]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
2007-06-09 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
11 support.
12
13 This file is part of GDB.
14
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or (at
18 your option) any later version.
19
20 This program is distributed in the hope that it will be useful, but
21 WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 General Public License for more details.
24
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 51 Franklin Street, Fifth Floor,
28 Boston, MA 02110-1301, USA. */
29
30 #include "defs.h"
31 #include "bfd.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "elf/dwarf2.h"
36 #include "buildsym.h"
37 #include "demangle.h"
38 #include "expression.h"
39 #include "filenames.h" /* for DOSish file names */
40 #include "macrotab.h"
41 #include "language.h"
42 #include "complaints.h"
43 #include "bcache.h"
44 #include "dwarf2expr.h"
45 #include "dwarf2loc.h"
46 #include "cp-support.h"
47 #include "hashtab.h"
48 #include "command.h"
49 #include "gdbcmd.h"
50
51 #include <fcntl.h>
52 #include "gdb_string.h"
53 #include "gdb_assert.h"
54 #include <sys/types.h>
55
56 /* A note on memory usage for this file.
57
58 At the present time, this code reads the debug info sections into
59 the objfile's objfile_obstack. A definite improvement for startup
60 time, on platforms which do not emit relocations for debug
61 sections, would be to use mmap instead. The object's complete
62 debug information is loaded into memory, partly to simplify
63 absolute DIE references.
64
65 Whether using obstacks or mmap, the sections should remain loaded
66 until the objfile is released, and pointers into the section data
67 can be used for any other data associated to the objfile (symbol
68 names, type names, location expressions to name a few). */
69
70 #ifndef DWARF2_REG_TO_REGNUM
71 #define DWARF2_REG_TO_REGNUM(REG) (REG)
72 #endif
73
74 #if 0
75 /* .debug_info header for a compilation unit
76 Because of alignment constraints, this structure has padding and cannot
77 be mapped directly onto the beginning of the .debug_info section. */
78 typedef struct comp_unit_header
79 {
80 unsigned int length; /* length of the .debug_info
81 contribution */
82 unsigned short version; /* version number -- 2 for DWARF
83 version 2 */
84 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
85 unsigned char addr_size; /* byte size of an address -- 4 */
86 }
87 _COMP_UNIT_HEADER;
88 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
89 #endif
90
91 /* .debug_pubnames header
92 Because of alignment constraints, this structure has padding and cannot
93 be mapped directly onto the beginning of the .debug_info section. */
94 typedef struct pubnames_header
95 {
96 unsigned int length; /* length of the .debug_pubnames
97 contribution */
98 unsigned char version; /* version number -- 2 for DWARF
99 version 2 */
100 unsigned int info_offset; /* offset into .debug_info section */
101 unsigned int info_size; /* byte size of .debug_info section
102 portion */
103 }
104 _PUBNAMES_HEADER;
105 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
106
107 /* .debug_pubnames header
108 Because of alignment constraints, this structure has padding and cannot
109 be mapped directly onto the beginning of the .debug_info section. */
110 typedef struct aranges_header
111 {
112 unsigned int length; /* byte len of the .debug_aranges
113 contribution */
114 unsigned short version; /* version number -- 2 for DWARF
115 version 2 */
116 unsigned int info_offset; /* offset into .debug_info section */
117 unsigned char addr_size; /* byte size of an address */
118 unsigned char seg_size; /* byte size of segment descriptor */
119 }
120 _ARANGES_HEADER;
121 #define _ACTUAL_ARANGES_HEADER_SIZE 12
122
123 /* .debug_line statement program prologue
124 Because of alignment constraints, this structure has padding and cannot
125 be mapped directly onto the beginning of the .debug_info section. */
126 typedef struct statement_prologue
127 {
128 unsigned int total_length; /* byte length of the statement
129 information */
130 unsigned short version; /* version number -- 2 for DWARF
131 version 2 */
132 unsigned int prologue_length; /* # bytes between prologue &
133 stmt program */
134 unsigned char minimum_instruction_length; /* byte size of
135 smallest instr */
136 unsigned char default_is_stmt; /* initial value of is_stmt
137 register */
138 char line_base;
139 unsigned char line_range;
140 unsigned char opcode_base; /* number assigned to first special
141 opcode */
142 unsigned char *standard_opcode_lengths;
143 }
144 _STATEMENT_PROLOGUE;
145
146 static const struct objfile_data *dwarf2_objfile_data_key;
147
148 struct dwarf2_per_objfile
149 {
150 /* Sizes of debugging sections. */
151 unsigned int info_size;
152 unsigned int abbrev_size;
153 unsigned int line_size;
154 unsigned int pubnames_size;
155 unsigned int aranges_size;
156 unsigned int loc_size;
157 unsigned int macinfo_size;
158 unsigned int str_size;
159 unsigned int ranges_size;
160 unsigned int frame_size;
161 unsigned int eh_frame_size;
162
163 /* Loaded data from the sections. */
164 gdb_byte *info_buffer;
165 gdb_byte *abbrev_buffer;
166 gdb_byte *line_buffer;
167 gdb_byte *str_buffer;
168 gdb_byte *macinfo_buffer;
169 gdb_byte *ranges_buffer;
170 gdb_byte *loc_buffer;
171
172 /* A list of all the compilation units. This is used to locate
173 the target compilation unit of a particular reference. */
174 struct dwarf2_per_cu_data **all_comp_units;
175
176 /* The number of compilation units in ALL_COMP_UNITS. */
177 int n_comp_units;
178
179 /* A chain of compilation units that are currently read in, so that
180 they can be freed later. */
181 struct dwarf2_per_cu_data *read_in_chain;
182
183 /* A flag indicating wether this objfile has a section loaded at a
184 VMA of 0. */
185 int has_section_at_zero;
186 };
187
188 static struct dwarf2_per_objfile *dwarf2_per_objfile;
189
190 static asection *dwarf_info_section;
191 static asection *dwarf_abbrev_section;
192 static asection *dwarf_line_section;
193 static asection *dwarf_pubnames_section;
194 static asection *dwarf_aranges_section;
195 static asection *dwarf_loc_section;
196 static asection *dwarf_macinfo_section;
197 static asection *dwarf_str_section;
198 static asection *dwarf_ranges_section;
199 asection *dwarf_frame_section;
200 asection *dwarf_eh_frame_section;
201
202 /* names of the debugging sections */
203
204 #define INFO_SECTION ".debug_info"
205 #define ABBREV_SECTION ".debug_abbrev"
206 #define LINE_SECTION ".debug_line"
207 #define PUBNAMES_SECTION ".debug_pubnames"
208 #define ARANGES_SECTION ".debug_aranges"
209 #define LOC_SECTION ".debug_loc"
210 #define MACINFO_SECTION ".debug_macinfo"
211 #define STR_SECTION ".debug_str"
212 #define RANGES_SECTION ".debug_ranges"
213 #define FRAME_SECTION ".debug_frame"
214 #define EH_FRAME_SECTION ".eh_frame"
215
216 /* local data types */
217
218 /* We hold several abbreviation tables in memory at the same time. */
219 #ifndef ABBREV_HASH_SIZE
220 #define ABBREV_HASH_SIZE 121
221 #endif
222
223 /* The data in a compilation unit header, after target2host
224 translation, looks like this. */
225 struct comp_unit_head
226 {
227 unsigned long length;
228 short version;
229 unsigned int abbrev_offset;
230 unsigned char addr_size;
231 unsigned char signed_addr_p;
232
233 /* Size of file offsets; either 4 or 8. */
234 unsigned int offset_size;
235
236 /* Size of the length field; either 4 or 12. */
237 unsigned int initial_length_size;
238
239 /* Offset to the first byte of this compilation unit header in the
240 .debug_info section, for resolving relative reference dies. */
241 unsigned int offset;
242
243 /* Pointer to this compilation unit header in the .debug_info
244 section. */
245 gdb_byte *cu_head_ptr;
246
247 /* Pointer to the first die of this compilation unit. This will be
248 the first byte following the compilation unit header. */
249 gdb_byte *first_die_ptr;
250
251 /* Pointer to the next compilation unit header in the program. */
252 struct comp_unit_head *next;
253
254 /* Base address of this compilation unit. */
255 CORE_ADDR base_address;
256
257 /* Non-zero if base_address has been set. */
258 int base_known;
259 };
260
261 /* Fixed size for the DIE hash table. */
262 #ifndef REF_HASH_SIZE
263 #define REF_HASH_SIZE 1021
264 #endif
265
266 /* Internal state when decoding a particular compilation unit. */
267 struct dwarf2_cu
268 {
269 /* The objfile containing this compilation unit. */
270 struct objfile *objfile;
271
272 /* The header of the compilation unit.
273
274 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
275 should logically be moved to the dwarf2_cu structure. */
276 struct comp_unit_head header;
277
278 struct function_range *first_fn, *last_fn, *cached_fn;
279
280 /* The language we are debugging. */
281 enum language language;
282 const struct language_defn *language_defn;
283
284 const char *producer;
285
286 /* The generic symbol table building routines have separate lists for
287 file scope symbols and all all other scopes (local scopes). So
288 we need to select the right one to pass to add_symbol_to_list().
289 We do it by keeping a pointer to the correct list in list_in_scope.
290
291 FIXME: The original dwarf code just treated the file scope as the
292 first local scope, and all other local scopes as nested local
293 scopes, and worked fine. Check to see if we really need to
294 distinguish these in buildsym.c. */
295 struct pending **list_in_scope;
296
297 /* Maintain an array of referenced fundamental types for the current
298 compilation unit being read. For DWARF version 1, we have to construct
299 the fundamental types on the fly, since no information about the
300 fundamental types is supplied. Each such fundamental type is created by
301 calling a language dependent routine to create the type, and then a
302 pointer to that type is then placed in the array at the index specified
303 by it's FT_<TYPENAME> value. The array has a fixed size set by the
304 FT_NUM_MEMBERS compile time constant, which is the number of predefined
305 fundamental types gdb knows how to construct. */
306 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
307
308 /* DWARF abbreviation table associated with this compilation unit. */
309 struct abbrev_info **dwarf2_abbrevs;
310
311 /* Storage for the abbrev table. */
312 struct obstack abbrev_obstack;
313
314 /* Hash table holding all the loaded partial DIEs. */
315 htab_t partial_dies;
316
317 /* Storage for things with the same lifetime as this read-in compilation
318 unit, including partial DIEs. */
319 struct obstack comp_unit_obstack;
320
321 /* When multiple dwarf2_cu structures are living in memory, this field
322 chains them all together, so that they can be released efficiently.
323 We will probably also want a generation counter so that most-recently-used
324 compilation units are cached... */
325 struct dwarf2_per_cu_data *read_in_chain;
326
327 /* Backchain to our per_cu entry if the tree has been built. */
328 struct dwarf2_per_cu_data *per_cu;
329
330 /* How many compilation units ago was this CU last referenced? */
331 int last_used;
332
333 /* A hash table of die offsets for following references. */
334 struct die_info *die_ref_table[REF_HASH_SIZE];
335
336 /* Full DIEs if read in. */
337 struct die_info *dies;
338
339 /* A set of pointers to dwarf2_per_cu_data objects for compilation
340 units referenced by this one. Only set during full symbol processing;
341 partial symbol tables do not have dependencies. */
342 htab_t dependencies;
343
344 /* Header data from the line table, during full symbol processing. */
345 struct line_header *line_header;
346
347 /* Mark used when releasing cached dies. */
348 unsigned int mark : 1;
349
350 /* This flag will be set if this compilation unit might include
351 inter-compilation-unit references. */
352 unsigned int has_form_ref_addr : 1;
353
354 /* This flag will be set if this compilation unit includes any
355 DW_TAG_namespace DIEs. If we know that there are explicit
356 DIEs for namespaces, we don't need to try to infer them
357 from mangled names. */
358 unsigned int has_namespace_info : 1;
359 };
360
361 /* Persistent data held for a compilation unit, even when not
362 processing it. We put a pointer to this structure in the
363 read_symtab_private field of the psymtab. If we encounter
364 inter-compilation-unit references, we also maintain a sorted
365 list of all compilation units. */
366
367 struct dwarf2_per_cu_data
368 {
369 /* The start offset and length of this compilation unit. 2**30-1
370 bytes should suffice to store the length of any compilation unit
371 - if it doesn't, GDB will fall over anyway. */
372 unsigned long offset;
373 unsigned long length : 30;
374
375 /* Flag indicating this compilation unit will be read in before
376 any of the current compilation units are processed. */
377 unsigned long queued : 1;
378
379 /* This flag will be set if we need to load absolutely all DIEs
380 for this compilation unit, instead of just the ones we think
381 are interesting. It gets set if we look for a DIE in the
382 hash table and don't find it. */
383 unsigned int load_all_dies : 1;
384
385 /* Set iff currently read in. */
386 struct dwarf2_cu *cu;
387
388 /* If full symbols for this CU have been read in, then this field
389 holds a map of DIE offsets to types. It isn't always possible
390 to reconstruct this information later, so we have to preserve
391 it. */
392 htab_t type_hash;
393
394 /* The partial symbol table associated with this compilation unit,
395 or NULL for partial units (which do not have an associated
396 symtab). */
397 struct partial_symtab *psymtab;
398 };
399
400 /* The line number information for a compilation unit (found in the
401 .debug_line section) begins with a "statement program header",
402 which contains the following information. */
403 struct line_header
404 {
405 unsigned int total_length;
406 unsigned short version;
407 unsigned int header_length;
408 unsigned char minimum_instruction_length;
409 unsigned char default_is_stmt;
410 int line_base;
411 unsigned char line_range;
412 unsigned char opcode_base;
413
414 /* standard_opcode_lengths[i] is the number of operands for the
415 standard opcode whose value is i. This means that
416 standard_opcode_lengths[0] is unused, and the last meaningful
417 element is standard_opcode_lengths[opcode_base - 1]. */
418 unsigned char *standard_opcode_lengths;
419
420 /* The include_directories table. NOTE! These strings are not
421 allocated with xmalloc; instead, they are pointers into
422 debug_line_buffer. If you try to free them, `free' will get
423 indigestion. */
424 unsigned int num_include_dirs, include_dirs_size;
425 char **include_dirs;
426
427 /* The file_names table. NOTE! These strings are not allocated
428 with xmalloc; instead, they are pointers into debug_line_buffer.
429 Don't try to free them directly. */
430 unsigned int num_file_names, file_names_size;
431 struct file_entry
432 {
433 char *name;
434 unsigned int dir_index;
435 unsigned int mod_time;
436 unsigned int length;
437 int included_p; /* Non-zero if referenced by the Line Number Program. */
438 struct symtab *symtab; /* The associated symbol table, if any. */
439 } *file_names;
440
441 /* The start and end of the statement program following this
442 header. These point into dwarf2_per_objfile->line_buffer. */
443 gdb_byte *statement_program_start, *statement_program_end;
444 };
445
446 /* When we construct a partial symbol table entry we only
447 need this much information. */
448 struct partial_die_info
449 {
450 /* Offset of this DIE. */
451 unsigned int offset;
452
453 /* DWARF-2 tag for this DIE. */
454 ENUM_BITFIELD(dwarf_tag) tag : 16;
455
456 /* Language code associated with this DIE. This is only used
457 for the compilation unit DIE. */
458 unsigned int language : 8;
459
460 /* Assorted flags describing the data found in this DIE. */
461 unsigned int has_children : 1;
462 unsigned int is_external : 1;
463 unsigned int is_declaration : 1;
464 unsigned int has_type : 1;
465 unsigned int has_specification : 1;
466 unsigned int has_stmt_list : 1;
467 unsigned int has_pc_info : 1;
468
469 /* Flag set if the SCOPE field of this structure has been
470 computed. */
471 unsigned int scope_set : 1;
472
473 /* Flag set if the DIE has a byte_size attribute. */
474 unsigned int has_byte_size : 1;
475
476 /* The name of this DIE. Normally the value of DW_AT_name, but
477 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
478 other fashion. */
479 char *name;
480 char *dirname;
481
482 /* The scope to prepend to our children. This is generally
483 allocated on the comp_unit_obstack, so will disappear
484 when this compilation unit leaves the cache. */
485 char *scope;
486
487 /* The location description associated with this DIE, if any. */
488 struct dwarf_block *locdesc;
489
490 /* If HAS_PC_INFO, the PC range associated with this DIE. */
491 CORE_ADDR lowpc;
492 CORE_ADDR highpc;
493
494 /* Pointer into the info_buffer pointing at the target of
495 DW_AT_sibling, if any. */
496 gdb_byte *sibling;
497
498 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
499 DW_AT_specification (or DW_AT_abstract_origin or
500 DW_AT_extension). */
501 unsigned int spec_offset;
502
503 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
504 unsigned int line_offset;
505
506 /* Pointers to this DIE's parent, first child, and next sibling,
507 if any. */
508 struct partial_die_info *die_parent, *die_child, *die_sibling;
509 };
510
511 /* This data structure holds the information of an abbrev. */
512 struct abbrev_info
513 {
514 unsigned int number; /* number identifying abbrev */
515 enum dwarf_tag tag; /* dwarf tag */
516 unsigned short has_children; /* boolean */
517 unsigned short num_attrs; /* number of attributes */
518 struct attr_abbrev *attrs; /* an array of attribute descriptions */
519 struct abbrev_info *next; /* next in chain */
520 };
521
522 struct attr_abbrev
523 {
524 enum dwarf_attribute name;
525 enum dwarf_form form;
526 };
527
528 /* This data structure holds a complete die structure. */
529 struct die_info
530 {
531 enum dwarf_tag tag; /* Tag indicating type of die */
532 unsigned int abbrev; /* Abbrev number */
533 unsigned int offset; /* Offset in .debug_info section */
534 unsigned int num_attrs; /* Number of attributes */
535 struct attribute *attrs; /* An array of attributes */
536 struct die_info *next_ref; /* Next die in ref hash table */
537
538 /* The dies in a compilation unit form an n-ary tree. PARENT
539 points to this die's parent; CHILD points to the first child of
540 this node; and all the children of a given node are chained
541 together via their SIBLING fields, terminated by a die whose
542 tag is zero. */
543 struct die_info *child; /* Its first child, if any. */
544 struct die_info *sibling; /* Its next sibling, if any. */
545 struct die_info *parent; /* Its parent, if any. */
546
547 struct type *type; /* Cached type information */
548 };
549
550 /* Attributes have a name and a value */
551 struct attribute
552 {
553 enum dwarf_attribute name;
554 enum dwarf_form form;
555 union
556 {
557 char *str;
558 struct dwarf_block *blk;
559 unsigned long unsnd;
560 long int snd;
561 CORE_ADDR addr;
562 }
563 u;
564 };
565
566 struct function_range
567 {
568 const char *name;
569 CORE_ADDR lowpc, highpc;
570 int seen_line;
571 struct function_range *next;
572 };
573
574 /* Get at parts of an attribute structure */
575
576 #define DW_STRING(attr) ((attr)->u.str)
577 #define DW_UNSND(attr) ((attr)->u.unsnd)
578 #define DW_BLOCK(attr) ((attr)->u.blk)
579 #define DW_SND(attr) ((attr)->u.snd)
580 #define DW_ADDR(attr) ((attr)->u.addr)
581
582 /* Blocks are a bunch of untyped bytes. */
583 struct dwarf_block
584 {
585 unsigned int size;
586 gdb_byte *data;
587 };
588
589 #ifndef ATTR_ALLOC_CHUNK
590 #define ATTR_ALLOC_CHUNK 4
591 #endif
592
593 /* Allocate fields for structs, unions and enums in this size. */
594 #ifndef DW_FIELD_ALLOC_CHUNK
595 #define DW_FIELD_ALLOC_CHUNK 4
596 #endif
597
598 /* A zeroed version of a partial die for initialization purposes. */
599 static struct partial_die_info zeroed_partial_die;
600
601 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
602 but this would require a corresponding change in unpack_field_as_long
603 and friends. */
604 static int bits_per_byte = 8;
605
606 /* The routines that read and process dies for a C struct or C++ class
607 pass lists of data member fields and lists of member function fields
608 in an instance of a field_info structure, as defined below. */
609 struct field_info
610 {
611 /* List of data member and baseclasses fields. */
612 struct nextfield
613 {
614 struct nextfield *next;
615 int accessibility;
616 int virtuality;
617 struct field field;
618 }
619 *fields;
620
621 /* Number of fields. */
622 int nfields;
623
624 /* Number of baseclasses. */
625 int nbaseclasses;
626
627 /* Set if the accesibility of one of the fields is not public. */
628 int non_public_fields;
629
630 /* Member function fields array, entries are allocated in the order they
631 are encountered in the object file. */
632 struct nextfnfield
633 {
634 struct nextfnfield *next;
635 struct fn_field fnfield;
636 }
637 *fnfields;
638
639 /* Member function fieldlist array, contains name of possibly overloaded
640 member function, number of overloaded member functions and a pointer
641 to the head of the member function field chain. */
642 struct fnfieldlist
643 {
644 char *name;
645 int length;
646 struct nextfnfield *head;
647 }
648 *fnfieldlists;
649
650 /* Number of entries in the fnfieldlists array. */
651 int nfnfields;
652 };
653
654 /* One item on the queue of compilation units to read in full symbols
655 for. */
656 struct dwarf2_queue_item
657 {
658 struct dwarf2_per_cu_data *per_cu;
659 struct dwarf2_queue_item *next;
660 };
661
662 /* The current queue. */
663 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
664
665 /* Loaded secondary compilation units are kept in memory until they
666 have not been referenced for the processing of this many
667 compilation units. Set this to zero to disable caching. Cache
668 sizes of up to at least twenty will improve startup time for
669 typical inter-CU-reference binaries, at an obvious memory cost. */
670 static int dwarf2_max_cache_age = 5;
671 static void
672 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
673 struct cmd_list_element *c, const char *value)
674 {
675 fprintf_filtered (file, _("\
676 The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
677 value);
678 }
679
680
681 /* Various complaints about symbol reading that don't abort the process */
682
683 static void
684 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
685 {
686 complaint (&symfile_complaints,
687 _("statement list doesn't fit in .debug_line section"));
688 }
689
690 static void
691 dwarf2_debug_line_missing_file_complaint (void)
692 {
693 complaint (&symfile_complaints,
694 _(".debug_line section has line data without a file"));
695 }
696
697 static void
698 dwarf2_complex_location_expr_complaint (void)
699 {
700 complaint (&symfile_complaints, _("location expression too complex"));
701 }
702
703 static void
704 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
705 int arg3)
706 {
707 complaint (&symfile_complaints,
708 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
709 arg2, arg3);
710 }
711
712 static void
713 dwarf2_macros_too_long_complaint (void)
714 {
715 complaint (&symfile_complaints,
716 _("macro info runs off end of `.debug_macinfo' section"));
717 }
718
719 static void
720 dwarf2_macro_malformed_definition_complaint (const char *arg1)
721 {
722 complaint (&symfile_complaints,
723 _("macro debug info contains a malformed macro definition:\n`%s'"),
724 arg1);
725 }
726
727 static void
728 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
729 {
730 complaint (&symfile_complaints,
731 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
732 }
733
734 /* local function prototypes */
735
736 static void dwarf2_locate_sections (bfd *, asection *, void *);
737
738 #if 0
739 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
740 #endif
741
742 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
743 struct objfile *);
744
745 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
746 struct partial_die_info *,
747 struct partial_symtab *);
748
749 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
750
751 static void scan_partial_symbols (struct partial_die_info *,
752 CORE_ADDR *, CORE_ADDR *,
753 struct dwarf2_cu *);
754
755 static void add_partial_symbol (struct partial_die_info *,
756 struct dwarf2_cu *);
757
758 static int pdi_needs_namespace (enum dwarf_tag tag);
759
760 static void add_partial_namespace (struct partial_die_info *pdi,
761 CORE_ADDR *lowpc, CORE_ADDR *highpc,
762 struct dwarf2_cu *cu);
763
764 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
765 struct dwarf2_cu *cu);
766
767 static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
768 gdb_byte *info_ptr,
769 bfd *abfd,
770 struct dwarf2_cu *cu);
771
772 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
773
774 static void psymtab_to_symtab_1 (struct partial_symtab *);
775
776 gdb_byte *dwarf2_read_section (struct objfile *, asection *);
777
778 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
779
780 static void dwarf2_free_abbrev_table (void *);
781
782 static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
783 struct dwarf2_cu *);
784
785 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
786 struct dwarf2_cu *);
787
788 static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
789 struct dwarf2_cu *);
790
791 static gdb_byte *read_partial_die (struct partial_die_info *,
792 struct abbrev_info *abbrev, unsigned int,
793 bfd *, gdb_byte *, struct dwarf2_cu *);
794
795 static struct partial_die_info *find_partial_die (unsigned long,
796 struct dwarf2_cu *);
797
798 static void fixup_partial_die (struct partial_die_info *,
799 struct dwarf2_cu *);
800
801 static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
802 struct dwarf2_cu *, int *);
803
804 static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
805 bfd *, gdb_byte *, struct dwarf2_cu *);
806
807 static gdb_byte *read_attribute_value (struct attribute *, unsigned,
808 bfd *, gdb_byte *, struct dwarf2_cu *);
809
810 static unsigned int read_1_byte (bfd *, gdb_byte *);
811
812 static int read_1_signed_byte (bfd *, gdb_byte *);
813
814 static unsigned int read_2_bytes (bfd *, gdb_byte *);
815
816 static unsigned int read_4_bytes (bfd *, gdb_byte *);
817
818 static unsigned long read_8_bytes (bfd *, gdb_byte *);
819
820 static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
821 unsigned int *);
822
823 static LONGEST read_initial_length (bfd *, gdb_byte *,
824 struct comp_unit_head *, unsigned int *);
825
826 static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
827 unsigned int *);
828
829 static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
830
831 static char *read_string (bfd *, gdb_byte *, unsigned int *);
832
833 static char *read_indirect_string (bfd *, gdb_byte *,
834 const struct comp_unit_head *,
835 unsigned int *);
836
837 static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
838
839 static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
840
841 static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
842
843 static void set_cu_language (unsigned int, struct dwarf2_cu *);
844
845 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
846 struct dwarf2_cu *);
847
848 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
849 struct dwarf2_cu *cu);
850
851 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
852
853 static struct die_info *die_specification (struct die_info *die,
854 struct dwarf2_cu *);
855
856 static void free_line_header (struct line_header *lh);
857
858 static void add_file_name (struct line_header *, char *, unsigned int,
859 unsigned int, unsigned int);
860
861 static struct line_header *(dwarf_decode_line_header
862 (unsigned int offset,
863 bfd *abfd, struct dwarf2_cu *cu));
864
865 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
866 struct dwarf2_cu *, struct partial_symtab *);
867
868 static void dwarf2_start_subfile (char *, char *, char *);
869
870 static struct symbol *new_symbol (struct die_info *, struct type *,
871 struct dwarf2_cu *);
872
873 static void dwarf2_const_value (struct attribute *, struct symbol *,
874 struct dwarf2_cu *);
875
876 static void dwarf2_const_value_data (struct attribute *attr,
877 struct symbol *sym,
878 int bits);
879
880 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
881
882 static struct type *die_containing_type (struct die_info *,
883 struct dwarf2_cu *);
884
885 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
886
887 static void read_type_die (struct die_info *, struct dwarf2_cu *);
888
889 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
890
891 static char *typename_concat (struct obstack *,
892 const char *prefix,
893 const char *suffix,
894 struct dwarf2_cu *);
895
896 static void read_typedef (struct die_info *, struct dwarf2_cu *);
897
898 static void read_base_type (struct die_info *, struct dwarf2_cu *);
899
900 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
901
902 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
903
904 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
905
906 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
907
908 static int dwarf2_get_pc_bounds (struct die_info *,
909 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
910
911 static void get_scope_pc_bounds (struct die_info *,
912 CORE_ADDR *, CORE_ADDR *,
913 struct dwarf2_cu *);
914
915 static void dwarf2_add_field (struct field_info *, struct die_info *,
916 struct dwarf2_cu *);
917
918 static void dwarf2_attach_fields_to_type (struct field_info *,
919 struct type *, struct dwarf2_cu *);
920
921 static void dwarf2_add_member_fn (struct field_info *,
922 struct die_info *, struct type *,
923 struct dwarf2_cu *);
924
925 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
926 struct type *, struct dwarf2_cu *);
927
928 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
929
930 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
931
932 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
933
934 static void read_common_block (struct die_info *, struct dwarf2_cu *);
935
936 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
937
938 static const char *namespace_name (struct die_info *die,
939 int *is_anonymous, struct dwarf2_cu *);
940
941 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
942
943 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
944
945 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
946
947 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
948
949 static void read_array_type (struct die_info *, struct dwarf2_cu *);
950
951 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
952 struct dwarf2_cu *);
953
954 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
955
956 static void read_tag_ptr_to_member_type (struct die_info *,
957 struct dwarf2_cu *);
958
959 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
960
961 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
962
963 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
964
965 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
966
967 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
968
969 static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
970
971 static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
972 struct dwarf2_cu *,
973 gdb_byte **new_info_ptr,
974 struct die_info *parent);
975
976 static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
977 struct dwarf2_cu *,
978 gdb_byte **new_info_ptr,
979 struct die_info *parent);
980
981 static void free_die_list (struct die_info *);
982
983 static void process_die (struct die_info *, struct dwarf2_cu *);
984
985 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
986
987 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
988
989 static struct die_info *dwarf2_extension (struct die_info *die,
990 struct dwarf2_cu *);
991
992 static char *dwarf_tag_name (unsigned int);
993
994 static char *dwarf_attr_name (unsigned int);
995
996 static char *dwarf_form_name (unsigned int);
997
998 static char *dwarf_stack_op_name (unsigned int);
999
1000 static char *dwarf_bool_name (unsigned int);
1001
1002 static char *dwarf_type_encoding_name (unsigned int);
1003
1004 #if 0
1005 static char *dwarf_cfi_name (unsigned int);
1006
1007 struct die_info *copy_die (struct die_info *);
1008 #endif
1009
1010 static struct die_info *sibling_die (struct die_info *);
1011
1012 static void dump_die (struct die_info *);
1013
1014 static void dump_die_list (struct die_info *);
1015
1016 static void store_in_ref_table (unsigned int, struct die_info *,
1017 struct dwarf2_cu *);
1018
1019 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1020 struct dwarf2_cu *);
1021
1022 static int dwarf2_get_attr_constant_value (struct attribute *, int);
1023
1024 static struct die_info *follow_die_ref (struct die_info *,
1025 struct attribute *,
1026 struct dwarf2_cu *);
1027
1028 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1029 struct dwarf2_cu *);
1030
1031 /* memory allocation interface */
1032
1033 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1034
1035 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1036
1037 static struct die_info *dwarf_alloc_die (void);
1038
1039 static void initialize_cu_func_list (struct dwarf2_cu *);
1040
1041 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1042 struct dwarf2_cu *);
1043
1044 static void dwarf_decode_macros (struct line_header *, unsigned int,
1045 char *, bfd *, struct dwarf2_cu *);
1046
1047 static int attr_form_is_block (struct attribute *);
1048
1049 static void dwarf2_symbol_mark_computed (struct attribute *attr,
1050 struct symbol *sym,
1051 struct dwarf2_cu *cu);
1052
1053 static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1054 struct dwarf2_cu *cu);
1055
1056 static void free_stack_comp_unit (void *);
1057
1058 static hashval_t partial_die_hash (const void *item);
1059
1060 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1061
1062 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1063 (unsigned long offset, struct objfile *objfile);
1064
1065 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1066 (unsigned long offset, struct objfile *objfile);
1067
1068 static void free_one_comp_unit (void *);
1069
1070 static void free_cached_comp_units (void *);
1071
1072 static void age_cached_comp_units (void);
1073
1074 static void free_one_cached_comp_unit (void *);
1075
1076 static void set_die_type (struct die_info *, struct type *,
1077 struct dwarf2_cu *);
1078
1079 static void reset_die_and_siblings_types (struct die_info *,
1080 struct dwarf2_cu *);
1081
1082 static void create_all_comp_units (struct objfile *);
1083
1084 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1085 struct objfile *);
1086
1087 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1088
1089 static void dwarf2_add_dependence (struct dwarf2_cu *,
1090 struct dwarf2_per_cu_data *);
1091
1092 static void dwarf2_mark (struct dwarf2_cu *);
1093
1094 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1095
1096 static void read_set_type (struct die_info *, struct dwarf2_cu *);
1097
1098
1099 /* Try to locate the sections we need for DWARF 2 debugging
1100 information and return true if we have enough to do something. */
1101
1102 int
1103 dwarf2_has_info (struct objfile *objfile)
1104 {
1105 struct dwarf2_per_objfile *data;
1106
1107 /* Initialize per-objfile state. */
1108 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1109 memset (data, 0, sizeof (*data));
1110 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1111 dwarf2_per_objfile = data;
1112
1113 dwarf_info_section = 0;
1114 dwarf_abbrev_section = 0;
1115 dwarf_line_section = 0;
1116 dwarf_str_section = 0;
1117 dwarf_macinfo_section = 0;
1118 dwarf_frame_section = 0;
1119 dwarf_eh_frame_section = 0;
1120 dwarf_ranges_section = 0;
1121 dwarf_loc_section = 0;
1122
1123 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1124 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1125 }
1126
1127 /* This function is mapped across the sections and remembers the
1128 offset and size of each of the debugging sections we are interested
1129 in. */
1130
1131 static void
1132 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
1133 {
1134 if (strcmp (sectp->name, INFO_SECTION) == 0)
1135 {
1136 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1137 dwarf_info_section = sectp;
1138 }
1139 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1140 {
1141 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1142 dwarf_abbrev_section = sectp;
1143 }
1144 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1145 {
1146 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1147 dwarf_line_section = sectp;
1148 }
1149 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1150 {
1151 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1152 dwarf_pubnames_section = sectp;
1153 }
1154 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1155 {
1156 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1157 dwarf_aranges_section = sectp;
1158 }
1159 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1162 dwarf_loc_section = sectp;
1163 }
1164 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1165 {
1166 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1167 dwarf_macinfo_section = sectp;
1168 }
1169 else if (strcmp (sectp->name, STR_SECTION) == 0)
1170 {
1171 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1172 dwarf_str_section = sectp;
1173 }
1174 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1175 {
1176 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1177 dwarf_frame_section = sectp;
1178 }
1179 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1180 {
1181 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1182 if (aflag & SEC_HAS_CONTENTS)
1183 {
1184 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1185 dwarf_eh_frame_section = sectp;
1186 }
1187 }
1188 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1189 {
1190 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1191 dwarf_ranges_section = sectp;
1192 }
1193
1194 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1195 && bfd_section_vma (abfd, sectp) == 0)
1196 dwarf2_per_objfile->has_section_at_zero = 1;
1197 }
1198
1199 /* Build a partial symbol table. */
1200
1201 void
1202 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1203 {
1204 /* We definitely need the .debug_info and .debug_abbrev sections */
1205
1206 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1207 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1208
1209 if (dwarf_line_section)
1210 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1211 else
1212 dwarf2_per_objfile->line_buffer = NULL;
1213
1214 if (dwarf_str_section)
1215 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1216 else
1217 dwarf2_per_objfile->str_buffer = NULL;
1218
1219 if (dwarf_macinfo_section)
1220 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1221 dwarf_macinfo_section);
1222 else
1223 dwarf2_per_objfile->macinfo_buffer = NULL;
1224
1225 if (dwarf_ranges_section)
1226 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1227 else
1228 dwarf2_per_objfile->ranges_buffer = NULL;
1229
1230 if (dwarf_loc_section)
1231 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1232 else
1233 dwarf2_per_objfile->loc_buffer = NULL;
1234
1235 if (mainline
1236 || (objfile->global_psymbols.size == 0
1237 && objfile->static_psymbols.size == 0))
1238 {
1239 init_psymbol_list (objfile, 1024);
1240 }
1241
1242 #if 0
1243 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1244 {
1245 /* Things are significantly easier if we have .debug_aranges and
1246 .debug_pubnames sections */
1247
1248 dwarf2_build_psymtabs_easy (objfile, mainline);
1249 }
1250 else
1251 #endif
1252 /* only test this case for now */
1253 {
1254 /* In this case we have to work a bit harder */
1255 dwarf2_build_psymtabs_hard (objfile, mainline);
1256 }
1257 }
1258
1259 #if 0
1260 /* Build the partial symbol table from the information in the
1261 .debug_pubnames and .debug_aranges sections. */
1262
1263 static void
1264 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1265 {
1266 bfd *abfd = objfile->obfd;
1267 char *aranges_buffer, *pubnames_buffer;
1268 char *aranges_ptr, *pubnames_ptr;
1269 unsigned int entry_length, version, info_offset, info_size;
1270
1271 pubnames_buffer = dwarf2_read_section (objfile,
1272 dwarf_pubnames_section);
1273 pubnames_ptr = pubnames_buffer;
1274 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1275 {
1276 struct comp_unit_head cu_header;
1277 unsigned int bytes_read;
1278
1279 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1280 &bytes_read);
1281 pubnames_ptr += bytes_read;
1282 version = read_1_byte (abfd, pubnames_ptr);
1283 pubnames_ptr += 1;
1284 info_offset = read_4_bytes (abfd, pubnames_ptr);
1285 pubnames_ptr += 4;
1286 info_size = read_4_bytes (abfd, pubnames_ptr);
1287 pubnames_ptr += 4;
1288 }
1289
1290 aranges_buffer = dwarf2_read_section (objfile,
1291 dwarf_aranges_section);
1292
1293 }
1294 #endif
1295
1296 /* Read in the comp unit header information from the debug_info at
1297 info_ptr. */
1298
1299 static gdb_byte *
1300 read_comp_unit_head (struct comp_unit_head *cu_header,
1301 gdb_byte *info_ptr, bfd *abfd)
1302 {
1303 int signed_addr;
1304 unsigned int bytes_read;
1305 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1306 &bytes_read);
1307 info_ptr += bytes_read;
1308 cu_header->version = read_2_bytes (abfd, info_ptr);
1309 info_ptr += 2;
1310 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1311 &bytes_read);
1312 info_ptr += bytes_read;
1313 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1314 info_ptr += 1;
1315 signed_addr = bfd_get_sign_extend_vma (abfd);
1316 if (signed_addr < 0)
1317 internal_error (__FILE__, __LINE__,
1318 _("read_comp_unit_head: dwarf from non elf file"));
1319 cu_header->signed_addr_p = signed_addr;
1320 return info_ptr;
1321 }
1322
1323 static gdb_byte *
1324 partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
1325 bfd *abfd)
1326 {
1327 gdb_byte *beg_of_comp_unit = info_ptr;
1328
1329 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1330
1331 if (header->version != 2 && header->version != 3)
1332 error (_("Dwarf Error: wrong version in compilation unit header "
1333 "(is %d, should be %d) [in module %s]"), header->version,
1334 2, bfd_get_filename (abfd));
1335
1336 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1337 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1338 "(offset 0x%lx + 6) [in module %s]"),
1339 (long) header->abbrev_offset,
1340 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1341 bfd_get_filename (abfd));
1342
1343 if (beg_of_comp_unit + header->length + header->initial_length_size
1344 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1345 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1346 "(offset 0x%lx + 0) [in module %s]"),
1347 (long) header->length,
1348 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1349 bfd_get_filename (abfd));
1350
1351 return info_ptr;
1352 }
1353
1354 /* Allocate a new partial symtab for file named NAME and mark this new
1355 partial symtab as being an include of PST. */
1356
1357 static void
1358 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1359 struct objfile *objfile)
1360 {
1361 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1362
1363 subpst->section_offsets = pst->section_offsets;
1364 subpst->textlow = 0;
1365 subpst->texthigh = 0;
1366
1367 subpst->dependencies = (struct partial_symtab **)
1368 obstack_alloc (&objfile->objfile_obstack,
1369 sizeof (struct partial_symtab *));
1370 subpst->dependencies[0] = pst;
1371 subpst->number_of_dependencies = 1;
1372
1373 subpst->globals_offset = 0;
1374 subpst->n_global_syms = 0;
1375 subpst->statics_offset = 0;
1376 subpst->n_static_syms = 0;
1377 subpst->symtab = NULL;
1378 subpst->read_symtab = pst->read_symtab;
1379 subpst->readin = 0;
1380
1381 /* No private part is necessary for include psymtabs. This property
1382 can be used to differentiate between such include psymtabs and
1383 the regular ones. */
1384 subpst->read_symtab_private = NULL;
1385 }
1386
1387 /* Read the Line Number Program data and extract the list of files
1388 included by the source file represented by PST. Build an include
1389 partial symtab for each of these included files.
