]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
* c-typeprint.c (c_type_print_base): Use `show' of -1 to print
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include <string.h>
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61 #ifndef L_SET
62 #define L_SET 0
63 #endif
64
65 /* Some macros to provide DIE info for complaints. */
66
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70 /* Complaints that can be issued during DWARF debug info reading. */
71
72 struct complaint no_bfd_get_N =
73 {
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75 };
76
77 struct complaint malformed_die =
78 {
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80 };
81
82 struct complaint bad_die_ref =
83 {
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85 };
86
87 struct complaint unknown_attribute_form =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90 };
91
92 struct complaint unknown_attribute_length =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95 };
96
97 struct complaint unexpected_fund_type =
98 {
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100 };
101
102 struct complaint unknown_type_modifier =
103 {
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105 };
106
107 struct complaint volatile_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110 };
111
112 struct complaint const_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115 };
116
117 struct complaint botched_modified_type =
118 {
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120 };
121
122 struct complaint op_deref2 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint op_deref4 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint basereg_not_handled =
133 {
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135 };
136
137 struct complaint dup_user_type_allocation =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140 };
141
142 struct complaint dup_user_type_definition =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145 };
146
147 struct complaint missing_tag =
148 {
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150 };
151
152 struct complaint bad_array_element_type =
153 {
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155 };
156
157 struct complaint subscript_data_items =
158 {
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160 };
161
162 struct complaint unhandled_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165 };
166
167 struct complaint unknown_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170 };
171
172 struct complaint not_row_major =
173 {
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175 };
176
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
178
179 #ifndef GCC_PRODUCER
180 #define GCC_PRODUCER "GNU C "
181 #endif
182
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
185 #endif
186
187 #ifndef LCC_PRODUCER
188 #define LCC_PRODUCER "NCR C/C++"
189 #endif
190
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
193 #endif
194
195 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196 #ifndef DWARF_REG_TO_REGNUM
197 #define DWARF_REG_TO_REGNUM(num) (num)
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 unsigned long at_low_pc;
304 unsigned long at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 /* Kludge to identify basereg references. Nonzero if we have an offset
331 relative to a basereg. */
332 static int offreg;
333 /* Which base register is it relative to? */
334 static int basereg;
335
336 /* This value is added to each symbol value. FIXME: Generalize to
337 the section_offsets structure used by dbxread (once this is done,
338 pass the appropriate section number to end_symtab). */
339 static CORE_ADDR baseaddr; /* Add to each symbol value */
340
341 /* The section offsets used in the current psymtab or symtab. FIXME,
342 only used to pass one value (baseaddr) at the moment. */
343 static struct section_offsets *base_section_offsets;
344
345 /* Each partial symbol table entry contains a pointer to private data for the
346 read_symtab() function to use when expanding a partial symbol table entry
347 to a full symbol table entry. For DWARF debugging info, this data is
348 contained in the following structure and macros are provided for easy
349 access to the members given a pointer to a partial symbol table entry.
350
351 dbfoff Always the absolute file offset to the start of the ".debug"
352 section for the file containing the DIE's being accessed.
353
354 dbroff Relative offset from the start of the ".debug" access to the
355 first DIE to be accessed. When building the partial symbol
356 table, this value will be zero since we are accessing the
357 entire ".debug" section. When expanding a partial symbol
358 table entry, this value will be the offset to the first
359 DIE for the compilation unit containing the symbol that
360 triggers the expansion.
361
362 dblength The size of the chunk of DIE's being examined, in bytes.
363
364 lnfoff The absolute file offset to the line table fragment. Ignored
365 when building partial symbol tables, but used when expanding
366 them, and contains the absolute file offset to the fragment
367 of the ".line" section containing the line numbers for the
368 current compilation unit.
369 */
370
371 struct dwfinfo {
372 file_ptr dbfoff; /* Absolute file offset to start of .debug section */
373 int dbroff; /* Relative offset from start of .debug section */
374 int dblength; /* Size of the chunk of DIE's being examined */
375 file_ptr lnfoff; /* Absolute file offset to line table fragment */
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static int
452 attribute_size PARAMS ((unsigned int));
453
454 static unsigned long
455 target_to_host PARAMS ((char *, int, int, struct objfile *));
456
457 static void
458 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
459
460 static void
461 handle_producer PARAMS ((char *));
462
463 static void
464 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
465
466 static void
467 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
471 struct objfile *));
472
473 static void
474 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
475
476 static void
477 scan_compilation_units PARAMS ((char *, char *, file_ptr,
478 file_ptr, struct objfile *));
479
480 static void
481 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
482
483 static void
484 init_psymbol_list PARAMS ((struct objfile *, int));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((char *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 decode_die_type -- return a type for a specified die
911
912 SYNOPSIS
913
914 static struct type *decode_die_type (struct dieinfo *dip)
915
916 DESCRIPTION
917
918 Given a pointer to a die information structure DIP, decode the
919 type of the die and return a pointer to the decoded type. All
920 dies without specific types default to type int.
921 */
922
923 static struct type *
924 decode_die_type (dip)
925 struct dieinfo *dip;
926 {
927 struct type *type = NULL;
928
929 if (dip -> at_fund_type != 0)
930 {
931 type = decode_fund_type (dip -> at_fund_type);
932 }
933 else if (dip -> at_mod_fund_type != NULL)
934 {
935 type = decode_mod_fund_type (dip -> at_mod_fund_type);
936 }
937 else if (dip -> at_user_def_type)
938 {
939 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
940 {
941 type = alloc_utype (dip -> at_user_def_type, NULL);
942 }
943 }
944 else if (dip -> at_mod_u_d_type)
945 {
946 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
947 }
948 else
949 {
950 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
951 }
952 return (type);
953 }
954
955 /*
956
957 LOCAL FUNCTION
958
959 struct_type -- compute and return the type for a struct or union
960
961 SYNOPSIS
962
963 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
964 char *enddie, struct objfile *objfile)
965
966 DESCRIPTION
967
968 Given pointer to a die information structure for a die which
969 defines a union or structure (and MUST define one or the other),
970 and pointers to the raw die data that define the range of dies which
971 define the members, compute and return the user defined type for the
972 structure or union.
973 */
974
975 static struct type *
976 struct_type (dip, thisdie, enddie, objfile)
977 struct dieinfo *dip;
978 char *thisdie;
979 char *enddie;
980 struct objfile *objfile;
981 {
982 struct type *type;
983 struct nextfield {
984 struct nextfield *next;
985 struct field field;
986 };
987 struct nextfield *list = NULL;
988 struct nextfield *new;
989 int nfields = 0;
990 int n;
991 struct dieinfo mbr;
992 char *nextdie;
993 int anonymous_size;
994
995 if ((type = lookup_utype (dip -> die_ref)) == NULL)
996 {
997 /* No forward references created an empty type, so install one now */
998 type = alloc_utype (dip -> die_ref, NULL);
999 }
1000 INIT_CPLUS_SPECIFIC(type);
1001 switch (dip -> die_tag)
1002 {
1003 case TAG_class_type:
1004 TYPE_CODE (type) = TYPE_CODE_CLASS;
1005 break;
1006 case TAG_structure_type:
1007 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1008 break;
1009 case TAG_union_type:
1010 TYPE_CODE (type) = TYPE_CODE_UNION;
1011 break;
1012 default:
1013 /* Should never happen */
1014 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1015 complain (&missing_tag, DIE_ID, DIE_NAME);
1016 break;
1017 }
1018 /* Some compilers try to be helpful by inventing "fake" names for
1019 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1020 Thanks, but no thanks... */
1021 if (dip -> at_name != NULL
1022 && *dip -> at_name != '~'
1023 && *dip -> at_name != '.')
1024 {
1025 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1026 "", "", dip -> at_name);
1027 }
1028 /* Use whatever size is known. Zero is a valid size. We might however
1029 wish to check has_at_byte_size to make sure that some byte size was
1030 given explicitly, but DWARF doesn't specify that explicit sizes of
1031 zero have to present, so complaining about missing sizes should
1032 probably not be the default. */
1033 TYPE_LENGTH (type) = dip -> at_byte_size;
1034 thisdie += dip -> die_length;
1035 while (thisdie < enddie)
1036 {
1037 basicdieinfo (&mbr, thisdie, objfile);
1038 completedieinfo (&mbr, objfile);
1039 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1040 {
1041 break;
1042 }
1043 else if (mbr.at_sibling != 0)
1044 {
1045 nextdie = dbbase + mbr.at_sibling - dbroff;
1046 }
1047 else
1048 {
1049 nextdie = thisdie + mbr.die_length;
1050 }
1051 switch (mbr.die_tag)
1052 {
1053 case TAG_member:
1054 /* Get space to record the next field's data. */
1055 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1056 new -> next = list;
1057 list = new;
1058 /* Save the data. */
1059 list -> field.name =
1060 obsavestring (mbr.at_name, strlen (mbr.at_name),
1061 &objfile -> type_obstack);
1062 list -> field.type = decode_die_type (&mbr);
1063 list -> field.bitpos = 8 * locval (mbr.at_location);
1064 /* Handle bit fields. */
1065 list -> field.bitsize = mbr.at_bit_size;
1066 if (BITS_BIG_ENDIAN)
1067 {
1068 /* For big endian bits, the at_bit_offset gives the
1069 additional bit offset from the MSB of the containing
1070 anonymous object to the MSB of the field. We don't
1071 have to do anything special since we don't need to
1072 know the size of the anonymous object. */
1073 list -> field.bitpos += mbr.at_bit_offset;
1074 }
1075 else
1076 {
1077 /* For little endian bits, we need to have a non-zero
1078 at_bit_size, so that we know we are in fact dealing
1079 with a bitfield. Compute the bit offset to the MSB
1080 of the anonymous object, subtract off the number of
1081 bits from the MSB of the field to the MSB of the
1082 object, and then subtract off the number of bits of
1083 the field itself. The result is the bit offset of
1084 the LSB of the field. */
1085 if (mbr.at_bit_size > 0)
1086 {
1087 if (mbr.has_at_byte_size)
1088 {
1089 /* The size of the anonymous object containing
1090 the bit field is explicit, so use the
1091 indicated size (in bytes). */
1092 anonymous_size = mbr.at_byte_size;
1093 }
1094 else
1095 {
1096 /* The size of the anonymous object containing
1097 the bit field matches the size of an object
1098 of the bit field's type. DWARF allows
1099 at_byte_size to be left out in such cases, as
1100 a debug information size optimization. */
1101 anonymous_size = TYPE_LENGTH (list -> field.type);
1102 }
1103 list -> field.bitpos +=
1104 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1105 }
1106 }
1107 nfields++;
1108 break;
1109 default:
1110 process_dies (thisdie, nextdie, objfile);
1111 break;
1112 }
1113 thisdie = nextdie;
1114 }
1115 /* Now create the vector of fields, and record how big it is. We may
1116 not even have any fields, if this DIE was generated due to a reference
1117 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1118 set, which clues gdb in to the fact that it needs to search elsewhere
1119 for the full structure definition. */
1120 if (nfields == 0)
1121 {
1122 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1123 }
1124 else
1125 {
1126 TYPE_NFIELDS (type) = nfields;
1127 TYPE_FIELDS (type) = (struct field *)
1128 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1129 /* Copy the saved-up fields into the field vector. */
1130 for (n = nfields; list; list = list -> next)
1131 {
1132 TYPE_FIELD (type, --n) = list -> field;
1133 }
1134 }
1135 return (type);
1136 }
1137
1138 /*
1139
1140 LOCAL FUNCTION
1141
1142 read_structure_scope -- process all dies within struct or union
1143
1144 SYNOPSIS
1145
1146 static void read_structure_scope (struct dieinfo *dip,
1147 char *thisdie, char *enddie, struct objfile *objfile)
1148
1149 DESCRIPTION
1150
1151 Called when we find the DIE that starts a structure or union
1152 scope (definition) to process all dies that define the members
1153 of the structure or union. DIP is a pointer to the die info
1154 struct for the DIE that names the structure or union.
