]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
* dwarf2read.c (read_str_index): Rename local dwo_name to objf_name.
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "elf-bfd.h"
34 #include "symtab.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "dwarf2.h"
38 #include "buildsym.h"
39 #include "demangle.h"
40 #include "gdb-demangle.h"
41 #include "expression.h"
42 #include "filenames.h" /* for DOSish file names */
43 #include "macrotab.h"
44 #include "language.h"
45 #include "complaints.h"
46 #include "bcache.h"
47 #include "dwarf2expr.h"
48 #include "dwarf2loc.h"
49 #include "cp-support.h"
50 #include "hashtab.h"
51 #include "command.h"
52 #include "gdbcmd.h"
53 #include "block.h"
54 #include "addrmap.h"
55 #include "typeprint.h"
56 #include "jv-lang.h"
57 #include "psympriv.h"
58 #include "exceptions.h"
59 #include <sys/stat.h>
60 #include "completer.h"
61 #include "vec.h"
62 #include "c-lang.h"
63 #include "go-lang.h"
64 #include "valprint.h"
65 #include "gdbcore.h" /* for gnutarget */
66 #include "gdb/gdb-index.h"
67 #include <ctype.h>
68 #include "gdb_bfd.h"
69 #include "f-lang.h"
70 #include "source.h"
71 #include "filestuff.h"
72 #include "build-id.h"
73
74 #include <fcntl.h>
75 #include <string.h>
76 #include "gdb_assert.h"
77 #include <sys/types.h>
78
79 typedef struct symbol *symbolp;
80 DEF_VEC_P (symbolp);
81
82 /* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
85 static unsigned int dwarf2_read_debug = 0;
86
87 /* When non-zero, dump DIEs after they are read in. */
88 static unsigned int dwarf2_die_debug = 0;
89
90 /* When non-zero, cross-check physname against demangler. */
91 static int check_physname = 0;
92
93 /* When non-zero, do not reject deprecated .gdb_index sections. */
94 static int use_deprecated_index_sections = 0;
95
96 static const struct objfile_data *dwarf2_objfile_data_key;
97
98 /* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100 static int dwarf2_locexpr_index;
101 static int dwarf2_loclist_index;
102 static int dwarf2_locexpr_block_index;
103 static int dwarf2_loclist_block_index;
104
105 /* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
121 struct dwarf2_section_info
122 {
123 union
124 {
125 /* If this is a real section, the bfd section. */
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
128 section. */
129 struct dwarf2_section_info *containing_section;
130 } s;
131 /* Pointer to section data, only valid if readin. */
132 const gdb_byte *buffer;
133 /* The size of the section, real or virtual. */
134 bfd_size_type size;
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
138 /* True if we have tried to read this section. */
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
143 };
144
145 typedef struct dwarf2_section_info dwarf2_section_info_def;
146 DEF_VEC_O (dwarf2_section_info_def);
147
148 /* All offsets in the index are of this type. It must be
149 architecture-independent. */
150 typedef uint32_t offset_type;
151
152 DEF_VEC_I (offset_type);
153
154 /* Ensure only legit values are used. */
155 #define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161 /* Ensure only legit values are used. */
162 #define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169 /* Ensure we don't use more than the alloted nuber of bits for the CU. */
170 #define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
176 /* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178 struct mapped_index
179 {
180 /* Index data format version. */
181 int version;
182
183 /* The total length of the buffer. */
184 off_t total_size;
185
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
188
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
191
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
194
195 /* Size in slots, each slot is 2 offset_types. */
196 offset_type symbol_table_slots;
197
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200 };
201
202 typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203 DEF_VEC_P (dwarf2_per_cu_ptr);
204
205 /* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
208 struct dwarf2_per_objfile
209 {
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
215 struct dwarf2_section_info macro;
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
218 struct dwarf2_section_info addr;
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
221 struct dwarf2_section_info gdb_index;
222
223 VEC (dwarf2_section_info_def) *types;
224
225 /* Back link. */
226 struct objfile *objfile;
227
228 /* Table of all the compilation units. This is used to locate
229 the target compilation unit of a particular reference. */
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
235 /* The number of .debug_types-related CUs. */
236 int n_type_units;
237
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
240 struct signatured_type **all_type_units;
241
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
252
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
288
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
291 unsigned char using_index;
292
293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
294 struct mapped_index *index_table;
295
296 /* When using index_table, this keeps track of all quick_file_names entries.
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
303 htab_t quick_file_names_table;
304
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
308
309 /* Table mapping type DIEs to their struct type *.
310 This is NULL if not allocated yet.
311 The mapping is done via (CU/TU + DIE offset) -> type. */
312 htab_t die_type_hash;
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
316 };
317
318 static struct dwarf2_per_objfile *dwarf2_per_objfile;
319
320 /* Default names of the debugging sections. */
321
322 /* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
325 static const struct dwarf2_debug_sections dwarf2_elf_names =
326 {
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
332 { ".debug_macro", ".zdebug_macro" },
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
336 { ".debug_addr", ".zdebug_addr" },
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
339 { ".gdb_index", ".zgdb_index" },
340 23
341 };
342
343 /* List of DWO/DWP sections. */
344
345 static const struct dwop_section_names
346 {
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
358 }
359 dwop_section_names =
360 {
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
372 };
373
374 /* local data types */
375
376 /* The data in a compilation unit header, after target2host
377 translation, looks like this. */
378 struct comp_unit_head
379 {
380 unsigned int length;
381 short version;
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
384 sect_offset abbrev_offset;
385
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
388
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
391
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
394 sect_offset offset;
395
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
398 cu_offset first_die_offset;
399 };
400
401 /* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403 struct delayed_method_info
404 {
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419 };
420
421 typedef struct delayed_method_info delayed_method_info;
422 DEF_VEC_O (delayed_method_info);
423
424 /* Internal state when decoding a particular compilation unit. */
425 struct dwarf2_cu
426 {
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
430 /* The header of the compilation unit. */
431 struct comp_unit_head header;
432
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
443 const char *producer;
444
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
460
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
475 /* Backlink to our per_cu entry. */
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
483 htab_t die_hash;
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
516 Note this value comes from the stub CU/TU's DIE. */
517 ULONGEST addr_base;
518
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
521 Note this value comes from the stub CU/TU's DIE.
522 Also note that the value is zero in the non-DWO case so this value can
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
529 ULONGEST ranges_base;
530
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
538 unsigned int has_loclist : 1;
539
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
546 unsigned int producer_is_gcc_lt_4_3 : 1;
547 unsigned int producer_is_icc : 1;
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
554 };
555
556 /* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
558 read_symtab_private field of the psymtab. */
559
560 struct dwarf2_per_cu_data
561 {
562 /* The start offset and length of this compilation unit.
563 NOTE: Unlike comp_unit_head.length, this length includes
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
567 sect_offset offset;
568 unsigned int length;
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
572 unsigned int queued : 1;
573
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
583 unsigned int is_debug_types : 1;
584
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
607 struct dwarf2_section_info *section;
608
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
611 struct dwarf2_cu *cu;
612
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
623 or NULL for unread partial units. */
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
629
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
649 };
650
651 /* Entry in the signatured_types hash table. */
652
653 struct signatured_type
654 {
655 /* The "per_cu" object of this type.
656 This struct is used iff per_cu.is_debug_types.
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
661 /* The type's signature. */
662 ULONGEST signature;
663
664 /* Offset in the TU of the type's DIE, as read from the TU header.
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
688 };
689
690 typedef struct signatured_type *sig_type_ptr;
691 DEF_VEC_P (sig_type_ptr);
692
693 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696 struct stmt_list_hash
697 {
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703 };
704
705 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708 struct type_unit_group
709 {
710 /* dwarf2read.c's main "handle" on a TU symtab.
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
715 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
716 struct dwarf2_per_cu_data per_cu;
717
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
722
723 /* The primary symtab.
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
726 struct symtab *primary_symtab;
727
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744 };
745
746 /* These sections are what may appear in a (real or virtual) DWO file. */
747
748 struct dwo_sections
749 {
750 struct dwarf2_section_info abbrev;
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
759 VEC (dwarf2_section_info_def) *types;
760 };
761
762 /* CUs/TUs in DWP/DWO files. */
763
764 struct dwo_unit
765 {
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
775 struct dwarf2_section_info *section;
776
777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783 };
784
785 /* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789 enum dwp_v2_section_ids
790 {
791 DW_SECT_MIN = 1
792 };
793
794 /* Data for one DWO file.
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
804
805 struct dwo_file
806 {
807 /* The DW_AT_GNU_dwo_name attribute.
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
815
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
819
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
823 struct dwo_sections sections;
824
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835 };
836
837 /* These sections are what may appear in a DWP file. */
838
839 struct dwp_sections
840 {
841 /* These are used by both DWP version 1 and 2. */
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
862 };
863
864 /* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
866
867 struct virtual_v1_dwo_sections
868 {
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
876 That is recorded here, and copied to dwo_unit.section. */
877 struct dwarf2_section_info info_or_types;
878 };
879
880 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885 struct virtual_v2_dwo_sections
886 {
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909 };
910
911 /* Contents of DWP hash tables. */
912
913 struct dwp_hash_table
914 {
915 uint32_t version, nr_columns;
916 uint32_t nr_units, nr_slots;
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928 #define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
940 };
941
942 /* Data for one DWP file. */
943
944 struct dwp_file
945 {
946 /* Name of the file. */
947 const char *name;
948
949 /* File format version. */
950 int version;
951
952 /* The bfd. */
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
958 /* Table of CUs in the file. */
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
967
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
970 unsigned int num_sections;
971 asection **elf_sections;
972 };
973
974 /* This represents a '.dwz' file. */
975
976 struct dwz_file
977 {
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
984 struct dwarf2_section_info gdb_index;
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988 };
989
990 /* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
993 struct exists to abstract away the constant parameters of die reading. */
994
995 struct die_reader_specs
996 {
997 /* The bfd of die_section. */
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
1004 struct dwo_file *dwo_file;
1005
1006 /* The section the die comes from.
1007 This is either .debug_info or .debug_types, or the .dwo variants. */
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
1011 const gdb_byte *buffer;
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
1018 };
1019
1020 /* Type of function passed to init_cutu_and_read_dies, et.al. */
1021 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
1022 const gdb_byte *info_ptr,
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
1027 /* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030 struct line_header
1031 {
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
1036 unsigned char maximum_ops_per_instruction;
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
1053 const char **include_dirs;
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
1060 {
1061 const char *name;
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
1066 struct symtab *symtab; /* The associated symbol table, if any. */
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
1070 header. These point into dwarf2_per_objfile->line_buffer. */
1071 const gdb_byte *statement_program_start, *statement_program_end;
1072 };
1073
1074 /* When we construct a partial symbol table entry we only
1075 need this much information. */
1076 struct partial_die_info
1077 {
1078 /* Offset of this DIE. */
1079 sect_offset offset;
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
1091 unsigned int may_be_inlined : 1;
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
1112 /* The name of this DIE. Normally the value of DW_AT_name, but
1113 sometimes a default name for unnamed DIEs. */
1114 const char *name;
1115
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
1122 const char *scope;
1123
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
1137
1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1139 DW_AT_sibling, if any. */
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
1142 const gdb_byte *sibling;
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
1147 sect_offset spec_offset;
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
1152 };
1153
1154 /* This data structure holds the information of an abbrev. */
1155 struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165 struct attr_abbrev
1166 {
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
1169 };
1170
1171 /* Size of abbrev_table.abbrev_hash_table. */
1172 #define ABBREV_HASH_SIZE 121
1173
1174 /* Top level data structure to contain an abbreviation table. */
1175
1176 struct abbrev_table
1177 {
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190 };
1191
1192 /* Attributes have a name and a value. */
1193 struct attribute
1194 {
1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
1203 union
1204 {
1205 const char *str;
1206 struct dwarf_block *blk;
1207 ULONGEST unsnd;
1208 LONGEST snd;
1209 CORE_ADDR addr;
1210 ULONGEST signature;
1211 }
1212 u;
1213 };
1214
1215 /* This data structure holds a complete die structure. */
1216 struct die_info
1217 {
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
1227
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
1234 /* Offset in .debug_info or .debug_types section. */
1235 sect_offset offset;
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
1240 together via their SIBLING fields. */
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
1244
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
1249 };
1250
1251 /* Get at parts of an attribute structure. */
1252
1253 #define DW_STRING(attr) ((attr)->u.str)
1254 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1255 #define DW_UNSND(attr) ((attr)->u.unsnd)
1256 #define DW_BLOCK(attr) ((attr)->u.blk)
1257 #define DW_SND(attr) ((attr)->u.snd)
1258 #define DW_ADDR(attr) ((attr)->u.addr)
1259 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1260
1261 /* Blocks are a bunch of untyped bytes. */
1262 struct dwarf_block
1263 {
1264 size_t size;
1265
1266 /* Valid only if SIZE is not zero. */
1267 const gdb_byte *data;
1268 };
1269
1270 #ifndef ATTR_ALLOC_CHUNK
1271 #define ATTR_ALLOC_CHUNK 4
1272 #endif
1273
1274 /* Allocate fields for structs, unions and enums in this size. */
1275 #ifndef DW_FIELD_ALLOC_CHUNK
1276 #define DW_FIELD_ALLOC_CHUNK 4
1277 #endif
1278
1279 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282 static int bits_per_byte = 8;
1283
1284 /* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287 struct field_info
1288 {
1289 /* List of data member and baseclasses fields. */
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
1297 *fields, *baseclasses;
1298
1299 /* Number of fields (including baseclasses). */
1300 int nfields;
1301
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
1304
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
1307
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
1316
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
1322 const char *name;
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
1327
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
1340 };
1341
1342 /* One item on the queue of compilation units to read in full symbols
1343 for. */
1344 struct dwarf2_queue_item
1345 {
1346 struct dwarf2_per_cu_data *per_cu;
1347 enum language pretend_language;
1348 struct dwarf2_queue_item *next;
1349 };
1350
1351 /* The current queue. */
1352 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
1354 /* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359 static int dwarf2_max_cache_age = 5;
1360 static void
1361 show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363 {
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
1366 value);
1367 }
1368 \f
1369 /* local function prototypes */
1370
1371 static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373 static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
1375 static void dwarf2_locate_sections (bfd *, asection *, void *);
1376
1377 static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
1380 static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
1383 static void dwarf2_build_psymtabs_hard (struct objfile *);
1384
1385 static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
1387 int, struct dwarf2_cu *);
1388
1389 static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
1391
1392 static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1394 int need_pc, struct dwarf2_cu *cu);
1395
1396 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
1400 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
1402
1403 static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1405 int need_pc, struct dwarf2_cu *cu);
1406
1407 static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
1409
1410 static void psymtab_to_symtab_1 (struct partial_symtab *);
1411
1412 static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415 static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418 static void abbrev_table_free (struct abbrev_table *);
1419
1420 static void abbrev_table_free_cleanup (void *);
1421
1422 static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
1424
1425 static void dwarf2_free_abbrev_table (void *);
1426
1427 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1428
1429 static struct partial_die_info *load_partial_dies
1430 (const struct die_reader_specs *, const gdb_byte *, int);
1431
1432 static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
1437
1438 static struct partial_die_info *find_partial_die (sect_offset, int,
1439 struct dwarf2_cu *);
1440
1441 static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
1444 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
1447
1448 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1449
1450 static int read_1_signed_byte (bfd *, const gdb_byte *);
1451
1452 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1453
1454 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1455
1456 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1457
1458 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1459 unsigned int *);
1460
1461 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1462
1463 static LONGEST read_checked_initial_length_and_offset
1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1465 unsigned int *, unsigned int *);
1466
1467 static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
1469 unsigned int *);
1470
1471 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1472
1473 static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
1476 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1477
1478 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1479
1480 static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
1483
1484 static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1485
1486 static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
1487
1488 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1489
1490 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
1492 unsigned int *);
1493
1494 static const char *read_str_index (const struct die_reader_specs *reader,
1495 struct dwarf2_cu *cu, ULONGEST str_index);
1496
1497 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1498
1499 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
1501
1502 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1503 unsigned int);
1504
1505 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
1508 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1509
1510 static struct die_info *die_specification (struct die_info *die,
1511 struct dwarf2_cu **);
1512
1513 static void free_line_header (struct line_header *lh);
1514
1515 static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
1517
1518 static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
1521
1522 static void dwarf2_start_subfile (const char *, const char *, const char *);
1523
1524 static void dwarf2_start_symtab (struct dwarf2_cu *,
1525 const char *, const char *, CORE_ADDR);
1526
1527 static struct symbol *new_symbol (struct die_info *, struct type *,
1528 struct dwarf2_cu *);
1529
1530 static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
1533 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1534 struct dwarf2_cu *);
1535
1536 static void dwarf2_const_value_attr (const struct attribute *attr,
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
1540 struct dwarf2_cu *cu, LONGEST *value,
1541 const gdb_byte **bytes,
1542 struct dwarf2_locexpr_baton **baton);
1543
1544 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1545
1546 static int need_gnat_info (struct dwarf2_cu *);
1547
1548 static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
1550
1551 static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
1554 static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
1556
1557 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1558 struct dwarf2_cu *);
1559
1560 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1561
1562 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
1564 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1565
1566 static char *typename_concat (struct obstack *obs, const char *prefix,
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
1569
1570 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1571
1572 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
1574 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1575
1576 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1577
1578 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
1580 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
1583 static int dwarf2_get_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
1586
1587 static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
1591 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
1594 static void dwarf2_add_field (struct field_info *, struct die_info *,
1595 struct dwarf2_cu *);
1596
1597 static void dwarf2_attach_fields_to_type (struct field_info *,
1598 struct type *, struct dwarf2_cu *);
1599
1600 static void dwarf2_add_member_fn (struct field_info *,
1601 struct die_info *, struct type *,
1602 struct dwarf2_cu *);
1603
1604 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1605 struct type *,
1606 struct dwarf2_cu *);
1607
1608 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1609
1610 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1611
1612 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1613
1614 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
1616 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
1618 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
1620 static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
1623 static const char *namespace_name (struct die_info *die,
1624 int *is_anonymous, struct dwarf2_cu *);
1625
1626 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1627
1628 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1629
1630 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1631 struct dwarf2_cu *);
1632
1633 static struct die_info *read_die_and_siblings_1
1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1635 struct die_info *);
1636
1637 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
1640 struct die_info *parent);
1641
1642 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
1645
1646 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
1649
1650 static void process_die (struct die_info *, struct dwarf2_cu *);
1651
1652 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
1654
1655 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1656
1657 static const char *dwarf2_full_name (const char *name,
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
1661 static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
1664 static struct die_info *dwarf2_extension (struct die_info *die,
1665 struct dwarf2_cu **);
1666
1667 static const char *dwarf_tag_name (unsigned int);
1668
1669 static const char *dwarf_attr_name (unsigned int);
1670
1671 static const char *dwarf_form_name (unsigned int);
1672
1673 static char *dwarf_bool_name (unsigned int);
1674
1675 static const char *dwarf_type_encoding_name (unsigned int);
1676
1677 static struct die_info *sibling_die (struct die_info *);
1678
1679 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681 static void dump_die_for_error (struct die_info *);
1682
1683 static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
1685
1686 /*static*/ void dump_die (struct die_info *, int max_level);
1687
1688 static void store_in_ref_table (struct die_info *,
1689 struct dwarf2_cu *);
1690
1691 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1692
1693 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1694
1695 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1696 const struct attribute *,
1697 struct dwarf2_cu **);
1698
1699 static struct die_info *follow_die_ref (struct die_info *,
1700 const struct attribute *,
1701 struct dwarf2_cu **);
1702
1703 static struct die_info *follow_die_sig (struct die_info *,
1704 const struct attribute *,
1705 struct dwarf2_cu **);
1706
1707 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710 static struct type *get_DW_AT_signature_type (struct die_info *,
1711 const struct attribute *,
1712 struct dwarf2_cu *);
1713
1714 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1715
1716 static void read_signatured_type (struct signatured_type *);
1717
1718 static struct type_unit_group *get_type_unit_group
1719 (struct dwarf2_cu *, const struct attribute *);
1720
1721 static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
1723 /* memory allocation interface */
1724
1725 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1726
1727 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1728
1729 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1730 const char *, int);
1731
1732 static int attr_form_is_block (const struct attribute *);
1733
1734 static int attr_form_is_section_offset (const struct attribute *);
1735
1736 static int attr_form_is_constant (const struct attribute *);
1737
1738 static int attr_form_is_ref (const struct attribute *);
1739
1740 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
1742 const struct attribute *attr);
1743
1744 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1745 struct symbol *sym,
1746 struct dwarf2_cu *cu,
1747 int is_block);
1748
1749 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
1752
1753 static void free_stack_comp_unit (void *);
1754
1755 static hashval_t partial_die_hash (const void *item);
1756
1757 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
1759 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
1761
1762 static void init_one_comp_unit (struct dwarf2_cu *cu,
1763 struct dwarf2_per_cu_data *per_cu);
1764
1765 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
1768
1769 static void free_heap_comp_unit (void *);
1770
1771 static void free_cached_comp_units (void *);
1772
1773 static void age_cached_comp_units (void);
1774
1775 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1776
1777 static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1779
1780 static void create_all_comp_units (struct objfile *);
1781
1782 static int create_all_type_units (struct objfile *);
1783
1784 static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
1786
1787 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
1789
1790 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
1793 static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
1796 static void dwarf2_mark (struct dwarf2_cu *);
1797
1798 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
1800 static struct type *get_die_type_at_offset (sect_offset,
1801 struct dwarf2_per_cu_data *);
1802
1803 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1804
1805 static void dwarf2_release_queue (void *dummy);
1806
1807 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
1810 static void process_queue (void);
1811
1812 static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
1814 const char **name, const char **comp_dir);
1815
1816 static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
1819 static const gdb_byte *read_and_check_comp_unit_head
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1823 int is_debug_types_section);
1824
1825 static void init_cutu_and_read_dies
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
1830 static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
1833
1834 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1835
1836 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
1838 static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
1841
1842 static struct dwp_file *get_dwp_file (void);
1843
1844 static struct dwo_unit *lookup_dwo_comp_unit
1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1846
1847 static struct dwo_unit *lookup_dwo_type_unit
1848 (struct signatured_type *, const char *, const char *);
1849
1850 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
1852 static void free_dwo_file_cleanup (void *);
1853
1854 static void process_cu_includes (void);
1855
1856 static void check_producer (struct dwarf2_cu *cu);
1857 \f
1858 /* Various complaints about symbol reading that don't abort the process. */
1859
1860 static void
1861 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862 {
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865 }
1866
1867 static void
1868 dwarf2_debug_line_missing_file_complaint (void)
1869 {
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872 }
1873
1874 static void
1875 dwarf2_debug_line_missing_end_sequence_complaint (void)
1876 {
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880 }
1881
1882 static void
1883 dwarf2_complex_location_expr_complaint (void)
1884 {
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886 }
1887
1888 static void
1889 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891 {
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895 }
1896
1897 static void
1898 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899 {
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
1903 get_section_name (section),
1904 get_section_file_name (section));
1905 }
1906
1907 static void
1908 dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909 {
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914 }
1915
1916 static void
1917 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918 {
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922 }
1923 \f
1924 #if WORDS_BIGENDIAN
1925
1926 /* Convert VALUE between big- and little-endian. */
1927 static offset_type
1928 byte_swap (offset_type value)
1929 {
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937 }
1938
1939 #define MAYBE_SWAP(V) byte_swap (V)
1940
1941 #else
1942 #define MAYBE_SWAP(V) (V)
1943 #endif /* WORDS_BIGENDIAN */
1944
1945 /* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948 static CORE_ADDR
1949 attr_value_as_address (struct attribute *attr)
1950 {
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973 }
1974
1975 /* The suffix for an index file. */
1976 #define INDEX_SUFFIX ".gdb-index"
1977
1978 /* Try to locate the sections we need for DWARF 2 debugging
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
1982
1983 int
1984 dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
1986 {
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1993
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
1997
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006 }
2007
2008 /* Return the containing section of virtual section SECTION. */
2009
2010 static struct dwarf2_section_info *
2011 get_containing_section (const struct dwarf2_section_info *section)
2012 {
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
2015 }
2016
2017 /* Return the bfd owner of SECTION. */
2018
2019 static struct bfd *
2020 get_section_bfd_owner (const struct dwarf2_section_info *section)
2021 {
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
2028 }
2029
2030 /* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033 static asection *
2034 get_section_bfd_section (const struct dwarf2_section_info *section)
2035 {
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
2042 }
2043
2044 /* Return the name of SECTION. */
2045
2046 static const char *
2047 get_section_name (const struct dwarf2_section_info *section)
2048 {
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053 }
2054
2055 /* Return the name of the file SECTION is in. */
2056
2057 static const char *
2058 get_section_file_name (const struct dwarf2_section_info *section)
2059 {
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063 }
2064
2065 /* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068 static int
2069 get_section_id (const struct dwarf2_section_info *section)
2070 {
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076 }
2077
2078 /* Return the flags of SECTION.
2079 SECTION (or containing section if this is a virtual section) must exist. */
2080
2081 static int
2082 get_section_flags (const struct dwarf2_section_info *section)
2083 {
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088 }
2089
2090 /* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
2092
2093 static int
2094 section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
2096 {
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
2104 }
2105
2106 /* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110 static void
2111 dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
2112 {
2113 const struct dwarf2_debug_sections *names;
2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
2125 {
2126 dwarf2_per_objfile->info.s.asection = sectp;
2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
2128 }
2129 else if (section_is_p (sectp->name, &names->abbrev))
2130 {
2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
2133 }
2134 else if (section_is_p (sectp->name, &names->line))
2135 {
2136 dwarf2_per_objfile->line.s.asection = sectp;
2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
2138 }
2139 else if (section_is_p (sectp->name, &names->loc))
2140 {
2141 dwarf2_per_objfile->loc.s.asection = sectp;
2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
2143 }
2144 else if (section_is_p (sectp->name, &names->macinfo))
2145 {
2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
2148 }
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
2151 dwarf2_per_objfile->macro.s.asection = sectp;
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
2154 else if (section_is_p (sectp->name, &names->str))
2155 {
2156 dwarf2_per_objfile->str.s.asection = sectp;
2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
2158 }
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
2161 dwarf2_per_objfile->addr.s.asection = sectp;
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
2164 else if (section_is_p (sectp->name, &names->frame))
2165 {
2166 dwarf2_per_objfile->frame.s.asection = sectp;
2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
2168 }
2169 else if (section_is_p (sectp->name, &names->eh_frame))
2170 {
2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
2173 }
2174 else if (section_is_p (sectp->name, &names->ranges))
2175 {
2176 dwarf2_per_objfile->ranges.s.asection = sectp;
2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
2178 }
2179 else if (section_is_p (sectp->name, &names->types))
2180 {
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
2184 type_section.s.asection = sectp;
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
2189 }
2190 else if (section_is_p (sectp->name, &names->gdb_index))
2191 {
2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
2195
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
2199 }
2200
2201 /* A helper function that decides whether a section is empty,
2202 or not present. */
2203
2204 static int
2205 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2206 {
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
2210 }
2211
2212 /* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
2216 If the section is compressed, uncompress it before returning. */
2217
2218 static void
2219 dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
2220 {
2221 asection *sectp;
2222 bfd *abfd;
2223 gdb_byte *buf, *retbuf;
2224
2225 if (info->readin)
2226 return;
2227 info->buffer = NULL;
2228 info->readin = 1;
2229
2230 if (dwarf2_section_empty_p (info))
2231 return;
2232
2233 sectp = get_section_bfd_section (info);
2234
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
2263 {
2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2265 return;
2266 }
2267
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
2292 }
2293
2294 /* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301 static bfd_size_type
2302 dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304 {
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308 }
2309
2310 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2311 SECTION_NAME. */
2312
2313 void
2314 dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
2316 asection **sectp, const gdb_byte **bufp,
2317 bfd_size_type *sizep)
2318 {
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
2343
2344 dwarf2_read_section (objfile, info);
2345
2346 *sectp = get_section_bfd_section (info);
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349 }
2350
2351 /* A helper function to find the sections for a .dwz file. */
2352
2353 static void
2354 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355 {
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
2362 dwz_file->abbrev.s.asection = sectp;
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
2367 dwz_file->info.s.asection = sectp;
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
2372 dwz_file->str.s.asection = sectp;
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
2377 dwz_file->line.s.asection = sectp;
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
2382 dwz_file->macro.s.asection = sectp;
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
2387 dwz_file->gdb_index.s.asection = sectp;
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
2390 }
2391
2392 /* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
2395
2396 static struct dwz_file *
2397 dwarf2_get_dwz_file (void)
2398 {
2399 bfd *dwz_bfd;
2400 char *data;
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
2404 bfd_size_type buildid_len_arg;
2405 size_t buildid_len;
2406 bfd_byte *buildid;
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2413 &buildid_len_arg, &buildid);
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
2421 cleanup = make_cleanup (xfree, data);
2422 make_cleanup (xfree, buildid);
2423
2424 buildid_len = (size_t) buildid_len_arg;
2425
2426 filename = (const char *) data;
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2444 if (dwz_bfd != NULL)
2445 {
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
2451 }
2452
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
2469 dwarf2_per_objfile->dwz_file = result;
2470 return result;
2471 }
2472 \f
2473 /* DWARF quick_symbols_functions support. */
2474
2475 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480 struct quick_file_names
2481 {
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495 };
2496
2497 /* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500 struct dwarf2_per_cu_quick_data
2501 {
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518 };
2519
2520 /* Utility hash function for a stmt_list_hash. */
2521
2522 static hashval_t
2523 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524 {
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531 }
2532
2533 /* Utility equality function for a stmt_list_hash. */
2534
2535 static int
2536 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538 {
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546 }
2547
2548 /* Hash function for a quick_file_names. */
2549
2550 static hashval_t
2551 hash_file_name_entry (const void *e)
2552 {
2553 const struct quick_file_names *file_data = e;
2554
2555 return hash_stmt_list_entry (&file_data->hash);
2556 }
2557
2558 /* Equality function for a quick_file_names. */
2559
2560 static int
2561 eq_file_name_entry (const void *a, const void *b)
2562 {
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2567 }
2568
2569 /* Delete function for a quick_file_names. */
2570
2571 static void
2572 delete_file_name_entry (void *e)
2573 {
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586 }
2587
2588 /* Create a quick_file_names hash table. */
2589
2590 static htab_t
2591 create_quick_file_names_table (unsigned int nr_initial_entries)
2592 {
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596 }
2597
2598 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602 static void
2603 load_cu (struct dwarf2_per_cu_data *per_cu)
2604 {
2605 if (per_cu->is_debug_types)
2606 load_full_type_unit (per_cu);
2607 else
2608 load_full_comp_unit (per_cu, language_minimal);
2609
2610 gdb_assert (per_cu->cu != NULL);
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2613 }
2614
2615 /* Read in the symbols for PER_CU. */
2616
2617 static void
2618 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2619 {
2620 struct cleanup *back_to;
2621
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
2646 }
2647
2648 process_queue ();
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655 }
2656
2657 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2660
2661 static struct symtab *
2662 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
2663 {
2664 gdb_assert (dwarf2_per_objfile->using_index);
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
2669 dw2_do_instantiate_symtab (per_cu);
2670 process_cu_includes ();
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674 }
2675
2676 /* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687 */
2688
2689 static struct dwarf2_per_cu_data *
2690 dw2_get_cu (int index)
2691 {
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
2694 index -= dwarf2_per_objfile->n_comp_units;
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700 }
2701
2702 /* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715 */
2716
2717 static struct dwarf2_per_cu_data *
2718 dw2_get_primary_cu (int index)
2719 {
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
2722 index -= dwarf2_per_objfile->n_comp_units;
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
2725 }
2726
2727 return dwarf2_per_objfile->all_comp_units[index];
2728 }
2729
2730 /* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2732
2733 static void
2734 create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
2739 {
2740 offset_type i;
2741
2742 for (i = 0; i < n_elements; i += 2)
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
2754 the_cu->offset.sect_off = offset;
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
2757 the_cu->section = section;
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
2762 }
2763 }
2764
2765 /* Read the CU list from the mapped index, and use it to create all
2766 the CU objects for this objfile. */
2767
2768 static void
2769 create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772 {
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2783
2784 if (dwz_elements == 0)
2785 return;
2786
2787 dwz = dwarf2_get_dwz_file ();
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2790 }
2791
2792 /* Create the signatured type hash table from the index. */
2793
2794 static void
2795 create_signatured_type_table_from_index (struct objfile *objfile,
2796 struct dwarf2_section_info *section,
2797 const gdb_byte *bytes,
2798 offset_type elements)
2799 {
2800 offset_type i;
2801 htab_t sig_types_hash;
2802
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
2807
2808 sig_types_hash = allocate_signatured_type_table (objfile);
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
2814 void **slot;
2815
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2824 struct signatured_type);
2825 sig_type->signature = signature;
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
2828 sig_type->per_cu.section = section;
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
2837
2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
2839 }
2840
2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
2842 }
2843
2844 /* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2846
2847 static void
2848 create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849 {
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
2874
2875 if (lo > hi)
2876 {
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
2879 hex_string (lo), hex_string (hi));
2880 continue;
2881 }
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
2888 continue;
2889 }
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898 }
2899
2900 /* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2907
2908 static hashval_t
2909 mapped_index_string_hash (int index_version, const void *p)
2910 {
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
2921
2922 return r;
2923 }
2924
2925 /* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2928
2929 static int
2930 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932 {
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
2935 offset_type slot, step;
2936 int (*cmp) (const char *, const char *);
2937
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
2959 /* Index version 4 did not support case insensitive searches. But the
2960 indices for case insensitive languages are built in lowercase, therefore
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
2981
2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
2983 if (!cmp (name, str))
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
2987 do_cleanups (back_to);
2988 return 1;
2989 }
2990
2991 slot = (slot + step) & (index->symbol_table_slots - 1);
2992 }
2993 }
2994
2995 /* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
3005
3006 static int
3007 read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
3016 {
3017 const gdb_byte *addr;
3018 offset_type version;
3019 offset_type *metadata;
3020 int i;
3021
3022 if (dwarf2_section_empty_p (section))
3023 return 0;
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
3028 return 0;
3029
3030 dwarf2_read_section (objfile, section);
3031
3032 addr = section->buffer;
3033 /* Version check. */
3034 version = MAYBE_SWAP (*(offset_type *) addr);
3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
3036 causes the index to behave very poorly for certain requests. Version 3
3037 contained incomplete addrmap. So, it seems better to just ignore such
3038 indices. */
3039 if (version < 4)
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
3045 filename);
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
3058 if (version < 6 && !deprecated_ok)
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
3063 warning (_("\
3064 Skipping deprecated .gdb_index section in %s.\n\
3065 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066 to use the section anyway."),
3067 filename);
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
3079
3080 /* Indexes with higher version than the one supported by GDB may be no
3081 longer backward compatible. */
3082 if (version > 8)
3083 return 0;
3084
3085 map->version = version;
3086 map->total_size = section->size;
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
3089
3090 i = 0;
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
3094 ++i;
3095
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
3100 ++i;
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
3111 ++i;
3112
3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3114
3115 return 1;
3116 }
3117
3118
3119 /* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122 static int
3123 dwarf2_read_index (struct objfile *objfile)
3124 {
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3128 struct dwz_file *dwz;
3129
3130 if (!read_index_from_section (objfile, objfile_name (objfile),
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
3137 /* Don't use the index if it's empty. */
3138 if (local_map.symbol_table_slots == 0)
3139 return 0;
3140
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
3145 {
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
3165
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
3180 }
3181
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
3191
3192 return 1;
3193 }
3194
3195 /* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
3197
3198 static void
3199 dw2_setup (struct objfile *objfile)
3200 {
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203 }
3204
3205 /* die_reader_func for dw2_get_file_names. */
3206
3207 static void
3208 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3209 const gdb_byte *info_ptr,
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
3213 {
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
3217 struct dwarf2_per_cu_data *lh_cu;
3218 struct line_header *lh;
3219 struct attribute *attr;
3220 int i;
3221 const char *name, *comp_dir;
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
3225
3226 gdb_assert (! this_cu->is_debug_types);
3227
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
3236 lh_cu = this_cu;
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3242 if (attr)
3243 {
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
3256 lh_cu->v.quick->file_names = *slot;
3257 return;
3258 }
3259
3260 lh = dwarf_decode_line_header (line_offset, cu);
3261 }
3262 if (lh == NULL)
3263 {
3264 lh_cu->v.quick->no_file_data = 1;
3265 return;
3266 }
3267
3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
3273
3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
3275
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
3279 for (i = 0; i < lh->num_file_names; ++i)
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
3282
3283 free_line_header (lh);
3284
3285 lh_cu->v.quick->file_names = qfn;
3286 }
3287
3288 /* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291 static struct quick_file_names *
3292 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3293 {
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3298
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
3310 }
3311
3312 /* A helper for the "quick" functions which computes and caches the
3313 real path for a given file name from the line table. */
3314
3315 static const char *
3316 dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
3318 {
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3321 qfn->num_file_names, char *);
3322
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
3325
3326 return qfn->real_names[index];
3327 }
3328
3329 static struct symtab *
3330 dw2_find_last_source_symtab (struct objfile *objfile)
3331 {
3332 int index;
3333
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
3336 return dw2_instantiate_symtab (dw2_get_cu (index));
3337 }
3338
3339 /* Traversal function for dw2_forget_cached_source_info. */
3340
3341 static int
3342 dw2_free_cached_file_names (void **slot, void *info)
3343 {
3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3345
3346 if (file_data->real_names)
3347 {
3348 int i;
3349
3350 for (i = 0; i < file_data->num_file_names; ++i)
3351 {
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
3354 }
3355 }
3356
3357 return 1;
3358 }
3359
3360 static void
3361 dw2_forget_cached_source_info (struct objfile *objfile)
3362 {
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
3367 }
3368
3369 /* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372 static int
3373 dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
3375 const char *name, const char *real_path,
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378 {
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
3387 dw2_instantiate_symtab (per_cu);
3388
3389 return iterate_over_some_symtabs (name, real_path, callback, data,
3390 objfile->symtabs, last_made);
3391 }
3392
3393 /* Implementation of the map_symtabs_matching_filename method. */
3394
3395 static int
3396 dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3397 const char *real_path,
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
3400 {
3401 int i;
3402 const char *name_basename = lbasename (name);
3403
3404 dw2_setup (objfile);
3405
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
3408
3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3410 {
3411 int j;
3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3413 struct quick_file_names *file_data;
3414
3415 /* We only need to look at symtabs not already expanded. */
3416 if (per_cu->v.quick->symtab)
3417 continue;
3418
3419 file_data = dw2_get_file_names (per_cu);
3420 if (file_data == NULL)
3421 continue;
3422
3423 for (j = 0; j < file_data->num_file_names; ++j)
3424 {
3425 const char *this_name = file_data->file_names[j];
3426 const char *this_real_name;
3427
3428 if (compare_filenames_for_search (this_name, name))
3429 {
3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3431 callback, data))
3432 return 1;
3433 continue;
3434 }
3435
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
3444 {
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
3448 continue;
3449 }
3450
3451 if (real_path != NULL)
3452 {
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
3455 if (this_real_name != NULL
3456 && FILENAME_CMP (real_path, this_real_name) == 0)
3457 {
3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3459 callback, data))
3460 return 1;
3461 continue;
3462 }
3463 }
3464 }
3465 }
3466
3467 return 0;
3468 }
3469
3470 /* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472 struct dw2_symtab_iterator
3473 {
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
3495 };
3496
3497 /* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
3500
3501 static void
3502 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508 {
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
3514 iter->global_seen = 0;
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523 }
3524
3525 /* Return the next matching CU or NULL if there are no more. */
3526
3527 static struct dwarf2_per_cu_data *
3528 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529 {
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3535 struct dwarf2_per_cu_data *per_cu;
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609 }
3610
3611 static struct symtab *
3612 dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
3614 {
3615 struct symtab *stab_best = NULL;
3616 struct mapped_index *index;
3617
3618 dw2_setup (objfile);
3619
3620 index = dwarf2_per_objfile->index_table;
3621
3622 /* index is NULL if OBJF_READNOW. */
3623 if (index)
3624 {
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
3629
3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3631 {
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
3639 {
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3642
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
3645
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
3652 }
3653
3654 /* Keep looking through other CUs. */
3655 }
3656 }
3657
3658 return stab_best;
3659 }
3660
3661 static void
3662 dw2_print_stats (struct objfile *objfile)
3663 {
3664 int i, total, count;
3665
3666 dw2_setup (objfile);
3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
3668 count = 0;
3669 for (i = 0; i < total; ++i)
3670 {
3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3672
3673 if (!per_cu->v.quick->symtab)
3674 ++count;
3675 }
3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678 }
3679
3680 /* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
3685 static void
3686 dw2_dump (struct objfile *objfile)
3687 {
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
3699 }
3700
3701 static void
3702 dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
3705 {
3706 /* There's nothing to relocate here. */
3707 }
3708
3709 static void
3710 dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712 {
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
3732 }
3733
3734 static void
3735 dw2_expand_all_symtabs (struct objfile *objfile)
3736 {
3737 int i;
3738
3739 dw2_setup (objfile);
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3742 + dwarf2_per_objfile->n_type_units); ++i)
3743 {
3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3745
3746 dw2_instantiate_symtab (per_cu);
3747 }
3748 }
3749
3750 static void
3751 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
3753 {
3754 int i;
3755
3756 dw2_setup (objfile);
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3764 {
3765 int j;
3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3767 struct quick_file_names *file_data;
3768
3769 /* We only need to look at symtabs not already expanded. */
3770 if (per_cu->v.quick->symtab)
3771 continue;
3772
3773 file_data = dw2_get_file_names (per_cu);
3774 if (file_data == NULL)
3775 continue;
3776
3777 for (j = 0; j < file_data->num_file_names; ++j)
3778 {
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
3782 {
3783 dw2_instantiate_symtab (per_cu);
3784 break;
3785 }
3786 }
3787 }
3788 }
3789
3790 static void
3791 dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
3798 {
3799 /* Currently unimplemented; used for Ada. The function can be called if the
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
3802 }
3803
3804 static void
3805 dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3809 enum search_domain kind,
3810 void *data)
3811 {
3812 int i;
3813 offset_type iter;
3814 struct mapped_index *index;
3815
3816 dw2_setup (objfile);
3817
3818 /* index_table is NULL if OBJF_READNOW. */
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
3821 index = dwarf2_per_objfile->index_table;
3822
3823 if (file_matcher != NULL)
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
3841 {
3842 int j;
3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
3844 struct quick_file_names *file_data;
3845 void **slot;
3846
3847 per_cu->v.quick->mark = 0;
3848
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
3852
3853 file_data = dw2_get_file_names (per_cu);
3854 if (file_data == NULL)
3855 continue;
3856
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
3867 const char *this_real_name;
3868
3869 if (file_matcher (file_data->file_names[j], data, 0))
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
3899
3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
3905 int global_seen = 0;
3906
3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
3908 continue;
3909
3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
3911
3912 if (! (*symbol_matcher) (name, data))
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
3917 vec = (offset_type *) (index->constant_pool
3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
3922 struct dwarf2_per_cu_data *per_cu;
3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
3974 " [in module %s]"), objfile_name (objfile));
3975 continue;
3976 }
3977
3978 per_cu = dw2_get_cu (cu_index);
3979 if (file_matcher == NULL || per_cu->v.quick->mark)
3980 dw2_instantiate_symtab (per_cu);
3981 }
3982 }
3983 }
3984
3985 /* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988 static struct symtab *
3989 recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990 {
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
4002 struct symtab *s = symtab->includes[i];
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010 }
4011
4012 static struct symtab *
4013 dw2_find_pc_sect_symtab (struct objfile *objfile,
4014 struct bound_minimal_symbol msymbol,
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018 {
4019 struct dwarf2_per_cu_data *data;
4020 struct symtab *result;
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4033 paddress (get_objfile_arch (objfile), pc));
4034
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
4038 }
4039
4040 static void
4041 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4042 void *data, int need_fullname)
4043 {
4044 int i;
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
4048
4049 cleanup = make_cleanup_htab_delete (visited);
4050 dw2_setup (objfile);
4051
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
4055
4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
4070 {
4071 int j;
4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
4073 struct quick_file_names *file_data;
4074 void **slot;
4075
4076 /* We only need to look at symtabs not already expanded. */
4077 if (per_cu->v.quick->symtab)
4078 continue;
4079
4080 file_data = dw2_get_file_names (per_cu);
4081 if (file_data == NULL)
4082 continue;
4083
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
4092 for (j = 0; j < file_data->num_file_names; ++j)
4093 {
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
4100 (*fun) (file_data->file_names[j], this_real_name, data);
4101 }
4102 }
4103
4104 do_cleanups (cleanup);
4105 }
4106
4107 static int
4108 dw2_has_symbols (struct objfile *objfile)
4109 {
4110 return 1;
4111 }
4112
4113 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114 {
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
4118 dw2_map_symtabs_matching_filename,
4119 dw2_lookup_symbol,
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
4125 dw2_expand_symtabs_with_fullname,
4126 dw2_map_matching_symbols,
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
4129 dw2_map_symbol_filenames
4130 };
4131
4132 /* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135 int
4136 dwarf2_initialize_objfile (struct objfile *objfile)
4137 {
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
4148 create_all_type_units (objfile);
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
4151
4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
4153 + dwarf2_per_objfile->n_type_units); ++i)
4154 {
4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4156
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
4170 return 0;
4171 }
4172
4173 \f
4174
4175 /* Build a partial symbol table. */
4176
4177 void
4178 dwarf2_build_psymtabs (struct objfile *objfile)
4179 {
4180 volatile struct gdb_exception except;
4181
4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
4199 }
4200
4201 /* Return the total length of the CU described by HEADER. */
4202
4203 static unsigned int
4204 get_cu_length (const struct comp_unit_head *header)
4205 {
4206 return header->initial_length_size + header->length;
4207 }
4208
4209 /* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211 static inline int
4212 offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
4213 {
4214 sect_offset bottom = { cu_header->offset.sect_off };
4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
4216
4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
4218 }
4219
4220 /* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226 static void
4227 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228 {
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
4237 cu->base_address = attr_value_as_address (attr);
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
4245 cu->base_address = attr_value_as_address (attr);
4246 cu->base_known = 1;
4247 }
4248 }
4249 }
4250
4251 /* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
4254
4255 static const gdb_byte *
4256 read_comp_unit_head (struct comp_unit_head *cu_header,
4257 const gdb_byte *info_ptr, bfd *abfd)
4258 {
4259 int signed_addr;
4260 unsigned int bytes_read;
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
4265 info_ptr += bytes_read;
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
4270 info_ptr += bytes_read;
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
4275 internal_error (__FILE__, __LINE__,
4276 _("read_comp_unit_head: dwarf from non elf file"));
4277 cu_header->signed_addr_p = signed_addr;
4278
4279 return info_ptr;
4280 }
4281
4282 /* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285 static struct dwarf2_section_info *
4286 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287 {
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296 }
4297
4298 /* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302 static void
4303 error_check_comp_unit_head (struct comp_unit_head *header,
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
4306 {
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
4315 if (header->abbrev_offset.sect_off
4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
4328 (long) header->length, (long) header->offset.sect_off,
4329 filename);
4330 }
4331
4332 /* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
4335
4336 static const gdb_byte *
4337 read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4339 struct dwarf2_section_info *abbrev_section,
4340 const gdb_byte *info_ptr,
4341 int is_debug_types_section)
4342 {
4343 const gdb_byte *beg_of_comp_unit = info_ptr;
4344 bfd *abfd = get_section_bfd_owner (section);
4345
4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4347
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
4352 if (is_debug_types_section)
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4356
4357 error_check_comp_unit_head (header, section, abbrev_section);
4358
4359 return info_ptr;
4360 }
4361
4362 /* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
4365 static const gdb_byte *
4366 read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4368 struct dwarf2_section_info *abbrev_section,
4369 const gdb_byte *info_ptr,
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
4372 {
4373 const gdb_byte *beg_of_comp_unit = info_ptr;
4374 bfd *abfd = get_section_bfd_owner (section);
4375
4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
4377
4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4379
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
4388 info_ptr += header->offset_size;
4389
4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
4391
4392 error_check_comp_unit_head (header, section, abbrev_section);
4393
4394 return info_ptr;
4395 }
4396
4397 /* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399 static sect_offset
4400 read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402 {
4403 bfd *abfd = get_section_bfd_owner (section);
4404 const gdb_byte *info_ptr;
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415 }
4416
4417 /* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420 static void
4421 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
4422 struct objfile *objfile)
4423 {
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
4452 the regular ones. */
4453 subpst->read_symtab_private = NULL;
4454 }
4455
4456 /* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
4458 partial symtab for each of these included files. */
4459
4460 static void
4461 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
4462 struct die_info *die,
4463 struct partial_symtab *pst)
4464 {
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
4467
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
4476
4477 free_line_header (lh);
4478 }
4479
4480 static hashval_t
4481 hash_signatured_type (const void *item)
4482 {
4483 const struct signatured_type *sig_type = item;
4484
4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
4486 return sig_type->signature;
4487 }
4488
4489 static int
4490 eq_signatured_type (const void *item_lhs, const void *item_rhs)
4491 {
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
4494
4495 return lhs->signature == rhs->signature;
4496 }
4497
4498 /* Allocate a hash table for signatured types. */
4499
4500 static htab_t
4501 allocate_signatured_type_table (struct objfile *objfile)
4502 {
4503 return htab_create_alloc_ex (41,
4504 hash_signatured_type,
4505 eq_signatured_type,
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510 }
4511
4512 /* A helper function to add a signatured type CU to a table. */
4513
4514 static int
4515 add_signatured_type_cu_to_table (void **slot, void *datum)
4516 {
4517 struct signatured_type *sigt = *slot;
4518 struct signatured_type ***datap = datum;
4519
4520 **datap = sigt;
4521 ++*datap;
4522
4523 return 1;
4524 }
4525
4526 /* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
4534
4535 static htab_t
4536 create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
4538 {
4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
4540 htab_t types_htab = NULL;
4541 int ix;
4542 struct dwarf2_section_info *section;
4543 struct dwarf2_section_info *abbrev_section;
4544
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
4547
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
4555 get_section_file_name (abbrev_section));
4556
4557 for (ix = 0;
4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
4559 ++ix)
4560 {
4561 bfd *abfd;
4562 const gdb_byte *info_ptr, *end_ptr;
4563
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
4566
4567 if (info_ptr == NULL)
4568 continue;
4569
4570 /* We can't set abfd until now because the section may be empty or
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
4573
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
4581 sect_offset offset;
4582 cu_offset type_offset_in_tu;
4583 ULONGEST signature;
4584 struct signatured_type *sig_type;
4585 struct dwo_unit *dwo_tu;
4586 void **slot;
4587 const gdb_byte *ptr = info_ptr;
4588 struct comp_unit_head header;
4589 unsigned int length;
4590
4591 offset.sect_off = ptr - section->buffer;
4592
4593 /* We need to read the type's signature in order to build the hash
4594 table, but we don't need anything else just yet. */
4595
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
4598 &signature, &type_offset_in_tu);
4599
4600 length = get_cu_length (&header);
4601
4602 /* Skip dummy type units. */
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
4605 {
4606 info_ptr += length;
4607 continue;
4608 }
4609
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4626 dwo_tu->section = section;
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
4641 sig_type->per_cu.section = section;
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
4645
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
4666
4667 complaint (&symfile_complaints,
4668 _("debug type entry at offset 0x%x is duplicate to"
4669 " the entry at offset 0x%x, signature %s"),
4670 offset.sect_off, dup_offset.sect_off,
4671 hex_string (signature));
4672 }
4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
4674
4675 if (dwarf2_read_debug > 1)
4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
4677 offset.sect_off,
4678 hex_string (signature));
4679
4680 info_ptr += length;
4681 }
4682 }
4683
4684 return types_htab;
4685 }
4686
4687 /* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692 static int
4693 create_all_type_units (struct objfile *objfile)
4694 {
4695 htab_t types_htab;
4696 struct signatured_type **iter;
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
4715
4716 return 1;
4717 }
4718
4719 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722 static void
4723 fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726 {
4727 /* Make sure we're not clobbering something we don't expect to. */
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744 }
4745
4746 /* Subroutine of lookup_signatured_type.
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758 static struct signatured_type *
4759 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760 {
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
4788 /* Have we already tried to read this TU? */
4789 if (sig_entry->per_cu.tu_read)
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4801 sig_entry->per_cu.tu_read = 1;
4802 return sig_entry;
4803 }
4804
4805 /* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808 static struct signatured_type *
4809 add_type_unit (ULONGEST sig)
4810 {
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835 }
4836
4837 /* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846 static struct signatured_type *
4847 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848 {
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4886 objfile_name (objfile));
4887
4888 return sig_entry;
4889 }
4890
4891 /* Lookup a signature based type for DW_FORM_ref_sig8.
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
4894
4895 static struct signatured_type *
4896 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4897 {
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
4911
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
4918 }
4919 \f
4920 /* Low level DIE reading support. */
4921
4922 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924 static void
4925 init_cu_die_reader (struct die_reader_specs *reader,
4926 struct dwarf2_cu *cu,
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
4929 {
4930 gdb_assert (section->readin && section->buffer != NULL);
4931 reader->abfd = get_section_bfd_owner (section);
4932 reader->cu = cu;
4933 reader->dwo_file = dwo_file;
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
4936 reader->buffer_end = section->buffer + section->size;
4937 reader->comp_dir = NULL;
4938 }
4939
4940 /* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4949 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
4950 STUB_COMP_DIR must be non-NULL.
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957 static int
4958 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
4962 const char *stub_comp_dir,
4963 struct die_reader_specs *result_reader,
4964 const gdb_byte **result_info_ptr,
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967 {
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
4972 const gdb_byte *begin_info_ptr, *info_ptr;
4973 const char *comp_dir_string;
4974 ULONGEST signature; /* Or dwo_id. */
4975 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4976 int i,num_extra_attrs;
4977 struct dwarf2_section_info *dwo_abbrev_section;
4978 struct attribute *attr;
4979 struct die_info *comp_unit_die;
4980
4981 /* Exactly one of these must be provided. */
4982 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) == 1);
4983
4984 /* These attributes aren't processed until later:
4985 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4986 However, the attribute is found in the stub which we won't have later.
4987 In order to not impose this complication on the rest of the code,
4988 we read them here and copy them to the DWO CU/TU die. */
4989
4990 stmt_list = NULL;
4991 low_pc = NULL;
4992 high_pc = NULL;
4993 ranges = NULL;
4994 comp_dir = NULL;
4995
4996 if (stub_comp_unit_die != NULL)
4997 {
4998 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4999 DWO file. */
5000 if (! this_cu->is_debug_types)
5001 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5002 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5003 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5004 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5005 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5006
5007 /* There should be a DW_AT_addr_base attribute here (if needed).
5008 We need the value before we can process DW_FORM_GNU_addr_index. */
5009 cu->addr_base = 0;
5010 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5011 if (attr)
5012 cu->addr_base = DW_UNSND (attr);
5013
5014 /* There should be a DW_AT_ranges_base attribute here (if needed).
5015 We need the value before we can process DW_AT_ranges. */
5016 cu->ranges_base = 0;
5017 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5018 if (attr)
5019 cu->ranges_base = DW_UNSND (attr);
5020 }
5021 else if (stub_comp_dir != NULL)
5022 {
5023 /* Reconstruct the comp_dir attribute to simplify the code below. */
5024 comp_dir = (struct attribute *)
5025 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5026 comp_dir->name = DW_AT_comp_dir;
5027 comp_dir->form = DW_FORM_string;
5028 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5029 DW_STRING (comp_dir) = stub_comp_dir;
5030 }
5031
5032 /* Set up for reading the DWO CU/TU. */
5033 cu->dwo_unit = dwo_unit;
5034 section = dwo_unit->section;
5035 dwarf2_read_section (objfile, section);
5036 abfd = get_section_bfd_owner (section);
5037 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5038 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5039 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5040
5041 if (this_cu->is_debug_types)
5042 {
5043 ULONGEST header_signature;
5044 cu_offset type_offset_in_tu;
5045 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5046
5047 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5048 dwo_abbrev_section,
5049 info_ptr,
5050 &header_signature,
5051 &type_offset_in_tu);
5052 /* This is not an assert because it can be caused by bad debug info. */
5053 if (sig_type->signature != header_signature)
5054 {
5055 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5056 " TU at offset 0x%x [in module %s]"),
5057 hex_string (sig_type->signature),
5058 hex_string (header_signature),
5059 dwo_unit->offset.sect_off,
5060 bfd_get_filename (abfd));
5061 }
5062 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5063 /* For DWOs coming from DWP files, we don't know the CU length
5064 nor the type's offset in the TU until now. */
5065 dwo_unit->length = get_cu_length (&cu->header);
5066 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5067
5068 /* Establish the type offset that can be used to lookup the type.
5069 For DWO files, we don't know it until now. */
5070 sig_type->type_offset_in_section.sect_off =
5071 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5072 }
5073 else
5074 {
5075 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5076 dwo_abbrev_section,
5077 info_ptr, 0);
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 }
5083
5084 /* Replace the CU's original abbrev table with the DWO's.
5085 Reminder: We can't read the abbrev table until we've read the header. */
5086 if (abbrev_table_provided)
5087 {
5088 /* Don't free the provided abbrev table, the caller of
5089 init_cutu_and_read_dies owns it. */
5090 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5091 /* Ensure the DWO abbrev table gets freed. */
5092 make_cleanup (dwarf2_free_abbrev_table, cu);
5093 }
5094 else
5095 {
5096 dwarf2_free_abbrev_table (cu);
5097 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
5098 /* Leave any existing abbrev table cleanup as is. */
5099 }
5100
5101 /* Read in the die, but leave space to copy over the attributes
5102 from the stub. This has the benefit of simplifying the rest of
5103 the code - all the work to maintain the illusion of a single
5104 DW_TAG_{compile,type}_unit DIE is done here. */
5105 num_extra_attrs = ((stmt_list != NULL)
5106 + (low_pc != NULL)
5107 + (high_pc != NULL)
5108 + (ranges != NULL)
5109 + (comp_dir != NULL));
5110 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5111 result_has_children, num_extra_attrs);
5112
5113 /* Copy over the attributes from the stub to the DIE we just read in. */
5114 comp_unit_die = *result_comp_unit_die;
5115 i = comp_unit_die->num_attrs;
5116 if (stmt_list != NULL)
5117 comp_unit_die->attrs[i++] = *stmt_list;
5118 if (low_pc != NULL)
5119 comp_unit_die->attrs[i++] = *low_pc;
5120 if (high_pc != NULL)
5121 comp_unit_die->attrs[i++] = *high_pc;
5122 if (ranges != NULL)
5123 comp_unit_die->attrs[i++] = *ranges;
5124 if (comp_dir != NULL)
5125 comp_unit_die->attrs[i++] = *comp_dir;
5126 comp_unit_die->num_attrs += num_extra_attrs;
5127
5128 if (dwarf2_die_debug)
5129 {
5130 fprintf_unfiltered (gdb_stdlog,
5131 "Read die from %s@0x%x of %s:\n",
5132 get_section_name (section),
5133 (unsigned) (begin_info_ptr - section->buffer),
5134 bfd_get_filename (abfd));
5135 dump_die (comp_unit_die, dwarf2_die_debug);
5136 }
5137
5138 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5139 TUs by skipping the stub and going directly to the entry in the DWO file.
5140 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5141 to get it via circuitous means. Blech. */
5142 if (comp_dir != NULL)
5143 result_reader->comp_dir = DW_STRING (comp_dir);
5144
5145 /* Skip dummy compilation units. */
5146 if (info_ptr >= begin_info_ptr + dwo_unit->length
5147 || peek_abbrev_code (abfd, info_ptr) == 0)
5148 return 0;
5149
5150 *result_info_ptr = info_ptr;
5151 return 1;
5152 }
5153
5154 /* Subroutine of init_cutu_and_read_dies to simplify it.
5155 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
5156 Returns NULL if the specified DWO unit cannot be found. */
5157
5158 static struct dwo_unit *
5159 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5160 struct die_info *comp_unit_die)
5161 {
5162 struct dwarf2_cu *cu = this_cu->cu;
5163 struct attribute *attr;
5164 ULONGEST signature;
5165 struct dwo_unit *dwo_unit;
5166 const char *comp_dir, *dwo_name;
5167
5168 gdb_assert (cu != NULL);
5169
5170 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5171 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5172 gdb_assert (attr != NULL);
5173 dwo_name = DW_STRING (attr);
5174 comp_dir = NULL;
5175 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5176 if (attr)
5177 comp_dir = DW_STRING (attr);
5178
5179 if (this_cu->is_debug_types)
5180 {
5181 struct signatured_type *sig_type;
5182
5183 /* Since this_cu is the first member of struct signatured_type,
5184 we can go from a pointer to one to a pointer to the other. */
5185 sig_type = (struct signatured_type *) this_cu;
5186 signature = sig_type->signature;
5187 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5188 }
5189 else
5190 {
5191 struct attribute *attr;
5192
5193 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5194 if (! attr)
5195 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5196 " [in module %s]"),
5197 dwo_name, objfile_name (this_cu->objfile));
5198 signature = DW_UNSND (attr);
5199 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5200 signature);
5201 }
5202
5203 return dwo_unit;
5204 }
5205
5206 /* Subroutine of init_cutu_and_read_dies to simplify it.
5207 Read a TU directly from a DWO file, bypassing the stub. */
5208
5209 static void
5210 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5211 die_reader_func_ftype *die_reader_func,
5212 void *data)
5213 {
5214 struct dwarf2_cu *cu;
5215 struct signatured_type *sig_type;
5216 struct cleanup *cleanups, *free_cu_cleanup;
5217 struct die_reader_specs reader;
5218 const gdb_byte *info_ptr;
5219 struct die_info *comp_unit_die;
5220 int has_children;
5221
5222 /* Verify we can do the following downcast, and that we have the
5223 data we need. */
5224 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5225 sig_type = (struct signatured_type *) this_cu;
5226 gdb_assert (sig_type->dwo_unit != NULL);
5227
5228 cleanups = make_cleanup (null_cleanup, NULL);
5229
5230 gdb_assert (this_cu->cu == NULL);
5231 cu = xmalloc (sizeof (*cu));
5232 init_one_comp_unit (cu, this_cu);
5233 /* If an error occurs while loading, release our storage. */
5234 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5235
5236 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5237 0 /* abbrev_table_provided */,
5238 NULL /* stub_comp_unit_die */,
5239 sig_type->dwo_unit->dwo_file->comp_dir,
5240 &reader, &info_ptr,
5241 &comp_unit_die, &has_children) == 0)
5242 {
5243 /* Dummy die. */
5244 do_cleanups (cleanups);
5245 return;
5246 }
5247
5248 /* All the "real" work is done here. */
5249 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5250
5251 /* This duplicates some code in init_cutu_and_read_dies,
5252 but the alternative is making the latter more complex.
5253 This function is only for the special case of using DWO files directly:
5254 no point in overly complicating the general case just to handle this. */
5255 if (keep)
5256 {
5257 /* We've successfully allocated this compilation unit. Let our
5258 caller clean it up when finished with it. */
5259 discard_cleanups (free_cu_cleanup);
5260
5261 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5262 So we have to manually free the abbrev table. */
5263 dwarf2_free_abbrev_table (cu);
5264
5265 /* Link this CU into read_in_chain. */
5266 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5267 dwarf2_per_objfile->read_in_chain = this_cu;
5268 }
5269 else
5270 do_cleanups (free_cu_cleanup);
5271
5272 do_cleanups (cleanups);
5273 }
5274
5275 /* Initialize a CU (or TU) and read its DIEs.
5276 If the CU defers to a DWO file, read the DWO file as well.
5277
5278 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5279 Otherwise the table specified in the comp unit header is read in and used.
5280 This is an optimization for when we already have the abbrev table.
5281
5282 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5283 Otherwise, a new CU is allocated with xmalloc.
5284
5285 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5286 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5287
5288 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5289 linker) then DIE_READER_FUNC will not get called. */
5290
5291 static void
5292 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
5293 struct abbrev_table *abbrev_table,
5294 int use_existing_cu, int keep,
5295 die_reader_func_ftype *die_reader_func,
5296 void *data)
5297 {
5298 struct objfile *objfile = dwarf2_per_objfile->objfile;
5299 struct dwarf2_section_info *section = this_cu->section;
5300 bfd *abfd = get_section_bfd_owner (section);
5301 struct dwarf2_cu *cu;
5302 const gdb_byte *begin_info_ptr, *info_ptr;
5303 struct die_reader_specs reader;
5304 struct die_info *comp_unit_die;
5305 int has_children;
5306 struct attribute *attr;
5307 struct cleanup *cleanups, *free_cu_cleanup = NULL;
5308 struct signatured_type *sig_type = NULL;
5309 struct dwarf2_section_info *abbrev_section;
5310 /* Non-zero if CU currently points to a DWO file and we need to
5311 reread it. When this happens we need to reread the skeleton die
5312 before we can reread the DWO file (this only applies to CUs, not TUs). */
5313 int rereading_dwo_cu = 0;
5314
5315 if (dwarf2_die_debug)
5316 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5317 this_cu->is_debug_types ? "type" : "comp",
5318 this_cu->offset.sect_off);
5319
5320 if (use_existing_cu)
5321 gdb_assert (keep);
5322
5323 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5324 file (instead of going through the stub), short-circuit all of this. */
5325 if (this_cu->reading_dwo_directly)
5326 {
5327 /* Narrow down the scope of possibilities to have to understand. */
5328 gdb_assert (this_cu->is_debug_types);
5329 gdb_assert (abbrev_table == NULL);
5330 gdb_assert (!use_existing_cu);
5331 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5332 return;
5333 }
5334
5335 cleanups = make_cleanup (null_cleanup, NULL);
5336
5337 /* This is cheap if the section is already read in. */
5338 dwarf2_read_section (objfile, section);
5339
5340 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5341
5342 abbrev_section = get_abbrev_section_for_cu (this_cu);
5343
5344 if (use_existing_cu && this_cu->cu != NULL)
5345 {
5346 cu = this_cu->cu;
5347
5348 /* If this CU is from a DWO file we need to start over, we need to
5349 refetch the attributes from the skeleton CU.
5350 This could be optimized by retrieving those attributes from when we
5351 were here the first time: the previous comp_unit_die was stored in
5352 comp_unit_obstack. But there's no data yet that we need this
5353 optimization. */
5354 if (cu->dwo_unit != NULL)
5355 rereading_dwo_cu = 1;
5356 }
5357 else
5358 {
5359 /* If !use_existing_cu, this_cu->cu must be NULL. */
5360 gdb_assert (this_cu->cu == NULL);
5361
5362 cu = xmalloc (sizeof (*cu));
5363 init_one_comp_unit (cu, this_cu);
5364
5365 /* If an error occurs while loading, release our storage. */
5366 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5367 }
5368
5369 /* Get the header. */
5370 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5371 {
5372 /* We already have the header, there's no need to read it in again. */
5373 info_ptr += cu->header.first_die_offset.cu_off;
5374 }
5375 else
5376 {
5377 if (this_cu->is_debug_types)
5378 {
5379 ULONGEST signature;
5380 cu_offset type_offset_in_tu;
5381
5382 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5383 abbrev_section, info_ptr,
5384 &signature,
5385 &type_offset_in_tu);
5386
5387 /* Since per_cu is the first member of struct signatured_type,
5388 we can go from a pointer to one to a pointer to the other. */
5389 sig_type = (struct signatured_type *) this_cu;
5390 gdb_assert (sig_type->signature == signature);
5391 gdb_assert (sig_type->type_offset_in_tu.cu_off
5392 == type_offset_in_tu.cu_off);
5393 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5394
5395 /* LENGTH has not been set yet for type units if we're
5396 using .gdb_index. */
5397 this_cu->length = get_cu_length (&cu->header);
5398
5399 /* Establish the type offset that can be used to lookup the type. */
5400 sig_type->type_offset_in_section.sect_off =
5401 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
5402 }
5403 else
5404 {
5405 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5406 abbrev_section,
5407 info_ptr, 0);
5408
5409 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5410 gdb_assert (this_cu->length == get_cu_length (&cu->header));
5411 }
5412 }
5413
5414 /* Skip dummy compilation units. */
5415 if (info_ptr >= begin_info_ptr + this_cu->length
5416 || peek_abbrev_code (abfd, info_ptr) == 0)
5417 {
5418 do_cleanups (cleanups);
5419 return;
5420 }
5421
5422 /* If we don't have them yet, read the abbrevs for this compilation unit.
5423 And if we need to read them now, make sure they're freed when we're
5424 done. Note that it's important that if the CU had an abbrev table
5425 on entry we don't free it when we're done: Somewhere up the call stack
5426 it may be in use. */
5427 if (abbrev_table != NULL)
5428 {
5429 gdb_assert (cu->abbrev_table == NULL);
5430 gdb_assert (cu->header.abbrev_offset.sect_off
5431 == abbrev_table->offset.sect_off);
5432 cu->abbrev_table = abbrev_table;
5433 }
5434 else if (cu->abbrev_table == NULL)
5435 {
5436 dwarf2_read_abbrevs (cu, abbrev_section);
5437 make_cleanup (dwarf2_free_abbrev_table, cu);
5438 }
5439 else if (rereading_dwo_cu)
5440 {
5441 dwarf2_free_abbrev_table (cu);
5442 dwarf2_read_abbrevs (cu, abbrev_section);
5443 }
5444
5445 /* Read the top level CU/TU die. */
5446 init_cu_die_reader (&reader, cu, section, NULL);
5447 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5448
5449 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5450 from the DWO file.
5451 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5452 DWO CU, that this test will fail (the attribute will not be present). */
5453 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5454 if (attr)
5455 {
5456 struct dwo_unit *dwo_unit;
5457 struct die_info *dwo_comp_unit_die;
5458
5459 if (has_children)
5460 {
5461 complaint (&symfile_complaints,
5462 _("compilation unit with DW_AT_GNU_dwo_name"
5463 " has children (offset 0x%x) [in module %s]"),
5464 this_cu->offset.sect_off, bfd_get_filename (abfd));
5465 }
5466 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
5467 if (dwo_unit != NULL)
5468 {
5469 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5470 abbrev_table != NULL,
5471 comp_unit_die, NULL,
5472 &reader, &info_ptr,
5473 &dwo_comp_unit_die, &has_children) == 0)
5474 {
5475 /* Dummy die. */
5476 do_cleanups (cleanups);
5477 return;
5478 }
5479 comp_unit_die = dwo_comp_unit_die;
5480 }
5481 else
5482 {
5483 /* Yikes, we couldn't find the rest of the DIE, we only have
5484 the stub. A complaint has already been logged. There's
5485 not much more we can do except pass on the stub DIE to
5486 die_reader_func. We don't want to throw an error on bad
5487 debug info. */
5488 }
5489 }
5490
5491 /* All of the above is setup for this call. Yikes. */
5492 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5493
5494 /* Done, clean up. */
5495 if (free_cu_cleanup != NULL)
5496 {
5497 if (keep)
5498 {
5499 /* We've successfully allocated this compilation unit. Let our
5500 caller clean it up when finished with it. */
5501 discard_cleanups (free_cu_cleanup);
5502
5503 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5504 So we have to manually free the abbrev table. */
5505 dwarf2_free_abbrev_table (cu);
5506
5507 /* Link this CU into read_in_chain. */
5508 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5509 dwarf2_per_objfile->read_in_chain = this_cu;
5510 }
5511 else
5512 do_cleanups (free_cu_cleanup);
5513 }
5514
5515 do_cleanups (cleanups);
5516 }
5517
5518 /* Read CU/TU THIS_CU in section SECTION,
5519 but do not follow DW_AT_GNU_dwo_name if present.
5520 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
5521 to have already done the lookup to find the DWO/DWP file).
5522
5523 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
5524 THIS_CU->is_debug_types, but nothing else.
5525
5526 We fill in THIS_CU->length.
5527
5528 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5529 linker) then DIE_READER_FUNC will not get called.
5530
5531 THIS_CU->cu is always freed when done.
5532 This is done in order to not leave THIS_CU->cu in a state where we have
5533 to care whether it refers to the "main" CU or the DWO CU. */
5534
5535 static void
5536 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
5537 struct dwarf2_section_info *abbrev_section,
5538 struct dwo_file *dwo_file,
5539 die_reader_func_ftype *die_reader_func,
5540 void *data)
5541 {
5542 struct objfile *objfile = dwarf2_per_objfile->objfile;
5543 struct dwarf2_section_info *section = this_cu->section;
5544 bfd *abfd = get_section_bfd_owner (section);
5545 struct dwarf2_cu cu;
5546 const gdb_byte *begin_info_ptr, *info_ptr;
5547 struct die_reader_specs reader;
5548 struct cleanup *cleanups;
5549 struct die_info *comp_unit_die;
5550 int has_children;
5551
5552 if (dwarf2_die_debug)
5553 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5554 this_cu->is_debug_types ? "type" : "comp",
5555 this_cu->offset.sect_off);
5556
5557 gdb_assert (this_cu->cu == NULL);
5558
5559 /* This is cheap if the section is already read in. */
5560 dwarf2_read_section (objfile, section);
5561
5562 init_one_comp_unit (&cu, this_cu);
5563
5564 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5565
5566 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
5567 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5568 abbrev_section, info_ptr,
5569 this_cu->is_debug_types);
5570
5571 this_cu->length = get_cu_length (&cu.header);
5572
5573 /* Skip dummy compilation units. */
5574 if (info_ptr >= begin_info_ptr + this_cu->length
5575 || peek_abbrev_code (abfd, info_ptr) == 0)
5576 {
5577 do_cleanups (cleanups);
5578 return;
5579 }
5580
5581 dwarf2_read_abbrevs (&cu, abbrev_section);
5582 make_cleanup (dwarf2_free_abbrev_table, &cu);
5583
5584 init_cu_die_reader (&reader, &cu, section, dwo_file);
5585 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5586
5587 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5588
5589 do_cleanups (cleanups);
5590 }
5591
5592 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5593 does not lookup the specified DWO file.
5594 This cannot be used to read DWO files.
5595
5596 THIS_CU->cu is always freed when done.
5597 This is done in order to not leave THIS_CU->cu in a state where we have
5598 to care whether it refers to the "main" CU or the DWO CU.
5599 We can revisit this if the data shows there's a performance issue. */
5600
5601 static void
5602 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5603 die_reader_func_ftype *die_reader_func,
5604 void *data)
5605 {
5606 init_cutu_and_read_dies_no_follow (this_cu,
5607 get_abbrev_section_for_cu (this_cu),
5608 NULL,
5609 die_reader_func, data);
5610 }
5611 \f
5612 /* Type Unit Groups.
