]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
* config/m68k/tm-m68kv4.h (DWARF_REG_TO_REGNUM): Define to
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
4 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /*
23
24 FIXME: Do we need to generate dependencies in partial symtabs?
25 (Perhaps we don't need to).
26
27 FIXME: Resolve minor differences between what information we put in the
28 partial symbol table and what dbxread puts in. For example, we don't yet
29 put enum constants there. And dbxread seems to invent a lot of typedefs
30 we never see. Use the new printpsym command to see the partial symbol table
31 contents.
32
33 FIXME: Figure out a better way to tell gdb about the name of the function
34 contain the user's entry point (I.E. main())
35
36 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
37 other things to work on, if you get bored. :-)
38
39 */
40
41 #include "defs.h"
42 #include "symtab.h"
43 #include "gdbtypes.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "elf/dwarf.h"
47 #include "buildsym.h"
48 #include "demangle.h"
49 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
50 #include "language.h"
51 #include "complaints.h"
52
53 #include <fcntl.h>
54 #include <string.h>
55
56 #ifndef NO_SYS_FILE
57 #include <sys/file.h>
58 #endif
59
60 /* FIXME -- convert this to SEEK_SET a la POSIX, move to config files. */
61 #ifndef L_SET
62 #define L_SET 0
63 #endif
64
65 /* Some macros to provide DIE info for complaints. */
66
67 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
68 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
69
70 /* Complaints that can be issued during DWARF debug info reading. */
71
72 struct complaint no_bfd_get_N =
73 {
74 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
75 };
76
77 struct complaint malformed_die =
78 {
79 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
80 };
81
82 struct complaint bad_die_ref =
83 {
84 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
85 };
86
87 struct complaint unknown_attribute_form =
88 {
89 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
90 };
91
92 struct complaint unknown_attribute_length =
93 {
94 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
95 };
96
97 struct complaint unexpected_fund_type =
98 {
99 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
100 };
101
102 struct complaint unknown_type_modifier =
103 {
104 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
105 };
106
107 struct complaint volatile_ignored =
108 {
109 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
110 };
111
112 struct complaint const_ignored =
113 {
114 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
115 };
116
117 struct complaint botched_modified_type =
118 {
119 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
120 };
121
122 struct complaint op_deref2 =
123 {
124 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
125 };
126
127 struct complaint op_deref4 =
128 {
129 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
130 };
131
132 struct complaint basereg_not_handled =
133 {
134 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
135 };
136
137 struct complaint dup_user_type_allocation =
138 {
139 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
140 };
141
142 struct complaint dup_user_type_definition =
143 {
144 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
145 };
146
147 struct complaint missing_tag =
148 {
149 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
150 };
151
152 struct complaint bad_array_element_type =
153 {
154 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
155 };
156
157 struct complaint subscript_data_items =
158 {
159 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
160 };
161
162 struct complaint unhandled_array_subscript_format =
163 {
164 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
165 };
166
167 struct complaint unknown_array_subscript_format =
168 {
169 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
170 };
171
172 struct complaint not_row_major =
173 {
174 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
175 };
176
177 typedef unsigned int DIE_REF; /* Reference to a DIE */
178
179 #ifndef GCC_PRODUCER
180 #define GCC_PRODUCER "GNU C "
181 #endif
182
183 #ifndef GPLUS_PRODUCER
184 #define GPLUS_PRODUCER "GNU C++ "
185 #endif
186
187 #ifndef LCC_PRODUCER
188 #define LCC_PRODUCER "NCR C/C++"
189 #endif
190
191 #ifndef CHILL_PRODUCER
192 #define CHILL_PRODUCER "GNU Chill "
193 #endif
194
195 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
196 #ifndef DWARF_REG_TO_REGNUM
197 #define DWARF_REG_TO_REGNUM(num) (num)
198 #endif
199
200 /* Flags to target_to_host() that tell whether or not the data object is
201 expected to be signed. Used, for example, when fetching a signed
202 integer in the target environment which is used as a signed integer
203 in the host environment, and the two environments have different sized
204 ints. In this case, *somebody* has to sign extend the smaller sized
205 int. */
206
207 #define GET_UNSIGNED 0 /* No sign extension required */
208 #define GET_SIGNED 1 /* Sign extension required */
209
210 /* Defines for things which are specified in the document "DWARF Debugging
211 Information Format" published by UNIX International, Programming Languages
212 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
213
214 #define SIZEOF_DIE_LENGTH 4
215 #define SIZEOF_DIE_TAG 2
216 #define SIZEOF_ATTRIBUTE 2
217 #define SIZEOF_FORMAT_SPECIFIER 1
218 #define SIZEOF_FMT_FT 2
219 #define SIZEOF_LINETBL_LENGTH 4
220 #define SIZEOF_LINETBL_LINENO 4
221 #define SIZEOF_LINETBL_STMT 2
222 #define SIZEOF_LINETBL_DELTA 4
223 #define SIZEOF_LOC_ATOM_CODE 1
224
225 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
226
227 /* Macros that return the sizes of various types of data in the target
228 environment.
229
230 FIXME: Currently these are just compile time constants (as they are in
231 other parts of gdb as well). They need to be able to get the right size
232 either from the bfd or possibly from the DWARF info. It would be nice if
233 the DWARF producer inserted DIES that describe the fundamental types in
234 the target environment into the DWARF info, similar to the way dbx stabs
235 producers produce information about their fundamental types. */
236
237 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
238 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
239
240 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
241 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
242 However, the Issue 2 DWARF specification from AT&T defines it as
243 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
244 For backwards compatibility with the AT&T compiler produced executables
245 we define AT_short_element_list for this variant. */
246
247 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
248
249 /* External variables referenced. */
250
251 extern int info_verbose; /* From main.c; nonzero => verbose */
252 extern char *warning_pre_print; /* From utils.c */
253
254 /* The DWARF debugging information consists of two major pieces,
255 one is a block of DWARF Information Entries (DIE's) and the other
256 is a line number table. The "struct dieinfo" structure contains
257 the information for a single DIE, the one currently being processed.
258
259 In order to make it easier to randomly access the attribute fields
260 of the current DIE, which are specifically unordered within the DIE,
261 each DIE is scanned and an instance of the "struct dieinfo"
262 structure is initialized.
263
264 Initialization is done in two levels. The first, done by basicdieinfo(),
265 just initializes those fields that are vital to deciding whether or not
266 to use this DIE, how to skip past it, etc. The second, done by the
267 function completedieinfo(), fills in the rest of the information.
268
269 Attributes which have block forms are not interpreted at the time
270 the DIE is scanned, instead we just save pointers to the start
271 of their value fields.
272
273 Some fields have a flag <name>_p that is set when the value of the
274 field is valid (I.E. we found a matching attribute in the DIE). Since
275 we may want to test for the presence of some attributes in the DIE,
276 such as AT_low_pc, without restricting the values of the field,
277 we need someway to note that we found such an attribute.
278
279 */
280
281 typedef char BLOCK;
282
283 struct dieinfo {
284 char * die; /* Pointer to the raw DIE data */
285 unsigned long die_length; /* Length of the raw DIE data */
286 DIE_REF die_ref; /* Offset of this DIE */
287 unsigned short die_tag; /* Tag for this DIE */
288 unsigned long at_padding;
289 unsigned long at_sibling;
290 BLOCK * at_location;
291 char * at_name;
292 unsigned short at_fund_type;
293 BLOCK * at_mod_fund_type;
294 unsigned long at_user_def_type;
295 BLOCK * at_mod_u_d_type;
296 unsigned short at_ordering;
297 BLOCK * at_subscr_data;
298 unsigned long at_byte_size;
299 unsigned short at_bit_offset;
300 unsigned long at_bit_size;
301 BLOCK * at_element_list;
302 unsigned long at_stmt_list;
303 CORE_ADDR at_low_pc;
304 CORE_ADDR at_high_pc;
305 unsigned long at_language;
306 unsigned long at_member;
307 unsigned long at_discr;
308 BLOCK * at_discr_value;
309 BLOCK * at_string_length;
310 char * at_comp_dir;
311 char * at_producer;
312 unsigned long at_start_scope;
313 unsigned long at_stride_size;
314 unsigned long at_src_info;
315 char * at_prototyped;
316 unsigned int has_at_low_pc:1;
317 unsigned int has_at_stmt_list:1;
318 unsigned int has_at_byte_size:1;
319 unsigned int short_element_list:1;
320 };
321
322 static int diecount; /* Approximate count of dies for compilation unit */
323 static struct dieinfo *curdie; /* For warnings and such */
324
325 static char *dbbase; /* Base pointer to dwarf info */
326 static int dbsize; /* Size of dwarf info in bytes */
327 static int dbroff; /* Relative offset from start of .debug section */
328 static char *lnbase; /* Base pointer to line section */
329 static int isreg; /* Kludge to identify register variables */
330 static int optimized_out; /* Kludge to identify optimized out variables */
331 /* Kludge to identify basereg references. Nonzero if we have an offset
332 relative to a basereg. */
333 static int offreg;
334 /* Which base register is it relative to? */
335 static int basereg;
336
337 /* This value is added to each symbol value. FIXME: Generalize to
338 the section_offsets structure used by dbxread (once this is done,
339 pass the appropriate section number to end_symtab). */
340 static CORE_ADDR baseaddr; /* Add to each symbol value */
341
342 /* The section offsets used in the current psymtab or symtab. FIXME,
343 only used to pass one value (baseaddr) at the moment. */
344 static struct section_offsets *base_section_offsets;
345
346 /* We put a pointer to this structure in the read_symtab_private field
347 of the psymtab. */
348
349 struct dwfinfo {
350 /* Always the absolute file offset to the start of the ".debug"
351 section for the file containing the DIE's being accessed. */
352 file_ptr dbfoff;
353 /* Relative offset from the start of the ".debug" section to the
354 first DIE to be accessed. When building the partial symbol
355 table, this value will be zero since we are accessing the
356 entire ".debug" section. When expanding a partial symbol
357 table entry, this value will be the offset to the first
358 DIE for the compilation unit containing the symbol that
359 triggers the expansion. */
360 int dbroff;
361 /* The size of the chunk of DIE's being examined, in bytes. */
362 int dblength;
363 /* The absolute file offset to the line table fragment. Ignored
364 when building partial symbol tables, but used when expanding
365 them, and contains the absolute file offset to the fragment
366 of the ".line" section containing the line numbers for the
367 current compilation unit. */
368 file_ptr lnfoff;
369 };
370
371 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
372 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
373 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
374 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
375
376 /* The generic symbol table building routines have separate lists for
377 file scope symbols and all all other scopes (local scopes). So
378 we need to select the right one to pass to add_symbol_to_list().
379 We do it by keeping a pointer to the correct list in list_in_scope.
380
381 FIXME: The original dwarf code just treated the file scope as the first
382 local scope, and all other local scopes as nested local scopes, and worked
383 fine. Check to see if we really need to distinguish these in buildsym.c */
384
385 struct pending **list_in_scope = &file_symbols;
386
387 /* DIES which have user defined types or modified user defined types refer to
388 other DIES for the type information. Thus we need to associate the offset
389 of a DIE for a user defined type with a pointer to the type information.
390
391 Originally this was done using a simple but expensive algorithm, with an
392 array of unsorted structures, each containing an offset/type-pointer pair.
393 This array was scanned linearly each time a lookup was done. The result
394 was that gdb was spending over half it's startup time munging through this
395 array of pointers looking for a structure that had the right offset member.
396
397 The second attempt used the same array of structures, but the array was
398 sorted using qsort each time a new offset/type was recorded, and a binary
399 search was used to find the type pointer for a given DIE offset. This was
400 even slower, due to the overhead of sorting the array each time a new
401 offset/type pair was entered.
402
403 The third attempt uses a fixed size array of type pointers, indexed by a
404 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
405 we can divide any DIE offset by 4 to obtain a unique index into this fixed
406 size array. Since each element is a 4 byte pointer, it takes exactly as
407 much memory to hold this array as to hold the DWARF info for a given
408 compilation unit. But it gets freed as soon as we are done with it.
409 This has worked well in practice, as a reasonable tradeoff between memory
410 consumption and speed, without having to resort to much more complicated
411 algorithms. */
412
413 static struct type **utypes; /* Pointer to array of user type pointers */
414 static int numutypes; /* Max number of user type pointers */
415
416 /* Maintain an array of referenced fundamental types for the current
417 compilation unit being read. For DWARF version 1, we have to construct
418 the fundamental types on the fly, since no information about the
419 fundamental types is supplied. Each such fundamental type is created by
420 calling a language dependent routine to create the type, and then a
421 pointer to that type is then placed in the array at the index specified
422 by it's FT_<TYPENAME> value. The array has a fixed size set by the
423 FT_NUM_MEMBERS compile time constant, which is the number of predefined
424 fundamental types gdb knows how to construct. */
425
426 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
427
428 /* Record the language for the compilation unit which is currently being
429 processed. We know it once we have seen the TAG_compile_unit DIE,
430 and we need it while processing the DIE's for that compilation unit.
