]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2read.c
2005-02-11 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
4 2004
5 Free Software Foundation, Inc.
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
12 support in dwarfread.c
13
14 This file is part of GDB.
15
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or (at
19 your option) any later version.
20
21 This program is distributed in the hope that it will be useful, but
22 WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
24 General Public License for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the Free Software
28 Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
30
31 #include "defs.h"
32 #include "bfd.h"
33 #include "symtab.h"
34 #include "gdbtypes.h"
35 #include "objfiles.h"
36 #include "elf/dwarf2.h"
37 #include "buildsym.h"
38 #include "demangle.h"
39 #include "expression.h"
40 #include "filenames.h" /* for DOSish file names */
41 #include "macrotab.h"
42 #include "language.h"
43 #include "complaints.h"
44 #include "bcache.h"
45 #include "dwarf2expr.h"
46 #include "dwarf2loc.h"
47 #include "cp-support.h"
48 #include "hashtab.h"
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_assert.h"
55 #include <sys/types.h>
56
57 /* A note on memory usage for this file.
58
59 At the present time, this code reads the debug info sections into
60 the objfile's objfile_obstack. A definite improvement for startup
61 time, on platforms which do not emit relocations for debug
62 sections, would be to use mmap instead. The object's complete
63 debug information is loaded into memory, partly to simplify
64 absolute DIE references.
65
66 Whether using obstacks or mmap, the sections should remain loaded
67 until the objfile is released, and pointers into the section data
68 can be used for any other data associated to the objfile (symbol
69 names, type names, location expressions to name a few). */
70
71 #ifndef DWARF2_REG_TO_REGNUM
72 #define DWARF2_REG_TO_REGNUM(REG) (REG)
73 #endif
74
75 #if 0
76 /* .debug_info header for a compilation unit
77 Because of alignment constraints, this structure has padding and cannot
78 be mapped directly onto the beginning of the .debug_info section. */
79 typedef struct comp_unit_header
80 {
81 unsigned int length; /* length of the .debug_info
82 contribution */
83 unsigned short version; /* version number -- 2 for DWARF
84 version 2 */
85 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
86 unsigned char addr_size; /* byte size of an address -- 4 */
87 }
88 _COMP_UNIT_HEADER;
89 #define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
90 #endif
91
92 /* .debug_pubnames header
93 Because of alignment constraints, this structure has padding and cannot
94 be mapped directly onto the beginning of the .debug_info section. */
95 typedef struct pubnames_header
96 {
97 unsigned int length; /* length of the .debug_pubnames
98 contribution */
99 unsigned char version; /* version number -- 2 for DWARF
100 version 2 */
101 unsigned int info_offset; /* offset into .debug_info section */
102 unsigned int info_size; /* byte size of .debug_info section
103 portion */
104 }
105 _PUBNAMES_HEADER;
106 #define _ACTUAL_PUBNAMES_HEADER_SIZE 13
107
108 /* .debug_pubnames header
109 Because of alignment constraints, this structure has padding and cannot
110 be mapped directly onto the beginning of the .debug_info section. */
111 typedef struct aranges_header
112 {
113 unsigned int length; /* byte len of the .debug_aranges
114 contribution */
115 unsigned short version; /* version number -- 2 for DWARF
116 version 2 */
117 unsigned int info_offset; /* offset into .debug_info section */
118 unsigned char addr_size; /* byte size of an address */
119 unsigned char seg_size; /* byte size of segment descriptor */
120 }
121 _ARANGES_HEADER;
122 #define _ACTUAL_ARANGES_HEADER_SIZE 12
123
124 /* .debug_line statement program prologue
125 Because of alignment constraints, this structure has padding and cannot
126 be mapped directly onto the beginning of the .debug_info section. */
127 typedef struct statement_prologue
128 {
129 unsigned int total_length; /* byte length of the statement
130 information */
131 unsigned short version; /* version number -- 2 for DWARF
132 version 2 */
133 unsigned int prologue_length; /* # bytes between prologue &
134 stmt program */
135 unsigned char minimum_instruction_length; /* byte size of
136 smallest instr */
137 unsigned char default_is_stmt; /* initial value of is_stmt
138 register */
139 char line_base;
140 unsigned char line_range;
141 unsigned char opcode_base; /* number assigned to first special
142 opcode */
143 unsigned char *standard_opcode_lengths;
144 }
145 _STATEMENT_PROLOGUE;
146
147 static const struct objfile_data *dwarf2_objfile_data_key;
148
149 struct dwarf2_per_objfile
150 {
151 /* Sizes of debugging sections. */
152 unsigned int info_size;
153 unsigned int abbrev_size;
154 unsigned int line_size;
155 unsigned int pubnames_size;
156 unsigned int aranges_size;
157 unsigned int loc_size;
158 unsigned int macinfo_size;
159 unsigned int str_size;
160 unsigned int ranges_size;
161 unsigned int frame_size;
162 unsigned int eh_frame_size;
163
164 /* Loaded data from the sections. */
165 char *info_buffer;
166 char *abbrev_buffer;
167 char *line_buffer;
168 char *str_buffer;
169 char *macinfo_buffer;
170 char *ranges_buffer;
171 char *loc_buffer;
172
173 /* A list of all the compilation units. This is used to locate
174 the target compilation unit of a particular reference. */
175 struct dwarf2_per_cu_data **all_comp_units;
176
177 /* The number of compilation units in ALL_COMP_UNITS. */
178 int n_comp_units;
179
180 /* A chain of compilation units that are currently read in, so that
181 they can be freed later. */
182 struct dwarf2_per_cu_data *read_in_chain;
183 };
184
185 static struct dwarf2_per_objfile *dwarf2_per_objfile;
186
187 static asection *dwarf_info_section;
188 static asection *dwarf_abbrev_section;
189 static asection *dwarf_line_section;
190 static asection *dwarf_pubnames_section;
191 static asection *dwarf_aranges_section;
192 static asection *dwarf_loc_section;
193 static asection *dwarf_macinfo_section;
194 static asection *dwarf_str_section;
195 static asection *dwarf_ranges_section;
196 asection *dwarf_frame_section;
197 asection *dwarf_eh_frame_section;
198
199 /* names of the debugging sections */
200
201 #define INFO_SECTION ".debug_info"
202 #define ABBREV_SECTION ".debug_abbrev"
203 #define LINE_SECTION ".debug_line"
204 #define PUBNAMES_SECTION ".debug_pubnames"
205 #define ARANGES_SECTION ".debug_aranges"
206 #define LOC_SECTION ".debug_loc"
207 #define MACINFO_SECTION ".debug_macinfo"
208 #define STR_SECTION ".debug_str"
209 #define RANGES_SECTION ".debug_ranges"
210 #define FRAME_SECTION ".debug_frame"
211 #define EH_FRAME_SECTION ".eh_frame"
212
213 /* local data types */
214
215 /* We hold several abbreviation tables in memory at the same time. */
216 #ifndef ABBREV_HASH_SIZE
217 #define ABBREV_HASH_SIZE 121
218 #endif
219
220 /* The data in a compilation unit header, after target2host
221 translation, looks like this. */
222 struct comp_unit_head
223 {
224 unsigned long length;
225 short version;
226 unsigned int abbrev_offset;
227 unsigned char addr_size;
228 unsigned char signed_addr_p;
229
230 /* Size of file offsets; either 4 or 8. */
231 unsigned int offset_size;
232
233 /* Size of the length field; either 4 or 12. */
234 unsigned int initial_length_size;
235
236 /* Offset to the first byte of this compilation unit header in the
237 .debug_info section, for resolving relative reference dies. */
238 unsigned int offset;
239
240 /* Pointer to this compilation unit header in the .debug_info
241 section. */
242 char *cu_head_ptr;
243
244 /* Pointer to the first die of this compilation unit. This will be
245 the first byte following the compilation unit header. */
246 char *first_die_ptr;
247
248 /* Pointer to the next compilation unit header in the program. */
249 struct comp_unit_head *next;
250
251 /* Base address of this compilation unit. */
252 CORE_ADDR base_address;
253
254 /* Non-zero if base_address has been set. */
255 int base_known;
256 };
257
258 /* Fixed size for the DIE hash table. */
259 #ifndef REF_HASH_SIZE
260 #define REF_HASH_SIZE 1021
261 #endif
262
263 /* Internal state when decoding a particular compilation unit. */
264 struct dwarf2_cu
265 {
266 /* The objfile containing this compilation unit. */
267 struct objfile *objfile;
268
269 /* The header of the compilation unit.
270
271 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
272 should logically be moved to the dwarf2_cu structure. */
273 struct comp_unit_head header;
274
275 struct function_range *first_fn, *last_fn, *cached_fn;
276
277 /* The language we are debugging. */
278 enum language language;
279 const struct language_defn *language_defn;
280
281 const char *producer;
282
283 /* The generic symbol table building routines have separate lists for
284 file scope symbols and all all other scopes (local scopes). So
285 we need to select the right one to pass to add_symbol_to_list().
286 We do it by keeping a pointer to the correct list in list_in_scope.
287
288 FIXME: The original dwarf code just treated the file scope as the
289 first local scope, and all other local scopes as nested local
290 scopes, and worked fine. Check to see if we really need to
291 distinguish these in buildsym.c. */
292 struct pending **list_in_scope;
293
294 /* Maintain an array of referenced fundamental types for the current
295 compilation unit being read. For DWARF version 1, we have to construct
296 the fundamental types on the fly, since no information about the
297 fundamental types is supplied. Each such fundamental type is created by
298 calling a language dependent routine to create the type, and then a
299 pointer to that type is then placed in the array at the index specified
300 by it's FT_<TYPENAME> value. The array has a fixed size set by the
301 FT_NUM_MEMBERS compile time constant, which is the number of predefined
302 fundamental types gdb knows how to construct. */
303 struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
304
305 /* DWARF abbreviation table associated with this compilation unit. */
306 struct abbrev_info **dwarf2_abbrevs;
307
308 /* Storage for the abbrev table. */
309 struct obstack abbrev_obstack;
310
311 /* Hash table holding all the loaded partial DIEs. */
312 htab_t partial_dies;
313
314 /* Storage for things with the same lifetime as this read-in compilation
315 unit, including partial DIEs. */
316 struct obstack comp_unit_obstack;
317
318 /* When multiple dwarf2_cu structures are living in memory, this field
319 chains them all together, so that they can be released efficiently.
320 We will probably also want a generation counter so that most-recently-used
321 compilation units are cached... */
322 struct dwarf2_per_cu_data *read_in_chain;
323
324 /* Backchain to our per_cu entry if the tree has been built. */
325 struct dwarf2_per_cu_data *per_cu;
326
327 /* How many compilation units ago was this CU last referenced? */
328 int last_used;
329
330 /* A hash table of die offsets for following references. */
331 struct die_info *die_ref_table[REF_HASH_SIZE];
332
333 /* Full DIEs if read in. */
334 struct die_info *dies;
335
336 /* A set of pointers to dwarf2_per_cu_data objects for compilation
337 units referenced by this one. Only set during full symbol processing;
338 partial symbol tables do not have dependencies. */
339 htab_t dependencies;
340
341 /* Mark used when releasing cached dies. */
342 unsigned int mark : 1;
343
344 /* This flag will be set if this compilation unit might include
345 inter-compilation-unit references. */
346 unsigned int has_form_ref_addr : 1;
347
348 /* This flag will be set if this compilation unit includes any
349 DW_TAG_namespace DIEs. If we know that there are explicit
350 DIEs for namespaces, we don't need to try to infer them
351 from mangled names. */
352 unsigned int has_namespace_info : 1;
353 };
354
355 /* Persistent data held for a compilation unit, even when not
356 processing it. We put a pointer to this structure in the
357 read_symtab_private field of the psymtab. If we encounter
358 inter-compilation-unit references, we also maintain a sorted
359 list of all compilation units. */
360
361 struct dwarf2_per_cu_data
362 {
363 /* The start offset and length of this compilation unit. 2**31-1
364 bytes should suffice to store the length of any compilation unit
365 - if it doesn't, GDB will fall over anyway. */
366 unsigned long offset;
367 unsigned long length : 31;
368
369 /* Flag indicating this compilation unit will be read in before
370 any of the current compilation units are processed. */
371 unsigned long queued : 1;
372
373 /* Set iff currently read in. */
374 struct dwarf2_cu *cu;
375
376 /* If full symbols for this CU have been read in, then this field
377 holds a map of DIE offsets to types. It isn't always possible
378 to reconstruct this information later, so we have to preserve
379 it. */
380 htab_t type_hash;
381
382 /* The partial symbol table associated with this compilation unit. */
383 struct partial_symtab *psymtab;
384 };
385
386 /* The line number information for a compilation unit (found in the
387 .debug_line section) begins with a "statement program header",
388 which contains the following information. */
389 struct line_header
390 {
391 unsigned int total_length;
392 unsigned short version;
393 unsigned int header_length;
394 unsigned char minimum_instruction_length;
395 unsigned char default_is_stmt;
396 int line_base;
397 unsigned char line_range;
398 unsigned char opcode_base;
399
400 /* standard_opcode_lengths[i] is the number of operands for the
401 standard opcode whose value is i. This means that
402 standard_opcode_lengths[0] is unused, and the last meaningful
403 element is standard_opcode_lengths[opcode_base - 1]. */
404 unsigned char *standard_opcode_lengths;
405
406 /* The include_directories table. NOTE! These strings are not
407 allocated with xmalloc; instead, they are pointers into
408 debug_line_buffer. If you try to free them, `free' will get
409 indigestion. */
410 unsigned int num_include_dirs, include_dirs_size;
411 char **include_dirs;
412
413 /* The file_names table. NOTE! These strings are not allocated
414 with xmalloc; instead, they are pointers into debug_line_buffer.
415 Don't try to free them directly. */
416 unsigned int num_file_names, file_names_size;
417 struct file_entry
418 {
419 char *name;
420 unsigned int dir_index;
421 unsigned int mod_time;
422 unsigned int length;
423 int included_p; /* Non-zero if referenced by the Line Number Program. */
424 } *file_names;
425
426 /* The start and end of the statement program following this
427 header. These point into dwarf2_per_objfile->line_buffer. */
428 char *statement_program_start, *statement_program_end;
429 };
430
431 /* When we construct a partial symbol table entry we only
432 need this much information. */
433 struct partial_die_info
434 {
435 /* Offset of this DIE. */
436 unsigned int offset;
437
438 /* DWARF-2 tag for this DIE. */
439 ENUM_BITFIELD(dwarf_tag) tag : 16;
440
441 /* Language code associated with this DIE. This is only used
442 for the compilation unit DIE. */
443 unsigned int language : 8;
444
445 /* Assorted flags describing the data found in this DIE. */
446 unsigned int has_children : 1;
447 unsigned int is_external : 1;
448 unsigned int is_declaration : 1;
449 unsigned int has_type : 1;
450 unsigned int has_specification : 1;
451 unsigned int has_stmt_list : 1;
452 unsigned int has_pc_info : 1;
453
454 /* Flag set if the SCOPE field of this structure has been
455 computed. */
456 unsigned int scope_set : 1;
457
458 /* The name of this DIE. Normally the value of DW_AT_name, but
459 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
460 other fashion. */
461 char *name;
462 char *dirname;
463
464 /* The scope to prepend to our children. This is generally
465 allocated on the comp_unit_obstack, so will disappear
466 when this compilation unit leaves the cache. */
467 char *scope;
468
469 /* The location description associated with this DIE, if any. */
470 struct dwarf_block *locdesc;
471
472 /* If HAS_PC_INFO, the PC range associated with this DIE. */
473 CORE_ADDR lowpc;
474 CORE_ADDR highpc;
475
476 /* Pointer into the info_buffer pointing at the target of
477 DW_AT_sibling, if any. */
478 char *sibling;
479
480 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
481 DW_AT_specification (or DW_AT_abstract_origin or
482 DW_AT_extension). */
483 unsigned int spec_offset;
484
485 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
486 unsigned int line_offset;
487
488 /* Pointers to this DIE's parent, first child, and next sibling,
489 if any. */
490 struct partial_die_info *die_parent, *die_child, *die_sibling;
491 };
492
493 /* This data structure holds the information of an abbrev. */
494 struct abbrev_info
495 {
496 unsigned int number; /* number identifying abbrev */
497 enum dwarf_tag tag; /* dwarf tag */
498 unsigned short has_children; /* boolean */
499 unsigned short num_attrs; /* number of attributes */
500 struct attr_abbrev *attrs; /* an array of attribute descriptions */
501 struct abbrev_info *next; /* next in chain */
502 };
503
504 struct attr_abbrev
505 {
506 enum dwarf_attribute name;
507 enum dwarf_form form;
508 };
509
510 /* This data structure holds a complete die structure. */
511 struct die_info
512 {
513 enum dwarf_tag tag; /* Tag indicating type of die */
514 unsigned int abbrev; /* Abbrev number */
515 unsigned int offset; /* Offset in .debug_info section */
516 unsigned int num_attrs; /* Number of attributes */
517 struct attribute *attrs; /* An array of attributes */
518 struct die_info *next_ref; /* Next die in ref hash table */
519
520 /* The dies in a compilation unit form an n-ary tree. PARENT
521 points to this die's parent; CHILD points to the first child of
522 this node; and all the children of a given node are chained
523 together via their SIBLING fields, terminated by a die whose
524 tag is zero. */
525 struct die_info *child; /* Its first child, if any. */
526 struct die_info *sibling; /* Its next sibling, if any. */
527 struct die_info *parent; /* Its parent, if any. */
528
529 struct type *type; /* Cached type information */
530 };
531
532 /* Attributes have a name and a value */
533 struct attribute
534 {
535 enum dwarf_attribute name;
536 enum dwarf_form form;
537 union
538 {
539 char *str;
540 struct dwarf_block *blk;
541 unsigned long unsnd;
542 long int snd;
543 CORE_ADDR addr;
544 }
545 u;
546 };
547
548 struct function_range
549 {
550 const char *name;
551 CORE_ADDR lowpc, highpc;
552 int seen_line;
553 struct function_range *next;
554 };
555
556 /* Get at parts of an attribute structure */
557
558 #define DW_STRING(attr) ((attr)->u.str)
559 #define DW_UNSND(attr) ((attr)->u.unsnd)
560 #define DW_BLOCK(attr) ((attr)->u.blk)
561 #define DW_SND(attr) ((attr)->u.snd)
562 #define DW_ADDR(attr) ((attr)->u.addr)
563
564 /* Blocks are a bunch of untyped bytes. */
565 struct dwarf_block
566 {
567 unsigned int size;
568 char *data;
569 };
570
571 #ifndef ATTR_ALLOC_CHUNK
572 #define ATTR_ALLOC_CHUNK 4
573 #endif
574
575 /* Allocate fields for structs, unions and enums in this size. */
576 #ifndef DW_FIELD_ALLOC_CHUNK
577 #define DW_FIELD_ALLOC_CHUNK 4
578 #endif
579
580 /* A zeroed version of a partial die for initialization purposes. */
581 static struct partial_die_info zeroed_partial_die;
582
583 /* FIXME: decode_locdesc sets these variables to describe the location
584 to the caller. These ought to be a structure or something. If
585 none of the flags are set, the object lives at the address returned
586 by decode_locdesc. */
587
588 static int isreg; /* Object lives in register.
589 decode_locdesc's return value is
590 the register number. */
591
592 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
593 but this would require a corresponding change in unpack_field_as_long
594 and friends. */
595 static int bits_per_byte = 8;
596
597 /* The routines that read and process dies for a C struct or C++ class
598 pass lists of data member fields and lists of member function fields
599 in an instance of a field_info structure, as defined below. */
600 struct field_info
601 {
602 /* List of data member and baseclasses fields. */
603 struct nextfield
604 {
605 struct nextfield *next;
606 int accessibility;
607 int virtuality;
608 struct field field;
609 }
610 *fields;
611
612 /* Number of fields. */
613 int nfields;
614
615 /* Number of baseclasses. */
616 int nbaseclasses;
617
618 /* Set if the accesibility of one of the fields is not public. */
619 int non_public_fields;
620
621 /* Member function fields array, entries are allocated in the order they
622 are encountered in the object file. */
623 struct nextfnfield
624 {
625 struct nextfnfield *next;
626 struct fn_field fnfield;
627 }
628 *fnfields;
629
630 /* Member function fieldlist array, contains name of possibly overloaded
631 member function, number of overloaded member functions and a pointer
632 to the head of the member function field chain. */
633 struct fnfieldlist
634 {
635 char *name;
636 int length;
637 struct nextfnfield *head;
638 }
639 *fnfieldlists;
640
641 /* Number of entries in the fnfieldlists array. */
642 int nfnfields;
643 };
644
645 /* One item on the queue of compilation units to read in full symbols
646 for. */
647 struct dwarf2_queue_item
648 {
649 struct dwarf2_per_cu_data *per_cu;
650 struct dwarf2_queue_item *next;
651 };
652
653 /* The current queue. */
654 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
655
656 /* Loaded secondary compilation units are kept in memory until they
657 have not been referenced for the processing of this many
658 compilation units. Set this to zero to disable caching. Cache
659 sizes of up to at least twenty will improve startup time for
660 typical inter-CU-reference binaries, at an obvious memory cost. */
661 static int dwarf2_max_cache_age = 5;
662
663 /* Various complaints about symbol reading that don't abort the process */
664
665 static void
666 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
667 {
668 complaint (&symfile_complaints,
669 _("statement list doesn't fit in .debug_line section"));
670 }
671
672 static void
673 dwarf2_complex_location_expr_complaint (void)
674 {
675 complaint (&symfile_complaints, _("location expression too complex"));
676 }
677
678 static void
679 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
680 int arg3)
681 {
682 complaint (&symfile_complaints,
683 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
684 arg2, arg3);
685 }
686
687 static void
688 dwarf2_macros_too_long_complaint (void)
689 {
690 complaint (&symfile_complaints,
691 _("macro info runs off end of `.debug_macinfo' section"));
692 }
693
694 static void
695 dwarf2_macro_malformed_definition_complaint (const char *arg1)
696 {
697 complaint (&symfile_complaints,
698 _("macro debug info contains a malformed macro definition:\n`%s'"),
699 arg1);
700 }
701
702 static void
703 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
704 {
705 complaint (&symfile_complaints,
706 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
707 }
708
709 /* local function prototypes */
710
711 static void dwarf2_locate_sections (bfd *, asection *, void *);
712
713 #if 0
714 static void dwarf2_build_psymtabs_easy (struct objfile *, int);
715 #endif
716
717 static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
718 struct objfile *);
719
720 static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
721 struct partial_die_info *,
722 struct partial_symtab *);
723
724 static void dwarf2_build_psymtabs_hard (struct objfile *, int);
725
726 static void scan_partial_symbols (struct partial_die_info *,
727 CORE_ADDR *, CORE_ADDR *,
728 struct dwarf2_cu *);
729
730 static void add_partial_symbol (struct partial_die_info *,
731 struct dwarf2_cu *);
732
733 static int pdi_needs_namespace (enum dwarf_tag tag);
734
735 static void add_partial_namespace (struct partial_die_info *pdi,
736 CORE_ADDR *lowpc, CORE_ADDR *highpc,
737 struct dwarf2_cu *cu);
738
739 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
740 struct dwarf2_cu *cu);
741
742 static char *locate_pdi_sibling (struct partial_die_info *orig_pdi,
743 char *info_ptr,
744 bfd *abfd,
745 struct dwarf2_cu *cu);
746
747 static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
748
749 static void psymtab_to_symtab_1 (struct partial_symtab *);
750
751 char *dwarf2_read_section (struct objfile *, asection *);
752
753 static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
754
755 static void dwarf2_free_abbrev_table (void *);
756
757 static struct abbrev_info *peek_die_abbrev (char *, int *, struct dwarf2_cu *);
758
759 static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
760 struct dwarf2_cu *);
761
762 static struct partial_die_info *load_partial_dies (bfd *, char *, int,
763 struct dwarf2_cu *);
764
765 static char *read_partial_die (struct partial_die_info *,
766 struct abbrev_info *abbrev, unsigned int,
767 bfd *, char *, struct dwarf2_cu *);
768
769 static struct partial_die_info *find_partial_die (unsigned long,
770 struct dwarf2_cu *);
771
772 static void fixup_partial_die (struct partial_die_info *,
773 struct dwarf2_cu *);
774
775 static char *read_full_die (struct die_info **, bfd *, char *,
776 struct dwarf2_cu *, int *);
777
778 static char *read_attribute (struct attribute *, struct attr_abbrev *,
779 bfd *, char *, struct dwarf2_cu *);
780
781 static char *read_attribute_value (struct attribute *, unsigned,
782 bfd *, char *, struct dwarf2_cu *);
783
784 static unsigned int read_1_byte (bfd *, char *);
785
786 static int read_1_signed_byte (bfd *, char *);
787
788 static unsigned int read_2_bytes (bfd *, char *);
789
790 static unsigned int read_4_bytes (bfd *, char *);
791
792 static unsigned long read_8_bytes (bfd *, char *);
793
794 static CORE_ADDR read_address (bfd *, char *ptr, struct dwarf2_cu *,
795 int *bytes_read);
796
797 static LONGEST read_initial_length (bfd *, char *,
798 struct comp_unit_head *, int *bytes_read);
799
800 static LONGEST read_offset (bfd *, char *, const struct comp_unit_head *,
801 int *bytes_read);
802
803 static char *read_n_bytes (bfd *, char *, unsigned int);
804
805 static char *read_string (bfd *, char *, unsigned int *);
806
807 static char *read_indirect_string (bfd *, char *, const struct comp_unit_head *,
808 unsigned int *);
809
810 static unsigned long read_unsigned_leb128 (bfd *, char *, unsigned int *);
811
812 static long read_signed_leb128 (bfd *, char *, unsigned int *);
813
814 static char *skip_leb128 (bfd *, char *);
815
816 static void set_cu_language (unsigned int, struct dwarf2_cu *);
817
818 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
819 struct dwarf2_cu *);
820
821 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
822 struct dwarf2_cu *cu);
823
824 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
825
826 static struct die_info *die_specification (struct die_info *die,
827 struct dwarf2_cu *);
828
829 static void free_line_header (struct line_header *lh);
830
831 static void add_file_name (struct line_header *, char *, unsigned int,
832 unsigned int, unsigned int);
833
834 static struct line_header *(dwarf_decode_line_header
835 (unsigned int offset,
836 bfd *abfd, struct dwarf2_cu *cu));
837
838 static void dwarf_decode_lines (struct line_header *, char *, bfd *,
839 struct dwarf2_cu *, struct partial_symtab *);
840
841 static void dwarf2_start_subfile (char *, char *);
842
843 static struct symbol *new_symbol (struct die_info *, struct type *,
844 struct dwarf2_cu *);
845
846 static void dwarf2_const_value (struct attribute *, struct symbol *,
847 struct dwarf2_cu *);
848
849 static void dwarf2_const_value_data (struct attribute *attr,
850 struct symbol *sym,
851 int bits);
852
853 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
854
855 static struct type *die_containing_type (struct die_info *,
856 struct dwarf2_cu *);
857
858 static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
859
860 static void read_type_die (struct die_info *, struct dwarf2_cu *);
861
862 static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
863
864 static char *typename_concat (struct obstack *, const char *prefix, const char *suffix,
865 struct dwarf2_cu *);
866
867 static void read_typedef (struct die_info *, struct dwarf2_cu *);
868
869 static void read_base_type (struct die_info *, struct dwarf2_cu *);
870
871 static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
872
873 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
874
875 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
876
877 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
878
879 static int dwarf2_get_pc_bounds (struct die_info *,
880 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
881
882 static void get_scope_pc_bounds (struct die_info *,
883 CORE_ADDR *, CORE_ADDR *,
884 struct dwarf2_cu *);
885
886 static void dwarf2_add_field (struct field_info *, struct die_info *,
887 struct dwarf2_cu *);
888
889 static void dwarf2_attach_fields_to_type (struct field_info *,
890 struct type *, struct dwarf2_cu *);
891
892 static void dwarf2_add_member_fn (struct field_info *,
893 struct die_info *, struct type *,
894 struct dwarf2_cu *);
895
896 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
897 struct type *, struct dwarf2_cu *);
898
899 static void read_structure_type (struct die_info *, struct dwarf2_cu *);
900
901 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
902
903 static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
904
905 static void read_common_block (struct die_info *, struct dwarf2_cu *);
906
907 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
908
909 static const char *namespace_name (struct die_info *die,
910 int *is_anonymous, struct dwarf2_cu *);
911
912 static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
913
914 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
915
916 static struct type *dwarf_base_type (int, int, struct dwarf2_cu *);
917
918 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
919
920 static void read_array_type (struct die_info *, struct dwarf2_cu *);
921
922 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
923 struct dwarf2_cu *);
924
925 static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
926
927 static void read_tag_ptr_to_member_type (struct die_info *,
928 struct dwarf2_cu *);
929
930 static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
931
932 static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
933
934 static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
935
936 static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
937
938 static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
939
940 static struct die_info *read_comp_unit (char *, bfd *, struct dwarf2_cu *);
941
942 static struct die_info *read_die_and_children (char *info_ptr, bfd *abfd,
943 struct dwarf2_cu *,
944 char **new_info_ptr,
945 struct die_info *parent);
946
947 static struct die_info *read_die_and_siblings (char *info_ptr, bfd *abfd,
948 struct dwarf2_cu *,
949 char **new_info_ptr,
950 struct die_info *parent);
951
952 static void free_die_list (struct die_info *);
953
954 static void process_die (struct die_info *, struct dwarf2_cu *);
955
956 static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
957
958 static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
959
960 static struct die_info *dwarf2_extension (struct die_info *die,
961 struct dwarf2_cu *);
962
963 static char *dwarf_tag_name (unsigned int);
964
965 static char *dwarf_attr_name (unsigned int);
966
967 static char *dwarf_form_name (unsigned int);
968
969 static char *dwarf_stack_op_name (unsigned int);
970
971 static char *dwarf_bool_name (unsigned int);
972
973 static char *dwarf_type_encoding_name (unsigned int);
974
975 #if 0
976 static char *dwarf_cfi_name (unsigned int);
977
978 struct die_info *copy_die (struct die_info *);
979 #endif
980
981 static struct die_info *sibling_die (struct die_info *);
982
983 static void dump_die (struct die_info *);
984
985 static void dump_die_list (struct die_info *);
986
987 static void store_in_ref_table (unsigned int, struct die_info *,
988 struct dwarf2_cu *);
989
990 static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
991 struct dwarf2_cu *);
992
993 static int dwarf2_get_attr_constant_value (struct attribute *, int);
994
995 static struct die_info *follow_die_ref (struct die_info *,
996 struct attribute *,
997 struct dwarf2_cu *);
998
999 static struct type *dwarf2_fundamental_type (struct objfile *, int,
1000 struct dwarf2_cu *);
1001
1002 /* memory allocation interface */
1003
1004 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1005
1006 static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
1007
1008 static struct die_info *dwarf_alloc_die (void);
1009
1010 static void initialize_cu_func_list (struct dwarf2_cu *);
1011
1012 static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1013 struct dwarf2_cu *);
1014
1015 static void dwarf_decode_macros (struct line_header *, unsigned int,
1016 char *, bfd *, struct dwarf2_cu *);
1017
1018 static int attr_form_is_block (struct attribute *);
1019
1020 static void
1021 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
1022 struct dwarf2_cu *cu);
1023
1024 static char *skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
1025 struct dwarf2_cu *cu);
1026
1027 static void free_stack_comp_unit (void *);
1028
1029 static void *hashtab_obstack_allocate (void *data, size_t size, size_t count);
1030
1031 static void dummy_obstack_deallocate (void *object, void *data);
1032
1033 static hashval_t partial_die_hash (const void *item);
1034
1035 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1036
1037 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1038 (unsigned long offset, struct objfile *objfile);
1039
1040 static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1041 (unsigned long offset, struct objfile *objfile);
1042
1043 static void free_one_comp_unit (void *);
1044
1045 static void free_cached_comp_units (void *);
1046
1047 static void age_cached_comp_units (void);
1048
1049 static void free_one_cached_comp_unit (void *);
1050
1051 static void set_die_type (struct die_info *, struct type *,
1052 struct dwarf2_cu *);
1053
1054 static void reset_die_and_siblings_types (struct die_info *,
1055 struct dwarf2_cu *);
1056
1057 static void create_all_comp_units (struct objfile *);
1058
1059 static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *);
1060
1061 static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1062
1063 static void dwarf2_add_dependence (struct dwarf2_cu *,
1064 struct dwarf2_per_cu_data *);
1065
1066 static void dwarf2_mark (struct dwarf2_cu *);
1067
1068 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1069
1070 /* Try to locate the sections we need for DWARF 2 debugging
1071 information and return true if we have enough to do something. */
1072
1073 int
1074 dwarf2_has_info (struct objfile *objfile)
1075 {
1076 struct dwarf2_per_objfile *data;
1077
1078 /* Initialize per-objfile state. */
1079 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1080 memset (data, 0, sizeof (*data));
1081 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1082 dwarf2_per_objfile = data;
1083
1084 dwarf_info_section = 0;
1085 dwarf_abbrev_section = 0;
1086 dwarf_line_section = 0;
1087 dwarf_str_section = 0;
1088 dwarf_macinfo_section = 0;
1089 dwarf_frame_section = 0;
1090 dwarf_eh_frame_section = 0;
1091 dwarf_ranges_section = 0;
1092 dwarf_loc_section = 0;
1093
1094 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
1095 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
1096 }
1097
1098 /* This function is mapped across the sections and remembers the
1099 offset and size of each of the debugging sections we are interested
1100 in. */
1101
1102 static void
1103 dwarf2_locate_sections (bfd *ignore_abfd, asection *sectp, void *ignore_ptr)
1104 {
1105 if (strcmp (sectp->name, INFO_SECTION) == 0)
1106 {
1107 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
1108 dwarf_info_section = sectp;
1109 }
1110 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
1111 {
1112 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
1113 dwarf_abbrev_section = sectp;
1114 }
1115 else if (strcmp (sectp->name, LINE_SECTION) == 0)
1116 {
1117 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
1118 dwarf_line_section = sectp;
1119 }
1120 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
1121 {
1122 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
1123 dwarf_pubnames_section = sectp;
1124 }
1125 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
1126 {
1127 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
1128 dwarf_aranges_section = sectp;
1129 }
1130 else if (strcmp (sectp->name, LOC_SECTION) == 0)
1131 {
1132 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
1133 dwarf_loc_section = sectp;
1134 }
1135 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
1136 {
1137 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
1138 dwarf_macinfo_section = sectp;
1139 }
1140 else if (strcmp (sectp->name, STR_SECTION) == 0)
1141 {
1142 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
1143 dwarf_str_section = sectp;
1144 }
1145 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
1146 {
1147 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
1148 dwarf_frame_section = sectp;
1149 }
1150 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
1151 {
1152 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1153 if (aflag & SEC_HAS_CONTENTS)
1154 {
1155 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
1156 dwarf_eh_frame_section = sectp;
1157 }
1158 }
1159 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
1160 {
1161 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
1162 dwarf_ranges_section = sectp;
1163 }
1164 }
1165
1166 /* Build a partial symbol table. */
1167
1168 void
1169 dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
1170 {
1171 /* We definitely need the .debug_info and .debug_abbrev sections */
1172
1173 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1174 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
1175
1176 if (dwarf_line_section)
1177 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
1178 else
1179 dwarf2_per_objfile->line_buffer = NULL;
1180
1181 if (dwarf_str_section)
1182 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
1183 else
1184 dwarf2_per_objfile->str_buffer = NULL;
1185
1186 if (dwarf_macinfo_section)
1187 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
1188 dwarf_macinfo_section);
1189 else
1190 dwarf2_per_objfile->macinfo_buffer = NULL;
1191
1192 if (dwarf_ranges_section)
1193 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
1194 else
1195 dwarf2_per_objfile->ranges_buffer = NULL;
1196
1197 if (dwarf_loc_section)
1198 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
1199 else
1200 dwarf2_per_objfile->loc_buffer = NULL;
1201
1202 if (mainline
1203 || (objfile->global_psymbols.size == 0
1204 && objfile->static_psymbols.size == 0))
1205 {
1206 init_psymbol_list (objfile, 1024);
1207 }
1208
1209 #if 0
1210 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1211 {
1212 /* Things are significantly easier if we have .debug_aranges and
1213 .debug_pubnames sections */
1214
1215 dwarf2_build_psymtabs_easy (objfile, mainline);
1216 }
1217 else
1218 #endif
1219 /* only test this case for now */
1220 {
1221 /* In this case we have to work a bit harder */
1222 dwarf2_build_psymtabs_hard (objfile, mainline);
1223 }
1224 }
1225
1226 #if 0
1227 /* Build the partial symbol table from the information in the
1228 .debug_pubnames and .debug_aranges sections. */
1229
1230 static void
1231 dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
1232 {
1233 bfd *abfd = objfile->obfd;
1234 char *aranges_buffer, *pubnames_buffer;
1235 char *aranges_ptr, *pubnames_ptr;
1236 unsigned int entry_length, version, info_offset, info_size;
1237
1238 pubnames_buffer = dwarf2_read_section (objfile,
1239 dwarf_pubnames_section);
1240 pubnames_ptr = pubnames_buffer;
1241 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
1242 {
1243 struct comp_unit_head cu_header;
1244 int bytes_read;
1245
1246 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
1247 &bytes_read);
1248 pubnames_ptr += bytes_read;
1249 version = read_1_byte (abfd, pubnames_ptr);
1250 pubnames_ptr += 1;
1251 info_offset = read_4_bytes (abfd, pubnames_ptr);
1252 pubnames_ptr += 4;
1253 info_size = read_4_bytes (abfd, pubnames_ptr);
1254 pubnames_ptr += 4;
1255 }
1256
1257 aranges_buffer = dwarf2_read_section (objfile,
1258 dwarf_aranges_section);
1259
1260 }
1261 #endif
1262
1263 /* Read in the comp unit header information from the debug_info at
1264 info_ptr. */
1265
1266 static char *
1267 read_comp_unit_head (struct comp_unit_head *cu_header,
1268 char *info_ptr, bfd *abfd)
1269 {
1270 int signed_addr;
1271 int bytes_read;
1272 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1273 &bytes_read);
1274 info_ptr += bytes_read;
1275 cu_header->version = read_2_bytes (abfd, info_ptr);
1276 info_ptr += 2;
1277 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1278 &bytes_read);
1279 info_ptr += bytes_read;
1280 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1281 info_ptr += 1;
1282 signed_addr = bfd_get_sign_extend_vma (abfd);
1283 if (signed_addr < 0)
1284 internal_error (__FILE__, __LINE__,
1285 _("read_comp_unit_head: dwarf from non elf file"));
1286 cu_header->signed_addr_p = signed_addr;
1287 return info_ptr;
1288 }
1289
1290 static char *
1291 partial_read_comp_unit_head (struct comp_unit_head *header, char *info_ptr,
1292 bfd *abfd)
1293 {
1294 char *beg_of_comp_unit = info_ptr;
1295
1296 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1297
1298 if (header->version != 2)
1299 error (_("Dwarf Error: wrong version in compilation unit header "
1300 "(is %d, should be %d) [in module %s]"), header->version,
1301 2, bfd_get_filename (abfd));
1302
1303 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
1304 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1305 "(offset 0x%lx + 6) [in module %s]"),
1306 (long) header->abbrev_offset,
1307 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1308 bfd_get_filename (abfd));
1309
1310 if (beg_of_comp_unit + header->length + header->initial_length_size
1311 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1312 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1313 "(offset 0x%lx + 0) [in module %s]"),
1314 (long) header->length,
1315 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1316 bfd_get_filename (abfd));
1317
1318 return info_ptr;
1319 }
1320
1321 /* Allocate a new partial symtab for file named NAME and mark this new
1322 partial symtab as being an include of PST. */
1323
1324 static void
1325 dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1326 struct objfile *objfile)
1327 {
1328 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1329
1330 subpst->section_offsets = pst->section_offsets;
1331 subpst->textlow = 0;
1332 subpst->texthigh = 0;
1333
1334 subpst->dependencies = (struct partial_symtab **)
1335 obstack_alloc (&objfile->objfile_obstack,
1336 sizeof (struct partial_symtab *));
1337 subpst->dependencies[0] = pst;
1338 subpst->number_of_dependencies = 1;
1339
1340 subpst->globals_offset = 0;
1341 subpst->n_global_syms = 0;
1342 subpst->statics_offset = 0;
1343 subpst->n_static_syms = 0;
1344 subpst->symtab = NULL;
1345 subpst->read_symtab = pst->read_symtab;
1346 subpst->readin = 0;
1347
1348 /* No private part is necessary for include psymtabs. This property
1349 can be used to differentiate between such include psymtabs and
1350 the regular ones. */
1351 subpst->read_symtab_private = NULL;
1352 }
1353
1354 /* Read the Line Number Program data and extract the list of files
1355 included by the source file represented by PST. Build an include
1356 partial symtab for each of these included files.