1390
1391 This procedure assumes that there *is* a Line Number Program in
1392 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1393 before calling this procedure. */
1394
1395 static void
1396 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1397 struct partial_die_info *pdi,
1398 struct partial_symtab *pst)
1399 {
1400 struct objfile *objfile = cu->objfile;
1401 bfd *abfd = objfile->obfd;
1402 struct line_header *lh;
1403
1404 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1405 if (lh == NULL)
1406 return; /* No linetable, so no includes. */
1407
1408 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1409
1410 free_line_header (lh);
1411 }
1412
1413
1414 /* Build the partial symbol table by doing a quick pass through the
1415 .debug_info and .debug_abbrev sections. */
1416
1417 static void
1418 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1419 {
1420 /* Instead of reading this into a big buffer, we should probably use
1421 mmap() on architectures that support it. (FIXME) */
1422 bfd *abfd = objfile->obfd;
1423 gdb_byte *info_ptr;
1424 gdb_byte *beg_of_comp_unit;
1425 struct partial_die_info comp_unit_die;
1426 struct partial_symtab *pst;
1427 struct cleanup *back_to;
1428 CORE_ADDR lowpc, highpc, baseaddr;
1429
1430 info_ptr = dwarf2_per_objfile->info_buffer;
1431
1432 /* Any cached compilation units will be linked by the per-objfile
1433 read_in_chain. Make sure to free them when we're done. */
1434 back_to = make_cleanup (free_cached_comp_units, NULL);
1435
1436 create_all_comp_units (objfile);
1437
1438 /* Since the objects we're extracting from .debug_info vary in
1439 length, only the individual functions to extract them (like
1440 read_comp_unit_head and load_partial_die) can really know whether
1441 the buffer is large enough to hold another complete object.
1442
1443 At the moment, they don't actually check that. If .debug_info
1444 holds just one extra byte after the last compilation unit's dies,
1445 then read_comp_unit_head will happily read off the end of the
1446 buffer. read_partial_die is similarly casual. Those functions
1447 should be fixed.
1448
1449 For this loop condition, simply checking whether there's any data
1450 left at all should be sufficient. */
1451 while (info_ptr < (dwarf2_per_objfile->info_buffer
1452 + dwarf2_per_objfile->info_size))
1453 {
1454 struct cleanup *back_to_inner;
1455 struct dwarf2_cu cu;
1456 struct abbrev_info *abbrev;
1457 unsigned int bytes_read;
1458 struct dwarf2_per_cu_data *this_cu;
1459
1460 beg_of_comp_unit = info_ptr;
1461
1462 memset (&cu, 0, sizeof (cu));
1463
1464 obstack_init (&cu.comp_unit_obstack);
1465
1466 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1467
1468 cu.objfile = objfile;
1469 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1470
1471 /* Complete the cu_header */
1472 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1473 cu.header.first_die_ptr = info_ptr;
1474 cu.header.cu_head_ptr = beg_of_comp_unit;
1475
1476 cu.list_in_scope = &file_symbols;
1477
1478 /* Read the abbrevs for this compilation unit into a table */
1479 dwarf2_read_abbrevs (abfd, &cu);
1480 make_cleanup (dwarf2_free_abbrev_table, &cu);
1481
1482 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1483
1484 /* Read the compilation unit die */
1485 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1486 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1487 abfd, info_ptr, &cu);
1488
1489 if (comp_unit_die.tag == DW_TAG_partial_unit)
1490 {
1491 info_ptr = (beg_of_comp_unit + cu.header.length
1492 + cu.header.initial_length_size);
1493 do_cleanups (back_to_inner);
1494 continue;
1495 }
1496
1497 /* Set the language we're debugging */
1498 set_cu_language (comp_unit_die.language, &cu);
1499
1500 /* Allocate a new partial symbol table structure */
1501 pst = start_psymtab_common (objfile, objfile->section_offsets,
1502 comp_unit_die.name ? comp_unit_die.name : "",
1503 comp_unit_die.lowpc,
1504 objfile->global_psymbols.next,
1505 objfile->static_psymbols.next);
1506
1507 if (comp_unit_die.dirname)
1508 pst->dirname = xstrdup (comp_unit_die.dirname);
1509
1510 pst->read_symtab_private = (char *) this_cu;
1511
1512 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1513
1514 /* Store the function that reads in the rest of the symbol table */
1515 pst->read_symtab = dwarf2_psymtab_to_symtab;
1516
1517 /* If this compilation unit was already read in, free the
1518 cached copy in order to read it in again. This is
1519 necessary because we skipped some symbols when we first
1520 read in the compilation unit (see load_partial_dies).
1521 This problem could be avoided, but the benefit is
1522 unclear. */
1523 if (this_cu->cu != NULL)
1524 free_one_cached_comp_unit (this_cu->cu);
1525
1526 cu.per_cu = this_cu;
1527
1528 /* Note that this is a pointer to our stack frame, being
1529 added to a global data structure. It will be cleaned up
1530 in free_stack_comp_unit when we finish with this
1531 compilation unit. */
1532 this_cu->cu = &cu;
1533
1534 this_cu->psymtab = pst;
1535
1536 /* Check if comp unit has_children.
1537 If so, read the rest of the partial symbols from this comp unit.
1538 If not, there's no more debug_info for this comp unit. */
1539 if (comp_unit_die.has_children)
1540 {
1541 struct partial_die_info *first_die;
1542
1543 lowpc = ((CORE_ADDR) -1);
1544 highpc = ((CORE_ADDR) 0);
1545
1546 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1547
1548 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1549
1550 /* If we didn't find a lowpc, set it to highpc to avoid
1551 complaints from `maint check'. */
1552 if (lowpc == ((CORE_ADDR) -1))
1553 lowpc = highpc;
1554
1555 /* If the compilation unit didn't have an explicit address range,
1556 then use the information extracted from its child dies. */
1557 if (! comp_unit_die.has_pc_info)
1558 {
1559 comp_unit_die.lowpc = lowpc;
1560 comp_unit_die.highpc = highpc;
1561 }
1562 }
1563 pst->textlow = comp_unit_die.lowpc + baseaddr;
1564 pst->texthigh = comp_unit_die.highpc + baseaddr;
1565
1566 pst->n_global_syms = objfile->global_psymbols.next -
1567 (objfile->global_psymbols.list + pst->globals_offset);
1568 pst->n_static_syms = objfile->static_psymbols.next -
1569 (objfile->static_psymbols.list + pst->statics_offset);
1570 sort_pst_symbols (pst);
1571
1572 /* If there is already a psymtab or symtab for a file of this
1573 name, remove it. (If there is a symtab, more drastic things
1574 also happen.) This happens in VxWorks. */
1575 free_named_symtabs (pst->filename);
1576
1577 info_ptr = beg_of_comp_unit + cu.header.length
1578 + cu.header.initial_length_size;
1579
1580 if (comp_unit_die.has_stmt_list)
1581 {
1582 /* Get the list of files included in the current compilation unit,
1583 and build a psymtab for each of them. */
1584 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1585 }
1586
1587 do_cleanups (back_to_inner);
1588 }
1589 do_cleanups (back_to);
1590 }
1591
1592 /* Load the DIEs for a secondary CU into memory. */
1593
1594 static void
1595 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1596 {
1597 bfd *abfd = objfile->obfd;
1598 gdb_byte *info_ptr, *beg_of_comp_unit;
1599 struct partial_die_info comp_unit_die;
1600 struct dwarf2_cu *cu;
1601 struct abbrev_info *abbrev;
1602 unsigned int bytes_read;
1603 struct cleanup *back_to;
1604
1605 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1606 beg_of_comp_unit = info_ptr;
1607
1608 cu = xmalloc (sizeof (struct dwarf2_cu));
1609 memset (cu, 0, sizeof (struct dwarf2_cu));
1610
1611 obstack_init (&cu->comp_unit_obstack);
1612
1613 cu->objfile = objfile;
1614 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1615
1616 /* Complete the cu_header. */
1617 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1618 cu->header.first_die_ptr = info_ptr;
1619 cu->header.cu_head_ptr = beg_of_comp_unit;
1620
1621 /* Read the abbrevs for this compilation unit into a table. */
1622 dwarf2_read_abbrevs (abfd, cu);
1623 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1624
1625 /* Read the compilation unit die. */
1626 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1627 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1628 abfd, info_ptr, cu);
1629
1630 /* Set the language we're debugging. */
1631 set_cu_language (comp_unit_die.language, cu);
1632
1633 /* Link this compilation unit into the compilation unit tree. */
1634 this_cu->cu = cu;
1635 cu->per_cu = this_cu;
1636
1637 /* Check if comp unit has_children.
1638 If so, read the rest of the partial symbols from this comp unit.
1639 If not, there's no more debug_info for this comp unit. */
1640 if (comp_unit_die.has_children)
1641 load_partial_dies (abfd, info_ptr, 0, cu);
1642
1643 do_cleanups (back_to);
1644 }
1645
1646 /* Create a list of all compilation units in OBJFILE. We do this only
1647 if an inter-comp-unit reference is found; presumably if there is one,
1648 there will be many, and one will occur early in the .debug_info section.
1649 So there's no point in building this list incrementally. */
1650
1651 static void
1652 create_all_comp_units (struct objfile *objfile)
1653 {
1654 int n_allocated;
1655 int n_comp_units;
1656 struct dwarf2_per_cu_data **all_comp_units;
1657 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
1658
1659 n_comp_units = 0;
1660 n_allocated = 10;
1661 all_comp_units = xmalloc (n_allocated
1662 * sizeof (struct dwarf2_per_cu_data *));
1663
1664 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1665 {
1666 struct comp_unit_head cu_header;
1667 gdb_byte *beg_of_comp_unit;
1668 struct dwarf2_per_cu_data *this_cu;
1669 unsigned long offset;
1670 unsigned int bytes_read;
1671
1672 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1673
1674 /* Read just enough information to find out where the next
1675 compilation unit is. */
1676 cu_header.initial_length_size = 0;
1677 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1678 &cu_header, &bytes_read);
1679
1680 /* Save the compilation unit for later lookup. */
1681 this_cu = obstack_alloc (&objfile->objfile_obstack,
1682 sizeof (struct dwarf2_per_cu_data));
1683 memset (this_cu, 0, sizeof (*this_cu));
1684 this_cu->offset = offset;
1685 this_cu->length = cu_header.length + cu_header.initial_length_size;
1686
1687 if (n_comp_units == n_allocated)
1688 {
1689 n_allocated *= 2;
1690 all_comp_units = xrealloc (all_comp_units,
1691 n_allocated
1692 * sizeof (struct dwarf2_per_cu_data *));
1693 }
1694 all_comp_units[n_comp_units++] = this_cu;
1695
1696 info_ptr = info_ptr + this_cu->length;
1697 }
1698
1699 dwarf2_per_objfile->all_comp_units
1700 = obstack_alloc (&objfile->objfile_obstack,
1701 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1702 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1703 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1704 xfree (all_comp_units);
1705 dwarf2_per_objfile->n_comp_units = n_comp_units;
1706 }
1707
1708 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1709 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1710 in CU. */
1711
1712 static void
1713 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1714 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1715 {
1716 struct objfile *objfile = cu->objfile;
1717 bfd *abfd = objfile->obfd;
1718 struct partial_die_info *pdi;
1719
1720 /* Now, march along the PDI's, descending into ones which have
1721 interesting children but skipping the children of the other ones,
1722 until we reach the end of the compilation unit. */
1723
1724 pdi = first_die;
1725
1726 while (pdi != NULL)
1727 {
1728 fixup_partial_die (pdi, cu);
1729
1730 /* Anonymous namespaces have no name but have interesting
1731 children, so we need to look at them. Ditto for anonymous
1732 enums. */
1733
1734 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1735 || pdi->tag == DW_TAG_enumeration_type)
1736 {
1737 switch (pdi->tag)
1738 {
1739 case DW_TAG_subprogram:
1740 if (pdi->has_pc_info)
1741 {
1742 if (pdi->lowpc < *lowpc)
1743 {
1744 *lowpc = pdi->lowpc;
1745 }
1746 if (pdi->highpc > *highpc)
1747 {
1748 *highpc = pdi->highpc;
1749 }
1750 if (!pdi->is_declaration)
1751 {
1752 add_partial_symbol (pdi, cu);
1753 }
1754 }
1755 break;
1756 case DW_TAG_variable:
1757 case DW_TAG_typedef:
1758 case DW_TAG_union_type:
1759 if (!pdi->is_declaration)
1760 {
1761 add_partial_symbol (pdi, cu);
1762 }
1763 break;
1764 case DW_TAG_class_type:
1765 case DW_TAG_structure_type:
1766 if (!pdi->is_declaration)
1767 {
1768 add_partial_symbol (pdi, cu);
1769 }
1770 break;
1771 case DW_TAG_enumeration_type:
1772 if (!pdi->is_declaration)
1773 add_partial_enumeration (pdi, cu);
1774 break;
1775 case DW_TAG_base_type:
1776 case DW_TAG_subrange_type:
1777 /* File scope base type definitions are added to the partial
1778 symbol table. */
1779 add_partial_symbol (pdi, cu);
1780 break;
1781 case DW_TAG_namespace:
1782 add_partial_namespace (pdi, lowpc, highpc, cu);
1783 break;
1784 default:
1785 break;
1786 }
1787 }
1788
1789 /* If the die has a sibling, skip to the sibling. */
1790
1791 pdi = pdi->die_sibling;
1792 }
1793 }
1794
1795 /* Functions used to compute the fully scoped name of a partial DIE.
1796
1797 Normally, this is simple. For C++, the parent DIE's fully scoped
1798 name is concatenated with "::" and the partial DIE's name. For
1799 Java, the same thing occurs except that "." is used instead of "::".
1800 Enumerators are an exception; they use the scope of their parent
1801 enumeration type, i.e. the name of the enumeration type is not
1802 prepended to the enumerator.
1803
1804 There are two complexities. One is DW_AT_specification; in this
1805 case "parent" means the parent of the target of the specification,
1806 instead of the direct parent of the DIE. The other is compilers
1807 which do not emit DW_TAG_namespace; in this case we try to guess
1808 the fully qualified name of structure types from their members'
1809 linkage names. This must be done using the DIE's children rather
1810 than the children of any DW_AT_specification target. We only need
1811 to do this for structures at the top level, i.e. if the target of
1812 any DW_AT_specification (if any; otherwise the DIE itself) does not
1813 have a parent. */
1814
1815 /* Compute the scope prefix associated with PDI's parent, in
1816 compilation unit CU. The result will be allocated on CU's
1817 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1818 field. NULL is returned if no prefix is necessary. */
1819 static char *
1820 partial_die_parent_scope (struct partial_die_info *pdi,
1821 struct dwarf2_cu *cu)
1822 {
1823 char *grandparent_scope;
1824 struct partial_die_info *parent, *real_pdi;
1825
1826 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1827 then this means the parent of the specification DIE. */
1828
1829 real_pdi = pdi;
1830 while (real_pdi->has_specification)
1831 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1832
1833 parent = real_pdi->die_parent;
1834 if (parent == NULL)
1835 return NULL;
1836
1837 if (parent->scope_set)
1838 return parent->scope;
1839
1840 fixup_partial_die (parent, cu);
1841
1842 grandparent_scope = partial_die_parent_scope (parent, cu);
1843
1844 if (parent->tag == DW_TAG_namespace
1845 || parent->tag == DW_TAG_structure_type
1846 || parent->tag == DW_TAG_class_type
1847 || parent->tag == DW_TAG_union_type)
1848 {
1849 if (grandparent_scope == NULL)
1850 parent->scope = parent->name;
1851 else
1852 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1853 parent->name, cu);
1854 }
1855 else if (parent->tag == DW_TAG_enumeration_type)
1856 /* Enumerators should not get the name of the enumeration as a prefix. */
1857 parent->scope = grandparent_scope;
1858 else
1859 {
1860 /* FIXME drow/2004-04-01: What should we be doing with
1861 function-local names? For partial symbols, we should probably be
1862 ignoring them. */
1863 complaint (&symfile_complaints,
1864 _("unhandled containing DIE tag %d for DIE at %d"),
1865 parent->tag, pdi->offset);
1866 parent->scope = grandparent_scope;
1867 }
1868
1869 parent->scope_set = 1;
1870 return parent->scope;
1871 }
1872
1873 /* Return the fully scoped name associated with PDI, from compilation unit
1874 CU. The result will be allocated with malloc. */
1875 static char *
1876 partial_die_full_name (struct partial_die_info *pdi,
1877 struct dwarf2_cu *cu)
1878 {
1879 char *parent_scope;
1880
1881 parent_scope = partial_die_parent_scope (pdi, cu);
1882 if (parent_scope == NULL)
1883 return NULL;
1884 else
1885 return typename_concat (NULL, parent_scope, pdi->name, cu);
1886 }
1887
1888 static void
1889 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1890 {
1891 struct objfile *objfile = cu->objfile;
1892 CORE_ADDR addr = 0;
1893 char *actual_name;
1894 const char *my_prefix;
1895 const struct partial_symbol *psym = NULL;
1896 CORE_ADDR baseaddr;
1897 int built_actual_name = 0;
1898
1899 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1900
1901 actual_name = NULL;
1902
1903 if (pdi_needs_namespace (pdi->tag))
1904 {
1905 actual_name = partial_die_full_name (pdi, cu);
1906 if (actual_name)
1907 built_actual_name = 1;
1908 }
1909
1910 if (actual_name == NULL)
1911 actual_name = pdi->name;
1912
1913 switch (pdi->tag)
1914 {
1915 case DW_TAG_subprogram:
1916 if (pdi->is_external)
1917 {
1918 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1919 mst_text, objfile); */
1920 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1921 VAR_DOMAIN, LOC_BLOCK,
1922 &objfile->global_psymbols,
1923 0, pdi->lowpc + baseaddr,
1924 cu->language, objfile);
1925 }
1926 else
1927 {
1928 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1929 mst_file_text, objfile); */
1930 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1931 VAR_DOMAIN, LOC_BLOCK,
1932 &objfile->static_psymbols,
1933 0, pdi->lowpc + baseaddr,
1934 cu->language, objfile);
1935 }
1936 break;
1937 case DW_TAG_variable:
1938 if (pdi->is_external)
1939 {
1940 /* Global Variable.
1941 Don't enter into the minimal symbol tables as there is
1942 a minimal symbol table entry from the ELF symbols already.
1943 Enter into partial symbol table if it has a location
1944 descriptor or a type.
1945 If the location descriptor is missing, new_symbol will create
1946 a LOC_UNRESOLVED symbol, the address of the variable will then
1947 be determined from the minimal symbol table whenever the variable
1948 is referenced.
1949 The address for the partial symbol table entry is not
1950 used by GDB, but it comes in handy for debugging partial symbol
1951 table building. */
1952
1953 if (pdi->locdesc)
1954 addr = decode_locdesc (pdi->locdesc, cu);
1955 if (pdi->locdesc || pdi->has_type)
1956 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1957 VAR_DOMAIN, LOC_STATIC,
1958 &objfile->global_psymbols,
1959 0, addr + baseaddr,
1960 cu->language, objfile);
1961 }
1962 else
1963 {
1964 /* Static Variable. Skip symbols without location descriptors. */
1965 if (pdi->locdesc == NULL)
1966 return;
1967 addr = decode_locdesc (pdi->locdesc, cu);
1968 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1969 mst_file_data, objfile); */
1970 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1971 VAR_DOMAIN, LOC_STATIC,
1972 &objfile->static_psymbols,
1973 0, addr + baseaddr,
1974 cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_typedef:
1978 case DW_TAG_base_type:
1979 case DW_TAG_subrange_type:
1980 add_psymbol_to_list (actual_name, strlen (actual_name),
1981 VAR_DOMAIN, LOC_TYPEDEF,
1982 &objfile->static_psymbols,
1983 0, (CORE_ADDR) 0, cu->language, objfile);
1984 break;
1985 case DW_TAG_namespace:
1986 add_psymbol_to_list (actual_name, strlen (actual_name),
1987 VAR_DOMAIN, LOC_TYPEDEF,
1988 &objfile->global_psymbols,
1989 0, (CORE_ADDR) 0, cu->language, objfile);
1990 break;
1991 case DW_TAG_class_type:
1992 case DW_TAG_structure_type:
1993 case DW_TAG_union_type:
1994 case DW_TAG_enumeration_type:
1995 /* Skip external references. The DWARF standard says in the section
1996 about "Structure, Union, and Class Type Entries": "An incomplete
1997 structure, union or class type is represented by a structure,
1998 union or class entry that does not have a byte size attribute
1999 and that has a DW_AT_declaration attribute." */
2000 if (!pdi->has_byte_size && pdi->is_declaration)
2001 return;
2002
2003 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
2004 static vs. global. */
2005 add_psymbol_to_list (actual_name, strlen (actual_name),
2006 STRUCT_DOMAIN, LOC_TYPEDEF,
2007 (cu->language == language_cplus
2008 || cu->language == language_java)
2009 ? &objfile->global_psymbols
2010 : &objfile->static_psymbols,
2011 0, (CORE_ADDR) 0, cu->language, objfile);
2012
2013 if (cu->language == language_cplus
2014 || cu->language == language_java
2015 || cu->language == language_ada)
2016 {
2017 /* For C++ and Java, these implicitly act as typedefs as well. */
2018 add_psymbol_to_list (actual_name, strlen (actual_name),
2019 VAR_DOMAIN, LOC_TYPEDEF,
2020 &objfile->global_psymbols,
2021 0, (CORE_ADDR) 0, cu->language, objfile);
2022 }
2023 break;
2024 case DW_TAG_enumerator:
2025 add_psymbol_to_list (actual_name, strlen (actual_name),
2026 VAR_DOMAIN, LOC_CONST,
2027 (cu->language == language_cplus
2028 || cu->language == language_java)
2029 ? &objfile->global_psymbols
2030 : &objfile->static_psymbols,
2031 0, (CORE_ADDR) 0, cu->language, objfile);
2032 break;
2033 default:
2034 break;
2035 }
2036
2037 /* Check to see if we should scan the name for possible namespace
2038 info. Only do this if this is C++, if we don't have namespace
2039 debugging info in the file, if the psym is of an appropriate type
2040 (otherwise we'll have psym == NULL), and if we actually had a
2041 mangled name to begin with. */
2042
2043 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2044 cases which do not set PSYM above? */
2045
2046 if (cu->language == language_cplus
2047 && cu->has_namespace_info == 0
2048 && psym != NULL
2049 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2050 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2051 objfile);
2052
2053 if (built_actual_name)
2054 xfree (actual_name);
2055 }
2056
2057 /* Determine whether a die of type TAG living in a C++ class or
2058 namespace needs to have the name of the scope prepended to the
2059 name listed in the die. */
2060
2061 static int
2062 pdi_needs_namespace (enum dwarf_tag tag)
2063 {
2064 switch (tag)
2065 {
2066 case DW_TAG_namespace:
2067 case DW_TAG_typedef:
2068 case DW_TAG_class_type:
2069 case DW_TAG_structure_type:
2070 case DW_TAG_union_type:
2071 case DW_TAG_enumeration_type:
2072 case DW_TAG_enumerator:
2073 return 1;
2074 default:
2075 return 0;
2076 }
2077 }
2078
2079 /* Read a partial die corresponding to a namespace; also, add a symbol
2080 corresponding to that namespace to the symbol table. NAMESPACE is
2081 the name of the enclosing namespace. */
2082
2083 static void
2084 add_partial_namespace (struct partial_die_info *pdi,
2085 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2086 struct dwarf2_cu *cu)
2087 {
2088 struct objfile *objfile = cu->objfile;
2089
2090 /* Add a symbol for the namespace. */
2091
2092 add_partial_symbol (pdi, cu);
2093
2094 /* Now scan partial symbols in that namespace. */
2095
2096 if (pdi->has_children)
2097 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2098 }
2099
2100 /* See if we can figure out if the class lives in a namespace. We do
2101 this by looking for a member function; its demangled name will
2102 contain namespace info, if there is any. */
2103
2104 static void
2105 guess_structure_name (struct partial_die_info *struct_pdi,
2106 struct dwarf2_cu *cu)
2107 {
2108 if ((cu->language == language_cplus
2109 || cu->language == language_java)
2110 && cu->has_namespace_info == 0
2111 && struct_pdi->has_children)
2112 {
2113 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2114 what template types look like, because the demangler
2115 frequently doesn't give the same name as the debug info. We
2116 could fix this by only using the demangled name to get the
2117 prefix (but see comment in read_structure_type). */
2118
2119 struct partial_die_info *child_pdi = struct_pdi->die_child;
2120 struct partial_die_info *real_pdi;
2121
2122 /* If this DIE (this DIE's specification, if any) has a parent, then
2123 we should not do this. We'll prepend the parent's fully qualified
2124 name when we create the partial symbol. */
2125
2126 real_pdi = struct_pdi;
2127 while (real_pdi->has_specification)
2128 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2129
2130 if (real_pdi->die_parent != NULL)
2131 return;
2132
2133 while (child_pdi != NULL)
2134 {
2135 if (child_pdi->tag == DW_TAG_subprogram)
2136 {
2137 char *actual_class_name
2138 = language_class_name_from_physname (cu->language_defn,
2139 child_pdi->name);
2140 if (actual_class_name != NULL)
2141 {
2142 struct_pdi->name
2143 = obsavestring (actual_class_name,
2144 strlen (actual_class_name),
2145 &cu->comp_unit_obstack);
2146 xfree (actual_class_name);
2147 }
2148 break;
2149 }
2150
2151 child_pdi = child_pdi->die_sibling;
2152 }
2153 }
2154 }
2155
2156 /* Read a partial die corresponding to an enumeration type. */
2157
2158 static void
2159 add_partial_enumeration (struct partial_die_info *enum_pdi,
2160 struct dwarf2_cu *cu)
2161 {
2162 struct objfile *objfile = cu->objfile;
2163 bfd *abfd = objfile->obfd;
2164 struct partial_die_info *pdi;
2165
2166 if (enum_pdi->name != NULL)
2167 add_partial_symbol (enum_pdi, cu);
2168
2169 pdi = enum_pdi->die_child;
2170 while (pdi)
2171 {
2172 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2173 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2174 else
2175 add_partial_symbol (pdi, cu);
2176 pdi = pdi->die_sibling;
2177 }
2178 }
2179
2180 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2181 Return the corresponding abbrev, or NULL if the number is zero (indicating
2182 an empty DIE). In either case *BYTES_READ will be set to the length of
2183 the initial number. */
2184
2185 static struct abbrev_info *
2186 peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
2187 struct dwarf2_cu *cu)
2188 {
2189 bfd *abfd = cu->objfile->obfd;
2190 unsigned int abbrev_number;
2191 struct abbrev_info *abbrev;
2192
2193 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2194
2195 if (abbrev_number == 0)
2196 return NULL;
2197
2198 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2199 if (!abbrev)
2200 {
2201 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2202 bfd_get_filename (abfd));
2203 }
2204
2205 return abbrev;
2206 }
2207
2208 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2209 pointer to the end of a series of DIEs, terminated by an empty
2210 DIE. Any children of the skipped DIEs will also be skipped. */
2211
2212 static gdb_byte *
2213 skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
2214 {
2215 struct abbrev_info *abbrev;
2216 unsigned int bytes_read;
2217
2218 while (1)
2219 {
2220 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2221 if (abbrev == NULL)
2222 return info_ptr + bytes_read;
2223 else
2224 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2225 }
2226 }
2227
2228 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2229 should point just after the initial uleb128 of a DIE, and the
2230 abbrev corresponding to that skipped uleb128 should be passed in
2231 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2232 children. */
2233
2234 static gdb_byte *
2235 skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
2236 struct dwarf2_cu *cu)
2237 {
2238 unsigned int bytes_read;
2239 struct attribute attr;
2240 bfd *abfd = cu->objfile->obfd;
2241 unsigned int form, i;
2242
2243 for (i = 0; i < abbrev->num_attrs; i++)
2244 {
2245 /* The only abbrev we care about is DW_AT_sibling. */
2246 if (abbrev->attrs[i].name == DW_AT_sibling)
2247 {
2248 read_attribute (&attr, &abbrev->attrs[i],
2249 abfd, info_ptr, cu);
2250 if (attr.form == DW_FORM_ref_addr)
2251 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2252 else
2253 return dwarf2_per_objfile->info_buffer
2254 + dwarf2_get_ref_die_offset (&attr, cu);
2255 }
2256
2257 /* If it isn't DW_AT_sibling, skip this attribute. */
2258 form = abbrev->attrs[i].form;
2259 skip_attribute:
2260 switch (form)
2261 {
2262 case DW_FORM_addr:
2263 case DW_FORM_ref_addr:
2264 info_ptr += cu->header.addr_size;
2265 break;
2266 case DW_FORM_data1:
2267 case DW_FORM_ref1:
2268 case DW_FORM_flag:
2269 info_ptr += 1;
2270 break;
2271 case DW_FORM_data2:
2272 case DW_FORM_ref2:
2273 info_ptr += 2;
2274 break;
2275 case DW_FORM_data4:
2276 case DW_FORM_ref4:
2277 info_ptr += 4;
2278 break;
2279 case DW_FORM_data8:
2280 case DW_FORM_ref8:
2281 info_ptr += 8;
2282 break;
2283 case DW_FORM_string:
2284 read_string (abfd, info_ptr, &bytes_read);
2285 info_ptr += bytes_read;
2286 break;
2287 case DW_FORM_strp:
2288 info_ptr += cu->header.offset_size;
2289 break;
2290 case DW_FORM_block:
2291 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2292 info_ptr += bytes_read;
2293 break;
2294 case DW_FORM_block1:
2295 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2296 break;
2297 case DW_FORM_block2:
2298 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2299 break;
2300 case DW_FORM_block4:
2301 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2302 break;
2303 case DW_FORM_sdata:
2304 case DW_FORM_udata:
2305 case DW_FORM_ref_udata:
2306 info_ptr = skip_leb128 (abfd, info_ptr);
2307 break;
2308 case DW_FORM_indirect:
2309 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2310 info_ptr += bytes_read;
2311 /* We need to continue parsing from here, so just go back to
2312 the top. */
2313 goto skip_attribute;
2314
2315 default:
2316 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2317 dwarf_form_name (form),
2318 bfd_get_filename (abfd));
2319 }
2320 }
2321
2322 if (abbrev->has_children)
2323 return skip_children (info_ptr, cu);
2324 else
2325 return info_ptr;
2326 }
2327
2328 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2329 the next DIE after ORIG_PDI. */
2330
2331 static gdb_byte *
2332 locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
2333 bfd *abfd, struct dwarf2_cu *cu)
2334 {
2335 /* Do we know the sibling already? */
2336
2337 if (orig_pdi->sibling)
2338 return orig_pdi->sibling;
2339
2340 /* Are there any children to deal with? */
2341
2342 if (!orig_pdi->has_children)
2343 return info_ptr;
2344
2345 /* Skip the children the long way. */
2346
2347 return skip_children (info_ptr, cu);
2348 }
2349
2350 /* Expand this partial symbol table into a full symbol table. */
2351
2352 static void
2353 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2354 {
2355 /* FIXME: This is barely more than a stub. */
2356 if (pst != NULL)
2357 {
2358 if (pst->readin)
2359 {
2360 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2361 }
2362 else
2363 {
2364 if (info_verbose)
2365 {
2366 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
2367 gdb_flush (gdb_stdout);
2368 }
2369
2370 /* Restore our global data. */
2371 dwarf2_per_objfile = objfile_data (pst->objfile,
2372 dwarf2_objfile_data_key);
2373
2374 psymtab_to_symtab_1 (pst);
2375
2376 /* Finish up the debug error message. */
2377 if (info_verbose)
2378 printf_filtered (_("done.\n"));
2379 }
2380 }
2381 }
2382
2383 /* Add PER_CU to the queue. */
2384
2385 static void
2386 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2387 {
2388 struct dwarf2_queue_item *item;
2389
2390 per_cu->queued = 1;
2391 item = xmalloc (sizeof (*item));
2392 item->per_cu = per_cu;
2393 item->next = NULL;
2394
2395 if (dwarf2_queue == NULL)
2396 dwarf2_queue = item;
2397 else
2398 dwarf2_queue_tail->next = item;
2399
2400 dwarf2_queue_tail = item;
2401 }
2402
2403 /* Process the queue. */
2404
2405 static void
2406 process_queue (struct objfile *objfile)
2407 {
2408 struct dwarf2_queue_item *item, *next_item;
2409
2410 /* Initially, there is just one item on the queue. Load its DIEs,
2411 and the DIEs of any other compilation units it requires,
2412 transitively. */
2413
2414 for (item = dwarf2_queue; item != NULL; item = item->next)
2415 {
2416 /* Read in this compilation unit. This may add new items to
2417 the end of the queue. */
2418 load_full_comp_unit (item->per_cu, objfile);
2419
2420 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2421 dwarf2_per_objfile->read_in_chain = item->per_cu;
2422
2423 /* If this compilation unit has already had full symbols created,
2424 reset the TYPE fields in each DIE. */
2425 if (item->per_cu->type_hash)
2426 reset_die_and_siblings_types (item->per_cu->cu->dies,
2427 item->per_cu->cu);
2428 }
2429
2430 /* Now everything left on the queue needs to be read in. Process
2431 them, one at a time, removing from the queue as we finish. */
2432 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2433 {
2434 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
2435 process_full_comp_unit (item->per_cu);
2436
2437 item->per_cu->queued = 0;
2438 next_item = item->next;
2439 xfree (item);
2440 }
2441
2442 dwarf2_queue_tail = NULL;
2443 }
2444
2445 /* Free all allocated queue entries. This function only releases anything if
2446 an error was thrown; if the queue was processed then it would have been
2447 freed as we went along. */
2448
2449 static void
2450 dwarf2_release_queue (void *dummy)
2451 {
2452 struct dwarf2_queue_item *item, *last;
2453
2454 item = dwarf2_queue;
2455 while (item)
2456 {
2457 /* Anything still marked queued is likely to be in an
2458 inconsistent state, so discard it. */
2459 if (item->per_cu->queued)
2460 {
2461 if (item->per_cu->cu != NULL)
2462 free_one_cached_comp_unit (item->per_cu->cu);
2463 item->per_cu->queued = 0;
2464 }
2465
2466 last = item;
2467 item = item->next;
2468 xfree (last);
2469 }
2470
2471 dwarf2_queue = dwarf2_queue_tail = NULL;
2472 }
2473
2474 /* Read in full symbols for PST, and anything it depends on. */
2475
2476 static void
2477 psymtab_to_symtab_1 (struct partial_symtab *pst)
2478 {
2479 struct dwarf2_per_cu_data *per_cu;
2480 struct cleanup *back_to;
2481 int i;
2482
2483 for (i = 0; i < pst->number_of_dependencies; i++)
2484 if (!pst->dependencies[i]->readin)
2485 {
2486 /* Inform about additional files that need to be read in. */
2487 if (info_verbose)
2488 {
2489 /* FIXME: i18n: Need to make this a single string. */
2490 fputs_filtered (" ", gdb_stdout);
2491 wrap_here ("");
2492 fputs_filtered ("and ", gdb_stdout);
2493 wrap_here ("");
2494 printf_filtered ("%s...", pst->dependencies[i]->filename);
2495 wrap_here (""); /* Flush output */
2496 gdb_flush (gdb_stdout);
2497 }
2498 psymtab_to_symtab_1 (pst->dependencies[i]);
2499 }
2500
2501 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2502
2503 if (per_cu == NULL)
2504 {
2505 /* It's an include file, no symbols to read for it.