1155
1156 NOTES
1157
1158 Note that we need to call struct_type regardless of whether or not
1159 the DIE has an at_name attribute, since it might be an anonymous
1160 structure or union. This gets the type entered into our set of
1161 user defined types.
1162
1163 However, if the structure is incomplete (an opaque struct/union)
1164 then suppress creating a symbol table entry for it since gdb only
1165 wants to find the one with the complete definition. Note that if
1166 it is complete, we just call new_symbol, which does it's own
1167 checking about whether the struct/union is anonymous or not (and
1168 suppresses creating a symbol table entry itself).
1169
1170 */
1171
1172 static void
1173 read_structure_scope (dip, thisdie, enddie, objfile)
1174 struct dieinfo *dip;
1175 char *thisdie;
1176 char *enddie;
1177 struct objfile *objfile;
1178 {
1179 struct type *type;
1180 struct symbol *sym;
1181
1182 type = struct_type (dip, thisdie, enddie, objfile);
1183 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1184 {
1185 sym = new_symbol (dip, objfile);
1186 if (sym != NULL)
1187 {
1188 SYMBOL_TYPE (sym) = type;
1189 if (cu_language == language_cplus)
1190 {
1191 synthesize_typedef (dip, objfile, type);
1192 }
1193 }
1194 }
1195 }
1196
1197 /*
1198
1199 LOCAL FUNCTION
1200
1201 decode_array_element_type -- decode type of the array elements
1202
1203 SYNOPSIS
1204
1205 static struct type *decode_array_element_type (char *scan, char *end)
1206
1207 DESCRIPTION
1208
1209 As the last step in decoding the array subscript information for an
1210 array DIE, we need to decode the type of the array elements. We are
1211 passed a pointer to this last part of the subscript information and
1212 must return the appropriate type. If the type attribute is not
1213 recognized, just warn about the problem and return type int.
1214 */
1215
1216 static struct type *
1217 decode_array_element_type (scan)
1218 char *scan;
1219 {
1220 struct type *typep;
1221 DIE_REF die_ref;
1222 unsigned short attribute;
1223 unsigned short fundtype;
1224 int nbytes;
1225
1226 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1227 current_objfile);
1228 scan += SIZEOF_ATTRIBUTE;
1229 if ((nbytes = attribute_size (attribute)) == -1)
1230 {
1231 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1232 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1233 }
1234 else
1235 {
1236 switch (attribute)
1237 {
1238 case AT_fund_type:
1239 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1240 current_objfile);
1241 typep = decode_fund_type (fundtype);
1242 break;
1243 case AT_mod_fund_type:
1244 typep = decode_mod_fund_type (scan);
1245 break;
1246 case AT_user_def_type:
1247 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1248 current_objfile);
1249 if ((typep = lookup_utype (die_ref)) == NULL)
1250 {
1251 typep = alloc_utype (die_ref, NULL);
1252 }
1253 break;
1254 case AT_mod_u_d_type:
1255 typep = decode_mod_u_d_type (scan);
1256 break;
1257 default:
1258 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1260 break;
1261 }
1262 }
1263 return (typep);
1264 }
1265
1266 /*
1267
1268 LOCAL FUNCTION
1269
1270 decode_subscript_data_item -- decode array subscript item
1271
1272 SYNOPSIS
1273
1274 static struct type *
1275 decode_subscript_data_item (char *scan, char *end)
1276
1277 DESCRIPTION
1278
1279 The array subscripts and the data type of the elements of an
1280 array are described by a list of data items, stored as a block
1281 of contiguous bytes. There is a data item describing each array
1282 dimension, and a final data item describing the element type.
1283 The data items are ordered the same as their appearance in the
1284 source (I.E. leftmost dimension first, next to leftmost second,
1285 etc).
1286
1287 The data items describing each array dimension consist of four
1288 parts: (1) a format specifier, (2) type type of the subscript
1289 index, (3) a description of the low bound of the array dimension,
1290 and (4) a description of the high bound of the array dimension.
1291
1292 The last data item is the description of the type of each of
1293 the array elements.
1294
1295 We are passed a pointer to the start of the block of bytes
1296 containing the remaining data items, and a pointer to the first
1297 byte past the data. This function recursively decodes the
1298 remaining data items and returns a type.
1299
1300 If we somehow fail to decode some data, we complain about it
1301 and return a type "array of int".
1302
1303 BUGS
1304 FIXME: This code only implements the forms currently used
1305 by the AT&T and GNU C compilers.
1306
1307 The end pointer is supplied for error checking, maybe we should
1308 use it for that...
1309 */
1310
1311 static struct type *
1312 decode_subscript_data_item (scan, end)
1313 char *scan;
1314 char *end;
1315 {
1316 struct type *typep = NULL; /* Array type we are building */
1317 struct type *nexttype; /* Type of each element (may be array) */
1318 struct type *indextype; /* Type of this index */
1319 struct type *rangetype;
1320 unsigned int format;
1321 unsigned short fundtype;
1322 unsigned long lowbound;
1323 unsigned long highbound;
1324 int nbytes;
1325
1326 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1327 current_objfile);
1328 scan += SIZEOF_FORMAT_SPECIFIER;
1329 switch (format)
1330 {
1331 case FMT_ET:
1332 typep = decode_array_element_type (scan);
1333 break;
1334 case FMT_FT_C_C:
1335 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1336 current_objfile);
1337 indextype = decode_fund_type (fundtype);
1338 scan += SIZEOF_FMT_FT;
1339 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1340 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1341 scan += nbytes;
1342 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1343 scan += nbytes;
1344 nexttype = decode_subscript_data_item (scan, end);
1345 if (nexttype == NULL)
1346 {
1347 /* Munged subscript data or other problem, fake it. */
1348 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1349 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1350 }
1351 rangetype = create_range_type ((struct type *) NULL, indextype,
1352 lowbound, highbound);
1353 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1354 break;
1355 case FMT_FT_C_X:
1356 case FMT_FT_X_C:
1357 case FMT_FT_X_X:
1358 case FMT_UT_C_C:
1359 case FMT_UT_C_X:
1360 case FMT_UT_X_C:
1361 case FMT_UT_X_X:
1362 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1363 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1364 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1365 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1366 break;
1367 default:
1368 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1369 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1370 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1371 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1372 break;
1373 }
1374 return (typep);
1375 }
1376
1377 /*
1378
1379 LOCAL FUNCTION
1380
1381 dwarf_read_array_type -- read TAG_array_type DIE
1382
1383 SYNOPSIS
1384
1385 static void dwarf_read_array_type (struct dieinfo *dip)
1386
1387 DESCRIPTION
1388
1389 Extract all information from a TAG_array_type DIE and add to
1390 the user defined type vector.
1391 */
1392
1393 static void
1394 dwarf_read_array_type (dip)
1395 struct dieinfo *dip;
1396 {
1397 struct type *type;
1398 struct type *utype;
1399 char *sub;
1400 char *subend;
1401 unsigned short blocksz;
1402 int nbytes;
1403
1404 if (dip -> at_ordering != ORD_row_major)
1405 {
1406 /* FIXME: Can gdb even handle column major arrays? */
1407 complain (&not_row_major, DIE_ID, DIE_NAME);
1408 }
1409 if ((sub = dip -> at_subscr_data) != NULL)
1410 {
1411 nbytes = attribute_size (AT_subscr_data);
1412 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1413 subend = sub + nbytes + blocksz;
1414 sub += nbytes;
1415 type = decode_subscript_data_item (sub, subend);
1416 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1417 {
1418 /* Install user defined type that has not been referenced yet. */
1419 alloc_utype (dip -> die_ref, type);
1420 }
1421 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1422 {
1423 /* Ick! A forward ref has already generated a blank type in our
1424 slot, and this type probably already has things pointing to it
1425 (which is what caused it to be created in the first place).
1426 If it's just a place holder we can plop our fully defined type
1427 on top of it. We can't recover the space allocated for our
1428 new type since it might be on an obstack, but we could reuse
1429 it if we kept a list of them, but it might not be worth it
1430 (FIXME). */
1431 *utype = *type;
1432 }
1433 else
1434 {
1435 /* Double ick! Not only is a type already in our slot, but
1436 someone has decorated it. Complain and leave it alone. */
1437 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1438 }
1439 }
1440 }
1441
1442 /*
1443
1444 LOCAL FUNCTION
1445
1446 read_tag_pointer_type -- read TAG_pointer_type DIE
1447
1448 SYNOPSIS
1449
1450 static void read_tag_pointer_type (struct dieinfo *dip)
1451
1452 DESCRIPTION
1453
1454 Extract all information from a TAG_pointer_type DIE and add to
1455 the user defined type vector.
1456 */
1457
1458 static void
1459 read_tag_pointer_type (dip)
1460 struct dieinfo *dip;
1461 {
1462 struct type *type;
1463 struct type *utype;
1464
1465 type = decode_die_type (dip);
1466 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1467 {
1468 utype = lookup_pointer_type (type);
1469 alloc_utype (dip -> die_ref, utype);
1470 }
1471 else
1472 {
1473 TYPE_TARGET_TYPE (utype) = type;
1474 TYPE_POINTER_TYPE (type) = utype;
1475
1476 /* We assume the machine has only one representation for pointers! */
1477 /* FIXME: This confuses host<->target data representations, and is a
1478 poor assumption besides. */
1479
1480 TYPE_LENGTH (utype) = sizeof (char *);
1481 TYPE_CODE (utype) = TYPE_CODE_PTR;
1482 }
1483 }
1484
1485 /*
1486
1487 LOCAL FUNCTION
1488
1489 read_tag_string_type -- read TAG_string_type DIE
1490
1491 SYNOPSIS
1492
1493 static void read_tag_string_type (struct dieinfo *dip)
