]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/elfread.c
remove gdb_string.h
[thirdparty/binutils-gdb.git] / gdb / elfread.c
1 /* Read ELF (Executable and Linking Format) object files for GDB.
2
3 Copyright (C) 1991-2013 Free Software Foundation, Inc.
4
5 Written by Fred Fish at Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include <string.h>
25 #include "elf-bfd.h"
26 #include "elf/common.h"
27 #include "elf/internal.h"
28 #include "elf/mips.h"
29 #include "symtab.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "buildsym.h"
33 #include "stabsread.h"
34 #include "gdb-stabs.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "psympriv.h"
38 #include "filenames.h"
39 #include "probe.h"
40 #include "arch-utils.h"
41 #include "gdbtypes.h"
42 #include "value.h"
43 #include "infcall.h"
44 #include "gdbthread.h"
45 #include "regcache.h"
46 #include "bcache.h"
47 #include "gdb_bfd.h"
48 #include "build-id.h"
49
50 extern void _initialize_elfread (void);
51
52 /* Forward declarations. */
53 static const struct sym_fns elf_sym_fns_gdb_index;
54 static const struct sym_fns elf_sym_fns_lazy_psyms;
55
56 /* The struct elfinfo is available only during ELF symbol table and
57 psymtab reading. It is destroyed at the completion of psymtab-reading.
58 It's local to elf_symfile_read. */
59
60 struct elfinfo
61 {
62 asection *stabsect; /* Section pointer for .stab section */
63 asection *mdebugsect; /* Section pointer for .mdebug section */
64 };
65
66 /* Per-objfile data for probe info. */
67
68 static const struct objfile_data *probe_key = NULL;
69
70 static void free_elfinfo (void *);
71
72 /* Minimal symbols located at the GOT entries for .plt - that is the real
73 pointer where the given entry will jump to. It gets updated by the real
74 function address during lazy ld.so resolving in the inferior. These
75 minimal symbols are indexed for <tab>-completion. */
76
77 #define SYMBOL_GOT_PLT_SUFFIX "@got.plt"
78
79 /* Locate the segments in ABFD. */
80
81 static struct symfile_segment_data *
82 elf_symfile_segments (bfd *abfd)
83 {
84 Elf_Internal_Phdr *phdrs, **segments;
85 long phdrs_size;
86 int num_phdrs, num_segments, num_sections, i;
87 asection *sect;
88 struct symfile_segment_data *data;
89
90 phdrs_size = bfd_get_elf_phdr_upper_bound (abfd);
91 if (phdrs_size == -1)
92 return NULL;
93
94 phdrs = alloca (phdrs_size);
95 num_phdrs = bfd_get_elf_phdrs (abfd, phdrs);
96 if (num_phdrs == -1)
97 return NULL;
98
99 num_segments = 0;
100 segments = alloca (sizeof (Elf_Internal_Phdr *) * num_phdrs);
101 for (i = 0; i < num_phdrs; i++)
102 if (phdrs[i].p_type == PT_LOAD)
103 segments[num_segments++] = &phdrs[i];
104
105 if (num_segments == 0)
106 return NULL;
107
108 data = XZALLOC (struct symfile_segment_data);
109 data->num_segments = num_segments;
110 data->segment_bases = XCALLOC (num_segments, CORE_ADDR);
111 data->segment_sizes = XCALLOC (num_segments, CORE_ADDR);
112
113 for (i = 0; i < num_segments; i++)
114 {
115 data->segment_bases[i] = segments[i]->p_vaddr;
116 data->segment_sizes[i] = segments[i]->p_memsz;
117 }
118
119 num_sections = bfd_count_sections (abfd);
120 data->segment_info = XCALLOC (num_sections, int);
121
122 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
123 {
124 int j;
125 CORE_ADDR vma;
126
127 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
128 continue;
129
130 vma = bfd_get_section_vma (abfd, sect);
131
132 for (j = 0; j < num_segments; j++)
133 if (segments[j]->p_memsz > 0
134 && vma >= segments[j]->p_vaddr
135 && (vma - segments[j]->p_vaddr) < segments[j]->p_memsz)
136 {
137 data->segment_info[i] = j + 1;
138 break;
139 }
140
141 /* We should have found a segment for every non-empty section.
142 If we haven't, we will not relocate this section by any
143 offsets we apply to the segments. As an exception, do not
144 warn about SHT_NOBITS sections; in normal ELF execution
145 environments, SHT_NOBITS means zero-initialized and belongs
146 in a segment, but in no-OS environments some tools (e.g. ARM
147 RealView) use SHT_NOBITS for uninitialized data. Since it is
148 uninitialized, it doesn't need a program header. Such
149 binaries are not relocatable. */
150 if (bfd_get_section_size (sect) > 0 && j == num_segments
151 && (bfd_get_section_flags (abfd, sect) & SEC_LOAD) != 0)
152 warning (_("Loadable section \"%s\" outside of ELF segments"),
153 bfd_section_name (abfd, sect));
154 }
155
156 return data;
157 }
158
159 /* We are called once per section from elf_symfile_read. We
160 need to examine each section we are passed, check to see
161 if it is something we are interested in processing, and
162 if so, stash away some access information for the section.
163
164 For now we recognize the dwarf debug information sections and
165 line number sections from matching their section names. The
166 ELF definition is no real help here since it has no direct
167 knowledge of DWARF (by design, so any debugging format can be
168 used).
169
170 We also recognize the ".stab" sections used by the Sun compilers
171 released with Solaris 2.
172
173 FIXME: The section names should not be hardwired strings (what
174 should they be? I don't think most object file formats have enough
175 section flags to specify what kind of debug section it is.
176 -kingdon). */
177
178 static void
179 elf_locate_sections (bfd *ignore_abfd, asection *sectp, void *eip)
180 {
181 struct elfinfo *ei;
182
183 ei = (struct elfinfo *) eip;
184 if (strcmp (sectp->name, ".stab") == 0)
185 {
186 ei->stabsect = sectp;
187 }
188 else if (strcmp (sectp->name, ".mdebug") == 0)
189 {
190 ei->mdebugsect = sectp;
191 }
192 }
193
194 static struct minimal_symbol *
195 record_minimal_symbol (const char *name, int name_len, int copy_name,
196 CORE_ADDR address,
197 enum minimal_symbol_type ms_type,
198 asection *bfd_section, struct objfile *objfile)
199 {
200 struct gdbarch *gdbarch = get_objfile_arch (objfile);
201
202 if (ms_type == mst_text || ms_type == mst_file_text
203 || ms_type == mst_text_gnu_ifunc)
204 address = gdbarch_addr_bits_remove (gdbarch, address);
205
206 return prim_record_minimal_symbol_full (name, name_len, copy_name, address,
207 ms_type,
208 gdb_bfd_section_index (objfile->obfd,
209 bfd_section),
210 objfile);
211 }
212
213 /* Read the symbol table of an ELF file.
214
215 Given an objfile, a symbol table, and a flag indicating whether the
216 symbol table contains regular, dynamic, or synthetic symbols, add all
217 the global function and data symbols to the minimal symbol table.
