;
23236
23237 static void
23238 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
23239 struct cmd_list_element *c, const char *value)
23240 {
23241 fprintf_filtered (file,
23242 _("Whether to always disassemble "
23243 "DWARF expressions is %s.\n"),
23244 value);
23245 }
23246
23247 static void
23248 show_check_physname (struct ui_file *file, int from_tty,
23249 struct cmd_list_element *c, const char *value)
23250 {
23251 fprintf_filtered (file,
23252 _("Whether to check \"physname\" is %s.\n"),
23253 value);
23254 }
23255
23256 void _initialize_dwarf2_read (void);
23257
23258 void
23259 _initialize_dwarf2_read (void)
23260 {
23261 struct cmd_list_element *c;
23262
23263 dwarf2_objfile_data_key
23264 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
23265
23266 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23267 Set DWARF 2 specific variables.\n\
23268 Configure DWARF 2 variables such as the cache size"),
23269 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23270 0/*allow-unknown*/, &maintenance_set_cmdlist);
23271
23272 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23273 Show DWARF 2 specific variables\n\
23274 Show DWARF 2 variables such as the cache size"),
23275 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23276 0/*allow-unknown*/, &maintenance_show_cmdlist);
23277
23278 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23279 &dwarf2_max_cache_age, _("\
23280 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23281 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23282 A higher limit means that cached compilation units will be stored\n\
23283 in memory longer, and more total memory will be used. Zero disables\n\
23284 caching, which can slow down startup."),
23285 NULL,
23286 show_dwarf2_max_cache_age,
23287 &set_dwarf2_cmdlist,
23288 &show_dwarf2_cmdlist);
23289
23290 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23291 &dwarf2_always_disassemble, _("\
23292 Set whether `info address' always disassembles DWARF expressions."), _("\
23293 Show whether `info address' always disassembles DWARF expressions."), _("\
23294 When enabled, DWARF expressions are always printed in an assembly-like\n\
23295 syntax. When disabled, expressions will be printed in a more\n\
23296 conversational style, when possible."),
23297 NULL,
23298 show_dwarf2_always_disassemble,
23299 &set_dwarf2_cmdlist,
23300 &show_dwarf2_cmdlist);
23301
23302 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
23303 Set debugging of the dwarf2 reader."), _("\
23304 Show debugging of the dwarf2 reader."), _("\
23305 When enabled (non-zero), debugging messages are printed during dwarf2\n\
23306 reading and symtab expansion. A value of 1 (one) provides basic\n\
23307 information. A value greater than 1 provides more verbose information."),
23308 NULL,
23309 NULL,
23310 &setdebuglist, &showdebuglist);
23311
23312 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
23313 Set debugging of the dwarf2 DIE reader."), _("\
23314 Show debugging of the dwarf2 DIE reader."), _("\
23315 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23316 The value is the maximum depth to print."),
23317 NULL,
23318 NULL,
23319 &setdebuglist, &showdebuglist);
23320
23321 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23322 Set cross-checking of \"physname\" code against demangler."), _("\
23323 Show cross-checking of \"physname\" code against demangler."), _("\
23324 When enabled, GDB's internal \"physname\" code is checked against\n\
23325 the demangler."),
23326 NULL, show_check_physname,
23327 &setdebuglist, &showdebuglist);
23328
23329 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23330 no_class, &use_deprecated_index_sections, _("\
23331 Set whether to use deprecated gdb_index sections."), _("\
23332 Show whether to use deprecated gdb_index sections."), _("\
23333 When enabled, deprecated .gdb_index sections are used anyway.\n\
23334 Normally they are ignored either because of a missing feature or\n\
23335 performance issue.\n\
23336 Warning: This option must be enabled before gdb reads the file."),
23337 NULL,
23338 NULL,
23339 &setlist, &showlist);
23340
23341 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
23342 _("\
23343 Save a gdb-index file.\n\
23344 Usage: save gdb-index DIRECTORY"),
23345 &save_cmdlist);
23346 set_cmd_completer (c, filename_completer);
23347
23348 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23349 &dwarf2_locexpr_funcs);
23350 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23351 &dwarf2_loclist_funcs);
23352
23353 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23354 &dwarf2_block_frame_base_locexpr_funcs);
23355 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23356 &dwarf2_block_frame_base_loclist_funcs);
23357 }