2506 Everything is in the parent symtab. */
2507 pst->readin = 1;
2508 return;
2509 }
2510
2511 back_to = make_cleanup (dwarf2_release_queue, NULL);
2512
2513 queue_comp_unit (per_cu);
2514
2515 process_queue (pst->objfile);
2516
2517 /* Age the cache, releasing compilation units that have not
2518 been used recently. */
2519 age_cached_comp_units ();
2520
2521 do_cleanups (back_to);
2522 }
2523
2524 /* Load the DIEs associated with PST and PER_CU into memory. */
2525
2526 static struct dwarf2_cu *
2527 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
2528 {
2529 bfd *abfd = objfile->obfd;
2530 struct dwarf2_cu *cu;
2531 unsigned long offset;
2532 gdb_byte *info_ptr;
2533 struct cleanup *back_to, *free_cu_cleanup;
2534 struct attribute *attr;
2535 CORE_ADDR baseaddr;
2536
2537 /* Set local variables from the partial symbol table info. */
2538 offset = per_cu->offset;
2539
2540 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2541
2542 cu = xmalloc (sizeof (struct dwarf2_cu));
2543 memset (cu, 0, sizeof (struct dwarf2_cu));
2544
2545 /* If an error occurs while loading, release our storage. */
2546 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2547
2548 cu->objfile = objfile;
2549
2550 /* read in the comp_unit header */
2551 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2552
2553 /* Read the abbrevs for this compilation unit */
2554 dwarf2_read_abbrevs (abfd, cu);
2555 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2556
2557 cu->header.offset = offset;
2558
2559 cu->per_cu = per_cu;
2560 per_cu->cu = cu;
2561
2562 /* We use this obstack for block values in dwarf_alloc_block. */
2563 obstack_init (&cu->comp_unit_obstack);
2564
2565 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2566
2567 /* We try not to read any attributes in this function, because not
2568 all objfiles needed for references have been loaded yet, and symbol
2569 table processing isn't initialized. But we have to set the CU language,
2570 or we won't be able to build types correctly. */
2571 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2572 if (attr)
2573 set_cu_language (DW_UNSND (attr), cu);
2574 else
2575 set_cu_language (language_minimal, cu);
2576
2577 do_cleanups (back_to);
2578
2579 /* We've successfully allocated this compilation unit. Let our caller
2580 clean it up when finished with it. */
2581 discard_cleanups (free_cu_cleanup);
2582
2583 return cu;
2584 }
2585
2586 /* Generate full symbol information for PST and CU, whose DIEs have
2587 already been loaded into memory. */
2588
2589 static void
2590 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2591 {
2592 struct partial_symtab *pst = per_cu->psymtab;
2593 struct dwarf2_cu *cu = per_cu->cu;
2594 struct objfile *objfile = pst->objfile;
2595 bfd *abfd = objfile->obfd;
2596 CORE_ADDR lowpc, highpc;
2597 struct symtab *symtab;
2598 struct cleanup *back_to;
2599 struct attribute *attr;
2600 CORE_ADDR baseaddr;
2601
2602 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2603
2604 /* We're in the global namespace. */
2605 processing_current_prefix = "";
2606
2607 buildsym_init ();
2608 back_to = make_cleanup (really_free_pendings, NULL);
2609
2610 cu->list_in_scope = &file_symbols;
2611
2612 /* Find the base address of the compilation unit for range lists and
2613 location lists. It will normally be specified by DW_AT_low_pc.
2614 In DWARF-3 draft 4, the base address could be overridden by
2615 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2616 compilation units with discontinuous ranges. */
2617
2618 cu->header.base_known = 0;
2619 cu->header.base_address = 0;
2620
2621 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2622 if (attr)
2623 {
2624 cu->header.base_address = DW_ADDR (attr);
2625 cu->header.base_known = 1;
2626 }
2627 else
2628 {
2629 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2630 if (attr)
2631 {
2632 cu->header.base_address = DW_ADDR (attr);
2633 cu->header.base_known = 1;
2634 }
2635 }
2636
2637 /* Do line number decoding in read_file_scope () */
2638 process_die (cu->dies, cu);
2639
2640 /* Some compilers don't define a DW_AT_high_pc attribute for the
2641 compilation unit. If the DW_AT_high_pc is missing, synthesize
2642 it, by scanning the DIE's below the compilation unit. */
2643 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2644
2645 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2646
2647 /* Set symtab language to language from DW_AT_language.
2648 If the compilation is from a C file generated by language preprocessors,
2649 do not set the language if it was already deduced by start_subfile. */
2650 if (symtab != NULL
2651 && !(cu->language == language_c && symtab->language != language_c))
2652 {
2653 symtab->language = cu->language;
2654 }
2655 pst->symtab = symtab;
2656 pst->readin = 1;
2657
2658 do_cleanups (back_to);
2659 }
2660
2661 /* Process a die and its children. */
2662
2663 static void
2664 process_die (struct die_info *die, struct dwarf2_cu *cu)
2665 {
2666 switch (die->tag)
2667 {
2668 case DW_TAG_padding:
2669 break;
2670 case DW_TAG_compile_unit:
2671 read_file_scope (die, cu);
2672 break;
2673 case DW_TAG_subprogram:
2674 read_subroutine_type (die, cu);
2675 read_func_scope (die, cu);
2676 break;
2677 case DW_TAG_inlined_subroutine:
2678 /* FIXME: These are ignored for now.
2679 They could be used to set breakpoints on all inlined instances
2680 of a function and make GDB `next' properly over inlined functions. */
2681 break;
2682 case DW_TAG_lexical_block:
2683 case DW_TAG_try_block:
2684 case DW_TAG_catch_block:
2685 read_lexical_block_scope (die, cu);
2686 break;
2687 case DW_TAG_class_type:
2688 case DW_TAG_structure_type:
2689 case DW_TAG_union_type:
2690 read_structure_type (die, cu);
2691 process_structure_scope (die, cu);
2692 break;
2693 case DW_TAG_enumeration_type:
2694 read_enumeration_type (die, cu);
2695 process_enumeration_scope (die, cu);
2696 break;
2697
2698 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2699 a symbol or process any children. Therefore it doesn't do anything
2700 that won't be done on-demand by read_type_die. */
2701 case DW_TAG_subroutine_type:
2702 read_subroutine_type (die, cu);
2703 break;
2704 case DW_TAG_set_type:
2705 read_set_type (die, cu);
2706 break;
2707 case DW_TAG_array_type:
2708 read_array_type (die, cu);
2709 break;
2710 case DW_TAG_pointer_type:
2711 read_tag_pointer_type (die, cu);
2712 break;
2713 case DW_TAG_ptr_to_member_type:
2714 read_tag_ptr_to_member_type (die, cu);
2715 break;
2716 case DW_TAG_reference_type:
2717 read_tag_reference_type (die, cu);
2718 break;
2719 case DW_TAG_string_type:
2720 read_tag_string_type (die, cu);
2721 break;
2722 /* END FIXME */
2723
2724 case DW_TAG_base_type:
2725 read_base_type (die, cu);
2726 /* Add a typedef symbol for the type definition, if it has a
2727 DW_AT_name. */
2728 new_symbol (die, die->type, cu);
2729 break;
2730 case DW_TAG_subrange_type:
2731 read_subrange_type (die, cu);
2732 /* Add a typedef symbol for the type definition, if it has a
2733 DW_AT_name. */
2734 new_symbol (die, die->type, cu);
2735 break;
2736 case DW_TAG_common_block:
2737 read_common_block (die, cu);
2738 break;
2739 case DW_TAG_common_inclusion:
2740 break;
2741 case DW_TAG_namespace:
2742 processing_has_namespace_info = 1;
2743 read_namespace (die, cu);
2744 break;
2745 case DW_TAG_imported_declaration:
2746 case DW_TAG_imported_module:
2747 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2748 information contained in these. DW_TAG_imported_declaration
2749 dies shouldn't have children; DW_TAG_imported_module dies
2750 shouldn't in the C++ case, but conceivably could in the
2751 Fortran case, so we'll have to replace this gdb_assert if
2752 Fortran compilers start generating that info. */
2753 processing_has_namespace_info = 1;
2754 gdb_assert (die->child == NULL);
2755 break;
2756 default:
2757 new_symbol (die, NULL, cu);
2758 break;
2759 }
2760 }
2761
2762 static void
2763 initialize_cu_func_list (struct dwarf2_cu *cu)
2764 {
2765 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2766 }
2767
2768 static void
2769 free_cu_line_header (void *arg)
2770 {
2771 struct dwarf2_cu *cu = arg;
2772
2773 free_line_header (cu->line_header);
2774 cu->line_header = NULL;
2775 }
2776
2777 static void
2778 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2779 {
2780 struct objfile *objfile = cu->objfile;
2781 struct comp_unit_head *cu_header = &cu->header;
2782 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2783 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2784 CORE_ADDR highpc = ((CORE_ADDR) 0);
2785 struct attribute *attr;
2786 char *name = NULL;
2787 char *comp_dir = NULL;
2788 struct die_info *child_die;
2789 bfd *abfd = objfile->obfd;
2790 struct line_header *line_header = 0;
2791 CORE_ADDR baseaddr;
2792
2793 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2794
2795 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2796
2797 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2798 from finish_block. */
2799 if (lowpc == ((CORE_ADDR) -1))
2800 lowpc = highpc;
2801 lowpc += baseaddr;
2802 highpc += baseaddr;
2803
2804 attr = dwarf2_attr (die, DW_AT_name, cu);
2805 if (attr)
2806 {
2807 name = DW_STRING (attr);
2808 }
2809
2810 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2811 if (attr)
2812 comp_dir = DW_STRING (attr);
2813 else if (name != NULL && IS_ABSOLUTE_PATH (name))
2814 {
2815 comp_dir = ldirname (name);
2816 if (comp_dir != NULL)
2817 make_cleanup (xfree, comp_dir);
2818 }
2819 if (comp_dir != NULL)
2820 {
2821 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2822 directory, get rid of it. */
2823 char *cp = strchr (comp_dir, ':');
2824
2825 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2826 comp_dir = cp + 1;
2827 }
2828
2829 if (name == NULL)
2830 name = "<unknown>";
2831
2832 attr = dwarf2_attr (die, DW_AT_language, cu);
2833 if (attr)
2834 {
2835 set_cu_language (DW_UNSND (attr), cu);
2836 }
2837
2838 attr = dwarf2_attr (die, DW_AT_producer, cu);
2839 if (attr)
2840 cu->producer = DW_STRING (attr);
2841
2842 /* We assume that we're processing GCC output. */
2843 processing_gcc_compilation = 2;
2844
2845 /* The compilation unit may be in a different language or objfile,
2846 zero out all remembered fundamental types. */
2847 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2848
2849 start_symtab (name, comp_dir, lowpc);
2850 record_debugformat ("DWARF 2");
2851 record_producer (cu->producer);
2852
2853 initialize_cu_func_list (cu);
2854
2855 /* Decode line number information if present. We do this before
2856 processing child DIEs, so that the line header table is available
2857 for DW_AT_decl_file. */
2858 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2859 if (attr)
2860 {
2861 unsigned int line_offset = DW_UNSND (attr);
2862 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2863 if (line_header)
2864 {
2865 cu->line_header = line_header;
2866 make_cleanup (free_cu_line_header, cu);
2867 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2868 }
2869 }
2870
2871 /* Process all dies in compilation unit. */
2872 if (die->child != NULL)
2873 {
2874 child_die = die->child;
2875 while (child_die && child_die->tag)
2876 {
2877 process_die (child_die, cu);
2878 child_die = sibling_die (child_die);
2879 }
2880 }
2881
2882 /* Decode macro information, if present. Dwarf 2 macro information
2883 refers to information in the line number info statement program
2884 header, so we can only read it if we've read the header
2885 successfully. */
2886 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2887 if (attr && line_header)
2888 {
2889 unsigned int macro_offset = DW_UNSND (attr);
2890 dwarf_decode_macros (line_header, macro_offset,
2891 comp_dir, abfd, cu);
2892 }
2893 do_cleanups (back_to);
2894 }
2895
2896 static void
2897 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2898 struct dwarf2_cu *cu)
2899 {
2900 struct function_range *thisfn;
2901
2902 thisfn = (struct function_range *)
2903 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2904 thisfn->name = name;
2905 thisfn->lowpc = lowpc;
2906 thisfn->highpc = highpc;
2907 thisfn->seen_line = 0;
2908 thisfn->next = NULL;
2909
2910 if (cu->last_fn == NULL)
2911 cu->first_fn = thisfn;
2912 else
2913 cu->last_fn->next = thisfn;
2914
2915 cu->last_fn = thisfn;
2916 }
2917
2918 static void
2919 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2920 {
2921 struct objfile *objfile = cu->objfile;
2922 struct context_stack *new;
2923 CORE_ADDR lowpc;
2924 CORE_ADDR highpc;
2925 struct die_info *child_die;
2926 struct attribute *attr;
2927 char *name;
2928 const char *previous_prefix = processing_current_prefix;
2929 struct cleanup *back_to = NULL;
2930 CORE_ADDR baseaddr;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 name = dwarf2_linkage_name (die, cu);
2935
2936 /* Ignore functions with missing or empty names and functions with
2937 missing or invalid low and high pc attributes. */
2938 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2939 return;
2940
2941 if (cu->language == language_cplus
2942 || cu->language == language_java)
2943 {
2944 struct die_info *spec_die = die_specification (die, cu);
2945
2946 /* NOTE: carlton/2004-01-23: We have to be careful in the
2947 presence of DW_AT_specification. For example, with GCC 3.4,
2948 given the code
2949
2950 namespace N {
2951 void foo() {
2952 // Definition of N::foo.
2953 }
2954 }
2955
2956 then we'll have a tree of DIEs like this:
2957
2958 1: DW_TAG_compile_unit
2959 2: DW_TAG_namespace // N
2960 3: DW_TAG_subprogram // declaration of N::foo
2961 4: DW_TAG_subprogram // definition of N::foo
2962 DW_AT_specification // refers to die #3
2963
2964 Thus, when processing die #4, we have to pretend that we're
2965 in the context of its DW_AT_specification, namely the contex
2966 of die #3. */
2967
2968 if (spec_die != NULL)
2969 {
2970 char *specification_prefix = determine_prefix (spec_die, cu);
2971 processing_current_prefix = specification_prefix;
2972 back_to = make_cleanup (xfree, specification_prefix);
2973 }
2974 }
2975
2976 lowpc += baseaddr;
2977 highpc += baseaddr;
2978
2979 /* Record the function range for dwarf_decode_lines. */
2980 add_to_cu_func_list (name, lowpc, highpc, cu);
2981
2982 new = push_context (0, lowpc);
2983 new->name = new_symbol (die, die->type, cu);
2984
2985 /* If there is a location expression for DW_AT_frame_base, record
2986 it. */
2987 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2988 if (attr)
2989 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2990 expression is being recorded directly in the function's symbol
2991 and not in a separate frame-base object. I guess this hack is
2992 to avoid adding some sort of frame-base adjunct/annex to the
2993 function's symbol :-(. The problem with doing this is that it
2994 results in a function symbol with a location expression that
2995 has nothing to do with the location of the function, ouch! The
2996 relationship should be: a function's symbol has-a frame base; a
2997 frame-base has-a location expression. */
2998 dwarf2_symbol_mark_computed (attr, new->name, cu);
2999
3000 cu->list_in_scope = &local_symbols;
3001
3002 if (die->child != NULL)
3003 {
3004 child_die = die->child;
3005 while (child_die && child_die->tag)
3006 {
3007 process_die (child_die, cu);
3008 child_die = sibling_die (child_die);
3009 }
3010 }
3011
3012 new = pop_context ();
3013 /* Make a block for the local symbols within. */
3014 finish_block (new->name, &local_symbols, new->old_blocks,
3015 lowpc, highpc, objfile);
3016
3017 /* In C++, we can have functions nested inside functions (e.g., when
3018 a function declares a class that has methods). This means that
3019 when we finish processing a function scope, we may need to go
3020 back to building a containing block's symbol lists. */
3021 local_symbols = new->locals;
3022 param_symbols = new->params;
3023
3024 /* If we've finished processing a top-level function, subsequent
3025 symbols go in the file symbol list. */
3026 if (outermost_context_p ())
3027 cu->list_in_scope = &file_symbols;
3028
3029 processing_current_prefix = previous_prefix;
3030 if (back_to != NULL)
3031 do_cleanups (back_to);
3032 }
3033
3034 /* Process all the DIES contained within a lexical block scope. Start
3035 a new scope, process the dies, and then close the scope. */
3036
3037 static void
3038 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
3039 {
3040 struct objfile *objfile = cu->objfile;
3041 struct context_stack *new;
3042 CORE_ADDR lowpc, highpc;
3043 struct die_info *child_die;
3044 CORE_ADDR baseaddr;
3045
3046 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3047
3048 /* Ignore blocks with missing or invalid low and high pc attributes. */
3049 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3050 as multiple lexical blocks? Handling children in a sane way would
3051 be nasty. Might be easier to properly extend generic blocks to
3052 describe ranges. */
3053 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
3054 return;
3055 lowpc += baseaddr;
3056 highpc += baseaddr;
3057
3058 push_context (0, lowpc);
3059 if (die->child != NULL)
3060 {
3061 child_die = die->child;
3062 while (child_die && child_die->tag)
3063 {
3064 process_die (child_die, cu);
3065 child_die = sibling_die (child_die);
3066 }
3067 }
3068 new = pop_context ();
3069
3070 if (local_symbols != NULL)
3071 {
3072 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3073 highpc, objfile);
3074 }
3075 local_symbols = new->locals;
3076 }
3077
3078 /* Get low and high pc attributes from a die. Return 1 if the attributes
3079 are present and valid, otherwise, return 0. Return -1 if the range is
3080 discontinuous, i.e. derived from DW_AT_ranges information. */
3081 static int
3082 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3083 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3084 {
3085 struct objfile *objfile = cu->objfile;
3086 struct comp_unit_head *cu_header = &cu->header;
3087 struct attribute *attr;
3088 bfd *obfd = objfile->obfd;
3089 CORE_ADDR low = 0;
3090 CORE_ADDR high = 0;
3091 int ret = 0;
3092
3093 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3094 if (attr)
3095 {
3096 high = DW_ADDR (attr);
3097 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3098 if (attr)
3099 low = DW_ADDR (attr);
3100 else
3101 /* Found high w/o low attribute. */
3102 return 0;
3103
3104 /* Found consecutive range of addresses. */
3105 ret = 1;
3106 }
3107 else
3108 {
3109 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3110 if (attr != NULL)
3111 {
3112 unsigned int addr_size = cu_header->addr_size;
3113 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3114 /* Value of the DW_AT_ranges attribute is the offset in the
3115 .debug_ranges section. */
3116 unsigned int offset = DW_UNSND (attr);
3117 /* Base address selection entry. */
3118 CORE_ADDR base;
3119 int found_base;
3120 unsigned int dummy;
3121 gdb_byte *buffer;
3122 CORE_ADDR marker;
3123 int low_set;
3124
3125 found_base = cu_header->base_known;
3126 base = cu_header->base_address;
3127
3128 if (offset >= dwarf2_per_objfile->ranges_size)
3129 {
3130 complaint (&symfile_complaints,
3131 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3132 offset);
3133 return 0;
3134 }
3135 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3136
3137 /* Read in the largest possible address. */
3138 marker = read_address (obfd, buffer, cu, &dummy);
3139 if ((marker & mask) == mask)
3140 {
3141 /* If we found the largest possible address, then
3142 read the base address. */
3143 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3144 buffer += 2 * addr_size;
3145 offset += 2 * addr_size;
3146 found_base = 1;
3147 }
3148
3149 low_set = 0;
3150
3151 while (1)
3152 {
3153 CORE_ADDR range_beginning, range_end;
3154
3155 range_beginning = read_address (obfd, buffer, cu, &dummy);
3156 buffer += addr_size;
3157 range_end = read_address (obfd, buffer, cu, &dummy);
3158 buffer += addr_size;
3159 offset += 2 * addr_size;
3160
3161 /* An end of list marker is a pair of zero addresses. */
3162 if (range_beginning == 0 && range_end == 0)
3163 /* Found the end of list entry. */
3164 break;
3165
3166 /* Each base address selection entry is a pair of 2 values.
3167 The first is the largest possible address, the second is
3168 the base address. Check for a base address here. */
3169 if ((range_beginning & mask) == mask)
3170 {
3171 /* If we found the largest possible address, then
3172 read the base address. */
3173 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3174 found_base = 1;
3175 continue;
3176 }
3177
3178 if (!found_base)
3179 {
3180 /* We have no valid base address for the ranges
3181 data. */
3182 complaint (&symfile_complaints,
3183 _("Invalid .debug_ranges data (no base address)"));
3184 return 0;
3185 }
3186
3187 range_beginning += base;
3188 range_end += base;
3189
3190 /* FIXME: This is recording everything as a low-high
3191 segment of consecutive addresses. We should have a
3192 data structure for discontiguous block ranges
3193 instead. */
3194 if (! low_set)
3195 {
3196 low = range_beginning;
3197 high = range_end;
3198 low_set = 1;
3199 }
3200 else
3201 {
3202 if (range_beginning < low)
3203 low = range_beginning;
3204 if (range_end > high)
3205 high = range_end;
3206 }
3207 }
3208
3209 if (! low_set)
3210 /* If the first entry is an end-of-list marker, the range
3211 describes an empty scope, i.e. no instructions. */
3212 return 0;
3213
3214 ret = -1;
3215 }
3216 }
3217
3218 if (high < low)
3219 return 0;
3220
3221 /* When using the GNU linker, .gnu.linkonce. sections are used to
3222 eliminate duplicate copies of functions and vtables and such.
3223 The linker will arbitrarily choose one and discard the others.
3224 The AT_*_pc values for such functions refer to local labels in
3225 these sections. If the section from that file was discarded, the
3226 labels are not in the output, so the relocs get a value of 0.
3227 If this is a discarded function, mark the pc bounds as invalid,
3228 so that GDB will ignore it. */
3229 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
3230 return 0;
3231
3232 *lowpc = low;
3233 *highpc = high;
3234 return ret;
3235 }
3236
3237 /* Get the low and high pc's represented by the scope DIE, and store
3238 them in *LOWPC and *HIGHPC. If the correct values can't be
3239 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3240
3241 static void
3242 get_scope_pc_bounds (struct die_info *die,
3243 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3244 struct dwarf2_cu *cu)
3245 {
3246 CORE_ADDR best_low = (CORE_ADDR) -1;
3247 CORE_ADDR best_high = (CORE_ADDR) 0;
3248 CORE_ADDR current_low, current_high;
3249
3250 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3251 {
3252 best_low = current_low;
3253 best_high = current_high;
3254 }
3255 else
3256 {
3257 struct die_info *child = die->child;
3258
3259 while (child && child->tag)
3260 {
3261 switch (child->tag) {
3262 case DW_TAG_subprogram:
3263 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3264 {
3265 best_low = min (best_low, current_low);
3266 best_high = max (best_high, current_high);
3267 }
3268 break;
3269 case DW_TAG_namespace:
3270 /* FIXME: carlton/2004-01-16: Should we do this for
3271 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3272 that current GCC's always emit the DIEs corresponding
3273 to definitions of methods of classes as children of a
3274 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3275 the DIEs giving the declarations, which could be
3276 anywhere). But I don't see any reason why the
3277 standards says that they have to be there. */
3278 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3279
3280 if (current_low != ((CORE_ADDR) -1))
3281 {
3282 best_low = min (best_low, current_low);
3283 best_high = max (best_high, current_high);
3284 }
3285 break;
3286 default:
3287 /* Ignore. */
3288 break;
3289 }
3290
3291 child = sibling_die (child);
3292 }
3293 }
3294
3295 *lowpc = best_low;
3296 *highpc = best_high;
3297 }
3298
3299 /* Add an aggregate field to the field list. */
3300
3301 static void
3302 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3303 struct dwarf2_cu *cu)
3304 {
3305 struct objfile *objfile = cu->objfile;
3306 struct nextfield *new_field;
3307 struct attribute *attr;
3308 struct field *fp;
3309 char *fieldname = "";
3310
3311 /* Allocate a new field list entry and link it in. */
3312 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3313 make_cleanup (xfree, new_field);
3314 memset (new_field, 0, sizeof (struct nextfield));
3315 new_field->next = fip->fields;
3316 fip->fields = new_field;
3317 fip->nfields++;
3318
3319 /* Handle accessibility and virtuality of field.
3320 The default accessibility for members is public, the default
3321 accessibility for inheritance is private. */
3322 if (die->tag != DW_TAG_inheritance)
3323 new_field->accessibility = DW_ACCESS_public;
3324 else
3325 new_field->accessibility = DW_ACCESS_private;
3326 new_field->virtuality = DW_VIRTUALITY_none;
3327
3328 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3329 if (attr)
3330 new_field->accessibility = DW_UNSND (attr);
3331 if (new_field->accessibility != DW_ACCESS_public)
3332 fip->non_public_fields = 1;
3333 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3334 if (attr)
3335 new_field->virtuality = DW_UNSND (attr);
3336
3337 fp = &new_field->field;
3338
3339 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3340 {
3341 /* Data member other than a C++ static data member. */
3342
3343 /* Get type of field. */
3344 fp->type = die_type (die, cu);
3345
3346 FIELD_STATIC_KIND (*fp) = 0;
3347
3348 /* Get bit size of field (zero if none). */
3349 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3350 if (attr)
3351 {
3352 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3353 }
3354 else
3355 {
3356 FIELD_BITSIZE (*fp) = 0;
3357 }
3358
3359 /* Get bit offset of field. */
3360 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3361 if (attr)
3362 {
3363 FIELD_BITPOS (*fp) =
3364 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3365 }
3366 else
3367 FIELD_BITPOS (*fp) = 0;
3368 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3369 if (attr)
3370 {
3371 if (BITS_BIG_ENDIAN)
3372 {
3373 /* For big endian bits, the DW_AT_bit_offset gives the
3374 additional bit offset from the MSB of the containing
3375 anonymous object to the MSB of the field. We don't
3376 have to do anything special since we don't need to
3377 know the size of the anonymous object. */
3378 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3379 }
3380 else
3381 {
3382 /* For little endian bits, compute the bit offset to the
3383 MSB of the anonymous object, subtract off the number of
3384 bits from the MSB of the field to the MSB of the
3385 object, and then subtract off the number of bits of
3386 the field itself. The result is the bit offset of
3387 the LSB of the field. */
3388 int anonymous_size;
3389 int bit_offset = DW_UNSND (attr);
3390
3391 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3392 if (attr)
3393 {
3394 /* The size of the anonymous object containing
3395 the bit field is explicit, so use the
3396 indicated size (in bytes). */
3397 anonymous_size = DW_UNSND (attr);
3398 }
3399 else
3400 {
3401 /* The size of the anonymous object containing
3402 the bit field must be inferred from the type
3403 attribute of the data member containing the
3404 bit field. */
3405 anonymous_size = TYPE_LENGTH (fp->type);
3406 }
3407 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3408 - bit_offset - FIELD_BITSIZE (*fp);
3409 }
3410 }
3411
3412 /* Get name of field. */
3413 attr = dwarf2_attr (die, DW_AT_name, cu);
3414 if (attr && DW_STRING (attr))
3415 fieldname = DW_STRING (attr);
3416
3417 /* The name is already allocated along with this objfile, so we don't
3418 need to duplicate it for the type. */
3419 fp->name = fieldname;
3420
3421 /* Change accessibility for artificial fields (e.g. virtual table
3422 pointer or virtual base class pointer) to private. */
3423 if (dwarf2_attr (die, DW_AT_artificial, cu))
3424 {
3425 new_field->accessibility = DW_ACCESS_private;
3426 fip->non_public_fields = 1;
3427 }
3428 }
3429 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3430 {
3431 /* C++ static member. */
3432
3433 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3434 is a declaration, but all versions of G++ as of this writing
3435 (so through at least 3.2.1) incorrectly generate
3436 DW_TAG_variable tags. */
3437
3438 char *physname;
3439
3440 /* Get name of field. */
3441 attr = dwarf2_attr (die, DW_AT_name, cu);
3442 if (attr && DW_STRING (attr))
3443 fieldname = DW_STRING (attr);
3444 else
3445 return;
3446
3447 /* Get physical name. */
3448 physname = dwarf2_linkage_name (die, cu);
3449
3450 /* The name is already allocated along with this objfile, so we don't
3451 need to duplicate it for the type. */
3452 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3453 FIELD_TYPE (*fp) = die_type (die, cu);
3454 FIELD_NAME (*fp) = fieldname;
3455 }
3456 else if (die->tag == DW_TAG_inheritance)
3457 {
3458 /* C++ base class field. */
3459 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3460 if (attr)
3461 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3462 * bits_per_byte);
3463 FIELD_BITSIZE (*fp) = 0;
3464 FIELD_STATIC_KIND (*fp) = 0;
3465 FIELD_TYPE (*fp) = die_type (die, cu);
3466 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3467 fip->nbaseclasses++;
3468 }
3469 }
3470
3471 /* Create the vector of fields, and attach it to the type. */
3472
3473 static void
3474 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3475 struct dwarf2_cu *cu)
3476 {
3477 int nfields = fip->nfields;
3478
3479 /* Record the field count, allocate space for the array of fields,
3480 and create blank accessibility bitfields if necessary. */
3481 TYPE_NFIELDS (type) = nfields;
3482 TYPE_FIELDS (type) = (struct field *)
3483 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3484 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3485
3486 if (fip->non_public_fields)
3487 {
3488 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3489
3490 TYPE_FIELD_PRIVATE_BITS (type) =
3491 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3492 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3493
3494 TYPE_FIELD_PROTECTED_BITS (type) =
3495 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3496 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3497
3498 TYPE_FIELD_IGNORE_BITS (type) =
3499 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3500 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3501 }
3502
3503 /* If the type has baseclasses, allocate and clear a bit vector for
3504 TYPE_FIELD_VIRTUAL_BITS. */
3505 if (fip->nbaseclasses)
3506 {
3507 int num_bytes = B_BYTES (fip->nbaseclasses);
3508 unsigned char *pointer;
3509
3510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3511 pointer = TYPE_ALLOC (type, num_bytes);
3512 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
3513 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3514 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3515 }
3516
3517 /* Copy the saved-up fields into the field vector. Start from the head
3518 of the list, adding to the tail of the field array, so that they end
3519 up in the same order in the array in which they were added to the list. */
3520 while (nfields-- > 0)
3521 {
3522 TYPE_FIELD (type, nfields) = fip->fields->field;
3523 switch (fip->fields->accessibility)
3524 {
3525 case DW_ACCESS_private:
3526 SET_TYPE_FIELD_PRIVATE (type, nfields);
3527 break;
3528
3529 case DW_ACCESS_protected:
3530 SET_TYPE_FIELD_PROTECTED (type, nfields);
3531 break;
3532
3533 case DW_ACCESS_public:
3534 break;
3535
3536 default:
3537 /* Unknown accessibility. Complain and treat it as public. */
3538 {
3539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3540 fip->fields->accessibility);
3541 }
3542 break;
3543 }
3544 if (nfields < fip->nbaseclasses)
3545 {
3546 switch (fip->fields->virtuality)
3547 {
3548 case DW_VIRTUALITY_virtual:
3549 case DW_VIRTUALITY_pure_virtual:
3550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3551 break;
3552 }
3553 }
3554 fip->fields = fip->fields->next;
3555 }
3556 }
3557
3558 /* Add a member function to the proper fieldlist. */
3559
3560 static void
3561 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3562 struct type *type, struct dwarf2_cu *cu)
3563 {
3564 struct objfile *objfile = cu->objfile;
3565 struct attribute *attr;
3566 struct fnfieldlist *flp;
3567 int i;
3568 struct fn_field *fnp;
3569 char *fieldname;
3570 char *physname;
3571 struct nextfnfield *new_fnfield;
3572
3573 /* Get name of member function. */
3574 attr = dwarf2_attr (die, DW_AT_name, cu);
3575 if (attr && DW_STRING (attr))
3576 fieldname = DW_STRING (attr);
3577 else
3578 return;
3579
3580 /* Get the mangled name. */
3581 physname = dwarf2_linkage_name (die, cu);
3582
3583 /* Look up member function name in fieldlist. */
3584 for (i = 0; i < fip->nfnfields; i++)
3585 {
3586 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3587 break;
3588 }
3589
3590 /* Create new list element if necessary. */
3591 if (i < fip->nfnfields)
3592 flp = &fip->fnfieldlists[i];
3593 else
3594 {
3595 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3596 {
3597 fip->fnfieldlists = (struct fnfieldlist *)
3598 xrealloc (fip->fnfieldlists,
3599 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3600 * sizeof (struct fnfieldlist));
3601 if (fip->nfnfields == 0)
3602 make_cleanup (free_current_contents, &fip->fnfieldlists);
3603 }
3604 flp = &fip->fnfieldlists[fip->nfnfields];
3605 flp->name = fieldname;
3606 flp->length = 0;
3607 flp->head = NULL;
3608 fip->nfnfields++;
3609 }
3610
3611 /* Create a new member function field and chain it to the field list
3612 entry. */
3613 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3614 make_cleanup (xfree, new_fnfield);
3615 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3616 new_fnfield->next = flp->head;
3617 flp->head = new_fnfield;
3618 flp->length++;
3619
3620 /* Fill in the member function field info. */
3621 fnp = &new_fnfield->fnfield;
3622 /* The name is already allocated along with this objfile, so we don't
3623 need to duplicate it for the type. */
3624 fnp->physname = physname ? physname : "";
3625 fnp->type = alloc_type (objfile);
3626 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3627 {
3628 int nparams = TYPE_NFIELDS (die->type);
3629
3630 /* TYPE is the domain of this method, and DIE->TYPE is the type
3631 of the method itself (TYPE_CODE_METHOD). */
3632 smash_to_method_type (fnp->type, type,
3633 TYPE_TARGET_TYPE (die->type),
3634 TYPE_FIELDS (die->type),
3635 TYPE_NFIELDS (die->type),
3636 TYPE_VARARGS (die->type));
3637
3638 /* Handle static member functions.
3639 Dwarf2 has no clean way to discern C++ static and non-static
3640 member functions. G++ helps GDB by marking the first
3641 parameter for non-static member functions (which is the
3642 this pointer) as artificial. We obtain this information
3643 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3644 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3645 fnp->voffset = VOFFSET_STATIC;
3646 }
3647 else
3648 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3649 physname);
3650
3651 /* Get fcontext from DW_AT_containing_type if present. */
3652 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3653 fnp->fcontext = die_containing_type (die, cu);
3654
3655 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3656 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3657
3658 /* Get accessibility. */
3659 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3660 if (attr)
3661 {
3662 switch (DW_UNSND (attr))
3663 {
3664 case DW_ACCESS_private:
3665 fnp->is_private = 1;
3666 break;
3667 case DW_ACCESS_protected:
3668 fnp->is_protected = 1;
3669 break;
3670 }
3671 }
3672
3673 /* Check for artificial methods. */
3674 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3675 if (attr && DW_UNSND (attr) != 0)
3676 fnp->is_artificial = 1;
3677
3678 /* Get index in virtual function table if it is a virtual member function. */
3679 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3680 if (attr)
3681 {
3682 /* Support the .debug_loc offsets */
3683 if (attr_form_is_block (attr))
3684 {
3685 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3686 }
3687 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3688 {
3689 dwarf2_complex_location_expr_complaint ();
3690 }
3691 else
3692 {
3693 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3694 fieldname);
3695 }
3696 }
3697 }
3698
3699 /* Create the vector of member function fields, and attach it to the type. */
3700
3701 static void
3702 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3703 struct dwarf2_cu *cu)
3704 {
3705 struct fnfieldlist *flp;
3706 int total_length = 0;
3707 int i;
3708
3709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3710 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3711 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3712
3713 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3714 {
3715 struct nextfnfield *nfp = flp->head;
3716 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3717 int k;
3718
3719 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3720 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3721 fn_flp->fn_fields = (struct fn_field *)
3722 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3723 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3724 fn_flp->fn_fields[k] = nfp->fnfield;
3725
3726 total_length += flp->length;
3727 }
3728
3729 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3730 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3731 }
3732
3733 /* Returns non-zero if NAME is the name of a vtable member in CU's
3734 language, zero otherwise. */
3735 static int
3736 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3737 {
3738 static const char vptr[] = "_vptr";
3739 static const char vtable[] = "vtable";
3740
3741 /* Look for the C++ and Java forms of the vtable. */
3742 if ((cu->language == language_java
3743 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3744 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3745 && is_cplus_marker (name[sizeof (vptr) - 1])))
3746 return 1;
3747
3748 return 0;
3749 }
3750
3751 /* GCC outputs unnamed structures that are really pointers to member
3752 functions, with the ABI-specified layout. If DIE (from CU) describes
3753 such a structure, set its type, and return nonzero. Otherwise return
3754 zero.
3755
3756 GCC shouldn't do this; it should just output pointer to member DIEs.
3757 This is GCC PR debug/28767. */
3758
3759 static int
3760 quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3761 {
3762 struct objfile *objfile = cu->objfile;
3763 struct type *type;
3764 struct die_info *pfn_die, *delta_die;
3765 struct attribute *pfn_name, *delta_name;
3766 struct type *pfn_type, *domain_type;
3767
3768 /* Check for a structure with no name and two children. */
3769 if (die->tag != DW_TAG_structure_type
3770 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3771 || die->child == NULL
3772 || die->child->sibling == NULL
3773 || (die->child->sibling->sibling != NULL
3774 && die->child->sibling->sibling->tag != DW_TAG_padding))
3775 return 0;
3776
3777 /* Check for __pfn and __delta members. */
3778 pfn_die = die->child;
3779 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3780 if (pfn_die->tag != DW_TAG_member
3781 || pfn_name == NULL
3782 || DW_STRING (pfn_name) == NULL
3783 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3784 return 0;
3785
3786 delta_die = pfn_die->sibling;
3787 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3788 if (delta_die->tag != DW_TAG_member
3789 || delta_name == NULL
3790 || DW_STRING (delta_name) == NULL
3791 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3792 return 0;
3793
3794 /* Find the type of the method. */
3795 pfn_type = die_type (pfn_die, cu);
3796 if (pfn_type == NULL
3797 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3798 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3799 return 0;
3800
3801 /* Look for the "this" argument. */
3802 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3803 if (TYPE_NFIELDS (pfn_type) == 0
3804 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3805 return 0;
3806
3807 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3808 type = alloc_type (objfile);
3809 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3810 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3811 TYPE_VARARGS (pfn_type));
3812 type = lookup_methodptr_type (type);
3813 set_die_type (die, type, cu);
3814
3815 return 1;
3816 }
3817
3818 /* Called when we find the DIE that starts a structure or union scope
3819 (definition) to process all dies that define the members of the
3820 structure or union.
3821
3822 NOTE: we need to call struct_type regardless of whether or not the
3823 DIE has an at_name attribute, since it might be an anonymous
3824 structure or union. This gets the type entered into our set of
3825 user defined types.
