]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
* Makefile.in (CC-LD): Rename to CC_LD, so MPW xform works.
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include "gdb_string.h"
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* Some macros to provide DIE info for complaints. */
61
62 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
63 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
64
65 /* Complaints that can be issued during DWARF debug info reading. */
66
67 struct complaint no_bfd_get_N =
68 {
69 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
70 };
71
72 struct complaint malformed_die =
73 {
74 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
75 };
76
77 struct complaint bad_die_ref =
78 {
79 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
80 };
81
82 struct complaint unknown_attribute_form =
83 {
84 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
85 };
86
87 struct complaint unknown_attribute_length =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
90 };
91
92 struct complaint unexpected_fund_type =
93 {
94 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
95 };
96
97 struct complaint unknown_type_modifier =
98 {
99 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
100 };
101
102 struct complaint volatile_ignored =
103 {
104 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
105 };
106
107 struct complaint const_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
110 };
111
112 struct complaint botched_modified_type =
113 {
114 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
115 };
116
117 struct complaint op_deref2 =
118 {
119 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
120 };
121
122 struct complaint op_deref4 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint basereg_not_handled =
128 {
129 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
130 };
131
132 struct complaint dup_user_type_allocation =
133 {
134 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
135 };
136
137 struct complaint dup_user_type_definition =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
140 };
141
142 struct complaint missing_tag =
143 {
144 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
145 };
146
147 struct complaint bad_array_element_type =
148 {
149 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
150 };
151
152 struct complaint subscript_data_items =
153 {
154 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
155 };
156
157 struct complaint unhandled_array_subscript_format =
158 {
159 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
160 };
161
162 struct complaint unknown_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
165 };
166
167 struct complaint not_row_major =
168 {
169 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
170 };
171
172 typedef unsigned int DIE_REF; /* Reference to a DIE */
173
174 #ifndef GCC_PRODUCER
175 #define GCC_PRODUCER "GNU C "
176 #endif
177
178 #ifndef GPLUS_PRODUCER
179 #define GPLUS_PRODUCER "GNU C++ "
180 #endif
181
182 #ifndef LCC_PRODUCER
183 #define LCC_PRODUCER "NCR C/C++"
184 #endif
185
186 #ifndef CHILL_PRODUCER
187 #define CHILL_PRODUCER "GNU Chill "
188 #endif
189
190 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
191 #ifndef DWARF_REG_TO_REGNUM
192 #define DWARF_REG_TO_REGNUM(num) (num)
193 #endif
194
195 /* Flags to target_to_host() that tell whether or not the data object is
196 expected to be signed. Used, for example, when fetching a signed
197 integer in the target environment which is used as a signed integer
198 in the host environment, and the two environments have different sized
199 ints. In this case, *somebody* has to sign extend the smaller sized
200 int. */
201
202 #define GET_UNSIGNED 0 /* No sign extension required */
203 #define GET_SIGNED 1 /* Sign extension required */
204
205 /* Defines for things which are specified in the document "DWARF Debugging
206 Information Format" published by UNIX International, Programming Languages
207 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
208
209 #define SIZEOF_DIE_LENGTH 4
210 #define SIZEOF_DIE_TAG 2
211 #define SIZEOF_ATTRIBUTE 2
212 #define SIZEOF_FORMAT_SPECIFIER 1
213 #define SIZEOF_FMT_FT 2
214 #define SIZEOF_LINETBL_LENGTH 4
215 #define SIZEOF_LINETBL_LINENO 4
216 #define SIZEOF_LINETBL_STMT 2
217 #define SIZEOF_LINETBL_DELTA 4
218 #define SIZEOF_LOC_ATOM_CODE 1
219
220 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
221
222 /* Macros that return the sizes of various types of data in the target
223 environment.
224
225 FIXME: Currently these are just compile time constants (as they are in
226 other parts of gdb as well). They need to be able to get the right size
227 either from the bfd or possibly from the DWARF info. It would be nice if
228 the DWARF producer inserted DIES that describe the fundamental types in
229 the target environment into the DWARF info, similar to the way dbx stabs
230 producers produce information about their fundamental types. */
231
232 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
233 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
234
235 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
236 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
237 However, the Issue 2 DWARF specification from AT&T defines it as
238 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
239 For backwards compatibility with the AT&T compiler produced executables
240 we define AT_short_element_list for this variant. */
241
242 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
243
244 /* External variables referenced. */
245
246 extern int info_verbose; /* From main.c; nonzero => verbose */
247 extern char *warning_pre_print; /* From utils.c */
248
249 /* The DWARF debugging information consists of two major pieces,
250 one is a block of DWARF Information Entries (DIE's) and the other
251 is a line number table. The "struct dieinfo" structure contains
252 the information for a single DIE, the one currently being processed.
253
254 In order to make it easier to randomly access the attribute fields
255 of the current DIE, which are specifically unordered within the DIE,
256 each DIE is scanned and an instance of the "struct dieinfo"
257 structure is initialized.
258
259 Initialization is done in two levels. The first, done by basicdieinfo(),
260 just initializes those fields that are vital to deciding whether or not
261 to use this DIE, how to skip past it, etc. The second, done by the
262 function completedieinfo(), fills in the rest of the information.
263
264 Attributes which have block forms are not interpreted at the time
265 the DIE is scanned, instead we just save pointers to the start
266 of their value fields.
267
268 Some fields have a flag <name>_p that is set when the value of the
269 field is valid (I.E. we found a matching attribute in the DIE). Since
270 we may want to test for the presence of some attributes in the DIE,
271 such as AT_low_pc, without restricting the values of the field,
272 we need someway to note that we found such an attribute.
273
274 */
275
276 typedef char BLOCK;
277
278 struct dieinfo {
279 char * die; /* Pointer to the raw DIE data */
280 unsigned long die_length; /* Length of the raw DIE data */
281 DIE_REF die_ref; /* Offset of this DIE */
282 unsigned short die_tag; /* Tag for this DIE */
283 unsigned long at_padding;
284 unsigned long at_sibling;
285 BLOCK * at_location;
286 char * at_name;
287 unsigned short at_fund_type;
288 BLOCK * at_mod_fund_type;
289 unsigned long at_user_def_type;
290 BLOCK * at_mod_u_d_type;
291 unsigned short at_ordering;
292 BLOCK * at_subscr_data;
293 unsigned long at_byte_size;
294 unsigned short at_bit_offset;
295 unsigned long at_bit_size;
296 BLOCK * at_element_list;
297 unsigned long at_stmt_list;
298 CORE_ADDR at_low_pc;
299 CORE_ADDR at_high_pc;
300 unsigned long at_language;
301 unsigned long at_member;
302 unsigned long at_discr;
303 BLOCK * at_discr_value;
304 BLOCK * at_string_length;
305 char * at_comp_dir;
306 char * at_producer;
307 unsigned long at_start_scope;
308 unsigned long at_stride_size;
309 unsigned long at_src_info;
310 char * at_prototyped;
311 unsigned int has_at_low_pc:1;
312 unsigned int has_at_stmt_list:1;
313 unsigned int has_at_byte_size:1;
314 unsigned int short_element_list:1;
315 };
316
317 static int diecount; /* Approximate count of dies for compilation unit */
318 static struct dieinfo *curdie; /* For warnings and such */
319
320 static char *dbbase; /* Base pointer to dwarf info */
321 static int dbsize; /* Size of dwarf info in bytes */
322 static int dbroff; /* Relative offset from start of .debug section */
323 static char *lnbase; /* Base pointer to line section */
324 static int isreg; /* Kludge to identify register variables */
325 static int optimized_out; /* Kludge to identify optimized out variables */
326 /* Kludge to identify basereg references. Nonzero if we have an offset
327 relative to a basereg. */
328 static int offreg;
329 /* Which base register is it relative to? */
330 static int basereg;
331
332 /* This value is added to each symbol value. FIXME: Generalize to
333 the section_offsets structure used by dbxread (once this is done,
334 pass the appropriate section number to end_symtab). */
335 static CORE_ADDR baseaddr; /* Add to each symbol value */
336
337 /* The section offsets used in the current psymtab or symtab. FIXME,
338 only used to pass one value (baseaddr) at the moment. */
339 static struct section_offsets *base_section_offsets;
340
341 /* We put a pointer to this structure in the read_symtab_private field
342 of the psymtab. */
343
344 struct dwfinfo {
345 /* Always the absolute file offset to the start of the ".debug"
346 section for the file containing the DIE's being accessed. */
347 file_ptr dbfoff;
348 /* Relative offset from the start of the ".debug" section to the
349 first DIE to be accessed. When building the partial symbol
350 table, this value will be zero since we are accessing the
351 entire ".debug" section. When expanding a partial symbol
352 table entry, this value will be the offset to the first
353 DIE for the compilation unit containing the symbol that
354 triggers the expansion. */
355 int dbroff;
356 /* The size of the chunk of DIE's being examined, in bytes. */
357 int dblength;
358 /* The absolute file offset to the line table fragment. Ignored
359 when building partial symbol tables, but used when expanding
360 them, and contains the absolute file offset to the fragment
361 of the ".line" section containing the line numbers for the
362 current compilation unit. */
363 file_ptr lnfoff;
364 };
365
366 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
367 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
368 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
369 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
370
371 /* The generic symbol table building routines have separate lists for
372 file scope symbols and all all other scopes (local scopes). So
373 we need to select the right one to pass to add_symbol_to_list().
374 We do it by keeping a pointer to the correct list in list_in_scope.
375
376 FIXME: The original dwarf code just treated the file scope as the first
377 local scope, and all other local scopes as nested local scopes, and worked
378 fine. Check to see if we really need to distinguish these in buildsym.c */
379
380 struct pending **list_in_scope = &file_symbols;
381
382 /* DIES which have user defined types or modified user defined types refer to
383 other DIES for the type information. Thus we need to associate the offset
384 of a DIE for a user defined type with a pointer to the type information.
385
386 Originally this was done using a simple but expensive algorithm, with an
387 array of unsorted structures, each containing an offset/type-pointer pair.
388 This array was scanned linearly each time a lookup was done. The result
389 was that gdb was spending over half it's startup time munging through this
390 array of pointers looking for a structure that had the right offset member.
391
392 The second attempt used the same array of structures, but the array was
393 sorted using qsort each time a new offset/type was recorded, and a binary
394 search was used to find the type pointer for a given DIE offset. This was
395 even slower, due to the overhead of sorting the array each time a new
396 offset/type pair was entered.
397
398 The third attempt uses a fixed size array of type pointers, indexed by a
399 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
400 we can divide any DIE offset by 4 to obtain a unique index into this fixed
401 size array. Since each element is a 4 byte pointer, it takes exactly as
402 much memory to hold this array as to hold the DWARF info for a given
403 compilation unit. But it gets freed as soon as we are done with it.
404 This has worked well in practice, as a reasonable tradeoff between memory
405 consumption and speed, without having to resort to much more complicated
406 algorithms. */
407
408 static struct type **utypes; /* Pointer to array of user type pointers */
409 static int numutypes; /* Max number of user type pointers */
410
411 /* Maintain an array of referenced fundamental types for the current
412 compilation unit being read. For DWARF version 1, we have to construct
413 the fundamental types on the fly, since no information about the
414 fundamental types is supplied. Each such fundamental type is created by
415 calling a language dependent routine to create the type, and then a
416 pointer to that type is then placed in the array at the index specified
417 by it's FT_<TYPENAME> value. The array has a fixed size set by the
418 FT_NUM_MEMBERS compile time constant, which is the number of predefined
419 fundamental types gdb knows how to construct. */
420
421 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
422
423 /* Record the language for the compilation unit which is currently being
424 processed. We know it once we have seen the TAG_compile_unit DIE,
425 and we need it while processing the DIE's for that compilation unit.
