]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
import gdb-1999-07-07 post reformat
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo
281 {
282 char *die; /* Pointer to the raw DIE data */
283 unsigned long die_length; /* Length of the raw DIE data */
284 DIE_REF die_ref; /* Offset of this DIE */
285 unsigned short die_tag; /* Tag for this DIE */
286 unsigned long at_padding;
287 unsigned long at_sibling;
288 BLOCK *at_location;
289 char *at_name;
290 unsigned short at_fund_type;
291 BLOCK *at_mod_fund_type;
292 unsigned long at_user_def_type;
293 BLOCK *at_mod_u_d_type;
294 unsigned short at_ordering;
295 BLOCK *at_subscr_data;
296 unsigned long at_byte_size;
297 unsigned short at_bit_offset;
298 unsigned long at_bit_size;
299 BLOCK *at_element_list;
300 unsigned long at_stmt_list;
301 CORE_ADDR at_low_pc;
302 CORE_ADDR at_high_pc;
303 unsigned long at_language;
304 unsigned long at_member;
305 unsigned long at_discr;
306 BLOCK *at_discr_value;
307 BLOCK *at_string_length;
308 char *at_comp_dir;
309 char *at_producer;
310 unsigned long at_start_scope;
311 unsigned long at_stride_size;
312 unsigned long at_src_info;
313 char *at_prototyped;
314 unsigned int has_at_low_pc:1;
315 unsigned int has_at_stmt_list:1;
316 unsigned int has_at_byte_size:1;
317 unsigned int short_element_list:1;
318
319 /* Kludge to identify register variables */
320
321 unsigned int isreg;
322
323 /* Kludge to identify optimized out variables */
324
325 unsigned int optimized_out;
326
327 /* Kludge to identify basereg references.
328 Nonzero if we have an offset relative to a basereg. */
329
330 unsigned int offreg;
331
332 /* Kludge to identify which base register is it relative to. */
333
334 unsigned int basereg;
335 };
336
337 static int diecount; /* Approximate count of dies for compilation unit */
338 static struct dieinfo *curdie; /* For warnings and such */
339
340 static char *dbbase; /* Base pointer to dwarf info */
341 static int dbsize; /* Size of dwarf info in bytes */
342 static int dbroff; /* Relative offset from start of .debug section */
343 static char *lnbase; /* Base pointer to line section */
344
345 /* This value is added to each symbol value. FIXME: Generalize to
346 the section_offsets structure used by dbxread (once this is done,
347 pass the appropriate section number to end_symtab). */
348 static CORE_ADDR baseaddr; /* Add to each symbol value */
349
350 /* The section offsets used in the current psymtab or symtab. FIXME,
351 only used to pass one value (baseaddr) at the moment. */
352 static struct section_offsets *base_section_offsets;
353
354 /* We put a pointer to this structure in the read_symtab_private field
355 of the psymtab. */
356
357 struct dwfinfo
358 {
359 /* Always the absolute file offset to the start of the ".debug"
360 section for the file containing the DIE's being accessed. */
361 file_ptr dbfoff;
362 /* Relative offset from the start of the ".debug" section to the
363 first DIE to be accessed. When building the partial symbol
364 table, this value will be zero since we are accessing the
365 entire ".debug" section. When expanding a partial symbol
366 table entry, this value will be the offset to the first
367 DIE for the compilation unit containing the symbol that
368 triggers the expansion. */
369 int dbroff;
370 /* The size of the chunk of DIE's being examined, in bytes. */
371 int dblength;
372 /* The absolute file offset to the line table fragment. Ignored
373 when building partial symbol tables, but used when expanding
374 them, and contains the absolute file offset to the fragment
375 of the ".line" section containing the line numbers for the
376 current compilation unit. */
377 file_ptr lnfoff;
378 };
379
380 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
381 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
382 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
383 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
384
385 /* The generic symbol table building routines have separate lists for
386 file scope symbols and all all other scopes (local scopes). So
387 we need to select the right one to pass to add_symbol_to_list().
388 We do it by keeping a pointer to the correct list in list_in_scope.
389
390 FIXME: The original dwarf code just treated the file scope as the first
391 local scope, and all other local scopes as nested local scopes, and worked
392 fine. Check to see if we really need to distinguish these in buildsym.c */
393
394 struct pending **list_in_scope = &file_symbols;
395
396 /* DIES which have user defined types or modified user defined types refer to
397 other DIES for the type information. Thus we need to associate the offset
398 of a DIE for a user defined type with a pointer to the type information.
399
400 Originally this was done using a simple but expensive algorithm, with an
401 array of unsorted structures, each containing an offset/type-pointer pair.
402 This array was scanned linearly each time a lookup was done. The result
403 was that gdb was spending over half it's startup time munging through this
404 array of pointers looking for a structure that had the right offset member.
405
406 The second attempt used the same array of structures, but the array was
407 sorted using qsort each time a new offset/type was recorded, and a binary
408 search was used to find the type pointer for a given DIE offset. This was
409 even slower, due to the overhead of sorting the array each time a new
410 offset/type pair was entered.
411
412 The third attempt uses a fixed size array of type pointers, indexed by a
413 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
414 we can divide any DIE offset by 4 to obtain a unique index into this fixed
415 size array. Since each element is a 4 byte pointer, it takes exactly as
416 much memory to hold this array as to hold the DWARF info for a given
417 compilation unit. But it gets freed as soon as we are done with it.
418 This has worked well in practice, as a reasonable tradeoff between memory
419 consumption and speed, without having to resort to much more complicated
420 algorithms. */
421
422 static struct type **utypes; /* Pointer to array of user type pointers */
423 static int numutypes; /* Max number of user type pointers */
424
425 /* Maintain an array of referenced fundamental types for the current
426 compilation unit being read. For DWARF version 1, we have to construct
427 the fundamental types on the fly, since no information about the
428 fundamental types is supplied. Each such fundamental type is created by
429 calling a language dependent routine to create the type, and then a
430 pointer to that type is then placed in the array at the index specified
431 by it's FT_<TYPENAME> value. The array has a fixed size set by the
432 FT_NUM_MEMBERS compile time constant, which is the number of predefined
433 fundamental types gdb knows how to construct. */
434
435 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
436
437 /* Record the language for the compilation unit which is currently being
438 processed. We know it once we have seen the TAG_compile_unit DIE,
439 and we need it while processing the DIE's for that compilation unit.
440 It is eventually saved in the symtab structure, but we don't finalize
441 the symtab struct until we have processed all the DIE's for the
442 compilation unit. We also need to get and save a pointer to the
443 language struct for this language, so we can call the language
444 dependent routines for doing things such as creating fundamental
445 types. */
446
447 static enum language cu_language;
448 static const struct language_defn *cu_language_defn;
449
450 /* Forward declarations of static functions so we don't have to worry
451 about ordering within this file. */
452
453 static void
454 free_utypes PARAMS ((PTR));
455
456 static int
457 attribute_size PARAMS ((unsigned int));
458
459 static CORE_ADDR
460 target_to_host PARAMS ((char *, int, int, struct objfile *));
461
462 static void
463 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
464
465 static void
466 handle_producer PARAMS ((char *));
467
468 static void
469 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
470
471 static void
472 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
473
474 static void
475 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
476 struct objfile *));
477
478 static void
479 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
480
481 static void
482 scan_compilation_units PARAMS ((char *, char *, file_ptr,
483 file_ptr, struct objfile *));
484
485 static void
486 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
487
488 static void
489 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
490
491 static void
492 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
493
494 static void
495 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
496
497 static void
498 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
499
500 static void
501 read_ofile_symtab PARAMS ((struct partial_symtab *));
502
503 static void
504 process_dies PARAMS ((char *, char *, struct objfile *));
505
506 static void
507 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
508 struct objfile *));
509
510 static struct type *
511 decode_array_element_type PARAMS ((char *));
512
513 static struct type *
514 decode_subscript_data_item PARAMS ((char *, char *));
515
516 static void
517 dwarf_read_array_type PARAMS ((struct dieinfo *));
518
519 static void
520 read_tag_pointer_type PARAMS ((struct dieinfo * dip));
521
522 static void
523 read_tag_string_type PARAMS ((struct dieinfo * dip));
524
525 static void
526 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
527
528 static void
529 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
530
531 static struct type *
532 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
533
534 static struct type *
535 enum_type PARAMS ((struct dieinfo *, struct objfile *));
536
537 static void
538 decode_line_numbers PARAMS ((char *));
539
540 static struct type *
541 decode_die_type PARAMS ((struct dieinfo *));
542
543 static struct type *
544 decode_mod_fund_type PARAMS ((char *));
545
546 static struct type *
547 decode_mod_u_d_type PARAMS ((char *));
548
549 static struct type *
550 decode_modified_type PARAMS ((char *, unsigned int, int));
551
552 static struct type *
553 decode_fund_type PARAMS ((unsigned int));
554
555 static char *
556 create_name PARAMS ((char *, struct obstack *));
557
558 static struct type *
559 lookup_utype PARAMS ((DIE_REF));
560
561 static struct type *
562 alloc_utype PARAMS ((DIE_REF, struct type *));
563
564 static struct symbol *
565 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
566
567 static void
568 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
569 struct type *));
570
571 static int
572 locval PARAMS ((struct dieinfo *));
573
574 static void
575 set_cu_language PARAMS ((struct dieinfo *));
576
577 static struct type *
578 dwarf_fundamental_type PARAMS ((struct objfile *, int));
579
580
581 /*
582
583 LOCAL FUNCTION
584
585 dwarf_fundamental_type -- lookup or create a fundamental type
586
587 SYNOPSIS
588
589 struct type *
590 dwarf_fundamental_type (struct objfile *objfile, int typeid)
591
592 DESCRIPTION
593
594 DWARF version 1 doesn't supply any fundamental type information,
595 so gdb has to construct such types. It has a fixed number of
596 fundamental types that it knows how to construct, which is the
597 union of all types that it knows how to construct for all languages
598 that it knows about. These are enumerated in gdbtypes.h.
599
600 As an example, assume we find a DIE that references a DWARF
601 fundamental type of FT_integer. We first look in the ftypes
602 array to see if we already have such a type, indexed by the
603 gdb internal value of FT_INTEGER. If so, we simply return a
604 pointer to that type. If not, then we ask an appropriate
605 language dependent routine to create a type FT_INTEGER, using
606 defaults reasonable for the current target machine, and install
607 that type in ftypes for future reference.
608
609 RETURNS
610
611 Pointer to a fundamental type.
612
613 */
614
615 static struct type *
616 dwarf_fundamental_type (objfile, typeid)
617 struct objfile *objfile;
618 int typeid;
619 {
620 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
621 {
622 error ("internal error - invalid fundamental type id %d", typeid);
623 }
624
625 /* Look for this particular type in the fundamental type vector. If one is
626 not found, create and install one appropriate for the current language
627 and the current target machine. */
628
629 if (ftypes[typeid] == NULL)
630 {
631 ftypes[typeid] = cu_language_defn->la_fund_type (objfile, typeid);
632 }
633
634 return (ftypes[typeid]);
635 }
636
637 /*
638
639 LOCAL FUNCTION
640
641 set_cu_language -- set local copy of language for compilation unit
642
643 SYNOPSIS
644
645 void
646 set_cu_language (struct dieinfo *dip)
647
648 DESCRIPTION
649
650 Decode the language attribute for a compilation unit DIE and
651 remember what the language was. We use this at various times
652 when processing DIE's for a given compilation unit.
653
654 RETURNS
655
656 No return value.
657
658 */
659
660 static void
661 set_cu_language (dip)
662 struct dieinfo *dip;
663 {
664 switch (dip->at_language)
665 {
666 case LANG_C89:
667 case LANG_C:
668 cu_language = language_c;
669 break;
670 case LANG_C_PLUS_PLUS:
671 cu_language = language_cplus;
672 break;
673 case LANG_CHILL:
674 cu_language = language_chill;
675 break;
676 case LANG_MODULA2:
677 cu_language = language_m2;
678 break;
679 case LANG_FORTRAN77:
680 case LANG_FORTRAN90:
681 cu_language = language_fortran;
682 break;
683 case LANG_ADA83:
684 case LANG_COBOL74:
685 case LANG_COBOL85:
686 case LANG_PASCAL83:
687 /* We don't know anything special about these yet. */
688 cu_language = language_unknown;
689 break;
690 default:
691 /* If no at_language, try to deduce one from the filename */
692 cu_language = deduce_language_from_filename (dip->at_name);
693 break;
694 }
695 cu_language_defn = language_def (cu_language);
696 }
697
698 /*
699
700 GLOBAL FUNCTION
701
702 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
703
704 SYNOPSIS
705
706 void dwarf_build_psymtabs (struct objfile *objfile,
707 struct section_offsets *section_offsets,
708 int mainline, file_ptr dbfoff, unsigned int dbfsize,
709 file_ptr lnoffset, unsigned int lnsize)
710
711 DESCRIPTION
712
713 This function is called upon to build partial symtabs from files
714 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
715
716 It is passed a bfd* containing the DIES
717 and line number information, the corresponding filename for that
718 file, a base address for relocating the symbols, a flag indicating
719 whether or not this debugging information is from a "main symbol
720 table" rather than a shared library or dynamically linked file,
721 and file offset/size pairs for the DIE information and line number
722 information.