3826
3827 However, if the structure is incomplete (an opaque struct/union)
3828 then suppress creating a symbol table entry for it since gdb only
3829 wants to find the one with the complete definition. Note that if
3830 it is complete, we just call new_symbol, which does it's own
3831 checking about whether the struct/union is anonymous or not (and
3832 suppresses creating a symbol table entry itself). */
3833
3834 static void
3835 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3836 {
3837 struct objfile *objfile = cu->objfile;
3838 struct type *type;
3839 struct attribute *attr;
3840 const char *previous_prefix = processing_current_prefix;
3841 struct cleanup *back_to = NULL;
3842
3843 if (die->type)
3844 return;
3845
3846 if (quirk_gcc_member_function_pointer (die, cu))
3847 return;
3848
3849 type = alloc_type (objfile);
3850 INIT_CPLUS_SPECIFIC (type);
3851 attr = dwarf2_attr (die, DW_AT_name, cu);
3852 if (attr && DW_STRING (attr))
3853 {
3854 if (cu->language == language_cplus
3855 || cu->language == language_java)
3856 {
3857 char *new_prefix = determine_class_name (die, cu);
3858 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3859 strlen (new_prefix),
3860 &objfile->objfile_obstack);
3861 back_to = make_cleanup (xfree, new_prefix);
3862 processing_current_prefix = new_prefix;
3863 }
3864 else
3865 {
3866 /* The name is already allocated along with this objfile, so
3867 we don't need to duplicate it for the type. */
3868 TYPE_TAG_NAME (type) = DW_STRING (attr);
3869 }
3870 }
3871
3872 if (die->tag == DW_TAG_structure_type)
3873 {
3874 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3875 }
3876 else if (die->tag == DW_TAG_union_type)
3877 {
3878 TYPE_CODE (type) = TYPE_CODE_UNION;
3879 }
3880 else
3881 {
3882 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3883 in gdbtypes.h. */
3884 TYPE_CODE (type) = TYPE_CODE_CLASS;
3885 }
3886
3887 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3888 if (attr)
3889 {
3890 TYPE_LENGTH (type) = DW_UNSND (attr);
3891 }
3892 else
3893 {
3894 TYPE_LENGTH (type) = 0;
3895 }
3896
3897 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
3898 if (die_is_declaration (die, cu))
3899 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3900
3901 /* We need to add the type field to the die immediately so we don't
3902 infinitely recurse when dealing with pointers to the structure
3903 type within the structure itself. */
3904 set_die_type (die, type, cu);
3905
3906 if (die->child != NULL && ! die_is_declaration (die, cu))
3907 {
3908 struct field_info fi;
3909 struct die_info *child_die;
3910 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3911
3912 memset (&fi, 0, sizeof (struct field_info));
3913
3914 child_die = die->child;
3915
3916 while (child_die && child_die->tag)
3917 {
3918 if (child_die->tag == DW_TAG_member
3919 || child_die->tag == DW_TAG_variable)
3920 {
3921 /* NOTE: carlton/2002-11-05: A C++ static data member
3922 should be a DW_TAG_member that is a declaration, but
3923 all versions of G++ as of this writing (so through at
3924 least 3.2.1) incorrectly generate DW_TAG_variable
3925 tags for them instead. */
3926 dwarf2_add_field (&fi, child_die, cu);
3927 }
3928 else if (child_die->tag == DW_TAG_subprogram)
3929 {
3930 /* C++ member function. */
3931 read_type_die (child_die, cu);
3932 dwarf2_add_member_fn (&fi, child_die, type, cu);
3933 }
3934 else if (child_die->tag == DW_TAG_inheritance)
3935 {
3936 /* C++ base class field. */
3937 dwarf2_add_field (&fi, child_die, cu);
3938 }
3939 child_die = sibling_die (child_die);
3940 }
3941
3942 /* Attach fields and member functions to the type. */
3943 if (fi.nfields)
3944 dwarf2_attach_fields_to_type (&fi, type, cu);
3945 if (fi.nfnfields)
3946 {
3947 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3948
3949 /* Get the type which refers to the base class (possibly this
3950 class itself) which contains the vtable pointer for the current
3951 class from the DW_AT_containing_type attribute. */
3952
3953 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3954 {
3955 struct type *t = die_containing_type (die, cu);
3956
3957 TYPE_VPTR_BASETYPE (type) = t;
3958 if (type == t)
3959 {
3960 int i;
3961
3962 /* Our own class provides vtbl ptr. */
3963 for (i = TYPE_NFIELDS (t) - 1;
3964 i >= TYPE_N_BASECLASSES (t);
3965 --i)
3966 {
3967 char *fieldname = TYPE_FIELD_NAME (t, i);
3968
3969 if (is_vtable_name (fieldname, cu))
3970 {
3971 TYPE_VPTR_FIELDNO (type) = i;
3972 break;
3973 }
3974 }
3975
3976 /* Complain if virtual function table field not found. */
3977 if (i < TYPE_N_BASECLASSES (t))
3978 complaint (&symfile_complaints,
3979 _("virtual function table pointer not found when defining class '%s'"),
3980 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3981 "");
3982 }
3983 else
3984 {
3985 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3986 }
3987 }
3988 else if (cu->producer
3989 && strncmp (cu->producer,
3990 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
3991 {
3992 /* The IBM XLC compiler does not provide direct indication
3993 of the containing type, but the vtable pointer is
3994 always named __vfp. */
3995
3996 int i;
3997
3998 for (i = TYPE_NFIELDS (type) - 1;
3999 i >= TYPE_N_BASECLASSES (type);
4000 --i)
4001 {
4002 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4003 {
4004 TYPE_VPTR_FIELDNO (type) = i;
4005 TYPE_VPTR_BASETYPE (type) = type;
4006 break;
4007 }
4008 }
4009 }
4010 }
4011
4012 do_cleanups (back_to);
4013 }
4014
4015 processing_current_prefix = previous_prefix;
4016 if (back_to != NULL)
4017 do_cleanups (back_to);
4018 }
4019
4020 static void
4021 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4022 {
4023 struct objfile *objfile = cu->objfile;
4024 const char *previous_prefix = processing_current_prefix;
4025 struct die_info *child_die = die->child;
4026
4027 if (TYPE_TAG_NAME (die->type) != NULL)
4028 processing_current_prefix = TYPE_TAG_NAME (die->type);
4029
4030 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4031 snapshots) has been known to create a die giving a declaration
4032 for a class that has, as a child, a die giving a definition for a
4033 nested class. So we have to process our children even if the
4034 current die is a declaration. Normally, of course, a declaration
4035 won't have any children at all. */
4036
4037 while (child_die != NULL && child_die->tag)
4038 {
4039 if (child_die->tag == DW_TAG_member
4040 || child_die->tag == DW_TAG_variable
4041 || child_die->tag == DW_TAG_inheritance)
4042 {
4043 /* Do nothing. */
4044 }
4045 else
4046 process_die (child_die, cu);
4047
4048 child_die = sibling_die (child_die);
4049 }
4050
4051 /* Do not consider external references. According to the DWARF standard,
4052 these DIEs are identified by the fact that they have no byte_size
4053 attribute, and a declaration attribute. */
4054 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4055 || !die_is_declaration (die, cu))
4056 new_symbol (die, die->type, cu);
4057
4058 processing_current_prefix = previous_prefix;
4059 }
4060
4061 /* Given a DW_AT_enumeration_type die, set its type. We do not
4062 complete the type's fields yet, or create any symbols. */
4063
4064 static void
4065 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
4066 {
4067 struct objfile *objfile = cu->objfile;
4068 struct type *type;
4069 struct attribute *attr;
4070
4071 if (die->type)
4072 return;
4073
4074 type = alloc_type (objfile);
4075
4076 TYPE_CODE (type) = TYPE_CODE_ENUM;
4077 attr = dwarf2_attr (die, DW_AT_name, cu);
4078 if (attr && DW_STRING (attr))
4079 {
4080 char *name = DW_STRING (attr);
4081
4082 if (processing_has_namespace_info)
4083 {
4084 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4085 processing_current_prefix,
4086 name, cu);
4087 }
4088 else
4089 {
4090 /* The name is already allocated along with this objfile, so
4091 we don't need to duplicate it for the type. */
4092 TYPE_TAG_NAME (type) = name;
4093 }
4094 }
4095
4096 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4097 if (attr)
4098 {
4099 TYPE_LENGTH (type) = DW_UNSND (attr);
4100 }
4101 else
4102 {
4103 TYPE_LENGTH (type) = 0;
4104 }
4105
4106 set_die_type (die, type, cu);
4107 }
4108
4109 /* Determine the name of the type represented by DIE, which should be
4110 a named C++ or Java compound type. Return the name in question; the caller
4111 is responsible for xfree()'ing it. */
4112
4113 static char *
4114 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4115 {
4116 struct cleanup *back_to = NULL;
4117 struct die_info *spec_die = die_specification (die, cu);
4118 char *new_prefix = NULL;
4119
4120 /* If this is the definition of a class that is declared by another
4121 die, then processing_current_prefix may not be accurate; see
4122 read_func_scope for a similar example. */
4123 if (spec_die != NULL)
4124 {
4125 char *specification_prefix = determine_prefix (spec_die, cu);
4126 processing_current_prefix = specification_prefix;
4127 back_to = make_cleanup (xfree, specification_prefix);
4128 }
4129
4130 /* If we don't have namespace debug info, guess the name by trying
4131 to demangle the names of members, just like we did in
4132 guess_structure_name. */
4133 if (!processing_has_namespace_info)
4134 {
4135 struct die_info *child;
4136
4137 for (child = die->child;
4138 child != NULL && child->tag != 0;
4139 child = sibling_die (child))
4140 {
4141 if (child->tag == DW_TAG_subprogram)
4142 {
4143 new_prefix
4144 = language_class_name_from_physname (cu->language_defn,
4145 dwarf2_linkage_name
4146 (child, cu));
4147
4148 if (new_prefix != NULL)
4149 break;
4150 }
4151 }
4152 }
4153
4154 if (new_prefix == NULL)
4155 {
4156 const char *name = dwarf2_name (die, cu);
4157 new_prefix = typename_concat (NULL, processing_current_prefix,
4158 name ? name : "<<anonymous>>",
4159 cu);
4160 }
4161
4162 if (back_to != NULL)
4163 do_cleanups (back_to);
4164
4165 return new_prefix;
4166 }
4167
4168 /* Given a pointer to a die which begins an enumeration, process all
4169 the dies that define the members of the enumeration, and create the
4170 symbol for the enumeration type.
4171
4172 NOTE: We reverse the order of the element list. */
4173
4174 static void
4175 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4176 {
4177 struct objfile *objfile = cu->objfile;
4178 struct die_info *child_die;
4179 struct field *fields;
4180 struct attribute *attr;
4181 struct symbol *sym;
4182 int num_fields;
4183 int unsigned_enum = 1;
4184
4185 num_fields = 0;
4186 fields = NULL;
4187 if (die->child != NULL)
4188 {
4189 child_die = die->child;
4190 while (child_die && child_die->tag)
4191 {
4192 if (child_die->tag != DW_TAG_enumerator)
4193 {
4194 process_die (child_die, cu);
4195 }
4196 else
4197 {
4198 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4199 if (attr)
4200 {
4201 sym = new_symbol (child_die, die->type, cu);
4202 if (SYMBOL_VALUE (sym) < 0)
4203 unsigned_enum = 0;
4204
4205 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4206 {
4207 fields = (struct field *)
4208 xrealloc (fields,
4209 (num_fields + DW_FIELD_ALLOC_CHUNK)
4210 * sizeof (struct field));
4211 }
4212
4213 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4214 FIELD_TYPE (fields[num_fields]) = NULL;
4215 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4216 FIELD_BITSIZE (fields[num_fields]) = 0;
4217 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4218
4219 num_fields++;
4220 }
4221 }
4222
4223 child_die = sibling_die (child_die);
4224 }
4225
4226 if (num_fields)
4227 {
4228 TYPE_NFIELDS (die->type) = num_fields;
4229 TYPE_FIELDS (die->type) = (struct field *)
4230 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4231 memcpy (TYPE_FIELDS (die->type), fields,
4232 sizeof (struct field) * num_fields);
4233 xfree (fields);
4234 }
4235 if (unsigned_enum)
4236 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4237 }
4238
4239 new_symbol (die, die->type, cu);
4240 }
4241
4242 /* Extract all information from a DW_TAG_array_type DIE and put it in
4243 the DIE's type field. For now, this only handles one dimensional
4244 arrays. */
4245
4246 static void
4247 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4248 {
4249 struct objfile *objfile = cu->objfile;
4250 struct die_info *child_die;
4251 struct type *type = NULL;
4252 struct type *element_type, *range_type, *index_type;
4253 struct type **range_types = NULL;
4254 struct attribute *attr;
4255 int ndim = 0;
4256 struct cleanup *back_to;
4257
4258 /* Return if we've already decoded this type. */
4259 if (die->type)
4260 {
4261 return;
4262 }
4263
4264 element_type = die_type (die, cu);
4265
4266 /* Irix 6.2 native cc creates array types without children for
4267 arrays with unspecified length. */
4268 if (die->child == NULL)
4269 {
4270 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4271 range_type = create_range_type (NULL, index_type, 0, -1);
4272 set_die_type (die, create_array_type (NULL, element_type, range_type),
4273 cu);
4274 return;
4275 }
4276
4277 back_to = make_cleanup (null_cleanup, NULL);
4278 child_die = die->child;
4279 while (child_die && child_die->tag)
4280 {
4281 if (child_die->tag == DW_TAG_subrange_type)
4282 {
4283 read_subrange_type (child_die, cu);
4284
4285 if (child_die->type != NULL)
4286 {
4287 /* The range type was succesfully read. Save it for
4288 the array type creation. */
4289 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4290 {
4291 range_types = (struct type **)
4292 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4293 * sizeof (struct type *));
4294 if (ndim == 0)
4295 make_cleanup (free_current_contents, &range_types);
4296 }
4297 range_types[ndim++] = child_die->type;
4298 }
4299 }
4300 child_die = sibling_die (child_die);
4301 }
4302
4303 /* Dwarf2 dimensions are output from left to right, create the
4304 necessary array types in backwards order. */
4305
4306 type = element_type;
4307
4308 if (read_array_order (die, cu) == DW_ORD_col_major)
4309 {
4310 int i = 0;
4311 while (i < ndim)
4312 type = create_array_type (NULL, type, range_types[i++]);
4313 }
4314 else
4315 {
4316 while (ndim-- > 0)
4317 type = create_array_type (NULL, type, range_types[ndim]);
4318 }
4319
4320 /* Understand Dwarf2 support for vector types (like they occur on
4321 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4322 array type. This is not part of the Dwarf2/3 standard yet, but a
4323 custom vendor extension. The main difference between a regular
4324 array and the vector variant is that vectors are passed by value
4325 to functions. */
4326 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4327 if (attr)
4328 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4329
4330 attr = dwarf2_attr (die, DW_AT_name, cu);
4331 if (attr && DW_STRING (attr))
4332 TYPE_NAME (type) = DW_STRING (attr);
4333
4334 do_cleanups (back_to);
4335
4336 /* Install the type in the die. */
4337 set_die_type (die, type, cu);
4338 }
4339
4340 static enum dwarf_array_dim_ordering
4341 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4342 {
4343 struct attribute *attr;
4344
4345 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4346
4347 if (attr) return DW_SND (attr);
4348
4349 /*
4350 GNU F77 is a special case, as at 08/2004 array type info is the
4351 opposite order to the dwarf2 specification, but data is still
4352 laid out as per normal fortran.
4353
4354 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4355 version checking.
4356 */
4357
4358 if (cu->language == language_fortran &&
4359 cu->producer && strstr (cu->producer, "GNU F77"))
4360 {
4361 return DW_ORD_row_major;
4362 }
4363
4364 switch (cu->language_defn->la_array_ordering)
4365 {
4366 case array_column_major:
4367 return DW_ORD_col_major;
4368 case array_row_major:
4369 default:
4370 return DW_ORD_row_major;
4371 };
4372 }
4373
4374 /* Extract all information from a DW_TAG_set_type DIE and put it in
4375 the DIE's type field. */
4376
4377 static void
4378 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4379 {
4380 if (die->type == NULL)
4381 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4382 }
4383
4384 /* First cut: install each common block member as a global variable. */
4385
4386 static void
4387 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4388 {
4389 struct die_info *child_die;
4390 struct attribute *attr;
4391 struct symbol *sym;
4392 CORE_ADDR base = (CORE_ADDR) 0;
4393
4394 attr = dwarf2_attr (die, DW_AT_location, cu);
4395 if (attr)
4396 {
4397 /* Support the .debug_loc offsets */
4398 if (attr_form_is_block (attr))
4399 {
4400 base = decode_locdesc (DW_BLOCK (attr), cu);
4401 }
4402 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4403 {
4404 dwarf2_complex_location_expr_complaint ();
4405 }
4406 else
4407 {
4408 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4409 "common block member");
4410 }
4411 }
4412 if (die->child != NULL)
4413 {
4414 child_die = die->child;
4415 while (child_die && child_die->tag)
4416 {
4417 sym = new_symbol (child_die, NULL, cu);
4418 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4419 if (attr)
4420 {
4421 SYMBOL_VALUE_ADDRESS (sym) =
4422 base + decode_locdesc (DW_BLOCK (attr), cu);
4423 add_symbol_to_list (sym, &global_symbols);
4424 }
4425 child_die = sibling_die (child_die);
4426 }
4427 }
4428 }
4429
4430 /* Read a C++ namespace. */
4431
4432 static void
4433 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4434 {
4435 struct objfile *objfile = cu->objfile;
4436 const char *previous_prefix = processing_current_prefix;
4437 const char *name;
4438 int is_anonymous;
4439 struct die_info *current_die;
4440 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4441
4442 name = namespace_name (die, &is_anonymous, cu);
4443
4444 /* Now build the name of the current namespace. */
4445
4446 if (previous_prefix[0] == '\0')
4447 {
4448 processing_current_prefix = name;
4449 }
4450 else
4451 {
4452 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4453 make_cleanup (xfree, temp_name);
4454 processing_current_prefix = temp_name;
4455 }
4456
4457 /* Add a symbol associated to this if we haven't seen the namespace
4458 before. Also, add a using directive if it's an anonymous
4459 namespace. */
4460
4461 if (dwarf2_extension (die, cu) == NULL)
4462 {
4463 struct type *type;
4464
4465 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4466 this cast will hopefully become unnecessary. */
4467 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4468 (char *) processing_current_prefix,
4469 objfile);
4470 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4471
4472 new_symbol (die, type, cu);
4473 set_die_type (die, type, cu);
4474
4475 if (is_anonymous)
4476 cp_add_using_directive (processing_current_prefix,
4477 strlen (previous_prefix),
4478 strlen (processing_current_prefix));
4479 }
4480
4481 if (die->child != NULL)
4482 {
4483 struct die_info *child_die = die->child;
4484
4485 while (child_die && child_die->tag)
4486 {
4487 process_die (child_die, cu);
4488 child_die = sibling_die (child_die);
4489 }
4490 }
4491
4492 processing_current_prefix = previous_prefix;
4493 do_cleanups (back_to);
4494 }
4495
4496 /* Return the name of the namespace represented by DIE. Set
4497 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4498 namespace. */
4499
4500 static const char *
4501 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4502 {
4503 struct die_info *current_die;
4504 const char *name = NULL;
4505
4506 /* Loop through the extensions until we find a name. */
4507
4508 for (current_die = die;
4509 current_die != NULL;
4510 current_die = dwarf2_extension (die, cu))
4511 {
4512 name = dwarf2_name (current_die, cu);
4513 if (name != NULL)
4514 break;
4515 }
4516
4517 /* Is it an anonymous namespace? */
4518
4519 *is_anonymous = (name == NULL);
4520 if (*is_anonymous)
4521 name = "(anonymous namespace)";
4522
4523 return name;
4524 }
4525
4526 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4527 the user defined type vector. */
4528
4529 static void
4530 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4531 {
4532 struct comp_unit_head *cu_header = &cu->header;
4533 struct type *type;
4534 struct attribute *attr_byte_size;
4535 struct attribute *attr_address_class;
4536 int byte_size, addr_class;
4537
4538 if (die->type)
4539 {
4540 return;
4541 }
4542
4543 type = lookup_pointer_type (die_type (die, cu));
4544
4545 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4546 if (attr_byte_size)
4547 byte_size = DW_UNSND (attr_byte_size);
4548 else
4549 byte_size = cu_header->addr_size;
4550
4551 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4552 if (attr_address_class)
4553 addr_class = DW_UNSND (attr_address_class);
4554 else
4555 addr_class = DW_ADDR_none;
4556
4557 /* If the pointer size or address class is different than the
4558 default, create a type variant marked as such and set the
4559 length accordingly. */
4560 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4561 {
4562 if (gdbarch_address_class_type_flags_p (current_gdbarch))
4563 {
4564 int type_flags;
4565
4566 type_flags = gdbarch_address_class_type_flags
4567 (current_gdbarch, byte_size, addr_class);
4568 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4569 type = make_type_with_address_space (type, type_flags);
4570 }
4571 else if (TYPE_LENGTH (type) != byte_size)
4572 {
4573 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4574 }
4575 else {
4576 /* Should we also complain about unhandled address classes? */
4577 }
4578 }
4579
4580 TYPE_LENGTH (type) = byte_size;
4581 set_die_type (die, type, cu);
4582 }
4583
4584 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4585 the user defined type vector. */
4586
4587 static void
4588 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4589 {
4590 struct objfile *objfile = cu->objfile;
4591 struct type *type;
4592 struct type *to_type;
4593 struct type *domain;
4594
4595 if (die->type)
4596 {
4597 return;
4598 }
4599
4600 to_type = die_type (die, cu);
4601 domain = die_containing_type (die, cu);
4602
4603 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4604 type = lookup_methodptr_type (to_type);
4605 else
4606 type = lookup_memberptr_type (to_type, domain);
4607
4608 set_die_type (die, type, cu);
4609 }
4610
4611 /* Extract all information from a DW_TAG_reference_type DIE and add to
4612 the user defined type vector. */
4613
4614 static void
4615 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4616 {
4617 struct comp_unit_head *cu_header = &cu->header;
4618 struct type *type;
4619 struct attribute *attr;
4620
4621 if (die->type)
4622 {
4623 return;
4624 }
4625
4626 type = lookup_reference_type (die_type (die, cu));
4627 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4628 if (attr)
4629 {
4630 TYPE_LENGTH (type) = DW_UNSND (attr);
4631 }
4632 else
4633 {
4634 TYPE_LENGTH (type) = cu_header->addr_size;
4635 }
4636 set_die_type (die, type, cu);
4637 }
4638
4639 static void
4640 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4641 {
4642 struct type *base_type;
4643
4644 if (die->type)
4645 {
4646 return;
4647 }
4648
4649 base_type = die_type (die, cu);
4650 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4651 cu);
4652 }
4653
4654 static void
4655 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4656 {
4657 struct type *base_type;
4658
4659 if (die->type)
4660 {
4661 return;
4662 }
4663
4664 base_type = die_type (die, cu);
4665 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4666 cu);
4667 }
4668
4669 /* Extract all information from a DW_TAG_string_type DIE and add to
4670 the user defined type vector. It isn't really a user defined type,
4671 but it behaves like one, with other DIE's using an AT_user_def_type
4672 attribute to reference it. */
4673
4674 static void
4675 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4676 {
4677 struct objfile *objfile = cu->objfile;
4678 struct type *type, *range_type, *index_type, *char_type;
4679 struct attribute *attr;
4680 unsigned int length;
4681
4682 if (die->type)
4683 {
4684 return;
4685 }
4686
4687 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4688 if (attr)
4689 {
4690 length = DW_UNSND (attr);
4691 }
4692 else
4693 {
4694 /* check for the DW_AT_byte_size attribute */
4695 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4696 if (attr)
4697 {
4698 length = DW_UNSND (attr);
4699 }
4700 else
4701 {
4702 length = 1;
4703 }
4704 }
4705 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4706 range_type = create_range_type (NULL, index_type, 1, length);
4707 if (cu->language == language_fortran)
4708 {
4709 /* Need to create a unique string type for bounds
4710 information */
4711 type = create_string_type (0, range_type);
4712 }
4713 else
4714 {
4715 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4716 type = create_string_type (char_type, range_type);
4717 }
4718 set_die_type (die, type, cu);
4719 }
4720
4721 /* Handle DIES due to C code like:
4722
4723 struct foo
4724 {
4725 int (*funcp)(int a, long l);
4726 int b;
4727 };
4728
4729 ('funcp' generates a DW_TAG_subroutine_type DIE)
4730 */
4731
4732 static void
4733 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4734 {
4735 struct type *type; /* Type that this function returns */
4736 struct type *ftype; /* Function that returns above type */
4737 struct attribute *attr;
4738
4739 /* Decode the type that this subroutine returns */
4740 if (die->type)
4741 {
4742 return;
4743 }
4744 type = die_type (die, cu);
4745 ftype = make_function_type (type, (struct type **) 0);
4746
4747 /* All functions in C++ and Java have prototypes. */
4748 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4749 if ((attr && (DW_UNSND (attr) != 0))
4750 || cu->language == language_cplus
4751 || cu->language == language_java)
4752 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4753
4754 if (die->child != NULL)
4755 {
4756 struct die_info *child_die;
4757 int nparams = 0;
4758 int iparams = 0;
4759
4760 /* Count the number of parameters.
4761 FIXME: GDB currently ignores vararg functions, but knows about
4762 vararg member functions. */
4763 child_die = die->child;
4764 while (child_die && child_die->tag)
4765 {
4766 if (child_die->tag == DW_TAG_formal_parameter)
4767 nparams++;
4768 else if (child_die->tag == DW_TAG_unspecified_parameters)
4769 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4770 child_die = sibling_die (child_die);
4771 }
4772
4773 /* Allocate storage for parameters and fill them in. */
4774 TYPE_NFIELDS (ftype) = nparams;
4775 TYPE_FIELDS (ftype) = (struct field *)
4776 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
4777
4778 child_die = die->child;
4779 while (child_die && child_die->tag)
4780 {
4781 if (child_die->tag == DW_TAG_formal_parameter)
4782 {
4783 /* Dwarf2 has no clean way to discern C++ static and non-static
4784 member functions. G++ helps GDB by marking the first
4785 parameter for non-static member functions (which is the
4786 this pointer) as artificial. We pass this information
4787 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4788 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4789 if (attr)
4790 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4791 else
4792 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4793 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4794 iparams++;
4795 }
4796 child_die = sibling_die (child_die);
4797 }
4798 }
4799
4800 set_die_type (die, ftype, cu);
4801 }
4802
4803 static void
4804 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4805 {
4806 struct objfile *objfile = cu->objfile;
4807 struct attribute *attr;
4808 char *name = NULL;
4809
4810 if (!die->type)
4811 {
4812 attr = dwarf2_attr (die, DW_AT_name, cu);
4813 if (attr && DW_STRING (attr))
4814 {
4815 name = DW_STRING (attr);
4816 }
4817 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4818 TYPE_FLAG_TARGET_STUB, name, objfile),
4819 cu);
4820 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4821 }
4822 }
4823
4824 /* Find a representation of a given base type and install
4825 it in the TYPE field of the die. */
4826
4827 static void
4828 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4829 {
4830 struct objfile *objfile = cu->objfile;
4831 struct type *type;
4832 struct attribute *attr;
4833 int encoding = 0, size = 0;
4834
4835 /* If we've already decoded this die, this is a no-op. */
4836 if (die->type)
4837 {
4838 return;
4839 }
4840
4841 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4842 if (attr)
4843 {
4844 encoding = DW_UNSND (attr);
4845 }
4846 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4847 if (attr)
4848 {
4849 size = DW_UNSND (attr);
4850 }
4851 attr = dwarf2_attr (die, DW_AT_name, cu);
4852 if (attr && DW_STRING (attr))
4853 {
4854 enum type_code code = TYPE_CODE_INT;
4855 int type_flags = 0;
4856
4857 switch (encoding)
4858 {
4859 case DW_ATE_address:
4860 /* Turn DW_ATE_address into a void * pointer. */
4861 code = TYPE_CODE_PTR;
4862 type_flags |= TYPE_FLAG_UNSIGNED;
4863 break;
4864 case DW_ATE_boolean:
4865 code = TYPE_CODE_BOOL;
4866 type_flags |= TYPE_FLAG_UNSIGNED;
4867 break;
4868 case DW_ATE_complex_float:
4869 code = TYPE_CODE_COMPLEX;
4870 break;
4871 case DW_ATE_float:
4872 code = TYPE_CODE_FLT;
4873 break;
4874 case DW_ATE_signed:
4875 break;
4876 case DW_ATE_unsigned:
4877 type_flags |= TYPE_FLAG_UNSIGNED;
4878 break;
4879 case DW_ATE_signed_char:
4880 if (cu->language == language_m2)
4881 code = TYPE_CODE_CHAR;
4882 break;
4883 case DW_ATE_unsigned_char:
4884 if (cu->language == language_m2)
4885 code = TYPE_CODE_CHAR;
4886 type_flags |= TYPE_FLAG_UNSIGNED;
4887 break;
4888 default:
4889 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4890 dwarf_type_encoding_name (encoding));
4891 break;
4892 }
4893 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4894 if (encoding == DW_ATE_address)
4895 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4896 cu);
4897 else if (encoding == DW_ATE_complex_float)
4898 {
4899 if (size == 32)
4900 TYPE_TARGET_TYPE (type)
4901 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4902 else if (size == 16)
4903 TYPE_TARGET_TYPE (type)
4904 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4905 else if (size == 8)
4906 TYPE_TARGET_TYPE (type)
4907 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4908 }
4909 }
4910 else
4911 {
4912 type = dwarf_base_type (encoding, size, cu);
4913 }
4914 set_die_type (die, type, cu);
4915 }
4916
4917 /* Read the given DW_AT_subrange DIE. */
4918
4919 static void
4920 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4921 {
4922 struct type *base_type;
4923 struct type *range_type;
4924 struct attribute *attr;
4925 int low = 0;
4926 int high = -1;
4927
4928 /* If we have already decoded this die, then nothing more to do. */
4929 if (die->type)
4930 return;
4931
4932 base_type = die_type (die, cu);
4933 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4934 {
4935 complaint (&symfile_complaints,
4936 _("DW_AT_type missing from DW_TAG_subrange_type"));
4937 base_type = dwarf_base_type (DW_ATE_signed, TARGET_ADDR_BIT / 8, cu);
4938 }
4939
4940 if (cu->language == language_fortran)
4941 {
4942 /* FORTRAN implies a lower bound of 1, if not given. */
4943 low = 1;
4944 }
4945
4946 /* FIXME: For variable sized arrays either of these could be
4947 a variable rather than a constant value. We'll allow it,
4948 but we don't know how to handle it. */
4949 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4950 if (attr)
4951 low = dwarf2_get_attr_constant_value (attr, 0);
4952
4953 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4954 if (attr)
4955 {
4956 if (attr->form == DW_FORM_block1)
4957 {
4958 /* GCC encodes arrays with unspecified or dynamic length
4959 with a DW_FORM_block1 attribute.
4960 FIXME: GDB does not yet know how to handle dynamic
4961 arrays properly, treat them as arrays with unspecified
4962 length for now.
4963
4964 FIXME: jimb/2003-09-22: GDB does not really know
4965 how to handle arrays of unspecified length
4966 either; we just represent them as zero-length
4967 arrays. Choose an appropriate upper bound given
4968 the lower bound we've computed above. */
4969 high = low - 1;
4970 }
4971 else
4972 high = dwarf2_get_attr_constant_value (attr, 1);
4973 }
4974
4975 range_type = create_range_type (NULL, base_type, low, high);
4976
4977 attr = dwarf2_attr (die, DW_AT_name, cu);
4978 if (attr && DW_STRING (attr))
4979 TYPE_NAME (range_type) = DW_STRING (attr);
4980
4981 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4982 if (attr)
4983 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4984
4985 set_die_type (die, range_type, cu);
4986 }
4987
4988 static void
4989 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
4990 {
4991 struct type *type;
4992 struct attribute *attr;
4993
4994 if (die->type)
4995 return;
4996
4997 /* For now, we only support the C meaning of an unspecified type: void. */
4998
4999 attr = dwarf2_attr (die, DW_AT_name, cu);
5000 type = init_type (TYPE_CODE_VOID, 0, 0, attr ? DW_STRING (attr) : "",
5001 cu->objfile);
5002
5003 set_die_type (die, type, cu);
5004 }
5005
5006 /* Read a whole compilation unit into a linked list of dies. */
5007
5008 static struct die_info *
5009 read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
5010 {
5011 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
5012 }
5013
5014 /* Read a single die and all its descendents. Set the die's sibling
5015 field to NULL; set other fields in the die correctly, and set all
5016 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5017 location of the info_ptr after reading all of those dies. PARENT
5018 is the parent of the die in question. */
5019
5020 static struct die_info *
5021 read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
5022 struct dwarf2_cu *cu,
5023 gdb_byte **new_info_ptr,
5024 struct die_info *parent)
5025 {
5026 struct die_info *die;
5027 gdb_byte *cur_ptr;
5028 int has_children;
5029
5030 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
5031 store_in_ref_table (die->offset, die, cu);
5032
5033 if (has_children)
5034 {
5035 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
5036 new_info_ptr, die);
5037 }
5038 else
5039 {
5040 die->child = NULL;
5041 *new_info_ptr = cur_ptr;
5042 }
5043
5044 die->sibling = NULL;
5045 die->parent = parent;
5046 return die;
5047 }
5048
5049 /* Read a die, all of its descendents, and all of its siblings; set
5050 all of the fields of all of the dies correctly. Arguments are as
5051 in read_die_and_children. */
5052
5053 static struct die_info *
5054 read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
5055 struct dwarf2_cu *cu,
5056 gdb_byte **new_info_ptr,
5057 struct die_info *parent)
5058 {
5059 struct die_info *first_die, *last_sibling;
5060 gdb_byte *cur_ptr;
5061
5062 cur_ptr = info_ptr;
5063 first_die = last_sibling = NULL;
5064
5065 while (1)
5066 {
5067 struct die_info *die
5068 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
5069
5070 if (!first_die)
5071 {
5072 first_die = die;
5073 }
5074 else
5075 {
5076 last_sibling->sibling = die;
5077 }
5078
5079 if (die->tag == 0)
5080 {
5081 *new_info_ptr = cur_ptr;
5082 return first_die;
5083 }
5084 else
5085 {
5086 last_sibling = die;
5087 }
5088 }
5089 }
5090
5091 /* Free a linked list of dies. */
5092
5093 static void
5094 free_die_list (struct die_info *dies)
5095 {
5096 struct die_info *die, *next;
5097
5098 die = dies;
5099 while (die)
5100 {
5101 if (die->child != NULL)
5102 free_die_list (die->child);
5103 next = die->sibling;
5104 xfree (die->attrs);
5105 xfree (die);
5106 die = next;
5107 }
5108 }
5109
5110 /* Read the contents of the section at OFFSET and of size SIZE from the
5111 object file specified by OBJFILE into the objfile_obstack and return it. */
5112
5113 gdb_byte *
5114 dwarf2_read_section (struct objfile *objfile, asection *sectp)
5115 {
5116 bfd *abfd = objfile->obfd;
5117 gdb_byte *buf, *retbuf;
5118 bfd_size_type size = bfd_get_section_size (sectp);
5119
5120 if (size == 0)
5121 return NULL;
5122
5123 buf = obstack_alloc (&objfile->objfile_obstack, size);
5124 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
5125 if (retbuf != NULL)
5126 return retbuf;
5127
5128 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5129 || bfd_bread (buf, size, abfd) != size)
5130 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
5131 bfd_get_filename (abfd));
5132
5133 return buf;
5134 }
5135
5136 /* In DWARF version 2, the description of the debugging information is
5137 stored in a separate .debug_abbrev section. Before we read any
5138 dies from a section we read in all abbreviations and install them
5139 in a hash table. This function also sets flags in CU describing
5140 the data found in the abbrev table. */
5141
5142 static void
5143 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
5144 {
5145 struct comp_unit_head *cu_header = &cu->header;
5146 gdb_byte *abbrev_ptr;
5147 struct abbrev_info *cur_abbrev;
5148 unsigned int abbrev_number, bytes_read, abbrev_name;
5149 unsigned int abbrev_form, hash_number;
5150 struct attr_abbrev *cur_attrs;
5151 unsigned int allocated_attrs;
5152
5153 /* Initialize dwarf2 abbrevs */
5154 obstack_init (&cu->abbrev_obstack);
5155 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5156 (ABBREV_HASH_SIZE
5157 * sizeof (struct abbrev_info *)));
5158 memset (cu->dwarf2_abbrevs, 0,
5159 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
5160
5161 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
5162 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5163 abbrev_ptr += bytes_read;
5164
5165 allocated_attrs = ATTR_ALLOC_CHUNK;
5166 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5167
5168 /* loop until we reach an abbrev number of 0 */
5169 while (abbrev_number)
5170 {
5171 cur_abbrev = dwarf_alloc_abbrev (cu);
5172
5173 /* read in abbrev header */
5174 cur_abbrev->number = abbrev_number;
5175 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5176 abbrev_ptr += bytes_read;
5177 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5178 abbrev_ptr += 1;
5179
5180 if (cur_abbrev->tag == DW_TAG_namespace)
5181 cu->has_namespace_info = 1;
5182
5183 /* now read in declarations */
5184 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5185 abbrev_ptr += bytes_read;
5186 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5187 abbrev_ptr += bytes_read;
5188 while (abbrev_name)
5189 {
5190 if (cur_abbrev->num_attrs == allocated_attrs)
5191 {
5192 allocated_attrs += ATTR_ALLOC_CHUNK;
5193 cur_attrs
5194 = xrealloc (cur_attrs, (allocated_attrs
5195 * sizeof (struct attr_abbrev)));
5196 }
5197
5198 /* Record whether this compilation unit might have
5199 inter-compilation-unit references. If we don't know what form
5200 this attribute will have, then it might potentially be a
5201 DW_FORM_ref_addr, so we conservatively expect inter-CU
5202 references. */
5203
5204 if (abbrev_form == DW_FORM_ref_addr
5205 || abbrev_form == DW_FORM_indirect)
5206 cu->has_form_ref_addr = 1;
5207
5208 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5209 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5210 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5211 abbrev_ptr += bytes_read;
5212 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5213 abbrev_ptr += bytes_read;
5214 }
5215
5216 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5217 (cur_abbrev->num_attrs
5218 * sizeof (struct attr_abbrev)));
5219 memcpy (cur_abbrev->attrs, cur_attrs,
5220 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5221
5222 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5223 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5224 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5225
5226 /* Get next abbreviation.
5227 Under Irix6 the abbreviations for a compilation unit are not
5228 always properly terminated with an abbrev number of 0.