426 It is eventually saved in the symtab structure, but we don't finalize
427 the symtab struct until we have processed all the DIE's for the
428 compilation unit. We also need to get and save a pointer to the
429 language struct for this language, so we can call the language
430 dependent routines for doing things such as creating fundamental
431 types. */
432
433 static enum language cu_language;
434 static const struct language_defn *cu_language_defn;
435
436 /* Forward declarations of static functions so we don't have to worry
437 about ordering within this file. */
438
439 static int
440 attribute_size PARAMS ((unsigned int));
441
442 static CORE_ADDR
443 target_to_host PARAMS ((char *, int, int, struct objfile *));
444
445 static void
446 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
447
448 static void
449 handle_producer PARAMS ((char *));
450
451 static void
452 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
453
454 static void
455 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
456
457 static void
458 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
459 struct objfile *));
460
461 static void
462 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
463
464 static void
465 scan_compilation_units PARAMS ((char *, char *, file_ptr,
466 file_ptr, struct objfile *));
467
468 static void
469 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
470
471 static void
472 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
473
474 static void
475 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
476
477 static void
478 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
479
480 static void
481 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
482
483 static void
484 read_ofile_symtab PARAMS ((struct partial_symtab *));
485
486 static void
487 process_dies PARAMS ((char *, char *, struct objfile *));
488
489 static void
490 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
491 struct objfile *));
492
493 static struct type *
494 decode_array_element_type PARAMS ((char *));
495
496 static struct type *
497 decode_subscript_data_item PARAMS ((char *, char *));
498
499 static void
500 dwarf_read_array_type PARAMS ((struct dieinfo *));
501
502 static void
503 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
504
505 static void
506 read_tag_string_type PARAMS ((struct dieinfo *dip));
507
508 static void
509 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
510
511 static void
512 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
513
514 static struct type *
515 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
516
517 static struct type *
518 enum_type PARAMS ((struct dieinfo *, struct objfile *));
519
520 static void
521 decode_line_numbers PARAMS ((char *));
522
523 static struct type *
524 decode_die_type PARAMS ((struct dieinfo *));
525
526 static struct type *
527 decode_mod_fund_type PARAMS ((char *));
528
529 static struct type *
530 decode_mod_u_d_type PARAMS ((char *));
531
532 static struct type *
533 decode_modified_type PARAMS ((char *, unsigned int, int));
534
535 static struct type *
536 decode_fund_type PARAMS ((unsigned int));
537
538 static char *
539 create_name PARAMS ((char *, struct obstack *));
540
541 static struct type *
542 lookup_utype PARAMS ((DIE_REF));
543
544 static struct type *
545 alloc_utype PARAMS ((DIE_REF, struct type *));
546
547 static struct symbol *
548 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
549
550 static void
551 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
552 struct type *));
553
554 static int
555 locval PARAMS ((char *));
556
557 static void
558 set_cu_language PARAMS ((struct dieinfo *));
559
560 static struct type *
561 dwarf_fundamental_type PARAMS ((struct objfile *, int));
562
563
564 /*
565
566 LOCAL FUNCTION
567
568 dwarf_fundamental_type -- lookup or create a fundamental type
569
570 SYNOPSIS
571
572 struct type *
573 dwarf_fundamental_type (struct objfile *objfile, int typeid)
574
575 DESCRIPTION
576
577 DWARF version 1 doesn't supply any fundamental type information,
578 so gdb has to construct such types. It has a fixed number of
579 fundamental types that it knows how to construct, which is the
580 union of all types that it knows how to construct for all languages
581 that it knows about. These are enumerated in gdbtypes.h.
582
583 As an example, assume we find a DIE that references a DWARF
584 fundamental type of FT_integer. We first look in the ftypes
585 array to see if we already have such a type, indexed by the
586 gdb internal value of FT_INTEGER. If so, we simply return a
587 pointer to that type. If not, then we ask an appropriate
588 language dependent routine to create a type FT_INTEGER, using
589 defaults reasonable for the current target machine, and install
590 that type in ftypes for future reference.
591
592 RETURNS
593
594 Pointer to a fundamental type.
595
596 */
597
598 static struct type *
599 dwarf_fundamental_type (objfile, typeid)
600 struct objfile *objfile;
601 int typeid;
602 {
603 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
604 {
605 error ("internal error - invalid fundamental type id %d", typeid);
606 }
607
608 /* Look for this particular type in the fundamental type vector. If one is
609 not found, create and install one appropriate for the current language
610 and the current target machine. */
611
612 if (ftypes[typeid] == NULL)
613 {
614 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
615 }
616
617 return (ftypes[typeid]);
618 }
619
620 /*
621
622 LOCAL FUNCTION
623
624 set_cu_language -- set local copy of language for compilation unit
625
626 SYNOPSIS
627
628 void
629 set_cu_language (struct dieinfo *dip)
630
631 DESCRIPTION
632
633 Decode the language attribute for a compilation unit DIE and
634 remember what the language was. We use this at various times
635 when processing DIE's for a given compilation unit.
636
637 RETURNS
638
639 No return value.
640
641 */
642
643 static void
644 set_cu_language (dip)
645 struct dieinfo *dip;
646 {
647 switch (dip -> at_language)
648 {
649 case LANG_C89:
650 case LANG_C:
651 cu_language = language_c;
652 break;
653 case LANG_C_PLUS_PLUS:
654 cu_language = language_cplus;
655 break;
656 case LANG_CHILL:
657 cu_language = language_chill;
658 break;
659 case LANG_MODULA2:
660 cu_language = language_m2;
661 break;
662 case LANG_ADA83:
663 case LANG_COBOL74:
664 case LANG_COBOL85:
665 case LANG_FORTRAN77:
666 case LANG_FORTRAN90:
667 case LANG_PASCAL83:
668 /* We don't know anything special about these yet. */
669 cu_language = language_unknown;
670 break;
671 default:
672 /* If no at_language, try to deduce one from the filename */
673 cu_language = deduce_language_from_filename (dip -> at_name);
674 break;
675 }
676 cu_language_defn = language_def (cu_language);
677 }
678
679 /*
680
681 GLOBAL FUNCTION
682
683 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
684
685 SYNOPSIS
686
687 void dwarf_build_psymtabs (struct objfile *objfile,
688 struct section_offsets *section_offsets,
689 int mainline, file_ptr dbfoff, unsigned int dbfsize,
690 file_ptr lnoffset, unsigned int lnsize)
691
692 DESCRIPTION
693
694 This function is called upon to build partial symtabs from files
695 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
696
697 It is passed a bfd* containing the DIES
698 and line number information, the corresponding filename for that
699 file, a base address for relocating the symbols, a flag indicating
700 whether or not this debugging information is from a "main symbol
701 table" rather than a shared library or dynamically linked file,
702 and file offset/size pairs for the DIE information and line number
703 information.
704
705 RETURNS
706
707 No return value.
708
709 */
710
711 void
712 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
713 lnoffset, lnsize)
714 struct objfile *objfile;
715 struct section_offsets *section_offsets;
716 int mainline;
717 file_ptr dbfoff;
718 unsigned int dbfsize;
719 file_ptr lnoffset;
720 unsigned int lnsize;
721 {
722 bfd *abfd = objfile->obfd;
723 struct cleanup *back_to;
724
725 current_objfile = objfile;
726 dbsize = dbfsize;
727 dbbase = xmalloc (dbsize);
728 dbroff = 0;
729 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
730 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
731 {
732 free (dbbase);
733 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
734 }
735 back_to = make_cleanup (free, dbbase);
736
737 /* If we are reinitializing, or if we have never loaded syms yet, init.
738 Since we have no idea how many DIES we are looking at, we just guess
739 some arbitrary value. */
740
741 if (mainline || objfile -> global_psymbols.size == 0 ||
742 objfile -> static_psymbols.size == 0)
743 {
744 init_psymbol_list (objfile, 1024);
745 }
746
747 /* Save the relocation factor where everybody can see it. */
748
749 base_section_offsets = section_offsets;
750 baseaddr = ANOFFSET (section_offsets, 0);
751
752 /* Follow the compilation unit sibling chain, building a partial symbol
753 table entry for each one. Save enough information about each compilation
754 unit to locate the full DWARF information later. */
755
756 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
757
758 do_cleanups (back_to);
759 current_objfile = NULL;
760 }
761
762 /*
763
764 LOCAL FUNCTION
765
766 read_lexical_block_scope -- process all dies in a lexical block
767
768 SYNOPSIS
769
770 static void read_lexical_block_scope (struct dieinfo *dip,
771 char *thisdie, char *enddie)
772
773 DESCRIPTION
774
775 Process all the DIES contained within a lexical block scope.
776 Start a new scope, process the dies, and then close the scope.
777
778 */
779
780 static void
781 read_lexical_block_scope (dip, thisdie, enddie, objfile)
782 struct dieinfo *dip;
783 char *thisdie;
784 char *enddie;
785 struct objfile *objfile;
786 {
787 register struct context_stack *new;
788
789 push_context (0, dip -> at_low_pc);
790 process_dies (thisdie + dip -> die_length, enddie, objfile);
791 new = pop_context ();
792 if (local_symbols != NULL)
793 {
794 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
795 dip -> at_high_pc, objfile);
796 }
797 local_symbols = new -> locals;
798 }
799
800 /*
801
802 LOCAL FUNCTION
803
804 lookup_utype -- look up a user defined type from die reference
805
806 SYNOPSIS
807
808 static type *lookup_utype (DIE_REF die_ref)
809
810 DESCRIPTION
811
812 Given a DIE reference, lookup the user defined type associated with
813 that DIE, if it has been registered already. If not registered, then
814 return NULL. Alloc_utype() can be called to register an empty
815 type for this reference, which will be filled in later when the
816 actual referenced DIE is processed.
817 */
818
819 static struct type *
820 lookup_utype (die_ref)
821 DIE_REF die_ref;
822 {
823 struct type *type = NULL;
824 int utypeidx;
825
826 utypeidx = (die_ref - dbroff) / 4;
827 if ((utypeidx < 0) || (utypeidx >= numutypes))
828 {
829 complain (&bad_die_ref, DIE_ID, DIE_NAME);
830 }
831 else
832 {
833 type = *(utypes + utypeidx);
834 }
835 return (type);
836 }
837
838
839 /*
840
841 LOCAL FUNCTION
842
843 alloc_utype -- add a user defined type for die reference
844
845 SYNOPSIS
846
847 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
848
849 DESCRIPTION
850
851 Given a die reference DIE_REF, and a possible pointer to a user
852 defined type UTYPEP, register that this reference has a user
853 defined type and either use the specified type in UTYPEP or
854 make a new empty type that will be filled in later.
855
856 We should only be called after calling lookup_utype() to verify that
857 there is not currently a type registered for DIE_REF.
858 */
859
860 static struct type *
861 alloc_utype (die_ref, utypep)
862 DIE_REF die_ref;
863 struct type *utypep;
864 {
865 struct type **typep;
866 int utypeidx;
867
868 utypeidx = (die_ref - dbroff) / 4;
869 typep = utypes + utypeidx;
870 if ((utypeidx < 0) || (utypeidx >= numutypes))
871 {
872 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
873 complain (&bad_die_ref, DIE_ID, DIE_NAME);
874 }
875 else if (*typep != NULL)
876 {
877 utypep = *typep;
878 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
879 }
880 else
881 {
882 if (utypep == NULL)
883 {
884 utypep = alloc_type (current_objfile);
885 }
886 *typep = utypep;
887 }
888 return (utypep);
889 }
890
891 /*
892
893 LOCAL FUNCTION
894
895 decode_die_type -- return a type for a specified die
896
897 SYNOPSIS
898
899 static struct type *decode_die_type (struct dieinfo *dip)
900
901 DESCRIPTION
902
903 Given a pointer to a die information structure DIP, decode the
904 type of the die and return a pointer to the decoded type. All
905 dies without specific types default to type int.
906 */
907
908 static struct type *
909 decode_die_type (dip)
910 struct dieinfo *dip;
911 {
912 struct type *type = NULL;
913
914 if (dip -> at_fund_type != 0)
915 {
916 type = decode_fund_type (dip -> at_fund_type);
917 }
918 else if (dip -> at_mod_fund_type != NULL)
919 {
920 type = decode_mod_fund_type (dip -> at_mod_fund_type);
921 }
922 else if (dip -> at_user_def_type)
923 {
924 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
925 {
926 type = alloc_utype (dip -> at_user_def_type, NULL);
927 }
928 }
929 else if (dip -> at_mod_u_d_type)
930 {
931 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
932 }
933 else
934 {
935 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
936 }
937 return (type);
938 }
939
940 /*
941
942 LOCAL FUNCTION
943
944 struct_type -- compute and return the type for a struct or union
945
946 SYNOPSIS
947
948 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
949 char *enddie, struct objfile *objfile)
950
951 DESCRIPTION
952
953 Given pointer to a die information structure for a die which
954 defines a union or structure (and MUST define one or the other),
955 and pointers to the raw die data that define the range of dies which
956 define the members, compute and return the user defined type for the
957 structure or union.
958 */
959
960 static struct type *
961 struct_type (dip, thisdie, enddie, objfile)
962 struct dieinfo *dip;
963 char *thisdie;
964 char *enddie;
965 struct objfile *objfile;
966 {
967 struct type *type;
968 struct nextfield {
969 struct nextfield *next;
970 struct field field;
971 };
972 struct nextfield *list = NULL;
973 struct nextfield *new;
974 int nfields = 0;
975 int n;
976 struct dieinfo mbr;
977 char *nextdie;
978 int anonymous_size;
979
980 if ((type = lookup_utype (dip -> die_ref)) == NULL)
981 {
982 /* No forward references created an empty type, so install one now */
983 type = alloc_utype (dip -> die_ref, NULL);
984 }
985 INIT_CPLUS_SPECIFIC(type);
986 switch (dip -> die_tag)
987 {
988 case TAG_class_type:
989 TYPE_CODE (type) = TYPE_CODE_CLASS;
990 break;
991 case TAG_structure_type:
992 TYPE_CODE (type) = TYPE_CODE_STRUCT;
993 break;
994 case TAG_union_type:
995 TYPE_CODE (type) = TYPE_CODE_UNION;
996 break;
997 default:
998 /* Should never happen */
999 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1000 complain (&missing_tag, DIE_ID, DIE_NAME);
1001 break;
1002 }
1003 /* Some compilers try to be helpful by inventing "fake" names for
1004 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1005 Thanks, but no thanks... */
1006 if (dip -> at_name != NULL
1007 && *dip -> at_name != '~'
1008 && *dip -> at_name != '.')