431 It is eventually saved in the symtab structure, but we don't finalize
432 the symtab struct until we have processed all the DIE's for the
433 compilation unit. We also need to get and save a pointer to the
434 language struct for this language, so we can call the language
435 dependent routines for doing things such as creating fundamental
436 types. */
437
438 static enum language cu_language;
439 static const struct language_defn *cu_language_defn;
440
441 /* Forward declarations of static functions so we don't have to worry
442 about ordering within this file. */
443
444 static int
445 attribute_size PARAMS ((unsigned int));
446
447 static CORE_ADDR
448 target_to_host PARAMS ((char *, int, int, struct objfile *));
449
450 static void
451 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
452
453 static void
454 handle_producer PARAMS ((char *));
455
456 static void
457 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
458
459 static void
460 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
461
462 static void
463 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
464 struct objfile *));
465
466 static void
467 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
468
469 static void
470 scan_compilation_units PARAMS ((char *, char *, file_ptr,
471 file_ptr, struct objfile *));
472
473 static void
474 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
475
476 static void
477 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
478
479 static void
480 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
481
482 static void
483 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
484
485 static void
486 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
487
488 static void
489 read_ofile_symtab PARAMS ((struct partial_symtab *));
490
491 static void
492 process_dies PARAMS ((char *, char *, struct objfile *));
493
494 static void
495 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
496 struct objfile *));
497
498 static struct type *
499 decode_array_element_type PARAMS ((char *));
500
501 static struct type *
502 decode_subscript_data_item PARAMS ((char *, char *));
503
504 static void
505 dwarf_read_array_type PARAMS ((struct dieinfo *));
506
507 static void
508 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
509
510 static void
511 read_tag_string_type PARAMS ((struct dieinfo *dip));
512
513 static void
514 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
515
516 static void
517 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
518
519 static struct type *
520 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
521
522 static struct type *
523 enum_type PARAMS ((struct dieinfo *, struct objfile *));
524
525 static void
526 decode_line_numbers PARAMS ((char *));
527
528 static struct type *
529 decode_die_type PARAMS ((struct dieinfo *));
530
531 static struct type *
532 decode_mod_fund_type PARAMS ((char *));
533
534 static struct type *
535 decode_mod_u_d_type PARAMS ((char *));
536
537 static struct type *
538 decode_modified_type PARAMS ((char *, unsigned int, int));
539
540 static struct type *
541 decode_fund_type PARAMS ((unsigned int));
542
543 static char *
544 create_name PARAMS ((char *, struct obstack *));
545
546 static struct type *
547 lookup_utype PARAMS ((DIE_REF));
548
549 static struct type *
550 alloc_utype PARAMS ((DIE_REF, struct type *));
551
552 static struct symbol *
553 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
554
555 static void
556 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
557 struct type *));
558
559 static int
560 locval PARAMS ((char *));
561
562 static void
563 set_cu_language PARAMS ((struct dieinfo *));
564
565 static struct type *
566 dwarf_fundamental_type PARAMS ((struct objfile *, int));
567
568
569 /*
570
571 LOCAL FUNCTION
572
573 dwarf_fundamental_type -- lookup or create a fundamental type
574
575 SYNOPSIS
576
577 struct type *
578 dwarf_fundamental_type (struct objfile *objfile, int typeid)
579
580 DESCRIPTION
581
582 DWARF version 1 doesn't supply any fundamental type information,
583 so gdb has to construct such types. It has a fixed number of
584 fundamental types that it knows how to construct, which is the
585 union of all types that it knows how to construct for all languages
586 that it knows about. These are enumerated in gdbtypes.h.
587
588 As an example, assume we find a DIE that references a DWARF
589 fundamental type of FT_integer. We first look in the ftypes
590 array to see if we already have such a type, indexed by the
591 gdb internal value of FT_INTEGER. If so, we simply return a
592 pointer to that type. If not, then we ask an appropriate
593 language dependent routine to create a type FT_INTEGER, using
594 defaults reasonable for the current target machine, and install
595 that type in ftypes for future reference.
596
597 RETURNS
598
599 Pointer to a fundamental type.
600
601 */
602
603 static struct type *
604 dwarf_fundamental_type (objfile, typeid)
605 struct objfile *objfile;
606 int typeid;
607 {
608 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
609 {
610 error ("internal error - invalid fundamental type id %d", typeid);
611 }
612
613 /* Look for this particular type in the fundamental type vector. If one is
614 not found, create and install one appropriate for the current language
615 and the current target machine. */
616
617 if (ftypes[typeid] == NULL)
618 {
619 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
620 }
621
622 return (ftypes[typeid]);
623 }
624
625 /*
626
627 LOCAL FUNCTION
628
629 set_cu_language -- set local copy of language for compilation unit
630
631 SYNOPSIS
632
633 void
634 set_cu_language (struct dieinfo *dip)
635
636 DESCRIPTION
637
638 Decode the language attribute for a compilation unit DIE and
639 remember what the language was. We use this at various times
640 when processing DIE's for a given compilation unit.
641
642 RETURNS
643
644 No return value.
645
646 */
647
648 static void
649 set_cu_language (dip)
650 struct dieinfo *dip;
651 {
652 switch (dip -> at_language)
653 {
654 case LANG_C89:
655 case LANG_C:
656 cu_language = language_c;
657 break;
658 case LANG_C_PLUS_PLUS:
659 cu_language = language_cplus;
660 break;
661 case LANG_CHILL:
662 cu_language = language_chill;
663 break;
664 case LANG_MODULA2:
665 cu_language = language_m2;
666 break;
667 case LANG_ADA83:
668 case LANG_COBOL74:
669 case LANG_COBOL85:
670 case LANG_FORTRAN77:
671 case LANG_FORTRAN90:
672 case LANG_PASCAL83:
673 /* We don't know anything special about these yet. */
674 cu_language = language_unknown;
675 break;
676 default:
677 /* If no at_language, try to deduce one from the filename */
678 cu_language = deduce_language_from_filename (dip -> at_name);
679 break;
680 }
681 cu_language_defn = language_def (cu_language);
682 }
683
684 /*
685
686 GLOBAL FUNCTION
687
688 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
689
690 SYNOPSIS
691
692 void dwarf_build_psymtabs (struct objfile *objfile,
693 struct section_offsets *section_offsets,
694 int mainline, file_ptr dbfoff, unsigned int dbfsize,
695 file_ptr lnoffset, unsigned int lnsize)
696
697 DESCRIPTION
698
699 This function is called upon to build partial symtabs from files
700 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
701
702 It is passed a bfd* containing the DIES
703 and line number information, the corresponding filename for that
704 file, a base address for relocating the symbols, a flag indicating
705 whether or not this debugging information is from a "main symbol
706 table" rather than a shared library or dynamically linked file,
707 and file offset/size pairs for the DIE information and line number
708 information.
709
710 RETURNS
711
712 No return value.
713
714 */
715
716 void
717 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
718 lnoffset, lnsize)
719 struct objfile *objfile;
720 struct section_offsets *section_offsets;
721 int mainline;
722 file_ptr dbfoff;
723 unsigned int dbfsize;
724 file_ptr lnoffset;
725 unsigned int lnsize;
726 {
727 bfd *abfd = objfile->obfd;
728 struct cleanup *back_to;
729
730 current_objfile = objfile;
731 dbsize = dbfsize;
732 dbbase = xmalloc (dbsize);
733 dbroff = 0;
734 if ((bfd_seek (abfd, dbfoff, L_SET) != 0) ||
735 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
736 {
737 free (dbbase);
738 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
739 }
740 back_to = make_cleanup (free, dbbase);
741
742 /* If we are reinitializing, or if we have never loaded syms yet, init.
743 Since we have no idea how many DIES we are looking at, we just guess
744 some arbitrary value. */
745
746 if (mainline || objfile -> global_psymbols.size == 0 ||
747 objfile -> static_psymbols.size == 0)
748 {
749 init_psymbol_list (objfile, 1024);
750 }
751
752 /* Save the relocation factor where everybody can see it. */
753
754 base_section_offsets = section_offsets;
755 baseaddr = ANOFFSET (section_offsets, 0);
756
757 /* Follow the compilation unit sibling chain, building a partial symbol
758 table entry for each one. Save enough information about each compilation
759 unit to locate the full DWARF information later. */
760
761 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
762
763 do_cleanups (back_to);
764 current_objfile = NULL;
765 }
766
767 /*
768
769 LOCAL FUNCTION
770
771 read_lexical_block_scope -- process all dies in a lexical block
772
773 SYNOPSIS
774
775 static void read_lexical_block_scope (struct dieinfo *dip,
776 char *thisdie, char *enddie)
777
778 DESCRIPTION
779
780 Process all the DIES contained within a lexical block scope.
781 Start a new scope, process the dies, and then close the scope.
782
783 */
784
785 static void
786 read_lexical_block_scope (dip, thisdie, enddie, objfile)
787 struct dieinfo *dip;
788 char *thisdie;
789 char *enddie;
790 struct objfile *objfile;
791 {
792 register struct context_stack *new;
793
794 push_context (0, dip -> at_low_pc);
795 process_dies (thisdie + dip -> die_length, enddie, objfile);
796 new = pop_context ();
797 if (local_symbols != NULL)
798 {
799 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
800 dip -> at_high_pc, objfile);
801 }
802 local_symbols = new -> locals;
803 }
804
805 /*
806
807 LOCAL FUNCTION
808
809 lookup_utype -- look up a user defined type from die reference
810
811 SYNOPSIS
812
813 static type *lookup_utype (DIE_REF die_ref)
814
815 DESCRIPTION
816
817 Given a DIE reference, lookup the user defined type associated with
818 that DIE, if it has been registered already. If not registered, then
819 return NULL. Alloc_utype() can be called to register an empty
820 type for this reference, which will be filled in later when the
821 actual referenced DIE is processed.
822 */
823
824 static struct type *
825 lookup_utype (die_ref)
826 DIE_REF die_ref;
827 {
828 struct type *type = NULL;
829 int utypeidx;
830
831 utypeidx = (die_ref - dbroff) / 4;
832 if ((utypeidx < 0) || (utypeidx >= numutypes))
833 {
834 complain (&bad_die_ref, DIE_ID, DIE_NAME);
835 }
836 else
837 {
838 type = *(utypes + utypeidx);
839 }
840 return (type);
841 }
842
843
844 /*
845
846 LOCAL FUNCTION
847
848 alloc_utype -- add a user defined type for die reference
849
850 SYNOPSIS
851
852 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
853
854 DESCRIPTION
855
856 Given a die reference DIE_REF, and a possible pointer to a user
857 defined type UTYPEP, register that this reference has a user
858 defined type and either use the specified type in UTYPEP or
859 make a new empty type that will be filled in later.
860
861 We should only be called after calling lookup_utype() to verify that
862 there is not currently a type registered for DIE_REF.
863 */
864
865 static struct type *
866 alloc_utype (die_ref, utypep)
867 DIE_REF die_ref;
868 struct type *utypep;
869 {
870 struct type **typep;
871 int utypeidx;
872
873 utypeidx = (die_ref - dbroff) / 4;
874 typep = utypes + utypeidx;
875 if ((utypeidx < 0) || (utypeidx >= numutypes))
876 {
877 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
878 complain (&bad_die_ref, DIE_ID, DIE_NAME);
879 }
880 else if (*typep != NULL)
881 {
882 utypep = *typep;
883 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
884 }
885 else
886 {
887 if (utypep == NULL)
888 {
889 utypep = alloc_type (current_objfile);
890 }
891 *typep = utypep;
892 }
893 return (utypep);
894 }
895
896 /*
897
898 LOCAL FUNCTION
899
900 decode_die_type -- return a type for a specified die
901
902 SYNOPSIS
903
904 static struct type *decode_die_type (struct dieinfo *dip)
905
906 DESCRIPTION
907
908 Given a pointer to a die information structure DIP, decode the
909 type of the die and return a pointer to the decoded type. All
910 dies without specific types default to type int.
911 */
912
913 static struct type *
914 decode_die_type (dip)
915 struct dieinfo *dip;
916 {
917 struct type *type = NULL;
918
919 if (dip -> at_fund_type != 0)
920 {
921 type = decode_fund_type (dip -> at_fund_type);
922 }
923 else if (dip -> at_mod_fund_type != NULL)
924 {
925 type = decode_mod_fund_type (dip -> at_mod_fund_type);
926 }
927 else if (dip -> at_user_def_type)
928 {
929 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
930 {
931 type = alloc_utype (dip -> at_user_def_type, NULL);
932 }
933 }
934 else if (dip -> at_mod_u_d_type)
935 {
936 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
937 }
938 else
939 {
940 type = dwarf_fundamental_type (current_objfile, FT_INTEGER);
941 }
942 return (type);
943 }
944
945 /*
946
947 LOCAL FUNCTION
948
949 struct_type -- compute and return the type for a struct or union
950
951 SYNOPSIS
952
953 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
954 char *enddie, struct objfile *objfile)
955
956 DESCRIPTION
957
958 Given pointer to a die information structure for a die which
959 defines a union or structure (and MUST define one or the other),
960 and pointers to the raw die data that define the range of dies which
961 define the members, compute and return the user defined type for the
962 structure or union.
963 */
964
965 static struct type *
966 struct_type (dip, thisdie, enddie, objfile)
967 struct dieinfo *dip;
968 char *thisdie;
969 char *enddie;
970 struct objfile *objfile;
971 {
972 struct type *type;
973 struct nextfield {
974 struct nextfield *next;
975 struct field field;
976 };
977 struct nextfield *list = NULL;
978 struct nextfield *new;
979 int nfields = 0;
980 int n;
981 struct dieinfo mbr;
982 char *nextdie;
983 int anonymous_size;
984
985 if ((type = lookup_utype (dip -> die_ref)) == NULL)
986 {
987 /* No forward references created an empty type, so install one now */
988 type = alloc_utype (dip -> die_ref, NULL);
989 }
990 INIT_CPLUS_SPECIFIC(type);
991 switch (dip -> die_tag)
992 {
993 case TAG_class_type:
994 TYPE_CODE (type) = TYPE_CODE_CLASS;
995 break;
996 case TAG_structure_type:
997 TYPE_CODE (type) = TYPE_CODE_STRUCT;
998 break;
999 case TAG_union_type:
1000 TYPE_CODE (type) = TYPE_CODE_UNION;
1001 break;
1002 default:
1003 /* Should never happen */
1004 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1005 complain (&missing_tag, DIE_ID, DIE_NAME);
1006 break;
1007 }
1008 /* Some compilers try to be helpful by inventing "fake" names for
1009 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1010 Thanks, but no thanks... */
1011 if (dip -> at_name != NULL
1012 && *dip -> at_name != '~'
1013 && *dip -> at_name != '.')