1494
1495 DESCRIPTION
1496
1497 Extract all information from a TAG_string_type DIE and add to
1498 the user defined type vector. It isn't really a user defined
1499 type, but it behaves like one, with other DIE's using an
1500 AT_user_def_type attribute to reference it.
1501 */
1502
1503 static void
1504 read_tag_string_type (dip)
1505 struct dieinfo *dip;
1506 {
1507 struct type *utype;
1508 struct type *indextype;
1509 struct type *rangetype;
1510 unsigned long lowbound = 0;
1511 unsigned long highbound;
1512
1513 if (dip -> has_at_byte_size)
1514 {
1515 /* A fixed bounds string */
1516 highbound = dip -> at_byte_size - 1;
1517 }
1518 else
1519 {
1520 /* A varying length string. Stub for now. (FIXME) */
1521 highbound = 1;
1522 }
1523 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1524 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1525 highbound);
1526
1527 utype = lookup_utype (dip -> die_ref);
1528 if (utype == NULL)
1529 {
1530 /* No type defined, go ahead and create a blank one to use. */
1531 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1532 }
1533 else
1534 {
1535 /* Already a type in our slot due to a forward reference. Make sure it
1536 is a blank one. If not, complain and leave it alone. */
1537 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1538 {
1539 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1540 return;
1541 }
1542 }
1543
1544 /* Create the string type using the blank type we either found or created. */
1545 utype = create_string_type (utype, rangetype);
1546 }
1547
1548 /*
1549
1550 LOCAL FUNCTION
1551
1552 read_subroutine_type -- process TAG_subroutine_type dies
1553
1554 SYNOPSIS
1555
1556 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1557 char *enddie)
1558
1559 DESCRIPTION
1560
1561 Handle DIES due to C code like:
1562
1563 struct foo {
1564 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1565 int b;
1566 };
1567
1568 NOTES
1569
1570 The parameter DIES are currently ignored. See if gdb has a way to
1571 include this info in it's type system, and decode them if so. Is
1572 this what the type structure's "arg_types" field is for? (FIXME)
1573 */
1574
1575 static void
1576 read_subroutine_type (dip, thisdie, enddie)
1577 struct dieinfo *dip;
1578 char *thisdie;
1579 char *enddie;
1580 {
1581 struct type *type; /* Type that this function returns */
1582 struct type *ftype; /* Function that returns above type */
1583
1584 /* Decode the type that this subroutine returns */
1585
1586 type = decode_die_type (dip);
1587
1588 /* Check to see if we already have a partially constructed user
1589 defined type for this DIE, from a forward reference. */
1590
1591 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1592 {
1593 /* This is the first reference to one of these types. Make
1594 a new one and place it in the user defined types. */
1595 ftype = lookup_function_type (type);
1596 alloc_utype (dip -> die_ref, ftype);
1597 }
1598 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1599 {
1600 /* We have an existing partially constructed type, so bash it
1601 into the correct type. */
1602 TYPE_TARGET_TYPE (ftype) = type;
1603 TYPE_FUNCTION_TYPE (type) = ftype;
1604 TYPE_LENGTH (ftype) = 1;
1605 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1606 }
1607 else
1608 {
1609 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1610 }
1611 }
1612
1613 /*
1614
1615 LOCAL FUNCTION
1616
1617 read_enumeration -- process dies which define an enumeration
1618
1619 SYNOPSIS
1620
1621 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1622 char *enddie, struct objfile *objfile)
1623
1624 DESCRIPTION
1625
1626 Given a pointer to a die which begins an enumeration, process all
1627 the dies that define the members of the enumeration.
1628
1629 NOTES
1630
1631 Note that we need to call enum_type regardless of whether or not we
1632 have a symbol, since we might have an enum without a tag name (thus
1633 no symbol for the tagname).
1634 */
1635
1636 static void
1637 read_enumeration (dip, thisdie, enddie, objfile)
1638 struct dieinfo *dip;
1639 char *thisdie;
1640 char *enddie;
1641 struct objfile *objfile;
1642 {
1643 struct type *type;
1644 struct symbol *sym;
1645
1646 type = enum_type (dip, objfile);
1647 sym = new_symbol (dip, objfile);
1648 if (sym != NULL)
1649 {
1650 SYMBOL_TYPE (sym) = type;
1651 if (cu_language == language_cplus)
1652 {
1653 synthesize_typedef (dip, objfile, type);
1654 }
1655 }
1656 }
1657
1658 /*
1659
1660 LOCAL FUNCTION
1661
1662 enum_type -- decode and return a type for an enumeration
1663
1664 SYNOPSIS
1665
1666 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1667
1668 DESCRIPTION
1669
1670 Given a pointer to a die information structure for the die which
1671 starts an enumeration, process all the dies that define the members
1672 of the enumeration and return a type pointer for the enumeration.
1673
1674 At the same time, for each member of the enumeration, create a
1675 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1676 and give it the type of the enumeration itself.
1677
1678 NOTES
1679
1680 Note that the DWARF specification explicitly mandates that enum
1681 constants occur in reverse order from the source program order,
1682 for "consistency" and because this ordering is easier for many
1683 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1684 Entries). Because gdb wants to see the enum members in program
1685 source order, we have to ensure that the order gets reversed while
1686 we are processing them.
1687 */
1688
1689 static struct type *
1690 enum_type (dip, objfile)
1691 struct dieinfo *dip;
1692 struct objfile *objfile;
1693 {
1694 struct type *type;
1695 struct nextfield {
1696 struct nextfield *next;
1697 struct field field;
1698 };
1699 struct nextfield *list = NULL;
1700 struct nextfield *new;
1701 int nfields = 0;
1702 int n;
1703 char *scan;
1704 char *listend;
1705 unsigned short blocksz;
1706 struct symbol *sym;
1707 int nbytes;
1708
1709 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1710 {
1711 /* No forward references created an empty type, so install one now */
1712 type = alloc_utype (dip -> die_ref, NULL);
1713 }
1714 TYPE_CODE (type) = TYPE_CODE_ENUM;
1715 /* Some compilers try to be helpful by inventing "fake" names for
1716 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1717 Thanks, but no thanks... */
1718 if (dip -> at_name != NULL
1719 && *dip -> at_name != '~'
1720 && *dip -> at_name != '.')
1721 {
1722 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1723 "", "", dip -> at_name);
1724 }
1725 if (dip -> at_byte_size != 0)
1726 {
1727 TYPE_LENGTH (type) = dip -> at_byte_size;
1728 }
1729 if ((scan = dip -> at_element_list) != NULL)
1730 {
1731 if (dip -> short_element_list)
1732 {
1733 nbytes = attribute_size (AT_short_element_list);
1734 }
1735 else
1736 {
1737 nbytes = attribute_size (AT_element_list);
1738 }
1739 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1740 listend = scan + nbytes + blocksz;
1741 scan += nbytes;
1742 while (scan < listend)
1743 {
1744 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1745 new -> next = list;
1746 list = new;
1747 list -> field.type = NULL;
1748 list -> field.bitsize = 0;
1749 list -> field.bitpos =
1750 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1751 objfile);
1752 scan += TARGET_FT_LONG_SIZE (objfile);
1753 list -> field.name = obsavestring (scan, strlen (scan),
1754 &objfile -> type_obstack);
1755 scan += strlen (scan) + 1;
1756 nfields++;
1757 /* Handcraft a new symbol for this enum member. */
1758 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1759 sizeof (struct symbol));
1760 memset (sym, 0, sizeof (struct symbol));
1761 SYMBOL_NAME (sym) = create_name (list -> field.name,
1762 &objfile->symbol_obstack);
1763 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1764 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1765 SYMBOL_CLASS (sym) = LOC_CONST;
1766 SYMBOL_TYPE (sym) = type;
1767 SYMBOL_VALUE (sym) = list -> field.bitpos;
1768 add_symbol_to_list (sym, list_in_scope);
1769 }
1770 /* Now create the vector of fields, and record how big it is. This is
1771 where we reverse the order, by pulling the members off the list in
1772 reverse order from how they were inserted. If we have no fields
1773 (this is apparently possible in C++) then skip building a field
1774 vector. */
1775 if (nfields > 0)
1776 {
1777 TYPE_NFIELDS (type) = nfields;
1778 TYPE_FIELDS (type) = (struct field *)
1779 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1780 /* Copy the saved-up fields into the field vector. */
1781 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1782 {
1783 TYPE_FIELD (type, n++) = list -> field;
1784 }
1785 }
1786 }
1787 return (type);
1788 }
1789
1790 /*
1791
1792 LOCAL FUNCTION
1793
1794 read_func_scope -- process all dies within a function scope
1795
1796 DESCRIPTION
1797
1798 Process all dies within a given function scope. We are passed
1799 a die information structure pointer DIP for the die which
1800 starts the function scope, and pointers into the raw die data
1801 that define the dies within the function scope.
1802
1803 For now, we ignore lexical block scopes within the function.
1804 The problem is that AT&T cc does not define a DWARF lexical
1805 block scope for the function itself, while gcc defines a
1806 lexical block scope for the function. We need to think about
1807 how to handle this difference, or if it is even a problem.
1808 (FIXME)
1809 */
1810
1811 static void
1812 read_func_scope (dip, thisdie, enddie, objfile)
1813 struct dieinfo *dip;
1814 char *thisdie;
1815 char *enddie;
1816 struct objfile *objfile;
1817 {
1818 register struct context_stack *new;
1819
1820 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1821 objfile -> ei.entry_point < dip -> at_high_pc)
1822 {
1823 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1824 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1825 }
1826 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1827 {
1828 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1829 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1830 }
1831 new = push_context (0, dip -> at_low_pc);
1832 new -> name = new_symbol (dip, objfile);
1833 list_in_scope = &local_symbols;
1834 process_dies (thisdie + dip -> die_length, enddie, objfile);
1835 new = pop_context ();
1836 /* Make a block for the local symbols within. */
1837 finish_block (new -> name, &local_symbols, new -> old_blocks,
1838 new -> start_addr, dip -> at_high_pc, objfile);
1839 list_in_scope = &file_symbols;
1840 }
1841
1842
1843 /*
1844
1845 LOCAL FUNCTION
1846
1847 handle_producer -- process the AT_producer attribute
1848
1849 DESCRIPTION
1850
1851 Perform any operations that depend on finding a particular
1852 AT_producer attribute.
1853
1854 */
1855
1856 static void
1857 handle_producer (producer)
1858 char *producer;
1859 {
1860
1861 /* If this compilation unit was compiled with g++ or gcc, then set the
1862 processing_gcc_compilation flag. */
1863
1864 processing_gcc_compilation =
1865 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1866 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1867 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1868
1869 /* Select a demangling style if we can identify the producer and if
1870 the current style is auto. We leave the current style alone if it
1871 is not auto. We also leave the demangling style alone if we find a
1872 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1873
1874 if (AUTO_DEMANGLING)
1875 {
1876 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1877 {
1878 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1879 }
1880 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1881 {
1882 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1883 }
1884 }
1885 }
1886
1887
1888 /*
1889
1890 LOCAL FUNCTION
1891
1892 read_file_scope -- process all dies within a file scope
1893
1894 DESCRIPTION
1895
1896 Process all dies within a given file scope. We are passed a
1897 pointer to the die information structure for the die which
1898 starts the file scope, and pointers into the raw die data which
1899 mark the range of dies within the file scope.
1900
1901 When the partial symbol table is built, the file offset for the line
1902 number table for each compilation unit is saved in the partial symbol
1903 table entry for that compilation unit. As the symbols for each
1904 compilation unit are read, the line number table is read into memory
1905 and the variable lnbase is set to point to it. Thus all we have to
1906 do is use lnbase to access the line number table for the current
1907 compilation unit.