1009 {
1010 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1011 "", "", dip -> at_name);
1012 }
1013 /* Use whatever size is known. Zero is a valid size. We might however
1014 wish to check has_at_byte_size to make sure that some byte size was
1015 given explicitly, but DWARF doesn't specify that explicit sizes of
1016 zero have to present, so complaining about missing sizes should
1017 probably not be the default. */
1018 TYPE_LENGTH (type) = dip -> at_byte_size;
1019 thisdie += dip -> die_length;
1020 while (thisdie < enddie)
1021 {
1022 basicdieinfo (&mbr, thisdie, objfile);
1023 completedieinfo (&mbr, objfile);
1024 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1025 {
1026 break;
1027 }
1028 else if (mbr.at_sibling != 0)
1029 {
1030 nextdie = dbbase + mbr.at_sibling - dbroff;
1031 }
1032 else
1033 {
1034 nextdie = thisdie + mbr.die_length;
1035 }
1036 switch (mbr.die_tag)
1037 {
1038 case TAG_member:
1039 /* Get space to record the next field's data. */
1040 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1041 new -> next = list;
1042 list = new;
1043 /* Save the data. */
1044 list -> field.name =
1045 obsavestring (mbr.at_name, strlen (mbr.at_name),
1046 &objfile -> type_obstack);
1047 list -> field.type = decode_die_type (&mbr);
1048 list -> field.bitpos = 8 * locval (mbr.at_location);
1049 /* Handle bit fields. */
1050 list -> field.bitsize = mbr.at_bit_size;
1051 if (BITS_BIG_ENDIAN)
1052 {
1053 /* For big endian bits, the at_bit_offset gives the
1054 additional bit offset from the MSB of the containing
1055 anonymous object to the MSB of the field. We don't
1056 have to do anything special since we don't need to
1057 know the size of the anonymous object. */
1058 list -> field.bitpos += mbr.at_bit_offset;
1059 }
1060 else
1061 {
1062 /* For little endian bits, we need to have a non-zero
1063 at_bit_size, so that we know we are in fact dealing
1064 with a bitfield. Compute the bit offset to the MSB
1065 of the anonymous object, subtract off the number of
1066 bits from the MSB of the field to the MSB of the
1067 object, and then subtract off the number of bits of
1068 the field itself. The result is the bit offset of
1069 the LSB of the field. */
1070 if (mbr.at_bit_size > 0)
1071 {
1072 if (mbr.has_at_byte_size)
1073 {
1074 /* The size of the anonymous object containing
1075 the bit field is explicit, so use the
1076 indicated size (in bytes). */
1077 anonymous_size = mbr.at_byte_size;
1078 }
1079 else
1080 {
1081 /* The size of the anonymous object containing
1082 the bit field matches the size of an object
1083 of the bit field's type. DWARF allows
1084 at_byte_size to be left out in such cases, as
1085 a debug information size optimization. */
1086 anonymous_size = TYPE_LENGTH (list -> field.type);
1087 }
1088 list -> field.bitpos +=
1089 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1090 }
1091 }
1092 nfields++;
1093 break;
1094 default:
1095 process_dies (thisdie, nextdie, objfile);
1096 break;
1097 }
1098 thisdie = nextdie;
1099 }
1100 /* Now create the vector of fields, and record how big it is. We may
1101 not even have any fields, if this DIE was generated due to a reference
1102 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1103 set, which clues gdb in to the fact that it needs to search elsewhere
1104 for the full structure definition. */
1105 if (nfields == 0)
1106 {
1107 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1108 }
1109 else
1110 {
1111 TYPE_NFIELDS (type) = nfields;
1112 TYPE_FIELDS (type) = (struct field *)
1113 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1114 /* Copy the saved-up fields into the field vector. */
1115 for (n = nfields; list; list = list -> next)
1116 {
1117 TYPE_FIELD (type, --n) = list -> field;
1118 }
1119 }
1120 return (type);
1121 }
1122
1123 /*
1124
1125 LOCAL FUNCTION
1126
1127 read_structure_scope -- process all dies within struct or union
1128
1129 SYNOPSIS
1130
1131 static void read_structure_scope (struct dieinfo *dip,
1132 char *thisdie, char *enddie, struct objfile *objfile)
1133
1134 DESCRIPTION
1135
1136 Called when we find the DIE that starts a structure or union
1137 scope (definition) to process all dies that define the members
1138 of the structure or union. DIP is a pointer to the die info
1139 struct for the DIE that names the structure or union.
1140
1141 NOTES
1142
1143 Note that we need to call struct_type regardless of whether or not
1144 the DIE has an at_name attribute, since it might be an anonymous
1145 structure or union. This gets the type entered into our set of
1146 user defined types.
1147
1148 However, if the structure is incomplete (an opaque struct/union)
1149 then suppress creating a symbol table entry for it since gdb only
1150 wants to find the one with the complete definition. Note that if
1151 it is complete, we just call new_symbol, which does it's own
1152 checking about whether the struct/union is anonymous or not (and
1153 suppresses creating a symbol table entry itself).
1154
1155 */
1156
1157 static void
1158 read_structure_scope (dip, thisdie, enddie, objfile)
1159 struct dieinfo *dip;
1160 char *thisdie;
1161 char *enddie;
1162 struct objfile *objfile;
1163 {
1164 struct type *type;
1165 struct symbol *sym;
1166
1167 type = struct_type (dip, thisdie, enddie, objfile);
1168 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1169 {
1170 sym = new_symbol (dip, objfile);
1171 if (sym != NULL)
1172 {
1173 SYMBOL_TYPE (sym) = type;
1174 if (cu_language == language_cplus)
1175 {
1176 synthesize_typedef (dip, objfile, type);
1177 }
1178 }
1179 }
1180 }
1181
1182 /*
1183
1184 LOCAL FUNCTION
1185
1186 decode_array_element_type -- decode type of the array elements
1187
1188 SYNOPSIS
1189
1190 static struct type *decode_array_element_type (char *scan, char *end)
1191
1192 DESCRIPTION
1193
1194 As the last step in decoding the array subscript information for an
1195 array DIE, we need to decode the type of the array elements. We are
1196 passed a pointer to this last part of the subscript information and
1197 must return the appropriate type. If the type attribute is not
1198 recognized, just warn about the problem and return type int.
1199 */
1200
1201 static struct type *
1202 decode_array_element_type (scan)
1203 char *scan;
1204 {
1205 struct type *typep;
1206 DIE_REF die_ref;
1207 unsigned short attribute;
1208 unsigned short fundtype;
1209 int nbytes;
1210
1211 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1212 current_objfile);
1213 scan += SIZEOF_ATTRIBUTE;
1214 if ((nbytes = attribute_size (attribute)) == -1)
1215 {
1216 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1217 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1218 }
1219 else
1220 {
1221 switch (attribute)
1222 {
1223 case AT_fund_type:
1224 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1225 current_objfile);
1226 typep = decode_fund_type (fundtype);
1227 break;
1228 case AT_mod_fund_type:
1229 typep = decode_mod_fund_type (scan);
1230 break;
1231 case AT_user_def_type:
1232 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1233 current_objfile);
1234 if ((typep = lookup_utype (die_ref)) == NULL)
1235 {
1236 typep = alloc_utype (die_ref, NULL);
1237 }
1238 break;
1239 case AT_mod_u_d_type:
1240 typep = decode_mod_u_d_type (scan);
1241 break;
1242 default:
1243 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1244 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1245 break;
1246 }
1247 }
1248 return (typep);
1249 }
1250
1251 /*
1252
1253 LOCAL FUNCTION
1254
1255 decode_subscript_data_item -- decode array subscript item
1256
1257 SYNOPSIS
1258
1259 static struct type *
1260 decode_subscript_data_item (char *scan, char *end)
1261
1262 DESCRIPTION
1263
1264 The array subscripts and the data type of the elements of an
1265 array are described by a list of data items, stored as a block
1266 of contiguous bytes. There is a data item describing each array
1267 dimension, and a final data item describing the element type.
1268 The data items are ordered the same as their appearance in the
1269 source (I.E. leftmost dimension first, next to leftmost second,
1270 etc).
1271
1272 The data items describing each array dimension consist of four
1273 parts: (1) a format specifier, (2) type type of the subscript
1274 index, (3) a description of the low bound of the array dimension,
1275 and (4) a description of the high bound of the array dimension.
1276
1277 The last data item is the description of the type of each of
1278 the array elements.
1279
1280 We are passed a pointer to the start of the block of bytes
1281 containing the remaining data items, and a pointer to the first
1282 byte past the data. This function recursively decodes the
1283 remaining data items and returns a type.
1284
1285 If we somehow fail to decode some data, we complain about it
1286 and return a type "array of int".
1287
1288 BUGS
1289 FIXME: This code only implements the forms currently used
1290 by the AT&T and GNU C compilers.
1291
1292 The end pointer is supplied for error checking, maybe we should
1293 use it for that...
1294 */
1295
1296 static struct type *
1297 decode_subscript_data_item (scan, end)
1298 char *scan;
1299 char *end;
1300 {
1301 struct type *typep = NULL; /* Array type we are building */
1302 struct type *nexttype; /* Type of each element (may be array) */
1303 struct type *indextype; /* Type of this index */
1304 struct type *rangetype;
1305 unsigned int format;
1306 unsigned short fundtype;
1307 unsigned long lowbound;
1308 unsigned long highbound;
1309 int nbytes;
1310
1311 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1312 current_objfile);
1313 scan += SIZEOF_FORMAT_SPECIFIER;
1314 switch (format)
1315 {
1316 case FMT_ET:
1317 typep = decode_array_element_type (scan);
1318 break;
1319 case FMT_FT_C_C:
1320 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1321 current_objfile);
1322 indextype = decode_fund_type (fundtype);
1323 scan += SIZEOF_FMT_FT;
1324 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1325 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1326 scan += nbytes;
1327 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1328 scan += nbytes;
1329 nexttype = decode_subscript_data_item (scan, end);
1330 if (nexttype == NULL)
1331 {
1332 /* Munged subscript data or other problem, fake it. */
1333 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1334 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1335 }
1336 rangetype = create_range_type ((struct type *) NULL, indextype,
1337 lowbound, highbound);
1338 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1339 break;
1340 case FMT_FT_C_X:
1341 case FMT_FT_X_C:
1342 case FMT_FT_X_X:
1343 case FMT_UT_C_C:
1344 case FMT_UT_C_X:
1345 case FMT_UT_X_C:
1346 case FMT_UT_X_X:
1347 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1348 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1349 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1350 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1351 break;
1352 default:
1353 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1354 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1355 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1356 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1357 break;
1358 }
1359 return (typep);
1360 }
1361
1362 /*
1363
1364 LOCAL FUNCTION
1365
1366 dwarf_read_array_type -- read TAG_array_type DIE
1367
1368 SYNOPSIS
1369
1370 static void dwarf_read_array_type (struct dieinfo *dip)
1371
1372 DESCRIPTION
1373
1374 Extract all information from a TAG_array_type DIE and add to
1375 the user defined type vector.
1376 */
1377
1378 static void
1379 dwarf_read_array_type (dip)
1380 struct dieinfo *dip;
1381 {
1382 struct type *type;
1383 struct type *utype;
1384 char *sub;
1385 char *subend;
1386 unsigned short blocksz;
1387 int nbytes;
1388
1389 if (dip -> at_ordering != ORD_row_major)
1390 {
1391 /* FIXME: Can gdb even handle column major arrays? */
1392 complain (&not_row_major, DIE_ID, DIE_NAME);
1393 }
1394 if ((sub = dip -> at_subscr_data) != NULL)
1395 {
1396 nbytes = attribute_size (AT_subscr_data);
1397 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1398 subend = sub + nbytes + blocksz;
1399 sub += nbytes;
1400 type = decode_subscript_data_item (sub, subend);
1401 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1402 {
1403 /* Install user defined type that has not been referenced yet. */
1404 alloc_utype (dip -> die_ref, type);
1405 }
1406 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1407 {
1408 /* Ick! A forward ref has already generated a blank type in our
1409 slot, and this type probably already has things pointing to it
1410 (which is what caused it to be created in the first place).
1411 If it's just a place holder we can plop our fully defined type
1412 on top of it. We can't recover the space allocated for our
1413 new type since it might be on an obstack, but we could reuse
1414 it if we kept a list of them, but it might not be worth it
1415 (FIXME). */
1416 *utype = *type;
1417 }
1418 else
1419 {
1420 /* Double ick! Not only is a type already in our slot, but
1421 someone has decorated it. Complain and leave it alone. */
1422 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1423 }
1424 }
1425 }
1426
1427 /*
1428
1429 LOCAL FUNCTION
1430
1431 read_tag_pointer_type -- read TAG_pointer_type DIE
1432
1433 SYNOPSIS
1434
1435 static void read_tag_pointer_type (struct dieinfo *dip)
1436
1437 DESCRIPTION
1438
1439 Extract all information from a TAG_pointer_type DIE and add to
1440 the user defined type vector.