1357
1358 This procedure assumes that there *is* a Line Number Program in
1359 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1360 before calling this procedure. */
1361
1362 static void
1363 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1364 struct partial_die_info *pdi,
1365 struct partial_symtab *pst)
1366 {
1367 struct objfile *objfile = cu->objfile;
1368 bfd *abfd = objfile->obfd;
1369 struct line_header *lh;
1370
1371 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1372 if (lh == NULL)
1373 return; /* No linetable, so no includes. */
1374
1375 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1376
1377 free_line_header (lh);
1378 }
1379
1380
1381 /* Build the partial symbol table by doing a quick pass through the
1382 .debug_info and .debug_abbrev sections. */
1383
1384 static void
1385 dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
1386 {
1387 /* Instead of reading this into a big buffer, we should probably use
1388 mmap() on architectures that support it. (FIXME) */
1389 bfd *abfd = objfile->obfd;
1390 char *info_ptr;
1391 char *beg_of_comp_unit;
1392 struct partial_die_info comp_unit_die;
1393 struct partial_symtab *pst;
1394 struct cleanup *back_to;
1395 CORE_ADDR lowpc, highpc, baseaddr;
1396
1397 info_ptr = dwarf2_per_objfile->info_buffer;
1398
1399 /* Any cached compilation units will be linked by the per-objfile
1400 read_in_chain. Make sure to free them when we're done. */
1401 back_to = make_cleanup (free_cached_comp_units, NULL);
1402
1403 create_all_comp_units (objfile);
1404
1405 /* Since the objects we're extracting from .debug_info vary in
1406 length, only the individual functions to extract them (like
1407 read_comp_unit_head and load_partial_die) can really know whether
1408 the buffer is large enough to hold another complete object.
1409
1410 At the moment, they don't actually check that. If .debug_info
1411 holds just one extra byte after the last compilation unit's dies,
1412 then read_comp_unit_head will happily read off the end of the
1413 buffer. read_partial_die is similarly casual. Those functions
1414 should be fixed.
1415
1416 For this loop condition, simply checking whether there's any data
1417 left at all should be sufficient. */
1418 while (info_ptr < (dwarf2_per_objfile->info_buffer
1419 + dwarf2_per_objfile->info_size))
1420 {
1421 struct cleanup *back_to_inner;
1422 struct dwarf2_cu cu;
1423 struct abbrev_info *abbrev;
1424 unsigned int bytes_read;
1425 struct dwarf2_per_cu_data *this_cu;
1426
1427 beg_of_comp_unit = info_ptr;
1428
1429 memset (&cu, 0, sizeof (cu));
1430
1431 obstack_init (&cu.comp_unit_obstack);
1432
1433 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1434
1435 cu.objfile = objfile;
1436 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
1437
1438 /* Complete the cu_header */
1439 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1440 cu.header.first_die_ptr = info_ptr;
1441 cu.header.cu_head_ptr = beg_of_comp_unit;
1442
1443 cu.list_in_scope = &file_symbols;
1444
1445 /* Read the abbrevs for this compilation unit into a table */
1446 dwarf2_read_abbrevs (abfd, &cu);
1447 make_cleanup (dwarf2_free_abbrev_table, &cu);
1448
1449 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
1450
1451 /* Read the compilation unit die */
1452 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1453 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1454 abfd, info_ptr, &cu);
1455
1456 /* Set the language we're debugging */
1457 set_cu_language (comp_unit_die.language, &cu);
1458
1459 /* Allocate a new partial symbol table structure */
1460 pst = start_psymtab_common (objfile, objfile->section_offsets,
1461 comp_unit_die.name ? comp_unit_die.name : "",
1462 comp_unit_die.lowpc,
1463 objfile->global_psymbols.next,
1464 objfile->static_psymbols.next);
1465
1466 if (comp_unit_die.dirname)
1467 pst->dirname = xstrdup (comp_unit_die.dirname);
1468
1469 pst->read_symtab_private = (char *) this_cu;
1470
1471 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1472
1473 /* Store the function that reads in the rest of the symbol table */
1474 pst->read_symtab = dwarf2_psymtab_to_symtab;
1475
1476 /* If this compilation unit was already read in, free the
1477 cached copy in order to read it in again. This is
1478 necessary because we skipped some symbols when we first
1479 read in the compilation unit (see load_partial_dies).
1480 This problem could be avoided, but the benefit is
1481 unclear. */
1482 if (this_cu->cu != NULL)
1483 free_one_cached_comp_unit (this_cu->cu);
1484
1485 cu.per_cu = this_cu;
1486
1487 /* Note that this is a pointer to our stack frame, being
1488 added to a global data structure. It will be cleaned up
1489 in free_stack_comp_unit when we finish with this
1490 compilation unit. */
1491 this_cu->cu = &cu;
1492
1493 this_cu->psymtab = pst;
1494
1495 /* Check if comp unit has_children.
1496 If so, read the rest of the partial symbols from this comp unit.
1497 If not, there's no more debug_info for this comp unit. */
1498 if (comp_unit_die.has_children)
1499 {
1500 struct partial_die_info *first_die;
1501
1502 lowpc = ((CORE_ADDR) -1);
1503 highpc = ((CORE_ADDR) 0);
1504
1505 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1506
1507 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
1508
1509 /* If we didn't find a lowpc, set it to highpc to avoid
1510 complaints from `maint check'. */
1511 if (lowpc == ((CORE_ADDR) -1))
1512 lowpc = highpc;
1513
1514 /* If the compilation unit didn't have an explicit address range,
1515 then use the information extracted from its child dies. */
1516 if (! comp_unit_die.has_pc_info)
1517 {
1518 comp_unit_die.lowpc = lowpc;
1519 comp_unit_die.highpc = highpc;
1520 }
1521 }
1522 pst->textlow = comp_unit_die.lowpc + baseaddr;
1523 pst->texthigh = comp_unit_die.highpc + baseaddr;
1524
1525 pst->n_global_syms = objfile->global_psymbols.next -
1526 (objfile->global_psymbols.list + pst->globals_offset);
1527 pst->n_static_syms = objfile->static_psymbols.next -
1528 (objfile->static_psymbols.list + pst->statics_offset);
1529 sort_pst_symbols (pst);
1530
1531 /* If there is already a psymtab or symtab for a file of this
1532 name, remove it. (If there is a symtab, more drastic things
1533 also happen.) This happens in VxWorks. */
1534 free_named_symtabs (pst->filename);
1535
1536 if (comp_unit_die.has_stmt_list)
1537 {
1538 /* Get the list of files included in the current compilation unit,
1539 and build a psymtab for each of them. */
1540 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1541 }
1542
1543 info_ptr = beg_of_comp_unit + cu.header.length
1544 + cu.header.initial_length_size;
1545
1546 do_cleanups (back_to_inner);
1547 }
1548 do_cleanups (back_to);
1549 }
1550
1551 /* Load the DIEs for a secondary CU into memory. */
1552
1553 static void
1554 load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1555 {
1556 bfd *abfd = objfile->obfd;
1557 char *info_ptr, *beg_of_comp_unit;
1558 struct partial_die_info comp_unit_die;
1559 struct dwarf2_cu *cu;
1560 struct abbrev_info *abbrev;
1561 unsigned int bytes_read;
1562 struct cleanup *back_to;
1563
1564 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1565 beg_of_comp_unit = info_ptr;
1566
1567 cu = xmalloc (sizeof (struct dwarf2_cu));
1568 memset (cu, 0, sizeof (struct dwarf2_cu));
1569
1570 obstack_init (&cu->comp_unit_obstack);
1571
1572 cu->objfile = objfile;
1573 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1574
1575 /* Complete the cu_header. */
1576 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1577 cu->header.first_die_ptr = info_ptr;
1578 cu->header.cu_head_ptr = beg_of_comp_unit;
1579
1580 /* Read the abbrevs for this compilation unit into a table. */
1581 dwarf2_read_abbrevs (abfd, cu);
1582 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1583
1584 /* Read the compilation unit die. */
1585 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1586 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1587 abfd, info_ptr, cu);
1588
1589 /* Set the language we're debugging. */
1590 set_cu_language (comp_unit_die.language, cu);
1591
1592 /* Link this compilation unit into the compilation unit tree. */
1593 this_cu->cu = cu;
1594 cu->per_cu = this_cu;
1595
1596 /* Check if comp unit has_children.
1597 If so, read the rest of the partial symbols from this comp unit.
1598 If not, there's no more debug_info for this comp unit. */
1599 if (comp_unit_die.has_children)
1600 load_partial_dies (abfd, info_ptr, 0, cu);
1601
1602 do_cleanups (back_to);
1603 }
1604
1605 /* Create a list of all compilation units in OBJFILE. We do this only
1606 if an inter-comp-unit reference is found; presumably if there is one,
1607 there will be many, and one will occur early in the .debug_info section.
1608 So there's no point in building this list incrementally. */
1609
1610 static void
1611 create_all_comp_units (struct objfile *objfile)
1612 {
1613 int n_allocated;
1614 int n_comp_units;
1615 struct dwarf2_per_cu_data **all_comp_units;
1616 char *info_ptr = dwarf2_per_objfile->info_buffer;
1617
1618 n_comp_units = 0;
1619 n_allocated = 10;
1620 all_comp_units = xmalloc (n_allocated
1621 * sizeof (struct dwarf2_per_cu_data *));
1622
1623 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1624 {
1625 struct comp_unit_head cu_header;
1626 char *beg_of_comp_unit;
1627 struct dwarf2_per_cu_data *this_cu;
1628 unsigned long offset;
1629 int bytes_read;
1630
1631 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1632
1633 /* Read just enough information to find out where the next
1634 compilation unit is. */
1635 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1636 &cu_header, &bytes_read);
1637
1638 /* Save the compilation unit for later lookup. */
1639 this_cu = obstack_alloc (&objfile->objfile_obstack,
1640 sizeof (struct dwarf2_per_cu_data));
1641 memset (this_cu, 0, sizeof (*this_cu));
1642 this_cu->offset = offset;
1643 this_cu->length = cu_header.length + cu_header.initial_length_size;
1644
1645 if (n_comp_units == n_allocated)
1646 {
1647 n_allocated *= 2;
1648 all_comp_units = xrealloc (all_comp_units,
1649 n_allocated
1650 * sizeof (struct dwarf2_per_cu_data *));
1651 }
1652 all_comp_units[n_comp_units++] = this_cu;
1653
1654 info_ptr = info_ptr + this_cu->length;
1655 }
1656
1657 dwarf2_per_objfile->all_comp_units
1658 = obstack_alloc (&objfile->objfile_obstack,
1659 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1660 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1661 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1662 xfree (all_comp_units);
1663 dwarf2_per_objfile->n_comp_units = n_comp_units;
1664 }
1665
1666 /* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1667 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1668 in CU. */
1669
1670 static void
1671 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1672 CORE_ADDR *highpc, struct dwarf2_cu *cu)
1673 {
1674 struct objfile *objfile = cu->objfile;
1675 bfd *abfd = objfile->obfd;
1676 struct partial_die_info *pdi;
1677
1678 /* Now, march along the PDI's, descending into ones which have
1679 interesting children but skipping the children of the other ones,
1680 until we reach the end of the compilation unit. */
1681
1682 pdi = first_die;
1683
1684 while (pdi != NULL)
1685 {
1686 fixup_partial_die (pdi, cu);
1687
1688 /* Anonymous namespaces have no name but have interesting
1689 children, so we need to look at them. Ditto for anonymous
1690 enums. */
1691
1692 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1693 || pdi->tag == DW_TAG_enumeration_type)
1694 {
1695 switch (pdi->tag)
1696 {
1697 case DW_TAG_subprogram:
1698 if (pdi->has_pc_info)
1699 {
1700 if (pdi->lowpc < *lowpc)
1701 {
1702 *lowpc = pdi->lowpc;
1703 }
1704 if (pdi->highpc > *highpc)
1705 {
1706 *highpc = pdi->highpc;
1707 }
1708 if (!pdi->is_declaration)
1709 {
1710 add_partial_symbol (pdi, cu);
1711 }
1712 }
1713 break;
1714 case DW_TAG_variable:
1715 case DW_TAG_typedef:
1716 case DW_TAG_union_type:
1717 if (!pdi->is_declaration)
1718 {
1719 add_partial_symbol (pdi, cu);
1720 }
1721 break;
1722 case DW_TAG_class_type:
1723 case DW_TAG_structure_type:
1724 if (!pdi->is_declaration)
1725 {
1726 add_partial_symbol (pdi, cu);
1727 }
1728 break;
1729 case DW_TAG_enumeration_type:
1730 if (!pdi->is_declaration)
1731 add_partial_enumeration (pdi, cu);
1732 break;
1733 case DW_TAG_base_type:
1734 case DW_TAG_subrange_type:
1735 /* File scope base type definitions are added to the partial
1736 symbol table. */
1737 add_partial_symbol (pdi, cu);
1738 break;
1739 case DW_TAG_namespace:
1740 add_partial_namespace (pdi, lowpc, highpc, cu);
1741 break;
1742 default:
1743 break;
1744 }
1745 }
1746
1747 /* If the die has a sibling, skip to the sibling. */
1748
1749 pdi = pdi->die_sibling;
1750 }
1751 }
1752
1753 /* Functions used to compute the fully scoped name of a partial DIE.
1754
1755 Normally, this is simple. For C++, the parent DIE's fully scoped
1756 name is concatenated with "::" and the partial DIE's name. For
1757 Java, the same thing occurs except that "." is used instead of "::".
1758 Enumerators are an exception; they use the scope of their parent
1759 enumeration type, i.e. the name of the enumeration type is not
1760 prepended to the enumerator.
1761
1762 There are two complexities. One is DW_AT_specification; in this
1763 case "parent" means the parent of the target of the specification,
1764 instead of the direct parent of the DIE. The other is compilers
1765 which do not emit DW_TAG_namespace; in this case we try to guess
1766 the fully qualified name of structure types from their members'
1767 linkage names. This must be done using the DIE's children rather
1768 than the children of any DW_AT_specification target. We only need
1769 to do this for structures at the top level, i.e. if the target of
1770 any DW_AT_specification (if any; otherwise the DIE itself) does not
1771 have a parent. */
1772
1773 /* Compute the scope prefix associated with PDI's parent, in
1774 compilation unit CU. The result will be allocated on CU's
1775 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1776 field. NULL is returned if no prefix is necessary. */
1777 static char *
1778 partial_die_parent_scope (struct partial_die_info *pdi,
1779 struct dwarf2_cu *cu)
1780 {
1781 char *grandparent_scope;
1782 struct partial_die_info *parent, *real_pdi;
1783
1784 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1785 then this means the parent of the specification DIE. */
1786
1787 real_pdi = pdi;
1788 while (real_pdi->has_specification)
1789 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
1790
1791 parent = real_pdi->die_parent;
1792 if (parent == NULL)
1793 return NULL;
1794
1795 if (parent->scope_set)
1796 return parent->scope;
1797
1798 fixup_partial_die (parent, cu);
1799
1800 grandparent_scope = partial_die_parent_scope (parent, cu);
1801
1802 if (parent->tag == DW_TAG_namespace
1803 || parent->tag == DW_TAG_structure_type
1804 || parent->tag == DW_TAG_class_type
1805 || parent->tag == DW_TAG_union_type)
1806 {
1807 if (grandparent_scope == NULL)
1808 parent->scope = parent->name;
1809 else
1810 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1811 parent->name, cu);
1812 }
1813 else if (parent->tag == DW_TAG_enumeration_type)
1814 /* Enumerators should not get the name of the enumeration as a prefix. */
1815 parent->scope = grandparent_scope;
1816 else
1817 {
1818 /* FIXME drow/2004-04-01: What should we be doing with
1819 function-local names? For partial symbols, we should probably be
1820 ignoring them. */
1821 complaint (&symfile_complaints,
1822 _("unhandled containing DIE tag %d for DIE at %d"),
1823 parent->tag, pdi->offset);
1824 parent->scope = grandparent_scope;
1825 }
1826
1827 parent->scope_set = 1;
1828 return parent->scope;
1829 }
1830
1831 /* Return the fully scoped name associated with PDI, from compilation unit
1832 CU. The result will be allocated with malloc. */
1833 static char *
1834 partial_die_full_name (struct partial_die_info *pdi,
1835 struct dwarf2_cu *cu)
1836 {
1837 char *parent_scope;
1838
1839 parent_scope = partial_die_parent_scope (pdi, cu);
1840 if (parent_scope == NULL)
1841 return NULL;
1842 else
1843 return typename_concat (NULL, parent_scope, pdi->name, cu);
1844 }
1845
1846 static void
1847 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
1848 {
1849 struct objfile *objfile = cu->objfile;
1850 CORE_ADDR addr = 0;
1851 char *actual_name;
1852 const char *my_prefix;
1853 const struct partial_symbol *psym = NULL;
1854 CORE_ADDR baseaddr;
1855 int built_actual_name = 0;
1856
1857 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1858
1859 actual_name = NULL;
1860
1861 if (pdi_needs_namespace (pdi->tag))
1862 {
1863 actual_name = partial_die_full_name (pdi, cu);
1864 if (actual_name)
1865 built_actual_name = 1;
1866 }
1867
1868 if (actual_name == NULL)
1869 actual_name = pdi->name;
1870
1871 switch (pdi->tag)
1872 {
1873 case DW_TAG_subprogram:
1874 if (pdi->is_external)
1875 {
1876 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1877 mst_text, objfile); */
1878 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1879 VAR_DOMAIN, LOC_BLOCK,
1880 &objfile->global_psymbols,
1881 0, pdi->lowpc + baseaddr,
1882 cu->language, objfile);
1883 }
1884 else
1885 {
1886 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
1887 mst_file_text, objfile); */
1888 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1889 VAR_DOMAIN, LOC_BLOCK,
1890 &objfile->static_psymbols,
1891 0, pdi->lowpc + baseaddr,
1892 cu->language, objfile);
1893 }
1894 break;
1895 case DW_TAG_variable:
1896 if (pdi->is_external)
1897 {
1898 /* Global Variable.
1899 Don't enter into the minimal symbol tables as there is
1900 a minimal symbol table entry from the ELF symbols already.
1901 Enter into partial symbol table if it has a location
1902 descriptor or a type.
1903 If the location descriptor is missing, new_symbol will create
1904 a LOC_UNRESOLVED symbol, the address of the variable will then
1905 be determined from the minimal symbol table whenever the variable
1906 is referenced.
1907 The address for the partial symbol table entry is not
1908 used by GDB, but it comes in handy for debugging partial symbol
1909 table building. */
1910
1911 if (pdi->locdesc)
1912 addr = decode_locdesc (pdi->locdesc, cu);
1913 if (pdi->locdesc || pdi->has_type)
1914 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1915 VAR_DOMAIN, LOC_STATIC,
1916 &objfile->global_psymbols,
1917 0, addr + baseaddr,
1918 cu->language, objfile);
1919 }
1920 else
1921 {
1922 /* Static Variable. Skip symbols without location descriptors. */
1923 if (pdi->locdesc == NULL)
1924 return;
1925 addr = decode_locdesc (pdi->locdesc, cu);
1926 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
1927 mst_file_data, objfile); */
1928 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
1929 VAR_DOMAIN, LOC_STATIC,
1930 &objfile->static_psymbols,
1931 0, addr + baseaddr,
1932 cu->language, objfile);
1933 }
1934 break;
1935 case DW_TAG_typedef:
1936 case DW_TAG_base_type:
1937 case DW_TAG_subrange_type:
1938 add_psymbol_to_list (actual_name, strlen (actual_name),
1939 VAR_DOMAIN, LOC_TYPEDEF,
1940 &objfile->static_psymbols,
1941 0, (CORE_ADDR) 0, cu->language, objfile);
1942 break;
1943 case DW_TAG_namespace:
1944 add_psymbol_to_list (actual_name, strlen (actual_name),
1945 VAR_DOMAIN, LOC_TYPEDEF,
1946 &objfile->global_psymbols,
1947 0, (CORE_ADDR) 0, cu->language, objfile);
1948 break;
1949 case DW_TAG_class_type:
1950 case DW_TAG_structure_type:
1951 case DW_TAG_union_type:
1952 case DW_TAG_enumeration_type:
1953 /* Skip aggregate types without children, these are external
1954 references. */
1955 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1956 static vs. global. */
1957 if (pdi->has_children == 0)
1958 return;
1959 add_psymbol_to_list (actual_name, strlen (actual_name),
1960 STRUCT_DOMAIN, LOC_TYPEDEF,
1961 (cu->language == language_cplus
1962 || cu->language == language_java)
1963 ? &objfile->global_psymbols
1964 : &objfile->static_psymbols,
1965 0, (CORE_ADDR) 0, cu->language, objfile);
1966
1967 if (cu->language == language_cplus
1968 || cu->language == language_java)
1969 {
1970 /* For C++ and Java, these implicitly act as typedefs as well. */
1971 add_psymbol_to_list (actual_name, strlen (actual_name),
1972 VAR_DOMAIN, LOC_TYPEDEF,
1973 &objfile->global_psymbols,
1974 0, (CORE_ADDR) 0, cu->language, objfile);
1975 }
1976 break;
1977 case DW_TAG_enumerator:
1978 add_psymbol_to_list (actual_name, strlen (actual_name),
1979 VAR_DOMAIN, LOC_CONST,
1980 (cu->language == language_cplus
1981 || cu->language == language_java)
1982 ? &objfile->global_psymbols
1983 : &objfile->static_psymbols,
1984 0, (CORE_ADDR) 0, cu->language, objfile);
1985 break;
1986 default:
1987 break;
1988 }
1989
1990 /* Check to see if we should scan the name for possible namespace
1991 info. Only do this if this is C++, if we don't have namespace
1992 debugging info in the file, if the psym is of an appropriate type
1993 (otherwise we'll have psym == NULL), and if we actually had a
1994 mangled name to begin with. */
1995
1996 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
1997 cases which do not set PSYM above? */
1998
1999 if (cu->language == language_cplus
2000 && cu->has_namespace_info == 0
2001 && psym != NULL
2002 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2003 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2004 objfile);
2005
2006 if (built_actual_name)
2007 xfree (actual_name);
2008 }
2009
2010 /* Determine whether a die of type TAG living in a C++ class or
2011 namespace needs to have the name of the scope prepended to the
2012 name listed in the die. */
2013
2014 static int
2015 pdi_needs_namespace (enum dwarf_tag tag)
2016 {
2017 switch (tag)
2018 {
2019 case DW_TAG_namespace:
2020 case DW_TAG_typedef:
2021 case DW_TAG_class_type:
2022 case DW_TAG_structure_type:
2023 case DW_TAG_union_type:
2024 case DW_TAG_enumeration_type:
2025 case DW_TAG_enumerator:
2026 return 1;
2027 default:
2028 return 0;
2029 }
2030 }
2031
2032 /* Read a partial die corresponding to a namespace; also, add a symbol
2033 corresponding to that namespace to the symbol table. NAMESPACE is
2034 the name of the enclosing namespace. */
2035
2036 static void
2037 add_partial_namespace (struct partial_die_info *pdi,
2038 CORE_ADDR *lowpc, CORE_ADDR *highpc,
2039 struct dwarf2_cu *cu)
2040 {
2041 struct objfile *objfile = cu->objfile;
2042
2043 /* Add a symbol for the namespace. */
2044
2045 add_partial_symbol (pdi, cu);
2046
2047 /* Now scan partial symbols in that namespace. */
2048
2049 if (pdi->has_children)
2050 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
2051 }
2052
2053 /* See if we can figure out if the class lives in a namespace. We do
2054 this by looking for a member function; its demangled name will
2055 contain namespace info, if there is any. */
2056
2057 static void
2058 guess_structure_name (struct partial_die_info *struct_pdi,
2059 struct dwarf2_cu *cu)
2060 {
2061 if ((cu->language == language_cplus
2062 || cu->language == language_java)
2063 && cu->has_namespace_info == 0
2064 && struct_pdi->has_children)
2065 {
2066 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2067 what template types look like, because the demangler
2068 frequently doesn't give the same name as the debug info. We
2069 could fix this by only using the demangled name to get the
2070 prefix (but see comment in read_structure_type). */
2071
2072 struct partial_die_info *child_pdi = struct_pdi->die_child;
2073 struct partial_die_info *real_pdi;
2074
2075 /* If this DIE (this DIE's specification, if any) has a parent, then
2076 we should not do this. We'll prepend the parent's fully qualified
2077 name when we create the partial symbol. */
2078
2079 real_pdi = struct_pdi;
2080 while (real_pdi->has_specification)
2081 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
2082
2083 if (real_pdi->die_parent != NULL)
2084 return;
2085
2086 while (child_pdi != NULL)
2087 {
2088 if (child_pdi->tag == DW_TAG_subprogram)
2089 {
2090 char *actual_class_name
2091 = language_class_name_from_physname (cu->language_defn,
2092 child_pdi->name);
2093 if (actual_class_name != NULL)
2094 {
2095 struct_pdi->name
2096 = obsavestring (actual_class_name,
2097 strlen (actual_class_name),
2098 &cu->comp_unit_obstack);
2099 xfree (actual_class_name);
2100 }
2101 break;
2102 }
2103
2104 child_pdi = child_pdi->die_sibling;
2105 }
2106 }
2107 }
2108
2109 /* Read a partial die corresponding to an enumeration type. */
2110
2111 static void
2112 add_partial_enumeration (struct partial_die_info *enum_pdi,
2113 struct dwarf2_cu *cu)
2114 {
2115 struct objfile *objfile = cu->objfile;
2116 bfd *abfd = objfile->obfd;
2117 struct partial_die_info *pdi;
2118
2119 if (enum_pdi->name != NULL)
2120 add_partial_symbol (enum_pdi, cu);
2121
2122 pdi = enum_pdi->die_child;
2123 while (pdi)
2124 {
2125 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
2126 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
2127 else
2128 add_partial_symbol (pdi, cu);
2129 pdi = pdi->die_sibling;
2130 }
2131 }
2132
2133 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2134 Return the corresponding abbrev, or NULL if the number is zero (indicating
2135 an empty DIE). In either case *BYTES_READ will be set to the length of
2136 the initial number. */
2137
2138 static struct abbrev_info *
2139 peek_die_abbrev (char *info_ptr, int *bytes_read, struct dwarf2_cu *cu)
2140 {
2141 bfd *abfd = cu->objfile->obfd;
2142 unsigned int abbrev_number;
2143 struct abbrev_info *abbrev;
2144
2145 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2146
2147 if (abbrev_number == 0)
2148 return NULL;
2149
2150 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2151 if (!abbrev)
2152 {
2153 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
2154 bfd_get_filename (abfd));
2155 }
2156
2157 return abbrev;
2158 }
2159
2160 /* Scan the debug information for CU starting at INFO_PTR. Returns a
2161 pointer to the end of a series of DIEs, terminated by an empty
2162 DIE. Any children of the skipped DIEs will also be skipped. */
2163
2164 static char *
2165 skip_children (char *info_ptr, struct dwarf2_cu *cu)
2166 {
2167 struct abbrev_info *abbrev;
2168 unsigned int bytes_read;
2169
2170 while (1)
2171 {
2172 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2173 if (abbrev == NULL)
2174 return info_ptr + bytes_read;
2175 else
2176 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2177 }
2178 }
2179
2180 /* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2181 should point just after the initial uleb128 of a DIE, and the
2182 abbrev corresponding to that skipped uleb128 should be passed in
2183 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2184 children. */
2185
2186 static char *
2187 skip_one_die (char *info_ptr, struct abbrev_info *abbrev,
2188 struct dwarf2_cu *cu)
2189 {
2190 unsigned int bytes_read;
2191 struct attribute attr;
2192 bfd *abfd = cu->objfile->obfd;
2193 unsigned int form, i;
2194
2195 for (i = 0; i < abbrev->num_attrs; i++)
2196 {
2197 /* The only abbrev we care about is DW_AT_sibling. */
2198 if (abbrev->attrs[i].name == DW_AT_sibling)
2199 {
2200 read_attribute (&attr, &abbrev->attrs[i],
2201 abfd, info_ptr, cu);
2202 if (attr.form == DW_FORM_ref_addr)
2203 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
2204 else
2205 return dwarf2_per_objfile->info_buffer
2206 + dwarf2_get_ref_die_offset (&attr, cu);
2207 }
2208
2209 /* If it isn't DW_AT_sibling, skip this attribute. */
2210 form = abbrev->attrs[i].form;
2211 skip_attribute:
2212 switch (form)
2213 {
2214 case DW_FORM_addr:
2215 case DW_FORM_ref_addr:
2216 info_ptr += cu->header.addr_size;
2217 break;
2218 case DW_FORM_data1:
2219 case DW_FORM_ref1:
2220 case DW_FORM_flag:
2221 info_ptr += 1;
2222 break;
2223 case DW_FORM_data2:
2224 case DW_FORM_ref2:
2225 info_ptr += 2;
2226 break;
2227 case DW_FORM_data4:
2228 case DW_FORM_ref4:
2229 info_ptr += 4;
2230 break;
2231 case DW_FORM_data8:
2232 case DW_FORM_ref8:
2233 info_ptr += 8;
2234 break;
2235 case DW_FORM_string:
2236 read_string (abfd, info_ptr, &bytes_read);
2237 info_ptr += bytes_read;
2238 break;
2239 case DW_FORM_strp:
2240 info_ptr += cu->header.offset_size;
2241 break;
2242 case DW_FORM_block:
2243 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2244 info_ptr += bytes_read;
2245 break;
2246 case DW_FORM_block1:
2247 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2248 break;
2249 case DW_FORM_block2:
2250 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2251 break;
2252 case DW_FORM_block4:
2253 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2254 break;
2255 case DW_FORM_sdata:
2256 case DW_FORM_udata:
2257 case DW_FORM_ref_udata:
2258 info_ptr = skip_leb128 (abfd, info_ptr);
2259 break;
2260 case DW_FORM_indirect:
2261 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2262 info_ptr += bytes_read;
2263 /* We need to continue parsing from here, so just go back to
2264 the top. */
2265 goto skip_attribute;
2266
2267 default:
2268 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
2269 dwarf_form_name (form),
2270 bfd_get_filename (abfd));
2271 }
2272 }
2273
2274 if (abbrev->has_children)
2275 return skip_children (info_ptr, cu);
2276 else
2277 return info_ptr;
2278 }
2279
2280 /* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2281 the next DIE after ORIG_PDI. */
2282
2283 static char *
2284 locate_pdi_sibling (struct partial_die_info *orig_pdi, char *info_ptr,
2285 bfd *abfd, struct dwarf2_cu *cu)
2286 {
2287 /* Do we know the sibling already? */
2288
2289 if (orig_pdi->sibling)
2290 return orig_pdi->sibling;
2291
2292 /* Are there any children to deal with? */
2293
2294 if (!orig_pdi->has_children)
2295 return info_ptr;
2296
2297 /* Skip the children the long way. */
2298
2299 return skip_children (info_ptr, cu);
2300 }
2301
2302 /* Expand this partial symbol table into a full symbol table. */
2303
2304 static void
2305 dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
2306 {
2307 /* FIXME: This is barely more than a stub. */
2308 if (pst != NULL)
2309 {
2310 if (pst->readin)
2311 {
2312 warning (_("bug: psymtab for %s is already read in."), pst->filename);
2313 }
2314 else
2315 {
2316 if (info_verbose)
2317 {
2318 printf_filtered ("Reading in symbols for %s...", pst->filename);
2319 gdb_flush (gdb_stdout);
2320 }
2321
2322 /* Restore our global data. */
2323 dwarf2_per_objfile = objfile_data (pst->objfile,
2324 dwarf2_objfile_data_key);
2325
2326 psymtab_to_symtab_1 (pst);
2327
2328 /* Finish up the debug error message. */
2329 if (info_verbose)
2330 printf_filtered ("done.\n");
2331 }
2332 }
2333 }
2334
2335 /* Add PER_CU to the queue. */
2336
2337 static void
2338 queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2339 {
2340 struct dwarf2_queue_item *item;
2341
2342 per_cu->queued = 1;
2343 item = xmalloc (sizeof (*item));
2344 item->per_cu = per_cu;
2345 item->next = NULL;
2346
2347 if (dwarf2_queue == NULL)
2348 dwarf2_queue = item;
2349 else
2350 dwarf2_queue_tail->next = item;
2351
2352 dwarf2_queue_tail = item;
2353 }
2354
2355 /* Process the queue. */
2356
2357 static void
2358 process_queue (struct objfile *objfile)
2359 {
2360 struct dwarf2_queue_item *item, *next_item;
2361
2362 /* Initially, there is just one item on the queue. Load its DIEs,
2363 and the DIEs of any other compilation units it requires,
2364 transitively. */
2365
2366 for (item = dwarf2_queue; item != NULL; item = item->next)
2367 {
2368 /* Read in this compilation unit. This may add new items to
2369 the end of the queue. */
2370 load_full_comp_unit (item->per_cu);
2371
2372 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2373 dwarf2_per_objfile->read_in_chain = item->per_cu;
2374
2375 /* If this compilation unit has already had full symbols created,
2376 reset the TYPE fields in each DIE. */
2377 if (item->per_cu->psymtab->readin)
2378 reset_die_and_siblings_types (item->per_cu->cu->dies,
2379 item->per_cu->cu);
2380 }
2381
2382 /* Now everything left on the queue needs to be read in. Process
2383 them, one at a time, removing from the queue as we finish. */
2384 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2385 {
2386 if (!item->per_cu->psymtab->readin)
2387 process_full_comp_unit (item->per_cu);
2388
2389 item->per_cu->queued = 0;
2390 next_item = item->next;
2391 xfree (item);
2392 }
2393
2394 dwarf2_queue_tail = NULL;
2395 }
2396
2397 /* Free all allocated queue entries. This function only releases anything if
2398 an error was thrown; if the queue was processed then it would have been
2399 freed as we went along. */
2400
2401 static void
2402 dwarf2_release_queue (void *dummy)
2403 {
2404 struct dwarf2_queue_item *item, *last;
2405
2406 item = dwarf2_queue;
2407 while (item)
2408 {
2409 /* Anything still marked queued is likely to be in an
2410 inconsistent state, so discard it. */
2411 if (item->per_cu->queued)
2412 {
2413 if (item->per_cu->cu != NULL)
2414 free_one_cached_comp_unit (item->per_cu->cu);
2415 item->per_cu->queued = 0;
2416 }
2417
2418 last = item;
2419 item = item->next;
2420 xfree (last);
2421 }
2422
2423 dwarf2_queue = dwarf2_queue_tail = NULL;
2424 }
2425
2426 /* Read in full symbols for PST, and anything it depends on. */
2427
2428 static void
2429 psymtab_to_symtab_1 (struct partial_symtab *pst)
2430 {
2431 struct dwarf2_per_cu_data *per_cu;
2432 struct cleanup *back_to;
2433 int i;
2434
2435 for (i = 0; i < pst->number_of_dependencies; i++)
2436 if (!pst->dependencies[i]->readin)
2437 {
2438 /* Inform about additional files that need to be read in. */
2439 if (info_verbose)
2440 {
2441 fputs_filtered (" ", gdb_stdout);
2442 wrap_here ("");
2443 fputs_filtered ("and ", gdb_stdout);
2444 wrap_here ("");
2445 printf_filtered ("%s...", pst->dependencies[i]->filename);
2446 wrap_here (""); /* Flush output */
2447 gdb_flush (gdb_stdout);
2448 }
2449 psymtab_to_symtab_1 (pst->dependencies[i]);
2450 }
2451
2452 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2453
2454 if (per_cu == NULL)
2455 {
2456 /* It's an include file, no symbols to read for it.