1908 */
1909
1910 static void
1911 read_file_scope (dip, thisdie, enddie, objfile)
1912 struct dieinfo *dip;
1913 char *thisdie;
1914 char *enddie;
1915 struct objfile *objfile;
1916 {
1917 struct cleanup *back_to;
1918 struct symtab *symtab;
1919
1920 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1921 objfile -> ei.entry_point < dip -> at_high_pc)
1922 {
1923 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1924 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1925 }
1926 set_cu_language (dip);
1927 if (dip -> at_producer != NULL)
1928 {
1929 handle_producer (dip -> at_producer);
1930 }
1931 numutypes = (enddie - thisdie) / 4;
1932 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1933 back_to = make_cleanup (free, utypes);
1934 memset (utypes, 0, numutypes * sizeof (struct type *));
1935 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1936 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1937 decode_line_numbers (lnbase);
1938 process_dies (thisdie + dip -> die_length, enddie, objfile);
1939
1940 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1941 if (symtab != NULL)
1942 {
1943 symtab -> language = cu_language;
1944 }
1945 do_cleanups (back_to);
1946 utypes = NULL;
1947 numutypes = 0;
1948 }
1949
1950 /*
1951
1952 LOCAL FUNCTION
1953
1954 process_dies -- process a range of DWARF Information Entries
1955
1956 SYNOPSIS
1957
1958 static void process_dies (char *thisdie, char *enddie,
1959 struct objfile *objfile)
1960
1961 DESCRIPTION
1962
1963 Process all DIE's in a specified range. May be (and almost
1964 certainly will be) called recursively.
1965 */
1966
1967 static void
1968 process_dies (thisdie, enddie, objfile)
1969 char *thisdie;
1970 char *enddie;
1971 struct objfile *objfile;
1972 {
1973 char *nextdie;
1974 struct dieinfo di;
1975
1976 while (thisdie < enddie)
1977 {
1978 basicdieinfo (&di, thisdie, objfile);
1979 if (di.die_length < SIZEOF_DIE_LENGTH)
1980 {
1981 break;
1982 }
1983 else if (di.die_tag == TAG_padding)
1984 {
1985 nextdie = thisdie + di.die_length;
1986 }
1987 else
1988 {
1989 completedieinfo (&di, objfile);
1990 if (di.at_sibling != 0)
1991 {
1992 nextdie = dbbase + di.at_sibling - dbroff;
1993 }
1994 else
1995 {
1996 nextdie = thisdie + di.die_length;
1997 }
1998 #ifdef SMASH_TEXT_ADDRESS
1999 /* I think that these are always text, not data, addresses. */
2000 SMASH_TEXT_ADDRESS (di.at_low_pc);
2001 SMASH_TEXT_ADDRESS (di.at_high_pc);
2002 #endif
2003 switch (di.die_tag)
2004 {
2005 case TAG_compile_unit:
2006 /* Skip Tag_compile_unit if we are already inside a compilation
2007 unit, we are unable to handle nested compilation units
2008 properly (FIXME). */
2009 if (current_subfile == NULL)
2010 read_file_scope (&di, thisdie, nextdie, objfile);
2011 else
2012 nextdie = thisdie + di.die_length;
2013 break;
2014 case TAG_global_subroutine:
2015 case TAG_subroutine:
2016 if (di.has_at_low_pc)
2017 {
2018 read_func_scope (&di, thisdie, nextdie, objfile);
2019 }
2020 break;
2021 case TAG_lexical_block:
2022 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2023 break;
2024 case TAG_class_type:
2025 case TAG_structure_type:
2026 case TAG_union_type:
2027 read_structure_scope (&di, thisdie, nextdie, objfile);
2028 break;
2029 case TAG_enumeration_type:
2030 read_enumeration (&di, thisdie, nextdie, objfile);
2031 break;
2032 case TAG_subroutine_type:
2033 read_subroutine_type (&di, thisdie, nextdie);
2034 break;
2035 case TAG_array_type:
2036 dwarf_read_array_type (&di);
2037 break;
2038 case TAG_pointer_type:
2039 read_tag_pointer_type (&di);
2040 break;
2041 case TAG_string_type:
2042 read_tag_string_type (&di);
2043 break;
2044 default:
2045 new_symbol (&di, objfile);
2046 break;
2047 }
2048 }
2049 thisdie = nextdie;
2050 }
2051 }
2052
2053 /*
2054
2055 LOCAL FUNCTION
2056
2057 decode_line_numbers -- decode a line number table fragment
2058
2059 SYNOPSIS
2060
2061 static void decode_line_numbers (char *tblscan, char *tblend,
2062 long length, long base, long line, long pc)
2063
2064 DESCRIPTION
2065
2066 Translate the DWARF line number information to gdb form.
2067
2068 The ".line" section contains one or more line number tables, one for
2069 each ".line" section from the objects that were linked.
2070
2071 The AT_stmt_list attribute for each TAG_source_file entry in the
2072 ".debug" section contains the offset into the ".line" section for the
2073 start of the table for that file.
2074
2075 The table itself has the following structure:
2076
2077 <table length><base address><source statement entry>
2078 4 bytes 4 bytes 10 bytes
2079
2080 The table length is the total size of the table, including the 4 bytes
2081 for the length information.
2082
2083 The base address is the address of the first instruction generated
2084 for the source file.
2085
2086 Each source statement entry has the following structure:
2087
2088 <line number><statement position><address delta>
2089 4 bytes 2 bytes 4 bytes
2090
2091 The line number is relative to the start of the file, starting with
2092 line 1.
2093
2094 The statement position either -1 (0xFFFF) or the number of characters
2095 from the beginning of the line to the beginning of the statement.
2096
2097 The address delta is the difference between the base address and
2098 the address of the first instruction for the statement.
2099
2100 Note that we must copy the bytes from the packed table to our local
2101 variables before attempting to use them, to avoid alignment problems
2102 on some machines, particularly RISC processors.
2103
2104 BUGS
2105
2106 Does gdb expect the line numbers to be sorted? They are now by
2107 chance/luck, but are not required to be. (FIXME)
2108
2109 The line with number 0 is unused, gdb apparently can discover the
2110 span of the last line some other way. How? (FIXME)
2111 */
2112
2113 static void
2114 decode_line_numbers (linetable)
2115 char *linetable;
2116 {
2117 char *tblscan;
2118 char *tblend;
2119 unsigned long length;
2120 unsigned long base;
2121 unsigned long line;
2122 unsigned long pc;
2123
2124 if (linetable != NULL)
2125 {
2126 tblscan = tblend = linetable;
2127 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2128 current_objfile);
2129 tblscan += SIZEOF_LINETBL_LENGTH;
2130 tblend += length;
2131 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2132 GET_UNSIGNED, current_objfile);
2133 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2134 base += baseaddr;
2135 while (tblscan < tblend)
2136 {
2137 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2138 current_objfile);
2139 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2140 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2141 current_objfile);
2142 tblscan += SIZEOF_LINETBL_DELTA;
2143 pc += base;
2144 if (line != 0)
2145 {
2146 record_line (current_subfile, line, pc);
2147 }
2148 }
2149 }
2150 }
2151
2152 /*
2153
2154 LOCAL FUNCTION
2155
2156 locval -- compute the value of a location attribute
2157
2158 SYNOPSIS
2159
2160 static int locval (char *loc)
2161
2162 DESCRIPTION
2163
2164 Given pointer to a string of bytes that define a location, compute
2165 the location and return the value.
2166
2167 When computing values involving the current value of the frame pointer,
2168 the value zero is used, which results in a value relative to the frame
2169 pointer, rather than the absolute value. This is what GDB wants
2170 anyway.
2171
2172 When the result is a register number, the global isreg flag is set,
2173 otherwise it is cleared. This is a kludge until we figure out a better
2174 way to handle the problem. Gdb's design does not mesh well with the
2175 DWARF notion of a location computing interpreter, which is a shame
2176 because the flexibility goes unused.
2177
2178 NOTES
2179
2180 Note that stack[0] is unused except as a default error return.
2181 Note that stack overflow is not yet handled.
2182 */
2183
2184 static int
2185 locval (loc)
2186 char *loc;
2187 {
2188 unsigned short nbytes;
2189 unsigned short locsize;
2190 auto long stack[64];
2191 int stacki;
2192 char *end;
2193 int loc_atom_code;
2194 int loc_value_size;
2195
2196 nbytes = attribute_size (AT_location);
2197 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2198 loc += nbytes;
2199 end = loc + locsize;
2200 stacki = 0;
2201 stack[stacki] = 0;
2202 isreg = 0;
2203 offreg = 0;
2204 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2205 while (loc < end)
2206 {
2207 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2208 current_objfile);
2209 loc += SIZEOF_LOC_ATOM_CODE;
2210 switch (loc_atom_code)
2211 {
2212 case 0:
2213 /* error */
2214 loc = end;
2215 break;
2216 case OP_REG:
2217 /* push register (number) */
2218 stack[++stacki]
2219 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2220 GET_UNSIGNED,
2221 current_objfile));
2222 loc += loc_value_size;
2223 isreg = 1;
2224 break;
2225 case OP_BASEREG:
2226 /* push value of register (number) */
2227 /* Actually, we compute the value as if register has 0, so the
2228 value ends up being the offset from that register. */
2229 offreg = 1;
2230 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2231 current_objfile);
2232 loc += loc_value_size;
2233 stack[++stacki] = 0;
2234 break;
2235 case OP_ADDR:
2236 /* push address (relocated address) */
2237 stack[++stacki] = target_to_host (loc, loc_value_size,
2238 GET_UNSIGNED, current_objfile);
2239 loc += loc_value_size;
2240 break;
2241 case OP_CONST:
2242 /* push constant (number) FIXME: signed or unsigned! */
2243 stack[++stacki] = target_to_host (loc, loc_value_size,
2244 GET_SIGNED, current_objfile);
2245 loc += loc_value_size;
2246 break;
2247 case OP_DEREF2:
2248 /* pop, deref and push 2 bytes (as a long) */
2249 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2250 break;
2251 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2252 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2253 break;
2254 case OP_ADD: /* pop top 2 items, add, push result */
2255 stack[stacki - 1] += stack[stacki];
2256 stacki--;
2257 break;
2258 }
2259 }
2260 return (stack[stacki]);
2261 }
2262
2263 /*
2264
2265 LOCAL FUNCTION
2266
2267 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2268
2269 SYNOPSIS
2270
2271 static void read_ofile_symtab (struct partial_symtab *pst)
2272
2273 DESCRIPTION
2274
2275 When expanding a partial symbol table entry to a full symbol table
2276 entry, this is the function that gets called to read in the symbols
2277 for the compilation unit. A pointer to the newly constructed symtab,
2278 which is now the new first one on the objfile's symtab list, is
2279 stashed in the partial symbol table entry.