1441 */
1442
1443 static void
1444 read_tag_pointer_type (dip)
1445 struct dieinfo *dip;
1446 {
1447 struct type *type;
1448 struct type *utype;
1449
1450 type = decode_die_type (dip);
1451 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1452 {
1453 utype = lookup_pointer_type (type);
1454 alloc_utype (dip -> die_ref, utype);
1455 }
1456 else
1457 {
1458 TYPE_TARGET_TYPE (utype) = type;
1459 TYPE_POINTER_TYPE (type) = utype;
1460
1461 /* We assume the machine has only one representation for pointers! */
1462 /* FIXME: This confuses host<->target data representations, and is a
1463 poor assumption besides. */
1464
1465 TYPE_LENGTH (utype) = sizeof (char *);
1466 TYPE_CODE (utype) = TYPE_CODE_PTR;
1467 }
1468 }
1469
1470 /*
1471
1472 LOCAL FUNCTION
1473
1474 read_tag_string_type -- read TAG_string_type DIE
1475
1476 SYNOPSIS
1477
1478 static void read_tag_string_type (struct dieinfo *dip)
1479
1480 DESCRIPTION
1481
1482 Extract all information from a TAG_string_type DIE and add to
1483 the user defined type vector. It isn't really a user defined
1484 type, but it behaves like one, with other DIE's using an
1485 AT_user_def_type attribute to reference it.
1486 */
1487
1488 static void
1489 read_tag_string_type (dip)
1490 struct dieinfo *dip;
1491 {
1492 struct type *utype;
1493 struct type *indextype;
1494 struct type *rangetype;
1495 unsigned long lowbound = 0;
1496 unsigned long highbound;
1497
1498 if (dip -> has_at_byte_size)
1499 {
1500 /* A fixed bounds string */
1501 highbound = dip -> at_byte_size - 1;
1502 }
1503 else
1504 {
1505 /* A varying length string. Stub for now. (FIXME) */
1506 highbound = 1;
1507 }
1508 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1509 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1510 highbound);
1511
1512 utype = lookup_utype (dip -> die_ref);
1513 if (utype == NULL)
1514 {
1515 /* No type defined, go ahead and create a blank one to use. */
1516 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1517 }
1518 else
1519 {
1520 /* Already a type in our slot due to a forward reference. Make sure it
1521 is a blank one. If not, complain and leave it alone. */
1522 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1523 {
1524 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1525 return;
1526 }
1527 }
1528
1529 /* Create the string type using the blank type we either found or created. */
1530 utype = create_string_type (utype, rangetype);
1531 }
1532
1533 /*
1534
1535 LOCAL FUNCTION
1536
1537 read_subroutine_type -- process TAG_subroutine_type dies
1538
1539 SYNOPSIS
1540
1541 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1542 char *enddie)
1543
1544 DESCRIPTION
1545
1546 Handle DIES due to C code like:
1547
1548 struct foo {
1549 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1550 int b;
1551 };
1552
1553 NOTES
1554
1555 The parameter DIES are currently ignored. See if gdb has a way to
1556 include this info in it's type system, and decode them if so. Is
1557 this what the type structure's "arg_types" field is for? (FIXME)
1558 */
1559
1560 static void
1561 read_subroutine_type (dip, thisdie, enddie)
1562 struct dieinfo *dip;
1563 char *thisdie;
1564 char *enddie;
1565 {
1566 struct type *type; /* Type that this function returns */
1567 struct type *ftype; /* Function that returns above type */
1568
1569 /* Decode the type that this subroutine returns */
1570
1571 type = decode_die_type (dip);
1572
1573 /* Check to see if we already have a partially constructed user
1574 defined type for this DIE, from a forward reference. */
1575
1576 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1577 {
1578 /* This is the first reference to one of these types. Make
1579 a new one and place it in the user defined types. */
1580 ftype = lookup_function_type (type);
1581 alloc_utype (dip -> die_ref, ftype);
1582 }
1583 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1584 {
1585 /* We have an existing partially constructed type, so bash it
1586 into the correct type. */
1587 TYPE_TARGET_TYPE (ftype) = type;
1588 TYPE_LENGTH (ftype) = 1;
1589 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1590 }
1591 else
1592 {
1593 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1594 }
1595 }
1596
1597 /*
1598
1599 LOCAL FUNCTION
1600
1601 read_enumeration -- process dies which define an enumeration
1602
1603 SYNOPSIS
1604
1605 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1606 char *enddie, struct objfile *objfile)
1607
1608 DESCRIPTION
1609
1610 Given a pointer to a die which begins an enumeration, process all
1611 the dies that define the members of the enumeration.
1612
1613 NOTES
1614
1615 Note that we need to call enum_type regardless of whether or not we
1616 have a symbol, since we might have an enum without a tag name (thus
1617 no symbol for the tagname).
1618 */
1619
1620 static void
1621 read_enumeration (dip, thisdie, enddie, objfile)
1622 struct dieinfo *dip;
1623 char *thisdie;
1624 char *enddie;
1625 struct objfile *objfile;
1626 {
1627 struct type *type;
1628 struct symbol *sym;
1629
1630 type = enum_type (dip, objfile);
1631 sym = new_symbol (dip, objfile);
1632 if (sym != NULL)
1633 {
1634 SYMBOL_TYPE (sym) = type;
1635 if (cu_language == language_cplus)
1636 {
1637 synthesize_typedef (dip, objfile, type);
1638 }
1639 }
1640 }
1641
1642 /*
1643
1644 LOCAL FUNCTION
1645
1646 enum_type -- decode and return a type for an enumeration
1647
1648 SYNOPSIS
1649
1650 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1651
1652 DESCRIPTION
1653
1654 Given a pointer to a die information structure for the die which
1655 starts an enumeration, process all the dies that define the members
1656 of the enumeration and return a type pointer for the enumeration.
1657
1658 At the same time, for each member of the enumeration, create a
1659 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1660 and give it the type of the enumeration itself.
1661
1662 NOTES
1663
1664 Note that the DWARF specification explicitly mandates that enum
1665 constants occur in reverse order from the source program order,
1666 for "consistency" and because this ordering is easier for many
1667 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1668 Entries). Because gdb wants to see the enum members in program
1669 source order, we have to ensure that the order gets reversed while
1670 we are processing them.
1671 */
1672
1673 static struct type *
1674 enum_type (dip, objfile)
1675 struct dieinfo *dip;
1676 struct objfile *objfile;
1677 {
1678 struct type *type;
1679 struct nextfield {
1680 struct nextfield *next;
1681 struct field field;
1682 };
1683 struct nextfield *list = NULL;
1684 struct nextfield *new;
1685 int nfields = 0;
1686 int n;
1687 char *scan;
1688 char *listend;
1689 unsigned short blocksz;
1690 struct symbol *sym;
1691 int nbytes;
1692
1693 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1694 {
1695 /* No forward references created an empty type, so install one now */
1696 type = alloc_utype (dip -> die_ref, NULL);
1697 }
1698 TYPE_CODE (type) = TYPE_CODE_ENUM;
1699 /* Some compilers try to be helpful by inventing "fake" names for
1700 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1701 Thanks, but no thanks... */
1702 if (dip -> at_name != NULL
1703 && *dip -> at_name != '~'
1704 && *dip -> at_name != '.')
1705 {
1706 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1707 "", "", dip -> at_name);
1708 }
1709 if (dip -> at_byte_size != 0)
1710 {
1711 TYPE_LENGTH (type) = dip -> at_byte_size;
1712 }
1713 if ((scan = dip -> at_element_list) != NULL)
1714 {
1715 if (dip -> short_element_list)
1716 {
1717 nbytes = attribute_size (AT_short_element_list);
1718 }
1719 else
1720 {
1721 nbytes = attribute_size (AT_element_list);
1722 }
1723 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1724 listend = scan + nbytes + blocksz;
1725 scan += nbytes;
1726 while (scan < listend)
1727 {
1728 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1729 new -> next = list;
1730 list = new;
1731 list -> field.type = NULL;
1732 list -> field.bitsize = 0;
1733 list -> field.bitpos =
1734 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1735 objfile);
1736 scan += TARGET_FT_LONG_SIZE (objfile);
1737 list -> field.name = obsavestring (scan, strlen (scan),
1738 &objfile -> type_obstack);
1739 scan += strlen (scan) + 1;
1740 nfields++;
1741 /* Handcraft a new symbol for this enum member. */
1742 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1743 sizeof (struct symbol));
1744 memset (sym, 0, sizeof (struct symbol));
1745 SYMBOL_NAME (sym) = create_name (list -> field.name,
1746 &objfile->symbol_obstack);
1747 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1748 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1749 SYMBOL_CLASS (sym) = LOC_CONST;
1750 SYMBOL_TYPE (sym) = type;
1751 SYMBOL_VALUE (sym) = list -> field.bitpos;
1752 add_symbol_to_list (sym, list_in_scope);
1753 }
1754 /* Now create the vector of fields, and record how big it is. This is
1755 where we reverse the order, by pulling the members off the list in
1756 reverse order from how they were inserted. If we have no fields
1757 (this is apparently possible in C++) then skip building a field
1758 vector. */
1759 if (nfields > 0)
1760 {
1761 TYPE_NFIELDS (type) = nfields;
1762 TYPE_FIELDS (type) = (struct field *)
1763 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1764 /* Copy the saved-up fields into the field vector. */
1765 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1766 {
1767 TYPE_FIELD (type, n++) = list -> field;
1768 }
1769 }
1770 }
1771 return (type);
1772 }
1773
1774 /*
1775
1776 LOCAL FUNCTION
1777
1778 read_func_scope -- process all dies within a function scope
1779
1780 DESCRIPTION
1781
1782 Process all dies within a given function scope. We are passed
1783 a die information structure pointer DIP for the die which
1784 starts the function scope, and pointers into the raw die data
1785 that define the dies within the function scope.
1786
1787 For now, we ignore lexical block scopes within the function.
1788 The problem is that AT&T cc does not define a DWARF lexical
1789 block scope for the function itself, while gcc defines a
1790 lexical block scope for the function. We need to think about
1791 how to handle this difference, or if it is even a problem.
1792 (FIXME)
1793 */
1794
1795 static void
1796 read_func_scope (dip, thisdie, enddie, objfile)
1797 struct dieinfo *dip;
1798 char *thisdie;
1799 char *enddie;
1800 struct objfile *objfile;
1801 {
1802 register struct context_stack *new;
1803
1804 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1805 objfile -> ei.entry_point < dip -> at_high_pc)
1806 {
1807 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1808 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1809 }
1810 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1811 {
1812 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1814 }
1815 new = push_context (0, dip -> at_low_pc);
1816 new -> name = new_symbol (dip, objfile);
1817 list_in_scope = &local_symbols;
1818 process_dies (thisdie + dip -> die_length, enddie, objfile);
1819 new = pop_context ();
1820 /* Make a block for the local symbols within. */
1821 finish_block (new -> name, &local_symbols, new -> old_blocks,
1822 new -> start_addr, dip -> at_high_pc, objfile);
1823 list_in_scope = &file_symbols;
1824 }
1825
1826
1827 /*
1828
1829 LOCAL FUNCTION
1830
1831 handle_producer -- process the AT_producer attribute
1832
1833 DESCRIPTION
1834
1835 Perform any operations that depend on finding a particular
1836 AT_producer attribute.
1837
1838 */
1839
1840 static void
1841 handle_producer (producer)
1842 char *producer;
1843 {
1844
1845 /* If this compilation unit was compiled with g++ or gcc, then set the
1846 processing_gcc_compilation flag. */
1847
1848 processing_gcc_compilation =
1849 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1850 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1851 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1852
1853 /* Select a demangling style if we can identify the producer and if
1854 the current style is auto. We leave the current style alone if it
1855 is not auto. We also leave the demangling style alone if we find a
1856 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1857
1858 if (AUTO_DEMANGLING)
1859 {
1860 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1861 {
1862 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1863 }
1864 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1865 {
1866 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1867 }
1868 }
1869 }
1870
1871
1872 /*
1873
1874 LOCAL FUNCTION
1875
1876 read_file_scope -- process all dies within a file scope
1877
1878 DESCRIPTION
1879
1880 Process all dies within a given file scope. We are passed a
1881 pointer to the die information structure for the die which
1882 starts the file scope, and pointers into the raw die data which
1883 mark the range of dies within the file scope.
1884
1885 When the partial symbol table is built, the file offset for the line
1886 number table for each compilation unit is saved in the partial symbol
1887 table entry for that compilation unit. As the symbols for each
1888 compilation unit are read, the line number table is read into memory
1889 and the variable lnbase is set to point to it. Thus all we have to
1890 do is use lnbase to access the line number table for the current
1891 compilation unit.
1892 */
1893
1894 static void
1895 read_file_scope (dip, thisdie, enddie, objfile)
1896 struct dieinfo *dip;
1897 char *thisdie;
1898 char *enddie;
1899 struct objfile *objfile;
1900 {
1901 struct cleanup *back_to;
1902 struct symtab *symtab;
1903
1904 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1905 objfile -> ei.entry_point < dip -> at_high_pc)
1906 {
1907 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1908 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1909 }
1910 set_cu_language (dip);
1911 if (dip -> at_producer != NULL)
1912 {
1913 handle_producer (dip -> at_producer);
1914 }
1915 numutypes = (enddie - thisdie) / 4;
1916 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1917 back_to = make_cleanup (free, utypes);
1918 memset (utypes, 0, numutypes * sizeof (struct type *));
1919 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1920 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1921 decode_line_numbers (lnbase);
1922 process_dies (thisdie + dip -> die_length, enddie, objfile);
1923
1924 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1925 if (symtab != NULL)
1926 {
1927 symtab -> language = cu_language;
1928 }
1929 do_cleanups (back_to);
1930 utypes = NULL;
1931 numutypes = 0;
1932 }
1933
1934 /*
1935
1936 LOCAL FUNCTION
1937
1938 process_dies -- process a range of DWARF Information Entries
1939
1940 SYNOPSIS
1941
1942 static void process_dies (char *thisdie, char *enddie,
1943 struct objfile *objfile)
1944
1945 DESCRIPTION
1946
1947 Process all DIE's in a specified range. May be (and almost
1948 certainly will be) called recursively.