2457 Everything is in the parent symtab. */
2458 pst->readin = 1;
2459 return;
2460 }
2461
2462 back_to = make_cleanup (dwarf2_release_queue, NULL);
2463
2464 queue_comp_unit (per_cu);
2465
2466 process_queue (pst->objfile);
2467
2468 /* Age the cache, releasing compilation units that have not
2469 been used recently. */
2470 age_cached_comp_units ();
2471
2472 do_cleanups (back_to);
2473 }
2474
2475 /* Load the DIEs associated with PST and PER_CU into memory. */
2476
2477 static struct dwarf2_cu *
2478 load_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2479 {
2480 struct partial_symtab *pst = per_cu->psymtab;
2481 bfd *abfd = pst->objfile->obfd;
2482 struct dwarf2_cu *cu;
2483 unsigned long offset;
2484 char *info_ptr;
2485 struct cleanup *back_to, *free_cu_cleanup;
2486 struct attribute *attr;
2487 CORE_ADDR baseaddr;
2488
2489 /* Set local variables from the partial symbol table info. */
2490 offset = per_cu->offset;
2491
2492 info_ptr = dwarf2_per_objfile->info_buffer + offset;
2493
2494 cu = xmalloc (sizeof (struct dwarf2_cu));
2495 memset (cu, 0, sizeof (struct dwarf2_cu));
2496
2497 /* If an error occurs while loading, release our storage. */
2498 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
2499
2500 cu->objfile = pst->objfile;
2501
2502 /* read in the comp_unit header */
2503 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
2504
2505 /* Read the abbrevs for this compilation unit */
2506 dwarf2_read_abbrevs (abfd, cu);
2507 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2508
2509 cu->header.offset = offset;
2510
2511 cu->per_cu = per_cu;
2512 per_cu->cu = cu;
2513
2514 /* We use this obstack for block values in dwarf_alloc_block. */
2515 obstack_init (&cu->comp_unit_obstack);
2516
2517 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2518
2519 /* We try not to read any attributes in this function, because not
2520 all objfiles needed for references have been loaded yet, and symbol
2521 table processing isn't initialized. But we have to set the CU language,
2522 or we won't be able to build types correctly. */
2523 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2524 if (attr)
2525 set_cu_language (DW_UNSND (attr), cu);
2526 else
2527 set_cu_language (language_minimal, cu);
2528
2529 do_cleanups (back_to);
2530
2531 /* We've successfully allocated this compilation unit. Let our caller
2532 clean it up when finished with it. */
2533 discard_cleanups (free_cu_cleanup);
2534
2535 return cu;
2536 }
2537
2538 /* Generate full symbol information for PST and CU, whose DIEs have
2539 already been loaded into memory. */
2540
2541 static void
2542 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2543 {
2544 struct partial_symtab *pst = per_cu->psymtab;
2545 struct dwarf2_cu *cu = per_cu->cu;
2546 struct objfile *objfile = pst->objfile;
2547 bfd *abfd = objfile->obfd;
2548 CORE_ADDR lowpc, highpc;
2549 struct symtab *symtab;
2550 struct cleanup *back_to;
2551 struct attribute *attr;
2552 CORE_ADDR baseaddr;
2553
2554 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2555
2556 /* We're in the global namespace. */
2557 processing_current_prefix = "";
2558
2559 buildsym_init ();
2560 back_to = make_cleanup (really_free_pendings, NULL);
2561
2562 cu->list_in_scope = &file_symbols;
2563
2564 /* Find the base address of the compilation unit for range lists and
2565 location lists. It will normally be specified by DW_AT_low_pc.
2566 In DWARF-3 draft 4, the base address could be overridden by
2567 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2568 compilation units with discontinuous ranges. */
2569
2570 cu->header.base_known = 0;
2571 cu->header.base_address = 0;
2572
2573 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
2574 if (attr)
2575 {
2576 cu->header.base_address = DW_ADDR (attr);
2577 cu->header.base_known = 1;
2578 }
2579 else
2580 {
2581 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
2582 if (attr)
2583 {
2584 cu->header.base_address = DW_ADDR (attr);
2585 cu->header.base_known = 1;
2586 }
2587 }
2588
2589 /* Do line number decoding in read_file_scope () */
2590 process_die (cu->dies, cu);
2591
2592 /* Some compilers don't define a DW_AT_high_pc attribute for the
2593 compilation unit. If the DW_AT_high_pc is missing, synthesize
2594 it, by scanning the DIE's below the compilation unit. */
2595 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
2596
2597 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
2598
2599 /* Set symtab language to language from DW_AT_language.
2600 If the compilation is from a C file generated by language preprocessors,
2601 do not set the language if it was already deduced by start_subfile. */
2602 if (symtab != NULL
2603 && !(cu->language == language_c && symtab->language != language_c))
2604 {
2605 symtab->language = cu->language;
2606 }
2607 pst->symtab = symtab;
2608 pst->readin = 1;
2609
2610 do_cleanups (back_to);
2611 }
2612
2613 /* Process a die and its children. */
2614
2615 static void
2616 process_die (struct die_info *die, struct dwarf2_cu *cu)
2617 {
2618 switch (die->tag)
2619 {
2620 case DW_TAG_padding:
2621 break;
2622 case DW_TAG_compile_unit:
2623 read_file_scope (die, cu);
2624 break;
2625 case DW_TAG_subprogram:
2626 read_subroutine_type (die, cu);
2627 read_func_scope (die, cu);
2628 break;
2629 case DW_TAG_inlined_subroutine:
2630 /* FIXME: These are ignored for now.
2631 They could be used to set breakpoints on all inlined instances
2632 of a function and make GDB `next' properly over inlined functions. */
2633 break;
2634 case DW_TAG_lexical_block:
2635 case DW_TAG_try_block:
2636 case DW_TAG_catch_block:
2637 read_lexical_block_scope (die, cu);
2638 break;
2639 case DW_TAG_class_type:
2640 case DW_TAG_structure_type:
2641 case DW_TAG_union_type:
2642 read_structure_type (die, cu);
2643 process_structure_scope (die, cu);
2644 break;
2645 case DW_TAG_enumeration_type:
2646 read_enumeration_type (die, cu);
2647 process_enumeration_scope (die, cu);
2648 break;
2649
2650 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2651 a symbol or process any children. Therefore it doesn't do anything
2652 that won't be done on-demand by read_type_die. */
2653 case DW_TAG_subroutine_type:
2654 read_subroutine_type (die, cu);
2655 break;
2656 case DW_TAG_array_type:
2657 read_array_type (die, cu);
2658 break;
2659 case DW_TAG_pointer_type:
2660 read_tag_pointer_type (die, cu);
2661 break;
2662 case DW_TAG_ptr_to_member_type:
2663 read_tag_ptr_to_member_type (die, cu);
2664 break;
2665 case DW_TAG_reference_type:
2666 read_tag_reference_type (die, cu);
2667 break;
2668 case DW_TAG_string_type:
2669 read_tag_string_type (die, cu);
2670 break;
2671 /* END FIXME */
2672
2673 case DW_TAG_base_type:
2674 read_base_type (die, cu);
2675 /* Add a typedef symbol for the type definition, if it has a
2676 DW_AT_name. */
2677 new_symbol (die, die->type, cu);
2678 break;
2679 case DW_TAG_subrange_type:
2680 read_subrange_type (die, cu);
2681 /* Add a typedef symbol for the type definition, if it has a
2682 DW_AT_name. */
2683 new_symbol (die, die->type, cu);
2684 break;
2685 case DW_TAG_common_block:
2686 read_common_block (die, cu);
2687 break;
2688 case DW_TAG_common_inclusion:
2689 break;
2690 case DW_TAG_namespace:
2691 processing_has_namespace_info = 1;
2692 read_namespace (die, cu);
2693 break;
2694 case DW_TAG_imported_declaration:
2695 case DW_TAG_imported_module:
2696 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2697 information contained in these. DW_TAG_imported_declaration
2698 dies shouldn't have children; DW_TAG_imported_module dies
2699 shouldn't in the C++ case, but conceivably could in the
2700 Fortran case, so we'll have to replace this gdb_assert if
2701 Fortran compilers start generating that info. */
2702 processing_has_namespace_info = 1;
2703 gdb_assert (die->child == NULL);
2704 break;
2705 default:
2706 new_symbol (die, NULL, cu);
2707 break;
2708 }
2709 }
2710
2711 static void
2712 initialize_cu_func_list (struct dwarf2_cu *cu)
2713 {
2714 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
2715 }
2716
2717 static void
2718 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
2719 {
2720 struct objfile *objfile = cu->objfile;
2721 struct comp_unit_head *cu_header = &cu->header;
2722 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2723 CORE_ADDR lowpc = ((CORE_ADDR) -1);
2724 CORE_ADDR highpc = ((CORE_ADDR) 0);
2725 struct attribute *attr;
2726 char *name = "<unknown>";
2727 char *comp_dir = NULL;
2728 struct die_info *child_die;
2729 bfd *abfd = objfile->obfd;
2730 struct line_header *line_header = 0;
2731 CORE_ADDR baseaddr;
2732
2733 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2734
2735 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
2736
2737 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2738 from finish_block. */
2739 if (lowpc == ((CORE_ADDR) -1))
2740 lowpc = highpc;
2741 lowpc += baseaddr;
2742 highpc += baseaddr;
2743
2744 attr = dwarf2_attr (die, DW_AT_name, cu);
2745 if (attr)
2746 {
2747 name = DW_STRING (attr);
2748 }
2749 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
2750 if (attr)
2751 {
2752 comp_dir = DW_STRING (attr);
2753 if (comp_dir)
2754 {
2755 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2756 directory, get rid of it. */
2757 char *cp = strchr (comp_dir, ':');
2758
2759 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2760 comp_dir = cp + 1;
2761 }
2762 }
2763
2764 attr = dwarf2_attr (die, DW_AT_language, cu);
2765 if (attr)
2766 {
2767 set_cu_language (DW_UNSND (attr), cu);
2768 }
2769
2770 attr = dwarf2_attr (die, DW_AT_producer, cu);
2771 if (attr)
2772 cu->producer = DW_STRING (attr);
2773
2774 /* We assume that we're processing GCC output. */
2775 processing_gcc_compilation = 2;
2776 #if 0
2777 /* FIXME:Do something here. */
2778 if (dip->at_producer != NULL)
2779 {
2780 handle_producer (dip->at_producer);
2781 }
2782 #endif
2783
2784 /* The compilation unit may be in a different language or objfile,
2785 zero out all remembered fundamental types. */
2786 memset (cu->ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
2787
2788 start_symtab (name, comp_dir, lowpc);
2789 record_debugformat ("DWARF 2");
2790
2791 initialize_cu_func_list (cu);
2792
2793 /* Process all dies in compilation unit. */
2794 if (die->child != NULL)
2795 {
2796 child_die = die->child;
2797 while (child_die && child_die->tag)
2798 {
2799 process_die (child_die, cu);
2800 child_die = sibling_die (child_die);
2801 }
2802 }
2803
2804 /* Decode line number information if present. */
2805 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
2806 if (attr)
2807 {
2808 unsigned int line_offset = DW_UNSND (attr);
2809 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
2810 if (line_header)
2811 {
2812 make_cleanup ((make_cleanup_ftype *) free_line_header,
2813 (void *) line_header);
2814 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
2815 }
2816 }
2817
2818 /* Decode macro information, if present. Dwarf 2 macro information
2819 refers to information in the line number info statement program
2820 header, so we can only read it if we've read the header
2821 successfully. */
2822 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
2823 if (attr && line_header)
2824 {
2825 unsigned int macro_offset = DW_UNSND (attr);
2826 dwarf_decode_macros (line_header, macro_offset,
2827 comp_dir, abfd, cu);
2828 }
2829 do_cleanups (back_to);
2830 }
2831
2832 static void
2833 add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2834 struct dwarf2_cu *cu)
2835 {
2836 struct function_range *thisfn;
2837
2838 thisfn = (struct function_range *)
2839 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
2840 thisfn->name = name;
2841 thisfn->lowpc = lowpc;
2842 thisfn->highpc = highpc;
2843 thisfn->seen_line = 0;
2844 thisfn->next = NULL;
2845
2846 if (cu->last_fn == NULL)
2847 cu->first_fn = thisfn;
2848 else
2849 cu->last_fn->next = thisfn;
2850
2851 cu->last_fn = thisfn;
2852 }
2853
2854 static void
2855 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
2856 {
2857 struct objfile *objfile = cu->objfile;
2858 struct context_stack *new;
2859 CORE_ADDR lowpc;
2860 CORE_ADDR highpc;
2861 struct die_info *child_die;
2862 struct attribute *attr;
2863 char *name;
2864 const char *previous_prefix = processing_current_prefix;
2865 struct cleanup *back_to = NULL;
2866 CORE_ADDR baseaddr;
2867
2868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2869
2870 name = dwarf2_linkage_name (die, cu);
2871
2872 /* Ignore functions with missing or empty names and functions with
2873 missing or invalid low and high pc attributes. */
2874 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2875 return;
2876
2877 if (cu->language == language_cplus
2878 || cu->language == language_java)
2879 {
2880 struct die_info *spec_die = die_specification (die, cu);
2881
2882 /* NOTE: carlton/2004-01-23: We have to be careful in the
2883 presence of DW_AT_specification. For example, with GCC 3.4,
2884 given the code
2885
2886 namespace N {
2887 void foo() {
2888 // Definition of N::foo.
2889 }
2890 }
2891
2892 then we'll have a tree of DIEs like this:
2893
2894 1: DW_TAG_compile_unit
2895 2: DW_TAG_namespace // N
2896 3: DW_TAG_subprogram // declaration of N::foo
2897 4: DW_TAG_subprogram // definition of N::foo
2898 DW_AT_specification // refers to die #3
2899
2900 Thus, when processing die #4, we have to pretend that we're
2901 in the context of its DW_AT_specification, namely the contex
2902 of die #3. */
2903
2904 if (spec_die != NULL)
2905 {
2906 char *specification_prefix = determine_prefix (spec_die, cu);
2907 processing_current_prefix = specification_prefix;
2908 back_to = make_cleanup (xfree, specification_prefix);
2909 }
2910 }
2911
2912 lowpc += baseaddr;
2913 highpc += baseaddr;
2914
2915 /* Record the function range for dwarf_decode_lines. */
2916 add_to_cu_func_list (name, lowpc, highpc, cu);
2917
2918 new = push_context (0, lowpc);
2919 new->name = new_symbol (die, die->type, cu);
2920
2921 /* If there is a location expression for DW_AT_frame_base, record
2922 it. */
2923 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
2924 if (attr)
2925 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2926 expression is being recorded directly in the function's symbol
2927 and not in a separate frame-base object. I guess this hack is
2928 to avoid adding some sort of frame-base adjunct/annex to the
2929 function's symbol :-(. The problem with doing this is that it
2930 results in a function symbol with a location expression that
2931 has nothing to do with the location of the function, ouch! The
2932 relationship should be: a function's symbol has-a frame base; a
2933 frame-base has-a location expression. */
2934 dwarf2_symbol_mark_computed (attr, new->name, cu);
2935
2936 cu->list_in_scope = &local_symbols;
2937
2938 if (die->child != NULL)
2939 {
2940 child_die = die->child;
2941 while (child_die && child_die->tag)
2942 {
2943 process_die (child_die, cu);
2944 child_die = sibling_die (child_die);
2945 }
2946 }
2947
2948 new = pop_context ();
2949 /* Make a block for the local symbols within. */
2950 finish_block (new->name, &local_symbols, new->old_blocks,
2951 lowpc, highpc, objfile);
2952
2953 /* In C++, we can have functions nested inside functions (e.g., when
2954 a function declares a class that has methods). This means that
2955 when we finish processing a function scope, we may need to go
2956 back to building a containing block's symbol lists. */
2957 local_symbols = new->locals;
2958 param_symbols = new->params;
2959
2960 /* If we've finished processing a top-level function, subsequent
2961 symbols go in the file symbol list. */
2962 if (outermost_context_p ())
2963 cu->list_in_scope = &file_symbols;
2964
2965 processing_current_prefix = previous_prefix;
2966 if (back_to != NULL)
2967 do_cleanups (back_to);
2968 }
2969
2970 /* Process all the DIES contained within a lexical block scope. Start
2971 a new scope, process the dies, and then close the scope. */
2972
2973 static void
2974 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
2975 {
2976 struct objfile *objfile = cu->objfile;
2977 struct context_stack *new;
2978 CORE_ADDR lowpc, highpc;
2979 struct die_info *child_die;
2980 CORE_ADDR baseaddr;
2981
2982 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2983
2984 /* Ignore blocks with missing or invalid low and high pc attributes. */
2985 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
2986 as multiple lexical blocks? Handling children in a sane way would
2987 be nasty. Might be easier to properly extend generic blocks to
2988 describe ranges. */
2989 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
2990 return;
2991 lowpc += baseaddr;
2992 highpc += baseaddr;
2993
2994 push_context (0, lowpc);
2995 if (die->child != NULL)
2996 {
2997 child_die = die->child;
2998 while (child_die && child_die->tag)
2999 {
3000 process_die (child_die, cu);
3001 child_die = sibling_die (child_die);
3002 }
3003 }
3004 new = pop_context ();
3005
3006 if (local_symbols != NULL)
3007 {
3008 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3009 highpc, objfile);
3010 }
3011 local_symbols = new->locals;
3012 }
3013
3014 /* Get low and high pc attributes from a die. Return 1 if the attributes
3015 are present and valid, otherwise, return 0. Return -1 if the range is
3016 discontinuous, i.e. derived from DW_AT_ranges information. */
3017 static int
3018 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
3019 CORE_ADDR *highpc, struct dwarf2_cu *cu)
3020 {
3021 struct objfile *objfile = cu->objfile;
3022 struct comp_unit_head *cu_header = &cu->header;
3023 struct attribute *attr;
3024 bfd *obfd = objfile->obfd;
3025 CORE_ADDR low = 0;
3026 CORE_ADDR high = 0;
3027 int ret = 0;
3028
3029 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3030 if (attr)
3031 {
3032 high = DW_ADDR (attr);
3033 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3034 if (attr)
3035 low = DW_ADDR (attr);
3036 else
3037 /* Found high w/o low attribute. */
3038 return 0;
3039
3040 /* Found consecutive range of addresses. */
3041 ret = 1;
3042 }
3043 else
3044 {
3045 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3046 if (attr != NULL)
3047 {
3048 unsigned int addr_size = cu_header->addr_size;
3049 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3050 /* Value of the DW_AT_ranges attribute is the offset in the
3051 .debug_ranges section. */
3052 unsigned int offset = DW_UNSND (attr);
3053 /* Base address selection entry. */
3054 CORE_ADDR base;
3055 int found_base;
3056 int dummy;
3057 char *buffer;
3058 CORE_ADDR marker;
3059 int low_set;
3060
3061 found_base = cu_header->base_known;
3062 base = cu_header->base_address;
3063
3064 if (offset >= dwarf2_per_objfile->ranges_size)
3065 {
3066 complaint (&symfile_complaints,
3067 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3068 offset);
3069 return 0;
3070 }
3071 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3072
3073 /* Read in the largest possible address. */
3074 marker = read_address (obfd, buffer, cu, &dummy);
3075 if ((marker & mask) == mask)
3076 {
3077 /* If we found the largest possible address, then
3078 read the base address. */
3079 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3080 buffer += 2 * addr_size;
3081 offset += 2 * addr_size;
3082 found_base = 1;
3083 }
3084
3085 low_set = 0;
3086
3087 while (1)
3088 {
3089 CORE_ADDR range_beginning, range_end;
3090
3091 range_beginning = read_address (obfd, buffer, cu, &dummy);
3092 buffer += addr_size;
3093 range_end = read_address (obfd, buffer, cu, &dummy);
3094 buffer += addr_size;
3095 offset += 2 * addr_size;
3096
3097 /* An end of list marker is a pair of zero addresses. */
3098 if (range_beginning == 0 && range_end == 0)
3099 /* Found the end of list entry. */
3100 break;
3101
3102 /* Each base address selection entry is a pair of 2 values.
3103 The first is the largest possible address, the second is
3104 the base address. Check for a base address here. */
3105 if ((range_beginning & mask) == mask)
3106 {
3107 /* If we found the largest possible address, then
3108 read the base address. */
3109 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3110 found_base = 1;
3111 continue;
3112 }
3113
3114 if (!found_base)
3115 {
3116 /* We have no valid base address for the ranges
3117 data. */
3118 complaint (&symfile_complaints,
3119 _("Invalid .debug_ranges data (no base address)"));
3120 return 0;
3121 }
3122
3123 range_beginning += base;
3124 range_end += base;
3125
3126 /* FIXME: This is recording everything as a low-high
3127 segment of consecutive addresses. We should have a
3128 data structure for discontiguous block ranges
3129 instead. */
3130 if (! low_set)
3131 {
3132 low = range_beginning;
3133 high = range_end;
3134 low_set = 1;
3135 }
3136 else
3137 {
3138 if (range_beginning < low)
3139 low = range_beginning;
3140 if (range_end > high)
3141 high = range_end;
3142 }
3143 }
3144
3145 if (! low_set)
3146 /* If the first entry is an end-of-list marker, the range
3147 describes an empty scope, i.e. no instructions. */
3148 return 0;
3149
3150 ret = -1;
3151 }
3152 }
3153
3154 if (high < low)
3155 return 0;
3156
3157 /* When using the GNU linker, .gnu.linkonce. sections are used to
3158 eliminate duplicate copies of functions and vtables and such.
3159 The linker will arbitrarily choose one and discard the others.
3160 The AT_*_pc values for such functions refer to local labels in
3161 these sections. If the section from that file was discarded, the
3162 labels are not in the output, so the relocs get a value of 0.
3163 If this is a discarded function, mark the pc bounds as invalid,
3164 so that GDB will ignore it. */
3165 if (low == 0 && (bfd_get_file_flags (obfd) & HAS_RELOC) == 0)
3166 return 0;
3167
3168 *lowpc = low;
3169 *highpc = high;
3170 return ret;
3171 }
3172
3173 /* Get the low and high pc's represented by the scope DIE, and store
3174 them in *LOWPC and *HIGHPC. If the correct values can't be
3175 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3176
3177 static void
3178 get_scope_pc_bounds (struct die_info *die,
3179 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3180 struct dwarf2_cu *cu)
3181 {
3182 CORE_ADDR best_low = (CORE_ADDR) -1;
3183 CORE_ADDR best_high = (CORE_ADDR) 0;
3184 CORE_ADDR current_low, current_high;
3185
3186 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3187 {
3188 best_low = current_low;
3189 best_high = current_high;
3190 }
3191 else
3192 {
3193 struct die_info *child = die->child;
3194
3195 while (child && child->tag)
3196 {
3197 switch (child->tag) {
3198 case DW_TAG_subprogram:
3199 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3200 {
3201 best_low = min (best_low, current_low);
3202 best_high = max (best_high, current_high);
3203 }
3204 break;
3205 case DW_TAG_namespace:
3206 /* FIXME: carlton/2004-01-16: Should we do this for
3207 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3208 that current GCC's always emit the DIEs corresponding
3209 to definitions of methods of classes as children of a
3210 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3211 the DIEs giving the declarations, which could be
3212 anywhere). But I don't see any reason why the
3213 standards says that they have to be there. */
3214 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3215
3216 if (current_low != ((CORE_ADDR) -1))
3217 {
3218 best_low = min (best_low, current_low);
3219 best_high = max (best_high, current_high);
3220 }
3221 break;
3222 default:
3223 /* Ignore. */
3224 break;
3225 }
3226
3227 child = sibling_die (child);
3228 }
3229 }
3230
3231 *lowpc = best_low;
3232 *highpc = best_high;
3233 }
3234
3235 /* Add an aggregate field to the field list. */
3236
3237 static void
3238 dwarf2_add_field (struct field_info *fip, struct die_info *die,
3239 struct dwarf2_cu *cu)
3240 {
3241 struct objfile *objfile = cu->objfile;
3242 struct nextfield *new_field;
3243 struct attribute *attr;
3244 struct field *fp;
3245 char *fieldname = "";
3246
3247 /* Allocate a new field list entry and link it in. */
3248 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3249 make_cleanup (xfree, new_field);
3250 memset (new_field, 0, sizeof (struct nextfield));
3251 new_field->next = fip->fields;
3252 fip->fields = new_field;
3253 fip->nfields++;
3254
3255 /* Handle accessibility and virtuality of field.
3256 The default accessibility for members is public, the default
3257 accessibility for inheritance is private. */
3258 if (die->tag != DW_TAG_inheritance)
3259 new_field->accessibility = DW_ACCESS_public;
3260 else
3261 new_field->accessibility = DW_ACCESS_private;
3262 new_field->virtuality = DW_VIRTUALITY_none;
3263
3264 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3265 if (attr)
3266 new_field->accessibility = DW_UNSND (attr);
3267 if (new_field->accessibility != DW_ACCESS_public)
3268 fip->non_public_fields = 1;
3269 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
3270 if (attr)
3271 new_field->virtuality = DW_UNSND (attr);
3272
3273 fp = &new_field->field;
3274
3275 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
3276 {
3277 /* Data member other than a C++ static data member. */
3278
3279 /* Get type of field. */
3280 fp->type = die_type (die, cu);
3281
3282 FIELD_STATIC_KIND (*fp) = 0;
3283
3284 /* Get bit size of field (zero if none). */
3285 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
3286 if (attr)
3287 {
3288 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3289 }
3290 else
3291 {
3292 FIELD_BITSIZE (*fp) = 0;
3293 }
3294
3295 /* Get bit offset of field. */
3296 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3297 if (attr)
3298 {
3299 FIELD_BITPOS (*fp) =
3300 decode_locdesc (DW_BLOCK (attr), cu) * bits_per_byte;
3301 }
3302 else
3303 FIELD_BITPOS (*fp) = 0;
3304 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
3305 if (attr)
3306 {
3307 if (BITS_BIG_ENDIAN)
3308 {
3309 /* For big endian bits, the DW_AT_bit_offset gives the
3310 additional bit offset from the MSB of the containing
3311 anonymous object to the MSB of the field. We don't
3312 have to do anything special since we don't need to
3313 know the size of the anonymous object. */
3314 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3315 }
3316 else
3317 {
3318 /* For little endian bits, compute the bit offset to the
3319 MSB of the anonymous object, subtract off the number of
3320 bits from the MSB of the field to the MSB of the
3321 object, and then subtract off the number of bits of
3322 the field itself. The result is the bit offset of
3323 the LSB of the field. */
3324 int anonymous_size;
3325 int bit_offset = DW_UNSND (attr);
3326
3327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3328 if (attr)
3329 {
3330 /* The size of the anonymous object containing
3331 the bit field is explicit, so use the
3332 indicated size (in bytes). */
3333 anonymous_size = DW_UNSND (attr);
3334 }
3335 else
3336 {
3337 /* The size of the anonymous object containing
3338 the bit field must be inferred from the type
3339 attribute of the data member containing the
3340 bit field. */
3341 anonymous_size = TYPE_LENGTH (fp->type);
3342 }
3343 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3344 - bit_offset - FIELD_BITSIZE (*fp);
3345 }
3346 }
3347
3348 /* Get name of field. */
3349 attr = dwarf2_attr (die, DW_AT_name, cu);
3350 if (attr && DW_STRING (attr))
3351 fieldname = DW_STRING (attr);
3352
3353 /* The name is already allocated along with this objfile, so we don't
3354 need to duplicate it for the type. */
3355 fp->name = fieldname;
3356
3357 /* Change accessibility for artificial fields (e.g. virtual table
3358 pointer or virtual base class pointer) to private. */
3359 if (dwarf2_attr (die, DW_AT_artificial, cu))
3360 {
3361 new_field->accessibility = DW_ACCESS_private;
3362 fip->non_public_fields = 1;
3363 }
3364 }
3365 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
3366 {
3367 /* C++ static member. */
3368
3369 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3370 is a declaration, but all versions of G++ as of this writing
3371 (so through at least 3.2.1) incorrectly generate
3372 DW_TAG_variable tags. */
3373
3374 char *physname;
3375
3376 /* Get name of field. */
3377 attr = dwarf2_attr (die, DW_AT_name, cu);
3378 if (attr && DW_STRING (attr))
3379 fieldname = DW_STRING (attr);
3380 else
3381 return;
3382
3383 /* Get physical name. */
3384 physname = dwarf2_linkage_name (die, cu);
3385
3386 /* The name is already allocated along with this objfile, so we don't
3387 need to duplicate it for the type. */
3388 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
3389 FIELD_TYPE (*fp) = die_type (die, cu);
3390 FIELD_NAME (*fp) = fieldname;
3391 }
3392 else if (die->tag == DW_TAG_inheritance)
3393 {
3394 /* C++ base class field. */
3395 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
3396 if (attr)
3397 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
3398 * bits_per_byte);
3399 FIELD_BITSIZE (*fp) = 0;
3400 FIELD_STATIC_KIND (*fp) = 0;
3401 FIELD_TYPE (*fp) = die_type (die, cu);
3402 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3403 fip->nbaseclasses++;
3404 }
3405 }
3406
3407 /* Create the vector of fields, and attach it to the type. */
3408
3409 static void
3410 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
3411 struct dwarf2_cu *cu)
3412 {
3413 int nfields = fip->nfields;
3414
3415 /* Record the field count, allocate space for the array of fields,
3416 and create blank accessibility bitfields if necessary. */
3417 TYPE_NFIELDS (type) = nfields;
3418 TYPE_FIELDS (type) = (struct field *)
3419 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3420 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3421
3422 if (fip->non_public_fields)
3423 {
3424 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3425
3426 TYPE_FIELD_PRIVATE_BITS (type) =
3427 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3428 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3429
3430 TYPE_FIELD_PROTECTED_BITS (type) =
3431 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3432 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3433
3434 TYPE_FIELD_IGNORE_BITS (type) =
3435 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3436 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3437 }
3438
3439 /* If the type has baseclasses, allocate and clear a bit vector for
3440 TYPE_FIELD_VIRTUAL_BITS. */
3441 if (fip->nbaseclasses)
3442 {
3443 int num_bytes = B_BYTES (fip->nbaseclasses);
3444 char *pointer;
3445
3446 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3447 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3448 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3449 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3450 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3451 }
3452
3453 /* Copy the saved-up fields into the field vector. Start from the head
3454 of the list, adding to the tail of the field array, so that they end
3455 up in the same order in the array in which they were added to the list. */
3456 while (nfields-- > 0)
3457 {
3458 TYPE_FIELD (type, nfields) = fip->fields->field;
3459 switch (fip->fields->accessibility)
3460 {
3461 case DW_ACCESS_private:
3462 SET_TYPE_FIELD_PRIVATE (type, nfields);
3463 break;
3464
3465 case DW_ACCESS_protected:
3466 SET_TYPE_FIELD_PROTECTED (type, nfields);
3467 break;
3468
3469 case DW_ACCESS_public:
3470 break;
3471
3472 default:
3473 /* Unknown accessibility. Complain and treat it as public. */
3474 {
3475 complaint (&symfile_complaints, _("unsupported accessibility %d"),
3476 fip->fields->accessibility);
3477 }
3478 break;
3479 }
3480 if (nfields < fip->nbaseclasses)
3481 {
3482 switch (fip->fields->virtuality)
3483 {
3484 case DW_VIRTUALITY_virtual:
3485 case DW_VIRTUALITY_pure_virtual:
3486 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3487 break;
3488 }
3489 }
3490 fip->fields = fip->fields->next;
3491 }
3492 }
3493
3494 /* Add a member function to the proper fieldlist. */
3495
3496 static void
3497 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
3498 struct type *type, struct dwarf2_cu *cu)
3499 {
3500 struct objfile *objfile = cu->objfile;
3501 struct attribute *attr;
3502 struct fnfieldlist *flp;
3503 int i;
3504 struct fn_field *fnp;
3505 char *fieldname;
3506 char *physname;
3507 struct nextfnfield *new_fnfield;
3508
3509 /* Get name of member function. */
3510 attr = dwarf2_attr (die, DW_AT_name, cu);
3511 if (attr && DW_STRING (attr))
3512 fieldname = DW_STRING (attr);
3513 else
3514 return;
3515
3516 /* Get the mangled name. */
3517 physname = dwarf2_linkage_name (die, cu);
3518
3519 /* Look up member function name in fieldlist. */
3520 for (i = 0; i < fip->nfnfields; i++)
3521 {
3522 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
3523 break;
3524 }
3525
3526 /* Create new list element if necessary. */
3527 if (i < fip->nfnfields)
3528 flp = &fip->fnfieldlists[i];
3529 else
3530 {
3531 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3532 {
3533 fip->fnfieldlists = (struct fnfieldlist *)
3534 xrealloc (fip->fnfieldlists,
3535 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
3536 * sizeof (struct fnfieldlist));
3537 if (fip->nfnfields == 0)
3538 make_cleanup (free_current_contents, &fip->fnfieldlists);
3539 }
3540 flp = &fip->fnfieldlists[fip->nfnfields];
3541 flp->name = fieldname;
3542 flp->length = 0;
3543 flp->head = NULL;
3544 fip->nfnfields++;
3545 }
3546
3547 /* Create a new member function field and chain it to the field list
3548 entry. */
3549 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
3550 make_cleanup (xfree, new_fnfield);
3551 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3552 new_fnfield->next = flp->head;
3553 flp->head = new_fnfield;
3554 flp->length++;
3555
3556 /* Fill in the member function field info. */
3557 fnp = &new_fnfield->fnfield;
3558 /* The name is already allocated along with this objfile, so we don't
3559 need to duplicate it for the type. */
3560 fnp->physname = physname ? physname : "";
3561 fnp->type = alloc_type (objfile);
3562 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3563 {
3564 int nparams = TYPE_NFIELDS (die->type);
3565
3566 /* TYPE is the domain of this method, and DIE->TYPE is the type
3567 of the method itself (TYPE_CODE_METHOD). */
3568 smash_to_method_type (fnp->type, type,
3569 TYPE_TARGET_TYPE (die->type),
3570 TYPE_FIELDS (die->type),
3571 TYPE_NFIELDS (die->type),
3572 TYPE_VARARGS (die->type));
3573
3574 /* Handle static member functions.