723
724 RETURNS
725
726 No return value.
727
728 */
729
730 void
731 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
732 lnoffset, lnsize)
733 struct objfile *objfile;
734 struct section_offsets *section_offsets;
735 int mainline;
736 file_ptr dbfoff;
737 unsigned int dbfsize;
738 file_ptr lnoffset;
739 unsigned int lnsize;
740 {
741 bfd *abfd = objfile->obfd;
742 struct cleanup *back_to;
743
744 current_objfile = objfile;
745 dbsize = dbfsize;
746 dbbase = xmalloc (dbsize);
747 dbroff = 0;
748 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
749 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
750 {
751 free (dbbase);
752 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
753 }
754 back_to = make_cleanup (free, dbbase);
755
756 /* If we are reinitializing, or if we have never loaded syms yet, init.
757 Since we have no idea how many DIES we are looking at, we just guess
758 some arbitrary value. */
759
760 if (mainline || objfile->global_psymbols.size == 0 ||
761 objfile->static_psymbols.size == 0)
762 {
763 init_psymbol_list (objfile, 1024);
764 }
765
766 /* Save the relocation factor where everybody can see it. */
767
768 base_section_offsets = section_offsets;
769 baseaddr = ANOFFSET (section_offsets, 0);
770
771 /* Follow the compilation unit sibling chain, building a partial symbol
772 table entry for each one. Save enough information about each compilation
773 unit to locate the full DWARF information later. */
774
775 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
776
777 do_cleanups (back_to);
778 current_objfile = NULL;
779 }
780
781 /*
782
783 LOCAL FUNCTION
784
785 read_lexical_block_scope -- process all dies in a lexical block
786
787 SYNOPSIS
788
789 static void read_lexical_block_scope (struct dieinfo *dip,
790 char *thisdie, char *enddie)
791
792 DESCRIPTION
793
794 Process all the DIES contained within a lexical block scope.
795 Start a new scope, process the dies, and then close the scope.
796
797 */
798
799 static void
800 read_lexical_block_scope (dip, thisdie, enddie, objfile)
801 struct dieinfo *dip;
802 char *thisdie;
803 char *enddie;
804 struct objfile *objfile;
805 {
806 register struct context_stack *new;
807
808 push_context (0, dip->at_low_pc);
809 process_dies (thisdie + dip->die_length, enddie, objfile);
810 new = pop_context ();
811 if (local_symbols != NULL)
812 {
813 finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
814 dip->at_high_pc, objfile);
815 }
816 local_symbols = new->locals;
817 }
818
819 /*
820
821 LOCAL FUNCTION
822
823 lookup_utype -- look up a user defined type from die reference
824
825 SYNOPSIS
826
827 static type *lookup_utype (DIE_REF die_ref)
828
829 DESCRIPTION
830
831 Given a DIE reference, lookup the user defined type associated with
832 that DIE, if it has been registered already. If not registered, then
833 return NULL. Alloc_utype() can be called to register an empty
834 type for this reference, which will be filled in later when the
835 actual referenced DIE is processed.
836 */
837
838 static struct type *
839 lookup_utype (die_ref)
840 DIE_REF die_ref;
841 {
842 struct type *type = NULL;
843 int utypeidx;
844
845 utypeidx = (die_ref - dbroff) / 4;
846 if ((utypeidx < 0) || (utypeidx >= numutypes))
847 {
848 complain (&bad_die_ref, DIE_ID, DIE_NAME);
849 }
850 else
851 {
852 type = *(utypes + utypeidx);
853 }
854 return (type);
855 }
856
857
858 /*
859
860 LOCAL FUNCTION
861
862 alloc_utype -- add a user defined type for die reference
863
864 SYNOPSIS
865
866 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
867
868 DESCRIPTION
869
870 Given a die reference DIE_REF, and a possible pointer to a user
871 defined type UTYPEP, register that this reference has a user
872 defined type and either use the specified type in UTYPEP or
873 make a new empty type that will be filled in later.
874
875 We should only be called after calling lookup_utype() to verify that
876 there is not currently a type registered for DIE_REF.
877 */
878
879 static struct type *
880 alloc_utype (die_ref, utypep)
881 DIE_REF die_ref;
882 struct type *utypep;
883 {
884 struct type **typep;
885 int utypeidx;
886
887 utypeidx = (die_ref - dbroff) / 4;
888 typep = utypes + utypeidx;
889 if ((utypeidx < 0) || (utypeidx >= numutypes))
890 {
891 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
892 complain (&bad_die_ref, DIE_ID, DIE_NAME);
893 }
894 else if (*typep != NULL)
895 {
896 utypep = *typep;
897 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
898 }
899 else
900 {
901 if (utypep == NULL)
902 {
903 utypep = alloc_type (current_objfile);
904 }
905 *typep = utypep;
906 }
907 return (utypep);
908 }
909
910 /*
911
912 LOCAL FUNCTION
913
914 free_utypes -- free the utypes array and reset pointer & count
915
916 SYNOPSIS
917
918 static void free_utypes (PTR dummy)
919
920 DESCRIPTION
921
922 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
923 and set numutypes back to zero. This ensures that the utypes does not get
924 referenced after being freed.
925 */
926
927 static void
928 free_utypes (dummy)
929 PTR dummy;
930 {
931 free (utypes);
932 utypes = NULL;
933 numutypes = 0;
934 }
935
936
937 /*
938
939 LOCAL FUNCTION
940
941 decode_die_type -- return a type for a specified die
942
943 SYNOPSIS
944
945 static struct type *decode_die_type (struct dieinfo *dip)
946
947 DESCRIPTION
948
949 Given a pointer to a die information structure DIP, decode the
950 type of the die and return a pointer to the decoded type. All
951 dies without specific types default to type int.
952 */
953
954 static struct type *
955 decode_die_type (dip)
956 struct dieinfo *dip;
957 {
958 struct type *type = NULL;
959
960 if (dip->at_fund_type != 0)
961 {
962 type = decode_fund_type (dip->at_fund_type);
963 }
964 else if (dip->at_mod_fund_type != NULL)
965 {
966 type = decode_mod_fund_type (dip->at_mod_fund_type);
967 }
968 else if (dip->at_user_def_type)
969 {
970 if ((type = lookup_utype (dip->at_user_def_type)) == NULL)
971 {
972 type = alloc_utype (dip->at_user_def_type, NULL);
973 }
974 }
975 else if (dip->at_mod_u_d_type)
976 {
977 type = decode_mod_u_d_type (dip->at_mod_u_d_type);
978 }
979 else
980 {
981 type = dwarf_fundamental_type (current_objfile, FT_VOID);
982 }
983 return (type);
984 }
985
986 /*
987
988 LOCAL FUNCTION
989
990 struct_type -- compute and return the type for a struct or union
991
992 SYNOPSIS
993
994 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
995 char *enddie, struct objfile *objfile)
996
997 DESCRIPTION
998
999 Given pointer to a die information structure for a die which
1000 defines a union or structure (and MUST define one or the other),
1001 and pointers to the raw die data that define the range of dies which
1002 define the members, compute and return the user defined type for the
1003 structure or union.
1004 */
1005
1006 static struct type *
1007 struct_type (dip, thisdie, enddie, objfile)
1008 struct dieinfo *dip;
1009 char *thisdie;
1010 char *enddie;
1011 struct objfile *objfile;
1012 {
1013 struct type *type;
1014 struct nextfield
1015 {
1016 struct nextfield *next;
1017 struct field field;
1018 };
1019 struct nextfield *list = NULL;
1020 struct nextfield *new;
1021 int nfields = 0;
1022 int n;
1023 struct dieinfo mbr;
1024 char *nextdie;
1025 int anonymous_size;
1026
1027 if ((type = lookup_utype (dip->die_ref)) == NULL)
1028 {
1029 /* No forward references created an empty type, so install one now */
1030 type = alloc_utype (dip->die_ref, NULL);
1031 }
1032 INIT_CPLUS_SPECIFIC (type);
1033 switch (dip->die_tag)
1034 {
1035 case TAG_class_type:
1036 TYPE_CODE (type) = TYPE_CODE_CLASS;
1037 break;
1038 case TAG_structure_type:
1039 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1040 break;
1041 case TAG_union_type:
1042 TYPE_CODE (type) = TYPE_CODE_UNION;
1043 break;
1044 default:
1045 /* Should never happen */
1046 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1047 complain (&missing_tag, DIE_ID, DIE_NAME);
1048 break;
1049 }
1050 /* Some compilers try to be helpful by inventing "fake" names for
1051 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1052 Thanks, but no thanks... */
1053 if (dip->at_name != NULL
1054 && *dip->at_name != '~'
1055 && *dip->at_name != '.')
1056 {
1057 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1058 "", "", dip->at_name);
1059 }
1060 /* Use whatever size is known. Zero is a valid size. We might however
1061 wish to check has_at_byte_size to make sure that some byte size was
1062 given explicitly, but DWARF doesn't specify that explicit sizes of
1063 zero have to present, so complaining about missing sizes should
1064 probably not be the default. */
1065 TYPE_LENGTH (type) = dip->at_byte_size;
1066 thisdie += dip->die_length;
1067 while (thisdie < enddie)
1068 {
1069 basicdieinfo (&mbr, thisdie, objfile);
1070 completedieinfo (&mbr, objfile);
1071 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1072 {
1073 break;
1074 }
1075 else if (mbr.at_sibling != 0)
1076 {
1077 nextdie = dbbase + mbr.at_sibling - dbroff;
1078 }
1079 else
1080 {
1081 nextdie = thisdie + mbr.die_length;
1082 }
1083 switch (mbr.die_tag)
1084 {
1085 case TAG_member:
1086 /* Get space to record the next field's data. */
1087 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1088 new->next = list;
1089 list = new;
1090 /* Save the data. */
1091 list->field.name =
1092 obsavestring (mbr.at_name, strlen (mbr.at_name),
1093 &objfile->type_obstack);
1094 FIELD_TYPE (list->field) = decode_die_type (&mbr);
1095 FIELD_BITPOS (list->field) = 8 * locval (&mbr);
1096 /* Handle bit fields. */
1097 FIELD_BITSIZE (list->field) = mbr.at_bit_size;
1098 if (BITS_BIG_ENDIAN)
1099 {
1100 /* For big endian bits, the at_bit_offset gives the
1101 additional bit offset from the MSB of the containing
1102 anonymous object to the MSB of the field. We don't
1103 have to do anything special since we don't need to
1104 know the size of the anonymous object. */
1105 FIELD_BITPOS (list->field) += mbr.at_bit_offset;
1106 }
1107 else
1108 {
1109 /* For little endian bits, we need to have a non-zero
1110 at_bit_size, so that we know we are in fact dealing
1111 with a bitfield. Compute the bit offset to the MSB
1112 of the anonymous object, subtract off the number of
1113 bits from the MSB of the field to the MSB of the
1114 object, and then subtract off the number of bits of
1115 the field itself. The result is the bit offset of
1116 the LSB of the field. */
1117 if (mbr.at_bit_size > 0)
1118 {
1119 if (mbr.has_at_byte_size)
1120 {
1121 /* The size of the anonymous object containing
1122 the bit field is explicit, so use the
1123 indicated size (in bytes). */
1124 anonymous_size = mbr.at_byte_size;
1125 }
1126 else
1127 {
1128 /* The size of the anonymous object containing
1129 the bit field matches the size of an object
1130 of the bit field's type. DWARF allows
1131 at_byte_size to be left out in such cases, as
1132 a debug information size optimization. */
1133 anonymous_size = TYPE_LENGTH (list->field.type);
1134 }
1135 FIELD_BITPOS (list->field) +=
1136 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1137 }
1138 }
1139 nfields++;
1140 break;
1141 default:
1142 process_dies (thisdie, nextdie, objfile);
1143 break;
1144 }
1145 thisdie = nextdie;
1146 }
1147 /* Now create the vector of fields, and record how big it is. We may
1148 not even have any fields, if this DIE was generated due to a reference
1149 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1150 set, which clues gdb in to the fact that it needs to search elsewhere
1151 for the full structure definition. */
1152 if (nfields == 0)
1153 {
1154 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1155 }
1156 else
1157 {
1158 TYPE_NFIELDS (type) = nfields;
1159 TYPE_FIELDS (type) = (struct field *)
1160 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1161 /* Copy the saved-up fields into the field vector. */
1162 for (n = nfields; list; list = list->next)
1163 {
1164 TYPE_FIELD (type, --n) = list->field;
1165 }
1166 }
1167 return (type);
1168 }
1169
1170 /*
1171
1172 LOCAL FUNCTION
1173
1174 read_structure_scope -- process all dies within struct or union
1175
1176 SYNOPSIS
1177
1178 static void read_structure_scope (struct dieinfo *dip,
1179 char *thisdie, char *enddie, struct objfile *objfile)
1180
1181 DESCRIPTION
1182
1183 Called when we find the DIE that starts a structure or union
1184 scope (definition) to process all dies that define the members
1185 of the structure or union. DIP is a pointer to the die info
1186 struct for the DIE that names the structure or union.
1187
1188 NOTES
1189
1190 Note that we need to call struct_type regardless of whether or not
1191 the DIE has an at_name attribute, since it might be an anonymous
1192 structure or union. This gets the type entered into our set of
1193 user defined types.