1949 */
1950
1951 static void
1952 process_dies (thisdie, enddie, objfile)
1953 char *thisdie;
1954 char *enddie;
1955 struct objfile *objfile;
1956 {
1957 char *nextdie;
1958 struct dieinfo di;
1959
1960 while (thisdie < enddie)
1961 {
1962 basicdieinfo (&di, thisdie, objfile);
1963 if (di.die_length < SIZEOF_DIE_LENGTH)
1964 {
1965 break;
1966 }
1967 else if (di.die_tag == TAG_padding)
1968 {
1969 nextdie = thisdie + di.die_length;
1970 }
1971 else
1972 {
1973 completedieinfo (&di, objfile);
1974 if (di.at_sibling != 0)
1975 {
1976 nextdie = dbbase + di.at_sibling - dbroff;
1977 }
1978 else
1979 {
1980 nextdie = thisdie + di.die_length;
1981 }
1982 #ifdef SMASH_TEXT_ADDRESS
1983 /* I think that these are always text, not data, addresses. */
1984 SMASH_TEXT_ADDRESS (di.at_low_pc);
1985 SMASH_TEXT_ADDRESS (di.at_high_pc);
1986 #endif
1987 switch (di.die_tag)
1988 {
1989 case TAG_compile_unit:
1990 /* Skip Tag_compile_unit if we are already inside a compilation
1991 unit, we are unable to handle nested compilation units
1992 properly (FIXME). */
1993 if (current_subfile == NULL)
1994 read_file_scope (&di, thisdie, nextdie, objfile);
1995 else
1996 nextdie = thisdie + di.die_length;
1997 break;
1998 case TAG_global_subroutine:
1999 case TAG_subroutine:
2000 if (di.has_at_low_pc)
2001 {
2002 read_func_scope (&di, thisdie, nextdie, objfile);
2003 }
2004 break;
2005 case TAG_lexical_block:
2006 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2007 break;
2008 case TAG_class_type:
2009 case TAG_structure_type:
2010 case TAG_union_type:
2011 read_structure_scope (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_enumeration_type:
2014 read_enumeration (&di, thisdie, nextdie, objfile);
2015 break;
2016 case TAG_subroutine_type:
2017 read_subroutine_type (&di, thisdie, nextdie);
2018 break;
2019 case TAG_array_type:
2020 dwarf_read_array_type (&di);
2021 break;
2022 case TAG_pointer_type:
2023 read_tag_pointer_type (&di);
2024 break;
2025 case TAG_string_type:
2026 read_tag_string_type (&di);
2027 break;
2028 default:
2029 new_symbol (&di, objfile);
2030 break;
2031 }
2032 }
2033 thisdie = nextdie;
2034 }
2035 }
2036
2037 /*
2038
2039 LOCAL FUNCTION
2040
2041 decode_line_numbers -- decode a line number table fragment
2042
2043 SYNOPSIS
2044
2045 static void decode_line_numbers (char *tblscan, char *tblend,
2046 long length, long base, long line, long pc)
2047
2048 DESCRIPTION
2049
2050 Translate the DWARF line number information to gdb form.
2051
2052 The ".line" section contains one or more line number tables, one for
2053 each ".line" section from the objects that were linked.
2054
2055 The AT_stmt_list attribute for each TAG_source_file entry in the
2056 ".debug" section contains the offset into the ".line" section for the
2057 start of the table for that file.
2058
2059 The table itself has the following structure:
2060
2061 <table length><base address><source statement entry>
2062 4 bytes 4 bytes 10 bytes
2063
2064 The table length is the total size of the table, including the 4 bytes
2065 for the length information.
2066
2067 The base address is the address of the first instruction generated
2068 for the source file.
2069
2070 Each source statement entry has the following structure:
2071
2072 <line number><statement position><address delta>
2073 4 bytes 2 bytes 4 bytes
2074
2075 The line number is relative to the start of the file, starting with
2076 line 1.
2077
2078 The statement position either -1 (0xFFFF) or the number of characters
2079 from the beginning of the line to the beginning of the statement.
2080
2081 The address delta is the difference between the base address and
2082 the address of the first instruction for the statement.
2083
2084 Note that we must copy the bytes from the packed table to our local
2085 variables before attempting to use them, to avoid alignment problems
2086 on some machines, particularly RISC processors.
2087
2088 BUGS
2089
2090 Does gdb expect the line numbers to be sorted? They are now by
2091 chance/luck, but are not required to be. (FIXME)
2092
2093 The line with number 0 is unused, gdb apparently can discover the
2094 span of the last line some other way. How? (FIXME)
2095 */
2096
2097 static void
2098 decode_line_numbers (linetable)
2099 char *linetable;
2100 {
2101 char *tblscan;
2102 char *tblend;
2103 unsigned long length;
2104 unsigned long base;
2105 unsigned long line;
2106 unsigned long pc;
2107
2108 if (linetable != NULL)
2109 {
2110 tblscan = tblend = linetable;
2111 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2112 current_objfile);
2113 tblscan += SIZEOF_LINETBL_LENGTH;
2114 tblend += length;
2115 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2116 GET_UNSIGNED, current_objfile);
2117 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2118 base += baseaddr;
2119 while (tblscan < tblend)
2120 {
2121 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2122 current_objfile);
2123 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2124 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2125 current_objfile);
2126 tblscan += SIZEOF_LINETBL_DELTA;
2127 pc += base;
2128 if (line != 0)
2129 {
2130 record_line (current_subfile, line, pc);
2131 }
2132 }
2133 }
2134 }
2135
2136 /*
2137
2138 LOCAL FUNCTION
2139
2140 locval -- compute the value of a location attribute
2141
2142 SYNOPSIS
2143
2144 static int locval (char *loc)
2145
2146 DESCRIPTION
2147
2148 Given pointer to a string of bytes that define a location, compute
2149 the location and return the value.
2150 A location description containing no atoms indicates that the
2151 object is optimized out. The global optimized_out flag is set for
2152 those, the return value is meaningless.
2153
2154 When computing values involving the current value of the frame pointer,
2155 the value zero is used, which results in a value relative to the frame
2156 pointer, rather than the absolute value. This is what GDB wants
2157 anyway.
2158
2159 When the result is a register number, the global isreg flag is set,
2160 otherwise it is cleared. This is a kludge until we figure out a better
2161 way to handle the problem. Gdb's design does not mesh well with the
2162 DWARF notion of a location computing interpreter, which is a shame
2163 because the flexibility goes unused.
2164
2165 NOTES
2166
2167 Note that stack[0] is unused except as a default error return.
2168 Note that stack overflow is not yet handled.
2169 */
2170
2171 static int
2172 locval (loc)
2173 char *loc;
2174 {
2175 unsigned short nbytes;
2176 unsigned short locsize;
2177 auto long stack[64];
2178 int stacki;
2179 char *end;
2180 int loc_atom_code;
2181 int loc_value_size;
2182
2183 nbytes = attribute_size (AT_location);
2184 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2185 loc += nbytes;
2186 end = loc + locsize;
2187 stacki = 0;
2188 stack[stacki] = 0;
2189 isreg = 0;
2190 offreg = 0;
2191 optimized_out = 1;
2192 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2193 while (loc < end)
2194 {
2195 optimized_out = 0;
2196 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2197 current_objfile);
2198 loc += SIZEOF_LOC_ATOM_CODE;
2199 switch (loc_atom_code)
2200 {
2201 case 0:
2202 /* error */
2203 loc = end;
2204 break;
2205 case OP_REG:
2206 /* push register (number) */
2207 stack[++stacki]
2208 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2209 GET_UNSIGNED,
2210 current_objfile));
2211 loc += loc_value_size;
2212 isreg = 1;
2213 break;
2214 case OP_BASEREG:
2215 /* push value of register (number) */
2216 /* Actually, we compute the value as if register has 0, so the
2217 value ends up being the offset from that register. */
2218 offreg = 1;
2219 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2220 current_objfile);
2221 loc += loc_value_size;
2222 stack[++stacki] = 0;
2223 break;
2224 case OP_ADDR:
2225 /* push address (relocated address) */
2226 stack[++stacki] = target_to_host (loc, loc_value_size,
2227 GET_UNSIGNED, current_objfile);
2228 loc += loc_value_size;
2229 break;
2230 case OP_CONST:
2231 /* push constant (number) FIXME: signed or unsigned! */
2232 stack[++stacki] = target_to_host (loc, loc_value_size,
2233 GET_SIGNED, current_objfile);
2234 loc += loc_value_size;
2235 break;
2236 case OP_DEREF2:
2237 /* pop, deref and push 2 bytes (as a long) */
2238 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2239 break;
2240 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2241 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2242 break;
2243 case OP_ADD: /* pop top 2 items, add, push result */
2244 stack[stacki - 1] += stack[stacki];
2245 stacki--;
2246 break;
2247 }
2248 }
2249 return (stack[stacki]);
2250 }
2251
2252 /*
2253
2254 LOCAL FUNCTION
2255
2256 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2257
2258 SYNOPSIS
2259
2260 static void read_ofile_symtab (struct partial_symtab *pst)
2261
2262 DESCRIPTION
2263
2264 When expanding a partial symbol table entry to a full symbol table
2265 entry, this is the function that gets called to read in the symbols
2266 for the compilation unit. A pointer to the newly constructed symtab,
2267 which is now the new first one on the objfile's symtab list, is
2268 stashed in the partial symbol table entry.
2269 */
2270
2271 static void
2272 read_ofile_symtab (pst)
2273 struct partial_symtab *pst;
2274 {
2275 struct cleanup *back_to;
2276 unsigned long lnsize;
2277 file_ptr foffset;
2278 bfd *abfd;
2279 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2280
2281 abfd = pst -> objfile -> obfd;
2282 current_objfile = pst -> objfile;
2283
2284 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2285 unit, seek to the location in the file, and read in all the DIE's. */
2286
2287 diecount = 0;
2288 dbsize = DBLENGTH (pst);
2289 dbbase = xmalloc (dbsize);
2290 dbroff = DBROFF(pst);
2291 foffset = DBFOFF(pst) + dbroff;
2292 base_section_offsets = pst->section_offsets;
2293 baseaddr = ANOFFSET (pst->section_offsets, 0);
2294 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2295 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2296 {
2297 free (dbbase);
2298 error ("can't read DWARF data");
2299 }
2300 back_to = make_cleanup (free, dbbase);
2301
2302 /* If there is a line number table associated with this compilation unit
2303 then read the size of this fragment in bytes, from the fragment itself.
2304 Allocate a buffer for the fragment and read it in for future
2305 processing. */
2306
2307 lnbase = NULL;
2308 if (LNFOFF (pst))
2309 {
2310 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2311 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2312 sizeof (lnsizedata)))
2313 {
2314 error ("can't read DWARF line number table size");
2315 }
2316 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2317 GET_UNSIGNED, pst -> objfile);
2318 lnbase = xmalloc (lnsize);
2319 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2320 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2321 {
2322 free (lnbase);
2323 error ("can't read DWARF line numbers");
2324 }
2325 make_cleanup (free, lnbase);
2326 }
2327
2328 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2329 do_cleanups (back_to);
2330 current_objfile = NULL;
2331 pst -> symtab = pst -> objfile -> symtabs;
2332 }
2333
2334 /*
2335
2336 LOCAL FUNCTION
2337
2338 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2339
2340 SYNOPSIS
2341
2342 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2343
2344 DESCRIPTION
2345
2346 Called once for each partial symbol table entry that needs to be
2347 expanded into a full symbol table entry.
2348
2349 */
2350
2351 static void
2352 psymtab_to_symtab_1 (pst)
2353 struct partial_symtab *pst;
2354 {
2355 int i;
2356 struct cleanup *old_chain;
2357
2358 if (pst != NULL)
2359 {
2360 if (pst->readin)
2361 {
2362 warning ("psymtab for %s already read in. Shouldn't happen.",
2363 pst -> filename);
2364 }
2365 else
2366 {
2367 /* Read in all partial symtabs on which this one is dependent */
2368 for (i = 0; i < pst -> number_of_dependencies; i++)
2369 {
2370 if (!pst -> dependencies[i] -> readin)
2371 {
2372 /* Inform about additional files that need to be read in. */
2373 if (info_verbose)
2374 {
2375 fputs_filtered (" ", gdb_stdout);
2376 wrap_here ("");
2377 fputs_filtered ("and ", gdb_stdout);
2378 wrap_here ("");
2379 printf_filtered ("%s...",
2380 pst -> dependencies[i] -> filename);
2381 wrap_here ("");
2382 gdb_flush (gdb_stdout); /* Flush output */
2383 }
2384 psymtab_to_symtab_1 (pst -> dependencies[i]);
2385 }
2386 }
2387 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2388 {
2389 buildsym_init ();
2390 old_chain = make_cleanup (really_free_pendings, 0);
2391 read_ofile_symtab (pst);
2392 if (info_verbose)
2393 {
2394 printf_filtered ("%d DIE's, sorting...", diecount);
2395 wrap_here ("");
2396 gdb_flush (gdb_stdout);
2397 }
2398 sort_symtab_syms (pst -> symtab);
2399 do_cleanups (old_chain);
2400 }
2401 pst -> readin = 1;
2402 }
2403 }
2404 }
2405
2406 /*
2407
2408 LOCAL FUNCTION
2409
2410 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2411
2412 SYNOPSIS
2413
2414 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2415
2416 DESCRIPTION
2417
2418 This is the DWARF support entry point for building a full symbol
2419 table entry from a partial symbol table entry. We are passed a
2420 pointer to the partial symbol table entry that needs to be expanded.