3575 Dwarf2 has no clean way to discern C++ static and non-static
3576 member functions. G++ helps GDB by marking the first
3577 parameter for non-static member functions (which is the
3578 this pointer) as artificial. We obtain this information
3579 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
3580 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3581 fnp->voffset = VOFFSET_STATIC;
3582 }
3583 else
3584 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3585 physname);
3586
3587 /* Get fcontext from DW_AT_containing_type if present. */
3588 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3589 fnp->fcontext = die_containing_type (die, cu);
3590
3591 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3592 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3593
3594 /* Get accessibility. */
3595 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
3596 if (attr)
3597 {
3598 switch (DW_UNSND (attr))
3599 {
3600 case DW_ACCESS_private:
3601 fnp->is_private = 1;
3602 break;
3603 case DW_ACCESS_protected:
3604 fnp->is_protected = 1;
3605 break;
3606 }
3607 }
3608
3609 /* Check for artificial methods. */
3610 attr = dwarf2_attr (die, DW_AT_artificial, cu);
3611 if (attr && DW_UNSND (attr) != 0)
3612 fnp->is_artificial = 1;
3613
3614 /* Get index in virtual function table if it is a virtual member function. */
3615 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
3616 if (attr)
3617 {
3618 /* Support the .debug_loc offsets */
3619 if (attr_form_is_block (attr))
3620 {
3621 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
3622 }
3623 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
3624 {
3625 dwarf2_complex_location_expr_complaint ();
3626 }
3627 else
3628 {
3629 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3630 fieldname);
3631 }
3632 }
3633 }
3634
3635 /* Create the vector of member function fields, and attach it to the type. */
3636
3637 static void
3638 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
3639 struct dwarf2_cu *cu)
3640 {
3641 struct fnfieldlist *flp;
3642 int total_length = 0;
3643 int i;
3644
3645 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3646 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3647 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3648
3649 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3650 {
3651 struct nextfnfield *nfp = flp->head;
3652 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3653 int k;
3654
3655 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3656 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3657 fn_flp->fn_fields = (struct fn_field *)
3658 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3659 for (k = flp->length; (k--, nfp); nfp = nfp->next)
3660 fn_flp->fn_fields[k] = nfp->fnfield;
3661
3662 total_length += flp->length;
3663 }
3664
3665 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3666 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3667 }
3668
3669
3670 /* Returns non-zero if NAME is the name of a vtable member in CU's
3671 language, zero otherwise. */
3672 static int
3673 is_vtable_name (const char *name, struct dwarf2_cu *cu)
3674 {
3675 static const char vptr[] = "_vptr";
3676 static const char vtable[] = "vtable";
3677
3678 /* Look for the C++ and Java forms of the vtable. */
3679 if ((cu->language == language_java
3680 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3681 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3682 && is_cplus_marker (name[sizeof (vptr) - 1])))
3683 return 1;
3684
3685 return 0;
3686 }
3687
3688
3689 /* Called when we find the DIE that starts a structure or union scope
3690 (definition) to process all dies that define the members of the
3691 structure or union.
3692
3693 NOTE: we need to call struct_type regardless of whether or not the
3694 DIE has an at_name attribute, since it might be an anonymous
3695 structure or union. This gets the type entered into our set of
3696 user defined types.
3697
3698 However, if the structure is incomplete (an opaque struct/union)
3699 then suppress creating a symbol table entry for it since gdb only
3700 wants to find the one with the complete definition. Note that if
3701 it is complete, we just call new_symbol, which does it's own
3702 checking about whether the struct/union is anonymous or not (and
3703 suppresses creating a symbol table entry itself). */
3704
3705 static void
3706 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
3707 {
3708 struct objfile *objfile = cu->objfile;
3709 struct type *type;
3710 struct attribute *attr;
3711 const char *previous_prefix = processing_current_prefix;
3712 struct cleanup *back_to = NULL;
3713
3714 if (die->type)
3715 return;
3716
3717 type = alloc_type (objfile);
3718
3719 INIT_CPLUS_SPECIFIC (type);
3720 attr = dwarf2_attr (die, DW_AT_name, cu);
3721 if (attr && DW_STRING (attr))
3722 {
3723 if (cu->language == language_cplus
3724 || cu->language == language_java)
3725 {
3726 char *new_prefix = determine_class_name (die, cu);
3727 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3728 strlen (new_prefix),
3729 &objfile->objfile_obstack);
3730 back_to = make_cleanup (xfree, new_prefix);
3731 processing_current_prefix = new_prefix;
3732 }
3733 else
3734 {
3735 /* The name is already allocated along with this objfile, so
3736 we don't need to duplicate it for the type. */
3737 TYPE_TAG_NAME (type) = DW_STRING (attr);
3738 }
3739 }
3740
3741 if (die->tag == DW_TAG_structure_type)
3742 {
3743 TYPE_CODE (type) = TYPE_CODE_STRUCT;
3744 }
3745 else if (die->tag == DW_TAG_union_type)
3746 {
3747 TYPE_CODE (type) = TYPE_CODE_UNION;
3748 }
3749 else
3750 {
3751 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
3752 in gdbtypes.h. */
3753 TYPE_CODE (type) = TYPE_CODE_CLASS;
3754 }
3755
3756 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3757 if (attr)
3758 {
3759 TYPE_LENGTH (type) = DW_UNSND (attr);
3760 }
3761 else
3762 {
3763 TYPE_LENGTH (type) = 0;
3764 }
3765
3766 if (die_is_declaration (die, cu))
3767 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
3768
3769 /* We need to add the type field to the die immediately so we don't
3770 infinitely recurse when dealing with pointers to the structure
3771 type within the structure itself. */
3772 set_die_type (die, type, cu);
3773
3774 if (die->child != NULL && ! die_is_declaration (die, cu))
3775 {
3776 struct field_info fi;
3777 struct die_info *child_die;
3778 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
3779
3780 memset (&fi, 0, sizeof (struct field_info));
3781
3782 child_die = die->child;
3783
3784 while (child_die && child_die->tag)
3785 {
3786 if (child_die->tag == DW_TAG_member
3787 || child_die->tag == DW_TAG_variable)
3788 {
3789 /* NOTE: carlton/2002-11-05: A C++ static data member
3790 should be a DW_TAG_member that is a declaration, but
3791 all versions of G++ as of this writing (so through at
3792 least 3.2.1) incorrectly generate DW_TAG_variable
3793 tags for them instead. */
3794 dwarf2_add_field (&fi, child_die, cu);
3795 }
3796 else if (child_die->tag == DW_TAG_subprogram)
3797 {
3798 /* C++ member function. */
3799 read_type_die (child_die, cu);
3800 dwarf2_add_member_fn (&fi, child_die, type, cu);
3801 }
3802 else if (child_die->tag == DW_TAG_inheritance)
3803 {
3804 /* C++ base class field. */
3805 dwarf2_add_field (&fi, child_die, cu);
3806 }
3807 child_die = sibling_die (child_die);
3808 }
3809
3810 /* Attach fields and member functions to the type. */
3811 if (fi.nfields)
3812 dwarf2_attach_fields_to_type (&fi, type, cu);
3813 if (fi.nfnfields)
3814 {
3815 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
3816
3817 /* Get the type which refers to the base class (possibly this
3818 class itself) which contains the vtable pointer for the current
3819 class from the DW_AT_containing_type attribute. */
3820
3821 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
3822 {
3823 struct type *t = die_containing_type (die, cu);
3824
3825 TYPE_VPTR_BASETYPE (type) = t;
3826 if (type == t)
3827 {
3828 int i;
3829
3830 /* Our own class provides vtbl ptr. */
3831 for (i = TYPE_NFIELDS (t) - 1;
3832 i >= TYPE_N_BASECLASSES (t);
3833 --i)
3834 {
3835 char *fieldname = TYPE_FIELD_NAME (t, i);
3836
3837 if (is_vtable_name (fieldname, cu))
3838 {
3839 TYPE_VPTR_FIELDNO (type) = i;
3840 break;
3841 }
3842 }
3843
3844 /* Complain if virtual function table field not found. */
3845 if (i < TYPE_N_BASECLASSES (t))
3846 complaint (&symfile_complaints,
3847 _("virtual function table pointer not found when defining class '%s'"),
3848 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
3849 "");
3850 }
3851 else
3852 {
3853 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3854 }
3855 }
3856 }
3857
3858 do_cleanups (back_to);
3859 }
3860
3861 processing_current_prefix = previous_prefix;
3862 if (back_to != NULL)
3863 do_cleanups (back_to);
3864 }
3865
3866 static void
3867 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
3868 {
3869 struct objfile *objfile = cu->objfile;
3870 const char *previous_prefix = processing_current_prefix;
3871 struct die_info *child_die = die->child;
3872
3873 if (TYPE_TAG_NAME (die->type) != NULL)
3874 processing_current_prefix = TYPE_TAG_NAME (die->type);
3875
3876 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
3877 snapshots) has been known to create a die giving a declaration
3878 for a class that has, as a child, a die giving a definition for a
3879 nested class. So we have to process our children even if the
3880 current die is a declaration. Normally, of course, a declaration
3881 won't have any children at all. */
3882
3883 while (child_die != NULL && child_die->tag)
3884 {
3885 if (child_die->tag == DW_TAG_member
3886 || child_die->tag == DW_TAG_variable
3887 || child_die->tag == DW_TAG_inheritance)
3888 {
3889 /* Do nothing. */
3890 }
3891 else
3892 process_die (child_die, cu);
3893
3894 child_die = sibling_die (child_die);
3895 }
3896
3897 if (die->child != NULL && ! die_is_declaration (die, cu))
3898 new_symbol (die, die->type, cu);
3899
3900 processing_current_prefix = previous_prefix;
3901 }
3902
3903 /* Given a DW_AT_enumeration_type die, set its type. We do not
3904 complete the type's fields yet, or create any symbols. */
3905
3906 static void
3907 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
3908 {
3909 struct objfile *objfile = cu->objfile;
3910 struct type *type;
3911 struct attribute *attr;
3912
3913 if (die->type)
3914 return;
3915
3916 type = alloc_type (objfile);
3917
3918 TYPE_CODE (type) = TYPE_CODE_ENUM;
3919 attr = dwarf2_attr (die, DW_AT_name, cu);
3920 if (attr && DW_STRING (attr))
3921 {
3922 char *name = DW_STRING (attr);
3923
3924 if (processing_has_namespace_info)
3925 {
3926 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
3927 processing_current_prefix,
3928 name, cu);
3929 }
3930 else
3931 {
3932 /* The name is already allocated along with this objfile, so
3933 we don't need to duplicate it for the type. */
3934 TYPE_TAG_NAME (type) = name;
3935 }
3936 }
3937
3938 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
3939 if (attr)
3940 {
3941 TYPE_LENGTH (type) = DW_UNSND (attr);
3942 }
3943 else
3944 {
3945 TYPE_LENGTH (type) = 0;
3946 }
3947
3948 set_die_type (die, type, cu);
3949 }
3950
3951 /* Determine the name of the type represented by DIE, which should be
3952 a named C++ or Java compound type. Return the name in question; the caller
3953 is responsible for xfree()'ing it. */
3954
3955 static char *
3956 determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
3957 {
3958 struct cleanup *back_to = NULL;
3959 struct die_info *spec_die = die_specification (die, cu);
3960 char *new_prefix = NULL;
3961
3962 /* If this is the definition of a class that is declared by another
3963 die, then processing_current_prefix may not be accurate; see
3964 read_func_scope for a similar example. */
3965 if (spec_die != NULL)
3966 {
3967 char *specification_prefix = determine_prefix (spec_die, cu);
3968 processing_current_prefix = specification_prefix;
3969 back_to = make_cleanup (xfree, specification_prefix);
3970 }
3971
3972 /* If we don't have namespace debug info, guess the name by trying
3973 to demangle the names of members, just like we did in
3974 guess_structure_name. */
3975 if (!processing_has_namespace_info)
3976 {
3977 struct die_info *child;
3978
3979 for (child = die->child;
3980 child != NULL && child->tag != 0;
3981 child = sibling_die (child))
3982 {
3983 if (child->tag == DW_TAG_subprogram)
3984 {
3985 new_prefix
3986 = language_class_name_from_physname (cu->language_defn,
3987 dwarf2_linkage_name
3988 (child, cu));
3989
3990 if (new_prefix != NULL)
3991 break;
3992 }
3993 }
3994 }
3995
3996 if (new_prefix == NULL)
3997 {
3998 const char *name = dwarf2_name (die, cu);
3999 new_prefix = typename_concat (NULL, processing_current_prefix,
4000 name ? name : "<<anonymous>>",
4001 cu);
4002 }
4003
4004 if (back_to != NULL)
4005 do_cleanups (back_to);
4006
4007 return new_prefix;
4008 }
4009
4010 /* Given a pointer to a die which begins an enumeration, process all
4011 the dies that define the members of the enumeration, and create the
4012 symbol for the enumeration type.
4013
4014 NOTE: We reverse the order of the element list. */
4015
4016 static void
4017 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4018 {
4019 struct objfile *objfile = cu->objfile;
4020 struct die_info *child_die;
4021 struct field *fields;
4022 struct attribute *attr;
4023 struct symbol *sym;
4024 int num_fields;
4025 int unsigned_enum = 1;
4026
4027 num_fields = 0;
4028 fields = NULL;
4029 if (die->child != NULL)
4030 {
4031 child_die = die->child;
4032 while (child_die && child_die->tag)
4033 {
4034 if (child_die->tag != DW_TAG_enumerator)
4035 {
4036 process_die (child_die, cu);
4037 }
4038 else
4039 {
4040 attr = dwarf2_attr (child_die, DW_AT_name, cu);
4041 if (attr)
4042 {
4043 sym = new_symbol (child_die, die->type, cu);
4044 if (SYMBOL_VALUE (sym) < 0)
4045 unsigned_enum = 0;
4046
4047 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4048 {
4049 fields = (struct field *)
4050 xrealloc (fields,
4051 (num_fields + DW_FIELD_ALLOC_CHUNK)
4052 * sizeof (struct field));
4053 }
4054
4055 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
4056 FIELD_TYPE (fields[num_fields]) = NULL;
4057 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4058 FIELD_BITSIZE (fields[num_fields]) = 0;
4059 FIELD_STATIC_KIND (fields[num_fields]) = 0;
4060
4061 num_fields++;
4062 }
4063 }
4064
4065 child_die = sibling_die (child_die);
4066 }
4067
4068 if (num_fields)
4069 {
4070 TYPE_NFIELDS (die->type) = num_fields;
4071 TYPE_FIELDS (die->type) = (struct field *)
4072 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4073 memcpy (TYPE_FIELDS (die->type), fields,
4074 sizeof (struct field) * num_fields);
4075 xfree (fields);
4076 }
4077 if (unsigned_enum)
4078 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
4079 }
4080
4081 new_symbol (die, die->type, cu);
4082 }
4083
4084 /* Extract all information from a DW_TAG_array_type DIE and put it in
4085 the DIE's type field. For now, this only handles one dimensional
4086 arrays. */
4087
4088 static void
4089 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
4090 {
4091 struct objfile *objfile = cu->objfile;
4092 struct die_info *child_die;
4093 struct type *type = NULL;
4094 struct type *element_type, *range_type, *index_type;
4095 struct type **range_types = NULL;
4096 struct attribute *attr;
4097 int ndim = 0;
4098 struct cleanup *back_to;
4099
4100 /* Return if we've already decoded this type. */
4101 if (die->type)
4102 {
4103 return;
4104 }
4105
4106 element_type = die_type (die, cu);
4107
4108 /* Irix 6.2 native cc creates array types without children for
4109 arrays with unspecified length. */
4110 if (die->child == NULL)
4111 {
4112 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4113 range_type = create_range_type (NULL, index_type, 0, -1);
4114 set_die_type (die, create_array_type (NULL, element_type, range_type),
4115 cu);
4116 return;
4117 }
4118
4119 back_to = make_cleanup (null_cleanup, NULL);
4120 child_die = die->child;
4121 while (child_die && child_die->tag)
4122 {
4123 if (child_die->tag == DW_TAG_subrange_type)
4124 {
4125 read_subrange_type (child_die, cu);
4126
4127 if (child_die->type != NULL)
4128 {
4129 /* The range type was succesfully read. Save it for
4130 the array type creation. */
4131 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4132 {
4133 range_types = (struct type **)
4134 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4135 * sizeof (struct type *));
4136 if (ndim == 0)
4137 make_cleanup (free_current_contents, &range_types);
4138 }
4139 range_types[ndim++] = child_die->type;
4140 }
4141 }
4142 child_die = sibling_die (child_die);
4143 }
4144
4145 /* Dwarf2 dimensions are output from left to right, create the
4146 necessary array types in backwards order. */
4147
4148 type = element_type;
4149
4150 if (read_array_order (die, cu) == DW_ORD_col_major)
4151 {
4152 int i = 0;
4153 while (i < ndim)
4154 type = create_array_type (NULL, type, range_types[i++]);
4155 }
4156 else
4157 {
4158 while (ndim-- > 0)
4159 type = create_array_type (NULL, type, range_types[ndim]);
4160 }
4161
4162 /* Understand Dwarf2 support for vector types (like they occur on
4163 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4164 array type. This is not part of the Dwarf2/3 standard yet, but a
4165 custom vendor extension. The main difference between a regular
4166 array and the vector variant is that vectors are passed by value
4167 to functions. */
4168 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
4169 if (attr)
4170 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
4171
4172 do_cleanups (back_to);
4173
4174 /* Install the type in the die. */
4175 set_die_type (die, type, cu);
4176 }
4177
4178 static enum dwarf_array_dim_ordering
4179 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4180 {
4181 struct attribute *attr;
4182
4183 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4184
4185 if (attr) return DW_SND (attr);
4186
4187 /*
4188 GNU F77 is a special case, as at 08/2004 array type info is the
4189 opposite order to the dwarf2 specification, but data is still
4190 laid out as per normal fortran.
4191
4192 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4193 version checking.
4194 */
4195
4196 if (cu->language == language_fortran &&
4197 cu->producer && strstr (cu->producer, "GNU F77"))
4198 {
4199 return DW_ORD_row_major;
4200 }
4201
4202 switch (cu->language_defn->la_array_ordering)
4203 {
4204 case array_column_major:
4205 return DW_ORD_col_major;
4206 case array_row_major:
4207 default:
4208 return DW_ORD_row_major;
4209 };
4210 }
4211
4212
4213 /* First cut: install each common block member as a global variable. */
4214
4215 static void
4216 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
4217 {
4218 struct die_info *child_die;
4219 struct attribute *attr;
4220 struct symbol *sym;
4221 CORE_ADDR base = (CORE_ADDR) 0;
4222
4223 attr = dwarf2_attr (die, DW_AT_location, cu);
4224 if (attr)
4225 {
4226 /* Support the .debug_loc offsets */
4227 if (attr_form_is_block (attr))
4228 {
4229 base = decode_locdesc (DW_BLOCK (attr), cu);
4230 }
4231 else if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
4232 {
4233 dwarf2_complex_location_expr_complaint ();
4234 }
4235 else
4236 {
4237 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4238 "common block member");
4239 }
4240 }
4241 if (die->child != NULL)
4242 {
4243 child_die = die->child;
4244 while (child_die && child_die->tag)
4245 {
4246 sym = new_symbol (child_die, NULL, cu);
4247 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
4248 if (attr)
4249 {
4250 SYMBOL_VALUE_ADDRESS (sym) =
4251 base + decode_locdesc (DW_BLOCK (attr), cu);
4252 add_symbol_to_list (sym, &global_symbols);
4253 }
4254 child_die = sibling_die (child_die);
4255 }
4256 }
4257 }
4258
4259 /* Read a C++ namespace. */
4260
4261 static void
4262 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
4263 {
4264 struct objfile *objfile = cu->objfile;
4265 const char *previous_prefix = processing_current_prefix;
4266 const char *name;
4267 int is_anonymous;
4268 struct die_info *current_die;
4269 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
4270
4271 name = namespace_name (die, &is_anonymous, cu);
4272
4273 /* Now build the name of the current namespace. */
4274
4275 if (previous_prefix[0] == '\0')
4276 {
4277 processing_current_prefix = name;
4278 }
4279 else
4280 {
4281 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4282 make_cleanup (xfree, temp_name);
4283 processing_current_prefix = temp_name;
4284 }
4285
4286 /* Add a symbol associated to this if we haven't seen the namespace
4287 before. Also, add a using directive if it's an anonymous
4288 namespace. */
4289
4290 if (dwarf2_extension (die, cu) == NULL)
4291 {
4292 struct type *type;
4293
4294 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4295 this cast will hopefully become unnecessary. */
4296 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
4297 (char *) processing_current_prefix,
4298 objfile);
4299 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4300
4301 new_symbol (die, type, cu);
4302 set_die_type (die, type, cu);
4303
4304 if (is_anonymous)
4305 cp_add_using_directive (processing_current_prefix,
4306 strlen (previous_prefix),
4307 strlen (processing_current_prefix));
4308 }
4309
4310 if (die->child != NULL)
4311 {
4312 struct die_info *child_die = die->child;
4313
4314 while (child_die && child_die->tag)
4315 {
4316 process_die (child_die, cu);
4317 child_die = sibling_die (child_die);
4318 }
4319 }
4320
4321 processing_current_prefix = previous_prefix;
4322 do_cleanups (back_to);
4323 }
4324
4325 /* Return the name of the namespace represented by DIE. Set
4326 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4327 namespace. */
4328
4329 static const char *
4330 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
4331 {
4332 struct die_info *current_die;
4333 const char *name = NULL;
4334
4335 /* Loop through the extensions until we find a name. */
4336
4337 for (current_die = die;
4338 current_die != NULL;
4339 current_die = dwarf2_extension (die, cu))
4340 {
4341 name = dwarf2_name (current_die, cu);
4342 if (name != NULL)
4343 break;
4344 }
4345
4346 /* Is it an anonymous namespace? */
4347
4348 *is_anonymous = (name == NULL);
4349 if (*is_anonymous)
4350 name = "(anonymous namespace)";
4351
4352 return name;
4353 }
4354
4355 /* Extract all information from a DW_TAG_pointer_type DIE and add to
4356 the user defined type vector. */
4357
4358 static void
4359 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
4360 {
4361 struct comp_unit_head *cu_header = &cu->header;
4362 struct type *type;
4363 struct attribute *attr_byte_size;
4364 struct attribute *attr_address_class;
4365 int byte_size, addr_class;
4366
4367 if (die->type)
4368 {
4369 return;
4370 }
4371
4372 type = lookup_pointer_type (die_type (die, cu));
4373
4374 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
4375 if (attr_byte_size)
4376 byte_size = DW_UNSND (attr_byte_size);
4377 else
4378 byte_size = cu_header->addr_size;
4379
4380 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
4381 if (attr_address_class)
4382 addr_class = DW_UNSND (attr_address_class);
4383 else
4384 addr_class = DW_ADDR_none;
4385
4386 /* If the pointer size or address class is different than the
4387 default, create a type variant marked as such and set the
4388 length accordingly. */
4389 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
4390 {
4391 if (ADDRESS_CLASS_TYPE_FLAGS_P ())
4392 {
4393 int type_flags;
4394
4395 type_flags = ADDRESS_CLASS_TYPE_FLAGS (byte_size, addr_class);
4396 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4397 type = make_type_with_address_space (type, type_flags);
4398 }
4399 else if (TYPE_LENGTH (type) != byte_size)
4400 {
4401 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
4402 }
4403 else {
4404 /* Should we also complain about unhandled address classes? */
4405 }
4406 }
4407
4408 TYPE_LENGTH (type) = byte_size;
4409 set_die_type (die, type, cu);
4410 }
4411
4412 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4413 the user defined type vector. */
4414
4415 static void
4416 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
4417 {
4418 struct objfile *objfile = cu->objfile;
4419 struct type *type;
4420 struct type *to_type;
4421 struct type *domain;
4422
4423 if (die->type)
4424 {
4425 return;
4426 }
4427
4428 type = alloc_type (objfile);
4429 to_type = die_type (die, cu);
4430 domain = die_containing_type (die, cu);
4431 smash_to_member_type (type, domain, to_type);
4432
4433 set_die_type (die, type, cu);
4434 }
4435
4436 /* Extract all information from a DW_TAG_reference_type DIE and add to
4437 the user defined type vector. */
4438
4439 static void
4440 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
4441 {
4442 struct comp_unit_head *cu_header = &cu->header;
4443 struct type *type;
4444 struct attribute *attr;
4445
4446 if (die->type)
4447 {
4448 return;
4449 }
4450
4451 type = lookup_reference_type (die_type (die, cu));
4452 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4453 if (attr)
4454 {
4455 TYPE_LENGTH (type) = DW_UNSND (attr);
4456 }
4457 else
4458 {
4459 TYPE_LENGTH (type) = cu_header->addr_size;
4460 }
4461 set_die_type (die, type, cu);
4462 }
4463
4464 static void
4465 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
4466 {
4467 struct type *base_type;
4468
4469 if (die->type)
4470 {
4471 return;
4472 }
4473
4474 base_type = die_type (die, cu);
4475 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4476 cu);
4477 }
4478
4479 static void
4480 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
4481 {
4482 struct type *base_type;
4483
4484 if (die->type)
4485 {
4486 return;
4487 }
4488
4489 base_type = die_type (die, cu);
4490 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4491 cu);
4492 }
4493
4494 /* Extract all information from a DW_TAG_string_type DIE and add to
4495 the user defined type vector. It isn't really a user defined type,
4496 but it behaves like one, with other DIE's using an AT_user_def_type
4497 attribute to reference it. */
4498
4499 static void
4500 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
4501 {
4502 struct objfile *objfile = cu->objfile;
4503 struct type *type, *range_type, *index_type, *char_type;
4504 struct attribute *attr;
4505 unsigned int length;
4506
4507 if (die->type)
4508 {
4509 return;
4510 }
4511
4512 attr = dwarf2_attr (die, DW_AT_string_length, cu);
4513 if (attr)
4514 {
4515 length = DW_UNSND (attr);
4516 }
4517 else
4518 {
4519 /* check for the DW_AT_byte_size attribute */
4520 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4521 if (attr)
4522 {
4523 length = DW_UNSND (attr);
4524 }
4525 else
4526 {
4527 length = 1;
4528 }
4529 }
4530 index_type = dwarf2_fundamental_type (objfile, FT_INTEGER, cu);
4531 range_type = create_range_type (NULL, index_type, 1, length);
4532 if (cu->language == language_fortran)
4533 {
4534 /* Need to create a unique string type for bounds
4535 information */
4536 type = create_string_type (0, range_type);
4537 }
4538 else
4539 {
4540 char_type = dwarf2_fundamental_type (objfile, FT_CHAR, cu);
4541 type = create_string_type (char_type, range_type);
4542 }
4543 set_die_type (die, type, cu);
4544 }
4545
4546 /* Handle DIES due to C code like:
4547
4548 struct foo
4549 {
4550 int (*funcp)(int a, long l);
4551 int b;
4552 };
4553
4554 ('funcp' generates a DW_TAG_subroutine_type DIE)
4555 */
4556
4557 static void
4558 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
4559 {
4560 struct type *type; /* Type that this function returns */
4561 struct type *ftype; /* Function that returns above type */
4562 struct attribute *attr;
4563
4564 /* Decode the type that this subroutine returns */
4565 if (die->type)
4566 {
4567 return;
4568 }
4569 type = die_type (die, cu);
4570 ftype = make_function_type (type, (struct type **) 0);
4571
4572 /* All functions in C++ and Java have prototypes. */
4573 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
4574 if ((attr && (DW_UNSND (attr) != 0))
4575 || cu->language == language_cplus
4576 || cu->language == language_java)
4577 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4578
4579 if (die->child != NULL)
4580 {
4581 struct die_info *child_die;
4582 int nparams = 0;
4583 int iparams = 0;
4584
4585 /* Count the number of parameters.
4586 FIXME: GDB currently ignores vararg functions, but knows about
4587 vararg member functions. */
4588 child_die = die->child;
4589 while (child_die && child_die->tag)
4590 {
4591 if (child_die->tag == DW_TAG_formal_parameter)
4592 nparams++;
4593 else if (child_die->tag == DW_TAG_unspecified_parameters)
4594 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4595 child_die = sibling_die (child_die);
4596 }
4597
4598 /* Allocate storage for parameters and fill them in. */
4599 TYPE_NFIELDS (ftype) = nparams;
4600 TYPE_FIELDS (ftype) = (struct field *)
4601 TYPE_ALLOC (ftype, nparams * sizeof (struct field));
4602
4603 child_die = die->child;
4604 while (child_die && child_die->tag)
4605 {
4606 if (child_die->tag == DW_TAG_formal_parameter)
4607 {
4608 /* Dwarf2 has no clean way to discern C++ static and non-static
4609 member functions. G++ helps GDB by marking the first
4610 parameter for non-static member functions (which is the
4611 this pointer) as artificial. We pass this information
4612 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
4613 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
4614 if (attr)
4615 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4616 else
4617 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
4618 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
4619 iparams++;
4620 }
4621 child_die = sibling_die (child_die);
4622 }
4623 }
4624
4625 set_die_type (die, ftype, cu);
4626 }
4627
4628 static void
4629 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
4630 {
4631 struct objfile *objfile = cu->objfile;
4632 struct attribute *attr;
4633 char *name = NULL;
4634
4635 if (!die->type)
4636 {
4637 attr = dwarf2_attr (die, DW_AT_name, cu);
4638 if (attr && DW_STRING (attr))
4639 {
4640 name = DW_STRING (attr);
4641 }
4642 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4643 TYPE_FLAG_TARGET_STUB, name, objfile),
4644 cu);
4645 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
4646 }
4647 }
4648
4649 /* Find a representation of a given base type and install
4650 it in the TYPE field of the die. */
4651
4652 static void
4653 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
4654 {
4655 struct objfile *objfile = cu->objfile;
4656 struct type *type;
4657 struct attribute *attr;
4658 int encoding = 0, size = 0;
4659
4660 /* If we've already decoded this die, this is a no-op. */
4661 if (die->type)
4662 {
4663 return;
4664 }
4665
4666 attr = dwarf2_attr (die, DW_AT_encoding, cu);
4667 if (attr)
4668 {
4669 encoding = DW_UNSND (attr);
4670 }
4671 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4672 if (attr)
4673 {
4674 size = DW_UNSND (attr);
4675 }
4676 attr = dwarf2_attr (die, DW_AT_name, cu);
4677 if (attr && DW_STRING (attr))
4678 {
4679 enum type_code code = TYPE_CODE_INT;
4680 int type_flags = 0;
4681
4682 switch (encoding)
4683 {
4684 case DW_ATE_address:
4685 /* Turn DW_ATE_address into a void * pointer. */
4686 code = TYPE_CODE_PTR;
4687 type_flags |= TYPE_FLAG_UNSIGNED;
4688 break;
4689 case DW_ATE_boolean:
4690 code = TYPE_CODE_BOOL;
4691 type_flags |= TYPE_FLAG_UNSIGNED;
4692 break;
4693 case DW_ATE_complex_float:
4694 code = TYPE_CODE_COMPLEX;
4695 break;
4696 case DW_ATE_float:
4697 code = TYPE_CODE_FLT;
4698 break;
4699 case DW_ATE_signed:
4700 case DW_ATE_signed_char:
4701 break;
4702 case DW_ATE_unsigned:
4703 case DW_ATE_unsigned_char:
4704 type_flags |= TYPE_FLAG_UNSIGNED;
4705 break;
4706 default:
4707 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
4708 dwarf_type_encoding_name (encoding));
4709 break;
4710 }
4711 type = init_type (code, size, type_flags, DW_STRING (attr), objfile);
4712 if (encoding == DW_ATE_address)
4713 TYPE_TARGET_TYPE (type) = dwarf2_fundamental_type (objfile, FT_VOID,
4714 cu);
4715 else if (encoding == DW_ATE_complex_float)
4716 {
4717 if (size == 32)
4718 TYPE_TARGET_TYPE (type)
4719 = dwarf2_fundamental_type (objfile, FT_EXT_PREC_FLOAT, cu);
4720 else if (size == 16)
4721 TYPE_TARGET_TYPE (type)
4722 = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
4723 else if (size == 8)
4724 TYPE_TARGET_TYPE (type)
4725 = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
4726 }
4727 }
4728 else
4729 {
4730 type = dwarf_base_type (encoding, size, cu);
4731 }
4732 set_die_type (die, type, cu);
4733 }
4734
4735 /* Read the given DW_AT_subrange DIE. */
4736
4737 static void
4738 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
4739 {
4740 struct type *base_type;
4741 struct type *range_type;
4742 struct attribute *attr;
4743 int low = 0;
4744 int high = -1;
4745
4746 /* If we have already decoded this die, then nothing more to do. */
4747 if (die->type)
4748 return;
4749
4750 base_type = die_type (die, cu);
4751 if (base_type == NULL)
4752 {
4753 complaint (&symfile_complaints,
4754 _("DW_AT_type missing from DW_TAG_subrange_type"));
4755 return;
4756 }
4757
4758 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
4759 base_type = alloc_type (NULL);
4760
4761 if (cu->language == language_fortran)
4762 {
4763 /* FORTRAN implies a lower bound of 1, if not given. */
4764 low = 1;
4765 }
4766
4767 /* FIXME: For variable sized arrays either of these could be
4768 a variable rather than a constant value. We'll allow it,
4769 but we don't know how to handle it. */
4770 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
4771 if (attr)
4772 low = dwarf2_get_attr_constant_value (attr, 0);
4773
4774 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
4775 if (attr)
4776 {
4777 if (attr->form == DW_FORM_block1)
4778 {
4779 /* GCC encodes arrays with unspecified or dynamic length
4780 with a DW_FORM_block1 attribute.
4781 FIXME: GDB does not yet know how to handle dynamic
4782 arrays properly, treat them as arrays with unspecified
4783 length for now.
4784
4785 FIXME: jimb/2003-09-22: GDB does not really know
4786 how to handle arrays of unspecified length
4787 either; we just represent them as zero-length
4788 arrays. Choose an appropriate upper bound given
4789 the lower bound we've computed above. */
4790 high = low - 1;
4791 }
4792 else
4793 high = dwarf2_get_attr_constant_value (attr, 1);
4794 }
4795
4796 range_type = create_range_type (NULL, base_type, low, high);
4797
4798 attr = dwarf2_attr (die, DW_AT_name, cu);
4799 if (attr && DW_STRING (attr))
4800 TYPE_NAME (range_type) = DW_STRING (attr);
4801
4802 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
4803 if (attr)
4804 TYPE_LENGTH (range_type) = DW_UNSND (attr);
4805
4806 set_die_type (die, range_type, cu);
4807 }
4808
4809
4810 /* Read a whole compilation unit into a linked list of dies. */
4811
4812 static struct die_info *
4813 read_comp_unit (char *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
4814 {
4815 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
4816 }
4817
4818 /* Read a single die and all its descendents. Set the die's sibling
4819 field to NULL; set other fields in the die correctly, and set all
4820 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
4821 location of the info_ptr after reading all of those dies. PARENT
4822 is the parent of the die in question. */
4823
4824 static struct die_info *
4825 read_die_and_children (char *info_ptr, bfd *abfd,
4826 struct dwarf2_cu *cu,
4827 char **new_info_ptr,
4828 struct die_info *parent)
4829 {
4830 struct die_info *die;
4831 char *cur_ptr;
4832 int has_children;
4833
4834 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
4835 store_in_ref_table (die->offset, die, cu);
4836
4837 if (has_children)
4838 {
4839 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
4840 new_info_ptr, die);
4841 }
4842 else
4843 {
4844 die->child = NULL;
4845 *new_info_ptr = cur_ptr;
4846 }
4847
4848 die->sibling = NULL;
4849 die->parent = parent;
4850 return die;
4851 }
4852
4853 /* Read a die, all of its descendents, and all of its siblings; set
4854 all of the fields of all of the dies correctly. Arguments are as
4855 in read_die_and_children. */
4856
4857 static struct die_info *
4858 read_die_and_siblings (char *info_ptr, bfd *abfd,
4859 struct dwarf2_cu *cu,
4860 char **new_info_ptr,
4861 struct die_info *parent)
4862 {
4863 struct die_info *first_die, *last_sibling;
4864 char *cur_ptr;
4865
4866 cur_ptr = info_ptr;
4867 first_die = last_sibling = NULL;
4868
4869 while (1)
4870 {
4871 struct die_info *die
4872 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
4873
4874 if (!first_die)
4875 {
4876 first_die = die;
4877 }
4878 else
4879 {
4880 last_sibling->sibling = die;
4881 }
4882
4883 if (die->tag == 0)
4884 {
4885 *new_info_ptr = cur_ptr;
4886 return first_die;
4887 }
4888 else
4889 {
4890 last_sibling = die;
4891 }
4892 }
4893 }
4894
4895 /* Free a linked list of dies. */
4896
4897 static void
4898 free_die_list (struct die_info *dies)
4899 {
4900 struct die_info *die, *next;
4901
4902 die = dies;
4903 while (die)
4904 {
4905 if (die->child != NULL)
4906 free_die_list (die->child);
4907 next = die->sibling;
4908 xfree (die->attrs);
4909 xfree (die);
4910 die = next;
4911 }
4912 }
4913
4914 /* Read the contents of the section at OFFSET and of size SIZE from the
4915 object file specified by OBJFILE into the objfile_obstack and return it. */
4916
4917 char *
4918 dwarf2_read_section (struct objfile *objfile, asection *sectp)
4919 {
4920 bfd *abfd = objfile->obfd;
4921 char *buf, *retbuf;
4922 bfd_size_type size = bfd_get_section_size (sectp);
4923
4924 if (size == 0)
4925 return NULL;
4926
4927 buf = (char *) obstack_alloc (&objfile->objfile_obstack, size);
4928 retbuf
4929 = (char *) symfile_relocate_debug_section (abfd, sectp, (bfd_byte *) buf);
4930 if (retbuf != NULL)
4931 return retbuf;
4932
4933 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
4934 || bfd_bread (buf, size, abfd) != size)
4935 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
4936 bfd_get_filename (abfd));
4937
4938 return buf;
4939 }
4940
4941 /* In DWARF version 2, the description of the debugging information is
4942 stored in a separate .debug_abbrev section. Before we read any
4943 dies from a section we read in all abbreviations and install them
4944 in a hash table. This function also sets flags in CU describing
4945 the data found in the abbrev table. */
4946
4947 static void
4948 dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
4949 {
4950 struct comp_unit_head *cu_header = &cu->header;
4951 char *abbrev_ptr;
4952 struct abbrev_info *cur_abbrev;
4953 unsigned int abbrev_number, bytes_read, abbrev_name;
4954 unsigned int abbrev_form, hash_number;
4955 struct attr_abbrev *cur_attrs;
4956 unsigned int allocated_attrs;
4957
4958 /* Initialize dwarf2 abbrevs */
4959 obstack_init (&cu->abbrev_obstack);
4960 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
4961 (ABBREV_HASH_SIZE
4962 * sizeof (struct abbrev_info *)));
4963 memset (cu->dwarf2_abbrevs, 0,
4964 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
4965
4966 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
4967 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4968 abbrev_ptr += bytes_read;
4969
4970 allocated_attrs = ATTR_ALLOC_CHUNK;
4971 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
4972
4973 /* loop until we reach an abbrev number of 0 */
4974 while (abbrev_number)
4975 {
4976 cur_abbrev = dwarf_alloc_abbrev (cu);
4977
4978 /* read in abbrev header */
4979 cur_abbrev->number = abbrev_number;
4980 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4981 abbrev_ptr += bytes_read;
4982 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
4983 abbrev_ptr += 1;
4984
4985 if (cur_abbrev->tag == DW_TAG_namespace)
4986 cu->has_namespace_info = 1;
4987
4988 /* now read in declarations */
4989 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4990 abbrev_ptr += bytes_read;
4991 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
4992 abbrev_ptr += bytes_read;
4993 while (abbrev_name)
4994 {
4995 if (cur_abbrev->num_attrs == allocated_attrs)
4996 {
4997 allocated_attrs += ATTR_ALLOC_CHUNK;
4998 cur_attrs
4999 = xrealloc (cur_attrs, (allocated_attrs
5000 * sizeof (struct attr_abbrev)));
5001 }
5002
5003 /* Record whether this compilation unit might have
5004 inter-compilation-unit references. If we don't know what form
5005 this attribute will have, then it might potentially be a
5006 DW_FORM_ref_addr, so we conservatively expect inter-CU
5007 references. */
5008
5009 if (abbrev_form == DW_FORM_ref_addr
5010 || abbrev_form == DW_FORM_indirect)
5011 cu->has_form_ref_addr = 1;
5012
5013 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5014 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
5015 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5016 abbrev_ptr += bytes_read;
5017 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5018 abbrev_ptr += bytes_read;
5019 }
5020
5021 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5022 (cur_abbrev->num_attrs
5023 * sizeof (struct attr_abbrev)));
5024 memcpy (cur_abbrev->attrs, cur_attrs,
5025 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5026
5027 hash_number = abbrev_number % ABBREV_HASH_SIZE;
5028 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5029 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
5030
5031 /* Get next abbreviation.