1014 {
1015 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1016 "", "", dip -> at_name);
1017 }
1018 /* Use whatever size is known. Zero is a valid size. We might however
1019 wish to check has_at_byte_size to make sure that some byte size was
1020 given explicitly, but DWARF doesn't specify that explicit sizes of
1021 zero have to present, so complaining about missing sizes should
1022 probably not be the default. */
1023 TYPE_LENGTH (type) = dip -> at_byte_size;
1024 thisdie += dip -> die_length;
1025 while (thisdie < enddie)
1026 {
1027 basicdieinfo (&mbr, thisdie, objfile);
1028 completedieinfo (&mbr, objfile);
1029 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1030 {
1031 break;
1032 }
1033 else if (mbr.at_sibling != 0)
1034 {
1035 nextdie = dbbase + mbr.at_sibling - dbroff;
1036 }
1037 else
1038 {
1039 nextdie = thisdie + mbr.die_length;
1040 }
1041 switch (mbr.die_tag)
1042 {
1043 case TAG_member:
1044 /* Get space to record the next field's data. */
1045 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1046 new -> next = list;
1047 list = new;
1048 /* Save the data. */
1049 list -> field.name =
1050 obsavestring (mbr.at_name, strlen (mbr.at_name),
1051 &objfile -> type_obstack);
1052 list -> field.type = decode_die_type (&mbr);
1053 list -> field.bitpos = 8 * locval (mbr.at_location);
1054 /* Handle bit fields. */
1055 list -> field.bitsize = mbr.at_bit_size;
1056 if (BITS_BIG_ENDIAN)
1057 {
1058 /* For big endian bits, the at_bit_offset gives the
1059 additional bit offset from the MSB of the containing
1060 anonymous object to the MSB of the field. We don't
1061 have to do anything special since we don't need to
1062 know the size of the anonymous object. */
1063 list -> field.bitpos += mbr.at_bit_offset;
1064 }
1065 else
1066 {
1067 /* For little endian bits, we need to have a non-zero
1068 at_bit_size, so that we know we are in fact dealing
1069 with a bitfield. Compute the bit offset to the MSB
1070 of the anonymous object, subtract off the number of
1071 bits from the MSB of the field to the MSB of the
1072 object, and then subtract off the number of bits of
1073 the field itself. The result is the bit offset of
1074 the LSB of the field. */
1075 if (mbr.at_bit_size > 0)
1076 {
1077 if (mbr.has_at_byte_size)
1078 {
1079 /* The size of the anonymous object containing
1080 the bit field is explicit, so use the
1081 indicated size (in bytes). */
1082 anonymous_size = mbr.at_byte_size;
1083 }
1084 else
1085 {
1086 /* The size of the anonymous object containing
1087 the bit field matches the size of an object
1088 of the bit field's type. DWARF allows
1089 at_byte_size to be left out in such cases, as
1090 a debug information size optimization. */
1091 anonymous_size = TYPE_LENGTH (list -> field.type);
1092 }
1093 list -> field.bitpos +=
1094 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1095 }
1096 }
1097 nfields++;
1098 break;
1099 default:
1100 process_dies (thisdie, nextdie, objfile);
1101 break;
1102 }
1103 thisdie = nextdie;
1104 }
1105 /* Now create the vector of fields, and record how big it is. We may
1106 not even have any fields, if this DIE was generated due to a reference
1107 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1108 set, which clues gdb in to the fact that it needs to search elsewhere
1109 for the full structure definition. */
1110 if (nfields == 0)
1111 {
1112 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1113 }
1114 else
1115 {
1116 TYPE_NFIELDS (type) = nfields;
1117 TYPE_FIELDS (type) = (struct field *)
1118 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1119 /* Copy the saved-up fields into the field vector. */
1120 for (n = nfields; list; list = list -> next)
1121 {
1122 TYPE_FIELD (type, --n) = list -> field;
1123 }
1124 }
1125 return (type);
1126 }
1127
1128 /*
1129
1130 LOCAL FUNCTION
1131
1132 read_structure_scope -- process all dies within struct or union
1133
1134 SYNOPSIS
1135
1136 static void read_structure_scope (struct dieinfo *dip,
1137 char *thisdie, char *enddie, struct objfile *objfile)
1138
1139 DESCRIPTION
1140
1141 Called when we find the DIE that starts a structure or union
1142 scope (definition) to process all dies that define the members
1143 of the structure or union. DIP is a pointer to the die info
1144 struct for the DIE that names the structure or union.
1145
1146 NOTES
1147
1148 Note that we need to call struct_type regardless of whether or not
1149 the DIE has an at_name attribute, since it might be an anonymous
1150 structure or union. This gets the type entered into our set of
1151 user defined types.
1152
1153 However, if the structure is incomplete (an opaque struct/union)
1154 then suppress creating a symbol table entry for it since gdb only
1155 wants to find the one with the complete definition. Note that if
1156 it is complete, we just call new_symbol, which does it's own
1157 checking about whether the struct/union is anonymous or not (and
1158 suppresses creating a symbol table entry itself).
1159
1160 */
1161
1162 static void
1163 read_structure_scope (dip, thisdie, enddie, objfile)
1164 struct dieinfo *dip;
1165 char *thisdie;
1166 char *enddie;
1167 struct objfile *objfile;
1168 {
1169 struct type *type;
1170 struct symbol *sym;
1171
1172 type = struct_type (dip, thisdie, enddie, objfile);
1173 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1174 {
1175 sym = new_symbol (dip, objfile);
1176 if (sym != NULL)
1177 {
1178 SYMBOL_TYPE (sym) = type;
1179 if (cu_language == language_cplus)
1180 {
1181 synthesize_typedef (dip, objfile, type);
1182 }
1183 }
1184 }
1185 }
1186
1187 /*
1188
1189 LOCAL FUNCTION
1190
1191 decode_array_element_type -- decode type of the array elements
1192
1193 SYNOPSIS
1194
1195 static struct type *decode_array_element_type (char *scan, char *end)
1196
1197 DESCRIPTION
1198
1199 As the last step in decoding the array subscript information for an
1200 array DIE, we need to decode the type of the array elements. We are
1201 passed a pointer to this last part of the subscript information and
1202 must return the appropriate type. If the type attribute is not
1203 recognized, just warn about the problem and return type int.
1204 */
1205
1206 static struct type *
1207 decode_array_element_type (scan)
1208 char *scan;
1209 {
1210 struct type *typep;
1211 DIE_REF die_ref;
1212 unsigned short attribute;
1213 unsigned short fundtype;
1214 int nbytes;
1215
1216 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1217 current_objfile);
1218 scan += SIZEOF_ATTRIBUTE;
1219 if ((nbytes = attribute_size (attribute)) == -1)
1220 {
1221 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1223 }
1224 else
1225 {
1226 switch (attribute)
1227 {
1228 case AT_fund_type:
1229 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1230 current_objfile);
1231 typep = decode_fund_type (fundtype);
1232 break;
1233 case AT_mod_fund_type:
1234 typep = decode_mod_fund_type (scan);
1235 break;
1236 case AT_user_def_type:
1237 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1238 current_objfile);
1239 if ((typep = lookup_utype (die_ref)) == NULL)
1240 {
1241 typep = alloc_utype (die_ref, NULL);
1242 }
1243 break;
1244 case AT_mod_u_d_type:
1245 typep = decode_mod_u_d_type (scan);
1246 break;
1247 default:
1248 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1249 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1250 break;
1251 }
1252 }
1253 return (typep);
1254 }
1255
1256 /*
1257
1258 LOCAL FUNCTION
1259
1260 decode_subscript_data_item -- decode array subscript item
1261
1262 SYNOPSIS
1263
1264 static struct type *
1265 decode_subscript_data_item (char *scan, char *end)
1266
1267 DESCRIPTION
1268
1269 The array subscripts and the data type of the elements of an
1270 array are described by a list of data items, stored as a block
1271 of contiguous bytes. There is a data item describing each array
1272 dimension, and a final data item describing the element type.
1273 The data items are ordered the same as their appearance in the
1274 source (I.E. leftmost dimension first, next to leftmost second,
1275 etc).
1276
1277 The data items describing each array dimension consist of four
1278 parts: (1) a format specifier, (2) type type of the subscript
1279 index, (3) a description of the low bound of the array dimension,
1280 and (4) a description of the high bound of the array dimension.
1281
1282 The last data item is the description of the type of each of
1283 the array elements.
1284
1285 We are passed a pointer to the start of the block of bytes
1286 containing the remaining data items, and a pointer to the first
1287 byte past the data. This function recursively decodes the
1288 remaining data items and returns a type.
1289
1290 If we somehow fail to decode some data, we complain about it
1291 and return a type "array of int".
1292
1293 BUGS
1294 FIXME: This code only implements the forms currently used
1295 by the AT&T and GNU C compilers.
1296
1297 The end pointer is supplied for error checking, maybe we should
1298 use it for that...
1299 */
1300
1301 static struct type *
1302 decode_subscript_data_item (scan, end)
1303 char *scan;
1304 char *end;
1305 {
1306 struct type *typep = NULL; /* Array type we are building */
1307 struct type *nexttype; /* Type of each element (may be array) */
1308 struct type *indextype; /* Type of this index */
1309 struct type *rangetype;
1310 unsigned int format;
1311 unsigned short fundtype;
1312 unsigned long lowbound;
1313 unsigned long highbound;
1314 int nbytes;
1315
1316 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1317 current_objfile);
1318 scan += SIZEOF_FORMAT_SPECIFIER;
1319 switch (format)
1320 {
1321 case FMT_ET:
1322 typep = decode_array_element_type (scan);
1323 break;
1324 case FMT_FT_C_C:
1325 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1326 current_objfile);
1327 indextype = decode_fund_type (fundtype);
1328 scan += SIZEOF_FMT_FT;
1329 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1330 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1331 scan += nbytes;
1332 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1333 scan += nbytes;
1334 nexttype = decode_subscript_data_item (scan, end);
1335 if (nexttype == NULL)
1336 {
1337 /* Munged subscript data or other problem, fake it. */
1338 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1339 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1340 }
1341 rangetype = create_range_type ((struct type *) NULL, indextype,
1342 lowbound, highbound);
1343 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1344 break;
1345 case FMT_FT_C_X:
1346 case FMT_FT_X_C:
1347 case FMT_FT_X_X:
1348 case FMT_UT_C_C:
1349 case FMT_UT_C_X:
1350 case FMT_UT_X_C:
1351 case FMT_UT_X_X:
1352 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1353 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1354 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1355 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1356 break;
1357 default:
1358 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1359 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1360 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1361 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1362 break;
1363 }
1364 return (typep);
1365 }
1366
1367 /*
1368
1369 LOCAL FUNCTION
1370
1371 dwarf_read_array_type -- read TAG_array_type DIE
1372
1373 SYNOPSIS
1374
1375 static void dwarf_read_array_type (struct dieinfo *dip)
1376
1377 DESCRIPTION
1378
1379 Extract all information from a TAG_array_type DIE and add to
1380 the user defined type vector.
1381 */
1382
1383 static void
1384 dwarf_read_array_type (dip)
1385 struct dieinfo *dip;
1386 {
1387 struct type *type;
1388 struct type *utype;
1389 char *sub;
1390 char *subend;
1391 unsigned short blocksz;
1392 int nbytes;
1393
1394 if (dip -> at_ordering != ORD_row_major)
1395 {
1396 /* FIXME: Can gdb even handle column major arrays? */
1397 complain (&not_row_major, DIE_ID, DIE_NAME);
1398 }
1399 if ((sub = dip -> at_subscr_data) != NULL)
1400 {
1401 nbytes = attribute_size (AT_subscr_data);
1402 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1403 subend = sub + nbytes + blocksz;
1404 sub += nbytes;
1405 type = decode_subscript_data_item (sub, subend);
1406 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1407 {
1408 /* Install user defined type that has not been referenced yet. */
1409 alloc_utype (dip -> die_ref, type);
1410 }
1411 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1412 {
1413 /* Ick! A forward ref has already generated a blank type in our
1414 slot, and this type probably already has things pointing to it
1415 (which is what caused it to be created in the first place).
1416 If it's just a place holder we can plop our fully defined type
1417 on top of it. We can't recover the space allocated for our
1418 new type since it might be on an obstack, but we could reuse
1419 it if we kept a list of them, but it might not be worth it
1420 (FIXME). */
1421 *utype = *type;
1422 }
1423 else
1424 {
1425 /* Double ick! Not only is a type already in our slot, but
1426 someone has decorated it. Complain and leave it alone. */
1427 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1428 }
1429 }
1430 }
1431
1432 /*
1433
1434 LOCAL FUNCTION
1435
1436 read_tag_pointer_type -- read TAG_pointer_type DIE
1437
1438 SYNOPSIS
1439
1440 static void read_tag_pointer_type (struct dieinfo *dip)
1441
1442 DESCRIPTION
1443
1444 Extract all information from a TAG_pointer_type DIE and add to
1445 the user defined type vector.