2280 */
2281
2282 static void
2283 read_ofile_symtab (pst)
2284 struct partial_symtab *pst;
2285 {
2286 struct cleanup *back_to;
2287 unsigned long lnsize;
2288 file_ptr foffset;
2289 bfd *abfd;
2290 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2291
2292 abfd = pst -> objfile -> obfd;
2293 current_objfile = pst -> objfile;
2294
2295 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2296 unit, seek to the location in the file, and read in all the DIE's. */
2297
2298 diecount = 0;
2299 dbsize = DBLENGTH (pst);
2300 dbbase = xmalloc (dbsize);
2301 dbroff = DBROFF(pst);
2302 foffset = DBFOFF(pst) + dbroff;
2303 base_section_offsets = pst->section_offsets;
2304 baseaddr = ANOFFSET (pst->section_offsets, 0);
2305 if (bfd_seek (abfd, foffset, L_SET) ||
2306 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2307 {
2308 free (dbbase);
2309 error ("can't read DWARF data");
2310 }
2311 back_to = make_cleanup (free, dbbase);
2312
2313 /* If there is a line number table associated with this compilation unit
2314 then read the size of this fragment in bytes, from the fragment itself.
2315 Allocate a buffer for the fragment and read it in for future
2316 processing. */
2317
2318 lnbase = NULL;
2319 if (LNFOFF (pst))
2320 {
2321 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2322 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2323 sizeof (lnsizedata)))
2324 {
2325 error ("can't read DWARF line number table size");
2326 }
2327 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2328 GET_UNSIGNED, pst -> objfile);
2329 lnbase = xmalloc (lnsize);
2330 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2331 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2332 {
2333 free (lnbase);
2334 error ("can't read DWARF line numbers");
2335 }
2336 make_cleanup (free, lnbase);
2337 }
2338
2339 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2340 do_cleanups (back_to);
2341 current_objfile = NULL;
2342 pst -> symtab = pst -> objfile -> symtabs;
2343 }
2344
2345 /*
2346
2347 LOCAL FUNCTION
2348
2349 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2350
2351 SYNOPSIS
2352
2353 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2354
2355 DESCRIPTION
2356
2357 Called once for each partial symbol table entry that needs to be
2358 expanded into a full symbol table entry.
2359
2360 */
2361
2362 static void
2363 psymtab_to_symtab_1 (pst)
2364 struct partial_symtab *pst;
2365 {
2366 int i;
2367 struct cleanup *old_chain;
2368
2369 if (pst != NULL)
2370 {
2371 if (pst->readin)
2372 {
2373 warning ("psymtab for %s already read in. Shouldn't happen.",
2374 pst -> filename);
2375 }
2376 else
2377 {
2378 /* Read in all partial symtabs on which this one is dependent */
2379 for (i = 0; i < pst -> number_of_dependencies; i++)
2380 {
2381 if (!pst -> dependencies[i] -> readin)
2382 {
2383 /* Inform about additional files that need to be read in. */
2384 if (info_verbose)
2385 {
2386 fputs_filtered (" ", gdb_stdout);
2387 wrap_here ("");
2388 fputs_filtered ("and ", gdb_stdout);
2389 wrap_here ("");
2390 printf_filtered ("%s...",
2391 pst -> dependencies[i] -> filename);
2392 wrap_here ("");
2393 gdb_flush (gdb_stdout); /* Flush output */
2394 }
2395 psymtab_to_symtab_1 (pst -> dependencies[i]);
2396 }
2397 }
2398 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2399 {
2400 buildsym_init ();
2401 old_chain = make_cleanup (really_free_pendings, 0);
2402 read_ofile_symtab (pst);
2403 if (info_verbose)
2404 {
2405 printf_filtered ("%d DIE's, sorting...", diecount);
2406 wrap_here ("");
2407 gdb_flush (gdb_stdout);
2408 }
2409 sort_symtab_syms (pst -> symtab);
2410 do_cleanups (old_chain);
2411 }
2412 pst -> readin = 1;
2413 }
2414 }
2415 }
2416
2417 /*
2418
2419 LOCAL FUNCTION
2420
2421 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2422
2423 SYNOPSIS
2424
2425 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2426
2427 DESCRIPTION
2428
2429 This is the DWARF support entry point for building a full symbol
2430 table entry from a partial symbol table entry. We are passed a
2431 pointer to the partial symbol table entry that needs to be expanded.
2432
2433 */
2434
2435 static void
2436 dwarf_psymtab_to_symtab (pst)
2437 struct partial_symtab *pst;
2438 {
2439
2440 if (pst != NULL)
2441 {
2442 if (pst -> readin)
2443 {
2444 warning ("psymtab for %s already read in. Shouldn't happen.",
2445 pst -> filename);
2446 }
2447 else
2448 {
2449 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2450 {
2451 /* Print the message now, before starting serious work, to avoid
2452 disconcerting pauses. */
2453 if (info_verbose)
2454 {
2455 printf_filtered ("Reading in symbols for %s...",
2456 pst -> filename);
2457 gdb_flush (gdb_stdout);
2458 }
2459
2460 psymtab_to_symtab_1 (pst);
2461
2462 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2463 we need to do an equivalent or is this something peculiar to
2464 stabs/a.out format.
2465 Match with global symbols. This only needs to be done once,
2466 after all of the symtabs and dependencies have been read in.
2467 */
2468 scan_file_globals (pst -> objfile);
2469 #endif
2470
2471 /* Finish up the verbose info message. */
2472 if (info_verbose)
2473 {
2474 printf_filtered ("done.\n");
2475 gdb_flush (gdb_stdout);
2476 }
2477 }
2478 }
2479 }
2480 }
2481
2482 /*
2483
2484 LOCAL FUNCTION
2485
2486 init_psymbol_list -- initialize storage for partial symbols
2487
2488 SYNOPSIS
2489
2490 static void init_psymbol_list (struct objfile *objfile, int total_symbols)
2491
2492 DESCRIPTION
2493
2494 Initializes storage for all of the partial symbols that will be
2495 created by dwarf_build_psymtabs and subsidiaries.
2496 */
2497
2498 static void
2499 init_psymbol_list (objfile, total_symbols)
2500 struct objfile *objfile;
2501 int total_symbols;
2502 {
2503 /* Free any previously allocated psymbol lists. */
2504
2505 if (objfile -> global_psymbols.list)
2506 {
2507 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2508 }
2509 if (objfile -> static_psymbols.list)
2510 {
2511 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2512 }
2513
2514 /* Current best guess is that there are approximately a twentieth
2515 of the total symbols (in a debugging file) are global or static
2516 oriented symbols */
2517
2518 objfile -> global_psymbols.size = total_symbols / 10;
2519 objfile -> static_psymbols.size = total_symbols / 10;
2520 objfile -> global_psymbols.next =
2521 objfile -> global_psymbols.list = (struct partial_symbol *)
2522 xmmalloc (objfile -> md, objfile -> global_psymbols.size
2523 * sizeof (struct partial_symbol));
2524 objfile -> static_psymbols.next =
2525 objfile -> static_psymbols.list = (struct partial_symbol *)
2526 xmmalloc (objfile -> md, objfile -> static_psymbols.size
2527 * sizeof (struct partial_symbol));
2528 }
2529
2530 /*
2531
2532 LOCAL FUNCTION
2533
2534 add_enum_psymbol -- add enumeration members to partial symbol table
2535
2536 DESCRIPTION
2537
2538 Given pointer to a DIE that is known to be for an enumeration,
2539 extract the symbolic names of the enumeration members and add
2540 partial symbols for them.
2541 */
2542
2543 static void
2544 add_enum_psymbol (dip, objfile)
2545 struct dieinfo *dip;
2546 struct objfile *objfile;
2547 {
2548 char *scan;
2549 char *listend;
2550 unsigned short blocksz;
2551 int nbytes;
2552
2553 if ((scan = dip -> at_element_list) != NULL)
2554 {
2555 if (dip -> short_element_list)
2556 {
2557 nbytes = attribute_size (AT_short_element_list);
2558 }
2559 else
2560 {
2561 nbytes = attribute_size (AT_element_list);
2562 }
2563 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2564 scan += nbytes;
2565 listend = scan + blocksz;
2566 while (scan < listend)
2567 {
2568 scan += TARGET_FT_LONG_SIZE (objfile);
2569 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2570 objfile -> static_psymbols, 0, cu_language,
2571 objfile);
2572 scan += strlen (scan) + 1;
2573 }
2574 }
2575 }
2576
2577 /*
2578
2579 LOCAL FUNCTION
2580
2581 add_partial_symbol -- add symbol to partial symbol table
2582
2583 DESCRIPTION
2584
2585 Given a DIE, if it is one of the types that we want to
2586 add to a partial symbol table, finish filling in the die info
2587 and then add a partial symbol table entry for it.
2588
2589 NOTES
2590
2591 The caller must ensure that the DIE has a valid name attribute.
2592 */
2593
2594 static void
2595 add_partial_symbol (dip, objfile)
2596 struct dieinfo *dip;
2597 struct objfile *objfile;
2598 {
2599 switch (dip -> die_tag)
2600 {
2601 case TAG_global_subroutine:
2602 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2603 VAR_NAMESPACE, LOC_BLOCK,
2604 objfile -> global_psymbols,
2605 dip -> at_low_pc, cu_language, objfile);
2606 break;
2607 case TAG_global_variable:
2608 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2609 VAR_NAMESPACE, LOC_STATIC,
2610 objfile -> global_psymbols,
2611 0, cu_language, objfile);
2612 break;
2613 case TAG_subroutine:
2614 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2615 VAR_NAMESPACE, LOC_BLOCK,
2616 objfile -> static_psymbols,
2617 dip -> at_low_pc, cu_language, objfile);
2618 break;
2619 case TAG_local_variable:
2620 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2621 VAR_NAMESPACE, LOC_STATIC,
2622 objfile -> static_psymbols,
2623 0, cu_language, objfile);
2624 break;
2625 case TAG_typedef:
2626 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2627 VAR_NAMESPACE, LOC_TYPEDEF,
2628 objfile -> static_psymbols,
2629 0, cu_language, objfile);
2630 break;
2631 case TAG_class_type:
2632 case TAG_structure_type:
2633 case TAG_union_type:
2634 case TAG_enumeration_type:
2635 /* Do not add opaque aggregate definitions to the psymtab. */
2636 if (!dip -> has_at_byte_size)
2637 break;
2638 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2639 STRUCT_NAMESPACE, LOC_TYPEDEF,
2640 objfile -> static_psymbols,
2641 0, cu_language, objfile);
2642 if (cu_language == language_cplus)
2643 {
2644 /* For C++, these implicitly act as typedefs as well. */
2645 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2646 VAR_NAMESPACE, LOC_TYPEDEF,
2647 objfile -> static_psymbols,
2648 0, cu_language, objfile);
2649 }
2650 break;
2651 }
2652 }
2653
2654 /*
2655
2656 LOCAL FUNCTION
2657
2658 scan_partial_symbols -- scan DIE's within a single compilation unit
2659
2660 DESCRIPTION
2661
2662 Process the DIE's within a single compilation unit, looking for
2663 interesting DIE's that contribute to the partial symbol table entry
2664 for this compilation unit.