5032 Under Irix6 the abbreviations for a compilation unit are not
5033 always properly terminated with an abbrev number of 0.
5034 Exit loop if we encounter an abbreviation which we have
5035 already read (which means we are about to read the abbreviations
5036 for the next compile unit) or if the end of the abbreviation
5037 table is reached. */
5038 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5039 >= dwarf2_per_objfile->abbrev_size)
5040 break;
5041 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5042 abbrev_ptr += bytes_read;
5043 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
5044 break;
5045 }
5046
5047 xfree (cur_attrs);
5048 }
5049
5050 /* Release the memory used by the abbrev table for a compilation unit. */
5051
5052 static void
5053 dwarf2_free_abbrev_table (void *ptr_to_cu)
5054 {
5055 struct dwarf2_cu *cu = ptr_to_cu;
5056
5057 obstack_free (&cu->abbrev_obstack, NULL);
5058 cu->dwarf2_abbrevs = NULL;
5059 }
5060
5061 /* Lookup an abbrev_info structure in the abbrev hash table. */
5062
5063 static struct abbrev_info *
5064 dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
5065 {
5066 unsigned int hash_number;
5067 struct abbrev_info *abbrev;
5068
5069 hash_number = number % ABBREV_HASH_SIZE;
5070 abbrev = cu->dwarf2_abbrevs[hash_number];
5071
5072 while (abbrev)
5073 {
5074 if (abbrev->number == number)
5075 return abbrev;
5076 else
5077 abbrev = abbrev->next;
5078 }
5079 return NULL;
5080 }
5081
5082 /* Returns nonzero if TAG represents a type that we might generate a partial
5083 symbol for. */
5084
5085 static int
5086 is_type_tag_for_partial (int tag)
5087 {
5088 switch (tag)
5089 {
5090 #if 0
5091 /* Some types that would be reasonable to generate partial symbols for,
5092 that we don't at present. */
5093 case DW_TAG_array_type:
5094 case DW_TAG_file_type:
5095 case DW_TAG_ptr_to_member_type:
5096 case DW_TAG_set_type:
5097 case DW_TAG_string_type:
5098 case DW_TAG_subroutine_type:
5099 #endif
5100 case DW_TAG_base_type:
5101 case DW_TAG_class_type:
5102 case DW_TAG_enumeration_type:
5103 case DW_TAG_structure_type:
5104 case DW_TAG_subrange_type:
5105 case DW_TAG_typedef:
5106 case DW_TAG_union_type:
5107 return 1;
5108 default:
5109 return 0;
5110 }
5111 }
5112
5113 /* Load all DIEs that are interesting for partial symbols into memory. */
5114
5115 static struct partial_die_info *
5116 load_partial_dies (bfd *abfd, char *info_ptr, int building_psymtab,
5117 struct dwarf2_cu *cu)
5118 {
5119 struct partial_die_info *part_die;
5120 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5121 struct abbrev_info *abbrev;
5122 unsigned int bytes_read;
5123
5124 int nesting_level = 1;
5125
5126 parent_die = NULL;
5127 last_die = NULL;
5128
5129 cu->partial_dies
5130 = htab_create_alloc_ex (cu->header.length / 12,
5131 partial_die_hash,
5132 partial_die_eq,
5133 NULL,
5134 &cu->comp_unit_obstack,
5135 hashtab_obstack_allocate,
5136 dummy_obstack_deallocate);
5137
5138 part_die = obstack_alloc (&cu->comp_unit_obstack,
5139 sizeof (struct partial_die_info));
5140
5141 while (1)
5142 {
5143 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5144
5145 /* A NULL abbrev means the end of a series of children. */
5146 if (abbrev == NULL)
5147 {
5148 if (--nesting_level == 0)
5149 {
5150 /* PART_DIE was probably the last thing allocated on the
5151 comp_unit_obstack, so we could call obstack_free
5152 here. We don't do that because the waste is small,
5153 and will be cleaned up when we're done with this
5154 compilation unit. This way, we're also more robust
5155 against other users of the comp_unit_obstack. */
5156 return first_die;
5157 }
5158 info_ptr += bytes_read;
5159 last_die = parent_die;
5160 parent_die = parent_die->die_parent;
5161 continue;
5162 }
5163
5164 /* Check whether this DIE is interesting enough to save. */
5165 if (!is_type_tag_for_partial (abbrev->tag)
5166 && abbrev->tag != DW_TAG_enumerator
5167 && abbrev->tag != DW_TAG_subprogram
5168 && abbrev->tag != DW_TAG_variable
5169 && abbrev->tag != DW_TAG_namespace)
5170 {
5171 /* Otherwise we skip to the next sibling, if any. */
5172 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5173 continue;
5174 }
5175
5176 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5177 abfd, info_ptr, cu);
5178
5179 /* This two-pass algorithm for processing partial symbols has a
5180 high cost in cache pressure. Thus, handle some simple cases
5181 here which cover the majority of C partial symbols. DIEs
5182 which neither have specification tags in them, nor could have
5183 specification tags elsewhere pointing at them, can simply be
5184 processed and discarded.
5185
5186 This segment is also optional; scan_partial_symbols and
5187 add_partial_symbol will handle these DIEs if we chain
5188 them in normally. When compilers which do not emit large
5189 quantities of duplicate debug information are more common,
5190 this code can probably be removed. */
5191
5192 /* Any complete simple types at the top level (pretty much all
5193 of them, for a language without namespaces), can be processed
5194 directly. */
5195 if (parent_die == NULL
5196 && part_die->has_specification == 0
5197 && part_die->is_declaration == 0
5198 && (part_die->tag == DW_TAG_typedef
5199 || part_die->tag == DW_TAG_base_type
5200 || part_die->tag == DW_TAG_subrange_type))
5201 {
5202 if (building_psymtab && part_die->name != NULL)
5203 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5204 VAR_DOMAIN, LOC_TYPEDEF,
5205 &cu->objfile->static_psymbols,
5206 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5207 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5208 continue;
5209 }
5210
5211 /* If we're at the second level, and we're an enumerator, and
5212 our parent has no specification (meaning possibly lives in a
5213 namespace elsewhere), then we can add the partial symbol now
5214 instead of queueing it. */
5215 if (part_die->tag == DW_TAG_enumerator
5216 && parent_die != NULL
5217 && parent_die->die_parent == NULL
5218 && parent_die->tag == DW_TAG_enumeration_type
5219 && parent_die->has_specification == 0)
5220 {
5221 if (part_die->name == NULL)
5222 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
5223 else if (building_psymtab)
5224 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5225 VAR_DOMAIN, LOC_CONST,
5226 (cu->language == language_cplus
5227 || cu->language == language_java)
5228 ? &cu->objfile->global_psymbols
5229 : &cu->objfile->static_psymbols,
5230 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5231
5232 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5233 continue;
5234 }
5235
5236 /* We'll save this DIE so link it in. */
5237 part_die->die_parent = parent_die;
5238 part_die->die_sibling = NULL;
5239 part_die->die_child = NULL;
5240
5241 if (last_die && last_die == parent_die)
5242 last_die->die_child = part_die;
5243 else if (last_die)
5244 last_die->die_sibling = part_die;
5245
5246 last_die = part_die;
5247
5248 if (first_die == NULL)
5249 first_die = part_die;
5250
5251 /* Maybe add the DIE to the hash table. Not all DIEs that we
5252 find interesting need to be in the hash table, because we
5253 also have the parent/sibling/child chains; only those that we
5254 might refer to by offset later during partial symbol reading.
5255
5256 For now this means things that might have be the target of a
5257 DW_AT_specification, DW_AT_abstract_origin, or
5258 DW_AT_extension. DW_AT_extension will refer only to
5259 namespaces; DW_AT_abstract_origin refers to functions (and
5260 many things under the function DIE, but we do not recurse
5261 into function DIEs during partial symbol reading) and
5262 possibly variables as well; DW_AT_specification refers to
5263 declarations. Declarations ought to have the DW_AT_declaration
5264 flag. It happens that GCC forgets to put it in sometimes, but
5265 only for functions, not for types.
5266
5267 Adding more things than necessary to the hash table is harmless
5268 except for the performance cost. Adding too few will result in
5269 internal errors in find_partial_die. */
5270
5271 if (abbrev->tag == DW_TAG_subprogram
5272 || abbrev->tag == DW_TAG_variable
5273 || abbrev->tag == DW_TAG_namespace
5274 || part_die->is_declaration)
5275 {
5276 void **slot;
5277
5278 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5279 part_die->offset, INSERT);
5280 *slot = part_die;
5281 }
5282
5283 part_die = obstack_alloc (&cu->comp_unit_obstack,
5284 sizeof (struct partial_die_info));
5285
5286 /* For some DIEs we want to follow their children (if any). For C
5287 we have no reason to follow the children of structures; for other
5288 languages we have to, both so that we can get at method physnames
5289 to infer fully qualified class names, and for DW_AT_specification. */
5290 if (last_die->has_children
5291 && (last_die->tag == DW_TAG_namespace
5292 || last_die->tag == DW_TAG_enumeration_type
5293 || (cu->language != language_c
5294 && (last_die->tag == DW_TAG_class_type
5295 || last_die->tag == DW_TAG_structure_type
5296 || last_die->tag == DW_TAG_union_type))))
5297 {
5298 nesting_level++;
5299 parent_die = last_die;
5300 continue;
5301 }
5302
5303 /* Otherwise we skip to the next sibling, if any. */
5304 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5305
5306 /* Back to the top, do it again. */
5307 }
5308 }
5309
5310 /* Read a minimal amount of information into the minimal die structure. */
5311
5312 static char *
5313 read_partial_die (struct partial_die_info *part_die,
5314 struct abbrev_info *abbrev,
5315 unsigned int abbrev_len, bfd *abfd,
5316 char *info_ptr, struct dwarf2_cu *cu)
5317 {
5318 unsigned int bytes_read, i;
5319 struct attribute attr;
5320 int has_low_pc_attr = 0;
5321 int has_high_pc_attr = 0;
5322
5323 memset (part_die, 0, sizeof (struct partial_die_info));
5324
5325 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
5326
5327 info_ptr += abbrev_len;
5328
5329 if (abbrev == NULL)
5330 return info_ptr;
5331
5332 part_die->tag = abbrev->tag;
5333 part_die->has_children = abbrev->has_children;
5334
5335 for (i = 0; i < abbrev->num_attrs; ++i)
5336 {
5337 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
5338
5339 /* Store the data if it is of an attribute we want to keep in a
5340 partial symbol table. */
5341 switch (attr.name)
5342 {
5343 case DW_AT_name:
5344
5345 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5346 if (part_die->name == NULL)
5347 part_die->name = DW_STRING (&attr);
5348 break;
5349 case DW_AT_comp_dir:
5350 if (part_die->dirname == NULL)
5351 part_die->dirname = DW_STRING (&attr);
5352 break;
5353 case DW_AT_MIPS_linkage_name:
5354 part_die->name = DW_STRING (&attr);
5355 break;
5356 case DW_AT_low_pc:
5357 has_low_pc_attr = 1;
5358 part_die->lowpc = DW_ADDR (&attr);
5359 break;
5360 case DW_AT_high_pc:
5361 has_high_pc_attr = 1;
5362 part_die->highpc = DW_ADDR (&attr);
5363 break;
5364 case DW_AT_location:
5365 /* Support the .debug_loc offsets */
5366 if (attr_form_is_block (&attr))
5367 {
5368 part_die->locdesc = DW_BLOCK (&attr);
5369 }
5370 else if (attr.form == DW_FORM_data4 || attr.form == DW_FORM_data8)
5371 {
5372 dwarf2_complex_location_expr_complaint ();
5373 }
5374 else
5375 {
5376 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5377 "partial symbol information");
5378 }
5379 break;
5380 case DW_AT_language:
5381 part_die->language = DW_UNSND (&attr);
5382 break;
5383 case DW_AT_external:
5384 part_die->is_external = DW_UNSND (&attr);
5385 break;
5386 case DW_AT_declaration:
5387 part_die->is_declaration = DW_UNSND (&attr);
5388 break;
5389 case DW_AT_type:
5390 part_die->has_type = 1;
5391 break;
5392 case DW_AT_abstract_origin:
5393 case DW_AT_specification:
5394 case DW_AT_extension:
5395 part_die->has_specification = 1;
5396 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
5397 break;
5398 case DW_AT_sibling:
5399 /* Ignore absolute siblings, they might point outside of
5400 the current compile unit. */
5401 if (attr.form == DW_FORM_ref_addr)
5402 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
5403 else
5404 part_die->sibling = dwarf2_per_objfile->info_buffer
5405 + dwarf2_get_ref_die_offset (&attr, cu);
5406 break;
5407 case DW_AT_stmt_list:
5408 part_die->has_stmt_list = 1;
5409 part_die->line_offset = DW_UNSND (&attr);
5410 break;
5411 default:
5412 break;
5413 }
5414 }
5415
5416 /* When using the GNU linker, .gnu.linkonce. sections are used to
5417 eliminate duplicate copies of functions and vtables and such.
5418 The linker will arbitrarily choose one and discard the others.
5419 The AT_*_pc values for such functions refer to local labels in
5420 these sections. If the section from that file was discarded, the
5421 labels are not in the output, so the relocs get a value of 0.
5422 If this is a discarded function, mark the pc bounds as invalid,
5423 so that GDB will ignore it. */
5424 if (has_low_pc_attr && has_high_pc_attr
5425 && part_die->lowpc < part_die->highpc
5426 && (part_die->lowpc != 0
5427 || (bfd_get_file_flags (abfd) & HAS_RELOC)))
5428 part_die->has_pc_info = 1;
5429 return info_ptr;
5430 }
5431
5432 /* Find a cached partial DIE at OFFSET in CU. */
5433
5434 static struct partial_die_info *
5435 find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5436 {
5437 struct partial_die_info *lookup_die = NULL;
5438 struct partial_die_info part_die;
5439
5440 part_die.offset = offset;
5441 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5442
5443 if (lookup_die == NULL)
5444 internal_error (__FILE__, __LINE__,
5445 _("could not find partial DIE in cache\n"));
5446
5447 return lookup_die;
5448 }
5449
5450 /* Find a partial DIE at OFFSET, which may or may not be in CU. */
5451
5452 static struct partial_die_info *
5453 find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
5454 {
5455 struct dwarf2_per_cu_data *per_cu;
5456
5457 if (offset >= cu->header.offset
5458 && offset < cu->header.offset + cu->header.length)
5459 return find_partial_die_in_comp_unit (offset, cu);
5460
5461 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5462
5463 if (per_cu->cu == NULL)
5464 {
5465 load_comp_unit (per_cu, cu->objfile);
5466 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5467 dwarf2_per_objfile->read_in_chain = per_cu;
5468 }
5469
5470 per_cu->cu->last_used = 0;
5471 return find_partial_die_in_comp_unit (offset, per_cu->cu);
5472 }
5473
5474 /* Adjust PART_DIE before generating a symbol for it. This function
5475 may set the is_external flag or change the DIE's name. */
5476
5477 static void
5478 fixup_partial_die (struct partial_die_info *part_die,
5479 struct dwarf2_cu *cu)
5480 {
5481 /* If we found a reference attribute and the DIE has no name, try
5482 to find a name in the referred to DIE. */
5483
5484 if (part_die->name == NULL && part_die->has_specification)
5485 {
5486 struct partial_die_info *spec_die;
5487
5488 spec_die = find_partial_die (part_die->spec_offset, cu);
5489
5490 fixup_partial_die (spec_die, cu);
5491
5492 if (spec_die->name)
5493 {
5494 part_die->name = spec_die->name;
5495
5496 /* Copy DW_AT_external attribute if it is set. */
5497 if (spec_die->is_external)
5498 part_die->is_external = spec_die->is_external;
5499 }
5500 }
5501
5502 /* Set default names for some unnamed DIEs. */
5503 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5504 || part_die->tag == DW_TAG_class_type))
5505 part_die->name = "(anonymous class)";
5506
5507 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5508 part_die->name = "(anonymous namespace)";
5509
5510 if (part_die->tag == DW_TAG_structure_type
5511 || part_die->tag == DW_TAG_class_type
5512 || part_die->tag == DW_TAG_union_type)
5513 guess_structure_name (part_die, cu);
5514 }
5515
5516 /* Read the die from the .debug_info section buffer. Set DIEP to
5517 point to a newly allocated die with its information, except for its
5518 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5519 whether the die has children or not. */
5520
5521 static char *
5522 read_full_die (struct die_info **diep, bfd *abfd, char *info_ptr,
5523 struct dwarf2_cu *cu, int *has_children)
5524 {
5525 unsigned int abbrev_number, bytes_read, i, offset;
5526 struct abbrev_info *abbrev;
5527 struct die_info *die;
5528
5529 offset = info_ptr - dwarf2_per_objfile->info_buffer;
5530 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5531 info_ptr += bytes_read;
5532 if (!abbrev_number)
5533 {
5534 die = dwarf_alloc_die ();
5535 die->tag = 0;
5536 die->abbrev = abbrev_number;
5537 die->type = NULL;
5538 *diep = die;
5539 *has_children = 0;
5540 return info_ptr;
5541 }
5542
5543 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
5544 if (!abbrev)
5545 {
5546 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
5547 abbrev_number,
5548 bfd_get_filename (abfd));
5549 }
5550 die = dwarf_alloc_die ();
5551 die->offset = offset;
5552 die->tag = abbrev->tag;
5553 die->abbrev = abbrev_number;
5554 die->type = NULL;
5555
5556 die->num_attrs = abbrev->num_attrs;
5557 die->attrs = (struct attribute *)
5558 xmalloc (die->num_attrs * sizeof (struct attribute));
5559
5560 for (i = 0; i < abbrev->num_attrs; ++i)
5561 {
5562 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
5563 abfd, info_ptr, cu);
5564
5565 /* If this attribute is an absolute reference to a different
5566 compilation unit, make sure that compilation unit is loaded
5567 also. */
5568 if (die->attrs[i].form == DW_FORM_ref_addr
5569 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5570 || (DW_ADDR (&die->attrs[i])
5571 >= cu->header.offset + cu->header.length)))
5572 {
5573 struct dwarf2_per_cu_data *per_cu;
5574 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5575 cu->objfile);
5576
5577 /* Mark the dependence relation so that we don't flush PER_CU
5578 too early. */
5579 dwarf2_add_dependence (cu, per_cu);
5580
5581 /* If it's already on the queue, we have nothing to do. */
5582 if (per_cu->queued)
5583 continue;
5584
5585 /* If the compilation unit is already loaded, just mark it as
5586 used. */
5587 if (per_cu->cu != NULL)
5588 {
5589 per_cu->cu->last_used = 0;
5590 continue;
5591 }
5592
5593 /* Add it to the queue. */
5594 queue_comp_unit (per_cu);
5595 }
5596 }
5597
5598 *diep = die;
5599 *has_children = abbrev->has_children;
5600 return info_ptr;
5601 }
5602
5603 /* Read an attribute value described by an attribute form. */
5604
5605 static char *
5606 read_attribute_value (struct attribute *attr, unsigned form,
5607 bfd *abfd, char *info_ptr,
5608 struct dwarf2_cu *cu)
5609 {
5610 struct comp_unit_head *cu_header = &cu->header;
5611 unsigned int bytes_read;
5612 struct dwarf_block *blk;
5613
5614 attr->form = form;
5615 switch (form)
5616 {
5617 case DW_FORM_addr:
5618 case DW_FORM_ref_addr:
5619 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
5620 info_ptr += bytes_read;
5621 break;
5622 case DW_FORM_block2:
5623 blk = dwarf_alloc_block (cu);
5624 blk->size = read_2_bytes (abfd, info_ptr);
5625 info_ptr += 2;
5626 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5627 info_ptr += blk->size;
5628 DW_BLOCK (attr) = blk;
5629 break;
5630 case DW_FORM_block4:
5631 blk = dwarf_alloc_block (cu);
5632 blk->size = read_4_bytes (abfd, info_ptr);
5633 info_ptr += 4;
5634 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5635 info_ptr += blk->size;
5636 DW_BLOCK (attr) = blk;
5637 break;
5638 case DW_FORM_data2:
5639 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
5640 info_ptr += 2;
5641 break;
5642 case DW_FORM_data4:
5643 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
5644 info_ptr += 4;
5645 break;
5646 case DW_FORM_data8:
5647 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
5648 info_ptr += 8;
5649 break;
5650 case DW_FORM_string:
5651 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
5652 info_ptr += bytes_read;
5653 break;
5654 case DW_FORM_strp:
5655 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
5656 &bytes_read);
5657 info_ptr += bytes_read;
5658 break;
5659 case DW_FORM_block:
5660 blk = dwarf_alloc_block (cu);
5661 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5662 info_ptr += bytes_read;
5663 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5664 info_ptr += blk->size;
5665 DW_BLOCK (attr) = blk;
5666 break;
5667 case DW_FORM_block1:
5668 blk = dwarf_alloc_block (cu);
5669 blk->size = read_1_byte (abfd, info_ptr);
5670 info_ptr += 1;
5671 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
5672 info_ptr += blk->size;
5673 DW_BLOCK (attr) = blk;
5674 break;
5675 case DW_FORM_data1:
5676 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5677 info_ptr += 1;
5678 break;
5679 case DW_FORM_flag:
5680 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
5681 info_ptr += 1;
5682 break;
5683 case DW_FORM_sdata:
5684 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
5685 info_ptr += bytes_read;
5686 break;
5687 case DW_FORM_udata:
5688 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5689 info_ptr += bytes_read;
5690 break;
5691 case DW_FORM_ref1:
5692 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
5693 info_ptr += 1;
5694 break;
5695 case DW_FORM_ref2:
5696 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
5697 info_ptr += 2;
5698 break;
5699 case DW_FORM_ref4:
5700 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
5701 info_ptr += 4;
5702 break;
5703 case DW_FORM_ref8:
5704 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
5705 info_ptr += 8;
5706 break;
5707 case DW_FORM_ref_udata:
5708 DW_ADDR (attr) = (cu->header.offset
5709 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
5710 info_ptr += bytes_read;
5711 break;
5712 case DW_FORM_indirect:
5713 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5714 info_ptr += bytes_read;
5715 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
5716 break;
5717 default:
5718 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
5719 dwarf_form_name (form),
5720 bfd_get_filename (abfd));
5721 }
5722 return info_ptr;
5723 }
5724
5725 /* Read an attribute described by an abbreviated attribute. */
5726
5727 static char *
5728 read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
5729 bfd *abfd, char *info_ptr, struct dwarf2_cu *cu)
5730 {
5731 attr->name = abbrev->name;
5732 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
5733 }
5734
5735 /* read dwarf information from a buffer */
5736
5737 static unsigned int
5738 read_1_byte (bfd *abfd, char *buf)
5739 {
5740 return bfd_get_8 (abfd, (bfd_byte *) buf);
5741 }
5742
5743 static int
5744 read_1_signed_byte (bfd *abfd, char *buf)
5745 {
5746 return bfd_get_signed_8 (abfd, (bfd_byte *) buf);
5747 }
5748
5749 static unsigned int
5750 read_2_bytes (bfd *abfd, char *buf)
5751 {
5752 return bfd_get_16 (abfd, (bfd_byte *) buf);
5753 }
5754
5755 static int
5756 read_2_signed_bytes (bfd *abfd, char *buf)
5757 {
5758 return bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5759 }
5760
5761 static unsigned int
5762 read_4_bytes (bfd *abfd, char *buf)
5763 {
5764 return bfd_get_32 (abfd, (bfd_byte *) buf);
5765 }
5766
5767 static int
5768 read_4_signed_bytes (bfd *abfd, char *buf)
5769 {
5770 return bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5771 }
5772
5773 static unsigned long
5774 read_8_bytes (bfd *abfd, char *buf)
5775 {
5776 return bfd_get_64 (abfd, (bfd_byte *) buf);
5777 }
5778
5779 static CORE_ADDR
5780 read_address (bfd *abfd, char *buf, struct dwarf2_cu *cu, int *bytes_read)
5781 {
5782 struct comp_unit_head *cu_header = &cu->header;
5783 CORE_ADDR retval = 0;
5784
5785 if (cu_header->signed_addr_p)
5786 {
5787 switch (cu_header->addr_size)
5788 {
5789 case 2:
5790 retval = bfd_get_signed_16 (abfd, (bfd_byte *) buf);
5791 break;
5792 case 4:
5793 retval = bfd_get_signed_32 (abfd, (bfd_byte *) buf);
5794 break;
5795 case 8:
5796 retval = bfd_get_signed_64 (abfd, (bfd_byte *) buf);
5797 break;
5798 default:
5799 internal_error (__FILE__, __LINE__,
5800 _("read_address: bad switch, signed [in module %s]"),
5801 bfd_get_filename (abfd));
5802 }
5803 }
5804 else
5805 {
5806 switch (cu_header->addr_size)
5807 {
5808 case 2:
5809 retval = bfd_get_16 (abfd, (bfd_byte *) buf);
5810 break;
5811 case 4:
5812 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5813 break;
5814 case 8:
5815 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5816 break;
5817 default:
5818 internal_error (__FILE__, __LINE__,
5819 _("read_address: bad switch, unsigned [in module %s]"),
5820 bfd_get_filename (abfd));
5821 }
5822 }
5823
5824 *bytes_read = cu_header->addr_size;
5825 return retval;
5826 }
5827
5828 /* Read the initial length from a section. The (draft) DWARF 3
5829 specification allows the initial length to take up either 4 bytes
5830 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
5831 bytes describe the length and all offsets will be 8 bytes in length
5832 instead of 4.
5833
5834 An older, non-standard 64-bit format is also handled by this
5835 function. The older format in question stores the initial length
5836 as an 8-byte quantity without an escape value. Lengths greater
5837 than 2^32 aren't very common which means that the initial 4 bytes
5838 is almost always zero. Since a length value of zero doesn't make
5839 sense for the 32-bit format, this initial zero can be considered to
5840 be an escape value which indicates the presence of the older 64-bit
5841 format. As written, the code can't detect (old format) lengths
5842 greater than 4GB. If it becomes necessary to handle lengths
5843 somewhat larger than 4GB, we could allow other small values (such
5844 as the non-sensical values of 1, 2, and 3) to also be used as
5845 escape values indicating the presence of the old format.
5846
5847 The value returned via bytes_read should be used to increment the
5848 relevant pointer after calling read_initial_length().
5849
5850 As a side effect, this function sets the fields initial_length_size
5851 and offset_size in cu_header to the values appropriate for the
5852 length field. (The format of the initial length field determines
5853 the width of file offsets to be fetched later with fetch_offset().)
5854
5855 [ Note: read_initial_length() and read_offset() are based on the
5856 document entitled "DWARF Debugging Information Format", revision
5857 3, draft 8, dated November 19, 2001. This document was obtained
5858 from:
5859
5860 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
5861
5862 This document is only a draft and is subject to change. (So beware.)
5863
5864 Details regarding the older, non-standard 64-bit format were
5865 determined empirically by examining 64-bit ELF files produced by
5866 the SGI toolchain on an IRIX 6.5 machine.
5867
5868 - Kevin, July 16, 2002
5869 ] */
5870
5871 static LONGEST
5872 read_initial_length (bfd *abfd, char *buf, struct comp_unit_head *cu_header,
5873 int *bytes_read)
5874 {
5875 LONGEST retval = 0;
5876
5877 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5878
5879 if (retval == 0xffffffff)
5880 {
5881 retval = bfd_get_64 (abfd, (bfd_byte *) buf + 4);
5882 *bytes_read = 12;
5883 if (cu_header != NULL)
5884 {
5885 cu_header->initial_length_size = 12;
5886 cu_header->offset_size = 8;
5887 }
5888 }
5889 else if (retval == 0)
5890 {
5891 /* Handle (non-standard) 64-bit DWARF2 formats such as that used
5892 by IRIX. */
5893 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5894 *bytes_read = 8;
5895 if (cu_header != NULL)
5896 {
5897 cu_header->initial_length_size = 8;
5898 cu_header->offset_size = 8;
5899 }
5900 }
5901 else
5902 {
5903 *bytes_read = 4;
5904 if (cu_header != NULL)
5905 {
5906 cu_header->initial_length_size = 4;
5907 cu_header->offset_size = 4;
5908 }
5909 }
5910
5911 return retval;
5912 }
5913
5914 /* Read an offset from the data stream. The size of the offset is
5915 given by cu_header->offset_size. */
5916
5917 static LONGEST
5918 read_offset (bfd *abfd, char *buf, const struct comp_unit_head *cu_header,
5919 int *bytes_read)
5920 {
5921 LONGEST retval = 0;
5922
5923 switch (cu_header->offset_size)
5924 {
5925 case 4:
5926 retval = bfd_get_32 (abfd, (bfd_byte *) buf);
5927 *bytes_read = 4;
5928 break;
5929 case 8:
5930 retval = bfd_get_64 (abfd, (bfd_byte *) buf);
5931 *bytes_read = 8;
5932 break;
5933 default:
5934 internal_error (__FILE__, __LINE__,
5935 _("read_offset: bad switch [in module %s]"),
5936 bfd_get_filename (abfd));
5937 }
5938
5939 return retval;
5940 }
5941
5942 static char *
5943 read_n_bytes (bfd *abfd, char *buf, unsigned int size)
5944 {
5945 /* If the size of a host char is 8 bits, we can return a pointer
5946 to the buffer, otherwise we have to copy the data to a buffer
5947 allocated on the temporary obstack. */
5948 gdb_assert (HOST_CHAR_BIT == 8);
5949 return buf;
5950 }
5951
5952 static char *
5953 read_string (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5954 {
5955 /* If the size of a host char is 8 bits, we can return a pointer
5956 to the string, otherwise we have to copy the string to a buffer
5957 allocated on the temporary obstack. */
5958 gdb_assert (HOST_CHAR_BIT == 8);
5959 if (*buf == '\0')
5960 {
5961 *bytes_read_ptr = 1;
5962 return NULL;
5963 }
5964 *bytes_read_ptr = strlen (buf) + 1;
5965 return buf;
5966 }
5967
5968 static char *
5969 read_indirect_string (bfd *abfd, char *buf,
5970 const struct comp_unit_head *cu_header,
5971 unsigned int *bytes_read_ptr)
5972 {
5973 LONGEST str_offset = read_offset (abfd, buf, cu_header,
5974 (int *) bytes_read_ptr);
5975
5976 if (dwarf2_per_objfile->str_buffer == NULL)
5977 {
5978 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
5979 bfd_get_filename (abfd));
5980 return NULL;
5981 }
5982 if (str_offset >= dwarf2_per_objfile->str_size)
5983 {
5984 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
5985 bfd_get_filename (abfd));
5986 return NULL;
5987 }
5988 gdb_assert (HOST_CHAR_BIT == 8);
5989 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
5990 return NULL;
5991 return dwarf2_per_objfile->str_buffer + str_offset;
5992 }
5993
5994 static unsigned long
5995 read_unsigned_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
5996 {
5997 unsigned long result;
5998 unsigned int num_read;
5999 int i, shift;
6000 unsigned char byte;
6001
6002 result = 0;
6003 shift = 0;
6004 num_read = 0;
6005 i = 0;
6006 while (1)
6007 {
6008 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6009 buf++;
6010 num_read++;
6011 result |= ((unsigned long)(byte & 127) << shift);
6012 if ((byte & 128) == 0)
6013 {
6014 break;
6015 }
6016 shift += 7;
6017 }
6018 *bytes_read_ptr = num_read;
6019 return result;
6020 }
6021
6022 static long
6023 read_signed_leb128 (bfd *abfd, char *buf, unsigned int *bytes_read_ptr)
6024 {
6025 long result;
6026 int i, shift, size, num_read;
6027 unsigned char byte;
6028
6029 result = 0;
6030 shift = 0;
6031 size = 32;
6032 num_read = 0;
6033 i = 0;
6034 while (1)
6035 {
6036 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6037 buf++;
6038 num_read++;
6039 result |= ((long)(byte & 127) << shift);
6040 shift += 7;
6041 if ((byte & 128) == 0)
6042 {
6043 break;
6044 }
6045 }
6046 if ((shift < size) && (byte & 0x40))
6047 {
6048 result |= -(1 << shift);
6049 }
6050 *bytes_read_ptr = num_read;
6051 return result;
6052 }
6053
6054 /* Return a pointer to just past the end of an LEB128 number in BUF. */
6055
6056 static char *
6057 skip_leb128 (bfd *abfd, char *buf)
6058 {
6059 int byte;
6060
6061 while (1)
6062 {
6063 byte = bfd_get_8 (abfd, (bfd_byte *) buf);
6064 buf++;
6065 if ((byte & 128) == 0)
6066 return buf;
6067 }
6068 }
6069
6070 static void
6071 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
6072 {
6073 switch (lang)
6074 {
6075 case DW_LANG_C89:
6076 case DW_LANG_C:
6077 cu->language = language_c;
6078 break;
6079 case DW_LANG_C_plus_plus:
6080 cu->language = language_cplus;
6081 break;
6082 case DW_LANG_Fortran77:
6083 case DW_LANG_Fortran90:
6084 case DW_LANG_Fortran95:
6085 cu->language = language_fortran;
6086 break;
6087 case DW_LANG_Mips_Assembler:
6088 cu->language = language_asm;
6089 break;
6090 case DW_LANG_Java:
6091 cu->language = language_java;
6092 break;
6093 case DW_LANG_Ada83:
6094 case DW_LANG_Ada95:
6095 cu->language = language_ada;
6096 break;
6097 case DW_LANG_Cobol74:
6098 case DW_LANG_Cobol85:
6099 case DW_LANG_Pascal83:
6100 case DW_LANG_Modula2:
6101 default:
6102 cu->language = language_minimal;
6103 break;
6104 }
6105 cu->language_defn = language_def (cu->language);
6106 }
6107
6108 /* Return the named attribute or NULL if not there. */
6109
6110 static struct attribute *
6111 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
6112 {
6113 unsigned int i;
6114 struct attribute *spec = NULL;
6115
6116 for (i = 0; i < die->num_attrs; ++i)
6117 {
6118 if (die->attrs[i].name == name)
6119 return &die->attrs[i];
6120 if (die->attrs[i].name == DW_AT_specification
6121 || die->attrs[i].name == DW_AT_abstract_origin)
6122 spec = &die->attrs[i];
6123 }
6124
6125 if (spec)
6126 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
6127
6128 return NULL;
6129 }
6130
6131 /* Return non-zero iff the attribute NAME is defined for the given DIE,
6132 and holds a non-zero value. This function should only be used for
6133 DW_FORM_flag attributes. */
6134
6135 static int
6136 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6137 {
6138 struct attribute *attr = dwarf2_attr (die, name, cu);
6139
6140 return (attr && DW_UNSND (attr));
6141 }
6142
6143 static int
6144 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
6145 {
6146 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6147 which value is non-zero. However, we have to be careful with
6148 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6149 (via dwarf2_flag_true_p) follows this attribute. So we may
6150 end up accidently finding a declaration attribute that belongs
6151 to a different DIE referenced by the specification attribute,
6152 even though the given DIE does not have a declaration attribute. */
6153 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6154 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
6155 }
6156
6157 /* Return the die giving the specification for DIE, if there is
6158 one. */
6159
6160 static struct die_info *
6161 die_specification (struct die_info *die, struct dwarf2_cu *cu)
6162 {
6163 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
6164
6165 if (spec_attr == NULL)
6166 return NULL;
6167 else
6168 return follow_die_ref (die, spec_attr, cu);
6169 }
6170
6171 /* Free the line_header structure *LH, and any arrays and strings it
6172 refers to. */
6173 static void
6174 free_line_header (struct line_header *lh)
6175 {
6176 if (lh->standard_opcode_lengths)
6177 xfree (lh->standard_opcode_lengths);
6178
6179 /* Remember that all the lh->file_names[i].name pointers are
6180 pointers into debug_line_buffer, and don't need to be freed. */
6181 if (lh->file_names)
6182 xfree (lh->file_names);
6183
6184 /* Similarly for the include directory names. */
6185 if (lh->include_dirs)
6186 xfree (lh->include_dirs);
6187
6188 xfree (lh);
6189 }
6190
6191
6192 /* Add an entry to LH's include directory table. */
6193 static void
6194 add_include_dir (struct line_header *lh, char *include_dir)
6195 {
6196 /* Grow the array if necessary. */
6197 if (lh->include_dirs_size == 0)
6198 {
6199 lh->include_dirs_size = 1; /* for testing */
6200 lh->include_dirs = xmalloc (lh->include_dirs_size
6201 * sizeof (*lh->include_dirs));
6202 }
6203 else if (lh->num_include_dirs >= lh->include_dirs_size)
6204 {
6205 lh->include_dirs_size *= 2;
6206 lh->include_dirs = xrealloc (lh->include_dirs,
6207 (lh->include_dirs_size
6208 * sizeof (*lh->include_dirs)));
6209 }
6210
6211 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6212 }
6213
6214
6215 /* Add an entry to LH's file name table. */
6216 static void
6217 add_file_name (struct line_header *lh,
6218 char *name,
6219 unsigned int dir_index,
6220 unsigned int mod_time,
6221 unsigned int length)
6222 {
6223 struct file_entry *fe;
6224
6225 /* Grow the array if necessary. */
6226 if (lh->file_names_size == 0)
6227 {
6228 lh->file_names_size = 1; /* for testing */
6229 lh->file_names = xmalloc (lh->file_names_size
6230 * sizeof (*lh->file_names));
6231 }
6232 else if (lh->num_file_names >= lh->file_names_size)
6233 {
6234 lh->file_names_size *= 2;
6235 lh->file_names = xrealloc (lh->file_names,
6236 (lh->file_names_size
6237 * sizeof (*lh->file_names)));
6238 }
6239
6240 fe = &lh->file_names[lh->num_file_names++];
6241 fe->name = name;
6242 fe->dir_index = dir_index;
6243 fe->mod_time = mod_time;
6244 fe->length = length;
6245 fe->included_p = 0;
6246 }
6247
6248
6249 /* Read the statement program header starting at OFFSET in
6250 .debug_line, according to the endianness of ABFD. Return a pointer
6251 to a struct line_header, allocated using xmalloc.