1446 */
1447
1448 static void
1449 read_tag_pointer_type (dip)
1450 struct dieinfo *dip;
1451 {
1452 struct type *type;
1453 struct type *utype;
1454
1455 type = decode_die_type (dip);
1456 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1457 {
1458 utype = lookup_pointer_type (type);
1459 alloc_utype (dip -> die_ref, utype);
1460 }
1461 else
1462 {
1463 TYPE_TARGET_TYPE (utype) = type;
1464 TYPE_POINTER_TYPE (type) = utype;
1465
1466 /* We assume the machine has only one representation for pointers! */
1467 /* FIXME: This confuses host<->target data representations, and is a
1468 poor assumption besides. */
1469
1470 TYPE_LENGTH (utype) = sizeof (char *);
1471 TYPE_CODE (utype) = TYPE_CODE_PTR;
1472 }
1473 }
1474
1475 /*
1476
1477 LOCAL FUNCTION
1478
1479 read_tag_string_type -- read TAG_string_type DIE
1480
1481 SYNOPSIS
1482
1483 static void read_tag_string_type (struct dieinfo *dip)
1484
1485 DESCRIPTION
1486
1487 Extract all information from a TAG_string_type DIE and add to
1488 the user defined type vector. It isn't really a user defined
1489 type, but it behaves like one, with other DIE's using an
1490 AT_user_def_type attribute to reference it.
1491 */
1492
1493 static void
1494 read_tag_string_type (dip)
1495 struct dieinfo *dip;
1496 {
1497 struct type *utype;
1498 struct type *indextype;
1499 struct type *rangetype;
1500 unsigned long lowbound = 0;
1501 unsigned long highbound;
1502
1503 if (dip -> has_at_byte_size)
1504 {
1505 /* A fixed bounds string */
1506 highbound = dip -> at_byte_size - 1;
1507 }
1508 else
1509 {
1510 /* A varying length string. Stub for now. (FIXME) */
1511 highbound = 1;
1512 }
1513 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1514 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1515 highbound);
1516
1517 utype = lookup_utype (dip -> die_ref);
1518 if (utype == NULL)
1519 {
1520 /* No type defined, go ahead and create a blank one to use. */
1521 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1522 }
1523 else
1524 {
1525 /* Already a type in our slot due to a forward reference. Make sure it
1526 is a blank one. If not, complain and leave it alone. */
1527 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1528 {
1529 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1530 return;
1531 }
1532 }
1533
1534 /* Create the string type using the blank type we either found or created. */
1535 utype = create_string_type (utype, rangetype);
1536 }
1537
1538 /*
1539
1540 LOCAL FUNCTION
1541
1542 read_subroutine_type -- process TAG_subroutine_type dies
1543
1544 SYNOPSIS
1545
1546 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1547 char *enddie)
1548
1549 DESCRIPTION
1550
1551 Handle DIES due to C code like:
1552
1553 struct foo {
1554 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1555 int b;
1556 };
1557
1558 NOTES
1559
1560 The parameter DIES are currently ignored. See if gdb has a way to
1561 include this info in it's type system, and decode them if so. Is
1562 this what the type structure's "arg_types" field is for? (FIXME)
1563 */
1564
1565 static void
1566 read_subroutine_type (dip, thisdie, enddie)
1567 struct dieinfo *dip;
1568 char *thisdie;
1569 char *enddie;
1570 {
1571 struct type *type; /* Type that this function returns */
1572 struct type *ftype; /* Function that returns above type */
1573
1574 /* Decode the type that this subroutine returns */
1575
1576 type = decode_die_type (dip);
1577
1578 /* Check to see if we already have a partially constructed user
1579 defined type for this DIE, from a forward reference. */
1580
1581 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1582 {
1583 /* This is the first reference to one of these types. Make
1584 a new one and place it in the user defined types. */
1585 ftype = lookup_function_type (type);
1586 alloc_utype (dip -> die_ref, ftype);
1587 }
1588 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1589 {
1590 /* We have an existing partially constructed type, so bash it
1591 into the correct type. */
1592 TYPE_TARGET_TYPE (ftype) = type;
1593 TYPE_LENGTH (ftype) = 1;
1594 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1595 }
1596 else
1597 {
1598 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1599 }
1600 }
1601
1602 /*
1603
1604 LOCAL FUNCTION
1605
1606 read_enumeration -- process dies which define an enumeration
1607
1608 SYNOPSIS
1609
1610 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1611 char *enddie, struct objfile *objfile)
1612
1613 DESCRIPTION
1614
1615 Given a pointer to a die which begins an enumeration, process all
1616 the dies that define the members of the enumeration.
1617
1618 NOTES
1619
1620 Note that we need to call enum_type regardless of whether or not we
1621 have a symbol, since we might have an enum without a tag name (thus
1622 no symbol for the tagname).
1623 */
1624
1625 static void
1626 read_enumeration (dip, thisdie, enddie, objfile)
1627 struct dieinfo *dip;
1628 char *thisdie;
1629 char *enddie;
1630 struct objfile *objfile;
1631 {
1632 struct type *type;
1633 struct symbol *sym;
1634
1635 type = enum_type (dip, objfile);
1636 sym = new_symbol (dip, objfile);
1637 if (sym != NULL)
1638 {
1639 SYMBOL_TYPE (sym) = type;
1640 if (cu_language == language_cplus)
1641 {
1642 synthesize_typedef (dip, objfile, type);
1643 }
1644 }
1645 }
1646
1647 /*
1648
1649 LOCAL FUNCTION
1650
1651 enum_type -- decode and return a type for an enumeration
1652
1653 SYNOPSIS
1654
1655 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1656
1657 DESCRIPTION
1658
1659 Given a pointer to a die information structure for the die which
1660 starts an enumeration, process all the dies that define the members
1661 of the enumeration and return a type pointer for the enumeration.
1662
1663 At the same time, for each member of the enumeration, create a
1664 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1665 and give it the type of the enumeration itself.
1666
1667 NOTES
1668
1669 Note that the DWARF specification explicitly mandates that enum
1670 constants occur in reverse order from the source program order,
1671 for "consistency" and because this ordering is easier for many
1672 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1673 Entries). Because gdb wants to see the enum members in program
1674 source order, we have to ensure that the order gets reversed while
1675 we are processing them.
1676 */
1677
1678 static struct type *
1679 enum_type (dip, objfile)
1680 struct dieinfo *dip;
1681 struct objfile *objfile;
1682 {
1683 struct type *type;
1684 struct nextfield {
1685 struct nextfield *next;
1686 struct field field;
1687 };
1688 struct nextfield *list = NULL;
1689 struct nextfield *new;
1690 int nfields = 0;
1691 int n;
1692 char *scan;
1693 char *listend;
1694 unsigned short blocksz;
1695 struct symbol *sym;
1696 int nbytes;
1697
1698 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1699 {
1700 /* No forward references created an empty type, so install one now */
1701 type = alloc_utype (dip -> die_ref, NULL);
1702 }
1703 TYPE_CODE (type) = TYPE_CODE_ENUM;
1704 /* Some compilers try to be helpful by inventing "fake" names for
1705 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1706 Thanks, but no thanks... */
1707 if (dip -> at_name != NULL
1708 && *dip -> at_name != '~'
1709 && *dip -> at_name != '.')
1710 {
1711 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1712 "", "", dip -> at_name);
1713 }
1714 if (dip -> at_byte_size != 0)
1715 {
1716 TYPE_LENGTH (type) = dip -> at_byte_size;
1717 }
1718 if ((scan = dip -> at_element_list) != NULL)
1719 {
1720 if (dip -> short_element_list)
1721 {
1722 nbytes = attribute_size (AT_short_element_list);
1723 }
1724 else
1725 {
1726 nbytes = attribute_size (AT_element_list);
1727 }
1728 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1729 listend = scan + nbytes + blocksz;
1730 scan += nbytes;
1731 while (scan < listend)
1732 {
1733 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1734 new -> next = list;
1735 list = new;
1736 list -> field.type = NULL;
1737 list -> field.bitsize = 0;
1738 list -> field.bitpos =
1739 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1740 objfile);
1741 scan += TARGET_FT_LONG_SIZE (objfile);
1742 list -> field.name = obsavestring (scan, strlen (scan),
1743 &objfile -> type_obstack);
1744 scan += strlen (scan) + 1;
1745 nfields++;
1746 /* Handcraft a new symbol for this enum member. */
1747 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1748 sizeof (struct symbol));
1749 memset (sym, 0, sizeof (struct symbol));
1750 SYMBOL_NAME (sym) = create_name (list -> field.name,
1751 &objfile->symbol_obstack);
1752 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 SYMBOL_CLASS (sym) = LOC_CONST;
1755 SYMBOL_TYPE (sym) = type;
1756 SYMBOL_VALUE (sym) = list -> field.bitpos;
1757 add_symbol_to_list (sym, list_in_scope);
1758 }
1759 /* Now create the vector of fields, and record how big it is. This is
1760 where we reverse the order, by pulling the members off the list in
1761 reverse order from how they were inserted. If we have no fields
1762 (this is apparently possible in C++) then skip building a field
1763 vector. */
1764 if (nfields > 0)
1765 {
1766 TYPE_NFIELDS (type) = nfields;
1767 TYPE_FIELDS (type) = (struct field *)
1768 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1769 /* Copy the saved-up fields into the field vector. */
1770 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1771 {
1772 TYPE_FIELD (type, n++) = list -> field;
1773 }
1774 }
1775 }
1776 return (type);
1777 }
1778
1779 /*
1780
1781 LOCAL FUNCTION
1782
1783 read_func_scope -- process all dies within a function scope
1784
1785 DESCRIPTION
1786
1787 Process all dies within a given function scope. We are passed
1788 a die information structure pointer DIP for the die which
1789 starts the function scope, and pointers into the raw die data
1790 that define the dies within the function scope.
1791
1792 For now, we ignore lexical block scopes within the function.
1793 The problem is that AT&T cc does not define a DWARF lexical
1794 block scope for the function itself, while gcc defines a
1795 lexical block scope for the function. We need to think about
1796 how to handle this difference, or if it is even a problem.
1797 (FIXME)
1798 */
1799
1800 static void
1801 read_func_scope (dip, thisdie, enddie, objfile)
1802 struct dieinfo *dip;
1803 char *thisdie;
1804 char *enddie;
1805 struct objfile *objfile;
1806 {
1807 register struct context_stack *new;
1808
1809 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1810 objfile -> ei.entry_point < dip -> at_high_pc)
1811 {
1812 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1813 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1814 }
1815 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1816 {
1817 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1818 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1819 }
1820 new = push_context (0, dip -> at_low_pc);
1821 new -> name = new_symbol (dip, objfile);
1822 list_in_scope = &local_symbols;
1823 process_dies (thisdie + dip -> die_length, enddie, objfile);
1824 new = pop_context ();
1825 /* Make a block for the local symbols within. */
1826 finish_block (new -> name, &local_symbols, new -> old_blocks,
1827 new -> start_addr, dip -> at_high_pc, objfile);
1828 list_in_scope = &file_symbols;
1829 }
1830
1831
1832 /*
1833
1834 LOCAL FUNCTION
1835
1836 handle_producer -- process the AT_producer attribute
1837
1838 DESCRIPTION
1839
1840 Perform any operations that depend on finding a particular
1841 AT_producer attribute.
1842
1843 */
1844
1845 static void
1846 handle_producer (producer)
1847 char *producer;
1848 {
1849
1850 /* If this compilation unit was compiled with g++ or gcc, then set the
1851 processing_gcc_compilation flag. */
1852
1853 processing_gcc_compilation =
1854 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1855 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1856 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1857
1858 /* Select a demangling style if we can identify the producer and if
1859 the current style is auto. We leave the current style alone if it
1860 is not auto. We also leave the demangling style alone if we find a
1861 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1862
1863 if (AUTO_DEMANGLING)
1864 {
1865 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1866 {
1867 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1868 }
1869 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1870 {
1871 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1872 }
1873 }
1874 }
1875
1876
1877 /*
1878
1879 LOCAL FUNCTION
1880
1881 read_file_scope -- process all dies within a file scope
1882
1883 DESCRIPTION
1884
1885 Process all dies within a given file scope. We are passed a
1886 pointer to the die information structure for the die which
1887 starts the file scope, and pointers into the raw die data which
1888 mark the range of dies within the file scope.
1889
1890 When the partial symbol table is built, the file offset for the line
1891 number table for each compilation unit is saved in the partial symbol
1892 table entry for that compilation unit. As the symbols for each
1893 compilation unit are read, the line number table is read into memory
1894 and the variable lnbase is set to point to it. Thus all we have to
1895 do is use lnbase to access the line number table for the current
1896 compilation unit.
1897 */
1898
1899 static void
1900 read_file_scope (dip, thisdie, enddie, objfile)
1901 struct dieinfo *dip;
1902 char *thisdie;
1903 char *enddie;
1904 struct objfile *objfile;
1905 {
1906 struct cleanup *back_to;
1907 struct symtab *symtab;
1908
1909 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1910 objfile -> ei.entry_point < dip -> at_high_pc)
1911 {
1912 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1913 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1914 }
1915 set_cu_language (dip);
1916 if (dip -> at_producer != NULL)
1917 {
1918 handle_producer (dip -> at_producer);
1919 }
1920 numutypes = (enddie - thisdie) / 4;
1921 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1922 back_to = make_cleanup (free, utypes);
1923 memset (utypes, 0, numutypes * sizeof (struct type *));
1924 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1925 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1926 decode_line_numbers (lnbase);
1927 process_dies (thisdie + dip -> die_length, enddie, objfile);
1928
1929 symtab = end_symtab (dip -> at_high_pc, 0, 0, objfile, 0);
1930 if (symtab != NULL)
1931 {
1932 symtab -> language = cu_language;
1933 }
1934 do_cleanups (back_to);
1935 utypes = NULL;
1936 numutypes = 0;
1937 }
1938
1939 /*
1940
1941 LOCAL FUNCTION
1942
1943 process_dies -- process a range of DWARF Information Entries
1944
1945 SYNOPSIS
1946
1947 static void process_dies (char *thisdie, char *enddie,
1948 struct objfile *objfile)
1949
1950 DESCRIPTION
1951
1952 Process all DIE's in a specified range. May be (and almost
1953 certainly will be) called recursively.