218
219 In stabs-in-ELF, as implemented by Sun, there are some local symbols
220 defined in the ELF symbol table, which can be used to locate
221 the beginnings of sections from each ".o" file that was linked to
222 form the executable objfile. We gather any such info and record it
223 in data structures hung off the objfile's private data. */
224
225 #define ST_REGULAR 0
226 #define ST_DYNAMIC 1
227 #define ST_SYNTHETIC 2
228
229 static void
230 elf_symtab_read (struct objfile *objfile, int type,
231 long number_of_symbols, asymbol **symbol_table,
232 int copy_names)
233 {
234 struct gdbarch *gdbarch = get_objfile_arch (objfile);
235 asymbol *sym;
236 long i;
237 CORE_ADDR symaddr;
238 CORE_ADDR offset;
239 enum minimal_symbol_type ms_type;
240 /* If sectinfo is nonNULL, it contains section info that should end up
241 filed in the objfile. */
242 struct stab_section_info *sectinfo = NULL;
243 /* If filesym is nonzero, it points to a file symbol, but we haven't
244 seen any section info for it yet. */
245 asymbol *filesym = 0;
246 /* Name of filesym. This is either a constant string or is saved on
247 the objfile's filename cache. */
248 const char *filesymname = "";
249 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
250 int stripped = (bfd_get_symcount (objfile->obfd) == 0);
251
252 for (i = 0; i < number_of_symbols; i++)
253 {
254 sym = symbol_table[i];
255 if (sym->name == NULL || *sym->name == '\0')
256 {
257 /* Skip names that don't exist (shouldn't happen), or names
258 that are null strings (may happen). */
259 continue;
260 }
261
262 /* Skip "special" symbols, e.g. ARM mapping symbols. These are
263 symbols which do not correspond to objects in the symbol table,
264 but have some other target-specific meaning. */
265 if (bfd_is_target_special_symbol (objfile->obfd, sym))
266 {
267 if (gdbarch_record_special_symbol_p (gdbarch))
268 gdbarch_record_special_symbol (gdbarch, objfile, sym);
269 continue;
270 }
271
272 offset = ANOFFSET (objfile->section_offsets,
273 gdb_bfd_section_index (objfile->obfd, sym->section));
274 if (type == ST_DYNAMIC
275 && sym->section == bfd_und_section_ptr
276 && (sym->flags & BSF_FUNCTION))
277 {
278 struct minimal_symbol *msym;
279 bfd *abfd = objfile->obfd;
280 asection *sect;
281
282 /* Symbol is a reference to a function defined in
283 a shared library.
284 If its value is non zero then it is usually the address
285 of the corresponding entry in the procedure linkage table,
286 plus the desired section offset.
287 If its value is zero then the dynamic linker has to resolve
288 the symbol. We are unable to find any meaningful address
289 for this symbol in the executable file, so we skip it. */
290 symaddr = sym->value;
291 if (symaddr == 0)
292 continue;
293
294 /* sym->section is the undefined section. However, we want to
295 record the section where the PLT stub resides with the
296 minimal symbol. Search the section table for the one that
297 covers the stub's address. */
298 for (sect = abfd->sections; sect != NULL; sect = sect->next)
299 {
300 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
301 continue;
302
303 if (symaddr >= bfd_get_section_vma (abfd, sect)
304 && symaddr < bfd_get_section_vma (abfd, sect)
305 + bfd_get_section_size (sect))
306 break;
307 }
308 if (!sect)
309 continue;
310
311 /* On ia64-hpux, we have discovered that the system linker
312 adds undefined symbols with nonzero addresses that cannot
313 be right (their address points inside the code of another
314 function in the .text section). This creates problems
315 when trying to determine which symbol corresponds to
316 a given address.
317
318 We try to detect those buggy symbols by checking which
319 section we think they correspond to. Normally, PLT symbols
320 are stored inside their own section, and the typical name
321 for that section is ".plt". So, if there is a ".plt"
322 section, and yet the section name of our symbol does not
323 start with ".plt", we ignore that symbol. */
324 if (strncmp (sect->name, ".plt", 4) != 0
325 && bfd_get_section_by_name (abfd, ".plt") != NULL)
326 continue;
327
328 symaddr += ANOFFSET (objfile->section_offsets,
329 gdb_bfd_section_index (objfile->obfd, sect));
330
331 msym = record_minimal_symbol
332 (sym->name, strlen (sym->name), copy_names,
333 symaddr, mst_solib_trampoline, sect, objfile);
334 if (msym != NULL)
335 msym->filename = filesymname;
336 continue;
337 }
338
339 /* If it is a nonstripped executable, do not enter dynamic
340 symbols, as the dynamic symbol table is usually a subset
341 of the main symbol table. */
342 if (type == ST_DYNAMIC && !stripped)
343 continue;
344 if (sym->flags & BSF_FILE)
345 {
346 /* STT_FILE debugging symbol that helps stabs-in-elf debugging.
347 Chain any old one onto the objfile; remember new sym. */
348 if (sectinfo != NULL)
349 {
350 sectinfo->next = dbx->stab_section_info;
351 dbx->stab_section_info = sectinfo;
352 sectinfo = NULL;
353 }
354 filesym = sym;
355 filesymname = bcache (filesym->name, strlen (filesym->name) + 1,
356 objfile->per_bfd->filename_cache);
357 }
358 else if (sym->flags & BSF_SECTION_SYM)
359 continue;
360 else if (sym->flags & (BSF_GLOBAL | BSF_LOCAL | BSF_WEAK
361 | BSF_GNU_UNIQUE))
362 {
363 struct minimal_symbol *msym;
364
365 /* Select global/local/weak symbols. Note that bfd puts abs
366 symbols in their own section, so all symbols we are
367 interested in will have a section. */
368 /* Bfd symbols are section relative. */
369 symaddr = sym->value + sym->section->vma;
370 /* Relocate all non-absolute and non-TLS symbols by the
371 section offset. */
372 if (sym->section != bfd_abs_section_ptr
373 && !(sym->section->flags & SEC_THREAD_LOCAL))
374 {
375 symaddr += offset;
376 }
377 /* For non-absolute symbols, use the type of the section
378 they are relative to, to intuit text/data. Bfd provides
379 no way of figuring this out for absolute symbols. */
380 if (sym->section == bfd_abs_section_ptr)
381 {
382 /* This is a hack to get the minimal symbol type
383 right for Irix 5, which has absolute addresses
384 with special section indices for dynamic symbols.
385
386 NOTE: uweigand-20071112: Synthetic symbols do not
387 have an ELF-private part, so do not touch those. */
388 unsigned int shndx = type == ST_SYNTHETIC ? 0 :
389 ((elf_symbol_type *) sym)->internal_elf_sym.st_shndx;
390
391 switch (shndx)
392 {
393 case SHN_MIPS_TEXT:
394 ms_type = mst_text;
395 break;
396 case SHN_MIPS_DATA:
397 ms_type = mst_data;
398 break;
399 case SHN_MIPS_ACOMMON:
400 ms_type = mst_bss;
401 break;
402 default:
403 ms_type = mst_abs;
404 }
405
406 /* If it is an Irix dynamic symbol, skip section name
407 symbols, relocate all others by section offset. */
408 if (ms_type != mst_abs)
409 {
410 if (sym->name[0] == '.')
411 continue;
412 symaddr += offset;
413 }
414 }
415 else if (sym->section->flags & SEC_CODE)
416 {
417 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
418 {
419 if (sym->flags & BSF_GNU_INDIRECT_FUNCTION)
420 ms_type = mst_text_gnu_ifunc;
421 else
422 ms_type = mst_text;
423 }
424 /* The BSF_SYNTHETIC check is there to omit ppc64 function
425 descriptors mistaken for static functions starting with 'L'.
426 */
427 else if ((sym->name[0] == '.' && sym->name[1] == 'L'
428 && (sym->flags & BSF_SYNTHETIC) == 0)
429 || ((sym->flags & BSF_LOCAL)
430 && sym->name[0] == '$'
431 && sym->name[1] == 'L'))
432 /* Looks like a compiler-generated label. Skip
433 it. The assembler should be skipping these (to
434 keep executables small), but apparently with
435 gcc on the (deleted) delta m88k SVR4, it loses.
436 So to have us check too should be harmless (but
437 I encourage people to fix this in the assembler
438 instead of adding checks here). */
439 continue;
440 else
441 {
442 ms_type = mst_file_text;
443 }
444 }
445 else if (sym->section->flags & SEC_ALLOC)
446 {
447 if (sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE))
448 {
449 if (sym->section->flags & SEC_LOAD)
450 {
451 ms_type = mst_data;
452 }
453 else
454 {
455 ms_type = mst_bss;
456 }
457 }
458 else if (sym->flags & BSF_LOCAL)
459 {
460 /* Named Local variable in a Data section.