2665
2666 NOTES
2667
2668 There are some DIE's that may appear both at file scope and within
2669 the scope of a function. We are only interested in the ones at file
2670 scope, and the only way to tell them apart is to keep track of the
2671 scope. For example, consider the test case:
2672
2673 static int i;
2674 main () { int j; }
2675
2676 for which the relevant DWARF segment has the structure:
2677
2678 0x51:
2679 0x23 global subrtn sibling 0x9b
2680 name main
2681 fund_type FT_integer
2682 low_pc 0x800004cc
2683 high_pc 0x800004d4
2684
2685 0x74:
2686 0x23 local var sibling 0x97
2687 name j
2688 fund_type FT_integer
2689 location OP_BASEREG 0xe
2690 OP_CONST 0xfffffffc
2691 OP_ADD
2692 0x97:
2693 0x4
2694
2695 0x9b:
2696 0x1d local var sibling 0xb8
2697 name i
2698 fund_type FT_integer
2699 location OP_ADDR 0x800025dc
2700
2701 0xb8:
2702 0x4
2703
2704 We want to include the symbol 'i' in the partial symbol table, but
2705 not the symbol 'j'. In essence, we want to skip all the dies within
2706 the scope of a TAG_global_subroutine DIE.
2707
2708 Don't attempt to add anonymous structures or unions since they have
2709 no name. Anonymous enumerations however are processed, because we
2710 want to extract their member names (the check for a tag name is
2711 done later).
2712
2713 Also, for variables and subroutines, check that this is the place
2714 where the actual definition occurs, rather than just a reference
2715 to an external.
2716 */
2717
2718 static void
2719 scan_partial_symbols (thisdie, enddie, objfile)
2720 char *thisdie;
2721 char *enddie;
2722 struct objfile *objfile;
2723 {
2724 char *nextdie;
2725 char *temp;
2726 struct dieinfo di;
2727
2728 while (thisdie < enddie)
2729 {
2730 basicdieinfo (&di, thisdie, objfile);
2731 if (di.die_length < SIZEOF_DIE_LENGTH)
2732 {
2733 break;
2734 }
2735 else
2736 {
2737 nextdie = thisdie + di.die_length;
2738 /* To avoid getting complete die information for every die, we
2739 only do it (below) for the cases we are interested in. */
2740 switch (di.die_tag)
2741 {
2742 case TAG_global_subroutine:
2743 case TAG_subroutine:
2744 completedieinfo (&di, objfile);
2745 if (di.at_name && (di.has_at_low_pc || di.at_location))
2746 {
2747 add_partial_symbol (&di, objfile);
2748 /* If there is a sibling attribute, adjust the nextdie
2749 pointer to skip the entire scope of the subroutine.
2750 Apply some sanity checking to make sure we don't
2751 overrun or underrun the range of remaining DIE's */
2752 if (di.at_sibling != 0)
2753 {
2754 temp = dbbase + di.at_sibling - dbroff;
2755 if ((temp < thisdie) || (temp >= enddie))
2756 {
2757 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2758 di.at_sibling);
2759 }
2760 else
2761 {
2762 nextdie = temp;
2763 }
2764 }
2765 }
2766 break;
2767 case TAG_global_variable:
2768 case TAG_local_variable:
2769 completedieinfo (&di, objfile);
2770 if (di.at_name && (di.has_at_low_pc || di.at_location))
2771 {
2772 add_partial_symbol (&di, objfile);
2773 }
2774 break;
2775 case TAG_typedef:
2776 case TAG_class_type:
2777 case TAG_structure_type:
2778 case TAG_union_type:
2779 completedieinfo (&di, objfile);
2780 if (di.at_name)
2781 {
2782 add_partial_symbol (&di, objfile);
2783 }
2784 break;
2785 case TAG_enumeration_type:
2786 completedieinfo (&di, objfile);
2787 if (di.at_name)
2788 {
2789 add_partial_symbol (&di, objfile);
2790 }
2791 add_enum_psymbol (&di, objfile);
2792 break;
2793 }
2794 }
2795 thisdie = nextdie;
2796 }
2797 }
2798
2799 /*
2800
2801 LOCAL FUNCTION
2802
2803 scan_compilation_units -- build a psymtab entry for each compilation
2804
2805 DESCRIPTION
2806
2807 This is the top level dwarf parsing routine for building partial
2808 symbol tables.
2809
2810 It scans from the beginning of the DWARF table looking for the first
2811 TAG_compile_unit DIE, and then follows the sibling chain to locate
2812 each additional TAG_compile_unit DIE.
2813
2814 For each TAG_compile_unit DIE it creates a partial symtab structure,
2815 calls a subordinate routine to collect all the compilation unit's
2816 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2817 new partial symtab structure into the partial symbol table. It also
2818 records the appropriate information in the partial symbol table entry
2819 to allow the chunk of DIE's and line number table for this compilation
2820 unit to be located and re-read later, to generate a complete symbol
2821 table entry for the compilation unit.
2822
2823 Thus it effectively partitions up a chunk of DIE's for multiple
2824 compilation units into smaller DIE chunks and line number tables,
2825 and associates them with a partial symbol table entry.
2826
2827 NOTES
2828
2829 If any compilation unit has no line number table associated with
2830 it for some reason (a missing at_stmt_list attribute, rather than
2831 just one with a value of zero, which is valid) then we ensure that
2832 the recorded file offset is zero so that the routine which later
2833 reads line number table fragments knows that there is no fragment
2834 to read.
2835
2836 RETURNS
2837
2838 Returns no value.
2839
2840 */
2841
2842 static void
2843 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2844 char *thisdie;
2845 char *enddie;
2846 file_ptr dbfoff;
2847 file_ptr lnoffset;
2848 struct objfile *objfile;
2849 {
2850 char *nextdie;
2851 struct dieinfo di;
2852 struct partial_symtab *pst;
2853 int culength;
2854 int curoff;
2855 file_ptr curlnoffset;
2856
2857 while (thisdie < enddie)
2858 {
2859 basicdieinfo (&di, thisdie, objfile);
2860 if (di.die_length < SIZEOF_DIE_LENGTH)
2861 {
2862 break;
2863 }
2864 else if (di.die_tag != TAG_compile_unit)
2865 {
2866 nextdie = thisdie + di.die_length;
2867 }
2868 else
2869 {
2870 completedieinfo (&di, objfile);
2871 set_cu_language (&di);
2872 if (di.at_sibling != 0)
2873 {
2874 nextdie = dbbase + di.at_sibling - dbroff;
2875 }
2876 else
2877 {
2878 nextdie = thisdie + di.die_length;
2879 }
2880 curoff = thisdie - dbbase;
2881 culength = nextdie - thisdie;
2882 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2883
2884 /* First allocate a new partial symbol table structure */
2885
2886 pst = start_psymtab_common (objfile, base_section_offsets,
2887 di.at_name, di.at_low_pc,
2888 objfile -> global_psymbols.next,
2889 objfile -> static_psymbols.next);
2890
2891 pst -> texthigh = di.at_high_pc;
2892 pst -> read_symtab_private = (char *)
2893 obstack_alloc (&objfile -> psymbol_obstack,
2894 sizeof (struct dwfinfo));
2895 DBFOFF (pst) = dbfoff;
2896 DBROFF (pst) = curoff;
2897 DBLENGTH (pst) = culength;
2898 LNFOFF (pst) = curlnoffset;
2899 pst -> read_symtab = dwarf_psymtab_to_symtab;
2900
2901 /* Now look for partial symbols */
2902
2903 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2904
2905 pst -> n_global_syms = objfile -> global_psymbols.next -
2906 (objfile -> global_psymbols.list + pst -> globals_offset);
2907 pst -> n_static_syms = objfile -> static_psymbols.next -
2908 (objfile -> static_psymbols.list + pst -> statics_offset);
2909 sort_pst_symbols (pst);
2910 /* If there is already a psymtab or symtab for a file of this name,
2911 remove it. (If there is a symtab, more drastic things also
2912 happen.) This happens in VxWorks. */
2913 free_named_symtabs (pst -> filename);
2914 }
2915 thisdie = nextdie;
2916 }
2917 }
2918
2919 /*
2920
2921 LOCAL FUNCTION
2922
2923 new_symbol -- make a symbol table entry for a new symbol
2924
2925 SYNOPSIS
2926
2927 static struct symbol *new_symbol (struct dieinfo *dip,
2928 struct objfile *objfile)
2929
2930 DESCRIPTION
2931
2932 Given a pointer to a DWARF information entry, figure out if we need
2933 to make a symbol table entry for it, and if so, create a new entry
2934 and return a pointer to it.
2935 */
2936
2937 static struct symbol *
2938 new_symbol (dip, objfile)
2939 struct dieinfo *dip;
2940 struct objfile *objfile;
2941 {
2942 struct symbol *sym = NULL;
2943
2944 if (dip -> at_name != NULL)
2945 {
2946 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2947 sizeof (struct symbol));
2948 memset (sym, 0, sizeof (struct symbol));
2949 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2950 &objfile->symbol_obstack);
2951 /* default assumptions */
2952 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2953 SYMBOL_CLASS (sym) = LOC_STATIC;
2954 SYMBOL_TYPE (sym) = decode_die_type (dip);
2955
2956 /* If this symbol is from a C++ compilation, then attempt to cache the
2957 demangled form for future reference. This is a typical time versus
2958 space tradeoff, that was decided in favor of time because it sped up
2959 C++ symbol lookups by a factor of about 20. */
2960
2961 SYMBOL_LANGUAGE (sym) = cu_language;
2962 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2963 switch (dip -> die_tag)
2964 {
2965 case TAG_label:
2966 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2967 SYMBOL_CLASS (sym) = LOC_LABEL;
2968 break;
2969 case TAG_global_subroutine:
2970 case TAG_subroutine:
2971 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2972 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2973 SYMBOL_CLASS (sym) = LOC_BLOCK;
2974 if (dip -> die_tag == TAG_global_subroutine)
2975 {
2976 add_symbol_to_list (sym, &global_symbols);
2977 }
2978 else
2979 {
2980 add_symbol_to_list (sym, list_in_scope);
2981 }
2982 break;
2983 case TAG_global_variable:
2984 if (dip -> at_location != NULL)
2985 {
2986 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2987 add_symbol_to_list (sym, &global_symbols);
2988 SYMBOL_CLASS (sym) = LOC_STATIC;
2989 SYMBOL_VALUE (sym) += baseaddr;
2990 }
2991 break;
2992 case TAG_local_variable:
2993 if (dip -> at_location != NULL)
2994 {
2995 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2996 add_symbol_to_list (sym, list_in_scope);
2997 if (isreg)
2998 {
2999 SYMBOL_CLASS (sym) = LOC_REGISTER;
3000 }
3001 else if (offreg)
3002 {
3003 SYMBOL_CLASS (sym) = LOC_BASEREG;
3004 SYMBOL_BASEREG (sym) = basereg;
3005 }
3006 else
3007 {
3008 SYMBOL_CLASS (sym) = LOC_STATIC;
3009 SYMBOL_VALUE (sym) += baseaddr;
3010 }
3011 }
3012 break;
3013 case TAG_formal_parameter:
3014 if (dip -> at_location != NULL)
3015 {
3016 SYMBOL_VALUE (sym) = locval (dip -> at_location);
3017 }
3018 add_symbol_to_list (sym, list_in_scope);
3019 if (isreg)
3020 {
3021 SYMBOL_CLASS (sym) = LOC_REGPARM;
3022 }
3023 else if (offreg)
3024 {
3025 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3026 SYMBOL_BASEREG (sym) = basereg;
3027 }
3028 else
3029 {
3030 SYMBOL_CLASS (sym) = LOC_ARG;
3031 }
3032 break;
3033 case TAG_unspecified_parameters:
3034 /* From varargs functions; gdb doesn't seem to have any interest in
3035 this information, so just ignore it for now. (FIXME?) */
3036 break;
3037 case TAG_class_type:
3038 case TAG_structure_type:
3039 case TAG_union_type:
3040 case TAG_enumeration_type:
3041 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3042 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3043 add_symbol_to_list (sym, list_in_scope);
3044 break;
3045 case TAG_typedef:
3046 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3047 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3048 add_symbol_to_list (sym, list_in_scope);
3049 break;
3050 default:
3051 /* Not a tag we recognize. Hopefully we aren't processing trash
3052 data, but since we must specifically ignore things we don't
3053 recognize, there is nothing else we should do at this point. */
3054 break;
3055 }
3056 }
3057 return (sym);
3058 }
3059
3060 /*
3061
3062 LOCAL FUNCTION
3063
3064 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3065
3066 SYNOPSIS
3067
3068 static void synthesize_typedef (struct dieinfo *dip,
3069 struct objfile *objfile,
3070 struct type *type);
3071
3072 DESCRIPTION
3073
3074 Given a pointer to a DWARF information entry, synthesize a typedef
3075 for the name in the DIE, using the specified type.