1194
1195 However, if the structure is incomplete (an opaque struct/union)
1196 then suppress creating a symbol table entry for it since gdb only
1197 wants to find the one with the complete definition. Note that if
1198 it is complete, we just call new_symbol, which does it's own
1199 checking about whether the struct/union is anonymous or not (and
1200 suppresses creating a symbol table entry itself).
1201
1202 */
1203
1204 static void
1205 read_structure_scope (dip, thisdie, enddie, objfile)
1206 struct dieinfo *dip;
1207 char *thisdie;
1208 char *enddie;
1209 struct objfile *objfile;
1210 {
1211 struct type *type;
1212 struct symbol *sym;
1213
1214 type = struct_type (dip, thisdie, enddie, objfile);
1215 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1216 {
1217 sym = new_symbol (dip, objfile);
1218 if (sym != NULL)
1219 {
1220 SYMBOL_TYPE (sym) = type;
1221 if (cu_language == language_cplus)
1222 {
1223 synthesize_typedef (dip, objfile, type);
1224 }
1225 }
1226 }
1227 }
1228
1229 /*
1230
1231 LOCAL FUNCTION
1232
1233 decode_array_element_type -- decode type of the array elements
1234
1235 SYNOPSIS
1236
1237 static struct type *decode_array_element_type (char *scan, char *end)
1238
1239 DESCRIPTION
1240
1241 As the last step in decoding the array subscript information for an
1242 array DIE, we need to decode the type of the array elements. We are
1243 passed a pointer to this last part of the subscript information and
1244 must return the appropriate type. If the type attribute is not
1245 recognized, just warn about the problem and return type int.
1246 */
1247
1248 static struct type *
1249 decode_array_element_type (scan)
1250 char *scan;
1251 {
1252 struct type *typep;
1253 DIE_REF die_ref;
1254 unsigned short attribute;
1255 unsigned short fundtype;
1256 int nbytes;
1257
1258 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1259 current_objfile);
1260 scan += SIZEOF_ATTRIBUTE;
1261 if ((nbytes = attribute_size (attribute)) == -1)
1262 {
1263 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1264 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1265 }
1266 else
1267 {
1268 switch (attribute)
1269 {
1270 case AT_fund_type:
1271 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1272 current_objfile);
1273 typep = decode_fund_type (fundtype);
1274 break;
1275 case AT_mod_fund_type:
1276 typep = decode_mod_fund_type (scan);
1277 break;
1278 case AT_user_def_type:
1279 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1280 current_objfile);
1281 if ((typep = lookup_utype (die_ref)) == NULL)
1282 {
1283 typep = alloc_utype (die_ref, NULL);
1284 }
1285 break;
1286 case AT_mod_u_d_type:
1287 typep = decode_mod_u_d_type (scan);
1288 break;
1289 default:
1290 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1291 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1292 break;
1293 }
1294 }
1295 return (typep);
1296 }
1297
1298 /*
1299
1300 LOCAL FUNCTION
1301
1302 decode_subscript_data_item -- decode array subscript item
1303
1304 SYNOPSIS
1305
1306 static struct type *
1307 decode_subscript_data_item (char *scan, char *end)
1308
1309 DESCRIPTION
1310
1311 The array subscripts and the data type of the elements of an
1312 array are described by a list of data items, stored as a block
1313 of contiguous bytes. There is a data item describing each array
1314 dimension, and a final data item describing the element type.
1315 The data items are ordered the same as their appearance in the
1316 source (I.E. leftmost dimension first, next to leftmost second,
1317 etc).
1318
1319 The data items describing each array dimension consist of four
1320 parts: (1) a format specifier, (2) type type of the subscript
1321 index, (3) a description of the low bound of the array dimension,
1322 and (4) a description of the high bound of the array dimension.
1323
1324 The last data item is the description of the type of each of
1325 the array elements.
1326
1327 We are passed a pointer to the start of the block of bytes
1328 containing the remaining data items, and a pointer to the first
1329 byte past the data. This function recursively decodes the
1330 remaining data items and returns a type.
1331
1332 If we somehow fail to decode some data, we complain about it
1333 and return a type "array of int".
1334
1335 BUGS
1336 FIXME: This code only implements the forms currently used
1337 by the AT&T and GNU C compilers.
1338
1339 The end pointer is supplied for error checking, maybe we should
1340 use it for that...
1341 */
1342
1343 static struct type *
1344 decode_subscript_data_item (scan, end)
1345 char *scan;
1346 char *end;
1347 {
1348 struct type *typep = NULL; /* Array type we are building */
1349 struct type *nexttype; /* Type of each element (may be array) */
1350 struct type *indextype; /* Type of this index */
1351 struct type *rangetype;
1352 unsigned int format;
1353 unsigned short fundtype;
1354 unsigned long lowbound;
1355 unsigned long highbound;
1356 int nbytes;
1357
1358 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1359 current_objfile);
1360 scan += SIZEOF_FORMAT_SPECIFIER;
1361 switch (format)
1362 {
1363 case FMT_ET:
1364 typep = decode_array_element_type (scan);
1365 break;
1366 case FMT_FT_C_C:
1367 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1368 current_objfile);
1369 indextype = decode_fund_type (fundtype);
1370 scan += SIZEOF_FMT_FT;
1371 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1372 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1373 scan += nbytes;
1374 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1375 scan += nbytes;
1376 nexttype = decode_subscript_data_item (scan, end);
1377 if (nexttype == NULL)
1378 {
1379 /* Munged subscript data or other problem, fake it. */
1380 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1381 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1382 }
1383 rangetype = create_range_type ((struct type *) NULL, indextype,
1384 lowbound, highbound);
1385 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1386 break;
1387 case FMT_FT_C_X:
1388 case FMT_FT_X_C:
1389 case FMT_FT_X_X:
1390 case FMT_UT_C_C:
1391 case FMT_UT_C_X:
1392 case FMT_UT_X_C:
1393 case FMT_UT_X_X:
1394 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1395 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1396 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1397 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1398 break;
1399 default:
1400 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1401 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1402 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1403 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1404 break;
1405 }
1406 return (typep);
1407 }
1408
1409 /*
1410
1411 LOCAL FUNCTION
1412
1413 dwarf_read_array_type -- read TAG_array_type DIE
1414
1415 SYNOPSIS
1416
1417 static void dwarf_read_array_type (struct dieinfo *dip)
1418
1419 DESCRIPTION
1420
1421 Extract all information from a TAG_array_type DIE and add to
1422 the user defined type vector.
1423 */
1424
1425 static void
1426 dwarf_read_array_type (dip)
1427 struct dieinfo *dip;
1428 {
1429 struct type *type;
1430 struct type *utype;
1431 char *sub;
1432 char *subend;
1433 unsigned short blocksz;
1434 int nbytes;
1435
1436 if (dip->at_ordering != ORD_row_major)
1437 {
1438 /* FIXME: Can gdb even handle column major arrays? */
1439 complain (&not_row_major, DIE_ID, DIE_NAME);
1440 }
1441 if ((sub = dip->at_subscr_data) != NULL)
1442 {
1443 nbytes = attribute_size (AT_subscr_data);
1444 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1445 subend = sub + nbytes + blocksz;
1446 sub += nbytes;
1447 type = decode_subscript_data_item (sub, subend);
1448 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1449 {
1450 /* Install user defined type that has not been referenced yet. */
1451 alloc_utype (dip->die_ref, type);
1452 }
1453 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1454 {
1455 /* Ick! A forward ref has already generated a blank type in our
1456 slot, and this type probably already has things pointing to it
1457 (which is what caused it to be created in the first place).
1458 If it's just a place holder we can plop our fully defined type
1459 on top of it. We can't recover the space allocated for our
1460 new type since it might be on an obstack, but we could reuse
1461 it if we kept a list of them, but it might not be worth it
1462 (FIXME). */
1463 *utype = *type;
1464 }
1465 else
1466 {
1467 /* Double ick! Not only is a type already in our slot, but
1468 someone has decorated it. Complain and leave it alone. */
1469 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1470 }
1471 }
1472 }
1473
1474 /*
1475
1476 LOCAL FUNCTION
1477
1478 read_tag_pointer_type -- read TAG_pointer_type DIE
1479
1480 SYNOPSIS
1481
1482 static void read_tag_pointer_type (struct dieinfo *dip)
1483
1484 DESCRIPTION
1485
1486 Extract all information from a TAG_pointer_type DIE and add to
1487 the user defined type vector.
1488 */
1489
1490 static void
1491 read_tag_pointer_type (dip)
1492 struct dieinfo *dip;
1493 {
1494 struct type *type;
1495 struct type *utype;
1496
1497 type = decode_die_type (dip);
1498 if ((utype = lookup_utype (dip->die_ref)) == NULL)
1499 {
1500 utype = lookup_pointer_type (type);
1501 alloc_utype (dip->die_ref, utype);
1502 }
1503 else
1504 {
1505 TYPE_TARGET_TYPE (utype) = type;
1506 TYPE_POINTER_TYPE (type) = utype;
1507
1508 /* We assume the machine has only one representation for pointers! */
1509 /* FIXME: Possably a poor assumption */
1510 TYPE_LENGTH (utype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
1511 TYPE_CODE (utype) = TYPE_CODE_PTR;
1512 }
1513 }
1514
1515 /*
1516
1517 LOCAL FUNCTION
1518
1519 read_tag_string_type -- read TAG_string_type DIE
1520
1521 SYNOPSIS
1522
1523 static void read_tag_string_type (struct dieinfo *dip)
1524
1525 DESCRIPTION
1526
1527 Extract all information from a TAG_string_type DIE and add to
1528 the user defined type vector. It isn't really a user defined
1529 type, but it behaves like one, with other DIE's using an
1530 AT_user_def_type attribute to reference it.
1531 */
1532
1533 static void
1534 read_tag_string_type (dip)
1535 struct dieinfo *dip;
1536 {
1537 struct type *utype;
1538 struct type *indextype;
1539 struct type *rangetype;
1540 unsigned long lowbound = 0;
1541 unsigned long highbound;
1542
1543 if (dip->has_at_byte_size)
1544 {
1545 /* A fixed bounds string */
1546 highbound = dip->at_byte_size - 1;
1547 }
1548 else
1549 {
1550 /* A varying length string. Stub for now. (FIXME) */
1551 highbound = 1;
1552 }
1553 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1554 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1555 highbound);
1556
1557 utype = lookup_utype (dip->die_ref);
1558 if (utype == NULL)
1559 {
1560 /* No type defined, go ahead and create a blank one to use. */
1561 utype = alloc_utype (dip->die_ref, (struct type *) NULL);
1562 }
1563 else
1564 {
1565 /* Already a type in our slot due to a forward reference. Make sure it
1566 is a blank one. If not, complain and leave it alone. */
1567 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1568 {
1569 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1570 return;
1571 }
1572 }
1573
1574 /* Create the string type using the blank type we either found or created. */
1575 utype = create_string_type (utype, rangetype);
1576 }
1577
1578 /*
1579
1580 LOCAL FUNCTION
1581
1582 read_subroutine_type -- process TAG_subroutine_type dies
1583
1584 SYNOPSIS
1585
1586 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1587 char *enddie)
1588
1589 DESCRIPTION
1590
1591 Handle DIES due to C code like:
1592
1593 struct foo {
1594 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1595 int b;
1596 };
1597
1598 NOTES
1599
1600 The parameter DIES are currently ignored. See if gdb has a way to
1601 include this info in it's type system, and decode them if so. Is
1602 this what the type structure's "arg_types" field is for? (FIXME)
1603 */
1604
1605 static void
1606 read_subroutine_type (dip, thisdie, enddie)
1607 struct dieinfo *dip;
1608 char *thisdie;
1609 char *enddie;
1610 {
1611 struct type *type; /* Type that this function returns */
1612 struct type *ftype; /* Function that returns above type */
1613
1614 /* Decode the type that this subroutine returns */
1615
1616 type = decode_die_type (dip);
1617
1618 /* Check to see if we already have a partially constructed user
1619 defined type for this DIE, from a forward reference. */
1620
1621 if ((ftype = lookup_utype (dip->die_ref)) == NULL)
1622 {
1623 /* This is the first reference to one of these types. Make
1624 a new one and place it in the user defined types. */
1625 ftype = lookup_function_type (type);
1626 alloc_utype (dip->die_ref, ftype);
1627 }
1628 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1629 {
1630 /* We have an existing partially constructed type, so bash it
1631 into the correct type. */
1632 TYPE_TARGET_TYPE (ftype) = type;
1633 TYPE_LENGTH (ftype) = 1;
1634 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1635 }
1636 else
1637 {
1638 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1639 }
1640 }
1641
1642 /*
1643
1644 LOCAL FUNCTION
1645
1646 read_enumeration -- process dies which define an enumeration
1647
1648 SYNOPSIS
1649
1650 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1651 char *enddie, struct objfile *objfile)
1652
1653 DESCRIPTION
1654
1655 Given a pointer to a die which begins an enumeration, process all
1656 the dies that define the members of the enumeration.
1657
1658 NOTES
1659
1660 Note that we need to call enum_type regardless of whether or not we
1661 have a symbol, since we might have an enum without a tag name (thus
1662 no symbol for the tagname).