461 Check its name for stabs-in-elf. */
462 int special_local_sect;
463
464 if (strcmp ("Bbss.bss", sym->name) == 0)
465 special_local_sect = SECT_OFF_BSS (objfile);
466 else if (strcmp ("Ddata.data", sym->name) == 0)
467 special_local_sect = SECT_OFF_DATA (objfile);
468 else if (strcmp ("Drodata.rodata", sym->name) == 0)
469 special_local_sect = SECT_OFF_RODATA (objfile);
470 else
471 special_local_sect = -1;
472 if (special_local_sect >= 0)
473 {
474 /* Found a special local symbol. Allocate a
475 sectinfo, if needed, and fill it in. */
476 if (sectinfo == NULL)
477 {
478 int max_index;
479 size_t size;
480
481 max_index = SECT_OFF_BSS (objfile);
482 if (objfile->sect_index_data > max_index)
483 max_index = objfile->sect_index_data;
484 if (objfile->sect_index_rodata > max_index)
485 max_index = objfile->sect_index_rodata;
486
487 /* max_index is the largest index we'll
488 use into this array, so we must
489 allocate max_index+1 elements for it.
490 However, 'struct stab_section_info'
491 already includes one element, so we
492 need to allocate max_index aadditional
493 elements. */
494 size = (sizeof (struct stab_section_info)
495 + (sizeof (CORE_ADDR) * max_index));
496 sectinfo = (struct stab_section_info *)
497 xmalloc (size);
498 memset (sectinfo, 0, size);
499 sectinfo->num_sections = max_index;
500 if (filesym == NULL)
501 {
502 complaint (&symfile_complaints,
503 _("elf/stab section information %s "
504 "without a preceding file symbol"),
505 sym->name);
506 }
507 else
508 {
509 sectinfo->filename =
510 (char *) filesym->name;
511 }
512 }
513 if (sectinfo->sections[special_local_sect] != 0)
514 complaint (&symfile_complaints,
515 _("duplicated elf/stab section "
516 "information for %s"),
517 sectinfo->filename);
518 /* BFD symbols are section relative. */
519 symaddr = sym->value + sym->section->vma;
520 /* Relocate non-absolute symbols by the
521 section offset. */
522 if (sym->section != bfd_abs_section_ptr)
523 symaddr += offset;
524 sectinfo->sections[special_local_sect] = symaddr;
525 /* The special local symbols don't go in the
526 minimal symbol table, so ignore this one. */
527 continue;
528 }
529 /* Not a special stabs-in-elf symbol, do regular
530 symbol processing. */
531 if (sym->section->flags & SEC_LOAD)
532 {
533 ms_type = mst_file_data;
534 }
535 else
536 {
537 ms_type = mst_file_bss;
538 }
539 }
540 else
541 {
542 ms_type = mst_unknown;
543 }
544 }
545 else
546 {
547 /* FIXME: Solaris2 shared libraries include lots of
548 odd "absolute" and "undefined" symbols, that play
549 hob with actions like finding what function the PC
550 is in. Ignore them if they aren't text, data, or bss. */
551 /* ms_type = mst_unknown; */
552 continue; /* Skip this symbol. */
553 }
554 msym = record_minimal_symbol
555 (sym->name, strlen (sym->name), copy_names, symaddr,
556 ms_type, sym->section, objfile);
557
558 if (msym)
559 {
560 /* NOTE: uweigand-20071112: A synthetic symbol does not have an
561 ELF-private part. */
562 if (type != ST_SYNTHETIC)
563 {
564 /* Pass symbol size field in via BFD. FIXME!!! */
565 elf_symbol_type *elf_sym = (elf_symbol_type *) sym;
566 SET_MSYMBOL_SIZE (msym, elf_sym->internal_elf_sym.st_size);
567 }
568
569 msym->filename = filesymname;
570 gdbarch_elf_make_msymbol_special (gdbarch, sym, msym);
571 }
572
573 /* If we see a default versioned symbol, install it under
574 its version-less name. */
575 if (msym != NULL)
576 {
577 const char *atsign = strchr (sym->name, '@');
578
579 if (atsign != NULL && atsign[1] == '@' && atsign > sym->name)
580 {
581 int len = atsign - sym->name;
582
583 record_minimal_symbol (sym->name, len, 1, symaddr,
584 ms_type, sym->section, objfile);
585 }
586 }
587
588 /* For @plt symbols, also record a trampoline to the
589 destination symbol. The @plt symbol will be used in
590 disassembly, and the trampoline will be used when we are
591 trying to find the target. */
592 if (msym && ms_type == mst_text && type == ST_SYNTHETIC)
593 {
594 int len = strlen (sym->name);
595
596 if (len > 4 && strcmp (sym->name + len - 4, "@plt") == 0)
597 {
598 struct minimal_symbol *mtramp;
599
600 mtramp = record_minimal_symbol (sym->name, len - 4, 1,
601 symaddr,
602 mst_solib_trampoline,
603 sym->section, objfile);
604 if (mtramp)
605 {
606 SET_MSYMBOL_SIZE (mtramp, MSYMBOL_SIZE (msym));
607 mtramp->created_by_gdb = 1;
608 mtramp->filename = filesymname;
609 gdbarch_elf_make_msymbol_special (gdbarch, sym, mtramp);
610 }
611 }
612 }
613 }
614 }
615 }
616
617 /* Build minimal symbols named `function@got.plt' (see SYMBOL_GOT_PLT_SUFFIX)
618 for later look ups of which function to call when user requests
619 a STT_GNU_IFUNC function. As the STT_GNU_IFUNC type is found at the target
620 library defining `function' we cannot yet know while reading OBJFILE which
621 of the SYMBOL_GOT_PLT_SUFFIX entries will be needed and later
622 DYN_SYMBOL_TABLE is no longer easily available for OBJFILE. */
623
624 static void
625 elf_rel_plt_read (struct objfile *objfile, asymbol **dyn_symbol_table)
626 {
627 bfd *obfd = objfile->obfd;
628 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
629 asection *plt, *relplt, *got_plt;
630 int plt_elf_idx;
631 bfd_size_type reloc_count, reloc;
632 char *string_buffer = NULL;
633 size_t string_buffer_size = 0;
634 struct cleanup *back_to;
635 struct gdbarch *gdbarch = get_objfile_arch (objfile);
636 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
637 size_t ptr_size = TYPE_LENGTH (ptr_type);
638
639 if (objfile->separate_debug_objfile_backlink)
640 return;
641
642 plt = bfd_get_section_by_name (obfd, ".plt");
643 if (plt == NULL)
644 return;
645 plt_elf_idx = elf_section_data (plt)->this_idx;
646
647 got_plt = bfd_get_section_by_name (obfd, ".got.plt");
648 if (got_plt == NULL)
649 return;
650
651 /* This search algorithm is from _bfd_elf_canonicalize_dynamic_reloc. */
652 for (relplt = obfd->sections; relplt != NULL; relplt = relplt->next)
653 if (elf_section_data (relplt)->this_hdr.sh_info == plt_elf_idx
654 && (elf_section_data (relplt)->this_hdr.sh_type == SHT_REL
655 || elf_section_data (relplt)->this_hdr.sh_type == SHT_RELA))
656 break;
657 if (relplt == NULL)
658 return;
659
660 if (! bed->s->slurp_reloc_table (obfd, relplt, dyn_symbol_table, TRUE))