5229 Exit loop if we encounter an abbreviation which we have
5230 already read (which means we are about to read the abbreviations
5231 for the next compile unit) or if the end of the abbreviation
5232 table is reached. */
5233 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5234 >= dwarf2_per_objfile->abbrev_size)
5235 break;
5236 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5237 abbrev_ptr += bytes_read;
5238 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5239 break;
5240 }
5241
5242 xfree (cur_attrs);
5243 }
5244
5245 /* Release the memory used by the abbrev table for a compilation unit. */
5246
5247 static void
5248 dwarf2_free_abbrev_table (void *ptr_to_cu)
5249 {
5250 struct dwarf2_cu *cu = ptr_to_cu;
5251
5252 obstack_free (&cu->abbrev_obstack, NULL);
5253 cu->dwarf2_abbrevs = NULL;
5254 }
5255
5256 /* Lookup an abbrev_info structure in the abbrev hash table. */
5257
5258 static struct abbrev_info *
5259 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5260 {
5261 unsigned int hash_number;
5262 struct abbrev_info *abbrev;
5263
5264 hash_number = number % ABBREV_HASH_SIZE;
5265 abbrev = cu->dwarf2_abbrevs[hash_number];
5266
5267 while (abbrev)
5268 {
5269 if (abbrev->number == number)
5270 return abbrev;
5271 else
5272 abbrev = abbrev->next;
5273 }
5274 return NULL;
5275 }
5276
5277 /* Returns nonzero if TAG represents a type that we might generate a partial
5278 symbol for. */
5279
5280 static int
5281 is_type_tag_for_partial (int tag)
5282 {
5283 switch (tag)
5284 {
5285 #if 0
5286 /* Some types that would be reasonable to generate partial symbols for,
5287 that we don't at present. */
5288 case DW_TAG_array_type:
5289 case DW_TAG_file_type:
5290 case DW_TAG_ptr_to_member_type:
5291 case DW_TAG_set_type:
5292 case DW_TAG_string_type:
5293 case DW_TAG_subroutine_type:
5294 #endif
5295 case DW_TAG_base_type:
5296 case DW_TAG_class_type:
5297 case DW_TAG_enumeration_type:
5298 case DW_TAG_structure_type:
5299 case DW_TAG_subrange_type:
5300 case DW_TAG_typedef:
5301 case DW_TAG_union_type:
5302 return 1;
5303 default:
5304 return 0;
5305 }
5306 }
5307
5308 /* Load all DIEs that are interesting for partial symbols into memory. */
5309
5310 static struct partial_die_info *
5311 load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
5312 struct dwarf2_cu *cu)
5313 {
5314 struct partial_die_info *part_die;
5315 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5316 struct abbrev_info *abbrev;
5317 unsigned int bytes_read;
5318 unsigned int load_all = 0;
5319
5320 int nesting_level = 1;
5321
5322 parent_die = NULL;
5323 last_die = NULL;
5324
5325 if (cu->per_cu && cu->per_cu->load_all_dies)
5326 load_all = 1;
5327
5328 cu->partial_dies
5329 = htab_create_alloc_ex (cu->header.length / 12,
5330 partial_die_hash,
5331 partial_die_eq,
5332 NULL,
5333 &cu->comp_unit_obstack,
5334 hashtab_obstack_allocate,
5335 dummy_obstack_deallocate);
5336
5337 part_die = obstack_alloc (&cu->comp_unit_obstack,
5338 sizeof (struct partial_die_info));
5339
5340 while (1)
5341 {
5342 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5343
5344 /* A NULL abbrev means the end of a series of children. */
5345 if (abbrev == NULL)
5346 {
5347 if (--nesting_level == 0)
5348 {
5349 /* PART_DIE was probably the last thing allocated on the
5350 comp_unit_obstack, so we could call obstack_free
5351 here. We don't do that because the waste is small,
5352 and will be cleaned up when we're done with this
5353 compilation unit. This way, we're also more robust
5354 against other users of the comp_unit_obstack. */
5355 return first_die;
5356 }
5357 info_ptr += bytes_read;
5358 last_die = parent_die;
5359 parent_die = parent_die->die_parent;
5360 continue;
5361 }
5362
5363 /* Check whether this DIE is interesting enough to save. Normally
5364 we would not be interested in members here, but there may be
5365 later variables referencing them via DW_AT_specification (for
5366 static members). */
5367 if (!load_all
5368 && !is_type_tag_for_partial (abbrev->tag)
5369 && abbrev->tag != DW_TAG_enumerator
5370 && abbrev->tag != DW_TAG_subprogram
5371 && abbrev->tag != DW_TAG_variable
5372 && abbrev->tag != DW_TAG_namespace
5373 && abbrev->tag != DW_TAG_member)
5374 {
5375 /* Otherwise we skip to the next sibling, if any. */
5376 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5377 continue;
5378 }
5379
5380 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5381 abfd, info_ptr, cu);
5382
5383 /* This two-pass algorithm for processing partial symbols has a
5384 high cost in cache pressure. Thus, handle some simple cases
5385 here which cover the majority of C partial symbols. DIEs
5386 which neither have specification tags in them, nor could have
5387 specification tags elsewhere pointing at them, can simply be
5388 processed and discarded.
5389
5390 This segment is also optional; scan_partial_symbols and
5391 add_partial_symbol will handle these DIEs if we chain
5392 them in normally. When compilers which do not emit large
5393 quantities of duplicate debug information are more common,
5394 this code can probably be removed. */
5395
5396 /* Any complete simple types at the top level (pretty much all
5397 of them, for a language without namespaces), can be processed
5398 directly. */
5399 if (parent_die == NULL
5400 && part_die->has_specification == 0
5401 && part_die->is_declaration == 0
5402 && (part_die->tag == DW_TAG_typedef
5403 || part_die->tag == DW_TAG_base_type
5404 || part_die->tag == DW_TAG_subrange_type))
5405 {
5406 if (building_psymtab && part_die->name != NULL)
5407 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5408 VAR_DOMAIN, LOC_TYPEDEF,
5409 &cu->objfile->static_psymbols,
5410 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5411 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5412 continue;
5413 }
5414
5415 /* If we're at the second level, and we're an enumerator, and
5416 our parent has no specification (meaning possibly lives in a
5417 namespace elsewhere), then we can add the partial symbol now
5418 instead of queueing it. */
5419 if (part_die->tag == DW_TAG_enumerator
5420 && parent_die != NULL
5421 && parent_die->die_parent == NULL
5422 && parent_die->tag == DW_TAG_enumeration_type
5423 && parent_die->has_specification == 0)
5424 {
5425 if (part_die->name == NULL)
5426 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5427 else if (building_psymtab)
5428 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5429 VAR_DOMAIN, LOC_CONST,
5430 (cu->language == language_cplus
5431 || cu->language == language_java)
5432 ? &cu->objfile->global_psymbols
5433 : &cu->objfile->static_psymbols,
5434 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5435
5436 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5437 continue;
5438 }
5439
5440 /* We'll save this DIE so link it in. */
5441 part_die->die_parent = parent_die;
5442 part_die->die_sibling = NULL;
5443 part_die->die_child = NULL;
5444
5445 if (last_die && last_die == parent_die)
5446 last_die->die_child = part_die;
5447 else if (last_die)
5448 last_die->die_sibling = part_die;
5449
5450 last_die = part_die;
5451
5452 if (first_die == NULL)
5453 first_die = part_die;
5454
5455 /* Maybe add the DIE to the hash table. Not all DIEs that we
5456 find interesting need to be in the hash table, because we
5457 also have the parent/sibling/child chains; only those that we
5458 might refer to by offset later during partial symbol reading.
5459
5460 For now this means things that might have be the target of a
5461 DW_AT_specification, DW_AT_abstract_origin, or
5462 DW_AT_extension. DW_AT_extension will refer only to
5463 namespaces; DW_AT_abstract_origin refers to functions (and
5464 many things under the function DIE, but we do not recurse
5465 into function DIEs during partial symbol reading) and
5466 possibly variables as well; DW_AT_specification refers to
5467 declarations. Declarations ought to have the DW_AT_declaration
5468 flag. It happens that GCC forgets to put it in sometimes, but
5469 only for functions, not for types.
5470
5471 Adding more things than necessary to the hash table is harmless
5472 except for the performance cost. Adding too few will result in
5473 wasted time in find_partial_die, when we reread the compilation
5474 unit with load_all_dies set. */
5475
5476 if (load_all
5477 || abbrev->tag == DW_TAG_subprogram
5478 || abbrev->tag == DW_TAG_variable
5479 || abbrev->tag == DW_TAG_namespace
5480 || part_die->is_declaration)
5481 {
5482 void **slot;
5483
5484 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5485 part_die->offset, INSERT);
5486 *slot = part_die;
5487 }
5488
5489 part_die = obstack_alloc (&cu->comp_unit_obstack,
5490 sizeof (struct partial_die_info));
5491
5492 /* For some DIEs we want to follow their children (if any). For C
5493 we have no reason to follow the children of structures; for other
5494 languages we have to, both so that we can get at method physnames
5495 to infer fully qualified class names, and for DW_AT_specification. */
5496 if (last_die->has_children
5497 && (load_all
5498 || last_die->tag == DW_TAG_namespace
5499 || last_die->tag == DW_TAG_enumeration_type
5500 || (cu->language != language_c
5501 && (last_die->tag == DW_TAG_class_type
5502 || last_die->tag == DW_TAG_structure_type
5503 || last_die->tag == DW_TAG_union_type))))
5504 {
5505 nesting_level++;
5506 parent_die = last_die;
5507 continue;
5508 }
5509
5510 /* Otherwise we skip to the next sibling, if any. */
5511 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5512
5513 /* Back to the top, do it again. */
5514 }
5515 }
5516
5517 /* Read a minimal amount of information into the minimal die structure. */
5518
5519 static gdb_byte *
5520 read_partial_die (struct partial_die_info *part_die,
5521 struct abbrev_info *abbrev,
5522 unsigned int abbrev_len, bfd *abfd,
5523 gdb_byte *info_ptr, struct dwarf2_cu *cu)
5524 {
5525 unsigned int bytes_read, i;
5526 struct attribute attr;
5527 int has_low_pc_attr = 0;
5528 int has_high_pc_attr = 0;
5529
5530 memset (part_die, 0, sizeof (struct partial_die_info));
5531
5532 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5533
5534 info_ptr += abbrev_len;
5535
5536 if (abbrev == NULL)
5537 return info_ptr;
5538
5539 part_die->tag = abbrev->tag;
5540 part_die->has_children = abbrev->has_children;
5541
5542 for (i = 0; i < abbrev->num_attrs; ++i)
5543 {
5544 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5545
5546 /* Store the data if it is of an attribute we want to keep in a
5547 partial symbol table. */
5548 switch (attr.name)
5549 {
5550 case DW_AT_name:
5551
5552 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5553 if (part_die->name == NULL)
5554 part_die->name = DW_STRING (&attr);
5555 break;
5556 case DW_AT_comp_dir:
5557 if (part_die->dirname == NULL)
5558 part_die->dirname = DW_STRING (&attr);
5559 break;
5560 case DW_AT_MIPS_linkage_name:
5561 part_die->name = DW_STRING (&attr);
5562 break;
5563 case DW_AT_low_pc:
5564 has_low_pc_attr = 1;
5565 part_die->lowpc = DW_ADDR (&attr);
5566 break;
5567 case DW_AT_high_pc:
5568 has_high_pc_attr = 1;
5569 part_die->highpc = DW_ADDR (&attr);
5570 break;
5571 case DW_AT_location:
5572 /* Support the .debug_loc offsets */
5573 if (attr_form_is_block (&attr))
5574 {
5575 part_die->locdesc = DW_BLOCK (&attr);
5576 }
5577 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5578 {
5579 dwarf2_complex_location_expr_complaint ();
5580 }
5581 else
5582 {
5583 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5584 "partial symbol information");
5585 }
5586 break;
5587 case DW_AT_language:
5588 part_die->language = DW_UNSND (&attr);
5589 break;
5590 case DW_AT_external:
5591 part_die->is_external = DW_UNSND (&attr);
5592 break;
5593 case DW_AT_declaration:
5594 part_die->is_declaration = DW_UNSND (&attr);
5595 break;
5596 case DW_AT_type:
5597 part_die->has_type = 1;
5598 break;
5599 case DW_AT_abstract_origin:
5600 case DW_AT_specification:
5601 case DW_AT_extension:
5602 part_die->has_specification = 1;
5603 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5604 break;
5605 case DW_AT_sibling:
5606 /* Ignore absolute siblings, they might point outside of
5607 the current compile unit. */
5608 if (attr.form == DW_FORM_ref_addr)
5609 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5610 else
5611 part_die->sibling = dwarf2_per_objfile->info_buffer
5612 + dwarf2_get_ref_die_offset (&attr, cu);
5613 break;
5614 case DW_AT_stmt_list:
5615 part_die->has_stmt_list = 1;
5616 part_die->line_offset = DW_UNSND (&attr);
5617 break;
5618 case DW_AT_byte_size:
5619 part_die->has_byte_size = 1;
5620 break;
5621 default:
5622 break;
5623 }
5624 }
5625
5626 /* When using the GNU linker, .gnu.linkonce. sections are used to
5627 eliminate duplicate copies of functions and vtables and such.
5628 The linker will arbitrarily choose one and discard the others.
5629 The AT_*_pc values for such functions refer to local labels in
5630 these sections. If the section from that file was discarded, the
5631 labels are not in the output, so the relocs get a value of 0.
5632 If this is a discarded function, mark the pc bounds as invalid,
5633 so that GDB will ignore it. */
5634 if (has_low_pc_attr && has_high_pc_attr
5635 && part_die->lowpc < part_die->highpc
5636 && (part_die->lowpc != 0
5637 || dwarf2_per_objfile->has_section_at_zero))
5638 part_die->has_pc_info = 1;
5639 return info_ptr;
5640 }
5641
5642 /* Find a cached partial DIE at OFFSET in CU. */
5643
5644 static struct partial_die_info *
5645 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5646 {
5647 struct partial_die_info *lookup_die = NULL;
5648 struct partial_die_info part_die;
5649
5650 part_die.offset = offset;
5651 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5652
5653 return lookup_die;
5654 }
5655
5656 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5657
5658 static struct partial_die_info *
5659 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5660 {
5661 struct dwarf2_per_cu_data *per_cu = NULL;
5662 struct partial_die_info *pd = NULL;
5663
5664 if (offset >= cu->header.offset
5665 && offset < cu->header.offset + cu->header.length)
5666 {
5667 pd = find_partial_die_in_comp_unit (offset, cu);
5668 if (pd != NULL)
5669 return pd;
5670 }
5671
5672 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5673
5674 if (per_cu->cu == NULL)
5675 {
5676 load_comp_unit (per_cu, cu->objfile);
5677 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5678 dwarf2_per_objfile->read_in_chain = per_cu;
5679 }
5680
5681 per_cu->cu->last_used = 0;
5682 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5683
5684 if (pd == NULL && per_cu->load_all_dies == 0)
5685 {
5686 struct cleanup *back_to;
5687 struct partial_die_info comp_unit_die;
5688 struct abbrev_info *abbrev;
5689 unsigned int bytes_read;
5690 char *info_ptr;
5691
5692 per_cu->load_all_dies = 1;
5693
5694 /* Re-read the DIEs. */
5695 back_to = make_cleanup (null_cleanup, 0);
5696 if (per_cu->cu->dwarf2_abbrevs == NULL)
5697 {
5698 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5699 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5700 }
5701 info_ptr = per_cu->cu->header.first_die_ptr;
5702 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5703 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5704 per_cu->cu->objfile->obfd, info_ptr,
5705 per_cu->cu);
5706 if (comp_unit_die.has_children)
5707 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5708 do_cleanups (back_to);
5709
5710 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5711 }
5712
5713 if (pd == NULL)
5714 internal_error (__FILE__, __LINE__,
5715 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5716 offset, bfd_get_filename (cu->objfile->obfd));
5717 return pd;
5718 }
5719
5720 /* Adjust PART_DIE before generating a symbol for it. This function
5721 may set the is_external flag or change the DIE's name. */
5722
5723 static void
5724 fixup_partial_die (struct partial_die_info *part_die,
5725 struct dwarf2_cu *cu)
5726 {
5727 /* If we found a reference attribute and the DIE has no name, try
5728 to find a name in the referred to DIE. */
5729
5730 if (part_die->name == NULL && part_die->has_specification)
5731 {
5732 struct partial_die_info *spec_die;
5733
5734 spec_die = find_partial_die (part_die->spec_offset, cu);
5735
5736 fixup_partial_die (spec_die, cu);
5737
5738 if (spec_die->name)
5739 {
5740 part_die->name = spec_die->name;
5741
5742 /* Copy DW_AT_external attribute if it is set. */
5743 if (spec_die->is_external)
5744 part_die->is_external = spec_die->is_external;
5745 }
5746 }
5747
5748 /* Set default names for some unnamed DIEs. */
5749 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5750 || part_die->tag == DW_TAG_class_type))
5751 part_die->name = "(anonymous class)";
5752
5753 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5754 part_die->name = "(anonymous namespace)";
5755
5756 if (part_die->tag == DW_TAG_structure_type
5757 || part_die->tag == DW_TAG_class_type
5758 || part_die->tag == DW_TAG_union_type)
5759 guess_structure_name (part_die, cu);
5760 }
5761
5762 /* Read the die from the .debug_info section buffer. Set DIEP to
5763 point to a newly allocated die with its information, except for its
5764 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5765 whether the die has children or not. */
5766
5767 static gdb_byte *
5768 read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
5769 struct dwarf2_cu *cu, int *has_children)
5770 {
5771 unsigned int abbrev_number, bytes_read, i, offset;
5772 struct abbrev_info *abbrev;
5773 struct die_info *die;
5774
5775 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5776 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5777 info_ptr += bytes_read;
5778 if (!abbrev_number)
5779 {
5780 die = dwarf_alloc_die ();
5781 die->tag = 0;
5782 die->abbrev = abbrev_number;
5783 die->type = NULL;
5784 *diep = die;
5785 *has_children = 0;
5786 return info_ptr;
5787 }
5788
5789 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5790 if (!abbrev)
5791 {
5792 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5793 abbrev_number,
5794 bfd_get_filename (abfd));
5795 }
5796 die = dwarf_alloc_die ();
5797 die->offset = offset;
5798 die->tag = abbrev->tag;
5799 die->abbrev = abbrev_number;
5800 die->type = NULL;
5801
5802 die->num_attrs = abbrev->num_attrs;
5803 die->attrs = (struct attribute *)
5804 xmalloc (die->num_attrs * sizeof (struct attribute));
5805
5806 for (i = 0; i < abbrev->num_attrs; ++i)
5807 {
5808 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5809 abfd, info_ptr, cu);
5810
5811 /* If this attribute is an absolute reference to a different
5812 compilation unit, make sure that compilation unit is loaded
5813 also. */
5814 if (die->attrs[i].form == DW_FORM_ref_addr
5815 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5816 || (DW_ADDR (&die->attrs[i])
5817 >= cu->header.offset + cu->header.length)))
5818 {
5819 struct dwarf2_per_cu_data *per_cu;
5820 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5821 cu->objfile);
5822
5823 /* Mark the dependence relation so that we don't flush PER_CU
5824 too early. */
5825 dwarf2_add_dependence (cu, per_cu);
5826
5827 /* If it's already on the queue, we have nothing to do. */
5828 if (per_cu->queued)
5829 continue;
5830
5831 /* If the compilation unit is already loaded, just mark it as
5832 used. */
5833 if (per_cu->cu != NULL)
5834 {
5835 per_cu->cu->last_used = 0;
5836 continue;
5837 }
5838
5839 /* Add it to the queue. */
5840 queue_comp_unit (per_cu);
5841 }
5842 }
5843
5844 *diep = die;
5845 *has_children = abbrev->has_children;
5846 return info_ptr;
5847 }
5848
5849 /* Read an attribute value described by an attribute form. */
5850
5851 static gdb_byte *
5852 read_attribute_value (struct attribute *attr, unsigned form,
5853 bfd *abfd, gdb_byte *info_ptr,
5854 struct dwarf2_cu *cu)
5855 {
5856 struct comp_unit_head *cu_header = &cu->header;
5857 unsigned int bytes_read;
5858 struct dwarf_block *blk;
5859
5860 attr->form = form;
5861 switch (form)
5862 {
5863 case DW_FORM_addr:
5864 case DW_FORM_ref_addr:
5865 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5866 info_ptr += bytes_read;
5867 break;
5868 case DW_FORM_block2:
5869 blk = dwarf_alloc_block (cu);
5870 blk->size = read_2_bytes (abfd, info_ptr);
5871 info_ptr += 2;
5872 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5873 info_ptr += blk->size;
5874 DW_BLOCK (attr) = blk;
5875 break;
5876 case DW_FORM_block4:
5877 blk = dwarf_alloc_block (cu);
5878 blk->size = read_4_bytes (abfd, info_ptr);
5879 info_ptr += 4;
5880 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5881 info_ptr += blk->size;
5882 DW_BLOCK (attr) = blk;
5883 break;
5884 case DW_FORM_data2:
5885 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5886 info_ptr += 2;
5887 break;
5888 case DW_FORM_data4:
5889 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5890 info_ptr += 4;
5891 break;
5892 case DW_FORM_data8:
5893 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5894 info_ptr += 8;
5895 break;
5896 case DW_FORM_string:
5897 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5898 info_ptr += bytes_read;
5899 break;
5900 case DW_FORM_strp:
5901 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5902 &bytes_read);
5903 info_ptr += bytes_read;
5904 break;
5905 case DW_FORM_block:
5906 blk = dwarf_alloc_block (cu);
5907 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5908 info_ptr += bytes_read;
5909 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5910 info_ptr += blk->size;
5911 DW_BLOCK (attr) = blk;
5912 break;
5913 case DW_FORM_block1:
5914 blk = dwarf_alloc_block (cu);
5915 blk->size = read_1_byte (abfd, info_ptr);
5916 info_ptr += 1;
5917 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5918 info_ptr += blk->size;
5919 DW_BLOCK (attr) = blk;
5920 break;
5921 case DW_FORM_data1:
5922 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5923 info_ptr += 1;
5924 break;
5925 case DW_FORM_flag:
5926 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5927 info_ptr += 1;
5928 break;
5929 case DW_FORM_sdata:
5930 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5931 info_ptr += bytes_read;
5932 break;
5933 case DW_FORM_udata:
5934 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5935 info_ptr += bytes_read;
5936 break;
5937 case DW_FORM_ref1:
5938 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5939 info_ptr += 1;
5940 break;
5941 case DW_FORM_ref2:
5942 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5943 info_ptr += 2;
5944 break;
5945 case DW_FORM_ref4:
5946 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5947 info_ptr += 4;
5948 break;
5949 case DW_FORM_ref8:
5950 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5951 info_ptr += 8;
5952 break;
5953 case DW_FORM_ref_udata:
5954 DW_ADDR (attr) = (cu->header.offset
5955 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5956 info_ptr += bytes_read;
5957 break;
5958 case DW_FORM_indirect:
5959 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5960 info_ptr += bytes_read;
5961 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5962 break;
5963 default:
5964 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5965 dwarf_form_name (form),
5966 bfd_get_filename (abfd));
5967 }
5968 return info_ptr;
5969 }
5970
5971 /* Read an attribute described by an abbreviated attribute. */
5972
5973 static gdb_byte *
5974 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5975 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
5976 {
5977 attr->name = abbrev->name;
5978 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5979 }
5980
5981 /* read dwarf information from a buffer */
5982
5983 static unsigned int
5984 read_1_byte (bfd *abfd, gdb_byte *buf)
5985 {
5986 return bfd_get_8 (abfd, buf);
5987 }
5988
5989 static int
5990 read_1_signed_byte (bfd *abfd, gdb_byte *buf)
5991 {
5992 return bfd_get_signed_8 (abfd, buf);
5993 }
5994
5995 static unsigned int
5996 read_2_bytes (bfd *abfd, gdb_byte *buf)
5997 {
5998 return bfd_get_16 (abfd, buf);
5999 }
6000
6001 static int
6002 read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
6003 {
6004 return bfd_get_signed_16 (abfd, buf);
6005 }
6006
6007 static unsigned int
6008 read_4_bytes (bfd *abfd, gdb_byte *buf)
6009 {
6010 return bfd_get_32 (abfd, buf);
6011 }
6012
6013 static int
6014 read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
6015 {
6016 return bfd_get_signed_32 (abfd, buf);
6017 }
6018
6019 static unsigned long
6020 read_8_bytes (bfd *abfd, gdb_byte *buf)
6021 {
6022 return bfd_get_64 (abfd, buf);
6023 }
6024
6025 static CORE_ADDR
6026 read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
6027 unsigned int *bytes_read)
6028 {
6029 struct comp_unit_head *cu_header = &cu->header;
6030 CORE_ADDR retval = 0;
6031
6032 if (cu_header->signed_addr_p)
6033 {
6034 switch (cu_header->addr_size)
6035 {
6036 case 2:
6037 retval = bfd_get_signed_16 (abfd, buf);
6038 break;
6039 case 4:
6040 retval = bfd_get_signed_32 (abfd, buf);
6041 break;
6042 case 8:
6043 retval = bfd_get_signed_64 (abfd, buf);
6044 break;
6045 default:
6046 internal_error (__FILE__, __LINE__,
6047 _("read_address: bad switch, signed [in module %s]"),
6048 bfd_get_filename (abfd));
6049 }
6050 }
6051 else
6052 {
6053 switch (cu_header->addr_size)
6054 {
6055 case 2:
6056 retval = bfd_get_16 (abfd, buf);
6057 break;
6058 case 4:
6059 retval = bfd_get_32 (abfd, buf);
6060 break;
6061 case 8:
6062 retval = bfd_get_64 (abfd, buf);
6063 break;
6064 default:
6065 internal_error (__FILE__, __LINE__,
6066 _("read_address: bad switch, unsigned [in module %s]"),
6067 bfd_get_filename (abfd));
6068 }
6069 }
6070
6071 *bytes_read = cu_header->addr_size;
6072 return retval;
6073 }
6074
6075 /* Read the initial length from a section. The (draft) DWARF 3
6076 specification allows the initial length to take up either 4 bytes
6077 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6078 bytes describe the length and all offsets will be 8 bytes in length
6079 instead of 4.
6080
6081 An older, non-standard 64-bit format is also handled by this
6082 function. The older format in question stores the initial length
6083 as an 8-byte quantity without an escape value. Lengths greater
6084 than 2^32 aren't very common which means that the initial 4 bytes
6085 is almost always zero. Since a length value of zero doesn't make
6086 sense for the 32-bit format, this initial zero can be considered to
6087 be an escape value which indicates the presence of the older 64-bit
6088 format. As written, the code can't detect (old format) lengths
6089 greater than 4GB. If it becomes necessary to handle lengths
6090 somewhat larger than 4GB, we could allow other small values (such
6091 as the non-sensical values of 1, 2, and 3) to also be used as
6092 escape values indicating the presence of the old format.
6093
6094 The value returned via bytes_read should be used to increment the
6095 relevant pointer after calling read_initial_length().
6096
6097 As a side effect, this function sets the fields initial_length_size
6098 and offset_size in cu_header to the values appropriate for the
6099 length field. (The format of the initial length field determines
6100 the width of file offsets to be fetched later with read_offset().)
6101
6102 [ Note: read_initial_length() and read_offset() are based on the
6103 document entitled "DWARF Debugging Information Format", revision
6104 3, draft 8, dated November 19, 2001. This document was obtained
6105 from:
6106
6107 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6108
6109 This document is only a draft and is subject to change. (So beware.)
6110
6111 Details regarding the older, non-standard 64-bit format were
6112 determined empirically by examining 64-bit ELF files produced by
6113 the SGI toolchain on an IRIX 6.5 machine.
6114
6115 - Kevin, July 16, 2002
6116 ] */
6117
6118 static LONGEST
6119 read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
6120 unsigned int *bytes_read)
6121 {
6122 LONGEST length = bfd_get_32 (abfd, buf);
6123
6124 if (length == 0xffffffff)
6125 {
6126 length = bfd_get_64 (abfd, buf + 4);
6127 *bytes_read = 12;
6128 }
6129 else if (length == 0)
6130 {
6131 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
6132 length = bfd_get_64 (abfd, buf);
6133 *bytes_read = 8;
6134 }
6135 else
6136 {
6137 *bytes_read = 4;
6138 }
6139
6140 if (cu_header)
6141 {
6142 gdb_assert (cu_header->initial_length_size == 0
6143 || cu_header->initial_length_size == 4
6144 || cu_header->initial_length_size == 8
6145 || cu_header->initial_length_size == 12);
6146
6147 if (cu_header->initial_length_size != 0
6148 && cu_header->initial_length_size != *bytes_read)
6149 complaint (&symfile_complaints,
6150 _("intermixed 32-bit and 64-bit DWARF sections"));
6151
6152 cu_header->initial_length_size = *bytes_read;
6153 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6154 }
6155
6156 return length;
6157 }
6158
6159 /* Read an offset from the data stream. The size of the offset is
6160 given by cu_header->offset_size. */
6161
6162 static LONGEST
6163 read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
6164 unsigned int *bytes_read)
6165 {
6166 LONGEST retval = 0;
6167
6168 switch (cu_header->offset_size)
6169 {
6170 case 4:
6171 retval = bfd_get_32 (abfd, buf);
6172 *bytes_read = 4;
6173 break;
6174 case 8:
6175 retval = bfd_get_64 (abfd, buf);
6176 *bytes_read = 8;
6177 break;
6178 default:
6179 internal_error (__FILE__, __LINE__,
6180 _("read_offset: bad switch [in module %s]"),
6181 bfd_get_filename (abfd));
6182 }
6183
6184 return retval;
6185 }
6186
6187 static gdb_byte *
6188 read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
6189 {
6190 /* If the size of a host char is 8 bits, we can return a pointer
6191 to the buffer, otherwise we have to copy the data to a buffer
6192 allocated on the temporary obstack. */
6193 gdb_assert (HOST_CHAR_BIT == 8);
6194 return buf;
6195 }
6196
6197 static char *
6198 read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6199 {
6200 /* If the size of a host char is 8 bits, we can return a pointer
6201 to the string, otherwise we have to copy the string to a buffer
6202 allocated on the temporary obstack. */
6203 gdb_assert (HOST_CHAR_BIT == 8);
6204 if (*buf == '\0')
6205 {
6206 *bytes_read_ptr = 1;
6207 return NULL;
6208 }
6209 *bytes_read_ptr = strlen ((char *) buf) + 1;
6210 return (char *) buf;
6211 }
6212
6213 static char *
6214 read_indirect_string (bfd *abfd, gdb_byte *buf,
6215 const struct comp_unit_head *cu_header,
6216 unsigned int *bytes_read_ptr)
6217 {
6218 LONGEST str_offset = read_offset (abfd, buf, cu_header,
6219 bytes_read_ptr);
6220
6221 if (dwarf2_per_objfile->str_buffer == NULL)
6222 {
6223 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
6224 bfd_get_filename (abfd));
6225 return NULL;
6226 }
6227 if (str_offset >= dwarf2_per_objfile->str_size)
6228 {
6229 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
6230 bfd_get_filename (abfd));
6231 return NULL;
6232 }
6233 gdb_assert (HOST_CHAR_BIT == 8);
6234 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
6235 return NULL;
6236 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
6237 }
6238
6239 static unsigned long
6240 read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6241 {
6242 unsigned long result;
6243 unsigned int num_read;
6244 int i, shift;
6245 unsigned char byte;
6246
6247 result = 0;
6248 shift = 0;
6249 num_read = 0;
6250 i = 0;
6251 while (1)
6252 {
6253 byte = bfd_get_8 (abfd, buf);
6254 buf++;
6255 num_read++;
6256 result |= ((unsigned long)(byte & 127) << shift);
6257 if ((byte & 128) == 0)
6258 {
6259 break;
6260 }
6261 shift += 7;
6262 }
6263 *bytes_read_ptr = num_read;
6264 return result;
6265 }
6266
6267 static long
6268 read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
6269 {
6270 long result;
6271 int i, shift, num_read;
6272 unsigned char byte;
6273
6274 result = 0;
6275 shift = 0;
6276 num_read = 0;
6277 i = 0;
6278 while (1)
6279 {
6280 byte = bfd_get_8 (abfd, buf);
6281 buf++;
6282 num_read++;
6283 result |= ((long)(byte & 127) << shift);
6284 shift += 7;
6285 if ((byte & 128) == 0)
6286 {
6287 break;
6288 }
6289 }
6290 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6291 result |= -(((long)1) << shift);
6292 *bytes_read_ptr = num_read;
6293 return result;
6294 }
6295
6296 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6297
6298 static gdb_byte *
6299 skip_leb128 (bfd *abfd, gdb_byte *buf)
6300 {
6301 int byte;
6302
6303 while (1)
6304 {
6305 byte = bfd_get_8 (abfd, buf);
6306 buf++;
6307 if ((byte & 128) == 0)
6308 return buf;
6309 }
6310 }
6311
6312 static void
6313 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6314 {
6315 switch (lang)
6316 {
6317 case DW_LANG_C89:
6318 case DW_LANG_C:
6319 cu->language = language_c;
6320 break;
6321 case DW_LANG_C_plus_plus:
6322 cu->language = language_cplus;
6323 break;
6324 case DW_LANG_Fortran77:
6325 case DW_LANG_Fortran90:
6326 case DW_LANG_Fortran95:
6327 cu->language = language_fortran;
6328 break;
6329 case DW_LANG_Mips_Assembler:
6330 cu->language = language_asm;
6331 break;
6332 case DW_LANG_Java:
6333 cu->language = language_java;
6334 break;
6335 case DW_LANG_Ada83:
6336 case DW_LANG_Ada95:
6337 cu->language = language_ada;
6338 break;
6339 case DW_LANG_Modula2:
6340 cu->language = language_m2;
6341 break;
6342 case DW_LANG_Pascal83:
6343 cu->language = language_pascal;
6344 break;
6345 case DW_LANG_Cobol74:
6346 case DW_LANG_Cobol85:
6347 default:
6348 cu->language = language_minimal;
6349 break;
6350 }
6351 cu->language_defn = language_def (cu->language);
6352 }
6353
6354 /* Return the named attribute or NULL if not there. */
6355
6356 static struct attribute *
6357 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6358 {
6359 unsigned int i;
6360 struct attribute *spec = NULL;
6361
6362 for (i = 0; i < die->num_attrs; ++i)
6363 {
6364 if (die->attrs[i].name == name)
6365 return &die->attrs[i];
6366 if (die->attrs[i].name == DW_AT_specification
6367 || die->attrs[i].name == DW_AT_abstract_origin)
6368 spec = &die->attrs[i];
6369 }
6370
6371 if (spec)
6372 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6373
6374 return NULL;
6375 }
6376
6377 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6378 and holds a non-zero value. This function should only be used for
6379 DW_FORM_flag attributes. */
6380
6381 static int
6382 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6383 {
6384 struct attribute *attr = dwarf2_attr (die, name, cu);
6385
6386 return (attr && DW_UNSND (attr));
6387 }
6388
6389 static int
6390 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6391 {
6392 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6393 which value is non-zero. However, we have to be careful with
6394 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6395 (via dwarf2_flag_true_p) follows this attribute. So we may
6396 end up accidently finding a declaration attribute that belongs
6397 to a different DIE referenced by the specification attribute,
6398 even though the given DIE does not have a declaration attribute. */
6399 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6400 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6401 }
6402
6403 /* Return the die giving the specification for DIE, if there is
6404 one. */
6405
6406 static struct die_info *
6407 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6408 {
6409 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6410
6411 if (spec_attr == NULL)
6412 return NULL;
6413 else
6414 return follow_die_ref (die, spec_attr, cu);
6415 }
6416
6417 /* Free the line_header structure *LH, and any arrays and strings it
6418 refers to. */
6419 static void
6420 free_line_header (struct line_header *lh)
6421 {
6422 if (lh->standard_opcode_lengths)
6423 xfree (lh->standard_opcode_lengths);
6424
6425 /* Remember that all the lh->file_names[i].name pointers are
6426 pointers into debug_line_buffer, and don't need to be freed. */
6427 if (lh->file_names)
6428 xfree (lh->file_names);
6429
6430 /* Similarly for the include directory names. */
6431 if (lh->include_dirs)
6432 xfree (lh->include_dirs);
6433
6434 xfree (lh);
6435 }
6436
6437
6438 /* Add an entry to LH's include directory table. */
6439 static void
6440 add_include_dir (struct line_header *lh, char *include_dir)
6441 {
6442 /* Grow the array if necessary. */
6443 if (lh->include_dirs_size == 0)
6444 {
6445 lh->include_dirs_size = 1; /* for testing */
6446 lh->include_dirs = xmalloc (lh->include_dirs_size
6447 * sizeof (*lh->include_dirs));
6448 }
6449 else if (lh->num_include_dirs >= lh->include_dirs_size)
6450 {
6451 lh->include_dirs_size *= 2;
6452 lh->include_dirs = xrealloc (lh->include_dirs,
6453 (lh->include_dirs_size
6454 * sizeof (*lh->include_dirs)));
6455 }
6456
6457 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6458 }
6459
6460
6461 /* Add an entry to LH's file name table. */
6462 static void
6463 add_file_name (struct line_header *lh,
6464 char *name,
6465 unsigned int dir_index,
6466 unsigned int mod_time,
6467 unsigned int length)
6468 {
6469 struct file_entry *fe;
6470
6471 /* Grow the array if necessary. */
6472 if (lh->file_names_size == 0)
6473 {
6474 lh->file_names_size = 1; /* for testing */
6475 lh->file_names = xmalloc (lh->file_names_size
6476 * sizeof (*lh->file_names));
6477 }
6478 else if (lh->num_file_names >= lh->file_names_size)
6479 {
6480 lh->file_names_size *= 2;
6481 lh->file_names = xrealloc (lh->file_names,
6482 (lh->file_names_size
6483 * sizeof (*lh->file_names)));
6484 }
6485
6486 fe = &lh->file_names[lh->num_file_names++];
6487 fe->name = name;
6488 fe->dir_index = dir_index;
6489 fe->mod_time = mod_time;
6490 fe->length = length;
6491 fe->included_p = 0;
6492 fe->symtab = NULL;
6493 }
6494
6495
6496 /* Read the statement program header starting at OFFSET in
6497 .debug_line, according to the endianness of ABFD. Return a pointer
6498 to a struct line_header, allocated using xmalloc.
6499
6500 NOTE: the strings in the include directory and file name tables of
6501 the returned object point into debug_line_buffer, and must not be
6502 freed. */
6503 static struct line_header *
6504 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6505 struct dwarf2_cu *cu)
6506 {
6507 struct cleanup *back_to;
6508 struct line_header *lh;
6509 gdb_byte *line_ptr;
6510 unsigned int bytes_read;
6511 int i;
6512 char *cur_dir, *cur_file;
6513
6514 if (dwarf2_per_objfile->line_buffer == NULL)
6515 {
6516 complaint (&symfile_complaints, _("missing .debug_line section"));
6517 return 0;
6518 }
6519
6520 /* Make sure that at least there's room for the total_length field.