1663 */
1664
1665 static void
1666 read_enumeration (dip, thisdie, enddie, objfile)
1667 struct dieinfo *dip;
1668 char *thisdie;
1669 char *enddie;
1670 struct objfile *objfile;
1671 {
1672 struct type *type;
1673 struct symbol *sym;
1674
1675 type = enum_type (dip, objfile);
1676 sym = new_symbol (dip, objfile);
1677 if (sym != NULL)
1678 {
1679 SYMBOL_TYPE (sym) = type;
1680 if (cu_language == language_cplus)
1681 {
1682 synthesize_typedef (dip, objfile, type);
1683 }
1684 }
1685 }
1686
1687 /*
1688
1689 LOCAL FUNCTION
1690
1691 enum_type -- decode and return a type for an enumeration
1692
1693 SYNOPSIS
1694
1695 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1696
1697 DESCRIPTION
1698
1699 Given a pointer to a die information structure for the die which
1700 starts an enumeration, process all the dies that define the members
1701 of the enumeration and return a type pointer for the enumeration.
1702
1703 At the same time, for each member of the enumeration, create a
1704 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1705 and give it the type of the enumeration itself.
1706
1707 NOTES
1708
1709 Note that the DWARF specification explicitly mandates that enum
1710 constants occur in reverse order from the source program order,
1711 for "consistency" and because this ordering is easier for many
1712 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1713 Entries). Because gdb wants to see the enum members in program
1714 source order, we have to ensure that the order gets reversed while
1715 we are processing them.
1716 */
1717
1718 static struct type *
1719 enum_type (dip, objfile)
1720 struct dieinfo *dip;
1721 struct objfile *objfile;
1722 {
1723 struct type *type;
1724 struct nextfield
1725 {
1726 struct nextfield *next;
1727 struct field field;
1728 };
1729 struct nextfield *list = NULL;
1730 struct nextfield *new;
1731 int nfields = 0;
1732 int n;
1733 char *scan;
1734 char *listend;
1735 unsigned short blocksz;
1736 struct symbol *sym;
1737 int nbytes;
1738 int unsigned_enum = 1;
1739
1740 if ((type = lookup_utype (dip->die_ref)) == NULL)
1741 {
1742 /* No forward references created an empty type, so install one now */
1743 type = alloc_utype (dip->die_ref, NULL);
1744 }
1745 TYPE_CODE (type) = TYPE_CODE_ENUM;
1746 /* Some compilers try to be helpful by inventing "fake" names for
1747 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1748 Thanks, but no thanks... */
1749 if (dip->at_name != NULL
1750 && *dip->at_name != '~'
1751 && *dip->at_name != '.')
1752 {
1753 TYPE_TAG_NAME (type) = obconcat (&objfile->type_obstack,
1754 "", "", dip->at_name);
1755 }
1756 if (dip->at_byte_size != 0)
1757 {
1758 TYPE_LENGTH (type) = dip->at_byte_size;
1759 }
1760 if ((scan = dip->at_element_list) != NULL)
1761 {
1762 if (dip->short_element_list)
1763 {
1764 nbytes = attribute_size (AT_short_element_list);
1765 }
1766 else
1767 {
1768 nbytes = attribute_size (AT_element_list);
1769 }
1770 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1771 listend = scan + nbytes + blocksz;
1772 scan += nbytes;
1773 while (scan < listend)
1774 {
1775 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1776 new->next = list;
1777 list = new;
1778 FIELD_TYPE (list->field) = NULL;
1779 FIELD_BITSIZE (list->field) = 0;
1780 FIELD_BITPOS (list->field) =
1781 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1782 objfile);
1783 scan += TARGET_FT_LONG_SIZE (objfile);
1784 list->field.name = obsavestring (scan, strlen (scan),
1785 &objfile->type_obstack);
1786 scan += strlen (scan) + 1;
1787 nfields++;
1788 /* Handcraft a new symbol for this enum member. */
1789 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1790 sizeof (struct symbol));
1791 memset (sym, 0, sizeof (struct symbol));
1792 SYMBOL_NAME (sym) = create_name (list->field.name,
1793 &objfile->symbol_obstack);
1794 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1795 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1796 SYMBOL_CLASS (sym) = LOC_CONST;
1797 SYMBOL_TYPE (sym) = type;
1798 SYMBOL_VALUE (sym) = FIELD_BITPOS (list->field);
1799 if (SYMBOL_VALUE (sym) < 0)
1800 unsigned_enum = 0;
1801 add_symbol_to_list (sym, list_in_scope);
1802 }
1803 /* Now create the vector of fields, and record how big it is. This is
1804 where we reverse the order, by pulling the members off the list in
1805 reverse order from how they were inserted. If we have no fields
1806 (this is apparently possible in C++) then skip building a field
1807 vector. */
1808 if (nfields > 0)
1809 {
1810 if (unsigned_enum)
1811 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1812 TYPE_NFIELDS (type) = nfields;
1813 TYPE_FIELDS (type) = (struct field *)
1814 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1815 /* Copy the saved-up fields into the field vector. */
1816 for (n = 0; (n < nfields) && (list != NULL); list = list->next)
1817 {
1818 TYPE_FIELD (type, n++) = list->field;
1819 }
1820 }
1821 }
1822 return (type);
1823 }
1824
1825 /*
1826
1827 LOCAL FUNCTION
1828
1829 read_func_scope -- process all dies within a function scope
1830
1831 DESCRIPTION
1832
1833 Process all dies within a given function scope. We are passed
1834 a die information structure pointer DIP for the die which
1835 starts the function scope, and pointers into the raw die data
1836 that define the dies within the function scope.
1837
1838 For now, we ignore lexical block scopes within the function.
1839 The problem is that AT&T cc does not define a DWARF lexical
1840 block scope for the function itself, while gcc defines a
1841 lexical block scope for the function. We need to think about
1842 how to handle this difference, or if it is even a problem.
1843 (FIXME)
1844 */
1845
1846 static void
1847 read_func_scope (dip, thisdie, enddie, objfile)
1848 struct dieinfo *dip;
1849 char *thisdie;
1850 char *enddie;
1851 struct objfile *objfile;
1852 {
1853 register struct context_stack *new;
1854
1855 /* AT_name is absent if the function is described with an
1856 AT_abstract_origin tag.
1857 Ignore the function description for now to avoid GDB core dumps.
1858 FIXME: Add code to handle AT_abstract_origin tags properly. */
1859 if (dip->at_name == NULL)
1860 {
1861 complain (&missing_at_name, DIE_ID);
1862 return;
1863 }
1864
1865 if (objfile->ei.entry_point >= dip->at_low_pc &&
1866 objfile->ei.entry_point < dip->at_high_pc)
1867 {
1868 objfile->ei.entry_func_lowpc = dip->at_low_pc;
1869 objfile->ei.entry_func_highpc = dip->at_high_pc;
1870 }
1871 if (STREQ (dip->at_name, "main")) /* FIXME: hardwired name */
1872 {
1873 objfile->ei.main_func_lowpc = dip->at_low_pc;
1874 objfile->ei.main_func_highpc = dip->at_high_pc;
1875 }
1876 new = push_context (0, dip->at_low_pc);
1877 new->name = new_symbol (dip, objfile);
1878 list_in_scope = &local_symbols;
1879 process_dies (thisdie + dip->die_length, enddie, objfile);
1880 new = pop_context ();
1881 /* Make a block for the local symbols within. */
1882 finish_block (new->name, &local_symbols, new->old_blocks,
1883 new->start_addr, dip->at_high_pc, objfile);
1884 list_in_scope = &file_symbols;
1885 }
1886
1887
1888 /*
1889
1890 LOCAL FUNCTION
1891
1892 handle_producer -- process the AT_producer attribute
1893
1894 DESCRIPTION
1895
1896 Perform any operations that depend on finding a particular
1897 AT_producer attribute.
1898
1899 */
1900
1901 static void
1902 handle_producer (producer)
1903 char *producer;
1904 {
1905
1906 /* If this compilation unit was compiled with g++ or gcc, then set the
1907 processing_gcc_compilation flag. */
1908
1909 if (STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER)))
1910 {
1911 char version = producer[strlen (GCC_PRODUCER)];
1912 processing_gcc_compilation = (version == '2' ? 2 : 1);
1913 }
1914 else
1915 {
1916 processing_gcc_compilation =
1917 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1918 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER));
1919 }
1920
1921 /* Select a demangling style if we can identify the producer and if
1922 the current style is auto. We leave the current style alone if it
1923 is not auto. We also leave the demangling style alone if we find a
1924 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1925
1926 if (AUTO_DEMANGLING)
1927 {
1928 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1929 {
1930 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1931 }
1932 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1933 {
1934 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1935 }
1936 }
1937 }
1938
1939
1940 /*
1941
1942 LOCAL FUNCTION
1943
1944 read_file_scope -- process all dies within a file scope
1945
1946 DESCRIPTION
1947
1948 Process all dies within a given file scope. We are passed a
1949 pointer to the die information structure for the die which
1950 starts the file scope, and pointers into the raw die data which
1951 mark the range of dies within the file scope.
1952
1953 When the partial symbol table is built, the file offset for the line
1954 number table for each compilation unit is saved in the partial symbol
1955 table entry for that compilation unit. As the symbols for each
1956 compilation unit are read, the line number table is read into memory
1957 and the variable lnbase is set to point to it. Thus all we have to
1958 do is use lnbase to access the line number table for the current
1959 compilation unit.
1960 */
1961
1962 static void
1963 read_file_scope (dip, thisdie, enddie, objfile)
1964 struct dieinfo *dip;
1965 char *thisdie;
1966 char *enddie;
1967 struct objfile *objfile;
1968 {
1969 struct cleanup *back_to;
1970 struct symtab *symtab;
1971
1972 if (objfile->ei.entry_point >= dip->at_low_pc &&
1973 objfile->ei.entry_point < dip->at_high_pc)
1974 {
1975 objfile->ei.entry_file_lowpc = dip->at_low_pc;
1976 objfile->ei.entry_file_highpc = dip->at_high_pc;
1977 }
1978 set_cu_language (dip);
1979 if (dip->at_producer != NULL)
1980 {
1981 handle_producer (dip->at_producer);
1982 }
1983 numutypes = (enddie - thisdie) / 4;
1984 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1985 back_to = make_cleanup (free_utypes, NULL);
1986 memset (utypes, 0, numutypes * sizeof (struct type *));
1987 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1988 start_symtab (dip->at_name, dip->at_comp_dir, dip->at_low_pc);
1989 record_debugformat ("DWARF 1");
1990 decode_line_numbers (lnbase);
1991 process_dies (thisdie + dip->die_length, enddie, objfile);
1992
1993 symtab = end_symtab (dip->at_high_pc, objfile, 0);
1994 if (symtab != NULL)
1995 {
1996 symtab->language = cu_language;
1997 }
1998 do_cleanups (back_to);
1999 }
2000
2001 /*
2002
2003 LOCAL FUNCTION
2004
2005 process_dies -- process a range of DWARF Information Entries
2006
2007 SYNOPSIS
2008
2009 static void process_dies (char *thisdie, char *enddie,
2010 struct objfile *objfile)
2011
2012 DESCRIPTION
2013
2014 Process all DIE's in a specified range. May be (and almost
2015 certainly will be) called recursively.
2016 */
2017
2018 static void
2019 process_dies (thisdie, enddie, objfile)
2020 char *thisdie;
2021 char *enddie;
2022 struct objfile *objfile;
2023 {
2024 char *nextdie;
2025 struct dieinfo di;
2026
2027 while (thisdie < enddie)
2028 {
2029 basicdieinfo (&di, thisdie, objfile);
2030 if (di.die_length < SIZEOF_DIE_LENGTH)
2031 {
2032 break;
2033 }
2034 else if (di.die_tag == TAG_padding)
2035 {
2036 nextdie = thisdie + di.die_length;
2037 }
2038 else
2039 {
2040 completedieinfo (&di, objfile);
2041 if (di.at_sibling != 0)
2042 {
2043 nextdie = dbbase + di.at_sibling - dbroff;
2044 }
2045 else
2046 {
2047 nextdie = thisdie + di.die_length;
2048 }
2049 #ifdef SMASH_TEXT_ADDRESS
2050 /* I think that these are always text, not data, addresses. */
2051 SMASH_TEXT_ADDRESS (di.at_low_pc);
2052 SMASH_TEXT_ADDRESS (di.at_high_pc);
2053 #endif
2054 switch (di.die_tag)
2055 {
2056 case TAG_compile_unit:
2057 /* Skip Tag_compile_unit if we are already inside a compilation
2058 unit, we are unable to handle nested compilation units
2059 properly (FIXME). */
2060 if (current_subfile == NULL)
2061 read_file_scope (&di, thisdie, nextdie, objfile);
2062 else
2063 nextdie = thisdie + di.die_length;
2064 break;
2065 case TAG_global_subroutine:
2066 case TAG_subroutine:
2067 if (di.has_at_low_pc)
2068 {
2069 read_func_scope (&di, thisdie, nextdie, objfile);
2070 }
2071 break;
2072 case TAG_lexical_block:
2073 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2074 break;
2075 case TAG_class_type:
2076 case TAG_structure_type:
2077 case TAG_union_type:
2078 read_structure_scope (&di, thisdie, nextdie, objfile);
2079 break;
2080 case TAG_enumeration_type:
2081 read_enumeration (&di, thisdie, nextdie, objfile);
2082 break;
2083 case TAG_subroutine_type:
2084 read_subroutine_type (&di, thisdie, nextdie);
2085 break;
2086 case TAG_array_type:
2087 dwarf_read_array_type (&di);
2088 break;
2089 case TAG_pointer_type:
2090 read_tag_pointer_type (&di);
2091 break;
2092 case TAG_string_type:
2093 read_tag_string_type (&di);
2094 break;
2095 default:
2096 new_symbol (&di, objfile);
2097 break;
2098 }
2099 }
2100 thisdie = nextdie;
2101 }
2102 }
2103
2104 /*
2105
2106 LOCAL FUNCTION
2107
2108 decode_line_numbers -- decode a line number table fragment
2109
2110 SYNOPSIS
2111
2112 static void decode_line_numbers (char *tblscan, char *tblend,
2113 long length, long base, long line, long pc)
2114
2115 DESCRIPTION
2116
2117 Translate the DWARF line number information to gdb form.
2118
2119 The ".line" section contains one or more line number tables, one for
2120 each ".line" section from the objects that were linked.