661 return;
662
663 back_to = make_cleanup (free_current_contents, &string_buffer);
664
665 reloc_count = relplt->size / elf_section_data (relplt)->this_hdr.sh_entsize;
666 for (reloc = 0; reloc < reloc_count; reloc++)
667 {
668 const char *name;
669 struct minimal_symbol *msym;
670 CORE_ADDR address;
671 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
672 size_t name_len;
673
674 name = bfd_asymbol_name (*relplt->relocation[reloc].sym_ptr_ptr);
675 name_len = strlen (name);
676 address = relplt->relocation[reloc].address;
677
678 /* Does the pointer reside in the .got.plt section? */
679 if (!(bfd_get_section_vma (obfd, got_plt) <= address
680 && address < bfd_get_section_vma (obfd, got_plt)
681 + bfd_get_section_size (got_plt)))
682 continue;
683
684 /* We cannot check if NAME is a reference to mst_text_gnu_ifunc as in
685 OBJFILE the symbol is undefined and the objfile having NAME defined
686 may not yet have been loaded. */
687
688 if (string_buffer_size < name_len + got_suffix_len + 1)
689 {
690 string_buffer_size = 2 * (name_len + got_suffix_len);
691 string_buffer = xrealloc (string_buffer, string_buffer_size);
692 }
693 memcpy (string_buffer, name, name_len);
694 memcpy (&string_buffer[name_len], SYMBOL_GOT_PLT_SUFFIX,
695 got_suffix_len + 1);
696
697 msym = record_minimal_symbol (string_buffer, name_len + got_suffix_len,
698 1, address, mst_slot_got_plt, got_plt,
699 objfile);
700 if (msym)
701 SET_MSYMBOL_SIZE (msym, ptr_size);
702 }
703
704 do_cleanups (back_to);
705 }
706
707 /* The data pointer is htab_t for gnu_ifunc_record_cache_unchecked. */
708
709 static const struct objfile_data *elf_objfile_gnu_ifunc_cache_data;
710
711 /* Map function names to CORE_ADDR in elf_objfile_gnu_ifunc_cache_data. */
712
713 struct elf_gnu_ifunc_cache
714 {
715 /* This is always a function entry address, not a function descriptor. */
716 CORE_ADDR addr;
717
718 char name[1];
719 };
720
721 /* htab_hash for elf_objfile_gnu_ifunc_cache_data. */
722
723 static hashval_t
724 elf_gnu_ifunc_cache_hash (const void *a_voidp)
725 {
726 const struct elf_gnu_ifunc_cache *a = a_voidp;
727
728 return htab_hash_string (a->name);
729 }
730
731 /* htab_eq for elf_objfile_gnu_ifunc_cache_data. */
732
733 static int
734 elf_gnu_ifunc_cache_eq (const void *a_voidp, const void *b_voidp)
735 {
736 const struct elf_gnu_ifunc_cache *a = a_voidp;
737 const struct elf_gnu_ifunc_cache *b = b_voidp;
738
739 return strcmp (a->name, b->name) == 0;
740 }
741
742 /* Record the target function address of a STT_GNU_IFUNC function NAME is the
743 function entry address ADDR. Return 1 if NAME and ADDR are considered as
744 valid and therefore they were successfully recorded, return 0 otherwise.
745
746 Function does not expect a duplicate entry. Use
747 elf_gnu_ifunc_resolve_by_cache first to check if the entry for NAME already
748 exists. */
749
750 static int
751 elf_gnu_ifunc_record_cache (const char *name, CORE_ADDR addr)
752 {
753 struct bound_minimal_symbol msym;
754 asection *sect;
755 struct objfile *objfile;
756 htab_t htab;
757 struct elf_gnu_ifunc_cache entry_local, *entry_p;
758 void **slot;
759
760 msym = lookup_minimal_symbol_by_pc (addr);
761 if (msym.minsym == NULL)
762 return 0;
763 if (SYMBOL_VALUE_ADDRESS (msym.minsym) != addr)
764 return 0;
765 /* minimal symbols have always SYMBOL_OBJ_SECTION non-NULL. */
766 sect = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym)->the_bfd_section;
767 objfile = msym.objfile;
768
769 /* If .plt jumps back to .plt the symbol is still deferred for later
770 resolution and it has no use for GDB. Besides ".text" this symbol can
771 reside also in ".opd" for ppc64 function descriptor. */
772 if (strcmp (bfd_get_section_name (objfile->obfd, sect), ".plt") == 0)
773 return 0;
774
775 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
776 if (htab == NULL)
777 {
778 htab = htab_create_alloc_ex (1, elf_gnu_ifunc_cache_hash,
779 elf_gnu_ifunc_cache_eq,
780 NULL, &objfile->objfile_obstack,
781 hashtab_obstack_allocate,
782 dummy_obstack_deallocate);
783 set_objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data, htab);
784 }
785
786 entry_local.addr = addr;
787 obstack_grow (&objfile->objfile_obstack, &entry_local,
788 offsetof (struct elf_gnu_ifunc_cache, name));
789 obstack_grow_str0 (&objfile->objfile_obstack, name);
790 entry_p = obstack_finish (&objfile->objfile_obstack);
791
792 slot = htab_find_slot (htab, entry_p, INSERT);
793 if (*slot != NULL)
794 {
795 struct elf_gnu_ifunc_cache *entry_found_p = *slot;
796 struct gdbarch *gdbarch = get_objfile_arch (objfile);
797
798 if (entry_found_p->addr != addr)
799 {
800 /* This case indicates buggy inferior program, the resolved address
801 should never change. */
802
803 warning (_("gnu-indirect-function \"%s\" has changed its resolved "
804 "function_address from %s to %s"),
805 name, paddress (gdbarch, entry_found_p->addr),
806 paddress (gdbarch, addr));
807 }
808
809 /* New ENTRY_P is here leaked/duplicate in the OBJFILE obstack. */
810 }
811 *slot = entry_p;
812
813 return 1;
814 }
815
816 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
817 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
818 is not NULL) and the function returns 1. It returns 0 otherwise.
819
820 Only the elf_objfile_gnu_ifunc_cache_data hash table is searched by this
821 function. */
822
823 static int
824 elf_gnu_ifunc_resolve_by_cache (const char *name, CORE_ADDR *addr_p)
825 {
826 struct objfile *objfile;
827
828 ALL_PSPACE_OBJFILES (current_program_space, objfile)
829 {
830 htab_t htab;
831 struct elf_gnu_ifunc_cache *entry_p;
832 void **slot;
833
834 htab = objfile_data (objfile, elf_objfile_gnu_ifunc_cache_data);
835 if (htab == NULL)
836 continue;
837
838 entry_p = alloca (sizeof (*entry_p) + strlen (name));
839 strcpy (entry_p->name, name);
840
841 slot = htab_find_slot (htab, entry_p, NO_INSERT);
842 if (slot == NULL)
843 continue;
844 entry_p = *slot;
845 gdb_assert (entry_p != NULL);
846
847 if (addr_p)
848 *addr_p = entry_p->addr;
849 return 1;
850 }
851
852 return 0;
853 }
854
855 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
856 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
857 is not NULL) and the function returns 1. It returns 0 otherwise.