1954 */
1955
1956 static void
1957 process_dies (thisdie, enddie, objfile)
1958 char *thisdie;
1959 char *enddie;
1960 struct objfile *objfile;
1961 {
1962 char *nextdie;
1963 struct dieinfo di;
1964
1965 while (thisdie < enddie)
1966 {
1967 basicdieinfo (&di, thisdie, objfile);
1968 if (di.die_length < SIZEOF_DIE_LENGTH)
1969 {
1970 break;
1971 }
1972 else if (di.die_tag == TAG_padding)
1973 {
1974 nextdie = thisdie + di.die_length;
1975 }
1976 else
1977 {
1978 completedieinfo (&di, objfile);
1979 if (di.at_sibling != 0)
1980 {
1981 nextdie = dbbase + di.at_sibling - dbroff;
1982 }
1983 else
1984 {
1985 nextdie = thisdie + di.die_length;
1986 }
1987 #ifdef SMASH_TEXT_ADDRESS
1988 /* I think that these are always text, not data, addresses. */
1989 SMASH_TEXT_ADDRESS (di.at_low_pc);
1990 SMASH_TEXT_ADDRESS (di.at_high_pc);
1991 #endif
1992 switch (di.die_tag)
1993 {
1994 case TAG_compile_unit:
1995 /* Skip Tag_compile_unit if we are already inside a compilation
1996 unit, we are unable to handle nested compilation units
1997 properly (FIXME). */
1998 if (current_subfile == NULL)
1999 read_file_scope (&di, thisdie, nextdie, objfile);
2000 else
2001 nextdie = thisdie + di.die_length;
2002 break;
2003 case TAG_global_subroutine:
2004 case TAG_subroutine:
2005 if (di.has_at_low_pc)
2006 {
2007 read_func_scope (&di, thisdie, nextdie, objfile);
2008 }
2009 break;
2010 case TAG_lexical_block:
2011 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2012 break;
2013 case TAG_class_type:
2014 case TAG_structure_type:
2015 case TAG_union_type:
2016 read_structure_scope (&di, thisdie, nextdie, objfile);
2017 break;
2018 case TAG_enumeration_type:
2019 read_enumeration (&di, thisdie, nextdie, objfile);
2020 break;
2021 case TAG_subroutine_type:
2022 read_subroutine_type (&di, thisdie, nextdie);
2023 break;
2024 case TAG_array_type:
2025 dwarf_read_array_type (&di);
2026 break;
2027 case TAG_pointer_type:
2028 read_tag_pointer_type (&di);
2029 break;
2030 case TAG_string_type:
2031 read_tag_string_type (&di);
2032 break;
2033 default:
2034 new_symbol (&di, objfile);
2035 break;
2036 }
2037 }
2038 thisdie = nextdie;
2039 }
2040 }
2041
2042 /*
2043
2044 LOCAL FUNCTION
2045
2046 decode_line_numbers -- decode a line number table fragment
2047
2048 SYNOPSIS
2049
2050 static void decode_line_numbers (char *tblscan, char *tblend,
2051 long length, long base, long line, long pc)
2052
2053 DESCRIPTION
2054
2055 Translate the DWARF line number information to gdb form.
2056
2057 The ".line" section contains one or more line number tables, one for
2058 each ".line" section from the objects that were linked.
2059
2060 The AT_stmt_list attribute for each TAG_source_file entry in the
2061 ".debug" section contains the offset into the ".line" section for the
2062 start of the table for that file.
2063
2064 The table itself has the following structure:
2065
2066 <table length><base address><source statement entry>
2067 4 bytes 4 bytes 10 bytes
2068
2069 The table length is the total size of the table, including the 4 bytes
2070 for the length information.
2071
2072 The base address is the address of the first instruction generated
2073 for the source file.
2074
2075 Each source statement entry has the following structure:
2076
2077 <line number><statement position><address delta>
2078 4 bytes 2 bytes 4 bytes
2079
2080 The line number is relative to the start of the file, starting with
2081 line 1.
2082
2083 The statement position either -1 (0xFFFF) or the number of characters
2084 from the beginning of the line to the beginning of the statement.
2085
2086 The address delta is the difference between the base address and
2087 the address of the first instruction for the statement.
2088
2089 Note that we must copy the bytes from the packed table to our local
2090 variables before attempting to use them, to avoid alignment problems
2091 on some machines, particularly RISC processors.
2092
2093 BUGS
2094
2095 Does gdb expect the line numbers to be sorted? They are now by
2096 chance/luck, but are not required to be. (FIXME)
2097
2098 The line with number 0 is unused, gdb apparently can discover the
2099 span of the last line some other way. How? (FIXME)
2100 */
2101
2102 static void
2103 decode_line_numbers (linetable)
2104 char *linetable;
2105 {
2106 char *tblscan;
2107 char *tblend;
2108 unsigned long length;
2109 unsigned long base;
2110 unsigned long line;
2111 unsigned long pc;
2112
2113 if (linetable != NULL)
2114 {
2115 tblscan = tblend = linetable;
2116 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2117 current_objfile);
2118 tblscan += SIZEOF_LINETBL_LENGTH;
2119 tblend += length;
2120 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2121 GET_UNSIGNED, current_objfile);
2122 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2123 base += baseaddr;
2124 while (tblscan < tblend)
2125 {
2126 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2127 current_objfile);
2128 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2129 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2130 current_objfile);
2131 tblscan += SIZEOF_LINETBL_DELTA;
2132 pc += base;
2133 if (line != 0)
2134 {
2135 record_line (current_subfile, line, pc);
2136 }
2137 }
2138 }
2139 }
2140
2141 /*
2142
2143 LOCAL FUNCTION
2144
2145 locval -- compute the value of a location attribute
2146
2147 SYNOPSIS
2148
2149 static int locval (char *loc)
2150
2151 DESCRIPTION
2152
2153 Given pointer to a string of bytes that define a location, compute
2154 the location and return the value.
2155 A location description containing no atoms indicates that the
2156 object is optimized out. The global optimized_out flag is set for
2157 those, the return value is meaningless.
2158
2159 When computing values involving the current value of the frame pointer,
2160 the value zero is used, which results in a value relative to the frame
2161 pointer, rather than the absolute value. This is what GDB wants
2162 anyway.
2163
2164 When the result is a register number, the global isreg flag is set,
2165 otherwise it is cleared. This is a kludge until we figure out a better
2166 way to handle the problem. Gdb's design does not mesh well with the
2167 DWARF notion of a location computing interpreter, which is a shame
2168 because the flexibility goes unused.
2169
2170 NOTES
2171
2172 Note that stack[0] is unused except as a default error return.
2173 Note that stack overflow is not yet handled.
2174 */
2175
2176 static int
2177 locval (loc)
2178 char *loc;
2179 {
2180 unsigned short nbytes;
2181 unsigned short locsize;
2182 auto long stack[64];
2183 int stacki;
2184 char *end;
2185 int loc_atom_code;
2186 int loc_value_size;
2187
2188 nbytes = attribute_size (AT_location);
2189 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2190 loc += nbytes;
2191 end = loc + locsize;
2192 stacki = 0;
2193 stack[stacki] = 0;
2194 isreg = 0;
2195 offreg = 0;
2196 optimized_out = 1;
2197 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2198 while (loc < end)
2199 {
2200 optimized_out = 0;
2201 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2202 current_objfile);
2203 loc += SIZEOF_LOC_ATOM_CODE;
2204 switch (loc_atom_code)
2205 {
2206 case 0:
2207 /* error */
2208 loc = end;
2209 break;
2210 case OP_REG:
2211 /* push register (number) */
2212 stack[++stacki]
2213 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2214 GET_UNSIGNED,
2215 current_objfile));
2216 loc += loc_value_size;
2217 isreg = 1;
2218 break;
2219 case OP_BASEREG:
2220 /* push value of register (number) */
2221 /* Actually, we compute the value as if register has 0, so the
2222 value ends up being the offset from that register. */
2223 offreg = 1;
2224 basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2225 current_objfile);
2226 loc += loc_value_size;
2227 stack[++stacki] = 0;
2228 break;
2229 case OP_ADDR:
2230 /* push address (relocated address) */
2231 stack[++stacki] = target_to_host (loc, loc_value_size,
2232 GET_UNSIGNED, current_objfile);
2233 loc += loc_value_size;
2234 break;
2235 case OP_CONST:
2236 /* push constant (number) FIXME: signed or unsigned! */
2237 stack[++stacki] = target_to_host (loc, loc_value_size,
2238 GET_SIGNED, current_objfile);
2239 loc += loc_value_size;
2240 break;
2241 case OP_DEREF2:
2242 /* pop, deref and push 2 bytes (as a long) */
2243 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2244 break;
2245 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2246 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2247 break;
2248 case OP_ADD: /* pop top 2 items, add, push result */
2249 stack[stacki - 1] += stack[stacki];
2250 stacki--;
2251 break;
2252 }
2253 }
2254 return (stack[stacki]);
2255 }
2256
2257 /*
2258
2259 LOCAL FUNCTION
2260
2261 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2262
2263 SYNOPSIS
2264
2265 static void read_ofile_symtab (struct partial_symtab *pst)
2266
2267 DESCRIPTION
2268
2269 When expanding a partial symbol table entry to a full symbol table
2270 entry, this is the function that gets called to read in the symbols
2271 for the compilation unit. A pointer to the newly constructed symtab,
2272 which is now the new first one on the objfile's symtab list, is
2273 stashed in the partial symbol table entry.
2274 */
2275
2276 static void
2277 read_ofile_symtab (pst)
2278 struct partial_symtab *pst;
2279 {
2280 struct cleanup *back_to;
2281 unsigned long lnsize;
2282 file_ptr foffset;
2283 bfd *abfd;
2284 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2285
2286 abfd = pst -> objfile -> obfd;
2287 current_objfile = pst -> objfile;
2288
2289 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2290 unit, seek to the location in the file, and read in all the DIE's. */
2291
2292 diecount = 0;
2293 dbsize = DBLENGTH (pst);
2294 dbbase = xmalloc (dbsize);
2295 dbroff = DBROFF(pst);
2296 foffset = DBFOFF(pst) + dbroff;
2297 base_section_offsets = pst->section_offsets;
2298 baseaddr = ANOFFSET (pst->section_offsets, 0);
2299 if (bfd_seek (abfd, foffset, L_SET) ||
2300 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2301 {
2302 free (dbbase);
2303 error ("can't read DWARF data");
2304 }
2305 back_to = make_cleanup (free, dbbase);
2306
2307 /* If there is a line number table associated with this compilation unit
2308 then read the size of this fragment in bytes, from the fragment itself.
2309 Allocate a buffer for the fragment and read it in for future
2310 processing. */
2311
2312 lnbase = NULL;
2313 if (LNFOFF (pst))
2314 {
2315 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2316 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2317 sizeof (lnsizedata)))
2318 {
2319 error ("can't read DWARF line number table size");
2320 }
2321 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2322 GET_UNSIGNED, pst -> objfile);
2323 lnbase = xmalloc (lnsize);
2324 if (bfd_seek (abfd, LNFOFF (pst), L_SET) ||
2325 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2326 {
2327 free (lnbase);
2328 error ("can't read DWARF line numbers");
2329 }
2330 make_cleanup (free, lnbase);
2331 }
2332
2333 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2334 do_cleanups (back_to);
2335 current_objfile = NULL;
2336 pst -> symtab = pst -> objfile -> symtabs;
2337 }
2338
2339 /*
2340
2341 LOCAL FUNCTION
2342
2343 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2344
2345 SYNOPSIS
2346
2347 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2348
2349 DESCRIPTION
2350
2351 Called once for each partial symbol table entry that needs to be
2352 expanded into a full symbol table entry.
2353
2354 */
2355
2356 static void
2357 psymtab_to_symtab_1 (pst)
2358 struct partial_symtab *pst;
2359 {
2360 int i;
2361 struct cleanup *old_chain;
2362
2363 if (pst != NULL)
2364 {
2365 if (pst->readin)
2366 {
2367 warning ("psymtab for %s already read in. Shouldn't happen.",
2368 pst -> filename);
2369 }
2370 else
2371 {
2372 /* Read in all partial symtabs on which this one is dependent */
2373 for (i = 0; i < pst -> number_of_dependencies; i++)
2374 {
2375 if (!pst -> dependencies[i] -> readin)
2376 {
2377 /* Inform about additional files that need to be read in. */
2378 if (info_verbose)
2379 {
2380 fputs_filtered (" ", gdb_stdout);
2381 wrap_here ("");
2382 fputs_filtered ("and ", gdb_stdout);
2383 wrap_here ("");
2384 printf_filtered ("%s...",
2385 pst -> dependencies[i] -> filename);
2386 wrap_here ("");
2387 gdb_flush (gdb_stdout); /* Flush output */
2388 }
2389 psymtab_to_symtab_1 (pst -> dependencies[i]);
2390 }
2391 }
2392 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2393 {
2394 buildsym_init ();
2395 old_chain = make_cleanup (really_free_pendings, 0);
2396 read_ofile_symtab (pst);
2397 if (info_verbose)
2398 {
2399 printf_filtered ("%d DIE's, sorting...", diecount);
2400 wrap_here ("");
2401 gdb_flush (gdb_stdout);
2402 }
2403 sort_symtab_syms (pst -> symtab);
2404 do_cleanups (old_chain);
2405 }
2406 pst -> readin = 1;
2407 }
2408 }
2409 }
2410
2411 /*
2412
2413 LOCAL FUNCTION
2414
2415 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2416
2417 SYNOPSIS
2418
2419 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2420
2421 DESCRIPTION
2422
2423 This is the DWARF support entry point for building a full symbol
2424 table entry from a partial symbol table entry. We are passed a
2425 pointer to the partial symbol table entry that needs to be expanded.