6521 That could be 12 bytes long, but we're just going to fudge that. */
6522 if (offset + 4 >= dwarf2_per_objfile->line_size)
6523 {
6524 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6525 return 0;
6526 }
6527
6528 lh = xmalloc (sizeof (*lh));
6529 memset (lh, 0, sizeof (*lh));
6530 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6531 (void *) lh);
6532
6533 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6534
6535 /* Read in the header. */
6536 lh->total_length =
6537 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
6538 line_ptr += bytes_read;
6539 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6540 + dwarf2_per_objfile->line_size))
6541 {
6542 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6543 return 0;
6544 }
6545 lh->statement_program_end = line_ptr + lh->total_length;
6546 lh->version = read_2_bytes (abfd, line_ptr);
6547 line_ptr += 2;
6548 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6549 line_ptr += bytes_read;
6550 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6551 line_ptr += 1;
6552 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6553 line_ptr += 1;
6554 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6555 line_ptr += 1;
6556 lh->line_range = read_1_byte (abfd, line_ptr);
6557 line_ptr += 1;
6558 lh->opcode_base = read_1_byte (abfd, line_ptr);
6559 line_ptr += 1;
6560 lh->standard_opcode_lengths
6561 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
6562
6563 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6564 for (i = 1; i < lh->opcode_base; ++i)
6565 {
6566 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6567 line_ptr += 1;
6568 }
6569
6570 /* Read directory table. */
6571 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6572 {
6573 line_ptr += bytes_read;
6574 add_include_dir (lh, cur_dir);
6575 }
6576 line_ptr += bytes_read;
6577
6578 /* Read file name table. */
6579 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6580 {
6581 unsigned int dir_index, mod_time, length;
6582
6583 line_ptr += bytes_read;
6584 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6585 line_ptr += bytes_read;
6586 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6587 line_ptr += bytes_read;
6588 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6589 line_ptr += bytes_read;
6590
6591 add_file_name (lh, cur_file, dir_index, mod_time, length);
6592 }
6593 line_ptr += bytes_read;
6594 lh->statement_program_start = line_ptr;
6595
6596 if (line_ptr > (dwarf2_per_objfile->line_buffer
6597 + dwarf2_per_objfile->line_size))
6598 complaint (&symfile_complaints,
6599 _("line number info header doesn't fit in `.debug_line' section"));
6600
6601 discard_cleanups (back_to);
6602 return lh;
6603 }
6604
6605 /* This function exists to work around a bug in certain compilers
6606 (particularly GCC 2.95), in which the first line number marker of a
6607 function does not show up until after the prologue, right before
6608 the second line number marker. This function shifts ADDRESS down
6609 to the beginning of the function if necessary, and is called on
6610 addresses passed to record_line. */
6611
6612 static CORE_ADDR
6613 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6614 {
6615 struct function_range *fn;
6616
6617 /* Find the function_range containing address. */
6618 if (!cu->first_fn)
6619 return address;
6620
6621 if (!cu->cached_fn)
6622 cu->cached_fn = cu->first_fn;
6623
6624 fn = cu->cached_fn;
6625 while (fn)
6626 if (fn->lowpc <= address && fn->highpc > address)
6627 goto found;
6628 else
6629 fn = fn->next;
6630
6631 fn = cu->first_fn;
6632 while (fn && fn != cu->cached_fn)
6633 if (fn->lowpc <= address && fn->highpc > address)
6634 goto found;
6635 else
6636 fn = fn->next;
6637
6638 return address;
6639
6640 found:
6641 if (fn->seen_line)
6642 return address;
6643 if (address != fn->lowpc)
6644 complaint (&symfile_complaints,
6645 _("misplaced first line number at 0x%lx for '%s'"),
6646 (unsigned long) address, fn->name);
6647 fn->seen_line = 1;
6648 return fn->lowpc;
6649 }
6650
6651 /* Decode the Line Number Program (LNP) for the given line_header
6652 structure and CU. The actual information extracted and the type
6653 of structures created from the LNP depends on the value of PST.
6654
6655 1. If PST is NULL, then this procedure uses the data from the program
6656 to create all necessary symbol tables, and their linetables.
6657 The compilation directory of the file is passed in COMP_DIR,
6658 and must not be NULL.
6659
6660 2. If PST is not NULL, this procedure reads the program to determine
6661 the list of files included by the unit represented by PST, and
6662 builds all the associated partial symbol tables. In this case,
6663 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6664 is not used to compute the full name of the symtab, and therefore
6665 omitting it when building the partial symtab does not introduce
6666 the potential for inconsistency - a partial symtab and its associated
6667 symbtab having a different fullname -). */
6668
6669 static void
6670 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6671 struct dwarf2_cu *cu, struct partial_symtab *pst)
6672 {
6673 gdb_byte *line_ptr;
6674 gdb_byte *line_end;
6675 unsigned int bytes_read;
6676 unsigned char op_code, extended_op, adj_opcode;
6677 CORE_ADDR baseaddr;
6678 struct objfile *objfile = cu->objfile;
6679 const int decode_for_pst_p = (pst != NULL);
6680 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
6681
6682 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6683
6684 line_ptr = lh->statement_program_start;
6685 line_end = lh->statement_program_end;
6686
6687 /* Read the statement sequences until there's nothing left. */
6688 while (line_ptr < line_end)
6689 {
6690 /* state machine registers */
6691 CORE_ADDR address = 0;
6692 unsigned int file = 1;
6693 unsigned int line = 1;
6694 unsigned int column = 0;
6695 int is_stmt = lh->default_is_stmt;
6696 int basic_block = 0;
6697 int end_sequence = 0;
6698
6699 if (!decode_for_pst_p && lh->num_file_names >= file)
6700 {
6701 /* Start a subfile for the current file of the state machine. */
6702 /* lh->include_dirs and lh->file_names are 0-based, but the
6703 directory and file name numbers in the statement program
6704 are 1-based. */
6705 struct file_entry *fe = &lh->file_names[file - 1];
6706 char *dir = NULL;
6707
6708 if (fe->dir_index)
6709 dir = lh->include_dirs[fe->dir_index - 1];
6710
6711 dwarf2_start_subfile (fe->name, dir, comp_dir);
6712 }
6713
6714 /* Decode the table. */
6715 while (!end_sequence)
6716 {
6717 op_code = read_1_byte (abfd, line_ptr);
6718 line_ptr += 1;
6719
6720 if (op_code >= lh->opcode_base)
6721 {
6722 /* Special operand. */
6723 adj_opcode = op_code - lh->opcode_base;
6724 address += (adj_opcode / lh->line_range)
6725 * lh->minimum_instruction_length;
6726 line += lh->line_base + (adj_opcode % lh->line_range);
6727 if (lh->num_file_names < file)
6728 dwarf2_debug_line_missing_file_complaint ();
6729 else
6730 {
6731 lh->file_names[file - 1].included_p = 1;
6732 if (!decode_for_pst_p)
6733 {
6734 if (last_subfile != current_subfile)
6735 {
6736 if (last_subfile)
6737 record_line (last_subfile, 0, address);
6738 last_subfile = current_subfile;
6739 }
6740 /* Append row to matrix using current values. */
6741 record_line (current_subfile, line,
6742 check_cu_functions (address, cu));
6743 }
6744 }
6745 basic_block = 1;
6746 }
6747 else switch (op_code)
6748 {
6749 case DW_LNS_extended_op:
6750 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6751 line_ptr += bytes_read;
6752 extended_op = read_1_byte (abfd, line_ptr);
6753 line_ptr += 1;
6754 switch (extended_op)
6755 {
6756 case DW_LNE_end_sequence:
6757 end_sequence = 1;
6758
6759 if (lh->num_file_names < file)
6760 dwarf2_debug_line_missing_file_complaint ();
6761 else
6762 {
6763 lh->file_names[file - 1].included_p = 1;
6764 if (!decode_for_pst_p)
6765 record_line (current_subfile, 0, address);
6766 }
6767 break;
6768 case DW_LNE_set_address:
6769 address = read_address (abfd, line_ptr, cu, &bytes_read);
6770 line_ptr += bytes_read;
6771 address += baseaddr;
6772 break;
6773 case DW_LNE_define_file:
6774 {
6775 char *cur_file;
6776 unsigned int dir_index, mod_time, length;
6777
6778 cur_file = read_string (abfd, line_ptr, &bytes_read);
6779 line_ptr += bytes_read;
6780 dir_index =
6781 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6782 line_ptr += bytes_read;
6783 mod_time =
6784 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6785 line_ptr += bytes_read;
6786 length =
6787 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6788 line_ptr += bytes_read;
6789 add_file_name (lh, cur_file, dir_index, mod_time, length);
6790 }
6791 break;
6792 default:
6793 complaint (&symfile_complaints,
6794 _("mangled .debug_line section"));
6795 return;
6796 }
6797 break;
6798 case DW_LNS_copy:
6799 if (lh->num_file_names < file)
6800 dwarf2_debug_line_missing_file_complaint ();
6801 else
6802 {
6803 lh->file_names[file - 1].included_p = 1;
6804 if (!decode_for_pst_p)
6805 {
6806 if (last_subfile != current_subfile)
6807 {
6808 if (last_subfile)
6809 record_line (last_subfile, 0, address);
6810 last_subfile = current_subfile;
6811 }
6812 record_line (current_subfile, line,
6813 check_cu_functions (address, cu));
6814 }
6815 }
6816 basic_block = 0;
6817 break;
6818 case DW_LNS_advance_pc:
6819 address += lh->minimum_instruction_length
6820 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6821 line_ptr += bytes_read;
6822 break;
6823 case DW_LNS_advance_line:
6824 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6825 line_ptr += bytes_read;
6826 break;
6827 case DW_LNS_set_file:
6828 {
6829 /* The arrays lh->include_dirs and lh->file_names are
6830 0-based, but the directory and file name numbers in
6831 the statement program are 1-based. */
6832 struct file_entry *fe;
6833 char *dir = NULL;
6834
6835 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6836 line_ptr += bytes_read;
6837 if (lh->num_file_names < file)
6838 dwarf2_debug_line_missing_file_complaint ();
6839 else
6840 {
6841 fe = &lh->file_names[file - 1];
6842 if (fe->dir_index)
6843 dir = lh->include_dirs[fe->dir_index - 1];
6844 if (!decode_for_pst_p)
6845 {
6846 last_subfile = current_subfile;
6847 dwarf2_start_subfile (fe->name, dir, comp_dir);
6848 }
6849 }
6850 }
6851 break;
6852 case DW_LNS_set_column:
6853 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6854 line_ptr += bytes_read;
6855 break;
6856 case DW_LNS_negate_stmt:
6857 is_stmt = (!is_stmt);
6858 break;
6859 case DW_LNS_set_basic_block:
6860 basic_block = 1;
6861 break;
6862 /* Add to the address register of the state machine the
6863 address increment value corresponding to special opcode
6864 255. I.e., this value is scaled by the minimum
6865 instruction length since special opcode 255 would have
6866 scaled the the increment. */
6867 case DW_LNS_const_add_pc:
6868 address += (lh->minimum_instruction_length
6869 * ((255 - lh->opcode_base) / lh->line_range));
6870 break;
6871 case DW_LNS_fixed_advance_pc:
6872 address += read_2_bytes (abfd, line_ptr);
6873 line_ptr += 2;
6874 break;
6875 default:
6876 {
6877 /* Unknown standard opcode, ignore it. */
6878 int i;
6879
6880 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6881 {
6882 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6883 line_ptr += bytes_read;
6884 }
6885 }
6886 }
6887 }
6888 }
6889
6890 if (decode_for_pst_p)
6891 {
6892 int file_index;
6893
6894 /* Now that we're done scanning the Line Header Program, we can
6895 create the psymtab of each included file. */
6896 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6897 if (lh->file_names[file_index].included_p == 1)
6898 {
6899 const struct file_entry fe = lh->file_names [file_index];
6900 char *include_name = fe.name;
6901 char *dir_name = NULL;
6902 char *pst_filename = pst->filename;
6903
6904 if (fe.dir_index)
6905 dir_name = lh->include_dirs[fe.dir_index - 1];
6906
6907 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
6908 {
6909 include_name = concat (dir_name, SLASH_STRING,
6910 include_name, (char *)NULL);
6911 make_cleanup (xfree, include_name);
6912 }
6913
6914 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
6915 {
6916 pst_filename = concat (pst->dirname, SLASH_STRING,
6917 pst_filename, (char *)NULL);
6918 make_cleanup (xfree, pst_filename);
6919 }
6920
6921 if (strcmp (include_name, pst_filename) != 0)
6922 dwarf2_create_include_psymtab (include_name, pst, objfile);
6923 }
6924 }
6925 else
6926 {
6927 /* Make sure a symtab is created for every file, even files
6928 which contain only variables (i.e. no code with associated
6929 line numbers). */
6930
6931 int i;
6932 struct file_entry *fe;
6933
6934 for (i = 0; i < lh->num_file_names; i++)
6935 {
6936 char *dir = NULL;
6937 fe = &lh->file_names[i];
6938 if (fe->dir_index)
6939 dir = lh->include_dirs[fe->dir_index - 1];
6940 dwarf2_start_subfile (fe->name, dir, comp_dir);
6941
6942 /* Skip the main file; we don't need it, and it must be
6943 allocated last, so that it will show up before the
6944 non-primary symtabs in the objfile's symtab list. */
6945 if (current_subfile == first_subfile)
6946 continue;
6947
6948 if (current_subfile->symtab == NULL)
6949 current_subfile->symtab = allocate_symtab (current_subfile->name,
6950 cu->objfile);
6951 fe->symtab = current_subfile->symtab;
6952 }
6953 }
6954 }
6955
6956 /* Start a subfile for DWARF. FILENAME is the name of the file and
6957 DIRNAME the name of the source directory which contains FILENAME
6958 or NULL if not known. COMP_DIR is the compilation directory for the
6959 linetable's compilation unit or NULL if not known.
6960 This routine tries to keep line numbers from identical absolute and
6961 relative file names in a common subfile.
6962
6963 Using the `list' example from the GDB testsuite, which resides in
6964 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6965 of /srcdir/list0.c yields the following debugging information for list0.c:
6966
6967 DW_AT_name: /srcdir/list0.c
6968 DW_AT_comp_dir: /compdir
6969 files.files[0].name: list0.h
6970 files.files[0].dir: /srcdir
6971 files.files[1].name: list0.c
6972 files.files[1].dir: /srcdir
6973
6974 The line number information for list0.c has to end up in a single
6975 subfile, so that `break /srcdir/list0.c:1' works as expected.
6976 start_subfile will ensure that this happens provided that we pass the
6977 concatenation of files.files[1].dir and files.files[1].name as the
6978 subfile's name. */
6979
6980 static void
6981 dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
6982 {
6983 char *fullname;
6984
6985 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
6986 `start_symtab' will always pass the contents of DW_AT_comp_dir as
6987 second argument to start_subfile. To be consistent, we do the
6988 same here. In order not to lose the line information directory,
6989 we concatenate it to the filename when it makes sense.
6990 Note that the Dwarf3 standard says (speaking of filenames in line
6991 information): ``The directory index is ignored for file names
6992 that represent full path names''. Thus ignoring dirname in the
6993 `else' branch below isn't an issue. */
6994
6995 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6996 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
6997 else
6998 fullname = filename;
6999
7000 start_subfile (fullname, comp_dir);
7001
7002 if (fullname != filename)
7003 xfree (fullname);
7004 }
7005
7006 static void
7007 var_decode_location (struct attribute *attr, struct symbol *sym,
7008 struct dwarf2_cu *cu)
7009 {
7010 struct objfile *objfile = cu->objfile;
7011 struct comp_unit_head *cu_header = &cu->header;
7012
7013 /* NOTE drow/2003-01-30: There used to be a comment and some special
7014 code here to turn a symbol with DW_AT_external and a
7015 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7016 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7017 with some versions of binutils) where shared libraries could have
7018 relocations against symbols in their debug information - the
7019 minimal symbol would have the right address, but the debug info
7020 would not. It's no longer necessary, because we will explicitly
7021 apply relocations when we read in the debug information now. */
7022
7023 /* A DW_AT_location attribute with no contents indicates that a
7024 variable has been optimized away. */
7025 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7026 {
7027 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7028 return;
7029 }
7030
7031 /* Handle one degenerate form of location expression specially, to
7032 preserve GDB's previous behavior when section offsets are
7033 specified. If this is just a DW_OP_addr then mark this symbol
7034 as LOC_STATIC. */
7035
7036 if (attr_form_is_block (attr)
7037 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7038 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7039 {
7040 unsigned int dummy;
7041
7042 SYMBOL_VALUE_ADDRESS (sym) =
7043 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
7044 fixup_symbol_section (sym, objfile);
7045 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7046 SYMBOL_SECTION (sym));
7047 SYMBOL_CLASS (sym) = LOC_STATIC;
7048 return;
7049 }
7050
7051 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7052 expression evaluator, and use LOC_COMPUTED only when necessary
7053 (i.e. when the value of a register or memory location is
7054 referenced, or a thread-local block, etc.). Then again, it might
7055 not be worthwhile. I'm assuming that it isn't unless performance
7056 or memory numbers show me otherwise. */
7057
7058 dwarf2_symbol_mark_computed (attr, sym, cu);
7059 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7060 }
7061
7062 /* Given a pointer to a DWARF information entry, figure out if we need
7063 to make a symbol table entry for it, and if so, create a new entry
7064 and return a pointer to it.
7065 If TYPE is NULL, determine symbol type from the die, otherwise
7066 used the passed type. */
7067
7068 static struct symbol *
7069 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
7070 {
7071 struct objfile *objfile = cu->objfile;
7072 struct symbol *sym = NULL;
7073 char *name;
7074 struct attribute *attr = NULL;
7075 struct attribute *attr2 = NULL;
7076 CORE_ADDR baseaddr;
7077
7078 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7079
7080 if (die->tag != DW_TAG_namespace)
7081 name = dwarf2_linkage_name (die, cu);
7082 else
7083 name = TYPE_NAME (type);
7084
7085 if (name)
7086 {
7087 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
7088 sizeof (struct symbol));
7089 OBJSTAT (objfile, n_syms++);
7090 memset (sym, 0, sizeof (struct symbol));
7091
7092 /* Cache this symbol's name and the name's demangled form (if any). */
7093 SYMBOL_LANGUAGE (sym) = cu->language;
7094 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
7095
7096 /* Default assumptions.
7097 Use the passed type or decode it from the die. */
7098 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7099 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7100 if (type != NULL)
7101 SYMBOL_TYPE (sym) = type;
7102 else
7103 SYMBOL_TYPE (sym) = die_type (die, cu);
7104 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
7105 if (attr)
7106 {
7107 SYMBOL_LINE (sym) = DW_UNSND (attr);
7108 }
7109
7110 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7111 if (attr)
7112 {
7113 int file_index = DW_UNSND (attr);
7114 if (cu->line_header == NULL
7115 || file_index > cu->line_header->num_file_names)
7116 complaint (&symfile_complaints,
7117 _("file index out of range"));
7118 else if (file_index > 0)
7119 {
7120 struct file_entry *fe;
7121 fe = &cu->line_header->file_names[file_index - 1];
7122 SYMBOL_SYMTAB (sym) = fe->symtab;
7123 }
7124 }
7125
7126 switch (die->tag)
7127 {
7128 case DW_TAG_label:
7129 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
7130 if (attr)
7131 {
7132 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7133 }
7134 SYMBOL_CLASS (sym) = LOC_LABEL;
7135 break;
7136 case DW_TAG_subprogram:
7137 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7138 finish_block. */
7139 SYMBOL_CLASS (sym) = LOC_BLOCK;
7140 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7141 if (attr2 && (DW_UNSND (attr2) != 0))
7142 {
7143 add_symbol_to_list (sym, &global_symbols);
7144 }
7145 else
7146 {
7147 add_symbol_to_list (sym, cu->list_in_scope);
7148 }
7149 break;
7150 case DW_TAG_variable:
7151 /* Compilation with minimal debug info may result in variables
7152 with missing type entries. Change the misleading `void' type
7153 to something sensible. */
7154 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
7155 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
7156 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
7157 "<variable, no debug info>",
7158 objfile);
7159 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7160 if (attr)
7161 {
7162 dwarf2_const_value (attr, sym, cu);
7163 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7164 if (attr2 && (DW_UNSND (attr2) != 0))
7165 add_symbol_to_list (sym, &global_symbols);
7166 else
7167 add_symbol_to_list (sym, cu->list_in_scope);
7168 break;
7169 }
7170 attr = dwarf2_attr (die, DW_AT_location, cu);
7171 if (attr)
7172 {
7173 var_decode_location (attr, sym, cu);
7174 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7175 if (attr2 && (DW_UNSND (attr2) != 0))
7176 add_symbol_to_list (sym, &global_symbols);
7177 else
7178 add_symbol_to_list (sym, cu->list_in_scope);
7179 }
7180 else
7181 {
7182 /* We do not know the address of this symbol.
7183 If it is an external symbol and we have type information
7184 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7185 The address of the variable will then be determined from
7186 the minimal symbol table whenever the variable is
7187 referenced. */
7188 attr2 = dwarf2_attr (die, DW_AT_external, cu);
7189 if (attr2 && (DW_UNSND (attr2) != 0)
7190 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
7191 {
7192 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7193 add_symbol_to_list (sym, &global_symbols);
7194 }
7195 }
7196 break;
7197 case DW_TAG_formal_parameter:
7198 attr = dwarf2_attr (die, DW_AT_location, cu);
7199 if (attr)
7200 {
7201 var_decode_location (attr, sym, cu);
7202 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7203 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7204 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
7205 }
7206 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7207 if (attr)
7208 {
7209 dwarf2_const_value (attr, sym, cu);
7210 }
7211 add_symbol_to_list (sym, cu->list_in_scope);
7212 break;
7213 case DW_TAG_unspecified_parameters:
7214 /* From varargs functions; gdb doesn't seem to have any
7215 interest in this information, so just ignore it for now.
7216 (FIXME?) */
7217 break;
7218 case DW_TAG_class_type:
7219 case DW_TAG_structure_type:
7220 case DW_TAG_union_type:
7221 case DW_TAG_set_type:
7222 case DW_TAG_enumeration_type:
7223 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7224 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7225
7226 /* Make sure that the symbol includes appropriate enclosing
7227 classes/namespaces in its name. These are calculated in
7228 read_structure_type, and the correct name is saved in
7229 the type. */
7230
7231 if (cu->language == language_cplus
7232 || cu->language == language_java)
7233 {
7234 struct type *type = SYMBOL_TYPE (sym);
7235
7236 if (TYPE_TAG_NAME (type) != NULL)
7237 {
7238 /* FIXME: carlton/2003-11-10: Should this use
7239 SYMBOL_SET_NAMES instead? (The same problem also
7240 arises further down in this function.) */
7241 /* The type's name is already allocated along with
7242 this objfile, so we don't need to duplicate it
7243 for the symbol. */
7244 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
7245 }
7246 }
7247
7248 {
7249 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
7250 really ever be static objects: otherwise, if you try
7251 to, say, break of a class's method and you're in a file
7252 which doesn't mention that class, it won't work unless
7253 the check for all static symbols in lookup_symbol_aux
7254 saves you. See the OtherFileClass tests in
7255 gdb.c++/namespace.exp. */
7256
7257 struct pending **list_to_add;
7258
7259 list_to_add = (cu->list_in_scope == &file_symbols
7260 && (cu->language == language_cplus
7261 || cu->language == language_java)
7262 ? &global_symbols : cu->list_in_scope);
7263
7264 add_symbol_to_list (sym, list_to_add);
7265
7266 /* The semantics of C++ state that "struct foo { ... }" also
7267 defines a typedef for "foo". A Java class declaration also
7268 defines a typedef for the class. Synthesize a typedef symbol
7269 so that "ptype foo" works as expected. */
7270 if (cu->language == language_cplus
7271 || cu->language == language_java
7272 || cu->language == language_ada)
7273 {
7274 struct symbol *typedef_sym = (struct symbol *)
7275 obstack_alloc (&objfile->objfile_obstack,
7276 sizeof (struct symbol));
7277 *typedef_sym = *sym;
7278 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
7279 /* The symbol's name is already allocated along with
7280 this objfile, so we don't need to duplicate it for
7281 the type. */
7282 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
7283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
7284 add_symbol_to_list (typedef_sym, list_to_add);
7285 }
7286 }
7287 break;
7288 case DW_TAG_typedef:
7289 if (processing_has_namespace_info
7290 && processing_current_prefix[0] != '\0')
7291 {
7292 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7293 processing_current_prefix,
7294 name, cu);
7295 }
7296 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7297 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7298 add_symbol_to_list (sym, cu->list_in_scope);
7299 break;
7300 case DW_TAG_base_type:
7301 case DW_TAG_subrange_type:
7302 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7303 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
7304 add_symbol_to_list (sym, cu->list_in_scope);
7305 break;
7306 case DW_TAG_enumerator:
7307 if (processing_has_namespace_info
7308 && processing_current_prefix[0] != '\0')
7309 {
7310 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7311 processing_current_prefix,
7312 name, cu);
7313 }
7314 attr = dwarf2_attr (die, DW_AT_const_value, cu);
7315 if (attr)
7316 {
7317 dwarf2_const_value (attr, sym, cu);
7318 }
7319 {
7320 /* NOTE: carlton/2003-11-10: See comment above in the
7321 DW_TAG_class_type, etc. block. */
7322
7323 struct pending **list_to_add;
7324
7325 list_to_add = (cu->list_in_scope == &file_symbols
7326 && (cu->language == language_cplus
7327 || cu->language == language_java)
7328 ? &global_symbols : cu->list_in_scope);
7329
7330 add_symbol_to_list (sym, list_to_add);
7331 }
7332 break;
7333 case DW_TAG_namespace:
7334 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7335 add_symbol_to_list (sym, &global_symbols);
7336 break;
7337 default:
7338 /* Not a tag we recognize. Hopefully we aren't processing
7339 trash data, but since we must specifically ignore things
7340 we don't recognize, there is nothing else we should do at
7341 this point. */
7342 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
7343 dwarf_tag_name (die->tag));
7344 break;
7345 }
7346 }
7347 return (sym);
7348 }
7349
7350 /* Copy constant value from an attribute to a symbol. */
7351
7352 static void
7353 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
7354 struct dwarf2_cu *cu)
7355 {
7356 struct objfile *objfile = cu->objfile;
7357 struct comp_unit_head *cu_header = &cu->header;
7358 struct dwarf_block *blk;
7359
7360 switch (attr->form)
7361 {
7362 case DW_FORM_addr:
7363 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7364 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7365 cu_header->addr_size,
7366 TYPE_LENGTH (SYMBOL_TYPE
7367 (sym)));
7368 SYMBOL_VALUE_BYTES (sym) =
7369 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7370 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7371 it's body - store_unsigned_integer. */
7372 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7373 DW_ADDR (attr));
7374 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7375 break;
7376 case DW_FORM_block1:
7377 case DW_FORM_block2:
7378 case DW_FORM_block4:
7379 case DW_FORM_block:
7380 blk = DW_BLOCK (attr);
7381 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7382 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7383 blk->size,
7384 TYPE_LENGTH (SYMBOL_TYPE
7385 (sym)));
7386 SYMBOL_VALUE_BYTES (sym) =
7387 obstack_alloc (&objfile->objfile_obstack, blk->size);
7388 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7389 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7390 break;
7391
7392 /* The DW_AT_const_value attributes are supposed to carry the
7393 symbol's value "represented as it would be on the target
7394 architecture." By the time we get here, it's already been
7395 converted to host endianness, so we just need to sign- or
7396 zero-extend it as appropriate. */
7397 case DW_FORM_data1:
7398 dwarf2_const_value_data (attr, sym, 8);
7399 break;
7400 case DW_FORM_data2:
7401 dwarf2_const_value_data (attr, sym, 16);
7402 break;
7403 case DW_FORM_data4:
7404 dwarf2_const_value_data (attr, sym, 32);
7405 break;
7406 case DW_FORM_data8:
7407 dwarf2_const_value_data (attr, sym, 64);
7408 break;
7409
7410 case DW_FORM_sdata:
7411 SYMBOL_VALUE (sym) = DW_SND (attr);
7412 SYMBOL_CLASS (sym) = LOC_CONST;
7413 break;
7414
7415 case DW_FORM_udata:
7416 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7417 SYMBOL_CLASS (sym) = LOC_CONST;
7418 break;
7419
7420 default:
7421 complaint (&symfile_complaints,
7422 _("unsupported const value attribute form: '%s'"),
7423 dwarf_form_name (attr->form));
7424 SYMBOL_VALUE (sym) = 0;
7425 SYMBOL_CLASS (sym) = LOC_CONST;
7426 break;
7427 }
7428 }
7429
7430
7431 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7432 or zero-extend it as appropriate for the symbol's type. */
7433 static void
7434 dwarf2_const_value_data (struct attribute *attr,
7435 struct symbol *sym,
7436 int bits)
7437 {
7438 LONGEST l = DW_UNSND (attr);
7439
7440 if (bits < sizeof (l) * 8)
7441 {
7442 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7443 l &= ((LONGEST) 1 << bits) - 1;
7444 else
7445 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7446 }
7447
7448 SYMBOL_VALUE (sym) = l;
7449 SYMBOL_CLASS (sym) = LOC_CONST;
7450 }
7451
7452
7453 /* Return the type of the die in question using its DW_AT_type attribute. */
7454
7455 static struct type *
7456 die_type (struct die_info *die, struct dwarf2_cu *cu)
7457 {
7458 struct type *type;
7459 struct attribute *type_attr;
7460 struct die_info *type_die;
7461
7462 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7463 if (!type_attr)
7464 {
7465 /* A missing DW_AT_type represents a void type. */
7466 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7467 }
7468 else
7469 type_die = follow_die_ref (die, type_attr, cu);
7470
7471 type = tag_type_to_type (type_die, cu);
7472 if (!type)
7473 {
7474 dump_die (type_die);
7475 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7476 cu->objfile->name);
7477 }
7478 return type;
7479 }
7480
7481 /* Return the containing type of the die in question using its
7482 DW_AT_containing_type attribute. */
7483
7484 static struct type *
7485 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7486 {
7487 struct type *type = NULL;
7488 struct attribute *type_attr;
7489 struct die_info *type_die = NULL;
7490
7491 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7492 if (type_attr)
7493 {
7494 type_die = follow_die_ref (die, type_attr, cu);
7495 type = tag_type_to_type (type_die, cu);
7496 }
7497 if (!type)
7498 {
7499 if (type_die)
7500 dump_die (type_die);
7501 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7502 cu->objfile->name);
7503 }
7504 return type;
7505 }
7506
7507 static struct type *
7508 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7509 {
7510 if (die->type)
7511 {
7512 return die->type;
7513 }
7514 else
7515 {
7516 read_type_die (die, cu);
7517 if (!die->type)
7518 {
7519 dump_die (die);
7520 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7521 cu->objfile->name);
7522 }
7523 return die->type;
7524 }
7525 }
7526
7527 static void
7528 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7529 {
7530 char *prefix = determine_prefix (die, cu);
7531 const char *old_prefix = processing_current_prefix;
7532 struct cleanup *back_to = make_cleanup (xfree, prefix);
7533 processing_current_prefix = prefix;
7534
7535 switch (die->tag)
7536 {
7537 case DW_TAG_class_type:
7538 case DW_TAG_structure_type:
7539 case DW_TAG_union_type:
7540 read_structure_type (die, cu);
7541 break;
7542 case DW_TAG_enumeration_type:
7543 read_enumeration_type (die, cu);
7544 break;
7545 case DW_TAG_subprogram:
7546 case DW_TAG_subroutine_type:
7547 read_subroutine_type (die, cu);
7548 break;
7549 case DW_TAG_array_type:
7550 read_array_type (die, cu);
7551 break;
7552 case DW_TAG_set_type:
7553 read_set_type (die, cu);
7554 break;
7555 case DW_TAG_pointer_type:
7556 read_tag_pointer_type (die, cu);
7557 break;
7558 case DW_TAG_ptr_to_member_type:
7559 read_tag_ptr_to_member_type (die, cu);
7560 break;
7561 case DW_TAG_reference_type:
7562 read_tag_reference_type (die, cu);
7563 break;
7564 case DW_TAG_const_type:
7565 read_tag_const_type (die, cu);
7566 break;
7567 case DW_TAG_volatile_type:
7568 read_tag_volatile_type (die, cu);
7569 break;
7570 case DW_TAG_string_type:
7571 read_tag_string_type (die, cu);
7572 break;
7573 case DW_TAG_typedef:
7574 read_typedef (die, cu);
7575 break;
7576 case DW_TAG_subrange_type:
7577 read_subrange_type (die, cu);
7578 break;
7579 case DW_TAG_base_type:
7580 read_base_type (die, cu);
7581 break;
7582 case DW_TAG_unspecified_type:
7583 read_unspecified_type (die, cu);
7584 break;
7585 default:
7586 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
7587 dwarf_tag_name (die->tag));
7588 break;
7589 }
7590
7591 processing_current_prefix = old_prefix;
7592 do_cleanups (back_to);
7593 }
7594
7595 /* Return the name of the namespace/class that DIE is defined within,
7596 or "" if we can't tell. The caller should xfree the result. */
7597
7598 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7599 therein) for an example of how to use this function to deal with
7600 DW_AT_specification. */
7601
7602 static char *
7603 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7604 {
7605 struct die_info *parent;
7606
7607 if (cu->language != language_cplus
7608 && cu->language != language_java)
7609 return NULL;
7610
7611 parent = die->parent;
7612
7613 if (parent == NULL)
7614 {
7615 return xstrdup ("");
7616 }
7617 else
7618 {
7619 switch (parent->tag) {
7620 case DW_TAG_namespace:
7621 {
7622 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7623 before doing this check? */
7624 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7625 {
7626 return xstrdup (TYPE_TAG_NAME (parent->type));
7627 }
7628 else
7629 {
7630 int dummy;
7631 char *parent_prefix = determine_prefix (parent, cu);
7632 char *retval = typename_concat (NULL, parent_prefix,
7633 namespace_name (parent, &dummy,
7634 cu),
7635 cu);
7636 xfree (parent_prefix);
7637 return retval;
7638 }
7639 }
7640 break;
7641 case DW_TAG_class_type:
7642 case DW_TAG_structure_type:
7643 {
7644 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7645 {
7646 return xstrdup (TYPE_TAG_NAME (parent->type));
7647 }
7648 else
7649 {
7650 const char *old_prefix = processing_current_prefix;
7651 char *new_prefix = determine_prefix (parent, cu);
7652 char *retval;
7653
7654 processing_current_prefix = new_prefix;
7655 retval = determine_class_name (parent, cu);
7656 processing_current_prefix = old_prefix;
7657
7658 xfree (new_prefix);
7659 return retval;
7660 }
7661 }
7662 default:
7663 return determine_prefix (parent, cu);
7664 }
7665 }
7666 }
7667
7668 /* Return a newly-allocated string formed by concatenating PREFIX and
7669 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7670 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7671 perform an obconcat, otherwise allocate storage for the result. The CU argument
7672 is used to determine the language and hence, the appropriate separator. */
7673
7674 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7675
7676 static char *
7677 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7678 struct dwarf2_cu *cu)
7679 {
7680 char *sep;
7681
7682 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7683 sep = "";
7684 else if (cu->language == language_java)
7685 sep = ".";
7686 else
7687 sep = "::";
7688
7689 if (obs == NULL)
7690 {
7691 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7692 retval[0] = '\0';
7693
7694 if (prefix)
7695 {
7696 strcpy (retval, prefix);
7697 strcat (retval, sep);
7698 }
7699 if (suffix)
7700 strcat (retval, suffix);
7701
7702 return retval;
7703 }
7704 else
7705 {
7706 /* We have an obstack. */
7707 return obconcat (obs, prefix, sep, suffix);
7708 }
7709 }
7710