858
859 Only the SYMBOL_GOT_PLT_SUFFIX locations are searched by this function.
860 elf_gnu_ifunc_resolve_by_cache must have been already called for NAME to
861 prevent cache entries duplicates. */
862
863 static int
864 elf_gnu_ifunc_resolve_by_got (const char *name, CORE_ADDR *addr_p)
865 {
866 char *name_got_plt;
867 struct objfile *objfile;
868 const size_t got_suffix_len = strlen (SYMBOL_GOT_PLT_SUFFIX);
869
870 name_got_plt = alloca (strlen (name) + got_suffix_len + 1);
871 sprintf (name_got_plt, "%s" SYMBOL_GOT_PLT_SUFFIX, name);
872
873 ALL_PSPACE_OBJFILES (current_program_space, objfile)
874 {
875 bfd *obfd = objfile->obfd;
876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
877 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
878 size_t ptr_size = TYPE_LENGTH (ptr_type);
879 CORE_ADDR pointer_address, addr;
880 asection *plt;
881 gdb_byte *buf = alloca (ptr_size);
882 struct minimal_symbol *msym;
883
884 msym = lookup_minimal_symbol (name_got_plt, NULL, objfile);
885 if (msym == NULL)
886 continue;
887 if (MSYMBOL_TYPE (msym) != mst_slot_got_plt)
888 continue;
889 pointer_address = SYMBOL_VALUE_ADDRESS (msym);
890
891 plt = bfd_get_section_by_name (obfd, ".plt");
892 if (plt == NULL)
893 continue;
894
895 if (MSYMBOL_SIZE (msym) != ptr_size)
896 continue;
897 if (target_read_memory (pointer_address, buf, ptr_size) != 0)
898 continue;
899 addr = extract_typed_address (buf, ptr_type);
900 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
901 &current_target);
902
903 if (addr_p)
904 *addr_p = addr;
905 if (elf_gnu_ifunc_record_cache (name, addr))
906 return 1;
907 }
908
909 return 0;
910 }
911
912 /* Try to find the target resolved function entry address of a STT_GNU_IFUNC
913 function NAME. If the address is found it is stored to *ADDR_P (if ADDR_P
914 is not NULL) and the function returns 1. It returns 0 otherwise.
915
916 Both the elf_objfile_gnu_ifunc_cache_data hash table and
917 SYMBOL_GOT_PLT_SUFFIX locations are searched by this function. */
918
919 static int
920 elf_gnu_ifunc_resolve_name (const char *name, CORE_ADDR *addr_p)
921 {
922 if (elf_gnu_ifunc_resolve_by_cache (name, addr_p))
923 return 1;
924
925 if (elf_gnu_ifunc_resolve_by_got (name, addr_p))
926 return 1;
927
928 return 0;
929 }
930
931 /* Call STT_GNU_IFUNC - a function returning addresss of a real function to
932 call. PC is theSTT_GNU_IFUNC resolving function entry. The value returned
933 is the entry point of the resolved STT_GNU_IFUNC target function to call.
934 */
935
936 static CORE_ADDR
937 elf_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
938 {
939 const char *name_at_pc;
940 CORE_ADDR start_at_pc, address;
941 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
942 struct value *function, *address_val;
943
944 /* Try first any non-intrusive methods without an inferior call. */
945
946 if (find_pc_partial_function (pc, &name_at_pc, &start_at_pc, NULL)
947 && start_at_pc == pc)
948 {
949 if (elf_gnu_ifunc_resolve_name (name_at_pc, &address))
950 return address;
951 }
952 else
953 name_at_pc = NULL;
954
955 function = allocate_value (func_func_type);
956 set_value_address (function, pc);
957
958 /* STT_GNU_IFUNC resolver functions have no parameters. FUNCTION is the
959 function entry address. ADDRESS may be a function descriptor. */
960
961 address_val = call_function_by_hand (function, 0, NULL);
962 address = value_as_address (address_val);
963 address = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
964 &current_target);
965
966 if (name_at_pc)
967 elf_gnu_ifunc_record_cache (name_at_pc, address);
968
969 return address;
970 }
971
972 /* Handle inferior hit of bp_gnu_ifunc_resolver, see its definition. */
973
974 static void
975 elf_gnu_ifunc_resolver_stop (struct breakpoint *b)
976 {
977 struct breakpoint *b_return;
978 struct frame_info *prev_frame = get_prev_frame (get_current_frame ());
979 struct frame_id prev_frame_id = get_stack_frame_id (prev_frame);
980 CORE_ADDR prev_pc = get_frame_pc (prev_frame);
981 int thread_id = pid_to_thread_id (inferior_ptid);
982
983 gdb_assert (b->type == bp_gnu_ifunc_resolver);
984
985 for (b_return = b->related_breakpoint; b_return != b;
986 b_return = b_return->related_breakpoint)
987 {
988 gdb_assert (b_return->type == bp_gnu_ifunc_resolver_return);
989 gdb_assert (b_return->loc != NULL && b_return->loc->next == NULL);
990 gdb_assert (frame_id_p (b_return->frame_id));
991
992 if (b_return->thread == thread_id
993 && b_return->loc->requested_address == prev_pc
994 && frame_id_eq (b_return->frame_id, prev_frame_id))
995 break;
996 }
997
998 if (b_return == b)
999 {
1000 struct symtab_and_line sal;
1001
1002 /* No need to call find_pc_line for symbols resolving as this is only
1003 a helper breakpointer never shown to the user. */
1004
1005 init_sal (&sal);
1006 sal.pspace = current_inferior ()->pspace;
1007 sal.pc = prev_pc;
1008 sal.section = find_pc_overlay (sal.pc);
1009 sal.explicit_pc = 1;
1010 b_return = set_momentary_breakpoint (get_frame_arch (prev_frame), sal,
1011 prev_frame_id,
1012 bp_gnu_ifunc_resolver_return);
1013
1014 /* set_momentary_breakpoint invalidates PREV_FRAME. */
1015 prev_frame = NULL;
1016
1017 /* Add new b_return to the ring list b->related_breakpoint. */
1018 gdb_assert (b_return->related_breakpoint == b_return);
1019 b_return->related_breakpoint = b->related_breakpoint;
1020 b->related_breakpoint = b_return;
1021 }
1022 }
1023
1024 /* Handle inferior hit of bp_gnu_ifunc_resolver_return, see its definition. */
1025
1026 static void
1027 elf_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
1028 {
1029 struct gdbarch *gdbarch = get_frame_arch (get_current_frame ());
1030 struct type *func_func_type = builtin_type (gdbarch)->builtin_func_func;
1031 struct type *value_type = TYPE_TARGET_TYPE (func_func_type);
1032 struct regcache *regcache = get_thread_regcache (inferior_ptid);
1033 struct value *func_func;
1034 struct value *value;
1035 CORE_ADDR resolved_address, resolved_pc;
1036 struct symtab_and_line sal;
1037 struct symtabs_and_lines sals, sals_end;
1038
1039 gdb_assert (b->type == bp_gnu_ifunc_resolver_return);
1040
1041 while (b->related_breakpoint != b)
1042 {
1043 struct breakpoint *b_next = b->related_breakpoint;
1044
1045 switch (b->type)
1046 {
1047 case bp_gnu_ifunc_resolver:
1048 break;
1049 case bp_gnu_ifunc_resolver_return:
1050 delete_breakpoint (b);
1051 break;
1052 default:
1053 internal_error (__FILE__, __LINE__,
1054 _("handle_inferior_event: Invalid "
1055 "gnu-indirect-function breakpoint type %d"),
1056 (int) b->type);
1057 }
1058 b = b_next;
1059 }
1060 gdb_assert (b->type == bp_gnu_ifunc_resolver);
1061 gdb_assert (b->loc->next == NULL);
1062
1063 func_func = allocate_value (func_func_type);
1064 set_value_address (func_func, b->loc->related_address);
1065
1066 value = allocate_value (value_type);
1067 gdbarch_return_value (gdbarch, func_func, value_type, regcache,
1068 value_contents_raw (value), NULL);
1069 resolved_address = value_as_address (value);
1070 resolved_pc = gdbarch_convert_from_func_ptr_addr (gdbarch,
1071 resolved_address,
1072 &current_target);
1073
1074 gdb_assert (current_program_space == b->pspace || b->pspace == NULL);
1075 elf_gnu_ifunc_record_cache (b->addr_string, resolved_pc);
1076
1077 sal = find_pc_line (resolved_pc, 0);
1078 sals.nelts = 1;
1079 sals.sals = &sal;
1080 sals_end.nelts = 0;
1081
1082 b->type = bp_breakpoint;
1083 update_breakpoint_locations (b, sals, sals_end);
1084 }
1085
1086 /* Scan and build partial symbols for a symbol file.