5613
5614 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5615 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5616 so that all types coming from the same compilation (.o file) are grouped
5617 together. A future step could be to put the types in the same symtab as
5618 the CU the types ultimately came from. */
5619
5620 static hashval_t
5621 hash_type_unit_group (const void *item)
5622 {
5623 const struct type_unit_group *tu_group = item;
5624
5625 return hash_stmt_list_entry (&tu_group->hash);
5626 }
5627
5628 static int
5629 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
5630 {
5631 const struct type_unit_group *lhs = item_lhs;
5632 const struct type_unit_group *rhs = item_rhs;
5633
5634 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
5635 }
5636
5637 /* Allocate a hash table for type unit groups. */
5638
5639 static htab_t
5640 allocate_type_unit_groups_table (void)
5641 {
5642 return htab_create_alloc_ex (3,
5643 hash_type_unit_group,
5644 eq_type_unit_group,
5645 NULL,
5646 &dwarf2_per_objfile->objfile->objfile_obstack,
5647 hashtab_obstack_allocate,
5648 dummy_obstack_deallocate);
5649 }
5650
5651 /* Type units that don't have DW_AT_stmt_list are grouped into their own
5652 partial symtabs. We combine several TUs per psymtab to not let the size
5653 of any one psymtab grow too big. */
5654 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5655 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
5656
5657 /* Helper routine for get_type_unit_group.
5658 Create the type_unit_group object used to hold one or more TUs. */
5659
5660 static struct type_unit_group *
5661 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
5662 {
5663 struct objfile *objfile = dwarf2_per_objfile->objfile;
5664 struct dwarf2_per_cu_data *per_cu;
5665 struct type_unit_group *tu_group;
5666
5667 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5668 struct type_unit_group);
5669 per_cu = &tu_group->per_cu;
5670 per_cu->objfile = objfile;
5671
5672 if (dwarf2_per_objfile->using_index)
5673 {
5674 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5675 struct dwarf2_per_cu_quick_data);
5676 }
5677 else
5678 {
5679 unsigned int line_offset = line_offset_struct.sect_off;
5680 struct partial_symtab *pst;
5681 char *name;
5682
5683 /* Give the symtab a useful name for debug purposes. */
5684 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5685 name = xstrprintf ("<type_units_%d>",
5686 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5687 else
5688 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5689
5690 pst = create_partial_symtab (per_cu, name);
5691 pst->anonymous = 1;
5692
5693 xfree (name);
5694 }
5695
5696 tu_group->hash.dwo_unit = cu->dwo_unit;
5697 tu_group->hash.line_offset = line_offset_struct;
5698
5699 return tu_group;
5700 }
5701
5702 /* Look up the type_unit_group for type unit CU, and create it if necessary.
5703 STMT_LIST is a DW_AT_stmt_list attribute. */
5704
5705 static struct type_unit_group *
5706 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
5707 {
5708 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5709 struct type_unit_group *tu_group;
5710 void **slot;
5711 unsigned int line_offset;
5712 struct type_unit_group type_unit_group_for_lookup;
5713
5714 if (dwarf2_per_objfile->type_unit_groups == NULL)
5715 {
5716 dwarf2_per_objfile->type_unit_groups =
5717 allocate_type_unit_groups_table ();
5718 }
5719
5720 /* Do we need to create a new group, or can we use an existing one? */
5721
5722 if (stmt_list)
5723 {
5724 line_offset = DW_UNSND (stmt_list);
5725 ++tu_stats->nr_symtab_sharers;
5726 }
5727 else
5728 {
5729 /* Ugh, no stmt_list. Rare, but we have to handle it.
5730 We can do various things here like create one group per TU or
5731 spread them over multiple groups to split up the expansion work.
5732 To avoid worst case scenarios (too many groups or too large groups)
5733 we, umm, group them in bunches. */
5734 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5735 | (tu_stats->nr_stmt_less_type_units
5736 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5737 ++tu_stats->nr_stmt_less_type_units;
5738 }
5739
5740 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5741 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
5742 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5743 &type_unit_group_for_lookup, INSERT);
5744 if (*slot != NULL)
5745 {
5746 tu_group = *slot;
5747 gdb_assert (tu_group != NULL);
5748 }
5749 else
5750 {
5751 sect_offset line_offset_struct;
5752
5753 line_offset_struct.sect_off = line_offset;
5754 tu_group = create_type_unit_group (cu, line_offset_struct);
5755 *slot = tu_group;
5756 ++tu_stats->nr_symtabs;
5757 }
5758
5759 return tu_group;
5760 }
5761
5762 /* Struct used to sort TUs by their abbreviation table offset. */
5763
5764 struct tu_abbrev_offset
5765 {
5766 struct signatured_type *sig_type;
5767 sect_offset abbrev_offset;
5768 };
5769
5770 /* Helper routine for build_type_unit_groups, passed to qsort. */
5771
5772 static int
5773 sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5774 {
5775 const struct tu_abbrev_offset * const *a = ap;
5776 const struct tu_abbrev_offset * const *b = bp;
5777 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5778 unsigned int boff = (*b)->abbrev_offset.sect_off;
5779
5780 return (aoff > boff) - (aoff < boff);
5781 }
5782
5783 /* A helper function to add a type_unit_group to a table. */
5784
5785 static int
5786 add_type_unit_group_to_table (void **slot, void *datum)
5787 {
5788 struct type_unit_group *tu_group = *slot;
5789 struct type_unit_group ***datap = datum;
5790
5791 **datap = tu_group;
5792 ++*datap;
5793
5794 return 1;
5795 }
5796
5797 /* Efficiently read all the type units, calling init_cutu_and_read_dies on
5798 each one passing FUNC,DATA.
5799
5800 The efficiency is because we sort TUs by the abbrev table they use and
5801 only read each abbrev table once. In one program there are 200K TUs
5802 sharing 8K abbrev tables.
5803
5804 The main purpose of this function is to support building the
5805 dwarf2_per_objfile->type_unit_groups table.
5806 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5807 can collapse the search space by grouping them by stmt_list.
5808 The savings can be significant, in the same program from above the 200K TUs
5809 share 8K stmt_list tables.
5810
5811 FUNC is expected to call get_type_unit_group, which will create the
5812 struct type_unit_group if necessary and add it to
5813 dwarf2_per_objfile->type_unit_groups. */
5814
5815 static void
5816 build_type_unit_groups (die_reader_func_ftype *func, void *data)
5817 {
5818 struct objfile *objfile = dwarf2_per_objfile->objfile;
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct cleanup *cleanups;
5821 struct abbrev_table *abbrev_table;
5822 sect_offset abbrev_offset;
5823 struct tu_abbrev_offset *sorted_by_abbrev;
5824 struct type_unit_group **iter;
5825 int i;
5826
5827 /* It's up to the caller to not call us multiple times. */
5828 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5829
5830 if (dwarf2_per_objfile->n_type_units == 0)
5831 return;
5832
5833 /* TUs typically share abbrev tables, and there can be way more TUs than
5834 abbrev tables. Sort by abbrev table to reduce the number of times we
5835 read each abbrev table in.
5836 Alternatives are to punt or to maintain a cache of abbrev tables.
5837 This is simpler and efficient enough for now.
5838
5839 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5840 symtab to use). Typically TUs with the same abbrev offset have the same
5841 stmt_list value too so in practice this should work well.
5842
5843 The basic algorithm here is:
5844
5845 sort TUs by abbrev table
5846 for each TU with same abbrev table:
5847 read abbrev table if first user
5848 read TU top level DIE
5849 [IWBN if DWO skeletons had DW_AT_stmt_list]
5850 call FUNC */
5851
5852 if (dwarf2_read_debug)
5853 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5854
5855 /* Sort in a separate table to maintain the order of all_type_units
5856 for .gdb_index: TU indices directly index all_type_units. */
5857 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5858 dwarf2_per_objfile->n_type_units);
5859 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5860 {
5861 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5862
5863 sorted_by_abbrev[i].sig_type = sig_type;
5864 sorted_by_abbrev[i].abbrev_offset =
5865 read_abbrev_offset (sig_type->per_cu.section,
5866 sig_type->per_cu.offset);
5867 }
5868 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5869 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5870 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5871
5872 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5873 called any number of times, so we don't reset tu_stats here. */
5874
5875 abbrev_offset.sect_off = ~(unsigned) 0;
5876 abbrev_table = NULL;
5877 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5878
5879 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5880 {
5881 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5882
5883 /* Switch to the next abbrev table if necessary. */
5884 if (abbrev_table == NULL
5885 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5886 {
5887 if (abbrev_table != NULL)
5888 {
5889 abbrev_table_free (abbrev_table);
5890 /* Reset to NULL in case abbrev_table_read_table throws
5891 an error: abbrev_table_free_cleanup will get called. */
5892 abbrev_table = NULL;
5893 }
5894 abbrev_offset = tu->abbrev_offset;
5895 abbrev_table =
5896 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5897 abbrev_offset);
5898 ++tu_stats->nr_uniq_abbrev_tables;
5899 }
5900
5901 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5902 func, data);
5903 }
5904
5905 /* type_unit_groups can be NULL if there is an error in the debug info.
5906 Just create an empty table so the rest of gdb doesn't have to watch
5907 for this error case. */
5908 if (dwarf2_per_objfile->type_unit_groups == NULL)
5909 {
5910 dwarf2_per_objfile->type_unit_groups =
5911 allocate_type_unit_groups_table ();
5912 dwarf2_per_objfile->n_type_unit_groups = 0;
5913 }
5914
5915 /* Create a vector of pointers to primary type units to make it easy to
5916 iterate over them and CUs. See dw2_get_primary_cu. */
5917 dwarf2_per_objfile->n_type_unit_groups =
5918 htab_elements (dwarf2_per_objfile->type_unit_groups);
5919 dwarf2_per_objfile->all_type_unit_groups =
5920 obstack_alloc (&objfile->objfile_obstack,
5921 dwarf2_per_objfile->n_type_unit_groups
5922 * sizeof (struct type_unit_group *));
5923 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5924 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5925 add_type_unit_group_to_table, &iter);
5926 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5927 == dwarf2_per_objfile->n_type_unit_groups);
5928
5929 do_cleanups (cleanups);
5930
5931 if (dwarf2_read_debug)
5932 {
5933 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5934 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5935 dwarf2_per_objfile->n_type_units);
5936 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5937 tu_stats->nr_uniq_abbrev_tables);
5938 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5939 tu_stats->nr_symtabs);
5940 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5941 tu_stats->nr_symtab_sharers);
5942 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5943 tu_stats->nr_stmt_less_type_units);
5944 }
5945 }
5946 \f
5947 /* Partial symbol tables. */
5948
5949 /* Create a psymtab named NAME and assign it to PER_CU.
5950
5951 The caller must fill in the following details:
5952 dirname, textlow, texthigh. */
5953
5954 static struct partial_symtab *
5955 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5956 {
5957 struct objfile *objfile = per_cu->objfile;
5958 struct partial_symtab *pst;
5959
5960 pst = start_psymtab_common (objfile, objfile->section_offsets,
5961 name, 0,
5962 objfile->global_psymbols.next,
5963 objfile->static_psymbols.next);
5964
5965 pst->psymtabs_addrmap_supported = 1;
5966
5967 /* This is the glue that links PST into GDB's symbol API. */
5968 pst->read_symtab_private = per_cu;
5969 pst->read_symtab = dwarf2_read_symtab;
5970 per_cu->v.psymtab = pst;
5971
5972 return pst;
5973 }
5974
5975 /* The DATA object passed to process_psymtab_comp_unit_reader has this
5976 type. */
5977
5978 struct process_psymtab_comp_unit_data
5979 {
5980 /* True if we are reading a DW_TAG_partial_unit. */
5981
5982 int want_partial_unit;
5983
5984 /* The "pretend" language that is used if the CU doesn't declare a
5985 language. */
5986
5987 enum language pretend_language;
5988 };
5989
5990 /* die_reader_func for process_psymtab_comp_unit. */
5991
5992 static void
5993 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
5994 const gdb_byte *info_ptr,
5995 struct die_info *comp_unit_die,
5996 int has_children,
5997 void *data)
5998 {
5999 struct dwarf2_cu *cu = reader->cu;
6000 struct objfile *objfile = cu->objfile;
6001 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6002 struct attribute *attr;
6003 CORE_ADDR baseaddr;
6004 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6005 struct partial_symtab *pst;
6006 int has_pc_info;
6007 const char *filename;
6008 struct process_psymtab_comp_unit_data *info = data;
6009
6010 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
6011 return;
6012
6013 gdb_assert (! per_cu->is_debug_types);
6014
6015 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
6016
6017 cu->list_in_scope = &file_symbols;
6018
6019 /* Allocate a new partial symbol table structure. */
6020 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6021 if (attr == NULL || !DW_STRING (attr))
6022 filename = "";
6023 else
6024 filename = DW_STRING (attr);
6025
6026 pst = create_partial_symtab (per_cu, filename);
6027
6028 /* This must be done before calling dwarf2_build_include_psymtabs. */
6029 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6030 if (attr != NULL)
6031 pst->dirname = DW_STRING (attr);
6032
6033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6034
6035 dwarf2_find_base_address (comp_unit_die, cu);
6036
6037 /* Possibly set the default values of LOWPC and HIGHPC from
6038 `DW_AT_ranges'. */
6039 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6040 &best_highpc, cu, pst);
6041 if (has_pc_info == 1 && best_lowpc < best_highpc)
6042 /* Store the contiguous range if it is not empty; it can be empty for
6043 CUs with no code. */
6044 addrmap_set_empty (objfile->psymtabs_addrmap,
6045 best_lowpc + baseaddr,
6046 best_highpc + baseaddr - 1, pst);
6047
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
6050 If not, there's no more debug_info for this comp unit. */
6051 if (has_children)
6052 {
6053 struct partial_die_info *first_die;
6054 CORE_ADDR lowpc, highpc;
6055
6056 lowpc = ((CORE_ADDR) -1);
6057 highpc = ((CORE_ADDR) 0);
6058
6059 first_die = load_partial_dies (reader, info_ptr, 1);
6060
6061 scan_partial_symbols (first_die, &lowpc, &highpc,
6062 ! has_pc_info, cu);
6063
6064 /* If we didn't find a lowpc, set it to highpc to avoid
6065 complaints from `maint check'. */
6066 if (lowpc == ((CORE_ADDR) -1))
6067 lowpc = highpc;
6068
6069 /* If the compilation unit didn't have an explicit address range,
6070 then use the information extracted from its child dies. */
6071 if (! has_pc_info)
6072 {
6073 best_lowpc = lowpc;
6074 best_highpc = highpc;
6075 }
6076 }
6077 pst->textlow = best_lowpc + baseaddr;
6078 pst->texthigh = best_highpc + baseaddr;
6079
6080 pst->n_global_syms = objfile->global_psymbols.next -
6081 (objfile->global_psymbols.list + pst->globals_offset);
6082 pst->n_static_syms = objfile->static_psymbols.next -
6083 (objfile->static_psymbols.list + pst->statics_offset);
6084 sort_pst_symbols (objfile, pst);
6085
6086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6087 {
6088 int i;
6089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6090 struct dwarf2_per_cu_data *iter;
6091
6092 /* Fill in 'dependencies' here; we fill in 'users' in a
6093 post-pass. */
6094 pst->number_of_dependencies = len;
6095 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6096 len * sizeof (struct symtab *));
6097 for (i = 0;
6098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6099 i, iter);
6100 ++i)
6101 pst->dependencies[i] = iter->v.psymtab;
6102
6103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6104 }
6105
6106 /* Get the list of files included in the current compilation unit,
6107 and build a psymtab for each of them. */
6108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6109
6110 if (dwarf2_read_debug)
6111 {
6112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6113
6114 fprintf_unfiltered (gdb_stdlog,
6115 "Psymtab for %s unit @0x%x: %s - %s"
6116 ", %d global, %d static syms\n",
6117 per_cu->is_debug_types ? "type" : "comp",
6118 per_cu->offset.sect_off,
6119 paddress (gdbarch, pst->textlow),
6120 paddress (gdbarch, pst->texthigh),
6121 pst->n_global_syms, pst->n_static_syms);
6122 }
6123 }
6124
6125 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6126 Process compilation unit THIS_CU for a psymtab. */
6127
6128 static void
6129 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
6130 int want_partial_unit,
6131 enum language pretend_language)
6132 {
6133 struct process_psymtab_comp_unit_data info;
6134
6135 /* If this compilation unit was already read in, free the
6136 cached copy in order to read it in again. This is
6137 necessary because we skipped some symbols when we first
6138 read in the compilation unit (see load_partial_dies).
6139 This problem could be avoided, but the benefit is unclear. */
6140 if (this_cu->cu != NULL)
6141 free_one_cached_comp_unit (this_cu);
6142
6143 gdb_assert (! this_cu->is_debug_types);
6144 info.want_partial_unit = want_partial_unit;
6145 info.pretend_language = pretend_language;
6146 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6147 process_psymtab_comp_unit_reader,
6148 &info);
6149
6150 /* Age out any secondary CUs. */
6151 age_cached_comp_units ();
6152 }
6153
6154 /* Reader function for build_type_psymtabs. */
6155
6156 static void
6157 build_type_psymtabs_reader (const struct die_reader_specs *reader,
6158 const gdb_byte *info_ptr,
6159 struct die_info *type_unit_die,
6160 int has_children,
6161 void *data)
6162 {
6163 struct objfile *objfile = dwarf2_per_objfile->objfile;
6164 struct dwarf2_cu *cu = reader->cu;
6165 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6166 struct signatured_type *sig_type;
6167 struct type_unit_group *tu_group;
6168 struct attribute *attr;
6169 struct partial_die_info *first_die;
6170 CORE_ADDR lowpc, highpc;
6171 struct partial_symtab *pst;
6172
6173 gdb_assert (data == NULL);
6174 gdb_assert (per_cu->is_debug_types);
6175 sig_type = (struct signatured_type *) per_cu;
6176
6177 if (! has_children)
6178 return;
6179
6180 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
6181 tu_group = get_type_unit_group (cu, attr);
6182
6183 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
6184
6185 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6186 cu->list_in_scope = &file_symbols;
6187 pst = create_partial_symtab (per_cu, "");
6188 pst->anonymous = 1;
6189
6190 first_die = load_partial_dies (reader, info_ptr, 1);
6191
6192 lowpc = (CORE_ADDR) -1;
6193 highpc = (CORE_ADDR) 0;
6194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6195
6196 pst->n_global_syms = objfile->global_psymbols.next -
6197 (objfile->global_psymbols.list + pst->globals_offset);
6198 pst->n_static_syms = objfile->static_psymbols.next -
6199 (objfile->static_psymbols.list + pst->statics_offset);
6200 sort_pst_symbols (objfile, pst);
6201 }
6202
6203 /* Traversal function for build_type_psymtabs. */
6204
6205 static int
6206 build_type_psymtab_dependencies (void **slot, void *info)
6207 {
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
6211 struct partial_symtab *pst = per_cu->v.psymtab;
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
6214 int i;
6215
6216 gdb_assert (len > 0);
6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
6224 ++i)
6225 {
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
6228 iter->type_unit_group = tu_group;
6229 }
6230
6231 VEC_free (sig_type_ptr, tu_group->tus);
6232
6233 return 1;
6234 }
6235
6236 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239 static void
6240 build_type_psymtabs (struct objfile *objfile)
6241 {
6242 if (! create_all_type_units (objfile))
6243 return;
6244
6245 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6246
6247 /* Now that all TUs have been processed we can fill in the dependencies. */
6248 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6249 build_type_psymtab_dependencies, NULL);
6250 }
6251
6252 /* A cleanup function that clears objfile's psymtabs_addrmap field. */
6253
6254 static void
6255 psymtabs_addrmap_cleanup (void *o)
6256 {
6257 struct objfile *objfile = o;
6258
6259 objfile->psymtabs_addrmap = NULL;
6260 }
6261
6262 /* Compute the 'user' field for each psymtab in OBJFILE. */
6263
6264 static void
6265 set_partial_user (struct objfile *objfile)
6266 {
6267 int i;
6268
6269 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6270 {
6271 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6272 struct partial_symtab *pst = per_cu->v.psymtab;
6273 int j;
6274
6275 if (pst == NULL)
6276 continue;
6277
6278 for (j = 0; j < pst->number_of_dependencies; ++j)
6279 {
6280 /* Set the 'user' field only if it is not already set. */
6281 if (pst->dependencies[j]->user == NULL)
6282 pst->dependencies[j]->user = pst;
6283 }
6284 }
6285 }
6286
6287 /* Build the partial symbol table by doing a quick pass through the
6288 .debug_info and .debug_abbrev sections. */
6289
6290 static void
6291 dwarf2_build_psymtabs_hard (struct objfile *objfile)
6292 {
6293 struct cleanup *back_to, *addrmap_cleanup;
6294 struct obstack temp_obstack;
6295 int i;
6296
6297 if (dwarf2_read_debug)
6298 {
6299 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
6300 objfile_name (objfile));
6301 }
6302
6303 dwarf2_per_objfile->reading_partial_symbols = 1;
6304
6305 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
6306
6307 /* Any cached compilation units will be linked by the per-objfile
6308 read_in_chain. Make sure to free them when we're done. */
6309 back_to = make_cleanup (free_cached_comp_units, NULL);
6310
6311 build_type_psymtabs (objfile);
6312
6313 create_all_comp_units (objfile);
6314
6315 /* Create a temporary address map on a temporary obstack. We later
6316 copy this to the final obstack. */
6317 obstack_init (&temp_obstack);
6318 make_cleanup_obstack_free (&temp_obstack);
6319 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6320 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
6321
6322 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6323 {
6324 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6325
6326 process_psymtab_comp_unit (per_cu, 0, language_minimal);
6327 }
6328
6329 set_partial_user (objfile);
6330
6331 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6332 &objfile->objfile_obstack);
6333 discard_cleanups (addrmap_cleanup);
6334
6335 do_cleanups (back_to);
6336
6337 if (dwarf2_read_debug)
6338 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
6339 objfile_name (objfile));
6340 }
6341
6342 /* die_reader_func for load_partial_comp_unit. */
6343
6344 static void
6345 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
6346 const gdb_byte *info_ptr,
6347 struct die_info *comp_unit_die,
6348 int has_children,
6349 void *data)
6350 {
6351 struct dwarf2_cu *cu = reader->cu;
6352
6353 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
6354
6355 /* Check if comp unit has_children.
6356 If so, read the rest of the partial symbols from this comp unit.
6357 If not, there's no more debug_info for this comp unit. */
6358 if (has_children)
6359 load_partial_dies (reader, info_ptr, 0);
6360 }
6361
6362 /* Load the partial DIEs for a secondary CU into memory.
6363 This is also used when rereading a primary CU with load_all_dies. */
6364
6365 static void
6366 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6367 {
6368 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6369 load_partial_comp_unit_reader, NULL);
6370 }
6371
6372 static void
6373 read_comp_units_from_section (struct objfile *objfile,
6374 struct dwarf2_section_info *section,
6375 unsigned int is_dwz,
6376 int *n_allocated,
6377 int *n_comp_units,
6378 struct dwarf2_per_cu_data ***all_comp_units)
6379 {
6380 const gdb_byte *info_ptr;
6381 bfd *abfd = get_section_bfd_owner (section);
6382
6383 if (dwarf2_read_debug)
6384 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
6385 get_section_name (section),
6386 get_section_file_name (section));
6387
6388 dwarf2_read_section (objfile, section);
6389
6390 info_ptr = section->buffer;
6391
6392 while (info_ptr < section->buffer + section->size)
6393 {
6394 unsigned int length, initial_length_size;
6395 struct dwarf2_per_cu_data *this_cu;
6396 sect_offset offset;
6397
6398 offset.sect_off = info_ptr - section->buffer;
6399
6400 /* Read just enough information to find out where the next
6401 compilation unit is. */
6402 length = read_initial_length (abfd, info_ptr, &initial_length_size);
6403
6404 /* Save the compilation unit for later lookup. */
6405 this_cu = obstack_alloc (&objfile->objfile_obstack,
6406 sizeof (struct dwarf2_per_cu_data));
6407 memset (this_cu, 0, sizeof (*this_cu));
6408 this_cu->offset = offset;
6409 this_cu->length = length + initial_length_size;
6410 this_cu->is_dwz = is_dwz;
6411 this_cu->objfile = objfile;
6412 this_cu->section = section;
6413
6414 if (*n_comp_units == *n_allocated)
6415 {
6416 *n_allocated *= 2;
6417 *all_comp_units = xrealloc (*all_comp_units,
6418 *n_allocated
6419 * sizeof (struct dwarf2_per_cu_data *));
6420 }
6421 (*all_comp_units)[*n_comp_units] = this_cu;
6422 ++*n_comp_units;
6423
6424 info_ptr = info_ptr + this_cu->length;
6425 }
6426 }
6427
6428 /* Create a list of all compilation units in OBJFILE.
6429 This is only done for -readnow and building partial symtabs. */
6430
6431 static void
6432 create_all_comp_units (struct objfile *objfile)
6433 {
6434 int n_allocated;
6435 int n_comp_units;
6436 struct dwarf2_per_cu_data **all_comp_units;
6437 struct dwz_file *dwz;
6438
6439 n_comp_units = 0;
6440 n_allocated = 10;
6441 all_comp_units = xmalloc (n_allocated
6442 * sizeof (struct dwarf2_per_cu_data *));
6443
6444 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6445 &n_allocated, &n_comp_units, &all_comp_units);
6446
6447 dwz = dwarf2_get_dwz_file ();
6448 if (dwz != NULL)
6449 read_comp_units_from_section (objfile, &dwz->info, 1,
6450 &n_allocated, &n_comp_units,
6451 &all_comp_units);
6452
6453 dwarf2_per_objfile->all_comp_units
6454 = obstack_alloc (&objfile->objfile_obstack,
6455 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6456 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6457 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6458 xfree (all_comp_units);
6459 dwarf2_per_objfile->n_comp_units = n_comp_units;
6460 }
6461
6462 /* Process all loaded DIEs for compilation unit CU, starting at
6463 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6464 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6465 DW_AT_ranges). If NEED_PC is set, then this function will set
6466 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6467 and record the covered ranges in the addrmap. */
6468
6469 static void
6470 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
6471 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6472 {
6473 struct partial_die_info *pdi;
6474
6475 /* Now, march along the PDI's, descending into ones which have
6476 interesting children but skipping the children of the other ones,
6477 until we reach the end of the compilation unit. */
6478
6479 pdi = first_die;
6480
6481 while (pdi != NULL)
6482 {
6483 fixup_partial_die (pdi, cu);
6484
6485 /* Anonymous namespaces or modules have no name but have interesting
6486 children, so we need to look at them. Ditto for anonymous
6487 enums. */
6488
6489 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
6490 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6491 || pdi->tag == DW_TAG_imported_unit)
6492 {
6493 switch (pdi->tag)
6494 {
6495 case DW_TAG_subprogram:
6496 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6497 break;
6498 case DW_TAG_constant:
6499 case DW_TAG_variable:
6500 case DW_TAG_typedef:
6501 case DW_TAG_union_type:
6502 if (!pdi->is_declaration)
6503 {
6504 add_partial_symbol (pdi, cu);
6505 }
6506 break;
6507 case DW_TAG_class_type:
6508 case DW_TAG_interface_type:
6509 case DW_TAG_structure_type:
6510 if (!pdi->is_declaration)
6511 {
6512 add_partial_symbol (pdi, cu);
6513 }
6514 break;
6515 case DW_TAG_enumeration_type:
6516 if (!pdi->is_declaration)
6517 add_partial_enumeration (pdi, cu);
6518 break;
6519 case DW_TAG_base_type:
6520 case DW_TAG_subrange_type:
6521 /* File scope base type definitions are added to the partial
6522 symbol table. */
6523 add_partial_symbol (pdi, cu);
6524 break;
6525 case DW_TAG_namespace:
6526 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
6527 break;
6528 case DW_TAG_module:
6529 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6530 break;
6531 case DW_TAG_imported_unit:
6532 {
6533 struct dwarf2_per_cu_data *per_cu;
6534
6535 /* For now we don't handle imported units in type units. */
6536 if (cu->per_cu->is_debug_types)
6537 {
6538 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6539 " supported in type units [in module %s]"),
6540 objfile_name (cu->objfile));
6541 }
6542
6543 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
6544 pdi->is_dwz,
6545 cu->objfile);
6546
6547 /* Go read the partial unit, if needed. */
6548 if (per_cu->v.psymtab == NULL)
6549 process_psymtab_comp_unit (per_cu, 1, cu->language);
6550
6551 VEC_safe_push (dwarf2_per_cu_ptr,
6552 cu->per_cu->imported_symtabs, per_cu);
6553 }
6554 break;
6555 case DW_TAG_imported_declaration:
6556 add_partial_symbol (pdi, cu);
6557 break;
6558 default:
6559 break;
6560 }
6561 }
6562
6563 /* If the die has a sibling, skip to the sibling. */
6564
6565 pdi = pdi->die_sibling;
6566 }
6567 }
6568
6569 /* Functions used to compute the fully scoped name of a partial DIE.
6570
6571 Normally, this is simple. For C++, the parent DIE's fully scoped
6572 name is concatenated with "::" and the partial DIE's name. For
6573 Java, the same thing occurs except that "." is used instead of "::".
6574 Enumerators are an exception; they use the scope of their parent
6575 enumeration type, i.e. the name of the enumeration type is not
6576 prepended to the enumerator.
6577
6578 There are two complexities. One is DW_AT_specification; in this
6579 case "parent" means the parent of the target of the specification,
6580 instead of the direct parent of the DIE. The other is compilers
6581 which do not emit DW_TAG_namespace; in this case we try to guess
6582 the fully qualified name of structure types from their members'
6583 linkage names. This must be done using the DIE's children rather
6584 than the children of any DW_AT_specification target. We only need
6585 to do this for structures at the top level, i.e. if the target of
6586 any DW_AT_specification (if any; otherwise the DIE itself) does not
6587 have a parent. */
6588
6589 /* Compute the scope prefix associated with PDI's parent, in
6590 compilation unit CU. The result will be allocated on CU's
6591 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6592 field. NULL is returned if no prefix is necessary. */
6593 static const char *
6594 partial_die_parent_scope (struct partial_die_info *pdi,
6595 struct dwarf2_cu *cu)
6596 {
6597 const char *grandparent_scope;
6598 struct partial_die_info *parent, *real_pdi;
6599
6600 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6601 then this means the parent of the specification DIE. */
6602
6603 real_pdi = pdi;
6604 while (real_pdi->has_specification)
6605 real_pdi = find_partial_die (real_pdi->spec_offset,
6606 real_pdi->spec_is_dwz, cu);
6607
6608 parent = real_pdi->die_parent;
6609 if (parent == NULL)
6610 return NULL;
6611
6612 if (parent->scope_set)
6613 return parent->scope;
6614
6615 fixup_partial_die (parent, cu);
6616
6617 grandparent_scope = partial_die_parent_scope (parent, cu);
6618
6619 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6620 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6621 Work around this problem here. */
6622 if (cu->language == language_cplus
6623 && parent->tag == DW_TAG_namespace
6624 && strcmp (parent->name, "::") == 0
6625 && grandparent_scope == NULL)
6626 {
6627 parent->scope = NULL;
6628 parent->scope_set = 1;
6629 return NULL;
6630 }
6631
6632 if (pdi->tag == DW_TAG_enumerator)
6633 /* Enumerators should not get the name of the enumeration as a prefix. */
6634 parent->scope = grandparent_scope;
6635 else if (parent->tag == DW_TAG_namespace
6636 || parent->tag == DW_TAG_module
6637 || parent->tag == DW_TAG_structure_type
6638 || parent->tag == DW_TAG_class_type
6639 || parent->tag == DW_TAG_interface_type
6640 || parent->tag == DW_TAG_union_type
6641 || parent->tag == DW_TAG_enumeration_type)
6642 {
6643 if (grandparent_scope == NULL)
6644 parent->scope = parent->name;
6645 else
6646 parent->scope = typename_concat (&cu->comp_unit_obstack,
6647 grandparent_scope,
6648 parent->name, 0, cu);
6649 }
6650 else
6651 {
6652 /* FIXME drow/2004-04-01: What should we be doing with
6653 function-local names? For partial symbols, we should probably be
6654 ignoring them. */
6655 complaint (&symfile_complaints,
6656 _("unhandled containing DIE tag %d for DIE at %d"),
6657 parent->tag, pdi->offset.sect_off);
6658 parent->scope = grandparent_scope;
6659 }
6660
6661 parent->scope_set = 1;
6662 return parent->scope;
6663 }
6664
6665 /* Return the fully scoped name associated with PDI, from compilation unit
6666 CU. The result will be allocated with malloc. */
6667
6668 static char *
6669 partial_die_full_name (struct partial_die_info *pdi,
6670 struct dwarf2_cu *cu)
6671 {
6672 const char *parent_scope;
6673
6674 /* If this is a template instantiation, we can not work out the
6675 template arguments from partial DIEs. So, unfortunately, we have
6676 to go through the full DIEs. At least any work we do building
6677 types here will be reused if full symbols are loaded later. */
6678 if (pdi->has_template_arguments)
6679 {
6680 fixup_partial_die (pdi, cu);
6681
6682 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6683 {
6684 struct die_info *die;
6685 struct attribute attr;
6686 struct dwarf2_cu *ref_cu = cu;
6687
6688 /* DW_FORM_ref_addr is using section offset. */
6689 attr.name = 0;
6690 attr.form = DW_FORM_ref_addr;
6691 attr.u.unsnd = pdi->offset.sect_off;
6692 die = follow_die_ref (NULL, &attr, &ref_cu);
6693
6694 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6695 }
6696 }
6697
6698 parent_scope = partial_die_parent_scope (pdi, cu);
6699 if (parent_scope == NULL)
6700 return NULL;
6701 else
6702 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
6703 }
6704
6705 static void
6706 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
6707 {
6708 struct objfile *objfile = cu->objfile;
6709 CORE_ADDR addr = 0;
6710 const char *actual_name = NULL;
6711 CORE_ADDR baseaddr;
6712 char *built_actual_name;
6713
6714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6715
6716 built_actual_name = partial_die_full_name (pdi, cu);
6717 if (built_actual_name != NULL)
6718 actual_name = built_actual_name;
6719
6720 if (actual_name == NULL)
6721 actual_name = pdi->name;
6722
6723 switch (pdi->tag)
6724 {
6725 case DW_TAG_subprogram:
6726 if (pdi->is_external || cu->language == language_ada)
6727 {
6728 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6729 of the global scope. But in Ada, we want to be able to access
6730 nested procedures globally. So all Ada subprograms are stored
6731 in the global scope. */
6732 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6733 mst_text, objfile); */
6734 add_psymbol_to_list (actual_name, strlen (actual_name),
6735 built_actual_name != NULL,
6736 VAR_DOMAIN, LOC_BLOCK,
6737 &objfile->global_psymbols,
6738 0, pdi->lowpc + baseaddr,
6739 cu->language, objfile);
6740 }
6741 else
6742 {
6743 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
6744 mst_file_text, objfile); */
6745 add_psymbol_to_list (actual_name, strlen (actual_name),
6746 built_actual_name != NULL,
6747 VAR_DOMAIN, LOC_BLOCK,
6748 &objfile->static_psymbols,
6749 0, pdi->lowpc + baseaddr,
6750 cu->language, objfile);
6751 }
6752 break;
6753 case DW_TAG_constant:
6754 {
6755 struct psymbol_allocation_list *list;
6756
6757 if (pdi->is_external)
6758 list = &objfile->global_psymbols;
6759 else
6760 list = &objfile->static_psymbols;
6761 add_psymbol_to_list (actual_name, strlen (actual_name),
6762 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
6763 list, 0, 0, cu->language, objfile);
6764 }
6765 break;
6766 case DW_TAG_variable:
6767 if (pdi->d.locdesc)
6768 addr = decode_locdesc (pdi->d.locdesc, cu);
6769
6770 if (pdi->d.locdesc
6771 && addr == 0
6772 && !dwarf2_per_objfile->has_section_at_zero)
6773 {
6774 /* A global or static variable may also have been stripped
6775 out by the linker if unused, in which case its address
6776 will be nullified; do not add such variables into partial
6777 symbol table then. */
6778 }
6779 else if (pdi->is_external)
6780 {
6781 /* Global Variable.
6782 Don't enter into the minimal symbol tables as there is
6783 a minimal symbol table entry from the ELF symbols already.
6784 Enter into partial symbol table if it has a location
6785 descriptor or a type.
6786 If the location descriptor is missing, new_symbol will create
6787 a LOC_UNRESOLVED symbol, the address of the variable will then
6788 be determined from the minimal symbol table whenever the variable
6789 is referenced.
6790 The address for the partial symbol table entry is not
6791 used by GDB, but it comes in handy for debugging partial symbol
6792 table building. */
6793
6794 if (pdi->d.locdesc || pdi->has_type)
6795 add_psymbol_to_list (actual_name, strlen (actual_name),
6796 built_actual_name != NULL,
6797 VAR_DOMAIN, LOC_STATIC,
6798 &objfile->global_psymbols,
6799 0, addr + baseaddr,
6800 cu->language, objfile);
6801 }
6802 else
6803 {
6804 /* Static Variable. Skip symbols without location descriptors. */
6805 if (pdi->d.locdesc == NULL)
6806 {
6807 xfree (built_actual_name);
6808 return;
6809 }
6810 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
6811 mst_file_data, objfile); */
6812 add_psymbol_to_list (actual_name, strlen (actual_name),
6813 built_actual_name != NULL,
6814 VAR_DOMAIN, LOC_STATIC,
6815 &objfile->static_psymbols,
6816 0, addr + baseaddr,
6817 cu->language, objfile);
6818 }
6819 break;
6820 case DW_TAG_typedef:
6821 case DW_TAG_base_type:
6822 case DW_TAG_subrange_type:
6823 add_psymbol_to_list (actual_name, strlen (actual_name),
6824 built_actual_name != NULL,
6825 VAR_DOMAIN, LOC_TYPEDEF,
6826 &objfile->static_psymbols,
6827 0, (CORE_ADDR) 0, cu->language, objfile);
6828 break;
6829 case DW_TAG_imported_declaration:
6830 case DW_TAG_namespace:
6831 add_psymbol_to_list (actual_name, strlen (actual_name),
6832 built_actual_name != NULL,
6833 VAR_DOMAIN, LOC_TYPEDEF,
6834 &objfile->global_psymbols,
6835 0, (CORE_ADDR) 0, cu->language, objfile);
6836 break;
6837 case DW_TAG_module:
6838 add_psymbol_to_list (actual_name, strlen (actual_name),
6839 built_actual_name != NULL,
6840 MODULE_DOMAIN, LOC_TYPEDEF,
6841 &objfile->global_psymbols,
6842 0, (CORE_ADDR) 0, cu->language, objfile);
6843 break;
6844 case DW_TAG_class_type:
6845 case DW_TAG_interface_type:
6846 case DW_TAG_structure_type:
6847 case DW_TAG_union_type:
6848 case DW_TAG_enumeration_type:
6849 /* Skip external references. The DWARF standard says in the section
6850 about "Structure, Union, and Class Type Entries": "An incomplete
6851 structure, union or class type is represented by a structure,
6852 union or class entry that does not have a byte size attribute
6853 and that has a DW_AT_declaration attribute." */
6854 if (!pdi->has_byte_size && pdi->is_declaration)
6855 {
6856 xfree (built_actual_name);
6857 return;
6858 }
6859
6860 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6861 static vs. global. */
6862 add_psymbol_to_list (actual_name, strlen (actual_name),
6863 built_actual_name != NULL,
6864 STRUCT_DOMAIN, LOC_TYPEDEF,
6865 (cu->language == language_cplus
6866 || cu->language == language_java)
6867 ? &objfile->global_psymbols
6868 : &objfile->static_psymbols,
6869 0, (CORE_ADDR) 0, cu->language, objfile);
6870
6871 break;
6872 case DW_TAG_enumerator:
6873 add_psymbol_to_list (actual_name, strlen (actual_name),
6874 built_actual_name != NULL,
6875 VAR_DOMAIN, LOC_CONST,
6876 (cu->language == language_cplus
6877 || cu->language == language_java)
6878 ? &objfile->global_psymbols
6879 : &objfile->static_psymbols,
6880 0, (CORE_ADDR) 0, cu->language, objfile);
6881 break;
6882 default:
6883 break;
6884 }
6885
6886 xfree (built_actual_name);
6887 }
6888
6889 /* Read a partial die corresponding to a namespace; also, add a symbol
6890 corresponding to that namespace to the symbol table. NAMESPACE is
6891 the name of the enclosing namespace. */
6892
6893 static void
6894 add_partial_namespace (struct partial_die_info *pdi,
6895 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6896 int need_pc, struct dwarf2_cu *cu)
6897 {
6898 /* Add a symbol for the namespace. */
6899
6900 add_partial_symbol (pdi, cu);
6901
6902 /* Now scan partial symbols in that namespace. */
6903
6904 if (pdi->has_children)
6905 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6906 }
6907
6908 /* Read a partial die corresponding to a Fortran module. */
6909
6910 static void
6911 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6912 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6913 {
6914 /* Add a symbol for the namespace. */
6915
6916 add_partial_symbol (pdi, cu);
6917
6918 /* Now scan partial symbols in that module. */
6919
6920 if (pdi->has_children)
6921 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6922 }
6923
6924 /* Read a partial die corresponding to a subprogram and create a partial
6925 symbol for that subprogram. When the CU language allows it, this
6926 routine also defines a partial symbol for each nested subprogram
6927 that this subprogram contains.
6928
6929 DIE my also be a lexical block, in which case we simply search
6930 recursively for suprograms defined inside that lexical block.
6931 Again, this is only performed when the CU language allows this
6932 type of definitions. */
6933
6934 static void
6935 add_partial_subprogram (struct partial_die_info *pdi,
6936 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6937 int need_pc, struct dwarf2_cu *cu)
6938 {
6939 if (pdi->tag == DW_TAG_subprogram)
6940 {
6941 if (pdi->has_pc_info)
6942 {
6943 if (pdi->lowpc < *lowpc)
6944 *lowpc = pdi->lowpc;
6945 if (pdi->highpc > *highpc)
6946 *highpc = pdi->highpc;
6947 if (need_pc)
6948 {
6949 CORE_ADDR baseaddr;
6950 struct objfile *objfile = cu->objfile;
6951
6952 baseaddr = ANOFFSET (objfile->section_offsets,
6953 SECT_OFF_TEXT (objfile));
6954 addrmap_set_empty (objfile->psymtabs_addrmap,
6955 pdi->lowpc + baseaddr,
6956 pdi->highpc - 1 + baseaddr,
6957 cu->per_cu->v.psymtab);
6958 }
6959 }
6960
6961 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6962 {
6963 if (!pdi->is_declaration)
6964 /* Ignore subprogram DIEs that do not have a name, they are
6965 illegal. Do not emit a complaint at this point, we will
6966 do so when we convert this psymtab into a symtab. */
6967 if (pdi->name)
6968 add_partial_symbol (pdi, cu);
6969 }
6970 }
6971
6972 if (! pdi->has_children)
6973 return;
6974
6975 if (cu->language == language_ada)
6976 {
6977 pdi = pdi->die_child;
6978 while (pdi != NULL)
6979 {
6980 fixup_partial_die (pdi, cu);
6981 if (pdi->tag == DW_TAG_subprogram
6982 || pdi->tag == DW_TAG_lexical_block)
6983 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
6984 pdi = pdi->die_sibling;
6985 }
6986 }
6987 }
6988
6989 /* Read a partial die corresponding to an enumeration type. */
6990
6991 static void
6992 add_partial_enumeration (struct partial_die_info *enum_pdi,
6993 struct dwarf2_cu *cu)
6994 {
6995 struct partial_die_info *pdi;
6996
6997 if (enum_pdi->name != NULL)
6998 add_partial_symbol (enum_pdi, cu);
6999
7000 pdi = enum_pdi->die_child;
7001 while (pdi)
7002 {
7003 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
7004 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
7005 else
7006 add_partial_symbol (pdi, cu);
7007 pdi = pdi->die_sibling;
7008 }
7009 }
7010
7011 /* Return the initial uleb128 in the die at INFO_PTR. */
7012
7013 static unsigned int
7014 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
7015 {
7016 unsigned int bytes_read;
7017
7018 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7019 }
7020
7021 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7022 Return the corresponding abbrev, or NULL if the number is zero (indicating
7023 an empty DIE). In either case *BYTES_READ will be set to the length of
7024 the initial number. */
7025
7026 static struct abbrev_info *
7027 peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
7028 struct dwarf2_cu *cu)
7029 {
7030 bfd *abfd = cu->objfile->obfd;
7031 unsigned int abbrev_number;
7032 struct abbrev_info *abbrev;
7033
7034 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7035
7036 if (abbrev_number == 0)
7037 return NULL;
7038
7039 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
7040 if (!abbrev)
7041 {
7042 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7043 abbrev_number, bfd_get_filename (abfd));
7044 }
7045
7046 return abbrev;
7047 }
7048
7049 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7050 Returns a pointer to the end of a series of DIEs, terminated by an empty
7051 DIE. Any children of the skipped DIEs will also be skipped. */
7052
7053 static const gdb_byte *
7054 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
7055 {
7056 struct dwarf2_cu *cu = reader->cu;
7057 struct abbrev_info *abbrev;
7058 unsigned int bytes_read;
7059
7060 while (1)
7061 {
7062 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7063 if (abbrev == NULL)
7064 return info_ptr + bytes_read;
7065 else
7066 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
7067 }
7068 }
7069
7070 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7071 INFO_PTR should point just after the initial uleb128 of a DIE, and the
7072 abbrev corresponding to that skipped uleb128 should be passed in
7073 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7074 children. */
7075
7076 static const gdb_byte *
7077 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
7078 struct abbrev_info *abbrev)
7079 {
7080 unsigned int bytes_read;
7081 struct attribute attr;
7082 bfd *abfd = reader->abfd;
7083 struct dwarf2_cu *cu = reader->cu;
7084 const gdb_byte *buffer = reader->buffer;
7085 const gdb_byte *buffer_end = reader->buffer_end;
7086 const gdb_byte *start_info_ptr = info_ptr;
7087 unsigned int form, i;
7088
7089 for (i = 0; i < abbrev->num_attrs; i++)
7090 {
7091 /* The only abbrev we care about is DW_AT_sibling. */
7092 if (abbrev->attrs[i].name == DW_AT_sibling)
7093 {
7094 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
7095 if (attr.form == DW_FORM_ref_addr)
7096 complaint (&symfile_complaints,
7097 _("ignoring absolute DW_AT_sibling"));
7098 else
7099 {
7100 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7101 const gdb_byte *sibling_ptr = buffer + off;
7102
7103 if (sibling_ptr < info_ptr)
7104 complaint (&symfile_complaints,
7105 _("DW_AT_sibling points backwards"));
7106 else
7107 return sibling_ptr;
7108 }
7109 }
7110
7111 /* If it isn't DW_AT_sibling, skip this attribute. */
7112 form = abbrev->attrs[i].form;
7113 skip_attribute:
7114 switch (form)
7115 {
7116 case DW_FORM_ref_addr:
7117 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7118 and later it is offset sized. */
7119 if (cu->header.version == 2)
7120 info_ptr += cu->header.addr_size;
7121 else
7122 info_ptr += cu->header.offset_size;
7123 break;
7124 case DW_FORM_GNU_ref_alt:
7125 info_ptr += cu->header.offset_size;
7126 break;
7127 case DW_FORM_addr:
7128 info_ptr += cu->header.addr_size;
7129 break;
7130 case DW_FORM_data1:
7131 case DW_FORM_ref1:
7132 case DW_FORM_flag:
7133 info_ptr += 1;
7134 break;
7135 case DW_FORM_flag_present:
7136 break;
7137 case DW_FORM_data2:
7138 case DW_FORM_ref2:
7139 info_ptr += 2;
7140 break;
7141 case DW_FORM_data4:
7142 case DW_FORM_ref4:
7143 info_ptr += 4;
7144 break;
7145 case DW_FORM_data8:
7146 case DW_FORM_ref8:
7147 case DW_FORM_ref_sig8:
7148 info_ptr += 8;
7149 break;
7150 case DW_FORM_string:
7151 read_direct_string (abfd, info_ptr, &bytes_read);
7152 info_ptr += bytes_read;
7153 break;
7154 case DW_FORM_sec_offset:
7155 case DW_FORM_strp:
7156 case DW_FORM_GNU_strp_alt:
7157 info_ptr += cu->header.offset_size;
7158 break;
7159 case DW_FORM_exprloc:
7160 case DW_FORM_block:
7161 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7162 info_ptr += bytes_read;
7163 break;
7164 case DW_FORM_block1:
7165 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7166 break;
7167 case DW_FORM_block2:
7168 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7169 break;
7170 case DW_FORM_block4:
7171 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7172 break;
7173 case DW_FORM_sdata:
7174 case DW_FORM_udata:
7175 case DW_FORM_ref_udata:
7176 case DW_FORM_GNU_addr_index:
7177 case DW_FORM_GNU_str_index:
7178 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
7179 break;
7180 case DW_FORM_indirect:
7181 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7182 info_ptr += bytes_read;
7183 /* We need to continue parsing from here, so just go back to
7184 the top. */
7185 goto skip_attribute;
7186
7187 default:
7188 error (_("Dwarf Error: Cannot handle %s "
7189 "in DWARF reader [in module %s]"),
7190 dwarf_form_name (form),
7191 bfd_get_filename (abfd));
7192 }
7193 }
7194
7195 if (abbrev->has_children)
7196 return skip_children (reader, info_ptr);
7197 else
7198 return info_ptr;
7199 }
7200
7201 /* Locate ORIG_PDI's sibling.
7202 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
7203
7204 static const gdb_byte *
7205 locate_pdi_sibling (const struct die_reader_specs *reader,
7206 struct partial_die_info *orig_pdi,
7207 const gdb_byte *info_ptr)
7208 {
7209 /* Do we know the sibling already? */
7210
7211 if (orig_pdi->sibling)
7212 return orig_pdi->sibling;
7213
7214 /* Are there any children to deal with? */
7215
7216 if (!orig_pdi->has_children)
7217 return info_ptr;
7218
7219 /* Skip the children the long way. */
7220
7221 return skip_children (reader, info_ptr);
7222 }
7223
7224 /* Expand this partial symbol table into a full symbol table. SELF is
7225 not NULL. */
7226
7227 static void
7228 dwarf2_read_symtab (struct partial_symtab *self,
7229 struct objfile *objfile)
7230 {
7231 if (self->readin)
7232 {
7233 warning (_("bug: psymtab for %s is already read in."),
7234 self->filename);
7235 }
7236 else
7237 {
7238 if (info_verbose)
7239 {
7240 printf_filtered (_("Reading in symbols for %s..."),
7241 self->filename);
7242 gdb_flush (gdb_stdout);
7243 }
7244
7245 /* Restore our global data. */
7246 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
7247
7248 /* If this psymtab is constructed from a debug-only objfile, the
7249 has_section_at_zero flag will not necessarily be correct. We
7250 can get the correct value for this flag by looking at the data
7251 associated with the (presumably stripped) associated objfile. */
7252 if (objfile->separate_debug_objfile_backlink)
7253 {
7254 struct dwarf2_per_objfile *dpo_backlink
7255 = objfile_data (objfile->separate_debug_objfile_backlink,
7256 dwarf2_objfile_data_key);
7257
7258 dwarf2_per_objfile->has_section_at_zero
7259 = dpo_backlink->has_section_at_zero;
7260 }
7261
7262 dwarf2_per_objfile->reading_partial_symbols = 0;
7263
7264 psymtab_to_symtab_1 (self);
7265
7266 /* Finish up the debug error message. */
7267 if (info_verbose)
7268 printf_filtered (_("done.\n"));
7269 }
7270
7271 process_cu_includes ();
7272 }
7273 \f
7274 /* Reading in full CUs. */
7275
7276 /* Add PER_CU to the queue. */
7277
7278 static void
7279 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7280 enum language pretend_language)
7281 {
7282 struct dwarf2_queue_item *item;
7283
7284 per_cu->queued = 1;
7285 item = xmalloc (sizeof (*item));
7286 item->per_cu = per_cu;
7287 item->pretend_language = pretend_language;
7288 item->next = NULL;
7289
7290 if (dwarf2_queue == NULL)
7291 dwarf2_queue = item;
7292 else
7293 dwarf2_queue_tail->next = item;
7294
7295 dwarf2_queue_tail = item;
7296 }
7297
7298 /* If PER_CU is not yet queued, add it to the queue.
7299 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7300 dependency.
7301 The result is non-zero if PER_CU was queued, otherwise the result is zero
7302 meaning either PER_CU is already queued or it is already loaded.
7303
7304 N.B. There is an invariant here that if a CU is queued then it is loaded.
7305 The caller is required to load PER_CU if we return non-zero. */
7306
7307 static int
7308 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
7309 struct dwarf2_per_cu_data *per_cu,
7310 enum language pretend_language)
7311 {
7312 /* We may arrive here during partial symbol reading, if we need full
7313 DIEs to process an unusual case (e.g. template arguments). Do
7314 not queue PER_CU, just tell our caller to load its DIEs. */
7315 if (dwarf2_per_objfile->reading_partial_symbols)
7316 {
7317 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7318 return 1;
7319 return 0;
7320 }
7321
7322 /* Mark the dependence relation so that we don't flush PER_CU
7323 too early. */
7324 if (dependent_cu != NULL)
7325 dwarf2_add_dependence (dependent_cu, per_cu);
7326
7327 /* If it's already on the queue, we have nothing to do. */
7328 if (per_cu->queued)
7329 return 0;
7330
7331 /* If the compilation unit is already loaded, just mark it as
7332 used. */
7333 if (per_cu->cu != NULL)
7334 {
7335 per_cu->cu->last_used = 0;
7336 return 0;
7337 }
7338
7339 /* Add it to the queue. */
7340 queue_comp_unit (per_cu, pretend_language);
7341
7342 return 1;
7343 }
7344
7345 /* Process the queue. */
7346
7347 static void
7348 process_queue (void)
7349 {
7350 struct dwarf2_queue_item *item, *next_item;
7351
7352 if (dwarf2_read_debug)
7353 {
7354 fprintf_unfiltered (gdb_stdlog,
7355 "Expanding one or more symtabs of objfile %s ...\n",
7356 objfile_name (dwarf2_per_objfile->objfile));
7357 }
7358
7359 /* The queue starts out with one item, but following a DIE reference
7360 may load a new CU, adding it to the end of the queue. */
7361 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7362 {
7363 if (dwarf2_per_objfile->using_index
7364 ? !item->per_cu->v.quick->symtab
7365 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7366 {
7367 struct dwarf2_per_cu_data *per_cu = item->per_cu;
7368 unsigned int debug_print_threshold;
7369 char buf[100];
7370
7371 if (per_cu->is_debug_types)
7372 {
7373 struct signatured_type *sig_type =
7374 (struct signatured_type *) per_cu;
7375
7376 sprintf (buf, "TU %s at offset 0x%x",
7377 hex_string (sig_type->signature),
7378 per_cu->offset.sect_off);
7379 /* There can be 100s of TUs.
7380 Only print them in verbose mode. */
7381 debug_print_threshold = 2;
7382 }
7383 else
7384 {
7385 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7386 debug_print_threshold = 1;
7387 }
7388
7389 if (dwarf2_read_debug >= debug_print_threshold)
7390 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
7391
7392 if (per_cu->is_debug_types)
7393 process_full_type_unit (per_cu, item->pretend_language);
7394 else
7395 process_full_comp_unit (per_cu, item->pretend_language);
7396
7397 if (dwarf2_read_debug >= debug_print_threshold)
7398 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
7399 }
7400
7401 item->per_cu->queued = 0;
7402 next_item = item->next;
7403 xfree (item);
7404 }
7405
7406 dwarf2_queue_tail = NULL;
7407
7408 if (dwarf2_read_debug)
7409 {
7410 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
7411 objfile_name (dwarf2_per_objfile->objfile));
7412 }
7413 }
7414
7415 /* Free all allocated queue entries. This function only releases anything if
7416 an error was thrown; if the queue was processed then it would have been
7417 freed as we went along. */
7418
7419 static void
7420 dwarf2_release_queue (void *dummy)
7421 {
7422 struct dwarf2_queue_item *item, *last;
7423
7424 item = dwarf2_queue;
7425 while (item)
7426 {
7427 /* Anything still marked queued is likely to be in an
7428 inconsistent state, so discard it. */
7429 if (item->per_cu->queued)
7430 {
7431 if (item->per_cu->cu != NULL)
7432 free_one_cached_comp_unit (item->per_cu);
7433 item->per_cu->queued = 0;
7434 }
7435
7436 last = item;
7437 item = item->next;
7438 xfree (last);
7439 }
7440
7441 dwarf2_queue = dwarf2_queue_tail = NULL;
7442 }
7443
7444 /* Read in full symbols for PST, and anything it depends on. */
7445
7446 static void
7447 psymtab_to_symtab_1 (struct partial_symtab *pst)
7448 {
7449 struct dwarf2_per_cu_data *per_cu;
7450 int i;
7451
7452 if (pst->readin)
7453 return;
7454
7455 for (i = 0; i < pst->number_of_dependencies; i++)
7456 if (!pst->dependencies[i]->readin
7457 && pst->dependencies[i]->user == NULL)
7458 {
7459 /* Inform about additional files that need to be read in. */
7460 if (info_verbose)
7461 {
7462 /* FIXME: i18n: Need to make this a single string. */
7463 fputs_filtered (" ", gdb_stdout);
7464 wrap_here ("");
7465 fputs_filtered ("and ", gdb_stdout);
7466 wrap_here ("");
7467 printf_filtered ("%s...", pst->dependencies[i]->filename);
7468 wrap_here (""); /* Flush output. */
7469 gdb_flush (gdb_stdout);
7470 }
7471 psymtab_to_symtab_1 (pst->dependencies[i]);
7472 }
7473
7474 per_cu = pst->read_symtab_private;
7475
7476 if (per_cu == NULL)
7477 {
7478 /* It's an include file, no symbols to read for it.
7479 Everything is in the parent symtab. */
7480 pst->readin = 1;
7481 return;
7482 }
7483
7484 dw2_do_instantiate_symtab (per_cu);
7485 }
7486
7487 /* Trivial hash function for die_info: the hash value of a DIE
7488 is its offset in .debug_info for this objfile. */
7489
7490 static hashval_t
7491 die_hash (const void *item)
7492 {
7493 const struct die_info *die = item;
7494
7495 return die->offset.sect_off;
7496 }
7497
7498 /* Trivial comparison function for die_info structures: two DIEs
7499 are equal if they have the same offset. */
7500
7501 static int
7502 die_eq (const void *item_lhs, const void *item_rhs)
7503 {
7504 const struct die_info *die_lhs = item_lhs;
7505 const struct die_info *die_rhs = item_rhs;
7506
7507 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7508 }
7509
7510 /* die_reader_func for load_full_comp_unit.
7511 This is identical to read_signatured_type_reader,
7512 but is kept separate for now. */
7513
7514 static void
7515 load_full_comp_unit_reader (const struct die_reader_specs *reader,
7516 const gdb_byte *info_ptr,
7517 struct die_info *comp_unit_die,
7518 int has_children,
7519 void *data)
7520 {
7521 struct dwarf2_cu *cu = reader->cu;
7522 enum language *language_ptr = data;
7523
7524 gdb_assert (cu->die_hash == NULL);
7525 cu->die_hash =
7526 htab_create_alloc_ex (cu->header.length / 12,
7527 die_hash,
7528 die_eq,
7529 NULL,
7530 &cu->comp_unit_obstack,
7531 hashtab_obstack_allocate,
7532 dummy_obstack_deallocate);
7533
7534 if (has_children)
7535 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7536 &info_ptr, comp_unit_die);
7537 cu->dies = comp_unit_die;
7538 /* comp_unit_die is not stored in die_hash, no need. */
7539
7540 /* We try not to read any attributes in this function, because not
7541 all CUs needed for references have been loaded yet, and symbol
7542 table processing isn't initialized. But we have to set the CU language,
7543 or we won't be able to build types correctly.
7544 Similarly, if we do not read the producer, we can not apply
7545 producer-specific interpretation. */
7546 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
7547 }
7548
7549 /* Load the DIEs associated with PER_CU into memory. */
7550
7551 static void
7552 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7553 enum language pretend_language)
7554 {
7555 gdb_assert (! this_cu->is_debug_types);
7556
7557 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7558 load_full_comp_unit_reader, &pretend_language);
7559 }
7560
7561 /* Add a DIE to the delayed physname list. */
7562
7563 static void
7564 add_to_method_list (struct type *type, int fnfield_index, int index,
7565 const char *name, struct die_info *die,
7566 struct dwarf2_cu *cu)
7567 {
7568 struct delayed_method_info mi;
7569 mi.type = type;
7570 mi.fnfield_index = fnfield_index;
7571 mi.index = index;
7572 mi.name = name;
7573 mi.die = die;
7574 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7575 }
7576
7577 /* A cleanup for freeing the delayed method list. */
7578
7579 static void
7580 free_delayed_list (void *ptr)
7581 {
7582 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7583 if (cu->method_list != NULL)
7584 {
7585 VEC_free (delayed_method_info, cu->method_list);
7586 cu->method_list = NULL;
7587 }
7588 }
7589
7590 /* Compute the physnames of any methods on the CU's method list.
7591
7592 The computation of method physnames is delayed in order to avoid the
7593 (bad) condition that one of the method's formal parameters is of an as yet
7594 incomplete type. */
7595
7596 static void
7597 compute_delayed_physnames (struct dwarf2_cu *cu)
7598 {
7599 int i;
7600 struct delayed_method_info *mi;
7601 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7602 {
7603 const char *physname;
7604 struct fn_fieldlist *fn_flp
7605 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7606 physname = dwarf2_physname (mi->name, mi->die, cu);
7607 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7608 }
7609 }
7610
7611 /* Go objects should be embedded in a DW_TAG_module DIE,
7612 and it's not clear if/how imported objects will appear.
7613 To keep Go support simple until that's worked out,
7614 go back through what we've read and create something usable.
7615 We could do this while processing each DIE, and feels kinda cleaner,
7616 but that way is more invasive.
7617 This is to, for example, allow the user to type "p var" or "b main"
7618 without having to specify the package name, and allow lookups
7619 of module.object to work in contexts that use the expression
7620 parser. */
7621
7622 static void
7623 fixup_go_packaging (struct dwarf2_cu *cu)
7624 {
7625 char *package_name = NULL;
7626 struct pending *list;
7627 int i;
7628
7629 for (list = global_symbols; list != NULL; list = list->next)
7630 {
7631 for (i = 0; i < list->nsyms; ++i)
7632 {
7633 struct symbol *sym = list->symbol[i];
7634
7635 if (SYMBOL_LANGUAGE (sym) == language_go
7636 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7637 {
7638 char *this_package_name = go_symbol_package_name (sym);
7639
7640 if (this_package_name == NULL)
7641 continue;
7642 if (package_name == NULL)
7643 package_name = this_package_name;
7644 else
7645 {
7646 if (strcmp (package_name, this_package_name) != 0)
7647 complaint (&symfile_complaints,
7648 _("Symtab %s has objects from two different Go packages: %s and %s"),
7649 (SYMBOL_SYMTAB (sym)
7650 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
7651 : objfile_name (cu->objfile)),
7652 this_package_name, package_name);
7653 xfree (this_package_name);
7654 }
7655 }
7656 }
7657 }
7658
7659 if (package_name != NULL)
7660 {
7661 struct objfile *objfile = cu->objfile;
7662 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7663 package_name,
7664 strlen (package_name));
7665 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
7666 saved_package_name, objfile);
7667 struct symbol *sym;
7668
7669 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7670
7671 sym = allocate_symbol (objfile);
7672 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
7673 SYMBOL_SET_NAMES (sym, saved_package_name,
7674 strlen (saved_package_name), 0, objfile);
7675 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7676 e.g., "main" finds the "main" module and not C's main(). */
7677 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
7678 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
7679 SYMBOL_TYPE (sym) = type;
7680
7681 add_symbol_to_list (sym, &global_symbols);
7682
7683 xfree (package_name);
7684 }
7685 }
7686
7687 /* Return the symtab for PER_CU. This works properly regardless of
7688 whether we're using the index or psymtabs. */
7689
7690 static struct symtab *
7691 get_symtab (struct dwarf2_per_cu_data *per_cu)
7692 {
7693 return (dwarf2_per_objfile->using_index
7694 ? per_cu->v.quick->symtab
7695 : per_cu->v.psymtab->symtab);
7696 }
7697
7698 /* A helper function for computing the list of all symbol tables
7699 included by PER_CU. */
7700
7701 static void
7702 recursively_compute_inclusions (VEC (symtab_ptr) **result,
7703 htab_t all_children, htab_t all_type_symtabs,
7704 struct dwarf2_per_cu_data *per_cu,
7705 struct symtab *immediate_parent)
7706 {
7707 void **slot;
7708 int ix;
7709 struct symtab *symtab;
7710 struct dwarf2_per_cu_data *iter;
7711
7712 slot = htab_find_slot (all_children, per_cu, INSERT);
7713 if (*slot != NULL)
7714 {
7715 /* This inclusion and its children have been processed. */
7716 return;
7717 }
7718
7719 *slot = per_cu;
7720 /* Only add a CU if it has a symbol table. */
7721 symtab = get_symtab (per_cu);
7722 if (symtab != NULL)
7723 {
7724 /* If this is a type unit only add its symbol table if we haven't
7725 seen it yet (type unit per_cu's can share symtabs). */
7726 if (per_cu->is_debug_types)
7727 {
7728 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7729 if (*slot == NULL)
7730 {
7731 *slot = symtab;
7732 VEC_safe_push (symtab_ptr, *result, symtab);
7733 if (symtab->user == NULL)
7734 symtab->user = immediate_parent;
7735 }
7736 }
7737 else
7738 {
7739 VEC_safe_push (symtab_ptr, *result, symtab);
7740 if (symtab->user == NULL)
7741 symtab->user = immediate_parent;
7742 }
7743 }
7744
7745 for (ix = 0;
7746 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
7747 ++ix)
7748 {
7749 recursively_compute_inclusions (result, all_children,
7750 all_type_symtabs, iter, symtab);
7751 }
7752 }
7753
7754 /* Compute the symtab 'includes' fields for the symtab related to
7755 PER_CU. */
7756
7757 static void
7758 compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7759 {
7760 gdb_assert (! per_cu->is_debug_types);
7761
7762 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
7763 {
7764 int ix, len;
7765 struct dwarf2_per_cu_data *per_cu_iter;
7766 struct symtab *symtab_iter;
7767 VEC (symtab_ptr) *result_symtabs = NULL;
7768 htab_t all_children, all_type_symtabs;
7769 struct symtab *symtab = get_symtab (per_cu);
7770
7771 /* If we don't have a symtab, we can just skip this case. */
7772 if (symtab == NULL)
7773 return;
7774
7775 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7776 NULL, xcalloc, xfree);
7777 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7778 NULL, xcalloc, xfree);
7779
7780 for (ix = 0;
7781 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
7782 ix, per_cu_iter);
7783 ++ix)
7784 {
7785 recursively_compute_inclusions (&result_symtabs, all_children,
7786 all_type_symtabs, per_cu_iter,
7787 symtab);
7788 }
7789
7790 /* Now we have a transitive closure of all the included symtabs. */
7791 len = VEC_length (symtab_ptr, result_symtabs);
7792 symtab->includes
7793 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7794 (len + 1) * sizeof (struct symtab *));
7795 for (ix = 0;
7796 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
7797 ++ix)
7798 symtab->includes[ix] = symtab_iter;
7799 symtab->includes[len] = NULL;
7800
7801 VEC_free (symtab_ptr, result_symtabs);
7802 htab_delete (all_children);
7803 htab_delete (all_type_symtabs);
7804 }
7805 }
7806
7807 /* Compute the 'includes' field for the symtabs of all the CUs we just
7808 read. */
7809
7810 static void
7811 process_cu_includes (void)
7812 {
7813 int ix;
7814 struct dwarf2_per_cu_data *iter;
7815
7816 for (ix = 0;
7817 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7818 ix, iter);
7819 ++ix)
7820 {
7821 if (! iter->is_debug_types)
7822 compute_symtab_includes (iter);
7823 }
7824
7825 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7826 }
7827
7828 /* Generate full symbol information for PER_CU, whose DIEs have
7829 already been loaded into memory. */
7830
7831 static void
7832 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7833 enum language pretend_language)
7834 {
7835 struct dwarf2_cu *cu = per_cu->cu;
7836 struct objfile *objfile = per_cu->objfile;
7837 CORE_ADDR lowpc, highpc;
7838 struct symtab *symtab;
7839 struct cleanup *back_to, *delayed_list_cleanup;
7840 CORE_ADDR baseaddr;
7841 struct block *static_block;
7842
7843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7844
7845 buildsym_init ();
7846 back_to = make_cleanup (really_free_pendings, NULL);
7847 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7848
7849 cu->list_in_scope = &file_symbols;
7850
7851 cu->language = pretend_language;
7852 cu->language_defn = language_def (cu->language);
7853
7854 /* Do line number decoding in read_file_scope () */
7855 process_die (cu->dies, cu);
7856
7857 /* For now fudge the Go package. */
7858 if (cu->language == language_go)
7859 fixup_go_packaging (cu);
7860
7861 /* Now that we have processed all the DIEs in the CU, all the types
7862 should be complete, and it should now be safe to compute all of the
7863 physnames. */
7864 compute_delayed_physnames (cu);
7865 do_cleanups (delayed_list_cleanup);
7866
7867 /* Some compilers don't define a DW_AT_high_pc attribute for the
7868 compilation unit. If the DW_AT_high_pc is missing, synthesize
7869 it, by scanning the DIE's below the compilation unit. */
7870 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
7871
7872 static_block
7873 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
7874
7875 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7876 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7877 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7878 addrmap to help ensure it has an accurate map of pc values belonging to
7879 this comp unit. */
7880 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7881
7882 symtab = end_symtab_from_static_block (static_block, objfile,
7883 SECT_OFF_TEXT (objfile), 0);
7884
7885 if (symtab != NULL)
7886 {
7887 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
7888
7889 /* Set symtab language to language from DW_AT_language. If the
7890 compilation is from a C file generated by language preprocessors, do
7891 not set the language if it was already deduced by start_subfile. */
7892 if (!(cu->language == language_c && symtab->language != language_c))
7893 symtab->language = cu->language;
7894
7895 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7896 produce DW_AT_location with location lists but it can be possibly
7897 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7898 there were bugs in prologue debug info, fixed later in GCC-4.5
7899 by "unwind info for epilogues" patch (which is not directly related).
7900
7901 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7902 needed, it would be wrong due to missing DW_AT_producer there.
7903
7904 Still one can confuse GDB by using non-standard GCC compilation
7905 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7906 */
7907 if (cu->has_loclist && gcc_4_minor >= 5)
7908 symtab->locations_valid = 1;
7909
7910 if (gcc_4_minor >= 5)
7911 symtab->epilogue_unwind_valid = 1;
7912
7913 symtab->call_site_htab = cu->call_site_htab;
7914 }
7915
7916 if (dwarf2_per_objfile->using_index)
7917 per_cu->v.quick->symtab = symtab;
7918 else
7919 {
7920 struct partial_symtab *pst = per_cu->v.psymtab;
7921 pst->symtab = symtab;
7922 pst->readin = 1;
7923 }
7924
7925 /* Push it for inclusion processing later. */
7926 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7927
7928 do_cleanups (back_to);
7929 }
7930
7931 /* Generate full symbol information for type unit PER_CU, whose DIEs have
7932 already been loaded into memory. */
7933
7934 static void
7935 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7936 enum language pretend_language)
7937 {
7938 struct dwarf2_cu *cu = per_cu->cu;
7939 struct objfile *objfile = per_cu->objfile;
7940 struct symtab *symtab;
7941 struct cleanup *back_to, *delayed_list_cleanup;
7942 struct signatured_type *sig_type;
7943
7944 gdb_assert (per_cu->is_debug_types);
7945 sig_type = (struct signatured_type *) per_cu;
7946
7947 buildsym_init ();
7948 back_to = make_cleanup (really_free_pendings, NULL);
7949 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7950
7951 cu->list_in_scope = &file_symbols;
7952
7953 cu->language = pretend_language;
7954 cu->language_defn = language_def (cu->language);
7955
7956 /* The symbol tables are set up in read_type_unit_scope. */
7957 process_die (cu->dies, cu);
7958
7959 /* For now fudge the Go package. */
7960 if (cu->language == language_go)
7961 fixup_go_packaging (cu);
7962
7963 /* Now that we have processed all the DIEs in the CU, all the types
7964 should be complete, and it should now be safe to compute all of the
7965 physnames. */
7966 compute_delayed_physnames (cu);
7967 do_cleanups (delayed_list_cleanup);
7968
7969 /* TUs share symbol tables.