2421
2422 */
2423
2424 static void
2425 dwarf_psymtab_to_symtab (pst)
2426 struct partial_symtab *pst;
2427 {
2428
2429 if (pst != NULL)
2430 {
2431 if (pst -> readin)
2432 {
2433 warning ("psymtab for %s already read in. Shouldn't happen.",
2434 pst -> filename);
2435 }
2436 else
2437 {
2438 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2439 {
2440 /* Print the message now, before starting serious work, to avoid
2441 disconcerting pauses. */
2442 if (info_verbose)
2443 {
2444 printf_filtered ("Reading in symbols for %s...",
2445 pst -> filename);
2446 gdb_flush (gdb_stdout);
2447 }
2448
2449 psymtab_to_symtab_1 (pst);
2450
2451 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2452 we need to do an equivalent or is this something peculiar to
2453 stabs/a.out format.
2454 Match with global symbols. This only needs to be done once,
2455 after all of the symtabs and dependencies have been read in.
2456 */
2457 scan_file_globals (pst -> objfile);
2458 #endif
2459
2460 /* Finish up the verbose info message. */
2461 if (info_verbose)
2462 {
2463 printf_filtered ("done.\n");
2464 gdb_flush (gdb_stdout);
2465 }
2466 }
2467 }
2468 }
2469 }
2470
2471 /*
2472
2473 LOCAL FUNCTION
2474
2475 add_enum_psymbol -- add enumeration members to partial symbol table
2476
2477 DESCRIPTION
2478
2479 Given pointer to a DIE that is known to be for an enumeration,
2480 extract the symbolic names of the enumeration members and add
2481 partial symbols for them.
2482 */
2483
2484 static void
2485 add_enum_psymbol (dip, objfile)
2486 struct dieinfo *dip;
2487 struct objfile *objfile;
2488 {
2489 char *scan;
2490 char *listend;
2491 unsigned short blocksz;
2492 int nbytes;
2493
2494 if ((scan = dip -> at_element_list) != NULL)
2495 {
2496 if (dip -> short_element_list)
2497 {
2498 nbytes = attribute_size (AT_short_element_list);
2499 }
2500 else
2501 {
2502 nbytes = attribute_size (AT_element_list);
2503 }
2504 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2505 scan += nbytes;
2506 listend = scan + blocksz;
2507 while (scan < listend)
2508 {
2509 scan += TARGET_FT_LONG_SIZE (objfile);
2510 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2511 objfile -> static_psymbols, 0, cu_language,
2512 objfile);
2513 scan += strlen (scan) + 1;
2514 }
2515 }
2516 }
2517
2518 /*
2519
2520 LOCAL FUNCTION
2521
2522 add_partial_symbol -- add symbol to partial symbol table
2523
2524 DESCRIPTION
2525
2526 Given a DIE, if it is one of the types that we want to
2527 add to a partial symbol table, finish filling in the die info
2528 and then add a partial symbol table entry for it.
2529
2530 NOTES
2531
2532 The caller must ensure that the DIE has a valid name attribute.
2533 */
2534
2535 static void
2536 add_partial_symbol (dip, objfile)
2537 struct dieinfo *dip;
2538 struct objfile *objfile;
2539 {
2540 switch (dip -> die_tag)
2541 {
2542 case TAG_global_subroutine:
2543 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2544 VAR_NAMESPACE, LOC_BLOCK,
2545 objfile -> global_psymbols,
2546 dip -> at_low_pc, cu_language, objfile);
2547 break;
2548 case TAG_global_variable:
2549 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2550 VAR_NAMESPACE, LOC_STATIC,
2551 objfile -> global_psymbols,
2552 0, cu_language, objfile);
2553 break;
2554 case TAG_subroutine:
2555 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2556 VAR_NAMESPACE, LOC_BLOCK,
2557 objfile -> static_psymbols,
2558 dip -> at_low_pc, cu_language, objfile);
2559 break;
2560 case TAG_local_variable:
2561 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2562 VAR_NAMESPACE, LOC_STATIC,
2563 objfile -> static_psymbols,
2564 0, cu_language, objfile);
2565 break;
2566 case TAG_typedef:
2567 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2568 VAR_NAMESPACE, LOC_TYPEDEF,
2569 objfile -> static_psymbols,
2570 0, cu_language, objfile);
2571 break;
2572 case TAG_class_type:
2573 case TAG_structure_type:
2574 case TAG_union_type:
2575 case TAG_enumeration_type:
2576 /* Do not add opaque aggregate definitions to the psymtab. */
2577 if (!dip -> has_at_byte_size)
2578 break;
2579 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2580 STRUCT_NAMESPACE, LOC_TYPEDEF,
2581 objfile -> static_psymbols,
2582 0, cu_language, objfile);
2583 if (cu_language == language_cplus)
2584 {
2585 /* For C++, these implicitly act as typedefs as well. */
2586 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2587 VAR_NAMESPACE, LOC_TYPEDEF,
2588 objfile -> static_psymbols,
2589 0, cu_language, objfile);
2590 }
2591 break;
2592 }
2593 }
2594
2595 /*
2596
2597 LOCAL FUNCTION
2598
2599 scan_partial_symbols -- scan DIE's within a single compilation unit
2600
2601 DESCRIPTION
2602
2603 Process the DIE's within a single compilation unit, looking for
2604 interesting DIE's that contribute to the partial symbol table entry
2605 for this compilation unit.
2606
2607 NOTES
2608
2609 There are some DIE's that may appear both at file scope and within
2610 the scope of a function. We are only interested in the ones at file
2611 scope, and the only way to tell them apart is to keep track of the
2612 scope. For example, consider the test case:
2613
2614 static int i;
2615 main () { int j; }
2616
2617 for which the relevant DWARF segment has the structure:
2618
2619 0x51:
2620 0x23 global subrtn sibling 0x9b
2621 name main
2622 fund_type FT_integer
2623 low_pc 0x800004cc
2624 high_pc 0x800004d4
2625
2626 0x74:
2627 0x23 local var sibling 0x97
2628 name j
2629 fund_type FT_integer
2630 location OP_BASEREG 0xe
2631 OP_CONST 0xfffffffc
2632 OP_ADD
2633 0x97:
2634 0x4
2635
2636 0x9b:
2637 0x1d local var sibling 0xb8
2638 name i
2639 fund_type FT_integer
2640 location OP_ADDR 0x800025dc
2641
2642 0xb8:
2643 0x4
2644
2645 We want to include the symbol 'i' in the partial symbol table, but
2646 not the symbol 'j'. In essence, we want to skip all the dies within
2647 the scope of a TAG_global_subroutine DIE.
2648
2649 Don't attempt to add anonymous structures or unions since they have
2650 no name. Anonymous enumerations however are processed, because we
2651 want to extract their member names (the check for a tag name is
2652 done later).
2653
2654 Also, for variables and subroutines, check that this is the place
2655 where the actual definition occurs, rather than just a reference
2656 to an external.
2657 */
2658
2659 static void
2660 scan_partial_symbols (thisdie, enddie, objfile)
2661 char *thisdie;
2662 char *enddie;
2663 struct objfile *objfile;
2664 {
2665 char *nextdie;
2666 char *temp;
2667 struct dieinfo di;
2668
2669 while (thisdie < enddie)
2670 {
2671 basicdieinfo (&di, thisdie, objfile);
2672 if (di.die_length < SIZEOF_DIE_LENGTH)
2673 {
2674 break;
2675 }
2676 else
2677 {
2678 nextdie = thisdie + di.die_length;
2679 /* To avoid getting complete die information for every die, we
2680 only do it (below) for the cases we are interested in. */
2681 switch (di.die_tag)
2682 {
2683 case TAG_global_subroutine:
2684 case TAG_subroutine:
2685 completedieinfo (&di, objfile);
2686 if (di.at_name && (di.has_at_low_pc || di.at_location))
2687 {
2688 add_partial_symbol (&di, objfile);
2689 /* If there is a sibling attribute, adjust the nextdie
2690 pointer to skip the entire scope of the subroutine.
2691 Apply some sanity checking to make sure we don't
2692 overrun or underrun the range of remaining DIE's */
2693 if (di.at_sibling != 0)
2694 {
2695 temp = dbbase + di.at_sibling - dbroff;
2696 if ((temp < thisdie) || (temp >= enddie))
2697 {
2698 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2699 di.at_sibling);
2700 }
2701 else
2702 {
2703 nextdie = temp;
2704 }
2705 }
2706 }
2707 break;
2708 case TAG_global_variable:
2709 case TAG_local_variable:
2710 completedieinfo (&di, objfile);
2711 if (di.at_name && (di.has_at_low_pc || di.at_location))
2712 {
2713 add_partial_symbol (&di, objfile);
2714 }
2715 break;
2716 case TAG_typedef:
2717 case TAG_class_type:
2718 case TAG_structure_type:
2719 case TAG_union_type:
2720 completedieinfo (&di, objfile);
2721 if (di.at_name)
2722 {
2723 add_partial_symbol (&di, objfile);
2724 }
2725 break;
2726 case TAG_enumeration_type:
2727 completedieinfo (&di, objfile);
2728 if (di.at_name)
2729 {
2730 add_partial_symbol (&di, objfile);
2731 }
2732 add_enum_psymbol (&di, objfile);
2733 break;
2734 }
2735 }
2736 thisdie = nextdie;
2737 }
2738 }
2739
2740 /*
2741
2742 LOCAL FUNCTION
2743
2744 scan_compilation_units -- build a psymtab entry for each compilation
2745
2746 DESCRIPTION
2747
2748 This is the top level dwarf parsing routine for building partial
2749 symbol tables.
2750
2751 It scans from the beginning of the DWARF table looking for the first
2752 TAG_compile_unit DIE, and then follows the sibling chain to locate
2753 each additional TAG_compile_unit DIE.
2754
2755 For each TAG_compile_unit DIE it creates a partial symtab structure,
2756 calls a subordinate routine to collect all the compilation unit's
2757 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2758 new partial symtab structure into the partial symbol table. It also
2759 records the appropriate information in the partial symbol table entry
2760 to allow the chunk of DIE's and line number table for this compilation
2761 unit to be located and re-read later, to generate a complete symbol
2762 table entry for the compilation unit.
2763
2764 Thus it effectively partitions up a chunk of DIE's for multiple
2765 compilation units into smaller DIE chunks and line number tables,
2766 and associates them with a partial symbol table entry.
2767
2768 NOTES
2769
2770 If any compilation unit has no line number table associated with
2771 it for some reason (a missing at_stmt_list attribute, rather than
2772 just one with a value of zero, which is valid) then we ensure that
2773 the recorded file offset is zero so that the routine which later
2774 reads line number table fragments knows that there is no fragment
2775 to read.
2776
2777 RETURNS
2778
2779 Returns no value.
2780
2781 */
2782
2783 static void
2784 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2785 char *thisdie;
2786 char *enddie;
2787 file_ptr dbfoff;
2788 file_ptr lnoffset;
2789 struct objfile *objfile;
2790 {
2791 char *nextdie;
2792 struct dieinfo di;
2793 struct partial_symtab *pst;
2794 int culength;
2795 int curoff;
2796 file_ptr curlnoffset;
2797
2798 while (thisdie < enddie)
2799 {
2800 basicdieinfo (&di, thisdie, objfile);
2801 if (di.die_length < SIZEOF_DIE_LENGTH)
2802 {
2803 break;
2804 }
2805 else if (di.die_tag != TAG_compile_unit)
2806 {
2807 nextdie = thisdie + di.die_length;
2808 }
2809 else
2810 {
2811 completedieinfo (&di, objfile);
2812 set_cu_language (&di);
2813 if (di.at_sibling != 0)
2814 {
2815 nextdie = dbbase + di.at_sibling - dbroff;
2816 }
2817 else
2818 {
2819 nextdie = thisdie + di.die_length;
2820 }
2821 curoff = thisdie - dbbase;
2822 culength = nextdie - thisdie;
2823 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2824
2825 /* First allocate a new partial symbol table structure */
2826
2827 pst = start_psymtab_common (objfile, base_section_offsets,
2828 di.at_name, di.at_low_pc,
2829 objfile -> global_psymbols.next,
2830 objfile -> static_psymbols.next);
2831
2832 pst -> texthigh = di.at_high_pc;
2833 pst -> read_symtab_private = (char *)
2834 obstack_alloc (&objfile -> psymbol_obstack,
2835 sizeof (struct dwfinfo));
2836 DBFOFF (pst) = dbfoff;
2837 DBROFF (pst) = curoff;
2838 DBLENGTH (pst) = culength;
2839 LNFOFF (pst) = curlnoffset;
2840 pst -> read_symtab = dwarf_psymtab_to_symtab;
2841
2842 /* Now look for partial symbols */
2843
2844 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2845
2846 pst -> n_global_syms = objfile -> global_psymbols.next -
2847 (objfile -> global_psymbols.list + pst -> globals_offset);
2848 pst -> n_static_syms = objfile -> static_psymbols.next -
2849 (objfile -> static_psymbols.list + pst -> statics_offset);
2850 sort_pst_symbols (pst);
2851 /* If there is already a psymtab or symtab for a file of this name,
2852 remove it. (If there is a symtab, more drastic things also
2853 happen.) This happens in VxWorks. */
2854 free_named_symtabs (pst -> filename);
2855 }
2856 thisdie = nextdie;
2857 }
2858 }
2859
2860 /*
2861
2862 LOCAL FUNCTION
2863
2864 new_symbol -- make a symbol table entry for a new symbol
2865
2866 SYNOPSIS
2867
2868 static struct symbol *new_symbol (struct dieinfo *dip,
2869 struct objfile *objfile)
2870
2871 DESCRIPTION
2872
2873 Given a pointer to a DWARF information entry, figure out if we need
2874 to make a symbol table entry for it, and if so, create a new entry
2875 and return a pointer to it.