2121
2122 The AT_stmt_list attribute for each TAG_source_file entry in the
2123 ".debug" section contains the offset into the ".line" section for the
2124 start of the table for that file.
2125
2126 The table itself has the following structure:
2127
2128 <table length><base address><source statement entry>
2129 4 bytes 4 bytes 10 bytes
2130
2131 The table length is the total size of the table, including the 4 bytes
2132 for the length information.
2133
2134 The base address is the address of the first instruction generated
2135 for the source file.
2136
2137 Each source statement entry has the following structure:
2138
2139 <line number><statement position><address delta>
2140 4 bytes 2 bytes 4 bytes
2141
2142 The line number is relative to the start of the file, starting with
2143 line 1.
2144
2145 The statement position either -1 (0xFFFF) or the number of characters
2146 from the beginning of the line to the beginning of the statement.
2147
2148 The address delta is the difference between the base address and
2149 the address of the first instruction for the statement.
2150
2151 Note that we must copy the bytes from the packed table to our local
2152 variables before attempting to use them, to avoid alignment problems
2153 on some machines, particularly RISC processors.
2154
2155 BUGS
2156
2157 Does gdb expect the line numbers to be sorted? They are now by
2158 chance/luck, but are not required to be. (FIXME)
2159
2160 The line with number 0 is unused, gdb apparently can discover the
2161 span of the last line some other way. How? (FIXME)
2162 */
2163
2164 static void
2165 decode_line_numbers (linetable)
2166 char *linetable;
2167 {
2168 char *tblscan;
2169 char *tblend;
2170 unsigned long length;
2171 unsigned long base;
2172 unsigned long line;
2173 unsigned long pc;
2174
2175 if (linetable != NULL)
2176 {
2177 tblscan = tblend = linetable;
2178 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2179 current_objfile);
2180 tblscan += SIZEOF_LINETBL_LENGTH;
2181 tblend += length;
2182 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2183 GET_UNSIGNED, current_objfile);
2184 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2185 base += baseaddr;
2186 while (tblscan < tblend)
2187 {
2188 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2189 current_objfile);
2190 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2191 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2192 current_objfile);
2193 tblscan += SIZEOF_LINETBL_DELTA;
2194 pc += base;
2195 if (line != 0)
2196 {
2197 record_line (current_subfile, line, pc);
2198 }
2199 }
2200 }
2201 }
2202
2203 /*
2204
2205 LOCAL FUNCTION
2206
2207 locval -- compute the value of a location attribute
2208
2209 SYNOPSIS
2210
2211 static int locval (struct dieinfo *dip)
2212
2213 DESCRIPTION
2214
2215 Given pointer to a string of bytes that define a location, compute
2216 the location and return the value.
2217 A location description containing no atoms indicates that the
2218 object is optimized out. The optimized_out flag is set for those,
2219 the return value is meaningless.
2220
2221 When computing values involving the current value of the frame pointer,
2222 the value zero is used, which results in a value relative to the frame
2223 pointer, rather than the absolute value. This is what GDB wants
2224 anyway.
2225
2226 When the result is a register number, the isreg flag is set, otherwise
2227 it is cleared. This is a kludge until we figure out a better
2228 way to handle the problem. Gdb's design does not mesh well with the
2229 DWARF notion of a location computing interpreter, which is a shame
2230 because the flexibility goes unused.
2231
2232 NOTES
2233
2234 Note that stack[0] is unused except as a default error return.
2235 Note that stack overflow is not yet handled.
2236 */
2237
2238 static int
2239 locval (dip)
2240 struct dieinfo *dip;
2241 {
2242 unsigned short nbytes;
2243 unsigned short locsize;
2244 auto long stack[64];
2245 int stacki;
2246 char *loc;
2247 char *end;
2248 int loc_atom_code;
2249 int loc_value_size;
2250
2251 loc = dip->at_location;
2252 nbytes = attribute_size (AT_location);
2253 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2254 loc += nbytes;
2255 end = loc + locsize;
2256 stacki = 0;
2257 stack[stacki] = 0;
2258 dip->isreg = 0;
2259 dip->offreg = 0;
2260 dip->optimized_out = 1;
2261 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2262 while (loc < end)
2263 {
2264 dip->optimized_out = 0;
2265 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2266 current_objfile);
2267 loc += SIZEOF_LOC_ATOM_CODE;
2268 switch (loc_atom_code)
2269 {
2270 case 0:
2271 /* error */
2272 loc = end;
2273 break;
2274 case OP_REG:
2275 /* push register (number) */
2276 stack[++stacki]
2277 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2278 GET_UNSIGNED,
2279 current_objfile));
2280 loc += loc_value_size;
2281 dip->isreg = 1;
2282 break;
2283 case OP_BASEREG:
2284 /* push value of register (number) */
2285 /* Actually, we compute the value as if register has 0, so the
2286 value ends up being the offset from that register. */
2287 dip->offreg = 1;
2288 dip->basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2289 current_objfile);
2290 loc += loc_value_size;
2291 stack[++stacki] = 0;
2292 break;
2293 case OP_ADDR:
2294 /* push address (relocated address) */
2295 stack[++stacki] = target_to_host (loc, loc_value_size,
2296 GET_UNSIGNED, current_objfile);
2297 loc += loc_value_size;
2298 break;
2299 case OP_CONST:
2300 /* push constant (number) FIXME: signed or unsigned! */
2301 stack[++stacki] = target_to_host (loc, loc_value_size,
2302 GET_SIGNED, current_objfile);
2303 loc += loc_value_size;
2304 break;
2305 case OP_DEREF2:
2306 /* pop, deref and push 2 bytes (as a long) */
2307 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2308 break;
2309 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2310 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2311 break;
2312 case OP_ADD: /* pop top 2 items, add, push result */
2313 stack[stacki - 1] += stack[stacki];
2314 stacki--;
2315 break;
2316 }
2317 }
2318 return (stack[stacki]);
2319 }
2320
2321 /*
2322
2323 LOCAL FUNCTION
2324
2325 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2326
2327 SYNOPSIS
2328
2329 static void read_ofile_symtab (struct partial_symtab *pst)
2330
2331 DESCRIPTION
2332
2333 When expanding a partial symbol table entry to a full symbol table
2334 entry, this is the function that gets called to read in the symbols
2335 for the compilation unit. A pointer to the newly constructed symtab,
2336 which is now the new first one on the objfile's symtab list, is
2337 stashed in the partial symbol table entry.
2338 */
2339
2340 static void
2341 read_ofile_symtab (pst)
2342 struct partial_symtab *pst;
2343 {
2344 struct cleanup *back_to;
2345 unsigned long lnsize;
2346 file_ptr foffset;
2347 bfd *abfd;
2348 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2349
2350 abfd = pst->objfile->obfd;
2351 current_objfile = pst->objfile;
2352
2353 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2354 unit, seek to the location in the file, and read in all the DIE's. */
2355
2356 diecount = 0;
2357 dbsize = DBLENGTH (pst);
2358 dbbase = xmalloc (dbsize);
2359 dbroff = DBROFF (pst);
2360 foffset = DBFOFF (pst) + dbroff;
2361 base_section_offsets = pst->section_offsets;
2362 baseaddr = ANOFFSET (pst->section_offsets, 0);
2363 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2364 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2365 {
2366 free (dbbase);
2367 error ("can't read DWARF data");
2368 }
2369 back_to = make_cleanup (free, dbbase);
2370
2371 /* If there is a line number table associated with this compilation unit
2372 then read the size of this fragment in bytes, from the fragment itself.
2373 Allocate a buffer for the fragment and read it in for future
2374 processing. */
2375
2376 lnbase = NULL;
2377 if (LNFOFF (pst))
2378 {
2379 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2380 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2381 sizeof (lnsizedata)))
2382 {
2383 error ("can't read DWARF line number table size");
2384 }
2385 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2386 GET_UNSIGNED, pst->objfile);
2387 lnbase = xmalloc (lnsize);
2388 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2389 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2390 {
2391 free (lnbase);
2392 error ("can't read DWARF line numbers");
2393 }
2394 make_cleanup (free, lnbase);
2395 }
2396
2397 process_dies (dbbase, dbbase + dbsize, pst->objfile);
2398 do_cleanups (back_to);
2399 current_objfile = NULL;
2400 pst->symtab = pst->objfile->symtabs;
2401 }
2402
2403 /*
2404
2405 LOCAL FUNCTION
2406
2407 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2408
2409 SYNOPSIS
2410
2411 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2412
2413 DESCRIPTION
2414
2415 Called once for each partial symbol table entry that needs to be
2416 expanded into a full symbol table entry.
2417
2418 */
2419
2420 static void
2421 psymtab_to_symtab_1 (pst)
2422 struct partial_symtab *pst;
2423 {
2424 int i;
2425 struct cleanup *old_chain;
2426
2427 if (pst != NULL)
2428 {
2429 if (pst->readin)
2430 {
2431 warning ("psymtab for %s already read in. Shouldn't happen.",
2432 pst->filename);
2433 }
2434 else
2435 {
2436 /* Read in all partial symtabs on which this one is dependent */
2437 for (i = 0; i < pst->number_of_dependencies; i++)
2438 {
2439 if (!pst->dependencies[i]->readin)
2440 {
2441 /* Inform about additional files that need to be read in. */
2442 if (info_verbose)
2443 {
2444 fputs_filtered (" ", gdb_stdout);
2445 wrap_here ("");
2446 fputs_filtered ("and ", gdb_stdout);
2447 wrap_here ("");
2448 printf_filtered ("%s...",
2449 pst->dependencies[i]->filename);
2450 wrap_here ("");
2451 gdb_flush (gdb_stdout); /* Flush output */
2452 }
2453 psymtab_to_symtab_1 (pst->dependencies[i]);
2454 }
2455 }
2456 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2457 {
2458 buildsym_init ();
2459 old_chain = make_cleanup ((make_cleanup_func)
2460 really_free_pendings, 0);
2461 read_ofile_symtab (pst);
2462 if (info_verbose)
2463 {
2464 printf_filtered ("%d DIE's, sorting...", diecount);
2465 wrap_here ("");
2466 gdb_flush (gdb_stdout);
2467 }
2468 sort_symtab_syms (pst->symtab);
2469 do_cleanups (old_chain);
2470 }
2471 pst->readin = 1;
2472 }
2473 }
2474 }
2475
2476 /*
2477
2478 LOCAL FUNCTION
2479
2480 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2481
2482 SYNOPSIS
2483
2484 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2485
2486 DESCRIPTION
2487
2488 This is the DWARF support entry point for building a full symbol
2489 table entry from a partial symbol table entry. We are passed a
2490 pointer to the partial symbol table entry that needs to be expanded.
2491
2492 */
2493
2494 static void
2495 dwarf_psymtab_to_symtab (pst)
2496 struct partial_symtab *pst;
2497 {
2498
2499 if (pst != NULL)
2500 {
2501 if (pst->readin)
2502 {
2503 warning ("psymtab for %s already read in. Shouldn't happen.",
2504 pst->filename);
2505 }
2506 else
2507 {
2508 if (DBLENGTH (pst) || pst->number_of_dependencies)
2509 {
2510 /* Print the message now, before starting serious work, to avoid
2511 disconcerting pauses. */
2512 if (info_verbose)
2513 {
2514 printf_filtered ("Reading in symbols for %s...",
2515 pst->filename);
2516 gdb_flush (gdb_stdout);
2517 }
2518
2519 psymtab_to_symtab_1 (pst);
2520
2521 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2522 we need to do an equivalent or is this something peculiar to
2523 stabs/a.out format.
2524 Match with global symbols. This only needs to be done once,
2525 after all of the symtabs and dependencies have been read in.