7970 If this is the first TU to use this symtab, complete the construction
7971 of it with end_expandable_symtab. Otherwise, complete the addition of
7972 this TU's symbols to the existing symtab. */
7973 if (sig_type->type_unit_group->primary_symtab == NULL)
7974 {
7975 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7976 sig_type->type_unit_group->primary_symtab = symtab;
7977
7978 if (symtab != NULL)
7979 {
7980 /* Set symtab language to language from DW_AT_language. If the
7981 compilation is from a C file generated by language preprocessors,
7982 do not set the language if it was already deduced by
7983 start_subfile. */
7984 if (!(cu->language == language_c && symtab->language != language_c))
7985 symtab->language = cu->language;
7986 }
7987 }
7988 else
7989 {
7990 augment_type_symtab (objfile,
7991 sig_type->type_unit_group->primary_symtab);
7992 symtab = sig_type->type_unit_group->primary_symtab;
7993 }
7994
7995 if (dwarf2_per_objfile->using_index)
7996 per_cu->v.quick->symtab = symtab;
7997 else
7998 {
7999 struct partial_symtab *pst = per_cu->v.psymtab;
8000 pst->symtab = symtab;
8001 pst->readin = 1;
8002 }
8003
8004 do_cleanups (back_to);
8005 }
8006
8007 /* Process an imported unit DIE. */
8008
8009 static void
8010 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8011 {
8012 struct attribute *attr;
8013
8014 /* For now we don't handle imported units in type units. */
8015 if (cu->per_cu->is_debug_types)
8016 {
8017 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8018 " supported in type units [in module %s]"),
8019 objfile_name (cu->objfile));
8020 }
8021
8022 attr = dwarf2_attr (die, DW_AT_import, cu);
8023 if (attr != NULL)
8024 {
8025 struct dwarf2_per_cu_data *per_cu;
8026 struct symtab *imported_symtab;
8027 sect_offset offset;
8028 int is_dwz;
8029
8030 offset = dwarf2_get_ref_die_offset (attr);
8031 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8032 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
8033
8034 /* If necessary, add it to the queue and load its DIEs. */
8035 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8036 load_full_comp_unit (per_cu, cu->language);
8037
8038 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
8039 per_cu);
8040 }
8041 }
8042
8043 /* Reset the in_process bit of a die. */
8044
8045 static void
8046 reset_die_in_process (void *arg)
8047 {
8048 struct die_info *die = arg;
8049
8050 die->in_process = 0;
8051 }
8052
8053 /* Process a die and its children. */
8054
8055 static void
8056 process_die (struct die_info *die, struct dwarf2_cu *cu)
8057 {
8058 struct cleanup *in_process;
8059
8060 /* We should only be processing those not already in process. */
8061 gdb_assert (!die->in_process);
8062
8063 die->in_process = 1;
8064 in_process = make_cleanup (reset_die_in_process,die);
8065
8066 switch (die->tag)
8067 {
8068 case DW_TAG_padding:
8069 break;
8070 case DW_TAG_compile_unit:
8071 case DW_TAG_partial_unit:
8072 read_file_scope (die, cu);
8073 break;
8074 case DW_TAG_type_unit:
8075 read_type_unit_scope (die, cu);
8076 break;
8077 case DW_TAG_subprogram:
8078 case DW_TAG_inlined_subroutine:
8079 read_func_scope (die, cu);
8080 break;
8081 case DW_TAG_lexical_block:
8082 case DW_TAG_try_block:
8083 case DW_TAG_catch_block:
8084 read_lexical_block_scope (die, cu);
8085 break;
8086 case DW_TAG_GNU_call_site:
8087 read_call_site_scope (die, cu);
8088 break;
8089 case DW_TAG_class_type:
8090 case DW_TAG_interface_type:
8091 case DW_TAG_structure_type:
8092 case DW_TAG_union_type:
8093 process_structure_scope (die, cu);
8094 break;
8095 case DW_TAG_enumeration_type:
8096 process_enumeration_scope (die, cu);
8097 break;
8098
8099 /* These dies have a type, but processing them does not create
8100 a symbol or recurse to process the children. Therefore we can
8101 read them on-demand through read_type_die. */
8102 case DW_TAG_subroutine_type:
8103 case DW_TAG_set_type:
8104 case DW_TAG_array_type:
8105 case DW_TAG_pointer_type:
8106 case DW_TAG_ptr_to_member_type:
8107 case DW_TAG_reference_type:
8108 case DW_TAG_string_type:
8109 break;
8110
8111 case DW_TAG_base_type:
8112 case DW_TAG_subrange_type:
8113 case DW_TAG_typedef:
8114 /* Add a typedef symbol for the type definition, if it has a
8115 DW_AT_name. */
8116 new_symbol (die, read_type_die (die, cu), cu);
8117 break;
8118 case DW_TAG_common_block:
8119 read_common_block (die, cu);
8120 break;
8121 case DW_TAG_common_inclusion:
8122 break;
8123 case DW_TAG_namespace:
8124 cu->processing_has_namespace_info = 1;
8125 read_namespace (die, cu);
8126 break;
8127 case DW_TAG_module:
8128 cu->processing_has_namespace_info = 1;
8129 read_module (die, cu);
8130 break;
8131 case DW_TAG_imported_declaration:
8132 cu->processing_has_namespace_info = 1;
8133 if (read_namespace_alias (die, cu))
8134 break;
8135 /* The declaration is not a global namespace alias: fall through. */
8136 case DW_TAG_imported_module:
8137 cu->processing_has_namespace_info = 1;
8138 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8139 || cu->language != language_fortran))
8140 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8141 dwarf_tag_name (die->tag));
8142 read_import_statement (die, cu);
8143 break;
8144
8145 case DW_TAG_imported_unit:
8146 process_imported_unit_die (die, cu);
8147 break;
8148
8149 default:
8150 new_symbol (die, NULL, cu);
8151 break;
8152 }
8153
8154 do_cleanups (in_process);
8155 }
8156 \f
8157 /* DWARF name computation. */
8158
8159 /* A helper function for dwarf2_compute_name which determines whether DIE
8160 needs to have the name of the scope prepended to the name listed in the
8161 die. */
8162
8163 static int
8164 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8165 {
8166 struct attribute *attr;
8167
8168 switch (die->tag)
8169 {
8170 case DW_TAG_namespace:
8171 case DW_TAG_typedef:
8172 case DW_TAG_class_type:
8173 case DW_TAG_interface_type:
8174 case DW_TAG_structure_type:
8175 case DW_TAG_union_type:
8176 case DW_TAG_enumeration_type:
8177 case DW_TAG_enumerator:
8178 case DW_TAG_subprogram:
8179 case DW_TAG_member:
8180 case DW_TAG_imported_declaration:
8181 return 1;
8182
8183 case DW_TAG_variable:
8184 case DW_TAG_constant:
8185 /* We only need to prefix "globally" visible variables. These include
8186 any variable marked with DW_AT_external or any variable that
8187 lives in a namespace. [Variables in anonymous namespaces
8188 require prefixing, but they are not DW_AT_external.] */
8189
8190 if (dwarf2_attr (die, DW_AT_specification, cu))
8191 {
8192 struct dwarf2_cu *spec_cu = cu;
8193
8194 return die_needs_namespace (die_specification (die, &spec_cu),
8195 spec_cu);
8196 }
8197
8198 attr = dwarf2_attr (die, DW_AT_external, cu);
8199 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8200 && die->parent->tag != DW_TAG_module)
8201 return 0;
8202 /* A variable in a lexical block of some kind does not need a
8203 namespace, even though in C++ such variables may be external
8204 and have a mangled name. */
8205 if (die->parent->tag == DW_TAG_lexical_block
8206 || die->parent->tag == DW_TAG_try_block
8207 || die->parent->tag == DW_TAG_catch_block
8208 || die->parent->tag == DW_TAG_subprogram)
8209 return 0;
8210 return 1;
8211
8212 default:
8213 return 0;
8214 }
8215 }
8216
8217 /* Retrieve the last character from a mem_file. */
8218
8219 static void
8220 do_ui_file_peek_last (void *object, const char *buffer, long length)
8221 {
8222 char *last_char_p = (char *) object;
8223
8224 if (length > 0)
8225 *last_char_p = buffer[length - 1];
8226 }
8227
8228 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
8229 compute the physname for the object, which include a method's:
8230 - formal parameters (C++/Java),
8231 - receiver type (Go),
8232 - return type (Java).
8233
8234 The term "physname" is a bit confusing.
8235 For C++, for example, it is the demangled name.
8236 For Go, for example, it's the mangled name.
8237
8238 For Ada, return the DIE's linkage name rather than the fully qualified
8239 name. PHYSNAME is ignored..
8240
8241 The result is allocated on the objfile_obstack and canonicalized. */
8242
8243 static const char *
8244 dwarf2_compute_name (const char *name,
8245 struct die_info *die, struct dwarf2_cu *cu,
8246 int physname)
8247 {
8248 struct objfile *objfile = cu->objfile;
8249
8250 if (name == NULL)
8251 name = dwarf2_name (die, cu);
8252
8253 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8254 compute it by typename_concat inside GDB. */
8255 if (cu->language == language_ada
8256 || (cu->language == language_fortran && physname))
8257 {
8258 /* For Ada unit, we prefer the linkage name over the name, as
8259 the former contains the exported name, which the user expects
8260 to be able to reference. Ideally, we want the user to be able
8261 to reference this entity using either natural or linkage name,
8262 but we haven't started looking at this enhancement yet. */
8263 struct attribute *attr;
8264
8265 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8266 if (attr == NULL)
8267 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8268 if (attr && DW_STRING (attr))
8269 return DW_STRING (attr);
8270 }
8271
8272 /* These are the only languages we know how to qualify names in. */
8273 if (name != NULL
8274 && (cu->language == language_cplus || cu->language == language_java
8275 || cu->language == language_fortran))
8276 {
8277 if (die_needs_namespace (die, cu))
8278 {
8279 long length;
8280 const char *prefix;
8281 struct ui_file *buf;
8282
8283 prefix = determine_prefix (die, cu);
8284 buf = mem_fileopen ();
8285 if (*prefix != '\0')
8286 {
8287 char *prefixed_name = typename_concat (NULL, prefix, name,
8288 physname, cu);
8289
8290 fputs_unfiltered (prefixed_name, buf);
8291 xfree (prefixed_name);
8292 }
8293 else
8294 fputs_unfiltered (name, buf);
8295
8296 /* Template parameters may be specified in the DIE's DW_AT_name, or
8297 as children with DW_TAG_template_type_param or
8298 DW_TAG_value_type_param. If the latter, add them to the name
8299 here. If the name already has template parameters, then
8300 skip this step; some versions of GCC emit both, and
8301 it is more efficient to use the pre-computed name.
8302
8303 Something to keep in mind about this process: it is very
8304 unlikely, or in some cases downright impossible, to produce
8305 something that will match the mangled name of a function.
8306 If the definition of the function has the same debug info,
8307 we should be able to match up with it anyway. But fallbacks
8308 using the minimal symbol, for instance to find a method
8309 implemented in a stripped copy of libstdc++, will not work.
8310 If we do not have debug info for the definition, we will have to
8311 match them up some other way.
8312
8313 When we do name matching there is a related problem with function
8314 templates; two instantiated function templates are allowed to
8315 differ only by their return types, which we do not add here. */
8316
8317 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8318 {
8319 struct attribute *attr;
8320 struct die_info *child;
8321 int first = 1;
8322
8323 die->building_fullname = 1;
8324
8325 for (child = die->child; child != NULL; child = child->sibling)
8326 {
8327 struct type *type;
8328 LONGEST value;
8329 const gdb_byte *bytes;
8330 struct dwarf2_locexpr_baton *baton;
8331 struct value *v;
8332
8333 if (child->tag != DW_TAG_template_type_param
8334 && child->tag != DW_TAG_template_value_param)
8335 continue;
8336
8337 if (first)
8338 {
8339 fputs_unfiltered ("<", buf);
8340 first = 0;
8341 }
8342 else
8343 fputs_unfiltered (", ", buf);
8344
8345 attr = dwarf2_attr (child, DW_AT_type, cu);
8346 if (attr == NULL)
8347 {
8348 complaint (&symfile_complaints,
8349 _("template parameter missing DW_AT_type"));
8350 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8351 continue;
8352 }
8353 type = die_type (child, cu);
8354
8355 if (child->tag == DW_TAG_template_type_param)
8356 {
8357 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
8358 continue;
8359 }
8360
8361 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8362 if (attr == NULL)
8363 {
8364 complaint (&symfile_complaints,
8365 _("template parameter missing "
8366 "DW_AT_const_value"));
8367 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8368 continue;
8369 }
8370
8371 dwarf2_const_value_attr (attr, type, name,
8372 &cu->comp_unit_obstack, cu,
8373 &value, &bytes, &baton);
8374
8375 if (TYPE_NOSIGN (type))
8376 /* GDB prints characters as NUMBER 'CHAR'. If that's
8377 changed, this can use value_print instead. */
8378 c_printchar (value, type, buf);
8379 else
8380 {
8381 struct value_print_options opts;
8382
8383 if (baton != NULL)
8384 v = dwarf2_evaluate_loc_desc (type, NULL,
8385 baton->data,
8386 baton->size,
8387 baton->per_cu);
8388 else if (bytes != NULL)
8389 {
8390 v = allocate_value (type);
8391 memcpy (value_contents_writeable (v), bytes,
8392 TYPE_LENGTH (type));
8393 }
8394 else
8395 v = value_from_longest (type, value);
8396
8397 /* Specify decimal so that we do not depend on
8398 the radix. */
8399 get_formatted_print_options (&opts, 'd');
8400 opts.raw = 1;
8401 value_print (v, buf, &opts);
8402 release_value (v);
8403 value_free (v);
8404 }
8405 }
8406
8407 die->building_fullname = 0;
8408
8409 if (!first)
8410 {
8411 /* Close the argument list, with a space if necessary
8412 (nested templates). */
8413 char last_char = '\0';
8414 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8415 if (last_char == '>')
8416 fputs_unfiltered (" >", buf);
8417 else
8418 fputs_unfiltered (">", buf);
8419 }
8420 }
8421
8422 /* For Java and C++ methods, append formal parameter type
8423 information, if PHYSNAME. */
8424
8425 if (physname && die->tag == DW_TAG_subprogram
8426 && (cu->language == language_cplus
8427 || cu->language == language_java))
8428 {
8429 struct type *type = read_type_die (die, cu);
8430
8431 c_type_print_args (type, buf, 1, cu->language,
8432 &type_print_raw_options);
8433
8434 if (cu->language == language_java)
8435 {
8436 /* For java, we must append the return type to method
8437 names. */
8438 if (die->tag == DW_TAG_subprogram)
8439 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
8440 0, 0, &type_print_raw_options);
8441 }
8442 else if (cu->language == language_cplus)
8443 {
8444 /* Assume that an artificial first parameter is
8445 "this", but do not crash if it is not. RealView
8446 marks unnamed (and thus unused) parameters as
8447 artificial; there is no way to differentiate
8448 the two cases. */
8449 if (TYPE_NFIELDS (type) > 0
8450 && TYPE_FIELD_ARTIFICIAL (type, 0)
8451 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
8452 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8453 0))))
8454 fputs_unfiltered (" const", buf);
8455 }
8456 }
8457
8458 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
8459 &length);
8460 ui_file_delete (buf);
8461
8462 if (cu->language == language_cplus)
8463 {
8464 const char *cname
8465 = dwarf2_canonicalize_name (name, cu,
8466 &objfile->objfile_obstack);
8467
8468 if (cname != NULL)
8469 name = cname;
8470 }
8471 }
8472 }
8473
8474 return name;
8475 }
8476
8477 /* Return the fully qualified name of DIE, based on its DW_AT_name.
8478 If scope qualifiers are appropriate they will be added. The result
8479 will be allocated on the objfile_obstack, or NULL if the DIE does
8480 not have a name. NAME may either be from a previous call to
8481 dwarf2_name or NULL.
8482
8483 The output string will be canonicalized (if C++/Java). */
8484
8485 static const char *
8486 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8487 {
8488 return dwarf2_compute_name (name, die, cu, 0);
8489 }
8490
8491 /* Construct a physname for the given DIE in CU. NAME may either be
8492 from a previous call to dwarf2_name or NULL. The result will be
8493 allocated on the objfile_objstack or NULL if the DIE does not have a
8494 name.
8495
8496 The output string will be canonicalized (if C++/Java). */
8497
8498 static const char *
8499 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
8500 {
8501 struct objfile *objfile = cu->objfile;
8502 struct attribute *attr;
8503 const char *retval, *mangled = NULL, *canon = NULL;
8504 struct cleanup *back_to;
8505 int need_copy = 1;
8506
8507 /* In this case dwarf2_compute_name is just a shortcut not building anything
8508 on its own. */
8509 if (!die_needs_namespace (die, cu))
8510 return dwarf2_compute_name (name, die, cu, 1);
8511
8512 back_to = make_cleanup (null_cleanup, NULL);
8513
8514 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8515 if (!attr)
8516 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8517
8518 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8519 has computed. */
8520 if (attr && DW_STRING (attr))
8521 {
8522 char *demangled;
8523
8524 mangled = DW_STRING (attr);
8525
8526 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8527 type. It is easier for GDB users to search for such functions as
8528 `name(params)' than `long name(params)'. In such case the minimal
8529 symbol names do not match the full symbol names but for template
8530 functions there is never a need to look up their definition from their
8531 declaration so the only disadvantage remains the minimal symbol
8532 variant `long name(params)' does not have the proper inferior type.
8533 */
8534
8535 if (cu->language == language_go)
8536 {
8537 /* This is a lie, but we already lie to the caller new_symbol_full.
8538 new_symbol_full assumes we return the mangled name.
8539 This just undoes that lie until things are cleaned up. */
8540 demangled = NULL;
8541 }
8542 else
8543 {
8544 demangled = gdb_demangle (mangled,
8545 (DMGL_PARAMS | DMGL_ANSI
8546 | (cu->language == language_java
8547 ? DMGL_JAVA | DMGL_RET_POSTFIX
8548 : DMGL_RET_DROP)));
8549 }
8550 if (demangled)
8551 {
8552 make_cleanup (xfree, demangled);
8553 canon = demangled;
8554 }
8555 else
8556 {
8557 canon = mangled;
8558 need_copy = 0;
8559 }
8560 }
8561
8562 if (canon == NULL || check_physname)
8563 {
8564 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8565
8566 if (canon != NULL && strcmp (physname, canon) != 0)
8567 {
8568 /* It may not mean a bug in GDB. The compiler could also
8569 compute DW_AT_linkage_name incorrectly. But in such case
8570 GDB would need to be bug-to-bug compatible. */
8571
8572 complaint (&symfile_complaints,
8573 _("Computed physname <%s> does not match demangled <%s> "
8574 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
8575 physname, canon, mangled, die->offset.sect_off,
8576 objfile_name (objfile));
8577
8578 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8579 is available here - over computed PHYSNAME. It is safer
8580 against both buggy GDB and buggy compilers. */
8581
8582 retval = canon;
8583 }
8584 else
8585 {
8586 retval = physname;
8587 need_copy = 0;
8588 }
8589 }
8590 else
8591 retval = canon;
8592
8593 if (need_copy)
8594 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
8595
8596 do_cleanups (back_to);
8597 return retval;
8598 }
8599
8600 /* Inspect DIE in CU for a namespace alias. If one exists, record
8601 a new symbol for it.
8602
8603 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8604
8605 static int
8606 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8607 {
8608 struct attribute *attr;
8609
8610 /* If the die does not have a name, this is not a namespace
8611 alias. */
8612 attr = dwarf2_attr (die, DW_AT_name, cu);
8613 if (attr != NULL)
8614 {
8615 int num;
8616 struct die_info *d = die;
8617 struct dwarf2_cu *imported_cu = cu;
8618
8619 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8620 keep inspecting DIEs until we hit the underlying import. */
8621 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
8622 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8623 {
8624 attr = dwarf2_attr (d, DW_AT_import, cu);
8625 if (attr == NULL)
8626 break;
8627
8628 d = follow_die_ref (d, attr, &imported_cu);
8629 if (d->tag != DW_TAG_imported_declaration)
8630 break;
8631 }
8632
8633 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8634 {
8635 complaint (&symfile_complaints,
8636 _("DIE at 0x%x has too many recursively imported "
8637 "declarations"), d->offset.sect_off);
8638 return 0;
8639 }
8640
8641 if (attr != NULL)
8642 {
8643 struct type *type;
8644 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8645
8646 type = get_die_type_at_offset (offset, cu->per_cu);
8647 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8648 {
8649 /* This declaration is a global namespace alias. Add
8650 a symbol for it whose type is the aliased namespace. */
8651 new_symbol (die, type, cu);
8652 return 1;
8653 }
8654 }
8655 }
8656
8657 return 0;
8658 }
8659
8660 /* Read the import statement specified by the given die and record it. */
8661
8662 static void
8663 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8664 {
8665 struct objfile *objfile = cu->objfile;
8666 struct attribute *import_attr;
8667 struct die_info *imported_die, *child_die;
8668 struct dwarf2_cu *imported_cu;
8669 const char *imported_name;
8670 const char *imported_name_prefix;
8671 const char *canonical_name;
8672 const char *import_alias;
8673 const char *imported_declaration = NULL;
8674 const char *import_prefix;
8675 VEC (const_char_ptr) *excludes = NULL;
8676 struct cleanup *cleanups;
8677
8678 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8679 if (import_attr == NULL)
8680 {
8681 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8682 dwarf_tag_name (die->tag));
8683 return;
8684 }
8685
8686 imported_cu = cu;
8687 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8688 imported_name = dwarf2_name (imported_die, imported_cu);
8689 if (imported_name == NULL)
8690 {
8691 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8692
8693 The import in the following code:
8694 namespace A
8695 {
8696 typedef int B;
8697 }
8698
8699 int main ()
8700 {
8701 using A::B;
8702 B b;
8703 return b;
8704 }
8705
8706 ...
8707 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8708 <52> DW_AT_decl_file : 1
8709 <53> DW_AT_decl_line : 6
8710 <54> DW_AT_import : <0x75>
8711 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8712 <59> DW_AT_name : B
8713 <5b> DW_AT_decl_file : 1
8714 <5c> DW_AT_decl_line : 2
8715 <5d> DW_AT_type : <0x6e>
8716 ...
8717 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8718 <76> DW_AT_byte_size : 4
8719 <77> DW_AT_encoding : 5 (signed)
8720
8721 imports the wrong die ( 0x75 instead of 0x58 ).
8722 This case will be ignored until the gcc bug is fixed. */
8723 return;
8724 }
8725
8726 /* Figure out the local name after import. */
8727 import_alias = dwarf2_name (die, cu);
8728
8729 /* Figure out where the statement is being imported to. */
8730 import_prefix = determine_prefix (die, cu);
8731
8732 /* Figure out what the scope of the imported die is and prepend it
8733 to the name of the imported die. */
8734 imported_name_prefix = determine_prefix (imported_die, imported_cu);
8735
8736 if (imported_die->tag != DW_TAG_namespace
8737 && imported_die->tag != DW_TAG_module)
8738 {
8739 imported_declaration = imported_name;
8740 canonical_name = imported_name_prefix;
8741 }
8742 else if (strlen (imported_name_prefix) > 0)
8743 canonical_name = obconcat (&objfile->objfile_obstack,
8744 imported_name_prefix, "::", imported_name,
8745 (char *) NULL);
8746 else
8747 canonical_name = imported_name;
8748
8749 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8750
8751 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8752 for (child_die = die->child; child_die && child_die->tag;
8753 child_die = sibling_die (child_die))
8754 {
8755 /* DWARF-4: A Fortran use statement with a “rename list” may be
8756 represented by an imported module entry with an import attribute
8757 referring to the module and owned entries corresponding to those
8758 entities that are renamed as part of being imported. */
8759
8760 if (child_die->tag != DW_TAG_imported_declaration)
8761 {
8762 complaint (&symfile_complaints,
8763 _("child DW_TAG_imported_declaration expected "
8764 "- DIE at 0x%x [in module %s]"),
8765 child_die->offset.sect_off, objfile_name (objfile));
8766 continue;
8767 }
8768
8769 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8770 if (import_attr == NULL)
8771 {
8772 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8773 dwarf_tag_name (child_die->tag));
8774 continue;
8775 }
8776
8777 imported_cu = cu;
8778 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8779 &imported_cu);
8780 imported_name = dwarf2_name (imported_die, imported_cu);
8781 if (imported_name == NULL)
8782 {
8783 complaint (&symfile_complaints,
8784 _("child DW_TAG_imported_declaration has unknown "
8785 "imported name - DIE at 0x%x [in module %s]"),
8786 child_die->offset.sect_off, objfile_name (objfile));
8787 continue;
8788 }
8789
8790 VEC_safe_push (const_char_ptr, excludes, imported_name);
8791
8792 process_die (child_die, cu);
8793 }
8794
8795 cp_add_using_directive (import_prefix,
8796 canonical_name,
8797 import_alias,
8798 imported_declaration,
8799 excludes,
8800 0,
8801 &objfile->objfile_obstack);
8802
8803 do_cleanups (cleanups);
8804 }
8805
8806 /* Cleanup function for handle_DW_AT_stmt_list. */
8807
8808 static void
8809 free_cu_line_header (void *arg)
8810 {
8811 struct dwarf2_cu *cu = arg;
8812
8813 free_line_header (cu->line_header);
8814 cu->line_header = NULL;
8815 }
8816
8817 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8818 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8819 this, it was first present in GCC release 4.3.0. */
8820
8821 static int
8822 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8823 {
8824 if (!cu->checked_producer)
8825 check_producer (cu);
8826
8827 return cu->producer_is_gcc_lt_4_3;
8828 }
8829
8830 static void
8831 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
8832 const char **name, const char **comp_dir)
8833 {
8834 struct attribute *attr;
8835
8836 *name = NULL;
8837 *comp_dir = NULL;
8838
8839 /* Find the filename. Do not use dwarf2_name here, since the filename
8840 is not a source language identifier. */
8841 attr = dwarf2_attr (die, DW_AT_name, cu);
8842 if (attr)
8843 {
8844 *name = DW_STRING (attr);
8845 }
8846
8847 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8848 if (attr)
8849 *comp_dir = DW_STRING (attr);
8850 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8851 && IS_ABSOLUTE_PATH (*name))
8852 {
8853 char *d = ldirname (*name);
8854
8855 *comp_dir = d;
8856 if (d != NULL)
8857 make_cleanup (xfree, d);
8858 }
8859 if (*comp_dir != NULL)
8860 {
8861 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8862 directory, get rid of it. */
8863 char *cp = strchr (*comp_dir, ':');
8864
8865 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8866 *comp_dir = cp + 1;
8867 }
8868
8869 if (*name == NULL)
8870 *name = "<unknown>";
8871 }
8872
8873 /* Handle DW_AT_stmt_list for a compilation unit.
8874 DIE is the DW_TAG_compile_unit die for CU.
8875 COMP_DIR is the compilation directory.
8876 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
8877
8878 static void
8879 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
8880 const char *comp_dir) /* ARI: editCase function */
8881 {
8882 struct attribute *attr;
8883
8884 gdb_assert (! cu->per_cu->is_debug_types);
8885
8886 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8887 if (attr)
8888 {
8889 unsigned int line_offset = DW_UNSND (attr);
8890 struct line_header *line_header
8891 = dwarf_decode_line_header (line_offset, cu);
8892
8893 if (line_header)
8894 {
8895 cu->line_header = line_header;
8896 make_cleanup (free_cu_line_header, cu);
8897 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
8898 }
8899 }
8900 }
8901
8902 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
8903
8904 static void
8905 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
8906 {
8907 struct objfile *objfile = dwarf2_per_objfile->objfile;
8908 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
8909 CORE_ADDR lowpc = ((CORE_ADDR) -1);
8910 CORE_ADDR highpc = ((CORE_ADDR) 0);
8911 struct attribute *attr;
8912 const char *name = NULL;
8913 const char *comp_dir = NULL;
8914 struct die_info *child_die;
8915 bfd *abfd = objfile->obfd;
8916 CORE_ADDR baseaddr;
8917
8918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8919
8920 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
8921
8922 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8923 from finish_block. */
8924 if (lowpc == ((CORE_ADDR) -1))
8925 lowpc = highpc;
8926 lowpc += baseaddr;
8927 highpc += baseaddr;
8928
8929 find_file_and_directory (die, cu, &name, &comp_dir);
8930
8931 prepare_one_comp_unit (cu, die, cu->language);
8932
8933 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8934 standardised yet. As a workaround for the language detection we fall
8935 back to the DW_AT_producer string. */
8936 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8937 cu->language = language_opencl;
8938
8939 /* Similar hack for Go. */
8940 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8941 set_cu_language (DW_LANG_Go, cu);
8942
8943 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
8944
8945 /* Decode line number information if present. We do this before
8946 processing child DIEs, so that the line header table is available
8947 for DW_AT_decl_file. */
8948 handle_DW_AT_stmt_list (die, cu, comp_dir);
8949
8950 /* Process all dies in compilation unit. */
8951 if (die->child != NULL)
8952 {
8953 child_die = die->child;
8954 while (child_die && child_die->tag)
8955 {
8956 process_die (child_die, cu);
8957 child_die = sibling_die (child_die);
8958 }
8959 }
8960
8961 /* Decode macro information, if present. Dwarf 2 macro information
8962 refers to information in the line number info statement program
8963 header, so we can only read it if we've read the header
8964 successfully. */
8965 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8966 if (attr && cu->line_header)
8967 {
8968 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8969 complaint (&symfile_complaints,
8970 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8971
8972 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
8973 }
8974 else
8975 {
8976 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8977 if (attr && cu->line_header)
8978 {
8979 unsigned int macro_offset = DW_UNSND (attr);
8980
8981 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
8982 }
8983 }
8984
8985 do_cleanups (back_to);
8986 }
8987
8988 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8989 Create the set of symtabs used by this TU, or if this TU is sharing
8990 symtabs with another TU and the symtabs have already been created
8991 then restore those symtabs in the line header.
8992 We don't need the pc/line-number mapping for type units. */
8993
8994 static void
8995 setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
8996 {
8997 struct objfile *objfile = dwarf2_per_objfile->objfile;
8998 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8999 struct type_unit_group *tu_group;
9000 int first_time;
9001 struct line_header *lh;
9002 struct attribute *attr;
9003 unsigned int i, line_offset;
9004 struct signatured_type *sig_type;
9005
9006 gdb_assert (per_cu->is_debug_types);
9007 sig_type = (struct signatured_type *) per_cu;
9008
9009 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9010
9011 /* If we're using .gdb_index (includes -readnow) then
9012 per_cu->type_unit_group may not have been set up yet. */
9013 if (sig_type->type_unit_group == NULL)
9014 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9015 tu_group = sig_type->type_unit_group;
9016
9017 /* If we've already processed this stmt_list there's no real need to
9018 do it again, we could fake it and just recreate the part we need
9019 (file name,index -> symtab mapping). If data shows this optimization
9020 is useful we can do it then. */
9021 first_time = tu_group->primary_symtab == NULL;
9022
9023 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9024 debug info. */
9025 lh = NULL;
9026 if (attr != NULL)
9027 {
9028 line_offset = DW_UNSND (attr);
9029 lh = dwarf_decode_line_header (line_offset, cu);
9030 }
9031 if (lh == NULL)
9032 {
9033 if (first_time)
9034 dwarf2_start_symtab (cu, "", NULL, 0);
9035 else
9036 {
9037 gdb_assert (tu_group->symtabs == NULL);
9038 restart_symtab (0);
9039 }
9040 /* Note: The primary symtab will get allocated at the end. */
9041 return;
9042 }
9043
9044 cu->line_header = lh;
9045 make_cleanup (free_cu_line_header, cu);
9046
9047 if (first_time)
9048 {
9049 dwarf2_start_symtab (cu, "", NULL, 0);
9050
9051 tu_group->num_symtabs = lh->num_file_names;
9052 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
9053
9054 for (i = 0; i < lh->num_file_names; ++i)
9055 {
9056 const char *dir = NULL;
9057 struct file_entry *fe = &lh->file_names[i];
9058
9059 if (fe->dir_index)
9060 dir = lh->include_dirs[fe->dir_index - 1];
9061 dwarf2_start_subfile (fe->name, dir, NULL);
9062
9063 /* Note: We don't have to watch for the main subfile here, type units
9064 don't have DW_AT_name. */
9065
9066 if (current_subfile->symtab == NULL)
9067 {
9068 /* NOTE: start_subfile will recognize when it's been passed
9069 a file it has already seen. So we can't assume there's a
9070 simple mapping from lh->file_names to subfiles,
9071 lh->file_names may contain dups. */
9072 current_subfile->symtab = allocate_symtab (current_subfile->name,
9073 objfile);
9074 }
9075
9076 fe->symtab = current_subfile->symtab;
9077 tu_group->symtabs[i] = fe->symtab;
9078 }
9079 }
9080 else
9081 {
9082 restart_symtab (0);
9083
9084 for (i = 0; i < lh->num_file_names; ++i)
9085 {
9086 struct file_entry *fe = &lh->file_names[i];
9087
9088 fe->symtab = tu_group->symtabs[i];
9089 }
9090 }
9091
9092 /* The main symtab is allocated last. Type units don't have DW_AT_name
9093 so they don't have a "real" (so to speak) symtab anyway.
9094 There is later code that will assign the main symtab to all symbols
9095 that don't have one. We need to handle the case of a symbol with a
9096 missing symtab (DW_AT_decl_file) anyway. */
9097 }
9098
9099 /* Process DW_TAG_type_unit.
9100 For TUs we want to skip the first top level sibling if it's not the
9101 actual type being defined by this TU. In this case the first top
9102 level sibling is there to provide context only. */
9103
9104 static void
9105 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9106 {
9107 struct die_info *child_die;
9108
9109 prepare_one_comp_unit (cu, die, language_minimal);
9110
9111 /* Initialize (or reinitialize) the machinery for building symtabs.
9112 We do this before processing child DIEs, so that the line header table
9113 is available for DW_AT_decl_file. */
9114 setup_type_unit_groups (die, cu);
9115
9116 if (die->child != NULL)
9117 {
9118 child_die = die->child;
9119 while (child_die && child_die->tag)
9120 {
9121 process_die (child_die, cu);
9122 child_die = sibling_die (child_die);
9123 }
9124 }
9125 }
9126 \f
9127 /* DWO/DWP files.
9128
9129 http://gcc.gnu.org/wiki/DebugFission
9130 http://gcc.gnu.org/wiki/DebugFissionDWP
9131
9132 To simplify handling of both DWO files ("object" files with the DWARF info)
9133 and DWP files (a file with the DWOs packaged up into one file), we treat
9134 DWP files as having a collection of virtual DWO files. */
9135
9136 static hashval_t
9137 hash_dwo_file (const void *item)
9138 {
9139 const struct dwo_file *dwo_file = item;
9140 hashval_t hash;
9141
9142 hash = htab_hash_string (dwo_file->dwo_name);
9143 if (dwo_file->comp_dir != NULL)
9144 hash += htab_hash_string (dwo_file->comp_dir);
9145 return hash;
9146 }
9147
9148 static int
9149 eq_dwo_file (const void *item_lhs, const void *item_rhs)
9150 {
9151 const struct dwo_file *lhs = item_lhs;
9152 const struct dwo_file *rhs = item_rhs;
9153
9154 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9155 return 0;
9156 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9157 return lhs->comp_dir == rhs->comp_dir;
9158 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
9159 }
9160
9161 /* Allocate a hash table for DWO files. */
9162
9163 static htab_t
9164 allocate_dwo_file_hash_table (void)
9165 {
9166 struct objfile *objfile = dwarf2_per_objfile->objfile;
9167
9168 return htab_create_alloc_ex (41,
9169 hash_dwo_file,
9170 eq_dwo_file,
9171 NULL,
9172 &objfile->objfile_obstack,
9173 hashtab_obstack_allocate,
9174 dummy_obstack_deallocate);
9175 }
9176
9177 /* Lookup DWO file DWO_NAME. */
9178
9179 static void **
9180 lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
9181 {
9182 struct dwo_file find_entry;
9183 void **slot;
9184
9185 if (dwarf2_per_objfile->dwo_files == NULL)
9186 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9187
9188 memset (&find_entry, 0, sizeof (find_entry));
9189 find_entry.dwo_name = dwo_name;
9190 find_entry.comp_dir = comp_dir;
9191 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9192
9193 return slot;
9194 }
9195
9196 static hashval_t
9197 hash_dwo_unit (const void *item)
9198 {
9199 const struct dwo_unit *dwo_unit = item;
9200
9201 /* This drops the top 32 bits of the id, but is ok for a hash. */
9202 return dwo_unit->signature;
9203 }
9204
9205 static int
9206 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9207 {
9208 const struct dwo_unit *lhs = item_lhs;
9209 const struct dwo_unit *rhs = item_rhs;
9210
9211 /* The signature is assumed to be unique within the DWO file.
9212 So while object file CU dwo_id's always have the value zero,
9213 that's OK, assuming each object file DWO file has only one CU,
9214 and that's the rule for now. */
9215 return lhs->signature == rhs->signature;
9216 }
9217
9218 /* Allocate a hash table for DWO CUs,TUs.
9219 There is one of these tables for each of CUs,TUs for each DWO file. */
9220
9221 static htab_t
9222 allocate_dwo_unit_table (struct objfile *objfile)
9223 {
9224 /* Start out with a pretty small number.
9225 Generally DWO files contain only one CU and maybe some TUs. */
9226 return htab_create_alloc_ex (3,
9227 hash_dwo_unit,
9228 eq_dwo_unit,
9229 NULL,
9230 &objfile->objfile_obstack,
9231 hashtab_obstack_allocate,
9232 dummy_obstack_deallocate);
9233 }
9234
9235 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
9236
9237 struct create_dwo_cu_data
9238 {
9239 struct dwo_file *dwo_file;
9240 struct dwo_unit dwo_unit;
9241 };
9242
9243 /* die_reader_func for create_dwo_cu. */
9244
9245 static void
9246 create_dwo_cu_reader (const struct die_reader_specs *reader,
9247 const gdb_byte *info_ptr,
9248 struct die_info *comp_unit_die,
9249 int has_children,
9250 void *datap)
9251 {
9252 struct dwarf2_cu *cu = reader->cu;
9253 struct objfile *objfile = dwarf2_per_objfile->objfile;
9254 sect_offset offset = cu->per_cu->offset;
9255 struct dwarf2_section_info *section = cu->per_cu->section;
9256 struct create_dwo_cu_data *data = datap;
9257 struct dwo_file *dwo_file = data->dwo_file;
9258 struct dwo_unit *dwo_unit = &data->dwo_unit;
9259 struct attribute *attr;
9260
9261 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9262 if (attr == NULL)
9263 {
9264 complaint (&symfile_complaints,
9265 _("Dwarf Error: debug entry at offset 0x%x is missing"
9266 " its dwo_id [in module %s]"),
9267 offset.sect_off, dwo_file->dwo_name);
9268 return;
9269 }
9270
9271 dwo_unit->dwo_file = dwo_file;
9272 dwo_unit->signature = DW_UNSND (attr);
9273 dwo_unit->section = section;
9274 dwo_unit->offset = offset;
9275 dwo_unit->length = cu->per_cu->length;
9276
9277 if (dwarf2_read_debug)
9278 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9279 offset.sect_off, hex_string (dwo_unit->signature));
9280 }
9281
9282 /* Create the dwo_unit for the lone CU in DWO_FILE.
9283 Note: This function processes DWO files only, not DWP files. */
9284
9285 static struct dwo_unit *
9286 create_dwo_cu (struct dwo_file *dwo_file)
9287 {
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
9289 struct dwarf2_section_info *section = &dwo_file->sections.info;
9290 bfd *abfd;
9291 htab_t cu_htab;
9292 const gdb_byte *info_ptr, *end_ptr;
9293 struct create_dwo_cu_data create_dwo_cu_data;
9294 struct dwo_unit *dwo_unit;
9295
9296 dwarf2_read_section (objfile, section);
9297 info_ptr = section->buffer;
9298
9299 if (info_ptr == NULL)
9300 return NULL;
9301
9302 /* We can't set abfd until now because the section may be empty or
9303 not present, in which case section->asection will be NULL. */
9304 abfd = get_section_bfd_owner (section);
9305
9306 if (dwarf2_read_debug)
9307 {
9308 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
9309 get_section_name (section),
9310 get_section_file_name (section));
9311 }
9312
9313 create_dwo_cu_data.dwo_file = dwo_file;
9314 dwo_unit = NULL;
9315
9316 end_ptr = info_ptr + section->size;
9317 while (info_ptr < end_ptr)
9318 {
9319 struct dwarf2_per_cu_data per_cu;
9320
9321 memset (&create_dwo_cu_data.dwo_unit, 0,
9322 sizeof (create_dwo_cu_data.dwo_unit));
9323 memset (&per_cu, 0, sizeof (per_cu));
9324 per_cu.objfile = objfile;
9325 per_cu.is_debug_types = 0;
9326 per_cu.offset.sect_off = info_ptr - section->buffer;
9327 per_cu.section = section;
9328
9329 init_cutu_and_read_dies_no_follow (&per_cu,
9330 &dwo_file->sections.abbrev,
9331 dwo_file,
9332 create_dwo_cu_reader,
9333 &create_dwo_cu_data);
9334
9335 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9336 {
9337 /* If we've already found one, complain. We only support one
9338 because having more than one requires hacking the dwo_name of
9339 each to match, which is highly unlikely to happen. */
9340 if (dwo_unit != NULL)
9341 {
9342 complaint (&symfile_complaints,
9343 _("Multiple CUs in DWO file %s [in module %s]"),
9344 dwo_file->dwo_name, objfile_name (objfile));
9345 break;
9346 }
9347
9348 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9349 *dwo_unit = create_dwo_cu_data.dwo_unit;
9350 }
9351
9352 info_ptr += per_cu.length;
9353 }
9354
9355 return dwo_unit;
9356 }
9357
9358 /* DWP file .debug_{cu,tu}_index section format:
9359 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9360
9361 DWP Version 1:
9362
9363 Both index sections have the same format, and serve to map a 64-bit
9364 signature to a set of section numbers. Each section begins with a header,
9365 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9366 indexes, and a pool of 32-bit section numbers. The index sections will be
9367 aligned at 8-byte boundaries in the file.
9368
9369 The index section header consists of:
9370
9371 V, 32 bit version number
9372 -, 32 bits unused
9373 N, 32 bit number of compilation units or type units in the index
9374 M, 32 bit number of slots in the hash table
9375
9376 Numbers are recorded using the byte order of the application binary.
9377
9378 The hash table begins at offset 16 in the section, and consists of an array
9379 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9380 order of the application binary). Unused slots in the hash table are 0.
9381 (We rely on the extreme unlikeliness of a signature being exactly 0.)
9382
9383 The parallel table begins immediately after the hash table
9384 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9385 array of 32-bit indexes (using the byte order of the application binary),
9386 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9387 table contains a 32-bit index into the pool of section numbers. For unused
9388 hash table slots, the corresponding entry in the parallel table will be 0.
9389
9390 The pool of section numbers begins immediately following the hash table
9391 (at offset 16 + 12 * M from the beginning of the section). The pool of
9392 section numbers consists of an array of 32-bit words (using the byte order
9393 of the application binary). Each item in the array is indexed starting
9394 from 0. The hash table entry provides the index of the first section
9395 number in the set. Additional section numbers in the set follow, and the
9396 set is terminated by a 0 entry (section number 0 is not used in ELF).
9397
9398 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9399 section must be the first entry in the set, and the .debug_abbrev.dwo must
9400 be the second entry. Other members of the set may follow in any order.
9401
9402 ---
9403
9404 DWP Version 2:
9405
9406 DWP Version 2 combines all the .debug_info, etc. sections into one,
9407 and the entries in the index tables are now offsets into these sections.
9408 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9409 section.
9410
9411 Index Section Contents:
9412 Header
9413 Hash Table of Signatures dwp_hash_table.hash_table
9414 Parallel Table of Indices dwp_hash_table.unit_table
9415 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9416 Table of Section Sizes dwp_hash_table.v2.sizes
9417
9418 The index section header consists of:
9419
9420 V, 32 bit version number
9421 L, 32 bit number of columns in the table of section offsets
9422 N, 32 bit number of compilation units or type units in the index
9423 M, 32 bit number of slots in the hash table
9424
9425 Numbers are recorded using the byte order of the application binary.
9426
9427 The hash table has the same format as version 1.
9428 The parallel table of indices has the same format as version 1,
9429 except that the entries are origin-1 indices into the table of sections
9430 offsets and the table of section sizes.
9431
9432 The table of offsets begins immediately following the parallel table
9433 (at offset 16 + 12 * M from the beginning of the section). The table is
9434 a two-dimensional array of 32-bit words (using the byte order of the
9435 application binary), with L columns and N+1 rows, in row-major order.
9436 Each row in the array is indexed starting from 0. The first row provides
9437 a key to the remaining rows: each column in this row provides an identifier
9438 for a debug section, and the offsets in the same column of subsequent rows
9439 refer to that section. The section identifiers are:
9440
9441 DW_SECT_INFO 1 .debug_info.dwo
9442 DW_SECT_TYPES 2 .debug_types.dwo
9443 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9444 DW_SECT_LINE 4 .debug_line.dwo
9445 DW_SECT_LOC 5 .debug_loc.dwo
9446 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9447 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9448 DW_SECT_MACRO 8 .debug_macro.dwo
9449
9450 The offsets provided by the CU and TU index sections are the base offsets
9451 for the contributions made by each CU or TU to the corresponding section
9452 in the package file. Each CU and TU header contains an abbrev_offset
9453 field, used to find the abbreviations table for that CU or TU within the
9454 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9455 be interpreted as relative to the base offset given in the index section.
9456 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9457 should be interpreted as relative to the base offset for .debug_line.dwo,
9458 and offsets into other debug sections obtained from DWARF attributes should
9459 also be interpreted as relative to the corresponding base offset.
9460
9461 The table of sizes begins immediately following the table of offsets.
9462 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9463 with L columns and N rows, in row-major order. Each row in the array is
9464 indexed starting from 1 (row 0 is shared by the two tables).
9465
9466 ---
9467
9468 Hash table lookup is handled the same in version 1 and 2:
9469
9470 We assume that N and M will not exceed 2^32 - 1.
9471 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9472
9473 Given a 64-bit compilation unit signature or a type signature S, an entry
9474 in the hash table is located as follows:
9475
9476 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9477 the low-order k bits all set to 1.
9478
9479 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
9480
9481 3) If the hash table entry at index H matches the signature, use that
9482 entry. If the hash table entry at index H is unused (all zeroes),
9483 terminate the search: the signature is not present in the table.
9484
9485 4) Let H = (H + H') modulo M. Repeat at Step 3.
9486
9487 Because M > N and H' and M are relatively prime, the search is guaranteed
9488 to stop at an unused slot or find the match. */
9489
9490 /* Create a hash table to map DWO IDs to their CU/TU entry in
9491 .debug_{info,types}.dwo in DWP_FILE.
9492 Returns NULL if there isn't one.
9493 Note: This function processes DWP files only, not DWO files. */
9494
9495 static struct dwp_hash_table *
9496 create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9497 {
9498 struct objfile *objfile = dwarf2_per_objfile->objfile;
9499 bfd *dbfd = dwp_file->dbfd;
9500 const gdb_byte *index_ptr, *index_end;
9501 struct dwarf2_section_info *index;
9502 uint32_t version, nr_columns, nr_units, nr_slots;
9503 struct dwp_hash_table *htab;
9504
9505 if (is_debug_types)
9506 index = &dwp_file->sections.tu_index;
9507 else
9508 index = &dwp_file->sections.cu_index;
9509
9510 if (dwarf2_section_empty_p (index))
9511 return NULL;
9512 dwarf2_read_section (objfile, index);
9513
9514 index_ptr = index->buffer;
9515 index_end = index_ptr + index->size;
9516
9517 version = read_4_bytes (dbfd, index_ptr);
9518 index_ptr += 4;
9519 if (version == 2)
9520 nr_columns = read_4_bytes (dbfd, index_ptr);
9521 else
9522 nr_columns = 0;
9523 index_ptr += 4;
9524 nr_units = read_4_bytes (dbfd, index_ptr);
9525 index_ptr += 4;
9526 nr_slots = read_4_bytes (dbfd, index_ptr);
9527 index_ptr += 4;
9528
9529 if (version != 1 && version != 2)
9530 {
9531 error (_("Dwarf Error: unsupported DWP file version (%s)"
9532 " [in module %s]"),
9533 pulongest (version), dwp_file->name);
9534 }
9535 if (nr_slots != (nr_slots & -nr_slots))
9536 {
9537 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
9538 " is not power of 2 [in module %s]"),
9539 pulongest (nr_slots), dwp_file->name);
9540 }
9541
9542 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
9543 htab->version = version;
9544 htab->nr_columns = nr_columns;
9545 htab->nr_units = nr_units;
9546 htab->nr_slots = nr_slots;
9547 htab->hash_table = index_ptr;
9548 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
9549
9550 /* Exit early if the table is empty. */
9551 if (nr_slots == 0 || nr_units == 0
9552 || (version == 2 && nr_columns == 0))
9553 {
9554 /* All must be zero. */
9555 if (nr_slots != 0 || nr_units != 0
9556 || (version == 2 && nr_columns != 0))
9557 {
9558 complaint (&symfile_complaints,
9559 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9560 " all zero [in modules %s]"),
9561 dwp_file->name);
9562 }
9563 return htab;
9564 }
9565
9566 if (version == 1)
9567 {
9568 htab->section_pool.v1.indices =
9569 htab->unit_table + sizeof (uint32_t) * nr_slots;
9570 /* It's harder to decide whether the section is too small in v1.
9571 V1 is deprecated anyway so we punt. */
9572 }
9573 else
9574 {
9575 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9576 int *ids = htab->section_pool.v2.section_ids;
9577 /* Reverse map for error checking. */
9578 int ids_seen[DW_SECT_MAX + 1];
9579 int i;
9580
9581 if (nr_columns < 2)
9582 {
9583 error (_("Dwarf Error: bad DWP hash table, too few columns"
9584 " in section table [in module %s]"),
9585 dwp_file->name);
9586 }
9587 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9588 {
9589 error (_("Dwarf Error: bad DWP hash table, too many columns"
9590 " in section table [in module %s]"),
9591 dwp_file->name);
9592 }
9593 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9594 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9595 for (i = 0; i < nr_columns; ++i)
9596 {
9597 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9598
9599 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9600 {
9601 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9602 " in section table [in module %s]"),
9603 id, dwp_file->name);
9604 }
9605 if (ids_seen[id] != -1)
9606 {
9607 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9608 " id %d in section table [in module %s]"),
9609 id, dwp_file->name);
9610 }
9611 ids_seen[id] = i;
9612 ids[i] = id;
9613 }
9614 /* Must have exactly one info or types section. */
9615 if (((ids_seen[DW_SECT_INFO] != -1)
9616 + (ids_seen[DW_SECT_TYPES] != -1))
9617 != 1)
9618 {
9619 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9620 " DWO info/types section [in module %s]"),
9621 dwp_file->name);
9622 }
9623 /* Must have an abbrev section. */
9624 if (ids_seen[DW_SECT_ABBREV] == -1)
9625 {
9626 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9627 " section [in module %s]"),
9628 dwp_file->name);
9629 }
9630 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9631 htab->section_pool.v2.sizes =
9632 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9633 * nr_units * nr_columns);
9634 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9635 * nr_units * nr_columns))
9636 > index_end)
9637 {
9638 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9639 " [in module %s]"),
9640 dwp_file->name);
9641 }
9642 }
9643
9644 return htab;
9645 }
9646
9647 /* Update SECTIONS with the data from SECTP.
9648
9649 This function is like the other "locate" section routines that are
9650 passed to bfd_map_over_sections, but in this context the sections to
9651 read comes from the DWP V1 hash table, not the full ELF section table.
9652
9653 The result is non-zero for success, or zero if an error was found. */
9654
9655 static int
9656 locate_v1_virtual_dwo_sections (asection *sectp,
9657 struct virtual_v1_dwo_sections *sections)
9658 {
9659 const struct dwop_section_names *names = &dwop_section_names;
9660
9661 if (section_is_p (sectp->name, &names->abbrev_dwo))
9662 {
9663 /* There can be only one. */
9664 if (sections->abbrev.s.asection != NULL)
9665 return 0;
9666 sections->abbrev.s.asection = sectp;
9667 sections->abbrev.size = bfd_get_section_size (sectp);
9668 }
9669 else if (section_is_p (sectp->name, &names->info_dwo)
9670 || section_is_p (sectp->name, &names->types_dwo))
9671 {
9672 /* There can be only one. */
9673 if (sections->info_or_types.s.asection != NULL)
9674 return 0;
9675 sections->info_or_types.s.asection = sectp;
9676 sections->info_or_types.size = bfd_get_section_size (sectp);
9677 }
9678 else if (section_is_p (sectp->name, &names->line_dwo))
9679 {
9680 /* There can be only one. */
9681 if (sections->line.s.asection != NULL)
9682 return 0;
9683 sections->line.s.asection = sectp;
9684 sections->line.size = bfd_get_section_size (sectp);
9685 }
9686 else if (section_is_p (sectp->name, &names->loc_dwo))
9687 {
9688 /* There can be only one. */
9689 if (sections->loc.s.asection != NULL)
9690 return 0;
9691 sections->loc.s.asection = sectp;
9692 sections->loc.size = bfd_get_section_size (sectp);
9693 }
9694 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9695 {
9696 /* There can be only one. */
9697 if (sections->macinfo.s.asection != NULL)
9698 return 0;
9699 sections->macinfo.s.asection = sectp;
9700 sections->macinfo.size = bfd_get_section_size (sectp);
9701 }
9702 else if (section_is_p (sectp->name, &names->macro_dwo))
9703 {
9704 /* There can be only one. */
9705 if (sections->macro.s.asection != NULL)
9706 return 0;
9707 sections->macro.s.asection = sectp;
9708 sections->macro.size = bfd_get_section_size (sectp);
9709 }
9710 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9711 {
9712 /* There can be only one. */
9713 if (sections->str_offsets.s.asection != NULL)
9714 return 0;
9715 sections->str_offsets.s.asection = sectp;
9716 sections->str_offsets.size = bfd_get_section_size (sectp);
9717 }
9718 else
9719 {
9720 /* No other kind of section is valid. */
9721 return 0;
9722 }
9723
9724 return 1;
9725 }
9726
9727 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9728 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9729 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9730 This is for DWP version 1 files. */
9731
9732 static struct dwo_unit *
9733 create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9734 uint32_t unit_index,
9735 const char *comp_dir,
9736 ULONGEST signature, int is_debug_types)
9737 {
9738 struct objfile *objfile = dwarf2_per_objfile->objfile;
9739 const struct dwp_hash_table *dwp_htab =
9740 is_debug_types ? dwp_file->tus : dwp_file->cus;
9741 bfd *dbfd = dwp_file->dbfd;
9742 const char *kind = is_debug_types ? "TU" : "CU";
9743 struct dwo_file *dwo_file;
9744 struct dwo_unit *dwo_unit;
9745 struct virtual_v1_dwo_sections sections;
9746 void **dwo_file_slot;
9747 char *virtual_dwo_name;
9748 struct dwarf2_section_info *cutu;
9749 struct cleanup *cleanups;
9750 int i;
9751
9752 gdb_assert (dwp_file->version == 1);
9753
9754 if (dwarf2_read_debug)
9755 {
9756 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
9757 kind,
9758 pulongest (unit_index), hex_string (signature),
9759 dwp_file->name);
9760 }
9761
9762 /* Fetch the sections of this DWO unit.
9763 Put a limit on the number of sections we look for so that bad data
9764 doesn't cause us to loop forever. */
9765
9766 #define MAX_NR_V1_DWO_SECTIONS \
9767 (1 /* .debug_info or .debug_types */ \
9768 + 1 /* .debug_abbrev */ \
9769 + 1 /* .debug_line */ \
9770 + 1 /* .debug_loc */ \
9771 + 1 /* .debug_str_offsets */ \
9772 + 1 /* .debug_macro or .debug_macinfo */ \
9773 + 1 /* trailing zero */)
9774
9775 memset (&sections, 0, sizeof (sections));
9776 cleanups = make_cleanup (null_cleanup, 0);
9777
9778 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
9779 {
9780 asection *sectp;
9781 uint32_t section_nr =
9782 read_4_bytes (dbfd,
9783 dwp_htab->section_pool.v1.indices
9784 + (unit_index + i) * sizeof (uint32_t));
9785
9786 if (section_nr == 0)
9787 break;
9788 if (section_nr >= dwp_file->num_sections)
9789 {
9790 error (_("Dwarf Error: bad DWP hash table, section number too large"
9791 " [in module %s]"),
9792 dwp_file->name);
9793 }
9794
9795 sectp = dwp_file->elf_sections[section_nr];
9796 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
9797 {
9798 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9799 " [in module %s]"),
9800 dwp_file->name);
9801 }
9802 }
9803
9804 if (i < 2
9805 || dwarf2_section_empty_p (&sections.info_or_types)
9806 || dwarf2_section_empty_p (&sections.abbrev))
9807 {
9808 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9809 " [in module %s]"),
9810 dwp_file->name);
9811 }
9812 if (i == MAX_NR_V1_DWO_SECTIONS)
9813 {
9814 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9815 " [in module %s]"),
9816 dwp_file->name);
9817 }
9818
9819 /* It's easier for the rest of the code if we fake a struct dwo_file and
9820 have dwo_unit "live" in that. At least for now.
9821
9822 The DWP file can be made up of a random collection of CUs and TUs.
9823 However, for each CU + set of TUs that came from the same original DWO
9824 file, we can combine them back into a virtual DWO file to save space
9825 (fewer struct dwo_file objects to allocate). Remember that for really
9826 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9827
9828 virtual_dwo_name =
9829 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
9830 get_section_id (&sections.abbrev),
9831 get_section_id (&sections.line),
9832 get_section_id (&sections.loc),
9833 get_section_id (&sections.str_offsets));
9834 make_cleanup (xfree, virtual_dwo_name);
9835 /* Can we use an existing virtual DWO file? */
9836 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
9837 /* Create one if necessary. */
9838 if (*dwo_file_slot == NULL)
9839 {
9840 if (dwarf2_read_debug)
9841 {
9842 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9843 virtual_dwo_name);
9844 }
9845 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
9846 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9847 virtual_dwo_name,
9848 strlen (virtual_dwo_name));
9849 dwo_file->comp_dir = comp_dir;
9850 dwo_file->sections.abbrev = sections.abbrev;
9851 dwo_file->sections.line = sections.line;
9852 dwo_file->sections.loc = sections.loc;
9853 dwo_file->sections.macinfo = sections.macinfo;
9854 dwo_file->sections.macro = sections.macro;
9855 dwo_file->sections.str_offsets = sections.str_offsets;
9856 /* The "str" section is global to the entire DWP file. */
9857 dwo_file->sections.str = dwp_file->sections.str;
9858 /* The info or types section is assigned below to dwo_unit,
9859 there's no need to record it in dwo_file.
9860 Also, we can't simply record type sections in dwo_file because
9861 we record a pointer into the vector in dwo_unit. As we collect more
9862 types we'll grow the vector and eventually have to reallocate space
9863 for it, invalidating all copies of pointers into the previous
9864 contents. */
9865 *dwo_file_slot = dwo_file;
9866 }
9867 else
9868 {
9869 if (dwarf2_read_debug)
9870 {
9871 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9872 virtual_dwo_name);
9873 }
9874 dwo_file = *dwo_file_slot;
9875 }
9876 do_cleanups (cleanups);
9877
9878 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9879 dwo_unit->dwo_file = dwo_file;
9880 dwo_unit->signature = signature;
9881 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9882 sizeof (struct dwarf2_section_info));
9883 *dwo_unit->section = sections.info_or_types;
9884 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
9885
9886 return dwo_unit;
9887 }
9888
9889 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9890 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9891 piece within that section used by a TU/CU, return a virtual section
9892 of just that piece. */
9893
9894 static struct dwarf2_section_info
9895 create_dwp_v2_section (struct dwarf2_section_info *section,
9896 bfd_size_type offset, bfd_size_type size)
9897 {
9898 struct dwarf2_section_info result;
9899 asection *sectp;
9900
9901 gdb_assert (section != NULL);
9902 gdb_assert (!section->is_virtual);
9903
9904 memset (&result, 0, sizeof (result));
9905 result.s.containing_section = section;
9906 result.is_virtual = 1;
9907
9908 if (size == 0)
9909 return result;
9910
9911 sectp = get_section_bfd_section (section);
9912
9913 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9914 bounds of the real section. This is a pretty-rare event, so just
9915 flag an error (easier) instead of a warning and trying to cope. */
9916 if (sectp == NULL
9917 || offset + size > bfd_get_section_size (sectp))
9918 {
9919 bfd *abfd = sectp->owner;
9920
9921 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9922 " in section %s [in module %s]"),
9923 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9924 objfile_name (dwarf2_per_objfile->objfile));
9925 }
9926
9927 result.virtual_offset = offset;
9928 result.size = size;
9929 return result;
9930 }
9931
9932 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9933 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9934 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9935 This is for DWP version 2 files. */
9936
9937 static struct dwo_unit *
9938 create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9939 uint32_t unit_index,
9940 const char *comp_dir,
9941 ULONGEST signature, int is_debug_types)
9942 {
9943 struct objfile *objfile = dwarf2_per_objfile->objfile;
9944 const struct dwp_hash_table *dwp_htab =
9945 is_debug_types ? dwp_file->tus : dwp_file->cus;
9946 bfd *dbfd = dwp_file->dbfd;
9947 const char *kind = is_debug_types ? "TU" : "CU";
9948 struct dwo_file *dwo_file;
9949 struct dwo_unit *dwo_unit;
9950 struct virtual_v2_dwo_sections sections;
9951 void **dwo_file_slot;
9952 char *virtual_dwo_name;
9953 struct dwarf2_section_info *cutu;
9954 struct cleanup *cleanups;
9955 int i;
9956
9957 gdb_assert (dwp_file->version == 2);
9958
9959 if (dwarf2_read_debug)
9960 {
9961 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9962 kind,
9963 pulongest (unit_index), hex_string (signature),
9964 dwp_file->name);
9965 }
9966
9967 /* Fetch the section offsets of this DWO unit. */
9968
9969 memset (&sections, 0, sizeof (sections));
9970 cleanups = make_cleanup (null_cleanup, 0);
9971
9972 for (i = 0; i < dwp_htab->nr_columns; ++i)
9973 {
9974 uint32_t offset = read_4_bytes (dbfd,
9975 dwp_htab->section_pool.v2.offsets
9976 + (((unit_index - 1) * dwp_htab->nr_columns
9977 + i)
9978 * sizeof (uint32_t)));
9979 uint32_t size = read_4_bytes (dbfd,
9980 dwp_htab->section_pool.v2.sizes
9981 + (((unit_index - 1) * dwp_htab->nr_columns
9982 + i)
9983 * sizeof (uint32_t)));
9984
9985 switch (dwp_htab->section_pool.v2.section_ids[i])
9986 {
9987 case DW_SECT_INFO:
9988 case DW_SECT_TYPES:
9989 sections.info_or_types_offset = offset;
9990 sections.info_or_types_size = size;
9991 break;
9992 case DW_SECT_ABBREV:
9993 sections.abbrev_offset = offset;
9994 sections.abbrev_size = size;
9995 break;
9996 case DW_SECT_LINE:
9997 sections.line_offset = offset;
9998 sections.line_size = size;
9999 break;
10000 case DW_SECT_LOC:
10001 sections.loc_offset = offset;
10002 sections.loc_size = size;
10003 break;
10004 case DW_SECT_STR_OFFSETS:
10005 sections.str_offsets_offset = offset;
10006 sections.str_offsets_size = size;
10007 break;
10008 case DW_SECT_MACINFO:
10009 sections.macinfo_offset = offset;
10010 sections.macinfo_size = size;
10011 break;
10012 case DW_SECT_MACRO:
10013 sections.macro_offset = offset;
10014 sections.macro_size = size;
10015 break;
10016 }
10017 }
10018
10019 /* It's easier for the rest of the code if we fake a struct dwo_file and
10020 have dwo_unit "live" in that. At least for now.
10021
10022 The DWP file can be made up of a random collection of CUs and TUs.
10023 However, for each CU + set of TUs that came from the same original DWO
10024 file, we can combine them back into a virtual DWO file to save space
10025 (fewer struct dwo_file objects to allocate). Remember that for really
10026 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10027
10028 virtual_dwo_name =
10029 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10030 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10031 (long) (sections.line_size ? sections.line_offset : 0),
10032 (long) (sections.loc_size ? sections.loc_offset : 0),
10033 (long) (sections.str_offsets_size
10034 ? sections.str_offsets_offset : 0));
10035 make_cleanup (xfree, virtual_dwo_name);
10036 /* Can we use an existing virtual DWO file? */
10037 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10038 /* Create one if necessary. */
10039 if (*dwo_file_slot == NULL)
10040 {
10041 if (dwarf2_read_debug)
10042 {
10043 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10044 virtual_dwo_name);
10045 }
10046 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10047 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10048 virtual_dwo_name,
10049 strlen (virtual_dwo_name));
10050 dwo_file->comp_dir = comp_dir;
10051 dwo_file->sections.abbrev =
10052 create_dwp_v2_section (&dwp_file->sections.abbrev,
10053 sections.abbrev_offset, sections.abbrev_size);
10054 dwo_file->sections.line =
10055 create_dwp_v2_section (&dwp_file->sections.line,
10056 sections.line_offset, sections.line_size);
10057 dwo_file->sections.loc =
10058 create_dwp_v2_section (&dwp_file->sections.loc,
10059 sections.loc_offset, sections.loc_size);
10060 dwo_file->sections.macinfo =
10061 create_dwp_v2_section (&dwp_file->sections.macinfo,
10062 sections.macinfo_offset, sections.macinfo_size);
10063 dwo_file->sections.macro =
10064 create_dwp_v2_section (&dwp_file->sections.macro,
10065 sections.macro_offset, sections.macro_size);
10066 dwo_file->sections.str_offsets =
10067 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10068 sections.str_offsets_offset,
10069 sections.str_offsets_size);
10070 /* The "str" section is global to the entire DWP file. */
10071 dwo_file->sections.str = dwp_file->sections.str;
10072 /* The info or types section is assigned below to dwo_unit,
10073 there's no need to record it in dwo_file.
10074 Also, we can't simply record type sections in dwo_file because
10075 we record a pointer into the vector in dwo_unit. As we collect more
10076 types we'll grow the vector and eventually have to reallocate space
10077 for it, invalidating all copies of pointers into the previous
10078 contents. */
10079 *dwo_file_slot = dwo_file;
10080 }
10081 else
10082 {
10083 if (dwarf2_read_debug)
10084 {
10085 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10086 virtual_dwo_name);
10087 }
10088 dwo_file = *dwo_file_slot;
10089 }
10090 do_cleanups (cleanups);
10091
10092 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10093 dwo_unit->dwo_file = dwo_file;
10094 dwo_unit->signature = signature;
10095 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10096 sizeof (struct dwarf2_section_info));
10097 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10098 ? &dwp_file->sections.types
10099 : &dwp_file->sections.info,
10100 sections.info_or_types_offset,
10101 sections.info_or_types_size);
10102 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10103
10104 return dwo_unit;
10105 }
10106
10107 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10108 Returns NULL if the signature isn't found. */
10109
10110 static struct dwo_unit *
10111 lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10112 ULONGEST signature, int is_debug_types)
10113 {
10114 const struct dwp_hash_table *dwp_htab =
10115 is_debug_types ? dwp_file->tus : dwp_file->cus;
10116 bfd *dbfd = dwp_file->dbfd;
10117 uint32_t mask = dwp_htab->nr_slots - 1;
10118 uint32_t hash = signature & mask;
10119 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10120 unsigned int i;
10121 void **slot;
10122 struct dwo_unit find_dwo_cu, *dwo_cu;
10123
10124 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10125 find_dwo_cu.signature = signature;
10126 slot = htab_find_slot (is_debug_types
10127 ? dwp_file->loaded_tus
10128 : dwp_file->loaded_cus,
10129 &find_dwo_cu, INSERT);
10130
10131 if (*slot != NULL)
10132 return *slot;
10133
10134 /* Use a for loop so that we don't loop forever on bad debug info. */
10135 for (i = 0; i < dwp_htab->nr_slots; ++i)
10136 {
10137 ULONGEST signature_in_table;
10138
10139 signature_in_table =
10140 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
10141 if (signature_in_table == signature)
10142 {
10143 uint32_t unit_index =
10144 read_4_bytes (dbfd,
10145 dwp_htab->unit_table + hash * sizeof (uint32_t));
10146
10147 if (dwp_file->version == 1)
10148 {
10149 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10150 comp_dir, signature,
10151 is_debug_types);
10152 }
10153 else
10154 {
10155 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10156 comp_dir, signature,
10157 is_debug_types);
10158 }
10159 return *slot;
10160 }
10161 if (signature_in_table == 0)
10162 return NULL;
10163 hash = (hash + hash2) & mask;
10164 }
10165
10166 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10167 " [in module %s]"),
10168 dwp_file->name);
10169 }
10170
10171 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
10172 Open the file specified by FILE_NAME and hand it off to BFD for
10173 preliminary analysis. Return a newly initialized bfd *, which
10174 includes a canonicalized copy of FILE_NAME.
10175 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
10176 SEARCH_CWD is true if the current directory is to be searched.
10177 It will be searched before debug-file-directory.
10178 If successful, the file is added to the bfd include table of the
10179 objfile's bfd (see gdb_bfd_record_inclusion).
10180 If unable to find/open the file, return NULL.
10181 NOTE: This function is derived from symfile_bfd_open. */
10182
10183 static bfd *
10184 try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
10185 {
10186 bfd *sym_bfd;
10187 int desc, flags;
10188 char *absolute_name;
10189 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10190 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10191 to debug_file_directory. */
10192 char *search_path;
10193 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10194
10195 if (search_cwd)
10196 {
10197 if (*debug_file_directory != '\0')
10198 search_path = concat (".", dirname_separator_string,
10199 debug_file_directory, NULL);
10200 else
10201 search_path = xstrdup (".");
10202 }
10203 else
10204 search_path = xstrdup (debug_file_directory);
10205
10206 flags = OPF_RETURN_REALPATH;
10207 if (is_dwp)
10208 flags |= OPF_SEARCH_IN_PATH;
10209 desc = openp (search_path, flags, file_name,
10210 O_RDONLY | O_BINARY, &absolute_name);
10211 xfree (search_path);
10212 if (desc < 0)
10213 return NULL;
10214
10215 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
10216 xfree (absolute_name);
10217 if (sym_bfd == NULL)
10218 return NULL;
10219 bfd_set_cacheable (sym_bfd, 1);
10220
10221 if (!bfd_check_format (sym_bfd, bfd_object))
10222 {
10223 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
10224 return NULL;
10225 }
10226
10227 /* Success. Record the bfd as having been included by the objfile's bfd.
10228 This is important because things like demangled_names_hash lives in the
10229 objfile's per_bfd space and may have references to things like symbol
10230 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10231 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10232
10233 return sym_bfd;
10234 }
10235
10236 /* Try to open DWO file FILE_NAME.
10237 COMP_DIR is the DW_AT_comp_dir attribute.
10238 The result is the bfd handle of the file.
10239 If there is a problem finding or opening the file, return NULL.
10240 Upon success, the canonicalized path of the file is stored in the bfd,
10241 same as symfile_bfd_open. */
10242
10243 static bfd *
10244 open_dwo_file (const char *file_name, const char *comp_dir)
10245 {
10246 bfd *abfd;
10247
10248 if (IS_ABSOLUTE_PATH (file_name))
10249 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
10250
10251 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10252
10253 if (comp_dir != NULL)
10254 {
10255 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
10256
10257 /* NOTE: If comp_dir is a relative path, this will also try the
10258 search path, which seems useful. */
10259 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
10260 xfree (path_to_try);
10261 if (abfd != NULL)
10262 return abfd;
10263 }
10264
10265 /* That didn't work, try debug-file-directory, which, despite its name,
10266 is a list of paths. */
10267
10268 if (*debug_file_directory == '\0')
10269 return NULL;
10270
10271 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
10272 }
10273
10274 /* This function is mapped across the sections and remembers the offset and
10275 size of each of the DWO debugging sections we are interested in. */
10276
10277 static void
10278 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10279 {
10280 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10281 const struct dwop_section_names *names = &dwop_section_names;
10282
10283 if (section_is_p (sectp->name, &names->abbrev_dwo))
10284 {
10285 dwo_sections->abbrev.s.asection = sectp;
10286 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10287 }
10288 else if (section_is_p (sectp->name, &names->info_dwo))
10289 {
10290 dwo_sections->info.s.asection = sectp;
10291 dwo_sections->info.size = bfd_get_section_size (sectp);
10292 }
10293 else if (section_is_p (sectp->name, &names->line_dwo))
10294 {
10295 dwo_sections->line.s.asection = sectp;
10296 dwo_sections->line.size = bfd_get_section_size (sectp);
10297 }
10298 else if (section_is_p (sectp->name, &names->loc_dwo))
10299 {
10300 dwo_sections->loc.s.asection = sectp;
10301 dwo_sections->loc.size = bfd_get_section_size (sectp);
10302 }
10303 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10304 {
10305 dwo_sections->macinfo.s.asection = sectp;
10306 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10307 }
10308 else if (section_is_p (sectp->name, &names->macro_dwo))
10309 {
10310 dwo_sections->macro.s.asection = sectp;
10311 dwo_sections->macro.size = bfd_get_section_size (sectp);
10312 }
10313 else if (section_is_p (sectp->name, &names->str_dwo))
10314 {
10315 dwo_sections->str.s.asection = sectp;
10316 dwo_sections->str.size = bfd_get_section_size (sectp);
10317 }
10318 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10319 {
10320 dwo_sections->str_offsets.s.asection = sectp;
10321 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10322 }
10323 else if (section_is_p (sectp->name, &names->types_dwo))
10324 {
10325 struct dwarf2_section_info type_section;
10326
10327 memset (&type_section, 0, sizeof (type_section));
10328 type_section.s.asection = sectp;
10329 type_section.size = bfd_get_section_size (sectp);
10330 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10331 &type_section);
10332 }
10333 }
10334
10335 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
10336 by PER_CU. This is for the non-DWP case.
10337 The result is NULL if DWO_NAME can't be found. */
10338
10339 static struct dwo_file *
10340 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10341 const char *dwo_name, const char *comp_dir)
10342 {
10343 struct objfile *objfile = dwarf2_per_objfile->objfile;
10344 struct dwo_file *dwo_file;
10345 bfd *dbfd;
10346 struct cleanup *cleanups;
10347
10348 dbfd = open_dwo_file (dwo_name, comp_dir);
10349 if (dbfd == NULL)
10350 {
10351 if (dwarf2_read_debug)
10352 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10353 return NULL;
10354 }
10355 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10356 dwo_file->dwo_name = dwo_name;
10357 dwo_file->comp_dir = comp_dir;
10358 dwo_file->dbfd = dbfd;
10359
10360 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10361
10362 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
10363
10364 dwo_file->cu = create_dwo_cu (dwo_file);
10365
10366 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10367 dwo_file->sections.types);
10368
10369 discard_cleanups (cleanups);
10370
10371 if (dwarf2_read_debug)
10372 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10373
10374 return dwo_file;
10375 }
10376
10377 /* This function is mapped across the sections and remembers the offset and
10378 size of each of the DWP debugging sections common to version 1 and 2 that
10379 we are interested in. */
10380
10381 static void
10382 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10383 void *dwp_file_ptr)
10384 {
10385 struct dwp_file *dwp_file = dwp_file_ptr;
10386 const struct dwop_section_names *names = &dwop_section_names;
10387 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10388
10389 /* Record the ELF section number for later lookup: this is what the
10390 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10391 gdb_assert (elf_section_nr < dwp_file->num_sections);
10392 dwp_file->elf_sections[elf_section_nr] = sectp;
10393
10394 /* Look for specific sections that we need. */
10395 if (section_is_p (sectp->name, &names->str_dwo))
10396 {
10397 dwp_file->sections.str.s.asection = sectp;
10398 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->cu_index))
10401 {
10402 dwp_file->sections.cu_index.s.asection = sectp;
10403 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->tu_index))
10406 {
10407 dwp_file->sections.tu_index.s.asection = sectp;
10408 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10409 }
10410 }
10411
10412 /* This function is mapped across the sections and remembers the offset and
10413 size of each of the DWP version 2 debugging sections that we are interested
10414 in. This is split into a separate function because we don't know if we
10415 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10416
10417 static void
10418 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10419 {
10420 struct dwp_file *dwp_file = dwp_file_ptr;
10421 const struct dwop_section_names *names = &dwop_section_names;
10422 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10423
10424 /* Record the ELF section number for later lookup: this is what the
10425 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10426 gdb_assert (elf_section_nr < dwp_file->num_sections);
10427 dwp_file->elf_sections[elf_section_nr] = sectp;
10428
10429 /* Look for specific sections that we need. */
10430 if (section_is_p (sectp->name, &names->abbrev_dwo))
10431 {
10432 dwp_file->sections.abbrev.s.asection = sectp;
10433 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10434 }
10435 else if (section_is_p (sectp->name, &names->info_dwo))
10436 {
10437 dwp_file->sections.info.s.asection = sectp;
10438 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10439 }
10440 else if (section_is_p (sectp->name, &names->line_dwo))
10441 {
10442 dwp_file->sections.line.s.asection = sectp;
10443 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10444 }
10445 else if (section_is_p (sectp->name, &names->loc_dwo))
10446 {
10447 dwp_file->sections.loc.s.asection = sectp;
10448 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10449 }
10450 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10451 {
10452 dwp_file->sections.macinfo.s.asection = sectp;
10453 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10454 }
10455 else if (section_is_p (sectp->name, &names->macro_dwo))
10456 {
10457 dwp_file->sections.macro.s.asection = sectp;
10458 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10459 }
10460 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10461 {
10462 dwp_file->sections.str_offsets.s.asection = sectp;
10463 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10464 }
10465 else if (section_is_p (sectp->name, &names->types_dwo))
10466 {
10467 dwp_file->sections.types.s.asection = sectp;
10468 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10469 }
10470 }
10471
10472 /* Hash function for dwp_file loaded CUs/TUs. */
10473
10474 static hashval_t
10475 hash_dwp_loaded_cutus (const void *item)
10476 {
10477 const struct dwo_unit *dwo_unit = item;
10478
10479 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10480 return dwo_unit->signature;
10481 }
10482
10483 /* Equality function for dwp_file loaded CUs/TUs. */
10484
10485 static int
10486 eq_dwp_loaded_cutus (const void *a, const void *b)
10487 {
10488 const struct dwo_unit *dua = a;
10489 const struct dwo_unit *dub = b;
10490
10491 return dua->signature == dub->signature;
10492 }
10493
10494 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
10495
10496 static htab_t
10497 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10498 {
10499 return htab_create_alloc_ex (3,
10500 hash_dwp_loaded_cutus,
10501 eq_dwp_loaded_cutus,
10502 NULL,
10503 &objfile->objfile_obstack,
10504 hashtab_obstack_allocate,
10505 dummy_obstack_deallocate);
10506 }
10507
10508 /* Try to open DWP file FILE_NAME.