2876 */
2877
2878 static struct symbol *
2879 new_symbol (dip, objfile)
2880 struct dieinfo *dip;
2881 struct objfile *objfile;
2882 {
2883 struct symbol *sym = NULL;
2884
2885 if (dip -> at_name != NULL)
2886 {
2887 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2888 sizeof (struct symbol));
2889 memset (sym, 0, sizeof (struct symbol));
2890 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2891 &objfile->symbol_obstack);
2892 /* default assumptions */
2893 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2894 SYMBOL_CLASS (sym) = LOC_STATIC;
2895 SYMBOL_TYPE (sym) = decode_die_type (dip);
2896
2897 /* If this symbol is from a C++ compilation, then attempt to cache the
2898 demangled form for future reference. This is a typical time versus
2899 space tradeoff, that was decided in favor of time because it sped up
2900 C++ symbol lookups by a factor of about 20. */
2901
2902 SYMBOL_LANGUAGE (sym) = cu_language;
2903 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2904 switch (dip -> die_tag)
2905 {
2906 case TAG_label:
2907 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2908 SYMBOL_CLASS (sym) = LOC_LABEL;
2909 break;
2910 case TAG_global_subroutine:
2911 case TAG_subroutine:
2912 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2913 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2914 SYMBOL_CLASS (sym) = LOC_BLOCK;
2915 if (dip -> die_tag == TAG_global_subroutine)
2916 {
2917 add_symbol_to_list (sym, &global_symbols);
2918 }
2919 else
2920 {
2921 add_symbol_to_list (sym, list_in_scope);
2922 }
2923 break;
2924 case TAG_global_variable:
2925 if (dip -> at_location != NULL)
2926 {
2927 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2928 add_symbol_to_list (sym, &global_symbols);
2929 SYMBOL_CLASS (sym) = LOC_STATIC;
2930 SYMBOL_VALUE (sym) += baseaddr;
2931 }
2932 break;
2933 case TAG_local_variable:
2934 if (dip -> at_location != NULL)
2935 {
2936 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2937 add_symbol_to_list (sym, list_in_scope);
2938 if (optimized_out)
2939 {
2940 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2941 }
2942 else if (isreg)
2943 {
2944 SYMBOL_CLASS (sym) = LOC_REGISTER;
2945 }
2946 else if (offreg)
2947 {
2948 SYMBOL_CLASS (sym) = LOC_BASEREG;
2949 SYMBOL_BASEREG (sym) = basereg;
2950 }
2951 else
2952 {
2953 SYMBOL_CLASS (sym) = LOC_STATIC;
2954 SYMBOL_VALUE (sym) += baseaddr;
2955 }
2956 }
2957 break;
2958 case TAG_formal_parameter:
2959 if (dip -> at_location != NULL)
2960 {
2961 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2962 }
2963 add_symbol_to_list (sym, list_in_scope);
2964 if (isreg)
2965 {
2966 SYMBOL_CLASS (sym) = LOC_REGPARM;
2967 }
2968 else if (offreg)
2969 {
2970 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2971 SYMBOL_BASEREG (sym) = basereg;
2972 }
2973 else
2974 {
2975 SYMBOL_CLASS (sym) = LOC_ARG;
2976 }
2977 break;
2978 case TAG_unspecified_parameters:
2979 /* From varargs functions; gdb doesn't seem to have any interest in
2980 this information, so just ignore it for now. (FIXME?) */
2981 break;
2982 case TAG_class_type:
2983 case TAG_structure_type:
2984 case TAG_union_type:
2985 case TAG_enumeration_type:
2986 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2987 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2988 add_symbol_to_list (sym, list_in_scope);
2989 break;
2990 case TAG_typedef:
2991 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2992 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2993 add_symbol_to_list (sym, list_in_scope);
2994 break;
2995 default:
2996 /* Not a tag we recognize. Hopefully we aren't processing trash
2997 data, but since we must specifically ignore things we don't
2998 recognize, there is nothing else we should do at this point. */
2999 break;
3000 }
3001 }
3002 return (sym);
3003 }
3004
3005 /*
3006
3007 LOCAL FUNCTION
3008
3009 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3010
3011 SYNOPSIS
3012
3013 static void synthesize_typedef (struct dieinfo *dip,
3014 struct objfile *objfile,
3015 struct type *type);
3016
3017 DESCRIPTION
3018
3019 Given a pointer to a DWARF information entry, synthesize a typedef
3020 for the name in the DIE, using the specified type.
3021
3022 This is used for C++ class, structs, unions, and enumerations to
3023 set up the tag name as a type.
3024
3025 */
3026
3027 static void
3028 synthesize_typedef (dip, objfile, type)
3029 struct dieinfo *dip;
3030 struct objfile *objfile;
3031 struct type *type;
3032 {
3033 struct symbol *sym = NULL;
3034
3035 if (dip -> at_name != NULL)
3036 {
3037 sym = (struct symbol *)
3038 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3039 memset (sym, 0, sizeof (struct symbol));
3040 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3041 &objfile->symbol_obstack);
3042 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3043 SYMBOL_TYPE (sym) = type;
3044 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3045 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3046 add_symbol_to_list (sym, list_in_scope);
3047 }
3048 }
3049
3050 /*
3051
3052 LOCAL FUNCTION
3053
3054 decode_mod_fund_type -- decode a modified fundamental type
3055
3056 SYNOPSIS
3057
3058 static struct type *decode_mod_fund_type (char *typedata)
3059
3060 DESCRIPTION
3061
3062 Decode a block of data containing a modified fundamental
3063 type specification. TYPEDATA is a pointer to the block,
3064 which starts with a length containing the size of the rest
3065 of the block. At the end of the block is a fundmental type
3066 code value that gives the fundamental type. Everything
3067 in between are type modifiers.
3068
3069 We simply compute the number of modifiers and call the general
3070 function decode_modified_type to do the actual work.
3071 */
3072
3073 static struct type *
3074 decode_mod_fund_type (typedata)
3075 char *typedata;
3076 {
3077 struct type *typep = NULL;
3078 unsigned short modcount;
3079 int nbytes;
3080
3081 /* Get the total size of the block, exclusive of the size itself */
3082
3083 nbytes = attribute_size (AT_mod_fund_type);
3084 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3085 typedata += nbytes;
3086
3087 /* Deduct the size of the fundamental type bytes at the end of the block. */
3088
3089 modcount -= attribute_size (AT_fund_type);
3090
3091 /* Now do the actual decoding */
3092
3093 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3094 return (typep);
3095 }
3096
3097 /*
3098
3099 LOCAL FUNCTION
3100
3101 decode_mod_u_d_type -- decode a modified user defined type
3102
3103 SYNOPSIS
3104
3105 static struct type *decode_mod_u_d_type (char *typedata)
3106
3107 DESCRIPTION
3108
3109 Decode a block of data containing a modified user defined
3110 type specification. TYPEDATA is a pointer to the block,
3111 which consists of a two byte length, containing the size
3112 of the rest of the block. At the end of the block is a
3113 four byte value that gives a reference to a user defined type.
3114 Everything in between are type modifiers.
3115
3116 We simply compute the number of modifiers and call the general
3117 function decode_modified_type to do the actual work.
3118 */
3119
3120 static struct type *
3121 decode_mod_u_d_type (typedata)
3122 char *typedata;
3123 {
3124 struct type *typep = NULL;
3125 unsigned short modcount;
3126 int nbytes;
3127
3128 /* Get the total size of the block, exclusive of the size itself */
3129
3130 nbytes = attribute_size (AT_mod_u_d_type);
3131 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3132 typedata += nbytes;
3133
3134 /* Deduct the size of the reference type bytes at the end of the block. */
3135
3136 modcount -= attribute_size (AT_user_def_type);
3137
3138 /* Now do the actual decoding */
3139
3140 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3141 return (typep);
3142 }
3143
3144 /*
3145
3146 LOCAL FUNCTION
3147
3148 decode_modified_type -- decode modified user or fundamental type
3149
3150 SYNOPSIS
3151
3152 static struct type *decode_modified_type (char *modifiers,
3153 unsigned short modcount, int mtype)
3154
3155 DESCRIPTION
3156
3157 Decode a modified type, either a modified fundamental type or
3158 a modified user defined type. MODIFIERS is a pointer to the
3159 block of bytes that define MODCOUNT modifiers. Immediately
3160 following the last modifier is a short containing the fundamental
3161 type or a long containing the reference to the user defined
3162 type. Which one is determined by MTYPE, which is either
3163 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3164 type we are generating.
3165
3166 We call ourself recursively to generate each modified type,`
3167 until MODCOUNT reaches zero, at which point we have consumed
3168 all the modifiers and generate either the fundamental type or
3169 user defined type. When the recursion unwinds, each modifier
3170 is applied in turn to generate the full modified type.
3171
3172 NOTES
3173
3174 If we find a modifier that we don't recognize, and it is not one
3175 of those reserved for application specific use, then we issue a
3176 warning and simply ignore the modifier.
3177
3178 BUGS
3179
3180 We currently ignore MOD_const and MOD_volatile. (FIXME)
3181
3182 */
3183
3184 static struct type *
3185 decode_modified_type (modifiers, modcount, mtype)
3186 char *modifiers;
3187 unsigned int modcount;
3188 int mtype;
3189 {
3190 struct type *typep = NULL;
3191 unsigned short fundtype;
3192 DIE_REF die_ref;
3193 char modifier;
3194 int nbytes;
3195
3196 if (modcount == 0)
3197 {
3198 switch (mtype)
3199 {
3200 case AT_mod_fund_type:
3201 nbytes = attribute_size (AT_fund_type);
3202 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3203 current_objfile);
3204 typep = decode_fund_type (fundtype);
3205 break;
3206 case AT_mod_u_d_type:
3207 nbytes = attribute_size (AT_user_def_type);
3208 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3209 current_objfile);
3210 if ((typep = lookup_utype (die_ref)) == NULL)
3211 {
3212 typep = alloc_utype (die_ref, NULL);
3213 }
3214 break;
3215 default:
3216 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3217 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3218 break;
3219 }
3220 }
3221 else
3222 {
3223 modifier = *modifiers++;
3224 typep = decode_modified_type (modifiers, --modcount, mtype);
3225 switch (modifier)
3226 {
3227 case MOD_pointer_to:
3228 typep = lookup_pointer_type (typep);
3229 break;
3230 case MOD_reference_to:
3231 typep = lookup_reference_type (typep);
3232 break;
3233 case MOD_const:
3234 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3235 break;
3236 case MOD_volatile:
3237 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3238 break;
3239 default:
3240 if (!(MOD_lo_user <= (unsigned char) modifier
3241 && (unsigned char) modifier <= MOD_hi_user))
3242 {
3243 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3244 }
3245 break;
3246 }
3247 }
3248 return (typep);
3249 }
3250
3251 /*
3252
3253 LOCAL FUNCTION
3254
3255 decode_fund_type -- translate basic DWARF type to gdb base type
3256
3257 DESCRIPTION
3258
3259 Given an integer that is one of the fundamental DWARF types,
3260 translate it to one of the basic internal gdb types and return
3261 a pointer to the appropriate gdb type (a "struct type *").
3262
3263 NOTES
3264
3265 For robustness, if we are asked to translate a fundamental
3266 type that we are unprepared to deal with, we return int so
3267 callers can always depend upon a valid type being returned,
3268 and so gdb may at least do something reasonable by default.
3269 If the type is not in the range of those types defined as
3270 application specific types, we also issue a warning.