6252
6253 NOTE: the strings in the include directory and file name tables of
6254 the returned object point into debug_line_buffer, and must not be
6255 freed. */
6256 static struct line_header *
6257 dwarf_decode_line_header (unsigned int offset, bfd *abfd,
6258 struct dwarf2_cu *cu)
6259 {
6260 struct cleanup *back_to;
6261 struct line_header *lh;
6262 char *line_ptr;
6263 int bytes_read;
6264 int i;
6265 char *cur_dir, *cur_file;
6266
6267 if (dwarf2_per_objfile->line_buffer == NULL)
6268 {
6269 complaint (&symfile_complaints, _("missing .debug_line section"));
6270 return 0;
6271 }
6272
6273 /* Make sure that at least there's room for the total_length field.
6274 That could be 12 bytes long, but we're just going to fudge that. */
6275 if (offset + 4 >= dwarf2_per_objfile->line_size)
6276 {
6277 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6278 return 0;
6279 }
6280
6281 lh = xmalloc (sizeof (*lh));
6282 memset (lh, 0, sizeof (*lh));
6283 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6284 (void *) lh);
6285
6286 line_ptr = dwarf2_per_objfile->line_buffer + offset;
6287
6288 /* Read in the header. */
6289 lh->total_length = read_initial_length (abfd, line_ptr, NULL, &bytes_read);
6290 line_ptr += bytes_read;
6291 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6292 + dwarf2_per_objfile->line_size))
6293 {
6294 dwarf2_statement_list_fits_in_line_number_section_complaint ();
6295 return 0;
6296 }
6297 lh->statement_program_end = line_ptr + lh->total_length;
6298 lh->version = read_2_bytes (abfd, line_ptr);
6299 line_ptr += 2;
6300 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
6301 line_ptr += bytes_read;
6302 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6303 line_ptr += 1;
6304 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6305 line_ptr += 1;
6306 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6307 line_ptr += 1;
6308 lh->line_range = read_1_byte (abfd, line_ptr);
6309 line_ptr += 1;
6310 lh->opcode_base = read_1_byte (abfd, line_ptr);
6311 line_ptr += 1;
6312 lh->standard_opcode_lengths
6313 = (unsigned char *) xmalloc (lh->opcode_base * sizeof (unsigned char));
6314
6315 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6316 for (i = 1; i < lh->opcode_base; ++i)
6317 {
6318 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6319 line_ptr += 1;
6320 }
6321
6322 /* Read directory table. */
6323 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6324 {
6325 line_ptr += bytes_read;
6326 add_include_dir (lh, cur_dir);
6327 }
6328 line_ptr += bytes_read;
6329
6330 /* Read file name table. */
6331 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6332 {
6333 unsigned int dir_index, mod_time, length;
6334
6335 line_ptr += bytes_read;
6336 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6337 line_ptr += bytes_read;
6338 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6339 line_ptr += bytes_read;
6340 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6341 line_ptr += bytes_read;
6342
6343 add_file_name (lh, cur_file, dir_index, mod_time, length);
6344 }
6345 line_ptr += bytes_read;
6346 lh->statement_program_start = line_ptr;
6347
6348 if (line_ptr > (dwarf2_per_objfile->line_buffer
6349 + dwarf2_per_objfile->line_size))
6350 complaint (&symfile_complaints,
6351 _("line number info header doesn't fit in `.debug_line' section"));
6352
6353 discard_cleanups (back_to);
6354 return lh;
6355 }
6356
6357 /* This function exists to work around a bug in certain compilers
6358 (particularly GCC 2.95), in which the first line number marker of a
6359 function does not show up until after the prologue, right before
6360 the second line number marker. This function shifts ADDRESS down
6361 to the beginning of the function if necessary, and is called on
6362 addresses passed to record_line. */
6363
6364 static CORE_ADDR
6365 check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
6366 {
6367 struct function_range *fn;
6368
6369 /* Find the function_range containing address. */
6370 if (!cu->first_fn)
6371 return address;
6372
6373 if (!cu->cached_fn)
6374 cu->cached_fn = cu->first_fn;
6375
6376 fn = cu->cached_fn;
6377 while (fn)
6378 if (fn->lowpc <= address && fn->highpc > address)
6379 goto found;
6380 else
6381 fn = fn->next;
6382
6383 fn = cu->first_fn;
6384 while (fn && fn != cu->cached_fn)
6385 if (fn->lowpc <= address && fn->highpc > address)
6386 goto found;
6387 else
6388 fn = fn->next;
6389
6390 return address;
6391
6392 found:
6393 if (fn->seen_line)
6394 return address;
6395 if (address != fn->lowpc)
6396 complaint (&symfile_complaints,
6397 _("misplaced first line number at 0x%lx for '%s'"),
6398 (unsigned long) address, fn->name);
6399 fn->seen_line = 1;
6400 return fn->lowpc;
6401 }
6402
6403 /* Decode the Line Number Program (LNP) for the given line_header
6404 structure and CU. The actual information extracted and the type
6405 of structures created from the LNP depends on the value of PST.
6406
6407 1. If PST is NULL, then this procedure uses the data from the program
6408 to create all necessary symbol tables, and their linetables.
6409 The compilation directory of the file is passed in COMP_DIR,
6410 and must not be NULL.
6411
6412 2. If PST is not NULL, this procedure reads the program to determine
6413 the list of files included by the unit represented by PST, and
6414 builds all the associated partial symbol tables. In this case,
6415 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6416 is not used to compute the full name of the symtab, and therefore
6417 omitting it when building the partial symtab does not introduce
6418 the potential for inconsistency - a partial symtab and its associated
6419 symbtab having a different fullname -). */
6420
6421 static void
6422 dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
6423 struct dwarf2_cu *cu, struct partial_symtab *pst)
6424 {
6425 char *line_ptr;
6426 char *line_end;
6427 unsigned int bytes_read;
6428 unsigned char op_code, extended_op, adj_opcode;
6429 CORE_ADDR baseaddr;
6430 struct objfile *objfile = cu->objfile;
6431 const int decode_for_pst_p = (pst != NULL);
6432
6433 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6434
6435 line_ptr = lh->statement_program_start;
6436 line_end = lh->statement_program_end;
6437
6438 /* Read the statement sequences until there's nothing left. */
6439 while (line_ptr < line_end)
6440 {
6441 /* state machine registers */
6442 CORE_ADDR address = 0;
6443 unsigned int file = 1;
6444 unsigned int line = 1;
6445 unsigned int column = 0;
6446 int is_stmt = lh->default_is_stmt;
6447 int basic_block = 0;
6448 int end_sequence = 0;
6449
6450 if (!decode_for_pst_p && lh->num_file_names >= file)
6451 {
6452 /* Start a subfile for the current file of the state machine. */
6453 /* lh->include_dirs and lh->file_names are 0-based, but the
6454 directory and file name numbers in the statement program
6455 are 1-based. */
6456 struct file_entry *fe = &lh->file_names[file - 1];
6457 char *dir;
6458
6459 if (fe->dir_index)
6460 dir = lh->include_dirs[fe->dir_index - 1];
6461 else
6462 dir = comp_dir;
6463 dwarf2_start_subfile (fe->name, dir);
6464 }
6465
6466 /* Decode the table. */
6467 while (!end_sequence)
6468 {
6469 op_code = read_1_byte (abfd, line_ptr);
6470 line_ptr += 1;
6471
6472 if (op_code >= lh->opcode_base)
6473 {
6474 /* Special operand. */
6475 adj_opcode = op_code - lh->opcode_base;
6476 address += (adj_opcode / lh->line_range)
6477 * lh->minimum_instruction_length;
6478 line += lh->line_base + (adj_opcode % lh->line_range);
6479 lh->file_names[file - 1].included_p = 1;
6480 if (!decode_for_pst_p)
6481 {
6482 /* Append row to matrix using current values. */
6483 record_line (current_subfile, line,
6484 check_cu_functions (address, cu));
6485 }
6486 basic_block = 1;
6487 }
6488 else switch (op_code)
6489 {
6490 case DW_LNS_extended_op:
6491 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6492 line_ptr += bytes_read;
6493 extended_op = read_1_byte (abfd, line_ptr);
6494 line_ptr += 1;
6495 switch (extended_op)
6496 {
6497 case DW_LNE_end_sequence:
6498 end_sequence = 1;
6499 lh->file_names[file - 1].included_p = 1;
6500 if (!decode_for_pst_p)
6501 record_line (current_subfile, 0, address);
6502 break;
6503 case DW_LNE_set_address:
6504 address = read_address (abfd, line_ptr, cu, &bytes_read);
6505 line_ptr += bytes_read;
6506 address += baseaddr;
6507 break;
6508 case DW_LNE_define_file:
6509 {
6510 char *cur_file;
6511 unsigned int dir_index, mod_time, length;
6512
6513 cur_file = read_string (abfd, line_ptr, &bytes_read);
6514 line_ptr += bytes_read;
6515 dir_index =
6516 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6517 line_ptr += bytes_read;
6518 mod_time =
6519 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6520 line_ptr += bytes_read;
6521 length =
6522 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6523 line_ptr += bytes_read;
6524 add_file_name (lh, cur_file, dir_index, mod_time, length);
6525 }
6526 break;
6527 default:
6528 complaint (&symfile_complaints,
6529 _("mangled .debug_line section"));
6530 return;
6531 }
6532 break;
6533 case DW_LNS_copy:
6534 lh->file_names[file - 1].included_p = 1;
6535 if (!decode_for_pst_p)
6536 record_line (current_subfile, line,
6537 check_cu_functions (address, cu));
6538 basic_block = 0;
6539 break;
6540 case DW_LNS_advance_pc:
6541 address += lh->minimum_instruction_length
6542 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6543 line_ptr += bytes_read;
6544 break;
6545 case DW_LNS_advance_line:
6546 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6547 line_ptr += bytes_read;
6548 break;
6549 case DW_LNS_set_file:
6550 {
6551 /* The arrays lh->include_dirs and lh->file_names are
6552 0-based, but the directory and file name numbers in
6553 the statement program are 1-based. */
6554 struct file_entry *fe;
6555 char *dir;
6556
6557 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6558 line_ptr += bytes_read;
6559 fe = &lh->file_names[file - 1];
6560 if (fe->dir_index)
6561 dir = lh->include_dirs[fe->dir_index - 1];
6562 else
6563 dir = comp_dir;
6564 if (!decode_for_pst_p)
6565 dwarf2_start_subfile (fe->name, dir);
6566 }
6567 break;
6568 case DW_LNS_set_column:
6569 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6570 line_ptr += bytes_read;
6571 break;
6572 case DW_LNS_negate_stmt:
6573 is_stmt = (!is_stmt);
6574 break;
6575 case DW_LNS_set_basic_block:
6576 basic_block = 1;
6577 break;
6578 /* Add to the address register of the state machine the
6579 address increment value corresponding to special opcode
6580 255. I.e., this value is scaled by the minimum
6581 instruction length since special opcode 255 would have
6582 scaled the the increment. */
6583 case DW_LNS_const_add_pc:
6584 address += (lh->minimum_instruction_length
6585 * ((255 - lh->opcode_base) / lh->line_range));
6586 break;
6587 case DW_LNS_fixed_advance_pc:
6588 address += read_2_bytes (abfd, line_ptr);
6589 line_ptr += 2;
6590 break;
6591 default:
6592 {
6593 /* Unknown standard opcode, ignore it. */
6594 int i;
6595
6596 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
6597 {
6598 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6599 line_ptr += bytes_read;
6600 }
6601 }
6602 }
6603 }
6604 }
6605
6606 if (decode_for_pst_p)
6607 {
6608 int file_index;
6609
6610 /* Now that we're done scanning the Line Header Program, we can
6611 create the psymtab of each included file. */
6612 for (file_index = 0; file_index < lh->num_file_names; file_index++)
6613 if (lh->file_names[file_index].included_p == 1)
6614 {
6615 char *include_name = lh->file_names [file_index].name;
6616
6617 if (strcmp (include_name, pst->filename) != 0)
6618 dwarf2_create_include_psymtab (include_name, pst, objfile);
6619 }
6620 }
6621 }
6622
6623 /* Start a subfile for DWARF. FILENAME is the name of the file and
6624 DIRNAME the name of the source directory which contains FILENAME
6625 or NULL if not known.
6626 This routine tries to keep line numbers from identical absolute and
6627 relative file names in a common subfile.
6628
6629 Using the `list' example from the GDB testsuite, which resides in
6630 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
6631 of /srcdir/list0.c yields the following debugging information for list0.c:
6632
6633 DW_AT_name: /srcdir/list0.c
6634 DW_AT_comp_dir: /compdir
6635 files.files[0].name: list0.h
6636 files.files[0].dir: /srcdir
6637 files.files[1].name: list0.c
6638 files.files[1].dir: /srcdir
6639
6640 The line number information for list0.c has to end up in a single
6641 subfile, so that `break /srcdir/list0.c:1' works as expected. */
6642
6643 static void
6644 dwarf2_start_subfile (char *filename, char *dirname)
6645 {
6646 /* If the filename isn't absolute, try to match an existing subfile
6647 with the full pathname. */
6648
6649 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
6650 {
6651 struct subfile *subfile;
6652 char *fullname = concat (dirname, "/", filename, NULL);
6653
6654 for (subfile = subfiles; subfile; subfile = subfile->next)
6655 {
6656 if (FILENAME_CMP (subfile->name, fullname) == 0)
6657 {
6658 current_subfile = subfile;
6659 xfree (fullname);
6660 return;
6661 }
6662 }
6663 xfree (fullname);
6664 }
6665 start_subfile (filename, dirname);
6666 }
6667
6668 static void
6669 var_decode_location (struct attribute *attr, struct symbol *sym,
6670 struct dwarf2_cu *cu)
6671 {
6672 struct objfile *objfile = cu->objfile;
6673 struct comp_unit_head *cu_header = &cu->header;
6674
6675 /* NOTE drow/2003-01-30: There used to be a comment and some special
6676 code here to turn a symbol with DW_AT_external and a
6677 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
6678 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
6679 with some versions of binutils) where shared libraries could have
6680 relocations against symbols in their debug information - the
6681 minimal symbol would have the right address, but the debug info
6682 would not. It's no longer necessary, because we will explicitly
6683 apply relocations when we read in the debug information now. */
6684
6685 /* A DW_AT_location attribute with no contents indicates that a
6686 variable has been optimized away. */
6687 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
6688 {
6689 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
6690 return;
6691 }
6692
6693 /* Handle one degenerate form of location expression specially, to
6694 preserve GDB's previous behavior when section offsets are
6695 specified. If this is just a DW_OP_addr then mark this symbol
6696 as LOC_STATIC. */
6697
6698 if (attr_form_is_block (attr)
6699 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
6700 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
6701 {
6702 int dummy;
6703
6704 SYMBOL_VALUE_ADDRESS (sym) =
6705 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
6706 fixup_symbol_section (sym, objfile);
6707 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
6708 SYMBOL_SECTION (sym));
6709 SYMBOL_CLASS (sym) = LOC_STATIC;
6710 return;
6711 }
6712
6713 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
6714 expression evaluator, and use LOC_COMPUTED only when necessary
6715 (i.e. when the value of a register or memory location is
6716 referenced, or a thread-local block, etc.). Then again, it might
6717 not be worthwhile. I'm assuming that it isn't unless performance
6718 or memory numbers show me otherwise. */
6719
6720 dwarf2_symbol_mark_computed (attr, sym, cu);
6721 SYMBOL_CLASS (sym) = LOC_COMPUTED;
6722 }
6723
6724 /* Given a pointer to a DWARF information entry, figure out if we need
6725 to make a symbol table entry for it, and if so, create a new entry
6726 and return a pointer to it.
6727 If TYPE is NULL, determine symbol type from the die, otherwise
6728 used the passed type. */
6729
6730 static struct symbol *
6731 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
6732 {
6733 struct objfile *objfile = cu->objfile;
6734 struct symbol *sym = NULL;
6735 char *name;
6736 struct attribute *attr = NULL;
6737 struct attribute *attr2 = NULL;
6738 CORE_ADDR baseaddr;
6739
6740 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6741
6742 if (die->tag != DW_TAG_namespace)
6743 name = dwarf2_linkage_name (die, cu);
6744 else
6745 name = TYPE_NAME (type);
6746
6747 if (name)
6748 {
6749 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
6750 sizeof (struct symbol));
6751 OBJSTAT (objfile, n_syms++);
6752 memset (sym, 0, sizeof (struct symbol));
6753
6754 /* Cache this symbol's name and the name's demangled form (if any). */
6755 SYMBOL_LANGUAGE (sym) = cu->language;
6756 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
6757
6758 /* Default assumptions.
6759 Use the passed type or decode it from the die. */
6760 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6761 SYMBOL_CLASS (sym) = LOC_STATIC;
6762 if (type != NULL)
6763 SYMBOL_TYPE (sym) = type;
6764 else
6765 SYMBOL_TYPE (sym) = die_type (die, cu);
6766 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
6767 if (attr)
6768 {
6769 SYMBOL_LINE (sym) = DW_UNSND (attr);
6770 }
6771 switch (die->tag)
6772 {
6773 case DW_TAG_label:
6774 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6775 if (attr)
6776 {
6777 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
6778 }
6779 SYMBOL_CLASS (sym) = LOC_LABEL;
6780 break;
6781 case DW_TAG_subprogram:
6782 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
6783 finish_block. */
6784 SYMBOL_CLASS (sym) = LOC_BLOCK;
6785 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6786 if (attr2 && (DW_UNSND (attr2) != 0))
6787 {
6788 add_symbol_to_list (sym, &global_symbols);
6789 }
6790 else
6791 {
6792 add_symbol_to_list (sym, cu->list_in_scope);
6793 }
6794 break;
6795 case DW_TAG_variable:
6796 /* Compilation with minimal debug info may result in variables
6797 with missing type entries. Change the misleading `void' type
6798 to something sensible. */
6799 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
6800 SYMBOL_TYPE (sym) = init_type (TYPE_CODE_INT,
6801 TARGET_INT_BIT / HOST_CHAR_BIT, 0,
6802 "<variable, no debug info>",
6803 objfile);
6804 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6805 if (attr)
6806 {
6807 dwarf2_const_value (attr, sym, cu);
6808 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6809 if (attr2 && (DW_UNSND (attr2) != 0))
6810 add_symbol_to_list (sym, &global_symbols);
6811 else
6812 add_symbol_to_list (sym, cu->list_in_scope);
6813 break;
6814 }
6815 attr = dwarf2_attr (die, DW_AT_location, cu);
6816 if (attr)
6817 {
6818 var_decode_location (attr, sym, cu);
6819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6820 if (attr2 && (DW_UNSND (attr2) != 0))
6821 add_symbol_to_list (sym, &global_symbols);
6822 else
6823 add_symbol_to_list (sym, cu->list_in_scope);
6824 }
6825 else
6826 {
6827 /* We do not know the address of this symbol.
6828 If it is an external symbol and we have type information
6829 for it, enter the symbol as a LOC_UNRESOLVED symbol.
6830 The address of the variable will then be determined from
6831 the minimal symbol table whenever the variable is
6832 referenced. */
6833 attr2 = dwarf2_attr (die, DW_AT_external, cu);
6834 if (attr2 && (DW_UNSND (attr2) != 0)
6835 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
6836 {
6837 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
6838 add_symbol_to_list (sym, &global_symbols);
6839 }
6840 }
6841 break;
6842 case DW_TAG_formal_parameter:
6843 attr = dwarf2_attr (die, DW_AT_location, cu);
6844 if (attr)
6845 {
6846 var_decode_location (attr, sym, cu);
6847 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
6848 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
6849 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
6850 }
6851 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6852 if (attr)
6853 {
6854 dwarf2_const_value (attr, sym, cu);
6855 }
6856 add_symbol_to_list (sym, cu->list_in_scope);
6857 break;
6858 case DW_TAG_unspecified_parameters:
6859 /* From varargs functions; gdb doesn't seem to have any
6860 interest in this information, so just ignore it for now.
6861 (FIXME?) */
6862 break;
6863 case DW_TAG_class_type:
6864 case DW_TAG_structure_type:
6865 case DW_TAG_union_type:
6866 case DW_TAG_enumeration_type:
6867 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6868 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6869
6870 /* Make sure that the symbol includes appropriate enclosing
6871 classes/namespaces in its name. These are calculated in
6872 read_structure_type, and the correct name is saved in
6873 the type. */
6874
6875 if (cu->language == language_cplus
6876 || cu->language == language_java)
6877 {
6878 struct type *type = SYMBOL_TYPE (sym);
6879
6880 if (TYPE_TAG_NAME (type) != NULL)
6881 {
6882 /* FIXME: carlton/2003-11-10: Should this use
6883 SYMBOL_SET_NAMES instead? (The same problem also
6884 arises further down in this function.) */
6885 /* The type's name is already allocated along with
6886 this objfile, so we don't need to duplicate it
6887 for the symbol. */
6888 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
6889 }
6890 }
6891
6892 {
6893 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
6894 really ever be static objects: otherwise, if you try
6895 to, say, break of a class's method and you're in a file
6896 which doesn't mention that class, it won't work unless
6897 the check for all static symbols in lookup_symbol_aux
6898 saves you. See the OtherFileClass tests in
6899 gdb.c++/namespace.exp. */
6900
6901 struct pending **list_to_add;
6902
6903 list_to_add = (cu->list_in_scope == &file_symbols
6904 && (cu->language == language_cplus
6905 || cu->language == language_java)
6906 ? &global_symbols : cu->list_in_scope);
6907
6908 add_symbol_to_list (sym, list_to_add);
6909
6910 /* The semantics of C++ state that "struct foo { ... }" also
6911 defines a typedef for "foo". A Java class declaration also
6912 defines a typedef for the class. Synthesize a typedef symbol
6913 so that "ptype foo" works as expected. */
6914 if (cu->language == language_cplus
6915 || cu->language == language_java)
6916 {
6917 struct symbol *typedef_sym = (struct symbol *)
6918 obstack_alloc (&objfile->objfile_obstack,
6919 sizeof (struct symbol));
6920 *typedef_sym = *sym;
6921 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
6922 /* The symbol's name is already allocated along with
6923 this objfile, so we don't need to duplicate it for
6924 the type. */
6925 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
6926 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NATURAL_NAME (sym);
6927 add_symbol_to_list (typedef_sym, list_to_add);
6928 }
6929 }
6930 break;
6931 case DW_TAG_typedef:
6932 if (processing_has_namespace_info
6933 && processing_current_prefix[0] != '\0')
6934 {
6935 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6936 processing_current_prefix,
6937 name, cu);
6938 }
6939 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6940 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6941 add_symbol_to_list (sym, cu->list_in_scope);
6942 break;
6943 case DW_TAG_base_type:
6944 case DW_TAG_subrange_type:
6945 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6946 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
6947 add_symbol_to_list (sym, cu->list_in_scope);
6948 break;
6949 case DW_TAG_enumerator:
6950 if (processing_has_namespace_info
6951 && processing_current_prefix[0] != '\0')
6952 {
6953 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
6954 processing_current_prefix,
6955 name, cu);
6956 }
6957 attr = dwarf2_attr (die, DW_AT_const_value, cu);
6958 if (attr)
6959 {
6960 dwarf2_const_value (attr, sym, cu);
6961 }
6962 {
6963 /* NOTE: carlton/2003-11-10: See comment above in the
6964 DW_TAG_class_type, etc. block. */
6965
6966 struct pending **list_to_add;
6967
6968 list_to_add = (cu->list_in_scope == &file_symbols
6969 && (cu->language == language_cplus
6970 || cu->language == language_java)
6971 ? &global_symbols : cu->list_in_scope);
6972
6973 add_symbol_to_list (sym, list_to_add);
6974 }
6975 break;
6976 case DW_TAG_namespace:
6977 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6978 add_symbol_to_list (sym, &global_symbols);
6979 break;
6980 default:
6981 /* Not a tag we recognize. Hopefully we aren't processing
6982 trash data, but since we must specifically ignore things
6983 we don't recognize, there is nothing else we should do at
6984 this point. */
6985 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
6986 dwarf_tag_name (die->tag));
6987 break;
6988 }
6989 }
6990 return (sym);
6991 }
6992
6993 /* Copy constant value from an attribute to a symbol. */
6994
6995 static void
6996 dwarf2_const_value (struct attribute *attr, struct symbol *sym,
6997 struct dwarf2_cu *cu)
6998 {
6999 struct objfile *objfile = cu->objfile;
7000 struct comp_unit_head *cu_header = &cu->header;
7001 struct dwarf_block *blk;
7002
7003 switch (attr->form)
7004 {
7005 case DW_FORM_addr:
7006 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
7007 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7008 cu_header->addr_size,
7009 TYPE_LENGTH (SYMBOL_TYPE
7010 (sym)));
7011 SYMBOL_VALUE_BYTES (sym) = (char *)
7012 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
7013 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7014 it's body - store_unsigned_integer. */
7015 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7016 DW_ADDR (attr));
7017 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7018 break;
7019 case DW_FORM_block1:
7020 case DW_FORM_block2:
7021 case DW_FORM_block4:
7022 case DW_FORM_block:
7023 blk = DW_BLOCK (attr);
7024 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
7025 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
7026 blk->size,
7027 TYPE_LENGTH (SYMBOL_TYPE
7028 (sym)));
7029 SYMBOL_VALUE_BYTES (sym) = (char *)
7030 obstack_alloc (&objfile->objfile_obstack, blk->size);
7031 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7032 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7033 break;
7034
7035 /* The DW_AT_const_value attributes are supposed to carry the
7036 symbol's value "represented as it would be on the target
7037 architecture." By the time we get here, it's already been
7038 converted to host endianness, so we just need to sign- or
7039 zero-extend it as appropriate. */
7040 case DW_FORM_data1:
7041 dwarf2_const_value_data (attr, sym, 8);
7042 break;
7043 case DW_FORM_data2:
7044 dwarf2_const_value_data (attr, sym, 16);
7045 break;
7046 case DW_FORM_data4:
7047 dwarf2_const_value_data (attr, sym, 32);
7048 break;
7049 case DW_FORM_data8:
7050 dwarf2_const_value_data (attr, sym, 64);
7051 break;
7052
7053 case DW_FORM_sdata:
7054 SYMBOL_VALUE (sym) = DW_SND (attr);
7055 SYMBOL_CLASS (sym) = LOC_CONST;
7056 break;
7057
7058 case DW_FORM_udata:
7059 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7060 SYMBOL_CLASS (sym) = LOC_CONST;
7061 break;
7062
7063 default:
7064 complaint (&symfile_complaints,
7065 _("unsupported const value attribute form: '%s'"),
7066 dwarf_form_name (attr->form));
7067 SYMBOL_VALUE (sym) = 0;
7068 SYMBOL_CLASS (sym) = LOC_CONST;
7069 break;
7070 }
7071 }
7072
7073
7074 /* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7075 or zero-extend it as appropriate for the symbol's type. */
7076 static void
7077 dwarf2_const_value_data (struct attribute *attr,
7078 struct symbol *sym,
7079 int bits)
7080 {
7081 LONGEST l = DW_UNSND (attr);
7082
7083 if (bits < sizeof (l) * 8)
7084 {
7085 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7086 l &= ((LONGEST) 1 << bits) - 1;
7087 else
7088 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
7089 }
7090
7091 SYMBOL_VALUE (sym) = l;
7092 SYMBOL_CLASS (sym) = LOC_CONST;
7093 }
7094
7095
7096 /* Return the type of the die in question using its DW_AT_type attribute. */
7097
7098 static struct type *
7099 die_type (struct die_info *die, struct dwarf2_cu *cu)
7100 {
7101 struct type *type;
7102 struct attribute *type_attr;
7103 struct die_info *type_die;
7104
7105 type_attr = dwarf2_attr (die, DW_AT_type, cu);
7106 if (!type_attr)
7107 {
7108 /* A missing DW_AT_type represents a void type. */
7109 return dwarf2_fundamental_type (cu->objfile, FT_VOID, cu);
7110 }
7111 else
7112 type_die = follow_die_ref (die, type_attr, cu);
7113
7114 type = tag_type_to_type (type_die, cu);
7115 if (!type)
7116 {
7117 dump_die (type_die);
7118 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
7119 cu->objfile->name);
7120 }
7121 return type;
7122 }
7123
7124 /* Return the containing type of the die in question using its
7125 DW_AT_containing_type attribute. */
7126
7127 static struct type *
7128 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
7129 {
7130 struct type *type = NULL;
7131 struct attribute *type_attr;
7132 struct die_info *type_die = NULL;
7133
7134 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
7135 if (type_attr)
7136 {
7137 type_die = follow_die_ref (die, type_attr, cu);
7138 type = tag_type_to_type (type_die, cu);
7139 }
7140 if (!type)
7141 {
7142 if (type_die)
7143 dump_die (type_die);
7144 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
7145 cu->objfile->name);
7146 }
7147 return type;
7148 }
7149
7150 static struct type *
7151 tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
7152 {
7153 if (die->type)
7154 {
7155 return die->type;
7156 }
7157 else
7158 {
7159 read_type_die (die, cu);
7160 if (!die->type)
7161 {
7162 dump_die (die);
7163 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
7164 cu->objfile->name);
7165 }
7166 return die->type;
7167 }
7168 }
7169
7170 static void
7171 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
7172 {
7173 char *prefix = determine_prefix (die, cu);
7174 const char *old_prefix = processing_current_prefix;
7175 struct cleanup *back_to = make_cleanup (xfree, prefix);
7176 processing_current_prefix = prefix;
7177
7178 switch (die->tag)
7179 {
7180 case DW_TAG_class_type:
7181 case DW_TAG_structure_type:
7182 case DW_TAG_union_type:
7183 read_structure_type (die, cu);
7184 break;
7185 case DW_TAG_enumeration_type:
7186 read_enumeration_type (die, cu);
7187 break;
7188 case DW_TAG_subprogram:
7189 case DW_TAG_subroutine_type:
7190 read_subroutine_type (die, cu);
7191 break;
7192 case DW_TAG_array_type:
7193 read_array_type (die, cu);
7194 break;
7195 case DW_TAG_pointer_type:
7196 read_tag_pointer_type (die, cu);
7197 break;
7198 case DW_TAG_ptr_to_member_type:
7199 read_tag_ptr_to_member_type (die, cu);
7200 break;
7201 case DW_TAG_reference_type:
7202 read_tag_reference_type (die, cu);
7203 break;
7204 case DW_TAG_const_type:
7205 read_tag_const_type (die, cu);
7206 break;
7207 case DW_TAG_volatile_type:
7208 read_tag_volatile_type (die, cu);
7209 break;
7210 case DW_TAG_string_type:
7211 read_tag_string_type (die, cu);
7212 break;
7213 case DW_TAG_typedef:
7214 read_typedef (die, cu);
7215 break;
7216 case DW_TAG_subrange_type:
7217 read_subrange_type (die, cu);
7218 break;
7219 case DW_TAG_base_type:
7220 read_base_type (die, cu);
7221 break;
7222 default:
7223 complaint (&symfile_complaints, _("unexepected tag in read_type_die: '%s'"),
7224 dwarf_tag_name (die->tag));
7225 break;
7226 }
7227
7228 processing_current_prefix = old_prefix;
7229 do_cleanups (back_to);
7230 }
7231
7232 /* Return the name of the namespace/class that DIE is defined within,
7233 or "" if we can't tell. The caller should xfree the result. */
7234
7235 /* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7236 therein) for an example of how to use this function to deal with
7237 DW_AT_specification. */
7238
7239 static char *
7240 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
7241 {
7242 struct die_info *parent;
7243
7244 if (cu->language != language_cplus
7245 && cu->language != language_java)
7246 return NULL;
7247
7248 parent = die->parent;
7249
7250 if (parent == NULL)
7251 {
7252 return xstrdup ("");
7253 }
7254 else
7255 {
7256 switch (parent->tag) {
7257 case DW_TAG_namespace:
7258 {
7259 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7260 before doing this check? */
7261 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7262 {
7263 return xstrdup (TYPE_TAG_NAME (parent->type));
7264 }
7265 else
7266 {
7267 int dummy;
7268 char *parent_prefix = determine_prefix (parent, cu);
7269 char *retval = typename_concat (NULL, parent_prefix,
7270 namespace_name (parent, &dummy,
7271 cu),
7272 cu);
7273 xfree (parent_prefix);
7274 return retval;
7275 }
7276 }
7277 break;
7278 case DW_TAG_class_type:
7279 case DW_TAG_structure_type:
7280 {
7281 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7282 {
7283 return xstrdup (TYPE_TAG_NAME (parent->type));
7284 }
7285 else
7286 {
7287 const char *old_prefix = processing_current_prefix;
7288 char *new_prefix = determine_prefix (parent, cu);
7289 char *retval;
7290
7291 processing_current_prefix = new_prefix;
7292 retval = determine_class_name (parent, cu);
7293 processing_current_prefix = old_prefix;
7294
7295 xfree (new_prefix);
7296 return retval;
7297 }
7298 }
7299 default:
7300 return determine_prefix (parent, cu);
7301 }
7302 }
7303 }
7304