10509 The result is the bfd handle of the file.
10510 If there is a problem finding or opening the file, return NULL.
10511 Upon success, the canonicalized path of the file is stored in the bfd,
10512 same as symfile_bfd_open. */
10513
10514 static bfd *
10515 open_dwp_file (const char *file_name)
10516 {
10517 bfd *abfd;
10518
10519 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10520 if (abfd != NULL)
10521 return abfd;
10522
10523 /* Work around upstream bug 15652.
10524 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10525 [Whether that's a "bug" is debatable, but it is getting in our way.]
10526 We have no real idea where the dwp file is, because gdb's realpath-ing
10527 of the executable's path may have discarded the needed info.
10528 [IWBN if the dwp file name was recorded in the executable, akin to
10529 .gnu_debuglink, but that doesn't exist yet.]
10530 Strip the directory from FILE_NAME and search again. */
10531 if (*debug_file_directory != '\0')
10532 {
10533 /* Don't implicitly search the current directory here.
10534 If the user wants to search "." to handle this case,
10535 it must be added to debug-file-directory. */
10536 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10537 0 /*search_cwd*/);
10538 }
10539
10540 return NULL;
10541 }
10542
10543 /* Initialize the use of the DWP file for the current objfile.
10544 By convention the name of the DWP file is ${objfile}.dwp.
10545 The result is NULL if it can't be found. */
10546
10547 static struct dwp_file *
10548 open_and_init_dwp_file (void)
10549 {
10550 struct objfile *objfile = dwarf2_per_objfile->objfile;
10551 struct dwp_file *dwp_file;
10552 char *dwp_name;
10553 bfd *dbfd;
10554 struct cleanup *cleanups;
10555
10556 /* Try to find first .dwp for the binary file before any symbolic links
10557 resolving. */
10558 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10559 cleanups = make_cleanup (xfree, dwp_name);
10560
10561 dbfd = open_dwp_file (dwp_name);
10562 if (dbfd == NULL
10563 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10564 {
10565 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10566 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10567 make_cleanup (xfree, dwp_name);
10568 dbfd = open_dwp_file (dwp_name);
10569 }
10570
10571 if (dbfd == NULL)
10572 {
10573 if (dwarf2_read_debug)
10574 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10575 do_cleanups (cleanups);
10576 return NULL;
10577 }
10578 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
10579 dwp_file->name = bfd_get_filename (dbfd);
10580 dwp_file->dbfd = dbfd;
10581 do_cleanups (cleanups);
10582
10583 /* +1: section 0 is unused */
10584 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10585 dwp_file->elf_sections =
10586 OBSTACK_CALLOC (&objfile->objfile_obstack,
10587 dwp_file->num_sections, asection *);
10588
10589 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
10590
10591 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10592
10593 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10594
10595 /* The DWP file version is stored in the hash table. Oh well. */
10596 if (dwp_file->cus->version != dwp_file->tus->version)
10597 {
10598 /* Technically speaking, we should try to limp along, but this is
10599 pretty bizarre. We use pulongest here because that's the established
10600 portability solution (e.g, we cannot use %u for uint32_t). */
10601 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10602 " TU version %s [in DWP file %s]"),
10603 pulongest (dwp_file->cus->version),
10604 pulongest (dwp_file->tus->version), dwp_name);
10605 }
10606 dwp_file->version = dwp_file->cus->version;
10607
10608 if (dwp_file->version == 2)
10609 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10610
10611 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10612 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
10613
10614 if (dwarf2_read_debug)
10615 {
10616 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10617 fprintf_unfiltered (gdb_stdlog,
10618 " %s CUs, %s TUs\n",
10619 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10620 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
10621 }
10622
10623 return dwp_file;
10624 }
10625
10626 /* Wrapper around open_and_init_dwp_file, only open it once. */
10627
10628 static struct dwp_file *
10629 get_dwp_file (void)
10630 {
10631 if (! dwarf2_per_objfile->dwp_checked)
10632 {
10633 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10634 dwarf2_per_objfile->dwp_checked = 1;
10635 }
10636 return dwarf2_per_objfile->dwp_file;
10637 }
10638
10639 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10640 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10641 or in the DWP file for the objfile, referenced by THIS_UNIT.
10642 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
10643 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10644
10645 This is called, for example, when wanting to read a variable with a
10646 complex location. Therefore we don't want to do file i/o for every call.
10647 Therefore we don't want to look for a DWO file on every call.
10648 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10649 then we check if we've already seen DWO_NAME, and only THEN do we check
10650 for a DWO file.
10651
10652 The result is a pointer to the dwo_unit object or NULL if we didn't find it
10653 (dwo_id mismatch or couldn't find the DWO/DWP file). */
10654
10655 static struct dwo_unit *
10656 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10657 const char *dwo_name, const char *comp_dir,
10658 ULONGEST signature, int is_debug_types)
10659 {
10660 struct objfile *objfile = dwarf2_per_objfile->objfile;
10661 const char *kind = is_debug_types ? "TU" : "CU";
10662 void **dwo_file_slot;
10663 struct dwo_file *dwo_file;
10664 struct dwp_file *dwp_file;
10665
10666 /* First see if there's a DWP file.
10667 If we have a DWP file but didn't find the DWO inside it, don't
10668 look for the original DWO file. It makes gdb behave differently
10669 depending on whether one is debugging in the build tree. */
10670
10671 dwp_file = get_dwp_file ();
10672 if (dwp_file != NULL)
10673 {
10674 const struct dwp_hash_table *dwp_htab =
10675 is_debug_types ? dwp_file->tus : dwp_file->cus;
10676
10677 if (dwp_htab != NULL)
10678 {
10679 struct dwo_unit *dwo_cutu =
10680 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10681 signature, is_debug_types);
10682
10683 if (dwo_cutu != NULL)
10684 {
10685 if (dwarf2_read_debug)
10686 {
10687 fprintf_unfiltered (gdb_stdlog,
10688 "Virtual DWO %s %s found: @%s\n",
10689 kind, hex_string (signature),
10690 host_address_to_string (dwo_cutu));
10691 }
10692 return dwo_cutu;
10693 }
10694 }
10695 }
10696 else
10697 {
10698 /* No DWP file, look for the DWO file. */
10699
10700 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10701 if (*dwo_file_slot == NULL)
10702 {
10703 /* Read in the file and build a table of the CUs/TUs it contains. */
10704 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
10705 }
10706 /* NOTE: This will be NULL if unable to open the file. */
10707 dwo_file = *dwo_file_slot;
10708
10709 if (dwo_file != NULL)
10710 {
10711 struct dwo_unit *dwo_cutu = NULL;
10712
10713 if (is_debug_types && dwo_file->tus)
10714 {
10715 struct dwo_unit find_dwo_cutu;
10716
10717 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10718 find_dwo_cutu.signature = signature;
10719 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10720 }
10721 else if (!is_debug_types && dwo_file->cu)
10722 {
10723 if (signature == dwo_file->cu->signature)
10724 dwo_cutu = dwo_file->cu;
10725 }
10726
10727 if (dwo_cutu != NULL)
10728 {
10729 if (dwarf2_read_debug)
10730 {
10731 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10732 kind, dwo_name, hex_string (signature),
10733 host_address_to_string (dwo_cutu));
10734 }
10735 return dwo_cutu;
10736 }
10737 }
10738 }
10739
10740 /* We didn't find it. This could mean a dwo_id mismatch, or
10741 someone deleted the DWO/DWP file, or the search path isn't set up
10742 correctly to find the file. */
10743
10744 if (dwarf2_read_debug)
10745 {
10746 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10747 kind, dwo_name, hex_string (signature));
10748 }
10749
10750 /* This is a warning and not a complaint because it can be caused by
10751 pilot error (e.g., user accidentally deleting the DWO). */
10752 {
10753 /* Print the name of the DWP file if we looked there, helps the user
10754 better diagnose the problem. */
10755 char *dwp_text = NULL;
10756 struct cleanup *cleanups;
10757
10758 if (dwp_file != NULL)
10759 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10760 cleanups = make_cleanup (xfree, dwp_text);
10761
10762 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10763 " [in module %s]"),
10764 kind, dwo_name, hex_string (signature),
10765 dwp_text != NULL ? dwp_text : "",
10766 this_unit->is_debug_types ? "TU" : "CU",
10767 this_unit->offset.sect_off, objfile_name (objfile));
10768
10769 do_cleanups (cleanups);
10770 }
10771 return NULL;
10772 }
10773
10774 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10775 See lookup_dwo_cutu_unit for details. */
10776
10777 static struct dwo_unit *
10778 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10779 const char *dwo_name, const char *comp_dir,
10780 ULONGEST signature)
10781 {
10782 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10783 }
10784
10785 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10786 See lookup_dwo_cutu_unit for details. */
10787
10788 static struct dwo_unit *
10789 lookup_dwo_type_unit (struct signatured_type *this_tu,
10790 const char *dwo_name, const char *comp_dir)
10791 {
10792 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10793 }
10794
10795 /* Traversal function for queue_and_load_all_dwo_tus. */
10796
10797 static int
10798 queue_and_load_dwo_tu (void **slot, void *info)
10799 {
10800 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10801 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10802 ULONGEST signature = dwo_unit->signature;
10803 struct signatured_type *sig_type =
10804 lookup_dwo_signatured_type (per_cu->cu, signature);
10805
10806 if (sig_type != NULL)
10807 {
10808 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10809
10810 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10811 a real dependency of PER_CU on SIG_TYPE. That is detected later
10812 while processing PER_CU. */
10813 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10814 load_full_type_unit (sig_cu);
10815 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10816 }
10817
10818 return 1;
10819 }
10820
10821 /* Queue all TUs contained in the DWO of PER_CU to be read in.
10822 The DWO may have the only definition of the type, though it may not be
10823 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10824 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10825
10826 static void
10827 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10828 {
10829 struct dwo_unit *dwo_unit;
10830 struct dwo_file *dwo_file;
10831
10832 gdb_assert (!per_cu->is_debug_types);
10833 gdb_assert (get_dwp_file () == NULL);
10834 gdb_assert (per_cu->cu != NULL);
10835
10836 dwo_unit = per_cu->cu->dwo_unit;
10837 gdb_assert (dwo_unit != NULL);
10838
10839 dwo_file = dwo_unit->dwo_file;
10840 if (dwo_file->tus != NULL)
10841 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10842 }
10843
10844 /* Free all resources associated with DWO_FILE.
10845 Close the DWO file and munmap the sections.
10846 All memory should be on the objfile obstack. */
10847
10848 static void
10849 free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
10850 {
10851 int ix;
10852 struct dwarf2_section_info *section;
10853
10854 /* Note: dbfd is NULL for virtual DWO files. */
10855 gdb_bfd_unref (dwo_file->dbfd);
10856
10857 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10858 }
10859
10860 /* Wrapper for free_dwo_file for use in cleanups. */
10861
10862 static void
10863 free_dwo_file_cleanup (void *arg)
10864 {
10865 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10866 struct objfile *objfile = dwarf2_per_objfile->objfile;
10867
10868 free_dwo_file (dwo_file, objfile);
10869 }
10870
10871 /* Traversal function for free_dwo_files. */
10872
10873 static int
10874 free_dwo_file_from_slot (void **slot, void *info)
10875 {
10876 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10877 struct objfile *objfile = (struct objfile *) info;
10878
10879 free_dwo_file (dwo_file, objfile);
10880
10881 return 1;
10882 }
10883
10884 /* Free all resources associated with DWO_FILES. */
10885
10886 static void
10887 free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10888 {
10889 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
10890 }
10891 \f
10892 /* Read in various DIEs. */
10893
10894 /* qsort helper for inherit_abstract_dies. */
10895
10896 static int
10897 unsigned_int_compar (const void *ap, const void *bp)
10898 {
10899 unsigned int a = *(unsigned int *) ap;
10900 unsigned int b = *(unsigned int *) bp;
10901
10902 return (a > b) - (b > a);
10903 }
10904
10905 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
10906 Inherit only the children of the DW_AT_abstract_origin DIE not being
10907 already referenced by DW_AT_abstract_origin from the children of the
10908 current DIE. */
10909
10910 static void
10911 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10912 {
10913 struct die_info *child_die;
10914 unsigned die_children_count;
10915 /* CU offsets which were referenced by children of the current DIE. */
10916 sect_offset *offsets;
10917 sect_offset *offsets_end, *offsetp;
10918 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10919 struct die_info *origin_die;
10920 /* Iterator of the ORIGIN_DIE children. */
10921 struct die_info *origin_child_die;
10922 struct cleanup *cleanups;
10923 struct attribute *attr;
10924 struct dwarf2_cu *origin_cu;
10925 struct pending **origin_previous_list_in_scope;
10926
10927 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10928 if (!attr)
10929 return;
10930
10931 /* Note that following die references may follow to a die in a
10932 different cu. */
10933
10934 origin_cu = cu;
10935 origin_die = follow_die_ref (die, attr, &origin_cu);
10936
10937 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10938 symbols in. */
10939 origin_previous_list_in_scope = origin_cu->list_in_scope;
10940 origin_cu->list_in_scope = cu->list_in_scope;
10941
10942 if (die->tag != origin_die->tag
10943 && !(die->tag == DW_TAG_inlined_subroutine
10944 && origin_die->tag == DW_TAG_subprogram))
10945 complaint (&symfile_complaints,
10946 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
10947 die->offset.sect_off, origin_die->offset.sect_off);
10948
10949 child_die = die->child;
10950 die_children_count = 0;
10951 while (child_die && child_die->tag)
10952 {
10953 child_die = sibling_die (child_die);
10954 die_children_count++;
10955 }
10956 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10957 cleanups = make_cleanup (xfree, offsets);
10958
10959 offsets_end = offsets;
10960 child_die = die->child;
10961 while (child_die && child_die->tag)
10962 {
10963 /* For each CHILD_DIE, find the corresponding child of
10964 ORIGIN_DIE. If there is more than one layer of
10965 DW_AT_abstract_origin, follow them all; there shouldn't be,
10966 but GCC versions at least through 4.4 generate this (GCC PR
10967 40573). */
10968 struct die_info *child_origin_die = child_die;
10969 struct dwarf2_cu *child_origin_cu = cu;
10970
10971 while (1)
10972 {
10973 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10974 child_origin_cu);
10975 if (attr == NULL)
10976 break;
10977 child_origin_die = follow_die_ref (child_origin_die, attr,
10978 &child_origin_cu);
10979 }
10980
10981 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10982 counterpart may exist. */
10983 if (child_origin_die != child_die)
10984 {
10985 if (child_die->tag != child_origin_die->tag
10986 && !(child_die->tag == DW_TAG_inlined_subroutine
10987 && child_origin_die->tag == DW_TAG_subprogram))
10988 complaint (&symfile_complaints,
10989 _("Child DIE 0x%x and its abstract origin 0x%x have "
10990 "different tags"), child_die->offset.sect_off,
10991 child_origin_die->offset.sect_off);
10992 if (child_origin_die->parent != origin_die)
10993 complaint (&symfile_complaints,
10994 _("Child DIE 0x%x and its abstract origin 0x%x have "
10995 "different parents"), child_die->offset.sect_off,
10996 child_origin_die->offset.sect_off);
10997 else
10998 *offsets_end++ = child_origin_die->offset;
10999 }
11000 child_die = sibling_die (child_die);
11001 }
11002 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11003 unsigned_int_compar);
11004 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
11005 if (offsetp[-1].sect_off == offsetp->sect_off)
11006 complaint (&symfile_complaints,
11007 _("Multiple children of DIE 0x%x refer "
11008 "to DIE 0x%x as their abstract origin"),
11009 die->offset.sect_off, offsetp->sect_off);
11010
11011 offsetp = offsets;
11012 origin_child_die = origin_die->child;
11013 while (origin_child_die && origin_child_die->tag)
11014 {
11015 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
11016 while (offsetp < offsets_end
11017 && offsetp->sect_off < origin_child_die->offset.sect_off)
11018 offsetp++;
11019 if (offsetp >= offsets_end
11020 || offsetp->sect_off > origin_child_die->offset.sect_off)
11021 {
11022 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11023 Check whether we're already processing ORIGIN_CHILD_DIE.
11024 This can happen with mutually referenced abstract_origins.
11025 PR 16581. */
11026 if (!origin_child_die->in_process)
11027 process_die (origin_child_die, origin_cu);
11028 }
11029 origin_child_die = sibling_die (origin_child_die);
11030 }
11031 origin_cu->list_in_scope = origin_previous_list_in_scope;
11032
11033 do_cleanups (cleanups);
11034 }
11035
11036 static void
11037 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
11038 {
11039 struct objfile *objfile = cu->objfile;
11040 struct context_stack *new;
11041 CORE_ADDR lowpc;
11042 CORE_ADDR highpc;
11043 struct die_info *child_die;
11044 struct attribute *attr, *call_line, *call_file;
11045 const char *name;
11046 CORE_ADDR baseaddr;
11047 struct block *block;
11048 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
11049 VEC (symbolp) *template_args = NULL;
11050 struct template_symbol *templ_func = NULL;
11051
11052 if (inlined_func)
11053 {
11054 /* If we do not have call site information, we can't show the
11055 caller of this inlined function. That's too confusing, so
11056 only use the scope for local variables. */
11057 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11058 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11059 if (call_line == NULL || call_file == NULL)
11060 {
11061 read_lexical_block_scope (die, cu);
11062 return;
11063 }
11064 }
11065
11066 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11067
11068 name = dwarf2_name (die, cu);
11069
11070 /* Ignore functions with missing or empty names. These are actually
11071 illegal according to the DWARF standard. */
11072 if (name == NULL)
11073 {
11074 complaint (&symfile_complaints,
11075 _("missing name for subprogram DIE at %d"),
11076 die->offset.sect_off);
11077 return;
11078 }
11079
11080 /* Ignore functions with missing or invalid low and high pc attributes. */
11081 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11082 {
11083 attr = dwarf2_attr (die, DW_AT_external, cu);
11084 if (!attr || !DW_UNSND (attr))
11085 complaint (&symfile_complaints,
11086 _("cannot get low and high bounds "
11087 "for subprogram DIE at %d"),
11088 die->offset.sect_off);
11089 return;
11090 }
11091
11092 lowpc += baseaddr;
11093 highpc += baseaddr;
11094
11095 /* If we have any template arguments, then we must allocate a
11096 different sort of symbol. */
11097 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11098 {
11099 if (child_die->tag == DW_TAG_template_type_param
11100 || child_die->tag == DW_TAG_template_value_param)
11101 {
11102 templ_func = allocate_template_symbol (objfile);
11103 templ_func->base.is_cplus_template_function = 1;
11104 break;
11105 }
11106 }
11107
11108 new = push_context (0, lowpc);
11109 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11110 (struct symbol *) templ_func);
11111
11112 /* If there is a location expression for DW_AT_frame_base, record
11113 it. */
11114 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
11115 if (attr)
11116 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
11117
11118 cu->list_in_scope = &local_symbols;
11119
11120 if (die->child != NULL)
11121 {
11122 child_die = die->child;
11123 while (child_die && child_die->tag)
11124 {
11125 if (child_die->tag == DW_TAG_template_type_param
11126 || child_die->tag == DW_TAG_template_value_param)
11127 {
11128 struct symbol *arg = new_symbol (child_die, NULL, cu);
11129
11130 if (arg != NULL)
11131 VEC_safe_push (symbolp, template_args, arg);
11132 }
11133 else
11134 process_die (child_die, cu);
11135 child_die = sibling_die (child_die);
11136 }
11137 }
11138
11139 inherit_abstract_dies (die, cu);
11140
11141 /* If we have a DW_AT_specification, we might need to import using
11142 directives from the context of the specification DIE. See the
11143 comment in determine_prefix. */
11144 if (cu->language == language_cplus
11145 && dwarf2_attr (die, DW_AT_specification, cu))
11146 {
11147 struct dwarf2_cu *spec_cu = cu;
11148 struct die_info *spec_die = die_specification (die, &spec_cu);
11149
11150 while (spec_die)
11151 {
11152 child_die = spec_die->child;
11153 while (child_die && child_die->tag)
11154 {
11155 if (child_die->tag == DW_TAG_imported_module)
11156 process_die (child_die, spec_cu);
11157 child_die = sibling_die (child_die);
11158 }
11159
11160 /* In some cases, GCC generates specification DIEs that
11161 themselves contain DW_AT_specification attributes. */
11162 spec_die = die_specification (spec_die, &spec_cu);
11163 }
11164 }
11165
11166 new = pop_context ();
11167 /* Make a block for the local symbols within. */
11168 block = finish_block (new->name, &local_symbols, new->old_blocks,
11169 lowpc, highpc, objfile);
11170
11171 /* For C++, set the block's scope. */
11172 if ((cu->language == language_cplus || cu->language == language_fortran)
11173 && cu->processing_has_namespace_info)
11174 block_set_scope (block, determine_prefix (die, cu),
11175 &objfile->objfile_obstack);
11176
11177 /* If we have address ranges, record them. */
11178 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11179
11180 /* Attach template arguments to function. */
11181 if (! VEC_empty (symbolp, template_args))
11182 {
11183 gdb_assert (templ_func != NULL);
11184
11185 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11186 templ_func->template_arguments
11187 = obstack_alloc (&objfile->objfile_obstack,
11188 (templ_func->n_template_arguments
11189 * sizeof (struct symbol *)));
11190 memcpy (templ_func->template_arguments,
11191 VEC_address (symbolp, template_args),
11192 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11193 VEC_free (symbolp, template_args);
11194 }
11195
11196 /* In C++, we can have functions nested inside functions (e.g., when
11197 a function declares a class that has methods). This means that
11198 when we finish processing a function scope, we may need to go
11199 back to building a containing block's symbol lists. */
11200 local_symbols = new->locals;
11201 using_directives = new->using_directives;
11202
11203 /* If we've finished processing a top-level function, subsequent
11204 symbols go in the file symbol list. */
11205 if (outermost_context_p ())
11206 cu->list_in_scope = &file_symbols;
11207 }
11208
11209 /* Process all the DIES contained within a lexical block scope. Start
11210 a new scope, process the dies, and then close the scope. */
11211
11212 static void
11213 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
11214 {
11215 struct objfile *objfile = cu->objfile;
11216 struct context_stack *new;
11217 CORE_ADDR lowpc, highpc;
11218 struct die_info *child_die;
11219 CORE_ADDR baseaddr;
11220
11221 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11222
11223 /* Ignore blocks with missing or invalid low and high pc attributes. */
11224 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11225 as multiple lexical blocks? Handling children in a sane way would
11226 be nasty. Might be easier to properly extend generic blocks to
11227 describe ranges. */
11228 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11229 return;
11230 lowpc += baseaddr;
11231 highpc += baseaddr;
11232
11233 push_context (0, lowpc);
11234 if (die->child != NULL)
11235 {
11236 child_die = die->child;
11237 while (child_die && child_die->tag)
11238 {
11239 process_die (child_die, cu);
11240 child_die = sibling_die (child_die);
11241 }
11242 }
11243 new = pop_context ();
11244
11245 if (local_symbols != NULL || using_directives != NULL)
11246 {
11247 struct block *block
11248 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11249 highpc, objfile);
11250
11251 /* Note that recording ranges after traversing children, as we
11252 do here, means that recording a parent's ranges entails
11253 walking across all its children's ranges as they appear in
11254 the address map, which is quadratic behavior.
11255
11256 It would be nicer to record the parent's ranges before
11257 traversing its children, simply overriding whatever you find
11258 there. But since we don't even decide whether to create a
11259 block until after we've traversed its children, that's hard
11260 to do. */
11261 dwarf2_record_block_ranges (die, block, baseaddr, cu);
11262 }
11263 local_symbols = new->locals;
11264 using_directives = new->using_directives;
11265 }
11266
11267 /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11268
11269 static void
11270 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11271 {
11272 struct objfile *objfile = cu->objfile;
11273 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11274 CORE_ADDR pc, baseaddr;
11275 struct attribute *attr;
11276 struct call_site *call_site, call_site_local;
11277 void **slot;
11278 int nparams;
11279 struct die_info *child_die;
11280
11281 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11282
11283 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11284 if (!attr)
11285 {
11286 complaint (&symfile_complaints,
11287 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11288 "DIE 0x%x [in module %s]"),
11289 die->offset.sect_off, objfile_name (objfile));
11290 return;
11291 }
11292 pc = attr_value_as_address (attr) + baseaddr;
11293
11294 if (cu->call_site_htab == NULL)
11295 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11296 NULL, &objfile->objfile_obstack,
11297 hashtab_obstack_allocate, NULL);
11298 call_site_local.pc = pc;
11299 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11300 if (*slot != NULL)
11301 {
11302 complaint (&symfile_complaints,
11303 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11304 "DIE 0x%x [in module %s]"),
11305 paddress (gdbarch, pc), die->offset.sect_off,
11306 objfile_name (objfile));
11307 return;
11308 }
11309
11310 /* Count parameters at the caller. */
11311
11312 nparams = 0;
11313 for (child_die = die->child; child_die && child_die->tag;
11314 child_die = sibling_die (child_die))
11315 {
11316 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11317 {
11318 complaint (&symfile_complaints,
11319 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11320 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11321 child_die->tag, child_die->offset.sect_off,
11322 objfile_name (objfile));
11323 continue;
11324 }
11325
11326 nparams++;
11327 }
11328
11329 call_site = obstack_alloc (&objfile->objfile_obstack,
11330 (sizeof (*call_site)
11331 + (sizeof (*call_site->parameter)
11332 * (nparams - 1))));
11333 *slot = call_site;
11334 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11335 call_site->pc = pc;
11336
11337 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11338 {
11339 struct die_info *func_die;
11340
11341 /* Skip also over DW_TAG_inlined_subroutine. */
11342 for (func_die = die->parent;
11343 func_die && func_die->tag != DW_TAG_subprogram
11344 && func_die->tag != DW_TAG_subroutine_type;
11345 func_die = func_die->parent);
11346
11347 /* DW_AT_GNU_all_call_sites is a superset
11348 of DW_AT_GNU_all_tail_call_sites. */
11349 if (func_die
11350 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11351 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11352 {
11353 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11354 not complete. But keep CALL_SITE for look ups via call_site_htab,
11355 both the initial caller containing the real return address PC and
11356 the final callee containing the current PC of a chain of tail
11357 calls do not need to have the tail call list complete. But any
11358 function candidate for a virtual tail call frame searched via
11359 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11360 determined unambiguously. */
11361 }
11362 else
11363 {
11364 struct type *func_type = NULL;
11365
11366 if (func_die)
11367 func_type = get_die_type (func_die, cu);
11368 if (func_type != NULL)
11369 {
11370 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11371
11372 /* Enlist this call site to the function. */
11373 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11374 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11375 }
11376 else
11377 complaint (&symfile_complaints,
11378 _("Cannot find function owning DW_TAG_GNU_call_site "
11379 "DIE 0x%x [in module %s]"),
11380 die->offset.sect_off, objfile_name (objfile));
11381 }
11382 }
11383
11384 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11385 if (attr == NULL)
11386 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11387 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11388 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11389 /* Keep NULL DWARF_BLOCK. */;
11390 else if (attr_form_is_block (attr))
11391 {
11392 struct dwarf2_locexpr_baton *dlbaton;
11393
11394 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11395 dlbaton->data = DW_BLOCK (attr)->data;
11396 dlbaton->size = DW_BLOCK (attr)->size;
11397 dlbaton->per_cu = cu->per_cu;
11398
11399 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11400 }
11401 else if (attr_form_is_ref (attr))
11402 {
11403 struct dwarf2_cu *target_cu = cu;
11404 struct die_info *target_die;
11405
11406 target_die = follow_die_ref (die, attr, &target_cu);
11407 gdb_assert (target_cu->objfile == objfile);
11408 if (die_is_declaration (target_die, target_cu))
11409 {
11410 const char *target_physname = NULL;
11411 struct attribute *target_attr;
11412
11413 /* Prefer the mangled name; otherwise compute the demangled one. */
11414 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11415 if (target_attr == NULL)
11416 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11417 target_cu);
11418 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11419 target_physname = DW_STRING (target_attr);
11420 else
11421 target_physname = dwarf2_physname (NULL, target_die, target_cu);
11422 if (target_physname == NULL)
11423 complaint (&symfile_complaints,
11424 _("DW_AT_GNU_call_site_target target DIE has invalid "
11425 "physname, for referencing DIE 0x%x [in module %s]"),
11426 die->offset.sect_off, objfile_name (objfile));
11427 else
11428 SET_FIELD_PHYSNAME (call_site->target, target_physname);
11429 }
11430 else
11431 {
11432 CORE_ADDR lowpc;
11433
11434 /* DW_AT_entry_pc should be preferred. */
11435 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11436 complaint (&symfile_complaints,
11437 _("DW_AT_GNU_call_site_target target DIE has invalid "
11438 "low pc, for referencing DIE 0x%x [in module %s]"),
11439 die->offset.sect_off, objfile_name (objfile));
11440 else
11441 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11442 }
11443 }
11444 else
11445 complaint (&symfile_complaints,
11446 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11447 "block nor reference, for DIE 0x%x [in module %s]"),
11448 die->offset.sect_off, objfile_name (objfile));
11449
11450 call_site->per_cu = cu->per_cu;
11451
11452 for (child_die = die->child;
11453 child_die && child_die->tag;
11454 child_die = sibling_die (child_die))
11455 {
11456 struct call_site_parameter *parameter;
11457 struct attribute *loc, *origin;
11458
11459 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11460 {
11461 /* Already printed the complaint above. */
11462 continue;
11463 }
11464
11465 gdb_assert (call_site->parameter_count < nparams);
11466 parameter = &call_site->parameter[call_site->parameter_count];
11467
11468 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11469 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11470 register is contained in DW_AT_GNU_call_site_value. */
11471
11472 loc = dwarf2_attr (child_die, DW_AT_location, cu);
11473 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
11474 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
11475 {
11476 sect_offset offset;
11477
11478 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11479 offset = dwarf2_get_ref_die_offset (origin);
11480 if (!offset_in_cu_p (&cu->header, offset))
11481 {
11482 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11483 binding can be done only inside one CU. Such referenced DIE
11484 therefore cannot be even moved to DW_TAG_partial_unit. */
11485 complaint (&symfile_complaints,
11486 _("DW_AT_abstract_origin offset is not in CU for "
11487 "DW_TAG_GNU_call_site child DIE 0x%x "
11488 "[in module %s]"),
11489 child_die->offset.sect_off, objfile_name (objfile));
11490 continue;
11491 }
11492 parameter->u.param_offset.cu_off = (offset.sect_off
11493 - cu->header.offset.sect_off);
11494 }
11495 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
11496 {
11497 complaint (&symfile_complaints,
11498 _("No DW_FORM_block* DW_AT_location for "
11499 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11500 child_die->offset.sect_off, objfile_name (objfile));
11501 continue;
11502 }
11503 else
11504 {
11505 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11506 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11507 if (parameter->u.dwarf_reg != -1)
11508 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11509 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11510 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11511 &parameter->u.fb_offset))
11512 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11513 else
11514 {
11515 complaint (&symfile_complaints,
11516 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11517 "for DW_FORM_block* DW_AT_location is supported for "
11518 "DW_TAG_GNU_call_site child DIE 0x%x "
11519 "[in module %s]"),
11520 child_die->offset.sect_off, objfile_name (objfile));
11521 continue;
11522 }
11523 }
11524
11525 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11526 if (!attr_form_is_block (attr))
11527 {
11528 complaint (&symfile_complaints,
11529 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11530 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11531 child_die->offset.sect_off, objfile_name (objfile));
11532 continue;
11533 }
11534 parameter->value = DW_BLOCK (attr)->data;
11535 parameter->value_size = DW_BLOCK (attr)->size;
11536
11537 /* Parameters are not pre-cleared by memset above. */
11538 parameter->data_value = NULL;
11539 parameter->data_value_size = 0;
11540 call_site->parameter_count++;
11541
11542 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11543 if (attr)
11544 {
11545 if (!attr_form_is_block (attr))
11546 complaint (&symfile_complaints,
11547 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11548 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
11549 child_die->offset.sect_off, objfile_name (objfile));
11550 else
11551 {
11552 parameter->data_value = DW_BLOCK (attr)->data;
11553 parameter->data_value_size = DW_BLOCK (attr)->size;
11554 }
11555 }
11556 }
11557 }
11558
11559 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
11560 Return 1 if the attributes are present and valid, otherwise, return 0.
11561 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
11562
11563 static int
11564 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
11565 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11566 struct partial_symtab *ranges_pst)
11567 {
11568 struct objfile *objfile = cu->objfile;
11569 struct comp_unit_head *cu_header = &cu->header;
11570 bfd *obfd = objfile->obfd;
11571 unsigned int addr_size = cu_header->addr_size;
11572 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11573 /* Base address selection entry. */
11574 CORE_ADDR base;
11575 int found_base;
11576 unsigned int dummy;
11577 const gdb_byte *buffer;
11578 CORE_ADDR marker;
11579 int low_set;
11580 CORE_ADDR low = 0;
11581 CORE_ADDR high = 0;
11582 CORE_ADDR baseaddr;
11583
11584 found_base = cu->base_known;
11585 base = cu->base_address;
11586
11587 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11588 if (offset >= dwarf2_per_objfile->ranges.size)
11589 {
11590 complaint (&symfile_complaints,
11591 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11592 offset);
11593 return 0;
11594 }
11595 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11596
11597 /* Read in the largest possible address. */
11598 marker = read_address (obfd, buffer, cu, &dummy);
11599 if ((marker & mask) == mask)
11600 {
11601 /* If we found the largest possible address, then
11602 read the base address. */
11603 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11604 buffer += 2 * addr_size;
11605 offset += 2 * addr_size;
11606 found_base = 1;
11607 }
11608
11609 low_set = 0;
11610
11611 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11612
11613 while (1)
11614 {
11615 CORE_ADDR range_beginning, range_end;
11616
11617 range_beginning = read_address (obfd, buffer, cu, &dummy);
11618 buffer += addr_size;
11619 range_end = read_address (obfd, buffer, cu, &dummy);
11620 buffer += addr_size;
11621 offset += 2 * addr_size;
11622
11623 /* An end of list marker is a pair of zero addresses. */
11624 if (range_beginning == 0 && range_end == 0)
11625 /* Found the end of list entry. */
11626 break;
11627
11628 /* Each base address selection entry is a pair of 2 values.
11629 The first is the largest possible address, the second is
11630 the base address. Check for a base address here. */
11631 if ((range_beginning & mask) == mask)
11632 {
11633 /* If we found the largest possible address, then
11634 read the base address. */
11635 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11636 found_base = 1;
11637 continue;
11638 }
11639
11640 if (!found_base)
11641 {
11642 /* We have no valid base address for the ranges
11643 data. */
11644 complaint (&symfile_complaints,
11645 _("Invalid .debug_ranges data (no base address)"));
11646 return 0;
11647 }
11648
11649 if (range_beginning > range_end)
11650 {
11651 /* Inverted range entries are invalid. */
11652 complaint (&symfile_complaints,
11653 _("Invalid .debug_ranges data (inverted range)"));
11654 return 0;
11655 }
11656
11657 /* Empty range entries have no effect. */
11658 if (range_beginning == range_end)
11659 continue;
11660
11661 range_beginning += base;
11662 range_end += base;
11663
11664 /* A not-uncommon case of bad debug info.
11665 Don't pollute the addrmap with bad data. */
11666 if (range_beginning + baseaddr == 0
11667 && !dwarf2_per_objfile->has_section_at_zero)
11668 {
11669 complaint (&symfile_complaints,
11670 _(".debug_ranges entry has start address of zero"
11671 " [in module %s]"), objfile_name (objfile));
11672 continue;
11673 }
11674
11675 if (ranges_pst != NULL)
11676 addrmap_set_empty (objfile->psymtabs_addrmap,
11677 range_beginning + baseaddr,
11678 range_end - 1 + baseaddr,
11679 ranges_pst);
11680
11681 /* FIXME: This is recording everything as a low-high
11682 segment of consecutive addresses. We should have a
11683 data structure for discontiguous block ranges
11684 instead. */
11685 if (! low_set)
11686 {
11687 low = range_beginning;
11688 high = range_end;
11689 low_set = 1;
11690 }
11691 else
11692 {
11693 if (range_beginning < low)
11694 low = range_beginning;
11695 if (range_end > high)
11696 high = range_end;
11697 }
11698 }
11699
11700 if (! low_set)
11701 /* If the first entry is an end-of-list marker, the range
11702 describes an empty scope, i.e. no instructions. */
11703 return 0;
11704
11705 if (low_return)
11706 *low_return = low;
11707 if (high_return)
11708 *high_return = high;
11709 return 1;
11710 }
11711
11712 /* Get low and high pc attributes from a die. Return 1 if the attributes
11713 are present and valid, otherwise, return 0. Return -1 if the range is
11714 discontinuous, i.e. derived from DW_AT_ranges information. */
11715
11716 static int
11717 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
11718 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11719 struct partial_symtab *pst)
11720 {
11721 struct attribute *attr;
11722 struct attribute *attr_high;
11723 CORE_ADDR low = 0;
11724 CORE_ADDR high = 0;
11725 int ret = 0;
11726
11727 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11728 if (attr_high)
11729 {
11730 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11731 if (attr)
11732 {
11733 low = attr_value_as_address (attr);
11734 high = attr_value_as_address (attr_high);
11735 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11736 high += low;
11737 }
11738 else
11739 /* Found high w/o low attribute. */
11740 return 0;
11741
11742 /* Found consecutive range of addresses. */
11743 ret = 1;
11744 }
11745 else
11746 {
11747 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11748 if (attr != NULL)
11749 {
11750 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11751 We take advantage of the fact that DW_AT_ranges does not appear
11752 in DW_TAG_compile_unit of DWO files. */
11753 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11754 unsigned int ranges_offset = (DW_UNSND (attr)
11755 + (need_ranges_base
11756 ? cu->ranges_base
11757 : 0));
11758
11759 /* Value of the DW_AT_ranges attribute is the offset in the
11760 .debug_ranges section. */
11761 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
11762 return 0;
11763 /* Found discontinuous range of addresses. */
11764 ret = -1;
11765 }
11766 }
11767
11768 /* read_partial_die has also the strict LOW < HIGH requirement. */
11769 if (high <= low)
11770 return 0;
11771
11772 /* When using the GNU linker, .gnu.linkonce. sections are used to
11773 eliminate duplicate copies of functions and vtables and such.
11774 The linker will arbitrarily choose one and discard the others.
11775 The AT_*_pc values for such functions refer to local labels in
11776 these sections. If the section from that file was discarded, the
11777 labels are not in the output, so the relocs get a value of 0.
11778 If this is a discarded function, mark the pc bounds as invalid,
11779 so that GDB will ignore it. */
11780 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
11781 return 0;
11782
11783 *lowpc = low;
11784 if (highpc)
11785 *highpc = high;
11786 return ret;
11787 }
11788
11789 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
11790 its low and high PC addresses. Do nothing if these addresses could not
11791 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11792 and HIGHPC to the high address if greater than HIGHPC. */
11793
11794 static void
11795 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11796 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11797 struct dwarf2_cu *cu)
11798 {
11799 CORE_ADDR low, high;
11800 struct die_info *child = die->child;
11801
11802 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
11803 {
11804 *lowpc = min (*lowpc, low);
11805 *highpc = max (*highpc, high);
11806 }
11807
11808 /* If the language does not allow nested subprograms (either inside
11809 subprograms or lexical blocks), we're done. */
11810 if (cu->language != language_ada)
11811 return;
11812
11813 /* Check all the children of the given DIE. If it contains nested
11814 subprograms, then check their pc bounds. Likewise, we need to
11815 check lexical blocks as well, as they may also contain subprogram
11816 definitions. */
11817 while (child && child->tag)
11818 {
11819 if (child->tag == DW_TAG_subprogram
11820 || child->tag == DW_TAG_lexical_block)
11821 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11822 child = sibling_die (child);
11823 }
11824 }
11825
11826 /* Get the low and high pc's represented by the scope DIE, and store
11827 them in *LOWPC and *HIGHPC. If the correct values can't be
11828 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11829
11830 static void
11831 get_scope_pc_bounds (struct die_info *die,
11832 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11833 struct dwarf2_cu *cu)
11834 {
11835 CORE_ADDR best_low = (CORE_ADDR) -1;
11836 CORE_ADDR best_high = (CORE_ADDR) 0;
11837 CORE_ADDR current_low, current_high;
11838
11839 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
11840 {
11841 best_low = current_low;
11842 best_high = current_high;
11843 }
11844 else
11845 {
11846 struct die_info *child = die->child;
11847
11848 while (child && child->tag)
11849 {
11850 switch (child->tag) {
11851 case DW_TAG_subprogram:
11852 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
11853 break;
11854 case DW_TAG_namespace:
11855 case DW_TAG_module:
11856 /* FIXME: carlton/2004-01-16: Should we do this for
11857 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11858 that current GCC's always emit the DIEs corresponding
11859 to definitions of methods of classes as children of a
11860 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11861 the DIEs giving the declarations, which could be
11862 anywhere). But I don't see any reason why the
11863 standards says that they have to be there. */
11864 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11865
11866 if (current_low != ((CORE_ADDR) -1))
11867 {
11868 best_low = min (best_low, current_low);
11869 best_high = max (best_high, current_high);
11870 }
11871 break;
11872 default:
11873 /* Ignore. */
11874 break;
11875 }
11876
11877 child = sibling_die (child);
11878 }
11879 }
11880
11881 *lowpc = best_low;
11882 *highpc = best_high;
11883 }
11884
11885 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
11886 in DIE. */
11887
11888 static void
11889 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11890 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11891 {
11892 struct objfile *objfile = cu->objfile;
11893 struct attribute *attr;
11894 struct attribute *attr_high;
11895
11896 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11897 if (attr_high)
11898 {
11899 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11900 if (attr)
11901 {
11902 CORE_ADDR low = attr_value_as_address (attr);
11903 CORE_ADDR high = attr_value_as_address (attr_high);
11904
11905 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11906 high += low;
11907
11908 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11909 }
11910 }
11911
11912 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11913 if (attr)
11914 {
11915 bfd *obfd = objfile->obfd;
11916 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11917 We take advantage of the fact that DW_AT_ranges does not appear
11918 in DW_TAG_compile_unit of DWO files. */
11919 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11920
11921 /* The value of the DW_AT_ranges attribute is the offset of the
11922 address range list in the .debug_ranges section. */
11923 unsigned long offset = (DW_UNSND (attr)
11924 + (need_ranges_base ? cu->ranges_base : 0));
11925 const gdb_byte *buffer;
11926
11927 /* For some target architectures, but not others, the
11928 read_address function sign-extends the addresses it returns.
11929 To recognize base address selection entries, we need a
11930 mask. */
11931 unsigned int addr_size = cu->header.addr_size;
11932 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11933
11934 /* The base address, to which the next pair is relative. Note
11935 that this 'base' is a DWARF concept: most entries in a range
11936 list are relative, to reduce the number of relocs against the
11937 debugging information. This is separate from this function's
11938 'baseaddr' argument, which GDB uses to relocate debugging
11939 information from a shared library based on the address at
11940 which the library was loaded. */
11941 CORE_ADDR base = cu->base_address;
11942 int base_known = cu->base_known;
11943
11944 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
11945 if (offset >= dwarf2_per_objfile->ranges.size)
11946 {
11947 complaint (&symfile_complaints,
11948 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11949 offset);
11950 return;
11951 }
11952 buffer = dwarf2_per_objfile->ranges.buffer + offset;
11953
11954 for (;;)
11955 {
11956 unsigned int bytes_read;
11957 CORE_ADDR start, end;
11958
11959 start = read_address (obfd, buffer, cu, &bytes_read);
11960 buffer += bytes_read;
11961 end = read_address (obfd, buffer, cu, &bytes_read);
11962 buffer += bytes_read;
11963
11964 /* Did we find the end of the range list? */
11965 if (start == 0 && end == 0)
11966 break;
11967
11968 /* Did we find a base address selection entry? */
11969 else if ((start & base_select_mask) == base_select_mask)
11970 {
11971 base = end;
11972 base_known = 1;
11973 }
11974
11975 /* We found an ordinary address range. */
11976 else
11977 {
11978 if (!base_known)
11979 {
11980 complaint (&symfile_complaints,
11981 _("Invalid .debug_ranges data "
11982 "(no base address)"));
11983 return;
11984 }
11985
11986 if (start > end)
11987 {
11988 /* Inverted range entries are invalid. */
11989 complaint (&symfile_complaints,
11990 _("Invalid .debug_ranges data "
11991 "(inverted range)"));
11992 return;
11993 }
11994
11995 /* Empty range entries have no effect. */
11996 if (start == end)
11997 continue;
11998
11999 start += base + baseaddr;
12000 end += base + baseaddr;
12001
12002 /* A not-uncommon case of bad debug info.
12003 Don't pollute the addrmap with bad data. */
12004 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12005 {
12006 complaint (&symfile_complaints,
12007 _(".debug_ranges entry has start address of zero"
12008 " [in module %s]"), objfile_name (objfile));
12009 continue;
12010 }
12011
12012 record_block_range (block, start, end - 1);
12013 }
12014 }
12015 }
12016 }
12017
12018 /* Check whether the producer field indicates either of GCC < 4.6, or the
12019 Intel C/C++ compiler, and cache the result in CU. */
12020
12021 static void
12022 check_producer (struct dwarf2_cu *cu)
12023 {
12024 const char *cs;
12025 int major, minor, release;
12026
12027 if (cu->producer == NULL)
12028 {
12029 /* For unknown compilers expect their behavior is DWARF version
12030 compliant.
12031
12032 GCC started to support .debug_types sections by -gdwarf-4 since
12033 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12034 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12035 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12036 interpreted incorrectly by GDB now - GCC PR debug/48229. */
12037 }
12038 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
12039 {
12040 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12041
12042 cs = &cu->producer[strlen ("GNU ")];
12043 while (*cs && !isdigit (*cs))
12044 cs++;
12045 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12046 {
12047 /* Not recognized as GCC. */
12048 }
12049 else
12050 {
12051 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12052 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12053 }
12054 }
12055 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12056 cu->producer_is_icc = 1;
12057 else
12058 {
12059 /* For other non-GCC compilers, expect their behavior is DWARF version
12060 compliant. */
12061 }
12062
12063 cu->checked_producer = 1;
12064 }
12065
12066 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12067 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12068 during 4.6.0 experimental. */
12069
12070 static int
12071 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12072 {
12073 if (!cu->checked_producer)
12074 check_producer (cu);
12075
12076 return cu->producer_is_gxx_lt_4_6;
12077 }
12078
12079 /* Return the default accessibility type if it is not overriden by
12080 DW_AT_accessibility. */
12081
12082 static enum dwarf_access_attribute
12083 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12084 {
12085 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12086 {
12087 /* The default DWARF 2 accessibility for members is public, the default
12088 accessibility for inheritance is private. */
12089
12090 if (die->tag != DW_TAG_inheritance)
12091 return DW_ACCESS_public;
12092 else
12093 return DW_ACCESS_private;
12094 }
12095 else
12096 {
12097 /* DWARF 3+ defines the default accessibility a different way. The same
12098 rules apply now for DW_TAG_inheritance as for the members and it only
12099 depends on the container kind. */
12100
12101 if (die->parent->tag == DW_TAG_class_type)
12102 return DW_ACCESS_private;
12103 else
12104 return DW_ACCESS_public;
12105 }
12106 }
12107
12108 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12109 offset. If the attribute was not found return 0, otherwise return
12110 1. If it was found but could not properly be handled, set *OFFSET
12111 to 0. */
12112
12113 static int
12114 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12115 LONGEST *offset)
12116 {
12117 struct attribute *attr;
12118
12119 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12120 if (attr != NULL)
12121 {
12122 *offset = 0;
12123
12124 /* Note that we do not check for a section offset first here.
12125 This is because DW_AT_data_member_location is new in DWARF 4,
12126 so if we see it, we can assume that a constant form is really
12127 a constant and not a section offset. */
12128 if (attr_form_is_constant (attr))
12129 *offset = dwarf2_get_attr_constant_value (attr, 0);
12130 else if (attr_form_is_section_offset (attr))
12131 dwarf2_complex_location_expr_complaint ();
12132 else if (attr_form_is_block (attr))
12133 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12134 else
12135 dwarf2_complex_location_expr_complaint ();
12136
12137 return 1;
12138 }
12139
12140 return 0;
12141 }
12142
12143 /* Add an aggregate field to the field list. */
12144
12145 static void
12146 dwarf2_add_field (struct field_info *fip, struct die_info *die,
12147 struct dwarf2_cu *cu)
12148 {
12149 struct objfile *objfile = cu->objfile;
12150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12151 struct nextfield *new_field;
12152 struct attribute *attr;
12153 struct field *fp;
12154 const char *fieldname = "";
12155
12156 /* Allocate a new field list entry and link it in. */
12157 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
12158 make_cleanup (xfree, new_field);
12159 memset (new_field, 0, sizeof (struct nextfield));
12160
12161 if (die->tag == DW_TAG_inheritance)
12162 {
12163 new_field->next = fip->baseclasses;
12164 fip->baseclasses = new_field;
12165 }
12166 else
12167 {
12168 new_field->next = fip->fields;
12169 fip->fields = new_field;
12170 }
12171 fip->nfields++;
12172
12173 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12174 if (attr)
12175 new_field->accessibility = DW_UNSND (attr);
12176 else
12177 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
12178 if (new_field->accessibility != DW_ACCESS_public)
12179 fip->non_public_fields = 1;
12180
12181 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12182 if (attr)
12183 new_field->virtuality = DW_UNSND (attr);
12184 else
12185 new_field->virtuality = DW_VIRTUALITY_none;
12186
12187 fp = &new_field->field;
12188
12189 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
12190 {
12191 LONGEST offset;
12192
12193 /* Data member other than a C++ static data member. */
12194
12195 /* Get type of field. */
12196 fp->type = die_type (die, cu);
12197
12198 SET_FIELD_BITPOS (*fp, 0);
12199
12200 /* Get bit size of field (zero if none). */
12201 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
12202 if (attr)
12203 {
12204 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12205 }
12206 else
12207 {
12208 FIELD_BITSIZE (*fp) = 0;
12209 }
12210
12211 /* Get bit offset of field. */
12212 if (handle_data_member_location (die, cu, &offset))
12213 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12214 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
12215 if (attr)
12216 {
12217 if (gdbarch_bits_big_endian (gdbarch))
12218 {
12219 /* For big endian bits, the DW_AT_bit_offset gives the
12220 additional bit offset from the MSB of the containing
12221 anonymous object to the MSB of the field. We don't
12222 have to do anything special since we don't need to
12223 know the size of the anonymous object. */
12224 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
12225 }
12226 else
12227 {
12228 /* For little endian bits, compute the bit offset to the
12229 MSB of the anonymous object, subtract off the number of
12230 bits from the MSB of the field to the MSB of the
12231 object, and then subtract off the number of bits of
12232 the field itself. The result is the bit offset of
12233 the LSB of the field. */
12234 int anonymous_size;
12235 int bit_offset = DW_UNSND (attr);
12236
12237 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12238 if (attr)
12239 {
12240 /* The size of the anonymous object containing
12241 the bit field is explicit, so use the
12242 indicated size (in bytes). */
12243 anonymous_size = DW_UNSND (attr);
12244 }
12245 else
12246 {
12247 /* The size of the anonymous object containing
12248 the bit field must be inferred from the type
12249 attribute of the data member containing the
12250 bit field. */
12251 anonymous_size = TYPE_LENGTH (fp->type);
12252 }
12253 SET_FIELD_BITPOS (*fp,
12254 (FIELD_BITPOS (*fp)
12255 + anonymous_size * bits_per_byte
12256 - bit_offset - FIELD_BITSIZE (*fp)));
12257 }
12258 }
12259
12260 /* Get name of field. */
12261 fieldname = dwarf2_name (die, cu);
12262 if (fieldname == NULL)
12263 fieldname = "";
12264
12265 /* The name is already allocated along with this objfile, so we don't
12266 need to duplicate it for the type. */
12267 fp->name = fieldname;
12268
12269 /* Change accessibility for artificial fields (e.g. virtual table
12270 pointer or virtual base class pointer) to private. */
12271 if (dwarf2_attr (die, DW_AT_artificial, cu))
12272 {
12273 FIELD_ARTIFICIAL (*fp) = 1;
12274 new_field->accessibility = DW_ACCESS_private;
12275 fip->non_public_fields = 1;
12276 }
12277 }
12278 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
12279 {
12280 /* C++ static member. */
12281
12282 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12283 is a declaration, but all versions of G++ as of this writing
12284 (so through at least 3.2.1) incorrectly generate
12285 DW_TAG_variable tags. */
12286
12287 const char *physname;
12288
12289 /* Get name of field. */
12290 fieldname = dwarf2_name (die, cu);
12291 if (fieldname == NULL)
12292 return;
12293
12294 attr = dwarf2_attr (die, DW_AT_const_value, cu);
12295 if (attr
12296 /* Only create a symbol if this is an external value.
12297 new_symbol checks this and puts the value in the global symbol
12298 table, which we want. If it is not external, new_symbol
12299 will try to put the value in cu->list_in_scope which is wrong. */
12300 && dwarf2_flag_true_p (die, DW_AT_external, cu))
12301 {
12302 /* A static const member, not much different than an enum as far as
12303 we're concerned, except that we can support more types. */
12304 new_symbol (die, NULL, cu);
12305 }
12306
12307 /* Get physical name. */
12308 physname = dwarf2_physname (fieldname, die, cu);
12309
12310 /* The name is already allocated along with this objfile, so we don't
12311 need to duplicate it for the type. */
12312 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
12313 FIELD_TYPE (*fp) = die_type (die, cu);
12314 FIELD_NAME (*fp) = fieldname;
12315 }
12316 else if (die->tag == DW_TAG_inheritance)
12317 {
12318 LONGEST offset;
12319
12320 /* C++ base class field. */
12321 if (handle_data_member_location (die, cu, &offset))
12322 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
12323 FIELD_BITSIZE (*fp) = 0;
12324 FIELD_TYPE (*fp) = die_type (die, cu);
12325 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12326 fip->nbaseclasses++;
12327 }
12328 }
12329
12330 /* Add a typedef defined in the scope of the FIP's class. */
12331
12332 static void
12333 dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12334 struct dwarf2_cu *cu)
12335 {
12336 struct objfile *objfile = cu->objfile;
12337 struct typedef_field_list *new_field;
12338 struct attribute *attr;
12339 struct typedef_field *fp;
12340 char *fieldname = "";
12341
12342 /* Allocate a new field list entry and link it in. */
12343 new_field = xzalloc (sizeof (*new_field));
12344 make_cleanup (xfree, new_field);
12345
12346 gdb_assert (die->tag == DW_TAG_typedef);
12347
12348 fp = &new_field->field;
12349
12350 /* Get name of field. */
12351 fp->name = dwarf2_name (die, cu);
12352 if (fp->name == NULL)
12353 return;
12354
12355 fp->type = read_type_die (die, cu);
12356
12357 new_field->next = fip->typedef_field_list;
12358 fip->typedef_field_list = new_field;
12359 fip->typedef_field_list_count++;
12360 }
12361
12362 /* Create the vector of fields, and attach it to the type. */
12363
12364 static void
12365 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
12366 struct dwarf2_cu *cu)
12367 {
12368 int nfields = fip->nfields;
12369
12370 /* Record the field count, allocate space for the array of fields,
12371 and create blank accessibility bitfields if necessary. */
12372 TYPE_NFIELDS (type) = nfields;
12373 TYPE_FIELDS (type) = (struct field *)
12374 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12375 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12376
12377 if (fip->non_public_fields && cu->language != language_ada)
12378 {
12379 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12380
12381 TYPE_FIELD_PRIVATE_BITS (type) =
12382 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12383 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12384
12385 TYPE_FIELD_PROTECTED_BITS (type) =
12386 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12387 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12388
12389 TYPE_FIELD_IGNORE_BITS (type) =
12390 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12391 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
12392 }
12393
12394 /* If the type has baseclasses, allocate and clear a bit vector for
12395 TYPE_FIELD_VIRTUAL_BITS. */
12396 if (fip->nbaseclasses && cu->language != language_ada)
12397 {
12398 int num_bytes = B_BYTES (fip->nbaseclasses);
12399 unsigned char *pointer;
12400
12401 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12402 pointer = TYPE_ALLOC (type, num_bytes);
12403 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
12404 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12405 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12406 }
12407
12408 /* Copy the saved-up fields into the field vector. Start from the head of
12409 the list, adding to the tail of the field array, so that they end up in
12410 the same order in the array in which they were added to the list. */
12411 while (nfields-- > 0)
12412 {
12413 struct nextfield *fieldp;
12414
12415 if (fip->fields)
12416 {
12417 fieldp = fip->fields;
12418 fip->fields = fieldp->next;
12419 }
12420 else
12421 {
12422 fieldp = fip->baseclasses;
12423 fip->baseclasses = fieldp->next;
12424 }
12425
12426 TYPE_FIELD (type, nfields) = fieldp->field;
12427 switch (fieldp->accessibility)
12428 {
12429 case DW_ACCESS_private:
12430 if (cu->language != language_ada)
12431 SET_TYPE_FIELD_PRIVATE (type, nfields);
12432 break;
12433
12434 case DW_ACCESS_protected:
12435 if (cu->language != language_ada)
12436 SET_TYPE_FIELD_PROTECTED (type, nfields);
12437 break;
12438
12439 case DW_ACCESS_public:
12440 break;
12441
12442 default:
12443 /* Unknown accessibility. Complain and treat it as public. */
12444 {
12445 complaint (&symfile_complaints, _("unsupported accessibility %d"),
12446 fieldp->accessibility);
12447 }
12448 break;
12449 }
12450 if (nfields < fip->nbaseclasses)
12451 {
12452 switch (fieldp->virtuality)
12453 {
12454 case DW_VIRTUALITY_virtual:
12455 case DW_VIRTUALITY_pure_virtual:
12456 if (cu->language == language_ada)
12457 error (_("unexpected virtuality in component of Ada type"));
12458 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12459 break;
12460 }
12461 }
12462 }
12463 }
12464
12465 /* Return true if this member function is a constructor, false
12466 otherwise. */
12467
12468 static int
12469 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12470 {
12471 const char *fieldname;
12472 const char *typename;
12473 int len;
12474
12475 if (die->parent == NULL)
12476 return 0;
12477
12478 if (die->parent->tag != DW_TAG_structure_type
12479 && die->parent->tag != DW_TAG_union_type
12480 && die->parent->tag != DW_TAG_class_type)
12481 return 0;
12482
12483 fieldname = dwarf2_name (die, cu);
12484 typename = dwarf2_name (die->parent, cu);
12485 if (fieldname == NULL || typename == NULL)
12486 return 0;
12487
12488 len = strlen (fieldname);
12489 return (strncmp (fieldname, typename, len) == 0
12490 && (typename[len] == '\0' || typename[len] == '<'));
12491 }
12492
12493 /* Add a member function to the proper fieldlist. */
12494
12495 static void
12496 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
12497 struct type *type, struct dwarf2_cu *cu)
12498 {
12499 struct objfile *objfile = cu->objfile;
12500 struct attribute *attr;
12501 struct fnfieldlist *flp;
12502 int i;
12503 struct fn_field *fnp;
12504 const char *fieldname;
12505 struct nextfnfield *new_fnfield;
12506 struct type *this_type;
12507 enum dwarf_access_attribute accessibility;
12508
12509 if (cu->language == language_ada)
12510 error (_("unexpected member function in Ada type"));
12511
12512 /* Get name of member function. */
12513 fieldname = dwarf2_name (die, cu);
12514 if (fieldname == NULL)
12515 return;
12516
12517 /* Look up member function name in fieldlist. */
12518 for (i = 0; i < fip->nfnfields; i++)
12519 {
12520 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
12521 break;
12522 }
12523
12524 /* Create new list element if necessary. */
12525 if (i < fip->nfnfields)
12526 flp = &fip->fnfieldlists[i];
12527 else
12528 {
12529 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12530 {
12531 fip->fnfieldlists = (struct fnfieldlist *)
12532 xrealloc (fip->fnfieldlists,
12533 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
12534 * sizeof (struct fnfieldlist));
12535 if (fip->nfnfields == 0)
12536 make_cleanup (free_current_contents, &fip->fnfieldlists);
12537 }
12538 flp = &fip->fnfieldlists[fip->nfnfields];
12539 flp->name = fieldname;
12540 flp->length = 0;
12541 flp->head = NULL;
12542 i = fip->nfnfields++;
12543 }
12544
12545 /* Create a new member function field and chain it to the field list
12546 entry. */
12547 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
12548 make_cleanup (xfree, new_fnfield);
12549 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12550 new_fnfield->next = flp->head;
12551 flp->head = new_fnfield;
12552 flp->length++;
12553
12554 /* Fill in the member function field info. */
12555 fnp = &new_fnfield->fnfield;
12556
12557 /* Delay processing of the physname until later. */
12558 if (cu->language == language_cplus || cu->language == language_java)
12559 {
12560 add_to_method_list (type, i, flp->length - 1, fieldname,
12561 die, cu);
12562 }
12563 else
12564 {
12565 const char *physname = dwarf2_physname (fieldname, die, cu);
12566 fnp->physname = physname ? physname : "";
12567 }
12568
12569 fnp->type = alloc_type (objfile);
12570 this_type = read_type_die (die, cu);
12571 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
12572 {
12573 int nparams = TYPE_NFIELDS (this_type);
12574
12575 /* TYPE is the domain of this method, and THIS_TYPE is the type
12576 of the method itself (TYPE_CODE_METHOD). */
12577 smash_to_method_type (fnp->type, type,
12578 TYPE_TARGET_TYPE (this_type),
12579 TYPE_FIELDS (this_type),
12580 TYPE_NFIELDS (this_type),
12581 TYPE_VARARGS (this_type));
12582
12583 /* Handle static member functions.
12584 Dwarf2 has no clean way to discern C++ static and non-static
12585 member functions. G++ helps GDB by marking the first
12586 parameter for non-static member functions (which is the this
12587 pointer) as artificial. We obtain this information from
12588 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
12589 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
12590 fnp->voffset = VOFFSET_STATIC;
12591 }
12592 else
12593 complaint (&symfile_complaints, _("member function type missing for '%s'"),
12594 dwarf2_full_name (fieldname, die, cu));
12595
12596 /* Get fcontext from DW_AT_containing_type if present. */
12597 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
12598 fnp->fcontext = die_containing_type (die, cu);
12599
12600 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12601 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
12602
12603 /* Get accessibility. */
12604 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
12605 if (attr)
12606 accessibility = DW_UNSND (attr);
12607 else
12608 accessibility = dwarf2_default_access_attribute (die, cu);
12609 switch (accessibility)
12610 {
12611 case DW_ACCESS_private:
12612 fnp->is_private = 1;
12613 break;
12614 case DW_ACCESS_protected:
12615 fnp->is_protected = 1;
12616 break;
12617 }
12618
12619 /* Check for artificial methods. */
12620 attr = dwarf2_attr (die, DW_AT_artificial, cu);
12621 if (attr && DW_UNSND (attr) != 0)
12622 fnp->is_artificial = 1;
12623
12624 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12625
12626 /* Get index in virtual function table if it is a virtual member
12627 function. For older versions of GCC, this is an offset in the
12628 appropriate virtual table, as specified by DW_AT_containing_type.
12629 For everyone else, it is an expression to be evaluated relative
12630 to the object address. */
12631
12632 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
12633 if (attr)
12634 {
12635 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
12636 {
12637 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12638 {
12639 /* Old-style GCC. */
12640 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12641 }
12642 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12643 || (DW_BLOCK (attr)->size > 1
12644 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12645 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12646 {
12647 struct dwarf_block blk;
12648 int offset;
12649
12650 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12651 ? 1 : 2);
12652 blk.size = DW_BLOCK (attr)->size - offset;
12653 blk.data = DW_BLOCK (attr)->data + offset;
12654 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12655 if ((fnp->voffset % cu->header.addr_size) != 0)
12656 dwarf2_complex_location_expr_complaint ();
12657 else
12658 fnp->voffset /= cu->header.addr_size;
12659 fnp->voffset += 2;
12660 }
12661 else
12662 dwarf2_complex_location_expr_complaint ();
12663
12664 if (!fnp->fcontext)
12665 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12666 }
12667 else if (attr_form_is_section_offset (attr))
12668 {
12669 dwarf2_complex_location_expr_complaint ();
12670 }
12671 else
12672 {
12673 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12674 fieldname);
12675 }
12676 }
12677 else
12678 {
12679 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12680 if (attr && DW_UNSND (attr))
12681 {
12682 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12683 complaint (&symfile_complaints,
12684 _("Member function \"%s\" (offset %d) is virtual "
12685 "but the vtable offset is not specified"),
12686 fieldname, die->offset.sect_off);
12687 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12688 TYPE_CPLUS_DYNAMIC (type) = 1;
12689 }
12690 }
12691 }
12692
12693 /* Create the vector of member function fields, and attach it to the type. */
12694
12695 static void
12696 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
12697 struct dwarf2_cu *cu)
12698 {
12699 struct fnfieldlist *flp;
12700 int i;
12701
12702 if (cu->language == language_ada)
12703 error (_("unexpected member functions in Ada type"));
12704
12705 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12706 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12707 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12708
12709 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12710 {
12711 struct nextfnfield *nfp = flp->head;
12712 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12713 int k;
12714
12715 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12716 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12717 fn_flp->fn_fields = (struct fn_field *)
12718 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12719 for (k = flp->length; (k--, nfp); nfp = nfp->next)
12720 fn_flp->fn_fields[k] = nfp->fnfield;
12721 }
12722
12723 TYPE_NFN_FIELDS (type) = fip->nfnfields;
12724 }
12725
12726 /* Returns non-zero if NAME is the name of a vtable member in CU's
12727 language, zero otherwise. */
12728 static int
12729 is_vtable_name (const char *name, struct dwarf2_cu *cu)
12730 {
12731 static const char vptr[] = "_vptr";
12732 static const char vtable[] = "vtable";
12733
12734 /* Look for the C++ and Java forms of the vtable. */
12735 if ((cu->language == language_java
12736 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12737 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12738 && is_cplus_marker (name[sizeof (vptr) - 1])))
12739 return 1;
12740
12741 return 0;
12742 }
12743
12744 /* GCC outputs unnamed structures that are really pointers to member
12745 functions, with the ABI-specified layout. If TYPE describes
12746 such a structure, smash it into a member function type.
12747
12748 GCC shouldn't do this; it should just output pointer to member DIEs.
12749 This is GCC PR debug/28767. */
12750
12751 static void
12752 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
12753 {
12754 struct type *pfn_type, *domain_type, *new_type;
12755
12756 /* Check for a structure with no name and two children. */
12757 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12758 return;
12759
12760 /* Check for __pfn and __delta members. */
12761 if (TYPE_FIELD_NAME (type, 0) == NULL
12762 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12763 || TYPE_FIELD_NAME (type, 1) == NULL
12764 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12765 return;
12766
12767 /* Find the type of the method. */
12768 pfn_type = TYPE_FIELD_TYPE (type, 0);
12769 if (pfn_type == NULL
12770 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12771 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
12772 return;
12773
12774 /* Look for the "this" argument. */
12775 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12776 if (TYPE_NFIELDS (pfn_type) == 0
12777 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
12778 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
12779 return;
12780
12781 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
12782 new_type = alloc_type (objfile);
12783 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
12784 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12785 TYPE_VARARGS (pfn_type));
12786 smash_to_methodptr_type (type, new_type);
12787 }
12788
12789 /* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12790 (icc). */
12791
12792 static int
12793 producer_is_icc (struct dwarf2_cu *cu)
12794 {
12795 if (!cu->checked_producer)
12796 check_producer (cu);
12797
12798 return cu->producer_is_icc;
12799 }
12800
12801 /* Called when we find the DIE that starts a structure or union scope
12802 (definition) to create a type for the structure or union. Fill in
12803 the type's name and general properties; the members will not be
12804 processed until process_structure_scope.
12805
12806 NOTE: we need to call these functions regardless of whether or not the
12807 DIE has a DW_AT_name attribute, since it might be an anonymous
12808 structure or union. This gets the type entered into our set of
12809 user defined types.
12810
12811 However, if the structure is incomplete (an opaque struct/union)
12812 then suppress creating a symbol table entry for it since gdb only
12813 wants to find the one with the complete definition. Note that if
12814 it is complete, we just call new_symbol, which does it's own
12815 checking about whether the struct/union is anonymous or not (and
12816 suppresses creating a symbol table entry itself). */
12817
12818 static struct type *
12819 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
12820 {
12821 struct objfile *objfile = cu->objfile;
12822 struct type *type;
12823 struct attribute *attr;
12824 const char *name;
12825
12826 /* If the definition of this type lives in .debug_types, read that type.
12827 Don't follow DW_AT_specification though, that will take us back up
12828 the chain and we want to go down. */
12829 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
12830 if (attr)
12831 {
12832 type = get_DW_AT_signature_type (die, attr, cu);
12833
12834 /* The type's CU may not be the same as CU.