7711 static struct type *
7712 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7713 {
7714 struct objfile *objfile = cu->objfile;
7715
7716 /* FIXME - this should not produce a new (struct type *)
7717 every time. It should cache base types. */
7718 struct type *type;
7719 switch (encoding)
7720 {
7721 case DW_ATE_address:
7722 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7723 return type;
7724 case DW_ATE_boolean:
7725 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7726 return type;
7727 case DW_ATE_complex_float:
7728 if (size == 16)
7729 {
7730 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7731 }
7732 else
7733 {
7734 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7735 }
7736 return type;
7737 case DW_ATE_float:
7738 if (size == 8)
7739 {
7740 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7741 }
7742 else
7743 {
7744 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7745 }
7746 return type;
7747 case DW_ATE_signed:
7748 switch (size)
7749 {
7750 case 1:
7751 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7752 break;
7753 case 2:
7754 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7755 break;
7756 default:
7757 case 4:
7758 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7759 break;
7760 }
7761 return type;
7762 case DW_ATE_signed_char:
7763 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7764 return type;
7765 case DW_ATE_unsigned:
7766 switch (size)
7767 {
7768 case 1:
7769 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7770 break;
7771 case 2:
7772 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7773 break;
7774 default:
7775 case 4:
7776 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7777 break;
7778 }
7779 return type;
7780 case DW_ATE_unsigned_char:
7781 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7782 return type;
7783 default:
7784 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7785 return type;
7786 }
7787 }
7788
7789 #if 0
7790 struct die_info *
7791 copy_die (struct die_info *old_die)
7792 {
7793 struct die_info *new_die;
7794 int i, num_attrs;
7795
7796 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7797 memset (new_die, 0, sizeof (struct die_info));
7798
7799 new_die->tag = old_die->tag;
7800 new_die->has_children = old_die->has_children;
7801 new_die->abbrev = old_die->abbrev;
7802 new_die->offset = old_die->offset;
7803 new_die->type = NULL;
7804
7805 num_attrs = old_die->num_attrs;
7806 new_die->num_attrs = num_attrs;
7807 new_die->attrs = (struct attribute *)
7808 xmalloc (num_attrs * sizeof (struct attribute));
7809
7810 for (i = 0; i < old_die->num_attrs; ++i)
7811 {
7812 new_die->attrs[i].name = old_die->attrs[i].name;
7813 new_die->attrs[i].form = old_die->attrs[i].form;
7814 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7815 }
7816
7817 new_die->next = NULL;
7818 return new_die;
7819 }
7820 #endif
7821
7822 /* Return sibling of die, NULL if no sibling. */
7823
7824 static struct die_info *
7825 sibling_die (struct die_info *die)
7826 {
7827 return die->sibling;
7828 }
7829
7830 /* Get linkage name of a die, return NULL if not found. */
7831
7832 static char *
7833 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7834 {
7835 struct attribute *attr;
7836
7837 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7838 if (attr && DW_STRING (attr))
7839 return DW_STRING (attr);
7840 attr = dwarf2_attr (die, DW_AT_name, cu);
7841 if (attr && DW_STRING (attr))
7842 return DW_STRING (attr);
7843 return NULL;
7844 }
7845
7846 /* Get name of a die, return NULL if not found. */
7847
7848 static char *
7849 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7850 {
7851 struct attribute *attr;
7852
7853 attr = dwarf2_attr (die, DW_AT_name, cu);
7854 if (attr && DW_STRING (attr))
7855 return DW_STRING (attr);
7856 return NULL;
7857 }
7858
7859 /* Return the die that this die in an extension of, or NULL if there
7860 is none. */
7861
7862 static struct die_info *
7863 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7864 {
7865 struct attribute *attr;
7866
7867 attr = dwarf2_attr (die, DW_AT_extension, cu);
7868 if (attr == NULL)
7869 return NULL;
7870
7871 return follow_die_ref (die, attr, cu);
7872 }
7873
7874 /* Convert a DIE tag into its string name. */
7875
7876 static char *
7877 dwarf_tag_name (unsigned tag)
7878 {
7879 switch (tag)
7880 {
7881 case DW_TAG_padding:
7882 return "DW_TAG_padding";
7883 case DW_TAG_array_type:
7884 return "DW_TAG_array_type";
7885 case DW_TAG_class_type:
7886 return "DW_TAG_class_type";
7887 case DW_TAG_entry_point:
7888 return "DW_TAG_entry_point";
7889 case DW_TAG_enumeration_type:
7890 return "DW_TAG_enumeration_type";
7891 case DW_TAG_formal_parameter:
7892 return "DW_TAG_formal_parameter";
7893 case DW_TAG_imported_declaration:
7894 return "DW_TAG_imported_declaration";
7895 case DW_TAG_label:
7896 return "DW_TAG_label";
7897 case DW_TAG_lexical_block:
7898 return "DW_TAG_lexical_block";
7899 case DW_TAG_member:
7900 return "DW_TAG_member";
7901 case DW_TAG_pointer_type:
7902 return "DW_TAG_pointer_type";
7903 case DW_TAG_reference_type:
7904 return "DW_TAG_reference_type";
7905 case DW_TAG_compile_unit:
7906 return "DW_TAG_compile_unit";
7907 case DW_TAG_string_type:
7908 return "DW_TAG_string_type";
7909 case DW_TAG_structure_type:
7910 return "DW_TAG_structure_type";
7911 case DW_TAG_subroutine_type:
7912 return "DW_TAG_subroutine_type";
7913 case DW_TAG_typedef:
7914 return "DW_TAG_typedef";
7915 case DW_TAG_union_type:
7916 return "DW_TAG_union_type";
7917 case DW_TAG_unspecified_parameters:
7918 return "DW_TAG_unspecified_parameters";
7919 case DW_TAG_variant:
7920 return "DW_TAG_variant";
7921 case DW_TAG_common_block:
7922 return "DW_TAG_common_block";
7923 case DW_TAG_common_inclusion:
7924 return "DW_TAG_common_inclusion";
7925 case DW_TAG_inheritance:
7926 return "DW_TAG_inheritance";
7927 case DW_TAG_inlined_subroutine:
7928 return "DW_TAG_inlined_subroutine";
7929 case DW_TAG_module:
7930 return "DW_TAG_module";
7931 case DW_TAG_ptr_to_member_type:
7932 return "DW_TAG_ptr_to_member_type";
7933 case DW_TAG_set_type:
7934 return "DW_TAG_set_type";
7935 case DW_TAG_subrange_type:
7936 return "DW_TAG_subrange_type";
7937 case DW_TAG_with_stmt:
7938 return "DW_TAG_with_stmt";
7939 case DW_TAG_access_declaration:
7940 return "DW_TAG_access_declaration";
7941 case DW_TAG_base_type:
7942 return "DW_TAG_base_type";
7943 case DW_TAG_catch_block:
7944 return "DW_TAG_catch_block";
7945 case DW_TAG_const_type:
7946 return "DW_TAG_const_type";
7947 case DW_TAG_constant:
7948 return "DW_TAG_constant";
7949 case DW_TAG_enumerator:
7950 return "DW_TAG_enumerator";
7951 case DW_TAG_file_type:
7952 return "DW_TAG_file_type";
7953 case DW_TAG_friend:
7954 return "DW_TAG_friend";
7955 case DW_TAG_namelist:
7956 return "DW_TAG_namelist";
7957 case DW_TAG_namelist_item:
7958 return "DW_TAG_namelist_item";
7959 case DW_TAG_packed_type:
7960 return "DW_TAG_packed_type";
7961 case DW_TAG_subprogram:
7962 return "DW_TAG_subprogram";
7963 case DW_TAG_template_type_param:
7964 return "DW_TAG_template_type_param";
7965 case DW_TAG_template_value_param:
7966 return "DW_TAG_template_value_param";
7967 case DW_TAG_thrown_type:
7968 return "DW_TAG_thrown_type";
7969 case DW_TAG_try_block:
7970 return "DW_TAG_try_block";
7971 case DW_TAG_variant_part:
7972 return "DW_TAG_variant_part";
7973 case DW_TAG_variable:
7974 return "DW_TAG_variable";
7975 case DW_TAG_volatile_type:
7976 return "DW_TAG_volatile_type";
7977 case DW_TAG_dwarf_procedure:
7978 return "DW_TAG_dwarf_procedure";
7979 case DW_TAG_restrict_type:
7980 return "DW_TAG_restrict_type";
7981 case DW_TAG_interface_type:
7982 return "DW_TAG_interface_type";
7983 case DW_TAG_namespace:
7984 return "DW_TAG_namespace";
7985 case DW_TAG_imported_module:
7986 return "DW_TAG_imported_module";
7987 case DW_TAG_unspecified_type:
7988 return "DW_TAG_unspecified_type";
7989 case DW_TAG_partial_unit:
7990 return "DW_TAG_partial_unit";
7991 case DW_TAG_imported_unit:
7992 return "DW_TAG_imported_unit";
7993 case DW_TAG_condition:
7994 return "DW_TAG_condition";
7995 case DW_TAG_shared_type:
7996 return "DW_TAG_shared_type";
7997 case DW_TAG_MIPS_loop:
7998 return "DW_TAG_MIPS_loop";
7999 case DW_TAG_HP_array_descriptor:
8000 return "DW_TAG_HP_array_descriptor";
8001 case DW_TAG_format_label:
8002 return "DW_TAG_format_label";
8003 case DW_TAG_function_template:
8004 return "DW_TAG_function_template";
8005 case DW_TAG_class_template:
8006 return "DW_TAG_class_template";
8007 case DW_TAG_GNU_BINCL:
8008 return "DW_TAG_GNU_BINCL";
8009 case DW_TAG_GNU_EINCL:
8010 return "DW_TAG_GNU_EINCL";
8011 case DW_TAG_upc_shared_type:
8012 return "DW_TAG_upc_shared_type";
8013 case DW_TAG_upc_strict_type:
8014 return "DW_TAG_upc_strict_type";
8015 case DW_TAG_upc_relaxed_type:
8016 return "DW_TAG_upc_relaxed_type";
8017 case DW_TAG_PGI_kanji_type:
8018 return "DW_TAG_PGI_kanji_type";
8019 case DW_TAG_PGI_interface_block:
8020 return "DW_TAG_PGI_interface_block";
8021 default:
8022 return "DW_TAG_<unknown>";
8023 }
8024 }
8025
8026 /* Convert a DWARF attribute code into its string name. */
8027
8028 static char *
8029 dwarf_attr_name (unsigned attr)
8030 {
8031 switch (attr)
8032 {
8033 case DW_AT_sibling:
8034 return "DW_AT_sibling";
8035 case DW_AT_location:
8036 return "DW_AT_location";
8037 case DW_AT_name:
8038 return "DW_AT_name";
8039 case DW_AT_ordering:
8040 return "DW_AT_ordering";
8041 case DW_AT_subscr_data:
8042 return "DW_AT_subscr_data";
8043 case DW_AT_byte_size:
8044 return "DW_AT_byte_size";
8045 case DW_AT_bit_offset:
8046 return "DW_AT_bit_offset";
8047 case DW_AT_bit_size:
8048 return "DW_AT_bit_size";
8049 case DW_AT_element_list:
8050 return "DW_AT_element_list";
8051 case DW_AT_stmt_list:
8052 return "DW_AT_stmt_list";
8053 case DW_AT_low_pc:
8054 return "DW_AT_low_pc";
8055 case DW_AT_high_pc:
8056 return "DW_AT_high_pc";
8057 case DW_AT_language:
8058 return "DW_AT_language";
8059 case DW_AT_member:
8060 return "DW_AT_member";
8061 case DW_AT_discr:
8062 return "DW_AT_discr";
8063 case DW_AT_discr_value:
8064 return "DW_AT_discr_value";
8065 case DW_AT_visibility:
8066 return "DW_AT_visibility";
8067 case DW_AT_import:
8068 return "DW_AT_import";
8069 case DW_AT_string_length:
8070 return "DW_AT_string_length";
8071 case DW_AT_common_reference:
8072 return "DW_AT_common_reference";
8073 case DW_AT_comp_dir:
8074 return "DW_AT_comp_dir";
8075 case DW_AT_const_value:
8076 return "DW_AT_const_value";
8077 case DW_AT_containing_type:
8078 return "DW_AT_containing_type";
8079 case DW_AT_default_value:
8080 return "DW_AT_default_value";
8081 case DW_AT_inline:
8082 return "DW_AT_inline";
8083 case DW_AT_is_optional:
8084 return "DW_AT_is_optional";
8085 case DW_AT_lower_bound:
8086 return "DW_AT_lower_bound";
8087 case DW_AT_producer:
8088 return "DW_AT_producer";
8089 case DW_AT_prototyped:
8090 return "DW_AT_prototyped";
8091 case DW_AT_return_addr:
8092 return "DW_AT_return_addr";
8093 case DW_AT_start_scope:
8094 return "DW_AT_start_scope";
8095 case DW_AT_stride_size:
8096 return "DW_AT_stride_size";
8097 case DW_AT_upper_bound:
8098 return "DW_AT_upper_bound";
8099 case DW_AT_abstract_origin:
8100 return "DW_AT_abstract_origin";
8101 case DW_AT_accessibility:
8102 return "DW_AT_accessibility";
8103 case DW_AT_address_class:
8104 return "DW_AT_address_class";
8105 case DW_AT_artificial:
8106 return "DW_AT_artificial";
8107 case DW_AT_base_types:
8108 return "DW_AT_base_types";
8109 case DW_AT_calling_convention:
8110 return "DW_AT_calling_convention";
8111 case DW_AT_count:
8112 return "DW_AT_count";
8113 case DW_AT_data_member_location:
8114 return "DW_AT_data_member_location";
8115 case DW_AT_decl_column:
8116 return "DW_AT_decl_column";
8117 case DW_AT_decl_file:
8118 return "DW_AT_decl_file";
8119 case DW_AT_decl_line:
8120 return "DW_AT_decl_line";
8121 case DW_AT_declaration:
8122 return "DW_AT_declaration";
8123 case DW_AT_discr_list:
8124 return "DW_AT_discr_list";
8125 case DW_AT_encoding:
8126 return "DW_AT_encoding";
8127 case DW_AT_external:
8128 return "DW_AT_external";
8129 case DW_AT_frame_base:
8130 return "DW_AT_frame_base";
8131 case DW_AT_friend:
8132 return "DW_AT_friend";
8133 case DW_AT_identifier_case:
8134 return "DW_AT_identifier_case";
8135 case DW_AT_macro_info:
8136 return "DW_AT_macro_info";
8137 case DW_AT_namelist_items:
8138 return "DW_AT_namelist_items";
8139 case DW_AT_priority:
8140 return "DW_AT_priority";
8141 case DW_AT_segment:
8142 return "DW_AT_segment";
8143 case DW_AT_specification:
8144 return "DW_AT_specification";
8145 case DW_AT_static_link:
8146 return "DW_AT_static_link";
8147 case DW_AT_type:
8148 return "DW_AT_type";
8149 case DW_AT_use_location:
8150 return "DW_AT_use_location";
8151 case DW_AT_variable_parameter:
8152 return "DW_AT_variable_parameter";
8153 case DW_AT_virtuality:
8154 return "DW_AT_virtuality";
8155 case DW_AT_vtable_elem_location:
8156 return "DW_AT_vtable_elem_location";
8157 /* DWARF 3 values. */
8158 case DW_AT_allocated:
8159 return "DW_AT_allocated";
8160 case DW_AT_associated:
8161 return "DW_AT_associated";
8162 case DW_AT_data_location:
8163 return "DW_AT_data_location";
8164 case DW_AT_stride:
8165 return "DW_AT_stride";
8166 case DW_AT_entry_pc:
8167 return "DW_AT_entry_pc";
8168 case DW_AT_use_UTF8:
8169 return "DW_AT_use_UTF8";
8170 case DW_AT_extension:
8171 return "DW_AT_extension";
8172 case DW_AT_ranges:
8173 return "DW_AT_ranges";
8174 case DW_AT_trampoline:
8175 return "DW_AT_trampoline";
8176 case DW_AT_call_column:
8177 return "DW_AT_call_column";
8178 case DW_AT_call_file:
8179 return "DW_AT_call_file";
8180 case DW_AT_call_line:
8181 return "DW_AT_call_line";
8182 case DW_AT_description:
8183 return "DW_AT_description";
8184 case DW_AT_binary_scale:
8185 return "DW_AT_binary_scale";
8186 case DW_AT_decimal_scale:
8187 return "DW_AT_decimal_scale";
8188 case DW_AT_small:
8189 return "DW_AT_small";
8190 case DW_AT_decimal_sign:
8191 return "DW_AT_decimal_sign";
8192 case DW_AT_digit_count:
8193 return "DW_AT_digit_count";
8194 case DW_AT_picture_string:
8195 return "DW_AT_picture_string";
8196 case DW_AT_mutable:
8197 return "DW_AT_mutable";
8198 case DW_AT_threads_scaled:
8199 return "DW_AT_threads_scaled";
8200 case DW_AT_explicit:
8201 return "DW_AT_explicit";
8202 case DW_AT_object_pointer:
8203 return "DW_AT_object_pointer";
8204 case DW_AT_endianity:
8205 return "DW_AT_endianity";
8206 case DW_AT_elemental:
8207 return "DW_AT_elemental";
8208 case DW_AT_pure:
8209 return "DW_AT_pure";
8210 case DW_AT_recursive:
8211 return "DW_AT_recursive";
8212 #ifdef MIPS
8213 /* SGI/MIPS extensions. */
8214 case DW_AT_MIPS_fde:
8215 return "DW_AT_MIPS_fde";
8216 case DW_AT_MIPS_loop_begin:
8217 return "DW_AT_MIPS_loop_begin";
8218 case DW_AT_MIPS_tail_loop_begin:
8219 return "DW_AT_MIPS_tail_loop_begin";
8220 case DW_AT_MIPS_epilog_begin:
8221 return "DW_AT_MIPS_epilog_begin";
8222 case DW_AT_MIPS_loop_unroll_factor:
8223 return "DW_AT_MIPS_loop_unroll_factor";
8224 case DW_AT_MIPS_software_pipeline_depth:
8225 return "DW_AT_MIPS_software_pipeline_depth";
8226 case DW_AT_MIPS_linkage_name:
8227 return "DW_AT_MIPS_linkage_name";
8228 case DW_AT_MIPS_stride:
8229 return "DW_AT_MIPS_stride";
8230 case DW_AT_MIPS_abstract_name:
8231 return "DW_AT_MIPS_abstract_name";
8232 case DW_AT_MIPS_clone_origin:
8233 return "DW_AT_MIPS_clone_origin";
8234 case DW_AT_MIPS_has_inlines:
8235 return "DW_AT_MIPS_has_inlines";
8236 #endif
8237 /* HP extensions. */
8238 case DW_AT_HP_block_index:
8239 return "DW_AT_HP_block_index";
8240 case DW_AT_HP_unmodifiable:
8241 return "DW_AT_HP_unmodifiable";
8242 case DW_AT_HP_actuals_stmt_list:
8243 return "DW_AT_HP_actuals_stmt_list";
8244 case DW_AT_HP_proc_per_section:
8245 return "DW_AT_HP_proc_per_section";
8246 case DW_AT_HP_raw_data_ptr:
8247 return "DW_AT_HP_raw_data_ptr";
8248 case DW_AT_HP_pass_by_reference:
8249 return "DW_AT_HP_pass_by_reference";
8250 case DW_AT_HP_opt_level:
8251 return "DW_AT_HP_opt_level";
8252 case DW_AT_HP_prof_version_id:
8253 return "DW_AT_HP_prof_version_id";
8254 case DW_AT_HP_opt_flags:
8255 return "DW_AT_HP_opt_flags";
8256 case DW_AT_HP_cold_region_low_pc:
8257 return "DW_AT_HP_cold_region_low_pc";
8258 case DW_AT_HP_cold_region_high_pc:
8259 return "DW_AT_HP_cold_region_high_pc";
8260 case DW_AT_HP_all_variables_modifiable:
8261 return "DW_AT_HP_all_variables_modifiable";
8262 case DW_AT_HP_linkage_name:
8263 return "DW_AT_HP_linkage_name";
8264 case DW_AT_HP_prof_flags:
8265 return "DW_AT_HP_prof_flags";
8266 /* GNU extensions. */
8267 case DW_AT_sf_names:
8268 return "DW_AT_sf_names";
8269 case DW_AT_src_info:
8270 return "DW_AT_src_info";
8271 case DW_AT_mac_info:
8272 return "DW_AT_mac_info";
8273 case DW_AT_src_coords:
8274 return "DW_AT_src_coords";
8275 case DW_AT_body_begin:
8276 return "DW_AT_body_begin";
8277 case DW_AT_body_end:
8278 return "DW_AT_body_end";
8279 case DW_AT_GNU_vector:
8280 return "DW_AT_GNU_vector";
8281 /* VMS extensions. */
8282 case DW_AT_VMS_rtnbeg_pd_address:
8283 return "DW_AT_VMS_rtnbeg_pd_address";
8284 /* UPC extension. */
8285 case DW_AT_upc_threads_scaled:
8286 return "DW_AT_upc_threads_scaled";
8287 /* PGI (STMicroelectronics) extensions. */
8288 case DW_AT_PGI_lbase:
8289 return "DW_AT_PGI_lbase";
8290 case DW_AT_PGI_soffset:
8291 return "DW_AT_PGI_soffset";
8292 case DW_AT_PGI_lstride:
8293 return "DW_AT_PGI_lstride";
8294 default:
8295 return "DW_AT_<unknown>";
8296 }
8297 }
8298
8299 /* Convert a DWARF value form code into its string name. */
8300
8301 static char *
8302 dwarf_form_name (unsigned form)
8303 {
8304 switch (form)
8305 {
8306 case DW_FORM_addr:
8307 return "DW_FORM_addr";
8308 case DW_FORM_block2:
8309 return "DW_FORM_block2";
8310 case DW_FORM_block4:
8311 return "DW_FORM_block4";
8312 case DW_FORM_data2:
8313 return "DW_FORM_data2";
8314 case DW_FORM_data4:
8315 return "DW_FORM_data4";
8316 case DW_FORM_data8:
8317 return "DW_FORM_data8";
8318 case DW_FORM_string:
8319 return "DW_FORM_string";
8320 case DW_FORM_block:
8321 return "DW_FORM_block";
8322 case DW_FORM_block1:
8323 return "DW_FORM_block1";
8324 case DW_FORM_data1:
8325 return "DW_FORM_data1";
8326 case DW_FORM_flag:
8327 return "DW_FORM_flag";
8328 case DW_FORM_sdata:
8329 return "DW_FORM_sdata";
8330 case DW_FORM_strp:
8331 return "DW_FORM_strp";
8332 case DW_FORM_udata:
8333 return "DW_FORM_udata";
8334 case DW_FORM_ref_addr:
8335 return "DW_FORM_ref_addr";
8336 case DW_FORM_ref1:
8337 return "DW_FORM_ref1";
8338 case DW_FORM_ref2:
8339 return "DW_FORM_ref2";
8340 case DW_FORM_ref4:
8341 return "DW_FORM_ref4";
8342 case DW_FORM_ref8:
8343 return "DW_FORM_ref8";
8344 case DW_FORM_ref_udata:
8345 return "DW_FORM_ref_udata";
8346 case DW_FORM_indirect:
8347 return "DW_FORM_indirect";
8348 default:
8349 return "DW_FORM_<unknown>";
8350 }
8351 }
8352
8353 /* Convert a DWARF stack opcode into its string name. */
8354
8355 static char *
8356 dwarf_stack_op_name (unsigned op)
8357 {
8358 switch (op)
8359 {
8360 case DW_OP_addr:
8361 return "DW_OP_addr";
8362 case DW_OP_deref:
8363 return "DW_OP_deref";
8364 case DW_OP_const1u:
8365 return "DW_OP_const1u";
8366 case DW_OP_const1s:
8367 return "DW_OP_const1s";
8368 case DW_OP_const2u:
8369 return "DW_OP_const2u";
8370 case DW_OP_const2s:
8371 return "DW_OP_const2s";
8372 case DW_OP_const4u:
8373 return "DW_OP_const4u";
8374 case DW_OP_const4s:
8375 return "DW_OP_const4s";
8376 case DW_OP_const8u:
8377 return "DW_OP_const8u";
8378 case DW_OP_const8s:
8379 return "DW_OP_const8s";
8380 case DW_OP_constu:
8381 return "DW_OP_constu";
8382 case DW_OP_consts:
8383 return "DW_OP_consts";
8384 case DW_OP_dup:
8385 return "DW_OP_dup";
8386 case DW_OP_drop:
8387 return "DW_OP_drop";
8388 case DW_OP_over:
8389 return "DW_OP_over";
8390 case DW_OP_pick:
8391 return "DW_OP_pick";
8392 case DW_OP_swap:
8393 return "DW_OP_swap";
8394 case DW_OP_rot:
8395 return "DW_OP_rot";
8396 case DW_OP_xderef:
8397 return "DW_OP_xderef";
8398 case DW_OP_abs:
8399 return "DW_OP_abs";
8400 case DW_OP_and:
8401 return "DW_OP_and";
8402 case DW_OP_div:
8403 return "DW_OP_div";
8404 case DW_OP_minus:
8405 return "DW_OP_minus";
8406 case DW_OP_mod:
8407 return "DW_OP_mod";
8408 case DW_OP_mul:
8409 return "DW_OP_mul";
8410 case DW_OP_neg:
8411 return "DW_OP_neg";
8412 case DW_OP_not:
8413 return "DW_OP_not";
8414 case DW_OP_or:
8415 return "DW_OP_or";
8416 case DW_OP_plus:
8417 return "DW_OP_plus";
8418 case DW_OP_plus_uconst:
8419 return "DW_OP_plus_uconst";
8420 case DW_OP_shl:
8421 return "DW_OP_shl";
8422 case DW_OP_shr:
8423 return "DW_OP_shr";
8424 case DW_OP_shra:
8425 return "DW_OP_shra";
8426 case DW_OP_xor:
8427 return "DW_OP_xor";
8428 case DW_OP_bra:
8429 return "DW_OP_bra";
8430 case DW_OP_eq:
8431 return "DW_OP_eq";
8432 case DW_OP_ge:
8433 return "DW_OP_ge";
8434 case DW_OP_gt:
8435 return "DW_OP_gt";
8436 case DW_OP_le:
8437 return "DW_OP_le";
8438 case DW_OP_lt:
8439 return "DW_OP_lt";
8440 case DW_OP_ne:
8441 return "DW_OP_ne";
8442 case DW_OP_skip:
8443 return "DW_OP_skip";
8444 case DW_OP_lit0:
8445 return "DW_OP_lit0";
8446 case DW_OP_lit1:
8447 return "DW_OP_lit1";
8448 case DW_OP_lit2:
8449 return "DW_OP_lit2";
8450 case DW_OP_lit3:
8451 return "DW_OP_lit3";
8452 case DW_OP_lit4:
8453 return "DW_OP_lit4";
8454 case DW_OP_lit5:
8455 return "DW_OP_lit5";
8456 case DW_OP_lit6:
8457 return "DW_OP_lit6";
8458 case DW_OP_lit7:
8459 return "DW_OP_lit7";
8460 case DW_OP_lit8:
8461 return "DW_OP_lit8";
8462 case DW_OP_lit9:
8463 return "DW_OP_lit9";
8464 case DW_OP_lit10:
8465 return "DW_OP_lit10";
8466 case DW_OP_lit11:
8467 return "DW_OP_lit11";
8468 case DW_OP_lit12:
8469 return "DW_OP_lit12";
8470 case DW_OP_lit13:
8471 return "DW_OP_lit13";
8472 case DW_OP_lit14:
8473 return "DW_OP_lit14";
8474 case DW_OP_lit15:
8475 return "DW_OP_lit15";
8476 case DW_OP_lit16:
8477 return "DW_OP_lit16";
8478 case DW_OP_lit17:
8479 return "DW_OP_lit17";
8480 case DW_OP_lit18:
8481 return "DW_OP_lit18";
8482 case DW_OP_lit19:
8483 return "DW_OP_lit19";
8484 case DW_OP_lit20:
8485 return "DW_OP_lit20";
8486 case DW_OP_lit21:
8487 return "DW_OP_lit21";
8488 case DW_OP_lit22:
8489 return "DW_OP_lit22";
8490 case DW_OP_lit23:
8491 return "DW_OP_lit23";
8492 case DW_OP_lit24:
8493 return "DW_OP_lit24";
8494 case DW_OP_lit25:
8495 return "DW_OP_lit25";
8496 case DW_OP_lit26:
8497 return "DW_OP_lit26";
8498 case DW_OP_lit27:
8499 return "DW_OP_lit27";
8500 case DW_OP_lit28:
8501 return "DW_OP_lit28";
8502 case DW_OP_lit29:
8503 return "DW_OP_lit29";
8504 case DW_OP_lit30:
8505 return "DW_OP_lit30";
8506 case DW_OP_lit31:
8507 return "DW_OP_lit31";
8508 case DW_OP_reg0:
8509 return "DW_OP_reg0";
8510 case DW_OP_reg1:
8511 return "DW_OP_reg1";
8512 case DW_OP_reg2:
8513 return "DW_OP_reg2";
8514 case DW_OP_reg3:
8515 return "DW_OP_reg3";
8516 case DW_OP_reg4:
8517 return "DW_OP_reg4";
8518 case DW_OP_reg5:
8519 return "DW_OP_reg5";
8520 case DW_OP_reg6:
8521 return "DW_OP_reg6";
8522 case DW_OP_reg7:
8523 return "DW_OP_reg7";
8524 case DW_OP_reg8:
8525 return "DW_OP_reg8";
8526 case DW_OP_reg9:
8527 return "DW_OP_reg9";
8528 case DW_OP_reg10:
8529 return "DW_OP_reg10";
8530 case DW_OP_reg11:
8531 return "DW_OP_reg11";
8532 case DW_OP_reg12:
8533 return "DW_OP_reg12";
8534 case DW_OP_reg13:
8535 return "DW_OP_reg13";
8536 case DW_OP_reg14:
8537 return "DW_OP_reg14";
8538 case DW_OP_reg15:
8539 return "DW_OP_reg15";
8540 case DW_OP_reg16:
8541 return "DW_OP_reg16";
8542 case DW_OP_reg17:
8543 return "DW_OP_reg17";
8544 case DW_OP_reg18:
8545 return "DW_OP_reg18";
8546 case DW_OP_reg19:
8547 return "DW_OP_reg19";
8548 case DW_OP_reg20:
8549 return "DW_OP_reg20";
8550 case DW_OP_reg21:
8551 return "DW_OP_reg21";
8552 case DW_OP_reg22:
8553 return "DW_OP_reg22";
8554 case DW_OP_reg23:
8555 return "DW_OP_reg23";
8556 case DW_OP_reg24:
8557 return "DW_OP_reg24";
8558 case DW_OP_reg25:
8559 return "DW_OP_reg25";
8560 case DW_OP_reg26:
8561 return "DW_OP_reg26";
8562 case DW_OP_reg27:
8563 return "DW_OP_reg27";
8564 case DW_OP_reg28:
8565 return "DW_OP_reg28";
8566 case DW_OP_reg29:
8567 return "DW_OP_reg29";
8568 case DW_OP_reg30:
8569 return "DW_OP_reg30";
8570 case DW_OP_reg31:
8571 return "DW_OP_reg31";
8572 case DW_OP_breg0:
8573 return "DW_OP_breg0";
8574 case DW_OP_breg1:
8575 return "DW_OP_breg1";
8576 case DW_OP_breg2:
8577 return "DW_OP_breg2";
8578 case DW_OP_breg3:
8579 return "DW_OP_breg3";
8580 case DW_OP_breg4:
8581 return "DW_OP_breg4";
8582 case DW_OP_breg5:
8583 return "DW_OP_breg5";
8584 case DW_OP_breg6:
8585 return "DW_OP_breg6";
8586 case DW_OP_breg7:
8587 return "DW_OP_breg7";
8588 case DW_OP_breg8:
8589 return "DW_OP_breg8";
8590 case DW_OP_breg9:
8591 return "DW_OP_breg9";
8592 case DW_OP_breg10:
8593 return "DW_OP_breg10";
8594 case DW_OP_breg11:
8595 return "DW_OP_breg11";
8596 case DW_OP_breg12:
8597 return "DW_OP_breg12";
8598 case DW_OP_breg13:
8599 return "DW_OP_breg13";
8600 case DW_OP_breg14:
8601 return "DW_OP_breg14";
8602 case DW_OP_breg15:
8603 return "DW_OP_breg15";
8604 case DW_OP_breg16:
8605 return "DW_OP_breg16";
8606 case DW_OP_breg17:
8607 return "DW_OP_breg17";
8608 case DW_OP_breg18:
8609 return "DW_OP_breg18";
8610 case DW_OP_breg19:
8611 return "DW_OP_breg19";
8612 case DW_OP_breg20:
8613 return "DW_OP_breg20";
8614 case DW_OP_breg21:
8615 return "DW_OP_breg21";
8616 case DW_OP_breg22:
8617 return "DW_OP_breg22";
8618 case DW_OP_breg23:
8619 return "DW_OP_breg23";
8620 case DW_OP_breg24:
8621 return "DW_OP_breg24";
8622 case DW_OP_breg25:
8623 return "DW_OP_breg25";
8624 case DW_OP_breg26:
8625 return "DW_OP_breg26";
8626 case DW_OP_breg27:
8627 return "DW_OP_breg27";
8628 case DW_OP_breg28:
8629 return "DW_OP_breg28";
8630 case DW_OP_breg29:
8631 return "DW_OP_breg29";
8632 case DW_OP_breg30:
8633 return "DW_OP_breg30";
8634 case DW_OP_breg31:
8635 return "DW_OP_breg31";
8636 case DW_OP_regx:
8637 return "DW_OP_regx";
8638 case DW_OP_fbreg:
8639 return "DW_OP_fbreg";
8640 case DW_OP_bregx:
8641 return "DW_OP_bregx";
8642 case DW_OP_piece:
8643 return "DW_OP_piece";
8644 case DW_OP_deref_size:
8645 return "DW_OP_deref_size";
8646 case DW_OP_xderef_size:
8647 return "DW_OP_xderef_size";
8648 case DW_OP_nop:
8649 return "DW_OP_nop";
8650 /* DWARF 3 extensions. */
8651 case DW_OP_push_object_address:
8652 return "DW_OP_push_object_address";
8653 case DW_OP_call2:
8654 return "DW_OP_call2";
8655 case DW_OP_call4:
8656 return "DW_OP_call4";
8657 case DW_OP_call_ref:
8658 return "DW_OP_call_ref";
8659 /* GNU extensions. */
8660 case DW_OP_form_tls_address:
8661 return "DW_OP_form_tls_address";
8662 case DW_OP_call_frame_cfa:
8663 return "DW_OP_call_frame_cfa";
8664 case DW_OP_bit_piece:
8665 return "DW_OP_bit_piece";
8666 case DW_OP_GNU_push_tls_address:
8667 return "DW_OP_GNU_push_tls_address";
8668 case DW_OP_GNU_uninit:
8669 return "DW_OP_GNU_uninit";
8670 /* HP extensions. */
8671 case DW_OP_HP_is_value:
8672 return "DW_OP_HP_is_value";
8673 case DW_OP_HP_fltconst4:
8674 return "DW_OP_HP_fltconst4";
8675 case DW_OP_HP_fltconst8:
8676 return "DW_OP_HP_fltconst8";
8677 case DW_OP_HP_mod_range:
8678 return "DW_OP_HP_mod_range";
8679 case DW_OP_HP_unmod_range:
8680 return "DW_OP_HP_unmod_range";
8681 case DW_OP_HP_tls:
8682 return "DW_OP_HP_tls";
8683 default:
8684 return "OP_<unknown>";
8685 }
8686 }
8687
8688 static char *
8689 dwarf_bool_name (unsigned mybool)
8690 {
8691 if (mybool)
8692 return "TRUE";
8693 else
8694 return "FALSE";
8695 }
8696
8697 /* Convert a DWARF type code into its string name. */
8698
8699 static char *
8700 dwarf_type_encoding_name (unsigned enc)
8701 {
8702 switch (enc)
8703 {
8704 case DW_ATE_void:
8705 return "DW_ATE_void";
8706 case DW_ATE_address:
8707 return "DW_ATE_address";
8708 case DW_ATE_boolean:
8709 return "DW_ATE_boolean";
8710 case DW_ATE_complex_float:
8711 return "DW_ATE_complex_float";
8712 case DW_ATE_float:
8713 return "DW_ATE_float";
8714 case DW_ATE_signed:
8715 return "DW_ATE_signed";
8716 case DW_ATE_signed_char:
8717 return "DW_ATE_signed_char";
8718 case DW_ATE_unsigned:
8719 return "DW_ATE_unsigned";
8720 case DW_ATE_unsigned_char:
8721 return "DW_ATE_unsigned_char";
8722 /* DWARF 3. */
8723 case DW_ATE_imaginary_float:
8724 return "DW_ATE_imaginary_float";
8725 case DW_ATE_packed_decimal:
8726 return "DW_ATE_packed_decimal";
8727 case DW_ATE_numeric_string:
8728 return "DW_ATE_numeric_string";
8729 case DW_ATE_edited:
8730 return "DW_ATE_edited";
8731 case DW_ATE_signed_fixed:
8732 return "DW_ATE_signed_fixed";
8733 case DW_ATE_unsigned_fixed:
8734 return "DW_ATE_unsigned_fixed";
8735 case DW_ATE_decimal_float:
8736 return "DW_ATE_decimal_float";
8737 /* HP extensions. */
8738 case DW_ATE_HP_float80:
8739 return "DW_ATE_HP_float80";
8740 case DW_ATE_HP_complex_float80:
8741 return "DW_ATE_HP_complex_float80";
8742 case DW_ATE_HP_float128:
8743 return "DW_ATE_HP_float128";
8744 case DW_ATE_HP_complex_float128:
8745 return "DW_ATE_HP_complex_float128";
8746 case DW_ATE_HP_floathpintel:
8747 return "DW_ATE_HP_floathpintel";
8748 case DW_ATE_HP_imaginary_float80:
8749 return "DW_ATE_HP_imaginary_float80";
8750 case DW_ATE_HP_imaginary_float128:
8751 return "DW_ATE_HP_imaginary_float128";
8752 default:
8753 return "DW_ATE_<unknown>";
8754 }
8755 }
8756
8757 /* Convert a DWARF call frame info operation to its string name. */
8758
8759 #if 0
8760 static char *
8761 dwarf_cfi_name (unsigned cfi_opc)
8762 {
8763 switch (cfi_opc)
8764 {
8765 case DW_CFA_advance_loc:
8766 return "DW_CFA_advance_loc";
8767 case DW_CFA_offset:
8768 return "DW_CFA_offset";
8769 case DW_CFA_restore:
8770 return "DW_CFA_restore";
8771 case DW_CFA_nop:
8772 return "DW_CFA_nop";
8773 case DW_CFA_set_loc:
8774 return "DW_CFA_set_loc";
8775 case DW_CFA_advance_loc1:
8776 return "DW_CFA_advance_loc1";
8777 case DW_CFA_advance_loc2:
8778 return "DW_CFA_advance_loc2";
8779 case DW_CFA_advance_loc4:
8780 return "DW_CFA_advance_loc4";
8781 case DW_CFA_offset_extended:
8782 return "DW_CFA_offset_extended";
8783 case DW_CFA_restore_extended:
8784 return "DW_CFA_restore_extended";
8785 case DW_CFA_undefined:
8786 return "DW_CFA_undefined";
8787 case DW_CFA_same_value:
8788 return "DW_CFA_same_value";
8789 case DW_CFA_register:
8790 return "DW_CFA_register";
8791 case DW_CFA_remember_state:
8792 return "DW_CFA_remember_state";
8793 case DW_CFA_restore_state:
8794 return "DW_CFA_restore_state";
8795 case DW_CFA_def_cfa:
8796 return "DW_CFA_def_cfa";
8797 case DW_CFA_def_cfa_register:
8798 return "DW_CFA_def_cfa_register";
8799 case DW_CFA_def_cfa_offset:
8800 return "DW_CFA_def_cfa_offset";
8801 /* DWARF 3. */
8802 case DW_CFA_def_cfa_expression:
8803 return "DW_CFA_def_cfa_expression";
8804 case DW_CFA_expression:
8805 return "DW_CFA_expression";
8806 case DW_CFA_offset_extended_sf:
8807 return "DW_CFA_offset_extended_sf";
8808 case DW_CFA_def_cfa_sf:
8809 return "DW_CFA_def_cfa_sf";
8810 case DW_CFA_def_cfa_offset_sf:
8811 return "DW_CFA_def_cfa_offset_sf";
8812 case DW_CFA_val_offset:
8813 return "DW_CFA_val_offset";
8814 case DW_CFA_val_offset_sf:
8815 return "DW_CFA_val_offset_sf";
8816 case DW_CFA_val_expression:
8817 return "DW_CFA_val_expression";
8818 /* SGI/MIPS specific. */
8819 case DW_CFA_MIPS_advance_loc8:
8820 return "DW_CFA_MIPS_advance_loc8";
8821 /* GNU extensions. */
8822 case DW_CFA_GNU_window_save:
8823 return "DW_CFA_GNU_window_save";
8824 case DW_CFA_GNU_args_size:
8825 return "DW_CFA_GNU_args_size";
8826 case DW_CFA_GNU_negative_offset_extended:
8827 return "DW_CFA_GNU_negative_offset_extended";
8828 default:
8829 return "DW_CFA_<unknown>";
8830 }
8831 }
8832 #endif
8833
8834 static void
8835 dump_die (struct die_info *die)
8836 {
8837 unsigned int i;
8838
8839 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8840 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8841 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8842 dwarf_bool_name (die->child != NULL));
8843
8844 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8845 for (i = 0; i < die->num_attrs; ++i)
8846 {
8847 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8848 dwarf_attr_name (die->attrs[i].name),
8849 dwarf_form_name (die->attrs[i].form));
8850 switch (die->attrs[i].form)
8851 {
8852 case DW_FORM_ref_addr:
8853 case DW_FORM_addr:
8854 fprintf_unfiltered (gdb_stderr, "address: ");
8855 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8856 break;
8857 case DW_FORM_block2:
8858 case DW_FORM_block4:
8859 case DW_FORM_block:
8860 case DW_FORM_block1:
8861 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8862 break;
8863 case DW_FORM_ref1:
8864 case DW_FORM_ref2:
8865 case DW_FORM_ref4:
8866 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8867 (long) (DW_ADDR (&die->attrs[i])));
8868 break;
8869 case DW_FORM_data1:
8870 case DW_FORM_data2:
8871 case DW_FORM_data4:
8872 case DW_FORM_data8:
8873 case DW_FORM_udata:
8874 case DW_FORM_sdata:
8875 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8876 break;
8877 case DW_FORM_string:
8878 case DW_FORM_strp:
8879 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8880 DW_STRING (&die->attrs[i])
8881 ? DW_STRING (&die->attrs[i]) : "");
8882 break;
8883 case DW_FORM_flag:
8884 if (DW_UNSND (&die->attrs[i]))
8885 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8886 else
8887 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8888 break;
8889 case DW_FORM_indirect:
8890 /* the reader will have reduced the indirect form to
8891 the "base form" so this form should not occur */
8892 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8893 break;
8894 default:
8895 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8896 die->attrs[i].form);
8897 }
8898 fprintf_unfiltered (gdb_stderr, "\n");
8899 }
8900 }
8901
8902 static void
8903 dump_die_list (struct die_info *die)
8904 {
8905 while (die)
8906 {
8907 dump_die (die);
8908 if (die->child != NULL)
8909 dump_die_list (die->child);
8910 if (die->sibling != NULL)
8911 dump_die_list (die->sibling);
8912 }
8913 }
8914
8915 static void
8916 store_in_ref_table (unsigned int offset, struct die_info *die,
8917 struct dwarf2_cu *cu)
8918 {
8919 int h;
8920 struct die_info *old;
8921
8922 h = (offset % REF_HASH_SIZE);
8923 old = cu->die_ref_table[h];
8924 die->next_ref = old;
8925 cu->die_ref_table[h] = die;
8926 }
8927
8928 static unsigned int
8929 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8930 {
8931 unsigned int result = 0;
8932
8933 switch (attr->form)
8934 {
8935 case DW_FORM_ref_addr:
8936 case DW_FORM_ref1:
8937 case DW_FORM_ref2:
8938 case DW_FORM_ref4:
8939 case DW_FORM_ref8:
8940 case DW_FORM_ref_udata:
8941 result = DW_ADDR (attr);
8942 break;
8943 default:
8944 complaint (&symfile_complaints,
8945 _("unsupported die ref attribute form: '%s'"),
8946 dwarf_form_name (attr->form));
8947 }
8948 return result;
8949 }
8950
8951 /* Return the constant value held by the given attribute. Return -1
8952 if the value held by the attribute is not constant. */
8953
8954 static int
8955 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8956 {
8957 if (attr->form == DW_FORM_sdata)
8958 return DW_SND (attr);
8959 else if (attr->form == DW_FORM_udata
8960 || attr->form == DW_FORM_data1
8961 || attr->form == DW_FORM_data2
8962 || attr->form == DW_FORM_data4
8963 || attr->form == DW_FORM_data8)
8964 return DW_UNSND (attr);
8965 else
8966 {
8967 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8968 dwarf_form_name (attr->form));
8969 return default_value;
8970 }
8971 }
8972
8973 static struct die_info *
8974 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8975 struct dwarf2_cu *cu)
8976 {
8977 struct die_info *die;
8978 unsigned int offset;
8979 int h;
8980 struct die_info temp_die;
8981 struct dwarf2_cu *target_cu;
8982
8983 offset = dwarf2_get_ref_die_offset (attr, cu);
8984
8985 if (DW_ADDR (attr) < cu->header.offset
8986 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8987 {
8988 struct dwarf2_per_cu_data *per_cu;
8989 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8990 cu->objfile);
8991 target_cu = per_cu->cu;
8992 }
8993 else
8994 target_cu = cu;
8995
8996 h = (offset % REF_HASH_SIZE);
8997 die = target_cu->die_ref_table[h];
8998 while (die)
8999 {
9000 if (die->offset == offset)
9001 return die;
9002 die = die->next_ref;
9003 }
9004
9005 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9006 "at 0x%lx [in module %s]"),
9007 (long) src_die->offset, (long) offset, cu->objfile->name);
9008
9009 return NULL;
9010 }
9011
9012 static struct type *
9013 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
9014 struct dwarf2_cu *cu)
9015 {
9016 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
9017 {
9018 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
9019 typeid, objfile->name);
9020 }
9021
9022 /* Look for this particular type in the fundamental type vector. If
9023 one is not found, create and install one appropriate for the
9024 current language and the current target machine. */
9025
9026 if (cu->ftypes[typeid] == NULL)
9027 {
9028 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
9029 }
9030
9031 return (cu->ftypes[typeid]);
9032 }
9033
9034 /* Decode simple location descriptions.