1087 We have been initialized by a call to elf_symfile_init, which
1088 currently does nothing.
1089
1090 SECTION_OFFSETS is a set of offsets to apply to relocate the symbols
1091 in each section. We simplify it down to a single offset for all
1092 symbols. FIXME.
1093
1094 This function only does the minimum work necessary for letting the
1095 user "name" things symbolically; it does not read the entire symtab.
1096 Instead, it reads the external and static symbols and puts them in partial
1097 symbol tables. When more extensive information is requested of a
1098 file, the corresponding partial symbol table is mutated into a full
1099 fledged symbol table by going back and reading the symbols
1100 for real.
1101
1102 We look for sections with specific names, to tell us what debug
1103 format to look for: FIXME!!!
1104
1105 elfstab_build_psymtabs() handles STABS symbols;
1106 mdebug_build_psymtabs() handles ECOFF debugging information.
1107
1108 Note that ELF files have a "minimal" symbol table, which looks a lot
1109 like a COFF symbol table, but has only the minimal information necessary
1110 for linking. We process this also, and use the information to
1111 build gdb's minimal symbol table. This gives us some minimal debugging
1112 capability even for files compiled without -g. */
1113
1114 static void
1115 elf_symfile_read (struct objfile *objfile, int symfile_flags)
1116 {
1117 bfd *synth_abfd, *abfd = objfile->obfd;
1118 struct elfinfo ei;
1119 struct cleanup *back_to;
1120 long symcount = 0, dynsymcount = 0, synthcount, storage_needed;
1121 asymbol **symbol_table = NULL, **dyn_symbol_table = NULL;
1122 asymbol *synthsyms;
1123 struct dbx_symfile_info *dbx;
1124
1125 if (symtab_create_debug)
1126 {
1127 fprintf_unfiltered (gdb_stdlog,
1128 "Reading minimal symbols of objfile %s ...\n",
1129 objfile_name (objfile));
1130 }
1131
1132 init_minimal_symbol_collection ();
1133 back_to = make_cleanup_discard_minimal_symbols ();
1134
1135 memset ((char *) &ei, 0, sizeof (ei));
1136
1137 /* Allocate struct to keep track of the symfile. */
1138 dbx = XCNEW (struct dbx_symfile_info);
1139 set_objfile_data (objfile, dbx_objfile_data_key, dbx);
1140 make_cleanup (free_elfinfo, (void *) objfile);
1141
1142 /* Process the normal ELF symbol table first. This may write some
1143 chain of info into the dbx_symfile_info of the objfile, which can
1144 later be used by elfstab_offset_sections. */
1145
1146 storage_needed = bfd_get_symtab_upper_bound (objfile->obfd);
1147 if (storage_needed < 0)
1148 error (_("Can't read symbols from %s: %s"),
1149 bfd_get_filename (objfile->obfd),
1150 bfd_errmsg (bfd_get_error ()));
1151
1152 if (storage_needed > 0)
1153 {
1154 symbol_table = (asymbol **) xmalloc (storage_needed);
1155 make_cleanup (xfree, symbol_table);
1156 symcount = bfd_canonicalize_symtab (objfile->obfd, symbol_table);
1157
1158 if (symcount < 0)
1159 error (_("Can't read symbols from %s: %s"),
1160 bfd_get_filename (objfile->obfd),
1161 bfd_errmsg (bfd_get_error ()));
1162
1163 elf_symtab_read (objfile, ST_REGULAR, symcount, symbol_table, 0);
1164 }
1165
1166 /* Add the dynamic symbols. */
1167
1168 storage_needed = bfd_get_dynamic_symtab_upper_bound (objfile->obfd);
1169
1170 if (storage_needed > 0)
1171 {
1172 /* Memory gets permanently referenced from ABFD after
1173 bfd_get_synthetic_symtab so it must not get freed before ABFD gets.
1174 It happens only in the case when elf_slurp_reloc_table sees
1175 asection->relocation NULL. Determining which section is asection is
1176 done by _bfd_elf_get_synthetic_symtab which is all a bfd
1177 implementation detail, though. */
1178
1179 dyn_symbol_table = bfd_alloc (abfd, storage_needed);
1180 dynsymcount = bfd_canonicalize_dynamic_symtab (objfile->obfd,
1181 dyn_symbol_table);
1182
1183 if (dynsymcount < 0)
1184 error (_("Can't read symbols from %s: %s"),
1185 bfd_get_filename (objfile->obfd),
1186 bfd_errmsg (bfd_get_error ()));
1187
1188 elf_symtab_read (objfile, ST_DYNAMIC, dynsymcount, dyn_symbol_table, 0);
1189
1190 elf_rel_plt_read (objfile, dyn_symbol_table);
1191 }
1192
1193 /* Contrary to binutils --strip-debug/--only-keep-debug the strip command from
1194 elfutils (eu-strip) moves even the .symtab section into the .debug file.
1195
1196 bfd_get_synthetic_symtab on ppc64 for each function descriptor ELF symbol
1197 'name' creates a new BSF_SYNTHETIC ELF symbol '.name' with its code
1198 address. But with eu-strip files bfd_get_synthetic_symtab would fail to
1199 read the code address from .opd while it reads the .symtab section from
1200 a separate debug info file as the .opd section is SHT_NOBITS there.
1201
1202 With SYNTH_ABFD the .opd section will be read from the original
1203 backlinked binary where it is valid. */
1204
1205 if (objfile->separate_debug_objfile_backlink)
1206 synth_abfd = objfile->separate_debug_objfile_backlink->obfd;
1207 else
1208 synth_abfd = abfd;
1209
1210 /* Add synthetic symbols - for instance, names for any PLT entries. */
1211
1212 synthcount = bfd_get_synthetic_symtab (synth_abfd, symcount, symbol_table,
1213 dynsymcount, dyn_symbol_table,
1214 &synthsyms);
1215 if (synthcount > 0)
1216 {
1217 asymbol **synth_symbol_table;
1218 long i;
1219
1220 make_cleanup (xfree, synthsyms);
1221 synth_symbol_table = xmalloc (sizeof (asymbol *) * synthcount);
1222 for (i = 0; i < synthcount; i++)
1223 synth_symbol_table[i] = synthsyms + i;
1224 make_cleanup (xfree, synth_symbol_table);
1225 elf_symtab_read (objfile, ST_SYNTHETIC, synthcount,
1226 synth_symbol_table, 1);
1227 }
1228
1229 /* Install any minimal symbols that have been collected as the current
1230 minimal symbols for this objfile. The debug readers below this point
1231 should not generate new minimal symbols; if they do it's their
1232 responsibility to install them. "mdebug" appears to be the only one
1233 which will do this. */
1234
1235 install_minimal_symbols (objfile);
1236 do_cleanups (back_to);
1237
1238 if (symtab_create_debug)
1239 fprintf_unfiltered (gdb_stdlog, "Done reading minimal symbols.\n");
1240
1241 /* Now process debugging information, which is contained in
1242 special ELF sections. */
1243
1244 /* We first have to find them... */
1245 bfd_map_over_sections (abfd, elf_locate_sections, (void *) & ei);
1246
1247 /* ELF debugging information is inserted into the psymtab in the
1248 order of least informative first - most informative last. Since
1249 the psymtab table is searched `most recent insertion first' this
1250 increases the probability that more detailed debug information
1251 for a section is found.