2526 */
2527 scan_file_globals (pst->objfile);
2528 #endif
2529
2530 /* Finish up the verbose info message. */
2531 if (info_verbose)
2532 {
2533 printf_filtered ("done.\n");
2534 gdb_flush (gdb_stdout);
2535 }
2536 }
2537 }
2538 }
2539 }
2540
2541 /*
2542
2543 LOCAL FUNCTION
2544
2545 add_enum_psymbol -- add enumeration members to partial symbol table
2546
2547 DESCRIPTION
2548
2549 Given pointer to a DIE that is known to be for an enumeration,
2550 extract the symbolic names of the enumeration members and add
2551 partial symbols for them.
2552 */
2553
2554 static void
2555 add_enum_psymbol (dip, objfile)
2556 struct dieinfo *dip;
2557 struct objfile *objfile;
2558 {
2559 char *scan;
2560 char *listend;
2561 unsigned short blocksz;
2562 int nbytes;
2563
2564 if ((scan = dip->at_element_list) != NULL)
2565 {
2566 if (dip->short_element_list)
2567 {
2568 nbytes = attribute_size (AT_short_element_list);
2569 }
2570 else
2571 {
2572 nbytes = attribute_size (AT_element_list);
2573 }
2574 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2575 scan += nbytes;
2576 listend = scan + blocksz;
2577 while (scan < listend)
2578 {
2579 scan += TARGET_FT_LONG_SIZE (objfile);
2580 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2581 &objfile->static_psymbols, 0, 0, cu_language,
2582 objfile);
2583 scan += strlen (scan) + 1;
2584 }
2585 }
2586 }
2587
2588 /*
2589
2590 LOCAL FUNCTION
2591
2592 add_partial_symbol -- add symbol to partial symbol table
2593
2594 DESCRIPTION
2595
2596 Given a DIE, if it is one of the types that we want to
2597 add to a partial symbol table, finish filling in the die info
2598 and then add a partial symbol table entry for it.
2599
2600 NOTES
2601
2602 The caller must ensure that the DIE has a valid name attribute.
2603 */
2604
2605 static void
2606 add_partial_symbol (dip, objfile)
2607 struct dieinfo *dip;
2608 struct objfile *objfile;
2609 {
2610 switch (dip->die_tag)
2611 {
2612 case TAG_global_subroutine:
2613 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2614 VAR_NAMESPACE, LOC_BLOCK,
2615 &objfile->global_psymbols,
2616 0, dip->at_low_pc, cu_language, objfile);
2617 break;
2618 case TAG_global_variable:
2619 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2620 VAR_NAMESPACE, LOC_STATIC,
2621 &objfile->global_psymbols,
2622 0, 0, cu_language, objfile);
2623 break;
2624 case TAG_subroutine:
2625 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2626 VAR_NAMESPACE, LOC_BLOCK,
2627 &objfile->static_psymbols,
2628 0, dip->at_low_pc, cu_language, objfile);
2629 break;
2630 case TAG_local_variable:
2631 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2632 VAR_NAMESPACE, LOC_STATIC,
2633 &objfile->static_psymbols,
2634 0, 0, cu_language, objfile);
2635 break;
2636 case TAG_typedef:
2637 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2638 VAR_NAMESPACE, LOC_TYPEDEF,
2639 &objfile->static_psymbols,
2640 0, 0, cu_language, objfile);
2641 break;
2642 case TAG_class_type:
2643 case TAG_structure_type:
2644 case TAG_union_type:
2645 case TAG_enumeration_type:
2646 /* Do not add opaque aggregate definitions to the psymtab. */
2647 if (!dip->has_at_byte_size)
2648 break;
2649 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2650 STRUCT_NAMESPACE, LOC_TYPEDEF,
2651 &objfile->static_psymbols,
2652 0, 0, cu_language, objfile);
2653 if (cu_language == language_cplus)
2654 {
2655 /* For C++, these implicitly act as typedefs as well. */
2656 add_psymbol_to_list (dip->at_name, strlen (dip->at_name),
2657 VAR_NAMESPACE, LOC_TYPEDEF,
2658 &objfile->static_psymbols,
2659 0, 0, cu_language, objfile);
2660 }
2661 break;
2662 }
2663 }
2664 /* *INDENT-OFF* */
2665 /*
2666
2667 LOCAL FUNCTION
2668
2669 scan_partial_symbols -- scan DIE's within a single compilation unit
2670
2671 DESCRIPTION
2672
2673 Process the DIE's within a single compilation unit, looking for
2674 interesting DIE's that contribute to the partial symbol table entry
2675 for this compilation unit.
2676
2677 NOTES
2678
2679 There are some DIE's that may appear both at file scope and within
2680 the scope of a function. We are only interested in the ones at file
2681 scope, and the only way to tell them apart is to keep track of the
2682 scope. For example, consider the test case:
2683
2684 static int i;
2685 main () { int j; }
2686
2687 for which the relevant DWARF segment has the structure:
2688
2689 0x51:
2690 0x23 global subrtn sibling 0x9b
2691 name main
2692 fund_type FT_integer
2693 low_pc 0x800004cc
2694 high_pc 0x800004d4
2695
2696 0x74:
2697 0x23 local var sibling 0x97
2698 name j
2699 fund_type FT_integer
2700 location OP_BASEREG 0xe
2701 OP_CONST 0xfffffffc
2702 OP_ADD
2703 0x97:
2704 0x4
2705
2706 0x9b:
2707 0x1d local var sibling 0xb8
2708 name i
2709 fund_type FT_integer
2710 location OP_ADDR 0x800025dc
2711
2712 0xb8:
2713 0x4
2714
2715 We want to include the symbol 'i' in the partial symbol table, but
2716 not the symbol 'j'. In essence, we want to skip all the dies within
2717 the scope of a TAG_global_subroutine DIE.
2718
2719 Don't attempt to add anonymous structures or unions since they have
2720 no name. Anonymous enumerations however are processed, because we
2721 want to extract their member names (the check for a tag name is
2722 done later).
2723
2724 Also, for variables and subroutines, check that this is the place
2725 where the actual definition occurs, rather than just a reference
2726 to an external.
2727 */
2728 /* *INDENT-ON* */
2729
2730
2731
2732 static void
2733 scan_partial_symbols (thisdie, enddie, objfile)
2734 char *thisdie;
2735 char *enddie;
2736 struct objfile *objfile;
2737 {
2738 char *nextdie;
2739 char *temp;
2740 struct dieinfo di;
2741
2742 while (thisdie < enddie)
2743 {
2744 basicdieinfo (&di, thisdie, objfile);
2745 if (di.die_length < SIZEOF_DIE_LENGTH)
2746 {
2747 break;
2748 }
2749 else
2750 {
2751 nextdie = thisdie + di.die_length;
2752 /* To avoid getting complete die information for every die, we
2753 only do it (below) for the cases we are interested in. */
2754 switch (di.die_tag)
2755 {
2756 case TAG_global_subroutine:
2757 case TAG_subroutine:
2758 completedieinfo (&di, objfile);
2759 if (di.at_name && (di.has_at_low_pc || di.at_location))
2760 {
2761 add_partial_symbol (&di, objfile);
2762 /* If there is a sibling attribute, adjust the nextdie
2763 pointer to skip the entire scope of the subroutine.
2764 Apply some sanity checking to make sure we don't
2765 overrun or underrun the range of remaining DIE's */
2766 if (di.at_sibling != 0)
2767 {
2768 temp = dbbase + di.at_sibling - dbroff;
2769 if ((temp < thisdie) || (temp >= enddie))
2770 {
2771 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2772 di.at_sibling);
2773 }
2774 else
2775 {
2776 nextdie = temp;
2777 }
2778 }
2779 }
2780 break;
2781 case TAG_global_variable:
2782 case TAG_local_variable:
2783 completedieinfo (&di, objfile);
2784 if (di.at_name && (di.has_at_low_pc || di.at_location))
2785 {
2786 add_partial_symbol (&di, objfile);
2787 }
2788 break;
2789 case TAG_typedef:
2790 case TAG_class_type:
2791 case TAG_structure_type:
2792 case TAG_union_type:
2793 completedieinfo (&di, objfile);
2794 if (di.at_name)
2795 {
2796 add_partial_symbol (&di, objfile);
2797 }
2798 break;
2799 case TAG_enumeration_type:
2800 completedieinfo (&di, objfile);
2801 if (di.at_name)
2802 {
2803 add_partial_symbol (&di, objfile);
2804 }
2805 add_enum_psymbol (&di, objfile);
2806 break;
2807 }
2808 }
2809 thisdie = nextdie;
2810 }
2811 }
2812
2813 /*
2814
2815 LOCAL FUNCTION
2816
2817 scan_compilation_units -- build a psymtab entry for each compilation
2818
2819 DESCRIPTION
2820
2821 This is the top level dwarf parsing routine for building partial
2822 symbol tables.
2823
2824 It scans from the beginning of the DWARF table looking for the first
2825 TAG_compile_unit DIE, and then follows the sibling chain to locate
2826 each additional TAG_compile_unit DIE.
2827
2828 For each TAG_compile_unit DIE it creates a partial symtab structure,
2829 calls a subordinate routine to collect all the compilation unit's
2830 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2831 new partial symtab structure into the partial symbol table. It also
2832 records the appropriate information in the partial symbol table entry
2833 to allow the chunk of DIE's and line number table for this compilation
2834 unit to be located and re-read later, to generate a complete symbol
2835 table entry for the compilation unit.
2836
2837 Thus it effectively partitions up a chunk of DIE's for multiple
2838 compilation units into smaller DIE chunks and line number tables,
2839 and associates them with a partial symbol table entry.
2840
2841 NOTES
2842
2843 If any compilation unit has no line number table associated with
2844 it for some reason (a missing at_stmt_list attribute, rather than
2845 just one with a value of zero, which is valid) then we ensure that
2846 the recorded file offset is zero so that the routine which later
2847 reads line number table fragments knows that there is no fragment
2848 to read.
2849
2850 RETURNS
2851
2852 Returns no value.
2853
2854 */
2855
2856 static void
2857 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2858 char *thisdie;
2859 char *enddie;
2860 file_ptr dbfoff;
2861 file_ptr lnoffset;
2862 struct objfile *objfile;
2863 {
2864 char *nextdie;
2865 struct dieinfo di;
2866 struct partial_symtab *pst;
2867 int culength;
2868 int curoff;
2869 file_ptr curlnoffset;
2870
2871 while (thisdie < enddie)
2872 {
2873 basicdieinfo (&di, thisdie, objfile);
2874 if (di.die_length < SIZEOF_DIE_LENGTH)
2875 {
2876 break;
2877 }
2878 else if (di.die_tag != TAG_compile_unit)
2879 {
2880 nextdie = thisdie + di.die_length;
2881 }
2882 else
2883 {
2884 completedieinfo (&di, objfile);
2885 set_cu_language (&di);
2886 if (di.at_sibling != 0)
2887 {
2888 nextdie = dbbase + di.at_sibling - dbroff;
2889 }
2890 else
2891 {
2892 nextdie = thisdie + di.die_length;
2893 }
2894 curoff = thisdie - dbbase;
2895 culength = nextdie - thisdie;
2896 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2897
2898 /* First allocate a new partial symbol table structure */
2899
2900 pst = start_psymtab_common (objfile, base_section_offsets,
2901 di.at_name, di.at_low_pc,
2902 objfile->global_psymbols.next,
2903 objfile->static_psymbols.next);
2904
2905 pst->texthigh = di.at_high_pc;
2906 pst->read_symtab_private = (char *)
2907 obstack_alloc (&objfile->psymbol_obstack,
2908 sizeof (struct dwfinfo));
2909 DBFOFF (pst) = dbfoff;
2910 DBROFF (pst) = curoff;
2911 DBLENGTH (pst) = culength;
2912 LNFOFF (pst) = curlnoffset;
2913 pst->read_symtab = dwarf_psymtab_to_symtab;
2914
2915 /* Now look for partial symbols */
2916
2917 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2918
2919 pst->n_global_syms = objfile->global_psymbols.next -
2920 (objfile->global_psymbols.list + pst->globals_offset);
2921 pst->n_static_syms = objfile->static_psymbols.next -
2922 (objfile->static_psymbols.list + pst->statics_offset);
2923 sort_pst_symbols (pst);
2924 /* If there is already a psymtab or symtab for a file of this name,
2925 remove it. (If there is a symtab, more drastic things also
2926 happen.) This happens in VxWorks. */
2927 free_named_symtabs (pst->filename);
2928 }
2929 thisdie = nextdie;
2930 }
2931 }
2932
2933 /*
2934
2935 LOCAL FUNCTION
2936
2937 new_symbol -- make a symbol table entry for a new symbol
2938
2939 SYNOPSIS
2940
2941 static struct symbol *new_symbol (struct dieinfo *dip,
2942 struct objfile *objfile)
2943
2944 DESCRIPTION
2945
2946 Given a pointer to a DWARF information entry, figure out if we need
2947 to make a symbol table entry for it, and if so, create a new entry
2948 and return a pointer to it.