12835 Ensure TYPE is recorded with CU in die_type_hash. */
12836 return set_die_type (die, type, cu);
12837 }
12838
12839 type = alloc_type (objfile);
12840 INIT_CPLUS_SPECIFIC (type);
12841
12842 name = dwarf2_name (die, cu);
12843 if (name != NULL)
12844 {
12845 if (cu->language == language_cplus
12846 || cu->language == language_java)
12847 {
12848 const char *full_name = dwarf2_full_name (name, die, cu);
12849
12850 /* dwarf2_full_name might have already finished building the DIE's
12851 type. If so, there is no need to continue. */
12852 if (get_die_type (die, cu) != NULL)
12853 return get_die_type (die, cu);
12854
12855 TYPE_TAG_NAME (type) = full_name;
12856 if (die->tag == DW_TAG_structure_type
12857 || die->tag == DW_TAG_class_type)
12858 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12859 }
12860 else
12861 {
12862 /* The name is already allocated along with this objfile, so
12863 we don't need to duplicate it for the type. */
12864 TYPE_TAG_NAME (type) = name;
12865 if (die->tag == DW_TAG_class_type)
12866 TYPE_NAME (type) = TYPE_TAG_NAME (type);
12867 }
12868 }
12869
12870 if (die->tag == DW_TAG_structure_type)
12871 {
12872 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12873 }
12874 else if (die->tag == DW_TAG_union_type)
12875 {
12876 TYPE_CODE (type) = TYPE_CODE_UNION;
12877 }
12878 else
12879 {
12880 TYPE_CODE (type) = TYPE_CODE_CLASS;
12881 }
12882
12883 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12884 TYPE_DECLARED_CLASS (type) = 1;
12885
12886 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
12887 if (attr)
12888 {
12889 TYPE_LENGTH (type) = DW_UNSND (attr);
12890 }
12891 else
12892 {
12893 TYPE_LENGTH (type) = 0;
12894 }
12895
12896 if (producer_is_icc (cu))
12897 {
12898 /* ICC does not output the required DW_AT_declaration
12899 on incomplete types, but gives them a size of zero. */
12900 }
12901 else
12902 TYPE_STUB_SUPPORTED (type) = 1;
12903
12904 if (die_is_declaration (die, cu))
12905 TYPE_STUB (type) = 1;
12906 else if (attr == NULL && die->child == NULL
12907 && producer_is_realview (cu->producer))
12908 /* RealView does not output the required DW_AT_declaration
12909 on incomplete types. */
12910 TYPE_STUB (type) = 1;
12911
12912 /* We need to add the type field to the die immediately so we don't
12913 infinitely recurse when dealing with pointers to the structure
12914 type within the structure itself. */
12915 set_die_type (die, type, cu);
12916
12917 /* set_die_type should be already done. */
12918 set_descriptive_type (type, die, cu);
12919
12920 return type;
12921 }
12922
12923 /* Finish creating a structure or union type, including filling in
12924 its members and creating a symbol for it. */
12925
12926 static void
12927 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12928 {
12929 struct objfile *objfile = cu->objfile;
12930 struct die_info *child_die = die->child;
12931 struct type *type;
12932
12933 type = get_die_type (die, cu);
12934 if (type == NULL)
12935 type = read_structure_type (die, cu);
12936
12937 if (die->child != NULL && ! die_is_declaration (die, cu))
12938 {
12939 struct field_info fi;
12940 struct die_info *child_die;
12941 VEC (symbolp) *template_args = NULL;
12942 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
12943
12944 memset (&fi, 0, sizeof (struct field_info));
12945
12946 child_die = die->child;
12947
12948 while (child_die && child_die->tag)
12949 {
12950 if (child_die->tag == DW_TAG_member
12951 || child_die->tag == DW_TAG_variable)
12952 {
12953 /* NOTE: carlton/2002-11-05: A C++ static data member
12954 should be a DW_TAG_member that is a declaration, but
12955 all versions of G++ as of this writing (so through at
12956 least 3.2.1) incorrectly generate DW_TAG_variable
12957 tags for them instead. */
12958 dwarf2_add_field (&fi, child_die, cu);
12959 }
12960 else if (child_die->tag == DW_TAG_subprogram)
12961 {
12962 /* C++ member function. */
12963 dwarf2_add_member_fn (&fi, child_die, type, cu);
12964 }
12965 else if (child_die->tag == DW_TAG_inheritance)
12966 {
12967 /* C++ base class field. */
12968 dwarf2_add_field (&fi, child_die, cu);
12969 }
12970 else if (child_die->tag == DW_TAG_typedef)
12971 dwarf2_add_typedef (&fi, child_die, cu);
12972 else if (child_die->tag == DW_TAG_template_type_param
12973 || child_die->tag == DW_TAG_template_value_param)
12974 {
12975 struct symbol *arg = new_symbol (child_die, NULL, cu);
12976
12977 if (arg != NULL)
12978 VEC_safe_push (symbolp, template_args, arg);
12979 }
12980
12981 child_die = sibling_die (child_die);
12982 }
12983
12984 /* Attach template arguments to type. */
12985 if (! VEC_empty (symbolp, template_args))
12986 {
12987 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12988 TYPE_N_TEMPLATE_ARGUMENTS (type)
12989 = VEC_length (symbolp, template_args);
12990 TYPE_TEMPLATE_ARGUMENTS (type)
12991 = obstack_alloc (&objfile->objfile_obstack,
12992 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12993 * sizeof (struct symbol *)));
12994 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12995 VEC_address (symbolp, template_args),
12996 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12997 * sizeof (struct symbol *)));
12998 VEC_free (symbolp, template_args);
12999 }
13000
13001 /* Attach fields and member functions to the type. */
13002 if (fi.nfields)
13003 dwarf2_attach_fields_to_type (&fi, type, cu);
13004 if (fi.nfnfields)
13005 {
13006 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
13007
13008 /* Get the type which refers to the base class (possibly this
13009 class itself) which contains the vtable pointer for the current
13010 class from the DW_AT_containing_type attribute. This use of
13011 DW_AT_containing_type is a GNU extension. */
13012
13013 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
13014 {
13015 struct type *t = die_containing_type (die, cu);
13016
13017 TYPE_VPTR_BASETYPE (type) = t;
13018 if (type == t)
13019 {
13020 int i;
13021
13022 /* Our own class provides vtbl ptr. */
13023 for (i = TYPE_NFIELDS (t) - 1;
13024 i >= TYPE_N_BASECLASSES (t);
13025 --i)
13026 {
13027 const char *fieldname = TYPE_FIELD_NAME (t, i);
13028
13029 if (is_vtable_name (fieldname, cu))
13030 {
13031 TYPE_VPTR_FIELDNO (type) = i;
13032 break;
13033 }
13034 }
13035
13036 /* Complain if virtual function table field not found. */
13037 if (i < TYPE_N_BASECLASSES (t))
13038 complaint (&symfile_complaints,
13039 _("virtual function table pointer "
13040 "not found when defining class '%s'"),
13041 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13042 "");
13043 }
13044 else
13045 {
13046 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13047 }
13048 }
13049 else if (cu->producer
13050 && strncmp (cu->producer,
13051 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13052 {
13053 /* The IBM XLC compiler does not provide direct indication
13054 of the containing type, but the vtable pointer is
13055 always named __vfp. */
13056
13057 int i;
13058
13059 for (i = TYPE_NFIELDS (type) - 1;
13060 i >= TYPE_N_BASECLASSES (type);
13061 --i)
13062 {
13063 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13064 {
13065 TYPE_VPTR_FIELDNO (type) = i;
13066 TYPE_VPTR_BASETYPE (type) = type;
13067 break;
13068 }
13069 }
13070 }
13071 }
13072
13073 /* Copy fi.typedef_field_list linked list elements content into the
13074 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13075 if (fi.typedef_field_list)
13076 {
13077 int i = fi.typedef_field_list_count;
13078
13079 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13080 TYPE_TYPEDEF_FIELD_ARRAY (type)
13081 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13082 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13083
13084 /* Reverse the list order to keep the debug info elements order. */
13085 while (--i >= 0)
13086 {
13087 struct typedef_field *dest, *src;
13088
13089 dest = &TYPE_TYPEDEF_FIELD (type, i);
13090 src = &fi.typedef_field_list->field;
13091 fi.typedef_field_list = fi.typedef_field_list->next;
13092 *dest = *src;
13093 }
13094 }
13095
13096 do_cleanups (back_to);
13097
13098 if (HAVE_CPLUS_STRUCT (type))
13099 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
13100 }
13101
13102 quirk_gcc_member_function_pointer (type, objfile);
13103
13104 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13105 snapshots) has been known to create a die giving a declaration
13106 for a class that has, as a child, a die giving a definition for a
13107 nested class. So we have to process our children even if the
13108 current die is a declaration. Normally, of course, a declaration
13109 won't have any children at all. */
13110
13111 while (child_die != NULL && child_die->tag)
13112 {
13113 if (child_die->tag == DW_TAG_member
13114 || child_die->tag == DW_TAG_variable
13115 || child_die->tag == DW_TAG_inheritance
13116 || child_die->tag == DW_TAG_template_value_param
13117 || child_die->tag == DW_TAG_template_type_param)
13118 {
13119 /* Do nothing. */
13120 }
13121 else
13122 process_die (child_die, cu);
13123
13124 child_die = sibling_die (child_die);
13125 }
13126
13127 /* Do not consider external references. According to the DWARF standard,
13128 these DIEs are identified by the fact that they have no byte_size
13129 attribute, and a declaration attribute. */
13130 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13131 || !die_is_declaration (die, cu))
13132 new_symbol (die, type, cu);
13133 }
13134
13135 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
13136 update TYPE using some information only available in DIE's children. */
13137
13138 static void
13139 update_enumeration_type_from_children (struct die_info *die,
13140 struct type *type,
13141 struct dwarf2_cu *cu)
13142 {
13143 struct obstack obstack;
13144 struct die_info *child_die = die->child;
13145 int unsigned_enum = 1;
13146 int flag_enum = 1;
13147 ULONGEST mask = 0;
13148 struct cleanup *old_chain;
13149
13150 obstack_init (&obstack);
13151 old_chain = make_cleanup_obstack_free (&obstack);
13152
13153 while (child_die != NULL && child_die->tag)
13154 {
13155 struct attribute *attr;
13156 LONGEST value;
13157 const gdb_byte *bytes;
13158 struct dwarf2_locexpr_baton *baton;
13159 const char *name;
13160 if (child_die->tag != DW_TAG_enumerator)
13161 continue;
13162
13163 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13164 if (attr == NULL)
13165 continue;
13166
13167 name = dwarf2_name (child_die, cu);
13168 if (name == NULL)
13169 name = "<anonymous enumerator>";
13170
13171 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13172 &value, &bytes, &baton);
13173 if (value < 0)
13174 {
13175 unsigned_enum = 0;
13176 flag_enum = 0;
13177 }
13178 else if ((mask & value) != 0)
13179 flag_enum = 0;
13180 else
13181 mask |= value;
13182
13183 /* If we already know that the enum type is neither unsigned, nor
13184 a flag type, no need to look at the rest of the enumerates. */
13185 if (!unsigned_enum && !flag_enum)
13186 break;
13187 child_die = sibling_die (child_die);
13188 }
13189
13190 if (unsigned_enum)
13191 TYPE_UNSIGNED (type) = 1;
13192 if (flag_enum)
13193 TYPE_FLAG_ENUM (type) = 1;
13194
13195 do_cleanups (old_chain);
13196 }
13197
13198 /* Given a DW_AT_enumeration_type die, set its type. We do not
13199 complete the type's fields yet, or create any symbols. */
13200
13201 static struct type *
13202 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
13203 {
13204 struct objfile *objfile = cu->objfile;
13205 struct type *type;
13206 struct attribute *attr;
13207 const char *name;
13208
13209 /* If the definition of this type lives in .debug_types, read that type.
13210 Don't follow DW_AT_specification though, that will take us back up
13211 the chain and we want to go down. */
13212 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
13213 if (attr)
13214 {
13215 type = get_DW_AT_signature_type (die, attr, cu);
13216
13217 /* The type's CU may not be the same as CU.
13218 Ensure TYPE is recorded with CU in die_type_hash. */
13219 return set_die_type (die, type, cu);
13220 }
13221
13222 type = alloc_type (objfile);
13223
13224 TYPE_CODE (type) = TYPE_CODE_ENUM;
13225 name = dwarf2_full_name (NULL, die, cu);
13226 if (name != NULL)
13227 TYPE_TAG_NAME (type) = name;
13228
13229 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13230 if (attr)
13231 {
13232 TYPE_LENGTH (type) = DW_UNSND (attr);
13233 }
13234 else
13235 {
13236 TYPE_LENGTH (type) = 0;
13237 }
13238
13239 /* The enumeration DIE can be incomplete. In Ada, any type can be
13240 declared as private in the package spec, and then defined only
13241 inside the package body. Such types are known as Taft Amendment
13242 Types. When another package uses such a type, an incomplete DIE
13243 may be generated by the compiler. */
13244 if (die_is_declaration (die, cu))
13245 TYPE_STUB (type) = 1;
13246
13247 /* Finish the creation of this type by using the enum's children. */
13248 update_enumeration_type_from_children (die, type, cu);
13249
13250 return set_die_type (die, type, cu);
13251 }
13252
13253 /* Given a pointer to a die which begins an enumeration, process all
13254 the dies that define the members of the enumeration, and create the
13255 symbol for the enumeration type.
13256
13257 NOTE: We reverse the order of the element list. */
13258
13259 static void
13260 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13261 {
13262 struct type *this_type;
13263
13264 this_type = get_die_type (die, cu);
13265 if (this_type == NULL)
13266 this_type = read_enumeration_type (die, cu);
13267
13268 if (die->child != NULL)
13269 {
13270 struct die_info *child_die;
13271 struct symbol *sym;
13272 struct field *fields = NULL;
13273 int num_fields = 0;
13274 const char *name;
13275
13276 child_die = die->child;
13277 while (child_die && child_die->tag)
13278 {
13279 if (child_die->tag != DW_TAG_enumerator)
13280 {
13281 process_die (child_die, cu);
13282 }
13283 else
13284 {
13285 name = dwarf2_name (child_die, cu);
13286 if (name)
13287 {
13288 sym = new_symbol (child_die, this_type, cu);
13289
13290 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13291 {
13292 fields = (struct field *)
13293 xrealloc (fields,
13294 (num_fields + DW_FIELD_ALLOC_CHUNK)
13295 * sizeof (struct field));
13296 }
13297
13298 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
13299 FIELD_TYPE (fields[num_fields]) = NULL;
13300 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
13301 FIELD_BITSIZE (fields[num_fields]) = 0;
13302
13303 num_fields++;
13304 }
13305 }
13306
13307 child_die = sibling_die (child_die);
13308 }
13309
13310 if (num_fields)
13311 {
13312 TYPE_NFIELDS (this_type) = num_fields;
13313 TYPE_FIELDS (this_type) = (struct field *)
13314 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13315 memcpy (TYPE_FIELDS (this_type), fields,
13316 sizeof (struct field) * num_fields);
13317 xfree (fields);
13318 }
13319 }
13320
13321 /* If we are reading an enum from a .debug_types unit, and the enum
13322 is a declaration, and the enum is not the signatured type in the
13323 unit, then we do not want to add a symbol for it. Adding a
13324 symbol would in some cases obscure the true definition of the
13325 enum, giving users an incomplete type when the definition is
13326 actually available. Note that we do not want to do this for all
13327 enums which are just declarations, because C++0x allows forward
13328 enum declarations. */
13329 if (cu->per_cu->is_debug_types
13330 && die_is_declaration (die, cu))
13331 {
13332 struct signatured_type *sig_type;
13333
13334 sig_type = (struct signatured_type *) cu->per_cu;
13335 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13336 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
13337 return;
13338 }
13339
13340 new_symbol (die, this_type, cu);
13341 }
13342
13343 /* Extract all information from a DW_TAG_array_type DIE and put it in
13344 the DIE's type field. For now, this only handles one dimensional
13345 arrays. */
13346
13347 static struct type *
13348 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
13349 {
13350 struct objfile *objfile = cu->objfile;
13351 struct die_info *child_die;
13352 struct type *type;
13353 struct type *element_type, *range_type, *index_type;
13354 struct type **range_types = NULL;
13355 struct attribute *attr;
13356 int ndim = 0;
13357 struct cleanup *back_to;
13358 const char *name;
13359 unsigned int bit_stride = 0;
13360
13361 element_type = die_type (die, cu);
13362
13363 /* The die_type call above may have already set the type for this DIE. */
13364 type = get_die_type (die, cu);
13365 if (type)
13366 return type;
13367
13368 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13369 if (attr != NULL)
13370 bit_stride = DW_UNSND (attr) * 8;
13371
13372 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13373 if (attr != NULL)
13374 bit_stride = DW_UNSND (attr);
13375
13376 /* Irix 6.2 native cc creates array types without children for
13377 arrays with unspecified length. */
13378 if (die->child == NULL)
13379 {
13380 index_type = objfile_type (objfile)->builtin_int;
13381 range_type = create_range_type (NULL, index_type, 0, -1);
13382 type = create_array_type_with_stride (NULL, element_type, range_type,
13383 bit_stride);
13384 return set_die_type (die, type, cu);
13385 }
13386
13387 back_to = make_cleanup (null_cleanup, NULL);
13388 child_die = die->child;
13389 while (child_die && child_die->tag)
13390 {
13391 if (child_die->tag == DW_TAG_subrange_type)
13392 {
13393 struct type *child_type = read_type_die (child_die, cu);
13394
13395 if (child_type != NULL)
13396 {
13397 /* The range type was succesfully read. Save it for the
13398 array type creation. */
13399 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13400 {
13401 range_types = (struct type **)
13402 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13403 * sizeof (struct type *));
13404 if (ndim == 0)
13405 make_cleanup (free_current_contents, &range_types);
13406 }
13407 range_types[ndim++] = child_type;
13408 }
13409 }
13410 child_die = sibling_die (child_die);
13411 }
13412
13413 /* Dwarf2 dimensions are output from left to right, create the
13414 necessary array types in backwards order. */
13415
13416 type = element_type;
13417
13418 if (read_array_order (die, cu) == DW_ORD_col_major)
13419 {
13420 int i = 0;
13421
13422 while (i < ndim)
13423 type = create_array_type_with_stride (NULL, type, range_types[i++],
13424 bit_stride);
13425 }
13426 else
13427 {
13428 while (ndim-- > 0)
13429 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13430 bit_stride);
13431 }
13432
13433 /* Understand Dwarf2 support for vector types (like they occur on
13434 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13435 array type. This is not part of the Dwarf2/3 standard yet, but a
13436 custom vendor extension. The main difference between a regular
13437 array and the vector variant is that vectors are passed by value
13438 to functions. */
13439 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
13440 if (attr)
13441 make_vector_type (type);
13442
13443 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13444 implementation may choose to implement triple vectors using this
13445 attribute. */
13446 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13447 if (attr)
13448 {
13449 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13450 TYPE_LENGTH (type) = DW_UNSND (attr);
13451 else
13452 complaint (&symfile_complaints,
13453 _("DW_AT_byte_size for array type smaller "
13454 "than the total size of elements"));
13455 }
13456
13457 name = dwarf2_name (die, cu);
13458 if (name)
13459 TYPE_NAME (type) = name;
13460
13461 /* Install the type in the die. */
13462 set_die_type (die, type, cu);
13463
13464 /* set_die_type should be already done. */
13465 set_descriptive_type (type, die, cu);
13466
13467 do_cleanups (back_to);
13468
13469 return type;
13470 }
13471
13472 static enum dwarf_array_dim_ordering
13473 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
13474 {
13475 struct attribute *attr;
13476
13477 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13478
13479 if (attr) return DW_SND (attr);
13480
13481 /* GNU F77 is a special case, as at 08/2004 array type info is the
13482 opposite order to the dwarf2 specification, but data is still
13483 laid out as per normal fortran.
13484
13485 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13486 version checking. */
13487
13488 if (cu->language == language_fortran
13489 && cu->producer && strstr (cu->producer, "GNU F77"))
13490 {
13491 return DW_ORD_row_major;
13492 }
13493
13494 switch (cu->language_defn->la_array_ordering)
13495 {
13496 case array_column_major:
13497 return DW_ORD_col_major;
13498 case array_row_major:
13499 default:
13500 return DW_ORD_row_major;
13501 };
13502 }
13503
13504 /* Extract all information from a DW_TAG_set_type DIE and put it in
13505 the DIE's type field. */
13506
13507 static struct type *
13508 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13509 {
13510 struct type *domain_type, *set_type;
13511 struct attribute *attr;
13512
13513 domain_type = die_type (die, cu);
13514
13515 /* The die_type call above may have already set the type for this DIE. */
13516 set_type = get_die_type (die, cu);
13517 if (set_type)
13518 return set_type;
13519
13520 set_type = create_set_type (NULL, domain_type);
13521
13522 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13523 if (attr)
13524 TYPE_LENGTH (set_type) = DW_UNSND (attr);
13525
13526 return set_die_type (die, set_type, cu);
13527 }
13528
13529 /* A helper for read_common_block that creates a locexpr baton.
13530 SYM is the symbol which we are marking as computed.
13531 COMMON_DIE is the DIE for the common block.
13532 COMMON_LOC is the location expression attribute for the common
13533 block itself.
13534 MEMBER_LOC is the location expression attribute for the particular
13535 member of the common block that we are processing.
13536 CU is the CU from which the above come. */
13537
13538 static void
13539 mark_common_block_symbol_computed (struct symbol *sym,
13540 struct die_info *common_die,
13541 struct attribute *common_loc,
13542 struct attribute *member_loc,
13543 struct dwarf2_cu *cu)
13544 {
13545 struct objfile *objfile = dwarf2_per_objfile->objfile;
13546 struct dwarf2_locexpr_baton *baton;
13547 gdb_byte *ptr;
13548 unsigned int cu_off;
13549 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13550 LONGEST offset = 0;
13551
13552 gdb_assert (common_loc && member_loc);
13553 gdb_assert (attr_form_is_block (common_loc));
13554 gdb_assert (attr_form_is_block (member_loc)
13555 || attr_form_is_constant (member_loc));
13556
13557 baton = obstack_alloc (&objfile->objfile_obstack,
13558 sizeof (struct dwarf2_locexpr_baton));
13559 baton->per_cu = cu->per_cu;
13560 gdb_assert (baton->per_cu);
13561
13562 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13563
13564 if (attr_form_is_constant (member_loc))
13565 {
13566 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13567 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13568 }
13569 else
13570 baton->size += DW_BLOCK (member_loc)->size;
13571
13572 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13573 baton->data = ptr;
13574
13575 *ptr++ = DW_OP_call4;
13576 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13577 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13578 ptr += 4;
13579
13580 if (attr_form_is_constant (member_loc))
13581 {
13582 *ptr++ = DW_OP_addr;
13583 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13584 ptr += cu->header.addr_size;
13585 }
13586 else
13587 {
13588 /* We have to copy the data here, because DW_OP_call4 will only
13589 use a DW_AT_location attribute. */
13590 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13591 ptr += DW_BLOCK (member_loc)->size;
13592 }
13593
13594 *ptr++ = DW_OP_plus;
13595 gdb_assert (ptr - baton->data == baton->size);
13596
13597 SYMBOL_LOCATION_BATON (sym) = baton;
13598 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
13599 }
13600
13601 /* Create appropriate locally-scoped variables for all the
13602 DW_TAG_common_block entries. Also create a struct common_block
13603 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13604 is used to sepate the common blocks name namespace from regular
13605 variable names. */
13606
13607 static void
13608 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
13609 {
13610 struct attribute *attr;
13611
13612 attr = dwarf2_attr (die, DW_AT_location, cu);
13613 if (attr)
13614 {
13615 /* Support the .debug_loc offsets. */
13616 if (attr_form_is_block (attr))
13617 {
13618 /* Ok. */
13619 }
13620 else if (attr_form_is_section_offset (attr))
13621 {
13622 dwarf2_complex_location_expr_complaint ();
13623 attr = NULL;
13624 }
13625 else
13626 {
13627 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13628 "common block member");
13629 attr = NULL;
13630 }
13631 }
13632
13633 if (die->child != NULL)
13634 {
13635 struct objfile *objfile = cu->objfile;
13636 struct die_info *child_die;
13637 size_t n_entries = 0, size;
13638 struct common_block *common_block;
13639 struct symbol *sym;
13640
13641 for (child_die = die->child;
13642 child_die && child_die->tag;
13643 child_die = sibling_die (child_die))
13644 ++n_entries;
13645
13646 size = (sizeof (struct common_block)
13647 + (n_entries - 1) * sizeof (struct symbol *));
13648 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13649 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13650 common_block->n_entries = 0;
13651
13652 for (child_die = die->child;
13653 child_die && child_die->tag;
13654 child_die = sibling_die (child_die))
13655 {
13656 /* Create the symbol in the DW_TAG_common_block block in the current
13657 symbol scope. */
13658 sym = new_symbol (child_die, NULL, cu);
13659 if (sym != NULL)
13660 {
13661 struct attribute *member_loc;
13662
13663 common_block->contents[common_block->n_entries++] = sym;
13664
13665 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13666 cu);
13667 if (member_loc)
13668 {
13669 /* GDB has handled this for a long time, but it is
13670 not specified by DWARF. It seems to have been
13671 emitted by gfortran at least as recently as:
13672 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13673 complaint (&symfile_complaints,
13674 _("Variable in common block has "
13675 "DW_AT_data_member_location "
13676 "- DIE at 0x%x [in module %s]"),
13677 child_die->offset.sect_off,
13678 objfile_name (cu->objfile));
13679
13680 if (attr_form_is_section_offset (member_loc))
13681 dwarf2_complex_location_expr_complaint ();
13682 else if (attr_form_is_constant (member_loc)
13683 || attr_form_is_block (member_loc))
13684 {
13685 if (attr)
13686 mark_common_block_symbol_computed (sym, die, attr,
13687 member_loc, cu);
13688 }
13689 else
13690 dwarf2_complex_location_expr_complaint ();
13691 }
13692 }
13693 }
13694
13695 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13696 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
13697 }
13698 }
13699
13700 /* Create a type for a C++ namespace. */
13701
13702 static struct type *
13703 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
13704 {
13705 struct objfile *objfile = cu->objfile;
13706 const char *previous_prefix, *name;
13707 int is_anonymous;
13708 struct type *type;
13709
13710 /* For extensions, reuse the type of the original namespace. */
13711 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13712 {
13713 struct die_info *ext_die;
13714 struct dwarf2_cu *ext_cu = cu;
13715
13716 ext_die = dwarf2_extension (die, &ext_cu);
13717 type = read_type_die (ext_die, ext_cu);
13718
13719 /* EXT_CU may not be the same as CU.
13720 Ensure TYPE is recorded with CU in die_type_hash. */
13721 return set_die_type (die, type, cu);
13722 }
13723
13724 name = namespace_name (die, &is_anonymous, cu);
13725
13726 /* Now build the name of the current namespace. */
13727
13728 previous_prefix = determine_prefix (die, cu);
13729 if (previous_prefix[0] != '\0')
13730 name = typename_concat (&objfile->objfile_obstack,
13731 previous_prefix, name, 0, cu);
13732
13733 /* Create the type. */
13734 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13735 objfile);
13736 TYPE_NAME (type) = name;
13737 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13738
13739 return set_die_type (die, type, cu);
13740 }
13741
13742 /* Read a C++ namespace. */
13743
13744 static void
13745 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13746 {
13747 struct objfile *objfile = cu->objfile;
13748 int is_anonymous;
13749
13750 /* Add a symbol associated to this if we haven't seen the namespace
13751 before. Also, add a using directive if it's an anonymous
13752 namespace. */
13753
13754 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
13755 {
13756 struct type *type;
13757
13758 type = read_type_die (die, cu);
13759 new_symbol (die, type, cu);
13760
13761 namespace_name (die, &is_anonymous, cu);
13762 if (is_anonymous)
13763 {
13764 const char *previous_prefix = determine_prefix (die, cu);
13765
13766 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
13767 NULL, NULL, 0, &objfile->objfile_obstack);
13768 }
13769 }
13770
13771 if (die->child != NULL)
13772 {
13773 struct die_info *child_die = die->child;
13774
13775 while (child_die && child_die->tag)
13776 {
13777 process_die (child_die, cu);
13778 child_die = sibling_die (child_die);
13779 }
13780 }
13781 }
13782
13783 /* Read a Fortran module as type. This DIE can be only a declaration used for
13784 imported module. Still we need that type as local Fortran "use ... only"
13785 declaration imports depend on the created type in determine_prefix. */
13786
13787 static struct type *
13788 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13789 {
13790 struct objfile *objfile = cu->objfile;
13791 const char *module_name;
13792 struct type *type;
13793
13794 module_name = dwarf2_name (die, cu);
13795 if (!module_name)
13796 complaint (&symfile_complaints,
13797 _("DW_TAG_module has no name, offset 0x%x"),
13798 die->offset.sect_off);
13799 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13800
13801 /* determine_prefix uses TYPE_TAG_NAME. */
13802 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13803
13804 return set_die_type (die, type, cu);
13805 }
13806
13807 /* Read a Fortran module. */
13808
13809 static void
13810 read_module (struct die_info *die, struct dwarf2_cu *cu)
13811 {
13812 struct die_info *child_die = die->child;
13813 struct type *type;
13814
13815 type = read_type_die (die, cu);
13816 new_symbol (die, type, cu);
13817
13818 while (child_die && child_die->tag)
13819 {
13820 process_die (child_die, cu);
13821 child_die = sibling_die (child_die);
13822 }
13823 }
13824
13825 /* Return the name of the namespace represented by DIE. Set
13826 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13827 namespace. */
13828
13829 static const char *
13830 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
13831 {
13832 struct die_info *current_die;
13833 const char *name = NULL;
13834
13835 /* Loop through the extensions until we find a name. */
13836
13837 for (current_die = die;
13838 current_die != NULL;
13839 current_die = dwarf2_extension (die, &cu))
13840 {
13841 name = dwarf2_name (current_die, cu);
13842 if (name != NULL)
13843 break;
13844 }
13845
13846 /* Is it an anonymous namespace? */
13847
13848 *is_anonymous = (name == NULL);
13849 if (*is_anonymous)
13850 name = CP_ANONYMOUS_NAMESPACE_STR;
13851
13852 return name;
13853 }
13854
13855 /* Extract all information from a DW_TAG_pointer_type DIE and add to
13856 the user defined type vector. */
13857
13858 static struct type *
13859 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
13860 {
13861 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
13862 struct comp_unit_head *cu_header = &cu->header;
13863 struct type *type;
13864 struct attribute *attr_byte_size;
13865 struct attribute *attr_address_class;
13866 int byte_size, addr_class;
13867 struct type *target_type;
13868
13869 target_type = die_type (die, cu);
13870
13871 /* The die_type call above may have already set the type for this DIE. */
13872 type = get_die_type (die, cu);
13873 if (type)
13874 return type;
13875
13876 type = lookup_pointer_type (target_type);
13877
13878 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
13879 if (attr_byte_size)
13880 byte_size = DW_UNSND (attr_byte_size);
13881 else
13882 byte_size = cu_header->addr_size;
13883
13884 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
13885 if (attr_address_class)
13886 addr_class = DW_UNSND (attr_address_class);
13887 else
13888 addr_class = DW_ADDR_none;
13889
13890 /* If the pointer size or address class is different than the
13891 default, create a type variant marked as such and set the
13892 length accordingly. */
13893 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
13894 {
13895 if (gdbarch_address_class_type_flags_p (gdbarch))
13896 {
13897 int type_flags;
13898
13899 type_flags = gdbarch_address_class_type_flags
13900 (gdbarch, byte_size, addr_class);
13901 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13902 == 0);
13903 type = make_type_with_address_space (type, type_flags);
13904 }
13905 else if (TYPE_LENGTH (type) != byte_size)
13906 {
13907 complaint (&symfile_complaints,
13908 _("invalid pointer size %d"), byte_size);
13909 }
13910 else
13911 {
13912 /* Should we also complain about unhandled address classes? */
13913 }
13914 }
13915
13916 TYPE_LENGTH (type) = byte_size;
13917 return set_die_type (die, type, cu);
13918 }
13919
13920 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13921 the user defined type vector. */
13922
13923 static struct type *
13924 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
13925 {
13926 struct type *type;
13927 struct type *to_type;
13928 struct type *domain;
13929
13930 to_type = die_type (die, cu);
13931 domain = die_containing_type (die, cu);
13932
13933 /* The calls above may have already set the type for this DIE. */
13934 type = get_die_type (die, cu);
13935 if (type)
13936 return type;
13937
13938 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13939 type = lookup_methodptr_type (to_type);
13940 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13941 {
13942 struct type *new_type = alloc_type (cu->objfile);
13943
13944 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13945 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13946 TYPE_VARARGS (to_type));
13947 type = lookup_methodptr_type (new_type);
13948 }
13949 else
13950 type = lookup_memberptr_type (to_type, domain);
13951
13952 return set_die_type (die, type, cu);
13953 }
13954
13955 /* Extract all information from a DW_TAG_reference_type DIE and add to
13956 the user defined type vector. */
13957
13958 static struct type *
13959 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
13960 {
13961 struct comp_unit_head *cu_header = &cu->header;
13962 struct type *type, *target_type;
13963 struct attribute *attr;
13964
13965 target_type = die_type (die, cu);
13966
13967 /* The die_type call above may have already set the type for this DIE. */
13968 type = get_die_type (die, cu);
13969 if (type)
13970 return type;
13971
13972 type = lookup_reference_type (target_type);
13973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13974 if (attr)
13975 {
13976 TYPE_LENGTH (type) = DW_UNSND (attr);
13977 }
13978 else
13979 {
13980 TYPE_LENGTH (type) = cu_header->addr_size;
13981 }
13982 return set_die_type (die, type, cu);
13983 }
13984
13985 static struct type *
13986 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
13987 {
13988 struct type *base_type, *cv_type;
13989
13990 base_type = die_type (die, cu);
13991
13992 /* The die_type call above may have already set the type for this DIE. */
13993 cv_type = get_die_type (die, cu);
13994 if (cv_type)
13995 return cv_type;
13996
13997 /* In case the const qualifier is applied to an array type, the element type
13998 is so qualified, not the array type (section 6.7.3 of C99). */
13999 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14000 {
14001 struct type *el_type, *inner_array;
14002
14003 base_type = copy_type (base_type);
14004 inner_array = base_type;
14005
14006 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14007 {
14008 TYPE_TARGET_TYPE (inner_array) =
14009 copy_type (TYPE_TARGET_TYPE (inner_array));
14010 inner_array = TYPE_TARGET_TYPE (inner_array);
14011 }
14012
14013 el_type = TYPE_TARGET_TYPE (inner_array);
14014 TYPE_TARGET_TYPE (inner_array) =
14015 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14016
14017 return set_die_type (die, base_type, cu);
14018 }
14019
14020 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14021 return set_die_type (die, cv_type, cu);
14022 }
14023
14024 static struct type *
14025 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
14026 {
14027 struct type *base_type, *cv_type;
14028
14029 base_type = die_type (die, cu);
14030
14031 /* The die_type call above may have already set the type for this DIE. */
14032 cv_type = get_die_type (die, cu);
14033 if (cv_type)
14034 return cv_type;
14035
14036 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14037 return set_die_type (die, cv_type, cu);
14038 }
14039
14040 /* Handle DW_TAG_restrict_type. */
14041
14042 static struct type *
14043 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14044 {
14045 struct type *base_type, *cv_type;
14046
14047 base_type = die_type (die, cu);
14048
14049 /* The die_type call above may have already set the type for this DIE. */
14050 cv_type = get_die_type (die, cu);
14051 if (cv_type)
14052 return cv_type;
14053
14054 cv_type = make_restrict_type (base_type);
14055 return set_die_type (die, cv_type, cu);
14056 }
14057
14058 /* Extract all information from a DW_TAG_string_type DIE and add to
14059 the user defined type vector. It isn't really a user defined type,
14060 but it behaves like one, with other DIE's using an AT_user_def_type
14061 attribute to reference it. */
14062
14063 static struct type *
14064 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
14065 {
14066 struct objfile *objfile = cu->objfile;
14067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14068 struct type *type, *range_type, *index_type, *char_type;
14069 struct attribute *attr;
14070 unsigned int length;
14071
14072 attr = dwarf2_attr (die, DW_AT_string_length, cu);
14073 if (attr)
14074 {
14075 length = DW_UNSND (attr);
14076 }
14077 else
14078 {
14079 /* Check for the DW_AT_byte_size attribute. */
14080 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14081 if (attr)
14082 {
14083 length = DW_UNSND (attr);
14084 }
14085 else
14086 {
14087 length = 1;
14088 }
14089 }
14090
14091 index_type = objfile_type (objfile)->builtin_int;
14092 range_type = create_range_type (NULL, index_type, 1, length);
14093 char_type = language_string_char_type (cu->language_defn, gdbarch);
14094 type = create_string_type (NULL, char_type, range_type);
14095
14096 return set_die_type (die, type, cu);
14097 }
14098
14099 /* Assuming that DIE corresponds to a function, returns nonzero
14100 if the function is prototyped. */
14101
14102 static int
14103 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14104 {
14105 struct attribute *attr;
14106
14107 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14108 if (attr && (DW_UNSND (attr) != 0))
14109 return 1;
14110
14111 /* The DWARF standard implies that the DW_AT_prototyped attribute
14112 is only meaninful for C, but the concept also extends to other
14113 languages that allow unprototyped functions (Eg: Objective C).
14114 For all other languages, assume that functions are always
14115 prototyped. */
14116 if (cu->language != language_c
14117 && cu->language != language_objc
14118 && cu->language != language_opencl)
14119 return 1;
14120
14121 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14122 prototyped and unprototyped functions; default to prototyped,
14123 since that is more common in modern code (and RealView warns
14124 about unprototyped functions). */
14125 if (producer_is_realview (cu->producer))
14126 return 1;
14127
14128 return 0;
14129 }
14130
14131 /* Handle DIES due to C code like:
14132
14133 struct foo
14134 {
14135 int (*funcp)(int a, long l);
14136 int b;
14137 };
14138
14139 ('funcp' generates a DW_TAG_subroutine_type DIE). */
14140
14141 static struct type *
14142 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
14143 {
14144 struct objfile *objfile = cu->objfile;
14145 struct type *type; /* Type that this function returns. */
14146 struct type *ftype; /* Function that returns above type. */
14147 struct attribute *attr;
14148
14149 type = die_type (die, cu);
14150
14151 /* The die_type call above may have already set the type for this DIE. */
14152 ftype = get_die_type (die, cu);
14153 if (ftype)
14154 return ftype;
14155
14156 ftype = lookup_function_type (type);
14157
14158 if (prototyped_function_p (die, cu))
14159 TYPE_PROTOTYPED (ftype) = 1;
14160
14161 /* Store the calling convention in the type if it's available in
14162 the subroutine die. Otherwise set the calling convention to
14163 the default value DW_CC_normal. */
14164 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
14165 if (attr)
14166 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14167 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14168 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14169 else
14170 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
14171
14172 /* We need to add the subroutine type to the die immediately so
14173 we don't infinitely recurse when dealing with parameters
14174 declared as the same subroutine type. */
14175 set_die_type (die, ftype, cu);
14176
14177 if (die->child != NULL)
14178 {
14179 struct type *void_type = objfile_type (objfile)->builtin_void;
14180 struct die_info *child_die;
14181 int nparams, iparams;
14182
14183 /* Count the number of parameters.
14184 FIXME: GDB currently ignores vararg functions, but knows about
14185 vararg member functions. */
14186 nparams = 0;
14187 child_die = die->child;
14188 while (child_die && child_die->tag)
14189 {
14190 if (child_die->tag == DW_TAG_formal_parameter)
14191 nparams++;
14192 else if (child_die->tag == DW_TAG_unspecified_parameters)
14193 TYPE_VARARGS (ftype) = 1;
14194 child_die = sibling_die (child_die);
14195 }
14196
14197 /* Allocate storage for parameters and fill them in. */
14198 TYPE_NFIELDS (ftype) = nparams;
14199 TYPE_FIELDS (ftype) = (struct field *)
14200 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
14201
14202 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14203 even if we error out during the parameters reading below. */
14204 for (iparams = 0; iparams < nparams; iparams++)
14205 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14206
14207 iparams = 0;
14208 child_die = die->child;
14209 while (child_die && child_die->tag)
14210 {
14211 if (child_die->tag == DW_TAG_formal_parameter)
14212 {
14213 struct type *arg_type;
14214
14215 /* DWARF version 2 has no clean way to discern C++
14216 static and non-static member functions. G++ helps
14217 GDB by marking the first parameter for non-static
14218 member functions (which is the this pointer) as
14219 artificial. We pass this information to
14220 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14221
14222 DWARF version 3 added DW_AT_object_pointer, which GCC
14223 4.5 does not yet generate. */
14224 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
14225 if (attr)
14226 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14227 else
14228 {
14229 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14230
14231 /* GCC/43521: In java, the formal parameter
14232 "this" is sometimes not marked with DW_AT_artificial. */
14233 if (cu->language == language_java)
14234 {
14235 const char *name = dwarf2_name (child_die, cu);
14236
14237 if (name && !strcmp (name, "this"))
14238 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14239 }
14240 }
14241 arg_type = die_type (child_die, cu);
14242
14243 /* RealView does not mark THIS as const, which the testsuite
14244 expects. GCC marks THIS as const in method definitions,
14245 but not in the class specifications (GCC PR 43053). */
14246 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14247 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14248 {
14249 int is_this = 0;
14250 struct dwarf2_cu *arg_cu = cu;
14251 const char *name = dwarf2_name (child_die, cu);
14252
14253 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14254 if (attr)
14255 {
14256 /* If the compiler emits this, use it. */
14257 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14258 is_this = 1;
14259 }
14260 else if (name && strcmp (name, "this") == 0)
14261 /* Function definitions will have the argument names. */
14262 is_this = 1;
14263 else if (name == NULL && iparams == 0)
14264 /* Declarations may not have the names, so like
14265 elsewhere in GDB, assume an artificial first
14266 argument is "this". */
14267 is_this = 1;
14268
14269 if (is_this)
14270 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14271 arg_type, 0);
14272 }
14273
14274 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
14275 iparams++;
14276 }
14277 child_die = sibling_die (child_die);
14278 }
14279 }
14280
14281 return ftype;
14282 }
14283
14284 static struct type *
14285 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
14286 {
14287 struct objfile *objfile = cu->objfile;
14288 const char *name = NULL;
14289 struct type *this_type, *target_type;
14290
14291 name = dwarf2_full_name (NULL, die, cu);
14292 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
14293 TYPE_FLAG_TARGET_STUB, NULL, objfile);
14294 TYPE_NAME (this_type) = name;
14295 set_die_type (die, this_type, cu);
14296 target_type = die_type (die, cu);
14297 if (target_type != this_type)
14298 TYPE_TARGET_TYPE (this_type) = target_type;
14299 else
14300 {
14301 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14302 spec and cause infinite loops in GDB. */
14303 complaint (&symfile_complaints,
14304 _("Self-referential DW_TAG_typedef "
14305 "- DIE at 0x%x [in module %s]"),
14306 die->offset.sect_off, objfile_name (objfile));
14307 TYPE_TARGET_TYPE (this_type) = NULL;
14308 }
14309 return this_type;
14310 }
14311
14312 /* Find a representation of a given base type and install
14313 it in the TYPE field of the die. */
14314
14315 static struct type *
14316 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
14317 {
14318 struct objfile *objfile = cu->objfile;
14319 struct type *type;
14320 struct attribute *attr;
14321 int encoding = 0, size = 0;
14322 const char *name;
14323 enum type_code code = TYPE_CODE_INT;
14324 int type_flags = 0;
14325 struct type *target_type = NULL;
14326
14327 attr = dwarf2_attr (die, DW_AT_encoding, cu);
14328 if (attr)
14329 {
14330 encoding = DW_UNSND (attr);
14331 }
14332 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14333 if (attr)
14334 {
14335 size = DW_UNSND (attr);
14336 }
14337 name = dwarf2_name (die, cu);
14338 if (!name)
14339 {
14340 complaint (&symfile_complaints,
14341 _("DW_AT_name missing from DW_TAG_base_type"));
14342 }
14343
14344 switch (encoding)
14345 {
14346 case DW_ATE_address:
14347 /* Turn DW_ATE_address into a void * pointer. */
14348 code = TYPE_CODE_PTR;
14349 type_flags |= TYPE_FLAG_UNSIGNED;
14350 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14351 break;
14352 case DW_ATE_boolean:
14353 code = TYPE_CODE_BOOL;
14354 type_flags |= TYPE_FLAG_UNSIGNED;
14355 break;
14356 case DW_ATE_complex_float:
14357 code = TYPE_CODE_COMPLEX;
14358 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14359 break;
14360 case DW_ATE_decimal_float:
14361 code = TYPE_CODE_DECFLOAT;
14362 break;
14363 case DW_ATE_float:
14364 code = TYPE_CODE_FLT;
14365 break;
14366 case DW_ATE_signed:
14367 break;
14368 case DW_ATE_unsigned:
14369 type_flags |= TYPE_FLAG_UNSIGNED;
14370 if (cu->language == language_fortran
14371 && name
14372 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14373 code = TYPE_CODE_CHAR;
14374 break;
14375 case DW_ATE_signed_char:
14376 if (cu->language == language_ada || cu->language == language_m2
14377 || cu->language == language_pascal
14378 || cu->language == language_fortran)
14379 code = TYPE_CODE_CHAR;
14380 break;
14381 case DW_ATE_unsigned_char:
14382 if (cu->language == language_ada || cu->language == language_m2
14383 || cu->language == language_pascal
14384 || cu->language == language_fortran)
14385 code = TYPE_CODE_CHAR;
14386 type_flags |= TYPE_FLAG_UNSIGNED;
14387 break;
14388 case DW_ATE_UTF:
14389 /* We just treat this as an integer and then recognize the
14390 type by name elsewhere. */
14391 break;
14392
14393 default:
14394 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14395 dwarf_type_encoding_name (encoding));
14396 break;
14397 }
14398
14399 type = init_type (code, size, type_flags, NULL, objfile);
14400 TYPE_NAME (type) = name;
14401 TYPE_TARGET_TYPE (type) = target_type;
14402
14403 if (name && strcmp (name, "char") == 0)
14404 TYPE_NOSIGN (type) = 1;
14405
14406 return set_die_type (die, type, cu);
14407 }
14408
14409 /* Read the given DW_AT_subrange DIE. */
14410
14411 static struct type *
14412 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14413 {
14414 struct type *base_type, *orig_base_type;
14415 struct type *range_type;
14416 struct attribute *attr;
14417 LONGEST low, high;
14418 int low_default_is_valid;
14419 const char *name;
14420 LONGEST negative_mask;
14421
14422 orig_base_type = die_type (die, cu);
14423 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14424 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14425 creating the range type, but we use the result of check_typedef
14426 when examining properties of the type. */
14427 base_type = check_typedef (orig_base_type);
14428
14429 /* The die_type call above may have already set the type for this DIE. */
14430 range_type = get_die_type (die, cu);
14431 if (range_type)
14432 return range_type;
14433
14434 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14435 omitting DW_AT_lower_bound. */
14436 switch (cu->language)
14437 {
14438 case language_c:
14439 case language_cplus:
14440 low = 0;
14441 low_default_is_valid = 1;
14442 break;
14443 case language_fortran:
14444 low = 1;
14445 low_default_is_valid = 1;
14446 break;
14447 case language_d:
14448 case language_java:
14449 case language_objc:
14450 low = 0;
14451 low_default_is_valid = (cu->header.version >= 4);
14452 break;
14453 case language_ada:
14454 case language_m2:
14455 case language_pascal:
14456 low = 1;
14457 low_default_is_valid = (cu->header.version >= 4);
14458 break;
14459 default:
14460 low = 0;
14461 low_default_is_valid = 0;
14462 break;
14463 }
14464
14465 /* FIXME: For variable sized arrays either of these could be
14466 a variable rather than a constant value. We'll allow it,
14467 but we don't know how to handle it. */
14468 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
14469 if (attr)
14470 low = dwarf2_get_attr_constant_value (attr, low);
14471 else if (!low_default_is_valid)
14472 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14473 "- DIE at 0x%x [in module %s]"),
14474 die->offset.sect_off, objfile_name (cu->objfile));
14475
14476 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
14477 if (attr)
14478 {
14479 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
14480 {
14481 /* GCC encodes arrays with unspecified or dynamic length
14482 with a DW_FORM_block1 attribute or a reference attribute.
14483 FIXME: GDB does not yet know how to handle dynamic
14484 arrays properly, treat them as arrays with unspecified
14485 length for now.
14486
14487 FIXME: jimb/2003-09-22: GDB does not really know
14488 how to handle arrays of unspecified length
14489 either; we just represent them as zero-length
14490 arrays. Choose an appropriate upper bound given
14491 the lower bound we've computed above. */
14492 high = low - 1;
14493 }
14494 else
14495 high = dwarf2_get_attr_constant_value (attr, 1);
14496 }
14497 else
14498 {
14499 attr = dwarf2_attr (die, DW_AT_count, cu);
14500 if (attr)
14501 {
14502 int count = dwarf2_get_attr_constant_value (attr, 1);
14503 high = low + count - 1;
14504 }
14505 else
14506 {
14507 /* Unspecified array length. */
14508 high = low - 1;
14509 }
14510 }
14511
14512 /* Dwarf-2 specifications explicitly allows to create subrange types
14513 without specifying a base type.
14514 In that case, the base type must be set to the type of
14515 the lower bound, upper bound or count, in that order, if any of these
14516 three attributes references an object that has a type.
14517 If no base type is found, the Dwarf-2 specifications say that
14518 a signed integer type of size equal to the size of an address should
14519 be used.
14520 For the following C code: `extern char gdb_int [];'
14521 GCC produces an empty range DIE.
14522 FIXME: muller/2010-05-28: Possible references to object for low bound,
14523 high bound or count are not yet handled by this code. */
14524 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14525 {
14526 struct objfile *objfile = cu->objfile;
14527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14528 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14529 struct type *int_type = objfile_type (objfile)->builtin_int;
14530
14531 /* Test "int", "long int", and "long long int" objfile types,
14532 and select the first one having a size above or equal to the
14533 architecture address size. */
14534 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14535 base_type = int_type;
14536 else
14537 {
14538 int_type = objfile_type (objfile)->builtin_long;
14539 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14540 base_type = int_type;
14541 else
14542 {
14543 int_type = objfile_type (objfile)->builtin_long_long;
14544 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14545 base_type = int_type;
14546 }
14547 }
14548 }
14549
14550 /* Normally, the DWARF producers are expected to use a signed
14551 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14552 But this is unfortunately not always the case, as witnessed
14553 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14554 is used instead. To work around that ambiguity, we treat
14555 the bounds as signed, and thus sign-extend their values, when
14556 the base type is signed. */
14557 negative_mask =
14558 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14559 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14560 low |= negative_mask;
14561 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14562 high |= negative_mask;
14563
14564 range_type = create_range_type (NULL, orig_base_type, low, high);
14565
14566 /* Mark arrays with dynamic length at least as an array of unspecified
14567 length. GDB could check the boundary but before it gets implemented at
14568 least allow accessing the array elements. */
14569 if (attr && attr_form_is_block (attr))
14570 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14571
14572 /* Ada expects an empty array on no boundary attributes. */
14573 if (attr == NULL && cu->language != language_ada)
14574 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14575
14576 name = dwarf2_name (die, cu);
14577 if (name)
14578 TYPE_NAME (range_type) = name;
14579
14580 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14581 if (attr)
14582 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14583
14584 set_die_type (die, range_type, cu);
14585
14586 /* set_die_type should be already done. */
14587 set_descriptive_type (range_type, die, cu);
14588
14589 return range_type;
14590 }
14591
14592 static struct type *
14593 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14594 {
14595 struct type *type;
14596
14597 /* For now, we only support the C meaning of an unspecified type: void. */
14598
14599 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14600 TYPE_NAME (type) = dwarf2_name (die, cu);
14601
14602 return set_die_type (die, type, cu);
14603 }
14604
14605 /* Read a single die and all its descendents. Set the die's sibling
14606 field to NULL; set other fields in the die correctly, and set all
14607 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14608 location of the info_ptr after reading all of those dies. PARENT
14609 is the parent of the die in question. */
14610
14611 static struct die_info *
14612 read_die_and_children (const struct die_reader_specs *reader,
14613 const gdb_byte *info_ptr,
14614 const gdb_byte **new_info_ptr,
14615 struct die_info *parent)
14616 {
14617 struct die_info *die;
14618 const gdb_byte *cur_ptr;
14619 int has_children;
14620
14621 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
14622 if (die == NULL)
14623 {
14624 *new_info_ptr = cur_ptr;
14625 return NULL;
14626 }
14627 store_in_ref_table (die, reader->cu);
14628
14629 if (has_children)
14630 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
14631 else
14632 {
14633 die->child = NULL;
14634 *new_info_ptr = cur_ptr;
14635 }
14636
14637 die->sibling = NULL;
14638 die->parent = parent;
14639 return die;
14640 }
14641
14642 /* Read a die, all of its descendents, and all of its siblings; set
14643 all of the fields of all of the dies correctly. Arguments are as
14644 in read_die_and_children. */
14645
14646 static struct die_info *
14647 read_die_and_siblings_1 (const struct die_reader_specs *reader,
14648 const gdb_byte *info_ptr,
14649 const gdb_byte **new_info_ptr,
14650 struct die_info *parent)
14651 {
14652 struct die_info *first_die, *last_sibling;
14653 const gdb_byte *cur_ptr;
14654
14655 cur_ptr = info_ptr;
14656 first_die = last_sibling = NULL;
14657
14658 while (1)
14659 {
14660 struct die_info *die
14661 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
14662
14663 if (die == NULL)
14664 {
14665 *new_info_ptr = cur_ptr;
14666 return first_die;
14667 }
14668
14669 if (!first_die)
14670 first_die = die;
14671 else
14672 last_sibling->sibling = die;
14673
14674 last_sibling = die;
14675 }
14676 }
14677
14678 /* Read a die, all of its descendents, and all of its siblings; set
14679 all of the fields of all of the dies correctly. Arguments are as
14680 in read_die_and_children.
14681 This the main entry point for reading a DIE and all its children. */
14682
14683 static struct die_info *
14684 read_die_and_siblings (const struct die_reader_specs *reader,
14685 const gdb_byte *info_ptr,
14686 const gdb_byte **new_info_ptr,
14687 struct die_info *parent)
14688 {
14689 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14690 new_info_ptr, parent);
14691
14692 if (dwarf2_die_debug)
14693 {
14694 fprintf_unfiltered (gdb_stdlog,
14695 "Read die from %s@0x%x of %s:\n",
14696 get_section_name (reader->die_section),
14697 (unsigned) (info_ptr - reader->die_section->buffer),
14698 bfd_get_filename (reader->abfd));
14699 dump_die (die, dwarf2_die_debug);
14700 }
14701
14702 return die;
14703 }
14704
14705 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14706 attributes.
14707 The caller is responsible for filling in the extra attributes
14708 and updating (*DIEP)->num_attrs.
14709 Set DIEP to point to a newly allocated die with its information,
14710 except for its child, sibling, and parent fields.
14711 Set HAS_CHILDREN to tell whether the die has children or not. */
14712
14713 static const gdb_byte *
14714 read_full_die_1 (const struct die_reader_specs *reader,
14715 struct die_info **diep, const gdb_byte *info_ptr,
14716 int *has_children, int num_extra_attrs)
14717 {
14718 unsigned int abbrev_number, bytes_read, i;
14719 sect_offset offset;
14720 struct abbrev_info *abbrev;
14721 struct die_info *die;
14722 struct dwarf2_cu *cu = reader->cu;
14723 bfd *abfd = reader->abfd;
14724
14725 offset.sect_off = info_ptr - reader->buffer;
14726 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14727 info_ptr += bytes_read;
14728 if (!abbrev_number)
14729 {
14730 *diep = NULL;
14731 *has_children = 0;
14732 return info_ptr;
14733 }
14734
14735 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
14736 if (!abbrev)
14737 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14738 abbrev_number,
14739 bfd_get_filename (abfd));
14740
14741 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
14742 die->offset = offset;
14743 die->tag = abbrev->tag;
14744 die->abbrev = abbrev_number;
14745
14746 /* Make the result usable.
14747 The caller needs to update num_attrs after adding the extra
14748 attributes. */
14749 die->num_attrs = abbrev->num_attrs;
14750
14751 for (i = 0; i < abbrev->num_attrs; ++i)
14752 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14753 info_ptr);
14754
14755 *diep = die;
14756 *has_children = abbrev->has_children;
14757 return info_ptr;
14758 }
14759
14760 /* Read a die and all its attributes.
14761 Set DIEP to point to a newly allocated die with its information,
14762 except for its child, sibling, and parent fields.
14763 Set HAS_CHILDREN to tell whether the die has children or not. */
14764
14765 static const gdb_byte *
14766 read_full_die (const struct die_reader_specs *reader,
14767 struct die_info **diep, const gdb_byte *info_ptr,
14768 int *has_children)
14769 {
14770 const gdb_byte *result;
14771
14772 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14773
14774 if (dwarf2_die_debug)
14775 {
14776 fprintf_unfiltered (gdb_stdlog,
14777 "Read die from %s@0x%x of %s:\n",
14778 get_section_name (reader->die_section),
14779 (unsigned) (info_ptr - reader->die_section->buffer),
14780 bfd_get_filename (reader->abfd));
14781 dump_die (*diep, dwarf2_die_debug);
14782 }
14783
14784 return result;
14785 }
14786 \f
14787 /* Abbreviation tables.
14788
14789 In DWARF version 2, the description of the debugging information is
14790 stored in a separate .debug_abbrev section. Before we read any
14791 dies from a section we read in all abbreviations and install them
14792 in a hash table. */
14793
14794 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14795
14796 static struct abbrev_info *
14797 abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14798 {
14799 struct abbrev_info *abbrev;
14800
14801 abbrev = (struct abbrev_info *)
14802 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14803 memset (abbrev, 0, sizeof (struct abbrev_info));
14804 return abbrev;
14805 }
14806
14807 /* Add an abbreviation to the table. */
14808
14809 static void
14810 abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14811 unsigned int abbrev_number,
14812 struct abbrev_info *abbrev)
14813 {
14814 unsigned int hash_number;
14815
14816 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14817 abbrev->next = abbrev_table->abbrevs[hash_number];
14818 abbrev_table->abbrevs[hash_number] = abbrev;
14819 }
14820
14821 /* Look up an abbrev in the table.
14822 Returns NULL if the abbrev is not found. */
14823
14824 static struct abbrev_info *
14825 abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14826 unsigned int abbrev_number)
14827 {
14828 unsigned int hash_number;
14829 struct abbrev_info *abbrev;
14830
14831 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14832 abbrev = abbrev_table->abbrevs[hash_number];
14833
14834 while (abbrev)
14835 {
14836 if (abbrev->number == abbrev_number)
14837 return abbrev;
14838 abbrev = abbrev->next;
14839 }
14840 return NULL;
14841 }
14842
14843 /* Read in an abbrev table. */
14844
14845 static struct abbrev_table *
14846 abbrev_table_read_table (struct dwarf2_section_info *section,
14847 sect_offset offset)
14848 {
14849 struct objfile *objfile = dwarf2_per_objfile->objfile;
14850 bfd *abfd = get_section_bfd_owner (section);
14851 struct abbrev_table *abbrev_table;
14852 const gdb_byte *abbrev_ptr;
14853 struct abbrev_info *cur_abbrev;
14854 unsigned int abbrev_number, bytes_read, abbrev_name;
14855 unsigned int abbrev_form;
14856 struct attr_abbrev *cur_attrs;
14857 unsigned int allocated_attrs;
14858
14859 abbrev_table = XNEW (struct abbrev_table);
14860 abbrev_table->offset = offset;
14861 obstack_init (&abbrev_table->abbrev_obstack);
14862 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14863 (ABBREV_HASH_SIZE
14864 * sizeof (struct abbrev_info *)));
14865 memset (abbrev_table->abbrevs, 0,
14866 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
14867
14868 dwarf2_read_section (objfile, section);
14869 abbrev_ptr = section->buffer + offset.sect_off;
14870 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14871 abbrev_ptr += bytes_read;
14872
14873 allocated_attrs = ATTR_ALLOC_CHUNK;
14874 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
14875
14876 /* Loop until we reach an abbrev number of 0. */
14877 while (abbrev_number)
14878 {
14879 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
14880
14881 /* read in abbrev header */
14882 cur_abbrev->number = abbrev_number;
14883 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14884 abbrev_ptr += bytes_read;
14885 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14886 abbrev_ptr += 1;
14887
14888 /* now read in declarations */
14889 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14890 abbrev_ptr += bytes_read;
14891 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14892 abbrev_ptr += bytes_read;
14893 while (abbrev_name)
14894 {
14895 if (cur_abbrev->num_attrs == allocated_attrs)
14896 {
14897 allocated_attrs += ATTR_ALLOC_CHUNK;
14898 cur_attrs
14899 = xrealloc (cur_attrs, (allocated_attrs
14900 * sizeof (struct attr_abbrev)));
14901 }
14902
14903 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14904 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
14905 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14906 abbrev_ptr += bytes_read;
14907 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14908 abbrev_ptr += bytes_read;
14909 }
14910
14911 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
14912 (cur_abbrev->num_attrs
14913 * sizeof (struct attr_abbrev)));
14914 memcpy (cur_abbrev->attrs, cur_attrs,
14915 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14916
14917 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
14918
14919 /* Get next abbreviation.
14920 Under Irix6 the abbreviations for a compilation unit are not
14921 always properly terminated with an abbrev number of 0.
14922 Exit loop if we encounter an abbreviation which we have
14923 already read (which means we are about to read the abbreviations
14924 for the next compile unit) or if the end of the abbreviation
14925 table is reached. */
14926 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
14927 break;
14928 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14929 abbrev_ptr += bytes_read;
14930 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
14931 break;
14932 }
14933
14934 xfree (cur_attrs);
14935 return abbrev_table;
14936 }
14937
14938 /* Free the resources held by ABBREV_TABLE. */
14939
14940 static void
14941 abbrev_table_free (struct abbrev_table *abbrev_table)
14942 {
14943 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14944 xfree (abbrev_table);
14945 }
14946
14947 /* Same as abbrev_table_free but as a cleanup.
14948 We pass in a pointer to the pointer to the table so that we can
14949 set the pointer to NULL when we're done. It also simplifies
14950 build_type_unit_groups. */
14951
14952 static void
14953 abbrev_table_free_cleanup (void *table_ptr)
14954 {
14955 struct abbrev_table **abbrev_table_ptr = table_ptr;
14956
14957 if (*abbrev_table_ptr != NULL)
14958 abbrev_table_free (*abbrev_table_ptr);
14959 *abbrev_table_ptr = NULL;
14960 }
14961
14962 /* Read the abbrev table for CU from ABBREV_SECTION. */
14963
14964 static void
14965 dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14966 struct dwarf2_section_info *abbrev_section)
14967 {
14968 cu->abbrev_table =
14969 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14970 }
14971
14972 /* Release the memory used by the abbrev table for a compilation unit. */
14973
14974 static void
14975 dwarf2_free_abbrev_table (void *ptr_to_cu)
14976 {
14977 struct dwarf2_cu *cu = ptr_to_cu;
14978
14979 if (cu->abbrev_table != NULL)
14980 abbrev_table_free (cu->abbrev_table);
14981 /* Set this to NULL so that we SEGV if we try to read it later,
14982 and also because free_comp_unit verifies this is NULL. */
14983 cu->abbrev_table = NULL;
14984 }
14985 \f
14986 /* Returns nonzero if TAG represents a type that we might generate a partial
14987 symbol for. */
14988
14989 static int
14990 is_type_tag_for_partial (int tag)
14991 {
14992 switch (tag)
14993 {
14994 #if 0
14995 /* Some types that would be reasonable to generate partial symbols for,
14996 that we don't at present. */
14997 case DW_TAG_array_type:
14998 case DW_TAG_file_type:
14999 case DW_TAG_ptr_to_member_type:
15000 case DW_TAG_set_type:
15001 case DW_TAG_string_type:
15002 case DW_TAG_subroutine_type:
15003 #endif
15004 case DW_TAG_base_type:
15005 case DW_TAG_class_type:
15006 case DW_TAG_interface_type:
15007 case DW_TAG_enumeration_type:
15008 case DW_TAG_structure_type:
15009 case DW_TAG_subrange_type:
15010 case DW_TAG_typedef:
15011 case DW_TAG_union_type:
15012 return 1;
15013 default:
15014 return 0;
15015 }
15016 }
15017
15018 /* Load all DIEs that are interesting for partial symbols into memory. */
15019
15020 static struct partial_die_info *
15021 load_partial_dies (const struct die_reader_specs *reader,
15022 const gdb_byte *info_ptr, int building_psymtab)
15023 {
15024 struct dwarf2_cu *cu = reader->cu;
15025 struct objfile *objfile = cu->objfile;
15026 struct partial_die_info *part_die;
15027 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15028 struct abbrev_info *abbrev;
15029 unsigned int bytes_read;
15030 unsigned int load_all = 0;
15031 int nesting_level = 1;
15032
15033 parent_die = NULL;
15034 last_die = NULL;
15035
15036 gdb_assert (cu->per_cu != NULL);
15037 if (cu->per_cu->load_all_dies)
15038 load_all = 1;
15039
15040 cu->partial_dies
15041 = htab_create_alloc_ex (cu->header.length / 12,
15042 partial_die_hash,
15043 partial_die_eq,
15044 NULL,
15045 &cu->comp_unit_obstack,
15046 hashtab_obstack_allocate,
15047 dummy_obstack_deallocate);
15048
15049 part_die = obstack_alloc (&cu->comp_unit_obstack,
15050 sizeof (struct partial_die_info));
15051
15052 while (1)
15053 {
15054 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15055
15056 /* A NULL abbrev means the end of a series of children. */
15057 if (abbrev == NULL)
15058 {
15059 if (--nesting_level == 0)
15060 {
15061 /* PART_DIE was probably the last thing allocated on the
15062 comp_unit_obstack, so we could call obstack_free
15063 here. We don't do that because the waste is small,
15064 and will be cleaned up when we're done with this
15065 compilation unit. This way, we're also more robust
15066 against other users of the comp_unit_obstack. */
15067 return first_die;
15068 }
15069 info_ptr += bytes_read;
15070 last_die = parent_die;
15071 parent_die = parent_die->die_parent;
15072 continue;
15073 }
15074
15075 /* Check for template arguments. We never save these; if
15076 they're seen, we just mark the parent, and go on our way. */
15077 if (parent_die != NULL
15078 && cu->language == language_cplus
15079 && (abbrev->tag == DW_TAG_template_type_param
15080 || abbrev->tag == DW_TAG_template_value_param))
15081 {
15082 parent_die->has_template_arguments = 1;
15083
15084 if (!load_all)
15085 {
15086 /* We don't need a partial DIE for the template argument. */
15087 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15088 continue;
15089 }
15090 }
15091
15092 /* We only recurse into c++ subprograms looking for template arguments.
15093 Skip their other children. */
15094 if (!load_all
15095 && cu->language == language_cplus
15096 && parent_die != NULL
15097 && parent_die->tag == DW_TAG_subprogram)
15098 {
15099 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15100 continue;
15101 }
15102
15103 /* Check whether this DIE is interesting enough to save. Normally
15104 we would not be interested in members here, but there may be
15105 later variables referencing them via DW_AT_specification (for
15106 static members). */
15107 if (!load_all
15108 && !is_type_tag_for_partial (abbrev->tag)
15109 && abbrev->tag != DW_TAG_constant
15110 && abbrev->tag != DW_TAG_enumerator
15111 && abbrev->tag != DW_TAG_subprogram
15112 && abbrev->tag != DW_TAG_lexical_block
15113 && abbrev->tag != DW_TAG_variable
15114 && abbrev->tag != DW_TAG_namespace
15115 && abbrev->tag != DW_TAG_module
15116 && abbrev->tag != DW_TAG_member
15117 && abbrev->tag != DW_TAG_imported_unit
15118 && abbrev->tag != DW_TAG_imported_declaration)
15119 {
15120 /* Otherwise we skip to the next sibling, if any. */
15121 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
15122 continue;
15123 }
15124
15125 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15126 info_ptr);
15127
15128 /* This two-pass algorithm for processing partial symbols has a
15129 high cost in cache pressure. Thus, handle some simple cases
15130 here which cover the majority of C partial symbols. DIEs
15131 which neither have specification tags in them, nor could have
15132 specification tags elsewhere pointing at them, can simply be
15133 processed and discarded.
15134
15135 This segment is also optional; scan_partial_symbols and
15136 add_partial_symbol will handle these DIEs if we chain
15137 them in normally. When compilers which do not emit large
15138 quantities of duplicate debug information are more common,
15139 this code can probably be removed. */
15140
15141 /* Any complete simple types at the top level (pretty much all
15142 of them, for a language without namespaces), can be processed
15143 directly. */
15144 if (parent_die == NULL
15145 && part_die->has_specification == 0
15146 && part_die->is_declaration == 0
15147 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
15148 || part_die->tag == DW_TAG_base_type
15149 || part_die->tag == DW_TAG_subrange_type))
15150 {
15151 if (building_psymtab && part_die->name != NULL)
15152 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15153 VAR_DOMAIN, LOC_TYPEDEF,
15154 &objfile->static_psymbols,
15155 0, (CORE_ADDR) 0, cu->language, objfile);
15156 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15157 continue;
15158 }
15159
15160 /* The exception for DW_TAG_typedef with has_children above is
15161 a workaround of GCC PR debug/47510. In the case of this complaint
15162 type_name_no_tag_or_error will error on such types later.
15163
15164 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15165 it could not find the child DIEs referenced later, this is checked
15166 above. In correct DWARF DW_TAG_typedef should have no children. */
15167
15168 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15169 complaint (&symfile_complaints,
15170 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15171 "- DIE at 0x%x [in module %s]"),
15172 part_die->offset.sect_off, objfile_name (objfile));
15173
15174 /* If we're at the second level, and we're an enumerator, and
15175 our parent has no specification (meaning possibly lives in a
15176 namespace elsewhere), then we can add the partial symbol now
15177 instead of queueing it. */
15178 if (part_die->tag == DW_TAG_enumerator
15179 && parent_die != NULL
15180 && parent_die->die_parent == NULL
15181 && parent_die->tag == DW_TAG_enumeration_type
15182 && parent_die->has_specification == 0)
15183 {
15184 if (part_die->name == NULL)
15185 complaint (&symfile_complaints,
15186 _("malformed enumerator DIE ignored"));
15187 else if (building_psymtab)
15188 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
15189 VAR_DOMAIN, LOC_CONST,
15190 (cu->language == language_cplus
15191 || cu->language == language_java)
15192 ? &objfile->global_psymbols
15193 : &objfile->static_psymbols,
15194 0, (CORE_ADDR) 0, cu->language, objfile);
15195
15196 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
15197 continue;
15198 }
15199
15200 /* We'll save this DIE so link it in. */
15201 part_die->die_parent = parent_die;
15202 part_die->die_sibling = NULL;
15203 part_die->die_child = NULL;
15204
15205 if (last_die && last_die == parent_die)
15206 last_die->die_child = part_die;
15207 else if (last_die)
15208 last_die->die_sibling = part_die;
15209
15210 last_die = part_die;
15211
15212 if (first_die == NULL)
15213 first_die = part_die;
15214
15215 /* Maybe add the DIE to the hash table. Not all DIEs that we
15216 find interesting need to be in the hash table, because we
15217 also have the parent/sibling/child chains; only those that we
15218 might refer to by offset later during partial symbol reading.
15219
15220 For now this means things that might have be the target of a
15221 DW_AT_specification, DW_AT_abstract_origin, or
15222 DW_AT_extension. DW_AT_extension will refer only to
15223 namespaces; DW_AT_abstract_origin refers to functions (and
15224 many things under the function DIE, but we do not recurse
15225 into function DIEs during partial symbol reading) and
15226 possibly variables as well; DW_AT_specification refers to
15227 declarations. Declarations ought to have the DW_AT_declaration
15228 flag. It happens that GCC forgets to put it in sometimes, but
15229 only for functions, not for types.
15230
15231 Adding more things than necessary to the hash table is harmless
15232 except for the performance cost. Adding too few will result in
15233 wasted time in find_partial_die, when we reread the compilation
15234 unit with load_all_dies set. */
15235
15236 if (load_all
15237 || abbrev->tag == DW_TAG_constant
15238 || abbrev->tag == DW_TAG_subprogram
15239 || abbrev->tag == DW_TAG_variable
15240 || abbrev->tag == DW_TAG_namespace
15241 || part_die->is_declaration)
15242 {
15243 void **slot;
15244
15245 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
15246 part_die->offset.sect_off, INSERT);
15247 *slot = part_die;
15248 }
15249
15250 part_die = obstack_alloc (&cu->comp_unit_obstack,
15251 sizeof (struct partial_die_info));
15252
15253 /* For some DIEs we want to follow their children (if any). For C
15254 we have no reason to follow the children of structures; for other
15255 languages we have to, so that we can get at method physnames
15256 to infer fully qualified class names, for DW_AT_specification,
15257 and for C++ template arguments. For C++, we also look one level
15258 inside functions to find template arguments (if the name of the
15259 function does not already contain the template arguments).
15260
15261 For Ada, we need to scan the children of subprograms and lexical
15262 blocks as well because Ada allows the definition of nested
15263 entities that could be interesting for the debugger, such as
15264 nested subprograms for instance. */
15265 if (last_die->has_children
15266 && (load_all
15267 || last_die->tag == DW_TAG_namespace
15268 || last_die->tag == DW_TAG_module
15269 || last_die->tag == DW_TAG_enumeration_type
15270 || (cu->language == language_cplus
15271 && last_die->tag == DW_TAG_subprogram
15272 && (last_die->name == NULL
15273 || strchr (last_die->name, '<') == NULL))
15274 || (cu->language != language_c
15275 && (last_die->tag == DW_TAG_class_type
15276 || last_die->tag == DW_TAG_interface_type
15277 || last_die->tag == DW_TAG_structure_type
15278 || last_die->tag == DW_TAG_union_type))
15279 || (cu->language == language_ada
15280 && (last_die->tag == DW_TAG_subprogram
15281 || last_die->tag == DW_TAG_lexical_block))))
15282 {
15283 nesting_level++;
15284 parent_die = last_die;
15285 continue;
15286 }
15287
15288 /* Otherwise we skip to the next sibling, if any. */
15289 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
15290
15291 /* Back to the top, do it again. */
15292 }
15293 }
15294
15295 /* Read a minimal amount of information into the minimal die structure. */
15296
15297 static const gdb_byte *
15298 read_partial_die (const struct die_reader_specs *reader,
15299 struct partial_die_info *part_die,
15300 struct abbrev_info *abbrev, unsigned int abbrev_len,
15301 const gdb_byte *info_ptr)
15302 {
15303 struct dwarf2_cu *cu = reader->cu;
15304 struct objfile *objfile = cu->objfile;
15305 const gdb_byte *buffer = reader->buffer;
15306 unsigned int i;
15307 struct attribute attr;
15308 int has_low_pc_attr = 0;
15309 int has_high_pc_attr = 0;
15310 int high_pc_relative = 0;
15311
15312 memset (part_die, 0, sizeof (struct partial_die_info));
15313
15314 part_die->offset.sect_off = info_ptr - buffer;
15315
15316 info_ptr += abbrev_len;
15317
15318 if (abbrev == NULL)
15319 return info_ptr;
15320
15321 part_die->tag = abbrev->tag;
15322 part_die->has_children = abbrev->has_children;
15323
15324 for (i = 0; i < abbrev->num_attrs; ++i)
15325 {
15326 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
15327
15328 /* Store the data if it is of an attribute we want to keep in a
15329 partial symbol table. */
15330 switch (attr.name)
15331 {
15332 case DW_AT_name:
15333 switch (part_die->tag)
15334 {
15335 case DW_TAG_compile_unit:
15336 case DW_TAG_partial_unit:
15337 case DW_TAG_type_unit:
15338 /* Compilation units have a DW_AT_name that is a filename, not
15339 a source language identifier. */
15340 case DW_TAG_enumeration_type:
15341 case DW_TAG_enumerator:
15342 /* These tags always have simple identifiers already; no need
15343 to canonicalize them. */
15344 part_die->name = DW_STRING (&attr);
15345 break;
15346 default:
15347 part_die->name
15348 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
15349 &objfile->objfile_obstack);
15350 break;
15351 }
15352 break;
15353 case DW_AT_linkage_name:
15354 case DW_AT_MIPS_linkage_name:
15355 /* Note that both forms of linkage name might appear. We
15356 assume they will be the same, and we only store the last
15357 one we see. */
15358 if (cu->language == language_ada)
15359 part_die->name = DW_STRING (&attr);
15360 part_die->linkage_name = DW_STRING (&attr);
15361 break;
15362 case DW_AT_low_pc:
15363 has_low_pc_attr = 1;
15364 part_die->lowpc = attr_value_as_address (&attr);
15365 break;
15366 case DW_AT_high_pc:
15367 has_high_pc_attr = 1;
15368 part_die->highpc = attr_value_as_address (&attr);
15369 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15370 high_pc_relative = 1;
15371 break;
15372 case DW_AT_location:
15373 /* Support the .debug_loc offsets. */
15374 if (attr_form_is_block (&attr))
15375 {
15376 part_die->d.locdesc = DW_BLOCK (&attr);
15377 }
15378 else if (attr_form_is_section_offset (&attr))
15379 {
15380 dwarf2_complex_location_expr_complaint ();
15381 }
15382 else
15383 {
15384 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15385 "partial symbol information");
15386 }
15387 break;
15388 case DW_AT_external:
15389 part_die->is_external = DW_UNSND (&attr);
15390 break;
15391 case DW_AT_declaration:
15392 part_die->is_declaration = DW_UNSND (&attr);
15393 break;
15394 case DW_AT_type:
15395 part_die->has_type = 1;
15396 break;
15397 case DW_AT_abstract_origin:
15398 case DW_AT_specification:
15399 case DW_AT_extension:
15400 part_die->has_specification = 1;
15401 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
15402 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15403 || cu->per_cu->is_dwz);
15404 break;
15405 case DW_AT_sibling:
15406 /* Ignore absolute siblings, they might point outside of
15407 the current compile unit. */
15408 if (attr.form == DW_FORM_ref_addr)
15409 complaint (&symfile_complaints,
15410 _("ignoring absolute DW_AT_sibling"));
15411 else
15412 {
15413 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15414 const gdb_byte *sibling_ptr = buffer + off;
15415
15416 if (sibling_ptr < info_ptr)
15417 complaint (&symfile_complaints,
15418 _("DW_AT_sibling points backwards"));
15419 else
15420 part_die->sibling = sibling_ptr;
15421 }
15422 break;
15423 case DW_AT_byte_size:
15424 part_die->has_byte_size = 1;
15425 break;
15426 case DW_AT_calling_convention:
15427 /* DWARF doesn't provide a way to identify a program's source-level
15428 entry point. DW_AT_calling_convention attributes are only meant
15429 to describe functions' calling conventions.