1252
1253 For instance, an object file might contain both .mdebug (XCOFF)
1254 and .debug_info (DWARF2) sections then .mdebug is inserted first
1255 (searched last) and DWARF2 is inserted last (searched first). If
1256 we don't do this then the XCOFF info is found first - for code in
1257 an included file XCOFF info is useless. */
1258
1259 if (ei.mdebugsect)
1260 {
1261 const struct ecoff_debug_swap *swap;
1262
1263 /* .mdebug section, presumably holding ECOFF debugging
1264 information. */
1265 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1266 if (swap)
1267 elfmdebug_build_psymtabs (objfile, swap, ei.mdebugsect);
1268 }
1269 if (ei.stabsect)
1270 {
1271 asection *str_sect;
1272
1273 /* Stab sections have an associated string table that looks like
1274 a separate section. */
1275 str_sect = bfd_get_section_by_name (abfd, ".stabstr");
1276
1277 /* FIXME should probably warn about a stab section without a stabstr. */
1278 if (str_sect)
1279 elfstab_build_psymtabs (objfile,
1280 ei.stabsect,
1281 str_sect->filepos,
1282 bfd_section_size (abfd, str_sect));
1283 }
1284
1285 if (dwarf2_has_info (objfile, NULL))
1286 {
1287 /* elf_sym_fns_gdb_index cannot handle simultaneous non-DWARF debug
1288 information present in OBJFILE. If there is such debug info present
1289 never use .gdb_index. */
1290
1291 if (!objfile_has_partial_symbols (objfile)
1292 && dwarf2_initialize_objfile (objfile))
1293 objfile_set_sym_fns (objfile, &elf_sym_fns_gdb_index);
1294 else
1295 {
1296 /* It is ok to do this even if the stabs reader made some
1297 partial symbols, because OBJF_PSYMTABS_READ has not been
1298 set, and so our lazy reader function will still be called
1299 when needed. */
1300 objfile_set_sym_fns (objfile, &elf_sym_fns_lazy_psyms);
1301 }
1302 }
1303 /* If the file has its own symbol tables it has no separate debug
1304 info. `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to
1305 SYMTABS/PSYMTABS. `.gnu_debuglink' may no longer be present with
1306 `.note.gnu.build-id'.
1307
1308 .gnu_debugdata is !objfile_has_partial_symbols because it contains only
1309 .symtab, not .debug_* section. But if we already added .gnu_debugdata as
1310 an objfile via find_separate_debug_file_in_section there was no separate
1311 debug info available. Therefore do not attempt to search for another one,
1312 objfile->separate_debug_objfile->separate_debug_objfile GDB guarantees to
1313 be NULL and we would possibly violate it. */
1314
1315 else if (!objfile_has_partial_symbols (objfile)
1316 && objfile->separate_debug_objfile == NULL
1317 && objfile->separate_debug_objfile_backlink == NULL)
1318 {
1319 char *debugfile;
1320
1321 debugfile = find_separate_debug_file_by_buildid (objfile);
1322
1323 if (debugfile == NULL)
1324 debugfile = find_separate_debug_file_by_debuglink (objfile);
1325
1326 if (debugfile)
1327 {
1328 struct cleanup *cleanup = make_cleanup (xfree, debugfile);
1329 bfd *abfd = symfile_bfd_open (debugfile);
1330
1331 make_cleanup_bfd_unref (abfd);
1332 symbol_file_add_separate (abfd, debugfile, symfile_flags, objfile);
1333 do_cleanups (cleanup);
1334 }
1335 }
1336 }
1337
1338 /* Callback to lazily read psymtabs. */
1339
1340 static void
1341 read_psyms (struct objfile *objfile)
1342 {
1343 if (dwarf2_has_info (objfile, NULL))
1344 dwarf2_build_psymtabs (objfile);
1345 }
1346
1347 /* This cleans up the objfile's dbx symfile info, and the chain of
1348 stab_section_info's, that might be dangling from it. */
1349
1350 static void
1351 free_elfinfo (void *objp)
1352 {
1353 struct objfile *objfile = (struct objfile *) objp;
1354 struct dbx_symfile_info *dbxinfo = DBX_SYMFILE_INFO (objfile);
1355 struct stab_section_info *ssi, *nssi;
1356
1357 ssi = dbxinfo->stab_section_info;
1358 while (ssi)
1359 {
1360 nssi = ssi->next;
1361 xfree (ssi);
1362 ssi = nssi;
1363 }
1364
1365 dbxinfo->stab_section_info = 0; /* Just say No mo info about this. */
1366 }
1367
1368
1369 /* Initialize anything that needs initializing when a completely new symbol
1370 file is specified (not just adding some symbols from another file, e.g. a
1371 shared library).
1372
1373 We reinitialize buildsym, since we may be reading stabs from an ELF
1374 file. */
1375
1376 static void
1377 elf_new_init (struct objfile *ignore)
1378 {
1379 stabsread_new_init ();
1380 buildsym_new_init ();
1381 }
1382
1383 /* Perform any local cleanups required when we are done with a particular
1384 objfile. I.E, we are in the process of discarding all symbol information
1385 for an objfile, freeing up all memory held for it, and unlinking the
1386 objfile struct from the global list of known objfiles. */
1387
1388 static void
1389 elf_symfile_finish (struct objfile *objfile)
1390 {
1391 dwarf2_free_objfile (objfile);
1392 }
1393
1394 /* ELF specific initialization routine for reading symbols.
1395
1396 It is passed a pointer to a struct sym_fns which contains, among other
1397 things, the BFD for the file whose symbols are being read, and a slot for
1398 a pointer to "private data" which we can fill with goodies.
1399
1400 For now at least, we have nothing in particular to do, so this function is
1401 just a stub. */
1402
1403 static void
1404 elf_symfile_init (struct objfile *objfile)
1405 {
1406 /* ELF objects may be reordered, so set OBJF_REORDERED. If we
1407 find this causes a significant slowdown in gdb then we could
1408 set it in the debug symbol readers only when necessary. */
1409 objfile->flags |= OBJF_REORDERED;
1410 }
1411
1412 /* When handling an ELF file that contains Sun STABS debug info,
1413 some of the debug info is relative to the particular chunk of the
1414 section that was generated in its individual .o file. E.g.