3076
3077 This is used for C++ class, structs, unions, and enumerations to
3078 set up the tag name as a type.
3079
3080 */
3081
3082 static void
3083 synthesize_typedef (dip, objfile, type)
3084 struct dieinfo *dip;
3085 struct objfile *objfile;
3086 struct type *type;
3087 {
3088 struct symbol *sym = NULL;
3089
3090 if (dip -> at_name != NULL)
3091 {
3092 sym = (struct symbol *)
3093 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3094 memset (sym, 0, sizeof (struct symbol));
3095 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3096 &objfile->symbol_obstack);
3097 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3098 SYMBOL_TYPE (sym) = type;
3099 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3100 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3101 add_symbol_to_list (sym, list_in_scope);
3102 }
3103 }
3104
3105 /*
3106
3107 LOCAL FUNCTION
3108
3109 decode_mod_fund_type -- decode a modified fundamental type
3110
3111 SYNOPSIS
3112
3113 static struct type *decode_mod_fund_type (char *typedata)
3114
3115 DESCRIPTION
3116
3117 Decode a block of data containing a modified fundamental
3118 type specification. TYPEDATA is a pointer to the block,
3119 which starts with a length containing the size of the rest
3120 of the block. At the end of the block is a fundmental type
3121 code value that gives the fundamental type. Everything
3122 in between are type modifiers.
3123
3124 We simply compute the number of modifiers and call the general
3125 function decode_modified_type to do the actual work.
3126 */
3127
3128 static struct type *
3129 decode_mod_fund_type (typedata)
3130 char *typedata;
3131 {
3132 struct type *typep = NULL;
3133 unsigned short modcount;
3134 int nbytes;
3135
3136 /* Get the total size of the block, exclusive of the size itself */
3137
3138 nbytes = attribute_size (AT_mod_fund_type);
3139 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3140 typedata += nbytes;
3141
3142 /* Deduct the size of the fundamental type bytes at the end of the block. */
3143
3144 modcount -= attribute_size (AT_fund_type);
3145
3146 /* Now do the actual decoding */
3147
3148 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3149 return (typep);
3150 }
3151
3152 /*
3153
3154 LOCAL FUNCTION
3155
3156 decode_mod_u_d_type -- decode a modified user defined type
3157
3158 SYNOPSIS
3159
3160 static struct type *decode_mod_u_d_type (char *typedata)
3161
3162 DESCRIPTION
3163
3164 Decode a block of data containing a modified user defined
3165 type specification. TYPEDATA is a pointer to the block,
3166 which consists of a two byte length, containing the size
3167 of the rest of the block. At the end of the block is a
3168 four byte value that gives a reference to a user defined type.
3169 Everything in between are type modifiers.
3170
3171 We simply compute the number of modifiers and call the general
3172 function decode_modified_type to do the actual work.
3173 */
3174
3175 static struct type *
3176 decode_mod_u_d_type (typedata)
3177 char *typedata;
3178 {
3179 struct type *typep = NULL;
3180 unsigned short modcount;
3181 int nbytes;
3182
3183 /* Get the total size of the block, exclusive of the size itself */
3184
3185 nbytes = attribute_size (AT_mod_u_d_type);
3186 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3187 typedata += nbytes;
3188
3189 /* Deduct the size of the reference type bytes at the end of the block. */
3190
3191 modcount -= attribute_size (AT_user_def_type);
3192
3193 /* Now do the actual decoding */
3194
3195 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3196 return (typep);
3197 }
3198
3199 /*
3200
3201 LOCAL FUNCTION
3202
3203 decode_modified_type -- decode modified user or fundamental type
3204
3205 SYNOPSIS
3206
3207 static struct type *decode_modified_type (char *modifiers,
3208 unsigned short modcount, int mtype)
3209
3210 DESCRIPTION
3211
3212 Decode a modified type, either a modified fundamental type or
3213 a modified user defined type. MODIFIERS is a pointer to the
3214 block of bytes that define MODCOUNT modifiers. Immediately
3215 following the last modifier is a short containing the fundamental
3216 type or a long containing the reference to the user defined
3217 type. Which one is determined by MTYPE, which is either
3218 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3219 type we are generating.
3220
3221 We call ourself recursively to generate each modified type,`
3222 until MODCOUNT reaches zero, at which point we have consumed
3223 all the modifiers and generate either the fundamental type or
3224 user defined type. When the recursion unwinds, each modifier
3225 is applied in turn to generate the full modified type.
3226
3227 NOTES
3228
3229 If we find a modifier that we don't recognize, and it is not one
3230 of those reserved for application specific use, then we issue a
3231 warning and simply ignore the modifier.
3232
3233 BUGS
3234
3235 We currently ignore MOD_const and MOD_volatile. (FIXME)
3236
3237 */
3238
3239 static struct type *
3240 decode_modified_type (modifiers, modcount, mtype)
3241 char *modifiers;
3242 unsigned int modcount;
3243 int mtype;
3244 {
3245 struct type *typep = NULL;
3246 unsigned short fundtype;
3247 DIE_REF die_ref;
3248 char modifier;
3249 int nbytes;
3250
3251 if (modcount == 0)
3252 {
3253 switch (mtype)
3254 {
3255 case AT_mod_fund_type:
3256 nbytes = attribute_size (AT_fund_type);
3257 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3258 current_objfile);
3259 typep = decode_fund_type (fundtype);
3260 break;
3261 case AT_mod_u_d_type:
3262 nbytes = attribute_size (AT_user_def_type);
3263 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3264 current_objfile);
3265 if ((typep = lookup_utype (die_ref)) == NULL)
3266 {
3267 typep = alloc_utype (die_ref, NULL);
3268 }
3269 break;
3270 default:
3271 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3272 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3273 break;
3274 }
3275 }
3276 else
3277 {
3278 modifier = *modifiers++;
3279 typep = decode_modified_type (modifiers, --modcount, mtype);
3280 switch (modifier)
3281 {
3282 case MOD_pointer_to:
3283 typep = lookup_pointer_type (typep);
3284 break;
3285 case MOD_reference_to:
3286 typep = lookup_reference_type (typep);
3287 break;
3288 case MOD_const:
3289 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3290 break;
3291 case MOD_volatile:
3292 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3293 break;
3294 default:
3295 if (!(MOD_lo_user <= (unsigned char) modifier
3296 && (unsigned char) modifier <= MOD_hi_user))
3297 {
3298 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3299 }
3300 break;
3301 }
3302 }
3303 return (typep);
3304 }
3305
3306 /*
3307
3308 LOCAL FUNCTION
3309
3310 decode_fund_type -- translate basic DWARF type to gdb base type
3311
3312 DESCRIPTION
3313
3314 Given an integer that is one of the fundamental DWARF types,
3315 translate it to one of the basic internal gdb types and return
3316 a pointer to the appropriate gdb type (a "struct type *").
3317
3318 NOTES
3319
3320 For robustness, if we are asked to translate a fundamental
3321 type that we are unprepared to deal with, we return int so
3322 callers can always depend upon a valid type being returned,
3323 and so gdb may at least do something reasonable by default.
3324 If the type is not in the range of those types defined as
3325 application specific types, we also issue a warning.
3326 */
3327
3328 static struct type *
3329 decode_fund_type (fundtype)
3330 unsigned int fundtype;
3331 {
3332 struct type *typep = NULL;
3333
3334 switch (fundtype)
3335 {
3336
3337 case FT_void:
3338 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3339 break;
3340
3341 case FT_boolean: /* Was FT_set in AT&T version */
3342 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3343 break;
3344
3345 case FT_pointer: /* (void *) */
3346 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3347 typep = lookup_pointer_type (typep);
3348 break;
3349
3350 case FT_char:
3351 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3352 break;
3353
3354 case FT_signed_char:
3355 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3356 break;
3357
3358 case FT_unsigned_char:
3359 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3360 break;
3361
3362 case FT_short:
3363 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3364 break;
3365
3366 case FT_signed_short:
3367 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3368 break;
3369
3370 case FT_unsigned_short:
3371 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3372 break;
3373
3374 case FT_integer:
3375 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3376 break;
3377
3378 case FT_signed_integer:
3379 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3380 break;
3381
3382 case FT_unsigned_integer:
3383 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3384 break;
3385
3386 case FT_long:
3387 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3388 break;
3389
3390 case FT_signed_long:
3391 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3392 break;
3393
3394 case FT_unsigned_long:
3395 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3396 break;
3397
3398 case FT_long_long:
3399 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3400 break;
3401
3402 case FT_signed_long_long:
3403 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3404 break;
3405
3406 case FT_unsigned_long_long:
3407 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3408 break;
3409
3410 case FT_float:
3411 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3412 break;
3413
3414 case FT_dbl_prec_float:
3415 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3416 break;
3417
3418 case FT_ext_prec_float:
3419 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3420 break;
3421
3422 case FT_complex:
3423 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3424 break;
3425
3426 case FT_dbl_prec_complex:
3427 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3428 break;
3429
3430 case FT_ext_prec_complex:
3431 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3432 break;
3433
3434 }
3435
3436 if (typep == NULL)
3437 {
3438 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3439 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3440 {
3441 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3442 }
3443 }
3444
3445 return (typep);
3446 }
3447
3448 /*
3449
3450 LOCAL FUNCTION
3451
3452 create_name -- allocate a fresh copy of a string on an obstack
3453
3454 DESCRIPTION
3455
3456 Given a pointer to a string and a pointer to an obstack, allocates
3457 a fresh copy of the string on the specified obstack.
3458
3459 */
3460
3461 static char *
3462 create_name (name, obstackp)
3463 char *name;
3464 struct obstack *obstackp;
3465 {
3466 int length;
3467 char *newname;
3468
3469 length = strlen (name) + 1;
3470 newname = (char *) obstack_alloc (obstackp, length);
3471 strcpy (newname, name);
3472 return (newname);
3473 }
3474
3475 /*
3476
3477 LOCAL FUNCTION
3478
3479 basicdieinfo -- extract the minimal die info from raw die data
3480
3481 SYNOPSIS
3482
3483 void basicdieinfo (char *diep, struct dieinfo *dip,
3484 struct objfile *objfile)
3485
3486 DESCRIPTION
3487
3488 Given a pointer to raw DIE data, and a pointer to an instance of a
3489 die info structure, this function extracts the basic information
3490 from the DIE data required to continue processing this DIE, along
3491 with some bookkeeping information about the DIE.