15430
15431 However, because it's a necessary piece of information in
15432 Fortran, and because DW_CC_program is the only piece of debugging
15433 information whose definition refers to a 'main program' at all,
15434 several compilers have begun marking Fortran main programs with
15435 DW_CC_program --- even when those functions use the standard
15436 calling conventions.
15437
15438 So until DWARF specifies a way to provide this information and
15439 compilers pick up the new representation, we'll support this
15440 practice. */
15441 if (DW_UNSND (&attr) == DW_CC_program
15442 && cu->language == language_fortran)
15443 set_objfile_main_name (objfile, part_die->name, language_fortran);
15444 break;
15445 case DW_AT_inline:
15446 if (DW_UNSND (&attr) == DW_INL_inlined
15447 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15448 part_die->may_be_inlined = 1;
15449 break;
15450
15451 case DW_AT_import:
15452 if (part_die->tag == DW_TAG_imported_unit)
15453 {
15454 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15455 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15456 || cu->per_cu->is_dwz);
15457 }
15458 break;
15459
15460 default:
15461 break;
15462 }
15463 }
15464
15465 if (high_pc_relative)
15466 part_die->highpc += part_die->lowpc;
15467
15468 if (has_low_pc_attr && has_high_pc_attr)
15469 {
15470 /* When using the GNU linker, .gnu.linkonce. sections are used to
15471 eliminate duplicate copies of functions and vtables and such.
15472 The linker will arbitrarily choose one and discard the others.
15473 The AT_*_pc values for such functions refer to local labels in
15474 these sections. If the section from that file was discarded, the
15475 labels are not in the output, so the relocs get a value of 0.
15476 If this is a discarded function, mark the pc bounds as invalid,
15477 so that GDB will ignore it. */
15478 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15479 {
15480 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15481
15482 complaint (&symfile_complaints,
15483 _("DW_AT_low_pc %s is zero "
15484 "for DIE at 0x%x [in module %s]"),
15485 paddress (gdbarch, part_die->lowpc),
15486 part_die->offset.sect_off, objfile_name (objfile));
15487 }
15488 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15489 else if (part_die->lowpc >= part_die->highpc)
15490 {
15491 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15492
15493 complaint (&symfile_complaints,
15494 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15495 "for DIE at 0x%x [in module %s]"),
15496 paddress (gdbarch, part_die->lowpc),
15497 paddress (gdbarch, part_die->highpc),
15498 part_die->offset.sect_off, objfile_name (objfile));
15499 }
15500 else
15501 part_die->has_pc_info = 1;
15502 }
15503
15504 return info_ptr;
15505 }
15506
15507 /* Find a cached partial DIE at OFFSET in CU. */
15508
15509 static struct partial_die_info *
15510 find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
15511 {
15512 struct partial_die_info *lookup_die = NULL;
15513 struct partial_die_info part_die;
15514
15515 part_die.offset = offset;
15516 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15517 offset.sect_off);
15518
15519 return lookup_die;
15520 }
15521
15522 /* Find a partial DIE at OFFSET, which may or may not be in CU,
15523 except in the case of .debug_types DIEs which do not reference
15524 outside their CU (they do however referencing other types via
15525 DW_FORM_ref_sig8). */
15526
15527 static struct partial_die_info *
15528 find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
15529 {
15530 struct objfile *objfile = cu->objfile;
15531 struct dwarf2_per_cu_data *per_cu = NULL;
15532 struct partial_die_info *pd = NULL;
15533
15534 if (offset_in_dwz == cu->per_cu->is_dwz
15535 && offset_in_cu_p (&cu->header, offset))
15536 {
15537 pd = find_partial_die_in_comp_unit (offset, cu);
15538 if (pd != NULL)
15539 return pd;
15540 /* We missed recording what we needed.
15541 Load all dies and try again. */
15542 per_cu = cu->per_cu;
15543 }
15544 else
15545 {
15546 /* TUs don't reference other CUs/TUs (except via type signatures). */
15547 if (cu->per_cu->is_debug_types)
15548 {
15549 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15550 " external reference to offset 0x%lx [in module %s].\n"),
15551 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15552 bfd_get_filename (objfile->obfd));
15553 }
15554 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15555 objfile);
15556
15557 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15558 load_partial_comp_unit (per_cu);
15559
15560 per_cu->cu->last_used = 0;
15561 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15562 }
15563
15564 /* If we didn't find it, and not all dies have been loaded,
15565 load them all and try again. */
15566
15567 if (pd == NULL && per_cu->load_all_dies == 0)
15568 {
15569 per_cu->load_all_dies = 1;
15570
15571 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15572 THIS_CU->cu may already be in use. So we can't just free it and
15573 replace its DIEs with the ones we read in. Instead, we leave those
15574 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15575 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15576 set. */
15577 load_partial_comp_unit (per_cu);
15578
15579 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15580 }
15581
15582 if (pd == NULL)
15583 internal_error (__FILE__, __LINE__,
15584 _("could not find partial DIE 0x%x "
15585 "in cache [from module %s]\n"),
15586 offset.sect_off, bfd_get_filename (objfile->obfd));
15587 return pd;
15588 }
15589
15590 /* See if we can figure out if the class lives in a namespace. We do
15591 this by looking for a member function; its demangled name will
15592 contain namespace info, if there is any. */
15593
15594 static void
15595 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15596 struct dwarf2_cu *cu)
15597 {
15598 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15599 what template types look like, because the demangler
15600 frequently doesn't give the same name as the debug info. We
15601 could fix this by only using the demangled name to get the
15602 prefix (but see comment in read_structure_type). */
15603
15604 struct partial_die_info *real_pdi;
15605 struct partial_die_info *child_pdi;
15606
15607 /* If this DIE (this DIE's specification, if any) has a parent, then
15608 we should not do this. We'll prepend the parent's fully qualified
15609 name when we create the partial symbol. */
15610
15611 real_pdi = struct_pdi;
15612 while (real_pdi->has_specification)
15613 real_pdi = find_partial_die (real_pdi->spec_offset,
15614 real_pdi->spec_is_dwz, cu);
15615
15616 if (real_pdi->die_parent != NULL)
15617 return;
15618
15619 for (child_pdi = struct_pdi->die_child;
15620 child_pdi != NULL;
15621 child_pdi = child_pdi->die_sibling)
15622 {
15623 if (child_pdi->tag == DW_TAG_subprogram
15624 && child_pdi->linkage_name != NULL)
15625 {
15626 char *actual_class_name
15627 = language_class_name_from_physname (cu->language_defn,
15628 child_pdi->linkage_name);
15629 if (actual_class_name != NULL)
15630 {
15631 struct_pdi->name
15632 = obstack_copy0 (&cu->objfile->objfile_obstack,
15633 actual_class_name,
15634 strlen (actual_class_name));
15635 xfree (actual_class_name);
15636 }
15637 break;
15638 }
15639 }
15640 }
15641
15642 /* Adjust PART_DIE before generating a symbol for it. This function
15643 may set the is_external flag or change the DIE's name. */
15644
15645 static void
15646 fixup_partial_die (struct partial_die_info *part_die,
15647 struct dwarf2_cu *cu)
15648 {
15649 /* Once we've fixed up a die, there's no point in doing so again.
15650 This also avoids a memory leak if we were to call
15651 guess_partial_die_structure_name multiple times. */
15652 if (part_die->fixup_called)
15653 return;
15654
15655 /* If we found a reference attribute and the DIE has no name, try
15656 to find a name in the referred to DIE. */
15657
15658 if (part_die->name == NULL && part_die->has_specification)
15659 {
15660 struct partial_die_info *spec_die;
15661
15662 spec_die = find_partial_die (part_die->spec_offset,
15663 part_die->spec_is_dwz, cu);
15664
15665 fixup_partial_die (spec_die, cu);
15666
15667 if (spec_die->name)
15668 {
15669 part_die->name = spec_die->name;
15670
15671 /* Copy DW_AT_external attribute if it is set. */
15672 if (spec_die->is_external)
15673 part_die->is_external = spec_die->is_external;
15674 }
15675 }
15676
15677 /* Set default names for some unnamed DIEs. */
15678
15679 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
15680 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
15681
15682 /* If there is no parent die to provide a namespace, and there are
15683 children, see if we can determine the namespace from their linkage
15684 name. */
15685 if (cu->language == language_cplus
15686 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
15687 && part_die->die_parent == NULL
15688 && part_die->has_children
15689 && (part_die->tag == DW_TAG_class_type
15690 || part_die->tag == DW_TAG_structure_type
15691 || part_die->tag == DW_TAG_union_type))
15692 guess_partial_die_structure_name (part_die, cu);
15693
15694 /* GCC might emit a nameless struct or union that has a linkage
15695 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15696 if (part_die->name == NULL
15697 && (part_die->tag == DW_TAG_class_type
15698 || part_die->tag == DW_TAG_interface_type
15699 || part_die->tag == DW_TAG_structure_type
15700 || part_die->tag == DW_TAG_union_type)
15701 && part_die->linkage_name != NULL)
15702 {
15703 char *demangled;
15704
15705 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
15706 if (demangled)
15707 {
15708 const char *base;
15709
15710 /* Strip any leading namespaces/classes, keep only the base name.
15711 DW_AT_name for named DIEs does not contain the prefixes. */
15712 base = strrchr (demangled, ':');
15713 if (base && base > demangled && base[-1] == ':')
15714 base++;
15715 else
15716 base = demangled;
15717
15718 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15719 base, strlen (base));
15720 xfree (demangled);
15721 }
15722 }
15723
15724 part_die->fixup_called = 1;
15725 }
15726
15727 /* Read an attribute value described by an attribute form. */
15728
15729 static const gdb_byte *
15730 read_attribute_value (const struct die_reader_specs *reader,
15731 struct attribute *attr, unsigned form,
15732 const gdb_byte *info_ptr)
15733 {
15734 struct dwarf2_cu *cu = reader->cu;
15735 bfd *abfd = reader->abfd;
15736 struct comp_unit_head *cu_header = &cu->header;
15737 unsigned int bytes_read;
15738 struct dwarf_block *blk;
15739
15740 attr->form = form;
15741 switch (form)
15742 {
15743 case DW_FORM_ref_addr:
15744 if (cu->header.version == 2)
15745 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15746 else
15747 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15748 &cu->header, &bytes_read);
15749 info_ptr += bytes_read;
15750 break;
15751 case DW_FORM_GNU_ref_alt:
15752 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15753 info_ptr += bytes_read;
15754 break;
15755 case DW_FORM_addr:
15756 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
15757 info_ptr += bytes_read;
15758 break;
15759 case DW_FORM_block2:
15760 blk = dwarf_alloc_block (cu);
15761 blk->size = read_2_bytes (abfd, info_ptr);
15762 info_ptr += 2;
15763 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15764 info_ptr += blk->size;
15765 DW_BLOCK (attr) = blk;
15766 break;
15767 case DW_FORM_block4:
15768 blk = dwarf_alloc_block (cu);
15769 blk->size = read_4_bytes (abfd, info_ptr);
15770 info_ptr += 4;
15771 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15772 info_ptr += blk->size;
15773 DW_BLOCK (attr) = blk;
15774 break;
15775 case DW_FORM_data2:
15776 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15777 info_ptr += 2;
15778 break;
15779 case DW_FORM_data4:
15780 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15781 info_ptr += 4;
15782 break;
15783 case DW_FORM_data8:
15784 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15785 info_ptr += 8;
15786 break;
15787 case DW_FORM_sec_offset:
15788 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15789 info_ptr += bytes_read;
15790 break;
15791 case DW_FORM_string:
15792 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
15793 DW_STRING_IS_CANONICAL (attr) = 0;
15794 info_ptr += bytes_read;
15795 break;
15796 case DW_FORM_strp:
15797 if (!cu->per_cu->is_dwz)
15798 {
15799 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15800 &bytes_read);
15801 DW_STRING_IS_CANONICAL (attr) = 0;
15802 info_ptr += bytes_read;
15803 break;
15804 }
15805 /* FALLTHROUGH */
15806 case DW_FORM_GNU_strp_alt:
15807 {
15808 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15809 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15810 &bytes_read);
15811
15812 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15813 DW_STRING_IS_CANONICAL (attr) = 0;
15814 info_ptr += bytes_read;
15815 }
15816 break;
15817 case DW_FORM_exprloc:
15818 case DW_FORM_block:
15819 blk = dwarf_alloc_block (cu);
15820 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15821 info_ptr += bytes_read;
15822 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15823 info_ptr += blk->size;
15824 DW_BLOCK (attr) = blk;
15825 break;
15826 case DW_FORM_block1:
15827 blk = dwarf_alloc_block (cu);
15828 blk->size = read_1_byte (abfd, info_ptr);
15829 info_ptr += 1;
15830 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15831 info_ptr += blk->size;
15832 DW_BLOCK (attr) = blk;
15833 break;
15834 case DW_FORM_data1:
15835 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15836 info_ptr += 1;
15837 break;
15838 case DW_FORM_flag:
15839 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15840 info_ptr += 1;
15841 break;
15842 case DW_FORM_flag_present:
15843 DW_UNSND (attr) = 1;
15844 break;
15845 case DW_FORM_sdata:
15846 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15847 info_ptr += bytes_read;
15848 break;
15849 case DW_FORM_udata:
15850 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15851 info_ptr += bytes_read;
15852 break;
15853 case DW_FORM_ref1:
15854 DW_UNSND (attr) = (cu->header.offset.sect_off
15855 + read_1_byte (abfd, info_ptr));
15856 info_ptr += 1;
15857 break;
15858 case DW_FORM_ref2:
15859 DW_UNSND (attr) = (cu->header.offset.sect_off
15860 + read_2_bytes (abfd, info_ptr));
15861 info_ptr += 2;
15862 break;
15863 case DW_FORM_ref4:
15864 DW_UNSND (attr) = (cu->header.offset.sect_off
15865 + read_4_bytes (abfd, info_ptr));
15866 info_ptr += 4;
15867 break;
15868 case DW_FORM_ref8:
15869 DW_UNSND (attr) = (cu->header.offset.sect_off
15870 + read_8_bytes (abfd, info_ptr));
15871 info_ptr += 8;
15872 break;
15873 case DW_FORM_ref_sig8:
15874 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
15875 info_ptr += 8;
15876 break;
15877 case DW_FORM_ref_udata:
15878 DW_UNSND (attr) = (cu->header.offset.sect_off
15879 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
15880 info_ptr += bytes_read;
15881 break;
15882 case DW_FORM_indirect:
15883 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15884 info_ptr += bytes_read;
15885 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
15886 break;
15887 case DW_FORM_GNU_addr_index:
15888 if (reader->dwo_file == NULL)
15889 {
15890 /* For now flag a hard error.
15891 Later we can turn this into a complaint. */
15892 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15893 dwarf_form_name (form),
15894 bfd_get_filename (abfd));
15895 }
15896 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15897 info_ptr += bytes_read;
15898 break;
15899 case DW_FORM_GNU_str_index:
15900 if (reader->dwo_file == NULL)
15901 {
15902 /* For now flag a hard error.
15903 Later we can turn this into a complaint if warranted. */
15904 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15905 dwarf_form_name (form),
15906 bfd_get_filename (abfd));
15907 }
15908 {
15909 ULONGEST str_index =
15910 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15911
15912 DW_STRING (attr) = read_str_index (reader, cu, str_index);
15913 DW_STRING_IS_CANONICAL (attr) = 0;
15914 info_ptr += bytes_read;
15915 }
15916 break;
15917 default:
15918 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
15919 dwarf_form_name (form),
15920 bfd_get_filename (abfd));
15921 }
15922
15923 /* Super hack. */
15924 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
15925 attr->form = DW_FORM_GNU_ref_alt;
15926
15927 /* We have seen instances where the compiler tried to emit a byte
15928 size attribute of -1 which ended up being encoded as an unsigned
15929 0xffffffff. Although 0xffffffff is technically a valid size value,
15930 an object of this size seems pretty unlikely so we can relatively
15931 safely treat these cases as if the size attribute was invalid and
15932 treat them as zero by default. */
15933 if (attr->name == DW_AT_byte_size
15934 && form == DW_FORM_data4
15935 && DW_UNSND (attr) >= 0xffffffff)
15936 {
15937 complaint
15938 (&symfile_complaints,
15939 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15940 hex_string (DW_UNSND (attr)));
15941 DW_UNSND (attr) = 0;
15942 }
15943
15944 return info_ptr;
15945 }
15946
15947 /* Read an attribute described by an abbreviated attribute. */
15948
15949 static const gdb_byte *
15950 read_attribute (const struct die_reader_specs *reader,
15951 struct attribute *attr, struct attr_abbrev *abbrev,
15952 const gdb_byte *info_ptr)
15953 {
15954 attr->name = abbrev->name;
15955 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
15956 }
15957
15958 /* Read dwarf information from a buffer. */
15959
15960 static unsigned int
15961 read_1_byte (bfd *abfd, const gdb_byte *buf)
15962 {
15963 return bfd_get_8 (abfd, buf);
15964 }
15965
15966 static int
15967 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
15968 {
15969 return bfd_get_signed_8 (abfd, buf);
15970 }
15971
15972 static unsigned int
15973 read_2_bytes (bfd *abfd, const gdb_byte *buf)
15974 {
15975 return bfd_get_16 (abfd, buf);
15976 }
15977
15978 static int
15979 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
15980 {
15981 return bfd_get_signed_16 (abfd, buf);
15982 }
15983
15984 static unsigned int
15985 read_4_bytes (bfd *abfd, const gdb_byte *buf)
15986 {
15987 return bfd_get_32 (abfd, buf);
15988 }
15989
15990 static int
15991 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
15992 {
15993 return bfd_get_signed_32 (abfd, buf);
15994 }
15995
15996 static ULONGEST
15997 read_8_bytes (bfd *abfd, const gdb_byte *buf)
15998 {
15999 return bfd_get_64 (abfd, buf);
16000 }
16001
16002 static CORE_ADDR
16003 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
16004 unsigned int *bytes_read)
16005 {
16006 struct comp_unit_head *cu_header = &cu->header;
16007 CORE_ADDR retval = 0;
16008
16009 if (cu_header->signed_addr_p)
16010 {
16011 switch (cu_header->addr_size)
16012 {
16013 case 2:
16014 retval = bfd_get_signed_16 (abfd, buf);
16015 break;
16016 case 4:
16017 retval = bfd_get_signed_32 (abfd, buf);
16018 break;
16019 case 8:
16020 retval = bfd_get_signed_64 (abfd, buf);
16021 break;
16022 default:
16023 internal_error (__FILE__, __LINE__,
16024 _("read_address: bad switch, signed [in module %s]"),
16025 bfd_get_filename (abfd));
16026 }
16027 }
16028 else
16029 {
16030 switch (cu_header->addr_size)
16031 {
16032 case 2:
16033 retval = bfd_get_16 (abfd, buf);
16034 break;
16035 case 4:
16036 retval = bfd_get_32 (abfd, buf);
16037 break;
16038 case 8:
16039 retval = bfd_get_64 (abfd, buf);
16040 break;
16041 default:
16042 internal_error (__FILE__, __LINE__,
16043 _("read_address: bad switch, "
16044 "unsigned [in module %s]"),
16045 bfd_get_filename (abfd));
16046 }
16047 }
16048
16049 *bytes_read = cu_header->addr_size;
16050 return retval;
16051 }
16052
16053 /* Read the initial length from a section. The (draft) DWARF 3
16054 specification allows the initial length to take up either 4 bytes
16055 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16056 bytes describe the length and all offsets will be 8 bytes in length
16057 instead of 4.
16058
16059 An older, non-standard 64-bit format is also handled by this
16060 function. The older format in question stores the initial length
16061 as an 8-byte quantity without an escape value. Lengths greater
16062 than 2^32 aren't very common which means that the initial 4 bytes
16063 is almost always zero. Since a length value of zero doesn't make
16064 sense for the 32-bit format, this initial zero can be considered to
16065 be an escape value which indicates the presence of the older 64-bit
16066 format. As written, the code can't detect (old format) lengths
16067 greater than 4GB. If it becomes necessary to handle lengths
16068 somewhat larger than 4GB, we could allow other small values (such
16069 as the non-sensical values of 1, 2, and 3) to also be used as
16070 escape values indicating the presence of the old format.
16071
16072 The value returned via bytes_read should be used to increment the
16073 relevant pointer after calling read_initial_length().
16074
16075 [ Note: read_initial_length() and read_offset() are based on the
16076 document entitled "DWARF Debugging Information Format", revision
16077 3, draft 8, dated November 19, 2001. This document was obtained
16078 from:
16079
16080 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
16081
16082 This document is only a draft and is subject to change. (So beware.)
16083
16084 Details regarding the older, non-standard 64-bit format were
16085 determined empirically by examining 64-bit ELF files produced by
16086 the SGI toolchain on an IRIX 6.5 machine.
16087
16088 - Kevin, July 16, 2002
16089 ] */
16090
16091 static LONGEST
16092 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
16093 {
16094 LONGEST length = bfd_get_32 (abfd, buf);
16095
16096 if (length == 0xffffffff)
16097 {
16098 length = bfd_get_64 (abfd, buf + 4);
16099 *bytes_read = 12;
16100 }
16101 else if (length == 0)
16102 {
16103 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
16104 length = bfd_get_64 (abfd, buf);
16105 *bytes_read = 8;
16106 }
16107 else
16108 {
16109 *bytes_read = 4;
16110 }
16111
16112 return length;
16113 }
16114
16115 /* Cover function for read_initial_length.
16116 Returns the length of the object at BUF, and stores the size of the
16117 initial length in *BYTES_READ and stores the size that offsets will be in
16118 *OFFSET_SIZE.
16119 If the initial length size is not equivalent to that specified in
16120 CU_HEADER then issue a complaint.
16121 This is useful when reading non-comp-unit headers. */
16122
16123 static LONGEST
16124 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
16125 const struct comp_unit_head *cu_header,
16126 unsigned int *bytes_read,
16127 unsigned int *offset_size)
16128 {
16129 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16130
16131 gdb_assert (cu_header->initial_length_size == 4
16132 || cu_header->initial_length_size == 8
16133 || cu_header->initial_length_size == 12);
16134
16135 if (cu_header->initial_length_size != *bytes_read)
16136 complaint (&symfile_complaints,
16137 _("intermixed 32-bit and 64-bit DWARF sections"));
16138
16139 *offset_size = (*bytes_read == 4) ? 4 : 8;
16140 return length;
16141 }
16142
16143 /* Read an offset from the data stream. The size of the offset is
16144 given by cu_header->offset_size. */
16145
16146 static LONGEST
16147 read_offset (bfd *abfd, const gdb_byte *buf,
16148 const struct comp_unit_head *cu_header,
16149 unsigned int *bytes_read)
16150 {
16151 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
16152
16153 *bytes_read = cu_header->offset_size;
16154 return offset;
16155 }
16156
16157 /* Read an offset from the data stream. */
16158
16159 static LONGEST
16160 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
16161 {
16162 LONGEST retval = 0;
16163
16164 switch (offset_size)
16165 {
16166 case 4:
16167 retval = bfd_get_32 (abfd, buf);
16168 break;
16169 case 8:
16170 retval = bfd_get_64 (abfd, buf);
16171 break;
16172 default:
16173 internal_error (__FILE__, __LINE__,
16174 _("read_offset_1: bad switch [in module %s]"),
16175 bfd_get_filename (abfd));
16176 }
16177
16178 return retval;
16179 }
16180
16181 static const gdb_byte *
16182 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
16183 {
16184 /* If the size of a host char is 8 bits, we can return a pointer
16185 to the buffer, otherwise we have to copy the data to a buffer
16186 allocated on the temporary obstack. */
16187 gdb_assert (HOST_CHAR_BIT == 8);
16188 return buf;
16189 }
16190
16191 static const char *
16192 read_direct_string (bfd *abfd, const gdb_byte *buf,
16193 unsigned int *bytes_read_ptr)
16194 {
16195 /* If the size of a host char is 8 bits, we can return a pointer
16196 to the string, otherwise we have to copy the string to a buffer
16197 allocated on the temporary obstack. */
16198 gdb_assert (HOST_CHAR_BIT == 8);
16199 if (*buf == '\0')
16200 {
16201 *bytes_read_ptr = 1;
16202 return NULL;
16203 }
16204 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16205 return (const char *) buf;
16206 }
16207
16208 static const char *
16209 read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
16210 {
16211 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
16212 if (dwarf2_per_objfile->str.buffer == NULL)
16213 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16214 bfd_get_filename (abfd));
16215 if (str_offset >= dwarf2_per_objfile->str.size)
16216 error (_("DW_FORM_strp pointing outside of "
16217 ".debug_str section [in module %s]"),
16218 bfd_get_filename (abfd));
16219 gdb_assert (HOST_CHAR_BIT == 8);
16220 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
16221 return NULL;
16222 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
16223 }
16224
16225 /* Read a string at offset STR_OFFSET in the .debug_str section from
16226 the .dwz file DWZ. Throw an error if the offset is too large. If
16227 the string consists of a single NUL byte, return NULL; otherwise
16228 return a pointer to the string. */
16229
16230 static const char *
16231 read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16232 {
16233 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16234
16235 if (dwz->str.buffer == NULL)
16236 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16237 "section [in module %s]"),
16238 bfd_get_filename (dwz->dwz_bfd));
16239 if (str_offset >= dwz->str.size)
16240 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16241 ".debug_str section [in module %s]"),
16242 bfd_get_filename (dwz->dwz_bfd));
16243 gdb_assert (HOST_CHAR_BIT == 8);
16244 if (dwz->str.buffer[str_offset] == '\0')
16245 return NULL;
16246 return (const char *) (dwz->str.buffer + str_offset);
16247 }
16248
16249 static const char *
16250 read_indirect_string (bfd *abfd, const gdb_byte *buf,
16251 const struct comp_unit_head *cu_header,
16252 unsigned int *bytes_read_ptr)
16253 {
16254 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16255
16256 return read_indirect_string_at_offset (abfd, str_offset);
16257 }
16258
16259 static ULONGEST
16260 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16261 unsigned int *bytes_read_ptr)
16262 {
16263 ULONGEST result;
16264 unsigned int num_read;
16265 int i, shift;
16266 unsigned char byte;
16267
16268 result = 0;
16269 shift = 0;
16270 num_read = 0;
16271 i = 0;
16272 while (1)
16273 {
16274 byte = bfd_get_8 (abfd, buf);
16275 buf++;
16276 num_read++;
16277 result |= ((ULONGEST) (byte & 127) << shift);
16278 if ((byte & 128) == 0)
16279 {
16280 break;
16281 }
16282 shift += 7;
16283 }
16284 *bytes_read_ptr = num_read;
16285 return result;
16286 }
16287
16288 static LONGEST
16289 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16290 unsigned int *bytes_read_ptr)
16291 {
16292 LONGEST result;
16293 int i, shift, num_read;
16294 unsigned char byte;
16295
16296 result = 0;
16297 shift = 0;
16298 num_read = 0;
16299 i = 0;
16300 while (1)
16301 {
16302 byte = bfd_get_8 (abfd, buf);
16303 buf++;
16304 num_read++;
16305 result |= ((LONGEST) (byte & 127) << shift);
16306 shift += 7;
16307 if ((byte & 128) == 0)
16308 {
16309 break;
16310 }
16311 }
16312 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
16313 result |= -(((LONGEST) 1) << shift);
16314 *bytes_read_ptr = num_read;
16315 return result;
16316 }
16317
16318 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
16319 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16320 ADDR_SIZE is the size of addresses from the CU header. */
16321
16322 static CORE_ADDR
16323 read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16324 {
16325 struct objfile *objfile = dwarf2_per_objfile->objfile;
16326 bfd *abfd = objfile->obfd;
16327 const gdb_byte *info_ptr;
16328
16329 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16330 if (dwarf2_per_objfile->addr.buffer == NULL)
16331 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
16332 objfile_name (objfile));
16333 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16334 error (_("DW_FORM_addr_index pointing outside of "
16335 ".debug_addr section [in module %s]"),
16336 objfile_name (objfile));
16337 info_ptr = (dwarf2_per_objfile->addr.buffer
16338 + addr_base + addr_index * addr_size);
16339 if (addr_size == 4)
16340 return bfd_get_32 (abfd, info_ptr);
16341 else
16342 return bfd_get_64 (abfd, info_ptr);
16343 }
16344
16345 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16346
16347 static CORE_ADDR
16348 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16349 {
16350 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16351 }
16352
16353 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16354
16355 static CORE_ADDR
16356 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
16357 unsigned int *bytes_read)
16358 {
16359 bfd *abfd = cu->objfile->obfd;
16360 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16361
16362 return read_addr_index (cu, addr_index);
16363 }
16364
16365 /* Data structure to pass results from dwarf2_read_addr_index_reader
16366 back to dwarf2_read_addr_index. */
16367
16368 struct dwarf2_read_addr_index_data
16369 {
16370 ULONGEST addr_base;
16371 int addr_size;
16372 };
16373
16374 /* die_reader_func for dwarf2_read_addr_index. */
16375
16376 static void
16377 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
16378 const gdb_byte *info_ptr,
16379 struct die_info *comp_unit_die,
16380 int has_children,
16381 void *data)
16382 {
16383 struct dwarf2_cu *cu = reader->cu;
16384 struct dwarf2_read_addr_index_data *aidata =
16385 (struct dwarf2_read_addr_index_data *) data;
16386
16387 aidata->addr_base = cu->addr_base;
16388 aidata->addr_size = cu->header.addr_size;
16389 }
16390
16391 /* Given an index in .debug_addr, fetch the value.
16392 NOTE: This can be called during dwarf expression evaluation,
16393 long after the debug information has been read, and thus per_cu->cu
16394 may no longer exist. */
16395
16396 CORE_ADDR
16397 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16398 unsigned int addr_index)
16399 {
16400 struct objfile *objfile = per_cu->objfile;
16401 struct dwarf2_cu *cu = per_cu->cu;
16402 ULONGEST addr_base;
16403 int addr_size;
16404
16405 /* This is intended to be called from outside this file. */
16406 dw2_setup (objfile);
16407
16408 /* We need addr_base and addr_size.
16409 If we don't have PER_CU->cu, we have to get it.
16410 Nasty, but the alternative is storing the needed info in PER_CU,
16411 which at this point doesn't seem justified: it's not clear how frequently
16412 it would get used and it would increase the size of every PER_CU.
16413 Entry points like dwarf2_per_cu_addr_size do a similar thing
16414 so we're not in uncharted territory here.
16415 Alas we need to be a bit more complicated as addr_base is contained
16416 in the DIE.
16417
16418 We don't need to read the entire CU(/TU).
16419 We just need the header and top level die.
16420
16421 IWBN to use the aging mechanism to let us lazily later discard the CU.
16422 For now we skip this optimization. */
16423
16424 if (cu != NULL)
16425 {
16426 addr_base = cu->addr_base;
16427 addr_size = cu->header.addr_size;
16428 }
16429 else
16430 {
16431 struct dwarf2_read_addr_index_data aidata;
16432
16433 /* Note: We can't use init_cutu_and_read_dies_simple here,
16434 we need addr_base. */
16435 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16436 dwarf2_read_addr_index_reader, &aidata);
16437 addr_base = aidata.addr_base;
16438 addr_size = aidata.addr_size;
16439 }
16440
16441 return read_addr_index_1 (addr_index, addr_base, addr_size);
16442 }
16443
16444 /* Given a DW_FORM_GNU_str_index, fetch the string.
16445 This is only used by the Fission support. */
16446
16447 static const char *
16448 read_str_index (const struct die_reader_specs *reader,
16449 struct dwarf2_cu *cu, ULONGEST str_index)
16450 {
16451 struct objfile *objfile = dwarf2_per_objfile->objfile;
16452 const char *objf_name = objfile_name (objfile);
16453 bfd *abfd = objfile->obfd;
16454 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16455 struct dwarf2_section_info *str_offsets_section =
16456 &reader->dwo_file->sections.str_offsets;
16457 const gdb_byte *info_ptr;
16458 ULONGEST str_offset;
16459 static const char form_name[] = "DW_FORM_GNU_str_index";
16460
16461 dwarf2_read_section (objfile, str_section);
16462 dwarf2_read_section (objfile, str_offsets_section);
16463 if (str_section->buffer == NULL)
16464 error (_("%s used without .debug_str.dwo section"
16465 " in CU at offset 0x%lx [in module %s]"),
16466 form_name, (long) cu->header.offset.sect_off, objf_name);
16467 if (str_offsets_section->buffer == NULL)
16468 error (_("%s used without .debug_str_offsets.dwo section"
16469 " in CU at offset 0x%lx [in module %s]"),
16470 form_name, (long) cu->header.offset.sect_off, objf_name);
16471 if (str_index * cu->header.offset_size >= str_offsets_section->size)
16472 error (_("%s pointing outside of .debug_str_offsets.dwo"
16473 " section in CU at offset 0x%lx [in module %s]"),
16474 form_name, (long) cu->header.offset.sect_off, objf_name);
16475 info_ptr = (str_offsets_section->buffer
16476 + str_index * cu->header.offset_size);
16477 if (cu->header.offset_size == 4)
16478 str_offset = bfd_get_32 (abfd, info_ptr);
16479 else
16480 str_offset = bfd_get_64 (abfd, info_ptr);
16481 if (str_offset >= str_section->size)
16482 error (_("Offset from %s pointing outside of"
16483 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
16484 form_name, (long) cu->header.offset.sect_off, objf_name);
16485 return (const char *) (str_section->buffer + str_offset);
16486 }
16487
16488 /* Return the length of an LEB128 number in BUF. */
16489
16490 static int
16491 leb128_size (const gdb_byte *buf)
16492 {
16493 const gdb_byte *begin = buf;
16494 gdb_byte byte;
16495
16496 while (1)
16497 {
16498 byte = *buf++;
16499 if ((byte & 128) == 0)
16500 return buf - begin;
16501 }
16502 }
16503
16504 static void
16505 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
16506 {
16507 switch (lang)
16508 {
16509 case DW_LANG_C89:
16510 case DW_LANG_C99:
16511 case DW_LANG_C:
16512 case DW_LANG_UPC:
16513 cu->language = language_c;
16514 break;
16515 case DW_LANG_C_plus_plus:
16516 cu->language = language_cplus;
16517 break;
16518 case DW_LANG_D:
16519 cu->language = language_d;
16520 break;
16521 case DW_LANG_Fortran77:
16522 case DW_LANG_Fortran90:
16523 case DW_LANG_Fortran95:
16524 cu->language = language_fortran;
16525 break;
16526 case DW_LANG_Go:
16527 cu->language = language_go;
16528 break;
16529 case DW_LANG_Mips_Assembler:
16530 cu->language = language_asm;
16531 break;
16532 case DW_LANG_Java:
16533 cu->language = language_java;
16534 break;
16535 case DW_LANG_Ada83:
16536 case DW_LANG_Ada95:
16537 cu->language = language_ada;
16538 break;
16539 case DW_LANG_Modula2:
16540 cu->language = language_m2;
16541 break;
16542 case DW_LANG_Pascal83:
16543 cu->language = language_pascal;
16544 break;
16545 case DW_LANG_ObjC:
16546 cu->language = language_objc;
16547 break;
16548 case DW_LANG_Cobol74:
16549 case DW_LANG_Cobol85:
16550 default:
16551 cu->language = language_minimal;
16552 break;
16553 }
16554 cu->language_defn = language_def (cu->language);
16555 }
16556
16557 /* Return the named attribute or NULL if not there. */
16558
16559 static struct attribute *
16560 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
16561 {
16562 for (;;)
16563 {
16564 unsigned int i;
16565 struct attribute *spec = NULL;
16566
16567 for (i = 0; i < die->num_attrs; ++i)
16568 {
16569 if (die->attrs[i].name == name)
16570 return &die->attrs[i];
16571 if (die->attrs[i].name == DW_AT_specification
16572 || die->attrs[i].name == DW_AT_abstract_origin)
16573 spec = &die->attrs[i];
16574 }
16575
16576 if (!spec)
16577 break;
16578
16579 die = follow_die_ref (die, spec, &cu);
16580 }
16581
16582 return NULL;
16583 }
16584
16585 /* Return the named attribute or NULL if not there,
16586 but do not follow DW_AT_specification, etc.
16587 This is for use in contexts where we're reading .debug_types dies.
16588 Following DW_AT_specification, DW_AT_abstract_origin will take us
16589 back up the chain, and we want to go down. */
16590
16591 static struct attribute *
16592 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
16593 {
16594 unsigned int i;
16595
16596 for (i = 0; i < die->num_attrs; ++i)
16597 if (die->attrs[i].name == name)
16598 return &die->attrs[i];
16599
16600 return NULL;
16601 }
16602
16603 /* Return non-zero iff the attribute NAME is defined for the given DIE,
16604 and holds a non-zero value. This function should only be used for
16605 DW_FORM_flag or DW_FORM_flag_present attributes. */
16606
16607 static int
16608 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16609 {
16610 struct attribute *attr = dwarf2_attr (die, name, cu);
16611
16612 return (attr && DW_UNSND (attr));
16613 }
16614
16615 static int
16616 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
16617 {
16618 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16619 which value is non-zero. However, we have to be careful with
16620 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16621 (via dwarf2_flag_true_p) follows this attribute. So we may
16622 end up accidently finding a declaration attribute that belongs
16623 to a different DIE referenced by the specification attribute,
16624 even though the given DIE does not have a declaration attribute. */
16625 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16626 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
16627 }
16628
16629 /* Return the die giving the specification for DIE, if there is
16630 one. *SPEC_CU is the CU containing DIE on input, and the CU
16631 containing the return value on output. If there is no
16632 specification, but there is an abstract origin, that is
16633 returned. */
16634
16635 static struct die_info *
16636 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
16637 {
16638 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16639 *spec_cu);
16640
16641 if (spec_attr == NULL)
16642 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16643
16644 if (spec_attr == NULL)
16645 return NULL;
16646 else
16647 return follow_die_ref (die, spec_attr, spec_cu);
16648 }
16649
16650 /* Free the line_header structure *LH, and any arrays and strings it
16651 refers to.
16652 NOTE: This is also used as a "cleanup" function. */
16653
16654 static void
16655 free_line_header (struct line_header *lh)
16656 {
16657 if (lh->standard_opcode_lengths)
16658 xfree (lh->standard_opcode_lengths);
16659
16660 /* Remember that all the lh->file_names[i].name pointers are
16661 pointers into debug_line_buffer, and don't need to be freed. */
16662 if (lh->file_names)
16663 xfree (lh->file_names);
16664
16665 /* Similarly for the include directory names. */
16666 if (lh->include_dirs)
16667 xfree (lh->include_dirs);
16668
16669 xfree (lh);
16670 }
16671
16672 /* Add an entry to LH's include directory table. */
16673
16674 static void
16675 add_include_dir (struct line_header *lh, const char *include_dir)
16676 {
16677 /* Grow the array if necessary. */
16678 if (lh->include_dirs_size == 0)
16679 {
16680 lh->include_dirs_size = 1; /* for testing */
16681 lh->include_dirs = xmalloc (lh->include_dirs_size
16682 * sizeof (*lh->include_dirs));
16683 }
16684 else if (lh->num_include_dirs >= lh->include_dirs_size)
16685 {
16686 lh->include_dirs_size *= 2;
16687 lh->include_dirs = xrealloc (lh->include_dirs,
16688 (lh->include_dirs_size
16689 * sizeof (*lh->include_dirs)));
16690 }
16691
16692 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16693 }
16694
16695 /* Add an entry to LH's file name table. */
16696
16697 static void
16698 add_file_name (struct line_header *lh,
16699 const char *name,
16700 unsigned int dir_index,
16701 unsigned int mod_time,
16702 unsigned int length)
16703 {
16704 struct file_entry *fe;
16705
16706 /* Grow the array if necessary. */
16707 if (lh->file_names_size == 0)
16708 {
16709 lh->file_names_size = 1; /* for testing */
16710 lh->file_names = xmalloc (lh->file_names_size
16711 * sizeof (*lh->file_names));
16712 }
16713 else if (lh->num_file_names >= lh->file_names_size)
16714 {
16715 lh->file_names_size *= 2;
16716 lh->file_names = xrealloc (lh->file_names,
16717 (lh->file_names_size
16718 * sizeof (*lh->file_names)));
16719 }
16720
16721 fe = &lh->file_names[lh->num_file_names++];
16722 fe->name = name;
16723 fe->dir_index = dir_index;
16724 fe->mod_time = mod_time;
16725 fe->length = length;
16726 fe->included_p = 0;
16727 fe->symtab = NULL;
16728 }
16729
16730 /* A convenience function to find the proper .debug_line section for a
16731 CU. */
16732
16733 static struct dwarf2_section_info *
16734 get_debug_line_section (struct dwarf2_cu *cu)
16735 {
16736 struct dwarf2_section_info *section;
16737
16738 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16739 DWO file. */
16740 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16741 section = &cu->dwo_unit->dwo_file->sections.line;
16742 else if (cu->per_cu->is_dwz)
16743 {
16744 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16745
16746 section = &dwz->line;
16747 }
16748 else
16749 section = &dwarf2_per_objfile->line;
16750
16751 return section;
16752 }
16753
16754 /* Read the statement program header starting at OFFSET in
16755 .debug_line, or .debug_line.dwo. Return a pointer
16756 to a struct line_header, allocated using xmalloc.
16757
16758 NOTE: the strings in the include directory and file name tables of
16759 the returned object point into the dwarf line section buffer,
16760 and must not be freed. */
16761
16762 static struct line_header *
16763 dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
16764 {
16765 struct cleanup *back_to;
16766 struct line_header *lh;
16767 const gdb_byte *line_ptr;
16768 unsigned int bytes_read, offset_size;
16769 int i;
16770 const char *cur_dir, *cur_file;
16771 struct dwarf2_section_info *section;
16772 bfd *abfd;
16773
16774 section = get_debug_line_section (cu);
16775 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16776 if (section->buffer == NULL)
16777 {
16778 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16779 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16780 else
16781 complaint (&symfile_complaints, _("missing .debug_line section"));
16782 return 0;
16783 }
16784
16785 /* We can't do this until we know the section is non-empty.
16786 Only then do we know we have such a section. */
16787 abfd = get_section_bfd_owner (section);
16788
16789 /* Make sure that at least there's room for the total_length field.
16790 That could be 12 bytes long, but we're just going to fudge that. */
16791 if (offset + 4 >= section->size)
16792 {
16793 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16794 return 0;
16795 }
16796
16797 lh = xmalloc (sizeof (*lh));
16798 memset (lh, 0, sizeof (*lh));
16799 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16800 (void *) lh);
16801
16802 line_ptr = section->buffer + offset;
16803
16804 /* Read in the header. */
16805 lh->total_length =
16806 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16807 &bytes_read, &offset_size);
16808 line_ptr += bytes_read;
16809 if (line_ptr + lh->total_length > (section->buffer + section->size))
16810 {
16811 dwarf2_statement_list_fits_in_line_number_section_complaint ();
16812 do_cleanups (back_to);
16813 return 0;
16814 }
16815 lh->statement_program_end = line_ptr + lh->total_length;
16816 lh->version = read_2_bytes (abfd, line_ptr);
16817 line_ptr += 2;
16818 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16819 line_ptr += offset_size;
16820 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16821 line_ptr += 1;
16822 if (lh->version >= 4)
16823 {
16824 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16825 line_ptr += 1;
16826 }
16827 else
16828 lh->maximum_ops_per_instruction = 1;
16829
16830 if (lh->maximum_ops_per_instruction == 0)
16831 {
16832 lh->maximum_ops_per_instruction = 1;
16833 complaint (&symfile_complaints,
16834 _("invalid maximum_ops_per_instruction "
16835 "in `.debug_line' section"));
16836 }
16837
16838 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16839 line_ptr += 1;
16840 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16841 line_ptr += 1;
16842 lh->line_range = read_1_byte (abfd, line_ptr);
16843 line_ptr += 1;
16844 lh->opcode_base = read_1_byte (abfd, line_ptr);
16845 line_ptr += 1;
16846 lh->standard_opcode_lengths
16847 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
16848
16849 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16850 for (i = 1; i < lh->opcode_base; ++i)
16851 {
16852 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16853 line_ptr += 1;
16854 }
16855
16856 /* Read directory table. */
16857 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16858 {
16859 line_ptr += bytes_read;
16860 add_include_dir (lh, cur_dir);
16861 }
16862 line_ptr += bytes_read;
16863
16864 /* Read file name table. */
16865 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
16866 {
16867 unsigned int dir_index, mod_time, length;
16868
16869 line_ptr += bytes_read;
16870 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16871 line_ptr += bytes_read;
16872 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16873 line_ptr += bytes_read;
16874 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16875 line_ptr += bytes_read;
16876
16877 add_file_name (lh, cur_file, dir_index, mod_time, length);
16878 }
16879 line_ptr += bytes_read;
16880 lh->statement_program_start = line_ptr;
16881
16882 if (line_ptr > (section->buffer + section->size))
16883 complaint (&symfile_complaints,
16884 _("line number info header doesn't "
16885 "fit in `.debug_line' section"));
16886
16887 discard_cleanups (back_to);
16888 return lh;
16889 }
16890
16891 /* Subroutine of dwarf_decode_lines to simplify it.
16892 Return the file name of the psymtab for included file FILE_INDEX
16893 in line header LH of PST.
16894 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16895 If space for the result is malloc'd, it will be freed by a cleanup.
16896 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16897
16898 The function creates dangling cleanup registration. */
16899
16900 static const char *
16901 psymtab_include_file_name (const struct line_header *lh, int file_index,
16902 const struct partial_symtab *pst,
16903 const char *comp_dir)
16904 {
16905 const struct file_entry fe = lh->file_names [file_index];
16906 const char *include_name = fe.name;
16907 const char *include_name_to_compare = include_name;
16908 const char *dir_name = NULL;
16909 const char *pst_filename;
16910 char *copied_name = NULL;
16911 int file_is_pst;
16912
16913 if (fe.dir_index)
16914 dir_name = lh->include_dirs[fe.dir_index - 1];
16915
16916 if (!IS_ABSOLUTE_PATH (include_name)
16917 && (dir_name != NULL || comp_dir != NULL))
16918 {
16919 /* Avoid creating a duplicate psymtab for PST.
16920 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16921 Before we do the comparison, however, we need to account
16922 for DIR_NAME and COMP_DIR.
16923 First prepend dir_name (if non-NULL). If we still don't
16924 have an absolute path prepend comp_dir (if non-NULL).
16925 However, the directory we record in the include-file's
16926 psymtab does not contain COMP_DIR (to match the
16927 corresponding symtab(s)).
16928
16929 Example:
16930
16931 bash$ cd /tmp
16932 bash$ gcc -g ./hello.c
16933 include_name = "hello.c"
16934 dir_name = "."
16935 DW_AT_comp_dir = comp_dir = "/tmp"
16936 DW_AT_name = "./hello.c" */
16937
16938 if (dir_name != NULL)
16939 {
16940 char *tem = concat (dir_name, SLASH_STRING,
16941 include_name, (char *)NULL);
16942
16943 make_cleanup (xfree, tem);
16944 include_name = tem;
16945 include_name_to_compare = include_name;
16946 }
16947 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16948 {
16949 char *tem = concat (comp_dir, SLASH_STRING,
16950 include_name, (char *)NULL);
16951
16952 make_cleanup (xfree, tem);
16953 include_name_to_compare = tem;
16954 }
16955 }
16956
16957 pst_filename = pst->filename;
16958 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16959 {
16960 copied_name = concat (pst->dirname, SLASH_STRING,
16961 pst_filename, (char *)NULL);
16962 pst_filename = copied_name;
16963 }
16964
16965 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
16966
16967 if (copied_name != NULL)
16968 xfree (copied_name);
16969
16970 if (file_is_pst)
16971 return NULL;
16972 return include_name;
16973 }
16974
16975 /* Ignore this record_line request. */
16976
16977 static void
16978 noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16979 {
16980 return;
16981 }
16982
16983 /* Subroutine of dwarf_decode_lines to simplify it.
16984 Process the line number information in LH. */
16985
16986 static void
16987 dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16988 struct dwarf2_cu *cu, struct partial_symtab *pst)
16989 {
16990 const gdb_byte *line_ptr, *extended_end;
16991 const gdb_byte *line_end;
16992 unsigned int bytes_read, extended_len;
16993 unsigned char op_code, extended_op, adj_opcode;
16994 CORE_ADDR baseaddr;
16995 struct objfile *objfile = cu->objfile;
16996 bfd *abfd = objfile->obfd;
16997 struct gdbarch *gdbarch = get_objfile_arch (objfile);
16998 const int decode_for_pst_p = (pst != NULL);
16999 struct subfile *last_subfile = NULL;
17000 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17001 = record_line;
17002
17003 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17004
17005 line_ptr = lh->statement_program_start;
17006 line_end = lh->statement_program_end;
17007
17008 /* Read the statement sequences until there's nothing left. */
17009 while (line_ptr < line_end)
17010 {
17011 /* state machine registers */
17012 CORE_ADDR address = 0;
17013 unsigned int file = 1;
17014 unsigned int line = 1;
17015 unsigned int column = 0;
17016 int is_stmt = lh->default_is_stmt;
17017 int basic_block = 0;
17018 int end_sequence = 0;
17019 CORE_ADDR addr;
17020 unsigned char op_index = 0;
17021
17022 if (!decode_for_pst_p && lh->num_file_names >= file)
17023 {
17024 /* Start a subfile for the current file of the state machine. */
17025 /* lh->include_dirs and lh->file_names are 0-based, but the
17026 directory and file name numbers in the statement program
17027 are 1-based. */
17028 struct file_entry *fe = &lh->file_names[file - 1];
17029 const char *dir = NULL;
17030
17031 if (fe->dir_index)
17032 dir = lh->include_dirs[fe->dir_index - 1];
17033
17034 dwarf2_start_subfile (fe->name, dir, comp_dir);
17035 }
17036
17037 /* Decode the table. */
17038 while (!end_sequence)
17039 {
17040 op_code = read_1_byte (abfd, line_ptr);
17041 line_ptr += 1;
17042 if (line_ptr > line_end)
17043 {
17044 dwarf2_debug_line_missing_end_sequence_complaint ();
17045 break;
17046 }
17047
17048 if (op_code >= lh->opcode_base)
17049 {
17050 /* Special operand. */
17051 adj_opcode = op_code - lh->opcode_base;
17052 address += (((op_index + (adj_opcode / lh->line_range))
17053 / lh->maximum_ops_per_instruction)
17054 * lh->minimum_instruction_length);
17055 op_index = ((op_index + (adj_opcode / lh->line_range))
17056 % lh->maximum_ops_per_instruction);
17057 line += lh->line_base + (adj_opcode % lh->line_range);
17058 if (lh->num_file_names < file || file == 0)
17059 dwarf2_debug_line_missing_file_complaint ();
17060 /* For now we ignore lines not starting on an
17061 instruction boundary. */
17062 else if (op_index == 0)
17063 {
17064 lh->file_names[file - 1].included_p = 1;
17065 if (!decode_for_pst_p && is_stmt)
17066 {
17067 if (last_subfile != current_subfile)
17068 {
17069 addr = gdbarch_addr_bits_remove (gdbarch, address);
17070 if (last_subfile)
17071 (*p_record_line) (last_subfile, 0, addr);
17072 last_subfile = current_subfile;
17073 }
17074 /* Append row to matrix using current values. */
17075 addr = gdbarch_addr_bits_remove (gdbarch, address);
17076 (*p_record_line) (current_subfile, line, addr);
17077 }
17078 }
17079 basic_block = 0;
17080 }
17081 else switch (op_code)
17082 {
17083 case DW_LNS_extended_op:
17084 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17085 &bytes_read);
17086 line_ptr += bytes_read;
17087 extended_end = line_ptr + extended_len;
17088 extended_op = read_1_byte (abfd, line_ptr);
17089 line_ptr += 1;
17090 switch (extended_op)
17091 {
17092 case DW_LNE_end_sequence:
17093 p_record_line = record_line;
17094 end_sequence = 1;
17095 break;
17096 case DW_LNE_set_address:
17097 address = read_address (abfd, line_ptr, cu, &bytes_read);
17098
17099 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17100 {
17101 /* This line table is for a function which has been
17102 GCd by the linker. Ignore it. PR gdb/12528 */
17103
17104 long line_offset
17105 = line_ptr - get_debug_line_section (cu)->buffer;
17106
17107 complaint (&symfile_complaints,
17108 _(".debug_line address at offset 0x%lx is 0 "
17109 "[in module %s]"),
17110 line_offset, objfile_name (objfile));
17111 p_record_line = noop_record_line;
17112 }
17113
17114 op_index = 0;
17115 line_ptr += bytes_read;
17116 address += baseaddr;
17117 break;
17118 case DW_LNE_define_file:
17119 {
17120 const char *cur_file;
17121 unsigned int dir_index, mod_time, length;
17122
17123 cur_file = read_direct_string (abfd, line_ptr,
17124 &bytes_read);
17125 line_ptr += bytes_read;
17126 dir_index =
17127 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17128 line_ptr += bytes_read;
17129 mod_time =
17130 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17131 line_ptr += bytes_read;
17132 length =
17133 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17134 line_ptr += bytes_read;
17135 add_file_name (lh, cur_file, dir_index, mod_time, length);
17136 }
17137 break;
17138 case DW_LNE_set_discriminator:
17139 /* The discriminator is not interesting to the debugger;
17140 just ignore it. */
17141 line_ptr = extended_end;
17142 break;
17143 default:
17144 complaint (&symfile_complaints,
17145 _("mangled .debug_line section"));
17146 return;
17147 }
17148 /* Make sure that we parsed the extended op correctly. If e.g.
17149 we expected a different address size than the producer used,
17150 we may have read the wrong number of bytes. */
17151 if (line_ptr != extended_end)
17152 {
17153 complaint (&symfile_complaints,
17154 _("mangled .debug_line section"));
17155 return;
17156 }
17157 break;
17158 case DW_LNS_copy:
17159 if (lh->num_file_names < file || file == 0)
17160 dwarf2_debug_line_missing_file_complaint ();
17161 else
17162 {
17163 lh->file_names[file - 1].included_p = 1;
17164 if (!decode_for_pst_p && is_stmt)
17165 {
17166 if (last_subfile != current_subfile)
17167 {
17168 addr = gdbarch_addr_bits_remove (gdbarch, address);
17169 if (last_subfile)
17170 (*p_record_line) (last_subfile, 0, addr);
17171 last_subfile = current_subfile;
17172 }
17173 addr = gdbarch_addr_bits_remove (gdbarch, address);
17174 (*p_record_line) (current_subfile, line, addr);
17175 }
17176 }
17177 basic_block = 0;
17178 break;
17179 case DW_LNS_advance_pc:
17180 {
17181 CORE_ADDR adjust
17182 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17183
17184 address += (((op_index + adjust)
17185 / lh->maximum_ops_per_instruction)
17186 * lh->minimum_instruction_length);
17187 op_index = ((op_index + adjust)
17188 % lh->maximum_ops_per_instruction);
17189 line_ptr += bytes_read;
17190 }
17191 break;
17192 case DW_LNS_advance_line:
17193 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17194 line_ptr += bytes_read;
17195 break;
17196 case DW_LNS_set_file:
17197 {
17198 /* The arrays lh->include_dirs and lh->file_names are
17199 0-based, but the directory and file name numbers in
17200 the statement program are 1-based. */
17201 struct file_entry *fe;
17202 const char *dir = NULL;
17203
17204 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17205 line_ptr += bytes_read;
17206 if (lh->num_file_names < file || file == 0)
17207 dwarf2_debug_line_missing_file_complaint ();
17208 else
17209 {
17210 fe = &lh->file_names[file - 1];
17211 if (fe->dir_index)
17212 dir = lh->include_dirs[fe->dir_index - 1];
17213 if (!decode_for_pst_p)
17214 {
17215 last_subfile = current_subfile;
17216 dwarf2_start_subfile (fe->name, dir, comp_dir);
17217 }
17218 }
17219 }
17220 break;
17221 case DW_LNS_set_column:
17222 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17223 line_ptr += bytes_read;
17224 break;
17225 case DW_LNS_negate_stmt:
17226 is_stmt = (!is_stmt);
17227 break;
17228 case DW_LNS_set_basic_block:
17229 basic_block = 1;
17230 break;
17231 /* Add to the address register of the state machine the
17232 address increment value corresponding to special opcode
17233 255. I.e., this value is scaled by the minimum
17234 instruction length since special opcode 255 would have
17235 scaled the increment. */
17236 case DW_LNS_const_add_pc:
17237 {
17238 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17239
17240 address += (((op_index + adjust)
17241 / lh->maximum_ops_per_instruction)
17242 * lh->minimum_instruction_length);
17243 op_index = ((op_index + adjust)
17244 % lh->maximum_ops_per_instruction);
17245 }
17246 break;
17247 case DW_LNS_fixed_advance_pc:
17248 address += read_2_bytes (abfd, line_ptr);
17249 op_index = 0;
17250 line_ptr += 2;
17251 break;
17252 default:
17253 {
17254 /* Unknown standard opcode, ignore it. */
17255 int i;
17256
17257 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
17258 {
17259 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17260 line_ptr += bytes_read;
17261 }
17262 }
17263 }
17264 }
17265 if (lh->num_file_names < file || file == 0)
17266 dwarf2_debug_line_missing_file_complaint ();
17267 else
17268 {
17269 lh->file_names[file - 1].included_p = 1;
17270 if (!decode_for_pst_p)
17271 {
17272 addr = gdbarch_addr_bits_remove (gdbarch, address);
17273 (*p_record_line) (current_subfile, 0, addr);
17274 }
17275 }
17276 }
17277 }
17278
17279 /* Decode the Line Number Program (LNP) for the given line_header
17280 structure and CU. The actual information extracted and the type
17281 of structures created from the LNP depends on the value of PST.
17282
17283 1. If PST is NULL, then this procedure uses the data from the program
17284 to create all necessary symbol tables, and their linetables.
17285
17286 2. If PST is not NULL, this procedure reads the program to determine
17287 the list of files included by the unit represented by PST, and
17288 builds all the associated partial symbol tables.
17289
17290 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17291 It is used for relative paths in the line table.
17292 NOTE: When processing partial symtabs (pst != NULL),
17293 comp_dir == pst->dirname.
17294
17295 NOTE: It is important that psymtabs have the same file name (via strcmp)
17296 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17297 symtab we don't use it in the name of the psymtabs we create.
17298 E.g. expand_line_sal requires this when finding psymtabs to expand.
17299 A good testcase for this is mb-inline.exp. */
17300
17301 static void
17302 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17303 struct dwarf2_cu *cu, struct partial_symtab *pst,
17304 int want_line_info)
17305 {
17306 struct objfile *objfile = cu->objfile;
17307 const int decode_for_pst_p = (pst != NULL);
17308 struct subfile *first_subfile = current_subfile;
17309
17310 if (want_line_info)
17311 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
17312
17313 if (decode_for_pst_p)
17314 {
17315 int file_index;
17316
17317 /* Now that we're done scanning the Line Header Program, we can
17318 create the psymtab of each included file. */
17319 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17320 if (lh->file_names[file_index].included_p == 1)
17321 {
17322 const char *include_name =
17323 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17324 if (include_name != NULL)
17325 dwarf2_create_include_psymtab (include_name, pst, objfile);
17326 }
17327 }
17328 else
17329 {
17330 /* Make sure a symtab is created for every file, even files
17331 which contain only variables (i.e. no code with associated
17332 line numbers). */
17333 int i;
17334
17335 for (i = 0; i < lh->num_file_names; i++)
17336 {
17337 const char *dir = NULL;
17338 struct file_entry *fe;
17339
17340 fe = &lh->file_names[i];
17341 if (fe->dir_index)
17342 dir = lh->include_dirs[fe->dir_index - 1];
17343 dwarf2_start_subfile (fe->name, dir, comp_dir);
17344
17345 /* Skip the main file; we don't need it, and it must be
17346 allocated last, so that it will show up before the
17347 non-primary symtabs in the objfile's symtab list. */
17348 if (current_subfile == first_subfile)
17349 continue;
17350
17351 if (current_subfile->symtab == NULL)
17352 current_subfile->symtab = allocate_symtab (current_subfile->name,
17353 objfile);
17354 fe->symtab = current_subfile->symtab;
17355 }
17356 }
17357 }
17358
17359 /* Start a subfile for DWARF. FILENAME is the name of the file and
17360 DIRNAME the name of the source directory which contains FILENAME
17361 or NULL if not known. COMP_DIR is the compilation directory for the
17362 linetable's compilation unit or NULL if not known.
17363 This routine tries to keep line numbers from identical absolute and
17364 relative file names in a common subfile.
17365
17366 Using the `list' example from the GDB testsuite, which resides in
17367 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17368 of /srcdir/list0.c yields the following debugging information for list0.c:
17369
17370 DW_AT_name: /srcdir/list0.c
17371 DW_AT_comp_dir: /compdir
17372 files.files[0].name: list0.h
17373 files.files[0].dir: /srcdir
17374 files.files[1].name: list0.c
17375 files.files[1].dir: /srcdir
17376
17377 The line number information for list0.c has to end up in a single
17378 subfile, so that `break /srcdir/list0.c:1' works as expected.
17379 start_subfile will ensure that this happens provided that we pass the
17380 concatenation of files.files[1].dir and files.files[1].name as the
17381 subfile's name. */
17382
17383 static void
17384 dwarf2_start_subfile (const char *filename, const char *dirname,
17385 const char *comp_dir)
17386 {
17387 char *copy = NULL;
17388
17389 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17390 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17391 second argument to start_subfile. To be consistent, we do the
17392 same here. In order not to lose the line information directory,
17393 we concatenate it to the filename when it makes sense.
17394 Note that the Dwarf3 standard says (speaking of filenames in line
17395 information): ``The directory index is ignored for file names
17396 that represent full path names''. Thus ignoring dirname in the
17397 `else' branch below isn't an issue. */
17398
17399 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
17400 {
17401 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17402 filename = copy;
17403 }
17404
17405 start_subfile (filename, comp_dir);
17406
17407 if (copy != NULL)
17408 xfree (copy);
17409 }
17410
17411 /* Start a symtab for DWARF.
17412 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17413
17414 static void
17415 dwarf2_start_symtab (struct dwarf2_cu *cu,
17416 const char *name, const char *comp_dir, CORE_ADDR low_pc)
17417 {
17418 start_symtab (name, comp_dir, low_pc);
17419 record_debugformat ("DWARF 2");
17420 record_producer (cu->producer);
17421
17422 /* We assume that we're processing GCC output. */
17423 processing_gcc_compilation = 2;
17424
17425 cu->processing_has_namespace_info = 0;
17426 }
17427
17428 static void
17429 var_decode_location (struct attribute *attr, struct symbol *sym,
17430 struct dwarf2_cu *cu)
17431 {
17432 struct objfile *objfile = cu->objfile;
17433 struct comp_unit_head *cu_header = &cu->header;
17434
17435 /* NOTE drow/2003-01-30: There used to be a comment and some special
17436 code here to turn a symbol with DW_AT_external and a
17437 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17438 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17439 with some versions of binutils) where shared libraries could have
17440 relocations against symbols in their debug information - the
17441 minimal symbol would have the right address, but the debug info
17442 would not. It's no longer necessary, because we will explicitly
17443 apply relocations when we read in the debug information now. */
17444
17445 /* A DW_AT_location attribute with no contents indicates that a
17446 variable has been optimized away. */
17447 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17448 {
17449 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17450 return;
17451 }
17452
17453 /* Handle one degenerate form of location expression specially, to
17454 preserve GDB's previous behavior when section offsets are
17455 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17456 then mark this symbol as LOC_STATIC. */
17457
17458 if (attr_form_is_block (attr)
17459 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17460 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17461 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17462 && (DW_BLOCK (attr)->size
17463 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
17464 {
17465 unsigned int dummy;
17466
17467 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17468 SYMBOL_VALUE_ADDRESS (sym) =
17469 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17470 else
17471 SYMBOL_VALUE_ADDRESS (sym) =
17472 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
17473 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
17474 fixup_symbol_section (sym, objfile);
17475 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17476 SYMBOL_SECTION (sym));
17477 return;
17478 }
17479
17480 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17481 expression evaluator, and use LOC_COMPUTED only when necessary
17482 (i.e. when the value of a register or memory location is
17483 referenced, or a thread-local block, etc.). Then again, it might
17484 not be worthwhile. I'm assuming that it isn't unless performance
17485 or memory numbers show me otherwise. */
17486
17487 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
17488
17489 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
17490 cu->has_loclist = 1;
17491 }
17492
17493 /* Given a pointer to a DWARF information entry, figure out if we need
17494 to make a symbol table entry for it, and if so, create a new entry
17495 and return a pointer to it.
17496 If TYPE is NULL, determine symbol type from the die, otherwise
17497 used the passed type.
17498 If SPACE is not NULL, use it to hold the new symbol. If it is
17499 NULL, allocate a new symbol on the objfile's obstack. */
17500
17501 static struct symbol *
17502 new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17503 struct symbol *space)
17504 {
17505 struct objfile *objfile = cu->objfile;
17506 struct symbol *sym = NULL;
17507 const char *name;
17508 struct attribute *attr = NULL;
17509 struct attribute *attr2 = NULL;
17510 CORE_ADDR baseaddr;
17511 struct pending **list_to_add = NULL;
17512
17513 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
17514
17515 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
17516
17517 name = dwarf2_name (die, cu);
17518 if (name)
17519 {
17520 const char *linkagename;
17521 int suppress_add = 0;
17522
17523 if (space)
17524 sym = space;
17525 else
17526 sym = allocate_symbol (objfile);
17527 OBJSTAT (objfile, n_syms++);
17528
17529 /* Cache this symbol's name and the name's demangled form (if any). */
17530 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
17531 linkagename = dwarf2_physname (name, die, cu);
17532 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
17533
17534 /* Fortran does not have mangling standard and the mangling does differ
17535 between gfortran, iFort etc. */
17536 if (cu->language == language_fortran
17537 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
17538 symbol_set_demangled_name (&(sym->ginfo),
17539 dwarf2_full_name (name, die, cu),
17540 NULL);
17541
17542 /* Default assumptions.
17543 Use the passed type or decode it from the die. */
17544 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17545 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
17546 if (type != NULL)
17547 SYMBOL_TYPE (sym) = type;
17548 else
17549 SYMBOL_TYPE (sym) = die_type (die, cu);
17550 attr = dwarf2_attr (die,
17551 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17552 cu);
17553 if (attr)
17554 {
17555 SYMBOL_LINE (sym) = DW_UNSND (attr);
17556 }
17557
17558 attr = dwarf2_attr (die,
17559 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17560 cu);
17561 if (attr)
17562 {
17563 int file_index = DW_UNSND (attr);
17564
17565 if (cu->line_header == NULL
17566 || file_index > cu->line_header->num_file_names)
17567 complaint (&symfile_complaints,
17568 _("file index out of range"));
17569 else if (file_index > 0)
17570 {
17571 struct file_entry *fe;
17572
17573 fe = &cu->line_header->file_names[file_index - 1];
17574 SYMBOL_SYMTAB (sym) = fe->symtab;
17575 }
17576 }
17577
17578 switch (die->tag)
17579 {
17580 case DW_TAG_label:
17581 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
17582 if (attr)
17583 SYMBOL_VALUE_ADDRESS (sym)
17584 = attr_value_as_address (attr) + baseaddr;
17585 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17586 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
17587 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
17588 add_symbol_to_list (sym, cu->list_in_scope);
17589 break;
17590 case DW_TAG_subprogram:
17591 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17592 finish_block. */
17593 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17594 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17595 if ((attr2 && (DW_UNSND (attr2) != 0))
17596 || cu->language == language_ada)
17597 {
17598 /* Subprograms marked external are stored as a global symbol.
17599 Ada subprograms, whether marked external or not, are always
17600 stored as a global symbol, because we want to be able to
17601 access them globally. For instance, we want to be able
17602 to break on a nested subprogram without having to
17603 specify the context. */
17604 list_to_add = &global_symbols;
17605 }
17606 else
17607 {
17608 list_to_add = cu->list_in_scope;
17609 }
17610 break;
17611 case DW_TAG_inlined_subroutine:
17612 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17613 finish_block. */
17614 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
17615 SYMBOL_INLINED (sym) = 1;
17616 list_to_add = cu->list_in_scope;
17617 break;
17618 case DW_TAG_template_value_param:
17619 suppress_add = 1;
17620 /* Fall through. */
17621 case DW_TAG_constant:
17622 case DW_TAG_variable:
17623 case DW_TAG_member:
17624 /* Compilation with minimal debug info may result in
17625 variables with missing type entries. Change the
17626 misleading `void' type to something sensible. */
17627 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
17628 SYMBOL_TYPE (sym)
17629 = objfile_type (objfile)->nodebug_data_symbol;
17630
17631 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17632 /* In the case of DW_TAG_member, we should only be called for
17633 static const members. */
17634 if (die->tag == DW_TAG_member)
17635 {
17636 /* dwarf2_add_field uses die_is_declaration,
17637 so we do the same. */
17638 gdb_assert (die_is_declaration (die, cu));
17639 gdb_assert (attr);
17640 }
17641 if (attr)
17642 {
17643 dwarf2_const_value (attr, sym, cu);
17644 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17645 if (!suppress_add)
17646 {
17647 if (attr2 && (DW_UNSND (attr2) != 0))
17648 list_to_add = &global_symbols;
17649 else
17650 list_to_add = cu->list_in_scope;
17651 }
17652 break;
17653 }
17654 attr = dwarf2_attr (die, DW_AT_location, cu);
17655 if (attr)
17656 {
17657 var_decode_location (attr, sym, cu);
17658 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17659
17660 /* Fortran explicitly imports any global symbols to the local
17661 scope by DW_TAG_common_block. */
17662 if (cu->language == language_fortran && die->parent
17663 && die->parent->tag == DW_TAG_common_block)
17664 attr2 = NULL;
17665
17666 if (SYMBOL_CLASS (sym) == LOC_STATIC
17667 && SYMBOL_VALUE_ADDRESS (sym) == 0
17668 && !dwarf2_per_objfile->has_section_at_zero)
17669 {
17670 /* When a static variable is eliminated by the linker,
17671 the corresponding debug information is not stripped
17672 out, but the variable address is set to null;
17673 do not add such variables into symbol table. */
17674 }
17675 else if (attr2 && (DW_UNSND (attr2) != 0))
17676 {
17677 /* Workaround gfortran PR debug/40040 - it uses
17678 DW_AT_location for variables in -fPIC libraries which may
17679 get overriden by other libraries/executable and get
17680 a different address. Resolve it by the minimal symbol
17681 which may come from inferior's executable using copy
17682 relocation. Make this workaround only for gfortran as for
17683 other compilers GDB cannot guess the minimal symbol
17684 Fortran mangling kind. */
17685 if (cu->language == language_fortran && die->parent
17686 && die->parent->tag == DW_TAG_module
17687 && cu->producer
17688 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
17689 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17690
17691 /* A variable with DW_AT_external is never static,
17692 but it may be block-scoped. */
17693 list_to_add = (cu->list_in_scope == &file_symbols
17694 ? &global_symbols : cu->list_in_scope);
17695 }
17696 else
17697 list_to_add = cu->list_in_scope;
17698 }
17699 else
17700 {
17701 /* We do not know the address of this symbol.
17702 If it is an external symbol and we have type information
17703 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17704 The address of the variable will then be determined from
17705 the minimal symbol table whenever the variable is
17706 referenced. */
17707 attr2 = dwarf2_attr (die, DW_AT_external, cu);
17708
17709 /* Fortran explicitly imports any global symbols to the local
17710 scope by DW_TAG_common_block. */
17711 if (cu->language == language_fortran && die->parent
17712 && die->parent->tag == DW_TAG_common_block)
17713 {
17714 /* SYMBOL_CLASS doesn't matter here because
17715 read_common_block is going to reset it. */
17716 if (!suppress_add)
17717 list_to_add = cu->list_in_scope;
17718 }
17719 else if (attr2 && (DW_UNSND (attr2) != 0)
17720 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
17721 {
17722 /* A variable with DW_AT_external is never static, but it
17723 may be block-scoped. */
17724 list_to_add = (cu->list_in_scope == &file_symbols
17725 ? &global_symbols : cu->list_in_scope);
17726
17727 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
17728 }
17729 else if (!die_is_declaration (die, cu))
17730 {
17731 /* Use the default LOC_OPTIMIZED_OUT class. */
17732 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
17733 if (!suppress_add)
17734 list_to_add = cu->list_in_scope;
17735 }
17736 }
17737 break;
17738 case DW_TAG_formal_parameter:
17739 /* If we are inside a function, mark this as an argument. If
17740 not, we might be looking at an argument to an inlined function
17741 when we do not have enough information to show inlined frames;
17742 pretend it's a local variable in that case so that the user can
17743 still see it. */
17744 if (context_stack_depth > 0
17745 && context_stack[context_stack_depth - 1].name != NULL)
17746 SYMBOL_IS_ARGUMENT (sym) = 1;
17747 attr = dwarf2_attr (die, DW_AT_location, cu);
17748 if (attr)
17749 {
17750 var_decode_location (attr, sym, cu);
17751 }
17752 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17753 if (attr)
17754 {
17755 dwarf2_const_value (attr, sym, cu);
17756 }
17757
17758 list_to_add = cu->list_in_scope;
17759 break;
17760 case DW_TAG_unspecified_parameters:
17761 /* From varargs functions; gdb doesn't seem to have any
17762 interest in this information, so just ignore it for now.