3271 */
3272
3273 static struct type *
3274 decode_fund_type (fundtype)
3275 unsigned int fundtype;
3276 {
3277 struct type *typep = NULL;
3278
3279 switch (fundtype)
3280 {
3281
3282 case FT_void:
3283 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3284 break;
3285
3286 case FT_boolean: /* Was FT_set in AT&T version */
3287 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3288 break;
3289
3290 case FT_pointer: /* (void *) */
3291 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3292 typep = lookup_pointer_type (typep);
3293 break;
3294
3295 case FT_char:
3296 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3297 break;
3298
3299 case FT_signed_char:
3300 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3301 break;
3302
3303 case FT_unsigned_char:
3304 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3305 break;
3306
3307 case FT_short:
3308 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3309 break;
3310
3311 case FT_signed_short:
3312 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3313 break;
3314
3315 case FT_unsigned_short:
3316 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3317 break;
3318
3319 case FT_integer:
3320 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3321 break;
3322
3323 case FT_signed_integer:
3324 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3325 break;
3326
3327 case FT_unsigned_integer:
3328 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3329 break;
3330
3331 case FT_long:
3332 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3333 break;
3334
3335 case FT_signed_long:
3336 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3337 break;
3338
3339 case FT_unsigned_long:
3340 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3341 break;
3342
3343 case FT_long_long:
3344 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3345 break;
3346
3347 case FT_signed_long_long:
3348 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3349 break;
3350
3351 case FT_unsigned_long_long:
3352 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3353 break;
3354
3355 case FT_float:
3356 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3357 break;
3358
3359 case FT_dbl_prec_float:
3360 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3361 break;
3362
3363 case FT_ext_prec_float:
3364 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3365 break;
3366
3367 case FT_complex:
3368 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3369 break;
3370
3371 case FT_dbl_prec_complex:
3372 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3373 break;
3374
3375 case FT_ext_prec_complex:
3376 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3377 break;
3378
3379 }
3380
3381 if (typep == NULL)
3382 {
3383 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3384 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3385 {
3386 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3387 }
3388 }
3389
3390 return (typep);
3391 }
3392
3393 /*
3394
3395 LOCAL FUNCTION
3396
3397 create_name -- allocate a fresh copy of a string on an obstack
3398
3399 DESCRIPTION
3400
3401 Given a pointer to a string and a pointer to an obstack, allocates
3402 a fresh copy of the string on the specified obstack.
3403
3404 */
3405
3406 static char *
3407 create_name (name, obstackp)
3408 char *name;
3409 struct obstack *obstackp;
3410 {
3411 int length;
3412 char *newname;
3413
3414 length = strlen (name) + 1;
3415 newname = (char *) obstack_alloc (obstackp, length);
3416 strcpy (newname, name);
3417 return (newname);
3418 }
3419
3420 /*
3421
3422 LOCAL FUNCTION
3423
3424 basicdieinfo -- extract the minimal die info from raw die data
3425
3426 SYNOPSIS
3427
3428 void basicdieinfo (char *diep, struct dieinfo *dip,
3429 struct objfile *objfile)
3430
3431 DESCRIPTION
3432
3433 Given a pointer to raw DIE data, and a pointer to an instance of a
3434 die info structure, this function extracts the basic information
3435 from the DIE data required to continue processing this DIE, along
3436 with some bookkeeping information about the DIE.
3437
3438 The information we absolutely must have includes the DIE tag,
3439 and the DIE length. If we need the sibling reference, then we
3440 will have to call completedieinfo() to process all the remaining
3441 DIE information.
3442
3443 Note that since there is no guarantee that the data is properly
3444 aligned in memory for the type of access required (indirection
3445 through anything other than a char pointer), and there is no
3446 guarantee that it is in the same byte order as the gdb host,
3447 we call a function which deals with both alignment and byte
3448 swapping issues. Possibly inefficient, but quite portable.
3449
3450 We also take care of some other basic things at this point, such
3451 as ensuring that the instance of the die info structure starts
3452 out completely zero'd and that curdie is initialized for use
3453 in error reporting if we have a problem with the current die.
3454
3455 NOTES
3456
3457 All DIE's must have at least a valid length, thus the minimum
3458 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3459 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3460 are forced to be TAG_padding DIES.
3461
3462 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3463 that if a padding DIE is used for alignment and the amount needed is
3464 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3465 enough to align to the next alignment boundry.
3466
3467 We do some basic sanity checking here, such as verifying that the
3468 length of the die would not cause it to overrun the recorded end of
3469 the buffer holding the DIE info. If we find a DIE that is either
3470 too small or too large, we force it's length to zero which should
3471 cause the caller to take appropriate action.
3472 */
3473
3474 static void
3475 basicdieinfo (dip, diep, objfile)
3476 struct dieinfo *dip;
3477 char *diep;
3478 struct objfile *objfile;
3479 {
3480 curdie = dip;
3481 memset (dip, 0, sizeof (struct dieinfo));
3482 dip -> die = diep;
3483 dip -> die_ref = dbroff + (diep - dbbase);
3484 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3485 objfile);
3486 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3487 ((diep + dip -> die_length) > (dbbase + dbsize)))
3488 {
3489 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3490 dip -> die_length = 0;
3491 }
3492 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3493 {
3494 dip -> die_tag = TAG_padding;
3495 }
3496 else
3497 {
3498 diep += SIZEOF_DIE_LENGTH;
3499 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3500 objfile);
3501 }
3502 }
3503
3504 /*
3505
3506 LOCAL FUNCTION
3507
3508 completedieinfo -- finish reading the information for a given DIE
3509
3510 SYNOPSIS
3511
3512 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3513
3514 DESCRIPTION
3515
3516 Given a pointer to an already partially initialized die info structure,
3517 scan the raw DIE data and finish filling in the die info structure
3518 from the various attributes found.
3519
3520 Note that since there is no guarantee that the data is properly
3521 aligned in memory for the type of access required (indirection
3522 through anything other than a char pointer), and there is no
3523 guarantee that it is in the same byte order as the gdb host,
3524 we call a function which deals with both alignment and byte
3525 swapping issues. Possibly inefficient, but quite portable.
3526
3527 NOTES
3528
3529 Each time we are called, we increment the diecount variable, which
3530 keeps an approximate count of the number of dies processed for
3531 each compilation unit. This information is presented to the user
3532 if the info_verbose flag is set.
3533
3534 */
3535
3536 static void
3537 completedieinfo (dip, objfile)
3538 struct dieinfo *dip;
3539 struct objfile *objfile;
3540 {
3541 char *diep; /* Current pointer into raw DIE data */
3542 char *end; /* Terminate DIE scan here */
3543 unsigned short attr; /* Current attribute being scanned */
3544 unsigned short form; /* Form of the attribute */
3545 int nbytes; /* Size of next field to read */
3546
3547 diecount++;
3548 diep = dip -> die;
3549 end = diep + dip -> die_length;
3550 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3551 while (diep < end)
3552 {
3553 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3554 diep += SIZEOF_ATTRIBUTE;
3555 if ((nbytes = attribute_size (attr)) == -1)
3556 {
3557 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3558 diep = end;
3559 continue;
3560 }
3561 switch (attr)
3562 {
3563 case AT_fund_type:
3564 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3565 objfile);
3566 break;
3567 case AT_ordering:
3568 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3569 objfile);
3570 break;
3571 case AT_bit_offset:
3572 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3573 objfile);
3574 break;
3575 case AT_sibling:
3576 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3577 objfile);
3578 break;
3579 case AT_stmt_list:
3580 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3581 objfile);
3582 dip -> has_at_stmt_list = 1;
3583 break;
3584 case AT_low_pc:
3585 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3586 objfile);
3587 dip -> at_low_pc += baseaddr;
3588 dip -> has_at_low_pc = 1;
3589 break;
3590 case AT_high_pc:
3591 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3592 objfile);
3593 dip -> at_high_pc += baseaddr;
3594 break;
3595 case AT_language:
3596 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
3598 break;
3599 case AT_user_def_type:
3600 dip -> at_user_def_type = target_to_host (diep, nbytes,
3601 GET_UNSIGNED, objfile);
3602 break;
3603 case AT_byte_size:
3604 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3605 objfile);
3606 dip -> has_at_byte_size = 1;
3607 break;
3608 case AT_bit_size:
3609 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
3611 break;
3612 case AT_member:
3613 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3614 objfile);
3615 break;
3616 case AT_discr:
3617 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3618 objfile);
3619 break;
3620 case AT_location:
3621 dip -> at_location = diep;
3622 break;
3623 case AT_mod_fund_type:
3624 dip -> at_mod_fund_type = diep;
3625 break;
3626 case AT_subscr_data:
3627 dip -> at_subscr_data = diep;
3628 break;
3629 case AT_mod_u_d_type:
3630 dip -> at_mod_u_d_type = diep;
3631 break;
3632 case AT_element_list:
3633 dip -> at_element_list = diep;
3634 dip -> short_element_list = 0;
3635 break;
3636 case AT_short_element_list:
3637 dip -> at_element_list = diep;
3638 dip -> short_element_list = 1;
3639 break;
3640 case AT_discr_value:
3641 dip -> at_discr_value = diep;
3642 break;
3643 case AT_string_length:
3644 dip -> at_string_length = diep;
3645 break;
3646 case AT_name:
3647 dip -> at_name = diep;
3648 break;
3649 case AT_comp_dir:
3650 /* For now, ignore any "hostname:" portion, since gdb doesn't
3651 know how to deal with it. (FIXME). */
3652 dip -> at_comp_dir = strrchr (diep, ':');
3653 if (dip -> at_comp_dir != NULL)
3654 {
3655 dip -> at_comp_dir++;
3656 }
3657 else
3658 {
3659 dip -> at_comp_dir = diep;
3660 }
3661 break;
3662 case AT_producer:
3663 dip -> at_producer = diep;
3664 break;
3665 case AT_start_scope:
3666 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3667 objfile);
3668 break;
3669 case AT_stride_size:
3670 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3671 objfile);
3672 break;
3673 case AT_src_info:
3674 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3675 objfile);
3676 break;
3677 case AT_prototyped:
3678 dip -> at_prototyped = diep;
3679 break;
3680 default:
3681 /* Found an attribute that we are unprepared to handle. However
3682 it is specifically one of the design goals of DWARF that
3683 consumers should ignore unknown attributes. As long as the
3684 form is one that we recognize (so we know how to skip it),
3685 we can just ignore the unknown attribute. */
3686 break;
3687 }
3688 form = FORM_FROM_ATTR (attr);
3689 switch (form)
3690 {
3691 case FORM_DATA2:
3692 diep += 2;
3693 break;
3694 case FORM_DATA4:
3695 case FORM_REF:
3696 diep += 4;
3697 break;
3698 case FORM_DATA8:
3699 diep += 8;
3700 break;
3701 case FORM_ADDR:
3702 diep += TARGET_FT_POINTER_SIZE (objfile);
3703 break;
3704 case FORM_BLOCK2:
3705 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3706 break;
3707 case FORM_BLOCK4:
3708 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3709 break;
3710 case FORM_STRING:
3711 diep += strlen (diep) + 1;
3712 break;
3713 default:
3714 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3715 diep = end;
3716 break;
3717 }
3718 }
3719 }
3720
3721 /*
3722
3723 LOCAL FUNCTION
3724
3725 target_to_host -- swap in target data to host
3726
3727 SYNOPSIS
3728
3729 target_to_host (char *from, int nbytes, int signextend,
3730 struct objfile *objfile)
3731
3732 DESCRIPTION
3733
3734 Given pointer to data in target format in FROM, a byte count for
3735 the size of the data in NBYTES, a flag indicating whether or not
3736 the data is signed in SIGNEXTEND, and a pointer to the current
3737 objfile in OBJFILE, convert the data to host format and return
3738 the converted value.
3739
3740 NOTES
3741
3742 FIXME: If we read data that is known to be signed, and expect to
3743 use it as signed data, then we need to explicitly sign extend the
3744 result until the bfd library is able to do this for us.
3745
3746 FIXME: Would a 32 bit target ever need an 8 byte result?
3747
3748 */
3749
3750 static CORE_ADDR
3751 target_to_host (from, nbytes, signextend, objfile)
3752 char *from;
3753 int nbytes;
3754 int signextend; /* FIXME: Unused */
3755 struct objfile *objfile;
3756 {
3757 CORE_ADDR rtnval;
3758
3759 switch (nbytes)
3760 {
3761 case 8:
3762 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3763 break;
3764 case 4:
3765 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3766 break;
3767 case 2:
3768 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3769 break;
3770 case 1:
3771 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3772 break;
3773 default:
3774 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3775 rtnval = 0;
3776 break;
3777 }
3778 return (rtnval);
3779 }
3780
3781 /*
3782
3783 LOCAL FUNCTION
3784
3785 attribute_size -- compute size of data for a DWARF attribute
3786
3787 SYNOPSIS
3788
3789 static int attribute_size (unsigned int attr)
3790
3791 DESCRIPTION
3792
3793 Given a DWARF attribute in ATTR, compute the size of the first
3794 piece of data associated with this attribute and return that
3795 size.
3796
3797 Returns -1 for unrecognized attributes.
3798
3799 */
3800
3801 static int
3802 attribute_size (attr)
3803 unsigned int attr;
3804 {
3805 int nbytes; /* Size of next data for this attribute */
3806 unsigned short form; /* Form of the attribute */
3807
3808 form = FORM_FROM_ATTR (attr);
3809 switch (form)
3810 {
3811 case FORM_STRING: /* A variable length field is next */
3812 nbytes = 0;
3813 break;
3814 case FORM_DATA2: /* Next 2 byte field is the data itself */
3815 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3816 nbytes = 2;
3817 break;
3818 case FORM_DATA4: /* Next 4 byte field is the data itself */
3819 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3820 case FORM_REF: /* Next 4 byte field is a DIE offset */
3821 nbytes = 4;
3822 break;
3823 case FORM_DATA8: /* Next 8 byte field is the data itself */
3824 nbytes = 8;
3825 break;
3826 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3827 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3828 break;
3829 default:
3830 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3831 nbytes = -1;
3832 break;
3833 }
3834 return (nbytes);
3835 }