7305 /* Return a newly-allocated string formed by concatenating PREFIX and
7306 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7307 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7308 perform an obconcat, otherwise allocate storage for the result. The CU argument
7309 is used to determine the language and hence, the appropriate separator. */
7310
7311 #define MAX_SEP_LEN 2 /* sizeof ("::") */
7312
7313 static char *
7314 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7315 struct dwarf2_cu *cu)
7316 {
7317 char *sep;
7318
7319 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7320 sep = "";
7321 else if (cu->language == language_java)
7322 sep = ".";
7323 else
7324 sep = "::";
7325
7326 if (obs == NULL)
7327 {
7328 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7329 retval[0] = '\0';
7330
7331 if (prefix)
7332 {
7333 strcpy (retval, prefix);
7334 strcat (retval, sep);
7335 }
7336 if (suffix)
7337 strcat (retval, suffix);
7338
7339 return retval;
7340 }
7341 else
7342 {
7343 /* We have an obstack. */
7344 return obconcat (obs, prefix, sep, suffix);
7345 }
7346 }
7347
7348 static struct type *
7349 dwarf_base_type (int encoding, int size, struct dwarf2_cu *cu)
7350 {
7351 struct objfile *objfile = cu->objfile;
7352
7353 /* FIXME - this should not produce a new (struct type *)
7354 every time. It should cache base types. */
7355 struct type *type;
7356 switch (encoding)
7357 {
7358 case DW_ATE_address:
7359 type = dwarf2_fundamental_type (objfile, FT_VOID, cu);
7360 return type;
7361 case DW_ATE_boolean:
7362 type = dwarf2_fundamental_type (objfile, FT_BOOLEAN, cu);
7363 return type;
7364 case DW_ATE_complex_float:
7365 if (size == 16)
7366 {
7367 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_COMPLEX, cu);
7368 }
7369 else
7370 {
7371 type = dwarf2_fundamental_type (objfile, FT_COMPLEX, cu);
7372 }
7373 return type;
7374 case DW_ATE_float:
7375 if (size == 8)
7376 {
7377 type = dwarf2_fundamental_type (objfile, FT_DBL_PREC_FLOAT, cu);
7378 }
7379 else
7380 {
7381 type = dwarf2_fundamental_type (objfile, FT_FLOAT, cu);
7382 }
7383 return type;
7384 case DW_ATE_signed:
7385 switch (size)
7386 {
7387 case 1:
7388 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7389 break;
7390 case 2:
7391 type = dwarf2_fundamental_type (objfile, FT_SIGNED_SHORT, cu);
7392 break;
7393 default:
7394 case 4:
7395 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7396 break;
7397 }
7398 return type;
7399 case DW_ATE_signed_char:
7400 type = dwarf2_fundamental_type (objfile, FT_SIGNED_CHAR, cu);
7401 return type;
7402 case DW_ATE_unsigned:
7403 switch (size)
7404 {
7405 case 1:
7406 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7407 break;
7408 case 2:
7409 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_SHORT, cu);
7410 break;
7411 default:
7412 case 4:
7413 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_INTEGER, cu);
7414 break;
7415 }
7416 return type;
7417 case DW_ATE_unsigned_char:
7418 type = dwarf2_fundamental_type (objfile, FT_UNSIGNED_CHAR, cu);
7419 return type;
7420 default:
7421 type = dwarf2_fundamental_type (objfile, FT_SIGNED_INTEGER, cu);
7422 return type;
7423 }
7424 }
7425
7426 #if 0
7427 struct die_info *
7428 copy_die (struct die_info *old_die)
7429 {
7430 struct die_info *new_die;
7431 int i, num_attrs;
7432
7433 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7434 memset (new_die, 0, sizeof (struct die_info));
7435
7436 new_die->tag = old_die->tag;
7437 new_die->has_children = old_die->has_children;
7438 new_die->abbrev = old_die->abbrev;
7439 new_die->offset = old_die->offset;
7440 new_die->type = NULL;
7441
7442 num_attrs = old_die->num_attrs;
7443 new_die->num_attrs = num_attrs;
7444 new_die->attrs = (struct attribute *)
7445 xmalloc (num_attrs * sizeof (struct attribute));
7446
7447 for (i = 0; i < old_die->num_attrs; ++i)
7448 {
7449 new_die->attrs[i].name = old_die->attrs[i].name;
7450 new_die->attrs[i].form = old_die->attrs[i].form;
7451 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7452 }
7453
7454 new_die->next = NULL;
7455 return new_die;
7456 }
7457 #endif
7458
7459 /* Return sibling of die, NULL if no sibling. */
7460
7461 static struct die_info *
7462 sibling_die (struct die_info *die)
7463 {
7464 return die->sibling;
7465 }
7466
7467 /* Get linkage name of a die, return NULL if not found. */
7468
7469 static char *
7470 dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
7471 {
7472 struct attribute *attr;
7473
7474 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7475 if (attr && DW_STRING (attr))
7476 return DW_STRING (attr);
7477 attr = dwarf2_attr (die, DW_AT_name, cu);
7478 if (attr && DW_STRING (attr))
7479 return DW_STRING (attr);
7480 return NULL;
7481 }
7482
7483 /* Get name of a die, return NULL if not found. */
7484
7485 static char *
7486 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
7487 {
7488 struct attribute *attr;
7489
7490 attr = dwarf2_attr (die, DW_AT_name, cu);
7491 if (attr && DW_STRING (attr))
7492 return DW_STRING (attr);
7493 return NULL;
7494 }
7495
7496 /* Return the die that this die in an extension of, or NULL if there
7497 is none. */
7498
7499 static struct die_info *
7500 dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
7501 {
7502 struct attribute *attr;
7503
7504 attr = dwarf2_attr (die, DW_AT_extension, cu);
7505 if (attr == NULL)
7506 return NULL;
7507
7508 return follow_die_ref (die, attr, cu);
7509 }
7510
7511 /* Convert a DIE tag into its string name. */
7512
7513 static char *
7514 dwarf_tag_name (unsigned tag)
7515 {
7516 switch (tag)
7517 {
7518 case DW_TAG_padding:
7519 return "DW_TAG_padding";
7520 case DW_TAG_array_type:
7521 return "DW_TAG_array_type";
7522 case DW_TAG_class_type:
7523 return "DW_TAG_class_type";
7524 case DW_TAG_entry_point:
7525 return "DW_TAG_entry_point";
7526 case DW_TAG_enumeration_type:
7527 return "DW_TAG_enumeration_type";
7528 case DW_TAG_formal_parameter:
7529 return "DW_TAG_formal_parameter";
7530 case DW_TAG_imported_declaration:
7531 return "DW_TAG_imported_declaration";
7532 case DW_TAG_label:
7533 return "DW_TAG_label";
7534 case DW_TAG_lexical_block:
7535 return "DW_TAG_lexical_block";
7536 case DW_TAG_member:
7537 return "DW_TAG_member";
7538 case DW_TAG_pointer_type:
7539 return "DW_TAG_pointer_type";
7540 case DW_TAG_reference_type:
7541 return "DW_TAG_reference_type";
7542 case DW_TAG_compile_unit:
7543 return "DW_TAG_compile_unit";
7544 case DW_TAG_string_type:
7545 return "DW_TAG_string_type";
7546 case DW_TAG_structure_type:
7547 return "DW_TAG_structure_type";
7548 case DW_TAG_subroutine_type:
7549 return "DW_TAG_subroutine_type";
7550 case DW_TAG_typedef:
7551 return "DW_TAG_typedef";
7552 case DW_TAG_union_type:
7553 return "DW_TAG_union_type";
7554 case DW_TAG_unspecified_parameters:
7555 return "DW_TAG_unspecified_parameters";
7556 case DW_TAG_variant:
7557 return "DW_TAG_variant";
7558 case DW_TAG_common_block:
7559 return "DW_TAG_common_block";
7560 case DW_TAG_common_inclusion:
7561 return "DW_TAG_common_inclusion";
7562 case DW_TAG_inheritance:
7563 return "DW_TAG_inheritance";
7564 case DW_TAG_inlined_subroutine:
7565 return "DW_TAG_inlined_subroutine";
7566 case DW_TAG_module:
7567 return "DW_TAG_module";
7568 case DW_TAG_ptr_to_member_type:
7569 return "DW_TAG_ptr_to_member_type";
7570 case DW_TAG_set_type:
7571 return "DW_TAG_set_type";
7572 case DW_TAG_subrange_type:
7573 return "DW_TAG_subrange_type";
7574 case DW_TAG_with_stmt:
7575 return "DW_TAG_with_stmt";
7576 case DW_TAG_access_declaration:
7577 return "DW_TAG_access_declaration";
7578 case DW_TAG_base_type:
7579 return "DW_TAG_base_type";
7580 case DW_TAG_catch_block:
7581 return "DW_TAG_catch_block";
7582 case DW_TAG_const_type:
7583 return "DW_TAG_const_type";
7584 case DW_TAG_constant:
7585 return "DW_TAG_constant";
7586 case DW_TAG_enumerator:
7587 return "DW_TAG_enumerator";
7588 case DW_TAG_file_type:
7589 return "DW_TAG_file_type";
7590 case DW_TAG_friend:
7591 return "DW_TAG_friend";
7592 case DW_TAG_namelist:
7593 return "DW_TAG_namelist";
7594 case DW_TAG_namelist_item:
7595 return "DW_TAG_namelist_item";
7596 case DW_TAG_packed_type:
7597 return "DW_TAG_packed_type";
7598 case DW_TAG_subprogram:
7599 return "DW_TAG_subprogram";
7600 case DW_TAG_template_type_param:
7601 return "DW_TAG_template_type_param";
7602 case DW_TAG_template_value_param:
7603 return "DW_TAG_template_value_param";
7604 case DW_TAG_thrown_type:
7605 return "DW_TAG_thrown_type";
7606 case DW_TAG_try_block:
7607 return "DW_TAG_try_block";
7608 case DW_TAG_variant_part:
7609 return "DW_TAG_variant_part";
7610 case DW_TAG_variable:
7611 return "DW_TAG_variable";
7612 case DW_TAG_volatile_type:
7613 return "DW_TAG_volatile_type";
7614 case DW_TAG_dwarf_procedure:
7615 return "DW_TAG_dwarf_procedure";
7616 case DW_TAG_restrict_type:
7617 return "DW_TAG_restrict_type";
7618 case DW_TAG_interface_type:
7619 return "DW_TAG_interface_type";
7620 case DW_TAG_namespace:
7621 return "DW_TAG_namespace";
7622 case DW_TAG_imported_module:
7623 return "DW_TAG_imported_module";
7624 case DW_TAG_unspecified_type:
7625 return "DW_TAG_unspecified_type";
7626 case DW_TAG_partial_unit:
7627 return "DW_TAG_partial_unit";
7628 case DW_TAG_imported_unit:
7629 return "DW_TAG_imported_unit";
7630 case DW_TAG_MIPS_loop:
7631 return "DW_TAG_MIPS_loop";
7632 case DW_TAG_format_label:
7633 return "DW_TAG_format_label";
7634 case DW_TAG_function_template:
7635 return "DW_TAG_function_template";
7636 case DW_TAG_class_template:
7637 return "DW_TAG_class_template";
7638 default:
7639 return "DW_TAG_<unknown>";
7640 }
7641 }
7642
7643 /* Convert a DWARF attribute code into its string name. */
7644
7645 static char *
7646 dwarf_attr_name (unsigned attr)
7647 {
7648 switch (attr)
7649 {
7650 case DW_AT_sibling:
7651 return "DW_AT_sibling";
7652 case DW_AT_location:
7653 return "DW_AT_location";
7654 case DW_AT_name:
7655 return "DW_AT_name";
7656 case DW_AT_ordering:
7657 return "DW_AT_ordering";
7658 case DW_AT_subscr_data:
7659 return "DW_AT_subscr_data";
7660 case DW_AT_byte_size:
7661 return "DW_AT_byte_size";
7662 case DW_AT_bit_offset:
7663 return "DW_AT_bit_offset";
7664 case DW_AT_bit_size:
7665 return "DW_AT_bit_size";
7666 case DW_AT_element_list:
7667 return "DW_AT_element_list";
7668 case DW_AT_stmt_list:
7669 return "DW_AT_stmt_list";
7670 case DW_AT_low_pc:
7671 return "DW_AT_low_pc";
7672 case DW_AT_high_pc:
7673 return "DW_AT_high_pc";
7674 case DW_AT_language:
7675 return "DW_AT_language";
7676 case DW_AT_member:
7677 return "DW_AT_member";
7678 case DW_AT_discr:
7679 return "DW_AT_discr";
7680 case DW_AT_discr_value:
7681 return "DW_AT_discr_value";
7682 case DW_AT_visibility:
7683 return "DW_AT_visibility";
7684 case DW_AT_import:
7685 return "DW_AT_import";
7686 case DW_AT_string_length:
7687 return "DW_AT_string_length";
7688 case DW_AT_common_reference:
7689 return "DW_AT_common_reference";
7690 case DW_AT_comp_dir:
7691 return "DW_AT_comp_dir";
7692 case DW_AT_const_value:
7693 return "DW_AT_const_value";
7694 case DW_AT_containing_type:
7695 return "DW_AT_containing_type";
7696 case DW_AT_default_value:
7697 return "DW_AT_default_value";
7698 case DW_AT_inline:
7699 return "DW_AT_inline";
7700 case DW_AT_is_optional:
7701 return "DW_AT_is_optional";
7702 case DW_AT_lower_bound:
7703 return "DW_AT_lower_bound";
7704 case DW_AT_producer:
7705 return "DW_AT_producer";
7706 case DW_AT_prototyped:
7707 return "DW_AT_prototyped";
7708 case DW_AT_return_addr:
7709 return "DW_AT_return_addr";
7710 case DW_AT_start_scope:
7711 return "DW_AT_start_scope";
7712 case DW_AT_stride_size:
7713 return "DW_AT_stride_size";
7714 case DW_AT_upper_bound:
7715 return "DW_AT_upper_bound";
7716 case DW_AT_abstract_origin:
7717 return "DW_AT_abstract_origin";
7718 case DW_AT_accessibility:
7719 return "DW_AT_accessibility";
7720 case DW_AT_address_class:
7721 return "DW_AT_address_class";
7722 case DW_AT_artificial:
7723 return "DW_AT_artificial";
7724 case DW_AT_base_types:
7725 return "DW_AT_base_types";
7726 case DW_AT_calling_convention:
7727 return "DW_AT_calling_convention";
7728 case DW_AT_count:
7729 return "DW_AT_count";
7730 case DW_AT_data_member_location:
7731 return "DW_AT_data_member_location";
7732 case DW_AT_decl_column:
7733 return "DW_AT_decl_column";
7734 case DW_AT_decl_file:
7735 return "DW_AT_decl_file";
7736 case DW_AT_decl_line:
7737 return "DW_AT_decl_line";
7738 case DW_AT_declaration:
7739 return "DW_AT_declaration";
7740 case DW_AT_discr_list:
7741 return "DW_AT_discr_list";
7742 case DW_AT_encoding:
7743 return "DW_AT_encoding";
7744 case DW_AT_external:
7745 return "DW_AT_external";
7746 case DW_AT_frame_base:
7747 return "DW_AT_frame_base";
7748 case DW_AT_friend:
7749 return "DW_AT_friend";
7750 case DW_AT_identifier_case:
7751 return "DW_AT_identifier_case";
7752 case DW_AT_macro_info:
7753 return "DW_AT_macro_info";
7754 case DW_AT_namelist_items:
7755 return "DW_AT_namelist_items";
7756 case DW_AT_priority:
7757 return "DW_AT_priority";
7758 case DW_AT_segment:
7759 return "DW_AT_segment";
7760 case DW_AT_specification:
7761 return "DW_AT_specification";
7762 case DW_AT_static_link:
7763 return "DW_AT_static_link";
7764 case DW_AT_type:
7765 return "DW_AT_type";
7766 case DW_AT_use_location:
7767 return "DW_AT_use_location";
7768 case DW_AT_variable_parameter:
7769 return "DW_AT_variable_parameter";
7770 case DW_AT_virtuality:
7771 return "DW_AT_virtuality";
7772 case DW_AT_vtable_elem_location:
7773 return "DW_AT_vtable_elem_location";
7774 case DW_AT_allocated:
7775 return "DW_AT_allocated";
7776 case DW_AT_associated:
7777 return "DW_AT_associated";
7778 case DW_AT_data_location:
7779 return "DW_AT_data_location";
7780 case DW_AT_stride:
7781 return "DW_AT_stride";
7782 case DW_AT_entry_pc:
7783 return "DW_AT_entry_pc";
7784 case DW_AT_use_UTF8:
7785 return "DW_AT_use_UTF8";
7786 case DW_AT_extension:
7787 return "DW_AT_extension";
7788 case DW_AT_ranges:
7789 return "DW_AT_ranges";
7790 case DW_AT_trampoline:
7791 return "DW_AT_trampoline";
7792 case DW_AT_call_column:
7793 return "DW_AT_call_column";
7794 case DW_AT_call_file:
7795 return "DW_AT_call_file";
7796 case DW_AT_call_line:
7797 return "DW_AT_call_line";
7798 #ifdef MIPS
7799 case DW_AT_MIPS_fde:
7800 return "DW_AT_MIPS_fde";
7801 case DW_AT_MIPS_loop_begin:
7802 return "DW_AT_MIPS_loop_begin";
7803 case DW_AT_MIPS_tail_loop_begin:
7804 return "DW_AT_MIPS_tail_loop_begin";
7805 case DW_AT_MIPS_epilog_begin:
7806 return "DW_AT_MIPS_epilog_begin";
7807 case DW_AT_MIPS_loop_unroll_factor:
7808 return "DW_AT_MIPS_loop_unroll_factor";
7809 case DW_AT_MIPS_software_pipeline_depth:
7810 return "DW_AT_MIPS_software_pipeline_depth";
7811 #endif
7812 case DW_AT_MIPS_linkage_name:
7813 return "DW_AT_MIPS_linkage_name";
7814
7815 case DW_AT_sf_names:
7816 return "DW_AT_sf_names";
7817 case DW_AT_src_info:
7818 return "DW_AT_src_info";
7819 case DW_AT_mac_info:
7820 return "DW_AT_mac_info";
7821 case DW_AT_src_coords:
7822 return "DW_AT_src_coords";
7823 case DW_AT_body_begin:
7824 return "DW_AT_body_begin";
7825 case DW_AT_body_end:
7826 return "DW_AT_body_end";
7827 case DW_AT_GNU_vector:
7828 return "DW_AT_GNU_vector";
7829 default:
7830 return "DW_AT_<unknown>";
7831 }
7832 }
7833
7834 /* Convert a DWARF value form code into its string name. */
7835
7836 static char *
7837 dwarf_form_name (unsigned form)
7838 {
7839 switch (form)
7840 {
7841 case DW_FORM_addr:
7842 return "DW_FORM_addr";
7843 case DW_FORM_block2:
7844 return "DW_FORM_block2";
7845 case DW_FORM_block4:
7846 return "DW_FORM_block4";
7847 case DW_FORM_data2:
7848 return "DW_FORM_data2";
7849 case DW_FORM_data4:
7850 return "DW_FORM_data4";
7851 case DW_FORM_data8:
7852 return "DW_FORM_data8";
7853 case DW_FORM_string:
7854 return "DW_FORM_string";
7855 case DW_FORM_block:
7856 return "DW_FORM_block";
7857 case DW_FORM_block1:
7858 return "DW_FORM_block1";
7859 case DW_FORM_data1:
7860 return "DW_FORM_data1";
7861 case DW_FORM_flag:
7862 return "DW_FORM_flag";
7863 case DW_FORM_sdata:
7864 return "DW_FORM_sdata";
7865 case DW_FORM_strp:
7866 return "DW_FORM_strp";
7867 case DW_FORM_udata:
7868 return "DW_FORM_udata";
7869 case DW_FORM_ref_addr:
7870 return "DW_FORM_ref_addr";
7871 case DW_FORM_ref1:
7872 return "DW_FORM_ref1";
7873 case DW_FORM_ref2:
7874 return "DW_FORM_ref2";
7875 case DW_FORM_ref4:
7876 return "DW_FORM_ref4";
7877 case DW_FORM_ref8:
7878 return "DW_FORM_ref8";
7879 case DW_FORM_ref_udata:
7880 return "DW_FORM_ref_udata";
7881 case DW_FORM_indirect:
7882 return "DW_FORM_indirect";
7883 default:
7884 return "DW_FORM_<unknown>";
7885 }
7886 }
7887
7888 /* Convert a DWARF stack opcode into its string name. */
7889
7890 static char *
7891 dwarf_stack_op_name (unsigned op)
7892 {
7893 switch (op)
7894 {
7895 case DW_OP_addr:
7896 return "DW_OP_addr";
7897 case DW_OP_deref:
7898 return "DW_OP_deref";
7899 case DW_OP_const1u:
7900 return "DW_OP_const1u";
7901 case DW_OP_const1s:
7902 return "DW_OP_const1s";
7903 case DW_OP_const2u:
7904 return "DW_OP_const2u";
7905 case DW_OP_const2s:
7906 return "DW_OP_const2s";
7907 case DW_OP_const4u:
7908 return "DW_OP_const4u";
7909 case DW_OP_const4s:
7910 return "DW_OP_const4s";
7911 case DW_OP_const8u:
7912 return "DW_OP_const8u";
7913 case DW_OP_const8s:
7914 return "DW_OP_const8s";
7915 case DW_OP_constu:
7916 return "DW_OP_constu";
7917 case DW_OP_consts:
7918 return "DW_OP_consts";
7919 case DW_OP_dup:
7920 return "DW_OP_dup";
7921 case DW_OP_drop:
7922 return "DW_OP_drop";
7923 case DW_OP_over:
7924 return "DW_OP_over";
7925 case DW_OP_pick:
7926 return "DW_OP_pick";
7927 case DW_OP_swap:
7928 return "DW_OP_swap";
7929 case DW_OP_rot:
7930 return "DW_OP_rot";
7931 case DW_OP_xderef:
7932 return "DW_OP_xderef";
7933 case DW_OP_abs:
7934 return "DW_OP_abs";
7935 case DW_OP_and:
7936 return "DW_OP_and";
7937 case DW_OP_div:
7938 return "DW_OP_div";
7939 case DW_OP_minus:
7940 return "DW_OP_minus";
7941 case DW_OP_mod:
7942 return "DW_OP_mod";
7943 case DW_OP_mul:
7944 return "DW_OP_mul";
7945 case DW_OP_neg:
7946 return "DW_OP_neg";
7947 case DW_OP_not:
7948 return "DW_OP_not";
7949 case DW_OP_or:
7950 return "DW_OP_or";
7951 case DW_OP_plus:
7952 return "DW_OP_plus";
7953 case DW_OP_plus_uconst:
7954 return "DW_OP_plus_uconst";
7955 case DW_OP_shl:
7956 return "DW_OP_shl";
7957 case DW_OP_shr:
7958 return "DW_OP_shr";
7959 case DW_OP_shra:
7960 return "DW_OP_shra";
7961 case DW_OP_xor:
7962 return "DW_OP_xor";
7963 case DW_OP_bra:
7964 return "DW_OP_bra";
7965 case DW_OP_eq:
7966 return "DW_OP_eq";
7967 case DW_OP_ge:
7968 return "DW_OP_ge";
7969 case DW_OP_gt:
7970 return "DW_OP_gt";
7971 case DW_OP_le:
7972 return "DW_OP_le";
7973 case DW_OP_lt:
7974 return "DW_OP_lt";
7975 case DW_OP_ne:
7976 return "DW_OP_ne";
7977 case DW_OP_skip:
7978 return "DW_OP_skip";
7979 case DW_OP_lit0:
7980 return "DW_OP_lit0";
7981 case DW_OP_lit1:
7982 return "DW_OP_lit1";
7983 case DW_OP_lit2:
7984 return "DW_OP_lit2";
7985 case DW_OP_lit3:
7986 return "DW_OP_lit3";
7987 case DW_OP_lit4:
7988 return "DW_OP_lit4";
7989 case DW_OP_lit5:
7990 return "DW_OP_lit5";
7991 case DW_OP_lit6:
7992 return "DW_OP_lit6";
7993 case DW_OP_lit7:
7994 return "DW_OP_lit7";
7995 case DW_OP_lit8:
7996 return "DW_OP_lit8";
7997 case DW_OP_lit9:
7998 return "DW_OP_lit9";
7999 case DW_OP_lit10:
8000 return "DW_OP_lit10";
8001 case DW_OP_lit11:
8002 return "DW_OP_lit11";
8003 case DW_OP_lit12:
8004 return "DW_OP_lit12";
8005 case DW_OP_lit13:
8006 return "DW_OP_lit13";
8007 case DW_OP_lit14:
8008 return "DW_OP_lit14";
8009 case DW_OP_lit15:
8010 return "DW_OP_lit15";
8011 case DW_OP_lit16:
8012 return "DW_OP_lit16";
8013 case DW_OP_lit17:
8014 return "DW_OP_lit17";
8015 case DW_OP_lit18:
8016 return "DW_OP_lit18";
8017 case DW_OP_lit19:
8018 return "DW_OP_lit19";
8019 case DW_OP_lit20:
8020 return "DW_OP_lit20";
8021 case DW_OP_lit21:
8022 return "DW_OP_lit21";
8023 case DW_OP_lit22:
8024 return "DW_OP_lit22";
8025 case DW_OP_lit23:
8026 return "DW_OP_lit23";
8027 case DW_OP_lit24:
8028 return "DW_OP_lit24";
8029 case DW_OP_lit25:
8030 return "DW_OP_lit25";
8031 case DW_OP_lit26:
8032 return "DW_OP_lit26";
8033 case DW_OP_lit27:
8034 return "DW_OP_lit27";
8035 case DW_OP_lit28:
8036 return "DW_OP_lit28";
8037 case DW_OP_lit29:
8038 return "DW_OP_lit29";
8039 case DW_OP_lit30:
8040 return "DW_OP_lit30";
8041 case DW_OP_lit31:
8042 return "DW_OP_lit31";
8043 case DW_OP_reg0:
8044 return "DW_OP_reg0";
8045 case DW_OP_reg1:
8046 return "DW_OP_reg1";
8047 case DW_OP_reg2:
8048 return "DW_OP_reg2";
8049 case DW_OP_reg3:
8050 return "DW_OP_reg3";
8051 case DW_OP_reg4:
8052 return "DW_OP_reg4";
8053 case DW_OP_reg5:
8054 return "DW_OP_reg5";
8055 case DW_OP_reg6:
8056 return "DW_OP_reg6";
8057 case DW_OP_reg7:
8058 return "DW_OP_reg7";
8059 case DW_OP_reg8:
8060 return "DW_OP_reg8";
8061 case DW_OP_reg9:
8062 return "DW_OP_reg9";
8063 case DW_OP_reg10:
8064 return "DW_OP_reg10";
8065 case DW_OP_reg11:
8066 return "DW_OP_reg11";
8067 case DW_OP_reg12:
8068 return "DW_OP_reg12";
8069 case DW_OP_reg13:
8070 return "DW_OP_reg13";
8071 case DW_OP_reg14:
8072 return "DW_OP_reg14";
8073 case DW_OP_reg15:
8074 return "DW_OP_reg15";
8075 case DW_OP_reg16:
8076 return "DW_OP_reg16";
8077 case DW_OP_reg17:
8078 return "DW_OP_reg17";
8079 case DW_OP_reg18:
8080 return "DW_OP_reg18";
8081 case DW_OP_reg19:
8082 return "DW_OP_reg19";
8083 case DW_OP_reg20:
8084 return "DW_OP_reg20";
8085 case DW_OP_reg21:
8086 return "DW_OP_reg21";
8087 case DW_OP_reg22:
8088 return "DW_OP_reg22";
8089 case DW_OP_reg23:
8090 return "DW_OP_reg23";
8091 case DW_OP_reg24:
8092 return "DW_OP_reg24";
8093 case DW_OP_reg25:
8094 return "DW_OP_reg25";
8095 case DW_OP_reg26:
8096 return "DW_OP_reg26";
8097 case DW_OP_reg27:
8098 return "DW_OP_reg27";
8099 case DW_OP_reg28:
8100 return "DW_OP_reg28";
8101 case DW_OP_reg29:
8102 return "DW_OP_reg29";
8103 case DW_OP_reg30:
8104 return "DW_OP_reg30";
8105 case DW_OP_reg31:
8106 return "DW_OP_reg31";
8107 case DW_OP_breg0:
8108 return "DW_OP_breg0";
8109 case DW_OP_breg1:
8110 return "DW_OP_breg1";
8111 case DW_OP_breg2:
8112 return "DW_OP_breg2";
8113 case DW_OP_breg3:
8114 return "DW_OP_breg3";
8115 case DW_OP_breg4:
8116 return "DW_OP_breg4";
8117 case DW_OP_breg5:
8118 return "DW_OP_breg5";
8119 case DW_OP_breg6:
8120 return "DW_OP_breg6";
8121 case DW_OP_breg7:
8122 return "DW_OP_breg7";
8123 case DW_OP_breg8:
8124 return "DW_OP_breg8";
8125 case DW_OP_breg9:
8126 return "DW_OP_breg9";
8127 case DW_OP_breg10:
8128 return "DW_OP_breg10";
8129 case DW_OP_breg11:
8130 return "DW_OP_breg11";
8131 case DW_OP_breg12:
8132 return "DW_OP_breg12";
8133 case DW_OP_breg13:
8134 return "DW_OP_breg13";
8135 case DW_OP_breg14:
8136 return "DW_OP_breg14";
8137 case DW_OP_breg15:
8138 return "DW_OP_breg15";
8139 case DW_OP_breg16:
8140 return "DW_OP_breg16";
8141 case DW_OP_breg17:
8142 return "DW_OP_breg17";
8143 case DW_OP_breg18:
8144 return "DW_OP_breg18";
8145 case DW_OP_breg19:
8146 return "DW_OP_breg19";
8147 case DW_OP_breg20:
8148 return "DW_OP_breg20";
8149 case DW_OP_breg21:
8150 return "DW_OP_breg21";
8151 case DW_OP_breg22:
8152 return "DW_OP_breg22";
8153 case DW_OP_breg23:
8154 return "DW_OP_breg23";
8155 case DW_OP_breg24:
8156 return "DW_OP_breg24";
8157 case DW_OP_breg25:
8158 return "DW_OP_breg25";
8159 case DW_OP_breg26:
8160 return "DW_OP_breg26";
8161 case DW_OP_breg27:
8162 return "DW_OP_breg27";
8163 case DW_OP_breg28:
8164 return "DW_OP_breg28";
8165 case DW_OP_breg29:
8166 return "DW_OP_breg29";
8167 case DW_OP_breg30:
8168 return "DW_OP_breg30";
8169 case DW_OP_breg31:
8170 return "DW_OP_breg31";
8171 case DW_OP_regx:
8172 return "DW_OP_regx";
8173 case DW_OP_fbreg:
8174 return "DW_OP_fbreg";
8175 case DW_OP_bregx:
8176 return "DW_OP_bregx";
8177 case DW_OP_piece:
8178 return "DW_OP_piece";
8179 case DW_OP_deref_size:
8180 return "DW_OP_deref_size";
8181 case DW_OP_xderef_size:
8182 return "DW_OP_xderef_size";
8183 case DW_OP_nop:
8184 return "DW_OP_nop";
8185 /* DWARF 3 extensions. */
8186 case DW_OP_push_object_address:
8187 return "DW_OP_push_object_address";
8188 case DW_OP_call2:
8189 return "DW_OP_call2";
8190 case DW_OP_call4:
8191 return "DW_OP_call4";
8192 case DW_OP_call_ref:
8193 return "DW_OP_call_ref";
8194 /* GNU extensions. */
8195 case DW_OP_GNU_push_tls_address:
8196 return "DW_OP_GNU_push_tls_address";
8197 default:
8198 return "OP_<unknown>";
8199 }
8200 }
8201
8202 static char *
8203 dwarf_bool_name (unsigned mybool)
8204 {
8205 if (mybool)
8206 return "TRUE";
8207 else
8208 return "FALSE";
8209 }
8210
8211 /* Convert a DWARF type code into its string name. */
8212
8213 static char *
8214 dwarf_type_encoding_name (unsigned enc)
8215 {
8216 switch (enc)
8217 {
8218 case DW_ATE_address:
8219 return "DW_ATE_address";
8220 case DW_ATE_boolean:
8221 return "DW_ATE_boolean";
8222 case DW_ATE_complex_float:
8223 return "DW_ATE_complex_float";
8224 case DW_ATE_float:
8225 return "DW_ATE_float";
8226 case DW_ATE_signed:
8227 return "DW_ATE_signed";
8228 case DW_ATE_signed_char:
8229 return "DW_ATE_signed_char";
8230 case DW_ATE_unsigned:
8231 return "DW_ATE_unsigned";
8232 case DW_ATE_unsigned_char:
8233 return "DW_ATE_unsigned_char";
8234 case DW_ATE_imaginary_float:
8235 return "DW_ATE_imaginary_float";
8236 default:
8237 return "DW_ATE_<unknown>";
8238 }
8239 }
8240
8241 /* Convert a DWARF call frame info operation to its string name. */
8242
8243 #if 0
8244 static char *
8245 dwarf_cfi_name (unsigned cfi_opc)
8246 {
8247 switch (cfi_opc)
8248 {
8249 case DW_CFA_advance_loc:
8250 return "DW_CFA_advance_loc";
8251 case DW_CFA_offset:
8252 return "DW_CFA_offset";
8253 case DW_CFA_restore:
8254 return "DW_CFA_restore";
8255 case DW_CFA_nop:
8256 return "DW_CFA_nop";
8257 case DW_CFA_set_loc:
8258 return "DW_CFA_set_loc";
8259 case DW_CFA_advance_loc1:
8260 return "DW_CFA_advance_loc1";
8261 case DW_CFA_advance_loc2:
8262 return "DW_CFA_advance_loc2";
8263 case DW_CFA_advance_loc4:
8264 return "DW_CFA_advance_loc4";
8265 case DW_CFA_offset_extended:
8266 return "DW_CFA_offset_extended";
8267 case DW_CFA_restore_extended:
8268 return "DW_CFA_restore_extended";
8269 case DW_CFA_undefined:
8270 return "DW_CFA_undefined";
8271 case DW_CFA_same_value:
8272 return "DW_CFA_same_value";
8273 case DW_CFA_register:
8274 return "DW_CFA_register";
8275 case DW_CFA_remember_state:
8276 return "DW_CFA_remember_state";
8277 case DW_CFA_restore_state:
8278 return "DW_CFA_restore_state";
8279 case DW_CFA_def_cfa:
8280 return "DW_CFA_def_cfa";
8281 case DW_CFA_def_cfa_register:
8282 return "DW_CFA_def_cfa_register";
8283 case DW_CFA_def_cfa_offset:
8284 return "DW_CFA_def_cfa_offset";
8285
8286 /* DWARF 3 */
8287 case DW_CFA_def_cfa_expression:
8288 return "DW_CFA_def_cfa_expression";
8289 case DW_CFA_expression:
8290 return "DW_CFA_expression";
8291 case DW_CFA_offset_extended_sf:
8292 return "DW_CFA_offset_extended_sf";
8293 case DW_CFA_def_cfa_sf:
8294 return "DW_CFA_def_cfa_sf";
8295 case DW_CFA_def_cfa_offset_sf:
8296 return "DW_CFA_def_cfa_offset_sf";
8297
8298 /* SGI/MIPS specific */
8299 case DW_CFA_MIPS_advance_loc8:
8300 return "DW_CFA_MIPS_advance_loc8";
8301
8302 /* GNU extensions */
8303 case DW_CFA_GNU_window_save:
8304 return "DW_CFA_GNU_window_save";
8305 case DW_CFA_GNU_args_size:
8306 return "DW_CFA_GNU_args_size";
8307 case DW_CFA_GNU_negative_offset_extended:
8308 return "DW_CFA_GNU_negative_offset_extended";
8309
8310 default:
8311 return "DW_CFA_<unknown>";
8312 }
8313 }
8314 #endif
8315
8316 static void
8317 dump_die (struct die_info *die)
8318 {
8319 unsigned int i;
8320
8321 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
8322 dwarf_tag_name (die->tag), die->abbrev, die->offset);
8323 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
8324 dwarf_bool_name (die->child != NULL));
8325
8326 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
8327 for (i = 0; i < die->num_attrs; ++i)
8328 {
8329 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
8330 dwarf_attr_name (die->attrs[i].name),
8331 dwarf_form_name (die->attrs[i].form));
8332 switch (die->attrs[i].form)
8333 {
8334 case DW_FORM_ref_addr:
8335 case DW_FORM_addr:
8336 fprintf_unfiltered (gdb_stderr, "address: ");
8337 print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
8338 break;
8339 case DW_FORM_block2:
8340 case DW_FORM_block4:
8341 case DW_FORM_block:
8342 case DW_FORM_block1:
8343 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
8344 break;
8345 case DW_FORM_ref1:
8346 case DW_FORM_ref2:
8347 case DW_FORM_ref4:
8348 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8349 (long) (DW_ADDR (&die->attrs[i])));
8350 break;
8351 case DW_FORM_data1:
8352 case DW_FORM_data2:
8353 case DW_FORM_data4:
8354 case DW_FORM_data8:
8355 case DW_FORM_udata:
8356 case DW_FORM_sdata:
8357 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
8358 break;
8359 case DW_FORM_string:
8360 case DW_FORM_strp:
8361 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
8362 DW_STRING (&die->attrs[i])
8363 ? DW_STRING (&die->attrs[i]) : "");
8364 break;
8365 case DW_FORM_flag:
8366 if (DW_UNSND (&die->attrs[i]))
8367 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
8368 else
8369 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
8370 break;
8371 case DW_FORM_indirect:
8372 /* the reader will have reduced the indirect form to
8373 the "base form" so this form should not occur */
8374 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
8375 break;
8376 default:
8377 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
8378 die->attrs[i].form);
8379 }
8380 fprintf_unfiltered (gdb_stderr, "\n");
8381 }
8382 }
8383
8384 static void
8385 dump_die_list (struct die_info *die)
8386 {
8387 while (die)
8388 {
8389 dump_die (die);
8390 if (die->child != NULL)
8391 dump_die_list (die->child);
8392 if (die->sibling != NULL)
8393 dump_die_list (die->sibling);
8394 }
8395 }
8396
8397 static void
8398 store_in_ref_table (unsigned int offset, struct die_info *die,
8399 struct dwarf2_cu *cu)
8400 {
8401 int h;
8402 struct die_info *old;
8403
8404 h = (offset % REF_HASH_SIZE);
8405 old = cu->die_ref_table[h];
8406 die->next_ref = old;
8407 cu->die_ref_table[h] = die;
8408 }
8409
8410 static unsigned int
8411 dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
8412 {
8413 unsigned int result = 0;
8414
8415 switch (attr->form)
8416 {
8417 case DW_FORM_ref_addr:
8418 case DW_FORM_ref1:
8419 case DW_FORM_ref2:
8420 case DW_FORM_ref4:
8421 case DW_FORM_ref8:
8422 case DW_FORM_ref_udata:
8423 result = DW_ADDR (attr);
8424 break;
8425 default:
8426 complaint (&symfile_complaints,
8427 _("unsupported die ref attribute form: '%s'"),
8428 dwarf_form_name (attr->form));
8429 }
8430 return result;
8431 }
8432
8433 /* Return the constant value held by the given attribute. Return -1
8434 if the value held by the attribute is not constant. */
8435
8436 static int
8437 dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
8438 {
8439 if (attr->form == DW_FORM_sdata)
8440 return DW_SND (attr);
8441 else if (attr->form == DW_FORM_udata
8442 || attr->form == DW_FORM_data1
8443 || attr->form == DW_FORM_data2
8444 || attr->form == DW_FORM_data4
8445 || attr->form == DW_FORM_data8)
8446 return DW_UNSND (attr);
8447 else
8448 {
8449 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
8450 dwarf_form_name (attr->form));
8451 return default_value;
8452 }
8453 }
8454
8455 static struct die_info *
8456 follow_die_ref (struct die_info *src_die, struct attribute *attr,
8457 struct dwarf2_cu *cu)
8458 {
8459 struct die_info *die;
8460 unsigned int offset;
8461 int h;
8462 struct die_info temp_die;
8463 struct dwarf2_cu *target_cu;
8464
8465 offset = dwarf2_get_ref_die_offset (attr, cu);
8466
8467 if (DW_ADDR (attr) < cu->header.offset
8468 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
8469 {
8470 struct dwarf2_per_cu_data *per_cu;
8471 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
8472 cu->objfile);
8473 target_cu = per_cu->cu;
8474 }
8475 else
8476 target_cu = cu;
8477
8478 h = (offset % REF_HASH_SIZE);
8479 die = target_cu->die_ref_table[h];
8480 while (die)
8481 {
8482 if (die->offset == offset)
8483 return die;
8484 die = die->next_ref;
8485 }
8486
8487 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
8488 "at 0x%lx [in module %s]"),
8489 (long) src_die->offset, (long) offset, cu->objfile->name);
8490
8491 return NULL;
8492 }
8493
8494 static struct type *
8495 dwarf2_fundamental_type (struct objfile *objfile, int typeid,
8496 struct dwarf2_cu *cu)
8497 {
8498 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
8499 {
8500 error (_("Dwarf Error: internal error - invalid fundamental type id %d [in module %s]"),
8501 typeid, objfile->name);
8502 }
8503
8504 /* Look for this particular type in the fundamental type vector. If
8505 one is not found, create and install one appropriate for the
8506 current language and the current target machine. */
8507
8508 if (cu->ftypes[typeid] == NULL)
8509 {
8510 cu->ftypes[typeid] = cu->language_defn->la_fund_type (objfile, typeid);
8511 }
8512
8513 return (cu->ftypes[typeid]);
8514 }
8515
8516 /* Decode simple location descriptions.