2426
2427 */
2428
2429 static void
2430 dwarf_psymtab_to_symtab (pst)
2431 struct partial_symtab *pst;
2432 {
2433
2434 if (pst != NULL)
2435 {
2436 if (pst -> readin)
2437 {
2438 warning ("psymtab for %s already read in. Shouldn't happen.",
2439 pst -> filename);
2440 }
2441 else
2442 {
2443 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2444 {
2445 /* Print the message now, before starting serious work, to avoid
2446 disconcerting pauses. */
2447 if (info_verbose)
2448 {
2449 printf_filtered ("Reading in symbols for %s...",
2450 pst -> filename);
2451 gdb_flush (gdb_stdout);
2452 }
2453
2454 psymtab_to_symtab_1 (pst);
2455
2456 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2457 we need to do an equivalent or is this something peculiar to
2458 stabs/a.out format.
2459 Match with global symbols. This only needs to be done once,
2460 after all of the symtabs and dependencies have been read in.
2461 */
2462 scan_file_globals (pst -> objfile);
2463 #endif
2464
2465 /* Finish up the verbose info message. */
2466 if (info_verbose)
2467 {
2468 printf_filtered ("done.\n");
2469 gdb_flush (gdb_stdout);
2470 }
2471 }
2472 }
2473 }
2474 }
2475
2476 /*
2477
2478 LOCAL FUNCTION
2479
2480 add_enum_psymbol -- add enumeration members to partial symbol table
2481
2482 DESCRIPTION
2483
2484 Given pointer to a DIE that is known to be for an enumeration,
2485 extract the symbolic names of the enumeration members and add
2486 partial symbols for them.
2487 */
2488
2489 static void
2490 add_enum_psymbol (dip, objfile)
2491 struct dieinfo *dip;
2492 struct objfile *objfile;
2493 {
2494 char *scan;
2495 char *listend;
2496 unsigned short blocksz;
2497 int nbytes;
2498
2499 if ((scan = dip -> at_element_list) != NULL)
2500 {
2501 if (dip -> short_element_list)
2502 {
2503 nbytes = attribute_size (AT_short_element_list);
2504 }
2505 else
2506 {
2507 nbytes = attribute_size (AT_element_list);
2508 }
2509 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2510 scan += nbytes;
2511 listend = scan + blocksz;
2512 while (scan < listend)
2513 {
2514 scan += TARGET_FT_LONG_SIZE (objfile);
2515 ADD_PSYMBOL_TO_LIST (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2516 objfile -> static_psymbols, 0, cu_language,
2517 objfile);
2518 scan += strlen (scan) + 1;
2519 }
2520 }
2521 }
2522
2523 /*
2524
2525 LOCAL FUNCTION
2526
2527 add_partial_symbol -- add symbol to partial symbol table
2528
2529 DESCRIPTION
2530
2531 Given a DIE, if it is one of the types that we want to
2532 add to a partial symbol table, finish filling in the die info
2533 and then add a partial symbol table entry for it.
2534
2535 NOTES
2536
2537 The caller must ensure that the DIE has a valid name attribute.
2538 */
2539
2540 static void
2541 add_partial_symbol (dip, objfile)
2542 struct dieinfo *dip;
2543 struct objfile *objfile;
2544 {
2545 switch (dip -> die_tag)
2546 {
2547 case TAG_global_subroutine:
2548 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2549 VAR_NAMESPACE, LOC_BLOCK,
2550 objfile -> global_psymbols,
2551 dip -> at_low_pc, cu_language, objfile);
2552 break;
2553 case TAG_global_variable:
2554 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2555 VAR_NAMESPACE, LOC_STATIC,
2556 objfile -> global_psymbols,
2557 0, cu_language, objfile);
2558 break;
2559 case TAG_subroutine:
2560 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2561 VAR_NAMESPACE, LOC_BLOCK,
2562 objfile -> static_psymbols,
2563 dip -> at_low_pc, cu_language, objfile);
2564 break;
2565 case TAG_local_variable:
2566 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2567 VAR_NAMESPACE, LOC_STATIC,
2568 objfile -> static_psymbols,
2569 0, cu_language, objfile);
2570 break;
2571 case TAG_typedef:
2572 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2573 VAR_NAMESPACE, LOC_TYPEDEF,
2574 objfile -> static_psymbols,
2575 0, cu_language, objfile);
2576 break;
2577 case TAG_class_type:
2578 case TAG_structure_type:
2579 case TAG_union_type:
2580 case TAG_enumeration_type:
2581 /* Do not add opaque aggregate definitions to the psymtab. */
2582 if (!dip -> has_at_byte_size)
2583 break;
2584 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2585 STRUCT_NAMESPACE, LOC_TYPEDEF,
2586 objfile -> static_psymbols,
2587 0, cu_language, objfile);
2588 if (cu_language == language_cplus)
2589 {
2590 /* For C++, these implicitly act as typedefs as well. */
2591 ADD_PSYMBOL_TO_LIST (dip -> at_name, strlen (dip -> at_name),
2592 VAR_NAMESPACE, LOC_TYPEDEF,
2593 objfile -> static_psymbols,
2594 0, cu_language, objfile);
2595 }
2596 break;
2597 }
2598 }
2599
2600 /*
2601
2602 LOCAL FUNCTION
2603
2604 scan_partial_symbols -- scan DIE's within a single compilation unit
2605
2606 DESCRIPTION
2607
2608 Process the DIE's within a single compilation unit, looking for
2609 interesting DIE's that contribute to the partial symbol table entry
2610 for this compilation unit.
2611
2612 NOTES
2613
2614 There are some DIE's that may appear both at file scope and within
2615 the scope of a function. We are only interested in the ones at file
2616 scope, and the only way to tell them apart is to keep track of the
2617 scope. For example, consider the test case:
2618
2619 static int i;
2620 main () { int j; }
2621
2622 for which the relevant DWARF segment has the structure:
2623
2624 0x51:
2625 0x23 global subrtn sibling 0x9b
2626 name main
2627 fund_type FT_integer
2628 low_pc 0x800004cc
2629 high_pc 0x800004d4
2630
2631 0x74:
2632 0x23 local var sibling 0x97
2633 name j
2634 fund_type FT_integer
2635 location OP_BASEREG 0xe
2636 OP_CONST 0xfffffffc
2637 OP_ADD
2638 0x97:
2639 0x4
2640
2641 0x9b:
2642 0x1d local var sibling 0xb8
2643 name i
2644 fund_type FT_integer
2645 location OP_ADDR 0x800025dc
2646
2647 0xb8:
2648 0x4
2649
2650 We want to include the symbol 'i' in the partial symbol table, but
2651 not the symbol 'j'. In essence, we want to skip all the dies within
2652 the scope of a TAG_global_subroutine DIE.
2653
2654 Don't attempt to add anonymous structures or unions since they have
2655 no name. Anonymous enumerations however are processed, because we
2656 want to extract their member names (the check for a tag name is
2657 done later).
2658
2659 Also, for variables and subroutines, check that this is the place
2660 where the actual definition occurs, rather than just a reference
2661 to an external.
2662 */
2663
2664 static void
2665 scan_partial_symbols (thisdie, enddie, objfile)
2666 char *thisdie;
2667 char *enddie;
2668 struct objfile *objfile;
2669 {
2670 char *nextdie;
2671 char *temp;
2672 struct dieinfo di;
2673
2674 while (thisdie < enddie)
2675 {
2676 basicdieinfo (&di, thisdie, objfile);
2677 if (di.die_length < SIZEOF_DIE_LENGTH)
2678 {
2679 break;
2680 }
2681 else
2682 {
2683 nextdie = thisdie + di.die_length;
2684 /* To avoid getting complete die information for every die, we
2685 only do it (below) for the cases we are interested in. */
2686 switch (di.die_tag)
2687 {
2688 case TAG_global_subroutine:
2689 case TAG_subroutine:
2690 completedieinfo (&di, objfile);
2691 if (di.at_name && (di.has_at_low_pc || di.at_location))
2692 {
2693 add_partial_symbol (&di, objfile);
2694 /* If there is a sibling attribute, adjust the nextdie
2695 pointer to skip the entire scope of the subroutine.
2696 Apply some sanity checking to make sure we don't
2697 overrun or underrun the range of remaining DIE's */
2698 if (di.at_sibling != 0)
2699 {
2700 temp = dbbase + di.at_sibling - dbroff;
2701 if ((temp < thisdie) || (temp >= enddie))
2702 {
2703 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2704 di.at_sibling);
2705 }
2706 else
2707 {
2708 nextdie = temp;
2709 }
2710 }
2711 }
2712 break;
2713 case TAG_global_variable:
2714 case TAG_local_variable:
2715 completedieinfo (&di, objfile);
2716 if (di.at_name && (di.has_at_low_pc || di.at_location))
2717 {
2718 add_partial_symbol (&di, objfile);
2719 }
2720 break;
2721 case TAG_typedef:
2722 case TAG_class_type:
2723 case TAG_structure_type:
2724 case TAG_union_type:
2725 completedieinfo (&di, objfile);
2726 if (di.at_name)
2727 {
2728 add_partial_symbol (&di, objfile);
2729 }
2730 break;
2731 case TAG_enumeration_type:
2732 completedieinfo (&di, objfile);
2733 if (di.at_name)
2734 {
2735 add_partial_symbol (&di, objfile);
2736 }
2737 add_enum_psymbol (&di, objfile);
2738 break;
2739 }
2740 }
2741 thisdie = nextdie;
2742 }
2743 }
2744
2745 /*
2746
2747 LOCAL FUNCTION
2748
2749 scan_compilation_units -- build a psymtab entry for each compilation
2750
2751 DESCRIPTION
2752
2753 This is the top level dwarf parsing routine for building partial
2754 symbol tables.
2755
2756 It scans from the beginning of the DWARF table looking for the first
2757 TAG_compile_unit DIE, and then follows the sibling chain to locate
2758 each additional TAG_compile_unit DIE.
2759
2760 For each TAG_compile_unit DIE it creates a partial symtab structure,
2761 calls a subordinate routine to collect all the compilation unit's
2762 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2763 new partial symtab structure into the partial symbol table. It also
2764 records the appropriate information in the partial symbol table entry
2765 to allow the chunk of DIE's and line number table for this compilation
2766 unit to be located and re-read later, to generate a complete symbol
2767 table entry for the compilation unit.
2768
2769 Thus it effectively partitions up a chunk of DIE's for multiple
2770 compilation units into smaller DIE chunks and line number tables,
2771 and associates them with a partial symbol table entry.
2772
2773 NOTES
2774
2775 If any compilation unit has no line number table associated with
2776 it for some reason (a missing at_stmt_list attribute, rather than
2777 just one with a value of zero, which is valid) then we ensure that
2778 the recorded file offset is zero so that the routine which later
2779 reads line number table fragments knows that there is no fragment
2780 to read.
2781
2782 RETURNS
2783
2784 Returns no value.
2785
2786 */
2787
2788 static void
2789 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2790 char *thisdie;
2791 char *enddie;
2792 file_ptr dbfoff;
2793 file_ptr lnoffset;
2794 struct objfile *objfile;
2795 {
2796 char *nextdie;
2797 struct dieinfo di;
2798 struct partial_symtab *pst;
2799 int culength;
2800 int curoff;
2801 file_ptr curlnoffset;
2802
2803 while (thisdie < enddie)
2804 {
2805 basicdieinfo (&di, thisdie, objfile);
2806 if (di.die_length < SIZEOF_DIE_LENGTH)
2807 {
2808 break;
2809 }
2810 else if (di.die_tag != TAG_compile_unit)
2811 {
2812 nextdie = thisdie + di.die_length;
2813 }
2814 else
2815 {
2816 completedieinfo (&di, objfile);
2817 set_cu_language (&di);
2818 if (di.at_sibling != 0)
2819 {
2820 nextdie = dbbase + di.at_sibling - dbroff;
2821 }
2822 else
2823 {
2824 nextdie = thisdie + di.die_length;
2825 }
2826 curoff = thisdie - dbbase;
2827 culength = nextdie - thisdie;
2828 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2829
2830 /* First allocate a new partial symbol table structure */
2831
2832 pst = start_psymtab_common (objfile, base_section_offsets,
2833 di.at_name, di.at_low_pc,
2834 objfile -> global_psymbols.next,
2835 objfile -> static_psymbols.next);
2836
2837 pst -> texthigh = di.at_high_pc;
2838 pst -> read_symtab_private = (char *)
2839 obstack_alloc (&objfile -> psymbol_obstack,
2840 sizeof (struct dwfinfo));
2841 DBFOFF (pst) = dbfoff;
2842 DBROFF (pst) = curoff;
2843 DBLENGTH (pst) = culength;
2844 LNFOFF (pst) = curlnoffset;
2845 pst -> read_symtab = dwarf_psymtab_to_symtab;
2846
2847 /* Now look for partial symbols */
2848
2849 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2850
2851 pst -> n_global_syms = objfile -> global_psymbols.next -
2852 (objfile -> global_psymbols.list + pst -> globals_offset);
2853 pst -> n_static_syms = objfile -> static_psymbols.next -
2854 (objfile -> static_psymbols.list + pst -> statics_offset);
2855 sort_pst_symbols (pst);
2856 /* If there is already a psymtab or symtab for a file of this name,
2857 remove it. (If there is a symtab, more drastic things also
2858 happen.) This happens in VxWorks. */
2859 free_named_symtabs (pst -> filename);
2860 }
2861 thisdie = nextdie;
2862 }
2863 }
2864
2865 /*
2866
2867 LOCAL FUNCTION
2868
2869 new_symbol -- make a symbol table entry for a new symbol
2870
2871 SYNOPSIS
2872
2873 static struct symbol *new_symbol (struct dieinfo *dip,
2874 struct objfile *objfile)
2875
2876 DESCRIPTION
2877
2878 Given a pointer to a DWARF information entry, figure out if we need
2879 to make a symbol table entry for it, and if so, create a new entry
2880 and return a pointer to it.