2949 */
2950
2951 static struct symbol *
2952 new_symbol (dip, objfile)
2953 struct dieinfo *dip;
2954 struct objfile *objfile;
2955 {
2956 struct symbol *sym = NULL;
2957
2958 if (dip->at_name != NULL)
2959 {
2960 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
2961 sizeof (struct symbol));
2962 OBJSTAT (objfile, n_syms++);
2963 memset (sym, 0, sizeof (struct symbol));
2964 SYMBOL_NAME (sym) = create_name (dip->at_name,
2965 &objfile->symbol_obstack);
2966 /* default assumptions */
2967 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2968 SYMBOL_CLASS (sym) = LOC_STATIC;
2969 SYMBOL_TYPE (sym) = decode_die_type (dip);
2970
2971 /* If this symbol is from a C++ compilation, then attempt to cache the
2972 demangled form for future reference. This is a typical time versus
2973 space tradeoff, that was decided in favor of time because it sped up
2974 C++ symbol lookups by a factor of about 20. */
2975
2976 SYMBOL_LANGUAGE (sym) = cu_language;
2977 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
2978 switch (dip->die_tag)
2979 {
2980 case TAG_label:
2981 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2982 SYMBOL_CLASS (sym) = LOC_LABEL;
2983 break;
2984 case TAG_global_subroutine:
2985 case TAG_subroutine:
2986 SYMBOL_VALUE_ADDRESS (sym) = dip->at_low_pc;
2987 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2988 if (dip->at_prototyped)
2989 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2990 SYMBOL_CLASS (sym) = LOC_BLOCK;
2991 if (dip->die_tag == TAG_global_subroutine)
2992 {
2993 add_symbol_to_list (sym, &global_symbols);
2994 }
2995 else
2996 {
2997 add_symbol_to_list (sym, list_in_scope);
2998 }
2999 break;
3000 case TAG_global_variable:
3001 if (dip->at_location != NULL)
3002 {
3003 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
3004 add_symbol_to_list (sym, &global_symbols);
3005 SYMBOL_CLASS (sym) = LOC_STATIC;
3006 SYMBOL_VALUE (sym) += baseaddr;
3007 }
3008 break;
3009 case TAG_local_variable:
3010 if (dip->at_location != NULL)
3011 {
3012 int loc = locval (dip);
3013 if (dip->optimized_out)
3014 {
3015 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3016 }
3017 else if (dip->isreg)
3018 {
3019 SYMBOL_CLASS (sym) = LOC_REGISTER;
3020 }
3021 else if (dip->offreg)
3022 {
3023 SYMBOL_CLASS (sym) = LOC_BASEREG;
3024 SYMBOL_BASEREG (sym) = dip->basereg;
3025 }
3026 else
3027 {
3028 SYMBOL_CLASS (sym) = LOC_STATIC;
3029 SYMBOL_VALUE (sym) += baseaddr;
3030 }
3031 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3032 {
3033 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3034 which may store to a bigger location than SYMBOL_VALUE. */
3035 SYMBOL_VALUE_ADDRESS (sym) = loc;
3036 }
3037 else
3038 {
3039 SYMBOL_VALUE (sym) = loc;
3040 }
3041 add_symbol_to_list (sym, list_in_scope);
3042 }
3043 break;
3044 case TAG_formal_parameter:
3045 if (dip->at_location != NULL)
3046 {
3047 SYMBOL_VALUE (sym) = locval (dip);
3048 }
3049 add_symbol_to_list (sym, list_in_scope);
3050 if (dip->isreg)
3051 {
3052 SYMBOL_CLASS (sym) = LOC_REGPARM;
3053 }
3054 else if (dip->offreg)
3055 {
3056 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3057 SYMBOL_BASEREG (sym) = dip->basereg;
3058 }
3059 else
3060 {
3061 SYMBOL_CLASS (sym) = LOC_ARG;
3062 }
3063 break;
3064 case TAG_unspecified_parameters:
3065 /* From varargs functions; gdb doesn't seem to have any interest in
3066 this information, so just ignore it for now. (FIXME?) */
3067 break;
3068 case TAG_class_type:
3069 case TAG_structure_type:
3070 case TAG_union_type:
3071 case TAG_enumeration_type:
3072 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3073 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3074 add_symbol_to_list (sym, list_in_scope);
3075 break;
3076 case TAG_typedef:
3077 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3078 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3079 add_symbol_to_list (sym, list_in_scope);
3080 break;
3081 default:
3082 /* Not a tag we recognize. Hopefully we aren't processing trash
3083 data, but since we must specifically ignore things we don't
3084 recognize, there is nothing else we should do at this point. */
3085 break;
3086 }
3087 }
3088 return (sym);
3089 }
3090
3091 /*
3092
3093 LOCAL FUNCTION
3094
3095 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3096
3097 SYNOPSIS
3098
3099 static void synthesize_typedef (struct dieinfo *dip,
3100 struct objfile *objfile,
3101 struct type *type);
3102
3103 DESCRIPTION
3104
3105 Given a pointer to a DWARF information entry, synthesize a typedef
3106 for the name in the DIE, using the specified type.
3107
3108 This is used for C++ class, structs, unions, and enumerations to
3109 set up the tag name as a type.
3110
3111 */
3112
3113 static void
3114 synthesize_typedef (dip, objfile, type)
3115 struct dieinfo *dip;
3116 struct objfile *objfile;
3117 struct type *type;
3118 {
3119 struct symbol *sym = NULL;
3120
3121 if (dip->at_name != NULL)
3122 {
3123 sym = (struct symbol *)
3124 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
3125 OBJSTAT (objfile, n_syms++);
3126 memset (sym, 0, sizeof (struct symbol));
3127 SYMBOL_NAME (sym) = create_name (dip->at_name,
3128 &objfile->symbol_obstack);
3129 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3130 SYMBOL_TYPE (sym) = type;
3131 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3132 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3133 add_symbol_to_list (sym, list_in_scope);
3134 }
3135 }
3136
3137 /*
3138
3139 LOCAL FUNCTION
3140
3141 decode_mod_fund_type -- decode a modified fundamental type
3142
3143 SYNOPSIS
3144
3145 static struct type *decode_mod_fund_type (char *typedata)
3146
3147 DESCRIPTION
3148
3149 Decode a block of data containing a modified fundamental
3150 type specification. TYPEDATA is a pointer to the block,
3151 which starts with a length containing the size of the rest
3152 of the block. At the end of the block is a fundmental type
3153 code value that gives the fundamental type. Everything
3154 in between are type modifiers.
3155
3156 We simply compute the number of modifiers and call the general
3157 function decode_modified_type to do the actual work.
3158 */
3159
3160 static struct type *
3161 decode_mod_fund_type (typedata)
3162 char *typedata;
3163 {
3164 struct type *typep = NULL;
3165 unsigned short modcount;
3166 int nbytes;
3167
3168 /* Get the total size of the block, exclusive of the size itself */
3169
3170 nbytes = attribute_size (AT_mod_fund_type);
3171 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3172 typedata += nbytes;
3173
3174 /* Deduct the size of the fundamental type bytes at the end of the block. */
3175
3176 modcount -= attribute_size (AT_fund_type);
3177
3178 /* Now do the actual decoding */
3179
3180 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3181 return (typep);
3182 }
3183
3184 /*
3185
3186 LOCAL FUNCTION
3187
3188 decode_mod_u_d_type -- decode a modified user defined type
3189
3190 SYNOPSIS
3191
3192 static struct type *decode_mod_u_d_type (char *typedata)
3193
3194 DESCRIPTION
3195
3196 Decode a block of data containing a modified user defined
3197 type specification. TYPEDATA is a pointer to the block,
3198 which consists of a two byte length, containing the size
3199 of the rest of the block. At the end of the block is a
3200 four byte value that gives a reference to a user defined type.
3201 Everything in between are type modifiers.
3202
3203 We simply compute the number of modifiers and call the general
3204 function decode_modified_type to do the actual work.
3205 */
3206
3207 static struct type *
3208 decode_mod_u_d_type (typedata)
3209 char *typedata;
3210 {
3211 struct type *typep = NULL;
3212 unsigned short modcount;
3213 int nbytes;
3214
3215 /* Get the total size of the block, exclusive of the size itself */
3216
3217 nbytes = attribute_size (AT_mod_u_d_type);
3218 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3219 typedata += nbytes;
3220
3221 /* Deduct the size of the reference type bytes at the end of the block. */
3222
3223 modcount -= attribute_size (AT_user_def_type);
3224
3225 /* Now do the actual decoding */
3226
3227 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3228 return (typep);
3229 }
3230
3231 /*
3232
3233 LOCAL FUNCTION
3234
3235 decode_modified_type -- decode modified user or fundamental type
3236
3237 SYNOPSIS
3238
3239 static struct type *decode_modified_type (char *modifiers,
3240 unsigned short modcount, int mtype)
3241
3242 DESCRIPTION
3243
3244 Decode a modified type, either a modified fundamental type or
3245 a modified user defined type. MODIFIERS is a pointer to the
3246 block of bytes that define MODCOUNT modifiers. Immediately
3247 following the last modifier is a short containing the fundamental
3248 type or a long containing the reference to the user defined
3249 type. Which one is determined by MTYPE, which is either
3250 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3251 type we are generating.
3252
3253 We call ourself recursively to generate each modified type,`
3254 until MODCOUNT reaches zero, at which point we have consumed
3255 all the modifiers and generate either the fundamental type or
3256 user defined type. When the recursion unwinds, each modifier
3257 is applied in turn to generate the full modified type.
3258
3259 NOTES
3260
3261 If we find a modifier that we don't recognize, and it is not one
3262 of those reserved for application specific use, then we issue a
3263 warning and simply ignore the modifier.
3264
3265 BUGS
3266
3267 We currently ignore MOD_const and MOD_volatile. (FIXME)
3268
3269 */
3270
3271 static struct type *
3272 decode_modified_type (modifiers, modcount, mtype)
3273 char *modifiers;
3274 unsigned int modcount;
3275 int mtype;
3276 {
3277 struct type *typep = NULL;
3278 unsigned short fundtype;
3279 DIE_REF die_ref;
3280 char modifier;
3281 int nbytes;
3282
3283 if (modcount == 0)
3284 {
3285 switch (mtype)
3286 {
3287 case AT_mod_fund_type:
3288 nbytes = attribute_size (AT_fund_type);
3289 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3290 current_objfile);
3291 typep = decode_fund_type (fundtype);
3292 break;
3293 case AT_mod_u_d_type:
3294 nbytes = attribute_size (AT_user_def_type);
3295 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3296 current_objfile);
3297 if ((typep = lookup_utype (die_ref)) == NULL)
3298 {
3299 typep = alloc_utype (die_ref, NULL);
3300 }
3301 break;
3302 default:
3303 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3304 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3305 break;
3306 }
3307 }
3308 else
3309 {
3310 modifier = *modifiers++;
3311 typep = decode_modified_type (modifiers, --modcount, mtype);
3312 switch (modifier)
3313 {
3314 case MOD_pointer_to:
3315 typep = lookup_pointer_type (typep);
3316 break;
3317 case MOD_reference_to:
3318 typep = lookup_reference_type (typep);
3319 break;
3320 case MOD_const:
3321 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3322 break;
3323 case MOD_volatile:
3324 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3325 break;
3326 default:
3327 if (!(MOD_lo_user <= (unsigned char) modifier
3328 && (unsigned char) modifier <= MOD_hi_user))
3329 {
3330 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3331 }
3332 break;
3333 }
3334 }
3335 return (typep);
3336 }
3337
3338 /*
3339
3340 LOCAL FUNCTION
3341
3342 decode_fund_type -- translate basic DWARF type to gdb base type
3343
3344 DESCRIPTION
3345
3346 Given an integer that is one of the fundamental DWARF types,
3347 translate it to one of the basic internal gdb types and return
3348 a pointer to the appropriate gdb type (a "struct type *").
3349
3350 NOTES
3351
3352 For robustness, if we are asked to translate a fundamental
3353 type that we are unprepared to deal with, we return int so
3354 callers can always depend upon a valid type being returned,
3355 and so gdb may at least do something reasonable by default.
3356 If the type is not in the range of those types defined as
3357 application specific types, we also issue a warning.
3358 */
3359
3360 static struct type *
3361 decode_fund_type (fundtype)
3362 unsigned int fundtype;
3363 {
3364 struct type *typep = NULL;
3365
3366 switch (fundtype)
3367 {
3368
3369 case FT_void:
3370 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3371 break;
3372
3373 case FT_boolean: /* Was FT_set in AT&T version */
3374 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3375 break;
3376
3377 case FT_pointer: /* (void *) */
3378 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3379 typep = lookup_pointer_type (typep);
3380 break;
3381
3382 case FT_char:
3383 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3384 break;
3385
3386 case FT_signed_char:
3387 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3388 break;
3389
3390 case FT_unsigned_char:
3391 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3392 break;
3393
3394 case FT_short:
3395 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3396 break;
3397
3398 case FT_signed_short:
3399 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3400 break;
3401
3402 case FT_unsigned_short:
3403 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3404 break;
3405
3406 case FT_integer:
3407 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3408 break;
3409
3410 case FT_signed_integer:
3411 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3412 break;
3413
3414 case FT_unsigned_integer:
3415 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3416 break;
3417
3418 case FT_long:
3419 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3420 break;
3421
3422 case FT_signed_long:
3423 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3424 break;
3425
3426 case FT_unsigned_long:
3427 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3428 break;
3429
3430 case FT_long_long:
3431 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3432 break;
3433
3434 case FT_signed_long_long:
3435 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3436 break;
3437
3438 case FT_unsigned_long_long:
3439 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3440 break;
3441
3442 case FT_float:
3443 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3444 break;
3445
3446 case FT_dbl_prec_float:
3447 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3448 break;
3449
3450 case FT_ext_prec_float:
3451 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3452 break;
3453
3454 case FT_complex:
3455 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3456 break;
3457
3458 case FT_dbl_prec_complex:
3459 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3460 break;
3461
3462 case FT_ext_prec_complex:
3463 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3464 break;
3465
3466 }
3467
3468 if (typep == NULL)
3469 {
3470 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3471 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3472 {
3473 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3474 }
3475 }
3476
3477 return (typep);
3478 }
3479
3480 /*
3481
3482 LOCAL FUNCTION
3483
3484 create_name -- allocate a fresh copy of a string on an obstack
3485
3486 DESCRIPTION
3487
3488 Given a pointer to a string and a pointer to an obstack, allocates
3489 a fresh copy of the string on the specified obstack.