3492
3493 The information we absolutely must have includes the DIE tag,
3494 and the DIE length. If we need the sibling reference, then we
3495 will have to call completedieinfo() to process all the remaining
3496 DIE information.
3497
3498 Note that since there is no guarantee that the data is properly
3499 aligned in memory for the type of access required (indirection
3500 through anything other than a char pointer), and there is no
3501 guarantee that it is in the same byte order as the gdb host,
3502 we call a function which deals with both alignment and byte
3503 swapping issues. Possibly inefficient, but quite portable.
3504
3505 We also take care of some other basic things at this point, such
3506 as ensuring that the instance of the die info structure starts
3507 out completely zero'd and that curdie is initialized for use
3508 in error reporting if we have a problem with the current die.
3509
3510 NOTES
3511
3512 All DIE's must have at least a valid length, thus the minimum
3513 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3514 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3515 are forced to be TAG_padding DIES.
3516
3517 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3518 that if a padding DIE is used for alignment and the amount needed is
3519 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3520 enough to align to the next alignment boundry.
3521
3522 We do some basic sanity checking here, such as verifying that the
3523 length of the die would not cause it to overrun the recorded end of
3524 the buffer holding the DIE info. If we find a DIE that is either
3525 too small or too large, we force it's length to zero which should
3526 cause the caller to take appropriate action.
3527 */
3528
3529 static void
3530 basicdieinfo (dip, diep, objfile)
3531 struct dieinfo *dip;
3532 char *diep;
3533 struct objfile *objfile;
3534 {
3535 curdie = dip;
3536 memset (dip, 0, sizeof (struct dieinfo));
3537 dip -> die = diep;
3538 dip -> die_ref = dbroff + (diep - dbbase);
3539 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3540 objfile);
3541 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3542 ((diep + dip -> die_length) > (dbbase + dbsize)))
3543 {
3544 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3545 dip -> die_length = 0;
3546 }
3547 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3548 {
3549 dip -> die_tag = TAG_padding;
3550 }
3551 else
3552 {
3553 diep += SIZEOF_DIE_LENGTH;
3554 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3555 objfile);
3556 }
3557 }
3558
3559 /*
3560
3561 LOCAL FUNCTION
3562
3563 completedieinfo -- finish reading the information for a given DIE
3564
3565 SYNOPSIS
3566
3567 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3568
3569 DESCRIPTION
3570
3571 Given a pointer to an already partially initialized die info structure,
3572 scan the raw DIE data and finish filling in the die info structure
3573 from the various attributes found.
3574
3575 Note that since there is no guarantee that the data is properly
3576 aligned in memory for the type of access required (indirection
3577 through anything other than a char pointer), and there is no
3578 guarantee that it is in the same byte order as the gdb host,
3579 we call a function which deals with both alignment and byte
3580 swapping issues. Possibly inefficient, but quite portable.
3581
3582 NOTES
3583
3584 Each time we are called, we increment the diecount variable, which
3585 keeps an approximate count of the number of dies processed for
3586 each compilation unit. This information is presented to the user
3587 if the info_verbose flag is set.
3588
3589 */
3590
3591 static void
3592 completedieinfo (dip, objfile)
3593 struct dieinfo *dip;
3594 struct objfile *objfile;
3595 {
3596 char *diep; /* Current pointer into raw DIE data */
3597 char *end; /* Terminate DIE scan here */
3598 unsigned short attr; /* Current attribute being scanned */
3599 unsigned short form; /* Form of the attribute */
3600 int nbytes; /* Size of next field to read */
3601
3602 diecount++;
3603 diep = dip -> die;
3604 end = diep + dip -> die_length;
3605 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3606 while (diep < end)
3607 {
3608 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3609 diep += SIZEOF_ATTRIBUTE;
3610 if ((nbytes = attribute_size (attr)) == -1)
3611 {
3612 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3613 diep = end;
3614 continue;
3615 }
3616 switch (attr)
3617 {
3618 case AT_fund_type:
3619 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3620 objfile);
3621 break;
3622 case AT_ordering:
3623 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3624 objfile);
3625 break;
3626 case AT_bit_offset:
3627 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3628 objfile);
3629 break;
3630 case AT_sibling:
3631 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3632 objfile);
3633 break;
3634 case AT_stmt_list:
3635 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3636 objfile);
3637 dip -> has_at_stmt_list = 1;
3638 break;
3639 case AT_low_pc:
3640 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
3642 dip -> at_low_pc += baseaddr;
3643 dip -> has_at_low_pc = 1;
3644 break;
3645 case AT_high_pc:
3646 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3647 objfile);
3648 dip -> at_high_pc += baseaddr;
3649 break;
3650 case AT_language:
3651 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3652 objfile);
3653 break;
3654 case AT_user_def_type:
3655 dip -> at_user_def_type = target_to_host (diep, nbytes,
3656 GET_UNSIGNED, objfile);
3657 break;
3658 case AT_byte_size:
3659 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3660 objfile);
3661 dip -> has_at_byte_size = 1;
3662 break;
3663 case AT_bit_size:
3664 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3665 objfile);
3666 break;
3667 case AT_member:
3668 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
3670 break;
3671 case AT_discr:
3672 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3673 objfile);
3674 break;
3675 case AT_location:
3676 dip -> at_location = diep;
3677 break;
3678 case AT_mod_fund_type:
3679 dip -> at_mod_fund_type = diep;
3680 break;
3681 case AT_subscr_data:
3682 dip -> at_subscr_data = diep;
3683 break;
3684 case AT_mod_u_d_type:
3685 dip -> at_mod_u_d_type = diep;
3686 break;
3687 case AT_element_list:
3688 dip -> at_element_list = diep;
3689 dip -> short_element_list = 0;
3690 break;
3691 case AT_short_element_list:
3692 dip -> at_element_list = diep;
3693 dip -> short_element_list = 1;
3694 break;
3695 case AT_discr_value:
3696 dip -> at_discr_value = diep;
3697 break;
3698 case AT_string_length:
3699 dip -> at_string_length = diep;
3700 break;
3701 case AT_name:
3702 dip -> at_name = diep;
3703 break;
3704 case AT_comp_dir:
3705 /* For now, ignore any "hostname:" portion, since gdb doesn't
3706 know how to deal with it. (FIXME). */
3707 dip -> at_comp_dir = strrchr (diep, ':');
3708 if (dip -> at_comp_dir != NULL)
3709 {
3710 dip -> at_comp_dir++;
3711 }
3712 else
3713 {
3714 dip -> at_comp_dir = diep;
3715 }
3716 break;
3717 case AT_producer:
3718 dip -> at_producer = diep;
3719 break;
3720 case AT_start_scope:
3721 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3722 objfile);
3723 break;
3724 case AT_stride_size:
3725 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3726 objfile);
3727 break;
3728 case AT_src_info:
3729 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3730 objfile);
3731 break;
3732 case AT_prototyped:
3733 dip -> at_prototyped = diep;
3734 break;
3735 default:
3736 /* Found an attribute that we are unprepared to handle. However
3737 it is specifically one of the design goals of DWARF that
3738 consumers should ignore unknown attributes. As long as the
3739 form is one that we recognize (so we know how to skip it),
3740 we can just ignore the unknown attribute. */
3741 break;
3742 }
3743 form = FORM_FROM_ATTR (attr);
3744 switch (form)
3745 {
3746 case FORM_DATA2:
3747 diep += 2;
3748 break;
3749 case FORM_DATA4:
3750 case FORM_REF:
3751 diep += 4;
3752 break;
3753 case FORM_DATA8:
3754 diep += 8;
3755 break;
3756 case FORM_ADDR:
3757 diep += TARGET_FT_POINTER_SIZE (objfile);
3758 break;
3759 case FORM_BLOCK2:
3760 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3761 break;
3762 case FORM_BLOCK4:
3763 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3764 break;
3765 case FORM_STRING:
3766 diep += strlen (diep) + 1;
3767 break;
3768 default:
3769 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3770 diep = end;
3771 break;
3772 }
3773 }
3774 }
3775
3776 /*
3777
3778 LOCAL FUNCTION
3779
3780 target_to_host -- swap in target data to host
3781
3782 SYNOPSIS
3783
3784 target_to_host (char *from, int nbytes, int signextend,
3785 struct objfile *objfile)
3786
3787 DESCRIPTION
3788
3789 Given pointer to data in target format in FROM, a byte count for
3790 the size of the data in NBYTES, a flag indicating whether or not
3791 the data is signed in SIGNEXTEND, and a pointer to the current
3792 objfile in OBJFILE, convert the data to host format and return
3793 the converted value.
3794
3795 NOTES
3796
3797 FIXME: If we read data that is known to be signed, and expect to
3798 use it as signed data, then we need to explicitly sign extend the
3799 result until the bfd library is able to do this for us.
3800
3801 */
3802
3803 static unsigned long
3804 target_to_host (from, nbytes, signextend, objfile)
3805 char *from;
3806 int nbytes;
3807 int signextend; /* FIXME: Unused */
3808 struct objfile *objfile;
3809 {
3810 unsigned long rtnval;
3811
3812 switch (nbytes)
3813 {
3814 case 8:
3815 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3816 break;
3817 case 4:
3818 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3819 break;
3820 case 2:
3821 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3822 break;
3823 case 1:
3824 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3825 break;
3826 default:
3827 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3828 rtnval = 0;
3829 break;
3830 }
3831 return (rtnval);
3832 }
3833
3834 /*
3835
3836 LOCAL FUNCTION
3837
3838 attribute_size -- compute size of data for a DWARF attribute
3839
3840 SYNOPSIS
3841
3842 static int attribute_size (unsigned int attr)
3843
3844 DESCRIPTION
3845
3846 Given a DWARF attribute in ATTR, compute the size of the first
3847 piece of data associated with this attribute and return that
3848 size.
3849
3850 Returns -1 for unrecognized attributes.
3851
3852 */
3853
3854 static int
3855 attribute_size (attr)
3856 unsigned int attr;
3857 {
3858 int nbytes; /* Size of next data for this attribute */
3859 unsigned short form; /* Form of the attribute */
3860
3861 form = FORM_FROM_ATTR (attr);
3862 switch (form)
3863 {
3864 case FORM_STRING: /* A variable length field is next */
3865 nbytes = 0;
3866 break;
3867 case FORM_DATA2: /* Next 2 byte field is the data itself */
3868 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3869 nbytes = 2;
3870 break;
3871 case FORM_DATA4: /* Next 4 byte field is the data itself */
3872 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3873 case FORM_REF: /* Next 4 byte field is a DIE offset */
3874 nbytes = 4;
3875 break;
3876 case FORM_DATA8: /* Next 8 byte field is the data itself */
3877 nbytes = 8;
3878 break;
3879 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3880 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3881 break;
3882 default:
3883 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3884 nbytes = -1;
3885 break;
3886 }
3887 return (nbytes);
3888 }