2881 */
2882
2883 static struct symbol *
2884 new_symbol (dip, objfile)
2885 struct dieinfo *dip;
2886 struct objfile *objfile;
2887 {
2888 struct symbol *sym = NULL;
2889
2890 if (dip -> at_name != NULL)
2891 {
2892 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2893 sizeof (struct symbol));
2894 memset (sym, 0, sizeof (struct symbol));
2895 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2896 &objfile->symbol_obstack);
2897 /* default assumptions */
2898 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2899 SYMBOL_CLASS (sym) = LOC_STATIC;
2900 SYMBOL_TYPE (sym) = decode_die_type (dip);
2901
2902 /* If this symbol is from a C++ compilation, then attempt to cache the
2903 demangled form for future reference. This is a typical time versus
2904 space tradeoff, that was decided in favor of time because it sped up
2905 C++ symbol lookups by a factor of about 20. */
2906
2907 SYMBOL_LANGUAGE (sym) = cu_language;
2908 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2909 switch (dip -> die_tag)
2910 {
2911 case TAG_label:
2912 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2913 SYMBOL_CLASS (sym) = LOC_LABEL;
2914 break;
2915 case TAG_global_subroutine:
2916 case TAG_subroutine:
2917 SYMBOL_VALUE (sym) = dip -> at_low_pc;
2918 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2919 SYMBOL_CLASS (sym) = LOC_BLOCK;
2920 if (dip -> die_tag == TAG_global_subroutine)
2921 {
2922 add_symbol_to_list (sym, &global_symbols);
2923 }
2924 else
2925 {
2926 add_symbol_to_list (sym, list_in_scope);
2927 }
2928 break;
2929 case TAG_global_variable:
2930 if (dip -> at_location != NULL)
2931 {
2932 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2933 add_symbol_to_list (sym, &global_symbols);
2934 SYMBOL_CLASS (sym) = LOC_STATIC;
2935 SYMBOL_VALUE (sym) += baseaddr;
2936 }
2937 break;
2938 case TAG_local_variable:
2939 if (dip -> at_location != NULL)
2940 {
2941 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2942 add_symbol_to_list (sym, list_in_scope);
2943 if (optimized_out)
2944 {
2945 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
2946 }
2947 else if (isreg)
2948 {
2949 SYMBOL_CLASS (sym) = LOC_REGISTER;
2950 }
2951 else if (offreg)
2952 {
2953 SYMBOL_CLASS (sym) = LOC_BASEREG;
2954 SYMBOL_BASEREG (sym) = basereg;
2955 }
2956 else
2957 {
2958 SYMBOL_CLASS (sym) = LOC_STATIC;
2959 SYMBOL_VALUE (sym) += baseaddr;
2960 }
2961 }
2962 break;
2963 case TAG_formal_parameter:
2964 if (dip -> at_location != NULL)
2965 {
2966 SYMBOL_VALUE (sym) = locval (dip -> at_location);
2967 }
2968 add_symbol_to_list (sym, list_in_scope);
2969 if (isreg)
2970 {
2971 SYMBOL_CLASS (sym) = LOC_REGPARM;
2972 }
2973 else if (offreg)
2974 {
2975 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
2976 SYMBOL_BASEREG (sym) = basereg;
2977 }
2978 else
2979 {
2980 SYMBOL_CLASS (sym) = LOC_ARG;
2981 }
2982 break;
2983 case TAG_unspecified_parameters:
2984 /* From varargs functions; gdb doesn't seem to have any interest in
2985 this information, so just ignore it for now. (FIXME?) */
2986 break;
2987 case TAG_class_type:
2988 case TAG_structure_type:
2989 case TAG_union_type:
2990 case TAG_enumeration_type:
2991 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2992 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2993 add_symbol_to_list (sym, list_in_scope);
2994 break;
2995 case TAG_typedef:
2996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2997 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2998 add_symbol_to_list (sym, list_in_scope);
2999 break;
3000 default:
3001 /* Not a tag we recognize. Hopefully we aren't processing trash
3002 data, but since we must specifically ignore things we don't
3003 recognize, there is nothing else we should do at this point. */
3004 break;
3005 }
3006 }
3007 return (sym);
3008 }
3009
3010 /*
3011
3012 LOCAL FUNCTION
3013
3014 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3015
3016 SYNOPSIS
3017
3018 static void synthesize_typedef (struct dieinfo *dip,
3019 struct objfile *objfile,
3020 struct type *type);
3021
3022 DESCRIPTION
3023
3024 Given a pointer to a DWARF information entry, synthesize a typedef
3025 for the name in the DIE, using the specified type.
3026
3027 This is used for C++ class, structs, unions, and enumerations to
3028 set up the tag name as a type.
3029
3030 */
3031
3032 static void
3033 synthesize_typedef (dip, objfile, type)
3034 struct dieinfo *dip;
3035 struct objfile *objfile;
3036 struct type *type;
3037 {
3038 struct symbol *sym = NULL;
3039
3040 if (dip -> at_name != NULL)
3041 {
3042 sym = (struct symbol *)
3043 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3044 memset (sym, 0, sizeof (struct symbol));
3045 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3046 &objfile->symbol_obstack);
3047 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3048 SYMBOL_TYPE (sym) = type;
3049 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3050 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3051 add_symbol_to_list (sym, list_in_scope);
3052 }
3053 }
3054
3055 /*
3056
3057 LOCAL FUNCTION
3058
3059 decode_mod_fund_type -- decode a modified fundamental type
3060
3061 SYNOPSIS
3062
3063 static struct type *decode_mod_fund_type (char *typedata)
3064
3065 DESCRIPTION
3066
3067 Decode a block of data containing a modified fundamental
3068 type specification. TYPEDATA is a pointer to the block,
3069 which starts with a length containing the size of the rest
3070 of the block. At the end of the block is a fundmental type
3071 code value that gives the fundamental type. Everything
3072 in between are type modifiers.
3073
3074 We simply compute the number of modifiers and call the general
3075 function decode_modified_type to do the actual work.
3076 */
3077
3078 static struct type *
3079 decode_mod_fund_type (typedata)
3080 char *typedata;
3081 {
3082 struct type *typep = NULL;
3083 unsigned short modcount;
3084 int nbytes;
3085
3086 /* Get the total size of the block, exclusive of the size itself */
3087
3088 nbytes = attribute_size (AT_mod_fund_type);
3089 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3090 typedata += nbytes;
3091
3092 /* Deduct the size of the fundamental type bytes at the end of the block. */
3093
3094 modcount -= attribute_size (AT_fund_type);
3095
3096 /* Now do the actual decoding */
3097
3098 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3099 return (typep);
3100 }
3101
3102 /*
3103
3104 LOCAL FUNCTION
3105
3106 decode_mod_u_d_type -- decode a modified user defined type
3107
3108 SYNOPSIS
3109
3110 static struct type *decode_mod_u_d_type (char *typedata)
3111
3112 DESCRIPTION
3113
3114 Decode a block of data containing a modified user defined
3115 type specification. TYPEDATA is a pointer to the block,
3116 which consists of a two byte length, containing the size
3117 of the rest of the block. At the end of the block is a
3118 four byte value that gives a reference to a user defined type.
3119 Everything in between are type modifiers.
3120
3121 We simply compute the number of modifiers and call the general
3122 function decode_modified_type to do the actual work.
3123 */
3124
3125 static struct type *
3126 decode_mod_u_d_type (typedata)
3127 char *typedata;
3128 {
3129 struct type *typep = NULL;
3130 unsigned short modcount;
3131 int nbytes;
3132
3133 /* Get the total size of the block, exclusive of the size itself */
3134
3135 nbytes = attribute_size (AT_mod_u_d_type);
3136 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3137 typedata += nbytes;
3138
3139 /* Deduct the size of the reference type bytes at the end of the block. */
3140
3141 modcount -= attribute_size (AT_user_def_type);
3142
3143 /* Now do the actual decoding */
3144
3145 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3146 return (typep);
3147 }
3148
3149 /*
3150
3151 LOCAL FUNCTION
3152
3153 decode_modified_type -- decode modified user or fundamental type
3154
3155 SYNOPSIS
3156
3157 static struct type *decode_modified_type (char *modifiers,
3158 unsigned short modcount, int mtype)
3159
3160 DESCRIPTION
3161
3162 Decode a modified type, either a modified fundamental type or
3163 a modified user defined type. MODIFIERS is a pointer to the
3164 block of bytes that define MODCOUNT modifiers. Immediately
3165 following the last modifier is a short containing the fundamental
3166 type or a long containing the reference to the user defined
3167 type. Which one is determined by MTYPE, which is either
3168 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3169 type we are generating.
3170
3171 We call ourself recursively to generate each modified type,`
3172 until MODCOUNT reaches zero, at which point we have consumed
3173 all the modifiers and generate either the fundamental type or
3174 user defined type. When the recursion unwinds, each modifier
3175 is applied in turn to generate the full modified type.
3176
3177 NOTES
3178
3179 If we find a modifier that we don't recognize, and it is not one
3180 of those reserved for application specific use, then we issue a
3181 warning and simply ignore the modifier.
3182
3183 BUGS
3184
3185 We currently ignore MOD_const and MOD_volatile. (FIXME)
3186
3187 */
3188
3189 static struct type *
3190 decode_modified_type (modifiers, modcount, mtype)
3191 char *modifiers;
3192 unsigned int modcount;
3193 int mtype;
3194 {
3195 struct type *typep = NULL;
3196 unsigned short fundtype;
3197 DIE_REF die_ref;
3198 char modifier;
3199 int nbytes;
3200
3201 if (modcount == 0)
3202 {
3203 switch (mtype)
3204 {
3205 case AT_mod_fund_type:
3206 nbytes = attribute_size (AT_fund_type);
3207 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3208 current_objfile);
3209 typep = decode_fund_type (fundtype);
3210 break;
3211 case AT_mod_u_d_type:
3212 nbytes = attribute_size (AT_user_def_type);
3213 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3214 current_objfile);
3215 if ((typep = lookup_utype (die_ref)) == NULL)
3216 {
3217 typep = alloc_utype (die_ref, NULL);
3218 }
3219 break;
3220 default:
3221 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3222 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3223 break;
3224 }
3225 }
3226 else
3227 {
3228 modifier = *modifiers++;
3229 typep = decode_modified_type (modifiers, --modcount, mtype);
3230 switch (modifier)
3231 {
3232 case MOD_pointer_to:
3233 typep = lookup_pointer_type (typep);
3234 break;
3235 case MOD_reference_to:
3236 typep = lookup_reference_type (typep);
3237 break;
3238 case MOD_const:
3239 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3240 break;
3241 case MOD_volatile:
3242 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3243 break;
3244 default:
3245 if (!(MOD_lo_user <= (unsigned char) modifier
3246 && (unsigned char) modifier <= MOD_hi_user))
3247 {
3248 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3249 }
3250 break;
3251 }
3252 }
3253 return (typep);
3254 }
3255
3256 /*
3257
3258 LOCAL FUNCTION
3259
3260 decode_fund_type -- translate basic DWARF type to gdb base type
3261
3262 DESCRIPTION
3263
3264 Given an integer that is one of the fundamental DWARF types,
3265 translate it to one of the basic internal gdb types and return
3266 a pointer to the appropriate gdb type (a "struct type *").
3267
3268 NOTES
3269
3270 For robustness, if we are asked to translate a fundamental
3271 type that we are unprepared to deal with, we return int so
3272 callers can always depend upon a valid type being returned,
3273 and so gdb may at least do something reasonable by default.
3274 If the type is not in the range of those types defined as
3275 application specific types, we also issue a warning.