17763 (FIXME?) */
17764 break;
17765 case DW_TAG_template_type_param:
17766 suppress_add = 1;
17767 /* Fall through. */
17768 case DW_TAG_class_type:
17769 case DW_TAG_interface_type:
17770 case DW_TAG_structure_type:
17771 case DW_TAG_union_type:
17772 case DW_TAG_set_type:
17773 case DW_TAG_enumeration_type:
17774 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17775 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
17776
17777 {
17778 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
17779 really ever be static objects: otherwise, if you try
17780 to, say, break of a class's method and you're in a file
17781 which doesn't mention that class, it won't work unless
17782 the check for all static symbols in lookup_symbol_aux
17783 saves you. See the OtherFileClass tests in
17784 gdb.c++/namespace.exp. */
17785
17786 if (!suppress_add)
17787 {
17788 list_to_add = (cu->list_in_scope == &file_symbols
17789 && (cu->language == language_cplus
17790 || cu->language == language_java)
17791 ? &global_symbols : cu->list_in_scope);
17792
17793 /* The semantics of C++ state that "struct foo {
17794 ... }" also defines a typedef for "foo". A Java
17795 class declaration also defines a typedef for the
17796 class. */
17797 if (cu->language == language_cplus
17798 || cu->language == language_java
17799 || cu->language == language_ada)
17800 {
17801 /* The symbol's name is already allocated along
17802 with this objfile, so we don't need to
17803 duplicate it for the type. */
17804 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17805 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17806 }
17807 }
17808 }
17809 break;
17810 case DW_TAG_typedef:
17811 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17812 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17813 list_to_add = cu->list_in_scope;
17814 break;
17815 case DW_TAG_base_type:
17816 case DW_TAG_subrange_type:
17817 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17818 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
17819 list_to_add = cu->list_in_scope;
17820 break;
17821 case DW_TAG_enumerator:
17822 attr = dwarf2_attr (die, DW_AT_const_value, cu);
17823 if (attr)
17824 {
17825 dwarf2_const_value (attr, sym, cu);
17826 }
17827 {
17828 /* NOTE: carlton/2003-11-10: See comment above in the
17829 DW_TAG_class_type, etc. block. */
17830
17831 list_to_add = (cu->list_in_scope == &file_symbols
17832 && (cu->language == language_cplus
17833 || cu->language == language_java)
17834 ? &global_symbols : cu->list_in_scope);
17835 }
17836 break;
17837 case DW_TAG_imported_declaration:
17838 case DW_TAG_namespace:
17839 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17840 list_to_add = &global_symbols;
17841 break;
17842 case DW_TAG_module:
17843 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17844 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17845 list_to_add = &global_symbols;
17846 break;
17847 case DW_TAG_common_block:
17848 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
17849 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17850 add_symbol_to_list (sym, cu->list_in_scope);
17851 break;
17852 default:
17853 /* Not a tag we recognize. Hopefully we aren't processing
17854 trash data, but since we must specifically ignore things
17855 we don't recognize, there is nothing else we should do at
17856 this point. */
17857 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
17858 dwarf_tag_name (die->tag));
17859 break;
17860 }
17861
17862 if (suppress_add)
17863 {
17864 sym->hash_next = objfile->template_symbols;
17865 objfile->template_symbols = sym;
17866 list_to_add = NULL;
17867 }
17868
17869 if (list_to_add != NULL)
17870 add_symbol_to_list (sym, list_to_add);
17871
17872 /* For the benefit of old versions of GCC, check for anonymous
17873 namespaces based on the demangled name. */
17874 if (!cu->processing_has_namespace_info
17875 && cu->language == language_cplus)
17876 cp_scan_for_anonymous_namespaces (sym, objfile);
17877 }
17878 return (sym);
17879 }
17880
17881 /* A wrapper for new_symbol_full that always allocates a new symbol. */
17882
17883 static struct symbol *
17884 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17885 {
17886 return new_symbol_full (die, type, cu, NULL);
17887 }
17888
17889 /* Given an attr with a DW_FORM_dataN value in host byte order,
17890 zero-extend it as appropriate for the symbol's type. The DWARF
17891 standard (v4) is not entirely clear about the meaning of using
17892 DW_FORM_dataN for a constant with a signed type, where the type is
17893 wider than the data. The conclusion of a discussion on the DWARF
17894 list was that this is unspecified. We choose to always zero-extend
17895 because that is the interpretation long in use by GCC. */
17896
17897 static gdb_byte *
17898 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
17899 struct dwarf2_cu *cu, LONGEST *value, int bits)
17900 {
17901 struct objfile *objfile = cu->objfile;
17902 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17903 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
17904 LONGEST l = DW_UNSND (attr);
17905
17906 if (bits < sizeof (*value) * 8)
17907 {
17908 l &= ((LONGEST) 1 << bits) - 1;
17909 *value = l;
17910 }
17911 else if (bits == sizeof (*value) * 8)
17912 *value = l;
17913 else
17914 {
17915 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17916 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17917 return bytes;
17918 }
17919
17920 return NULL;
17921 }
17922
17923 /* Read a constant value from an attribute. Either set *VALUE, or if
17924 the value does not fit in *VALUE, set *BYTES - either already
17925 allocated on the objfile obstack, or newly allocated on OBSTACK,
17926 or, set *BATON, if we translated the constant to a location
17927 expression. */
17928
17929 static void
17930 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
17931 const char *name, struct obstack *obstack,
17932 struct dwarf2_cu *cu,
17933 LONGEST *value, const gdb_byte **bytes,
17934 struct dwarf2_locexpr_baton **baton)
17935 {
17936 struct objfile *objfile = cu->objfile;
17937 struct comp_unit_head *cu_header = &cu->header;
17938 struct dwarf_block *blk;
17939 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17940 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17941
17942 *value = 0;
17943 *bytes = NULL;
17944 *baton = NULL;
17945
17946 switch (attr->form)
17947 {
17948 case DW_FORM_addr:
17949 case DW_FORM_GNU_addr_index:
17950 {
17951 gdb_byte *data;
17952
17953 if (TYPE_LENGTH (type) != cu_header->addr_size)
17954 dwarf2_const_value_length_mismatch_complaint (name,
17955 cu_header->addr_size,
17956 TYPE_LENGTH (type));
17957 /* Symbols of this form are reasonably rare, so we just
17958 piggyback on the existing location code rather than writing
17959 a new implementation of symbol_computed_ops. */
17960 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
17961 (*baton)->per_cu = cu->per_cu;
17962 gdb_assert ((*baton)->per_cu);
17963
17964 (*baton)->size = 2 + cu_header->addr_size;
17965 data = obstack_alloc (obstack, (*baton)->size);
17966 (*baton)->data = data;
17967
17968 data[0] = DW_OP_addr;
17969 store_unsigned_integer (&data[1], cu_header->addr_size,
17970 byte_order, DW_ADDR (attr));
17971 data[cu_header->addr_size + 1] = DW_OP_stack_value;
17972 }
17973 break;
17974 case DW_FORM_string:
17975 case DW_FORM_strp:
17976 case DW_FORM_GNU_str_index:
17977 case DW_FORM_GNU_strp_alt:
17978 /* DW_STRING is already allocated on the objfile obstack, point
17979 directly to it. */
17980 *bytes = (const gdb_byte *) DW_STRING (attr);
17981 break;
17982 case DW_FORM_block1:
17983 case DW_FORM_block2:
17984 case DW_FORM_block4:
17985 case DW_FORM_block:
17986 case DW_FORM_exprloc:
17987 blk = DW_BLOCK (attr);
17988 if (TYPE_LENGTH (type) != blk->size)
17989 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17990 TYPE_LENGTH (type));
17991 *bytes = blk->data;
17992 break;
17993
17994 /* The DW_AT_const_value attributes are supposed to carry the
17995 symbol's value "represented as it would be on the target
17996 architecture." By the time we get here, it's already been
17997 converted to host endianness, so we just need to sign- or
17998 zero-extend it as appropriate. */
17999 case DW_FORM_data1:
18000 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
18001 break;
18002 case DW_FORM_data2:
18003 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
18004 break;
18005 case DW_FORM_data4:
18006 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
18007 break;
18008 case DW_FORM_data8:
18009 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
18010 break;
18011
18012 case DW_FORM_sdata:
18013 *value = DW_SND (attr);
18014 break;
18015
18016 case DW_FORM_udata:
18017 *value = DW_UNSND (attr);
18018 break;
18019
18020 default:
18021 complaint (&symfile_complaints,
18022 _("unsupported const value attribute form: '%s'"),
18023 dwarf_form_name (attr->form));
18024 *value = 0;
18025 break;
18026 }
18027 }
18028
18029
18030 /* Copy constant value from an attribute to a symbol. */
18031
18032 static void
18033 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
18034 struct dwarf2_cu *cu)
18035 {
18036 struct objfile *objfile = cu->objfile;
18037 struct comp_unit_head *cu_header = &cu->header;
18038 LONGEST value;
18039 const gdb_byte *bytes;
18040 struct dwarf2_locexpr_baton *baton;
18041
18042 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18043 SYMBOL_PRINT_NAME (sym),
18044 &objfile->objfile_obstack, cu,
18045 &value, &bytes, &baton);
18046
18047 if (baton != NULL)
18048 {
18049 SYMBOL_LOCATION_BATON (sym) = baton;
18050 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
18051 }
18052 else if (bytes != NULL)
18053 {
18054 SYMBOL_VALUE_BYTES (sym) = bytes;
18055 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
18056 }
18057 else
18058 {
18059 SYMBOL_VALUE (sym) = value;
18060 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
18061 }
18062 }
18063
18064 /* Return the type of the die in question using its DW_AT_type attribute. */
18065
18066 static struct type *
18067 die_type (struct die_info *die, struct dwarf2_cu *cu)
18068 {
18069 struct attribute *type_attr;
18070
18071 type_attr = dwarf2_attr (die, DW_AT_type, cu);
18072 if (!type_attr)
18073 {
18074 /* A missing DW_AT_type represents a void type. */
18075 return objfile_type (cu->objfile)->builtin_void;
18076 }
18077
18078 return lookup_die_type (die, type_attr, cu);
18079 }
18080
18081 /* True iff CU's producer generates GNAT Ada auxiliary information
18082 that allows to find parallel types through that information instead
18083 of having to do expensive parallel lookups by type name. */
18084
18085 static int
18086 need_gnat_info (struct dwarf2_cu *cu)
18087 {
18088 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18089 of GNAT produces this auxiliary information, without any indication
18090 that it is produced. Part of enhancing the FSF version of GNAT
18091 to produce that information will be to put in place an indicator
18092 that we can use in order to determine whether the descriptive type
18093 info is available or not. One suggestion that has been made is
18094 to use a new attribute, attached to the CU die. For now, assume
18095 that the descriptive type info is not available. */
18096 return 0;
18097 }
18098
18099 /* Return the auxiliary type of the die in question using its
18100 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18101 attribute is not present. */
18102
18103 static struct type *
18104 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18105 {
18106 struct attribute *type_attr;
18107
18108 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18109 if (!type_attr)
18110 return NULL;
18111
18112 return lookup_die_type (die, type_attr, cu);
18113 }
18114
18115 /* If DIE has a descriptive_type attribute, then set the TYPE's
18116 descriptive type accordingly. */
18117
18118 static void
18119 set_descriptive_type (struct type *type, struct die_info *die,
18120 struct dwarf2_cu *cu)
18121 {
18122 struct type *descriptive_type = die_descriptive_type (die, cu);
18123
18124 if (descriptive_type)
18125 {
18126 ALLOCATE_GNAT_AUX_TYPE (type);
18127 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18128 }
18129 }
18130
18131 /* Return the containing type of the die in question using its
18132 DW_AT_containing_type attribute. */
18133
18134 static struct type *
18135 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
18136 {
18137 struct attribute *type_attr;
18138
18139 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
18140 if (!type_attr)
18141 error (_("Dwarf Error: Problem turning containing type into gdb type "
18142 "[in module %s]"), objfile_name (cu->objfile));
18143
18144 return lookup_die_type (die, type_attr, cu);
18145 }
18146
18147 /* Return an error marker type to use for the ill formed type in DIE/CU. */
18148
18149 static struct type *
18150 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18151 {
18152 struct objfile *objfile = dwarf2_per_objfile->objfile;
18153 char *message, *saved;
18154
18155 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
18156 objfile_name (objfile),
18157 cu->header.offset.sect_off,
18158 die->offset.sect_off);
18159 saved = obstack_copy0 (&objfile->objfile_obstack,
18160 message, strlen (message));
18161 xfree (message);
18162
18163 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18164 }
18165
18166 /* Look up the type of DIE in CU using its type attribute ATTR.
18167 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18168 DW_AT_containing_type.
18169 If there is no type substitute an error marker. */
18170
18171 static struct type *
18172 lookup_die_type (struct die_info *die, const struct attribute *attr,
18173 struct dwarf2_cu *cu)
18174 {
18175 struct objfile *objfile = cu->objfile;
18176 struct type *this_type;
18177
18178 gdb_assert (attr->name == DW_AT_type
18179 || attr->name == DW_AT_GNAT_descriptive_type
18180 || attr->name == DW_AT_containing_type);
18181
18182 /* First see if we have it cached. */
18183
18184 if (attr->form == DW_FORM_GNU_ref_alt)
18185 {
18186 struct dwarf2_per_cu_data *per_cu;
18187 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18188
18189 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18190 this_type = get_die_type_at_offset (offset, per_cu);
18191 }
18192 else if (attr_form_is_ref (attr))
18193 {
18194 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18195
18196 this_type = get_die_type_at_offset (offset, cu->per_cu);
18197 }
18198 else if (attr->form == DW_FORM_ref_sig8)
18199 {
18200 ULONGEST signature = DW_SIGNATURE (attr);
18201
18202 return get_signatured_type (die, signature, cu);
18203 }
18204 else
18205 {
18206 complaint (&symfile_complaints,
18207 _("Dwarf Error: Bad type attribute %s in DIE"
18208 " at 0x%x [in module %s]"),
18209 dwarf_attr_name (attr->name), die->offset.sect_off,
18210 objfile_name (objfile));
18211 return build_error_marker_type (cu, die);
18212 }
18213
18214 /* If not cached we need to read it in. */
18215
18216 if (this_type == NULL)
18217 {
18218 struct die_info *type_die = NULL;
18219 struct dwarf2_cu *type_cu = cu;
18220
18221 if (attr_form_is_ref (attr))
18222 type_die = follow_die_ref (die, attr, &type_cu);
18223 if (type_die == NULL)
18224 return build_error_marker_type (cu, die);
18225 /* If we find the type now, it's probably because the type came
18226 from an inter-CU reference and the type's CU got expanded before
18227 ours. */
18228 this_type = read_type_die (type_die, type_cu);
18229 }
18230
18231 /* If we still don't have a type use an error marker. */
18232
18233 if (this_type == NULL)
18234 return build_error_marker_type (cu, die);
18235
18236 return this_type;
18237 }
18238
18239 /* Return the type in DIE, CU.
18240 Returns NULL for invalid types.
18241
18242 This first does a lookup in die_type_hash,
18243 and only reads the die in if necessary.
18244
18245 NOTE: This can be called when reading in partial or full symbols. */
18246
18247 static struct type *
18248 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
18249 {
18250 struct type *this_type;
18251
18252 this_type = get_die_type (die, cu);
18253 if (this_type)
18254 return this_type;
18255
18256 return read_type_die_1 (die, cu);
18257 }
18258
18259 /* Read the type in DIE, CU.
18260 Returns NULL for invalid types. */
18261
18262 static struct type *
18263 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18264 {
18265 struct type *this_type = NULL;
18266
18267 switch (die->tag)
18268 {
18269 case DW_TAG_class_type:
18270 case DW_TAG_interface_type:
18271 case DW_TAG_structure_type:
18272 case DW_TAG_union_type:
18273 this_type = read_structure_type (die, cu);
18274 break;
18275 case DW_TAG_enumeration_type:
18276 this_type = read_enumeration_type (die, cu);
18277 break;
18278 case DW_TAG_subprogram:
18279 case DW_TAG_subroutine_type:
18280 case DW_TAG_inlined_subroutine:
18281 this_type = read_subroutine_type (die, cu);
18282 break;
18283 case DW_TAG_array_type:
18284 this_type = read_array_type (die, cu);
18285 break;
18286 case DW_TAG_set_type:
18287 this_type = read_set_type (die, cu);
18288 break;
18289 case DW_TAG_pointer_type:
18290 this_type = read_tag_pointer_type (die, cu);
18291 break;
18292 case DW_TAG_ptr_to_member_type:
18293 this_type = read_tag_ptr_to_member_type (die, cu);
18294 break;
18295 case DW_TAG_reference_type:
18296 this_type = read_tag_reference_type (die, cu);
18297 break;
18298 case DW_TAG_const_type:
18299 this_type = read_tag_const_type (die, cu);
18300 break;
18301 case DW_TAG_volatile_type:
18302 this_type = read_tag_volatile_type (die, cu);
18303 break;
18304 case DW_TAG_restrict_type:
18305 this_type = read_tag_restrict_type (die, cu);
18306 break;
18307 case DW_TAG_string_type:
18308 this_type = read_tag_string_type (die, cu);
18309 break;
18310 case DW_TAG_typedef:
18311 this_type = read_typedef (die, cu);
18312 break;
18313 case DW_TAG_subrange_type:
18314 this_type = read_subrange_type (die, cu);
18315 break;
18316 case DW_TAG_base_type:
18317 this_type = read_base_type (die, cu);
18318 break;
18319 case DW_TAG_unspecified_type:
18320 this_type = read_unspecified_type (die, cu);
18321 break;
18322 case DW_TAG_namespace:
18323 this_type = read_namespace_type (die, cu);
18324 break;
18325 case DW_TAG_module:
18326 this_type = read_module_type (die, cu);
18327 break;
18328 default:
18329 complaint (&symfile_complaints,
18330 _("unexpected tag in read_type_die: '%s'"),
18331 dwarf_tag_name (die->tag));
18332 break;
18333 }
18334
18335 return this_type;
18336 }
18337
18338 /* See if we can figure out if the class lives in a namespace. We do
18339 this by looking for a member function; its demangled name will
18340 contain namespace info, if there is any.
18341 Return the computed name or NULL.
18342 Space for the result is allocated on the objfile's obstack.
18343 This is the full-die version of guess_partial_die_structure_name.
18344 In this case we know DIE has no useful parent. */
18345
18346 static char *
18347 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18348 {
18349 struct die_info *spec_die;
18350 struct dwarf2_cu *spec_cu;
18351 struct die_info *child;
18352
18353 spec_cu = cu;
18354 spec_die = die_specification (die, &spec_cu);
18355 if (spec_die != NULL)
18356 {
18357 die = spec_die;
18358 cu = spec_cu;
18359 }
18360
18361 for (child = die->child;
18362 child != NULL;
18363 child = child->sibling)
18364 {
18365 if (child->tag == DW_TAG_subprogram)
18366 {
18367 struct attribute *attr;
18368
18369 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18370 if (attr == NULL)
18371 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18372 if (attr != NULL)
18373 {
18374 char *actual_name
18375 = language_class_name_from_physname (cu->language_defn,
18376 DW_STRING (attr));
18377 char *name = NULL;
18378
18379 if (actual_name != NULL)
18380 {
18381 const char *die_name = dwarf2_name (die, cu);
18382
18383 if (die_name != NULL
18384 && strcmp (die_name, actual_name) != 0)
18385 {
18386 /* Strip off the class name from the full name.
18387 We want the prefix. */
18388 int die_name_len = strlen (die_name);
18389 int actual_name_len = strlen (actual_name);
18390
18391 /* Test for '::' as a sanity check. */
18392 if (actual_name_len > die_name_len + 2
18393 && actual_name[actual_name_len
18394 - die_name_len - 1] == ':')
18395 name =
18396 obstack_copy0 (&cu->objfile->objfile_obstack,
18397 actual_name,
18398 actual_name_len - die_name_len - 2);
18399 }
18400 }
18401 xfree (actual_name);
18402 return name;
18403 }
18404 }
18405 }
18406
18407 return NULL;
18408 }
18409
18410 /* GCC might emit a nameless typedef that has a linkage name. Determine the
18411 prefix part in such case. See
18412 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18413
18414 static char *
18415 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18416 {
18417 struct attribute *attr;
18418 char *base;
18419
18420 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18421 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18422 return NULL;
18423
18424 attr = dwarf2_attr (die, DW_AT_name, cu);
18425 if (attr != NULL && DW_STRING (attr) != NULL)
18426 return NULL;
18427
18428 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18429 if (attr == NULL)
18430 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18431 if (attr == NULL || DW_STRING (attr) == NULL)
18432 return NULL;
18433
18434 /* dwarf2_name had to be already called. */
18435 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18436
18437 /* Strip the base name, keep any leading namespaces/classes. */
18438 base = strrchr (DW_STRING (attr), ':');
18439 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18440 return "";
18441
18442 return obstack_copy0 (&cu->objfile->objfile_obstack,
18443 DW_STRING (attr), &base[-1] - DW_STRING (attr));
18444 }
18445
18446 /* Return the name of the namespace/class that DIE is defined within,
18447 or "" if we can't tell. The caller should not xfree the result.
18448
18449 For example, if we're within the method foo() in the following
18450 code:
18451
18452 namespace N {
18453 class C {
18454 void foo () {
18455 }
18456 };
18457 }
18458
18459 then determine_prefix on foo's die will return "N::C". */
18460
18461 static const char *
18462 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
18463 {
18464 struct die_info *parent, *spec_die;
18465 struct dwarf2_cu *spec_cu;
18466 struct type *parent_type;
18467 char *retval;
18468
18469 if (cu->language != language_cplus && cu->language != language_java
18470 && cu->language != language_fortran)
18471 return "";
18472
18473 retval = anonymous_struct_prefix (die, cu);
18474 if (retval)
18475 return retval;
18476
18477 /* We have to be careful in the presence of DW_AT_specification.
18478 For example, with GCC 3.4, given the code
18479
18480 namespace N {
18481 void foo() {
18482 // Definition of N::foo.
18483 }
18484 }
18485
18486 then we'll have a tree of DIEs like this:
18487
18488 1: DW_TAG_compile_unit
18489 2: DW_TAG_namespace // N
18490 3: DW_TAG_subprogram // declaration of N::foo
18491 4: DW_TAG_subprogram // definition of N::foo
18492 DW_AT_specification // refers to die #3
18493
18494 Thus, when processing die #4, we have to pretend that we're in
18495 the context of its DW_AT_specification, namely the contex of die
18496 #3. */
18497 spec_cu = cu;
18498 spec_die = die_specification (die, &spec_cu);
18499 if (spec_die == NULL)
18500 parent = die->parent;
18501 else
18502 {
18503 parent = spec_die->parent;
18504 cu = spec_cu;
18505 }
18506
18507 if (parent == NULL)
18508 return "";
18509 else if (parent->building_fullname)
18510 {
18511 const char *name;
18512 const char *parent_name;
18513
18514 /* It has been seen on RealView 2.2 built binaries,
18515 DW_TAG_template_type_param types actually _defined_ as
18516 children of the parent class:
18517
18518 enum E {};
18519 template class <class Enum> Class{};
18520 Class<enum E> class_e;
18521
18522 1: DW_TAG_class_type (Class)
18523 2: DW_TAG_enumeration_type (E)
18524 3: DW_TAG_enumerator (enum1:0)
18525 3: DW_TAG_enumerator (enum2:1)
18526 ...
18527 2: DW_TAG_template_type_param
18528 DW_AT_type DW_FORM_ref_udata (E)
18529
18530 Besides being broken debug info, it can put GDB into an
18531 infinite loop. Consider:
18532
18533 When we're building the full name for Class<E>, we'll start
18534 at Class, and go look over its template type parameters,
18535 finding E. We'll then try to build the full name of E, and
18536 reach here. We're now trying to build the full name of E,
18537 and look over the parent DIE for containing scope. In the
18538 broken case, if we followed the parent DIE of E, we'd again
18539 find Class, and once again go look at its template type
18540 arguments, etc., etc. Simply don't consider such parent die
18541 as source-level parent of this die (it can't be, the language
18542 doesn't allow it), and break the loop here. */
18543 name = dwarf2_name (die, cu);
18544 parent_name = dwarf2_name (parent, cu);
18545 complaint (&symfile_complaints,
18546 _("template param type '%s' defined within parent '%s'"),
18547 name ? name : "<unknown>",
18548 parent_name ? parent_name : "<unknown>");
18549 return "";
18550 }
18551 else
18552 switch (parent->tag)
18553 {
18554 case DW_TAG_namespace:
18555 parent_type = read_type_die (parent, cu);
18556 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18557 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18558 Work around this problem here. */
18559 if (cu->language == language_cplus
18560 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18561 return "";
18562 /* We give a name to even anonymous namespaces. */
18563 return TYPE_TAG_NAME (parent_type);
18564 case DW_TAG_class_type:
18565 case DW_TAG_interface_type:
18566 case DW_TAG_structure_type:
18567 case DW_TAG_union_type:
18568 case DW_TAG_module:
18569 parent_type = read_type_die (parent, cu);
18570 if (TYPE_TAG_NAME (parent_type) != NULL)
18571 return TYPE_TAG_NAME (parent_type);
18572 else
18573 /* An anonymous structure is only allowed non-static data
18574 members; no typedefs, no member functions, et cetera.
18575 So it does not need a prefix. */
18576 return "";
18577 case DW_TAG_compile_unit:
18578 case DW_TAG_partial_unit:
18579 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18580 if (cu->language == language_cplus
18581 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
18582 && die->child != NULL
18583 && (die->tag == DW_TAG_class_type
18584 || die->tag == DW_TAG_structure_type
18585 || die->tag == DW_TAG_union_type))
18586 {
18587 char *name = guess_full_die_structure_name (die, cu);
18588 if (name != NULL)
18589 return name;
18590 }
18591 return "";
18592 default:
18593 return determine_prefix (parent, cu);
18594 }
18595 }
18596
18597 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18598 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18599 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18600 an obconcat, otherwise allocate storage for the result. The CU argument is
18601 used to determine the language and hence, the appropriate separator. */
18602
18603 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
18604
18605 static char *
18606 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18607 int physname, struct dwarf2_cu *cu)
18608 {
18609 const char *lead = "";
18610 const char *sep;
18611
18612 if (suffix == NULL || suffix[0] == '\0'
18613 || prefix == NULL || prefix[0] == '\0')
18614 sep = "";
18615 else if (cu->language == language_java)
18616 sep = ".";
18617 else if (cu->language == language_fortran && physname)
18618 {
18619 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18620 DW_AT_MIPS_linkage_name is preferred and used instead. */
18621
18622 lead = "__";
18623 sep = "_MOD_";
18624 }
18625 else
18626 sep = "::";
18627
18628 if (prefix == NULL)
18629 prefix = "";
18630 if (suffix == NULL)
18631 suffix = "";
18632
18633 if (obs == NULL)
18634 {
18635 char *retval
18636 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
18637
18638 strcpy (retval, lead);
18639 strcat (retval, prefix);
18640 strcat (retval, sep);
18641 strcat (retval, suffix);
18642 return retval;
18643 }
18644 else
18645 {
18646 /* We have an obstack. */
18647 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
18648 }
18649 }
18650
18651 /* Return sibling of die, NULL if no sibling. */
18652
18653 static struct die_info *
18654 sibling_die (struct die_info *die)
18655 {
18656 return die->sibling;
18657 }
18658
18659 /* Get name of a die, return NULL if not found. */
18660
18661 static const char *
18662 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
18663 struct obstack *obstack)
18664 {
18665 if (name && cu->language == language_cplus)
18666 {
18667 char *canon_name = cp_canonicalize_string (name);
18668
18669 if (canon_name != NULL)
18670 {
18671 if (strcmp (canon_name, name) != 0)
18672 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
18673 xfree (canon_name);
18674 }
18675 }
18676
18677 return name;
18678 }
18679
18680 /* Get name of a die, return NULL if not found. */
18681
18682 static const char *
18683 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
18684 {
18685 struct attribute *attr;
18686
18687 attr = dwarf2_attr (die, DW_AT_name, cu);
18688 if ((!attr || !DW_STRING (attr))
18689 && die->tag != DW_TAG_class_type
18690 && die->tag != DW_TAG_interface_type
18691 && die->tag != DW_TAG_structure_type
18692 && die->tag != DW_TAG_union_type)
18693 return NULL;
18694
18695 switch (die->tag)
18696 {
18697 case DW_TAG_compile_unit:
18698 case DW_TAG_partial_unit:
18699 /* Compilation units have a DW_AT_name that is a filename, not
18700 a source language identifier. */
18701 case DW_TAG_enumeration_type:
18702 case DW_TAG_enumerator:
18703 /* These tags always have simple identifiers already; no need
18704 to canonicalize them. */
18705 return DW_STRING (attr);
18706
18707 case DW_TAG_subprogram:
18708 /* Java constructors will all be named "<init>", so return
18709 the class name when we see this special case. */
18710 if (cu->language == language_java
18711 && DW_STRING (attr) != NULL
18712 && strcmp (DW_STRING (attr), "<init>") == 0)
18713 {
18714 struct dwarf2_cu *spec_cu = cu;
18715 struct die_info *spec_die;
18716
18717 /* GCJ will output '<init>' for Java constructor names.
18718 For this special case, return the name of the parent class. */
18719
18720 /* GCJ may output suprogram DIEs with AT_specification set.
18721 If so, use the name of the specified DIE. */
18722 spec_die = die_specification (die, &spec_cu);
18723 if (spec_die != NULL)
18724 return dwarf2_name (spec_die, spec_cu);
18725
18726 do
18727 {
18728 die = die->parent;
18729 if (die->tag == DW_TAG_class_type)
18730 return dwarf2_name (die, cu);
18731 }
18732 while (die->tag != DW_TAG_compile_unit
18733 && die->tag != DW_TAG_partial_unit);
18734 }
18735 break;
18736
18737 case DW_TAG_class_type:
18738 case DW_TAG_interface_type:
18739 case DW_TAG_structure_type:
18740 case DW_TAG_union_type:
18741 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18742 structures or unions. These were of the form "._%d" in GCC 4.1,
18743 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18744 and GCC 4.4. We work around this problem by ignoring these. */
18745 if (attr && DW_STRING (attr)
18746 && (strncmp (DW_STRING (attr), "._", 2) == 0
18747 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
18748 return NULL;
18749
18750 /* GCC might emit a nameless typedef that has a linkage name. See
18751 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18752 if (!attr || DW_STRING (attr) == NULL)
18753 {
18754 char *demangled = NULL;
18755
18756 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18757 if (attr == NULL)
18758 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18759
18760 if (attr == NULL || DW_STRING (attr) == NULL)
18761 return NULL;
18762
18763 /* Avoid demangling DW_STRING (attr) the second time on a second
18764 call for the same DIE. */
18765 if (!DW_STRING_IS_CANONICAL (attr))
18766 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
18767
18768 if (demangled)
18769 {
18770 char *base;
18771
18772 /* FIXME: we already did this for the partial symbol... */
18773 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18774 demangled, strlen (demangled));
18775 DW_STRING_IS_CANONICAL (attr) = 1;
18776 xfree (demangled);
18777
18778 /* Strip any leading namespaces/classes, keep only the base name.
18779 DW_AT_name for named DIEs does not contain the prefixes. */
18780 base = strrchr (DW_STRING (attr), ':');
18781 if (base && base > DW_STRING (attr) && base[-1] == ':')
18782 return &base[1];
18783 else
18784 return DW_STRING (attr);
18785 }
18786 }
18787 break;
18788
18789 default:
18790 break;
18791 }
18792
18793 if (!DW_STRING_IS_CANONICAL (attr))
18794 {
18795 DW_STRING (attr)
18796 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18797 &cu->objfile->objfile_obstack);
18798 DW_STRING_IS_CANONICAL (attr) = 1;
18799 }
18800 return DW_STRING (attr);
18801 }
18802
18803 /* Return the die that this die in an extension of, or NULL if there
18804 is none. *EXT_CU is the CU containing DIE on input, and the CU
18805 containing the return value on output. */
18806
18807 static struct die_info *
18808 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
18809 {
18810 struct attribute *attr;
18811
18812 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
18813 if (attr == NULL)
18814 return NULL;
18815
18816 return follow_die_ref (die, attr, ext_cu);
18817 }
18818
18819 /* Convert a DIE tag into its string name. */
18820
18821 static const char *
18822 dwarf_tag_name (unsigned tag)
18823 {
18824 const char *name = get_DW_TAG_name (tag);
18825
18826 if (name == NULL)
18827 return "DW_TAG_<unknown>";
18828
18829 return name;
18830 }
18831
18832 /* Convert a DWARF attribute code into its string name. */
18833
18834 static const char *
18835 dwarf_attr_name (unsigned attr)
18836 {
18837 const char *name;
18838
18839 #ifdef MIPS /* collides with DW_AT_HP_block_index */
18840 if (attr == DW_AT_MIPS_fde)
18841 return "DW_AT_MIPS_fde";
18842 #else
18843 if (attr == DW_AT_HP_block_index)
18844 return "DW_AT_HP_block_index";
18845 #endif
18846
18847 name = get_DW_AT_name (attr);
18848
18849 if (name == NULL)
18850 return "DW_AT_<unknown>";
18851
18852 return name;
18853 }
18854
18855 /* Convert a DWARF value form code into its string name. */
18856
18857 static const char *
18858 dwarf_form_name (unsigned form)
18859 {
18860 const char *name = get_DW_FORM_name (form);
18861
18862 if (name == NULL)
18863 return "DW_FORM_<unknown>";
18864
18865 return name;
18866 }
18867
18868 static char *
18869 dwarf_bool_name (unsigned mybool)
18870 {
18871 if (mybool)
18872 return "TRUE";
18873 else
18874 return "FALSE";
18875 }
18876
18877 /* Convert a DWARF type code into its string name. */
18878
18879 static const char *
18880 dwarf_type_encoding_name (unsigned enc)
18881 {
18882 const char *name = get_DW_ATE_name (enc);
18883
18884 if (name == NULL)
18885 return "DW_ATE_<unknown>";
18886
18887 return name;
18888 }
18889
18890 static void
18891 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
18892 {
18893 unsigned int i;
18894
18895 print_spaces (indent, f);
18896 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
18897 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
18898
18899 if (die->parent != NULL)
18900 {
18901 print_spaces (indent, f);
18902 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
18903 die->parent->offset.sect_off);
18904 }
18905
18906 print_spaces (indent, f);
18907 fprintf_unfiltered (f, " has children: %s\n",
18908 dwarf_bool_name (die->child != NULL));
18909
18910 print_spaces (indent, f);
18911 fprintf_unfiltered (f, " attributes:\n");
18912
18913 for (i = 0; i < die->num_attrs; ++i)
18914 {
18915 print_spaces (indent, f);
18916 fprintf_unfiltered (f, " %s (%s) ",
18917 dwarf_attr_name (die->attrs[i].name),
18918 dwarf_form_name (die->attrs[i].form));
18919
18920 switch (die->attrs[i].form)
18921 {
18922 case DW_FORM_addr:
18923 case DW_FORM_GNU_addr_index:
18924 fprintf_unfiltered (f, "address: ");
18925 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
18926 break;
18927 case DW_FORM_block2:
18928 case DW_FORM_block4:
18929 case DW_FORM_block:
18930 case DW_FORM_block1:
18931 fprintf_unfiltered (f, "block: size %s",
18932 pulongest (DW_BLOCK (&die->attrs[i])->size));
18933 break;
18934 case DW_FORM_exprloc:
18935 fprintf_unfiltered (f, "expression: size %s",
18936 pulongest (DW_BLOCK (&die->attrs[i])->size));
18937 break;
18938 case DW_FORM_ref_addr:
18939 fprintf_unfiltered (f, "ref address: ");
18940 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18941 break;
18942 case DW_FORM_GNU_ref_alt:
18943 fprintf_unfiltered (f, "alt ref address: ");
18944 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18945 break;
18946 case DW_FORM_ref1:
18947 case DW_FORM_ref2:
18948 case DW_FORM_ref4:
18949 case DW_FORM_ref8:
18950 case DW_FORM_ref_udata:
18951 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
18952 (long) (DW_UNSND (&die->attrs[i])));
18953 break;
18954 case DW_FORM_data1:
18955 case DW_FORM_data2:
18956 case DW_FORM_data4:
18957 case DW_FORM_data8:
18958 case DW_FORM_udata:
18959 case DW_FORM_sdata:
18960 fprintf_unfiltered (f, "constant: %s",
18961 pulongest (DW_UNSND (&die->attrs[i])));
18962 break;
18963 case DW_FORM_sec_offset:
18964 fprintf_unfiltered (f, "section offset: %s",
18965 pulongest (DW_UNSND (&die->attrs[i])));
18966 break;
18967 case DW_FORM_ref_sig8:
18968 fprintf_unfiltered (f, "signature: %s",
18969 hex_string (DW_SIGNATURE (&die->attrs[i])));
18970 break;
18971 case DW_FORM_string:
18972 case DW_FORM_strp:
18973 case DW_FORM_GNU_str_index:
18974 case DW_FORM_GNU_strp_alt:
18975 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
18976 DW_STRING (&die->attrs[i])
18977 ? DW_STRING (&die->attrs[i]) : "",
18978 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
18979 break;
18980 case DW_FORM_flag:
18981 if (DW_UNSND (&die->attrs[i]))
18982 fprintf_unfiltered (f, "flag: TRUE");
18983 else
18984 fprintf_unfiltered (f, "flag: FALSE");
18985 break;
18986 case DW_FORM_flag_present:
18987 fprintf_unfiltered (f, "flag: TRUE");
18988 break;
18989 case DW_FORM_indirect:
18990 /* The reader will have reduced the indirect form to
18991 the "base form" so this form should not occur. */
18992 fprintf_unfiltered (f,
18993 "unexpected attribute form: DW_FORM_indirect");
18994 break;
18995 default:
18996 fprintf_unfiltered (f, "unsupported attribute form: %d.",
18997 die->attrs[i].form);
18998 break;
18999 }
19000 fprintf_unfiltered (f, "\n");
19001 }
19002 }
19003
19004 static void
19005 dump_die_for_error (struct die_info *die)
19006 {
19007 dump_die_shallow (gdb_stderr, 0, die);
19008 }
19009
19010 static void
19011 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19012 {
19013 int indent = level * 4;
19014
19015 gdb_assert (die != NULL);
19016
19017 if (level >= max_level)
19018 return;
19019
19020 dump_die_shallow (f, indent, die);
19021
19022 if (die->child != NULL)
19023 {
19024 print_spaces (indent, f);
19025 fprintf_unfiltered (f, " Children:");
19026 if (level + 1 < max_level)
19027 {
19028 fprintf_unfiltered (f, "\n");
19029 dump_die_1 (f, level + 1, max_level, die->child);
19030 }
19031 else
19032 {
19033 fprintf_unfiltered (f,
19034 " [not printed, max nesting level reached]\n");
19035 }
19036 }
19037
19038 if (die->sibling != NULL && level > 0)
19039 {
19040 dump_die_1 (f, level, max_level, die->sibling);
19041 }
19042 }
19043
19044 /* This is called from the pdie macro in gdbinit.in.
19045 It's not static so gcc will keep a copy callable from gdb. */
19046
19047 void
19048 dump_die (struct die_info *die, int max_level)
19049 {
19050 dump_die_1 (gdb_stdlog, 0, max_level, die);
19051 }
19052
19053 static void
19054 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
19055 {
19056 void **slot;
19057
19058 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19059 INSERT);
19060
19061 *slot = die;
19062 }
19063
19064 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19065 required kind. */
19066
19067 static sect_offset
19068 dwarf2_get_ref_die_offset (const struct attribute *attr)
19069 {
19070 sect_offset retval = { DW_UNSND (attr) };
19071
19072 if (attr_form_is_ref (attr))
19073 return retval;
19074
19075 retval.sect_off = 0;
19076 complaint (&symfile_complaints,
19077 _("unsupported die ref attribute form: '%s'"),
19078 dwarf_form_name (attr->form));
19079 return retval;
19080 }
19081
19082 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19083 * the value held by the attribute is not constant. */
19084
19085 static LONGEST
19086 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
19087 {
19088 if (attr->form == DW_FORM_sdata)
19089 return DW_SND (attr);
19090 else if (attr->form == DW_FORM_udata
19091 || attr->form == DW_FORM_data1
19092 || attr->form == DW_FORM_data2
19093 || attr->form == DW_FORM_data4
19094 || attr->form == DW_FORM_data8)
19095 return DW_UNSND (attr);
19096 else
19097 {
19098 complaint (&symfile_complaints,
19099 _("Attribute value is not a constant (%s)"),
19100 dwarf_form_name (attr->form));
19101 return default_value;
19102 }
19103 }
19104
19105 /* Follow reference or signature attribute ATTR of SRC_DIE.
19106 On entry *REF_CU is the CU of SRC_DIE.
19107 On exit *REF_CU is the CU of the result. */
19108
19109 static struct die_info *
19110 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
19111 struct dwarf2_cu **ref_cu)
19112 {
19113 struct die_info *die;
19114
19115 if (attr_form_is_ref (attr))
19116 die = follow_die_ref (src_die, attr, ref_cu);
19117 else if (attr->form == DW_FORM_ref_sig8)
19118 die = follow_die_sig (src_die, attr, ref_cu);
19119 else
19120 {
19121 dump_die_for_error (src_die);
19122 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
19123 objfile_name ((*ref_cu)->objfile));
19124 }
19125
19126 return die;
19127 }
19128
19129 /* Follow reference OFFSET.
19130 On entry *REF_CU is the CU of the source die referencing OFFSET.
19131 On exit *REF_CU is the CU of the result.
19132 Returns NULL if OFFSET is invalid. */
19133
19134 static struct die_info *
19135 follow_die_offset (sect_offset offset, int offset_in_dwz,
19136 struct dwarf2_cu **ref_cu)
19137 {
19138 struct die_info temp_die;
19139 struct dwarf2_cu *target_cu, *cu = *ref_cu;
19140
19141 gdb_assert (cu->per_cu != NULL);
19142
19143 target_cu = cu;
19144
19145 if (cu->per_cu->is_debug_types)
19146 {
19147 /* .debug_types CUs cannot reference anything outside their CU.
19148 If they need to, they have to reference a signatured type via
19149 DW_FORM_ref_sig8. */
19150 if (! offset_in_cu_p (&cu->header, offset))
19151 return NULL;
19152 }
19153 else if (offset_in_dwz != cu->per_cu->is_dwz
19154 || ! offset_in_cu_p (&cu->header, offset))
19155 {
19156 struct dwarf2_per_cu_data *per_cu;
19157
19158 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19159 cu->objfile);
19160
19161 /* If necessary, add it to the queue and load its DIEs. */
19162 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19163 load_full_comp_unit (per_cu, cu->language);
19164
19165 target_cu = per_cu->cu;
19166 }
19167 else if (cu->dies == NULL)
19168 {
19169 /* We're loading full DIEs during partial symbol reading. */
19170 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
19171 load_full_comp_unit (cu->per_cu, language_minimal);
19172 }
19173
19174 *ref_cu = target_cu;
19175 temp_die.offset = offset;
19176 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
19177 }
19178
19179 /* Follow reference attribute ATTR of SRC_DIE.
19180 On entry *REF_CU is the CU of SRC_DIE.
19181 On exit *REF_CU is the CU of the result. */
19182
19183 static struct die_info *
19184 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
19185 struct dwarf2_cu **ref_cu)
19186 {
19187 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19188 struct dwarf2_cu *cu = *ref_cu;
19189 struct die_info *die;
19190
19191 die = follow_die_offset (offset,
19192 (attr->form == DW_FORM_GNU_ref_alt
19193 || cu->per_cu->is_dwz),
19194 ref_cu);
19195 if (!die)
19196 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19197 "at 0x%x [in module %s]"),
19198 offset.sect_off, src_die->offset.sect_off,
19199 objfile_name (cu->objfile));
19200
19201 return die;
19202 }
19203
19204 /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19205 Returned value is intended for DW_OP_call*. Returned
19206 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
19207
19208 struct dwarf2_locexpr_baton
19209 dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19210 struct dwarf2_per_cu_data *per_cu,
19211 CORE_ADDR (*get_frame_pc) (void *baton),
19212 void *baton)
19213 {
19214 struct dwarf2_cu *cu;
19215 struct die_info *die;
19216 struct attribute *attr;
19217 struct dwarf2_locexpr_baton retval;
19218
19219 dw2_setup (per_cu->objfile);
19220
19221 if (per_cu->cu == NULL)
19222 load_cu (per_cu);
19223 cu = per_cu->cu;
19224
19225 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19226 if (!die)
19227 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19228 offset.sect_off, objfile_name (per_cu->objfile));
19229
19230 attr = dwarf2_attr (die, DW_AT_location, cu);
19231 if (!attr)
19232 {
19233 /* DWARF: "If there is no such attribute, then there is no effect.".
19234 DATA is ignored if SIZE is 0. */
19235
19236 retval.data = NULL;
19237 retval.size = 0;
19238 }
19239 else if (attr_form_is_section_offset (attr))
19240 {
19241 struct dwarf2_loclist_baton loclist_baton;
19242 CORE_ADDR pc = (*get_frame_pc) (baton);
19243 size_t size;
19244
19245 fill_in_loclist_baton (cu, &loclist_baton, attr);
19246
19247 retval.data = dwarf2_find_location_expression (&loclist_baton,
19248 &size, pc);
19249 retval.size = size;
19250 }
19251 else
19252 {
19253 if (!attr_form_is_block (attr))
19254 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19255 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
19256 offset.sect_off, objfile_name (per_cu->objfile));
19257
19258 retval.data = DW_BLOCK (attr)->data;
19259 retval.size = DW_BLOCK (attr)->size;
19260 }
19261 retval.per_cu = cu->per_cu;
19262
19263 age_cached_comp_units ();
19264
19265 return retval;
19266 }
19267
19268 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19269 offset. */
19270
19271 struct dwarf2_locexpr_baton
19272 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19273 struct dwarf2_per_cu_data *per_cu,
19274 CORE_ADDR (*get_frame_pc) (void *baton),
19275 void *baton)
19276 {
19277 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19278
19279 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19280 }
19281
19282 /* Write a constant of a given type as target-ordered bytes into
19283 OBSTACK. */
19284
19285 static const gdb_byte *
19286 write_constant_as_bytes (struct obstack *obstack,
19287 enum bfd_endian byte_order,
19288 struct type *type,
19289 ULONGEST value,
19290 LONGEST *len)
19291 {
19292 gdb_byte *result;
19293
19294 *len = TYPE_LENGTH (type);
19295 result = obstack_alloc (obstack, *len);
19296 store_unsigned_integer (result, *len, byte_order, value);
19297
19298 return result;
19299 }
19300
19301 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19302 pointer to the constant bytes and set LEN to the length of the
19303 data. If memory is needed, allocate it on OBSTACK. If the DIE
19304 does not have a DW_AT_const_value, return NULL. */
19305
19306 const gdb_byte *
19307 dwarf2_fetch_constant_bytes (sect_offset offset,
19308 struct dwarf2_per_cu_data *per_cu,
19309 struct obstack *obstack,
19310 LONGEST *len)
19311 {
19312 struct dwarf2_cu *cu;
19313 struct die_info *die;
19314 struct attribute *attr;
19315 const gdb_byte *result = NULL;
19316 struct type *type;
19317 LONGEST value;
19318 enum bfd_endian byte_order;
19319
19320 dw2_setup (per_cu->objfile);
19321
19322 if (per_cu->cu == NULL)
19323 load_cu (per_cu);
19324 cu = per_cu->cu;
19325
19326 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19327 if (!die)
19328 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
19329 offset.sect_off, objfile_name (per_cu->objfile));
19330
19331
19332 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19333 if (attr == NULL)
19334 return NULL;
19335
19336 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19337 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19338
19339 switch (attr->form)
19340 {
19341 case DW_FORM_addr:
19342 case DW_FORM_GNU_addr_index:
19343 {
19344 gdb_byte *tem;
19345
19346 *len = cu->header.addr_size;
19347 tem = obstack_alloc (obstack, *len);
19348 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19349 result = tem;
19350 }
19351 break;
19352 case DW_FORM_string:
19353 case DW_FORM_strp:
19354 case DW_FORM_GNU_str_index:
19355 case DW_FORM_GNU_strp_alt:
19356 /* DW_STRING is already allocated on the objfile obstack, point
19357 directly to it. */
19358 result = (const gdb_byte *) DW_STRING (attr);
19359 *len = strlen (DW_STRING (attr));
19360 break;
19361 case DW_FORM_block1:
19362 case DW_FORM_block2:
19363 case DW_FORM_block4:
19364 case DW_FORM_block:
19365 case DW_FORM_exprloc:
19366 result = DW_BLOCK (attr)->data;
19367 *len = DW_BLOCK (attr)->size;
19368 break;
19369
19370 /* The DW_AT_const_value attributes are supposed to carry the
19371 symbol's value "represented as it would be on the target
19372 architecture." By the time we get here, it's already been
19373 converted to host endianness, so we just need to sign- or
19374 zero-extend it as appropriate. */
19375 case DW_FORM_data1:
19376 type = die_type (die, cu);
19377 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19378 if (result == NULL)
19379 result = write_constant_as_bytes (obstack, byte_order,
19380 type, value, len);
19381 break;
19382 case DW_FORM_data2:
19383 type = die_type (die, cu);
19384 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19385 if (result == NULL)
19386 result = write_constant_as_bytes (obstack, byte_order,
19387 type, value, len);
19388 break;
19389 case DW_FORM_data4:
19390 type = die_type (die, cu);
19391 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19392 if (result == NULL)
19393 result = write_constant_as_bytes (obstack, byte_order,
19394 type, value, len);
19395 break;
19396 case DW_FORM_data8:
19397 type = die_type (die, cu);
19398 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19399 if (result == NULL)
19400 result = write_constant_as_bytes (obstack, byte_order,
19401 type, value, len);
19402 break;
19403
19404 case DW_FORM_sdata:
19405 type = die_type (die, cu);
19406 result = write_constant_as_bytes (obstack, byte_order,
19407 type, DW_SND (attr), len);
19408 break;
19409
19410 case DW_FORM_udata:
19411 type = die_type (die, cu);
19412 result = write_constant_as_bytes (obstack, byte_order,
19413 type, DW_UNSND (attr), len);
19414 break;
19415
19416 default:
19417 complaint (&symfile_complaints,
19418 _("unsupported const value attribute form: '%s'"),
19419 dwarf_form_name (attr->form));
19420 break;
19421 }
19422
19423 return result;
19424 }
19425
19426 /* Return the type of the DIE at DIE_OFFSET in the CU named by
19427 PER_CU. */
19428
19429 struct type *
19430 dwarf2_get_die_type (cu_offset die_offset,
19431 struct dwarf2_per_cu_data *per_cu)
19432 {
19433 sect_offset die_offset_sect;
19434
19435 dw2_setup (per_cu->objfile);
19436
19437 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19438 return get_die_type_at_offset (die_offset_sect, per_cu);
19439 }
19440
19441 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
19442 On entry *REF_CU is the CU of SRC_DIE.
19443 On exit *REF_CU is the CU of the result.
19444 Returns NULL if the referenced DIE isn't found. */
19445
19446 static struct die_info *
19447 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19448 struct dwarf2_cu **ref_cu)
19449 {
19450 struct objfile *objfile = (*ref_cu)->objfile;
19451 struct die_info temp_die;
19452 struct dwarf2_cu *sig_cu;
19453 struct die_info *die;
19454
19455 /* While it might be nice to assert sig_type->type == NULL here,
19456 we can get here for DW_AT_imported_declaration where we need
19457 the DIE not the type. */
19458
19459 /* If necessary, add it to the queue and load its DIEs. */
19460
19461 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
19462 read_signatured_type (sig_type);
19463
19464 sig_cu = sig_type->per_cu.cu;
19465 gdb_assert (sig_cu != NULL);
19466 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19467 temp_die.offset = sig_type->type_offset_in_section;
19468 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19469 temp_die.offset.sect_off);
19470 if (die)
19471 {
19472 /* For .gdb_index version 7 keep track of included TUs.
19473 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19474 if (dwarf2_per_objfile->index_table != NULL
19475 && dwarf2_per_objfile->index_table->version <= 7)
19476 {
19477 VEC_safe_push (dwarf2_per_cu_ptr,
19478 (*ref_cu)->per_cu->imported_symtabs,
19479 sig_cu->per_cu);
19480 }
19481
19482 *ref_cu = sig_cu;
19483 return die;
19484 }
19485
19486 return NULL;
19487 }
19488
19489 /* Follow signatured type referenced by ATTR in SRC_DIE.
19490 On entry *REF_CU is the CU of SRC_DIE.
19491 On exit *REF_CU is the CU of the result.
19492 The result is the DIE of the type.
19493 If the referenced type cannot be found an error is thrown. */
19494
19495 static struct die_info *
19496 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
19497 struct dwarf2_cu **ref_cu)
19498 {
19499 ULONGEST signature = DW_SIGNATURE (attr);
19500 struct signatured_type *sig_type;
19501 struct die_info *die;
19502
19503 gdb_assert (attr->form == DW_FORM_ref_sig8);
19504
19505 sig_type = lookup_signatured_type (*ref_cu, signature);
19506 /* sig_type will be NULL if the signatured type is missing from
19507 the debug info. */
19508 if (sig_type == NULL)
19509 {
19510 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19511 " from DIE at 0x%x [in module %s]"),
19512 hex_string (signature), src_die->offset.sect_off,
19513 objfile_name ((*ref_cu)->objfile));
19514 }
19515
19516 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19517 if (die == NULL)
19518 {
19519 dump_die_for_error (src_die);
19520 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19521 " from DIE at 0x%x [in module %s]"),
19522 hex_string (signature), src_die->offset.sect_off,
19523 objfile_name ((*ref_cu)->objfile));
19524 }
19525
19526 return die;
19527 }
19528
19529 /* Get the type specified by SIGNATURE referenced in DIE/CU,
19530 reading in and processing the type unit if necessary. */
19531
19532 static struct type *
19533 get_signatured_type (struct die_info *die, ULONGEST signature,
19534 struct dwarf2_cu *cu)
19535 {
19536 struct signatured_type *sig_type;
19537 struct dwarf2_cu *type_cu;
19538 struct die_info *type_die;
19539 struct type *type;
19540
19541 sig_type = lookup_signatured_type (cu, signature);
19542 /* sig_type will be NULL if the signatured type is missing from
19543 the debug info. */
19544 if (sig_type == NULL)
19545 {
19546 complaint (&symfile_complaints,
19547 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19548 " from DIE at 0x%x [in module %s]"),
19549 hex_string (signature), die->offset.sect_off,
19550 objfile_name (dwarf2_per_objfile->objfile));
19551 return build_error_marker_type (cu, die);
19552 }
19553
19554 /* If we already know the type we're done. */
19555 if (sig_type->type != NULL)
19556 return sig_type->type;
19557
19558 type_cu = cu;
19559 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19560 if (type_die != NULL)
19561 {
19562 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19563 is created. This is important, for example, because for c++ classes
19564 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19565 type = read_type_die (type_die, type_cu);
19566 if (type == NULL)
19567 {
19568 complaint (&symfile_complaints,
19569 _("Dwarf Error: Cannot build signatured type %s"
19570 " referenced from DIE at 0x%x [in module %s]"),
19571 hex_string (signature), die->offset.sect_off,
19572 objfile_name (dwarf2_per_objfile->objfile));
19573 type = build_error_marker_type (cu, die);
19574 }
19575 }
19576 else
19577 {
19578 complaint (&symfile_complaints,
19579 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19580 " from DIE at 0x%x [in module %s]"),
19581 hex_string (signature), die->offset.sect_off,
19582 objfile_name (dwarf2_per_objfile->objfile));
19583 type = build_error_marker_type (cu, die);
19584 }
19585 sig_type->type = type;
19586
19587 return type;
19588 }
19589
19590 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19591 reading in and processing the type unit if necessary. */
19592
19593 static struct type *
19594 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
19595 struct dwarf2_cu *cu) /* ARI: editCase function */
19596 {
19597 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
19598 if (attr_form_is_ref (attr))
19599 {
19600 struct dwarf2_cu *type_cu = cu;
19601 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19602
19603 return read_type_die (type_die, type_cu);
19604 }
19605 else if (attr->form == DW_FORM_ref_sig8)
19606 {
19607 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19608 }
19609 else
19610 {
19611 complaint (&symfile_complaints,
19612 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19613 " at 0x%x [in module %s]"),
19614 dwarf_form_name (attr->form), die->offset.sect_off,
19615 objfile_name (dwarf2_per_objfile->objfile));
19616 return build_error_marker_type (cu, die);
19617 }
19618 }
19619
19620 /* Load the DIEs associated with type unit PER_CU into memory. */
19621
19622 static void
19623 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
19624 {
19625 struct signatured_type *sig_type;
19626
19627 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19628 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19629
19630 /* We have the per_cu, but we need the signatured_type.
19631 Fortunately this is an easy translation. */
19632 gdb_assert (per_cu->is_debug_types);
19633 sig_type = (struct signatured_type *) per_cu;
19634
19635 gdb_assert (per_cu->cu == NULL);
19636
19637 read_signatured_type (sig_type);
19638
19639 gdb_assert (per_cu->cu != NULL);
19640 }
19641
19642 /* die_reader_func for read_signatured_type.
19643 This is identical to load_full_comp_unit_reader,
19644 but is kept separate for now. */
19645
19646 static void
19647 read_signatured_type_reader (const struct die_reader_specs *reader,
19648 const gdb_byte *info_ptr,
19649 struct die_info *comp_unit_die,
19650 int has_children,
19651 void *data)
19652 {
19653 struct dwarf2_cu *cu = reader->cu;
19654
19655 gdb_assert (cu->die_hash == NULL);
19656 cu->die_hash =
19657 htab_create_alloc_ex (cu->header.length / 12,
19658 die_hash,
19659 die_eq,
19660 NULL,
19661 &cu->comp_unit_obstack,
19662 hashtab_obstack_allocate,
19663 dummy_obstack_deallocate);
19664
19665 if (has_children)
19666 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19667 &info_ptr, comp_unit_die);
19668 cu->dies = comp_unit_die;
19669 /* comp_unit_die is not stored in die_hash, no need. */
19670
19671 /* We try not to read any attributes in this function, because not
19672 all CUs needed for references have been loaded yet, and symbol
19673 table processing isn't initialized. But we have to set the CU language,
19674 or we won't be able to build types correctly.
19675 Similarly, if we do not read the producer, we can not apply
19676 producer-specific interpretation. */
19677 prepare_one_comp_unit (cu, cu->dies, language_minimal);
19678 }
19679
19680 /* Read in a signatured type and build its CU and DIEs.
19681 If the type is a stub for the real type in a DWO file,
19682 read in the real type from the DWO file as well. */
19683
19684 static void
19685 read_signatured_type (struct signatured_type *sig_type)
19686 {
19687 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
19688
19689 gdb_assert (per_cu->is_debug_types);
19690 gdb_assert (per_cu->cu == NULL);
19691
19692 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19693 read_signatured_type_reader, NULL);
19694 sig_type->per_cu.tu_read = 1;
19695 }
19696
19697 /* Decode simple location descriptions.
19698 Given a pointer to a dwarf block that defines a location, compute
19699 the location and return the value.
19700
19701 NOTE drow/2003-11-18: This function is called in two situations
19702 now: for the address of static or global variables (partial symbols
19703 only) and for offsets into structures which are expected to be
19704 (more or less) constant. The partial symbol case should go away,
19705 and only the constant case should remain. That will let this
19706 function complain more accurately. A few special modes are allowed
19707 without complaint for global variables (for instance, global
19708 register values and thread-local values).
19709
19710 A location description containing no operations indicates that the
19711 object is optimized out. The return value is 0 for that case.
19712 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19713 callers will only want a very basic result and this can become a
19714 complaint.
19715
19716 Note that stack[0] is unused except as a default error return. */
19717
19718 static CORE_ADDR
19719 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
19720 {
19721 struct objfile *objfile = cu->objfile;
19722 size_t i;
19723 size_t size = blk->size;
19724 const gdb_byte *data = blk->data;
19725 CORE_ADDR stack[64];
19726 int stacki;
19727 unsigned int bytes_read, unsnd;
19728 gdb_byte op;
19729
19730 i = 0;
19731 stacki = 0;
19732 stack[stacki] = 0;
19733 stack[++stacki] = 0;
19734
19735 while (i < size)
19736 {
19737 op = data[i++];
19738 switch (op)
19739 {
19740 case DW_OP_lit0:
19741 case DW_OP_lit1:
19742 case DW_OP_lit2:
19743 case DW_OP_lit3:
19744 case DW_OP_lit4:
19745 case DW_OP_lit5:
19746 case DW_OP_lit6:
19747 case DW_OP_lit7:
19748 case DW_OP_lit8:
19749 case DW_OP_lit9:
19750 case DW_OP_lit10:
19751 case DW_OP_lit11:
19752 case DW_OP_lit12:
19753 case DW_OP_lit13:
19754 case DW_OP_lit14:
19755 case DW_OP_lit15:
19756 case DW_OP_lit16:
19757 case DW_OP_lit17:
19758 case DW_OP_lit18:
19759 case DW_OP_lit19:
19760 case DW_OP_lit20:
19761 case DW_OP_lit21:
19762 case DW_OP_lit22:
19763 case DW_OP_lit23:
19764 case DW_OP_lit24:
19765 case DW_OP_lit25:
19766 case DW_OP_lit26:
19767 case DW_OP_lit27:
19768 case DW_OP_lit28:
19769 case DW_OP_lit29:
19770 case DW_OP_lit30:
19771 case DW_OP_lit31:
19772 stack[++stacki] = op - DW_OP_lit0;
19773 break;
19774
19775 case DW_OP_reg0:
19776 case DW_OP_reg1:
19777 case DW_OP_reg2:
19778 case DW_OP_reg3:
19779 case DW_OP_reg4:
19780 case DW_OP_reg5:
19781 case DW_OP_reg6:
19782 case DW_OP_reg7:
19783 case DW_OP_reg8:
19784 case DW_OP_reg9:
19785 case DW_OP_reg10:
19786 case DW_OP_reg11:
19787 case DW_OP_reg12:
19788 case DW_OP_reg13:
19789 case DW_OP_reg14:
19790 case DW_OP_reg15:
19791 case DW_OP_reg16:
19792 case DW_OP_reg17:
19793 case DW_OP_reg18:
19794 case DW_OP_reg19:
19795 case DW_OP_reg20:
19796 case DW_OP_reg21:
19797 case DW_OP_reg22:
19798 case DW_OP_reg23:
19799 case DW_OP_reg24:
19800 case DW_OP_reg25:
19801 case DW_OP_reg26:
19802 case DW_OP_reg27:
19803 case DW_OP_reg28:
19804 case DW_OP_reg29:
19805 case DW_OP_reg30:
19806 case DW_OP_reg31:
19807 stack[++stacki] = op - DW_OP_reg0;
19808 if (i < size)
19809 dwarf2_complex_location_expr_complaint ();
19810 break;
19811
19812 case DW_OP_regx:
19813 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19814 i += bytes_read;
19815 stack[++stacki] = unsnd;
19816 if (i < size)
19817 dwarf2_complex_location_expr_complaint ();
19818 break;
19819
19820 case DW_OP_addr:
19821 stack[++stacki] = read_address (objfile->obfd, &data[i],
19822 cu, &bytes_read);
19823 i += bytes_read;
19824 break;
19825
19826 case DW_OP_const1u:
19827 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19828 i += 1;
19829 break;
19830
19831 case DW_OP_const1s:
19832 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19833 i += 1;
19834 break;
19835
19836 case DW_OP_const2u:
19837 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19838 i += 2;
19839 break;
19840
19841 case DW_OP_const2s:
19842 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19843 i += 2;
19844 break;
19845
19846 case DW_OP_const4u:
19847 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19848 i += 4;
19849 break;
19850
19851 case DW_OP_const4s:
19852 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19853 i += 4;
19854 break;
19855
19856 case DW_OP_const8u:
19857 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19858 i += 8;
19859 break;
19860
19861 case DW_OP_constu:
19862 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19863 &bytes_read);
19864 i += bytes_read;
19865 break;
19866
19867 case DW_OP_consts:
19868 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19869 i += bytes_read;
19870 break;
19871
19872 case DW_OP_dup:
19873 stack[stacki + 1] = stack[stacki];
19874 stacki++;
19875 break;
19876
19877 case DW_OP_plus:
19878 stack[stacki - 1] += stack[stacki];
19879 stacki--;
19880 break;
19881
19882 case DW_OP_plus_uconst:
19883 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19884 &bytes_read);
19885 i += bytes_read;
19886 break;
19887
19888 case DW_OP_minus:
19889 stack[stacki - 1] -= stack[stacki];
19890 stacki--;
19891 break;
19892
19893 case DW_OP_deref:
19894 /* If we're not the last op, then we definitely can't encode
19895 this using GDB's address_class enum. This is valid for partial
19896 global symbols, although the variable's address will be bogus
19897 in the psymtab. */
19898 if (i < size)
19899 dwarf2_complex_location_expr_complaint ();
19900 break;
19901
19902 case DW_OP_GNU_push_tls_address:
19903 /* The top of the stack has the offset from the beginning
19904 of the thread control block at which the variable is located. */
19905 /* Nothing should follow this operator, so the top of stack would
19906 be returned. */
19907 /* This is valid for partial global symbols, but the variable's
19908 address will be bogus in the psymtab. Make it always at least
19909 non-zero to not look as a variable garbage collected by linker
19910 which have DW_OP_addr 0. */
19911 if (i < size)
19912 dwarf2_complex_location_expr_complaint ();
19913 stack[stacki]++;
19914 break;
19915
19916 case DW_OP_GNU_uninit:
19917 break;
19918
19919 case DW_OP_GNU_addr_index:
19920 case DW_OP_GNU_const_index:
19921 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19922 &bytes_read);
19923 i += bytes_read;
19924 break;
19925
19926 default:
19927 {
19928 const char *name = get_DW_OP_name (op);
19929
19930 if (name)
19931 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19932 name);
19933 else
19934 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19935 op);
19936 }
19937
19938 return (stack[stacki]);
19939 }
19940
19941 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19942 outside of the allocated space. Also enforce minimum>0. */
19943 if (stacki >= ARRAY_SIZE (stack) - 1)
19944 {
19945 complaint (&symfile_complaints,
19946 _("location description stack overflow"));
19947 return 0;
19948 }
19949
19950 if (stacki <= 0)
19951 {
19952 complaint (&symfile_complaints,
19953 _("location description stack underflow"));
19954 return 0;
19955 }
19956 }
19957 return (stack[stacki]);
19958 }
19959
19960 /* memory allocation interface */
19961
19962 static struct dwarf_block *
19963 dwarf_alloc_block (struct dwarf2_cu *cu)
19964 {
19965 struct dwarf_block *blk;
19966
19967 blk = (struct dwarf_block *)
19968 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
19969 return (blk);
19970 }
19971
19972 static struct die_info *
19973 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
19974 {
19975 struct die_info *die;
19976 size_t size = sizeof (struct die_info);
19977
19978 if (num_attrs > 1)
19979 size += (num_attrs - 1) * sizeof (struct attribute);
19980
19981 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
19982 memset (die, 0, sizeof (struct die_info));
19983 return (die);
19984 }
19985
19986 \f
19987 /* Macro support. */
19988
19989 /* Return file name relative to the compilation directory of file number I in
19990 *LH's file name table. The result is allocated using xmalloc; the caller is
19991 responsible for freeing it. */
19992
19993 static char *
19994 file_file_name (int file, struct line_header *lh)
19995 {
19996 /* Is the file number a valid index into the line header's file name
19997 table? Remember that file numbers start with one, not zero. */
19998 if (1 <= file && file <= lh->num_file_names)
19999 {
20000 struct file_entry *fe = &lh->file_names[file - 1];
20001
20002 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
20003 return xstrdup (fe->name);
20004 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20005 fe->name, NULL);
20006 }
20007 else
20008 {
20009 /* The compiler produced a bogus file number. We can at least
20010 record the macro definitions made in the file, even if we
20011 won't be able to find the file by name. */
20012 char fake_name[80];
20013
20014 xsnprintf (fake_name, sizeof (fake_name),
20015 "<bad macro file number %d>", file);
20016
20017 complaint (&symfile_complaints,
20018 _("bad file number in macro information (%d)"),
20019 file);
20020
20021 return xstrdup (fake_name);
20022 }
20023 }
20024
20025 /* Return the full name of file number I in *LH's file name table.
20026 Use COMP_DIR as the name of the current directory of the
20027 compilation. The result is allocated using xmalloc; the caller is
20028 responsible for freeing it. */
20029 static char *
20030 file_full_name (int file, struct line_header *lh, const char *comp_dir)
20031 {
20032 /* Is the file number a valid index into the line header's file name
20033 table? Remember that file numbers start with one, not zero. */
20034 if (1 <= file && file <= lh->num_file_names)
20035 {
20036 char *relative = file_file_name (file, lh);
20037
20038 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20039 return relative;
20040 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20041 }
20042 else
20043 return file_file_name (file, lh);
20044 }
20045
20046
20047 static struct macro_source_file *
20048 macro_start_file (int file, int line,
20049 struct macro_source_file *current_file,
20050 const char *comp_dir,
20051 struct line_header *lh, struct objfile *objfile)
20052 {
20053 /* File name relative to the compilation directory of this source file. */
20054 char *file_name = file_file_name (file, lh);
20055
20056 if (! current_file)
20057 {
20058 /* Note: We don't create a macro table for this compilation unit
20059 at all until we actually get a filename. */
20060 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20061
20062 /* If we have no current file, then this must be the start_file
20063 directive for the compilation unit's main source file. */
20064 current_file = macro_set_main (macro_table, file_name);
20065 macro_define_special (macro_table);
20066 }
20067 else
20068 current_file = macro_include (current_file, line, file_name);
20069
20070 xfree (file_name);
20071
20072 return current_file;
20073 }
20074
20075
20076 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20077 followed by a null byte. */
20078 static char *
20079 copy_string (const char *buf, int len)
20080 {
20081 char *s = xmalloc (len + 1);
20082
20083 memcpy (s, buf, len);
20084 s[len] = '\0';
20085 return s;
20086 }
20087
20088
20089 static const char *
20090 consume_improper_spaces (const char *p, const char *body)
20091 {
20092 if (*p == ' ')
20093 {
20094 complaint (&symfile_complaints,
20095 _("macro definition contains spaces "
20096 "in formal argument list:\n`%s'"),
20097 body);
20098
20099 while (*p == ' ')
20100 p++;
20101 }
20102
20103 return p;
20104 }
20105
20106
20107 static void
20108 parse_macro_definition (struct macro_source_file *file, int line,
20109 const char *body)
20110 {
20111 const char *p;
20112
20113 /* The body string takes one of two forms. For object-like macro
20114 definitions, it should be:
20115
20116 <macro name> " " <definition>
20117
20118 For function-like macro definitions, it should be:
20119
20120 <macro name> "() " <definition>
20121 or
20122 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20123
20124 Spaces may appear only where explicitly indicated, and in the
20125 <definition>.
20126
20127 The Dwarf 2 spec says that an object-like macro's name is always
20128 followed by a space, but versions of GCC around March 2002 omit
20129 the space when the macro's definition is the empty string.
20130
20131 The Dwarf 2 spec says that there should be no spaces between the
20132 formal arguments in a function-like macro's formal argument list,
20133 but versions of GCC around March 2002 include spaces after the
20134 commas. */
20135
20136
20137 /* Find the extent of the macro name. The macro name is terminated
20138 by either a space or null character (for an object-like macro) or
20139 an opening paren (for a function-like macro). */
20140 for (p = body; *p; p++)
20141 if (*p == ' ' || *p == '(')
20142 break;
20143
20144 if (*p == ' ' || *p == '\0')
20145 {
20146 /* It's an object-like macro. */
20147 int name_len = p - body;
20148 char *name = copy_string (body, name_len);
20149 const char *replacement;
20150
20151 if (*p == ' ')
20152 replacement = body + name_len + 1;
20153 else
20154 {
20155 dwarf2_macro_malformed_definition_complaint (body);
20156 replacement = body + name_len;
20157 }
20158
20159 macro_define_object (file, line, name, replacement);
20160
20161 xfree (name);
20162 }
20163 else if (*p == '(')
20164 {
20165 /* It's a function-like macro. */
20166 char *name = copy_string (body, p - body);
20167 int argc = 0;
20168 int argv_size = 1;
20169 char **argv = xmalloc (argv_size * sizeof (*argv));
20170
20171 p++;
20172
20173 p = consume_improper_spaces (p, body);
20174
20175 /* Parse the formal argument list. */
20176 while (*p && *p != ')')
20177 {
20178 /* Find the extent of the current argument name. */
20179 const char *arg_start = p;
20180
20181 while (*p && *p != ',' && *p != ')' && *p != ' ')
20182 p++;
20183
20184 if (! *p || p == arg_start)
20185 dwarf2_macro_malformed_definition_complaint (body);
20186 else
20187 {
20188 /* Make sure argv has room for the new argument. */
20189 if (argc >= argv_size)
20190 {
20191 argv_size *= 2;
20192 argv = xrealloc (argv, argv_size * sizeof (*argv));
20193 }
20194
20195 argv[argc++] = copy_string (arg_start, p - arg_start);
20196 }
20197
20198 p = consume_improper_spaces (p, body);
20199
20200 /* Consume the comma, if present. */
20201 if (*p == ',')
20202 {
20203 p++;
20204
20205 p = consume_improper_spaces (p, body);
20206 }
20207 }
20208
20209 if (*p == ')')
20210 {
20211 p++;
20212
20213 if (*p == ' ')
20214 /* Perfectly formed definition, no complaints. */
20215 macro_define_function (file, line, name,
20216 argc, (const char **) argv,
20217 p + 1);
20218 else if (*p == '\0')
20219 {
20220 /* Complain, but do define it. */
20221 dwarf2_macro_malformed_definition_complaint (body);
20222 macro_define_function (file, line, name,
20223 argc, (const char **) argv,
20224 p);
20225 }
20226 else
20227 /* Just complain. */
20228 dwarf2_macro_malformed_definition_complaint (body);
20229 }
20230 else
20231 /* Just complain. */
20232 dwarf2_macro_malformed_definition_complaint (body);
20233
20234 xfree (name);
20235 {
20236 int i;
20237
20238 for (i = 0; i < argc; i++)
20239 xfree (argv[i]);
20240 }
20241 xfree (argv);
20242 }
20243 else
20244 dwarf2_macro_malformed_definition_complaint (body);
20245 }
20246
20247 /* Skip some bytes from BYTES according to the form given in FORM.