3490
3491 */
3492
3493 static char *
3494 create_name (name, obstackp)
3495 char *name;
3496 struct obstack *obstackp;
3497 {
3498 int length;
3499 char *newname;
3500
3501 length = strlen (name) + 1;
3502 newname = (char *) obstack_alloc (obstackp, length);
3503 strcpy (newname, name);
3504 return (newname);
3505 }
3506
3507 /*
3508
3509 LOCAL FUNCTION
3510
3511 basicdieinfo -- extract the minimal die info from raw die data
3512
3513 SYNOPSIS
3514
3515 void basicdieinfo (char *diep, struct dieinfo *dip,
3516 struct objfile *objfile)
3517
3518 DESCRIPTION
3519
3520 Given a pointer to raw DIE data, and a pointer to an instance of a
3521 die info structure, this function extracts the basic information
3522 from the DIE data required to continue processing this DIE, along
3523 with some bookkeeping information about the DIE.
3524
3525 The information we absolutely must have includes the DIE tag,
3526 and the DIE length. If we need the sibling reference, then we
3527 will have to call completedieinfo() to process all the remaining
3528 DIE information.
3529
3530 Note that since there is no guarantee that the data is properly
3531 aligned in memory for the type of access required (indirection
3532 through anything other than a char pointer), and there is no
3533 guarantee that it is in the same byte order as the gdb host,
3534 we call a function which deals with both alignment and byte
3535 swapping issues. Possibly inefficient, but quite portable.
3536
3537 We also take care of some other basic things at this point, such
3538 as ensuring that the instance of the die info structure starts
3539 out completely zero'd and that curdie is initialized for use
3540 in error reporting if we have a problem with the current die.
3541
3542 NOTES
3543
3544 All DIE's must have at least a valid length, thus the minimum
3545 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3546 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3547 are forced to be TAG_padding DIES.
3548
3549 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3550 that if a padding DIE is used for alignment and the amount needed is
3551 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3552 enough to align to the next alignment boundry.
3553
3554 We do some basic sanity checking here, such as verifying that the
3555 length of the die would not cause it to overrun the recorded end of
3556 the buffer holding the DIE info. If we find a DIE that is either
3557 too small or too large, we force it's length to zero which should
3558 cause the caller to take appropriate action.
3559 */
3560
3561 static void
3562 basicdieinfo (dip, diep, objfile)
3563 struct dieinfo *dip;
3564 char *diep;
3565 struct objfile *objfile;
3566 {
3567 curdie = dip;
3568 memset (dip, 0, sizeof (struct dieinfo));
3569 dip->die = diep;
3570 dip->die_ref = dbroff + (diep - dbbase);
3571 dip->die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3572 objfile);
3573 if ((dip->die_length < SIZEOF_DIE_LENGTH) ||
3574 ((diep + dip->die_length) > (dbbase + dbsize)))
3575 {
3576 complain (&malformed_die, DIE_ID, DIE_NAME, dip->die_length);
3577 dip->die_length = 0;
3578 }
3579 else if (dip->die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3580 {
3581 dip->die_tag = TAG_padding;
3582 }
3583 else
3584 {
3585 diep += SIZEOF_DIE_LENGTH;
3586 dip->die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3587 objfile);
3588 }
3589 }
3590
3591 /*
3592
3593 LOCAL FUNCTION
3594
3595 completedieinfo -- finish reading the information for a given DIE
3596
3597 SYNOPSIS
3598
3599 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3600
3601 DESCRIPTION
3602
3603 Given a pointer to an already partially initialized die info structure,
3604 scan the raw DIE data and finish filling in the die info structure
3605 from the various attributes found.
3606
3607 Note that since there is no guarantee that the data is properly
3608 aligned in memory for the type of access required (indirection
3609 through anything other than a char pointer), and there is no
3610 guarantee that it is in the same byte order as the gdb host,
3611 we call a function which deals with both alignment and byte
3612 swapping issues. Possibly inefficient, but quite portable.
3613
3614 NOTES
3615
3616 Each time we are called, we increment the diecount variable, which
3617 keeps an approximate count of the number of dies processed for
3618 each compilation unit. This information is presented to the user
3619 if the info_verbose flag is set.
3620
3621 */
3622
3623 static void
3624 completedieinfo (dip, objfile)
3625 struct dieinfo *dip;
3626 struct objfile *objfile;
3627 {
3628 char *diep; /* Current pointer into raw DIE data */
3629 char *end; /* Terminate DIE scan here */
3630 unsigned short attr; /* Current attribute being scanned */
3631 unsigned short form; /* Form of the attribute */
3632 int nbytes; /* Size of next field to read */
3633
3634 diecount++;
3635 diep = dip->die;
3636 end = diep + dip->die_length;
3637 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3638 while (diep < end)
3639 {
3640 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3641 diep += SIZEOF_ATTRIBUTE;
3642 if ((nbytes = attribute_size (attr)) == -1)
3643 {
3644 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3645 diep = end;
3646 continue;
3647 }
3648 switch (attr)
3649 {
3650 case AT_fund_type:
3651 dip->at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_ordering:
3655 dip->at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3656 objfile);
3657 break;
3658 case AT_bit_offset:
3659 dip->at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 break;
3662 case AT_sibling:
3663 dip->at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 break;
3666 case AT_stmt_list:
3667 dip->at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3668 objfile);
3669 dip->has_at_stmt_list = 1;
3670 break;
3671 case AT_low_pc:
3672 dip->at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3673 objfile);
3674 dip->at_low_pc += baseaddr;
3675 dip->has_at_low_pc = 1;
3676 break;
3677 case AT_high_pc:
3678 dip->at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3679 objfile);
3680 dip->at_high_pc += baseaddr;
3681 break;
3682 case AT_language:
3683 dip->at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3684 objfile);
3685 break;
3686 case AT_user_def_type:
3687 dip->at_user_def_type = target_to_host (diep, nbytes,
3688 GET_UNSIGNED, objfile);
3689 break;
3690 case AT_byte_size:
3691 dip->at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3692 objfile);
3693 dip->has_at_byte_size = 1;
3694 break;
3695 case AT_bit_size:
3696 dip->at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3697 objfile);
3698 break;
3699 case AT_member:
3700 dip->at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3701 objfile);
3702 break;
3703 case AT_discr:
3704 dip->at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3705 objfile);
3706 break;
3707 case AT_location:
3708 dip->at_location = diep;
3709 break;
3710 case AT_mod_fund_type:
3711 dip->at_mod_fund_type = diep;
3712 break;
3713 case AT_subscr_data:
3714 dip->at_subscr_data = diep;
3715 break;
3716 case AT_mod_u_d_type:
3717 dip->at_mod_u_d_type = diep;
3718 break;
3719 case AT_element_list:
3720 dip->at_element_list = diep;
3721 dip->short_element_list = 0;
3722 break;
3723 case AT_short_element_list:
3724 dip->at_element_list = diep;
3725 dip->short_element_list = 1;
3726 break;
3727 case AT_discr_value:
3728 dip->at_discr_value = diep;
3729 break;
3730 case AT_string_length:
3731 dip->at_string_length = diep;
3732 break;
3733 case AT_name:
3734 dip->at_name = diep;
3735 break;
3736 case AT_comp_dir:
3737 /* For now, ignore any "hostname:" portion, since gdb doesn't
3738 know how to deal with it. (FIXME). */
3739 dip->at_comp_dir = strrchr (diep, ':');
3740 if (dip->at_comp_dir != NULL)
3741 {
3742 dip->at_comp_dir++;
3743 }
3744 else
3745 {
3746 dip->at_comp_dir = diep;
3747 }
3748 break;
3749 case AT_producer:
3750 dip->at_producer = diep;
3751 break;
3752 case AT_start_scope:
3753 dip->at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3754 objfile);
3755 break;
3756 case AT_stride_size:
3757 dip->at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3758 objfile);
3759 break;
3760 case AT_src_info:
3761 dip->at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3762 objfile);
3763 break;
3764 case AT_prototyped:
3765 dip->at_prototyped = diep;
3766 break;
3767 default:
3768 /* Found an attribute that we are unprepared to handle. However
3769 it is specifically one of the design goals of DWARF that
3770 consumers should ignore unknown attributes. As long as the
3771 form is one that we recognize (so we know how to skip it),
3772 we can just ignore the unknown attribute. */
3773 break;
3774 }
3775 form = FORM_FROM_ATTR (attr);
3776 switch (form)
3777 {
3778 case FORM_DATA2:
3779 diep += 2;
3780 break;
3781 case FORM_DATA4:
3782 case FORM_REF:
3783 diep += 4;
3784 break;
3785 case FORM_DATA8:
3786 diep += 8;
3787 break;
3788 case FORM_ADDR:
3789 diep += TARGET_FT_POINTER_SIZE (objfile);
3790 break;
3791 case FORM_BLOCK2:
3792 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3793 break;
3794 case FORM_BLOCK4:
3795 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3796 break;
3797 case FORM_STRING:
3798 diep += strlen (diep) + 1;
3799 break;
3800 default:
3801 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3802 diep = end;
3803 break;
3804 }
3805 }
3806 }
3807
3808 /*
3809
3810 LOCAL FUNCTION
3811
3812 target_to_host -- swap in target data to host
3813
3814 SYNOPSIS
3815
3816 target_to_host (char *from, int nbytes, int signextend,
3817 struct objfile *objfile)
3818
3819 DESCRIPTION
3820
3821 Given pointer to data in target format in FROM, a byte count for
3822 the size of the data in NBYTES, a flag indicating whether or not
3823 the data is signed in SIGNEXTEND, and a pointer to the current
3824 objfile in OBJFILE, convert the data to host format and return
3825 the converted value.
3826
3827 NOTES
3828
3829 FIXME: If we read data that is known to be signed, and expect to
3830 use it as signed data, then we need to explicitly sign extend the
3831 result until the bfd library is able to do this for us.
3832
3833 FIXME: Would a 32 bit target ever need an 8 byte result?
3834
3835 */
3836
3837 static CORE_ADDR
3838 target_to_host (from, nbytes, signextend, objfile)
3839 char *from;
3840 int nbytes;
3841 int signextend; /* FIXME: Unused */
3842 struct objfile *objfile;
3843 {
3844 CORE_ADDR rtnval;
3845
3846 switch (nbytes)
3847 {
3848 case 8:
3849 rtnval = bfd_get_64 (objfile->obfd, (bfd_byte *) from);
3850 break;
3851 case 4:
3852 rtnval = bfd_get_32 (objfile->obfd, (bfd_byte *) from);
3853 break;
3854 case 2:
3855 rtnval = bfd_get_16 (objfile->obfd, (bfd_byte *) from);
3856 break;
3857 case 1:
3858 rtnval = bfd_get_8 (objfile->obfd, (bfd_byte *) from);
3859 break;
3860 default:
3861 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3862 rtnval = 0;
3863 break;
3864 }
3865 return (rtnval);
3866 }
3867
3868 /*
3869
3870 LOCAL FUNCTION
3871
3872 attribute_size -- compute size of data for a DWARF attribute
3873
3874 SYNOPSIS
3875
3876 static int attribute_size (unsigned int attr)
3877
3878 DESCRIPTION
3879
3880 Given a DWARF attribute in ATTR, compute the size of the first
3881 piece of data associated with this attribute and return that
3882 size.
3883
3884 Returns -1 for unrecognized attributes.
3885
3886 */
3887
3888 static int
3889 attribute_size (attr)
3890 unsigned int attr;
3891 {
3892 int nbytes; /* Size of next data for this attribute */
3893 unsigned short form; /* Form of the attribute */
3894
3895 form = FORM_FROM_ATTR (attr);
3896 switch (form)
3897 {
3898 case FORM_STRING: /* A variable length field is next */
3899 nbytes = 0;
3900 break;
3901 case FORM_DATA2: /* Next 2 byte field is the data itself */
3902 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3903 nbytes = 2;
3904 break;
3905 case FORM_DATA4: /* Next 4 byte field is the data itself */
3906 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3907 case FORM_REF: /* Next 4 byte field is a DIE offset */
3908 nbytes = 4;
3909 break;
3910 case FORM_DATA8: /* Next 8 byte field is the data itself */
3911 nbytes = 8;
3912 break;
3913 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3914 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3915 break;
3916 default:
3917 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3918 nbytes = -1;
3919 break;
3920 }
3921 return (nbytes);
3922 }