1415 offsets to static variables are relative to the start of the data
1416 segment *for that module before linking*. This information is
1417 painfully squirreled away in the ELF symbol table as local symbols
1418 with wierd names. Go get 'em when needed. */
1419
1420 void
1421 elfstab_offset_sections (struct objfile *objfile, struct partial_symtab *pst)
1422 {
1423 const char *filename = pst->filename;
1424 struct dbx_symfile_info *dbx = DBX_SYMFILE_INFO (objfile);
1425 struct stab_section_info *maybe = dbx->stab_section_info;
1426 struct stab_section_info *questionable = 0;
1427 int i;
1428
1429 /* The ELF symbol info doesn't include path names, so strip the path
1430 (if any) from the psymtab filename. */
1431 filename = lbasename (filename);
1432
1433 /* FIXME: This linear search could speed up significantly
1434 if it was chained in the right order to match how we search it,
1435 and if we unchained when we found a match. */
1436 for (; maybe; maybe = maybe->next)
1437 {
1438 if (filename[0] == maybe->filename[0]
1439 && filename_cmp (filename, maybe->filename) == 0)
1440 {
1441 /* We found a match. But there might be several source files
1442 (from different directories) with the same name. */
1443 if (0 == maybe->found)
1444 break;
1445 questionable = maybe; /* Might use it later. */
1446 }
1447 }
1448
1449 if (maybe == 0 && questionable != 0)
1450 {
1451 complaint (&symfile_complaints,
1452 _("elf/stab section information questionable for %s"),
1453 filename);
1454 maybe = questionable;
1455 }
1456
1457 if (maybe)
1458 {
1459 /* Found it! Allocate a new psymtab struct, and fill it in. */
1460 maybe->found++;
1461 pst->section_offsets = (struct section_offsets *)
1462 obstack_alloc (&objfile->objfile_obstack,
1463 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
1464 for (i = 0; i < maybe->num_sections; i++)
1465 (pst->section_offsets)->offsets[i] = maybe->sections[i];
1466 return;
1467 }
1468
1469 /* We were unable to find any offsets for this file. Complain. */
1470 if (dbx->stab_section_info) /* If there *is* any info, */
1471 complaint (&symfile_complaints,
1472 _("elf/stab section information missing for %s"), filename);
1473 }
1474
1475 /* Implementation of `sym_get_probes', as documented in symfile.h. */
1476
1477 static VEC (probe_p) *
1478 elf_get_probes (struct objfile *objfile)
1479 {
1480 VEC (probe_p) *probes_per_objfile;
1481
1482 /* Have we parsed this objfile's probes already? */
1483 probes_per_objfile = objfile_data (objfile, probe_key);
1484
1485 if (!probes_per_objfile)
1486 {
1487 int ix;
1488 const struct probe_ops *probe_ops;
1489
1490 /* Here we try to gather information about all types of probes from the
1491 objfile. */
1492 for (ix = 0; VEC_iterate (probe_ops_cp, all_probe_ops, ix, probe_ops);
1493 ix++)
1494 probe_ops->get_probes (&probes_per_objfile, objfile);
1495
1496 if (probes_per_objfile == NULL)
1497 {
1498 VEC_reserve (probe_p, probes_per_objfile, 1);
1499 gdb_assert (probes_per_objfile != NULL);
1500 }
1501
1502 set_objfile_data (objfile, probe_key, probes_per_objfile);
1503 }
1504
1505 return probes_per_objfile;
1506 }
1507
1508 /* Implementation of `sym_get_probe_argument_count', as documented in
1509 symfile.h. */
1510
1511 static unsigned
1512 elf_get_probe_argument_count (struct probe *probe)
1513 {
1514 return probe->pops->get_probe_argument_count (probe);
1515 }
1516
1517 /* Implementation of `sym_can_evaluate_probe_arguments', as documented in
1518 symfile.h. */
1519
1520 static int
1521 elf_can_evaluate_probe_arguments (struct probe *probe)
1522 {
1523 return probe->pops->can_evaluate_probe_arguments (probe);
1524 }
1525
1526 /* Implementation of `sym_evaluate_probe_argument', as documented in
1527 symfile.h. */
1528
1529 static struct value *
1530 elf_evaluate_probe_argument (struct probe *probe, unsigned n)
1531 {
1532 return probe->pops->evaluate_probe_argument (probe, n);
1533 }
1534
1535 /* Implementation of `sym_compile_to_ax', as documented in symfile.h. */
1536
1537 static void
1538 elf_compile_to_ax (struct probe *probe,
1539 struct agent_expr *expr,
1540 struct axs_value *value,
1541 unsigned n)
1542 {
1543 probe->pops->compile_to_ax (probe, expr, value, n);
1544 }
1545
1546 /* Implementation of `sym_relocate_probe', as documented in symfile.h. */
1547
1548 static void
1549 elf_symfile_relocate_probe (struct objfile *objfile,
1550 const struct section_offsets *new_offsets,
1551 const struct section_offsets *delta)
1552 {
1553 int ix;
1554 VEC (probe_p) *probes = objfile_data (objfile, probe_key);
1555 struct probe *probe;
1556
1557 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1558 probe->pops->relocate (probe, ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
1559 }
1560
1561 /* Helper function used to free the space allocated for storing SystemTap
1562 probe information. */
1563
1564 static void
1565 probe_key_free (struct objfile *objfile, void *d)
1566 {
1567 int ix;
1568 VEC (probe_p) *probes = d;
1569 struct probe *probe;
1570
1571 for (ix = 0; VEC_iterate (probe_p, probes, ix, probe); ix++)
1572 probe->pops->destroy (probe);
1573
1574 VEC_free (probe_p, probes);
1575 }
1576
1577 \f
1578
1579 /* Implementation `sym_probe_fns', as documented in symfile.h. */
1580
1581 static const struct sym_probe_fns elf_probe_fns =
1582 {
1583 elf_get_probes, /* sym_get_probes */
1584 elf_get_probe_argument_count, /* sym_get_probe_argument_count */
1585 elf_can_evaluate_probe_arguments, /* sym_can_evaluate_probe_arguments */
1586 elf_evaluate_probe_argument, /* sym_evaluate_probe_argument */
1587 elf_compile_to_ax, /* sym_compile_to_ax */
1588 elf_symfile_relocate_probe, /* sym_relocate_probe */
1589 };
1590
1591 /* Register that we are able to handle ELF object file formats. */
1592
1593 static const struct sym_fns elf_sym_fns =
1594 {
1595 elf_new_init, /* init anything gbl to entire symtab */
1596 elf_symfile_init, /* read initial info, setup for sym_read() */
1597 elf_symfile_read, /* read a symbol file into symtab */
1598 NULL, /* sym_read_psymbols */
1599 elf_symfile_finish, /* finished with file, cleanup */
1600 default_symfile_offsets, /* Translate ext. to int. relocation */
1601 elf_symfile_segments, /* Get segment information from a file. */
1602 NULL,
1603 default_symfile_relocate, /* Relocate a debug section. */
1604 &elf_probe_fns, /* sym_probe_fns */
1605 &psym_functions
1606 };
1607
1608 /* The same as elf_sym_fns, but not registered and lazily reads
1609 psymbols. */
1610
1611 static const struct sym_fns elf_sym_fns_lazy_psyms =
1612 {
1613 elf_new_init, /* init anything gbl to entire symtab */
1614 elf_symfile_init, /* read initial info, setup for sym_read() */
1615 elf_symfile_read, /* read a symbol file into symtab */
1616 read_psyms, /* sym_read_psymbols */
1617 elf_symfile_finish, /* finished with file, cleanup */
1618 default_symfile_offsets, /* Translate ext. to int. relocation */
1619 elf_symfile_segments, /* Get segment information from a file. */
1620 NULL,
1621 default_symfile_relocate, /* Relocate a debug section. */
1622 &elf_probe_fns, /* sym_probe_fns */
1623 &psym_functions
1624 };
1625
1626 /* The same as elf_sym_fns, but not registered and uses the
1627 DWARF-specific GNU index rather than psymtab. */
1628 static const struct sym_fns elf_sym_fns_gdb_index =
1629 {
1630 elf_new_init, /* init anything gbl to entire symab */
1631 elf_symfile_init, /* read initial info, setup for sym_red() */
1632 elf_symfile_read, /* read a symbol file into symtab */
1633 NULL, /* sym_read_psymbols */
1634 elf_symfile_finish, /* finished with file, cleanup */
1635 default_symfile_offsets, /* Translate ext. to int. relocatin */
1636 elf_symfile_segments, /* Get segment information from a file. */
1637 NULL,
1638 default_symfile_relocate, /* Relocate a debug section. */
1639 &elf_probe_fns, /* sym_probe_fns */
1640 &dwarf2_gdb_index_functions
1641 };
1642
1643 /* STT_GNU_IFUNC resolver vector to be installed to gnu_ifunc_fns_p. */
1644
1645 static const struct gnu_ifunc_fns elf_gnu_ifunc_fns =
1646 {
1647 elf_gnu_ifunc_resolve_addr,
1648 elf_gnu_ifunc_resolve_name,
1649 elf_gnu_ifunc_resolver_stop,
1650 elf_gnu_ifunc_resolver_return_stop
1651 };
1652
1653 void
1654 _initialize_elfread (void)
1655 {
1656 probe_key = register_objfile_data_with_cleanup (NULL, probe_key_free);
1657 add_symtab_fns (bfd_target_elf_flavour, &elf_sym_fns);
1658
1659 elf_objfile_gnu_ifunc_cache_data = register_objfile_data ();
1660 gnu_ifunc_fns_p = &elf_gnu_ifunc_fns;
1661 }