20248 Returns the new pointer. */
20249
20250 static const gdb_byte *
20251 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
20252 enum dwarf_form form,
20253 unsigned int offset_size,
20254 struct dwarf2_section_info *section)
20255 {
20256 unsigned int bytes_read;
20257
20258 switch (form)
20259 {
20260 case DW_FORM_data1:
20261 case DW_FORM_flag:
20262 ++bytes;
20263 break;
20264
20265 case DW_FORM_data2:
20266 bytes += 2;
20267 break;
20268
20269 case DW_FORM_data4:
20270 bytes += 4;
20271 break;
20272
20273 case DW_FORM_data8:
20274 bytes += 8;
20275 break;
20276
20277 case DW_FORM_string:
20278 read_direct_string (abfd, bytes, &bytes_read);
20279 bytes += bytes_read;
20280 break;
20281
20282 case DW_FORM_sec_offset:
20283 case DW_FORM_strp:
20284 case DW_FORM_GNU_strp_alt:
20285 bytes += offset_size;
20286 break;
20287
20288 case DW_FORM_block:
20289 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20290 bytes += bytes_read;
20291 break;
20292
20293 case DW_FORM_block1:
20294 bytes += 1 + read_1_byte (abfd, bytes);
20295 break;
20296 case DW_FORM_block2:
20297 bytes += 2 + read_2_bytes (abfd, bytes);
20298 break;
20299 case DW_FORM_block4:
20300 bytes += 4 + read_4_bytes (abfd, bytes);
20301 break;
20302
20303 case DW_FORM_sdata:
20304 case DW_FORM_udata:
20305 case DW_FORM_GNU_addr_index:
20306 case DW_FORM_GNU_str_index:
20307 bytes = gdb_skip_leb128 (bytes, buffer_end);
20308 if (bytes == NULL)
20309 {
20310 dwarf2_section_buffer_overflow_complaint (section);
20311 return NULL;
20312 }
20313 break;
20314
20315 default:
20316 {
20317 complain:
20318 complaint (&symfile_complaints,
20319 _("invalid form 0x%x in `%s'"),
20320 form, get_section_name (section));
20321 return NULL;
20322 }
20323 }
20324
20325 return bytes;
20326 }
20327
20328 /* A helper for dwarf_decode_macros that handles skipping an unknown
20329 opcode. Returns an updated pointer to the macro data buffer; or,
20330 on error, issues a complaint and returns NULL. */
20331
20332 static const gdb_byte *
20333 skip_unknown_opcode (unsigned int opcode,
20334 const gdb_byte **opcode_definitions,
20335 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20336 bfd *abfd,
20337 unsigned int offset_size,
20338 struct dwarf2_section_info *section)
20339 {
20340 unsigned int bytes_read, i;
20341 unsigned long arg;
20342 const gdb_byte *defn;
20343
20344 if (opcode_definitions[opcode] == NULL)
20345 {
20346 complaint (&symfile_complaints,
20347 _("unrecognized DW_MACFINO opcode 0x%x"),
20348 opcode);
20349 return NULL;
20350 }
20351
20352 defn = opcode_definitions[opcode];
20353 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20354 defn += bytes_read;
20355
20356 for (i = 0; i < arg; ++i)
20357 {
20358 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20359 section);
20360 if (mac_ptr == NULL)
20361 {
20362 /* skip_form_bytes already issued the complaint. */
20363 return NULL;
20364 }
20365 }
20366
20367 return mac_ptr;
20368 }
20369
20370 /* A helper function which parses the header of a macro section.
20371 If the macro section is the extended (for now called "GNU") type,
20372 then this updates *OFFSET_SIZE. Returns a pointer to just after
20373 the header, or issues a complaint and returns NULL on error. */
20374
20375 static const gdb_byte *
20376 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
20377 bfd *abfd,
20378 const gdb_byte *mac_ptr,
20379 unsigned int *offset_size,
20380 int section_is_gnu)
20381 {
20382 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
20383
20384 if (section_is_gnu)
20385 {
20386 unsigned int version, flags;
20387
20388 version = read_2_bytes (abfd, mac_ptr);
20389 if (version != 4)
20390 {
20391 complaint (&symfile_complaints,
20392 _("unrecognized version `%d' in .debug_macro section"),
20393 version);
20394 return NULL;
20395 }
20396 mac_ptr += 2;
20397
20398 flags = read_1_byte (abfd, mac_ptr);
20399 ++mac_ptr;
20400 *offset_size = (flags & 1) ? 8 : 4;
20401
20402 if ((flags & 2) != 0)
20403 /* We don't need the line table offset. */
20404 mac_ptr += *offset_size;
20405
20406 /* Vendor opcode descriptions. */
20407 if ((flags & 4) != 0)
20408 {
20409 unsigned int i, count;
20410
20411 count = read_1_byte (abfd, mac_ptr);
20412 ++mac_ptr;
20413 for (i = 0; i < count; ++i)
20414 {
20415 unsigned int opcode, bytes_read;
20416 unsigned long arg;
20417
20418 opcode = read_1_byte (abfd, mac_ptr);
20419 ++mac_ptr;
20420 opcode_definitions[opcode] = mac_ptr;
20421 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20422 mac_ptr += bytes_read;
20423 mac_ptr += arg;
20424 }
20425 }
20426 }
20427
20428 return mac_ptr;
20429 }
20430
20431 /* A helper for dwarf_decode_macros that handles the GNU extensions,
20432 including DW_MACRO_GNU_transparent_include. */
20433
20434 static void
20435 dwarf_decode_macro_bytes (bfd *abfd,
20436 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
20437 struct macro_source_file *current_file,
20438 struct line_header *lh, const char *comp_dir,
20439 struct dwarf2_section_info *section,
20440 int section_is_gnu, int section_is_dwz,
20441 unsigned int offset_size,
20442 struct objfile *objfile,
20443 htab_t include_hash)
20444 {
20445 enum dwarf_macro_record_type macinfo_type;
20446 int at_commandline;
20447 const gdb_byte *opcode_definitions[256];
20448
20449 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20450 &offset_size, section_is_gnu);
20451 if (mac_ptr == NULL)
20452 {
20453 /* We already issued a complaint. */
20454 return;
20455 }
20456
20457 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20458 GDB is still reading the definitions from command line. First
20459 DW_MACINFO_start_file will need to be ignored as it was already executed
20460 to create CURRENT_FILE for the main source holding also the command line
20461 definitions. On first met DW_MACINFO_start_file this flag is reset to
20462 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20463
20464 at_commandline = 1;
20465
20466 do
20467 {
20468 /* Do we at least have room for a macinfo type byte? */
20469 if (mac_ptr >= mac_end)
20470 {
20471 dwarf2_section_buffer_overflow_complaint (section);
20472 break;
20473 }
20474
20475 macinfo_type = read_1_byte (abfd, mac_ptr);
20476 mac_ptr++;
20477
20478 /* Note that we rely on the fact that the corresponding GNU and
20479 DWARF constants are the same. */
20480 switch (macinfo_type)
20481 {
20482 /* A zero macinfo type indicates the end of the macro
20483 information. */
20484 case 0:
20485 break;
20486
20487 case DW_MACRO_GNU_define:
20488 case DW_MACRO_GNU_undef:
20489 case DW_MACRO_GNU_define_indirect:
20490 case DW_MACRO_GNU_undef_indirect:
20491 case DW_MACRO_GNU_define_indirect_alt:
20492 case DW_MACRO_GNU_undef_indirect_alt:
20493 {
20494 unsigned int bytes_read;
20495 int line;
20496 const char *body;
20497 int is_define;
20498
20499 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20500 mac_ptr += bytes_read;
20501
20502 if (macinfo_type == DW_MACRO_GNU_define
20503 || macinfo_type == DW_MACRO_GNU_undef)
20504 {
20505 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20506 mac_ptr += bytes_read;
20507 }
20508 else
20509 {
20510 LONGEST str_offset;
20511
20512 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20513 mac_ptr += offset_size;
20514
20515 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
20516 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20517 || section_is_dwz)
20518 {
20519 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20520
20521 body = read_indirect_string_from_dwz (dwz, str_offset);
20522 }
20523 else
20524 body = read_indirect_string_at_offset (abfd, str_offset);
20525 }
20526
20527 is_define = (macinfo_type == DW_MACRO_GNU_define
20528 || macinfo_type == DW_MACRO_GNU_define_indirect
20529 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
20530 if (! current_file)
20531 {
20532 /* DWARF violation as no main source is present. */
20533 complaint (&symfile_complaints,
20534 _("debug info with no main source gives macro %s "
20535 "on line %d: %s"),
20536 is_define ? _("definition") : _("undefinition"),
20537 line, body);
20538 break;
20539 }
20540 if ((line == 0 && !at_commandline)
20541 || (line != 0 && at_commandline))
20542 complaint (&symfile_complaints,
20543 _("debug info gives %s macro %s with %s line %d: %s"),
20544 at_commandline ? _("command-line") : _("in-file"),
20545 is_define ? _("definition") : _("undefinition"),
20546 line == 0 ? _("zero") : _("non-zero"), line, body);
20547
20548 if (is_define)
20549 parse_macro_definition (current_file, line, body);
20550 else
20551 {
20552 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
20553 || macinfo_type == DW_MACRO_GNU_undef_indirect
20554 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
20555 macro_undef (current_file, line, body);
20556 }
20557 }
20558 break;
20559
20560 case DW_MACRO_GNU_start_file:
20561 {
20562 unsigned int bytes_read;
20563 int line, file;
20564
20565 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20566 mac_ptr += bytes_read;
20567 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20568 mac_ptr += bytes_read;
20569
20570 if ((line == 0 && !at_commandline)
20571 || (line != 0 && at_commandline))
20572 complaint (&symfile_complaints,
20573 _("debug info gives source %d included "
20574 "from %s at %s line %d"),
20575 file, at_commandline ? _("command-line") : _("file"),
20576 line == 0 ? _("zero") : _("non-zero"), line);
20577
20578 if (at_commandline)
20579 {
20580 /* This DW_MACRO_GNU_start_file was executed in the
20581 pass one. */
20582 at_commandline = 0;
20583 }
20584 else
20585 current_file = macro_start_file (file, line,
20586 current_file, comp_dir,
20587 lh, objfile);
20588 }
20589 break;
20590
20591 case DW_MACRO_GNU_end_file:
20592 if (! current_file)
20593 complaint (&symfile_complaints,
20594 _("macro debug info has an unmatched "
20595 "`close_file' directive"));
20596 else
20597 {
20598 current_file = current_file->included_by;
20599 if (! current_file)
20600 {
20601 enum dwarf_macro_record_type next_type;
20602
20603 /* GCC circa March 2002 doesn't produce the zero
20604 type byte marking the end of the compilation
20605 unit. Complain if it's not there, but exit no
20606 matter what. */
20607
20608 /* Do we at least have room for a macinfo type byte? */
20609 if (mac_ptr >= mac_end)
20610 {
20611 dwarf2_section_buffer_overflow_complaint (section);
20612 return;
20613 }
20614
20615 /* We don't increment mac_ptr here, so this is just
20616 a look-ahead. */
20617 next_type = read_1_byte (abfd, mac_ptr);
20618 if (next_type != 0)
20619 complaint (&symfile_complaints,
20620 _("no terminating 0-type entry for "
20621 "macros in `.debug_macinfo' section"));
20622
20623 return;
20624 }
20625 }
20626 break;
20627
20628 case DW_MACRO_GNU_transparent_include:
20629 case DW_MACRO_GNU_transparent_include_alt:
20630 {
20631 LONGEST offset;
20632 void **slot;
20633 bfd *include_bfd = abfd;
20634 struct dwarf2_section_info *include_section = section;
20635 struct dwarf2_section_info alt_section;
20636 const gdb_byte *include_mac_end = mac_end;
20637 int is_dwz = section_is_dwz;
20638 const gdb_byte *new_mac_ptr;
20639
20640 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20641 mac_ptr += offset_size;
20642
20643 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20644 {
20645 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20646
20647 dwarf2_read_section (dwarf2_per_objfile->objfile,
20648 &dwz->macro);
20649
20650 include_section = &dwz->macro;
20651 include_bfd = get_section_bfd_owner (include_section);
20652 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20653 is_dwz = 1;
20654 }
20655
20656 new_mac_ptr = include_section->buffer + offset;
20657 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20658
20659 if (*slot != NULL)
20660 {
20661 /* This has actually happened; see
20662 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20663 complaint (&symfile_complaints,
20664 _("recursive DW_MACRO_GNU_transparent_include in "
20665 ".debug_macro section"));
20666 }
20667 else
20668 {
20669 *slot = (void *) new_mac_ptr;
20670
20671 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
20672 include_mac_end, current_file,
20673 lh, comp_dir,
20674 section, section_is_gnu, is_dwz,
20675 offset_size, objfile, include_hash);
20676
20677 htab_remove_elt (include_hash, (void *) new_mac_ptr);
20678 }
20679 }
20680 break;
20681
20682 case DW_MACINFO_vendor_ext:
20683 if (!section_is_gnu)
20684 {
20685 unsigned int bytes_read;
20686 int constant;
20687
20688 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20689 mac_ptr += bytes_read;
20690 read_direct_string (abfd, mac_ptr, &bytes_read);
20691 mac_ptr += bytes_read;
20692
20693 /* We don't recognize any vendor extensions. */
20694 break;
20695 }
20696 /* FALLTHROUGH */
20697
20698 default:
20699 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20700 mac_ptr, mac_end, abfd, offset_size,
20701 section);
20702 if (mac_ptr == NULL)
20703 return;
20704 break;
20705 }
20706 } while (macinfo_type != 0);
20707 }
20708
20709 static void
20710 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
20711 const char *comp_dir, int section_is_gnu)
20712 {
20713 struct objfile *objfile = dwarf2_per_objfile->objfile;
20714 struct line_header *lh = cu->line_header;
20715 bfd *abfd;
20716 const gdb_byte *mac_ptr, *mac_end;
20717 struct macro_source_file *current_file = 0;
20718 enum dwarf_macro_record_type macinfo_type;
20719 unsigned int offset_size = cu->header.offset_size;
20720 const gdb_byte *opcode_definitions[256];
20721 struct cleanup *cleanup;
20722 htab_t include_hash;
20723 void **slot;
20724 struct dwarf2_section_info *section;
20725 const char *section_name;
20726
20727 if (cu->dwo_unit != NULL)
20728 {
20729 if (section_is_gnu)
20730 {
20731 section = &cu->dwo_unit->dwo_file->sections.macro;
20732 section_name = ".debug_macro.dwo";
20733 }
20734 else
20735 {
20736 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20737 section_name = ".debug_macinfo.dwo";
20738 }
20739 }
20740 else
20741 {
20742 if (section_is_gnu)
20743 {
20744 section = &dwarf2_per_objfile->macro;
20745 section_name = ".debug_macro";
20746 }
20747 else
20748 {
20749 section = &dwarf2_per_objfile->macinfo;
20750 section_name = ".debug_macinfo";
20751 }
20752 }
20753
20754 dwarf2_read_section (objfile, section);
20755 if (section->buffer == NULL)
20756 {
20757 complaint (&symfile_complaints, _("missing %s section"), section_name);
20758 return;
20759 }
20760 abfd = get_section_bfd_owner (section);
20761
20762 /* First pass: Find the name of the base filename.
20763 This filename is needed in order to process all macros whose definition
20764 (or undefinition) comes from the command line. These macros are defined
20765 before the first DW_MACINFO_start_file entry, and yet still need to be
20766 associated to the base file.
20767
20768 To determine the base file name, we scan the macro definitions until we
20769 reach the first DW_MACINFO_start_file entry. We then initialize
20770 CURRENT_FILE accordingly so that any macro definition found before the
20771 first DW_MACINFO_start_file can still be associated to the base file. */
20772
20773 mac_ptr = section->buffer + offset;
20774 mac_end = section->buffer + section->size;
20775
20776 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20777 &offset_size, section_is_gnu);
20778 if (mac_ptr == NULL)
20779 {
20780 /* We already issued a complaint. */
20781 return;
20782 }
20783
20784 do
20785 {
20786 /* Do we at least have room for a macinfo type byte? */
20787 if (mac_ptr >= mac_end)
20788 {
20789 /* Complaint is printed during the second pass as GDB will probably
20790 stop the first pass earlier upon finding
20791 DW_MACINFO_start_file. */
20792 break;
20793 }
20794
20795 macinfo_type = read_1_byte (abfd, mac_ptr);
20796 mac_ptr++;
20797
20798 /* Note that we rely on the fact that the corresponding GNU and
20799 DWARF constants are the same. */
20800 switch (macinfo_type)
20801 {
20802 /* A zero macinfo type indicates the end of the macro
20803 information. */
20804 case 0:
20805 break;
20806
20807 case DW_MACRO_GNU_define:
20808 case DW_MACRO_GNU_undef:
20809 /* Only skip the data by MAC_PTR. */
20810 {
20811 unsigned int bytes_read;
20812
20813 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20814 mac_ptr += bytes_read;
20815 read_direct_string (abfd, mac_ptr, &bytes_read);
20816 mac_ptr += bytes_read;
20817 }
20818 break;
20819
20820 case DW_MACRO_GNU_start_file:
20821 {
20822 unsigned int bytes_read;
20823 int line, file;
20824
20825 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20826 mac_ptr += bytes_read;
20827 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20828 mac_ptr += bytes_read;
20829
20830 current_file = macro_start_file (file, line, current_file,
20831 comp_dir, lh, objfile);
20832 }
20833 break;
20834
20835 case DW_MACRO_GNU_end_file:
20836 /* No data to skip by MAC_PTR. */
20837 break;
20838
20839 case DW_MACRO_GNU_define_indirect:
20840 case DW_MACRO_GNU_undef_indirect:
20841 case DW_MACRO_GNU_define_indirect_alt:
20842 case DW_MACRO_GNU_undef_indirect_alt:
20843 {
20844 unsigned int bytes_read;
20845
20846 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20847 mac_ptr += bytes_read;
20848 mac_ptr += offset_size;
20849 }
20850 break;
20851
20852 case DW_MACRO_GNU_transparent_include:
20853 case DW_MACRO_GNU_transparent_include_alt:
20854 /* Note that, according to the spec, a transparent include
20855 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20856 skip this opcode. */
20857 mac_ptr += offset_size;
20858 break;
20859
20860 case DW_MACINFO_vendor_ext:
20861 /* Only skip the data by MAC_PTR. */
20862 if (!section_is_gnu)
20863 {
20864 unsigned int bytes_read;
20865
20866 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20867 mac_ptr += bytes_read;
20868 read_direct_string (abfd, mac_ptr, &bytes_read);
20869 mac_ptr += bytes_read;
20870 }
20871 /* FALLTHROUGH */
20872
20873 default:
20874 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
20875 mac_ptr, mac_end, abfd, offset_size,
20876 section);
20877 if (mac_ptr == NULL)
20878 return;
20879 break;
20880 }
20881 } while (macinfo_type != 0 && current_file == NULL);
20882
20883 /* Second pass: Process all entries.
20884
20885 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20886 command-line macro definitions/undefinitions. This flag is unset when we
20887 reach the first DW_MACINFO_start_file entry. */
20888
20889 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20890 NULL, xcalloc, xfree);
20891 cleanup = make_cleanup_htab_delete (include_hash);
20892 mac_ptr = section->buffer + offset;
20893 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
20894 *slot = (void *) mac_ptr;
20895 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
20896 current_file, lh, comp_dir, section,
20897 section_is_gnu, 0,
20898 offset_size, objfile, include_hash);
20899 do_cleanups (cleanup);
20900 }
20901
20902 /* Check if the attribute's form is a DW_FORM_block*
20903 if so return true else false. */
20904
20905 static int
20906 attr_form_is_block (const struct attribute *attr)
20907 {
20908 return (attr == NULL ? 0 :
20909 attr->form == DW_FORM_block1
20910 || attr->form == DW_FORM_block2
20911 || attr->form == DW_FORM_block4
20912 || attr->form == DW_FORM_block
20913 || attr->form == DW_FORM_exprloc);
20914 }
20915
20916 /* Return non-zero if ATTR's value is a section offset --- classes
20917 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20918 You may use DW_UNSND (attr) to retrieve such offsets.
20919
20920 Section 7.5.4, "Attribute Encodings", explains that no attribute
20921 may have a value that belongs to more than one of these classes; it
20922 would be ambiguous if we did, because we use the same forms for all
20923 of them. */
20924
20925 static int
20926 attr_form_is_section_offset (const struct attribute *attr)
20927 {
20928 return (attr->form == DW_FORM_data4
20929 || attr->form == DW_FORM_data8
20930 || attr->form == DW_FORM_sec_offset);
20931 }
20932
20933 /* Return non-zero if ATTR's value falls in the 'constant' class, or
20934 zero otherwise. When this function returns true, you can apply
20935 dwarf2_get_attr_constant_value to it.
20936
20937 However, note that for some attributes you must check
20938 attr_form_is_section_offset before using this test. DW_FORM_data4
20939 and DW_FORM_data8 are members of both the constant class, and of
20940 the classes that contain offsets into other debug sections
20941 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20942 that, if an attribute's can be either a constant or one of the
20943 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20944 taken as section offsets, not constants. */
20945
20946 static int
20947 attr_form_is_constant (const struct attribute *attr)
20948 {
20949 switch (attr->form)
20950 {
20951 case DW_FORM_sdata:
20952 case DW_FORM_udata:
20953 case DW_FORM_data1:
20954 case DW_FORM_data2:
20955 case DW_FORM_data4:
20956 case DW_FORM_data8:
20957 return 1;
20958 default:
20959 return 0;
20960 }
20961 }
20962
20963
20964 /* DW_ADDR is always stored already as sect_offset; despite for the forms
20965 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20966
20967 static int
20968 attr_form_is_ref (const struct attribute *attr)
20969 {
20970 switch (attr->form)
20971 {
20972 case DW_FORM_ref_addr:
20973 case DW_FORM_ref1:
20974 case DW_FORM_ref2:
20975 case DW_FORM_ref4:
20976 case DW_FORM_ref8:
20977 case DW_FORM_ref_udata:
20978 case DW_FORM_GNU_ref_alt:
20979 return 1;
20980 default:
20981 return 0;
20982 }
20983 }
20984
20985 /* Return the .debug_loc section to use for CU.
20986 For DWO files use .debug_loc.dwo. */
20987
20988 static struct dwarf2_section_info *
20989 cu_debug_loc_section (struct dwarf2_cu *cu)
20990 {
20991 if (cu->dwo_unit)
20992 return &cu->dwo_unit->dwo_file->sections.loc;
20993 return &dwarf2_per_objfile->loc;
20994 }
20995
20996 /* A helper function that fills in a dwarf2_loclist_baton. */
20997
20998 static void
20999 fill_in_loclist_baton (struct dwarf2_cu *cu,
21000 struct dwarf2_loclist_baton *baton,
21001 const struct attribute *attr)
21002 {
21003 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21004
21005 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
21006
21007 baton->per_cu = cu->per_cu;
21008 gdb_assert (baton->per_cu);
21009 /* We don't know how long the location list is, but make sure we
21010 don't run off the edge of the section. */
21011 baton->size = section->size - DW_UNSND (attr);
21012 baton->data = section->buffer + DW_UNSND (attr);
21013 baton->base_address = cu->base_address;
21014 baton->from_dwo = cu->dwo_unit != NULL;
21015 }
21016
21017 static void
21018 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
21019 struct dwarf2_cu *cu, int is_block)
21020 {
21021 struct objfile *objfile = dwarf2_per_objfile->objfile;
21022 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21023
21024 if (attr_form_is_section_offset (attr)
21025 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
21026 the section. If so, fall through to the complaint in the
21027 other branch. */
21028 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
21029 {
21030 struct dwarf2_loclist_baton *baton;
21031
21032 baton = obstack_alloc (&objfile->objfile_obstack,
21033 sizeof (struct dwarf2_loclist_baton));
21034
21035 fill_in_loclist_baton (cu, baton, attr);
21036
21037 if (cu->base_known == 0)
21038 complaint (&symfile_complaints,
21039 _("Location list used without "
21040 "specifying the CU base address."));
21041
21042 SYMBOL_ACLASS_INDEX (sym) = (is_block
21043 ? dwarf2_loclist_block_index
21044 : dwarf2_loclist_index);
21045 SYMBOL_LOCATION_BATON (sym) = baton;
21046 }
21047 else
21048 {
21049 struct dwarf2_locexpr_baton *baton;
21050
21051 baton = obstack_alloc (&objfile->objfile_obstack,
21052 sizeof (struct dwarf2_locexpr_baton));
21053 baton->per_cu = cu->per_cu;
21054 gdb_assert (baton->per_cu);
21055
21056 if (attr_form_is_block (attr))
21057 {
21058 /* Note that we're just copying the block's data pointer
21059 here, not the actual data. We're still pointing into the
21060 info_buffer for SYM's objfile; right now we never release
21061 that buffer, but when we do clean up properly this may
21062 need to change. */
21063 baton->size = DW_BLOCK (attr)->size;
21064 baton->data = DW_BLOCK (attr)->data;
21065 }
21066 else
21067 {
21068 dwarf2_invalid_attrib_class_complaint ("location description",
21069 SYMBOL_NATURAL_NAME (sym));
21070 baton->size = 0;
21071 }
21072
21073 SYMBOL_ACLASS_INDEX (sym) = (is_block
21074 ? dwarf2_locexpr_block_index
21075 : dwarf2_locexpr_index);
21076 SYMBOL_LOCATION_BATON (sym) = baton;
21077 }
21078 }
21079
21080 /* Return the OBJFILE associated with the compilation unit CU. If CU
21081 came from a separate debuginfo file, then the master objfile is
21082 returned. */
21083
21084 struct objfile *
21085 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21086 {
21087 struct objfile *objfile = per_cu->objfile;
21088
21089 /* Return the master objfile, so that we can report and look up the
21090 correct file containing this variable. */
21091 if (objfile->separate_debug_objfile_backlink)
21092 objfile = objfile->separate_debug_objfile_backlink;
21093
21094 return objfile;
21095 }
21096
21097 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21098 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21099 CU_HEADERP first. */
21100
21101 static const struct comp_unit_head *
21102 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21103 struct dwarf2_per_cu_data *per_cu)
21104 {
21105 const gdb_byte *info_ptr;
21106
21107 if (per_cu->cu)
21108 return &per_cu->cu->header;
21109
21110 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
21111
21112 memset (cu_headerp, 0, sizeof (*cu_headerp));
21113 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
21114
21115 return cu_headerp;
21116 }
21117
21118 /* Return the address size given in the compilation unit header for CU. */
21119
21120 int
21121 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21122 {
21123 struct comp_unit_head cu_header_local;
21124 const struct comp_unit_head *cu_headerp;
21125
21126 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21127
21128 return cu_headerp->addr_size;
21129 }
21130
21131 /* Return the offset size given in the compilation unit header for CU. */
21132
21133 int
21134 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21135 {
21136 struct comp_unit_head cu_header_local;
21137 const struct comp_unit_head *cu_headerp;
21138
21139 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21140
21141 return cu_headerp->offset_size;
21142 }
21143
21144 /* See its dwarf2loc.h declaration. */
21145
21146 int
21147 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21148 {
21149 struct comp_unit_head cu_header_local;
21150 const struct comp_unit_head *cu_headerp;
21151
21152 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21153
21154 if (cu_headerp->version == 2)
21155 return cu_headerp->addr_size;
21156 else
21157 return cu_headerp->offset_size;
21158 }
21159
21160 /* Return the text offset of the CU. The returned offset comes from
21161 this CU's objfile. If this objfile came from a separate debuginfo
21162 file, then the offset may be different from the corresponding
21163 offset in the parent objfile. */
21164
21165 CORE_ADDR
21166 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21167 {
21168 struct objfile *objfile = per_cu->objfile;
21169
21170 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21171 }
21172
21173 /* Locate the .debug_info compilation unit from CU's objfile which contains
21174 the DIE at OFFSET. Raises an error on failure. */
21175
21176 static struct dwarf2_per_cu_data *
21177 dwarf2_find_containing_comp_unit (sect_offset offset,
21178 unsigned int offset_in_dwz,
21179 struct objfile *objfile)
21180 {
21181 struct dwarf2_per_cu_data *this_cu;
21182 int low, high;
21183 const sect_offset *cu_off;
21184
21185 low = 0;
21186 high = dwarf2_per_objfile->n_comp_units - 1;
21187 while (high > low)
21188 {
21189 struct dwarf2_per_cu_data *mid_cu;
21190 int mid = low + (high - low) / 2;
21191
21192 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21193 cu_off = &mid_cu->offset;
21194 if (mid_cu->is_dwz > offset_in_dwz
21195 || (mid_cu->is_dwz == offset_in_dwz
21196 && cu_off->sect_off >= offset.sect_off))
21197 high = mid;
21198 else
21199 low = mid + 1;
21200 }
21201 gdb_assert (low == high);
21202 this_cu = dwarf2_per_objfile->all_comp_units[low];
21203 cu_off = &this_cu->offset;
21204 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
21205 {
21206 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
21207 error (_("Dwarf Error: could not find partial DIE containing "
21208 "offset 0x%lx [in module %s]"),
21209 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
21210
21211 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21212 <= offset.sect_off);
21213 return dwarf2_per_objfile->all_comp_units[low-1];
21214 }
21215 else
21216 {
21217 this_cu = dwarf2_per_objfile->all_comp_units[low];
21218 if (low == dwarf2_per_objfile->n_comp_units - 1
21219 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21220 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21221 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
21222 return this_cu;
21223 }
21224 }
21225
21226 /* Initialize dwarf2_cu CU, owned by PER_CU. */
21227
21228 static void
21229 init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
21230 {
21231 memset (cu, 0, sizeof (*cu));
21232 per_cu->cu = cu;
21233 cu->per_cu = per_cu;
21234 cu->objfile = per_cu->objfile;
21235 obstack_init (&cu->comp_unit_obstack);
21236 }
21237
21238 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21239
21240 static void
21241 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21242 enum language pretend_language)
21243 {
21244 struct attribute *attr;
21245
21246 /* Set the language we're debugging. */
21247 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21248 if (attr)
21249 set_cu_language (DW_UNSND (attr), cu);
21250 else
21251 {
21252 cu->language = pretend_language;
21253 cu->language_defn = language_def (cu->language);
21254 }
21255
21256 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21257 if (attr)
21258 cu->producer = DW_STRING (attr);
21259 }
21260
21261 /* Release one cached compilation unit, CU. We unlink it from the tree
21262 of compilation units, but we don't remove it from the read_in_chain;
21263 the caller is responsible for that.
21264 NOTE: DATA is a void * because this function is also used as a
21265 cleanup routine. */
21266
21267 static void
21268 free_heap_comp_unit (void *data)
21269 {
21270 struct dwarf2_cu *cu = data;
21271
21272 gdb_assert (cu->per_cu != NULL);
21273 cu->per_cu->cu = NULL;
21274 cu->per_cu = NULL;
21275
21276 obstack_free (&cu->comp_unit_obstack, NULL);
21277
21278 xfree (cu);
21279 }
21280
21281 /* This cleanup function is passed the address of a dwarf2_cu on the stack
21282 when we're finished with it. We can't free the pointer itself, but be
21283 sure to unlink it from the cache. Also release any associated storage. */
21284
21285 static void
21286 free_stack_comp_unit (void *data)
21287 {
21288 struct dwarf2_cu *cu = data;
21289
21290 gdb_assert (cu->per_cu != NULL);
21291 cu->per_cu->cu = NULL;
21292 cu->per_cu = NULL;
21293
21294 obstack_free (&cu->comp_unit_obstack, NULL);
21295 cu->partial_dies = NULL;
21296 }
21297
21298 /* Free all cached compilation units. */
21299
21300 static void
21301 free_cached_comp_units (void *data)
21302 {
21303 struct dwarf2_per_cu_data *per_cu, **last_chain;
21304
21305 per_cu = dwarf2_per_objfile->read_in_chain;
21306 last_chain = &dwarf2_per_objfile->read_in_chain;
21307 while (per_cu != NULL)
21308 {
21309 struct dwarf2_per_cu_data *next_cu;
21310
21311 next_cu = per_cu->cu->read_in_chain;
21312
21313 free_heap_comp_unit (per_cu->cu);
21314 *last_chain = next_cu;
21315
21316 per_cu = next_cu;
21317 }
21318 }
21319
21320 /* Increase the age counter on each cached compilation unit, and free
21321 any that are too old. */
21322
21323 static void
21324 age_cached_comp_units (void)
21325 {
21326 struct dwarf2_per_cu_data *per_cu, **last_chain;
21327
21328 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21329 per_cu = dwarf2_per_objfile->read_in_chain;
21330 while (per_cu != NULL)
21331 {
21332 per_cu->cu->last_used ++;
21333 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21334 dwarf2_mark (per_cu->cu);
21335 per_cu = per_cu->cu->read_in_chain;
21336 }
21337
21338 per_cu = dwarf2_per_objfile->read_in_chain;
21339 last_chain = &dwarf2_per_objfile->read_in_chain;
21340 while (per_cu != NULL)
21341 {
21342 struct dwarf2_per_cu_data *next_cu;
21343
21344 next_cu = per_cu->cu->read_in_chain;
21345
21346 if (!per_cu->cu->mark)
21347 {
21348 free_heap_comp_unit (per_cu->cu);
21349 *last_chain = next_cu;
21350 }
21351 else
21352 last_chain = &per_cu->cu->read_in_chain;
21353
21354 per_cu = next_cu;
21355 }
21356 }
21357
21358 /* Remove a single compilation unit from the cache. */
21359
21360 static void
21361 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
21362 {
21363 struct dwarf2_per_cu_data *per_cu, **last_chain;
21364
21365 per_cu = dwarf2_per_objfile->read_in_chain;
21366 last_chain = &dwarf2_per_objfile->read_in_chain;
21367 while (per_cu != NULL)
21368 {
21369 struct dwarf2_per_cu_data *next_cu;
21370
21371 next_cu = per_cu->cu->read_in_chain;
21372
21373 if (per_cu == target_per_cu)
21374 {
21375 free_heap_comp_unit (per_cu->cu);
21376 per_cu->cu = NULL;
21377 *last_chain = next_cu;
21378 break;
21379 }
21380 else
21381 last_chain = &per_cu->cu->read_in_chain;
21382
21383 per_cu = next_cu;
21384 }
21385 }
21386
21387 /* Release all extra memory associated with OBJFILE. */
21388
21389 void
21390 dwarf2_free_objfile (struct objfile *objfile)
21391 {
21392 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21393
21394 if (dwarf2_per_objfile == NULL)
21395 return;
21396
21397 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21398 free_cached_comp_units (NULL);
21399
21400 if (dwarf2_per_objfile->quick_file_names_table)
21401 htab_delete (dwarf2_per_objfile->quick_file_names_table);
21402
21403 /* Everything else should be on the objfile obstack. */
21404 }
21405
21406 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21407 We store these in a hash table separate from the DIEs, and preserve them
21408 when the DIEs are flushed out of cache.
21409
21410 The CU "per_cu" pointer is needed because offset alone is not enough to
21411 uniquely identify the type. A file may have multiple .debug_types sections,
21412 or the type may come from a DWO file. Furthermore, while it's more logical
21413 to use per_cu->section+offset, with Fission the section with the data is in
21414 the DWO file but we don't know that section at the point we need it.
21415 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21416 because we can enter the lookup routine, get_die_type_at_offset, from
21417 outside this file, and thus won't necessarily have PER_CU->cu.
21418 Fortunately, PER_CU is stable for the life of the objfile. */
21419
21420 struct dwarf2_per_cu_offset_and_type
21421 {
21422 const struct dwarf2_per_cu_data *per_cu;
21423 sect_offset offset;
21424 struct type *type;
21425 };
21426
21427 /* Hash function for a dwarf2_per_cu_offset_and_type. */
21428
21429 static hashval_t
21430 per_cu_offset_and_type_hash (const void *item)
21431 {
21432 const struct dwarf2_per_cu_offset_and_type *ofs = item;
21433
21434 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
21435 }
21436
21437 /* Equality function for a dwarf2_per_cu_offset_and_type. */
21438
21439 static int
21440 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
21441 {
21442 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21443 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
21444
21445 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21446 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
21447 }
21448
21449 /* Set the type associated with DIE to TYPE. Save it in CU's hash
21450 table if necessary. For convenience, return TYPE.
21451
21452 The DIEs reading must have careful ordering to:
21453 * Not cause infite loops trying to read in DIEs as a prerequisite for
21454 reading current DIE.
21455 * Not trying to dereference contents of still incompletely read in types
21456 while reading in other DIEs.
21457 * Enable referencing still incompletely read in types just by a pointer to
21458 the type without accessing its fields.
21459
21460 Therefore caller should follow these rules:
21461 * Try to fetch any prerequisite types we may need to build this DIE type
21462 before building the type and calling set_die_type.
21463 * After building type call set_die_type for current DIE as soon as
21464 possible before fetching more types to complete the current type.
21465 * Make the type as complete as possible before fetching more types. */
21466
21467 static struct type *
21468 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21469 {
21470 struct dwarf2_per_cu_offset_and_type **slot, ofs;
21471 struct objfile *objfile = cu->objfile;
21472
21473 /* For Ada types, make sure that the gnat-specific data is always
21474 initialized (if not already set). There are a few types where
21475 we should not be doing so, because the type-specific area is
21476 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21477 where the type-specific area is used to store the floatformat).
21478 But this is not a problem, because the gnat-specific information
21479 is actually not needed for these types. */
21480 if (need_gnat_info (cu)
21481 && TYPE_CODE (type) != TYPE_CODE_FUNC
21482 && TYPE_CODE (type) != TYPE_CODE_FLT
21483 && !HAVE_GNAT_AUX_INFO (type))
21484 INIT_GNAT_SPECIFIC (type);
21485
21486 if (dwarf2_per_objfile->die_type_hash == NULL)
21487 {
21488 dwarf2_per_objfile->die_type_hash =
21489 htab_create_alloc_ex (127,
21490 per_cu_offset_and_type_hash,
21491 per_cu_offset_and_type_eq,
21492 NULL,
21493 &objfile->objfile_obstack,
21494 hashtab_obstack_allocate,
21495 dummy_obstack_deallocate);
21496 }
21497
21498 ofs.per_cu = cu->per_cu;
21499 ofs.offset = die->offset;
21500 ofs.type = type;
21501 slot = (struct dwarf2_per_cu_offset_and_type **)
21502 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
21503 if (*slot)
21504 complaint (&symfile_complaints,
21505 _("A problem internal to GDB: DIE 0x%x has type already set"),
21506 die->offset.sect_off);
21507 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
21508 **slot = ofs;
21509 return type;
21510 }
21511
21512 /* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21513 or return NULL if the die does not have a saved type. */
21514
21515 static struct type *
21516 get_die_type_at_offset (sect_offset offset,
21517 struct dwarf2_per_cu_data *per_cu)
21518 {
21519 struct dwarf2_per_cu_offset_and_type *slot, ofs;
21520
21521 if (dwarf2_per_objfile->die_type_hash == NULL)
21522 return NULL;
21523
21524 ofs.per_cu = per_cu;
21525 ofs.offset = offset;
21526 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
21527 if (slot)
21528 return slot->type;
21529 else
21530 return NULL;
21531 }
21532
21533 /* Look up the type for DIE in CU in die_type_hash,
21534 or return NULL if DIE does not have a saved type. */
21535
21536 static struct type *
21537 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21538 {
21539 return get_die_type_at_offset (die->offset, cu->per_cu);
21540 }
21541
21542 /* Add a dependence relationship from CU to REF_PER_CU. */
21543
21544 static void
21545 dwarf2_add_dependence (struct dwarf2_cu *cu,
21546 struct dwarf2_per_cu_data *ref_per_cu)
21547 {
21548 void **slot;
21549
21550 if (cu->dependencies == NULL)
21551 cu->dependencies
21552 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21553 NULL, &cu->comp_unit_obstack,
21554 hashtab_obstack_allocate,
21555 dummy_obstack_deallocate);
21556
21557 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21558 if (*slot == NULL)
21559 *slot = ref_per_cu;
21560 }
21561
21562 /* Subroutine of dwarf2_mark to pass to htab_traverse.
21563 Set the mark field in every compilation unit in the
21564 cache that we must keep because we are keeping CU. */
21565
21566 static int
21567 dwarf2_mark_helper (void **slot, void *data)
21568 {
21569 struct dwarf2_per_cu_data *per_cu;
21570
21571 per_cu = (struct dwarf2_per_cu_data *) *slot;
21572
21573 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21574 reading of the chain. As such dependencies remain valid it is not much
21575 useful to track and undo them during QUIT cleanups. */
21576 if (per_cu->cu == NULL)
21577 return 1;
21578
21579 if (per_cu->cu->mark)
21580 return 1;
21581 per_cu->cu->mark = 1;
21582
21583 if (per_cu->cu->dependencies != NULL)
21584 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21585
21586 return 1;
21587 }
21588
21589 /* Set the mark field in CU and in every other compilation unit in the
21590 cache that we must keep because we are keeping CU. */
21591
21592 static void
21593 dwarf2_mark (struct dwarf2_cu *cu)
21594 {
21595 if (cu->mark)
21596 return;
21597 cu->mark = 1;
21598 if (cu->dependencies != NULL)
21599 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
21600 }
21601
21602 static void
21603 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21604 {
21605 while (per_cu)
21606 {
21607 per_cu->cu->mark = 0;
21608 per_cu = per_cu->cu->read_in_chain;
21609 }
21610 }
21611
21612 /* Trivial hash function for partial_die_info: the hash value of a DIE
21613 is its offset in .debug_info for this objfile. */
21614
21615 static hashval_t
21616 partial_die_hash (const void *item)
21617 {
21618 const struct partial_die_info *part_die = item;
21619
21620 return part_die->offset.sect_off;
21621 }
21622
21623 /* Trivial comparison function for partial_die_info structures: two DIEs
21624 are equal if they have the same offset. */
21625
21626 static int
21627 partial_die_eq (const void *item_lhs, const void *item_rhs)
21628 {
21629 const struct partial_die_info *part_die_lhs = item_lhs;
21630 const struct partial_die_info *part_die_rhs = item_rhs;
21631
21632 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
21633 }
21634
21635 static struct cmd_list_element *set_dwarf2_cmdlist;
21636 static struct cmd_list_element *show_dwarf2_cmdlist;
21637
21638 static void
21639 set_dwarf2_cmd (char *args, int from_tty)
21640 {
21641 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21642 }
21643
21644 static void
21645 show_dwarf2_cmd (char *args, int from_tty)
21646 {
21647 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21648 }
21649
21650 /* Free data associated with OBJFILE, if necessary. */
21651
21652 static void
21653 dwarf2_per_objfile_free (struct objfile *objfile, void *d)
21654 {
21655 struct dwarf2_per_objfile *data = d;
21656 int ix;
21657
21658 /* Make sure we don't accidentally use dwarf2_per_objfile while
21659 cleaning up. */
21660 dwarf2_per_objfile = NULL;
21661
21662 for (ix = 0; ix < data->n_comp_units; ++ix)
21663 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
21664
21665 for (ix = 0; ix < data->n_type_units; ++ix)
21666 VEC_free (dwarf2_per_cu_ptr,
21667 data->all_type_units[ix]->per_cu.imported_symtabs);
21668 xfree (data->all_type_units);
21669
21670 VEC_free (dwarf2_section_info_def, data->types);
21671
21672 if (data->dwo_files)
21673 free_dwo_files (data->dwo_files, objfile);
21674 if (data->dwp_file)
21675 gdb_bfd_unref (data->dwp_file->dbfd);
21676
21677 if (data->dwz_file && data->dwz_file->dwz_bfd)
21678 gdb_bfd_unref (data->dwz_file->dwz_bfd);
21679 }
21680
21681 \f
21682 /* The "save gdb-index" command. */
21683
21684 /* The contents of the hash table we create when building the string
21685 table. */
21686 struct strtab_entry
21687 {
21688 offset_type offset;
21689 const char *str;
21690 };
21691
21692 /* Hash function for a strtab_entry.
21693
21694 Function is used only during write_hash_table so no index format backward
21695 compatibility is needed. */
21696
21697 static hashval_t
21698 hash_strtab_entry (const void *e)
21699 {
21700 const struct strtab_entry *entry = e;
21701 return mapped_index_string_hash (INT_MAX, entry->str);
21702 }
21703
21704 /* Equality function for a strtab_entry. */
21705
21706 static int
21707 eq_strtab_entry (const void *a, const void *b)
21708 {
21709 const struct strtab_entry *ea = a;
21710 const struct strtab_entry *eb = b;
21711 return !strcmp (ea->str, eb->str);
21712 }
21713
21714 /* Create a strtab_entry hash table. */
21715
21716 static htab_t
21717 create_strtab (void)
21718 {
21719 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21720 xfree, xcalloc, xfree);
21721 }
21722
21723 /* Add a string to the constant pool. Return the string's offset in
21724 host order. */
21725
21726 static offset_type
21727 add_string (htab_t table, struct obstack *cpool, const char *str)
21728 {
21729 void **slot;
21730 struct strtab_entry entry;
21731 struct strtab_entry *result;
21732
21733 entry.str = str;
21734 slot = htab_find_slot (table, &entry, INSERT);
21735 if (*slot)
21736 result = *slot;
21737 else
21738 {
21739 result = XNEW (struct strtab_entry);
21740 result->offset = obstack_object_size (cpool);
21741 result->str = str;
21742 obstack_grow_str0 (cpool, str);
21743 *slot = result;
21744 }
21745 return result->offset;
21746 }
21747
21748 /* An entry in the symbol table. */
21749 struct symtab_index_entry
21750 {
21751 /* The name of the symbol. */
21752 const char *name;
21753 /* The offset of the name in the constant pool. */
21754 offset_type index_offset;
21755 /* A sorted vector of the indices of all the CUs that hold an object
21756 of this name. */
21757 VEC (offset_type) *cu_indices;
21758 };
21759
21760 /* The symbol table. This is a power-of-2-sized hash table. */
21761 struct mapped_symtab
21762 {
21763 offset_type n_elements;
21764 offset_type size;
21765 struct symtab_index_entry **data;
21766 };
21767
21768 /* Hash function for a symtab_index_entry. */
21769
21770 static hashval_t
21771 hash_symtab_entry (const void *e)
21772 {
21773 const struct symtab_index_entry *entry = e;
21774 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21775 sizeof (offset_type) * VEC_length (offset_type,
21776 entry->cu_indices),
21777 0);
21778 }
21779
21780 /* Equality function for a symtab_index_entry. */
21781
21782 static int
21783 eq_symtab_entry (const void *a, const void *b)
21784 {
21785 const struct symtab_index_entry *ea = a;
21786 const struct symtab_index_entry *eb = b;
21787 int len = VEC_length (offset_type, ea->cu_indices);
21788 if (len != VEC_length (offset_type, eb->cu_indices))
21789 return 0;
21790 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21791 VEC_address (offset_type, eb->cu_indices),
21792 sizeof (offset_type) * len);
21793 }
21794
21795 /* Destroy a symtab_index_entry. */
21796
21797 static void
21798 delete_symtab_entry (void *p)
21799 {
21800 struct symtab_index_entry *entry = p;
21801 VEC_free (offset_type, entry->cu_indices);
21802 xfree (entry);
21803 }
21804
21805 /* Create a hash table holding symtab_index_entry objects. */
21806
21807 static htab_t
21808 create_symbol_hash_table (void)
21809 {
21810 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21811 delete_symtab_entry, xcalloc, xfree);
21812 }
21813
21814 /* Create a new mapped symtab object. */
21815
21816 static struct mapped_symtab *
21817 create_mapped_symtab (void)
21818 {
21819 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21820 symtab->n_elements = 0;
21821 symtab->size = 1024;
21822 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21823 return symtab;
21824 }
21825
21826 /* Destroy a mapped_symtab. */
21827
21828 static void
21829 cleanup_mapped_symtab (void *p)
21830 {
21831 struct mapped_symtab *symtab = p;
21832 /* The contents of the array are freed when the other hash table is
21833 destroyed. */
21834 xfree (symtab->data);
21835 xfree (symtab);
21836 }
21837
21838 /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
21839 the slot.
21840
21841 Function is used only during write_hash_table so no index format backward
21842 compatibility is needed. */
21843
21844 static struct symtab_index_entry **
21845 find_slot (struct mapped_symtab *symtab, const char *name)
21846 {
21847 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
21848
21849 index = hash & (symtab->size - 1);
21850 step = ((hash * 17) & (symtab->size - 1)) | 1;
21851
21852 for (;;)
21853 {
21854 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21855 return &symtab->data[index];
21856 index = (index + step) & (symtab->size - 1);
21857 }
21858 }
21859
21860 /* Expand SYMTAB's hash table. */
21861
21862 static void
21863 hash_expand (struct mapped_symtab *symtab)
21864 {
21865 offset_type old_size = symtab->size;
21866 offset_type i;
21867 struct symtab_index_entry **old_entries = symtab->data;
21868
21869 symtab->size *= 2;
21870 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21871
21872 for (i = 0; i < old_size; ++i)
21873 {
21874 if (old_entries[i])
21875 {
21876 struct symtab_index_entry **slot = find_slot (symtab,
21877 old_entries[i]->name);
21878 *slot = old_entries[i];
21879 }
21880 }
21881
21882 xfree (old_entries);
21883 }
21884
21885 /* Add an entry to SYMTAB. NAME is the name of the symbol.
21886 CU_INDEX is the index of the CU in which the symbol appears.
21887 IS_STATIC is one if the symbol is static, otherwise zero (global). */
21888
21889 static void
21890 add_index_entry (struct mapped_symtab *symtab, const char *name,
21891 int is_static, gdb_index_symbol_kind kind,
21892 offset_type cu_index)
21893 {
21894 struct symtab_index_entry **slot;
21895 offset_type cu_index_and_attrs;
21896
21897 ++symtab->n_elements;
21898 if (4 * symtab->n_elements / 3 >= symtab->size)
21899 hash_expand (symtab);
21900
21901 slot = find_slot (symtab, name);
21902 if (!*slot)
21903 {
21904 *slot = XNEW (struct symtab_index_entry);
21905 (*slot)->name = name;
21906 /* index_offset is set later. */
21907 (*slot)->cu_indices = NULL;
21908 }
21909
21910 cu_index_and_attrs = 0;
21911 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21912 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21913 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21914
21915 /* We don't want to record an index value twice as we want to avoid the
21916 duplication.
21917 We process all global symbols and then all static symbols
21918 (which would allow us to avoid the duplication by only having to check
21919 the last entry pushed), but a symbol could have multiple kinds in one CU.
21920 To keep things simple we don't worry about the duplication here and
21921 sort and uniqufy the list after we've processed all symbols. */
21922 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21923 }
21924
21925 /* qsort helper routine for uniquify_cu_indices. */
21926
21927 static int
21928 offset_type_compare (const void *ap, const void *bp)
21929 {
21930 offset_type a = *(offset_type *) ap;
21931 offset_type b = *(offset_type *) bp;
21932
21933 return (a > b) - (b > a);
21934 }
21935
21936 /* Sort and remove duplicates of all symbols' cu_indices lists. */
21937
21938 static void
21939 uniquify_cu_indices (struct mapped_symtab *symtab)
21940 {
21941 int i;
21942
21943 for (i = 0; i < symtab->size; ++i)
21944 {
21945 struct symtab_index_entry *entry = symtab->data[i];
21946
21947 if (entry
21948 && entry->cu_indices != NULL)
21949 {
21950 unsigned int next_to_insert, next_to_check;
21951 offset_type last_value;
21952
21953 qsort (VEC_address (offset_type, entry->cu_indices),
21954 VEC_length (offset_type, entry->cu_indices),
21955 sizeof (offset_type), offset_type_compare);
21956
21957 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21958 next_to_insert = 1;
21959 for (next_to_check = 1;
21960 next_to_check < VEC_length (offset_type, entry->cu_indices);
21961 ++next_to_check)
21962 {
21963 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21964 != last_value)
21965 {
21966 last_value = VEC_index (offset_type, entry->cu_indices,
21967 next_to_check);
21968 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21969 last_value);
21970 ++next_to_insert;
21971 }
21972 }
21973 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21974 }
21975 }
21976 }
21977
21978 /* Add a vector of indices to the constant pool. */
21979
21980 static offset_type
21981 add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
21982 struct symtab_index_entry *entry)
21983 {
21984 void **slot;
21985
21986 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
21987 if (!*slot)
21988 {
21989 offset_type len = VEC_length (offset_type, entry->cu_indices);
21990 offset_type val = MAYBE_SWAP (len);
21991 offset_type iter;
21992 int i;
21993
21994 *slot = entry;
21995 entry->index_offset = obstack_object_size (cpool);
21996
21997 obstack_grow (cpool, &val, sizeof (val));
21998 for (i = 0;
21999 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22000 ++i)
22001 {
22002 val = MAYBE_SWAP (iter);
22003 obstack_grow (cpool, &val, sizeof (val));
22004 }
22005 }
22006 else
22007 {
22008 struct symtab_index_entry *old_entry = *slot;
22009 entry->index_offset = old_entry->index_offset;
22010 entry = old_entry;
22011 }
22012 return entry->index_offset;
22013 }
22014
22015 /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22016 constant pool entries going into the obstack CPOOL. */
22017
22018 static void
22019 write_hash_table (struct mapped_symtab *symtab,
22020 struct obstack *output, struct obstack *cpool)
22021 {
22022 offset_type i;
22023 htab_t symbol_hash_table;
22024 htab_t str_table;
22025
22026 symbol_hash_table = create_symbol_hash_table ();
22027 str_table = create_strtab ();
22028
22029 /* We add all the index vectors to the constant pool first, to
22030 ensure alignment is ok. */
22031 for (i = 0; i < symtab->size; ++i)
22032 {
22033 if (symtab->data[i])
22034 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
22035 }
22036
22037 /* Now write out the hash table. */
22038 for (i = 0; i < symtab->size; ++i)
22039 {
22040 offset_type str_off, vec_off;
22041
22042 if (symtab->data[i])
22043 {
22044 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22045 vec_off = symtab->data[i]->index_offset;
22046 }
22047 else
22048 {
22049 /* While 0 is a valid constant pool index, it is not valid
22050 to have 0 for both offsets. */
22051 str_off = 0;
22052 vec_off = 0;
22053 }
22054
22055 str_off = MAYBE_SWAP (str_off);
22056 vec_off = MAYBE_SWAP (vec_off);
22057
22058 obstack_grow (output, &str_off, sizeof (str_off));
22059 obstack_grow (output, &vec_off, sizeof (vec_off));
22060 }
22061
22062 htab_delete (str_table);
22063 htab_delete (symbol_hash_table);
22064 }
22065
22066 /* Struct to map psymtab to CU index in the index file. */
22067 struct psymtab_cu_index_map
22068 {
22069 struct partial_symtab *psymtab;
22070 unsigned int cu_index;
22071 };
22072
22073 static hashval_t
22074 hash_psymtab_cu_index (const void *item)
22075 {
22076 const struct psymtab_cu_index_map *map = item;
22077
22078 return htab_hash_pointer (map->psymtab);
22079 }
22080
22081 static int
22082 eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22083 {
22084 const struct psymtab_cu_index_map *lhs = item_lhs;
22085 const struct psymtab_cu_index_map *rhs = item_rhs;
22086
22087 return lhs->psymtab == rhs->psymtab;
22088 }
22089
22090 /* Helper struct for building the address table. */
22091 struct addrmap_index_data
22092 {
22093 struct objfile *objfile;
22094 struct obstack *addr_obstack;
22095 htab_t cu_index_htab;
22096
22097 /* Non-zero if the previous_* fields are valid.
22098 We can't write an entry until we see the next entry (since it is only then
22099 that we know the end of the entry). */
22100 int previous_valid;
22101 /* Index of the CU in the table of all CUs in the index file. */
22102 unsigned int previous_cu_index;
22103 /* Start address of the CU. */
22104 CORE_ADDR previous_cu_start;
22105 };
22106
22107 /* Write an address entry to OBSTACK. */
22108
22109 static void
22110 add_address_entry (struct objfile *objfile, struct obstack *obstack,
22111 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
22112 {
22113 offset_type cu_index_to_write;
22114 gdb_byte addr[8];
22115 CORE_ADDR baseaddr;
22116
22117 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22118
22119 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22120 obstack_grow (obstack, addr, 8);
22121 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22122 obstack_grow (obstack, addr, 8);
22123 cu_index_to_write = MAYBE_SWAP (cu_index);
22124 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22125 }
22126
22127 /* Worker function for traversing an addrmap to build the address table. */
22128
22129 static int
22130 add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22131 {
22132 struct addrmap_index_data *data = datap;
22133 struct partial_symtab *pst = obj;
22134
22135 if (data->previous_valid)
22136 add_address_entry (data->objfile, data->addr_obstack,
22137 data->previous_cu_start, start_addr,
22138 data->previous_cu_index);
22139
22140 data->previous_cu_start = start_addr;
22141 if (pst != NULL)
22142 {
22143 struct psymtab_cu_index_map find_map, *map;
22144 find_map.psymtab = pst;
22145 map = htab_find (data->cu_index_htab, &find_map);
22146 gdb_assert (map != NULL);
22147 data->previous_cu_index = map->cu_index;
22148 data->previous_valid = 1;
22149 }
22150 else
22151 data->previous_valid = 0;
22152
22153 return 0;
22154 }
22155
22156 /* Write OBJFILE's address map to OBSTACK.
22157 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22158 in the index file. */
22159
22160 static void
22161 write_address_map (struct objfile *objfile, struct obstack *obstack,
22162 htab_t cu_index_htab)
22163 {
22164 struct addrmap_index_data addrmap_index_data;
22165
22166 /* When writing the address table, we have to cope with the fact that
22167 the addrmap iterator only provides the start of a region; we have to
22168 wait until the next invocation to get the start of the next region. */
22169
22170 addrmap_index_data.objfile = objfile;
22171 addrmap_index_data.addr_obstack = obstack;
22172 addrmap_index_data.cu_index_htab = cu_index_htab;
22173 addrmap_index_data.previous_valid = 0;
22174
22175 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22176 &addrmap_index_data);
22177
22178 /* It's highly unlikely the last entry (end address = 0xff...ff)
22179 is valid, but we should still handle it.
22180 The end address is recorded as the start of the next region, but that
22181 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22182 anyway. */
22183 if (addrmap_index_data.previous_valid)
22184 add_address_entry (objfile, obstack,
22185 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22186 addrmap_index_data.previous_cu_index);
22187 }
22188
22189 /* Return the symbol kind of PSYM. */
22190
22191 static gdb_index_symbol_kind
22192 symbol_kind (struct partial_symbol *psym)
22193 {
22194 domain_enum domain = PSYMBOL_DOMAIN (psym);
22195 enum address_class aclass = PSYMBOL_CLASS (psym);
22196
22197 switch (domain)
22198 {
22199 case VAR_DOMAIN:
22200 switch (aclass)
22201 {
22202 case LOC_BLOCK:
22203 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22204 case LOC_TYPEDEF:
22205 return GDB_INDEX_SYMBOL_KIND_TYPE;
22206 case LOC_COMPUTED:
22207 case LOC_CONST_BYTES:
22208 case LOC_OPTIMIZED_OUT:
22209 case LOC_STATIC:
22210 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22211 case LOC_CONST:
22212 /* Note: It's currently impossible to recognize psyms as enum values
22213 short of reading the type info. For now punt. */
22214 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22215 default:
22216 /* There are other LOC_FOO values that one might want to classify
22217 as variables, but dwarf2read.c doesn't currently use them. */
22218 return GDB_INDEX_SYMBOL_KIND_OTHER;
22219 }
22220 case STRUCT_DOMAIN:
22221 return GDB_INDEX_SYMBOL_KIND_TYPE;
22222 default:
22223 return GDB_INDEX_SYMBOL_KIND_OTHER;
22224 }
22225 }
22226
22227 /* Add a list of partial symbols to SYMTAB. */
22228
22229 static void
22230 write_psymbols (struct mapped_symtab *symtab,
22231 htab_t psyms_seen,
22232 struct partial_symbol **psymp,
22233 int count,
22234 offset_type cu_index,
22235 int is_static)
22236 {
22237 for (; count-- > 0; ++psymp)
22238 {
22239 struct partial_symbol *psym = *psymp;
22240 void **slot;
22241
22242 if (SYMBOL_LANGUAGE (psym) == language_ada)
22243 error (_("Ada is not currently supported by the index"));
22244
22245 /* Only add a given psymbol once. */
22246 slot = htab_find_slot (psyms_seen, psym, INSERT);
22247 if (!*slot)
22248 {
22249 gdb_index_symbol_kind kind = symbol_kind (psym);
22250
22251 *slot = psym;
22252 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22253 is_static, kind, cu_index);
22254 }
22255 }
22256 }
22257
22258 /* Write the contents of an ("unfinished") obstack to FILE. Throw an
22259 exception if there is an error. */
22260
22261 static void
22262 write_obstack (FILE *file, struct obstack *obstack)
22263 {
22264 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22265 file)
22266 != obstack_object_size (obstack))
22267 error (_("couldn't data write to file"));
22268 }
22269
22270 /* Unlink a file if the argument is not NULL. */
22271
22272 static void
22273 unlink_if_set (void *p)
22274 {
22275 char **filename = p;
22276 if (*filename)
22277 unlink (*filename);
22278 }
22279
22280 /* A helper struct used when iterating over debug_types. */
22281 struct signatured_type_index_data
22282 {
22283 struct objfile *objfile;
22284 struct mapped_symtab *symtab;
22285 struct obstack *types_list;
22286 htab_t psyms_seen;
22287 int cu_index;
22288 };
22289
22290 /* A helper function that writes a single signatured_type to an
22291 obstack. */
22292
22293 static int
22294 write_one_signatured_type (void **slot, void *d)
22295 {
22296 struct signatured_type_index_data *info = d;
22297 struct signatured_type *entry = (struct signatured_type *) *slot;
22298 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
22299 gdb_byte val[8];
22300
22301 write_psymbols (info->symtab,
22302 info->psyms_seen,
22303 info->objfile->global_psymbols.list
22304 + psymtab->globals_offset,
22305 psymtab->n_global_syms, info->cu_index,
22306 0);
22307 write_psymbols (info->symtab,
22308 info->psyms_seen,
22309 info->objfile->static_psymbols.list
22310 + psymtab->statics_offset,
22311 psymtab->n_static_syms, info->cu_index,
22312 1);
22313
22314 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22315 entry->per_cu.offset.sect_off);
22316 obstack_grow (info->types_list, val, 8);
22317 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22318 entry->type_offset_in_tu.cu_off);
22319 obstack_grow (info->types_list, val, 8);
22320 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22321 obstack_grow (info->types_list, val, 8);
22322
22323 ++info->cu_index;
22324
22325 return 1;
22326 }
22327
22328 /* Recurse into all "included" dependencies and write their symbols as
22329 if they appeared in this psymtab. */
22330
22331 static void
22332 recursively_write_psymbols (struct objfile *objfile,
22333 struct partial_symtab *psymtab,
22334 struct mapped_symtab *symtab,
22335 htab_t psyms_seen,
22336 offset_type cu_index)
22337 {
22338 int i;
22339
22340 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22341 if (psymtab->dependencies[i]->user != NULL)
22342 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22343 symtab, psyms_seen, cu_index);
22344
22345 write_psymbols (symtab,
22346 psyms_seen,
22347 objfile->global_psymbols.list + psymtab->globals_offset,
22348 psymtab->n_global_syms, cu_index,
22349 0);
22350 write_psymbols (symtab,
22351 psyms_seen,
22352 objfile->static_psymbols.list + psymtab->statics_offset,
22353 psymtab->n_static_syms, cu_index,
22354 1);
22355 }
22356
22357 /* Create an index file for OBJFILE in the directory DIR. */
22358
22359 static void
22360 write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22361 {
22362 struct cleanup *cleanup;
22363 char *filename, *cleanup_filename;
22364 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22365 struct obstack cu_list, types_cu_list;
22366 int i;
22367 FILE *out_file;
22368 struct mapped_symtab *symtab;
22369 offset_type val, size_of_contents, total_len;
22370 struct stat st;
22371 htab_t psyms_seen;
22372 htab_t cu_index_htab;
22373 struct psymtab_cu_index_map *psymtab_cu_index_map;
22374
22375 if (dwarf2_per_objfile->using_index)
22376 error (_("Cannot use an index to create the index"));
22377
22378 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22379 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22380
22381 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22382 return;
22383
22384 if (stat (objfile_name (objfile), &st) < 0)
22385 perror_with_name (objfile_name (objfile));
22386
22387 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
22388 INDEX_SUFFIX, (char *) NULL);
22389 cleanup = make_cleanup (xfree, filename);
22390
22391 out_file = gdb_fopen_cloexec (filename, "wb");
22392 if (!out_file)
22393 error (_("Can't open `%s' for writing"), filename);
22394
22395 cleanup_filename = filename;
22396 make_cleanup (unlink_if_set, &cleanup_filename);
22397
22398 symtab = create_mapped_symtab ();
22399 make_cleanup (cleanup_mapped_symtab, symtab);
22400
22401 obstack_init (&addr_obstack);
22402 make_cleanup_obstack_free (&addr_obstack);
22403
22404 obstack_init (&cu_list);
22405 make_cleanup_obstack_free (&cu_list);
22406
22407 obstack_init (&types_cu_list);
22408 make_cleanup_obstack_free (&types_cu_list);
22409
22410 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22411 NULL, xcalloc, xfree);
22412 make_cleanup_htab_delete (psyms_seen);
22413
22414 /* While we're scanning CU's create a table that maps a psymtab pointer
22415 (which is what addrmap records) to its index (which is what is recorded
22416 in the index file). This will later be needed to write the address
22417 table. */
22418 cu_index_htab = htab_create_alloc (100,
22419 hash_psymtab_cu_index,
22420 eq_psymtab_cu_index,
22421 NULL, xcalloc, xfree);
22422 make_cleanup_htab_delete (cu_index_htab);
22423 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22424 xmalloc (sizeof (struct psymtab_cu_index_map)
22425 * dwarf2_per_objfile->n_comp_units);
22426 make_cleanup (xfree, psymtab_cu_index_map);
22427
22428 /* The CU list is already sorted, so we don't need to do additional
22429 work here. Also, the debug_types entries do not appear in
22430 all_comp_units, but only in their own hash table. */
22431 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22432 {
22433 struct dwarf2_per_cu_data *per_cu
22434 = dwarf2_per_objfile->all_comp_units[i];
22435 struct partial_symtab *psymtab = per_cu->v.psymtab;
22436 gdb_byte val[8];
22437 struct psymtab_cu_index_map *map;
22438 void **slot;
22439
22440 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22441 It may be referenced from a local scope but in such case it does not
22442 need to be present in .gdb_index. */
22443 if (psymtab == NULL)
22444 continue;
22445
22446 if (psymtab->user == NULL)
22447 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
22448
22449 map = &psymtab_cu_index_map[i];
22450 map->psymtab = psymtab;
22451 map->cu_index = i;
22452 slot = htab_find_slot (cu_index_htab, map, INSERT);
22453 gdb_assert (slot != NULL);
22454 gdb_assert (*slot == NULL);
22455 *slot = map;
22456
22457 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22458 per_cu->offset.sect_off);
22459 obstack_grow (&cu_list, val, 8);
22460 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
22461 obstack_grow (&cu_list, val, 8);
22462 }
22463
22464 /* Dump the address map. */
22465 write_address_map (objfile, &addr_obstack, cu_index_htab);
22466
22467 /* Write out the .debug_type entries, if any. */
22468 if (dwarf2_per_objfile->signatured_types)
22469 {
22470 struct signatured_type_index_data sig_data;
22471
22472 sig_data.objfile = objfile;
22473 sig_data.symtab = symtab;
22474 sig_data.types_list = &types_cu_list;
22475 sig_data.psyms_seen = psyms_seen;
22476 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22477 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22478 write_one_signatured_type, &sig_data);
22479 }
22480
22481 /* Now that we've processed all symbols we can shrink their cu_indices
22482 lists. */
22483 uniquify_cu_indices (symtab);
22484
22485 obstack_init (&constant_pool);
22486 make_cleanup_obstack_free (&constant_pool);
22487 obstack_init (&symtab_obstack);
22488 make_cleanup_obstack_free (&symtab_obstack);
22489 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22490
22491 obstack_init (&contents);
22492 make_cleanup_obstack_free (&contents);
22493 size_of_contents = 6 * sizeof (offset_type);
22494 total_len = size_of_contents;
22495
22496 /* The version number. */
22497 val = MAYBE_SWAP (8);
22498 obstack_grow (&contents, &val, sizeof (val));
22499
22500 /* The offset of the CU list from the start of the file. */
22501 val = MAYBE_SWAP (total_len);
22502 obstack_grow (&contents, &val, sizeof (val));
22503 total_len += obstack_object_size (&cu_list);
22504
22505 /* The offset of the types CU list from the start of the file. */
22506 val = MAYBE_SWAP (total_len);
22507 obstack_grow (&contents, &val, sizeof (val));
22508 total_len += obstack_object_size (&types_cu_list);
22509
22510 /* The offset of the address table from the start of the file. */
22511 val = MAYBE_SWAP (total_len);
22512 obstack_grow (&contents, &val, sizeof (val));
22513 total_len += obstack_object_size (&addr_obstack);
22514
22515 /* The offset of the symbol table from the start of the file. */
22516 val = MAYBE_SWAP (total_len);
22517 obstack_grow (&contents, &val, sizeof (val));
22518 total_len += obstack_object_size (&symtab_obstack);
22519
22520 /* The offset of the constant pool from the start of the file. */
22521 val = MAYBE_SWAP (total_len);
22522 obstack_grow (&contents, &val, sizeof (val));
22523 total_len += obstack_object_size (&constant_pool);
22524
22525 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22526
22527 write_obstack (out_file, &contents);
22528 write_obstack (out_file, &cu_list);
22529 write_obstack (out_file, &types_cu_list);
22530 write_obstack (out_file, &addr_obstack);
22531 write_obstack (out_file, &symtab_obstack);
22532 write_obstack (out_file, &constant_pool);
22533
22534 fclose (out_file);
22535
22536 /* We want to keep the file, so we set cleanup_filename to NULL
22537 here. See unlink_if_set. */
22538 cleanup_filename = NULL;
22539
22540 do_cleanups (cleanup);
22541 }
22542
22543 /* Implementation of the `save gdb-index' command.
22544
22545 Note that the file format used by this command is documented in the
22546 GDB manual. Any changes here must be documented there. */
22547
22548 static void
22549 save_gdb_index_command (char *arg, int from_tty)
22550 {
22551 struct objfile *objfile;
22552
22553 if (!arg || !*arg)
22554 error (_("usage: save gdb-index DIRECTORY"));
22555
22556 ALL_OBJFILES (objfile)
22557 {
22558 struct stat st;
22559
22560 /* If the objfile does not correspond to an actual file, skip it. */
22561 if (stat (objfile_name (objfile), &st) < 0)
22562 continue;
22563
22564 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22565 if (dwarf2_per_objfile)
22566 {
22567 volatile struct gdb_exception except;
22568
22569 TRY_CATCH (except, RETURN_MASK_ERROR)
22570 {
22571 write_psymtabs_to_index (objfile, arg);
22572 }
22573 if (except.reason < 0)
22574 exception_fprintf (gdb_stderr, except,
22575 _("Error while writing index for `%s': "),
22576 objfile_name (objfile));
22577 }
22578 }
22579 }
22580
22581 \f
22582
22583 int dwarf2_always_disassemble;
22584
22585 static void
22586 show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22587 struct cmd_list_element *c, const char *value)
22588 {
22589 fprintf_filtered (file,
22590 _("Whether to always disassemble "
22591 "DWARF expressions is %s.\n"),
22592 value);
22593 }
22594
22595 static void
22596 show_check_physname (struct ui_file *file, int from_tty,
22597 struct cmd_list_element *c, const char *value)
22598 {
22599 fprintf_filtered (file,
22600 _("Whether to check \"physname\" is %s.\n"),
22601 value);
22602 }
22603
22604 void _initialize_dwarf2_read (void);
22605
22606 void
22607 _initialize_dwarf2_read (void)
22608 {
22609 struct cmd_list_element *c;
22610
22611 dwarf2_objfile_data_key
22612 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
22613
22614 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22615 Set DWARF 2 specific variables.\n\
22616 Configure DWARF 2 variables such as the cache size"),
22617 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22618 0/*allow-unknown*/, &maintenance_set_cmdlist);
22619
22620 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22621 Show DWARF 2 specific variables\n\
22622 Show DWARF 2 variables such as the cache size"),
22623 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22624 0/*allow-unknown*/, &maintenance_show_cmdlist);
22625
22626 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
22627 &dwarf2_max_cache_age, _("\
22628 Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22629 Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22630 A higher limit means that cached compilation units will be stored\n\
22631 in memory longer, and more total memory will be used. Zero disables\n\
22632 caching, which can slow down startup."),
22633 NULL,
22634 show_dwarf2_max_cache_age,
22635 &set_dwarf2_cmdlist,
22636 &show_dwarf2_cmdlist);
22637
22638 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22639 &dwarf2_always_disassemble, _("\
22640 Set whether `info address' always disassembles DWARF expressions."), _("\
22641 Show whether `info address' always disassembles DWARF expressions."), _("\
22642 When enabled, DWARF expressions are always printed in an assembly-like\n\
22643 syntax. When disabled, expressions will be printed in a more\n\
22644 conversational style, when possible."),
22645 NULL,
22646 show_dwarf2_always_disassemble,
22647 &set_dwarf2_cmdlist,
22648 &show_dwarf2_cmdlist);
22649
22650 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
22651 Set debugging of the dwarf2 reader."), _("\
22652 Show debugging of the dwarf2 reader."), _("\
22653 When enabled (non-zero), debugging messages are printed during dwarf2\n\
22654 reading and symtab expansion. A value of 1 (one) provides basic\n\
22655 information. A value greater than 1 provides more verbose information."),
22656 NULL,
22657 NULL,
22658 &setdebuglist, &showdebuglist);
22659
22660 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
22661 Set debugging of the dwarf2 DIE reader."), _("\
22662 Show debugging of the dwarf2 DIE reader."), _("\
22663 When enabled (non-zero), DIEs are dumped after they are read in.\n\
22664 The value is the maximum depth to print."),
22665 NULL,
22666 NULL,
22667 &setdebuglist, &showdebuglist);
22668
22669 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22670 Set cross-checking of \"physname\" code against demangler."), _("\
22671 Show cross-checking of \"physname\" code against demangler."), _("\
22672 When enabled, GDB's internal \"physname\" code is checked against\n\
22673 the demangler."),
22674 NULL, show_check_physname,
22675 &setdebuglist, &showdebuglist);
22676
22677 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22678 no_class, &use_deprecated_index_sections, _("\
22679 Set whether to use deprecated gdb_index sections."), _("\
22680 Show whether to use deprecated gdb_index sections."), _("\
22681 When enabled, deprecated .gdb_index sections are used anyway.\n\
22682 Normally they are ignored either because of a missing feature or\n\
22683 performance issue.\n\
22684 Warning: This option must be enabled before gdb reads the file."),
22685 NULL,
22686 NULL,
22687 &setlist, &showlist);
22688
22689 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
22690 _("\
22691 Save a gdb-index file.\n\
22692 Usage: save gdb-index DIRECTORY"),
22693 &save_cmdlist);
22694 set_cmd_completer (c, filename_completer);
22695
22696 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22697 &dwarf2_locexpr_funcs);
22698 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22699 &dwarf2_loclist_funcs);
22700
22701 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22702 &dwarf2_block_frame_base_locexpr_funcs);
22703 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22704 &dwarf2_block_frame_base_loclist_funcs);
22705 }