3276 */
3277
3278 static struct type *
3279 decode_fund_type (fundtype)
3280 unsigned int fundtype;
3281 {
3282 struct type *typep = NULL;
3283
3284 switch (fundtype)
3285 {
3286
3287 case FT_void:
3288 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3289 break;
3290
3291 case FT_boolean: /* Was FT_set in AT&T version */
3292 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3293 break;
3294
3295 case FT_pointer: /* (void *) */
3296 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3297 typep = lookup_pointer_type (typep);
3298 break;
3299
3300 case FT_char:
3301 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3302 break;
3303
3304 case FT_signed_char:
3305 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3306 break;
3307
3308 case FT_unsigned_char:
3309 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3310 break;
3311
3312 case FT_short:
3313 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3314 break;
3315
3316 case FT_signed_short:
3317 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3318 break;
3319
3320 case FT_unsigned_short:
3321 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3322 break;
3323
3324 case FT_integer:
3325 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3326 break;
3327
3328 case FT_signed_integer:
3329 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3330 break;
3331
3332 case FT_unsigned_integer:
3333 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3334 break;
3335
3336 case FT_long:
3337 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3338 break;
3339
3340 case FT_signed_long:
3341 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3342 break;
3343
3344 case FT_unsigned_long:
3345 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3346 break;
3347
3348 case FT_long_long:
3349 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3350 break;
3351
3352 case FT_signed_long_long:
3353 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3354 break;
3355
3356 case FT_unsigned_long_long:
3357 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3358 break;
3359
3360 case FT_float:
3361 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3362 break;
3363
3364 case FT_dbl_prec_float:
3365 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3366 break;
3367
3368 case FT_ext_prec_float:
3369 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3370 break;
3371
3372 case FT_complex:
3373 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3374 break;
3375
3376 case FT_dbl_prec_complex:
3377 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3378 break;
3379
3380 case FT_ext_prec_complex:
3381 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3382 break;
3383
3384 }
3385
3386 if (typep == NULL)
3387 {
3388 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3389 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3390 {
3391 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3392 }
3393 }
3394
3395 return (typep);
3396 }
3397
3398 /*
3399
3400 LOCAL FUNCTION
3401
3402 create_name -- allocate a fresh copy of a string on an obstack
3403
3404 DESCRIPTION
3405
3406 Given a pointer to a string and a pointer to an obstack, allocates
3407 a fresh copy of the string on the specified obstack.
3408
3409 */
3410
3411 static char *
3412 create_name (name, obstackp)
3413 char *name;
3414 struct obstack *obstackp;
3415 {
3416 int length;
3417 char *newname;
3418
3419 length = strlen (name) + 1;
3420 newname = (char *) obstack_alloc (obstackp, length);
3421 strcpy (newname, name);
3422 return (newname);
3423 }
3424
3425 /*
3426
3427 LOCAL FUNCTION
3428
3429 basicdieinfo -- extract the minimal die info from raw die data
3430
3431 SYNOPSIS
3432
3433 void basicdieinfo (char *diep, struct dieinfo *dip,
3434 struct objfile *objfile)
3435
3436 DESCRIPTION
3437
3438 Given a pointer to raw DIE data, and a pointer to an instance of a
3439 die info structure, this function extracts the basic information
3440 from the DIE data required to continue processing this DIE, along
3441 with some bookkeeping information about the DIE.
3442
3443 The information we absolutely must have includes the DIE tag,
3444 and the DIE length. If we need the sibling reference, then we
3445 will have to call completedieinfo() to process all the remaining
3446 DIE information.
3447
3448 Note that since there is no guarantee that the data is properly
3449 aligned in memory for the type of access required (indirection
3450 through anything other than a char pointer), and there is no
3451 guarantee that it is in the same byte order as the gdb host,
3452 we call a function which deals with both alignment and byte
3453 swapping issues. Possibly inefficient, but quite portable.
3454
3455 We also take care of some other basic things at this point, such
3456 as ensuring that the instance of the die info structure starts
3457 out completely zero'd and that curdie is initialized for use
3458 in error reporting if we have a problem with the current die.
3459
3460 NOTES
3461
3462 All DIE's must have at least a valid length, thus the minimum
3463 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3464 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3465 are forced to be TAG_padding DIES.
3466
3467 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3468 that if a padding DIE is used for alignment and the amount needed is
3469 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3470 enough to align to the next alignment boundry.
3471
3472 We do some basic sanity checking here, such as verifying that the
3473 length of the die would not cause it to overrun the recorded end of
3474 the buffer holding the DIE info. If we find a DIE that is either
3475 too small or too large, we force it's length to zero which should
3476 cause the caller to take appropriate action.
3477 */
3478
3479 static void
3480 basicdieinfo (dip, diep, objfile)
3481 struct dieinfo *dip;
3482 char *diep;
3483 struct objfile *objfile;
3484 {
3485 curdie = dip;
3486 memset (dip, 0, sizeof (struct dieinfo));
3487 dip -> die = diep;
3488 dip -> die_ref = dbroff + (diep - dbbase);
3489 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3490 objfile);
3491 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3492 ((diep + dip -> die_length) > (dbbase + dbsize)))
3493 {
3494 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3495 dip -> die_length = 0;
3496 }
3497 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3498 {
3499 dip -> die_tag = TAG_padding;
3500 }
3501 else
3502 {
3503 diep += SIZEOF_DIE_LENGTH;
3504 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3505 objfile);
3506 }
3507 }
3508
3509 /*
3510
3511 LOCAL FUNCTION
3512
3513 completedieinfo -- finish reading the information for a given DIE
3514
3515 SYNOPSIS
3516
3517 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3518
3519 DESCRIPTION
3520
3521 Given a pointer to an already partially initialized die info structure,
3522 scan the raw DIE data and finish filling in the die info structure
3523 from the various attributes found.
3524
3525 Note that since there is no guarantee that the data is properly
3526 aligned in memory for the type of access required (indirection
3527 through anything other than a char pointer), and there is no
3528 guarantee that it is in the same byte order as the gdb host,
3529 we call a function which deals with both alignment and byte
3530 swapping issues. Possibly inefficient, but quite portable.
3531
3532 NOTES
3533
3534 Each time we are called, we increment the diecount variable, which
3535 keeps an approximate count of the number of dies processed for
3536 each compilation unit. This information is presented to the user
3537 if the info_verbose flag is set.
3538
3539 */
3540
3541 static void
3542 completedieinfo (dip, objfile)
3543 struct dieinfo *dip;
3544 struct objfile *objfile;
3545 {
3546 char *diep; /* Current pointer into raw DIE data */
3547 char *end; /* Terminate DIE scan here */
3548 unsigned short attr; /* Current attribute being scanned */
3549 unsigned short form; /* Form of the attribute */
3550 int nbytes; /* Size of next field to read */
3551
3552 diecount++;
3553 diep = dip -> die;
3554 end = diep + dip -> die_length;
3555 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3556 while (diep < end)
3557 {
3558 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3559 diep += SIZEOF_ATTRIBUTE;
3560 if ((nbytes = attribute_size (attr)) == -1)
3561 {
3562 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3563 diep = end;
3564 continue;
3565 }
3566 switch (attr)
3567 {
3568 case AT_fund_type:
3569 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3570 objfile);
3571 break;
3572 case AT_ordering:
3573 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3574 objfile);
3575 break;
3576 case AT_bit_offset:
3577 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3578 objfile);
3579 break;
3580 case AT_sibling:
3581 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3582 objfile);
3583 break;
3584 case AT_stmt_list:
3585 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3586 objfile);
3587 dip -> has_at_stmt_list = 1;
3588 break;
3589 case AT_low_pc:
3590 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3591 objfile);
3592 dip -> at_low_pc += baseaddr;
3593 dip -> has_at_low_pc = 1;
3594 break;
3595 case AT_high_pc:
3596 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3597 objfile);
3598 dip -> at_high_pc += baseaddr;
3599 break;
3600 case AT_language:
3601 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3602 objfile);
3603 break;
3604 case AT_user_def_type:
3605 dip -> at_user_def_type = target_to_host (diep, nbytes,
3606 GET_UNSIGNED, objfile);
3607 break;
3608 case AT_byte_size:
3609 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3610 objfile);
3611 dip -> has_at_byte_size = 1;
3612 break;
3613 case AT_bit_size:
3614 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3615 objfile);
3616 break;
3617 case AT_member:
3618 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3619 objfile);
3620 break;
3621 case AT_discr:
3622 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3623 objfile);
3624 break;
3625 case AT_location:
3626 dip -> at_location = diep;
3627 break;
3628 case AT_mod_fund_type:
3629 dip -> at_mod_fund_type = diep;
3630 break;
3631 case AT_subscr_data:
3632 dip -> at_subscr_data = diep;
3633 break;
3634 case AT_mod_u_d_type:
3635 dip -> at_mod_u_d_type = diep;
3636 break;
3637 case AT_element_list:
3638 dip -> at_element_list = diep;
3639 dip -> short_element_list = 0;
3640 break;
3641 case AT_short_element_list:
3642 dip -> at_element_list = diep;
3643 dip -> short_element_list = 1;
3644 break;
3645 case AT_discr_value:
3646 dip -> at_discr_value = diep;
3647 break;
3648 case AT_string_length:
3649 dip -> at_string_length = diep;
3650 break;
3651 case AT_name:
3652 dip -> at_name = diep;
3653 break;
3654 case AT_comp_dir:
3655 /* For now, ignore any "hostname:" portion, since gdb doesn't
3656 know how to deal with it. (FIXME). */
3657 dip -> at_comp_dir = strrchr (diep, ':');
3658 if (dip -> at_comp_dir != NULL)
3659 {
3660 dip -> at_comp_dir++;
3661 }
3662 else
3663 {
3664 dip -> at_comp_dir = diep;
3665 }
3666 break;
3667 case AT_producer:
3668 dip -> at_producer = diep;
3669 break;
3670 case AT_start_scope:
3671 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3672 objfile);
3673 break;
3674 case AT_stride_size:
3675 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3676 objfile);
3677 break;
3678 case AT_src_info:
3679 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3680 objfile);
3681 break;
3682 case AT_prototyped:
3683 dip -> at_prototyped = diep;
3684 break;
3685 default:
3686 /* Found an attribute that we are unprepared to handle. However
3687 it is specifically one of the design goals of DWARF that
3688 consumers should ignore unknown attributes. As long as the
3689 form is one that we recognize (so we know how to skip it),
3690 we can just ignore the unknown attribute. */
3691 break;
3692 }
3693 form = FORM_FROM_ATTR (attr);
3694 switch (form)
3695 {
3696 case FORM_DATA2:
3697 diep += 2;
3698 break;
3699 case FORM_DATA4:
3700 case FORM_REF:
3701 diep += 4;
3702 break;
3703 case FORM_DATA8:
3704 diep += 8;
3705 break;
3706 case FORM_ADDR:
3707 diep += TARGET_FT_POINTER_SIZE (objfile);
3708 break;
3709 case FORM_BLOCK2:
3710 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3711 break;
3712 case FORM_BLOCK4:
3713 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3714 break;
3715 case FORM_STRING:
3716 diep += strlen (diep) + 1;
3717 break;
3718 default:
3719 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3720 diep = end;
3721 break;
3722 }
3723 }
3724 }
3725
3726 /*
3727
3728 LOCAL FUNCTION
3729
3730 target_to_host -- swap in target data to host
3731
3732 SYNOPSIS
3733
3734 target_to_host (char *from, int nbytes, int signextend,
3735 struct objfile *objfile)
3736
3737 DESCRIPTION
3738
3739 Given pointer to data in target format in FROM, a byte count for
3740 the size of the data in NBYTES, a flag indicating whether or not
3741 the data is signed in SIGNEXTEND, and a pointer to the current
3742 objfile in OBJFILE, convert the data to host format and return
3743 the converted value.
3744
3745 NOTES
3746
3747 FIXME: If we read data that is known to be signed, and expect to
3748 use it as signed data, then we need to explicitly sign extend the
3749 result until the bfd library is able to do this for us.
3750
3751 FIXME: Would a 32 bit target ever need an 8 byte result?
3752
3753 */
3754
3755 static CORE_ADDR
3756 target_to_host (from, nbytes, signextend, objfile)
3757 char *from;
3758 int nbytes;
3759 int signextend; /* FIXME: Unused */
3760 struct objfile *objfile;
3761 {
3762 CORE_ADDR rtnval;
3763
3764 switch (nbytes)
3765 {
3766 case 8:
3767 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3768 break;
3769 case 4:
3770 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3771 break;
3772 case 2:
3773 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3774 break;
3775 case 1:
3776 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3777 break;
3778 default:
3779 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3780 rtnval = 0;
3781 break;
3782 }
3783 return (rtnval);
3784 }
3785
3786 /*
3787
3788 LOCAL FUNCTION
3789
3790 attribute_size -- compute size of data for a DWARF attribute
3791
3792 SYNOPSIS
3793
3794 static int attribute_size (unsigned int attr)
3795
3796 DESCRIPTION
3797
3798 Given a DWARF attribute in ATTR, compute the size of the first
3799 piece of data associated with this attribute and return that
3800 size.
3801
3802 Returns -1 for unrecognized attributes.
3803
3804 */
3805
3806 static int
3807 attribute_size (attr)
3808 unsigned int attr;
3809 {
3810 int nbytes; /* Size of next data for this attribute */
3811 unsigned short form; /* Form of the attribute */
3812
3813 form = FORM_FROM_ATTR (attr);
3814 switch (form)
3815 {
3816 case FORM_STRING: /* A variable length field is next */
3817 nbytes = 0;
3818 break;
3819 case FORM_DATA2: /* Next 2 byte field is the data itself */
3820 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3821 nbytes = 2;
3822 break;
3823 case FORM_DATA4: /* Next 4 byte field is the data itself */
3824 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3825 case FORM_REF: /* Next 4 byte field is a DIE offset */
3826 nbytes = 4;
3827 break;
3828 case FORM_DATA8: /* Next 8 byte field is the data itself */
3829 nbytes = 8;
3830 break;
3831 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3832 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3833 break;
3834 default:
3835 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3836 nbytes = -1;
3837 break;
3838 }
3839 return (nbytes);
3840 }