9035 Given a pointer to a dwarf block that defines a location, compute
9036 the location and return the value.
9037
9038 NOTE drow/2003-11-18: This function is called in two situations
9039 now: for the address of static or global variables (partial symbols
9040 only) and for offsets into structures which are expected to be
9041 (more or less) constant. The partial symbol case should go away,
9042 and only the constant case should remain. That will let this
9043 function complain more accurately. A few special modes are allowed
9044 without complaint for global variables (for instance, global
9045 register values and thread-local values).
9046
9047 A location description containing no operations indicates that the
9048 object is optimized out. The return value is 0 for that case.
9049 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9050 callers will only want a very basic result and this can become a
9051 complaint.
9052
9053 Note that stack[0] is unused except as a default error return.
9054 Note that stack overflow is not yet handled. */
9055
9056 static CORE_ADDR
9057 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
9058 {
9059 struct objfile *objfile = cu->objfile;
9060 struct comp_unit_head *cu_header = &cu->header;
9061 int i;
9062 int size = blk->size;
9063 gdb_byte *data = blk->data;
9064 CORE_ADDR stack[64];
9065 int stacki;
9066 unsigned int bytes_read, unsnd;
9067 gdb_byte op;
9068
9069 i = 0;
9070 stacki = 0;
9071 stack[stacki] = 0;
9072
9073 while (i < size)
9074 {
9075 op = data[i++];
9076 switch (op)
9077 {
9078 case DW_OP_lit0:
9079 case DW_OP_lit1:
9080 case DW_OP_lit2:
9081 case DW_OP_lit3:
9082 case DW_OP_lit4:
9083 case DW_OP_lit5:
9084 case DW_OP_lit6:
9085 case DW_OP_lit7:
9086 case DW_OP_lit8:
9087 case DW_OP_lit9:
9088 case DW_OP_lit10:
9089 case DW_OP_lit11:
9090 case DW_OP_lit12:
9091 case DW_OP_lit13:
9092 case DW_OP_lit14:
9093 case DW_OP_lit15:
9094 case DW_OP_lit16:
9095 case DW_OP_lit17:
9096 case DW_OP_lit18:
9097 case DW_OP_lit19:
9098 case DW_OP_lit20:
9099 case DW_OP_lit21:
9100 case DW_OP_lit22:
9101 case DW_OP_lit23:
9102 case DW_OP_lit24:
9103 case DW_OP_lit25:
9104 case DW_OP_lit26:
9105 case DW_OP_lit27:
9106 case DW_OP_lit28:
9107 case DW_OP_lit29:
9108 case DW_OP_lit30:
9109 case DW_OP_lit31:
9110 stack[++stacki] = op - DW_OP_lit0;
9111 break;
9112
9113 case DW_OP_reg0:
9114 case DW_OP_reg1:
9115 case DW_OP_reg2:
9116 case DW_OP_reg3:
9117 case DW_OP_reg4:
9118 case DW_OP_reg5:
9119 case DW_OP_reg6:
9120 case DW_OP_reg7:
9121 case DW_OP_reg8:
9122 case DW_OP_reg9:
9123 case DW_OP_reg10:
9124 case DW_OP_reg11:
9125 case DW_OP_reg12:
9126 case DW_OP_reg13:
9127 case DW_OP_reg14:
9128 case DW_OP_reg15:
9129 case DW_OP_reg16:
9130 case DW_OP_reg17:
9131 case DW_OP_reg18:
9132 case DW_OP_reg19:
9133 case DW_OP_reg20:
9134 case DW_OP_reg21:
9135 case DW_OP_reg22:
9136 case DW_OP_reg23:
9137 case DW_OP_reg24:
9138 case DW_OP_reg25:
9139 case DW_OP_reg26:
9140 case DW_OP_reg27:
9141 case DW_OP_reg28:
9142 case DW_OP_reg29:
9143 case DW_OP_reg30:
9144 case DW_OP_reg31:
9145 stack[++stacki] = op - DW_OP_reg0;
9146 if (i < size)
9147 dwarf2_complex_location_expr_complaint ();
9148 break;
9149
9150 case DW_OP_regx:
9151 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9152 i += bytes_read;
9153 stack[++stacki] = unsnd;
9154 if (i < size)
9155 dwarf2_complex_location_expr_complaint ();
9156 break;
9157
9158 case DW_OP_addr:
9159 stack[++stacki] = read_address (objfile->obfd, &data[i],
9160 cu, &bytes_read);
9161 i += bytes_read;
9162 break;
9163
9164 case DW_OP_const1u:
9165 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9166 i += 1;
9167 break;
9168
9169 case DW_OP_const1s:
9170 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9171 i += 1;
9172 break;
9173
9174 case DW_OP_const2u:
9175 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9176 i += 2;
9177 break;
9178
9179 case DW_OP_const2s:
9180 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9181 i += 2;
9182 break;
9183
9184 case DW_OP_const4u:
9185 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9186 i += 4;
9187 break;
9188
9189 case DW_OP_const4s:
9190 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9191 i += 4;
9192 break;
9193
9194 case DW_OP_constu:
9195 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
9196 &bytes_read);
9197 i += bytes_read;
9198 break;
9199
9200 case DW_OP_consts:
9201 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9202 i += bytes_read;
9203 break;
9204
9205 case DW_OP_dup:
9206 stack[stacki + 1] = stack[stacki];
9207 stacki++;
9208 break;
9209
9210 case DW_OP_plus:
9211 stack[stacki - 1] += stack[stacki];
9212 stacki--;
9213 break;
9214
9215 case DW_OP_plus_uconst:
9216 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9217 i += bytes_read;
9218 break;
9219
9220 case DW_OP_minus:
9221 stack[stacki - 1] -= stack[stacki];
9222 stacki--;
9223 break;
9224
9225 case DW_OP_deref:
9226 /* If we're not the last op, then we definitely can't encode
9227 this using GDB's address_class enum. This is valid for partial
9228 global symbols, although the variable's address will be bogus
9229 in the psymtab. */
9230 if (i < size)
9231 dwarf2_complex_location_expr_complaint ();
9232 break;
9233
9234 case DW_OP_GNU_push_tls_address:
9235 /* The top of the stack has the offset from the beginning
9236 of the thread control block at which the variable is located. */
9237 /* Nothing should follow this operator, so the top of stack would
9238 be returned. */
9239 /* This is valid for partial global symbols, but the variable's
9240 address will be bogus in the psymtab. */
9241 if (i < size)
9242 dwarf2_complex_location_expr_complaint ();
9243 break;
9244
9245 case DW_OP_GNU_uninit:
9246 break;
9247
9248 default:
9249 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
9250 dwarf_stack_op_name (op));
9251 return (stack[stacki]);
9252 }
9253 }
9254 return (stack[stacki]);
9255 }
9256
9257 /* memory allocation interface */
9258
9259 static struct dwarf_block *
9260 dwarf_alloc_block (struct dwarf2_cu *cu)
9261 {
9262 struct dwarf_block *blk;
9263
9264 blk = (struct dwarf_block *)
9265 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
9266 return (blk);
9267 }
9268
9269 static struct abbrev_info *
9270 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
9271 {
9272 struct abbrev_info *abbrev;
9273
9274 abbrev = (struct abbrev_info *)
9275 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
9276 memset (abbrev, 0, sizeof (struct abbrev_info));
9277 return (abbrev);
9278 }
9279
9280 static struct die_info *
9281 dwarf_alloc_die (void)
9282 {
9283 struct die_info *die;
9284
9285 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9286 memset (die, 0, sizeof (struct die_info));
9287 return (die);
9288 }
9289
9290 \f
9291 /* Macro support. */
9292
9293
9294 /* Return the full name of file number I in *LH's file name table.
9295 Use COMP_DIR as the name of the current directory of the
9296 compilation. The result is allocated using xmalloc; the caller is
9297 responsible for freeing it. */
9298 static char *
9299 file_full_name (int file, struct line_header *lh, const char *comp_dir)
9300 {
9301 /* Is the file number a valid index into the line header's file name
9302 table? Remember that file numbers start with one, not zero. */
9303 if (1 <= file && file <= lh->num_file_names)
9304 {
9305 struct file_entry *fe = &lh->file_names[file - 1];
9306
9307 if (IS_ABSOLUTE_PATH (fe->name))
9308 return xstrdup (fe->name);
9309 else
9310 {
9311 const char *dir;
9312 int dir_len;
9313 char *full_name;
9314
9315 if (fe->dir_index)
9316 dir = lh->include_dirs[fe->dir_index - 1];
9317 else
9318 dir = comp_dir;
9319
9320 if (dir)
9321 {
9322 dir_len = strlen (dir);
9323 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9324 strcpy (full_name, dir);
9325 full_name[dir_len] = '/';
9326 strcpy (full_name + dir_len + 1, fe->name);
9327 return full_name;
9328 }
9329 else
9330 return xstrdup (fe->name);
9331 }
9332 }
9333 else
9334 {
9335 /* The compiler produced a bogus file number. We can at least
9336 record the macro definitions made in the file, even if we
9337 won't be able to find the file by name. */
9338 char fake_name[80];
9339 sprintf (fake_name, "<bad macro file number %d>", file);
9340
9341 complaint (&symfile_complaints,
9342 _("bad file number in macro information (%d)"),
9343 file);
9344
9345 return xstrdup (fake_name);
9346 }
9347 }
9348
9349
9350 static struct macro_source_file *
9351 macro_start_file (int file, int line,
9352 struct macro_source_file *current_file,
9353 const char *comp_dir,
9354 struct line_header *lh, struct objfile *objfile)
9355 {
9356 /* The full name of this source file. */
9357 char *full_name = file_full_name (file, lh, comp_dir);
9358
9359 /* We don't create a macro table for this compilation unit
9360 at all until we actually get a filename. */
9361 if (! pending_macros)
9362 pending_macros = new_macro_table (&objfile->objfile_obstack,
9363 objfile->macro_cache);
9364
9365 if (! current_file)
9366 /* If we have no current file, then this must be the start_file
9367 directive for the compilation unit's main source file. */
9368 current_file = macro_set_main (pending_macros, full_name);
9369 else
9370 current_file = macro_include (current_file, line, full_name);
9371
9372 xfree (full_name);
9373
9374 return current_file;
9375 }
9376
9377
9378 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9379 followed by a null byte. */
9380 static char *
9381 copy_string (const char *buf, int len)
9382 {
9383 char *s = xmalloc (len + 1);
9384 memcpy (s, buf, len);
9385 s[len] = '\0';
9386
9387 return s;
9388 }
9389
9390
9391 static const char *
9392 consume_improper_spaces (const char *p, const char *body)
9393 {
9394 if (*p == ' ')
9395 {
9396 complaint (&symfile_complaints,
9397 _("macro definition contains spaces in formal argument list:\n`%s'"),
9398 body);
9399
9400 while (*p == ' ')
9401 p++;
9402 }
9403
9404 return p;
9405 }
9406
9407
9408 static void
9409 parse_macro_definition (struct macro_source_file *file, int line,
9410 const char *body)
9411 {
9412 const char *p;
9413
9414 /* The body string takes one of two forms. For object-like macro
9415 definitions, it should be:
9416
9417 <macro name> " " <definition>
9418
9419 For function-like macro definitions, it should be:
9420
9421 <macro name> "() " <definition>
9422 or
9423 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9424
9425 Spaces may appear only where explicitly indicated, and in the
9426 <definition>.
9427
9428 The Dwarf 2 spec says that an object-like macro's name is always
9429 followed by a space, but versions of GCC around March 2002 omit
9430 the space when the macro's definition is the empty string.
9431
9432 The Dwarf 2 spec says that there should be no spaces between the
9433 formal arguments in a function-like macro's formal argument list,
9434 but versions of GCC around March 2002 include spaces after the
9435 commas. */
9436
9437
9438 /* Find the extent of the macro name. The macro name is terminated
9439 by either a space or null character (for an object-like macro) or
9440 an opening paren (for a function-like macro). */
9441 for (p = body; *p; p++)
9442 if (*p == ' ' || *p == '(')
9443 break;
9444
9445 if (*p == ' ' || *p == '\0')
9446 {
9447 /* It's an object-like macro. */
9448 int name_len = p - body;
9449 char *name = copy_string (body, name_len);
9450 const char *replacement;
9451
9452 if (*p == ' ')
9453 replacement = body + name_len + 1;
9454 else
9455 {
9456 dwarf2_macro_malformed_definition_complaint (body);
9457 replacement = body + name_len;
9458 }
9459
9460 macro_define_object (file, line, name, replacement);
9461
9462 xfree (name);
9463 }
9464 else if (*p == '(')
9465 {
9466 /* It's a function-like macro. */
9467 char *name = copy_string (body, p - body);
9468 int argc = 0;
9469 int argv_size = 1;
9470 char **argv = xmalloc (argv_size * sizeof (*argv));
9471
9472 p++;
9473
9474 p = consume_improper_spaces (p, body);
9475
9476 /* Parse the formal argument list. */
9477 while (*p && *p != ')')
9478 {
9479 /* Find the extent of the current argument name. */
9480 const char *arg_start = p;
9481
9482 while (*p && *p != ',' && *p != ')' && *p != ' ')
9483 p++;
9484
9485 if (! *p || p == arg_start)
9486 dwarf2_macro_malformed_definition_complaint (body);
9487 else
9488 {
9489 /* Make sure argv has room for the new argument. */
9490 if (argc >= argv_size)
9491 {
9492 argv_size *= 2;
9493 argv = xrealloc (argv, argv_size * sizeof (*argv));
9494 }
9495
9496 argv[argc++] = copy_string (arg_start, p - arg_start);
9497 }
9498
9499 p = consume_improper_spaces (p, body);
9500
9501 /* Consume the comma, if present. */
9502 if (*p == ',')
9503 {
9504 p++;
9505
9506 p = consume_improper_spaces (p, body);
9507 }
9508 }
9509
9510 if (*p == ')')
9511 {
9512 p++;
9513
9514 if (*p == ' ')
9515 /* Perfectly formed definition, no complaints. */
9516 macro_define_function (file, line, name,
9517 argc, (const char **) argv,
9518 p + 1);
9519 else if (*p == '\0')
9520 {
9521 /* Complain, but do define it. */
9522 dwarf2_macro_malformed_definition_complaint (body);
9523 macro_define_function (file, line, name,
9524 argc, (const char **) argv,
9525 p);
9526 }
9527 else
9528 /* Just complain. */
9529 dwarf2_macro_malformed_definition_complaint (body);
9530 }
9531 else
9532 /* Just complain. */
9533 dwarf2_macro_malformed_definition_complaint (body);
9534
9535 xfree (name);
9536 {
9537 int i;
9538
9539 for (i = 0; i < argc; i++)
9540 xfree (argv[i]);
9541 }
9542 xfree (argv);
9543 }
9544 else
9545 dwarf2_macro_malformed_definition_complaint (body);
9546 }
9547
9548
9549 static void
9550 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9551 char *comp_dir, bfd *abfd,
9552 struct dwarf2_cu *cu)
9553 {
9554 gdb_byte *mac_ptr, *mac_end;
9555 struct macro_source_file *current_file = 0;
9556
9557 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9558 {
9559 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9560 return;
9561 }
9562
9563 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9564 mac_end = dwarf2_per_objfile->macinfo_buffer
9565 + dwarf2_per_objfile->macinfo_size;
9566
9567 for (;;)
9568 {
9569 enum dwarf_macinfo_record_type macinfo_type;
9570
9571 /* Do we at least have room for a macinfo type byte? */
9572 if (mac_ptr >= mac_end)
9573 {
9574 dwarf2_macros_too_long_complaint ();
9575 return;
9576 }
9577
9578 macinfo_type = read_1_byte (abfd, mac_ptr);
9579 mac_ptr++;
9580
9581 switch (macinfo_type)
9582 {
9583 /* A zero macinfo type indicates the end of the macro
9584 information. */
9585 case 0:
9586 return;
9587
9588 case DW_MACINFO_define:
9589 case DW_MACINFO_undef:
9590 {
9591 unsigned int bytes_read;
9592 int line;
9593 char *body;
9594
9595 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9596 mac_ptr += bytes_read;
9597 body = read_string (abfd, mac_ptr, &bytes_read);
9598 mac_ptr += bytes_read;
9599
9600 if (! current_file)
9601 complaint (&symfile_complaints,
9602 _("debug info gives macro %s outside of any file: %s"),
9603 macinfo_type ==
9604 DW_MACINFO_define ? "definition" : macinfo_type ==
9605 DW_MACINFO_undef ? "undefinition" :
9606 "something-or-other", body);
9607 else
9608 {
9609 if (macinfo_type == DW_MACINFO_define)
9610 parse_macro_definition (current_file, line, body);
9611 else if (macinfo_type == DW_MACINFO_undef)
9612 macro_undef (current_file, line, body);
9613 }
9614 }
9615 break;
9616
9617 case DW_MACINFO_start_file:
9618 {
9619 unsigned int bytes_read;
9620 int line, file;
9621
9622 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9623 mac_ptr += bytes_read;
9624 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9625 mac_ptr += bytes_read;
9626
9627 current_file = macro_start_file (file, line,
9628 current_file, comp_dir,
9629 lh, cu->objfile);
9630 }
9631 break;
9632
9633 case DW_MACINFO_end_file:
9634 if (! current_file)
9635 complaint (&symfile_complaints,
9636 _("macro debug info has an unmatched `close_file' directive"));
9637 else
9638 {
9639 current_file = current_file->included_by;
9640 if (! current_file)
9641 {
9642 enum dwarf_macinfo_record_type next_type;
9643
9644 /* GCC circa March 2002 doesn't produce the zero
9645 type byte marking the end of the compilation
9646 unit. Complain if it's not there, but exit no
9647 matter what. */
9648
9649 /* Do we at least have room for a macinfo type byte? */
9650 if (mac_ptr >= mac_end)
9651 {
9652 dwarf2_macros_too_long_complaint ();
9653 return;
9654 }
9655
9656 /* We don't increment mac_ptr here, so this is just
9657 a look-ahead. */
9658 next_type = read_1_byte (abfd, mac_ptr);
9659 if (next_type != 0)
9660 complaint (&symfile_complaints,
9661 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9662
9663 return;
9664 }
9665 }
9666 break;
9667
9668 case DW_MACINFO_vendor_ext:
9669 {
9670 unsigned int bytes_read;
9671 int constant;
9672 char *string;
9673
9674 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9675 mac_ptr += bytes_read;
9676 string = read_string (abfd, mac_ptr, &bytes_read);
9677 mac_ptr += bytes_read;
9678
9679 /* We don't recognize any vendor extensions. */
9680 }
9681 break;
9682 }
9683 }
9684 }
9685
9686 /* Check if the attribute's form is a DW_FORM_block*
9687 if so return true else false. */
9688 static int
9689 attr_form_is_block (struct attribute *attr)
9690 {
9691 return (attr == NULL ? 0 :
9692 attr->form == DW_FORM_block1
9693 || attr->form == DW_FORM_block2
9694 || attr->form == DW_FORM_block4
9695 || attr->form == DW_FORM_block);
9696 }
9697
9698 static void
9699 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9700 struct dwarf2_cu *cu)
9701 {
9702 struct objfile *objfile = cu->objfile;
9703
9704 /* Save the master objfile, so that we can report and look up the
9705 correct file containing this variable. */
9706 if (objfile->separate_debug_objfile_backlink)
9707 objfile = objfile->separate_debug_objfile_backlink;
9708
9709 if ((attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9710 /* ".debug_loc" may not exist at all, or the offset may be outside
9711 the section. If so, fall through to the complaint in the
9712 other branch. */
9713 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
9714 {
9715 struct dwarf2_loclist_baton *baton;
9716
9717 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9718 sizeof (struct dwarf2_loclist_baton));
9719 baton->objfile = objfile;
9720
9721 /* We don't know how long the location list is, but make sure we
9722 don't run off the edge of the section. */
9723 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9724 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9725 baton->base_address = cu->header.base_address;
9726 if (cu->header.base_known == 0)
9727 complaint (&symfile_complaints,
9728 _("Location list used without specifying the CU base address."));
9729
9730 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9731 SYMBOL_LOCATION_BATON (sym) = baton;
9732 }
9733 else
9734 {
9735 struct dwarf2_locexpr_baton *baton;
9736
9737 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9738 sizeof (struct dwarf2_locexpr_baton));
9739 baton->objfile = objfile;
9740
9741 if (attr_form_is_block (attr))
9742 {
9743 /* Note that we're just copying the block's data pointer
9744 here, not the actual data. We're still pointing into the
9745 info_buffer for SYM's objfile; right now we never release
9746 that buffer, but when we do clean up properly this may
9747 need to change. */
9748 baton->size = DW_BLOCK (attr)->size;
9749 baton->data = DW_BLOCK (attr)->data;
9750 }
9751 else
9752 {
9753 dwarf2_invalid_attrib_class_complaint ("location description",
9754 SYMBOL_NATURAL_NAME (sym));
9755 baton->size = 0;
9756 baton->data = NULL;
9757 }
9758
9759 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9760 SYMBOL_LOCATION_BATON (sym) = baton;
9761 }
9762 }
9763
9764 /* Locate the compilation unit from CU's objfile which contains the
9765 DIE at OFFSET. Raises an error on failure. */
9766
9767 static struct dwarf2_per_cu_data *
9768 dwarf2_find_containing_comp_unit (unsigned long offset,
9769 struct objfile *objfile)
9770 {
9771 struct dwarf2_per_cu_data *this_cu;
9772 int low, high;
9773
9774 low = 0;
9775 high = dwarf2_per_objfile->n_comp_units - 1;
9776 while (high > low)
9777 {
9778 int mid = low + (high - low) / 2;
9779 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9780 high = mid;
9781 else
9782 low = mid + 1;
9783 }
9784 gdb_assert (low == high);
9785 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9786 {
9787 if (low == 0)
9788 error (_("Dwarf Error: could not find partial DIE containing "
9789 "offset 0x%lx [in module %s]"),
9790 (long) offset, bfd_get_filename (objfile->obfd));
9791
9792 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9793 return dwarf2_per_objfile->all_comp_units[low-1];
9794 }
9795 else
9796 {
9797 this_cu = dwarf2_per_objfile->all_comp_units[low];
9798 if (low == dwarf2_per_objfile->n_comp_units - 1
9799 && offset >= this_cu->offset + this_cu->length)
9800 error (_("invalid dwarf2 offset %ld"), offset);
9801 gdb_assert (offset < this_cu->offset + this_cu->length);
9802 return this_cu;
9803 }
9804 }
9805
9806 /* Locate the compilation unit from OBJFILE which is located at exactly
9807 OFFSET. Raises an error on failure. */
9808
9809 static struct dwarf2_per_cu_data *
9810 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9811 {
9812 struct dwarf2_per_cu_data *this_cu;
9813 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9814 if (this_cu->offset != offset)
9815 error (_("no compilation unit with offset %ld."), offset);
9816 return this_cu;
9817 }
9818
9819 /* Release one cached compilation unit, CU. We unlink it from the tree
9820 of compilation units, but we don't remove it from the read_in_chain;
9821 the caller is responsible for that. */
9822
9823 static void
9824 free_one_comp_unit (void *data)
9825 {
9826 struct dwarf2_cu *cu = data;
9827
9828 if (cu->per_cu != NULL)
9829 cu->per_cu->cu = NULL;
9830 cu->per_cu = NULL;
9831
9832 obstack_free (&cu->comp_unit_obstack, NULL);
9833 if (cu->dies)
9834 free_die_list (cu->dies);
9835
9836 xfree (cu);
9837 }
9838
9839 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9840 when we're finished with it. We can't free the pointer itself, but be
9841 sure to unlink it from the cache. Also release any associated storage
9842 and perform cache maintenance.
9843
9844 Only used during partial symbol parsing. */
9845
9846 static void
9847 free_stack_comp_unit (void *data)
9848 {
9849 struct dwarf2_cu *cu = data;
9850
9851 obstack_free (&cu->comp_unit_obstack, NULL);
9852 cu->partial_dies = NULL;
9853
9854 if (cu->per_cu != NULL)
9855 {
9856 /* This compilation unit is on the stack in our caller, so we
9857 should not xfree it. Just unlink it. */
9858 cu->per_cu->cu = NULL;
9859 cu->per_cu = NULL;
9860
9861 /* If we had a per-cu pointer, then we may have other compilation
9862 units loaded, so age them now. */
9863 age_cached_comp_units ();
9864 }
9865 }
9866
9867 /* Free all cached compilation units. */
9868
9869 static void
9870 free_cached_comp_units (void *data)
9871 {
9872 struct dwarf2_per_cu_data *per_cu, **last_chain;
9873
9874 per_cu = dwarf2_per_objfile->read_in_chain;
9875 last_chain = &dwarf2_per_objfile->read_in_chain;
9876 while (per_cu != NULL)
9877 {
9878 struct dwarf2_per_cu_data *next_cu;
9879
9880 next_cu = per_cu->cu->read_in_chain;
9881
9882 free_one_comp_unit (per_cu->cu);
9883 *last_chain = next_cu;
9884
9885 per_cu = next_cu;
9886 }
9887 }
9888
9889 /* Increase the age counter on each cached compilation unit, and free
9890 any that are too old. */
9891
9892 static void
9893 age_cached_comp_units (void)
9894 {
9895 struct dwarf2_per_cu_data *per_cu, **last_chain;
9896
9897 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9898 per_cu = dwarf2_per_objfile->read_in_chain;
9899 while (per_cu != NULL)
9900 {
9901 per_cu->cu->last_used ++;
9902 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9903 dwarf2_mark (per_cu->cu);
9904 per_cu = per_cu->cu->read_in_chain;
9905 }
9906
9907 per_cu = dwarf2_per_objfile->read_in_chain;
9908 last_chain = &dwarf2_per_objfile->read_in_chain;
9909 while (per_cu != NULL)
9910 {
9911 struct dwarf2_per_cu_data *next_cu;
9912
9913 next_cu = per_cu->cu->read_in_chain;
9914
9915 if (!per_cu->cu->mark)
9916 {
9917 free_one_comp_unit (per_cu->cu);
9918 *last_chain = next_cu;
9919 }
9920 else
9921 last_chain = &per_cu->cu->read_in_chain;
9922
9923 per_cu = next_cu;
9924 }
9925 }
9926
9927 /* Remove a single compilation unit from the cache. */
9928
9929 static void
9930 free_one_cached_comp_unit (void *target_cu)
9931 {
9932 struct dwarf2_per_cu_data *per_cu, **last_chain;
9933
9934 per_cu = dwarf2_per_objfile->read_in_chain;
9935 last_chain = &dwarf2_per_objfile->read_in_chain;
9936 while (per_cu != NULL)
9937 {
9938 struct dwarf2_per_cu_data *next_cu;
9939
9940 next_cu = per_cu->cu->read_in_chain;
9941
9942 if (per_cu->cu == target_cu)
9943 {
9944 free_one_comp_unit (per_cu->cu);
9945 *last_chain = next_cu;
9946 break;
9947 }
9948 else
9949 last_chain = &per_cu->cu->read_in_chain;
9950
9951 per_cu = next_cu;
9952 }
9953 }
9954
9955 /* A pair of DIE offset and GDB type pointer. We store these
9956 in a hash table separate from the DIEs, and preserve them
9957 when the DIEs are flushed out of cache. */
9958
9959 struct dwarf2_offset_and_type
9960 {
9961 unsigned int offset;
9962 struct type *type;
9963 };
9964
9965 /* Hash function for a dwarf2_offset_and_type. */
9966
9967 static hashval_t
9968 offset_and_type_hash (const void *item)
9969 {
9970 const struct dwarf2_offset_and_type *ofs = item;
9971 return ofs->offset;
9972 }
9973
9974 /* Equality function for a dwarf2_offset_and_type. */
9975
9976 static int
9977 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9978 {
9979 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9980 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9981 return ofs_lhs->offset == ofs_rhs->offset;
9982 }
9983
9984 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9985 table if necessary. */
9986
9987 static void
9988 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9989 {
9990 struct dwarf2_offset_and_type **slot, ofs;
9991
9992 die->type = type;
9993
9994 if (cu->per_cu == NULL)
9995 return;
9996
9997 if (cu->per_cu->type_hash == NULL)
9998 cu->per_cu->type_hash
9999 = htab_create_alloc_ex (cu->header.length / 24,
10000 offset_and_type_hash,
10001 offset_and_type_eq,
10002 NULL,
10003 &cu->objfile->objfile_obstack,
10004 hashtab_obstack_allocate,
10005 dummy_obstack_deallocate);
10006
10007 ofs.offset = die->offset;
10008 ofs.type = type;
10009 slot = (struct dwarf2_offset_and_type **)
10010 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10011 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10012 **slot = ofs;
10013 }
10014
10015 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10016 have a saved type. */
10017
10018 static struct type *
10019 get_die_type (struct die_info *die, htab_t type_hash)
10020 {
10021 struct dwarf2_offset_and_type *slot, ofs;
10022
10023 ofs.offset = die->offset;
10024 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10025 if (slot)
10026 return slot->type;
10027 else
10028 return NULL;
10029 }
10030
10031 /* Restore the types of the DIE tree starting at START_DIE from the hash
10032 table saved in CU. */
10033
10034 static void
10035 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10036 {
10037 struct die_info *die;
10038
10039 if (cu->per_cu->type_hash == NULL)
10040 return;
10041
10042 for (die = start_die; die != NULL; die = die->sibling)
10043 {
10044 die->type = get_die_type (die, cu->per_cu->type_hash);
10045 if (die->child != NULL)
10046 reset_die_and_siblings_types (die->child, cu);
10047 }
10048 }
10049
10050 /* Set the mark field in CU and in every other compilation unit in the
10051 cache that we must keep because we are keeping CU. */
10052
10053 /* Add a dependence relationship from CU to REF_PER_CU. */
10054
10055 static void
10056 dwarf2_add_dependence (struct dwarf2_cu *cu,
10057 struct dwarf2_per_cu_data *ref_per_cu)
10058 {
10059 void **slot;
10060
10061 if (cu->dependencies == NULL)
10062 cu->dependencies
10063 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10064 NULL, &cu->comp_unit_obstack,
10065 hashtab_obstack_allocate,
10066 dummy_obstack_deallocate);
10067
10068 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10069 if (*slot == NULL)
10070 *slot = ref_per_cu;
10071 }
10072
10073 /* Set the mark field in CU and in every other compilation unit in the
10074 cache that we must keep because we are keeping CU. */
10075
10076 static int
10077 dwarf2_mark_helper (void **slot, void *data)
10078 {
10079 struct dwarf2_per_cu_data *per_cu;
10080
10081 per_cu = (struct dwarf2_per_cu_data *) *slot;
10082 if (per_cu->cu->mark)
10083 return 1;
10084 per_cu->cu->mark = 1;
10085
10086 if (per_cu->cu->dependencies != NULL)
10087 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10088
10089 return 1;
10090 }
10091
10092 static void
10093 dwarf2_mark (struct dwarf2_cu *cu)
10094 {
10095 if (cu->mark)
10096 return;
10097 cu->mark = 1;
10098 if (cu->dependencies != NULL)
10099 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
10100 }
10101
10102 static void
10103 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10104 {
10105 while (per_cu)
10106 {
10107 per_cu->cu->mark = 0;
10108 per_cu = per_cu->cu->read_in_chain;
10109 }
10110 }
10111
10112 /* Trivial hash function for partial_die_info: the hash value of a DIE
10113 is its offset in .debug_info for this objfile. */
10114
10115 static hashval_t
10116 partial_die_hash (const void *item)
10117 {
10118 const struct partial_die_info *part_die = item;
10119 return part_die->offset;
10120 }
10121
10122 /* Trivial comparison function for partial_die_info structures: two DIEs
10123 are equal if they have the same offset. */
10124
10125 static int
10126 partial_die_eq (const void *item_lhs, const void *item_rhs)
10127 {
10128 const struct partial_die_info *part_die_lhs = item_lhs;
10129 const struct partial_die_info *part_die_rhs = item_rhs;
10130 return part_die_lhs->offset == part_die_rhs->offset;
10131 }
10132
10133 static struct cmd_list_element *set_dwarf2_cmdlist;
10134 static struct cmd_list_element *show_dwarf2_cmdlist;
10135
10136 static void
10137 set_dwarf2_cmd (char *args, int from_tty)
10138 {
10139 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10140 }
10141
10142 static void
10143 show_dwarf2_cmd (char *args, int from_tty)
10144 {
10145 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10146 }
10147
10148 void _initialize_dwarf2_read (void);
10149
10150 void
10151 _initialize_dwarf2_read (void)
10152 {
10153 dwarf2_objfile_data_key = register_objfile_data ();
10154
10155 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10156 Set DWARF 2 specific variables.\n\
10157 Configure DWARF 2 variables such as the cache size"),
10158 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10159 0/*allow-unknown*/, &maintenance_set_cmdlist);
10160
10161 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10162 Show DWARF 2 specific variables\n\
10163 Show DWARF 2 variables such as the cache size"),
10164 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10165 0/*allow-unknown*/, &maintenance_show_cmdlist);
10166
10167 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
10168 &dwarf2_max_cache_age, _("\
10169 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10170 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10171 A higher limit means that cached compilation units will be stored\n\
10172 in memory longer, and more total memory will be used. Zero disables\n\
10173 caching, which can slow down startup."),
10174 NULL,
10175 show_dwarf2_max_cache_age,
10176 &set_dwarf2_cmdlist,
10177 &show_dwarf2_cmdlist);
10178 }