8517 Given a pointer to a dwarf block that defines a location, compute
8518 the location and return the value.
8519
8520 NOTE drow/2003-11-18: This function is called in two situations
8521 now: for the address of static or global variables (partial symbols
8522 only) and for offsets into structures which are expected to be
8523 (more or less) constant. The partial symbol case should go away,
8524 and only the constant case should remain. That will let this
8525 function complain more accurately. A few special modes are allowed
8526 without complaint for global variables (for instance, global
8527 register values and thread-local values).
8528
8529 A location description containing no operations indicates that the
8530 object is optimized out. The return value is 0 for that case.
8531 FIXME drow/2003-11-16: No callers check for this case any more; soon all
8532 callers will only want a very basic result and this can become a
8533 complaint.
8534
8535 When the result is a register number, the global isreg flag is set,
8536 otherwise it is cleared.
8537
8538 Note that stack[0] is unused except as a default error return.
8539 Note that stack overflow is not yet handled. */
8540
8541 static CORE_ADDR
8542 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
8543 {
8544 struct objfile *objfile = cu->objfile;
8545 struct comp_unit_head *cu_header = &cu->header;
8546 int i;
8547 int size = blk->size;
8548 char *data = blk->data;
8549 CORE_ADDR stack[64];
8550 int stacki;
8551 unsigned int bytes_read, unsnd;
8552 unsigned char op;
8553
8554 i = 0;
8555 stacki = 0;
8556 stack[stacki] = 0;
8557 isreg = 0;
8558
8559 while (i < size)
8560 {
8561 op = data[i++];
8562 switch (op)
8563 {
8564 case DW_OP_lit0:
8565 case DW_OP_lit1:
8566 case DW_OP_lit2:
8567 case DW_OP_lit3:
8568 case DW_OP_lit4:
8569 case DW_OP_lit5:
8570 case DW_OP_lit6:
8571 case DW_OP_lit7:
8572 case DW_OP_lit8:
8573 case DW_OP_lit9:
8574 case DW_OP_lit10:
8575 case DW_OP_lit11:
8576 case DW_OP_lit12:
8577 case DW_OP_lit13:
8578 case DW_OP_lit14:
8579 case DW_OP_lit15:
8580 case DW_OP_lit16:
8581 case DW_OP_lit17:
8582 case DW_OP_lit18:
8583 case DW_OP_lit19:
8584 case DW_OP_lit20:
8585 case DW_OP_lit21:
8586 case DW_OP_lit22:
8587 case DW_OP_lit23:
8588 case DW_OP_lit24:
8589 case DW_OP_lit25:
8590 case DW_OP_lit26:
8591 case DW_OP_lit27:
8592 case DW_OP_lit28:
8593 case DW_OP_lit29:
8594 case DW_OP_lit30:
8595 case DW_OP_lit31:
8596 stack[++stacki] = op - DW_OP_lit0;
8597 break;
8598
8599 case DW_OP_reg0:
8600 case DW_OP_reg1:
8601 case DW_OP_reg2:
8602 case DW_OP_reg3:
8603 case DW_OP_reg4:
8604 case DW_OP_reg5:
8605 case DW_OP_reg6:
8606 case DW_OP_reg7:
8607 case DW_OP_reg8:
8608 case DW_OP_reg9:
8609 case DW_OP_reg10:
8610 case DW_OP_reg11:
8611 case DW_OP_reg12:
8612 case DW_OP_reg13:
8613 case DW_OP_reg14:
8614 case DW_OP_reg15:
8615 case DW_OP_reg16:
8616 case DW_OP_reg17:
8617 case DW_OP_reg18:
8618 case DW_OP_reg19:
8619 case DW_OP_reg20:
8620 case DW_OP_reg21:
8621 case DW_OP_reg22:
8622 case DW_OP_reg23:
8623 case DW_OP_reg24:
8624 case DW_OP_reg25:
8625 case DW_OP_reg26:
8626 case DW_OP_reg27:
8627 case DW_OP_reg28:
8628 case DW_OP_reg29:
8629 case DW_OP_reg30:
8630 case DW_OP_reg31:
8631 isreg = 1;
8632 stack[++stacki] = op - DW_OP_reg0;
8633 if (i < size)
8634 dwarf2_complex_location_expr_complaint ();
8635 break;
8636
8637 case DW_OP_regx:
8638 isreg = 1;
8639 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8640 i += bytes_read;
8641 stack[++stacki] = unsnd;
8642 if (i < size)
8643 dwarf2_complex_location_expr_complaint ();
8644 break;
8645
8646 case DW_OP_addr:
8647 stack[++stacki] = read_address (objfile->obfd, &data[i],
8648 cu, &bytes_read);
8649 i += bytes_read;
8650 break;
8651
8652 case DW_OP_const1u:
8653 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
8654 i += 1;
8655 break;
8656
8657 case DW_OP_const1s:
8658 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
8659 i += 1;
8660 break;
8661
8662 case DW_OP_const2u:
8663 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
8664 i += 2;
8665 break;
8666
8667 case DW_OP_const2s:
8668 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
8669 i += 2;
8670 break;
8671
8672 case DW_OP_const4u:
8673 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
8674 i += 4;
8675 break;
8676
8677 case DW_OP_const4s:
8678 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
8679 i += 4;
8680 break;
8681
8682 case DW_OP_constu:
8683 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
8684 &bytes_read);
8685 i += bytes_read;
8686 break;
8687
8688 case DW_OP_consts:
8689 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
8690 i += bytes_read;
8691 break;
8692
8693 case DW_OP_dup:
8694 stack[stacki + 1] = stack[stacki];
8695 stacki++;
8696 break;
8697
8698 case DW_OP_plus:
8699 stack[stacki - 1] += stack[stacki];
8700 stacki--;
8701 break;
8702
8703 case DW_OP_plus_uconst:
8704 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
8705 i += bytes_read;
8706 break;
8707
8708 case DW_OP_minus:
8709 stack[stacki - 1] -= stack[stacki];
8710 stacki--;
8711 break;
8712
8713 case DW_OP_deref:
8714 /* If we're not the last op, then we definitely can't encode
8715 this using GDB's address_class enum. This is valid for partial
8716 global symbols, although the variable's address will be bogus
8717 in the psymtab. */
8718 if (i < size)
8719 dwarf2_complex_location_expr_complaint ();
8720 break;
8721
8722 case DW_OP_GNU_push_tls_address:
8723 /* The top of the stack has the offset from the beginning
8724 of the thread control block at which the variable is located. */
8725 /* Nothing should follow this operator, so the top of stack would
8726 be returned. */
8727 /* This is valid for partial global symbols, but the variable's
8728 address will be bogus in the psymtab. */
8729 if (i < size)
8730 dwarf2_complex_location_expr_complaint ();
8731 break;
8732
8733 default:
8734 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
8735 dwarf_stack_op_name (op));
8736 return (stack[stacki]);
8737 }
8738 }
8739 return (stack[stacki]);
8740 }
8741
8742 /* memory allocation interface */
8743
8744 static struct dwarf_block *
8745 dwarf_alloc_block (struct dwarf2_cu *cu)
8746 {
8747 struct dwarf_block *blk;
8748
8749 blk = (struct dwarf_block *)
8750 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
8751 return (blk);
8752 }
8753
8754 static struct abbrev_info *
8755 dwarf_alloc_abbrev (struct dwarf2_cu *cu)
8756 {
8757 struct abbrev_info *abbrev;
8758
8759 abbrev = (struct abbrev_info *)
8760 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
8761 memset (abbrev, 0, sizeof (struct abbrev_info));
8762 return (abbrev);
8763 }
8764
8765 static struct die_info *
8766 dwarf_alloc_die (void)
8767 {
8768 struct die_info *die;
8769
8770 die = (struct die_info *) xmalloc (sizeof (struct die_info));
8771 memset (die, 0, sizeof (struct die_info));
8772 return (die);
8773 }
8774
8775 \f
8776 /* Macro support. */
8777
8778
8779 /* Return the full name of file number I in *LH's file name table.
8780 Use COMP_DIR as the name of the current directory of the
8781 compilation. The result is allocated using xmalloc; the caller is
8782 responsible for freeing it. */
8783 static char *
8784 file_full_name (int file, struct line_header *lh, const char *comp_dir)
8785 {
8786 struct file_entry *fe = &lh->file_names[file - 1];
8787
8788 if (IS_ABSOLUTE_PATH (fe->name))
8789 return xstrdup (fe->name);
8790 else
8791 {
8792 const char *dir;
8793 int dir_len;
8794 char *full_name;
8795
8796 if (fe->dir_index)
8797 dir = lh->include_dirs[fe->dir_index - 1];
8798 else
8799 dir = comp_dir;
8800
8801 if (dir)
8802 {
8803 dir_len = strlen (dir);
8804 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
8805 strcpy (full_name, dir);
8806 full_name[dir_len] = '/';
8807 strcpy (full_name + dir_len + 1, fe->name);
8808 return full_name;
8809 }
8810 else
8811 return xstrdup (fe->name);
8812 }
8813 }
8814
8815
8816 static struct macro_source_file *
8817 macro_start_file (int file, int line,
8818 struct macro_source_file *current_file,
8819 const char *comp_dir,
8820 struct line_header *lh, struct objfile *objfile)
8821 {
8822 /* The full name of this source file. */
8823 char *full_name = file_full_name (file, lh, comp_dir);
8824
8825 /* We don't create a macro table for this compilation unit
8826 at all until we actually get a filename. */
8827 if (! pending_macros)
8828 pending_macros = new_macro_table (&objfile->objfile_obstack,
8829 objfile->macro_cache);
8830
8831 if (! current_file)
8832 /* If we have no current file, then this must be the start_file
8833 directive for the compilation unit's main source file. */
8834 current_file = macro_set_main (pending_macros, full_name);
8835 else
8836 current_file = macro_include (current_file, line, full_name);
8837
8838 xfree (full_name);
8839
8840 return current_file;
8841 }
8842
8843
8844 /* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
8845 followed by a null byte. */
8846 static char *
8847 copy_string (const char *buf, int len)
8848 {
8849 char *s = xmalloc (len + 1);
8850 memcpy (s, buf, len);
8851 s[len] = '\0';
8852
8853 return s;
8854 }
8855
8856
8857 static const char *
8858 consume_improper_spaces (const char *p, const char *body)
8859 {
8860 if (*p == ' ')
8861 {
8862 complaint (&symfile_complaints,
8863 _("macro definition contains spaces in formal argument list:\n`%s'"),
8864 body);
8865
8866 while (*p == ' ')
8867 p++;
8868 }
8869
8870 return p;
8871 }
8872
8873
8874 static void
8875 parse_macro_definition (struct macro_source_file *file, int line,
8876 const char *body)
8877 {
8878 const char *p;
8879
8880 /* The body string takes one of two forms. For object-like macro
8881 definitions, it should be:
8882
8883 <macro name> " " <definition>
8884
8885 For function-like macro definitions, it should be:
8886
8887 <macro name> "() " <definition>
8888 or
8889 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
8890
8891 Spaces may appear only where explicitly indicated, and in the
8892 <definition>.
8893
8894 The Dwarf 2 spec says that an object-like macro's name is always
8895 followed by a space, but versions of GCC around March 2002 omit
8896 the space when the macro's definition is the empty string.
8897
8898 The Dwarf 2 spec says that there should be no spaces between the
8899 formal arguments in a function-like macro's formal argument list,
8900 but versions of GCC around March 2002 include spaces after the
8901 commas. */
8902
8903
8904 /* Find the extent of the macro name. The macro name is terminated
8905 by either a space or null character (for an object-like macro) or
8906 an opening paren (for a function-like macro). */
8907 for (p = body; *p; p++)
8908 if (*p == ' ' || *p == '(')
8909 break;
8910
8911 if (*p == ' ' || *p == '\0')
8912 {
8913 /* It's an object-like macro. */
8914 int name_len = p - body;
8915 char *name = copy_string (body, name_len);
8916 const char *replacement;
8917
8918 if (*p == ' ')
8919 replacement = body + name_len + 1;
8920 else
8921 {
8922 dwarf2_macro_malformed_definition_complaint (body);
8923 replacement = body + name_len;
8924 }
8925
8926 macro_define_object (file, line, name, replacement);
8927
8928 xfree (name);
8929 }
8930 else if (*p == '(')
8931 {
8932 /* It's a function-like macro. */
8933 char *name = copy_string (body, p - body);
8934 int argc = 0;
8935 int argv_size = 1;
8936 char **argv = xmalloc (argv_size * sizeof (*argv));
8937
8938 p++;
8939
8940 p = consume_improper_spaces (p, body);
8941
8942 /* Parse the formal argument list. */
8943 while (*p && *p != ')')
8944 {
8945 /* Find the extent of the current argument name. */
8946 const char *arg_start = p;
8947
8948 while (*p && *p != ',' && *p != ')' && *p != ' ')
8949 p++;
8950
8951 if (! *p || p == arg_start)
8952 dwarf2_macro_malformed_definition_complaint (body);
8953 else
8954 {
8955 /* Make sure argv has room for the new argument. */
8956 if (argc >= argv_size)
8957 {
8958 argv_size *= 2;
8959 argv = xrealloc (argv, argv_size * sizeof (*argv));
8960 }
8961
8962 argv[argc++] = copy_string (arg_start, p - arg_start);
8963 }
8964
8965 p = consume_improper_spaces (p, body);
8966
8967 /* Consume the comma, if present. */
8968 if (*p == ',')
8969 {
8970 p++;
8971
8972 p = consume_improper_spaces (p, body);
8973 }
8974 }
8975
8976 if (*p == ')')
8977 {
8978 p++;
8979
8980 if (*p == ' ')
8981 /* Perfectly formed definition, no complaints. */
8982 macro_define_function (file, line, name,
8983 argc, (const char **) argv,
8984 p + 1);
8985 else if (*p == '\0')
8986 {
8987 /* Complain, but do define it. */
8988 dwarf2_macro_malformed_definition_complaint (body);
8989 macro_define_function (file, line, name,
8990 argc, (const char **) argv,
8991 p);
8992 }
8993 else
8994 /* Just complain. */
8995 dwarf2_macro_malformed_definition_complaint (body);
8996 }
8997 else
8998 /* Just complain. */
8999 dwarf2_macro_malformed_definition_complaint (body);
9000
9001 xfree (name);
9002 {
9003 int i;
9004
9005 for (i = 0; i < argc; i++)
9006 xfree (argv[i]);
9007 }
9008 xfree (argv);
9009 }
9010 else
9011 dwarf2_macro_malformed_definition_complaint (body);
9012 }
9013
9014
9015 static void
9016 dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9017 char *comp_dir, bfd *abfd,
9018 struct dwarf2_cu *cu)
9019 {
9020 char *mac_ptr, *mac_end;
9021 struct macro_source_file *current_file = 0;
9022
9023 if (dwarf2_per_objfile->macinfo_buffer == NULL)
9024 {
9025 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
9026 return;
9027 }
9028
9029 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9030 mac_end = dwarf2_per_objfile->macinfo_buffer
9031 + dwarf2_per_objfile->macinfo_size;
9032
9033 for (;;)
9034 {
9035 enum dwarf_macinfo_record_type macinfo_type;
9036
9037 /* Do we at least have room for a macinfo type byte? */
9038 if (mac_ptr >= mac_end)
9039 {
9040 dwarf2_macros_too_long_complaint ();
9041 return;
9042 }
9043
9044 macinfo_type = read_1_byte (abfd, mac_ptr);
9045 mac_ptr++;
9046
9047 switch (macinfo_type)
9048 {
9049 /* A zero macinfo type indicates the end of the macro
9050 information. */
9051 case 0:
9052 return;
9053
9054 case DW_MACINFO_define:
9055 case DW_MACINFO_undef:
9056 {
9057 int bytes_read;
9058 int line;
9059 char *body;
9060
9061 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9062 mac_ptr += bytes_read;
9063 body = read_string (abfd, mac_ptr, &bytes_read);
9064 mac_ptr += bytes_read;
9065
9066 if (! current_file)
9067 complaint (&symfile_complaints,
9068 _("debug info gives macro %s outside of any file: %s"),
9069 macinfo_type ==
9070 DW_MACINFO_define ? "definition" : macinfo_type ==
9071 DW_MACINFO_undef ? "undefinition" :
9072 "something-or-other", body);
9073 else
9074 {
9075 if (macinfo_type == DW_MACINFO_define)
9076 parse_macro_definition (current_file, line, body);
9077 else if (macinfo_type == DW_MACINFO_undef)
9078 macro_undef (current_file, line, body);
9079 }
9080 }
9081 break;
9082
9083 case DW_MACINFO_start_file:
9084 {
9085 int bytes_read;
9086 int line, file;
9087
9088 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9089 mac_ptr += bytes_read;
9090 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9091 mac_ptr += bytes_read;
9092
9093 current_file = macro_start_file (file, line,
9094 current_file, comp_dir,
9095 lh, cu->objfile);
9096 }
9097 break;
9098
9099 case DW_MACINFO_end_file:
9100 if (! current_file)
9101 complaint (&symfile_complaints,
9102 _("macro debug info has an unmatched `close_file' directive"));
9103 else
9104 {
9105 current_file = current_file->included_by;
9106 if (! current_file)
9107 {
9108 enum dwarf_macinfo_record_type next_type;
9109
9110 /* GCC circa March 2002 doesn't produce the zero
9111 type byte marking the end of the compilation
9112 unit. Complain if it's not there, but exit no
9113 matter what. */
9114
9115 /* Do we at least have room for a macinfo type byte? */
9116 if (mac_ptr >= mac_end)
9117 {
9118 dwarf2_macros_too_long_complaint ();
9119 return;
9120 }
9121
9122 /* We don't increment mac_ptr here, so this is just
9123 a look-ahead. */
9124 next_type = read_1_byte (abfd, mac_ptr);
9125 if (next_type != 0)
9126 complaint (&symfile_complaints,
9127 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
9128
9129 return;
9130 }
9131 }
9132 break;
9133
9134 case DW_MACINFO_vendor_ext:
9135 {
9136 int bytes_read;
9137 int constant;
9138 char *string;
9139
9140 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9141 mac_ptr += bytes_read;
9142 string = read_string (abfd, mac_ptr, &bytes_read);
9143 mac_ptr += bytes_read;
9144
9145 /* We don't recognize any vendor extensions. */
9146 }
9147 break;
9148 }
9149 }
9150 }
9151
9152 /* Check if the attribute's form is a DW_FORM_block*
9153 if so return true else false. */
9154 static int
9155 attr_form_is_block (struct attribute *attr)
9156 {
9157 return (attr == NULL ? 0 :
9158 attr->form == DW_FORM_block1
9159 || attr->form == DW_FORM_block2
9160 || attr->form == DW_FORM_block4
9161 || attr->form == DW_FORM_block);
9162 }
9163
9164 static void
9165 dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
9166 struct dwarf2_cu *cu)
9167 {
9168 if (attr->form == DW_FORM_data4 || attr->form == DW_FORM_data8)
9169 {
9170 struct dwarf2_loclist_baton *baton;
9171
9172 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9173 sizeof (struct dwarf2_loclist_baton));
9174 baton->objfile = cu->objfile;
9175
9176 /* We don't know how long the location list is, but make sure we
9177 don't run off the edge of the section. */
9178 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9179 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
9180 baton->base_address = cu->header.base_address;
9181 if (cu->header.base_known == 0)
9182 complaint (&symfile_complaints,
9183 _("Location list used without specifying the CU base address."));
9184
9185 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
9186 SYMBOL_LOCATION_BATON (sym) = baton;
9187 }
9188 else
9189 {
9190 struct dwarf2_locexpr_baton *baton;
9191
9192 baton = obstack_alloc (&cu->objfile->objfile_obstack,
9193 sizeof (struct dwarf2_locexpr_baton));
9194 baton->objfile = cu->objfile;
9195
9196 if (attr_form_is_block (attr))
9197 {
9198 /* Note that we're just copying the block's data pointer
9199 here, not the actual data. We're still pointing into the
9200 info_buffer for SYM's objfile; right now we never release
9201 that buffer, but when we do clean up properly this may
9202 need to change. */
9203 baton->size = DW_BLOCK (attr)->size;
9204 baton->data = DW_BLOCK (attr)->data;
9205 }
9206 else
9207 {
9208 dwarf2_invalid_attrib_class_complaint ("location description",
9209 SYMBOL_NATURAL_NAME (sym));
9210 baton->size = 0;
9211 baton->data = NULL;
9212 }
9213
9214 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
9215 SYMBOL_LOCATION_BATON (sym) = baton;
9216 }
9217 }
9218
9219 /* Locate the compilation unit from CU's objfile which contains the
9220 DIE at OFFSET. Raises an error on failure. */
9221
9222 static struct dwarf2_per_cu_data *
9223 dwarf2_find_containing_comp_unit (unsigned long offset,
9224 struct objfile *objfile)
9225 {
9226 struct dwarf2_per_cu_data *this_cu;
9227 int low, high;
9228
9229 low = 0;
9230 high = dwarf2_per_objfile->n_comp_units - 1;
9231 while (high > low)
9232 {
9233 int mid = low + (high - low) / 2;
9234 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9235 high = mid;
9236 else
9237 low = mid + 1;
9238 }
9239 gdb_assert (low == high);
9240 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9241 {
9242 if (low == 0)
9243 error (_("Dwarf Error: could not find partial DIE containing "
9244 "offset 0x%lx [in module %s]"),
9245 (long) offset, bfd_get_filename (objfile->obfd));
9246
9247 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9248 return dwarf2_per_objfile->all_comp_units[low-1];
9249 }
9250 else
9251 {
9252 this_cu = dwarf2_per_objfile->all_comp_units[low];
9253 if (low == dwarf2_per_objfile->n_comp_units - 1
9254 && offset >= this_cu->offset + this_cu->length)
9255 error (_("invalid dwarf2 offset %ld"), offset);
9256 gdb_assert (offset < this_cu->offset + this_cu->length);
9257 return this_cu;
9258 }
9259 }
9260
9261 /* Locate the compilation unit from OBJFILE which is located at exactly
9262 OFFSET. Raises an error on failure. */
9263
9264 static struct dwarf2_per_cu_data *
9265 dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9266 {
9267 struct dwarf2_per_cu_data *this_cu;
9268 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9269 if (this_cu->offset != offset)
9270 error (_("no compilation unit with offset %ld."), offset);
9271 return this_cu;
9272 }
9273
9274 /* Release one cached compilation unit, CU. We unlink it from the tree
9275 of compilation units, but we don't remove it from the read_in_chain;
9276 the caller is responsible for that. */
9277
9278 static void
9279 free_one_comp_unit (void *data)
9280 {
9281 struct dwarf2_cu *cu = data;
9282
9283 if (cu->per_cu != NULL)
9284 cu->per_cu->cu = NULL;
9285 cu->per_cu = NULL;
9286
9287 obstack_free (&cu->comp_unit_obstack, NULL);
9288 if (cu->dies)
9289 free_die_list (cu->dies);
9290
9291 xfree (cu);
9292 }
9293
9294 /* This cleanup function is passed the address of a dwarf2_cu on the stack
9295 when we're finished with it. We can't free the pointer itself, but be
9296 sure to unlink it from the cache. Also release any associated storage
9297 and perform cache maintenance.
9298
9299 Only used during partial symbol parsing. */
9300
9301 static void
9302 free_stack_comp_unit (void *data)
9303 {
9304 struct dwarf2_cu *cu = data;
9305
9306 obstack_free (&cu->comp_unit_obstack, NULL);
9307 cu->partial_dies = NULL;
9308
9309 if (cu->per_cu != NULL)
9310 {
9311 /* This compilation unit is on the stack in our caller, so we
9312 should not xfree it. Just unlink it. */
9313 cu->per_cu->cu = NULL;
9314 cu->per_cu = NULL;
9315
9316 /* If we had a per-cu pointer, then we may have other compilation
9317 units loaded, so age them now. */
9318 age_cached_comp_units ();
9319 }
9320 }
9321
9322 /* Free all cached compilation units. */
9323
9324 static void
9325 free_cached_comp_units (void *data)
9326 {
9327 struct dwarf2_per_cu_data *per_cu, **last_chain;
9328
9329 per_cu = dwarf2_per_objfile->read_in_chain;
9330 last_chain = &dwarf2_per_objfile->read_in_chain;
9331 while (per_cu != NULL)
9332 {
9333 struct dwarf2_per_cu_data *next_cu;
9334
9335 next_cu = per_cu->cu->read_in_chain;
9336
9337 free_one_comp_unit (per_cu->cu);
9338 *last_chain = next_cu;
9339
9340 per_cu = next_cu;
9341 }
9342 }
9343
9344 /* Increase the age counter on each cached compilation unit, and free
9345 any that are too old. */
9346
9347 static void
9348 age_cached_comp_units (void)
9349 {
9350 struct dwarf2_per_cu_data *per_cu, **last_chain;
9351
9352 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9353 per_cu = dwarf2_per_objfile->read_in_chain;
9354 while (per_cu != NULL)
9355 {
9356 per_cu->cu->last_used ++;
9357 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
9358 dwarf2_mark (per_cu->cu);
9359 per_cu = per_cu->cu->read_in_chain;
9360 }
9361
9362 per_cu = dwarf2_per_objfile->read_in_chain;
9363 last_chain = &dwarf2_per_objfile->read_in_chain;
9364 while (per_cu != NULL)
9365 {
9366 struct dwarf2_per_cu_data *next_cu;
9367
9368 next_cu = per_cu->cu->read_in_chain;
9369
9370 if (!per_cu->cu->mark)
9371 {
9372 free_one_comp_unit (per_cu->cu);
9373 *last_chain = next_cu;
9374 }
9375 else
9376 last_chain = &per_cu->cu->read_in_chain;
9377
9378 per_cu = next_cu;
9379 }
9380 }
9381
9382 /* Remove a single compilation unit from the cache. */
9383
9384 static void
9385 free_one_cached_comp_unit (void *target_cu)
9386 {
9387 struct dwarf2_per_cu_data *per_cu, **last_chain;
9388
9389 per_cu = dwarf2_per_objfile->read_in_chain;
9390 last_chain = &dwarf2_per_objfile->read_in_chain;
9391 while (per_cu != NULL)
9392 {
9393 struct dwarf2_per_cu_data *next_cu;
9394
9395 next_cu = per_cu->cu->read_in_chain;
9396
9397 if (per_cu->cu == target_cu)
9398 {
9399 free_one_comp_unit (per_cu->cu);
9400 *last_chain = next_cu;
9401 break;
9402 }
9403 else
9404 last_chain = &per_cu->cu->read_in_chain;
9405
9406 per_cu = next_cu;
9407 }
9408 }
9409
9410 /* A pair of DIE offset and GDB type pointer. We store these
9411 in a hash table separate from the DIEs, and preserve them
9412 when the DIEs are flushed out of cache. */
9413
9414 struct dwarf2_offset_and_type
9415 {
9416 unsigned int offset;
9417 struct type *type;
9418 };
9419
9420 /* Hash function for a dwarf2_offset_and_type. */
9421
9422 static hashval_t
9423 offset_and_type_hash (const void *item)
9424 {
9425 const struct dwarf2_offset_and_type *ofs = item;
9426 return ofs->offset;
9427 }
9428
9429 /* Equality function for a dwarf2_offset_and_type. */
9430
9431 static int
9432 offset_and_type_eq (const void *item_lhs, const void *item_rhs)
9433 {
9434 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
9435 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9436 return ofs_lhs->offset == ofs_rhs->offset;
9437 }
9438
9439 /* Set the type associated with DIE to TYPE. Save it in CU's hash
9440 table if necessary. */
9441
9442 static void
9443 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
9444 {
9445 struct dwarf2_offset_and_type **slot, ofs;
9446
9447 die->type = type;
9448
9449 if (cu->per_cu == NULL)
9450 return;
9451
9452 if (cu->per_cu->type_hash == NULL)
9453 cu->per_cu->type_hash
9454 = htab_create_alloc_ex (cu->header.length / 24,
9455 offset_and_type_hash,
9456 offset_and_type_eq,
9457 NULL,
9458 &cu->objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461
9462 ofs.offset = die->offset;
9463 ofs.type = type;
9464 slot = (struct dwarf2_offset_and_type **)
9465 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
9466 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
9467 **slot = ofs;
9468 }
9469
9470 /* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
9471 have a saved type. */
9472
9473 static struct type *
9474 get_die_type (struct die_info *die, htab_t type_hash)
9475 {
9476 struct dwarf2_offset_and_type *slot, ofs;
9477
9478 ofs.offset = die->offset;
9479 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
9480 if (slot)
9481 return slot->type;
9482 else
9483 return NULL;
9484 }
9485
9486 /* Restore the types of the DIE tree starting at START_DIE from the hash
9487 table saved in CU. */
9488
9489 static void
9490 reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
9491 {
9492 struct die_info *die;
9493
9494 if (cu->per_cu->type_hash == NULL)
9495 return;
9496
9497 for (die = start_die; die != NULL; die = die->sibling)
9498 {
9499 die->type = get_die_type (die, cu->per_cu->type_hash);
9500 if (die->child != NULL)
9501 reset_die_and_siblings_types (die->child, cu);
9502 }
9503 }
9504
9505 /* Set the mark field in CU and in every other compilation unit in the
9506 cache that we must keep because we are keeping CU. */
9507
9508 /* Add a dependence relationship from CU to REF_PER_CU. */
9509
9510 static void
9511 dwarf2_add_dependence (struct dwarf2_cu *cu,
9512 struct dwarf2_per_cu_data *ref_per_cu)
9513 {
9514 void **slot;
9515
9516 if (cu->dependencies == NULL)
9517 cu->dependencies
9518 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
9519 NULL, &cu->comp_unit_obstack,
9520 hashtab_obstack_allocate,
9521 dummy_obstack_deallocate);
9522
9523 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
9524 if (*slot == NULL)
9525 *slot = ref_per_cu;
9526 }
9527
9528 /* Set the mark field in CU and in every other compilation unit in the
9529 cache that we must keep because we are keeping CU. */
9530
9531 static int
9532 dwarf2_mark_helper (void **slot, void *data)
9533 {
9534 struct dwarf2_per_cu_data *per_cu;
9535
9536 per_cu = (struct dwarf2_per_cu_data *) *slot;
9537 if (per_cu->cu->mark)
9538 return 1;
9539 per_cu->cu->mark = 1;
9540
9541 if (per_cu->cu->dependencies != NULL)
9542 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
9543
9544 return 1;
9545 }
9546
9547 static void
9548 dwarf2_mark (struct dwarf2_cu *cu)
9549 {
9550 if (cu->mark)
9551 return;
9552 cu->mark = 1;
9553 if (cu->dependencies != NULL)
9554 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
9555 }
9556
9557 static void
9558 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
9559 {
9560 while (per_cu)
9561 {
9562 per_cu->cu->mark = 0;
9563 per_cu = per_cu->cu->read_in_chain;
9564 }
9565 }
9566
9567 /* Allocation function for the libiberty hash table which uses an
9568 obstack. */
9569
9570 static void *
9571 hashtab_obstack_allocate (void *data, size_t size, size_t count)
9572 {
9573 unsigned int total = size * count;
9574 void *ptr = obstack_alloc ((struct obstack *) data, total);
9575 memset (ptr, 0, total);
9576 return ptr;
9577 }
9578
9579 /* Trivial deallocation function for the libiberty splay tree and hash
9580 table - don't deallocate anything. Rely on later deletion of the
9581 obstack. */
9582
9583 static void
9584 dummy_obstack_deallocate (void *object, void *data)
9585 {
9586 return;
9587 }
9588
9589 /* Trivial hash function for partial_die_info: the hash value of a DIE
9590 is its offset in .debug_info for this objfile. */
9591
9592 static hashval_t
9593 partial_die_hash (const void *item)
9594 {
9595 const struct partial_die_info *part_die = item;
9596 return part_die->offset;
9597 }
9598
9599 /* Trivial comparison function for partial_die_info structures: two DIEs
9600 are equal if they have the same offset. */
9601
9602 static int
9603 partial_die_eq (const void *item_lhs, const void *item_rhs)
9604 {
9605 const struct partial_die_info *part_die_lhs = item_lhs;
9606 const struct partial_die_info *part_die_rhs = item_rhs;
9607 return part_die_lhs->offset == part_die_rhs->offset;
9608 }
9609
9610 static struct cmd_list_element *set_dwarf2_cmdlist;
9611 static struct cmd_list_element *show_dwarf2_cmdlist;
9612
9613 static void
9614 set_dwarf2_cmd (char *args, int from_tty)
9615 {
9616 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
9617 }
9618
9619 static void
9620 show_dwarf2_cmd (char *args, int from_tty)
9621 {
9622 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
9623 }
9624
9625 void _initialize_dwarf2_read (void);
9626
9627 void
9628 _initialize_dwarf2_read (void)
9629 {
9630 dwarf2_objfile_data_key = register_objfile_data ();
9631
9632 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd,
9633 "Set DWARF 2 specific variables.\n"
9634 "Configure DWARF 2 variables such as the cache size",
9635 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
9636 0/*allow-unknown*/, &maintenance_set_cmdlist);
9637
9638 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd,
9639 "Show DWARF 2 specific variables\n"
9640 "Show DWARF 2 variables such as the cache size",
9641 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
9642 0/*allow-unknown*/, &maintenance_show_cmdlist);
9643
9644 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
9645 &dwarf2_max_cache_age,
9646 "Set the upper bound on the age of cached "
9647 "dwarf2 compilation units.",
9648 "Show the upper bound on the age of cached "
9649 "dwarf2 compilation units.",
9650 "A higher limit means that cached "
9651 "compilation units will be stored\n"
9652 "in memory longer, and more total memory will "
9653 "be used. Zero disables\n"
9654 "caching, which can slow down startup.",
9655 NULL, /* PRINT: The upper bound on the age of cached dwarf2 compilation units is %d. */
9656 NULL, NULL, &set_dwarf2_cmdlist,
9657 &show_dwarf2_cmdlist);
9658 }